
IBM Informix

IBM Informix Object Interface for C++ Programmer’s Guide

Version 3.50

SC23-9422-00

���

IBM Informix

IBM Informix Object Interface for C++ Programmer’s Guide

Version 3.50

SC23-9422-00

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page E-1.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . vii

About This Publication . vii

Types of Users . vii

Software Dependencies . viii

Naming Conventions . viii

Documentation Conventions . viii

Typographical Conventions . viii

Feature, Product, and Platform Markup . viii

Example Code Conventions . ix

Additional Documentation . ix

Compliance with Industry Standards . ix

How to Provide Documentation Feedback . x

Chapter 1. Architecture of the Object Interface for C++ 1-1

Operation Classes . 1-1

Value Interfaces and Value Objects . 1-3

Class Hierarchy . 1-4

Implementation Notes . 1-5

Restrictions . 1-5

Passing Objects—Compiler Dependency . 1-6

Informix Database Server Compatibility . 1-6

Internationalization . 1-6

ITFactory List and the Type Map . 1-7

Chapter 2. Issuing Database Queries and Retrieving Results 2-1

Using Operation Classes . 2-1

Creating Connections . 2-2

Finding System Names and Database Names . 2-3

Using ITSystemNameList . 2-3

Using ITDBNameList . 2-3

Managing Errors . 2-3

Connection Transaction States . 2-5

Issuing Queries . 2-6

When to Use the Different ITQuery Methods . 2-6

Query Method Example . 2-7

Using Prepared Statements . 2-8

Using Cursors . 2-9

Using the Large Object Manager . 2-12

Using ITRoutineManager . 2-13

Chapter 3. Accessing Data Values . 3-1

Accessing Data Values . 3-1

Value Object Management . 3-2

The ITValue Interface . 3-3

The ITConversions Interface . 3-4

The ITDatum Interface . 3-4

The ITDateTime Interface . 3-4

The ITLargeObject Interface . 3-5

The ITErrorInfo Interface . 3-5

The ITRow Interface . 3-6

The ITSet Interface . 3-6

The ITContainer Interface . 3-7

The ITContainCvt Interface . 3-8

Chapter 4. Creating and Extending Value Objects 4-1

© Copyright IBM Corp. 1996, 2008 iii

The Raw Data Object . 4-1

Building Simple Value Objects . 4-2

Exposing Multiple Interfaces . 4-5

Value Objects and Connection Events . 4-9

Creating Row Type Value Objects . 4-10

Creating Row Type Value Objects Without An Open Connection 4-10

Creating Collection Type Value Objects Without An Open Connection 4-11

Object Containment and Delegation . 4-12

Dynamic Loading . 4-15

Mapping Files . 4-15

Guidelines . 4-16

Chapter 5. Operation Class Reference . 5-1

ITConnection . 5-1

ITConnectionStamp . 5-3

ITContainerIter . 5-3

ITCursor . 5-5

ITCursor Usage . 5-6

ITDBInfo . 5-7

ITDBNameList . 5-8

ITErrorManager . 5-8

ITFactoryList . 5-9

Successful Initialization Verification . 5-10

ITInt8 . 5-11

ITLargeObjectManager . 5-12

Accessing Smart Large Objects in Nondefault SBSpaces 5-13

ITMVDesc . 5-16

ITObject . 5-17

ITPosition . 5-17

ITPreserveData . 5-17

ITQuery . 5-18

ITRoutineManager . 5-19

ITStatement . 5-20

ITStatement Usage . 5-21

ITString . 5-22

ITSystemNameList . 5-23

ITTypeInfo . 5-24

Chapter 6. Value Interface Reference . 6-1

ITContainCvt . 6-1

ITContainer . 6-2

ITConversions . 6-2

ITDateTime . 6-2

ITDatum . 6-3

ITErrorInfo . 6-4

ITEssential . 6-4

ITLargeObject . 6-5

ITRow . 6-6

ITSet . 6-7

ITValue . 6-7

Use Of ITValue::Printable With Null Value Objects . 6-8

Appendix A. Supported Data Types . A-1

Appendix B. Example Programs . B-1

Appendix C. ITLocale Class . C-1

Appendix D. Accessibility . D-1

iv IBM Informix Object Interface for C++ Programmer’s Guide

Accessibility features for IBM Informix Dynamic Server . D-1

Accessibility Features . D-1

Keyboard Navigation . D-1

Related Accessibility Information . D-1

IBM and Accessibility . D-1

Notices . E-1

Trademarks . E-3

Index . X-1

Contents v

vi IBM Informix Object Interface for C++ Programmer’s Guide

Introduction

About This Publication . vii

Types of Users . vii

Software Dependencies . viii

Naming Conventions . viii

Documentation Conventions . viii

Typographical Conventions . viii

Feature, Product, and Platform Markup . viii

Example Code Conventions . ix

Additional Documentation . ix

Compliance with Industry Standards . ix

How to Provide Documentation Feedback . x

In This Introduction

This chapter introduces the IBM Informix Object Interface for C++ Programmer’s

Guide. Read this chapter for an overview of the information provided in this

publication and for an understanding of the conventions used throughout this

publication.

About This Publication

The IBM Informix Object Interface for C++ Programmer’s Guide describes how to

develop IBM Informix client applications using the object-oriented C++

programming language. The IBM Informix Object Interface for C++ encapsulates

IBM Informix Dynamic Server features into an easy-to-use class hierarchy and

extensible object library.

The Object Interface for C++ is documented in this publication. The DataBlade API

is documented in the IBM Informix DataBlade API Programmer’s Guide. The GLS

API, from which the Object Interface for C++ ITLocale class is derived, is

documented in the IBM Informix GLS User’s Guide. You can obtain these online

publications at the IBM® Informix® Information Center at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

This publication refers extensively to the example programs included with the

Object Interface for C++. For a list of the examples and the functions they

illustrate, see Appendix B.

Types of Users

This publication is written for two audiences:

v Developers using C++ to create database client applications for Informix servers

v DataBlade developers who use Object Interface for C++ to create value objects

that allow C++ client applications to support DataBlade module data types

To use this publication, you should know C++. Familiarity with the Microsoft®

Component Object Model (COM) is also helpful when working with the Object

Interface for C++.

© Copyright IBM Corp. 1996, 2008 vii

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

Software Dependencies

To use the Object Interface for C++, you must be running IBM Informix Dynamic

Server Version 7.x, 9.x, 10.x, or 11.x.

Naming Conventions

All public names in the Object Interface for C++ begin with IT.

Documentation Conventions

This section describes the following conventions, which are used in the product

documentation for IBM Informix Dynamic Server:

v Typographical conventions

v Feature, product, and platform conventions

v Example code conventions

Typographical Conventions

This publication uses the following conventions to introduce new terms, illustrate

screen displays, describe command syntax, and so forth.

 Convention Meaning

KEYWORD Keywords of SQL, SPL, and some other programming languages appear

in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics. Within

syntax and code examples, variable values that you are to specify

appear in italics.

boldface Names of program entities (such as classes, events, and tables),

environment variables, file names, path names, and interface elements

(such as icons, menu items, and buttons) appear in boldface.

monospace Information that the product displays and information that you enter

appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Feature, Product, and Platform Markup

Feature, product, and platform markup identifies paragraphs that contain

feature-specific, product-specific, or platform-specific information. Some examples

of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Windows Only

Identifies information that is specific to the Windows operating system

End of Windows Only

viii IBM Informix Object Interface for C++ Programmer’s Guide

This markup can apply to one or more paragraphs within a section. When an

entire section applies to a particular product or platform, this is noted as part of

the heading text, for example:

 Table Sorting (Windows)

Example Code Conventions

Examples of SQL code occur throughout this publication. Except as noted, the code

is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for

that product. For example, if you are using DB–Access, you must delimit multiple

statements with semicolons. If you are using an SQL API, you must use EXEC SQL

at the start of each statement and a semicolon (or other appropriate delimiter) at

the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be added in

a full application, but it is not necessary to show it to describe the concept

being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the documentation for your product.

Additional Documentation

You can view, search, and print all of the product documentation from the IBM

Informix Dynamic Server information center on the Web at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

For additional documentation about IBM Informix Dynamic Server and related

products, including release notes, machine notes, and documentation notes, go to

the online product library page at http://www.ibm.com/software/data/informix/
pubs/library/. Alternatively, you can access or install the product documentation

from the Quick Start CD that is shipped with the product.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of industry

standards for the Structured Query Language (SQL). IBM Informix SQL-based

products are fully compliant with SQL-92 Entry Level (published as ANSI

X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of

IBM Informix database servers comply with the SQL-92 Intermediate and Full

Level and X/Open SQL Common Applications Environment (CAE) standards.

Introduction ix

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/data/informix/pubs/library/

How to Provide Documentation Feedback

You are encouraged to send your comments about IBM Informix user

documentation by using one of the following methods:

v Send e-mail to docinf@us.ibm.com.

v Go to the Information Center at http://publib.boulder.ibm.com/infocenter/
idshelp/v115/index.jsp and open the topic that you want to comment on. Click

Feedback at the bottom of the page, fill out the form, and submit your feedback.

Feedback from both methods is monitored by those who maintain the user

documentation of Dynamic Server. The feedback methods are reserved for

reporting errors and omissions in our documentation. For immediate help with a

technical problem, contact IBM Technical Support. For instructions, see the IBM

Informix Technical Support Web site at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

x IBM Informix Object Interface for C++ Programmer’s Guide

mailto:docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/planetwide/

Chapter 1. Architecture of the Object Interface for C++

Operation Classes . 1-1

Value Interfaces and Value Objects . 1-3

Class Hierarchy . 1-4

Implementation Notes . 1-5

Restrictions . 1-5

Passing Objects—Compiler Dependency . 1-6

Informix Database Server Compatibility . 1-6

Internationalization . 1-6

ITFactory List and the Type Map . 1-7

In This Chapter

The IBM Informix Object Interface for C++ encapsulates Informix database server

features into a class hierarchy.

Operation classes provide access to Informix databases and methods for issuing

queries and retrieving results. Operation classes encapsulate database objects such

as connections, cursors, and queries. Operation class methods encapsulate tasks

such as opening and closing connections, checking and handling errors, executing

queries, defining and scrolling cursors through result sets, and reading and writing

large objects.

Value interfaces are abstract classes that provide specific application interaction

behaviors for objects that represent IBM Informix Dynamic Server database values

(value objects). Extensible value objects let you interact with your data. Built-in

value objects support ANSI SQL and C++ base types and complex types such as

rows and collections. You can create C++ objects that support complex and opaque

data types.

Operation Classes

Object Interface for C++ applications create instances of public operation classes,

which contain pointers to a private implementation classes.

Although this interface/implementation approach adds an extra level of

indirection, it provides important benefits:

v Applications do not depend on the implementation of the underlying class

because the implementation class is inaccessible.

v Performance of copy operations is improved because applications copy only the

implementation pointer of the object and not the entire object.

v Applications can easily use automatic variables as opposed to heap-allocated

variables. Automatic variables are automatically deallocated when they pass out

of scope, which helps avoid memory leaks. The implementation class tracks

references to objects, destroying objects only when they are no longer referenced.

Figure 1-1 illustrates the relationship between the public interface classes and

private implementation classes.

© Copyright IBM Corp. 1996, 2008 1-1

The Object Interface for C++ defines the following operation classes.

 Operation Class Description Page

ITConnection Manages a database connection. page 5-1

ITConnectionStamp Maintains stamp information about a connection. page 5-3

ITContainerIter Extracts C++ base-type values (such as int, long, or double)

from a container value object.

page 5-3

ITCursor Defines cursors and manages results. page 5-5

ITDBInfo Stores database information. page 5-7

ITDBNameList Allows the user to obtain database names. page 5-8

ITErrorManager Provides base class functionality for managing error

callbacks.

page 5-8

ITFactoryList Adds mappings from IBM Informix Dynamic Server data

types to functions that build value objects to represent

instances of these data types.

page 5-9

ITInt8 Provides an 8-byte integer class. page 5-11

ITLargeObjectManager Supports large objects. page 5-12

ITLocale Provides GLS support. Online notes

ITMVDesc Not an operation class, but a descriptor that holds the

instance information necessary to create a value object.

page 5-16

ITObject Provides the base class for public operation class interface

objects.

page 5-17

ITPreserveData Provides an interface for maintaining a reference to database

data received from the server, for use by the implementer of

a value object.

page 5-17

Figure 1-1. Public Interface and Private Implementation of Operation Classes

1-2 IBM Informix Object Interface for C++ Programmer’s Guide

Operation Class Description Page

ITQuery Issues SQL queries to an IBM Informix Dynamic Server

database.

page 5-18

ITRoutineManager Provides fast path execution of DataBlade API functions. page 5-19

ITStatement Provides support for the execution of prepared queries that

return no rows.

page 5-20

ITString Provides a string class. page 5-22

ITSystemNameList Allows the user to obtain host system names. page 5-23

ITTypeInfo Stores information about database types. page 5-24

For detailed descriptions of these operation classes, refer to Chapter 5, “Operation

Class Reference,” on page 5-1.

Value Interfaces and Value Objects

The Object Interface for C++ creates C++ objects that encapsulate data retrieved

from a database. These value objects are created by the Object Interface for C++

using an extensible class factory that maps server data types to C++ objects.

DataBlade® developers can create value objects that represent new Dynamic Server

data types. Developers can use the Object Interface for C++ to write client

applications that operate with these new value objects. Object Interface for C++

client applications do not depend on the representation of the object in the

database; if the database representation changes, the corresponding value object

can be altered and the existing applications will continue to run. Code for value

objects can be compiled into an application or dynamically loaded into an

application from shared libraries.

The value object design is compatible with the Microsoft Common Object Model

(COM) in the sense that it enables objects to expose behaviors through interfaces.

An interface is an abstract class that encapsulates the methods associated with a

specific behavior.

For example, to indicate that an object can behave as a container, the object

exposes the ITContainer interface; to indicate that an object can convert its value

to a C++ base type (such as int or double), an object exposes the ITConversions

interface; and so on.

Interfaces are extracted from an object by calling a QueryInterface() function

provided in ITEssential, which is the base class of all value interfaces. When the

QueryInterface() function is called, the caller specifies the interface ID of the

desired interface. If the object exposes the requested interface, then

QueryInterface() returns IT_QUERYINTERFACE_SUCCESS and sets its second argument

to the address of the desired interface.

Figure 1-2 illustrates the relationship of the application interface to the

implementation.

Chapter 1. Architecture of the Object Interface for C++ 1-3

The Object Interface for C++ defines the following value interfaces.

 Interface Description Page

ITContainCvt Decomposes an object into C++ base type instances. page 6-1

ITContainer Provides access to the container members. page 6-2

ITConversions Converts data to C++ base classes or strings. page 6-2

ITDateTime Allows access to the fields of a database date/time object. page 6-2

ITDatum Supports the functionality of the basic value object, including

access to the underlying data.

page 6-3

ITErrorInfo Exposes error information on objects for which illegal

operations can cause server errors.

page 6-4

ITEssential Serves as the base of the value interface classes. page 6-4

ITLargeObject Manipulates a large object returned by a query. page 6-5

ITRow Provides access to row values. page 6-6

ITSet Provides access to collection results. page 6-7

ITValue Supports the basic value object’s functionality. page 6-7

Class Hierarchy

The following diagram shows the Object Interface for C++ inheritance hierarchy.

Figure 1-2. Public Interface and Private Implementation of Value Objects

1-4 IBM Informix Object Interface for C++ Programmer’s Guide

Implementation Notes

The following sections discuss Object Interface for C++ programming restrictions

and practices.

Restrictions

The Object Interface for C++ is subject to the following restrictions:

v The Object Interface for C++ does not support object persistence for application

classes; it does not automatically map instances of database tables to application

classes or vice versa.

v You cannot directly update the database data by modifying the corresponding

value objects; to modify the database data that corresponds to the data returned

to client programs in value objects, you must issue SQL queries, or the methods

ITCursor::UpdateCurrent() and ITCursor::DeleteCurrent().

v You cannot develop server functions using the Object Interface for C++.

v You should not mix database access through the Object Interface for C++ and

lower-level interfaces (like the DataBlade API) in the same application.

Figure 1-3. C++ Inheritance Hierarchy

Chapter 1. Architecture of the Object Interface for C++ 1-5

v Instances of ITConnection cannot be shared across thread boundaries in a

multithreaded environment.

Passing Objects—Compiler Dependency

When you pass an object to a function by value, the C++ compiler creates a

temporary copy of the object to pass to the function. The compiler destroys the

object after the function returns. The exact time at which temporary objects are

destroyed is compiler-dependent. For this reason, your application should not rely

on the automatic destruction of temporary objects.

For example, if you pass an ITConnection object to a function by value and invoke

the AddCallback method on the connection inside the function, the temporary

connection object (on which you added the callback) might or might not exist

immediately after the function returns. Because both the original connection object

and the copy refer to the same underlying server connection, the new callback

might or might not remain in effect on the underlying connection when your

function returns.

To ensure consistent behavior, call DelCallback inside your function when the new

callback is no longer required. Do not rely on the automatic destruction of the

connection object parameter by the compiler to remove the callback from the

underlying server connection. For details about DelCallback, refer to

“ITErrorManager” on page 5-8.

Informix Database Server Compatibility

The Object Interface for C++ can be used to create database client applications that

run against IBM Informix Dynamic Server databases. However, classes and

methods that support version 9,x and 10.x extensibility features are not supported

with version 7.x databases.

IBM Informix Dynamic Server version 7.x does not support the boolean, int8,

blob, clob, or lvarchar data types or the Dynamic Server extended data types:

opaque, distinct, row, and collection.

Some of the Object Interface for C++ examples work only with Dynamic Server

version 9.x and 10.x, since the version 7.x Dynamic Server SQL parser does not

support Dynamic Server data type casting syntax (value::data_type) in SQL

statements.

Object Interface for C++ dynamic loading and object delegation technique are only

useful with Dynamic Server databases.

Internationalization

The Object Interface for C++ provides functionality based on IBM Informix Global

Language Support. For more information, see the IBM Informix GLS User’s Guide.

The ITLocale class, described in Appendix C, encapsulates the GLS API. It

provides methods to perform locale-sensitive conversions between the text and

binary forms of the date, time, numeric, and money data types. It also provides

support for multibyte character strings and for quoted type names.

Call ITLocale::Current() to obtain a pointer to the current client locale and use

ITLocale::ConvertCodeset() to convert data between the two code sets.

1-6 IBM Informix Object Interface for C++ Programmer’s Guide

The ITString class encapsulates a string in a client locale. When a string is

retrieved from a server, it is converted to the client locale. Locale-specific rules

govern the following operations:

v Date/time, numeric, and money string formatting

v Error messages produced by the Object Interface for C++

v String operations such as Trim(), concatenation, and so on

Client locale is established at the application’s startup time based on the value of

the CLIENT_LOCALE environmental variable.

ITFactory List and the Type Map

Type names for the ITFactoryList constructor or in the type map file can contain

any characters in the current client locale, except NULL. Type names can contain

multibyte characters. If a type name includes white space characters, enclose the

type name in a pair of double quotes in the type map file. If the type name

contains a double quote character, place a double quote character before it.

Type name searches in the current client locale are case insensitive.

Chapter 1. Architecture of the Object Interface for C++ 1-7

1-8 IBM Informix Object Interface for C++ Programmer’s Guide

Chapter 2. Issuing Database Queries and Retrieving Results

Using Operation Classes . 2-1

Creating Connections . 2-2

Finding System Names and Database Names . 2-3

Using ITSystemNameList . 2-3

Using ITDBNameList . 2-3

Managing Errors . 2-3

Connection Transaction States . 2-5

Issuing Queries . 2-6

When to Use the Different ITQuery Methods . 2-6

ExecForStatus . 2-6

ExecOneRow . 2-7

ExecToSet . 2-7

ExecForIteration . 2-7

Query Method Example . 2-7

Using Prepared Statements . 2-8

Using Cursors . 2-9

Using the Large Object Manager . 2-12

Using ITRoutineManager . 2-13

In This Chapter

To interact with a database, your C++ client application uses the operation classes

of the IBM Informix Object Interface for C++. These classes have methods for

opening database connections, submitting queries, and manipulating database

cursors. This chapter describes how to use these methods.

Using Operation Classes

The csql.cpp example is a small application that uses the ITQuery and

ITConnection classes to provide a simple command line interface that accepts SQL

commands from the standard input, transmits the commands to the database, and

displays the results. The major steps of the program are as follows.

1. Open the connection.

Before any database interaction can take place, the connection with the

database must be established. Opening the connection without any arguments

instructs the interface to use the default system, database, user name, and

password. For details about connection defaults, refer to “ITDBInfo” on page

5-7.

ITConnection conn;

conn.Open();

2. Build an ITQuery object for the connection.

ITQuery query(conn);

A query object is used to issue database queries and to access result sets. An

operation class is always created in the context of a server connection.

3. Read lines of input from stdin, using the C++ iostream library methods.

while (cin.getline(qtext, sizeof(qtext)))

{

}

4. Execute the query read from stdin, using the ExecForIteration method of the

query object.

© Copyright IBM Corp. 1996, 2008 2-1

if (!query.ExecForIteration(qtext))

{

}

5. Loop through the result rows of the query.

ITRow *comp;

int rowcount = 0;

while ((comp = query.NextRow()) != NULL)

{

}

A row is extracted from the result set of a query using the query object’s

NextRow method. The code shows the declaration of a pointer to the row

interface for an object that receives the result data, and the loop that reads the

result data into the row object.

This is an example of the use of a value object in the program: the NextRow

method returns a pointer to an ITRow interface. The pointer returned by

NextRow is not a pointer to an actual object; it is a pointer to an interface that

is exposed by an object.

6. Print the row.

cout << comp->Printable() << endl;

Every value object exposing an ITValue or ITValue-derived interface supports

the Printable method, which returns the object as a printable string in a

constant ITString object. This object can be put directly on the stdout stream.

For details about the ITString class, refer to “ITValue” on page 6-7.

7. Release the row.

comp->Release();

The value interface returned to the application must be explicitly released by

the application. A value object keeps track of the number of outstanding

references to it, and when the last reference is released, destroys itself.

8. Close the connection.

conn.Close();

Closing a connection destroys any saved data associated with the connection.

Because a value object may hold a reference to this saved data, it must keep track

of whether the underlying data has been destroyed. For details, refer to “Value

Object Management” on page 3-2.

Creating Connections

To specify connection parameters (system, database, user name, and password)

when creating a connection, your application creates an instance of the ITDBInfo

class. If the application uses the default connection parameters, you can create a

connection without using an instance of the ITDBInfo class.

After an ITDBInfo variable is constructed, it can be used to establish multiple

database connections. However, after a connection has been established using a

given ITDBInfo, that instance of ITDBInfo cannot be changed, nor can any copy

of it be modified. The ITDBInfo instance is said to be frozen. To detect whether an

ITDBInfo object has been frozen, use the ITDBInfo::Frozen() method.

The default user name and password are those of the current user. The default

database name is the current user’s name. The default server name is specified in

the UNIX® $INFORMIXSERVER environment variable or in the Windows®

2-2 IBM Informix Object Interface for C++ Programmer’s Guide

registry. If the ITDBInfo instance is not frozen, you can modify these values with

the ITDBInfo::SetDatabase(), ITDBInfo::SetUser(), ITDBInfo::SetPassword(), and

ITDBInfo::SetSystem() methods.

Finding System Names and Database Names

Many client applications determine what database to use at runtime, sometimes

allowing users to select from alternatives. You can use the ITSystemNameList class

and the ITDatabaseNameList class to retrieve lists of Informix servers and

databases. The following sections describe how to use these classes.

Using ITSystemNameList

The following excerpts from sysname.cpp illustrate the use of ITSystemNameList.

1. The Create() method creates the system name list by looking into the sqlhosts

file (on UNIX) or from the registry entry under the

HKEY_LOCAL_MACHINE\Software\Informix\sqlhosts key (on Windows).

ITSystemNameList list;

ITBool created = list.Create();

2. The ITSystemNameList::NextSystemName() method displays the system name

list.

while (ITString::Null != (current = list.NextSystemName()))

 {

 cout << current << "\tALWAYS_DIFFERENT" << endl;

 last = current;

 }

Using ITDBNameList

The following excerpts from dbname.cpp illustrate the use of ITDBNameList.

1. ITDBNameList::Create() creates an instance of ITDBNameList that lists the

databases from the servers contained in the DBPATH and INFORMIXSERVER

environment variables.

ITDBNameList dbnl;

ITBool created;

 created = dbnl.Create();

2. The ITDBNameList::NextDBName() method displays the database name list.

void

DisplayITDBNameList(ITDBNameList &dbname)

{

 ITString str;

 cout << "Parsing the DBNameList by calling NextDBName()

 method "<< endl;

 while (ITString::Null != (str = dbname.NextDBName()))

 cout << str << "\tALWAYS_DIFFERENT" << endl ;

}

Managing Errors

Most operations, such as issuing queries, fetching rows, and setting transaction

states, return a result code that your application should check. Operations that

return pointers typically return NULL to indicate an error. Operations that return a

Boolean result typically return FALSE to indicate an error.

Chapter 2. Issuing Database Queries and Retrieving Results 2-3

To specify a routine to be called whenever an error or warning is posted, your

application can associate a callback function with an instance of these classes. If an

error occurs, the callback function is executed. See page 5-8 for the callback

function signature.

To check errors from operation objects, call the Error and ErrorText methods after

an operation is performed, or include calls to the Error and ErrorText methods in

the body of an error callback function added to the object. Within an error callback

function, the only safe operations are calls to the Error, ErrorText, Warn,

WarningText, and SqlState methods to examine the ErrorManager object.

Your own data structures can be accessed with the user data parameter, which is

untouched by the Object Interface for C++. Any operations in the callback function

that are performed using the Object Interface for C++, such as calls to the

operation class methods that submit queries, have undefined results.

The ITErrorManager base class gives its derived classes the ability to manage

errors returned by the server or generated within the Object Interface for C++.

Callbacks added to an operation class derived from ITErrorManager are added to

that interface object. If the interface object is destroyed, the callbacks registered on

that interface are removed. If the interface object is destroyed while the

implementation is still present and the callbacks were not removed, there is no

valid interface object reference for the first parameter of the callback when the

implementation calls the callback, and a segmentation violation may occur. The

destructor of ITErrorManager removes such a callback.

To track all errors on a connection, set a callback function on the connection object.

When processing errors from a connection object, be sure to check the return status

from the operation itself, and not from the Error method. To track all errors for a

specific object, set a callback function on the object itself.

The csql2.cpp example consists of the csql.cpp SQL interpreter example enhanced

with error-handling code. The following steps describe the error-handling features

used in the csql2.cpp example:

1. Add the error callback function:

ITCallbackResult

my_error_handler(const ITErrorManager &errorobject,

 void *userdata,

 long errorlevel)

{

 // Cast the user data into a stream

 ostream *stream = (ostream *) userdata;

 (*stream) << "my_error_handler: errorlevel="

 << errorlevel

 << " sqlstate="

 << errorobject.SqlState()

 << ’ ’

 << errorobject.ErrorText()

 << endl;

 return IT_NOTHANDLED;

}

The arguments to the callback function are the object on which the error

appeared, a field (userdata) passed to the callback function, and an indicator of

the severity of the error (for details about levels of errors, refer to

“ITErrorManager” on page 5-8). In this example, the callback function casts the

user data field into a C++ ostream object and prints the error text and SQL

2-4 IBM Informix Object Interface for C++ Programmer’s Guide

error code (the ISO standard SQLSTATE) on the output stream. The user data

in the example must be an ostream pointer.

2. Add the callback function to the error handler list maintained by the query

object:

query.AddCallback(my_error_handler, (void *) &cerr);

The following dialog shows how the csql2.cpp program handles an erroneous SQL

statement. At the prompt (>), the user types error; (which is not valid SQL) and

the csql2.cpp program’s error handler displays an error message:

% csql2

Connection established

> error;

my_error_handler: errorlevel=2 sqlstate=42000

X42000:-201:Syntax error or access violation

Could not execute query: error;

0 rows received, Command:

>

Connection Transaction States

A connection to a database is said to be in one of a number of transaction states.

Transaction states show how queries submitted on the connection are committed.

Some server operations can only take place within a transaction. For example,

updateable cursors can only be opened within a transaction.

The ITConnection class is used to manage connections and includes methods to

set and inquire about the transaction state. The following table lists the connection

transaction states.

State Effect of Setting This State

Significance When Retrieved

from ITConnection

None Illegal to set Not connected to a server

Auto Illegal to set In auto commit mode (each SQL

statement is a separate

transaction)

Begin Start a transaction Entered or in a transaction

Commit Commit the transaction Last transaction was just

committed

Abort Abort the transaction Last transaction was just

aborted/rolled back

The csql3.cpp example adds transaction monitoring capabilities to the SQL

interpreter example. The following steps point out the transaction monitoring

features:

1. If the session is within a transaction, print "TRANSACTION>" as the prompt. The

following code shows the use of the GetTransactionState method to check the

transaction state:

if (conn.GetTransactionState() == ITConnection::Begin)

{

 cout << "TRANSACTION> ";

}

else

{

 cout << "> ";

}

Chapter 2. Issuing Database Queries and Retrieving Results 2-5

2. If the session exits while it is within a transaction, abort the transaction. The

data is returned to the state it was in when the transaction started. The

following code shows the use of the GetTransactionState method to check the

transaction state and SetTransactionState to set the state:

if (conn.GetTransactionState() == ITConnection::Begin)

{

 cerr << endl

 << "Exit within transaction, aborting transaction"

 << endl;

 conn.SetTransaction(ITConnection::Abort);

}

The output from the example is similar to the following, when the user exits after

issuing a begin work statement:

% csql3

Connection established

> begin work;

0 rows received, Command:begin work

TRANSACTION> EOF

Exit within transaction, aborting transaction

Issuing Queries

There are a number of different ways to issue SQL queries in the Object Interface

for C++, each suitable for different application requirements. The following table

summarizes the methods used for issuing queries.

 Method Description

ITQuery::ExecForStatus Execute a query that does not return rows (such as CREATE, INSERT,

UPDATE, or DELETE). Return a result code that says whether the

query resulted in a server error.

ITQuery::ExecOneRow Execute a query that returns one row; flush any results other than the

first row. Useful for quickly submitting queries that only return a

single row, such as select count(*) from systables.

ITQuery::ExecToSet Execute a query and retrieve all the result rows into a saved row set

managed on the client.

ITQuery::ExecForIteration Execute a query and return one row to the application on every call

to ITQuery::NextRow.

ITCursor::Prepare/

ITCursor::Open

Define a cursor for a select statement and return rows to the client on

calls to ITCursor::Fetch.

ITStatement::Prepare/

ITStatement::Exec()

Prepare and execute a query that returns no rows.

When to Use the Different ITQuery Methods

The following sections tell you how to use the Object Interface for C++ query

methods appropriately.

ExecForStatus

Use the ExecForStatus method of the Query object for queries when the

application does not need any data returned from the query (for example, DDL

statements such as CREATE TABLE, DROP TABLE, CREATE VIEW, or DML

statements such as UPDATE). The ExecForStatus method returns FALSE if a server

error occurred.

2-6 IBM Informix Object Interface for C++ Programmer’s Guide

ExecOneRow

Use the ExecOneRow method of the Query object for queries that return (or are

expected to return) one row. The ExecOneRow method returns an ITRow interface

pointer that represents the result row, or NULL if there is an error or if no row is

returned. If the query returns more than one row, the first row is returned and the

rest are discarded.

ExecToSet

Use the ExecToSet method of the Query object for queries that return more than

one row. ExecToSet runs the query to completion and stores the results in the

client program’s memory. If the result set is very large, the client’s memory may be

inadequate. The results returned by ExecToSet are accessible in arbitrary order.

Using ExecToSet, the connection is checked in after the call is complete. For details

about checking connections in or out, refer to “ITConnection” on page 5-1.

ExecForIteration

Use the ExecForIteration method of the Query object for queries that return a large

result set that must be processed a row at a time. After issuing the query with

ExecForIteration, your application must call NextRow to access the individual

rows in the result set. While your application is processing the rows returned by

ExecForIteration, the connection to the database server can not be used for another

query. You can, however, free up the connection to the server by using the

ITQuery::Finish method to finish query processing without retrieving all rows.

This method is the query-executing mechanism most similar to executing a select

statement using the DataBlade API mi_exec and mi_next_row calls. Also, this

method does not enable nonsequential access to the rows.

Query Method Example

The queryex.cpp example demonstrates use of the ExecForStatus, ExecOneRow,

and ExecToSet methods. The following excerpts illustrate the use of the query

methods in the queryex.cpp example:

1. Call ITQuery::ExecOneRow() to check if the table informixfans exists in the

database. If the table does not exist, use ITQuery::ExecForStatus() to create it.

// Does the table exist? If not, then create it.

ITRow *r1 = q.ExecOneRow(

 "select owner from systables where tabname = ’informixfans’;");

if (!r1

 && (!q.ExecForStatus(

 "create table informixfans (name varchar(128));")))

 {

 cerr << "Could not create table ‘informixfans’!" << endl;

 return 1;

 }

2. Call ITQuery::ExecToSet to fetch the results of a select statement:

// Show the contents of the table

cout << "These are the members of the Informix fan club, version ";

ITValue *rel = q.ExecOneRow

 ("select owner from systables where tabname = ’ VERSION’;");

cout << rel->Printable() << " ALWAYS_DIFFERENT" << endl;

rel->Release();

ITSet *set = q.ExecToSet

 ("select * from informixfans order by 1;");

if(!set)

{

 cout << "Query failed!" << endl;

Chapter 2. Issuing Database Queries and Retrieving Results 2-7

conn.SetTransaction(ITConnection::Abort);

 conn.Close();

 return -1;

}

ITValue *v;

while ((v = set->Fetch()) != NULL)

{

 cout << v->Printable() << endl;

 v->Release();

}

set->Release();

Using Prepared Statements

Prepared statements can be used to perform INSERT, UPDATE, and DELETE

functions efficiently and to pass binary data as parameters. The Object Interface for

C++ encapsulates prepared statement functionality in the ITStatement class. The

following excerpts illustrate the use of the loadtab.cpp example to load a table

from a text file using a prepared statement.

1. To use a prepared statement, the application creates an instance of ITStatement

on the opened connection.

ITStatement stmt(conn);

2. The application prepares the SQL statement, which has the effect of creating the

statement parameters.

if(!stmt.Prepare(sql))

 return -1;

Created parameters have the value NULL.

3. When the application needs to set a parameter value, it obtains the parameter’s

ITValue* through the call to the Param() function.

ITValue *param = stmt.Param(paramno);

The application can call the NumParams() function to obtain the number of

parameters.

4. The application sets the parameter value using ITValue::FromPrintable(), or it

obtains the required interface by calling the QueryInterface() function and

using its update routines.

if (!param->FromPrintable(pdb))

 {

 cerr << "Could not set parameter "

 << paramno << " to ’" << pdb << "’" << endl;

 return -1;

The application needs to release the parameter’s ITValue interface by calling

param->Release().

5. After all parameter values are set, the application executes the prepared query.

if (!stmt.Exec())

{

 cerr << "Could not execute statement" << endl;

 return -1;

The application can use the RowCount() function to determine the number of rows

affected by the last query executed. The application can then reset the parameter

values and re-execute the query. Any parameter values that have not been reset

stay the same.

After the application completes work with the prepared statement, it drops the

statement using the Drop() function.

2-8 IBM Informix Object Interface for C++ Programmer’s Guide

The same instance of ITStatement can be used to prepare another SQL statement

by calling Prepare(), which has the effect of calling Drop() for any currently

prepared statement.

Using Cursors

Cursors can be used to efficiently perform SELECT statements with parameters

and to pass binary data as parameters. Cursors can also be used to update

database tables.

The Object Interface for C++ encapsulates cursor functionality into the ITCursor

class. The following excerpts from the cursupd.cpp example illustrate the use of

ITCursor.

1. To use a cursor, the application creates an instance of ITCursor on the opened

connection.

ITCursor cursor(conn);

2. The cursor is opened in a transaction. The preparation of the SELECT statement

creates statement parameters.

conn.SetTransaction(ITConnection::Begin);

if(!cursor.Prepare("select b from bar where b < ?::integer;"))

{

If the application does not specify a parameter type name list, default

parameter types are used (see “ITStatement” on page 5-20). Created parameters

have NULL values.

3. When the application needs to set a parameter value, it obtains the parameter’s

ITValue * through the call to the Param() function.

ITValue *par = cursor.Param(0);

if(!par)

The application can call the NumParams() function to obtain the number of

parameters.

4. The application sets the parameter value using ITValue::FromPrintable().

if(!par->FromPrintable("3"))

{

Alternatively, the application could obtain the required interface by calling

QueryInterface() and use the update functions provided by the interface.

5. After all parameter values are set, the application opens the cursor with the

flags representing the sum of ITCursor::Flags values.

if(!cursor.Open(0, "bar"))

{

By default, the cursor is opened as updateable and nonscrollable. The cursor

cannot be opened as updateable and scrollable at the same time. If the

application uses the cursor’s UpdateCurrent() or DeleteCurrent() functions, it

needs to provide the name of the table that the cursor is created on as a second

argument of Open().

6. The application can use a fetch function to find the row from the cursor. The

fetch function accepts a pointer to the outer unknown interface for delegation

(for more details about delegation, see page 4-12). The pointer is null by

default.

The fetch function can perform the positional fetch. If the cursor was not

opened as scrollable, positional fetch will fail. The application can call the

IsScrollable() function to check whether the cursor is scrollable. The fetch

function returns the pointer to the ITValue interface of the retrieved row. The

NextRow() function returns the pointer to the ITRow interface of that row.

Chapter 2. Issuing Database Queries and Retrieving Results 2-9

ITRow *row;

while(row = cursor.NextRow())

 {

 ITValue *col = row->Column(0);

 if(!col)

 {

 cerr << "Couldn’t get the column from the cursor’s row" << endl;

 return -1;

 }

 cout << "Column 0 was " << col->Printable() << endl;

The following excerpts from the curstst.cpp example program illustrate the use

of a scrollable cursor.

a. Fetch rows from the beginning to the end of the result set.

cout << "FORWARDS" << endl;

while ((rowValue = cursor.Fetch()) != NULL)

{

 rowcount++;

 cout << rowValue->Printable() << endl;

 rowValue->Release();

}

b. Fetch rows from the end to the beginning of the result set.

cout << "BACKWARDS" << endl;

for (;;)

{

 if (!(row = cursor.NextRow(0, ITPositionPrior)))

 break;

 rowcount++;

 cout << row->Printable() << endl;

 row->Release();

}

c. Fetch every second row from the beginning to the end of the result set.

cout << "EVERY SECOND" << endl;

for (;;)

{

 if (!(row = cursor.NextRow(0, ITPositionRelative, 2)))

 break;

 rowcount++;

 cout << row->Printable() << endl;

 row->Release();

}

d. Fetch the third row from the result set.

cout << "THIRD" << endl;

row = cursor.NextRow(0, ITPositionAbsolute, 3);

if (row != NULL)

{

 rowcount++;

 cout << row->Printable() << endl;

 row->Release();

}

e. Fetch the first row of the result set.

cout << "FIRST" << endl;

row = cursor.NextRow(0, ITPositionFirst);

if (row != NULL)

{

 rowcount++;

 cout << row->Printable() << endl;

 row->Release();

}

f. Fetch the last row of the result set.

2-10 IBM Informix Object Interface for C++ Programmer’s Guide

cout << "LAST" << endl;

row = cursor.NextRow(0, ITPositionLast);

if (row != NULL)

{

 rowcount++;

 cout << row->Printable() << endl;

 row->Release();

}

g. Fetch the 500th row from the result set.

cout << "500th" << endl;

row = cursor.NextRow(0, ITPositionAbsolute, 500);

if (row != NULL)

{

 rowcount++;

 cout << row->Printable() << endl;

 row->Release();

}

The cursor model in the Object Interface for C++ adheres to the following

rules:

v When the cursor is first opened, it is positioned before the first row.

When you retrieve a row, the cursor advances to the row and then

retrieves the data.

v When a cursor reaches the last row in a set it has scrolled through and a

subsequent fetch returns NULL, the cursor remains positioned on the last

row. If you reverse the direction of the subsequent fetch to retrieve the

previous row, then the second-to-last row will be fetched.

v If you fetch from the last row up to the first row until there are no more

rows, the cursor will remain positioned on the first row.

v Cursors do not wrap around. For example, you cannot open a cursor and

retrieve the previous row in an attempt to wrap around to the last row.

Similarly, you cannot wrap around from the last row to the first row.

v When using ITPositionAbsolute to position the cursor, use 1 for the first

row.
7. The application can modify the columns of the fetched row using, for example,

FromPrintable().

if(!colduprow->FromPrintable("2"))

 {

 cerr << "Couldn’t set the column value" << endl;

 return -1;

 }

else

 {

 cout << "Column 0 is now " << colduprow->Printable() << endl;

 }

8. If the cursor was opened as updateable, the application can update the current

row using the UpdateCurrent() function, or delete it using DeleteCurrent().

The application can use the IsUpdatable() function to check whether the cursor

is updatable. Calling UpdateCurrent() causes modifications that have been

made to the current row to be reflected in the database (the current row being

the row that was most recently returned by the Fetch() or the NextRow()

function).

if(!cursor.UpdateCurrent())

{

 cerr << "Could not update the current row" << endl;

 return -1;

}

Chapter 2. Issuing Database Queries and Retrieving Results 2-11

Note that if the application fetches the row, holds its reference, and then fetches

another row, the first row is no longer current, and updates to it are not reflected

in the database when the application calls UpdateCurrent().

The application can close the cursor, modify parameters, and reopen the cursor.

Reopening a cursor closes the current one. Parameter values that have not been

reset stay the same.

After the application finishes with the cursor, it drops the cursor using the Drop()

function. The same instance of ITCursor can be used to prepare another cursor by

calling Prepare(), which has the effect of calling Drop() for the current cursor.

Using the Large Object Manager

The ITLargeObjectManager class performs simple operations on large objects such

as creating, opening, reading, and seeking.

The functionality of the ITLargeObjectManager class is only supported with

Dynamic Server databases.

Generally, this class is not used directly, but is included as a member of some class

that implements a database type that has one or more large objects within it. For

instance, a server sound data type may have a large object that holds the digitized

waveform. The C++ type implementation must know how to read that large object.

By using an ITLargeObjectManager as a member, the implementor of the data

type can leverage code from the ITLargeObjectManager class implementation.

The application can use ITLargeObjectManager::CreateLO() to create a new large

object. It can then get the handle of the newly created large object in either text or

binary form using ITLargeObjectManager::HandleText() or

ITLargeObjectManager::Handle() and insert it into a table. These operations must

occur within the same transaction; otherwise the large object falls prey to garbage

collection.

You can perform operations on large objects within a fetched row even though the

connection is still checked out (locked). A connection is checked out after the

ITQuery::ExecForIteration() method returns multiple rows in the result set. It

remains checked out until either the last row in the result set has been fetched with

ITQuery::NextRow() or the query processing has been terminated by calling

ITQuery::Finish(). While a connection is checked out, no other query can be

executed on that connection.

The following excerpt from loadtab.cpp illustrates the use of the

ITLargeObjectManager.

To use the ITLargeObjectManager, the application creates an instance of it on an

opened connection object. The CreateLO() method creates the large object and sets

the handle of the ITLargeObjectManager to the new large object.

The Write() method writes the string pointed to by pdb into the large object from

the current position (in this case from the beginning of the string).

Finally, the statement parameter is set to the value of the large object handle,

retrieved in text format by calling ITLargeObj.

ITLargeObjectManager lobMgr(conn);

 lobMgr.CreateLO();

 lobMgr.Write(pdb, strlen(pdb));

2-12 IBM Informix Object Interface for C++ Programmer’s Guide

if (!param->FromPrintable(lobMgr.HandleText()))

 {

 cerr

 << "Could not set LOB parameter "

 << paramno << " to ’" << pdb << "’" << endl;

 return -1;

 }

 }

else if(param->TypeOf().Name().Equal("byte"))

 {

 ITDatum *pdatum = 0;

 param->QueryInterface(ITDatumIID, (void **)&pdatum);

 if(!pdatum)

 {

 cerr << "BYTE type does not expose ITDatum???" << endl;

 return -1;

 }

 if(!pdatum->SetData(pdb, pdbpos, 0))

 {

 cerr << "SetData() for BYTE failed" << endl;

 return -1;

 }

 pdatum->Release();

 }

else if (null == TRUE)

 {

 if (!param->SetNull())

 {

 cerr << "Could not set parameter "

 << paramno << " to null" << endl;

 return -1;

 }

 }

Using ITRoutineManager

ITRoutineManager provides an alternative way to execute server routines.

The functionality of the ITRoutineManager class is only supported with Dynamic

Server databases.

When using ITRoutineManager, a connection does not have to be checked out to

get or execute a routine (and a value object, therefore, can use it), and the

execution of the routine commences faster since there is no SQL to parse.

The following excerpts from routine.cpp illustrate the use of ITRoutineManager.

1. To use ITRoutineManager, the application creates an instance of it on an open

connection object.

ITRoutineManager routine(conn);

2. The GetRoutine() method retrieves the function descriptor for the function

whose signature is passed as an argument.

ITBool bret = routine.GetRoutine("function sum(int,int)");

3. The application sets parameter values using ITValue::FromPrintable().

val = routine.Param(0);

val->FromPrintable("1");

val->Release();

It could also set parameter values using ITRoutineManager::SetParam().

4. The routine is executed with ExecForValue(), which returns a pointer to

ITValue corresponding to the return value of the routine.

Chapter 2. Issuing Database Queries and Retrieving Results 2-13

val2 = routine.ExecForValue();

5. A Release() call releases the ITValue instance.

val2->Release();

}

2-14 IBM Informix Object Interface for C++ Programmer’s Guide

Chapter 3. Accessing Data Values

Accessing Data Values . 3-1

Value Object Management . 3-2

The ITValue Interface . 3-3

The ITConversions Interface . 3-4

The ITDatum Interface . 3-4

The ITDateTime Interface . 3-4

The ITLargeObject Interface . 3-5

The ITErrorInfo Interface . 3-5

The ITRow Interface . 3-6

The ITSet Interface . 3-6

The ITContainer Interface . 3-7

The ITContainCvt Interface . 3-8

In This Chapter

This chapter discusses the specific value interfaces in detail, and shows how to

modify value objects and extract information through the value interfaces into host

variables in your application.

Accessing Data Values

A column value in a database can be an atomic SQL92 type (such as integer or

varchar) or, in IBM Informix Dynamic Server databases, any of the following

extended data types:

v An opaque data type, such as those supplied with IBM Informix Dynamic Server

DataBlade modules (for example Pnt for spatial points or doc for documents)

v Row types, including types that use inheritance

v Collection types, such as Set, List, and Multiset

v Large object types

To enable applications to interact uniformly with value objects, all value objects

present the ITValue interface. Value objects can expose additional interfaces to

present different behaviors to the application. For instance, a value object

representing a set can expose a container interface such as ITSet or ITContainer.

© Copyright IBM Corp. 1996, 2008 3-1

The following table lists the Dynamic Server value object interfaces.

 Interface Description

ITRow Row object interface (for example, a vector of named attributes, such

as a row)

ITContainCvt Container object with members that can be converted to and from

C++ types

ITContainer Container object with integer index-based access

ITConversions Object that can be converted to and from C++ base types

ITDateTime Date and time information

ITDatum Underlying data access

ITErrorInfo Error information

ITEssential Base interface. Supports reference counting and interface querying

ITLargeObject Large object. Supports file read-write semantics

ITSet Container object with random access

ITValue Basic value object interface

For a table showing how the server data types are supported in the IBM Informix

Object Interface for C++, refer to Appendix A.

Value Object Management

All value object interfaces are derived from the base interface, ITEssential. This

interface defines basic reference counting methods (AddRef and Release) on

objects. Reference counting enables applications to ensure that the references to

objects remain valid.

The ITEssential::QueryInterface method enables an application to determine

whether an object supports a specified interface, either one defined by the Object

Interface for C++ or a custom interface created by a DataBlade developer. If the

interface is supported, ITEssential::QueryInterface provides a pointer to the

interface and returns IT_QUERYINTERFACE_SUCCESS. If the interface is not

supported, ITEssential::QueryInterface returns IT_QUERYINTERFACE_FAILED.

For a list of interface identifiers for the interfaces provided by the Object Interface

for C++, refer to “ITEssential” on page 6-4.

Because all value object interfaces derive from ITEssential, your application can

obtain a pointer to any interface supported by the value object from any other

interface supported by the object.

The tabcnt.cpp example reads an integer value (the number of tables in the

database) from the server into a value object, then converts it into a host variable

using the ITConversions interface. The following code excerpts illustrate the use of

the QueryInterface method in the tabcnt.cpp example:

1. Issue the query that returns the number of tables.

ITRow *row;

row = q.ExecOneRow("select unique count(*) from systables

where tabname in (’systables’, ’syscolumns’,

’sysviews’);");

2. Extract the value object from the first column of the result row.

ITValue *v = row->Column(0);

3-2 IBM Informix Object Interface for C++ Programmer’s Guide

3. Extract an ITConversions interface from the object.

ITConversions *c;

// Extract an interface. The return code IT_QUERYINTERFACE_SUCCESS

// should be used for compatibility reasons.

if (v->QueryInterface(ITConversionsIID, (void **) &c)

 == IT_QUERYINTERFACE_SUCCESS)

{

4. Convert the value into a host variable, print the value, and release the

conversions interface.

int numtabs;

if (c->ConvertTo(numtabs))

{

 cout << "Number of rows in the query was: " << numtabs << endl;

}

// Release the conversions interface

c->Release();

5. Release the ITValue and ITRow interfaces.

v->Release();

row->Release();

Objects are created with a reference count of 1 when they are returned to the

application. When your application calls ITEssential::QueryInterface and obtains a

pointer to an interface, another reference to the object is returned to the

application, and the reference count is incremented. When the application no

longer requires an interface, it must call the Release method to release the

interface.

The ITValue Interface

The ITValue interface defines simple comparison and printing methods on a value

object and provides access to the server type information of an object. All value

objects must, at a minimum, expose an ITValue interface or an interface derived

from ITValue. An object can expose other interfaces accessible through the

ITEssential::QueryInterface method.

The ITValue::TypeOf method returns a reference to an ITTypeInfo object, from

which your application can extract information such as its server type, whether it

is a simple or collection type, its size (fixed or variable), and so on. For more

details, refer to “ITTypeInfo” on page 5-24.

Other ITValue methods enable your application to perform comparisons to

determine whether the object is equal to, greater than, or less than another object.

To determine whether objects are comparable, your application can call the

ITValue::CompatibleType method. The ITValue::CompatibleType method is

defined by the implementor of a value object. The ITValue::CompatibleType

method more loosely defines comparisons than the ITValue::SameType method,

enabling applications to compare value objects of different types.

Two types are said to be compatible if they meet any of the following conditions:

v They are the same type.

v They are built-in types that expose ITDateTime (date, datetime, interval).

v They both expose the ITConversions interface.

v They are DISTINCT from the same type.

v They are row types with the same column types.

Chapter 3. Accessing Data Values 3-3

v They are collection types with the same constructor and member types.

For instance, all value objects implemented by Informix that expose an

ITDateTime interface are defined to be compatible.

Value objects can be updated using the FromPrintable() function or set to NULL

using SetNull(). The application can determine whether the object was updated by

calling the IsUpdated() function.

The ITConversions Interface

The ITConversions interface is exposed by objects that can be converted to and

from C++ host variable type instances. The conversion methods are of the form

ITBool ITConversions::ConvertTo(base_type). The cnvex.cpp example attempts to

determine whether the value object that has exposed an ITConversions interface

through an interface pointer is convertible to int, double, and so on.

For details about converting the columns of a row to C++ built-in types, refer to

“ITContainerIter” on page 5-3.

The application can use ITConversions::ConvertFrom(base_type) to set the value

object to a C++ base type value.

The ITDatum Interface

The ITDatum Interface is derived from ITValue and provides additional methods

to get and set the underlying binary data and to obtain the connection object on

which the value object was created. Value objects expose ITDatum to be able to

participate in complex object updates.

The ITDatum::Data() method returns the (constant) pointer to the binary data. The

memory for this data is managed by the object. An application should not attempt

to modify the memory returned by Data(). Note that for text data, Data() returns

the pointer to MI_LVARCHAR, for row data, the pointer to MI_ROW, and for

collections, the pointer to MI_COLLECTION.

ITDatum::DataLength() returns the length of underlying data. For opaque

structures (such as MI_ROW and MI_COLLECTION), the value returned by

DataLength() is not meaningful to the application.

ITDatum::SetData() sets the value object data to the data provided as the

argument. The data must be in the same form as returned by ITDatum::Data(). For

opaque structures the data length is ignored.

ITDatum::Connection() returns (by reference) the connection object that was used

in the instantiation of the value object.

Generally, the C++ Interface uses ITDatum() members to update the row or

collection of objects.

The ITDateTime Interface

The ITDateTime interface can be exposed by value objects that represent a

time-based value. The following example shows how an application uses a pointer

to an ITDateTime interface to extract time-based information and print it.

3-4 IBM Informix Object Interface for C++ Programmer’s Guide

ITDateTime *dt;

// Extract an interface. The return code IT_QUERYINTERFACE_SUCCESS

// should be used for compatibility reasons.

if (v->QueryInterface(ITDateTimeIID, (void **) &dt)

 == IT_QUERYINTERFACE_SUCCESS)

{

 cout << "The date value is: " << endl

 << "Year:" << dt->Year() << endl

 << "Month: " << dt->Month() << endl

 << "Day: " << dt->Day() << endl

 << "Hour: " << dt->Hour() << endl

 << "Minute: " << dt->Minute() << endl

 << "Second: " << dt->Second() << endl;

 // Release the Date/Time interface

 dt->Release();

}

The application can use the ITDateTime::FromDate and ITDateTime::FromTime

methods to set, respectively, the date and time portions of a datetime object. If an

object contains both date and time information and, for example, FromDate is

called, the value of the time portion of an object does not change.

The ITLargeObject Interface

The ITLargeObject interface is exposed by value objects that must expose to their

underlying data a functionality similar to that of a file I/O interface. Typically,

such objects represent server data types that are derived from or contain a server

smart large object type instance.

This functionality of this interface is supported only with Dynamic Server

databases.

The following excerpt illustrates how the large object interface is extracted:

ITLargeObject *loif;

if (v->QueryInterface(ITLargeObjectIID, (void **) &loif)

 == IT_QUERYINTERFACE_SUCCESS)

The following loop reads data from the large objects and writes it to cout:

while ((n = loif->Read(buf, sizeof(buf))) > 0)

{

 cout.write(buf, n);

}

cout.flush();

The ITErrorInfo Interface

The ITErrorInfo interface includes methods that manage errors from the server or

from the Object Interface for C++ library. The ITErrorInfo interface enables your

application to set callback routines that are called when an error occurs. For

details, refer to “ITErrorManager” on page 5-8.

This functionality of this interface is only supported with Dynamic Server

databases.

Value objects such as large objects and set interface objects that have methods that

cause interactions with the server should expose the ITErrorInfo interface. The

following excerpts illustrate the correct use of the ITErrorInfo interface:

Chapter 3. Accessing Data Values 3-5

1. Extract the large object interface.

ITErrorInfo *errif;

if (v->QueryInterface(ITLargeObjectIID, (void **) &loif)

 == IT_QUERYINTERFACE_SUCCESS)

{

}

2. Extract the error management interface.

// Extract the errorinfo interface.

if (v->QueryInterface(ITErrorInfoIID, (void **) &errif)

 == IT_QUERYINTERFACE_SUCCESS)

{

}

3. Close the connection before reading the large object.

conn.Close();

This will induce an error.

4. Check byte count. If 0 bytes were read, check to see if an error occurred.

if (size == 0)

{

 // No bytes were read. Was there an error?

 if (errif->Error())

 {

 cerr << "Zero bytes read. Server error was" << endl

 << errif->ErrorText() << endl;

 }

}

The ITRow Interface

The ITRow interface is derived from ITValue and is the primary interface for

interacting with objects that represent database rows. For details, refer to 6-6.

The ITSet Interface

The ITSet interface can be exposed by an object that contains other objects and can

provide arbitrary or nonsequential access to the underlying objects. The

ITQuery::ExecToSet method provides random access to the result of a select query

by returning this kind of object. For an example of an object that exposes the ITSet

interface, refer to the example file rowset.cpp.

Container objects that expose the ITSet interface are especially useful in GUI

applications, because the random-access capabilities of the ITSet interface can be

used in association with a scroll bar to support scrolling through the result set.

The following code excerpts from the rowset.cpp example illustrate the basic object

container features of the row set object created by a call to ITQuery::ExecToSet:

1. Execute a select statement and return a value object that exposes an ITSet

interface.

ITSet *set = q.ExecToSet(qtext);

if (set == NULL)

 {

2. Open the set.

if (!set->Open())

 {

 }

3. Fetch value objects from the set.

3-6 IBM Informix Object Interface for C++ Programmer’s Guide

while ((value = set->Fetch()) != NULL)

 {

In a graphical user interface (GUI) program, the application might move to a

location within the set that corresponds to the setting of a scroll bar before

fetching data.

4. Perform tasks with the value objects, releasing any interfaces when finished.

if (value->QueryInterface(ITRowIID, (void **) &row)

 == IT_QUERYINTERFACE_FAILED)

 {

 cout << "Could not get row interface..." << endl;

 }

else

 {

 cout << row->Printable() << endl;

 row->Release();

 }

rowcount++;

value->Release();

5. Close the set.

if (!set->Close())

 {

 }

6. Release the set.

set->Release();

The application can use the ITSet::Insert method to insert new members into the

container objects and TSet::Delete() to remove a member.

The ITContainer Interface

The ITContainer interface is exposed by a value object that contains other objects

and does not support a concept of current position within the set. Instead, the

ITContainer interface uses an index to extract the corresponding object. The

ITContainer object can be exposed to enable applications to use the

ITContainerIter class to iterate over the result set and extract values into C++ base

type host variables.

The example program fsexamp1.cpp builds a temporary ITContainerIter object to

iterate over the result row of a query returned by ITQuery::ExecOneRow. The

ITContainerIter object constructor implicitly extracts an ITContainer interface

from the object it is constructed against, or an ITContainCvt interface if possible.

The approach illustrated by the fsexamp1.cpp example is more efficient than that

used by the tabcnt.cpp example (which performs similar processing).

The following code excerpts point out relevant passages from the fsexamp1.cpp

example.

1. Build the query object.

ITQuery q(conn);

2. Issue the query.

ITRow *row =

 q.ExecOneRow("select unique count(*) from systables where tabname

 in (’systables’, ’syscolumns’, ’sysviews’);");

if (q.Error())

 {

Chapter 3. Accessing Data Values 3-7

// some error processing row

 cerr << q.ErrorText() << endl;

 return 1;

 }

3. Build an ITContainerIter object on the result row, and extract a C++ int value.

int numtabs;

ITContainerIter(row) >> numtabs;

4. Release the underlying row.

row->Release();

The ITContainCvt Interface

The ITContainCvt interface combines the features of the ITContainer and

ITConversions interfaces. The ITContainCvt interface can be exposed by objects

that are containers of base type instances, such as data types that include an array

of values like a polygon or path. Unlike the ITContainer interface, the constituent

values are converted by the container object directly into C++ host types, instead

of into other value objects.

The contain.cpp example uses a sample array value object, and extracts an

ITContainCvt interface from the array object to load values from the array into

application variables. (The contain.cpp example uses a distinct data type, and so it

is only supported with Dynamic Server.) The following excerpts point out use of

the ITContainCvt interface:

1. Execute a query that returns an array.

ITRow *row =

 q.ExecOneRow("select * from bitarraytab;");

2. Extract the array value from the result row.

ITValue *arrayval = row->Column(0);

3. Extract an ITContainCvt interface from the object and release the interfaces

that are no longer required.

ITContainCvt *arraycont;

arrayval->QueryInterface(ITContainCvtIID, (void **) &arraycont);

row->Release();

arrayval->Release();

4. Iterate over the ITContainCvt interface and extract the array values into

application variables.

// The iterator class iterates over every member

// of an object

// exposing an ITContainer or ITContainerCvt interface.

ITContainerIter iter(arraycont);

// Add all the items to the stream

char buf[8192];

ostrstream cstream(buf, sizeof buf);

for (int i = 0; i < arraycont->NumItems(); i++)

{

 int value;

 iter >> value;

 cstream << ’[’ << i << ’]’ << " = " << value << endl;

}

5. Release the ITContainCvt interface.

arraycont->Release();

3-8 IBM Informix Object Interface for C++ Programmer’s Guide

Chapter 4. Creating and Extending Value Objects

The Raw Data Object . 4-1

Building Simple Value Objects . 4-2

Exposing Multiple Interfaces . 4-5

Value Objects and Connection Events . 4-9

Creating Row Type Value Objects . 4-10

Creating Row Type Value Objects Without An Open Connection 4-10

Creating Collection Type Value Objects Without An Open Connection 4-11

Object Containment and Delegation . 4-12

Dynamic Loading . 4-15

Mapping Files . 4-15

Guidelines . 4-16

In This Chapter

When you retrieve values from an IBM Informix Dynamic Server database using

the IBM Informix Object Interface for C++, the values are returned as value objects.

Value objects are created by the Object Interface for C++ using an extensible class

factory that maps Dynamic Server data types to C++ objects.

Important: Only Dynamic Server supports extensible data types. Therefore, the

information in this chapter applies only to Object Interface for C++

applications that connect with Dynamic Server databases.

The value object approach enables DataBlade developers to create objects that

represent new server data types and ensures that client applications can operate

with these new data types. Client applications that use the value object approach

do not depend on the representation of the object in the database and continue to

run if the database representation and the corresponding value object

implementation changes. For details about library support for value objects, refer

to “Dynamic Loading” on page 4-15.

The Raw Data Object

If the class factory for a specific server type is not registered, the Object Interface

for C++ automatically creates an object that exposes both an ITValue interface and

an ITDatum interface. To obtain a pointer to the binary data of the object, use the

ITDatum::Data method. The resulting pointer can be used to access the data

structure that corresponds to the object.

Note that this approach violates the principle of information hiding. By accessing the

structure via a pointer, the user of the object creates a dependency on the

particular implementation of an object. If that implementation changes, the

applications that use the object can cease to function. The interface approach to

object encapsulation ensures that an application cannot create a dependency on a

particular implementation of an object.

The rawval.cpp example shows how an application can use the ITDatum interface

to extract a data structure from the value object returned from the Object Interface

for C++ when no specific value object constructor is found for the server type. This

example application retrieves a pointer to a sequence of bytes from the server. The

following excerpts point out use of the raw data interface.

© Copyright IBM Corp. 1996, 2008 4-1

1. Issue a query to return an array and extract the value from the row.

ITQuery q(conn);

ITRow *row =

 q.ExecOneRow("select byte_val from regresstab;");

// Extract the column

ITValue *v;

v = row->Column(0);

2. Extract the ITDatum interface from the object.

ITDatum *rv;

if (v->QueryInterface(ITDatumIID, (void **) &rv) ==

 IT_QUERYINTERFACE_SUCCESS)

 {

3. Extract the data pointer from the object into an application pointer.

char *pch = (char *)rv->Data();

4. Search the data types for a match.

char match[] = "Informix";

char *found = strstr(pch, match);

5. Release the ITDatum interface.

rv->Release();

Building Simple Value Objects

Most DataBlade developers want to create true value objects for new types. The

simplest way to do so is to derive a C++ class directly from the ITDatum interface

class. You must then add to the new class:

v Implementation for all the ITDatum methods, all of which are pure virtual

v Any data members needed to hold the object’s data

v A few data members required to support the ITDatum methods; in particular,

an ITTypeInfo object

v A class constructor and destructor

If your value object code is to be directly linked with your application, you must

add:

v A static class factory function that calls the class constructor

The class factory function must accept an instance of an ITMVDesc structure.

v A global ITFactoryList object that registers the class factory function under a

server type name

If you want to use Object Interface for C++ dynamic loading feature, you must

provide:

v A C-linkage factory function that calls the class constructor

The function must accept an instance of an ITMVDesc structure.

v An entry in the map file for this class

For details, refer to “Dynamic Loading” on page 4-15.

The simpval.cpp example illustrates the use of the ITMVDesc descriptor and

ITDatum interface. The simpval.cpp example creates a true value object for the

bitarray data type.

The following simpval.cpp excerpts show how to create a true value object:

1. Define the data structures for holding the bit array objects.

4-2 IBM Informix Object Interface for C++ Programmer’s Guide

typedef mi_integer bitarray_t;

2. Define the array of integers class from ITDatum, implementing methods for the

ITDatum abstract methods.

class Bitarray : public ITDatum

{

public:

 // Overrides of ITEssential methods

 virtual ITOpErrorCode IT_STDCALL QueryInterface

 (const ITInterfaceID &ifiid,

 void **resultif);

 virtual unsigned long IT_STDCALL AddRef();

 virtual unsigned long IT_STDCALL Release();

 // Overrides of ITValue methods

 virtual const ITString & IT_STDCALL Printable();

 virtual const ITTypeInfo & IT_STDCALL TypeOf();

 virtual ITBool IT_STDCALL IsNull();

 virtual ITBool IT_STDCALL SameType(ITValue *);

 virtual ITBool IT_STDCALL CompatibleType(ITValue *);

 virtual ITBool IT_STDCALL Equal(ITValue *);

 virtual ITBool IT_STDCALL LessThan(ITValue *);

 virtual ITBool IT_STDCALL IsUpdated();

 virtual ITBool IT_STDCALL FromPrintable(const ITString &);

 virtual ITBool IT_STDCALL SetNull();

 // Overrides of ITDatum methods

 virtual MI_DATUM IT_STDCALL Data();

 virtual long IT_STDCALL DataLength();

 virtual ITBool IT_STDCALL SetData(MI_DATUM, long, ITPreserveData *);

 virtual const ITConnection & IT_STDCALL Connection();

 // Class constructor, destructor

 Bitarray(ITMVDesc *);

 ~Bitarray();

 // Factory Constructor -- this is the entry point for objects to

 // be created. It uses the class constructor to build an object

 // and returns in to the caller. It is called automatically by the

 // Interface when an object of the "bitarray" type is returned by

 // the server to the interface

 static ITValue *MakeValue(ITMVDesc *);

 // Data members to implement ITEssential functionality

 long refcount;

 // Data members to implement ITValue functionality

 ITTypeInfo typeinfo;

 ITBool isnull, isupdated;

 ITString printable_value;

 // Data members to implement bitarray storage

 bitarray_t value;

 ITConnection conn;

};

3. Construct the object, initializing its reference count and data and type

information.

Bitarray::Bitarray(ITMVDesc *mv)

 : refcount(1),

 typeinfo(*mv->vf_origtypeinfo),

 isupdated(FALSE),

 conn(*mv->vf_connection)

{

 // NULL?

Chapter 4. Creating and Extending Value Objects 4-3

isnull = mv->vf_libmivaluetype == MI_NULL_VALUE;

 if(!isnull)

 value = *(bitarray_t *)mv->vf_data;

}

4. Define the factory entry point for the object.

ITFactoryList BitarrayFactory("bitarray",

 Bitarray::MakeValue);

When this object file is linked into the application, the linker forces the

construction of the BitarrayFactory variable to take place before the application

begins to execute. The ITFactoryList constructor puts the mapping from server

type to Bitarray::MakeValue into the global type mapping list.

5. Implement the factory entry point, which must be a static member function

instead of a method, because at the time the factory entry point is called there

is no object on which to call a method.

ITValue *

Bitarray::MakeValue(ITMVDesc *mv)

{

 return new Bitarray(mv);

}

This function simply builds a new Bitarray object and returns it. Because the

object derives from the ITDatum interface, it is valid to return the object itself

instead of calling ITEssential::QueryInterface on the object to extract the

correct interface.

6. Define the ITEssential::QueryInterface function and the reference count

methods.

ITOpErrorCode

Bitarray::QueryInterface(const ITInterfaceID &iid,

 void **ifptr)

{

 int result = IT_QUERYINTERFACE_SUCCESS;

 switch (ITIIDtoSID(iid))

 {

 case ITEssentialSID:

 case ITValueSID:

 case ITDatumSID:

 *ifptr = this;

 break;

 default:

 result = IT_QUERYINTERFACE_FAILED;

 *ifptr = NULL;

 break;

 }

 if (result == IT_QUERYINTERFACE_SUCCESS)

 AddRef();

 return result;

}

7. Implement the ITDatum methods appropriate for the object.

const ITString &

Bitarray::Printable()

{

 if(IsNull())

 return printable_value = "null";

 char buf[32];

 ostrstream cstream(buf, sizeof buf);

 cstream << value << ends;

 return printable_value = cstream.str();

}

4-4 IBM Informix Object Interface for C++ Programmer’s Guide

Exposing Multiple Interfaces

If an object must expose multiple behaviors, the object must be able to return

multiple interfaces. To enable an object to return multiple interfaces, you can

derive the object from the various interfaces using multiple inheritance, or derive

the object from a separate implementation hierarchy and derive nested classes from

the appropriate interfaces.

The nested class solution, which is used by the Object Interface for C++, has the

following benefits:

v It allows the COM-compliant exposure of multiple interfaces.

v It allows delegation, the ability of a container class to expose an interface

belonging to a class it contains. For more details, refer to “Object Containment

and Delegation” on page 4-12.

v It creates multiple implementations of reference counting code for each interface,

making it easier to keep track of the reference counts for each interface. By

tracking references to individual interfaces, your application can optimize object

storage by allocating or deallocating part of an object based on whether a

specific interface has an outstanding reference count. For example, if an object

exposes ITLargeObject and it uses ITLargeObjectManager to implement its

functions, it could call ITLargeObjectManager::Close() when the ITLargeObject

interface reference count drops to 0 so that the number of open smart large

objects is minimized.

For a demonstration of the nested-class model, refer to the ifval.cpp example.

ifval.cpp is driven by the contain.cpp example application.

The following excerpts from ifval.cpp illustrate the implementation of an array of

integers value object that exposes both ITDatum and ITContainCvt interfaces:

1. Define the private data structures.

typedef mi_integer bitarray_t;

This structure is not exposed to the application.

2. Define the object class. Instead of using inheritance on the parent object, use

nested classes to define the individual interfaces.

class Bitarray

{

public:

 // ITDatum-derived nested class. This just passes work through

 // the parent pointer into the parent object

 class XITDatum : public ITDatum

 {

 public:

 // ...

 } datum_interface;

 // ITContainCvt-derived nested class

 // This just passes work through the parent

 // pointer into the parent object

 class XITContainCvt : public ITContainCvt

 {

 public:

 // ...

 } containcvt_interface;

 // ...

};

3. Build the object.

Chapter 4. Creating and Extending Value Objects 4-5

// Implementation

Bitarray::Bitarray(ITMVDesc *mv)

 : refcount(1),

 typeinfo(*mv->vf_origtypeinfo),

 conn(*mv->vf_connection),

 isupdated(FALSE)

{

 // NULL?

 isnull = mv->vf_libmivaluetype == MI_NULL_VALUE;

 // set up interfaces

 datum_interface.parent = this;

 containcvt_interface.parent = this;

 if(!isnull)

 value = *(bitarray_t *)mv->vf_data;

}

4. Define the class factory mapping and entry point.

ITFactoryList BitarrayFactory("bitarray",

 Bitarray::MakeValue);

// Create the Bitarray object, and return pointer to

// it’s ITValue implementation

ITValue *

Bitarray::MakeValue(ITMVDesc *mv)

{

 Bitarray *impl = new Bitarray(mv);

 return (ITValue *)&impl->datum_interface;

}

5. Define the base class methods for objects and return the address of the nested

interfaces when requested by the application.

ITOpErrorCode

Bitarray::QueryInterface(const ITInterfaceID &iid,

 void **ifptr)

{

 int result = IT_QUERYINTERFACE_SUCCESS;

 // Return different interfaces as appropriate by referencing

 // nested class members.

 switch (ITIIDtoSID(iid))

 {

 case ITEssentialSID:

 case ITValueSID:

 case ITDatumSID:

 *ifptr = (void *) &datum_interface;

 break;

 case ITContainCvtSID:

 *ifptr = (void *) &containcvt_interface;

 break;

 default:

 result = IT_QUERYINTERFACE_FAILED;

 *ifptr = NULL;

 break;

 }

 if (result == IT_QUERYINTERFACE_SUCCESS)

 AddRef();

 return result;

}

This object does not support delegation, so there is only one real

QueryInterface implementation on the object.

6. Define the reference counting code.

unsigned long

Bitarray::AddRef()

{

 return ++refcount;

}

4-6 IBM Informix Object Interface for C++ Programmer’s Guide

unsigned long

Bitarray::Release()

{

 if (--refcount <= 0)

 {

 delete this;

 return 0;

 }

 else

 {

 return refcount;

 }

}

7. Implement the ITDatum interface methods.

const ITString &

Bitarray::Printable()

{

 if(IsNull())

 return printable_value = "null";

 char buf[32];

 ostrstream cstream(buf, sizeof buf);

 cstream << value << ends;

 return printable_value = cstream.str();

}

8. Implement the ITContainCvt interface.

ITBool

Bitarray::ConvertTo(long item, int &dbvalue)

{

 if (IsNull() || item >= NumItems())

 return false;

 dbvalue = !!(value & (1 << (NBITS - 1 - item)));

 return true;

}

This interface converts the member value from the object into a host variable.

9. Declare passthrough methods for the nested interfaces. The methods call the

corresponding method in the parent class.

ITOpErrorCode

Bitarray::XITDatum::QueryInterface(const ITInterfaceID &ifiid,

 void **resultif)

{

 return parent->QueryInterface(ifiid, resultif);

}

unsigned long

Bitarray::XITDatum::AddRef()

{

 return parent->AddRef();

}

unsigned long

Bitarray::XITDatum::Release()

{

 return parent->Release();

}

const ITString &

Bitarray::XITDatum::Printable()

{

 return parent->Printable();

}

const ITTypeInfo &

Bitarray::XITDatum::TypeOf()

{

 return parent->TypeOf();

}

Chapter 4. Creating and Extending Value Objects 4-7

ITBool

Bitarray::XITDatum::IsNull()

{

 return parent->IsNull();

}

ITBool

Bitarray::XITDatum::SameType(ITValue *v)

{

 return parent->SameType(v);

}

ITBool

Bitarray::XITDatum::CompatibleType(ITValue *v)

{

 return parent->CompatibleType(v);

}

ITBool

Bitarray::XITDatum::Equal(ITValue *v)

{

 return parent->Equal(v);

}

ITBool

Bitarray::XITDatum::LessThan(ITValue *v)

{

 return parent->LessThan(v);

}

ITBool

Bitarray::XITDatum::IsUpdated()

{

 return parent->IsUpdated();

}

ITBool

Bitarray::XITDatum::FromPrintable(const ITString &v)

{

 return parent->FromPrintable(v);

}

ITBool

Bitarray::XITDatum::SetNull()

{

 return parent->SetNull();

}

ITOpErrorCode

Bitarray::XITContainCvt::QueryInterface(const ITInterfaceID &ifiid,

 void **resultif)

{

 return parent->QueryInterface(ifiid, resultif);

}

unsigned long

Bitarray::XITContainCvt::AddRef()

{

 return parent->AddRef();

}

unsigned long

Bitarray::XITContainCvt::Release()

{

 return parent->Release();

}

ITBool

Bitarray::XITContainCvt::ConvertTo(long item, int &value)

{

 return parent->ConvertTo(item, value);

}

long

Bitarray::XITContainCvt::NumItems()

4-8 IBM Informix Object Interface for C++ Programmer’s Guide

{

 return parent->NumItems();

}

ITBool

Bitarray::XITContainCvt::ConvertFrom(long item, int value)

{

 return parent->ConvertFrom(item, value);

}

Value Objects and Connection Events

Value objects are created in the following circumstances:

v Query objects create instances of the top-level rows.

v Complex objects (rows and collections) create instances of their members.

v Prepared query objects create instances of their parameters.

If the value object encapsulates a small, fixed-size datum, it can keep a local copy

of that datum. If the datum is large, of variable size, or represents a complex type,

the value object should keep a pointer to it. To ensure that this pointer continues to

be valid even after all the references to the object that owns the datum memory are

released, ITMVDesc contains a pointer to the ITPreserveData interface of that

object (ITMVDesc.vf_preservedata). The value object should keep this pointer and

use it to call the AddRef() function when it is created. When the value object is

destroyed, it should call the Release() function using the ITPreserveData pointer.

If the value object that keeps a local copy of a datum is updated, it should modify

that local copy. If the value object keeps a pointer to the datum, it cannot modify

that datum—it needs to create a new instance of that datum and call the Release()

function on the ITPreserveData pointer passed to it in ITMVDesc. The value

object should ensure that the IsUpdated() function of its ITValue interface returns

TRUE if it is modified. The instance of a datum allocated on update should be

removed when the value object is removed. The rowref.cpp example illustrates this

“allocate-on-update” technique.

To monitor connection events, a value object that keeps a pointer to row data can

maintain a connection stamp. This connection stamp, of type ITConnectionStamp,

should be checked before the row data pointer is dereferenced. The

ITConnectionStamp::EqualConnInstance method of the ITConnectionStamp class

can be used to tell if the connection is the same instance as that referred to by

another connection stamp.

Use of the connection stamp and ITPreserveData interface is demonstrated in the

rowref.cpp example source file, which is included in the contain2.cpp example

application. The following excerpts illustrate how the rowref.cpp example

preserves a reference on its underlying data instead of copying the data:

1. Add a member variable to hold the ITPreserveData interface pointer and

connection stamp.

class Bitarray

{

 ITPreserveData *preservedata; // reference counter on datum

 ITConnectionStamp stamp; // connection stamp

};

2. Initialize the preservedata member with the value from the descriptor, add a

reference to it, and make a copy of the connection stamp.

Chapter 4. Creating and Extending Value Objects 4-9

Bitarray::Bitarray(ITMVDesc *mv)

 : refcount(1),

 typeinfo(*mv->vf_origtypeinfo),

 conn(*mv->vf_connection),

 stamp(mv->vf_connection->GetStamp()),

 preservedata(mv->vf_preservedata),

 isupdated(FALSE),

 pvalue(0)

{

 // NULL?

 isnull = mv->vf_libmivaluetype == MI_NULL_VALUE;

 // set up interfaces

 datum_interface.parent = this;

 containcvt_interface.parent = this;

 if(!isnull)

 {

 pvalue = (bitarray_t *)mv->vf_data;

 // We are holding an outstanding reference to datum, so

 // increment its owner’s reference count.

 // Note that preservedata can be null for null objects.

 preservedata->AddRef();

}

3. When the object is being destroyed, release the preservedata interface.

Bitarray::~Bitarray()

{

 if(isupdated)

 delete pvalue;

 else if(preservedata)

 preservedata->Release();

}

4. Before any attempt to de-reference the value member pointer, first check the

connection stamp to ensure that the underlying data is still valid.

const ITString &

Bitarray::Printable()

{

 // If the underlying data has changed its not safe to proceed.

 if (!stamp.EqualConnInstance(conn.GetStamp()))

 return ITString::Null;

 if(IsNull())

 return printable_value = "null";

 char buf[32];

 ostrstream cstream(buf, sizeof buf);

 cstream << *pvalue << ends;

 return printable_value = cstream.str();

}

Creating Row Type Value Objects

Object Interface for C++, Version 2.70 and later allows row or collection type value

objects to be created using the following methods.

Creating Row Type Value Objects Without An Open

Connection

The process consists of two steps:

1. Create the ITTypeInfo object for the row type.

2. Instantiate the row type value object using the ITFactoryList::DatumToValue()

method and pass to it an ITMVDesc structure whose members are populated

appropriately.

4-10 IBM Informix Object Interface for C++ Programmer’s Guide

The row type object returned this way is a null row, which can be modified using

ITRow::FromPrintable(). Because the row type object has been created without an

open connection, the underlying data of the row type value object cannot be

modified with ITDatum::SetData() or retrieved with ITDatum::Data() (where

ITDatum is an interface exposed by a row type value object). However, the

remaining ITRow methods are not affected.

The following example illustrates how to create a row type value object without an

open connection:

#include <iostream.h>

#include <it.h>

int

main()

{

 ITConnection conn;

 ITMVDesc desc;

 ITTypeInfo colType(conn,"integer", 4,-1,-1,-1,1);

 ITTypeInfo *ptrcolType = &colType;

 ITString colName = "int_val";

 ITTypeInfo newti(conn,"row(int_val integer)", 1,

 &ptrcolType, &colName, NULL);

 desc.vf_origtypeinfo = (ITTypeInfo *) &newti;

 desc.vf_connection = &conn;

 desc.vf_typedesc = NULL;

 desc.vf_preservedata = NULL;

 desc.vf_outerunknown = NULL;

 desc.vf_datalength = newti.Size();

 desc.vf_libmivaluetype = MI_NULL_VALUE;

 desc.vf_data = NULL;

 ITValue *val = ITFactoryList::DatumToValue (desc);

 val->FromPrintable("row(1)");

 cout << val->Printable() << endl;

 val->Release();

}

Creating Collection Type Value Objects Without An Open

Connection

You can create collection type value objects without an open connection using a

process similar to creating row types. As with row types, ITDatum::Data() and

ITDatum::SetData() cannot be used to retrieve or modify values from a collection

type created without an open connection.

The following example illustrates how to create a collection type value object

without an open connection:

 #include <iostream.h>

 #include <it.h>

 int

 main()

 {

 ITConnection conn;

 ITMVDesc desc;

 ITTypeInfo memberType(conn,"integer", 4,-1,-1,-1,1);

 ITTypeInfo newti(conn, "set(integer not null)",

 "set", memberType, NULL);

 desc.vf_origtypeinfo = (ITTypeInfo *) &newti;

 desc.vf_connection = &conn;

 desc.vf_typedesc = NULL;

 desc.vf_preservedata = NULL;

 desc.vf_outerunknown = NULL;

 desc.vf_datalength = newti.Size();

 desc.vf_libmivaluetype = MI_NULL_VALUE;

 desc.vf_data = NULL;

Chapter 4. Creating and Extending Value Objects 4-11

ITValue *val = ITFactoryList::DatumToValue (desc);

 val->FromPrintable("set{1}");

 cout << val->Printable() << endl;

 val->Release();

 }

Object Containment and Delegation

Objects that contain other objects are called container objects. There are two

fundamental types of container objects:

v Base type containers: value objects that contain C++ base type instances (and do

not contain other objects). For an example of base type containers, refer to

“Value Objects and Connection Events” on page 4-9.

v Object containers: value objects that contain other value objects. Object

containers are created using a technique called object delegation, in which the

container object uses a predefined constituent object to define its subobjects.

Object delegation allows objects to be reused, as in C++ object inheritance, but

protects against base-class fragility—the tendency for base classes to evolve beneath

derived classes. Instead of deriving one class from another, the capabilities of one

object are combined with the capabilities of another, through a process called

interface delegation.

In interface delegation, a parent object exposes the interfaces of a contained object

as if they were its own. The contained object is supplied with the “controlling

ITEssential” pointer (in COM, a controlling unknown pointer) when it is

constructed; this controlling ITEssential is the ITEssential interface of the parent

object.

When any of the ITEssential methods of the subobject’s delegated interface are

called (for example, QueryInterface, AddRef, and Release), they are “delegated”

to the controlling ITEssential interface. For example, if the QueryInterface method

of a delegated interface is called, the QueryInterface method of the parent object is

called. Reference counting is also performed on the parent object rather then the

subobject.

To ensure that the parent can extract interfaces from the subobject and destroy it,

the parent object must have a pointer to one interface that is not delegated. This

interface is the subobject’s actual ITEssential interface, which must never be

exposed outside of the parent object.

Figure 4-1 illustrates object delegation.

4-12 IBM Informix Object Interface for C++ Programmer’s Guide

Object delegation is demonstrated by the delegate.cpp example, which is in turn

driven by the deldrv.cpp example file. This example requires a bit array server

data type and table defined by the following SQL statements:

create distinct type bitarray as integer;

create table bitarraytab (bitarraycol bitarray);

insert into bitarraytab values (’1’);

The bit array value object implemented in the delegate.cpp example is created by

aggregating the integer value object. Of the interfaces exposed by this subobject,

only a few methods of the container object’s ITContainCvt interface and the

ITValue interface of the integer value object are exposed outside of the bit array

object. The integer value object’s interface is exposed through delegation.

A bit array is retrieved by the following query, which is issued in the deldrv.cpp

example file:

select bitarraycol from bitarraytab;

The following excerpts from the delegate.cpp example show how to use object

delegation to delegate the responsibility for creating objects to an

ITValue-interface-exposing subobject within the Bitarray class:

 1. Define the various ITEssential methods.

class Bitarray : public ITContainCvt

{

public:

 // Overrides of ITEssential methods

 virtual ITOpErrorCode IT_STDCALL QueryInterface(const ITInterfaceID &ifiid,

 void **resultif);

 virtual unsigned long IT_STDCALL AddRef();

 virtual unsigned long IT_STDCALL Release();

Figure 4-1. Object Delegation

Chapter 4. Creating and Extending Value Objects 4-13

2. Define the ITContainCvt methods. Because not all of the methods of the

nested object’s ITContainCvt interface are used, the parent object cannot

delegate the ITContainCvt interface to the subobject, as it does for the

ITValue interface.

// Overrides of ITContainCvt methods

virtual long IT_STDCALL NumItems();

 3. Define a pointer for the subobject’s ITEssential interface. The object must

retain the integer object’s ITEssential interface, so it can release the subobject

when the parent object is destroyed. This interface is never passed back

outside of a Bitarray object.

ITEssential *int_essential;

 4. Define a pointer to hold an intermediate integer value object.

ITValue *int_value;

 5. Make the Bitarray’s ITEssential as the outer controlling unknown pointer.

desc.vf_outerunknown = this;

 6. To create an integer subobject for delegation, the Bitarray constructor uses a

local instance of ITMVDesc. This instance is identical to Bitarray’s ITMVDesc

except for the use of the integer ITTypeInfo that the Bitarray constructor

retrieves using ITTypeInfo::Source().

ITMVDesc desc = *mv;

desc.vf_origtypeinfo = (ITTypeInfo *)mv->vf_origtypeinfo->Source();

The ITMVDesc instance is passed to ITFactoryList::DatumToValue() to

instantiate the integer object and return a pointer to its ITValue. Bitarray

retains this pointer for delegation.

 7. Copy the ITEssential interface into a class member.

int_essential = desc.vf_outerunknown;

The object constructor overwrites the ITEssential instance named

int_essential.

 8. When the object is destroyed, release the integer subobject’s interface.

int_essential->Release();

 9. If the application requests an interface that is not supported by this object, ask

the integer subobject if it supports the interface.

ITOpErrorCode

Bitarray::QueryInterface(const ITInterfaceID &iid,

 void **ifptr)

{

 switch (ITIIDtoSID(iid))

 {

 case ITEssentialSID: case ITContainCvtSID:

 *ifptr = this;

 AddRef();

 return IT_QUERYINTERFACE_SUCCESS;

 default:

 // This object does not support the interface. Try the

 // delegated subobject...if the subobject supports the

 // interface, it will increment the reference counter on the

 // controlling unknown, so we don’t need to increment it

 // here (except if you ask the subobject for its ITEssential

 // interface, in which case it will increment its own

 // reference count).

 return int_essential->QueryInterface(iid, ifptr);

 }

}

10. Implement the ITContainCvt methods.

// ContainCvt implementation

ITBool

Bitarray::ConvertTo(long item, int &dbvalue)

{

4-14 IBM Informix Object Interface for C++ Programmer’s Guide

if (int_value->IsNull() || item >= NumItems())

 return FALSE;

 const char *valasstr = int_value->Printable();

 int val = atoi(valasstr);

 dbvalue = !!(val & (1 << (NBITS - 1 - item)));

 return TRUE;

}

ITBool

Bitarray::ConvertFrom(long item, int val)

{

 if(NumItems() <= item)

 return FALSE;

 int value = val ? value | (1 << (NBITS - 1 - item))

 : value & ~(1 << (NBITS - 1 - item));

 char valasstr[32];

 sprintf(valasstr, "%d", value);

 return int_value->FromPrintable(valasstr);

}

long

Bitarray::NumItems()

{

 return NBITS;

}

Because of the way the ITValue interface is delegated, this sort of forwarding is

not necessary for the ITValue interface methods.

Dynamic Loading

Dynamic loading is a Object Interface for C++ feature that enables you to use

shared object libraries to support value objects. Using dynamic loading, if a client

application receives from Dynamic Server an object of a type for which it does not

have a registered factory, the Object Interface for C++ factory system scans

mapping files to determine whether there is a shared object library that supports

the type. If found, the library is loaded and the factory entry point is called to

construct an object of the specified type for the client application.

Mapping Files

The map file is a text file. The format of the map file is:

[server.database.]type_name lib_name entry_point [c++if_major.c++if_minor]

Each line in the map file consists of:

1. The server type, optionally prefixed with the server and database name.

2. The name of the shared library. It can be qualified with a specific path.

Otherwise the library is located from the environment variable

LD_LIBRARY_PATH on Solaris or PATH on Windows.

3. The entry point in that library for the factory routine for the object.

4. Optionally, the version of the C++ library for which an object was built, (given

in the format major.minor).

Within the lines, entries must be separated by tabs or spaces. For example:

myserver1.mydatabase.Polygon3D /home/myhome/lib3d.so _makePoly3D

Polygon3D lib3d.so _makePoly3D

The Object Interface for C++ library does not attempt to instantiate an object if the

major version of the library is different or if the minor version of the C++ library

that an object was created for is higher than the minor version of the installed C++

library. Value object authors can use the IT_VERSION macro (defined in itcppop.h)

Chapter 4. Creating and Extending Value Objects 4-15

to determine the version of the library an object is being built for. The server and

database name can be used to specify the type name.

In the example above, the Object Interface for C++ library instantiates an object for

Polygon3D using the library from /home/myhome if the connection is made to

myserver.mydatabase; otherwise it uses the second library.

The map file can have any valid filename. On UNIX, the default map file is

$INFORMIXDIR/etc/c++map. on Windows, the default map file is

%INFORMIXDIR%\etc\c++map. In addition, you can manually set the

INFORMIXCPPMAP environment variable to the fully qualified path of the map

file, including the name of the map file itself.

Type names that contain white-space characters (or multibyte character strings)

must appear in double quotes in the type map file. Double quotation marks inside

the type names in the type map file must be duplicated.

The entry point is the C function that will be called to create a type. Enter

qualified type names before unqualified type names. The INFORMIXCPPMAP

environment variable can have several map files separated by colons (:) on UNIX

or semicolons (;) on Windows. The .so extension on Solaris and .dll on Windows

are optional for the libarary name, and you can omit the file extension so that the

same map file can be used in multiple environments.

Guidelines

When building Object Interface for C++ applications, observe the following

guidelines:

v Linkage: the shared object library factory routine must have C linkage, not C++

linkage. For example:

extern "C" ITValue *makePoly3D(ITMVDesc *mv);

v Mapping changes: if the map file changes after a client application has loaded a

shared object library, the application must flush its in-core map and reload (by

calling the ReloadMapFiles method of the ITFactory class).

4-16 IBM Informix Object Interface for C++ Programmer’s Guide

Chapter 5. Operation Class Reference

ITConnection . 5-1

ITConnectionStamp . 5-3

ITContainerIter . 5-3

ITCursor . 5-5

ITCursor Usage . 5-6

ITDBInfo . 5-7

ITDBNameList . 5-8

ITErrorManager . 5-8

ITFactoryList . 5-9

Successful Initialization Verification . 5-10

ITInt8 . 5-11

ITLargeObjectManager . 5-12

Accessing Smart Large Objects in Nondefault SBSpaces 5-13

ITMVDesc . 5-16

ITObject . 5-17

ITPosition . 5-17

ITPreserveData . 5-17

ITQuery . 5-18

ITRoutineManager . 5-19

ITStatement . 5-20

ITStatement Usage . 5-21

ITString . 5-22

ITSystemNameList . 5-23

ITTypeInfo . 5-24

In This Chapter

This chapter is an alphabetized reference that lists and describes the IBM Informix

Object Interface for C++ operation classes. Each class has an assignment operator

and a copy constructor, which are not listed in the tables of methods.

ITConnection

Base class: “ITErrorManager” on page 5-8

Manages a connection to a database and the errors that can occur. The

ITConnection class is used to open a connection to the database server and to

manage error objects and transaction states.

Only one result set can be outstanding on a DataBlade API connection. The Object

Interface for C++ encapsulates DataBlade API connection serialization via

check-out (with ITConnection::CheckOutConn()) and check-in (with

ITConnection::CheckInConn()). The ITQuery, ITStatement, and ITCursor

methods that perform server access (for example, ITQuery::ExecToSet() and

ITCursor::Prepare()) check the connection out, perform the operation, and then

check the connection in. ITQuery::ExecForIteration() checks the connection out for

the duration of the results retrieval. Some operations (for example, large object

operations and server routine execution) may require server access but do not

affect the results set. These operations use ITConnection::GetConn() to get the

DataBlade API connection without checking it out.

Applications generally do not need to use the DataBlade API connection directly.

Value objects should not attempt to perform the operations that would require

© Copyright IBM Corp. 1996, 2008 5-1

checking the connection out (it is likely to be checked out by the query object).

Value objects can use the DataBlade API connection obtained by calling

ITConnection::GetConn() to perform the operations that do not require connection

checkout. Value objects should handle gracefully the possibility of

ITConnection::GetConn() returning NULL (when the connection is not open).

The following table lists the methods provided by this class.

 Method Description

ITConnection() Creates an unconnected connection object with the default

DBInfo.

ITConnection(MI_CONNECTION *, enum

ITTransactionState tstate)

Constructs a connection object for an existing connection

and sets the transaction state with the provided argument.

ITBool SetDBInfo(const ITDBInfo &) Sets the connection’s DBInfo without opening the

connection. Returns TRUE if successful; FALSE if the

connection is currently open.

ITBool Open(const ITDBinfo &db) Opens the connection with the specified DBInfo.

ITBOOL Open() Opens the connection with the default DBInfo.

ITBool Close() Closes the database connection.

ITBool IsOpen() const Returns TRUE if the connection is open, FALSE if it is not.

MI_CONNECTION *GetConn() Returns DataBlade API connection encapsulated by

ITConnection object, NULL if ITConnection is not open.

ITBool SetTransaction(enum ITTransactionState,

ITCallBackFuncPtr func=NULL,

void *userdata=NULL)

Sets the transaction state. The transaction state can be set

to Begin to begin the transaction, or Commit or Abort to

finish it. See “Connection Transaction States” on page 2-5

for more information. The CallBackFuncPtr and userdata

arguments are reserved for future use. The transaction

states are:

 ITTransactionState::NONE

 ITTransactionState::AUTO

 ITTransactionState::BEGIN

 ITTransactionState::COMMIT

 ITTransactionState::ABORT

enum ITTransactionState GetTransactionState() Returns the transaction state.

MI_CONNECTION *CheckOutConn() Checks out the DataBlade API connection handle in order

to bypass this C++ interface. Returns NULL if the

connection is already checked out or the

ITConnection is not connected to a database.

Warning: This interface is for compatibility with

DataBlade API. Direct use of the DataBlade API is

discouraged.

ITBool CheckInConn() Returns a checked-out DataBlade API connection to the

ITConnection. Returns TRUE if the connection was

previously checked out, FALSE otherwise.

const ITConnectionStamp &GetStamp() Gets the current connection stamp object. (For details,

refer to “ITConnectionStamp” on page 5-3.)

const ITDBInfo &GetDBInfo() Retrieves the DBInfo object information with which the

connection was initialized.

5-2 IBM Informix Object Interface for C++ Programmer’s Guide

ITConnectionStamp

Base class: “ITObject” on page 5-17

Connection events can invalidate value objects to which the application maintains

references. A connection stamp can be extracted from a connection and compared

to a previously extracted connection stamp to determine whether the connection

object refers to the same server connection and transaction. This object is intended

primarily for the development of DataBlade value objects. For more details, refer to

“Value Objects and Connection Events” on page 4-9.

Typically, a user object gets a connection stamp when it establishes a connection.

Whenever the value object needs to verify that this transaction or connection is

current, it gets another connection stamp and compares them using one of the

comparison methods listed in the table below.

This class provides the following methods.

 Method Description

ITBool Equal(const ITConnectionStamp &) const Indicates whether these stamps refer to the same

connection and transaction.

ITBool EqualConnInstance(const ITConnectionStamp &)

const

Indicates whether these stamps refer to the same

connection instance.

ITBool EqualTransactionInstance(const

ITConnectionStamp &) const

Indicates whether these stamps refer to the same

transaction.

ITContainerIter

Base class: “ITObject” on page 5-17

Provides a simple, syntactically compact interface for extracting C++ base-type

values (such as int, long, or double) from an object. Value objects passed to an

ITContainerIter object must expose either an ITContainer or ITContainCvt

interface.

This class provides the following methods.

 Method Description

ITContainerIter(ITContainer *),

ITContainerIter(ITEssential *),

ITContainerIter(ITContainCvt *)

Binds an ITContainer or ITContainCvt interface into the

newly constructed iterator. The values in the object can

subsequently be extracted using the >> operator.

ITContainerIter &operator >> (ITValue *&) Extracts a pointer to the next column’s value interface. If

there are no more values left, sets the ITValue pointer to

NULL. This method can be used to extract the individual

columns into interface pointer variables. The ITValue

interface must be released by the application.

Chapter 5. Operation Class Reference 5-3

Method Description

ITContainerIter &operator >> (modifiable_ lvalue &) Copies the value into the specified variable. This

operation raises an exception if the column and variable

type are not compatible or convertible. Valid types for

the modifiable_ lvalue parameter are as follows:

 short

 int

 double

 long

 float

 long double

 const char *

 ITString

 ITInt8

 bool (if the C++ compiler supports bool)

ITContainerIter &ITContainerIter::operator<<

(<type>)

Sets the value of a contained item from the value of the

C++ type given as <type>, where <type> can be any of

the following type specifiers:

 short

 int

 double

 long

 float

 long double

 const char *

 ITString &

 const ITString &

 ITInt8

 bool (if the C++ compiler supports bool)

ITContainerIter has a state that can be either StateOK,

StateOutOfBounds, StateUninitialized, or

StateConversionFailed. If ITContainerIter state is not

StateOK, using any of the operators does not perform

any conversions and does not change the state or

position in the container.

void Reset() Resets the state to StateUninitialized or StateOK,

depending on whether the container iterator was

initialized.

5-4 IBM Informix Object Interface for C++ Programmer’s Guide

Method Description

StateCode State() Retrieves the state of the container iterator. State may be

one of the following: StateUninitialized, StateOK,

StateOutOfBounds, or StateConversionFailed.

The initial state of the ITContainerIter is

StateUninitialized if the value object that ITContainerIter

was created on does not expose ITContainCvt or

ITContainer; otherwise the initial state is StateOK.

Calling ITContainerIter::Reset() resets a state to this

initial state. StateOutOfBounds is set by the shift

operators (<< >>) when the item position exceeds the

number of items in the container. StateConversionFailed

is set by the operator if the container does not expose

ITContainCvt and the item does not expose

ITConversions, or if the conversion function fails.

int Index() Retrieves the current container iterator index.

ITCursor

Base class: “ITErrorManager” on page 5-8

Manages database cursors.

This class provides the following methods.

 Method Description

ITCursor(const ITConnection &) Creates a cursor object for a connection.

ITBool Prepare(const ITString &, int nargs = 0, const

ITString *typeNames = 0, ITEssential **outerunkns = 0);

Prepare() prepares the SQL statement and creates a list of

null-valued parameters. Prepare() takes as an argument

an ITString object, which must be a single valid SQL

statement. See “ITStatement” on page 5-20.

ITBool Drop() Drops the prepared statement and removes the

parameter list.

int NumParams() const Returns the number of parameters in a prepared

statement. It returns -1 if the statement has not been

successfully prepared.

ITValue *Param(int) Allows the application to return a parameter’s ITValue.

The argument is a 0-based parameter number. Param()

returns NULL if there are no parameters or if the

parameter number is out of bounds.

ITBool SetParam(int parmno, ITDatum *) Sets the cursor parameter with the number equal to

parmno to be the value object passed as the second

argument. Returns TRUE if successful, FALSE if it fails.

Supports binding parameters in both binary and text

mode. For more information, see the example in

“ITStatement Usage” on page 5-21.

const ITString &QueryText() const Returns the query text. Returns ITString::Null if the

statement has not been successfully prepared.

ITBool IsReadOnly() const Returns TRUE if the cursor is read only, otherwise returns

FALSE.

Chapter 5. Operation Class Reference 5-5

Method Description

ITBool Open(int flags = 0, const ITString &tableName =

ITString::Null)

Opens a cursor with the flags taken from the sum of the

Open() flag values. Flag values can be the sum of:

 ITCursor::Sensitive

 ITCursor::ReadOnly

 ITCursor::Scrollable

 ITCursor::Reopt

 ITCursor::Hold

Calling Open() without arguments opens a nonscrollable

cursor. Open() returns TRUE on success, FALSE otherwise.

It is an error for a cursor to be both scrollable and

updatable. If updates will be performed using the cursor,

tableName must be passed as the second argument.

ITBool Close() Closes the cursor. After calling Close(), the application

can modify parameters and open a new cursor.

const ITString &Command() const Returns the command verb.

const ITString &Name() const Returns the cursor’s name. Returns ITString::Null if the

cursor has not been opened successfully.

ITRow *NextRow(ITEssential **outerunkn = NULL,

enum ITPosition pos = ITPositionNext,

long jump = 0)

Fetches the next row and returns the pointer to the

ITRow interface of the row object. Returns NULL if the

row could not be fetched. Until the cursor row is

modified or deleted, a new instance of that row can be

fetched again by specifying fetch position

ITPositionCurrent even if the cursor is not scrollable.

ITBool UpdateCurrent() Executes the SQL statement UPDATE WHERE

CURRENT OF using the values of the updated columns

in the current row. Returns TRUE if the update was

successful and FALSE if it was not. It is an error for the

application to call

UpdateCurrent() if NextRow() or a fetch function fails.

ITBool DeleteCurrent() Executes the SQL statement DELETE WHERE CURRENT

OF. Returns TRUE if the deletion was successful and FALSE

if it was not. It is an error for the application to call

DeleteCurrent() if NextRow() or a fetch function fails.

ITValue *Fetch(ITEssential **outerunkn = NULL, enum

ITPosition pos = ITPositionNext, long jump = 0)

Fetches a row from the cursor and returns the pointer to

its ITValue interface.

const ITTypeInfo *RowType() const Returns server type information about the row to be

fetched. Can be called after Prepare() to get row type

information before opening the cursor.

ITBool IsScrollable() const Returns TRUE if the cursor is opened as scrollable,

otherwise returns FALSE.

ITCursor Usage

ITCursor can pass binary data as parameters in prepared SQL SELECT statements.

In addition, ITStatement can pass binary data as parameters in prepared SQL DML

statements DELETE, INSERT, UPDATE, and SELECT. For an example showing

how Informix Object Interface for C++ can be used to set a parameter to binary

data in a prepared INSERT statement, see “ITStatement Usage” on page 5-21

5-6 IBM Informix Object Interface for C++ Programmer’s Guide

ITDBInfo

Base class: “ITErrorManager” on page 5-8

Sets or returns information about connections to IBM Informix Dynamic Server

databases (such as the user, database, system, and password). When an ITDBInfo

is used to open a connection, the ITDBInfo becomes frozen and cannot be

modified using the Set calls.

This class provides the following methods.

 Method Description

ITDBInfo() Constructs an ITDBInfo object for the user’s system

environment.

ITDBInfo(const ITDBInfo &) Copy constructor. The ITDBInfo copy constructor makes

a deep copy rather than a shallow copy. The new

ITDBInfo object is thawed and can be modified using the

Set calls.

ITDBInfo(const ITString &db,

const ITString &user = ITString(),

const ITString &system = ITString(),

const ITString &passwd = ITString());

Constructs ITDBInfo and sets system database and user

information. This method has these parameters:

 db is the database name.

 user is the user name.

 system is the system name.

 passwd is the password.

ITBool operator==(const ITDBInfo &) const; Compares the instances of the ITDBInfo objects.

ITBool Frozen() const Returns TRUE if this database object’s information is

frozen, or FALSE if the information is not frozen.

ITBool Freeze() Freezes the database object’s information.

ITBool CreateDatabase (int flags = ITDBInfo::Default,

const ITString &dbspace = ITString::Null)

Creates the database; returns TRUE if the database was

successfully created, FALSE if it was not. The database

name and server name are taken from ITDBInfo.

The following values are valid for type:

 ITDBInfo::Default

 ITDBInfo::Log

 ITDBInfo::BufferedLog

 ITDBInfo::ANSIModeLog

 dbspace is the name of dbspace; default dbspace if

omitted.

ITBool DropDatabase() Drops the database; returns TRUE if the database was

successfully dropped, FALSE if it was not.

ITBool SetUser(const ITString &) Sets the user name.

ITBool SetDatabase(const ITString &) Sets the database name.

ITBool SetSystem(const ITString &) Sets the system name.

ITBool SetPassword(const ITString &) Sets the password.

const ITString &GetUser() const Returns the user name.

const ITString

&GetDBLocaleName() const

Returns the database locale name.

const ITString &GetSystem() const Returns the system name.

const ITString &GetDatabase() const Returns the database name.

Chapter 5. Operation Class Reference 5-7

ITDBNameList

Base class: “ITErrorManager” on page 5-8

Encapsulates the list of database names. Obtain the list by calling the Create()

function. After the list is created, applications can use NextDBName() and

PreviousDBName() to traverse it.

This class provides the following methods.

 Method Description

ITDBNameList() Creates an instance of ITDBNameList.

ITBool Create() Creates a list of all databases for all systems in DBPATH

and INFORMIXSERVER.

ITBool Create(const ITString &) Creates a list of all databases for a system with the

specified name.

ITBool Create (ITConnection &) Creates a list of all databases corresponding to the

connection.

ITBool IsDBName(const ITString &) Returns TRUE if the name supplied as an argument

appears in the database name list; FALSE if it does not.

const ITString &NextDBName() Returns the reference to the next database name; returns

ITString::Null if there is no next database name.

const ITString &PreviousDBName() Returns the reference to the previous database name;

returns ITString::Null if there is no previous database

name.

void Reset() Resets the database list name to the state it was in

immediately after the list was created.

ITErrorManager

Base class: “ITObject” on page 5-17

Manages error callbacks from the server or from the client library. Multiple

callbacks can be set on an ITErrorManager instance. ITErrorManager defines

functionality used by a number of subclasses for managing and dispatching errors

for different operations, such as issuing queries and retrieving results. Using the

ITErrorManager class, applications can set callback functions to be triggered by

exceptional conditions generated during database access.

Events that may trigger the call to callback functions are:

v Server exceptions—SQL errors, transaction state changes, warnings, and so on.

v DataBlade API library exceptions.

v C++ library events.

Callback functions must have the following signature:

typedef void (*ITCallBackFuncPtr)

 (const ITErrorManager &errorobject,

 void *userdata,

 long errorlevel);

The userdata parameter is for data passed to the callback function. The errorlevel

parameter corresponds to the DataBlade API error level, and indicates whether the

error is a message, an exception, or a fatal error.

5-8 IBM Informix Object Interface for C++ Programmer’s Guide

This class provides the following methods.

 Method Description

ITBool Error() const Returns TRUE if either a server or client error occurs.

const ITString &SqlState() const Returns the SQLSTATE code of an error. For details

about SQLSTATE, refer to the IBM Informix Guide to SQL:

Syntax.

const ITString &ErrorText() const Returns error message text.

ITBool AddCallback(ITCallbackFuncPtr userfunc, void

*userdata)

Adds a callback. For details, refer to “Implementation

Notes” on page 1-5.

ITBool DelCallback(ITCallbackFuncPtr userfunc, void

*userdata)

Deletes a user-defined callback registered through

AddCallback().

ITBool DispatchErrorText(const ITString &message) Dispatches an error message with the specified message

text.

ITBool Warn() const Returns TRUE if a warning occurred.

const ITString & WarningText() const Returns warning message text.

ITFactoryList

Base class: none

This functionality provided by this class is only supported with Dynamic Server

databases.

Adds mappings from Dynamic Server data types to functions that build value

objects to represent instances of these data types. For more details, refer to

“Building Simple Value Objects” on page 4-2.

Developers of value objects can either use this class and compile the value object

code into applications or, for greater reusability, use dynamic loading as described

in “Dynamic Loading” on page 4-15.

This class provides the following methods.

 Method Description

ITFactoryList(const char *name, ITFactoryFuncPtr func,

ITBool flushable = false);

Declares a mapping from the specified server

type (the name parameter) to the specific

factory function pointer (func).

static void ReloadMapFiles(ITErrorManager *errobj); Forces a reload of the factory object map files.

The map files map server types to

dynamically loadable libraries that contain

functions for building value objects. If the

map changes, an application can call this

procedure to reload the maps.

static ITBool FlushDynamicFactories(ITErrorManager *errobj); Unloads all the dynamically loaded libraries

and clears dynamic entries from the list of

factories To retain the ability to scan the map

files after dumping, applications should call

ReloadMapFiles() instead of

FlushDynamicFactories.

static void Init() Initializes the built-in factory list in case the

compiler does not perform this initialization

automatically.

Chapter 5. Operation Class Reference 5-9

Method Description

static ITValue *DatumToValue (ITMVDesc &) Creates the instance of the value object using

the provided ITMVDesc. Returns the pointer

to the ITValue interface of the created object.

Returns NULL if it fails.

In the absence of the factory for the

constructed type, DatumToValue() uses the

constructor’s factory. For example, it would

use the built-in set factory for the type set

(integer not null).

GetInitState() Verifies that the Object Interface for C++

library loaded into memory is properly

initialized. For more information and an

example, see “Successful Initialization

Verification.”

Successful Initialization Verification

Under some circumstances, the Object Interface for C++ library might be loaded

into memory but not properly initialized. For example, if the environment variable

CLIENT_LOCALE is set to an invalid locale, the GLS library will not properly

initialize, and thus the Object Interface for C++ library will also not properly

initialize.

To allow Object Interface for C++ application programs to verify that initialization

succeeded, several new members have been added to the ITFactoryList class

(defined in the public header file $INFORMIXDIR/incl/c++/itcppop.h):

class IT_EXPORTCLASS ITFactoryList

 {

 ...

 public:

 // These are the built-in factory list initialization state values

 enum InitState { NOTINIT, INITING, INITED };

 // This function can be used to determine if the built-in factory

 // list initialized properly. It returns

 ITFactoryList::NOTINIT

 // if initialization failed.

 static InitState GetInitState();

 ...

 };

The user application should call GetInitState() prior to using any Object Interface

for C++ classes or interfaces to determine if Object Interface for C++ initialized

properly, as follows:

 main(int, char *)

 {

 // check that Object Interface for C++ DLL initialized ok

 if (ITFactoryList::GetInitState() == ITFactoryList::NOTINIT)

 {

 cout << "Error: Object Interface for C++ DLL not

 initialized" <<

 endl;

5-10 IBM Informix Object Interface for C++ Programmer’s Guide

cout << "Error: exiting program" << endl;

 return -1;

 }

 ...

ITInt8

Base class: none

Encapsulates 8-byte integer value. This class can be used in any Object Interface for

C++ client application, although only Dynamic Server supports the int8 datatype.

This class provides the following methods.

 Method Description

ITInt8() Creates uninitialized instance of ITInt8.

ITInt8 &operator=(<<type>) Sets ITInt8 to the value of <type>, where <type> is one of

the following:

 int

 long

 float

 double

 mi_int8

 IT_LONG_LONG

where IT_LONG_LONG is a compiler-provided

8-byte integer (if any). The result of the conversion may

not fit into the type specified by <type>.

IsNull() Returns TRUE if an object does not represent a valid

8-byte integer.

Conversion operators ITInt8 provides conversions to the value of one of the

following types:

 int

 long

 float

 double

 mi_int8

 ITString

 IT_LONG_LONG

Other operators ITInt8 provides assignment comparison, and arithmetic

operators. The results of arithmetic operations on ITInt8

objects may not fit into 8 bytes, in which case, the result

would not be a vaild ITInt8 object.

In Version 2.70, new constructors allow you to create objects using each of the

built-in numeric types as initialization arguments. This eliminates the need to

explicitly assign a numeric type that is not an int8 (for example, int) to an ITInt8

object before comparing it with an ITInt8 object.

The new constructors are:

 ITInt8(const int);

 ITInt8(const long);

 ITInt8(const float);

Chapter 5. Operation Class Reference 5-11

ITInt8(const double);

 ITInt8(const mi_int8);

 ITInt8(const ITString &);

 #ifdef IT_COMPILER_HAS_LONG_LONG

 ITInt8(const IT_LONG_LONG);

 #endif

Prior to version 2.70, to initialize an ITInt8 object, the application had to assign a

value to an ITInt8 object using the assignment operator (=), as follows:

int i = 100;

 ITInt8 i8;

 i8 = i;

 if (i8 == (ITInt8)i)

With Version 2.70 and later, the assignment can be replaced by an ITInt8

constructor call:

int i = 100;

 ITInt8 i8(i); // or ITInt8 i8(100);

 if (i8 == (ITInt8)i)

ITLargeObjectManager

Base class: “ITErrorManager” on page 5-8

This functionality provided by this class is only supported with Dynamic Server

databases.

Manipulates large objects. Large object operations are similar to normal file

management operations (read, write, seek, and so on). Client value objects based

on large objects in the server typically expose an ITLargeObject interface. For

details, refer to “Object Containment and Delegation” on page 4-12. See the IBM

Informix Guide to SQL: Reference for details about large objects.

This class provides the following methods.

 Method Description

ITLargeObjectManager(const ITConnection &) Creates a large object manager for the specified

connection.

ITBool SetHandleText(const ITString &handleText, int

flags = MI_LO_RDWR)

Sets a manager to handle a large object, where const

ITString is the large object handle in text format.

const ITString &HandleText() Returns the handle of the currently managed large object

in a text format.

ITBool SetHandle(const MI_LO_HANDLE *handle, int

flags = MI_LO_RDWR)

Sets a manager to handle a large object, where const

MI_LO_HANDLE is a pointer to the large object handle.

const MI_LO_HANDLE *Handle() Returns the handle of the currently managed large object

in the binary format through the constant

MI_LO_HANDLE.

int Read(char *buf, int cnt) Reads bytes from the large object at the current position.

int Write(const char *buf, int cnt) Writes bytes to the large object at the current position.

ITInt8 Seek(ITInt8 off, int cntl = 0) Sets the current position of the large object; cntl is a

position like UNIX lseek (0 is absolute position, 1 is

relative to current position, and 2 is relative to end of the

large object).

ITInt8 Size() Returns the total size of the large object.

ITBool SetSize(ITInt8) Sets the total size of the large object.

5-12 IBM Informix Object Interface for C++ Programmer’s Guide

Method Description

ITBool CreateLO(int flags = IT_LO_WRONLY |

IT_LO_APPEND)

Creates a large object. Sets the handle of the manager to

the new large object. The handle should then be inserted

into a table column (for example, by using a prepared

SQL insert statement).

ITBool CreateLO(MI_LO_SPEC*, int flags =

IT_LO_WRONLY | IT_LO_APPEND)

Creates a large object with the specifications provided.

ITBool Close() Closes the smart large object managed by this

ITLargeObjectManager instance. Returns TRUE if the

smart large object was not open or was closed

successfully. Returns FALSE on failure.

Accessing Smart Large Objects in Nondefault SBSpaces

One way to access smart large objects in nondefault spaces is to call the client-side

DataBlade API functions that create, initialize and set the column-level

characteristics of a large object specification structure and then pass a pointer to

this structure (MI_LO_SPEC *LO_spec) to the overloaded Object Interface for C++

function.

ITBool CreateLO(MI_LO_SPEC *LO_spec,

 int flags=IT_LO_WRONLY | IT_LO_APPEND) ;

A better way is to introduce a new C++ class to encapsulate a large object

specification structure and possibly modify the existing ITLargeObjectManager

class to support passing the column-level storage characteristics of smart large

objects as encapsulated C++ objects for use by ITLargeObjectManager::CreateLO.

Here is a description of the short-term solution. Prior to calling CreateLO, the

following DataBlade API call will set the fields of LO_spec to the column-level

storage characteristics of column dolmdolm1.testdata, which is the CLOB column:

res = mi_lo_colinfo_by_name(miconn,

 (const char *)"dolmdolm1.testdata",

 LO_spec);

Among the attributes for column testdata is the sbspace location specified by the

PUT clause when table dolmdolm1 is created. The smart large object location

attribute will be used by CreateLO (which calls DataBlade API function

mi_lo_create) when it creates the smart large object.

Here is the complete, modified test case with the new solution:

>>>>>>>>>>>> Begin modified test case with new solution >>>>>>>>>>>>

#include <stdlib.h>

#include <iostream.h>

#include <it.h>

int

main(int argc, const char *argv[])

{

 ITDBInfo dbinfo;

 ITConnection conn;

 char buf[1024];

 int i;

 ITString types[2];

 ITString sqlcmd;

 types[0] = "VARCHAR";

 types[1] = "VARCHAR";

 cout << " INFORMIXSERVER : ";

 cin.getline(buf, sizeof(buf));

 if (!dbinfo.SetSystem(buf)){

Chapter 5. Operation Class Reference 5-13

cout << "Could not set system " << endl;

 return (1);

 }

 cout << " DATABASE : ";

 cin.getline(buf, sizeof(buf));

 if (!dbinfo.SetDatabase(buf)){

 cout << "Could not set database " << endl;

 return (1);

 }

 cout << " USER : ";

 cin.getline(buf, sizeof(buf));

 if (!dbinfo.SetUser(buf)){

 cout << "Could not set user " << endl;

 return (1);

 }

 cout << " PASSWORD : ";

 cin.getline(buf, sizeof(buf));

 if (!dbinfo.SetPassword(buf)){

 cout << "Could not set password " << endl;

 return (1);

 }

 if (!conn.Open(dbinfo) || conn.Error()) {

 if (!conn.Open() || conn.Error()) {

 cout << "Could not open database " << endl;

 return (1);

 }

 cout << "Start Transaction ..." << endl;

 if (!conn.SetTransaction(ITConnection::Begin)) {

 cout << "Could not start transaction " << endl;

 return (1);

 }

 ITStatement stmt(conn);

 cout << " SBLOBSPACE : ";

 cin.getline(buf, sizeof(buf));

 sqlcmd = "create table dolmdolm1 (";

 sqlcmd.Append("uid integer primary key,");

 sqlcmd.Append("testdata CLOB)");

 sqlcmd.Append(" PUT testdata in (");

 sqlcmd.Append(buf);

 sqlcmd.Append(") lock mode row;");

 cout << sqlcmd << endl;

 if (stmt.Error()) {

 cout << "Could not create statement " << endl;

 return (1);

 }

 if (!stmt.Prepare(sqlcmd)) {

 cout << "Could not prepare create statement " << endl;

 return (1);

 }

 if (!stmt.Exec()) {

 cout << "Could not execute create statement " << endl;

 return (1);

 }

 if (!stmt.Drop()) {

 cout << "Could not drop create statement " << endl;

 return (1);

 }

 cout << "Please monitor your sblobspaces, [return to continue]";

 cin.getline(buf, sizeof(buf));

 /************* begin new solution code **************************/

 MI_LO_SPEC *LO_spec = NULL;

 MI_CONNECTION *miconn = NULL;

 mi_integer res;

 ITLargeObjectManager lo(conn);

 miconn = conn.GetConn();

5-14 IBM Informix Object Interface for C++ Programmer’s Guide

if (miconn != NULL)

 {

 res = mi_lo_spec_init(miconn, &LO_spec);

 if (res == MI_ERROR)

 {

 cout << "stmt_test: mi_lo_spec_init failed!" << endl;

 return (1);

 }

 res = mi_lo_colinfo_by_name(miconn,

 (const char *)"dolmdolm1.testdata",

 LO_spec);

 if (res != MI_ERROR)

 {

 cout << endl << "Create a large object. Please wait ..." <<

 endl;

 ITBool status = false;

 status = lo.CreateLO(LO_spec, IT_LO_WRONLY | IT_LO_APPEND);

 if (status = true)

 {

 for (i = 0; i < 1000; i++)

 lo.Write("1234567890123456789012345678901234567890123456789

 012345678901234567890123456789012345678901234567890",100);

 }

 else

 {

 cout << "stmt_test: CreateLO w/non-default sbspace

 failed!" <<

 endl;

 return (1);

 }

 }

 else

 {

 cout << "stmt_test: mi_lo_colinfo_by_name failed!" << endl;

 return (1);

 }

 }

 else

 {

 cout << "stmt_test: conn.GetConn returned NULL!" << endl;

 return (1);

 }

 /************* end new solution code **************************/

 cout << "The default sblobspace has changed" << endl;

 cout << "Please monitor your sblobspaces, [return to continue]";

 cin.getline(buf, sizeof(buf));

 cout << endl << "inserting row into dolmdolm1" << endl;

 if (!stmt.Prepare("insert into dolmdolm1 values (?,?);",2,types))

 {

 cout << "Could not prepare insert cursor " << endl;

 return (1);

 }

 ITValue *param;

 param = stmt.Param(0);

 param->FromPrintable("0");

 param->Release();

 param = stmt.Param(1);

 param->FromPrintable(lo.HandleText());

 param->Release();

 if (!stmt.Exec()) {

 cout << "Could not execute insert statement " << endl;

 return (1);

 }

 if (!stmt.Drop()) {

 cout << "Could not drop insert statement " << endl;

Chapter 5. Operation Class Reference 5-15

return (1);

 }

 cout << endl;

 cout << "Please monitor your sblobspaces." << endl;

 cout << "The large object is still stored within the default

 sblobspace." << endl;

 cout << "[return to continue]";

 cin.getline(buf, sizeof(buf));

 /*

 cout << "Rollback Transaction ..." << endl;

 if (!conn.SetTransaction(ITConnection::Abort)) {

 cout << "Could not rollback transaction " << endl;

 return (1);

 }

 */

 cout << "Commit Transaction ..." << endl;

 if (!conn.SetTransaction(ITConnection::Commit)) {

 cout << "Could not commit transaction " << endl;

 return (1);

 }

 conn.Close();

 cout << endl;

 return 0;

}

>>>>>>>>>>>> End modified test case with new solution >>>>>>>>>>>>>>

ITMVDesc

The ITMVDesc structure is not an operation class, but a descriptor that holds the

instance information necessary to create a value object. The ITMVDesc structure is

passed to the factory constructor function when an object of a given server type is

retrieved from the server and loaded into the application.

This structure contains the following individual members.

 Member Description

long vf_datalength Data length in bytes, pointed to by the member

data pointer vf_data.

ITConnection *vf_connection Pointer to the connection object.

int vf_libmivaluetype Return value of the call to a DataBlade API

function call [mi_value(...)]; see the IBM Informix

DataBlade API Programmer’s Guide for complete

documentation of DataBlade API function calls.

char *vf_data Points to the datum underlying the value object.

For example, for the server type lvarchar, vf_data

points to the MI_LVARCHAR structure.

ITypeInfo *vf_origtypeinfo Points to the ITTypeInfo object for the value object.

ITEssential *vf_outerunknown Points to the IUnknown interface of the object that

is the controlling unknown for the object

delegation/aggregation process.

Value is NULL if there is no controlling unknown.

The vf_outerunknown member is assigned the

value of the object’s inner unknown when

ITMVDesc * is passed to the entry point function

MakeValue(ITMVDesc *), which is implemented by

the value object developer.

5-16 IBM Informix Object Interface for C++ Programmer’s Guide

Member Description

ITPreserveData *vf_preservedata Can point to the ITPreserveData interface of an

object that manages the datum memory.

For a detailed description of the vf_preservedata

member and its use, see “Value Objects and

Connection Events” on page 4-9.

ITObject

Base class: none

A common base class that serves solely as an abstraction of an object. Instances of

operation interface classes (except for the ITString class) are all derived from the

ITObject class.

This class provides the following methods; all operation classes override these

methods to perform reference counting for copy operations and assignment.

 Method Description

virtual ~ITObject() Virtual destructor.

ITObject &operator=(const ITObject &) Assignment operator.

ITPosition

ITPostion is an enumerated type.

Functions that may perform positioning (for example, ITCursor::NextRow() and

ITSet::Fetch()) accept an instance of ITPosition as one of their arguments.

 Field Description

ITPositionCurrent Specifies the current position in the sequence.

ITPositionNext Specifies the next position in the sequence.

ITPositionPrior Specifies the previous position in the sequence.

ITPositionFirst Specifies the first position in the sequence.

ITPositionLast Specifies the last position in the sequence.

ITPositionAbsolute Specifies that the corresponding (always positive) offset is

from the beginning of the sequence; for example:

value = set.Fetch(0, ITPositionAbsolute, 10)

ITPositionRelative Specifies that corresponding offset is from the current

position; for example:

value = list.Fetch(0, ITPositionRelative, -1)

ITPreserveData

Base class: none

Provides an interface for maintaining a reference to database data received from

the server, for use by the implementor of a value object. For details, refer to “Value

Objects and Connection Events” on page 4-9.

Chapter 5. Operation Class Reference 5-17

This class provides the following methods.

 Method Description

virtual unsigned long AddRef() Increment reference count.

virtual unsigned long Release() Decrement reference count.

ITQuery

Base class: “ITErrorManager” on page 5-8

Manages query processing, including errors that occur as a result of queries.

ITQuery is derived from ITErrorManager. Results are returned as binary data

encapsulated by value objects. To obtain a text version of the results, you must use

conversion methods such as ITValue::Printable.

For details about using the different query methods, refer to “When to Use the

Different ITQuery Methods” on page 2-6.

For the ExecOneRow, ExecToSet, and NextRow methods, the unknwn argument is

the address of a pointer to an ITEssential interface of an object that will be the

parent of any subobjects that may be created by the method. The newly created

subobject returns its own ITEssential interface pointer in the same argument

(which is an argument of type in/out) if the object delegation was successful. The

subobject reference count is 1 after the call. The default argument is NULL to

indicate that no object delegation should be performed.

An ITQuery is always created in the context of the server connection.

ITQuery::ExecOneRow returns NULL if an error occurred, but also returns NULL if

the query returns no rows but is not in error. To check if there was a DBMS error,

use the Error method.

This class provides the following methods.

 Method Description

ITQuery(const ITConnection &) Constructor.

ITBool ExecForStatus(const ITString &) Issues a query for which the caller is only interested in result

status such as whether the query succeeded, the number of

rows affected, and so on. No result rows are returned. Specify

the query in the ITString parameter. ExecForStatus() takes as an

argument an ITString object, which must be a single valid SQL

statement.

ITRow *ExecOneRow(const ITString &, ITEssential

**unknwn = NULL)

Issues a query for which a single result row is expected and

returned. Returns a null pointer if an error occurs. If the query

returns more than one row, the additional rows are discarded

and no error is returned. Specify the query in the ITString

parameter. ExecForStatus() takes as an argument an ITString

object, which must be a single valid SQL statement.

ITSet *ExecToSet(const ITString &, ITEssential

**unknwn = NULL)

Issues a query and returns results using a rowset object that has

an ITSet interface. Returns a null pointer if an error occurs.

Specify the query in the ITString parameter. ExecForStatus()

takes as an argument an ITString object, which must be a single

valid SQL statement.

5-18 IBM Informix Object Interface for C++ Programmer’s Guide

Method Description

ITBool ExecForIteration(const ITString &) Issues a query. Returns TRUE if the query was accepted, FALSE if

an immediate problem (such as a syntax error) was found. If

the query is accepted, this call returns TRUE, and the user must

call NextRow to fetch the results in order. NextRow must be

called repeatedly until it returns NULL (meaning all rows are

read) before your application can issue another query or

perform other database operations on the connection. Specify

the query in the ITString parameter. ExecForStatus() takes as an

argument an ITString object, which must be a single valid SQL

statement.

long RowCount() Returns the number of rows affected by the last query issued on

the ITQuery.

const ITString &Command() Returns the type of SQL statement (select, create, update, and so

on).

ITRow *NextRow(ITEssential **unknwn = NULL) Returns the next result row, if any. Used in conjunction with

ExecForIteration to process results. Returns NULL when the last

result row has been returned. If a query was issued with

ExecForIteration, the RowCount and Command methods are not

valid until NextRow returns NULL. The result row value must be

released when done.

The underlying connection remains checked out until the last

row is received.

const ITTypeInfo *RowType() Returns server type information about the row that will be

fetched. Used in conjunction with ExecForIteration to get the

type of results before actually getting the first row.

const ITString &QueryText() Returns the text of an SQL query.

ITBool Finish() Finishes processing the query results without retrieving all

rows. Use this method with ExecForIteration to terminate a

query without retrieving all the resulting rows.

ITRoutineManager

Base class: “ITErrorManager” on page 5-8

This functionality provided by this class is only supported with Dynamic Server

databases.

ITRoutineManager provides an alternative way to execute server routines. When

using ITRoutineManager, a connection does not have to be checked out to get or

execute a routine (and a value object, therefore, can use it), and the execution of

the routine commences faster (since there is no SQL to parse). See “ITConnection”

on page 5-1 for information on connection checkout.

This class provides the following methods.

 Method Description

ITRoutineManager(ITConnection &) Creates a Routine Manager for the specified connection.

ITBool GetRoutine(const ITString &

signature)

Gets the descriptor for the registered routine from the server so

the routine can be executed later by ExecForValue(). Returns

TRUE if it gets the routine descriptor, FALSE otherwise.

Chapter 5. Operation Class Reference 5-19

Method Description

const ITTypeInfo *ResultType() const Returns a pointer to an ITTypeInfo instance that encapsulates

the type of the routine’s return value. It returns NULL if did not

get the routine.

int NumParams() const Returns the number of parameters the routine accepts, -1 if did

not get the routine.

const ITTypeInfo *ParamType(int paramno) const Returns a pointer to an ITTypeInfo instance that encapsulates

the type of the specified parameter. It returns NULL if did not get

the routine or if the argument is out of bounds.

ITValue *Param(int paramno) const Returns a pointer to the parameter value object, NULL if did not

get the routine or if the argument is out of bounds.

ITBool SetParam(int paramno, ITDatum *pdatum) Sets the parameter value object for a specified parameter index

to the pdatum. Returns TRUE on success, FALSE if did not get the

routine or if the parameter is out of bounds, or the ITDatum is

not of the same type as the corresponding routine parameter

type.

ITValue *ExecForValue(ITEssential **outerunkn =

NULL)

Executes the routine with the set parameters. Returns a pointer

to the ITValue interface of the value object, instantiated for the

return value. Returns NULL if did not get the routine or if

execution failed.

ITStatement

Base class: “ITErrorManager” on page 5-8

ITStatement provides support for the execution of prepared queries that return no

rows. For information about the use of prepared statements, see “Using Prepared

Statements” on page 2-8.

This class provides the following methods.

 Method Description

ITStatement (const ITConnection &) Creates an ITStatement object for the specified connection.

ITBool Prepare(const ITString &,

int nargs = 0, const ITString *typeNames = NULL,

ITEssential **outerunkns = 0)

Prepare() prepares the statement and creates a list of

null-valued parameters. Prepare() takes as an argument an

ITString object, which must be a single valid SQL statement.

The names of the server types of the parameters that will be

created can be supplied as an array of ITStrings. If an

application does not provide parameter type names, this

method uses parameter types communicated by the server. In

the cases when the server does not communicate parameter

types (as with UPDATE and DELETE queries) and they are not

provided by the application, all parameters are created of the

server type varchar(256).

The application can provide an array of outer unknown

pointers for delegation. After the call to Prepare(), elements of

the outer unknowns array (if it was provided) are set to the

inner unknowns. If the application provides either type names

or outer unknowns, it must set the nargs parameter to their

number.

5-20 IBM Informix Object Interface for C++ Programmer’s Guide

Method Description

ITBool SetParam(int parmno, ITValue *) Sets the statement parameter with the number equal to parmno

to be the value object passed as the second argument. Returns

TRUE if successful, FALSE if it fails. The previous parameter

object is released. Supports binding parameters in both binary

and text mode. For more information, see the example in

“ITStatement Usage.”

int NumParams() const Returns the number of parameters in a prepared statement. It

returns -1 if the statement has not been successfully prepared.

ITValue *Param(int) Allows the application to return a parameter’s ITValue. The

argument is a 0-based parameter number. Param() returns NULL

if there are no parameters or if the parameter number is out of

bounds.

const ITString &Command() const Returns an SQL command verb. Returns ITString::Null if the

statement has not been successfully prepared.

const ITString &QueryText() const Returns the query text. Returns ITString::Null if the statement

has not been successfully prepared.

ITBool Exec() Executes a prepared statement with the current parameter

values. Returns TRUE if the execution was successful, FALSE if it

was not. If the query returns rows, Exec() discards them.

long RowCount() const Returns the number of rows affected by the last execution.

Returns -1 if the statement has not been executed.

ITBool Drop() Drops the prepared statement and removes the parameter list.

ITStatement Usage

ITStatement can pass binary data as parameters in prepared SQL DML statements

DELETE, INSERT, UPDATE, and SELECT. In addition, SQL SELECT statements

with parameters can be executed using class ITCursor.

The following example shows how Informix Object Interface for C++ can be used

to set a parameter to binary data in a prepared INSERT statement. The example

uses the table CUSTOMER in the demonstration database STORES7:

#include <it.h>

#include <iostream.h>

int main()

{

 ITDBInfo db("stores7");

 ITConnection conn(db);

 conn.Open();

 if(conn.Error())

 {

 cout << "Couldn’t open connection" << endl;

 return -1;

 }

 ITQuery query(conn);

 ITRow *row;

 // Create the value object encapsulating the datum of SQL type CHAR(15)

 // by fetching a row from the database and calling ITRow::Column()

 if(!(row = query.ExecOneRow("select lname from customer;")))

 {

 cout << "Couldn’t select from table customer" << endl;

 return -1;

 }

 ITValue *col = row->Column(0);

Chapter 5. Operation Class Reference 5-21

if(!col)

 {

 cout << "couldn’t instantiate lname column value" << endl;

 return -1;

 }

 row->Release();

 ITDatum *datum;

 col->QueryInterface(ITDatumIID, (void **)&datum);

 if(!datum)

 {

 cout << "couldn’t get lname column datum" << endl;

 return -1;

 }

 col->Release();

 // Prepare SQL INSERT statement, set the parameter to the value object that

 // encapsulates lname column value and execute INSERT

 ITStatement stmt(conn);

 if(!stmt.Prepare("insert into customer (lname) values (?);"))

 {

 cout << "Could not prepare insert into table customer" << endl;

 return -1;

 }

 if(!stmt.SetParam(0, datum))

 {

 cout << "Could not set statement parameter" << endl;

 return -1;

 }

 if(!stmt.Exec())

 {

 cout << "Could not execute the statement" << endl;

 return -1;

 }

 return 0;

}

ITString

Base class: none

The ITString class is a minimal C++ string class that meets the needs of the Object

Interface for C++. An ITString object created without any parameters is, by

default, null-valued. All null-valued ITString objects are equal.

This class provides the following methods.

 Method Description

ITString() Constructs a null string.

ITString(const char *str) Constructs a string from null-terminated characters. This

method assumes that the contents of the str buffer are in

the client code set.

ITString(const char *str, ITBool in_server_codeset) Constructs a string from null-terminated characters. The

in_server_codeset parameter specifies whether the buffer is

in the server code set.

operator const char *() const const char *Data() const Returns a pointer to null-terminated characters of the

string’s value or NULL. Do not delete this returned value.

int Length() const Returns the number of multibyte characters in a string,

excluding termination characters.

int Size() const Returns the number of bytes in a string.

5-22 IBM Informix Object Interface for C++ Programmer’s Guide

Method Description

ITString &Trim(const char *pmc) Trims the single, rightmost occurrence of the character

(not string) starting at c within the string encapsulated

by an ITString object.

Trim() encapsulates searching for the rightmost character

(which could be a multibyte byte character in a given

locale) of the encapsulated string and truncation of that

character. The search is performed by calling

ITLocale::MRScan, which in turn encapsulates calling the

GLS API function ifx_gl_mbsrchr().

ITString &TrimWhite() Removes trailing white space.

ITBool Equal(const ITString &) const

ITBool Equal(const char *) const

Compares this string with another. White space is

significant.

ITBool EqualNoCase(const ITString &) const

ITBool EqualNoCase(const char *) const

Compares one string with another. Case is not

significant.

ITBool LessThan(const ITString &) const Compares this string with another. White space is

significant.

long Hash() const Returns a long integer value suitable for determining a

hash bucket using modulo operations.

ITString &Append(const ITString &) Appends a copy of another string to this string.

ITString &Append(const char *) Appends a copy of the character string to this string.

ITString GetToken(int &) const Gets the token from the string beginning with the

position specified by the integer argument. Token is a

quoted string, number, sequence of non-blank

alphanumeric characters, or any other character.

Argument is set to the position after the token.

ITBool IsQuoted() const Returns TRUE if the string is in single or double quotes,

FALSE otherwise.

ITBool Unquote() If the string is quoted, removes the outer quotes and

returns TRUE, otherwise returns FALSE.

const char *Scan(const char *) const Returns a pointer to the first occurrence in the string

buffer of the specified multibyte character.

static const ITString Null Represents null string.

inline ITBool IsNull() const Returns TRUE if string is null.

int operator<opname>(const ITString &, const ITString

&)

Compares the two strings. The operators you can use for

opname are: ==, !=, <, <=, >, >=.

ITSystemNameList

Base class: “ITErrorManager” on page 5-8

This class creates the sytem name list from the UNIX sqlhosts file or from the

Windows registry entry under the HKEY_LOCAL_MACHINE\Software

\Informix\SqlHosts key. After you create the system name list, you can traverse it

with the NextSystemName() and PreviousSystemName() methods.

This class provides the following methods.

 Method Description

ITSystemNameList() Constructs an ITSystemNameList object.

Chapter 5. Operation Class Reference 5-23

Method Description

ITBool Create() Creates the sytem name list from the sqlhosts file

(on UNIX) or from the registry entry under the

HKEY_LOCAL_MACHINE\Software

\Informix\sqlhosts key (on Windows).

ITBool IsSystemName(const ITString &) Returns TRUE if the name supplied as an argument

appears in the system name list; FALSE if it does

not.

const ITString &NextSystemName() Returns the reference to the next system name;

returns ITString::Null if there is no next system

name.

const ITString &PreviousSystemName() Returns the reference to the previous system name;

returns ITString::Null if there is no previous system

name.

void Reset() Resets the system name list to the state analogous

to the one it was in immediately after the the list

was created.

ITTypeInfo

Base class: “ITObject” on page 5-17

Contains information about the type of a value object as it exists in the database.

ITTypeInfo identifies the types in the database that correspond to the C++ types

that represent the values in the application. The ITTypeInfo class is also used to

retrieve type information for values in a result set, and is essential for

implementing user-defined value objects.

ITTypeInfo can be used to obtain a type name (unless the type is transient) and

indicates whether the value is simple, row, or collection. A transient data type is a

type that only lasts for the duration of an SQL statement. For example, in the

following query:

create table foo (a int, b int, c int);

select * from (select a, b from foo);

the subquery (select a, b from foo) is a transient type that is a set of type row

with two columns, a and b. This type is not persistent because it is devised by IBM

Informix Dynamic Server to return the results of the SQL statement.

Simple types (types that are not row or collection) have a Size method, which

returns the size of the type, and a Variable method, which indicates whether the

instances of the type can be of variable size.

A row type may be transient. Row types have an array of ITTypeInfo references

and strings that contain column type information and names. To obtain

information from the columns in a row type, use the ColumnId(...) and

ColumnType(...) methods.

Collection types expose the kind of collection and the data type from which it is

constructed. Collection types may have an upper limit on the number of elements.

Collection types support the Size, Source, and Quality methods.

This class provides the following methods.

5-24 IBM Informix Object Interface for C++ Programmer’s Guide

Method Description

ITTypeInfo(const ITConnection &conn, const ITString

&type_name, long size, long precision, long scale, long qualifier,

ITBool byvalue, const MI_TYPEID *ptypeid = 0)

Constructs an ITTypeInfo object for an opaque

data type.

ITTypeInfo(const ITConnection &conn, const ITString

&type_name, const ITString &quality, const ITTypeInfo

&memberType, const MI_TYPEID *ptypeid = 0)

Constructs an ITTypeInfo object for a collection

data type.

ITTypeInfo(const ITConnection &conn, const ITString

&type_name, const ITTypeInfo &source, const MI_TYPEID

*ptypeid = 0)

Constructs an ITTypeInfo object for a distinct

data type.

ITTypeInfo(const ITConnection &conn, const ITString

&type_name, long ncols, ITTypeInfo **colps, const ITString

*colnames, const MI_TYPEID *ptypeid = 0)

Constructs an ITTypeInfo object for a row data

type.

ITTypeInfo(const ITConnection &conn, const ITString

&type_name, const ITTypeInfo &consType, const ITTypeInfo

&memberType, const MI_TYPEID *ptypeid = 0)

Constructs an ITTypeInfo object for a constructed

data type.

ITTypeInfo(ITConnection &, const ITString &, long precision = -1,

long scale = -1, long qualifier = -1)

Constructs an ITTypeInfo object with type

information directly from the server. Other

constructors get their type information on the

client side without directly accessing the server.

ITTypeInfo *ConstructorType() const Returns a pointer to an ITTypeInfo object that

contains type information for the constructor

object.

ITTypeInfo *MemberType() const Returns a pointer to an ITTypeInfo object that

contains type information for the member object

of a collection or constructed type.

const ITString &Name() const Returns the name of the database type.

ITBool IsSimple() const Returns TRUE if this type is neither a row type

nor a collection type.

ITBool IsRow() const Returns TRUE if this type is a row type.

ITBool ByValue() const Returns TRUE if the database type is passed by

value, FALSE if it is passed by reference.

ITBool IsCollection() const Returns TRUE if this type is a collection type.

ITBool IsConstructed() const Retruns TRUE if this type is a constructed type.

ITBool CompatibleType(const ITTypeInfo &) const Returns TRUE if the argument is ITTypeInfo for

the same type, a distinct type, a row type with

the same column types, or a collection type with

the same constructor and member type.

long Precision() const Returns the precision (the number of signficant

digits) of a database type, if applicable.

long Qualifier() const Returns the qualifier of the datetime or interval

data type.

ITBool SameType(const ITTypeInfo &) const Returns TRUE if the specified object is the same

type as this object.

long Scale() const Returns the scale of a database type, if

applicable.

long Size() const Returns -1 if this is a variable-size type, or the

size if the type is of fixed size.

Chapter 5. Operation Class Reference 5-25

Method Description

long Bound() const If the type is a variable-size type with a specified

limit, this method returns the limit. For

constructed types, the limit specifies the

maximum number of items. Returns -1 if no

bound is in effect.

long Parameter() const Returns the parameter of the type. For SQL

numeric-derived types, returns the precision. For

other numeric-derived types, returns the scale.

For varchar-derived types, returns the maximum

size.

ITBool Variable() const Returns TRUE if the size is variable, or FALSE if

the size is fixed.

ITBool IsDistinct() const Returns TRUE if the type is distinct.

long ColumnCount() const Returns the number of columns in this row type.

const ITString &ColumnName(long) const Returns the name of the specified column.

long ColumnId(const ITString &) const Returns the index of the given column name.

Returns -1 if the column name could not be

found.

const ITTypeInfo *ColumnType(long) const Returns the type information of a column.

Returns NULL if the column number is invalid.

const ITTypeInfo *ColumnType(const ITString &) const Returns the type information of a column.

Returns NULL if the column name could not be

found.

const ITTypeInfo *Source() const Returns the type from which the current type

was created as distinct. Returns NULL if the type

does not have a source.

const ITString &Quality() const Returns the collection type, such as ’SET’ or

’LIST’.

5-26 IBM Informix Object Interface for C++ Programmer’s Guide

Chapter 6. Value Interface Reference

ITContainCvt . 6-1

ITContainer . 6-2

ITConversions . 6-2

ITDateTime . 6-2

ITDatum . 6-3

ITErrorInfo . 6-4

ITEssential . 6-4

ITLargeObject . 6-5

ITRow . 6-6

ITSet . 6-7

ITValue . 6-7

Use Of ITValue::Printable With Null Value Objects . 6-8

In This Chapter

This chapter lists and describes the IBM Informix Object Interface for C++ value

interfaces. The following classes provide support for value interfaces:

v “ITFactoryList” on page 5-9

v “ITPreserveData” on page 5-17

ITContainCvt

Base class: “ITEssential” on page 6-4

Decomposes an object into C++ base type instances. ITContainCvt is used by the

ITContainerIter class to extract values from an object. ITContainCvt should be

used for objects that are naturally represented by base type arrays, such as a point

list.

This interface provides the following methods.

 Method Description

ITBool ConvertTo(long item, output_type &) Converts item to the output type. The output_type parameter

must be one of the following types:

 short

 int

 long

 float

 double

 long double

 const char *

 ITString

 bool (if supported by compiler)

 ITInt8

long NumItems() Returns the number of items in this object.

ITBool ConvertFrom (long item, const type) Sets the value of the contained item from the value of the C++

type given as type.

© Copyright IBM Corp. 1996, 2008 6-1

ITContainer

Base class: “ITEssential” on page 6-4

Returns one value from a set of values. ITContainer is used by the

ITContainerIter class to iterate over the values contained in an object.

The unknwn argument of the GetItem method is the address of a pointer to an

ITEssential interface of an object that will be the parent of any subobjects that may

be created by the method. The newly created subobject returns its own ITEssential

interface pointer in the argument if the object delegation was successful. The

subobject reference count is 1 after the call, even if the ITEssential interface is

passed back to the caller. The default argument is NULL to indicate that no object

delegation should be performed.

This interface provides the following methods.

 Method Description

long NumItems() Returns the number of items in this object.

ITValue *GetItem(long position,

ITEssential * *unknwn = NULL)

Returns the value interface pointer for a contained item.

Returns NULL if the position is invalid.

ITConversions

Base class: “ITEssential” on page 6-4

Interface to convert value objects to C++ base classes, strings, or value objects.

This interface provides the following methods.

 Method Description

ITBool ConvertTo(base_type &) Converts to the variable of the specified type. Valid types

for the base_type parameter are as follows:

 short

 int

 double

 long

 float

 long double

 const char *

 bool (if the C++ compiler supports it)

 ITString

 ITInt8

ITBool ConvertFrom(const type) Sets the object from the value of the C++ type given as

type.

ITDateTime

Base class: “ITValue” on page 6-7

Allows access to the fields of a database time object (such as date, time, or

interval).

6-2 IBM Informix Object Interface for C++ Programmer’s Guide

This interface provides the following methods.

 Method Description

int Year() Returns the year or years.

int Month() Returns the month or months.

int Day() Returns the day or days of the month.

int Hour() Returns the hour or hours.

int Minute() Returns the minute or minutes.

float Second() Returns the second or seconds.

ITBool FromDate(int year, int month, int

day)

Sets the date portions of the object exposing

ITDateTime.

ITBool FromTime(int hour, int minute,

float second)

Sets the time portions of the object exposing

ITDateTime.

ITDatum

Base class: “ITValue” on page 6-7

Provides access to the underlying data of a database class. It allows you to retrieve

or set underlying data and determine their lengths. In addition, you can access the

value object’s connection to the server.

All database classes that want to provide access to their underlying data should

expose this interface.

For some kinds of data (for example, row, collection, smartblob handle, character

data) MI_DATUM is a pointer to the descriptor (MI_ROW *, MI_COLLECTION *,

MI_LO_HANDLE *, MI_LVARCHAR *) rather than to the memory containing the

data values. For these kinds of data ITDatum::Data returns a pointer to the

descriptor. You should pass a descriptor of the appropriate kind to SetData(). In

addition, some of these descriptors are opaque (for example, MI_ROW). In these

cases, the DataLength() return value is not usable and the data length SetData()

argument is ignored.

This class provides the following methods.

 Method Description

MI_DATUM Data() Returns an MI_DATUM encapsulated by

the value object. Datum passing (by

reference/value) obeys the same rules as

mi_value() (see the IBM Informix DataBlade

API Programmer’s Guide for information

about mi_value()). If the datum is returned

by reference, its memory is managed by the

object. The application cannot modify the

datum returned by reference.

long DataLength() Returns the length of the datum

encapsulated by the value object.

ITBool SetData (MI_DATUM data,

long dataLen, ITPreserveData

*preservedata = NULL)

Sets the value of a datum encapsulated by

the value object to the parameter value. It

returns TRUE if the operation was successful,

FALSE otherwise.

Chapter 6. Value Interface Reference 6-3

Method Description

const ITConnection& Connection() Returns the value object’s connection.

ITErrorInfo

Base class: “ITEssential” on page 6-4

The functionality provided by this class is only supported with Dynamic Server

databases.

Extracts information about an error from an object. Some value objects, such as sets

and large objects, can produce SQL errors, because SQL operations may be used to

get the actual data values. If a value object can produce an SQL error, the value

object should support the ITErrorInfo interface to enable the application to access

the SQL error.

This interface provides the following methods.

 Method Description

ITBool Error() Returns TRUE if an error occurred.

const ITString & SqlState() Returns the ISO-standard SQL error code.

const ITString & ErrorText() Returns the error message.

For an example of the use of this value object, refer to the loex2.cpp example

application.

ITEssential

ITEssential is the base class of the value interface classes. The ITEssential class is

equivalent to Microsoft’s COM IUnknown interface and is completely abstract.

This interface provides the following methods.

 Method Description

ITOpErrorCode QueryInterface(const

ITInterfaceIID &ifiid, void **resultif)

Fills the parameter resultif with the address (or location)

of the requested interface class. If the requested interface

is not supported then the parameter is set to NULL.

One of the following values is returned in

ITOpErrorCode:

IT_QUERYINTERFACE_FAILED—if the requested

interface is not supported.

IT_QUERYINTERFACE_SUCCESS—if the requested

interface is successfully obtained.

When the interface is no longer needed, it must be

released by calling the Release() member function of

ITEssential.

unsigned long AddRef() Increments the reference count on this value object.

unsigned long Release() Decrements the reference count on this value object.

When the count reaches 0, the object may be freed,

depending on the implementation of the value object.

6-4 IBM Informix Object Interface for C++ Programmer’s Guide

The following definitions apply to the arguments and return values of the

ITEssential interface and its descendents.

ITInterfaceID is an index that identifies a particular value interface. ITOpErrorCode

is a code returned from an interface method such as ITEssential::QueryInterface.

The ITOpErrorCode indicates success or failure of a method. It is defined to be of

the type long and can be assigned either the value IT_QUERYINTERFACE_SUCCESS or

IT_QUERYINTERFACE_FAILED. The inline function ITIIDtoSID maps ITInterfaceIDs

to integral representations suitable for use in a switch statement.

By using the macros provided in the manner shown in the examples, value object

implementors and application developers are protected from incompatibility with

future versions of the interface.

Every interface defined by Informix has been given a unique interface identifier.

These interface identifiers have an IID suffix, for example, ITEssentialIID.

The identifiers defined by the value interfaces are:

v ITContainCvtIID

v ITContainerIID

v ITConversionsIID

v ITDateTimeIID

v ITDatumIID

v ITErrorInfoIID

v ITEssentialIID

v ITLargeObjectIID

v ITRowIID

v ITSetIID

v ITValueIID

For details about the semantics of ITEssential when an object is delegated, see

“Object Containment and Delegation” on page 4-12.

ITLargeObject

Base class: “ITEssential” on page 6-4

Manipulates a large object returned by a query. Client value objects that are, in the

server, based on large objects, should expose an ITLargeObject interface; users

creating such client value objects can use the ITLargeObjectManager class, which

implements much of the functionality for accessing large objects.

This interface provides the following methods.

 Method Description

const MI_LO_HANDLE *Handle() Returns the handle of the currently managed

large object.

int Read(char *buf, int cnt) Reads bytes from the large object at the

current position.

Chapter 6. Value Interface Reference 6-5

Method Description

int Write(const char *buf, int cnt) Writes bytes to the large object at the current

position.

ITInt8 Seek(ITInt8 off, int cntl = 0) Sets the current position of the large object;

cntl is a position like UNIX lseek (0 is

absolute position, 1 is relative to current

position, and 2 is relative to end of the large

object).

ITBool SetHandle(const MI_LO_HANDLE

*handle, int flags=MI_LO_RDWR)

Sets the specified DataBlade API large object

handle to this large object. The flags

parameter is a bit mask argument with the

following values:

MI_LO_RDONLY

MI_LO_WRONLY

MI_LO_RDWR

MI_LO_TRUNC

MI_LO_APPEND

MI_LO_RANDOM

MI_LO_SEQUENTIAL

MI_LO_BUFFER

MI_LO_NOBUFFER

ITInt8 Size() Returns the total size of the large object.

ITBool SetSize(ITInt8) Sets the total size of the large object.

ITRow

Base class: “ITValue” on page 6-7

Provides access to row values. A row value can extract references to the number of

columns it contains and the value of a specific column.

The unknwn argument of the Column method is the address of a pointer to an

ITEssential interface of an object that will be the parent of any subobjects created

by the method. The newly created subobject returns its own ITEssential interface

pointer in the argument if the object delegation was successful. The subobject

reference count is 1 after the call, even if the ITEssential interface is passed back to

the caller. The default argument is NULL to indicate that no object delegation should

be performed.

This interface provides the following methods.

 Method Description

long NumColumns() Returns the number of columns in this row value.

ITValue *Column(long, ITEssential

**unknwn = NULL)

Returns a pointer to the value interface of a column.

ITValue *Column(const ITString &,

ITEssential **unknwn = NULL)

Returns a pointer to the value interface of a column

by name. Returns NULL if you specify an invalid

column name.

6-6 IBM Informix Object Interface for C++ Programmer’s Guide

ITSet

Base class: “ITValue” on page 6-7

The ITSet class provides random access to rowset or collection members.

This interface provides the following methods.

 Method Description

ITBool IsScrollable() Returns TRUE if this set is scrollable.

ITBool IsReadOnly() Returns TRUE if this set is not updatable.

ITBool Open() Opens or reopens the set.

ITBool Close() Closes the set. Close does not release the interface.

ITBool Delete(enum ITPosition pos = ITPositionCurrent,

long jump = 0) = 0

Deletes the specified member from the set. Returns TRUE

if successful, FALSE otherwise.

ITBool Insert(ITDatum *item, enum ITPosition pos =

ITPositionCurrent, long jump = 0) = 0

Inserts the specified item immediately after the current

item. Returns TRUE if successful, FALSE otherwise.

ITValue *MakeItem(ITEssential **outerunkn = NULL) Returns a pointer to an ITValue interface of a new object

of the same type as the objects in the collection. The

value of the object can then be set (for example, with

FromPrintable()) and the object can be inserted into the

collection object.

ITValue *Fetch(ITEssential **outerunkn = NULL, enum

ITPosition pos = ITPositionNext,

long jump = 0)

Fetches the collection member and returns the pointer to

its ITValue interface.

ITValue

Base class: “ITEssential” on page 6-4

An interface class that provides basic value object support. All objects representing

values from the database must support, at a minimum, the ITValue interface.

This interface provides the following methods.

 Method Description

const ITString &Printable() Returns a printable form of the value in a

constant string.

const ITTypeInfo &TypeOf() Returns the database type information for

this value.

ITBool IsNull() Returns TRUE if this is a null value.

ITBool SameType(ITValue *) Returns TRUE if this value is the same

database type as the specified value.

ITBool Equal(ITValue *) Returns TRUE if the specified values are

equal. False values are not equal to each

other or to any other value.

ITBool LessThan(ITValue *) Returns TRUE if and only if the object is less

than the argument and the objects are

comparable. (“Less than” is defined as

appropriate for the data type.)

Chapter 6. Value Interface Reference 6-7

Method Description

ITBool CompatibleType(ITValue *) Returns TRUE for all built-in objects if the

objects are compatible.

ITBool IsUpdated() Returns TRUE if the object was updated,

FALSE if it did not change since it was first

created. Value objects of complex types

(rows, collections) are considered updated

when any of their members are updated.

ITBool FromPrintable(const ITString

&printable)

Sets the object value from the printable

representation. FromPrintable() accepts the

printable representation of the object

equivalent to the object’s input function.

Printable() provides the character

representation of the object equivalent to the

object’s output function. For additional

usage, see “Use Of ITValue::Printable With

Null Value Objects.”

ITBool SetNull() Sets the object value to NULL.

Use Of ITValue::Printable With Null Value Objects

An Object Interface for C++ value object can encapsulate a datum fetched from a

database or a datum that is to be inserted into a database. A value object exists

only in the client application, and the datum encapsulated by it can be written to

the database using prepared statements encapsulated by ITStatement objects or, if

an updatable cursor is used, by ITCursor::UpdateCurrent.

After it fetches a row from a database in which there are columns containing SQL

NULL entries (that is, with no data), ITValue::Printable called on a value object

matching a NULL column will return the string ″null.″ The string ″null″ is

informational only.

Likewise, after ITValue::SetNull is called to set a value object to null (where the

term ″null″ means SQL NULL: that is, no data), calls to ITValue::Printable return

the string ″null″ for that value object to indicate that the value object contains no

data.

In the special case where an Object Interface for C++ application program actually

inserted the valid data string ″null″ into a value object (for example, by calling

ITValue::FromPrintable(″null″) or by fetching it from a database), the application

could still distinguish between a null value object and a value object containing the

valid data ″null″ by calling the function ITValue::IsNull on the value object.

ITValue::IsNull will return true if the value object is null and false if the value

object contains the valid data ″null.″ Calling ITValue::IsNull is the preferred way

to determine if a value object contains no data and should be used instead of

ITValue::Printable.

6-8 IBM Informix Object Interface for C++ Programmer’s Guide

Appendix A. Supported Data Types

This appendix lists the server data types and the interfaces supported for them.

Tip: Objects that are BLOB and CLOB objects implemented as part of the IBM

Informix Object Interface for C++ library return the textual value of the smart

large object handle via the ITValue::Printable method and set it via

ITValue::FromPrintable.

Simple large objects (TEXT and BYTE types) are represented on the client as

data in RAM. Use the offset operator [] in queries to limit the amount of data

retrieved by the client. To update a simple large object in the server, pass the

value object that encapsulates the simple large object data as a prepared

statement parameter.

© Copyright IBM Corp. 1996, 2008 A-1

Server Base Type

Interfaces

IT
E

ss
en

ti
al

IT
V

al
u

e

IT
R

ow

IT
C

on
ve

rs
io

n
s

IT
L

ar
ge

O
b

je
ct

IT
S

et

IT
D

at
eT

im
e

IT
C

on
ta

in
er

IT
E

rr
or

In
fo

IT
C

on
ta

in
C

vt

IT
D

at
u

m

blob* X X X X X

boolean* X X X X

byte X X X

char X X X X

character X X X X

char1 X X X X

cXob* X X X X X

date X X X X

datetime X X X X

decimal X X X X

double precision X X X X

int8* X X X X

integer X X X X

interval day to second X X X X

interval year to month X X X X

money X X X X

numeric X X X X

real X X X X

smallint X X X X

text X X X

Constructed Types

collection* X X X X

row* X X X X X

ITQuery::

ExecToSet

result set

X X X

* Supported only by Dynamic Server

A-2 IBM Informix Object Interface for C++ Programmer’s Guide

Appendix B. Example Programs

For the path and name of the directory containing the example files, consult the

latest IBM Informix Object Interface for C++ release notes. The examples directory

also contains a makefile to build the examples.

The following is a list of the example programs with a brief description of each:

v cnvex.cpp uses the ITConversions interface to convert an integer to other types.

v contain.cpp shows how containers are used with the ITContainer interface

(Informix Dynamic Server only).

v csql.cpp is a simple query example.

v csql2.cpp is a simple query example using error callbacks.

v csql3.cpp is a simple query example monitoring the transaction state of the

connection.

v curstst.cpp opens a cursor and scrolls through the result set in various ways.

v cursupd.cpp illustrates the use of a cursor with parameter markers to update the

database.

v delegate.cpp is an example of object delegation.

v dtex.cpp is a date/time interface example.

v fsexamp1.cpp illustrates iteration through a container.

v ifval.cpp is an example of a value object supporting multiple interfaces.

v loadtab.cpp loads a table from a text file using a prepared statement with

ITStatement (Dynamic Server only).

v loex1.cpp illustrates access to a large object through the ITLargeObject interface

(Dynamic Server only).

v loex2.cpp is a large object and error information example. (Dynamic Server

only).

v queryex.cpp illustrates the use of transaction control within a query.

v rawval.cpp illustrates access to the ITDatum interface of a large object.

v rowref.cpp is an example of a value object with multiple interfaces and

copy-on-update.

v rowset.cpp retrieves rows into a set.

v simpval.cpp is an example of a value object derived from ITDatum.

v tabcnt.cpp is a simple example issuing a query and using value interfaces.

v testtype.cpp is an example of a dynamically loaded value object.

© Copyright IBM Corp. 1996, 2008 B-1

B-2 IBM Informix Object Interface for C++ Programmer’s Guide

Appendix C. ITLocale Class

This appendix describes the ITLocale class, which encapsulates the GLS API.

ITLocale methods perform:

v Locale-sensitive conversions between the text and binary forms of the date, time,

numeric, and money data types

v General string and character manipulation, such as comparison and

classification, for multibyte and wide character strings and characters

The next sections describe how multibyte characters and character strings are

represented.

Multibyte Character String Termination

Some APIs that use ITLocale assume that character strings are terminated with a

null character, while others assume that a string consists of a pointer and length

indicating the number of bytes in the string. ITLocale methods can be used in both

cases.

Multibyte character strings are passed to ITLocale methods in two arguments:

v const char *s specifies a multibyte string.

v int nbytes specifies the length of the string.

The actual argument names may vary.

If nbytes is the value ITLocale::ScanToNul, the method treats s as a

null-terminated string. Otherwise, the method assumes s contains nbytes bytes.

The terminator of a null-terminated string is a single byte whose value is 0.

Multibyte character strings that are not null-terminated may contain null

characters, but these characters do not indicate the end of the string.

Multibyte Character Termination

A multibyte character passed to an ITLocale method is represented with two

arguments:

v const char *mchar specifies a multibyte character.

v int nmcharbytes specifies the number of bytes that represent the multibyte

character.

The actual argument names may vary.

If nmcharbytes is ITLocale::ScanNoLimit, the method reads bytes at mchar until a

complete character is formed. Otherwise it reads no more than nmcharbytes bytes

at mchar to form a character.

© Copyright IBM Corp. 1996, 2008 C-1

Memory Allocation

The GLS API performs no memory allocation or deallocation. Therefore, you must

allocate an appropriately sized buffer for any ITLocale method that returns a

string. You must also deallocate the memory for the buffer when the method is

through with it.

Accessing the ITLocale Object

An application has a single ITLocale object. The ITLocale::Current() method

returns a pointer to the object. The constructor that creates the ITLocale object is

protected and cannot be called directly.

Error Return Method

This section describes the ITLocale method for returning error numbers.

GetError

int GetError() const

This method returns a GLS error number.

Some ITLocale methods indicate whether an error has occurred in their return

values (-1, 0, or NULL). For other methods, you must call ITLocale::GetError() to

determine if there was an error. You can, as a standard practice, call

ITLocale::GetError() after every call to an ITLocale method.

See the description of the corresponding function in the IBM Informix GLS User’s

Guide to see the errors that a particular ITLocale method can return.

String Comparison Methods

This section describes the ITLocale methods for comparing strings:

v MCollate

v WCollate

MCollate

int MCollate(const char *s1, const char *s2,

 int nbytes1 = ITLocale::ScanToNul,

 int nbytes2 = ITLocale::ScanToNul) const

This method compares multibyte character string s1 to multibyte character string s2

for sort order according to the rules of the current locale.

The nbytes1 and nbytes2 parameters specify the length of the s1 and s2 strings,

respectively. You can provide an integer to specify the number of bytes in the

corresponding string. Or you can use the constant ITLocale::ScanToNul (the

default) to specify that the corresponding string is null-terminated.

This method returns an integer that is:

v Greater than 0 if s1 is greater than (after) s2 in sort order

v Less than 0 if s1 is less than (before) s2 in sort order

v 0 if s1 is equal to s2 in sort order

C-2 IBM Informix Object Interface for C++ Programmer’s Guide

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_mbscoll function in the IBM Informix GLS

User’s Guide.

WCollate

int WCollate(const ITWChar *s1, const ITWChar *s2,

 int nwchars1 = ITLocale::ScanToNul,

 int nwchars2 = ITLocale::ScanToNul) const

This method compares wide character string s1 to wide character string s2 for sort

order according to the rules of the current locale.

The nwchars1 and nwchars2 parameters specify the length of the s1 and s2 strings,

respectively. You can provide an integer to specify the number of characters in the

corresponding string. Or you can use the constant ITLocale::ScanToNul (the

default) to specify that the corresponding string is null-terminated.

This method returns an integer that is:

v Greater than 0 if s1 is greater than (after) s2 in sort order

v Less than 0 if s1 is less than (before) s2 in sort order

v 0 if s1 is equal to s2 in sort order

If there is an error, this method returns -1. Call ITLocale::GetError() to retrieve a

specific error message. See “Error Return Method” on page C-2 for details.

For more information, see the ifx_gl_wcscoll function in the IBM Informix GLS

User’s Guide.

String Processing Methods

This section describes the ITLocale methods for processing strings:

v MConcatenate

v MCopy

v MScan

v MComplSpanSize

v MLength

v MFindSubstr

v MNConcatenate

v MNCopy

v MNTSLength

v MNTSBytes

v MRScan

v MSpan

v MSpanSize

v WScan

v WConcatenate

v WComplSpanSize

v WCopy

Appendix C. ITLocale Class C-3

v WLength

v WNConcatenate

v WNTSLength

v WNCopy

v WRScan

v WSpan

v WFindSubstr

MConcatenate

int MConcatenate(char *s1, const char *s2,

 int nbytes1 = ITLocale::ScanToNul,

 int nbytes2 = ITLocale::ScanToNul) const

This method appends multibyte character string s2 to the end of multibyte

character string s1. If the two strings overlap, the results are undefined.

The nbytes1 and nbytes2 parameters specify the length of the s1 and s2 strings,

respectively. You can provide an integer to specify the number of bytes in the

corresponding string. Or you can use the constant ITLocale::ScanToNul(the

default) to specify that the corresponding string is null-terminated.

This method returns the length in bytes of the resulting concatenated string, not

including the null terminator if there is one.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_mbscat function in the IBM Informix GLS

User’s Guide.

MScan

char *MScan(const char *s, const char *mchar,

 int nstrbytes = ITLocale::ScanToNul,

 int nmcharbytes = ITLocale::ScanNoLimit) const

This method searches for the first occurrence of the multibyte character mchar in

the multibyte character string s.

The nstrbytes parameter specifies the length of the corresponding string s. You can

provide an integer to specify the number of bytes in s. Or you can use the constant

ITLocale::ScanToNul (the default) to specify that s is a null-terminated string.

The nmcharbytes parameter specifies the length of the corresponding multibyte

character mchar. You can provide an integer to specify the number of bytes in

mchar, in which case this method reads up to this many bytes from mchar when

trying to form a complete character. Or you can set nmcharbytes to

ITLocale::ScanNoLimit (the default), in which case this method reads as many

bytes as necessary to form a complete character.

This method returns a pointer to the first occurrence of the multibyte character

mchar in the string s. If mchar is not found in s, this method returns NULL. If you

call ITLocale::GetError() (page C-2), it returns 0.

C-4 IBM Informix Object Interface for C++ Programmer’s Guide

For related information, see the ifx_gl_mbschr function in the IBM Informix GLS

User’s Guide.

MCopy

int MCopy(char *to, const char *from,

 int nfrombytes = ITLocale::ScanToNul) const

This method copies the multibyte character string from to the location pointed to

by to. If from and to overlap, the results of the method are undefined.

The nfrombytes parameter specifies the length of the corresponding string from. You

can provide an integer to specify the number of bytes in from. Or you can use the

constant ITLocale::ScanToNul (the default) to specify that from is a null-terminated

string.

This method returns the number of bytes in the resulting string, not including the

null terminator, if there is one.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For related information, see the ifx_gl_mbscpy function in the IBM Informix GLS

User’s Guide.

MComplSpanSize

int MComplSpanSize(const char *s1, const char *s2,

 int nbytes1 = ITLocale::ScanToNul,

 int nbytes2 = ITLocale::ScanToNul) const

This method returns the number of characters in the longest initial substring of

multibyte character string s1 that consists entirely of multibyte characters not in the

string s2.

The nbytes1 and nbytes2 parameters specify the length of the s1 and s2 strings,

respectively. You can provide an integer to specify the number of bytes in the

corresponding string. Or you can use the constant ITLocale::ScanToNul (the

default) to specify that the corresponding string is null-terminated.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For related information, see the ifx_gl_mbscspn function in the IBM Informix GLS

User’s Guide.

MLength

int MLength(const char *s, int nbytes =

 ITLocale::ScanToNul) const

This method returns the number of characters (not bytes) in the multibyte

character string s, not including the null terminator, if there is one.

The nstrbytes parameter specifies the length in bytes of the corresponding string s.

You can provide an integer to specify the number of bytes in s. Or you can use the

constant ITLocale::ScanToNul (the default) to specify that s is a null-terminated

string.

Appendix C. ITLocale Class C-5

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For related information, see the ifx_gl_mbslen function in the IBM Informix GLS

User’s Guide.

MFindSubstr

char *MFindSubstr(const char *s1, const char *s2,

 int nbytes1 = ITLocale::ScanToNul,

 int nbytes2 = ITLocale::ScanToNul) const

This method searches for the first occurrence of the multibyte string s2 in the

multibyte string s1.

The nbytes1 and nbytes2 parameters specify the length in bytes of the s1 and s2

strings, respectively. You can provide an integer to specify the number of bytes in

the corresponding string. Or you can use the constant ITLocale::ScanToNul (the

default) to specify that the corresponding string is null-terminated.

This method returns a pointer to the first occurrence of the multibyte string s2 in

s1.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For related information, see the ifx_gl_mbsmbs function in the IBM Informix GLS

User’s Guide.

MNConcatenate

int MNConcatenate(char *to, const char *from, int limit,

 int ntobytes = ITLocale::ScanToNul,

 int nfrombytes = ITLocale::ScanToNul) const

This method appends one or more multibyte characters in the from multibyte string

to the end of the multibyte string to.

If from and to overlap, the results of this method are undefined.

Use limit to specify the maximum number of characters to read from the from

string.

The ntobytes and nfrombytes parameters specify the length of the to and from strings,

respectively. You can provide an integer to specify the number of bytes in the

corresponding string. Or you can use the constant ITLocale::ScanToNul (the

default) to specify that the corresponding string is null-terminated.

This method returns the number of bytes in the resulting string.

If there is an error, the method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For related information, see the ifx_gl_mbsncat function in the IBM Informix GLS

User’s Guide.

C-6 IBM Informix Object Interface for C++ Programmer’s Guide

MNCopy

int MNCopy(char *to, const char *from, int limit,

 int nfrombytes = ITLocale::ScanToNul) const

This method copies the specified number of multibyte characters in from to the

location pointed to by to.

Use limit to specify the maximum number of characters to read from the from

string.

The nfrombytes argument specifies the length of the corresponding string from. You

can provide an integer to specify the number of bytes in from. Or you can use the

constant ITLocale::ScanToNul (the default) to specify that from is a null-terminated

string.

This method returns the length in bytes of the resulting copied string, not

including the null terminator if there is one.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For related information, see the ifx_gl_mbsncpy function in the IBM Informix GLS

User’s Guide.

MNTSBytes

int MNTSBytes(const char *s, int nbytes = ITLocale::ScanToNul) const

This method returns the number of bytes in the multibyte character string s, not

including any trailing space characters. The characters not included in the count

are the ASCII space character and any multibyte characters equivalent to the ASCII

space character.

Space characters embedded in the string prior to the series of spaces at the end of

the string are included in the count.

The nbytes parameter specifies the length of the corresponding string s. You can

provide an integer to specify the number of bytes in s. Or you can use the constant

ITLocale::ScanToNul (the default) to specify that s is a null-terminated string.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For related information, see the ifx_gl_mbsntsbytes function in the IBM Informix

GLS User’s Guide.

MNTSLength

int MNTSLength(const char *s, int nbytes = ITLocale::ScanToNul) const

This method returns the number of characters in the multibyte character string s,

not including any trailing space characters. The characters not included in the

count are the ASCII space character and any multibyte characters equivalent to the

ASCII space character.

Space characters embedded in the string prior to the series of spaces at the end of

the string are included in the count.

Appendix C. ITLocale Class C-7

The nbytes parameter specifies the length of the corresponding string s. You can

provide an integer to specify the number of bytes in s. Or you can use the constant

ITLocale::ScanToNul (the default) to specify that s is a null-terminated string.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For related information, see the ifx_gl_mbsntslen function in the IBM Informix GLS

User’s Guide.

MSpan

char *MSpan(const char *s1, const char *s2,

 int nbytes1 = ITLocale::ScanToNul,

 int nbytes2 = ITLocale::ScanToNul) const

This method searches for the first occurrence in the multibyte character string s1 of

any character from the multibyte character string s2.

The nbytes1 and nbytes2 parameters specify the length of the s1 and s2 strings,

respectively. You can provide an integer to specify the number of bytes in the

corresponding string. Or you can use the constant ITLocale::ScanToNul (the

default) to specify that the corresponding string is null-terminated.

This method returns a pointer to the first occurrence in s1 of any character from s2.

If no character from s2 is found in s1 the method returns NULL and

ITLocale::GetError() (see “GetError” on page C-2) returns 0.

If an error occurs, the method returns NULL and ITLocale::GetError() (page C-2)

returns a specific error message.

For related information, see the ifx_gl_mbspbrk function in the IBM Informix GLS

User’s Guide.

MRScan

char *MRScan(const char *s, const char *c,

 int nsbytes = ITLocale::ScanToNul,

 int ncbytes = ITLocale::ScanNoLimit) const

This method locates the last occurrence of multibyte character c in the multibyte

character string s.

The nsbytes parameter specifies the length of the corresponding string s. You can

provide an integer to specify the number of bytes in s. Or you can use the constant

ITLocale::ScanToNul (the default) to specify that s is a null-terminated string.

The ncbytes parameter specifies the length of the corresponding multibyte character

c. You can provide an integer to specify the number of bytes in c, in which case

this method reads up to this many bytes from c when trying to form a complete

character. Or you can set ncbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

This method returns a pointer to the last occurrence of the multibyte character c in

the string s. If this method does not find c in s, it returns NULL. Call

ITLocale::GetError() (page C-2) to retrieve a specific error message.

C-8 IBM Informix Object Interface for C++ Programmer’s Guide

For related information, see the ifx_gl_mbsrchr function in the IBM Informix GLS

User’s Guide.

MSpanSize

int MSpanSize(const char *s1, const char *s2,

 int nbytes1 = ITLocale::ScanToNul,

 int nbytes2 = ITLocale::ScanToNul) const

This method returns the number of characters in the longest initial substring of

multibyte character string s1 that consists entirely of multibyte characters in the

string s2.

The nbytes1 and nbytes2 parameters specify the length of the s1 and s2 strings,

respectively. You can provide an integer to specify the number of bytes in the

corresponding string. Or you can use the constant ITLocale::ScanToNul (the

default) to specify that the corresponding string is null-terminated.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_mbsspn function in the IBM Informix GLS

User’s Guide.

WConcatenate

int WConcatenate(ITWChar *to, const ITWChar *from,

 int nfromwchars = ITLocale::ScanToNul,

 int ntowchars = ITLocale::ScanToNul) const

This method appends a copy of the wide character string from to the end of the

wide character string to.

If from and to overlap, the results of this method are undefined.

If there is an error, this method returns NULL. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_wcscat function in the IBM Informix GLS

User’s Guide.

WScan

ITWChar *WScan(const ITWChar *s, ITWChar c,

 int nswchars = ITLocale::ScanToNul) const

This method locates the first occurrence of wide character c in the wide character

string s.

The nswchars parameter specifies the length of the corresponding wide character

string s. You can provide an integer to specify the number of characters in s. Or

you can use the constant ITLocale::ScanToNul (the default) to specify that s is a

null-terminated string.

This method returns a pointer to the first occurrence of c in s. If this method does

not find c in s, it returns NULL and ITLocale::GetError() returns 0.

Appendix C. ITLocale Class C-9

If there is an error, this method returns NULL and ITLocale::GetError() (page C-2)

returns a specific error number.

For more information, see the ifx_gl_wcschr function in the IBM Informix GLS

User’s Guide.

WCopy

int WCopy(ITWChar *to, const ITWChar *from,

 int nfromwchars = ITLocale::ScanToNul) const

This method copies the wide character string from to the location pointed to by to.

If the strings overlap, the result is undefined.

The nfromchars parameter specifies the length in characters of the corresponding

wide character string from. You can provide an integer to specify the number of

characters in from. Or you can use the constant ITLocale::ScanToNul (the default)

to specify that s is a null-terminated string.

This method returns the number of characters in the resulting string, not including

the null terminator, if there is one.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_wcscpy function in the IBM Informix GLS

User’s Guide.

WComplSpanSize

int WComplSpanSize(const ITWChar *s1, const ITWChar *s2,

 int nwchars1 = ITLocale::ScanToNul,

 int nwchars2 = ITLocale::ScanToNul) const

This method returns the number of wide characters in the maximum initial

substring of the wide character string s1 that consists entirely of wide characters

not in the wide character string s2.

The nwchars1 and nwchars2 parameters specify the length of the s1 and s2 strings,

respectively. You can provide an integer to specify the number of characters in the

corresponding string. Or you can use the constant ITLocale::ScanToNul (the

default) to specify that the corresponding string is null-terminated.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_wcscspn function in the IBM Informix GLS

User’s Guide.

WLength

int WLength(const ITWChar *s) const

This method returns the number of wide characters in the wide character string s,

not including the null terminator, if there is one.

No errors are defined for this method.

C-10 IBM Informix Object Interface for C++ Programmer’s Guide

WNConcatenate

int WNConcatenate(ITWChar *to, const ITWChar *from,

 int limit,

 int nfromwchars = ITLocale::ScanToNul,

 int ntowchars = ITLocale::ScanToNul) const

This method appends wide character string from to the end of wide character

string to.

Use limit to specify the maximum number of characters to read from the from

string and append to the to string.

If from and to overlap, the results of this method are undefined.

The ntowchars and nfromwchars parameters specify the length of the to and from

strings, respectively. You can provide an integer to specify the number of

characters in the corresponding string. Or you can use the constant

ITLocale::ScanToNul (the default) to specify that the corresponding string is

null-terminated.

This method returns the number of wide characters in the resulting concatenated

string, not including the null terminator, if there is one.

If there is an error, this method returns NULL. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_wcsncat function in the IBM Informix GLS

User’s Guide.

WNCopy

int WNCopy(ITWChar *to, const ITWChar *from, int limit,

 int nfromwchars = ITLocale::ScanToNul) const

This method copies wide character string from to the location pointed to by to.

Use limit to specify the maximum number of characters to read from the from

string and append to the to string.

If from and to overlap, the results of this method are undefined.

The nfromwchars parameter specifies the length of the corresponding wide character

string from. You can provide an integer to specify the number of characters in from.

Or you can use the constant ITLocale::ScanToNul (the default) to specify that from

is a null-terminated string.

This method returns the number of wide characters copied.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_wcsncpy function in the IBM Informix GLS

User’s Guide.

WNTSLength

int WNTSLength(const ITWChar *s, int nwchars = ITLocale::ScanToNul) const

Appendix C. ITLocale Class C-11

This method returns the number of characters in the wide character string s, not

including any trailing space characters. The characters not included in the count

are the ASCII space character and any wide characters equivalent to the ASCII

space character.

The nwchars parameter specifies the length of the corresponding wide character

string s. You can provide an integer to specify the number of characters in s. Or

you can use the constant ITLocale::ScanToNul (the default) to specify that s is a

null-terminated string.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_wcsntslen function in the IBM Informix GLS

User’s Guide.

WSpan

ITWChar *WSpan(const ITWChar *s1, const ITWChar *s2,

 int nwchars1 = ITLocale::ScanToNul,

 int nwchars2 = ITLocale::ScanToNul) const

This method searches for the first occurrence in the wide character string s1 of any

wide character from the string s2.

The nwchars1 and nwchars2 parameters specify the length of the s1 and s2 strings,

respectively. You can provide an integer to specify the number of characters in the

corresponding string. Or you can use the constant ITLocale::ScanToNul (the

default) to specify that the corresponding string is null-terminated.

This method returns a pointer to the first occurrence of the wide character string s1

in the string s2. If this method does not find s1 in s2, it returns NULL. If you call

ITLocale::GetError(), it returns 0.

If there is an error, this method returns NULL. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_wcspbrk function in the IBM Informix GLS

User’s Guide.

WRScan

ITWChar *WRScan(const ITWChar *s, ITWChar c,

 int nswchars = ITLocale::ScanToNul) const

This method locates the last occurrence of wide character c in the wide character

string s.

The nswchars parameter specifies the length of the corresponding wide character

string s. You can provide an integer to specify the number of characters in s. Or

you can use the constant ITLocale::ScanToNul (the default) to specify that s is a

null-terminated string.

This method returns a pointer to the last occurrence of wide character c in wide

character string s. If this method does not find c in s, it returns NULL. If you call

ITLocale::GetError(), it returns 0.

C-12 IBM Informix Object Interface for C++ Programmer’s Guide

If there is an error, this method returns NULL. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_wcsrchr function in the IBM Informix GLS

User’s Guide.

WSpanSize

int WSpanSize(const ITWChar *s1, const ITWChar *s2,

 int nwchars1 = ITLocale::ScanToNul,

 int nwchars2 = ITLocale::ScanToNul) const

This method returns the number of characters in the longest initial substring of the

wide character string s1 that consists entirely of characters from the wide character

string s2.

The nwchars1 and nwchars2 parameters specify the length of the s1 and s2 strings,

respectively. You can provide an integer to specify the number of characters in the

corresponding string. Or you can use the constant ITLocale::ScanToNul (the

default) to specify that the corresponding string is null-terminated.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_wcsspn function in the IBM Informix GLS

User’s Guide.

WFindSubstr

ITWChar *WFindSubstr(const ITWChar *s1, const ITWChar *s2,

 int nwchars1 = ITLocale::ScanToNul,

 int nwchars2 = ITLocale::ScanToNul) const

This method searches for the first occurrence of the wide character string s2 in the

wide character string s1.

The nwchars1 and nwchars2 parameters specify the length of the s1 and s2 strings,

respectively. You can provide an integer to specify the number of characters in the

corresponding string. Or you can use the constant ITLocale::ScanToNul (the

default) to specify that the corresponding string is null-terminated.

This method returns a pointer to the first occurrence of the wide character string s1

in wide character string s2. If this method does not find s1 in s2, it returns NULL. If

you call ITLocale::GetError(), it returns 0.

If there is an error, this method returns NULL. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_wcswcs function in the IBM Informix GLS

User’s Guide.

Environment Method

This section describes the ITLocale method for determining the client locale.

LocaleName

const char *LocaleName() const

Appendix C. ITLocale Class C-13

This method returns the value of the GLS environment variable

CLIENT_LOCALE.

If there is an error, this method returns NULL. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

Code Set Conversion Methods

This section describes the ITLocale methods for converting code sets:

v ConvertCodeset

v NeedToConvertCodeset

v SizeForCodesetConversion

ConvertCodeset

int ConvertCodeset(char *to, const char *from,

 const char *toLocaleName,

 const char *fromLocaleName) const

This method converts the string of multibyte characters in from to another code set

and copies the result to the location pointed to by to.

Important: This method assumes that from points to a null-terminated string.

Use the fromLocalName parameter to identify the locale from which you are

converting. Use the toLocalName parameter to specify the locale to which you are

converting. There is a single code set associated with each locale. By identifying

the locale, you also specify the code set.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_cv_mconv function in the IBM Informix GLS

User’s Guide. However, there are significant differences between the parameters of

the GLS API function and the ITLocale method. For example, the GLS API

function has specific code set parameters, whereas ITLocale::ConvertCodeset has

locale name parameters that imply the code set name. Also, the GLS API function

has additional parameters for copying fragments of strings that are not available to

ConvertCodeset.

NeedToConvertCodeset

int NeedToConvertCodeset(const char *toLocaleName,

 const char *fromLocaleName) const

This method determines if conversion is necessary from the code set associated

with the fromLocaleName locale to the code set associated with the toLocalename

locale.

This method returns 1 if conversion is needed and 0 if not.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_conv_needed function in the IBM Informix

GLS User’s Guide.

C-14 IBM Informix Object Interface for C++ Programmer’s Guide

SizeForCodesetConversion

int SizeForCodesetConversion(const char *toLocaleName,

 const char *fromLocaleName,

 int nfrombytes) const

This method calculates the number of bytes needed to convert the multibyte

characters in nfrombytes from the code set associated with the fromLocaleName locale

to the code set associated with the toLocaleName locale.

This method returns the number of bytes to convert. If this value equals the

number of bytes in nfrombytes, then conversion is done in place. Otherwise, you

must allocate another buffer for the conversion.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_cv_outbuflen function in the IBM Informix

GLS User’s Guide.

Character Classification Methods

This section describes the ITLocale methods for classifying characters:

v IsAlnum

v IsBlank

v IsAlpha

v IsDigit

v IsCntrl

v IsGraph

v IsPrint

v IsLower

v IsPunct

v IsUpper

v IsSpace

v IsXDigit

IsAlnum

ITBool IsAlnum(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsAlnum(ITWChar c) const

This method determines whether a multibyte character c or a wide character c is

an alphanumeric character according to the rules of the current locale.

The nbytes parameter specifies the length of the corresponding multibyte character

c. You can provide an integer to specify the number of bytes in c, in which case

this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

This method returns TRUE if c is an alphanumeric character; otherwise it returns

FALSE.

Appendix C. ITLocale Class C-15

If there is an error, this method returns FALSE. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_ismalnum function in the IBM Informix GLS

User’s Guide.

IsAlpha

ITBool IsAlpha(const char *c, int nbytes = ITLocale::ScanNoLimitl) const

ITBool IsAlpha(ITWChar c) const

This method determines whether multibyte character c or wide character c is an

alphabetic character according to the rules of the current locale.

The nbytes parameter specifies the length of the corresponding multibyte character

c. You can provide an integer to specify the number of bytes in c, in which case

this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

This method returns TRUE if c is an alphabetic character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_ismalpha function in the IBM Informix GLS

User’s Guide.

IsBlank

ITBool IsBlank(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsBlank(ITWChar c) const

This method determines whether multibyte character c or wide character c is a

blank character (space or tab, single or multibyte), according to the rules of the

current locale. Blank characters include the single-byte space and tab characters as

well as any multibyte version of these characters.

The nbytes parameter specifies the length of the corresponding multibyte character

c. You can provide an integer to specify the number of bytes in c, in which case

this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

This method returns TRUE if c is a blank or tab; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_ismblank function in the IBM Informix GLS

User’s Guide.

IsCntrl

ITBool IsCntrl(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsCntrl(ITWChar c) const

C-16 IBM Informix Object Interface for C++ Programmer’s Guide

This method determines whether multibyte character c or wide character c is a

control character according to the rules of the current locale.

The nbytes parameter specifies the length of the corresponding multibyte character

c. You can provide an integer to specify the number of bytes in c, in which case

this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

This method returns TRUE if c is a control character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_ismcntrl function in the IBM Informix GLS

User’s Guide.

IsDigit

ITBool IsDigit(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsDigit(ITWChar c) const

This method determines whether multibyte character c or wide character c is a

digit character according to the rules of the current locale.

The nbytes parameter specifies the length of the corresponding multibyte character

c. You can provide an integer to specify the number of bytes in c, in which case

this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

This method returns TRUE if c is a digit character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_ismdigit function in the IBM Informix GLS

User’s Guide.

IsGraph

ITBool IsGraph(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsGraph(ITWChar c) const

This method determines whether multibyte character c or wide character c is a

graphical character according to the rules of the current locale.

The nbytes parameter specifies the length of the corresponding multibyte character

c. You can provide an integer to specify the number of bytes in c, in which case

this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

This method returns TRUE if c is a graphical character; otherwise it returns FALSE.

Appendix C. ITLocale Class C-17

If there is an error, this method returns FALSE. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_ismgraph function in the IBM Informix GLS

User’s Guide.

IsLower

ITBool IsLower(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsLower(ITWChar c) const

This method determines whether multibyte character c or wide character c is a

lowercase character according to the rules of the current locale.

The nbytes parameter specifies the length of the corresponding multibyte character

c. You can provide an integer to specify the number of bytes in c, in which case

this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

This method returns TRUE if c is a lowercase character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_ismlower function in the IBM Informix GLS

User’s Guide.

IsPrint

ITBool IsPrint(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsPrint(ITWChar c) const

This method determines whether multibyte character c or wide character c is a

printable character according to the rules of the current locale. Printable characters

include all characters except control characters.

The nbytes parameter specifies the length of the corresponding multibyte character

c. You can provide an integer to specify the number of bytes in c, in which case

this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

This method returns TRUE if c is a printable character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_ismprint function in the IBM Informix GLS

User’s Guide.

IsPunct

ITBool IsPunct(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsPunct(ITWChar c) const

C-18 IBM Informix Object Interface for C++ Programmer’s Guide

This method determines whether multibyte character c or wide character c is a

punctuation character according to the rules of the current locale. Punctuation

characters include any single-byte ASCII punctuation characters as well as any

non-ASCII punctuation characters.

The nbytes parameter specifies the length of the corresponding multibyte character

c. You can provide an integer to specify the number of bytes in c, in which case

this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

This method returns TRUE if c is a printable character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_ismpunct function in the IBM Informix GLS

User’s Guide.

IsSpace

ITBool IsSpace(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsSpace(ITWChar c) const

This method determines whether multibyte character c or wide character c is a

space character according to the rules of the current locale. Space characters

include the blank characters (blank and tab) as well as the single-byte and

multibyte versions of the newline, vertical tab, form-feed, and carriage return

characters.

The nbytes parameter specifies the length of the corresponding multibyte character

c. You can provide an integer to specify the number of bytes in c, in which case

this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

This method returns TRUE if c is a space character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_ismspace function in the IBM Informix GLS

User’s Guide.

IsUpper

ITBool IsUpper(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsUpper(ITWChar c) const

This method determines whether multibyte character c or wide character c is an

uppercase character according to the rules of the current locale.

The nbytes parameter specifies the length of the corresponding multibyte character

c. You can provide an integer to specify the number of bytes in c, in which case

this method reads up to this many bytes from c when trying to form a complete

Appendix C. ITLocale Class C-19

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

This method returns TRUE if c is an uppercase character; otherwise it returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_ismupper function in the IBM Informix GLS

User’s Guide.

IsXDigit

ITBool IsXDigit(const char *c, int nbytes = ITLocale::ScanNoLimit) const

ITBool IsXDigit(ITWChar c) const

This method determines whether multibyte character c or wide character c is a

hexadecimal number character according to the rules of the current locale.

Only the ten ASCII digit characters are in the hexadecimal class. Multibyte versions

of these digits or alternative representations of these digits (for example, Hindi or

Kanji digits) are not in this class, but instead are in the alpha class.

The nbytes parameter specifies the length of the corresponding multibyte character

c. You can provide an integer to specify the number of bytes in c, in which case

this method reads up to this many bytes from c when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

This method returns TRUE if c is a hexadecimal number character; otherwise it

returns FALSE.

If there is an error, this method returns FALSE. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_ismxdigit function in the IBM Informix GLS

User’s Guide.

Character Case Conversion Methods

This section describes the ITLocale methods for converting the case of characters:

v ToUpper—Wide Character

v ToUpper—Multibyte Character

v ToLower—Wide Character

v ToLower—Multibyte Character

ToUpper—Wide Character

ITWChar ToUpper(ITWChar c) const

This method converts the wide character c to uppercase. If the wide character has

no uppercase equivalent, it is copied unchanged.

C-20 IBM Informix Object Interface for C++ Programmer’s Guide

This method returns the uppercase character equivalent, if there is one, or the

input character if there is no uppercase equivalent. If there is an error, this method

returns 0. Call ITLocale::GetError() (page C-2) to retrieve a specific error message.

For more information, see the ifx_gl_towupper function in the IBM Informix GLS

User’s Guide.

ToUpper—Multibyte Character

unsigned short ToUpper(char *to,

 const char *from,

 unsigned short &nfrombytes,

 int nbytes = ITLocale::ScanNoLimit)const

This method converts the multibyte characters in from to uppercase.

If the characters in from have no uppercase equivalent, they are copied unchanged.

This method returns in the nfrombytes parameter the number of bytes read from the

location pointed to by from. You must pass the address of an unsigned short for

this parameter.

The nbytes parameter specifies the length of the multibyte characters in from. You

can provide an integer to specify the number of bytes, in which case this method

reads up to this many bytes from from when trying to form a complete character.

Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this

method reads as many bytes as necessary to form a complete character.

This method returns the number of bytes actually copied to the buffer pointed to

by to.

If there is an error, this method returns 0. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_tomupper function in the IBM Informix GLS

User’s Guide.

ToLower—Wide Character

ITWChar ToLower(ITWChar c) const

This method converts the wide character c to lowercase.

This method returns the lowercase equivalent of the input character. If there is no

lowercase equivalent, the method returns the input character. If there is an error,

this method returns 0. Call ITLocale::GetError() (page C-2) to retrieve a specific

error message.

For more information, see the ifx_gl_towlower function in the IBM Informix GLS

User’s Guide.

ToLower—Multibyte Character

unsigned short ToLower(char *to, const char *from,

 unsigned short &nfrombytes,

 int nbytes = ITLocale::ScanNoLimitl) const

This method converts the multibyte characters in from to lowercase.

Appendix C. ITLocale Class C-21

The nfrombytes parameter specifies the number of bytes to copy.

The nbytes parameter specifies the length of the multibyte characters in from. You

can provide an integer to specify the number of bytes, in which case this method

reads up to this many bytes from from when trying to form a complete character.

Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which case this

method reads as many bytes as necessary to form a complete character.

If there is an error, this method returns 0. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_tomlower function in the IBM Informix GLS

User’s Guide.

Built-in Data Type Conversion Methods

This section describes the following ITLocale methods for converting built-in data

types to an internal representation:

v ConvertDate

v ConvertDatetime

v FormatDate

v ConvertNumber

v FormatDatetime

v FormatNumber

v ConvertMoney

v FormatMoney

ConvertDate

mi_date ConvertDate(const ITString &str,

 const ITString &format = ITString::Null) const

This method converts the date pointed to by str into an internal representation.

Use the format parameter to specify the format of the internal representation. If you

set format to NULL (the default), the format is determined by the environment. See

the “Usage” section of the ifx_gl_convert_date function in the IBM Informix GLS

User’s Guide for details.

If you do not specify NULL for the format, you must pass a string to format defining

the format of the internal representation. See the “Format” section of the

ifx_gl_convert_date function in the IBM Informix GLS User’s Guide for details of the

date format specification.

This method returns the internal representation of the date.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

FormatDate

ITString FormatDate(const mi_date *d,

 const ITString &format = ITString::Null) const

This method creates a date string from the mi_date structure pointed to by d.

C-22 IBM Informix Object Interface for C++ Programmer’s Guide

Use the format parameter to specify the format of the date string. If you set format

to NULL (the default), the format is determined by the environment. See the

“Usage” section of the ifx_gl_format_date function in the IBM Informix GLS User’s

Guide for details.

If you do not specify NULL for the format, you must pass a string to format defining

the format of the internal representation. See the “Format” section of the

ifx_gl_format_date function in the IBM Informix GLS User’s Guide for details of the

date format specification.

This method returns a date string.

If there is an error, this method returns an empty ITString object. Call

ITLocale::GetError() (page C-2) to retrieve a specific error message.

ConvertDatetime

mi_datetime ConvertDatetime(const ITString &str,

 const ITString &format = ITString::Null) const

This method converts the date-time string pointed to by str into an internal

representation. Use the format parameter to specify the format of the internal

representation. If you set format to NULL (the default), the format is determined by

the environment. See the “Usage” section of the ifx_gl_convert_datetime function

in the IBM Informix GLS User’s Guide for details.

If you do not specify NULL for the format, you must pass a string to format defining

the format of the internal representation. See the “Format” section of the

ifx_gl_convert_datetime function in the IBM Informix GLS User’s Guide for details

of the date format specification.

This method returns the internal representation of the date.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_convert_datetime function in the IBM

Informix GLS User’s Guide.

FormatDatetime

ITString FormatDatetime(const mi_datetime *dt,

 const ITString &format = ITString::Null) const

This method creates a date-time string from the mi_datetime structure pointed to

by dt.

Use the format parameter to specify the format of the date string. If you set format

to NULL (the default), the format is determined by the environment. See the

“Usage” section of the ifx_gl_format_datetime function in the IBM Informix GLS

User’s Guide for details.

If you do not specify NULL for the format, you must pass a string to format defining

the format of the internal representation. See the “Format” section of the

ifx_gl_format_datetime function in the IBM Informix GLS User’s Guide for details of

the date format specification.

Appendix C. ITLocale Class C-23

This method returns a date-time string.

If there is an error, this method returns an empty ITString object. Call

ITLocale::GetError() (page C-2) to retrieve a specific error message.

ConvertNumber

mi_decimal ConvertNumber(const ITString &str,

 const ITString &format = ITString::Null) const

This method converts the number string pointed to by str into an internal

representation. Use the format parameter to specify the format of the internal

representation. If you set format to NULL (the default), the format is determined by

the environment. See the “Usage” section of the ifx_gl_convert_number function

in the IBM Informix GLS User’s Guide for details.

If you do not specify NULL for the format, you must pass a string to format defining

the format of the internal representation. See the “Format” section of the

ifx_gl_convert_number function in the IBM Informix GLS User’s Guide for details of

the date format specification.

This method returns the internal representation of the number.

If there is an error, this method returns a null mi_decimal value. Call

ITLocale::GetError() (page C-2) to retrieve a specific error message.

FormatNumber

ITString FormatNumber(const mi_decimal *dec,

 const ITString &format = ITString::Null) const

This method creates a number string from the mi_decimal structure pointed to by

dec.

Use the format parameter to specify the format of the date string. If you set format

to NULL (the default), the format is determined by the environment. See the

“Usage” section of the ifx_gl_format_mumber function in the IBM Informix GLS

User’s Guide for details.

If you do not specify NULL for the format, you must pass a string to format defining

the format of the internal representation. See the “Format” section of the

ifx_gl_format_number function in the IBM Informix GLS User’s Guide for details of

the date format specification.

This method returns a number string.

If there is an error, this method returns an empty ITString object. Call

ITLocale::GetError() (page C-2) to retrieve a specific error message.

ConvertMoney

mi_money ConvertMoney(const ITString &str,

 const ITString &format = ITString::Null) const

This method converts the money string pointed to by str into an internal

representation. Use the format parameter to specify the format of the internal

representation. If you set format to NULL (the default), the format is determined by

C-24 IBM Informix Object Interface for C++ Programmer’s Guide

the environment. See the “Usage” section of the ifx_gl_convert_money function in

the IBM Informix GLS User’s Guide for details.

If you do not specify NULL for the format, you must pass a string to format defining

the format of the internal representation. See the “Format” section of the

ifx_gl_convert_money function in the IBM Informix GLS User’s Guide for details of

the date format specification.

This method returns the internal representation of the money string in an

mi_money structure.

If there is an error, this method returns a null mi_money value. Call

ITLocale::GetError() (page C-2) to retrieve a specific error message.

For more information, see the ifx_gl_convert_money function in the IBM Informix

GLS User’s Guide.

FormatMoney

ITString FormatMoney(const mi_money *m,

 const ITString

 &format = ITString::Null) const

This method creates a money string from the mi_money structure pointed to by m.

Use the format parameter to specify the format of the date string. If you set format

to NULL (the default), the format is determined by the environment. See the

“Usage” section of the ifx_gl_convert_money function in the IBM Informix GLS

User’s Guide for details.

If you do not specify NULL for the format, you must pass a string to format defining

the format of the internal representation. See the “Format” section of the

ifx_gl_convert_money function in the IBM Informix GLS User’s Guide for details of

the date format specification.

This method returns a number string.

If there is an error, this method returns an empty ITString object. Call

ITLocale::GetError() (page C-2) to retrieve a specific error message.

Multibyte and Wide Character Conversion Methods

This section describes the following ITLocale methods for converting characters

and character strings between their multibyte and wide character representations:

v MToWString

v MToWChar

v WToMString

v WToMChar

MToWString

int MToWString(ITWChar *to, const char *from, int limit,

 int nfrombytes = ITLocale::ScanToNul) const

This method converts the multibyte character string from to its wide character

representation and stores the result in to.

Appendix C. ITLocale Class C-25

Use limit to specify the maximum number of bytes to read from the from string and

write to to.

The nfrombytes parameter specifies the length of the corresponding multibyte string

from. You can provide an integer to specify the number of bytes in from. Or you

can use the constant ITLocale::ScanToNul (the default) to specify that from is a

null-terminated string.

This method returns number of characters read from from and written to to, not

counting the null terminator, if there is one.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_mbstowcs function in the IBM Informix GLS

User’s Guide.

MToWChar

ITWChar MToWChar(const char *from, int nfrombytes = ITLocale::ScanNoLimit) const

This method converts the multibyte character from into its wide character

representation.

The nfrombytes parameter specifies the length of the corresponding multibyte

character from. You can provide an integer to specify the number of bytes in from in

which case this method reads up to this many bytes from from when trying to form

a complete character. Or you can set nfrombytes to ITLocale::ScanNoLimit (the

default), in which case this method reads as many bytes as necessary to form a

complete character.

This method returns the wide character representation of multibyte character from.

If there is an error, this method returns NULL. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_mbtowc function in the IBM Informix GLS

User’s Guide. Note that the GLS API function has different parameters from

MToWChar. The GLS API function returns the wide character in the parameter list

and returns the number of bytes read in the function return value.

WToMString

int WToMString(char *to, const ITWChar *from, int limit,

 int nfromsize =

 ITLocale::ScanToNul) const

This method converts the wide character string from to its multibyte representation

and stores it in the location pointed to by to.

Use limit to specify the maximum number of bytes to read from the from string and

write to to. If a character to be written to to would cause more than the specified

limit of bytes to be written, no part of that character is written. In this case the

method writes less than the specified limit of bytes.

C-26 IBM Informix Object Interface for C++ Programmer’s Guide

The nfromsize parameter specifies the length of the corresponding string from. You

can provide an integer to specify the number of bytes in from. Or you can use the

constant ITLocale::ScanToNul (the default) to specify that from is a null-terminated

string.

This method returns the number of bytes it writes to multibyte string to.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_wcstombs function in the IBM Informix GLS

User’s Guide.

WToMChar

int WToMChar(char *to, const ITWChar from) const

This method converts the wide character from to its multibyte representation and

stores it in consecutive bytes starting at the location pointed to by to.

This method returns the number of bytes it writes to to.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_wctomb function in the IBM Informix GLS

User’s Guide.

Multibyte String Traversal and Indexing Methods

This section describes the following ITLocale methods for converting built-in data

types to an internal representation:

v MCharBytes

v MCharLen

v MNextChar

v MPrevChar

MCharBytes

int MCharBytes() const

This method returns the maximum number of bytes that any multibyte character

can occupy.

For more information, see the ifx_gl_mb_loc_max function in the IBM Informix

GLS User’s Guide.

MCharLen

int MCharLen(const char *s, int nbytes = ITLocale::ScanToNul) const

This method returns the number of bytes in the multibyte character s.

The nbytes parameter specifies the length of the corresponding multibyte character

s. You can provide an integer to specify the number of bytes in s, in which case

this method reads up to this many bytes from s when trying to form a complete

Appendix C. ITLocale Class C-27

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

If there is an error, this method returns -1. Call ITLocale::GetError() (page C-2) to

retrieve a specific error message.

For more information, see the ifx_gl_mblen function in the IBM Informix GLS

User’s Guide.

MNextChar

char *MNextChar(const char *s, int nbytes = ITLocale::ScanNoLimit) const

This method returns a pointer to the next multibyte character after the multibyte

character s.

The nbytes parameter specifies the length of the corresponding multibyte character

s. You can provide an integer to specify the number of bytes in s, in which case

this method reads up to this many bytes from s when trying to form a complete

character. Or you can set nbytes to ITLocale::ScanNoLimit (the default), in which

case this method reads as many bytes as necessary to form a complete character.

If there is an error, this method returns NULL. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_mbsnext function in the IBM Informix GLS

User’s Guide.

MPrevChar

char *MPrevChar(const char *s, const char *c) const

This method returns a pointer to the first byte of the multibyte character before the

multibyte character c, where s is a pointer to the beginning of the multibyte string

that contains c.

If there is an error, this method returns NULL. Call ITLocale::GetError() (page C-2)

to retrieve a specific error message.

For more information, see the ifx_gl_mbsprev function in the IBM Informix GLS

User’s Guide.

C-28 IBM Informix Object Interface for C++ Programmer’s Guide

Appendix D. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age

or ability.

Accessibility features for IBM Informix Dynamic Server

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility Features

The following list includes the major accessibility features in IBM Informix

Dynamic Server. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v The attachment of alternative input and output devices.

Tip: The IBM Informix Dynamic Server Information Center and its related

publications are accessibility-enabled for the IBM Home Page Reader. You can

operate all features using the keyboard instead of the mouse.

Keyboard Navigation

This product uses standard Microsoft Windows navigation keys.

Related Accessibility Information

IBM is committed to making our documentation accessible to persons with

disabilities. Our publications are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our manuals are available in dotted decimal format.

You can view the publications for IBM Informix Dynamic Server in Adobe Portable

Document Format (PDF) using the Adobe Acrobat Reader.

IBM and Accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 1996, 2008 D-1

http://www.ibm.com/able

D-2 IBM Informix Object Interface for C++ Programmer’s Guide

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1996, 2008 E-1

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

E-2 IBM Informix Object Interface for C++ Programmer’s Guide

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All

rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A current list of IBM trademarks is available on the

Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices E-3

http://www.ibm.com/legal/copytrade.shtml

E-4 IBM Informix Object Interface for C++ Programmer’s Guide

Index

A
Access to objects

arbitrary 3-6

nonsequential 3-6

random 6-7

Accessibility D-1

keyboard D-1

shortcut keys D-1

Array value objects
contain.cpp example 3-8

converting 3-8

ITContainCvt interface 3-8, 6-1

Automatic variables 1-1

B
Base types, ITContainCvt interface 6-1

Basic value object support 6-7

Building ITValue objects 4-2

Built-in data types, converting locale C-22

C
C++ base types

ITContainCvt interface 6-1, 6-3

ITContainerIter class 5-3

Callback functions
arguments 2-4

ITErrorInfo interface 3-5

managing errors 2-4

triggering events 5-8

Class constructor 4-2

Class destructor 4-2

Class factory 1-3, 4-1, 4-2, 4-4

Class hierarchy 1-4

CLIENT_LOCALE environment variable C-14

Code set conversion C-14, C-15

COM 1-3, 4-5, 4-12, 6-4

Command line interface 2-1

Comparing objects 3-3

Compatibility of data types 3-3

Connection stamp
ITConnection class 5-2, 5-3

rowref.cpp example 4-9

Connections
creating 2-2

csql3.cpp example 2-5

defaults 2-1

ITConnection class 2-5, 5-1

ITDBInfo class 5-7

transaction states 2-5

contain.cpp example 3-8

Container data type 3-1

Container objects
See also Value objects.

base type 4-12

contain.cpp example 3-8

converting arrays 3-8

defined 4-12

fsexamp1.cpp example 3-7

Container objects (continued)
indexing 3-7

ITContainer interface 3-7, 6-2

Controlling unknown pointer 4-12

Converting value objects
arrays 3-8

ITContainCvt interface 3-8

ITConversions interface 3-4, 6-2

Creating
connections 2-2

new data types 4-2

csql.cpp example 2-1

csql2.cpp example 2-4

csql3.cpp example 2-5

Cursors
ITCursor class 2-9, 5-5

using 2-9, 2-12

cursupd.cpp example 2-9

D
Data types

abstract 3-1

compatibility 3-3

container 3-1

creating new 4-2

ITTypeInfo class 5-24

large object 3-1

row 3-1, 4-2

supported 3-1, A-1, B-1

supported value interfaces A-1, B-1

transient 5-24

Database name 5-7

Dates
converting localized dates to internal format C-22

creating localized data strings C-22

ITDateTime interface 3-4

ITDateTimje Interface 6-2

Datetime data
converting from a localized string C-23

formatting a localized string C-23

delegate.cpp example 4-13

Delegation
creating object containers 4-12, 4-15

delegate.cpp example 4-13

interface 4-12

nested classes 4-5

Disability D-1

Dynamic loading 4-15

E
Errors

callback functions 2-4

csql2.cpp example 2-4

ITErrorInfo interface 3-5, 6-4

ITErrorManager class 2-4

ITLocale methods C-2

managing 2-3

© Copyright IBM Corp. 1996, 2008 X-1

Examples
contain.cpp 3-8

csql.cpp 2-1

csql2.cpp 2-4

csql3.cpp 2-5

delegate.cpp 4-13

ifval.cpp 4-5

queryex.cpp 2-7

rawval.cpp 4-1

rowref.cpp 4-9

rowset.cpp 3-6

simpval.cpp 4-2

tabcnt.cpp 3-2

ExecForIteration 2-7

ExecForStatus 2-6

ExecOneRow 2-7

ExecToSet 2-7

F
Factory functions 5-9

I
Identifiers 6-5

ifval.cpp example 4-5

Implementation classes 1-1

INFORMIXCPPMAP environment variable 4-16

Interface delegation 4-12

Issuing database queries 2-1

IT_VERSION macro 4-15

ITConnection 2-1, 2-5

ITConnectionStamp 4-9, 5-3

ITContainCvt
value interface 3-8, 6-1

ITContainer
value interface 1-3, 3-7, 6-2

ITContainerIter
operation class 5-3

ITConversions
value interface 3-4, 6-2

ITCursor
operation class 2-9, 5-5

ITDateTime
value interface 3-4, 6-2

ITDatum
value interface 4-1, 6-3

ITDBInfo
operation class 2-2, 5-7

ITDBNameList
operation class 5-8

Iterating values 6-2

ITErrorInfo
value interface 3-5, 6-4

ITErrorManager
operation class 2-4, 5-8

ITEssential
value interface 4-12, 6-4

ITFactoryList
operation class 1-7, 5-9

ITInt8
operation class 5-11

ITLargeObject
value interface 3-5, 6-5

ITLargeObjectManager
operation class 2-12, 5-12

ITLocale class C-1, C-28

ITMVDesc structure 4-2, 5-16

ITObject
operation class 5-17

ITPosition
operation class 5-17

ITPreserveData
operation class 5-17

ITQuery
operation class 2-1, 2-6, 5-18

ITRoutineManager
operation class 5-19

ITRow
value interface 2-2, 3-6, 6-6

ITSet
value interface 3-6, 6-7

ITStatement
operation class 5-20

ITString
operation class 5-22

ITSystemNameList
operation class 5-23

ITTypeInfo
operation class 5-24

ITValue
value interface 3-3, 4-2, 6-7

L
Large objects

See also Container objects, Value objects.

data type 3-1

ITLargeObject interface 3-5, 6-5

ITLargeObjectManager class 2-12, 5-12

Linking applications 4-16

loadtab.cpp example 2-8

Localization
money data C-24

numerical data C-24

M
Memory allocation for GLS strings C-2

Microsoft Common Object Model 1-3, 4-5, 4-12, 6-4

Money data
converting from a localized string C-24

creating a localized money string C-25

Multibyte character methods
IsAlnum C-15

IsAlpha C-16

IsBlank C-16

IsCntrl C-16

IsDigit C-17

IsGraph C-17

IsLower C-18

IsPrint C-18

IsPunct C-18

IsSpace C-19

IsUpper C-19

IsXDigit C-20

ToLower C-21

ToUpper C-21

Multibyte character representation C-1

Multibyte character string
allocating memory C-2

comparing with another C-2

X-2 IBM Informix Object Interface for C++ Programmer’s Guide

Multibyte character string (continued)
concatenating characters C-6

converting codeset C-14

converting to wide character string C-25

copying C-5

finding length in bytes C-7

finding length in characters C-5, C-7

finding length of an initial substring C-9

representing C-1

searching
first occurrence of a character C-4, C-8

first occurrence of a substring C-6

last occurrence of a character C-8

traversing C-28

Multibyte characters
converting to wide character C-26

copying C-7

maximum width C-27

size in bytes C-27

Multiple behaviors 4-5

N
Nested classes 4-5

Null-terminated string C-1

Numeric data
converting from localized string C-24

creating a localized string C-24

O
Object delegation 4-12

Object Interface for C++
connections 2-5

dynamic loading 4-15

inheritance hierarchy 1-4

issuing and retrieving queries 2-1

linking guidelines 4-16

managing errors 2-3, 2-5, 3-5

nested classes 4-5

operation classes 1-1, 1-3

restrictions 1-5

supported data types A-1, B-1

value interfaces and value objects 1-3, 1-4

Objects.
See Array value objects, Container objects, Large objects,

Value objects.

Operation classes
defined 1-2, 1-3

hierarchy 1-4

ITConnection 2-1, 2-5, 5-1

ITConnectionStamp 5-3

ITContainerIter 5-3

ITCursor 5-5

ITDBInfo 2-2, 5-7

ITDBNameList 5-8

ITErrorManager 2-4, 5-8

ITFactoryList 5-9

ITLargeObjectManager 2-12, 5-12

ITObject 5-17

ITPreserveData 5-17

ITQuery 2-1, 2-6, 5-18

ITRoutineManager 5-19

ITStatement 5-20

ITString 5-22

ITSystemNameList 5-23

Operation classes (continued)
ITTypeInfo 5-24

list 1-2

Optimizing object storage 4-5

P
Parent objects 4-12

Passing objects 1-6

Passwords 5-7

Prepared statements 2-8, 2-9

Q
Queries

cursors 2-9

issuing 2-6, 2-7

ITQuery class 2-6, 2-7, 5-18

retrieving results 2-2

Query methods
ExecForIteration 2-7

ExecForStatus 2-6

ExecOneRow 2-7

ExecToSet 2-7

queryex.cpp example 2-7

queryex.cpp example 2-7

QueryInterface() function 1-3

R
Random access

ITSet interface 3-6, 6-7

rowset.cpp example 3-6

set results 3-6

Raw data
extracting data structures 4-1, 4-2

ITDatum interface 4-1

rawval.cpp example 4-1

rawval.cpp example 4-1

Reference counting
ITEssential interface 3-2, 6-4

nested classes 4-5

parent and sub-objects 4-12

tabcnt.cpp example 3-2

References
connection stamp 4-9

ITConnectionStamp class 4-9

ITPreserveData class 4-9, 5-17

rowref.cpp example 4-9

Restrictions 1-5

Retrieving query results 2-2

Row data types 3-1, 4-2

Row values 6-6

rowref.cpp example 4-9

rowset.cpp example 3-6

S
Server

managing errors 3-5

Set results
random access 3-6

Setting names 5-7

Shared object libraries 4-15

Index X-3

Shortcut keys
keyboard D-1

simpval.cpp example 4-2

SQL statements
CREATE TABLE 2-6

CREATE VIEW 2-6

DROP TABLE 2-6

UPDATE 2-6

Storage of objects, optimizing 4-5

String classes, ITString 5-22

Subobjects 4-12

System name 5-7

T
tabcnt.cpp example 3-2

Times 3-4, 6-2

Transaction states 2-5, 5-2

Transient data types 5-24

Type map file 1-7, 4-16

U
User name 5-7

V
Value interfaces

class hierarchy 1-4

defined 1-1, 1-3, 1-4

exposing multiple 4-5, 4-9

identifiers 6-5

ITContainCvt 3-8, 6-1, 6-3

ITContainer 3-7, 6-2

ITConversions 3-4, 6-2

ITDateTime 3-4, 6-2

ITDatum 4-1

ITErrorInfo 3-5, 6-4

ITEssential 4-12, 6-4

ITLargeObject 3-5, 6-5

ITRow 2-2, 3-6, 6-6

ITSet 3-6, 6-7

ITValue 3-3, 4-2, 6-7

lists 1-4

supported data types A-1, B-1

Value objects
See also Array value objects, Container objects, Large

objects.

allocation on updating 4-9

array 3-8

base type containers 4-12

building simple 4-2

class factory 4-2

comparison methods 3-3

converting 6-2

creating 4-9

creating true 4-2

defined 1-3

delegation 4-12, 4-15

dynamic loading 4-15

interfaces 1-3

local copy vs. pointer 4-9

management 3-2, 3-3

Microsoft Common Object Model 1-3

multiple interfaces 4-5, 4-9

object containers 4-12

Value objects (continued)
printing methods 3-3

simpval.cpp example 4-2

Variables, automatic 1-1

Virtual destructor 5-17

W
Wide character

converting to lowercase C-21

converting to multibyte character C-27

converting to uppercase C-20

Wide character string
concatenating C-9, C-11

converting to multibyte character string C-26

copying C-10, C-11

finding length in characters C-10, C-12

finding length of an initial substring C-10, C-13

searching
first occurrence of a character C-9, C-12

first occurrence of a substring C-13

last occurrence of a character C-12

X-4 IBM Informix Object Interface for C++ Programmer’s Guide

����

Printed in USA

SC23-9422-00

	Contents
	Introduction
	About This Publication
	Types of Users
	Software Dependencies
	Naming Conventions

	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform Markup
	Example Code Conventions

	Additional Documentation
	Compliance with Industry Standards
	How to Provide Documentation Feedback

	Chapter 1. Architecture of the Object Interface for C++
	Operation Classes
	Value Interfaces and Value Objects
	Class Hierarchy
	Implementation Notes
	Restrictions
	Passing Objects—Compiler Dependency
	Informix Database Server Compatibility

	Internationalization
	ITFactory List and the Type Map

	Chapter 2. Issuing Database Queries and Retrieving Results
	Using Operation Classes
	Creating Connections
	Finding System Names and Database Names
	Using ITSystemNameList
	Using ITDBNameList

	Managing Errors
	Connection Transaction States
	Issuing Queries
	When to Use the Different ITQuery Methods
	ExecForStatus
	ExecOneRow
	ExecToSet
	ExecForIteration

	Query Method Example
	Using Prepared Statements
	Using Cursors
	Using the Large Object Manager
	Using ITRoutineManager

	Chapter 3. Accessing Data Values
	Accessing Data Values
	Value Object Management
	The ITValue Interface
	The ITConversions Interface
	The ITDatum Interface
	The ITDateTime Interface
	The ITLargeObject Interface
	The ITErrorInfo Interface
	The ITRow Interface
	The ITSet Interface
	The ITContainer Interface
	The ITContainCvt Interface

	Chapter 4. Creating and Extending Value Objects
	The Raw Data Object
	Building Simple Value Objects
	Exposing Multiple Interfaces
	Value Objects and Connection Events
	Creating Row Type Value Objects
	Creating Row Type Value Objects Without An Open Connection
	Creating Collection Type Value Objects Without An Open Connection

	Object Containment and Delegation
	Dynamic Loading
	Mapping Files
	Guidelines

	Chapter 5. Operation Class Reference
	ITConnection
	ITConnectionStamp
	ITContainerIter
	ITCursor
	ITCursor Usage

	ITDBInfo
	ITDBNameList
	ITErrorManager
	ITFactoryList
	Successful Initialization Verification

	ITInt8
	ITLargeObjectManager
	Accessing Smart Large Objects in Nondefault SBSpaces

	ITMVDesc
	ITObject
	ITPosition
	ITPreserveData
	ITQuery
	ITRoutineManager
	ITStatement
	ITStatement Usage

	ITString
	ITSystemNameList
	ITTypeInfo

	Chapter 6. Value Interface Reference
	ITContainCvt
	ITContainer
	ITConversions
	ITDateTime
	ITDatum
	ITErrorInfo
	ITEssential
	ITLargeObject
	ITRow
	ITSet
	ITValue
	Use Of ITValue::Printable With Null Value Objects

	Appendix A. Supported Data Types
	Appendix B. Example Programs
	Appendix C. ITLocale Class
	Appendix D. Accessibility
	Accessibility features for IBM Informix Dynamic Server
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	Notices
	Trademarks

	Index

