
NoSQL DEEP DIVE
Relational + JSON = Simply Powerful

Jef Treece, IBM Product Manager jtreece@us.ibm.com

John F. Miller III, IBM Software Architect miller3@us.ibm.com

Keshava Murthy, IBM Software Architect rkeshav@us.ibm.com

© 2013 IBM Corporation

Agenda

� NoSQL Business Drivers
� Live Demo
� JSON Store Overview
� Relational + JSON = Simply Powerful

2

NoSQL BUSINESS DRIVERS

Jef Treece, IBM Product Manager

jtreece@us.ibm.com

@JefTreece

© 2013 IBM
Corporation

Explosion of
mobile devices

Infrastructure
optimization –

cloud computing

Growth of
social media

Advanced predictive
analytics

Real-time
sensor data

Cyber
security

Business
optimization

+
big data

What is Driving IT Demand?

● Applications must support mobile

– Interoperate with modern applications with agility

– Enterprise infrastructure

● Ability to scale to big data

– Commodity hardware and software

– Use case are driving big data

– Data in motion

● Strategy: more interactions with customers

– Systems of engagement needed!

– 71% CIOs see move toward social/digital collaboration

– New class of applications are based on NoSQL

Global C-suite Study, http://www-935.ibm.com/services/us/en/c-suite/csuitestudy2013/

Explosion of mobile
devices

Business Trends Driving NoSQL Adoption

Martin Fowler says:
“aggregate-oriented”
What you're most likely to
access as a unit.

Key Value Store
● Couchbase
● Riak
● Citrusleaf
● Redis
● BerkeleyDB
● Membrain
● ...

Document
● MongoDB
● CouchDB
● RavenDB
● Couchbase
● ... Graph

● OrientDB
● DEX
● Neo4j
● GraphBase
● ...

Column
● Cloudera
● HBase
● Hypertable
● Cassandra
● ...

NoSQL Landscape

● Ability to manage humongous data

● Enable rapid development

– Flexible schema development

– Tap into the existing ecosystem – JSON, BSON, drivers, developers,
modern applications

● Capture real-time interactions

– Varied data sources

Characteristics of a NoSQL Document Store

JavaScript Everywhere

● JavaScript client development now dominant

– JavaScript and HTML5 for browser presentation

– JavaScript mobile applications

● JSON: JavaScript Object Notation

– End-to-end JavaScript

– The language of the web

JSJSJSJS

JS

● Relational model works best for transactional data

● Enterprise data exists in relational databases

● Relational database preferred for most analytics

Traditional Relational Database Still Required

You need both
at the same time!

10

Explosion of mobile
devices – gaming
and social apps

Advertising:
serving ads and
real-time bidding

Social networking,
online communities

E-commerce, social
commerce

Machine data and
real-time operational

decisions

Smart
Devices

NoSQL + Relational

Internet of
Things

Business Value of NoSQL + RDBMS

● Level 1: Hybrid storage

– JSON and relational tables in same storage engine

– Different apps, same database

Reduces cost and complexity!

Performance!

● Level 2: Hybrid applications

– A single application brings together RDBMS and NoSQL

– Business insight from bringing the two different types of data and
the two different requirements together

New business patterns!

IBM/MongoDB Partnership

12

OS

L

C
JSON Query

JSON Ecosystem

BSON

MongoDB and IBM announced a partnership in June 2013

Enter IBM Informix 12.10

● Now you have the right tool for the job – all in one toolbox

– System of record: Informix RDBMS

– System of engagement: Informix NoSQL

– Hybrid storage, hybrid applications

Simply powerful
for both!

Thank You!

Next Up...

Demo

John F. Miller III, IBM Software Architect

miller3@us.ibm.com

BUILDING A REAL LIFE
APPLICATION

IOD Attendee Photo Application

Allow conference attendee to take and share photo!

Technology Highlights

• Create a hybrid application using NoSQL, traditional SQL,
timeseries mobile web application

• Utilizing both JSON collections, SQL tables and timeseries

• Utilize IBM Dojo Mobile tools to build a mobile application

• Leverage new mongo client side drivers for fast application
development and delployment

• Demonstrate scale-out using sharding with over 100 nodes

• Cloud based solution using Amazon Cloud

• Can be deployed on PureFlex or SoftLayer

• Provide real-time analytics on all forms of data

• Leverage existing popular analytic front-end IBM-Congos

• Utilize an in-memory columnar database accelerator to provide real-
time trending analytics on data

IOD Photo App - UPLOAD

Van Goghtag

Photo Application

IBM Dojo Mobile

Apache Web Server

Mobile Device Application Architecture

Informix

Photo

collection
Informix

JSON

Listener User

Table

Photo Application Schema

activity_data timeseries(photo_like)

activity_photos

NoSQL Collections

TimeSeries

Application Considerations

� Photo meta-data varies from camera to camera

� A Picture and all its meta data are stored in-document

� Pictures are stored in a JSON collection

� Pre-processing on the phone ensures only reasonable size
photos are sent over the network.

Example of Live JSON Photo Data

{"_id":ObjectId("526157c8112c2fe70cc06a75"), "Make":"NIKON CORPORA

TION","Model":"NIKON D60","Orientation":"1","XResolution":"300","

YResolution":"300","ResolutionUnit":"2","Software":"Ver.1.00 ","D

ateTime":"2013:05:15 19:46:36","YCbCrPositioning":"2","ExifIFDPoi

nter":"216","ExposureTime":"0.005","FNumber":"7.1","ExposureProgr

am":"Not defined","ISOSpeedRatings":"100",

"Contrast":"Normal","Saturation":"Normal","Sharpness":"Normal",

"SubjectDistanceRange":"Unknown","name":"DSC_0078.JPG","img_d

ata":"

JSON Data

Motivation of Sharding

� Enables horizontal scaling (partitioning)

� The application strategy in step with business

− Start small and grow with commodity hardware
as the business grows

− Grow as you go

� Economics of solution

− 4 nodes each of 4 cores

− 1 node of 16 cores

8

Code Snippets

� Used PHP and mongo PHP API

� Example showing

− Inserting

− Retrieving data

− Deleting JSON documents and
SQL rows

− Executing Stored Procedures

Basic PHP Programming Overview Information

� List of NoSQL collection names and SQL tables names

� Function to set the active database and return the Collection

private $conn;

private $dbname = "photo_demo";
private $photoCollectionName = "photos";
private $contactsCollectionName = "contacts";
private $sqlCollectionName = 'system.sql';
private $userTableName = "users";
private $tagsTableName = "tags";
private $likesTableName = "likes";

private $photoQueryProjection = array("_id" => 1, "tags" => 1,
"user_id" => 1, "img_data" => 1);

/**
* Get collection by name
* @param MongoCollection $collectionName
*/

private function getCollection($collectionName) {
return $this->conn->selectDB($this->dbname)->selectCollection ($collectionName);

}

Insert Example

� Information is placed
in the contacts
collection

Insert Data into a Collection

/**
* Insert user's contact information into contacts table.
*/

public function insertContact($json) {
if (! is_array ($json)) {

return "Contact info not in JSON format.";
}
try {

$result=$this->getCollection($this->contactsCollectionName)->insert($json);
if ($result ["ok"] != 1) {

return $result ["err"];
}

} catch (MongoException $e) {
return $e->getMessage ();

}
return "ok";

}

� Very simple to insert JSON data into a collection using the
MongoAPIs

Retrieve Collection Information

� Very simple to retrieve data from a collection using the
MongoAPIs

� Data is returned as a JSON document

/**
* Get all contact info
*/
public function adminContacts() {

$contactsCollection = $this->getCollection($this-
>contactsCollectionName);

$cursor = $contactsCollection->find();
$results = $this->getQueryResults($cursor);
return $results;

}

Naughty Pictures

� Allow users to flag naughty
pictures

� Have naughty pictures
automatically removed

Delete a Photo and its Information

/**
* Delete photo
*/
public function deletePhoto($id) {

try {
// First delete from likes and tags tables
$query = array('photo_id' => $id['_id']);
$result = $this->getCollection($this->likesTableName)->remove($query);
if ($result ["ok"] != 1) {

return $result["err"];
}
$result = $this->getCollection($this->tagsTableName)->remove($query);
if ($result ["ok"] != 1) {

return $result["err"];
}

// Then delete the photo from the collection
$query = array('_id' => new MongoId($id['_id']));
$result = $this->getCollection ($this->photoCollectionName)->remove ($query);
if ($result ["ok"] != 1) {

return $result["err"];
}

} catch (MongoException $e) {
return $e->getMessage();

}
return "ok";

}

� Deleting from SQL Tables and NoSQL Collection is exactly
the same

Executing a Stored Procedure in MongoAPI

/**
* Get the user_id for a particular user name (email address).
*
* Calls a stored procedure that will insert into the users table if the
* user does not exist yet and returns the user_id.
*
* @param string $username
* @return int $user_id
*/
public function getUserId($username) {

$username = trim($username);

try {
$sql = "EXECUTE FUNCTION getUserID('" . $username . "')";
$result = $this->getCollection($this->sqlCollectionName)->findOne(array('$sql'=>$sql));
if (isset($result['errmsg'])) {

return "ERROR. " . $result['errmsg'];
}
return $result['user_id'];

} catch (MongoException $e) {
return "ERROR. " . $e->getMessage();

}
}

Real Time Analytics

� Customer Issues

− Several different models of data (SQL, NoSQL,
TimeSeries/Sensor)

− NoSQL is not strong building relations between collections

− Most valuable analytics combine the results of all data models

− Most prominent analytic system written using standard SQL

− ETL & YAS (Yet Another System)

� Solution

− Enables common tools like Cognos

Provide a mapping of the required data in SQL form

Informix

Photo

collection

Analytics on a Hybrid Database

User

Table

M
o
n
g
o
A

P
I

S
Q

L

Photo Application
SQL Mapping of NoSQL PHOTO Collection

activity_data timeseries(photo_like)

activity_photos

Mapping A Collection To A SQL Table

CREATE VIEW photo_metadata (gpslatitude, gpslongitude,
make, model, orientation, datetimeoriginal,
exposuretime, fnumber, isospeedratings,
pixelxdimension, pixelydimension)

AS SELECT BSON_VALUE_LVARCHAR (x0.data , 'GPSLatitude'),
BSON_VALUE_LVARCHAR (x0.data , 'GPSLongitude'),
BSON_VALUE_LVARCHAR (x0.data , 'Make'),
BSON_VALUE_LVARCHAR (x0.data , 'Model'),
BSON_VALUE_LVARCHAR (x0.data , 'Orientation'),
BSON_VALUE_LVARCHAR (x0.data , 'DateTimeOriginal') ,
BSON_VALUE_LVARCHAR (x0.data , 'ExposureTime'),
BSON_VALUE_LVARCHAR (x0.data , 'FNumber'),
BSON_VALUE_LVARCHAR (x0.data , 'ISOSpeedRatings'),
BSON_VALUE_LVARCHAR (x0.data , 'PixelXDimension') ,
BSON_VALUE_LVARCHAR (x0.data , 'PixelYDimension')

FROM photos x0;

Configure Informix on Amazon Cloud Simple

• Instantiate the Amazon image

• Setup the storage

• Install the product

• Start the system

• Configure sharding

NOSQL, JSON AND BSON
OVERVIEW

Technical Opportunities/ Motivation

What are NoSQL Databases?

Quick overview of JSON

What is sharding?

New Era in Application Requirements

� Store data from web/mobile application in their
native form

− New web applications use JSON for storing and
exchanging information

− Very lightweight – write more efficient applications

− It is also the preferred data format for mobile
application back-ends

� Move from development to production in no
time!

− Ability to create and deploy flexible JSON schema

− Gives power to application developers by reducing
dependency on IT

25

Ideal for agile, rapid development and continuous

integration

What is a NoSQL Document Store?

� Not Only SQL or NOt allowing SQL

� A non-relational database management systems

− Flexible schema

− Avoids join operations

− Scales horizontally

− Eventually consistent (no ACID)

� Good with distributing data and fast application development

Provides a mechanism for storage and retrieval of

data while providing horizontal scaling.

26

IBM Use Case Characteristics for JSON

27

Example of Supported JSON Types

{

"string":"John",

"number":123.45,

"boolean":true,

"array":["a", "b", "c"],

"object: { "str":"Miller", "num":711 },

"value": NULL,

"date": ISODate("2013-10-01T00:33:14.000Z")

}

� There are 6 types of

JSON Values

� Example of each JSON

type

� Mongo-specific JSON

types in blue
– date

28

The Power of JSON Drives Flexible Schema

� JSON key value pair enables a flexible schema

� Flexible schema simplifies deployment of
new/upgraded applications

� Fast/Agile application development

− Minimal to no schema management

� Adept at variable attribute management

− Easy to add new parts or objects

� No transformation of data to match schema

29

Basic Translation Terms/Concepts

30

{"name":"John","age":21}

{"name":"Tim","age":28}

{"name":"Scott","age":30}

Name Age

John 21

Tim 28

Scott 30

Collection

Document
Key Value

Simple Code Example

� Creates the database “mydb” if it does not exists

� Creates the collection “posts” if the it does not exists

� Insert a record into a blog post by user John

use mydb
db.posts.insert(‘{“author”:”John”, “date”,”2013-04-20”,”post”,”mypostK”}’)

� Retrieve all posts by user John

db.posts.find (‘{ “author”:”John” }’)

31

Dynamic Elasticity

� Rapid horizontal scalability

− Ability for the application to grow by adding low cost hardware
to the solution

− Ability to add or delete nodes dynamically

− Ability rebalance the data dynamically

� Application transparent elasticity

32

Difference between Sharding Data VS Replication

33

Shard Key

state= “OR”

Shard Key

state= “WA”

Shard Key

state= “CA”

Sharding Replication

Each node holds a

portion of the data

• Hash

• Expression

Same data on

each node

Inserted data is

placed on the

correct node

Data is copied to

all nodes

Operations are

shipped to

applicable nodes

Work on local copy

and modification

are propagated

NEW INFORMIX NOSQL/JSON
CAPABILITIES

34

IBM Informix High Level Solution

35

Two New Data Types JSON and BSON

� Native JSON and BSON data types

� Index support for NoSQL data types

� Native operators and comparator functions
allow for direct manipulation of the BSON
data type

� Database Server seamlessly converts to
and from

� JSON �� BSON

� Character data �� JSON

36

Informix JSON Store Benefits

� Informix provides

− Row locking on the individual JSON document

� MongoDB locks the database

− Large documents, up to 2GB maximum size

� MongoDB limit is 16MB

− Ability to compress documents

� MongoDB currently not available

− Ability to intelligently cache commonly used documents

� MongoDB currently not available

37

Flexible Schema

� Applications use JSON, a set of key-value pairs

� JSON is text , BSON is the binary representation.

� The explicit key-value pairs within the JSON/BSON
document will be roughly equivalent to columns in
relational tables.

� Applications typically denormalize the schema
− Customer, customer address, customer contacts all in a single JSON

38

Flexible Schema

� However, there are differences!

− The type of the Key Value data encoded within BSON is determined by the
client

− Server is unaware of data type of each Key Value pair at table definition
time.

− No guarantees that data type for each key will remain consistent in the
collection.

− The keys in the BSON document can be arbitrary

− While customers exploit flexible schema, they’re unlikely to create a single
collection and dump everything under the sun into that collection.

− Developers typically denormalize the tables (a JSON document will
contain customer+customer addr + customer demographics + K) to avoid
joins.

39

• Supports B-Tree indexes on any key-value pairs.

• Typed indices could be on simple basic type (int, decimal,)

• Type-less indices could be created on BSON and use BSON
type comparison

• Informix translates ensureIndex() to CREATE INDEX

• Informix translates dropIndex() to DROP INDEX

Indexing

40

Mongo Operation SQL Operation

db.customers.ensureIndex(
{orderDate:1, zip:-1})

CREATE INDEX IF NOT EXISTS v_customer_2 ON
customer (bson_extract(data,‘orderDate')
ASC, bson_extract(data,‘zip') DESC) USING
BSON

db.customers.ensureIndex(

{orderDate:1},{unique:true})

CREATE UNIQUE INDEX IF NOT EXISTS
v_customer_3 ON customer
(bson_extract(data,'c1') ASC USING BSON

Scaling Out Using Sharded Queries

41

Shard Key

state= “OR”

Shard Key

state= “WA”

Shard Key

state= “CA”

1. Request data from local shard

Find sold cars for

all states

2. Automatically sends request to

other shards requesting data

3. Returns results to client

41

1. Insert row sent to your local

shard

Scaling Out Using Sharded Inserts

42

Shard Key

state= “OR”

Shard Key

state= “WA”

Shard Key

state= “CA”

Row

state = “OR”

2. Automatically forward the data to

the proper shard

42

1. Send command to local node

Scaling Out Adding a Shard

43

Shard Key

state= “OR”

Shard Key

state= “WA”
Shard Key

state= “CA”

Command

Add Shard “NV”

2. New shard dynamically added,

data re-distributed (if required)

Shard Key

state= “NV”

Sharding with Hash

� Hash based sharding simplifies the
partitioning of data across the shards

� Benefits

− No data layout planning is required

− Adding additional nodes is online and
dynamic

� Cons

− Adding additional node requires data to be
moved

� Data automatically broken in pieces

44

Mongo API Command to add a shard in Informix

� Add just a single shard

db.runCommand({"addShard":"hostname1:port1"})db.runCommand({"addShard":"hostname1:port1"})

� Add multi shard in a single command

− Informix only syntax

db.runCommand({"addShard":["hostname2:port2", "hostname3:port3",
"hostname4:port4"]})

db.runCommand({"addShard":["hostname2:port2", "hostname3:port3",
"hostname4:port4"]})

� Shard the table phot_demo.photos by hash

sh.shardCollection("photo_demo.photos", {"_id": "hashed"})sh.shardCollection("photo_demo.photos", {"_id": "hashed"})

Difference between Sharding Data VS Replication

46

Shard Key

state= “OR”

Shard Key

state= “WA”

Shard Key

state= “CA”

Sharding Replication

Each node holds a

portion of the data

• Hash

• Expression

Same data on

each node

Inserted data is

placed on the

correct node

Data is copied to

all nodes

Operations are

shipped to

applicable nodes

Work on local copy

and modification

are propagated

Sharding is not for Data Availability

� Sharding is for growth, not availability

� Redundancy of a node provides high availability for the data

− Both Mongo and Informix allow for multiple redundant nodes

− Mongo refers to this as Replica Sets and the additional nodes
slaves

− Informix refers to this as H/A, and additional secondary nodes

47

Term Description Informix Term

Shard A single node or a group of nodes holding the same data

(replica set)

Instance

Replica Set A collection of nodes contain the same data HA Cluster

Shard Key The field that dictates the distribution of the documents.

Must always exist in a document.

Shard Key

Sharded

Cluster

A group shards were each shard contains a portion of the

data.

Grid/Region

Slave A server which contains a second copy of the data for

read only processing.

HA Secondary Server

Informix Secondary Servers

� Features of Informix secondary server:

− Provide high availability

� Can have one or more secondary servers

� Synchronous or asynchronous secondary servers

� Automatic promotion upon server failure

− Scale out

� Execute select

� Allow Insert/Update/Deletes on the secondary servers

� Secondary server can have their own disk or share disks with
the master node

− Connection manager routes users connection based on policies
and server availability

48

Shard Key

state= “CA”

Informix NoSQL Cluster Architecture Overview

49 © 2013 IBM Corporation

Shard Key

state= “OR”

Shard Key

state= “WA”

three independent copies of

the data, but four servers

to share the workload (two

servers share the same

disk). Read/Write activity

supported on all servers

High Level Solution

50

Ability for All Clients to Access All Data Models

51

Traditional SQL

NoSQL - JSON

TimeSeries

MQ Series

Informix SQLI

Drivers

MongoDB Drivers

IBM DRDA

Drivers

Application Development Tools

The MEAN Stack

Client Applications
� New Wire Protocol Listener supports

existing MongoDB drivers

� Connect to MongoDB or Informix with same
application!

MongoDB

native Client

MongoDB

web browser

Mobile

Applications

JDBC

Driver

IBM

NoSQL

Wire

Protocol

Listener

MongoDB

Wire

Protocol

Informix

DB

MongoDB

driver

53

MongoDB Application Driver Compatibly

� Ability to use any of the MongoDB client drivers and
frameworks against the Informix Database Server

− Little to no change required when running MongoDB programs

− Informix listens on the same default port as mongo, no need to
change.

� Leverage the different programming languages available

� Other Community Drivers are also available

54

All Support Languages

C Perl

C# PHP

Erland Python

Java Ruby

JavaScript Scala

Node.js

High Level Solution

55

SQL API

MongoDB API

(NoSQL)

Relational Table JSON Collections

Standard ODBC, JDBC,

.NET, OData, etc.

Language SQL.

Mongo APIs for Java,

Javascript, C++, C#,...?

?

Hybrid Access between Relational & JSON Collections

Why do you need hybrid access?

Benefits of Simply Powerful

� Access consistent data from its source

� Avoid ETL, continuous data sync and conflicts.

� Exploit the power of SQL, MongoAPI seamlessly

� Exploit the power of RDBMS technologies in MongoAPI:

− Informix Warehouse accelerator (Blu technologies)

− Cost based Optimizer

− R-tree indices for spatial, Lucene text indexes, and more.

� Access all your data thru any interface: MongoAPI or SQL.

� Store data in one place and efficiently transform and use
them on demand.

� Existing SQL based tools and APIs can access new data in
JSON

Hybrid Access between Relational & JSON Collections

SQL API

MongoDB API

(NoSQL)

Relational Table JSON Collections

Standard ODBC, JDBC,

.NET, OData, etc.

Language SQL.

Mongo APIs for Java,

Javascript, C++, C#,...

Direct SQL Access.

Dynamic Views

Row types

Mongo APIs for Java,

Javascript, C++, C#,...

Ability for All Clients to Access All Data Models

60

Traditional SQL

NoSQL - JSON

TimeSeries

MQ Series

Informix SQLI

Drivers

MongoDB Drivers

IBM DRDA

Drivers

Hybrid access: From MongoAPI to relational tables.

You want to develop an application with MongoAPI, butP

1. You already have relational tables with data.

2. You have views on relational data

3. You need to join tables

4. You need queries with complex expressions. E.g. OLAP window
functions.

5. You need multi-statement transactions

6. You need to exploit stored procedure

7. You need federated access to other data

8. You have timeseries data.

Mongo Application

IBM Wire Listener

IDXs

Logs

Enterprise replication + Flexible Grid + Sharding

Distributed

Queries

Informix

Tables

Tables

IDXs

Relational Tables

JSON Collections

SELECT bson_new(bson, ‘{}’) FROM customer
WHERE bson_value_lvarchar(bson,‘state’)=“MO”

db.customer.find({state:”MO”}) db.partners.find({state:”CA”})

SELECT * FROM partners WHERE state=“CA”

Customer

partners

JSON JSON

Access RelationalAccess JSON

MongoAPI Accessing Both NoSQL and Relational Tables

How to Convert Relational Data as JSON Documents

� Relational data can be treated as structured JSON documents;
column name-value becomes key-value pair.

� SELECT partner, pnum, country from partners;

partner pnum Country

Pronto 1748 Australia

Kazer 1746 USA

Diester 1472 Spain

Consultix 1742 France

{parnter: “Pronot”, pnum:”1748”, Country: “Australia”}

{parnter: “Kazar”, pnum:”1746”, Country: “USA”}

{parnter: “Diester”, pnum:”1472”, Country: “Spain”}

{parnter: “Consultix”, pnum:”1742”, Country: “France”}

� Informix automatically translates the results of a relational query to
JSON/BSON form.

MongoAPI Accessing Both NoSQL and Relational Tables

• Typically NoSQL does not involve transactions
• In many cases, a document update is atomic, but not the application

statement

• Example

• 7 targeted for deletion, but only 4 are removed

• Informix-NoSQL provides transactions on all application
statements

• Each server operation INSERT, UPDATE, DELETE, SELECT will
automatically be committed after each operation.

• In Informix there is away to create multi-statement transactions is to
utilize a stored procedure

• Default isolation level is DIRTY READ

• All standard isolation level support

Accessing Data in Relational Tables

db.partners.find({name:”Acme”}, {pnum:1, country:1});

SELECT pnum, country FROM partners WHERE name = “Acme”;

db.partners.find({name:”Acme”}, {pnum:1, country:1});

SELECT pnum, country FROM partners WHERE name = “Acme”;

db.partners.find({name:”Acme”},

{pnum:1, country:1}).sort({b:1})

SELECT pnum,country FROM partners

WHERE name=“Acme” ORDER BY b ASC

db.partners.find({name:”Acme”},

{pnum:1, country:1}).sort({b:1})

SELECT pnum,country FROM partners

WHERE name=“Acme” ORDER BY b ASC

CREATE TABLE partners(pnum int, name varchar(32),

country varchar(32));

CREATE TABLE partners(pnum int, name varchar(32),

country varchar(32));

Accessing data in relational tables.

db.partners.save({pnum:1632,name:”EuroTop”,Country:“Belgium”});

INSERT into partners(pnum, name, country) values

(1632, ”EuroTop”, “Belgium”);

db.partners.save({pnum:1632,name:”EuroTop”,Country:“Belgium”});

INSERT into partners(pnum, name, country) values

(1632, ”EuroTop”, “Belgium”);

db.partners.delete({name:”Artics”});

DELETE FROM PARTNERS WHERE name = “Artics”;

db.partners.delete({name:”Artics”});

DELETE FROM PARTNERS WHERE name = “Artics”;

db.partners.update({country:”Holland”},

{$set:{country:”Netherland”}}, {multi: true});

UPDATE partners SET country = “Netherland”

WHERE country = “Holland”;

db.partners.update({country:”Holland”},

{$set:{country:”Netherland”}}, {multi: true});

UPDATE partners SET country = “Netherland”

WHERE country = “Holland”;

Views and Joins

� Create a view between the existing partner table and a new
pcontact table

� Run the query across the view

create table pcontact(pnum int, name varchar(32), phone

varchar(32));

insert into pcontact values(1748,"Joe Smith","61-123-4821");

create table pcontact(pnum int, name varchar(32), phone

varchar(32));

insert into pcontact values(1748,"Joe Smith","61-123-4821");

create view partnerphone(pname, pcontact, pphone) as select a.name,

b.name, b.phone FROM pcontact b left outer join partners a on

(a.pnum = b.pnum);

db.partnerphone.find({pname:"Pronto"})

{ "pname":"Pronto", "pcontact":"Joe Smith", "pphone":"61-123-4821"}

Seamless federated access

1. create database newdb2;

2. create synonym oldcontactreport for
newdb:contactreport;

> use newdb2

> db.oldcontactreport.find({pname:"Pronto"})

{ "pname" : "Pronto", "pcontact" : "Joel Garner", "totalcontacts" : 2 }

{ "pname" : "Pronto", "pcontact" : "Joe Smith", "totalcontacts" : 2 }

SELECT data FROM oldcontactreport WHERE
bson_extract(data, 'pname') = “Pronto”;

• create synonym oldcontactreport for
custdb@nydb:contactreport;

Get results from a stored procedure.
create function "keshav".p6() returns int, varchar(32);

define x int; define y varchar(32);

foreach cursor for select tabid, tabname into x,y from systables

return x,y with resume;

end foreach;

end procedure;

create view "keshav".v6 (c1,c2) as

select x0.c1 ,x0.c2 from table(function p6())x0(c1,c2);

� db.v6.find().limit(5)

{ "c1" : 1, "c2" : "systables" }

{ "c1" : 2, "c2" : "syscolumns" }

{ "c1" : 3, "c2" : "sysindices" }

{ "c1" : 4, "c2" : "systabauth" }

{ "c1" : 5, "c2" : "syscolauth" }

Access Timeseries data

create table daily_stocks

(stock_id integer, stock_name lvarchar,

stock_data timeseries(stock_bar));

-- Create virtual relational table on top (view)

EXECUTE PROCEDURE TSCreateVirtualTab('daily_stocks_virt',

'daily_stocks', 'calendar(daycal),origin(2011-01-03
00:00:00.00000)');

create table daily_stocks_virt

(stock_id integer,

stock_name lvarchar,

timestamp datetime year to fraction(5),

high smallfloat,

low smallfloat,

final smallfloat,

vol smallfloat);

Access Timeseries data

db.daily_stocks_virt.find({stock_name:"IBM"})
{ "stock_id" : 901, "stock_name" : "IBM", "timestamp" : ISODate("2011-01-03T06:0

0:00Z"), "high" : 356, "low" : 310, "final" : 340, "vol" : 999 }

{ "stock_id" : 901, "stock_name" : "IBM", "timestamp" : ISODate("2011-01-04T06:0

0:00Z"), "high" : 156, "low" : 110, "final" : 140, "vol" : 111 }

{ "stock_id" : 901, "stock_name" : "IBM", "timestamp" : ISODate("2011-01-06T06:0

0:00Z"), "high" : 99, "low" : 54, "final" : 66, "vol" : 888 }

You want to perform complex analytics on JSON data

� BI Tools like Cognos, Tableau generate SQL on data sources.

� Option 1: Do ETL

� Need to expose JSON data as views so it’s seen as a database
object.

− We use implicit casting to convert to compatible types

− The references to non-existent key-value pair returns NULL

� Create any combination of views

− A view per JSON collection

− Multiple views per JSON collection

− Views joining JSON collections, relational tables and views.

� Use these database objects to create reports, graphs, etc.

ODBC, JDBC connections

Informix

Tables

Tables

Relational Tables

JSON Collections

Customer

partners

Analytics

SQL & BI Applications

Orders

CRM

Inventory

Tables
Tables & views

Benefits of Hybrid Power

�Access consistent data from its source

�Avoid ETL, continuous data sync and conflicts.

�Exploit the power of SQL, MongoAPI seamlessly

�Exploit the power of RDBMS technologies in MongoAPI:

− Informix Warehouse accelerator,

− Cost based Optimizer & power of SQL

− R-tree indices for spatial, Lucene text indexes, and more.

�Access all your data thru any interface: MongoAPI & SQL

�Store data in one place and efficiently transform and use
them on demand.

�Existing SQL based tools and APIs can access new data
in JSON

The Hybrid Solution
Informix has the Best of Both Worlds

� Relational and non-relational data in one system

� NoSQL/MongoDB Apps can access Informix Relational Tables

� Distributed Queries

� Multi-statement Transactions

� Enterprise Proven Reliability

� Enterprise Scalability

� Enterprise Level Availability

Informix provides the capability to leverage

the abilities of both relational DBMS and document store systems.

75

Informix Specific Advantages with Mongo Drivers

� Traditional SQL tables and JSON collections co-existing in the
same database

� Using the MongoDB client drivers Query, insert, update, delete

− JSON collections

− Traditional SQL tables

− Timeseries data

� Join SQL tables to JSON collections utilizing indexes

� Execute business logic in stored procedures

� Provide a view of JSON collections as a SQL table

− Allows existing SQL tools to access JSON data

� Enterprise level functionality

76

Questions

