
IBM Informix

IBM Informix Embedded SQLJ User’s Guide

Version 3.50

SC23-9414-00

���

IBM Informix

IBM Informix Embedded SQLJ User’s Guide

Version 3.50

SC23-9414-00

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page D-1.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . v

In This Introduction . v

About This Publication . v

Types of Users . v

Software Dependencies . v

Global Language Support . vi

Documentation Conventions . vi

Typographical Conventions . vi

Feature, Product, and Platform Markup . vi

Example Code Conventions . vii

Additional Documentation . vii

Compliance with Industry Standards . viii

How to Provide Documentation Feedback . viii

Chapter 1. Introducing IBM Informix Embedded SQLJ 1-1

In This Chapter . 1-1

What Is Embedded SQLJ? . 1-1

How Does Embedded SQLJ Work? . 1-1

Embedded SQLJ Versus JDBC . 1-2

Chapter 2. Preparing to Use Embedded SQLJ 2-1

In This Chapter . 2-1

What Components Do You Need? . 2-1

Setting Up Your Software . 2-1

Examples . 2-1

Chapter 3. Building an Embedded SQLJ Program 3-1

In This Chapter . 3-1

Fundamentals of Embedded SQLJ . 3-1

SQLJ Statement Identifier . 3-1

Connecting to a Database . 3-1

Embedding SQL Statements . 3-2

Handling Result Sets . 3-2

A Simple Embedded SQLJ Program . 3-3

Chapter 4. The Embedded SQLJ Language . 4-1

In This Chapter . 4-1

Embedded SQLJ Versus Traditional Embedded SQL . 4-1

Embedded SQLJ Source Files . 4-2

Identifying Embedded SQLJ Statements . 4-2

SQL Statements . 4-2

Host Variables . 4-3

SELECT Statements That Return a Single Row . 4-3

Handling Result Sets . 4-3

Positional Iterators . 4-3

Named Iterators . 4-4

Using Column Aliases . 4-5

Iterator Methods . 4-5

Positioned Updates and Deletes . 4-6

Monitoring the Execution of an SQL Query . 4-6

Calling SPL Routines and Functions . 4-7

SQL and Java Type Mappings . 4-7

Language Character Sets . 4-9

Importing Java Packages . 4-9

© Copyright IBM Corp. 1996, 2008 iii

SQLJ Reserved Names . 4-10

Parameter, Field, and Variable Names . 4-10

Class Names and Filenames . 4-10

Handling Errors . 4-10

Chapter 5. Processing Embedded SQLJ Source Code 5-1

In This Chapter . 5-1

Translating, Compiling, and Running Embedded SQLJ Programs 5-1

The ifxsqlj Command . 5-2

Command Options . 5-2

Basic Options . 5-3

Advanced Options . 5-4

Setting Options . 5-7

Setting Options on the Command Line . 5-7

Supplying Options in Property Files . 5-7

Online Checking . 5-8

Setting the -user and -password Options . 5-9

Setting the -url and -driver Options . 5-9

The ifxprofp Tool . 5-9

Appendix A. Connecting to Databases . A-1

Appendix B. Sample Programs . B-1

Appendix C. Accessibility . C-1

Accessibility features for IBM Informix Dynamic Server . C-1

Accessibility Features . C-1

Keyboard Navigation . C-1

Related Accessibility Information . C-1

IBM and Accessibility . C-1

Notices . D-1

Trademarks . D-3

Index . X-1

iv IBM Informix Embedded SQLJ User’s Guide

Introduction

In This Introduction . v

About This Publication . v

Types of Users . v

Software Dependencies . v

Global Language Support . vi

Documentation Conventions . vi

Typographical Conventions . vi

Feature, Product, and Platform Markup . vi

Example Code Conventions . vii

Additional Documentation . vii

Compliance with Industry Standards . viii

How to Provide Documentation Feedback . viii

In This Introduction

This introduction provides an overview of the information in this manual and

describes the conventions it uses.

About This Publication

This publication contains information about using IBM Informix Embedded SQLJ.

This section discusses the intended audience and the associated software products

that you must have to use IBM Informix Embedded SQLJ.

Types of Users

This guide is for programmers who want to write Java™ programs that can:

v Connect to Informix® databases.

v Issue SQL statements to manipulate data in the database.

This manual is written with the assumption that you have the following

background:

v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides

v Experience with the Java programming language

v Experience working with relational databases or exposure to database concepts

v Experience with the SQL query language

If you have limited experience with relational databases, SQL, or your operating

system, refer to the IBM Informix Dynamic Server Getting Started Guide for your

database server for a list of supplementary titles.

Software Dependencies

To run IBM Informix Embedded SQLJ programs, you must use one of the

following database servers:

v Informix Dynamic Server, Version 9.x and later

v IBM® Informix Extended Parallel Server, Version 8.x

v IBM Informix Dynamic Server (IDS), Version 7.x

© Copyright IBM Corp. 1996, 2008 v

v IBM Informix Dynamic Server (IDS), Workgroup and Developer editions, Version

7.x

v IBM Informix OnLine Dynamic Server, Version 5.x

v IBM Informix SE, Versions 5.x to 7.2x

To enable your programs to connect to the server, you must use IBM Informix

JDBC Driver, Version 2.0 or later.

You must use the JavaSoft software Java Development Kit (JDK), Version 1.2 or

later, or any Java software compatible with JDK 1.2, to create your programs. JDK

1.2 is also known as Java 2.

Global Language Support

Refer to the IBM Informix JDBC Driver Programmer’s Guide for information about

using Global Language Support (GLS) with IBM Informix JDBC Driver.

Documentation Conventions

This section describes the following conventions, which are used in the product

documentation for IBM Informix Dynamic Server:

v Typographical conventions

v Feature, product, and platform conventions

v Example code conventions

Typographical Conventions

This publication uses the following conventions to introduce new terms, illustrate

screen displays, describe command syntax, and so forth.

 Convention Meaning

KEYWORD Keywords of SQL, SPL, and some other programming languages appear

in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics. Within

syntax and code examples, variable values that you are to specify

appear in italics.

boldface Names of program entities (such as classes, events, and tables),

environment variables, file names, path names, and interface elements

(such as icons, menu items, and buttons) appear in boldface.

monospace Information that the product displays and information that you enter

appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Feature, Product, and Platform Markup

Feature, product, and platform markup identifies paragraphs that contain

feature-specific, product-specific, or platform-specific information. Some examples

vi IBM Informix Embedded SQLJ User’s Guide

of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Windows Only

Identifies information that is specific to the Windows operating system

End of Windows Only

 This markup can apply to one or more paragraphs within a section. When an

entire section applies to a particular product or platform, this is noted as part of

the heading text, for example:

 Table Sorting (Windows)

Example Code Conventions

Examples of SQL code occur throughout this publication. Except as noted, the code

is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for

that product. For example, if you are using an SQL API, you must use EXEC SQL

at the start of each statement and a semicolon (or other appropriate delimiter) at

the end of the statement. If you are using DB–Access, you must delimit multiple

statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in

a full application, but it is not necessary to show it to describe the concept

being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the documentation for your product.

Additional Documentation

You can view, search, and print all of the product documentation from the IBM

Informix Dynamic Server information center on the Web at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

For additional documentation about IBM Informix Dynamic Server and related

products, including release notes, machine notes, and documentation notes, go to

the online product library page at http://www.ibm.com/software/data/informix/

Introduction vii

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/software/data/informix/pubs/library/

pubs/library/. Alternatively, you can access or install the product documentation

from the Quick Start CD that is shipped with the product.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of industry

standards for the Structured Query Language (SQL). IBM Informix SQL-based

products are fully compliant with SQL-92 Entry Level (published as ANSI

X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of

IBM Informix database servers comply with the SQL-92 Intermediate and Full

Level and X/Open SQL Common Applications Environment (CAE) standards.

How to Provide Documentation Feedback

You are encouraged to send your comments about IBM Informix user

documentation by using one of the following methods:

v Send e-mail to docinf@us.ibm.com.

v Go to the Information Center at http://publib.boulder.ibm.com/infocenter/
idshelp/v115/index.jsp and open the topic that you want to comment on. Click

Feedback at the bottom of the page, fill out the form, and submit your feedback.

Feedback from both methods is monitored by those who maintain the user

documentation of Dynamic Server. The feedback methods are reserved for

reporting errors and omissions in our documentation. For immediate help with a

technical problem, contact IBM Technical Support. For instructions, see the IBM

Informix Technical Support Web site at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

viii IBM Informix Embedded SQLJ User’s Guide

http://www.ibm.com/software/data/informix/pubs/library/
mailto:docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/planetwide/

Chapter 1. Introducing IBM Informix Embedded SQLJ

In This Chapter . 1-1

What Is Embedded SQLJ? . 1-1

How Does Embedded SQLJ Work? . 1-1

Embedded SQLJ Versus JDBC . 1-2

In This Chapter

This chapter explains what IBM Informix Embedded SQLJ allows you to do and

provides an overview of how it works.

What Is Embedded SQLJ?

IBM Informix Embedded SQLJ enables you to embed SQL statements in your Java

programs. IBM Informix Embedded SQLJ consists of:

v The SQLJ translator, which translates SQLJ code into Java code

v A set of Java classes that provide runtime support for SQLJ programs

IBM Informix Embedded SQLJ includes the standard SQLJ implementation, as

defined by the SQLJ consortium, plus specific Informix extensions. The rest of this

manual refers to IBM Informix Embedded SQLJ as Embedded SQLJ. The standard

SQLJ implementation is referred to as traditional Embedded SQLJ.

How Does Embedded SQLJ Work?

When you use Embedded SQLJ, you embed SQL statements in your Java source

code. You use the SQLJ translator to convert the embedded SQL statements to Java

source code with calls to JDBC. JDBC is the JavaSoft specification of a standard

application programming interface (API) that allows Java programs to access

database management systems.

Finally, you use the Java compiler to compile your translated Java program into an

executable Java .class file, as shown in Figure 1-1.

When you run your program, it uses the IBM Informix JDBC Driver to connect to

an Informix database, as shown in Figure 1-2.

Figure 1-1. Translation and Compilation of an Embedded SQLJ Program

© Copyright IBM Corp. 1996, 2008 1-1

See the IBM Informix JDBC Driver Programmer’s Guide for information about using

the IBM Informix JDBC Driver.

Embedded SQLJ Versus JDBC

Embedded SQLJ does not support dynamic SQL; you must use the JDBC API if

you want to use dynamic SQL. Your Embedded SQLJ program can call the JDBC

API to perform a dynamic operation (the SQLJ connection-context object that you

use to connect an Embedded SQLJ program to the database contains a JDBC

Connection object that you can use to create JDBC statement objects).

If you are using static SQL, Embedded SQLJ provides the following advantages:

v Default connection context. You only need to set the default connection context

once within a program; then every subsequent Embedded SQLJ statement uses

this connection context unless you specify otherwise.

v Reduced statement complexity. For example, you do not need to explicitly bind

each variable; Embedded SQLJ performs binding for you. Generally, this feature

allows you to create smaller programs than with the JDBC API.

v Compile-time syntax and semantics checking. The Embedded SQLJ translator

checks the syntax of SQL statements.

v Compile-time type checking. The Embedded SQLJ translator and the Java

compiler check that the Java data types of arguments are compatible with the

SQL data types of the SQL operation.

v Compile-time schema checking. You can connect to a sample database schema

during translation to check that your program uses valid SQL statements for the

tables, views, columns, stored procedures, and so on in your sample.

Figure 1-2. Runtime Architecture for Embedded SQLJ Programs

1-2 IBM Informix Embedded SQLJ User’s Guide

Chapter 2. Preparing to Use Embedded SQLJ

In This Chapter . 2-1

What Components Do You Need? . 2-1

Setting Up Your Software . 2-1

Examples . 2-1

In This Chapter

This chapter describes the software you must have to develop Embedded SQLJ

programs and how to set up this software.

What Components Do You Need?

You need the following software to create and run SQLJ programs:

v IBM Informix Embedded SQLJ

v The JavaSoft software Java Development Kit (JDK), Version 1.2 or later, or any

Java software compatible with JDK 1.2 (also known as Java 2)

v IBM Informix JDBC Driver, Version 2.0 or later, to enable your programs to

connect to the database server

v One of the following Informix database servers:

– Informix Dynamic Server, Version 9.x and later

– IBM Informix Extended Parallel Server, Version 8.x

– IBM Informix Dynamic Server (IDS), Version 7.x

– IBM Informix Dynamic Server (IDS), Workgroup and Developer editions,

Version 7.x

– IBM Informix OnLine Dynamic Server, Version 5.x

– IBM Informix SE, Versions 5.x to 7.2x

Setting Up Your Software

Before you install Embedded SQLJ, you must already have installed the JavaSoft

software Java Development Kit (JDK), Version 1.2 or later. (For more information

about the Java language, see the JavaSoft Web site at http://java.sun.com/.)

For further information about installing and using IBM Informix JDBC Driver, see

the IBM Informix JDBC Driver Programmer’s Guide.

If you do not already have your Informix server installed, refer to the IBM Informix

Installation Guide that accompanies that software.

Examples

IBM Informix Embedded SQLJ includes sample online programs in the /demo/sqlj

directory. The README file in this directory briefly explains what each of the

programs demonstrates and how to set up, compile, and run the programs. The

programs also enable you to verify that IBM Informix Embedded SQLJ and IBM

Informix JDBC Driver are correctly installed. The examples in this manual are

taken from these sample programs.

© Copyright IBM Corp. 1996, 2008 2-1

2-2 IBM Informix Embedded SQLJ User’s Guide

Chapter 3. Building an Embedded SQLJ Program

In This Chapter . 3-1

Fundamentals of Embedded SQLJ . 3-1

SQLJ Statement Identifier . 3-1

Connecting to a Database . 3-1

Embedding SQL Statements . 3-2

Handling Result Sets . 3-2

Positional Iterators . 3-3

Named Iterators . 3-3

A Simple Embedded SQLJ Program . 3-3

In This Chapter

This chapter explains the fundamentals of building an Embedded SQLJ program

and includes a demonstration program.

Fundamentals of Embedded SQLJ

This chapter introduces simple Embedded SQLJ statements; see Chapter 4, “The

Embedded SQLJ Language,” on page 4-1, for detailed information about the

language.

SQLJ Statement Identifier

Each SQLJ statement in an Embedded SQLJ program is identified by #sql at the

beginning of the statement. The SQLJ translator recognizes #sql and translates the

rest of the statement into Java code using JDBC calls.

Connecting to a Database

You can use a class called ConnectionManager (located in a file in the /demo/sqlj

directory) to initiate a JDBC connection. The ConnectionManager class uses a

JDBC driver and a database URL to connect to a database. Database URLs are

described in “Database URLs” on page A-1.

To enable your Embedded SQLJ program to connect to a database, you assign

values to the following data members of the ConnectionManager class in the file

/demo/sqlj/ConnectionManager.java:

 Member Description

UID The user name

PWD The password for the user name

DRIVER The JDBC driver

DBURL The URL for the database

You must include the directory that contains your ConnectionManager.class file

(produced when you compile ConnectionManager.java) in your CLASSPATH

environment variable definition.

Your Embedded SQLJ program connects to the database by calling the

initContext() method of the ConnectionManager class, as follows:

ConnectionManager.initContext();

© Copyright IBM Corp. 1996, 2008 3-1

“The ConnectionManager Class” on page A-1 provides details about the

functionality of the initContext() method.

As an alternative to using the ConnectionManager class, you can write your own

input methods to read the values of user name, password, driver, and database

URL from a file or from the command line.

The connection context that you set up is the default connection context; all #sql

statements execute within this context, unless you specify a different context. For

information about using nondefault connection contexts, see “Using Nondefault

Connection Contexts” on page A-2.

Embedding SQL Statements

Embedded SQL statements can appear anywhere that Java statements can legally

appear. SQL statements must appear within curly braces, as follows:

#sql

{

INSERT INTO customer VALUES

(101, "Ludwig", "Pauli", "All Sports Supplies",

"213 Erstwild Court", "", "Sunnyvale", "CA",

"94086", "408-789-8075"

)

};

You can use the SELECT...INTO statement to retrieve data into Java variables (host

variables). Host variables within SQL statements are designated by a preceding

colon (:). For example, the following query places values in the variables

customer_num, fname, lname, company, address1, address2, city, state, zipcode, and

phone:

#sql

{

SELECT * INTO :customer_num, :fname, :lname, :company,

:address1, :address2, :city, :state, :zipcode,

:phone

FROM customer

WHERE customer_num = 101

};

SQL statements are case insensitive and can be written in uppercase, lowercase, or

mixed-case letters. Java statements are case sensitive (and so are host variables).

You use SELECT...INTO statements for queries that return a single record; for

queries that return multiple rows (a result set), you use an iterator object, described

in the next section.

Handling Result Sets

Embedded SQLJ uses result-set iterator objects rather than cursors to manage result

sets (cursors are used by languages such as IBM Informix ESQL/C). A result-set

iterator is a Java object from which you can retrieve the data returned by a

SELECT statement. Unlike cursors, iterator objects can be passed as parameters to

a method.

Important: Names of iterator classes must be unique within an application.

When you declare an iterator class, you specify a set of Java variables to match the

SQL columns that your SELECT statement returns. There are two types of iterators:

positional and named.

3-2 IBM Informix Embedded SQLJ User’s Guide

Positional Iterators

The order of declaration of the Java variables of a positional iterator must match

the order in which the SQL columns are returned. You use a FETCH...INTO

statement to retrieve data from a positional iterator.

For example, the following statement generates a positional iterator class with five

columns, called CustIter:

#sql iterator CustIter(int , String, String, String, String, String);

This iterator can hold the result set from the following SELECT statement:

SELECT customer_num, fname, lname, address1,

address2, phone

FROM customer

Named Iterators

The name of each Java variable of a named iterator must match the name of a

column returned by your SELECT statement; order is irrelevant. The matching of

SQL column name and iterator column name is case insensitive.

You use accessor methods of the same name as each iterator column to obtain the

returned data, as shown in the example in “A Simple Embedded SQLJ Program”

on page 3-3. The SQLJ translator uses the iterator column names to create accessor

methods. Iterator column names are case sensitive; therefore, you must use the

correct case when you specify an accessor method.

You cannot use the FETCH...INTO statement with named iterators.

For example, the following statement generates a named iterator class called

CustRec:

#sql iterator CustRec(

int customer_num,

String fname,

String lname ,

String company ,

String address1 ,

String address2 ,

String city ,

String state ,

String zipcode ,

String phone

);

This iterator class can hold the result set of any query that returns the columns

defined in the iterator class. The result set from the query can have more columns

than the iterator class, but the iterator class cannot have more columns than the

result set. For example, this iterator class can hold the result set of the following

query because the iterator columns include all of the columns in the customer

table:

SELECT * FROM customer

A Simple Embedded SQLJ Program

This sample program, Demo03.sqlj, demonstrates the use of a named iterator to

retrieve data from a database. This simple program outlines a standard sequence

for many Embedded SQLJ programs:

1. Import necessary Java classes.

2. Declare an iterator class.

Chapter 3. Building an Embedded SQLJ Program 3-3

3. Define the main() method.

All Java applications have a method called main, which is the entry point for

the application (where the interpreter starts executing the program).

4. Connect to the database.

The constructor of the application makes the connection to the database by

calling the initContext() method of the ConnectionManager class.

5. Run queries.

6. Create an iterator object and populate it by running a query.

7. Handle the results.

8. Close the iterator.
/***

 *

 * IBM CORPORATION

 *

 * PROPRIETARY DATA

 *

 * THIS DOCUMENT CONTAINS TRADE SECRET DATA WHICH IS THE PROPERTY OF

 * IBM CORPORATION. THIS DOCUMENT IS SUBMITTED TO RECIPIENT IN

 * CONFIDENCE. INFORMATION CONTAINED HEREIN MAY NOT BE USED, COPIED OR

 * DISCLOSED IN WHOLE OR IN PART EXCEPT AS PERMITTED BY WRITTEN AGREEMENT

 * SIGNED BY AN OFFICER OF IBM CORPORATION.

 *

 * THIS MATERIAL IS ALSO COPYRIGHTED AS AN UNPUBLISHED WORK UNDER

 * SECTIONS 104 AND 408 OF TITLE 17 OF THE UNITED STATES CODE.

 * UNAUTHORIZED USE, COPYING OR OTHER REPRODUCTION IS PROHIBITED BY LAW.

 *

 *

 * Title: Demo03.sqlj

 *

 * Description: This demonstrates simple iterator use

 *

 *

*/

import java.sql.*;

import sqlj.runtime.*; //SQLJ runtime classes

#sql iterator CustRec(

 int customer_num,

 String fname,

 String lname ,

 String company ,

 String address1 ,

 String address2 ,

 String city ,

 String state ,

 String zipcode ,

 String phone

);

public class Demo03

{

 public static void main (String args[]) throws SQLException

 {

 Demo03 demo03 = new Demo03();

 try

 {

 demo03.runDemo();

 }

 catch (SQLException s)

 {

 System.err.println("Error running demo program: " + s);

 System.err.println("Error Code : " +

 s.getErrorCode());

 System.err.println("Error Message : " +

 s.getMessage());

 }

3-4 IBM Informix Embedded SQLJ User’s Guide

}

 // Initialize database connection thru Connection Manager

 Demo03()

 {

 ConnectionManager.initContext();

 }

 void runDemo() throws SQLException

 {

 drop_db();

 #sql { CREATE DATABASE demo_sqlj WITH LOG MODE ANSI };

 #sql

 {

 create table customer

 (

 customer_num serial(101),

 fname char(15),

 lname char(15),

 company char(20),

 address1 char(20),

 address2 char(20),

 city char(15),

 state char(2),

 zipcode char(5),

 phone char(18),

 primary key (customer_num)

)

 };

 // Insert 4 Records in a try block

 try

 {

 #sql

 {

 INSERT INTO customer VALUES

 (101, "Ludwig", "Pauli", "All Sports Supplies",

 "213 Erstwild Court", "", "Sunnyvale", "CA",

 "94086", "408-789-8075"

)

 };

 #sql

 {

 INSERT INTO customer VALUES

 (102, "Carole", "Sadler", "Sports Spot",

 "785 Geary St", "", "San Francisco", "CA",

 "94117", "415-822-1289"

)

 };

 #sql

 {

 INSERT INTO customer VALUES

 (103, "Philip", "Currie", "Phil’s Sports",

 "654 Poplar", "P. O. Box 3498", "Palo Alto",

 "CA", "94303", "415-328-4543"

)

 };

 #sql

 {

 INSERT INTO customer VALUES

 (104, "Anthony", "Higgins", "Play Ball!",

 "East Shopping Cntr.", "422 Bay Road", "Redwood City",

 "CA", "94026", "415-368-1100"

)

 };

 }

Chapter 3. Building an Embedded SQLJ Program 3-5

catch (SQLException e)

 {

 System.out.println("INSERT Exception: " + e + "\n");

 System.out.println("Error Code : " +

 e.getErrorCode());

 System.err.println("Error Message : " +

 e.getMessage());

 }

 System.out.println();

 System.out.println("Running demo program Demo03....");

 System.out.println();

 // Declare Iterator of type CustRec

 CustRec cust_rec;

 #sql cust_rec = { SELECT * FROM customer };

 int row_cnt = 0;

 while (cust_rec.next())

 {

 System.out.println("===================================");

 System.out.println("CUSTOMER NUMBER :" + cust_rec.customer_num());

 System.out.println("FIRST NAME :" + cust_rec.fname());

 System.out.println("LAST NAME :" + cust_rec.lname());

 System.out.println("COMPANY :" + cust_rec.company());

 System.out.println("ADDRESS :" + cust_rec.address1() +"\n" +

 " " + cust_rec.address2());

 System.out.println("CITY :" + cust_rec.city());

 System.out.println("STATE :" + cust_rec.state());

 System.out.println("ZIPCODE :" + cust_rec.zipcode());

 System.out.println("PHONE :" + cust_rec.phone());

 System.out.println("===================================");

 System.out.println("\n\n");

 row_cnt++;

 }

 System.out.println("Total No Of rows Selected :" + row_cnt);

 cust_rec.close() ;

 System.out.println("\n\n\n\n\n");

 drop_db();

 }

 void drop_db() throws SQLException

 {

 try

 {

 #sql { drop database demo_sqlj };

 }

 catch (SQLException s) { }

 }

}

3-6 IBM Informix Embedded SQLJ User’s Guide

Chapter 4. The Embedded SQLJ Language

In This Chapter . 4-1

Embedded SQLJ Versus Traditional Embedded SQL . 4-1

Embedded SQLJ Source Files . 4-2

Identifying Embedded SQLJ Statements . 4-2

SQL Statements . 4-2

Host Variables . 4-3

SELECT Statements That Return a Single Row . 4-3

Handling Result Sets . 4-3

Positional Iterators . 4-3

Named Iterators . 4-4

Using Column Aliases . 4-5

Iterator Methods . 4-5

Positioned Updates and Deletes . 4-6

Monitoring the Execution of an SQL Query . 4-6

Calling SPL Routines and Functions . 4-7

SQL and Java Type Mappings . 4-7

Language Character Sets . 4-9

Importing Java Packages . 4-9

SQLJ Reserved Names . 4-10

Parameter, Field, and Variable Names . 4-10

Class Names and Filenames . 4-10

Handling Errors . 4-10

In This Chapter

This chapter provides detailed information about using the Embedded SQLJ

language. For syntax and reference information about specific statements, refer to

the IBM Informix Guide to SQL: Syntax.

Embedded SQLJ Versus Traditional Embedded SQL

Embedded SQLJ has some differences from the earlier embedded SQL languages

defined by ANSI/ISO: ESQL/C, ESQL/ADA, ESQL/FORTRAN, ESQL/COBOL,

and ESQL/PL/1. The major differences are as follows:

v The SQL connection statement of traditional embedded SQL is replaced by a

Java connection-context object. This approach enables Embedded SQLJ programs

to open multiple database connections simultaneously.

v In Embedded SQLJ there is no host variable definition section (preceded by a

BEGIN DECLARE SECTION statement and terminated by an END DECLARE

SECTION statement). All legal Java variables can be used as host variables.

v Embedded SQLJ does not include the WHENEVER...GOTO/

CONTINUE statement, because Java has well-developed rules for declaring and

handling exceptions.

v Embedded SQLJ uses iterator objects rather than cursors to manage result sets. A

result-set iterator is a Java object from which you can retrieve the data returned

by a SELECT statement. Unlike cursors, iterator objects can be passed as

parameters to methods.

v Embedded SQLJ supports access to data in columns of iterator objects by name,

through generated accessor methods. You can also access this data by position

using the FETCH...INTO statement, as used by traditional embedded SQL.

© Copyright IBM Corp. 1996, 2008 4-1

v Unlike other host languages, Java allows null data. Therefore, you do not need

to use null indicator variables with Embedded SQLJ.

v Embedded SQLJ does not include dynamic SQL; you must use JDBC instead.

The rest of this chapter describes how to use the Embedded SQLJ language.

Embedded SQLJ Source Files

The files containing your Embedded SQLJ source code must have the extension

.sqlj; for example, custapp.sqlj.

Identifying Embedded SQLJ Statements

To identify Embedded SQLJ statements to the SQLJ translator, each SQLJ statement

must begin with #sql. The SQLJ translator recognizes #sql and translates the

statement into Java code.

SQL Statements

Embedded SQLJ supports SQL statements at the SQL92 Entry level, with the

following additions:

v The EXECUTE PROCEDURE statement, for calling SPL routines and

user-defined routines

v The EXECUTE FUNCTION statement, for calling stored functions

v The BEGIN...END block

SQL statements must appear within curly braces, as follows:

#sql

{

create table customer

(

customer_num serial(101),

fname char(15),

lname char(15),

company char(20),

address1 char(20),

address2 char(20),

city char(15),

state char(2),

zipcode char(5),

phone char(18),

primary key (customer_num)

)

};

An SQL statement that is not enclosed within curly braces will generate a syntax

error.

SQL statements are case insensitive (unless delimited by double quotes) and can be

written in uppercase, lowercase, or mixed-case letters. Java statements are case

sensitive.

4-2 IBM Informix Embedded SQLJ User’s Guide

Host Variables

Host variables are variables of the host language (in this case Java) that appear

within SQL statements. A host variable represents a parameter, variable, or field

and is prefixed by a colon (:), as in the following example:

#sql [ctx] { SELECT INTO customer WHERE customer_num = :cust_no };

You use the SELECT statement with the INTO (as shown in this example), the

FETCH statement with the INTO clause (described in “Positional Iterators” on

page 4-3), or an accessor method (described in “Named Iterators” on page 4-4) to

retrieve data into host variables.

SELECT Statements That Return a Single Row

You use the SELECT...INTO statement for queries that return a single record of

data. For queries that return multiple rows (called a result set) you use an iterator

object, as described in the next section, “Handling Result Sets.”

The SELECT...INTO statement includes a list of host variables in the INTO clause

to which the selected data is assigned. For example:

#sql

{

SELECT * INTO :customer_num, :fname, :lname, :company,

:address1, :address2, :city, :state, :zipcode,

:phone

FROM customer

WHERE customer_num = 101

};

The number of selected expressions must match the number of host variables. The

SQL types must be compatible with the host variable types. If you use online

checking, the SQLJ translator checks that the order, number, and types of the SQL

expressions and host variables match. For information on how to perform online

checking, see “Online Checking” on page 5-8.

Handling Result Sets

Embedded SQLJ uses iterator objects to manage result sets returned by SELECT

statements. A result-set iterator is a Java object from which you can retrieve the

data returned from the database. Iterator objects can be passed as parameters to

methods and manipulated like other Java objects.

Important: Names of iterator classes must be unique within an application.

When you declare an iterator object, you specify a set of Java variables to match

the SQL columns that your SELECT statement returns. There are two types of

iterators: positional and named.

Positional Iterators

The order of declaration of the Java variables in a positional iterator must match

the order in which the SQL columns are returned.

For example, the following statement generates a positional iterator class called

CustIter with six columns:

#sql iterator CustIter(int , String, String, String, String, String);

Chapter 4. The Embedded SQLJ Language 4-3

This iterator can hold the result set from the following SELECT statement:

SELECT customer_num, fname, lname, address1,

address2, phone

FROM customer

You run the SELECT statement and populate the iterator object with the result set

by using an Embedded SQLJ statement of the form:

#sql iterator-object = { SELECT ...};

For example:

CustIter cust_rec;

#sql [ctx] cust_rec = { SELECT customer_num, fname, lname, address1,

address2, phone

FROM customer

};

You retrieve data from a positional iterator into host variables using the

FETCH...INTO statement:

#sql { FETCH :cust_rec

INTO :customer_num, :fname, :lname,

:address1, :address2, :phone

};

The SQLJ translator checks that the types of the host variables in the INTO clause

of the FETCH statement match the types of the iterator columns in corresponding

positions.

The types of the SQL columns in the SELECT statement must be compatible with

the types of the iterator. These type conversions are checked at translation time if

you perform online checking. For information about setting up online checking, see

“Online Checking” on page 5-8. For a listing of SQL and Java type mappings, see

“SQL and Java Type Mappings” on page 4-7.

Named Iterators

The name of each Java variable of a named iterator must match the name of a

column returned by your SELECT statement; order is irrelevant. The matching of

SQL column names and iterator column names is case insensitive.

For example, the following statement generates a named iterator class called

CustRec:

#sql iterator CustRec(

int customer_num,

String fname,

String lname ,

String company ,

String address1 ,

String address2 ,

String city ,

String state ,

String zipcode ,

String phone

);

This iterator can hold the result set of any query that returns the columns defined

in the iterator class. You use accessor methods of the same name as each iterator

column to obtain the returned data, as shown in the example in “A Simple

Embedded SQLJ Program” on page 3-3. The SQLJ translator uses the iterator

4-4 IBM Informix Embedded SQLJ User’s Guide

column names to create accessor methods. Iterator column names are case

sensitive; therefore, you must use the correct case when you specify an accessor

method.

You cannot use the FETCH...INTO statement with named iterators.

The following example illustrates the use of named iterators:

// Declare Iterator of type CustRec

CustRec cust_rec;

#sql cust_rec = { SELECT * FROM customer };

int row_cnt = 0;

while (cust_rec.next())

{

System.out.println("===================================");

System.out.println("CUSTOMER NUMBER :" + cust_rec.customer_num());

System.out.println("FIRST NAME :" + cust_rec.fname());

System.out.println("LAST NAME :" + cust_rec.lname());

System.out.println("COMPANY :" + cust_rec.company());

System.out.println("ADDRESS :" + cust_rec.address1() +"\n" +

" " + cust_rec.address2());

System.out.println("CITY :" + cust_rec.city());

System.out.println("STATE :" + cust_rec.state());

System.out.println("ZIPCODE :" + cust_rec.zipcode());

System.out.println("PHONE :" + cust_rec.phone());

System.out.println("===================================");

System.out.println("\n\n");

row_cnt++;

}

System.out.println("Total No Of rows Selected :" + row_cnt);

cust_rec.close() ;

The next() method of the iterator object advances processing to successive rows of

the result set. It returns FALSE after it fails to find a row to retrieve.

The Java compiler detects type mismatches for the accessor methods.

The validity of the types and names of the iterator columns and their related

columns in the SELECT statement are checked at translation time if you perform

online checking. For information about setting up online checking, see “Online

Checking” on page 5-8.

Using Column Aliases

When an expression returned by a SELECT statement has an SQL name that is not

a valid Java identifier, use SQL column aliases to rename them. For example, the

name Not valid for Java is acceptable as a column name in SQL, but not as a Java

identifier. You can use a column alias that has a name acceptable as a Java

identifier by using the AS clause:

SELECT "Not valid for Java" AS "Col1" FROM tablename

When you create a named iterator class for this query, you specify the column alias

name for the Java variable, as in:

#sql iterator Iterator_name (String Col1);

Iterator Methods

Both named and positional iterator objects have the following methods:

v rowCount()

Chapter 4. The Embedded SQLJ Language 4-5

Returns the number of rows retrieved by the iterator object

v close()

Closes the iterator; raises SQLException if the iterator is already closed

v isClosed()

Returns TRUE after the iterator’s close() method has been called; otherwise, it

returns FALSE

Positional iterators also have the endFetch() method. The endFetch() method

returns TRUE when no more rows are available.

Named iterators also have the next() method. The next() method advances

processing to successive rows of the result set. It returns FALSE after it fails to find

a row to retrieve. For an example of how to use the next() method, see “Named

Iterators” on page 4-4.

Positioned Updates and Deletes

To perform positioned updates and deletes in a result set, you use the WHERE

CURRENT OF clause with a host variable that contains an iterator object. For

example:

#sql { delete_statement/update_statement

 WHERE CURRENT OF :iter };

At runtime, the variable :iter must contain an open iterator object that contains a

result set selected from the same table accessed by the query in either

delete_statement or update_statement. The current row of that iterator object is

deleted or updated.

Monitoring the Execution of an SQL Query

You can monitor and modify the execution of an SQL query by using the execution

context associated with it. An execution context is an instance of the class

sqlj.runtime.ExecutionContext; an execution context is associated with each

executable SQL operation in an Embedded SQLJ program.

You can supply an execution context explicitly for an SQL statement:

#sql [execCtx] {SQL_statement};

If you do not explicitly supply an execution context, the SQL statement uses the

default execution context for the connection context you are using.

If you want to supply an explicit connection context and an explicit execution

context, the SQL statement looks like this:

#sql [connCtx, execCtx] {SQL_statement };

You use the getExecutionContext() method of the connection context to obtain that

connection’s default execution context.

The execution-context object has attributes and methods that provide information

about an SQL operation and the ability to modify its execution.

For each of the following attributes, there is a method called getattribute that reads

the value of the attribute, and a method called setattribute that sets its value. The

attributes are:

4-6 IBM Informix Embedded SQLJ User’s Guide

Attribute Description

MaxRows The maximum number of rows a query can return

MaxFieldSize The maximum number of bytes that can be returned as data for any

column or output variable

QueryTimeout The number of seconds to wait for an SQL operation to complete

SQLWarnings Any warnings that occurred during the last SQL operation

UpdateCount The number of rows updated, inserted, or deleted during the last SQL

operation

Calling SPL Routines and Functions

You can call a Stored Procedure Language (SPL) procedure by using the EXECUTE

PROCEDURE statement. For example:

#sql { EXECUTE PROCEDURE proc_name(:arg_name) };

You can call a stored function by using the EXECUTE FUNCTION statement. For

example:

#sql {EXECUTE FUNCTION func_name (func_arg) into :num };

SQL and Java Type Mappings

When you retrieve data from a database into an iterator object (see “Handling

Result Sets” on page 4-3) or into a host variable, you must use Java types that are

compatible with the SQL types. The following table shows valid conversions from

SQL types to Java types.

Chapter 4. The Embedded SQLJ Language 4-7

SQL Type Java Type

BIGINT, BIGSERIAL bigint

BLOB byte[]

BOOLEAN boolean

BYTE byte[]

CHAR, CHARACTER String

CHARACTER VARYING String

CLOB byte[]

DATE java.sql.Date

DATETIME java.sql.Timestamp

DECIMAL, NUMERIC, DEC java.math.BigDecimal

FLOAT, DOUBLE PRECISION double

INT8 long

INTEGER, INT int

INTERVAL IfxIntervalDF, IfxIntervalYM1

LVARCHAR String

MONEY java.math.BigDecimal

NCHAR, NVARCHAR String

SERIAL int

SERIAL8 long

SMALLFLOAT float2

SMALLINT short

TEXT String

VARCHAR String

1 IfxIntervalYM and IfxIntervalDF are Informix extensions to JDBC 2.0.2 This mapping is

JDBC compliant. You can use IBM Informix JDBC Driver to map SMALLFLOAT data type

(via the JDBC FLOAT data type) to the Java double data type for backward compatibility by

setting the IFX_GET_SMFLOAT_AS_FLOAT environment variable to 1.

You must also use compatible Java types for host variables that are arguments to

SQL operations. This table shows valid conversions from Java types to SQL types.

4-8 IBM Informix Embedded SQLJ User’s Guide

Java Type SQL Type

java.math.BigDecimal DECIMAL

boolean BOOLEAN

byte[] BYTE

java.sql.Date DATE

double FLOAT1

float SMALLFLOAT

int INT

long INT8

short SMALLINT

String CHAR

java.sql.Time DATETIME

java.sql.Timestamp DATETIME

com.informix.jdbc.IfxIntervalDF INTERVAL

com.informix.jdbc.IfxIntervalYM INTERVAL

1 This mapping is JDBC compliant. You can use IBM Informix JDBC Driver to map the Java

double data type (via the JDBC FLOAT data type) to the Informix SMALLFLOAT data type

for backward compatibility by setting the IFX_GET_SMFLOAT_AS_FLOAT environment

variable to 1.

Important: Unlike other host languages (for example, C), Java allows null data.

Therefore, you do not need to use null indicator variables with

Embedded SQLJ. The Java null value is equivalent to the SQL NULL

value.

Language Character Sets

Embedded SQLJ supports Java's Unicode escape sequences. Also, if you set your

Java property file.encoding to 8859_1 (or do not set it at all), you can use the

Latin-1 character set.

To process files with a different encoding—for example, SJIS—you have the

following choices:

v Use the Sun JDK tool native2ascii to convert the native encoded source to a

source with ASCII encoding.

v Set file.encoding=SJIS in java.properties in the Java home directory.

v Invoke the SQLJ translator using the following command:

java ifxsqlj -Dfile.encoding=SJIS file.sqlj

Importing Java Packages

Your Embedded SQLJ programs need to import the JDBC API (java.sql.*) and

SQLJ runtime (sqlj.runtime.*) packages to which they refer. The classes you are

likely to commonly use are:

v In package java.sql for the JDBC API:

The SQLException class—includes all runtime exceptions raised by Embedded

SQLJ—and classes you explicitly use, such as java.sql.Date, java.sql.ResultSet.

v In package sqlj.runtime for SQLJ runtime:

Chapter 4. The Embedded SQLJ Language 4-9

SQLJ stream types (explicitly referenced): for example, BinaryStream, the

ConnectionContext class, and the reference implementation of Embedded SQLJ

classes (in sqlj.runtime.ref).

SQLJ Reserved Names

This section lists names reserved by the SQLJ translator. Do not use these names in

your Embedded SQLJ programming.

Parameter, Field, and Variable Names

The string _sJT is a reserved prefix for generated variable names. Do not use this

prefix for the names of:

v Variables declared within blocks that include SQL statements

v Parameters to methods that contain SQL statements

v Fields in classes that contain SQL statements or whose subclasses contain SQL

statements

Class Names and Filenames

Do not declare classes that conflict with the names of internal classes. Do not

create files that conflict with generated internal resource files.

The SQLJ translator creates internal classes and resource files for use by generated

code. The names of these files and classes have a prefix composed of the name of

the original input file followed by the string _SJ. For example, if you translate a

file called File1.sqlj that uses the package COM.foo, the names of some of the

internal classes produced are:

v COM.foo.File1_SJInternalClass

v COM.foo.File1_SJProfileKeys

v COM.foo.File1_SJInternalClass$Inner

v COM.foo.File1_SJProfile0

v COM.foo.File1_SJProfile1

Generated files for these internal classes, which are created in the same directory

as the input file, File1.sqlj, are called:

v File1_SJInternalClass.java (includes the class

COM.foo.File1_SJInternalClass$Inner)

v File1_SJProfileKeys.java

v File1_SJProfile0.ser

v File1_SJProfile1.ser

Files with the .ser extension are internal resource files that contain information

about SQL operations in an .sqlj file.

Handling Errors

Some iterator and connection-context methods might raise exceptions specified by

the JDBC API SQLException class. For information about using SQLException

methods to obtain information about these errors, refer to your JDBC API

documentation.

4-10 IBM Informix Embedded SQLJ User’s Guide

Chapter 5. Processing Embedded SQLJ Source Code

In This Chapter . 5-1

Translating, Compiling, and Running Embedded SQLJ Programs 5-1

The ifxsqlj Command . 5-2

Command Options . 5-2

Basic Options . 5-3

Advanced Options . 5-4

Setting Options . 5-7

Setting Options on the Command Line . 5-7

Supplying Options in Property Files . 5-7

Precedence of Options . 5-7

Format of Property Files . 5-8

Online Checking . 5-8

Setting the -user and -password Options . 5-9

Setting the -url and -driver Options . 5-9

The ifxprofp Tool . 5-9

In This Chapter

This chapter describes how to create executable Java programs from your

Embedded SQLJ source code. It explains:

v How to use the SQLJ translator

v Basic translation and compilation options

v Advanced translation and compilation options

v How to use property files

v How to perform online checking

Translating, Compiling, and Running Embedded SQLJ Programs

You use the command java ifxsqlj to create executable Java .class files from your

Embedded SQLJ source code.

When you run the java ifxsqlj command with an .sqlj source file, the source file is

processed in two stages. In the first stage, called translation, the SQLJ translator

creates a Java source file (with the extension .java). For example, when you process

a file called File1.sqlj, the SQLJ translator creates a file called File1.java. The SQLJ

translator also creates internal resource files with the extension .ser.

In the second stage of processing, the SQLJ translator passes .java files to a Java

compiler. Compilation creates files with the extension .class; in this example, your

compiled Java program is called File1.class. An internal resource file named

profilekeys.class is also created. If your program includes an iterator, a file called

iterator_name.class is produced.

Tip: To perform translation only, execute the java ifxsqlj command with the

-compile option set to FALSE. For information about the -compile option, see

“Advanced Options” on page 5-4.

To create a complete application, you must include the directories that contain the

SQLJ runtime classes in sqlj.runtime.* in your CLASSPATH environment variable

© Copyright IBM Corp. 1996, 2008 5-1

definition. The SQLJ runtime files are available in ifxsqlj.jar, the file that you

installed when you first installed the Embedded SQLJ product, as described in

“Setting Up Your Software” on page 2-1.

In addition, you must include the locations of ifxtools.jar and the relevant version

of the JDK in your CLASSPATH definition. At runtime, you must also include the

location of ifxjdbc.jar; however, you do not need to include this file location when

translating or compiling your application.

You run your Embedded SQLJ program like any other Java program, by using the

Java interpreter, as follows:

java File1

The ifxsqlj Command

You use the java ifxsqlj command to translate and compile your Embedded SQLJ

source code, as described above. You run the java ifxsqlj command at the DOS or

UNIX® prompt.

The syntax of the java ifxsqlj command is as follows:

java ifxsqlj optionlist filelist

optionlist A set of options separated by spaces. Some options have prefixes to

indicate they are to be passed to utilities other than the SQLJ

translator, such as the Java compiler.

filelist A list of filenames separated by spaces: for example,

file1.sqlj file2.sqlj

 You must include the absolute or relative path to the files in filelist.

The files can have the extension .sqlj or .java. You can specify .sqlj

files together with .java files on the same command line.

If you have .sqlj and .java files that require access to code in each

other’s file, enter all of these files on the command line for the

same execution of the java ifxsqlj command.

You can use an asterisk (*) as a wildcard to specify filenames; for

example, c*.sqlj processes all files beginning with c that have the

extension .sqlj.

 When you run the java ifxsqlj command, your CLASSPATH environment variable

must be set to include any directories that contain .class files and .ser files the

translator needs to access for type resolution of variables in your Embedded SQLJ

source code.

Command Options

Many options are available to customize how you run the java ifxsqlj command:

v Basic options are described in the next section.

v Advanced options are described in “Advanced Options” on page 5-4.

You can set options either on the command line or in property files. Options set on

the command line can be passed to the SQLJ translator, the Java compiler, or the

Java interpreter. Options set in property files can be passed to the SQLJ translator

5-2 IBM Informix Embedded SQLJ User’s Guide

or the Java compiler, but not to the Java interpreter. For more information, see

“Setting Options on the Command Line” on page 5-7 and “Supplying Options in

Property Files” on page 5-7.

Basic Options

The following table lists the basic options available for use with the java ifxsqlj

command.

Option Description

-d Specifies the root output directory for generated .ser and .class files

 If you do not specify this option, files are generated under the

directory of the input .sqlj file.

-dir Specifies the root output directory for generated .java files

 If you do not specify this option, files are generated under the

directory of the input .sqlj file.

-encoding Specifies the GLS encoding for .sqlj and .java input files and for

.java generated files

 If unspecified, the setting of the file.encoding property for the Java

interpreter is used.

The -encoding option is also passed to the Java compiler.

-help Displays option names, descriptions, and current settings

 The list displays:

v The name of the option

v The type of the option (for example, if it is Boolean) or a

selection of allowed values

v The current value

v A description of the option

v Whether the property is at its default, or was set by either a

property file or the command line

No translation or compilation is performed when you specify the

-help option.

-linemap Enables the mapping of line numbers between the generated .java

file and the original .sqlj file

 The -linemap option is useful for debugging because it allows you

to trace compilation and execution errors back to your Embedded

SQLJ source code.

For the -linemap option to be effective, the name of the .sqlj

source code file must match the name of the class it implements.

-props Specifies the name of the property file from which to read options

 “The ifxprofp Tool” on page 5-9 explains how to use property files.

-status Displays status messages while the java ifxsqlj command is

running

-version Displays the version of Embedded SQLJ you are using

 No translation or compilation is performed when you specify the

-version option.

Chapter 5. Processing Embedded SQLJ Source Code 5-3

-warn Specifies a list of flags in a comma-separated string for controlling

the display of warning and information messages during

translation

 The flags are:

v all/none. Turns on or off all warnings and information messages

v null(default)/nonull. Specifies whether the translator checks

nullable columns and nullable Java variable types for conversion

loss when data is transferred between database columns and

Java host variables

The translator must connect to the database for this option to be

in effect.

v precision(default)/noprecision. Specifies whether the translator

checks for loss of precision when data is transferred between

database columns and Java variables

The translator must connect to the database for this option to be

in effect.

v portable(default)/noportable. Turns on or off warning messages

about the portability of Embedded SQLJ statements

v strict(default)/nostrict. Specifies whether the translator checks

named iterators against the columns returned by a SELECT

statement and issues a warning for any mismatches

The translator must connect to the database for this option to be

in effect.

v verbose(default)/noverbose. Turns on or off additional

information messages about the translation process

The translator must connect to the database for this option to be

in effect.

For example, the following setting of the -warn option turns off all

warnings and then turns on the precision and nullability checks:

-warn=none,null,precision

Advanced Options

The following table lists the advanced options available for use with the java

ifxsqlj command. Many of these options are for online checking, which is

discussed in “Online Checking” on page 5-8.

Option Description

-cache Turns on the caching of results from online checking

 Caching saves you from unnecessary connections to the database

in subsequent runs of the translator for the same file.

Results are written to the file SQLChecker.cache in your current

directory. The cache holds serialized representations of all SQL

statements that translated without errors or warnings. The cache is

cumulative and grows through successive invocations of the

translator.

You empty the cache by deleting the SQLChecker.cache file.

Caching is off by default; you turn caching on by setting the -cache

option to true, 1, or on; for example, -cache=true. You turn

caching off by setting the option to false, 0, or off.

5-4 IBM Informix Embedded SQLJ User’s Guide

-compile Set this flag to false to disable processing of .java files by the

compiler. This applies to generated .java files and to .java files

specified on the command line.

-compiler-executable

Specifies a particular Java compiler for the java ifxsqlj command

to use

 If unset, the translator uses javac. If you do not specify a directory

path, the java ifxsqlj command searches for the executable

according to the setting of your PATH environment variable.

-compiler-encoding-flag

Set this flag to false to prevent the value of the SQLJ -encoding

option from being automatically passed to the compiler.

-compiler-output-file

If you have instructed the Java compiler to output its results to a

file, use the -compiler-output-file option to specify the filename.

-driver Specifies a list of JDBC drivers that can be used to interpret JDBC

connection URLs for online checking (see “Online Checking” on

page 5-8)

 You specify a class name or a comma-separated list of class names.

For example, specify IBM Informix JDBC Driver as follows:

-driver=com.informix.jdbc.IfxDriver

-offline Specifies a Java class to implement off-line checking

 The default off-line checker class is sqlj.semantics.OfflineChecker.

Off-line checking only runs when online checking does not (either

because online checking was not enabled or because it stopped

because of error). Off-line checking verifies SQL syntax and the

usage of Java types.

With off-line checking, there is no connection to the database.

-online Specifies a Java class or list of classes to implement online checking

 The default online checker class is sqlj.semantics.JdbcChecker.

You can specify an online checker class for a particular connection

context, as in:

-online@ctxclass2=sqlj.semantics.JdbcChecker

You must specify a user name with the -user option for online

checking to occur. The -password, -url, and -driver options must

be appropriately set as well.

-password Specifies a password for the user name set with the -user option

 If you specify the -user option, but not the -password option, the

translator prompts you for the password.

If you are using multiple connection contexts, the setting for

-password for the default connection context also applies to any

connection context that does not have a specific setting.

-ser2class Set this flag to true to convert the generated .ser files to .class files.

This is necessary if you are creating an applet to be run from a

browser, such as Netscape 4.0, that does not support loading a

serialized object from a resource file.

Chapter 5. Processing Embedded SQLJ Source Code 5-5

The original .ser file is not saved.

-url Specifies a JDBC URL for establishing a database connection for

online checking (see “Database URLs” on page A-1 and “Online

Checking” on page 5-8)

 The URL can include a host name, a port number, and an Informix

database name. The format is:

jdbc:informix-sqli://{<ip-address>|

<domain-name>}:<port-number>[/<dbname>]:

INFORMIXSERVER=<server-name>[;user=<username>;

password=<password>;<name>=<value>

[;<name>=<value>]...]

If you are using multiple connection contexts, the setting for -url

for the default context also applies to any connection context that

does not have a specific setting.

You can specify a URL for a particular connection context, as in

-url@ctxclass2=....

Any connection context with a URL must also have a user name

set for it (using the -user option) for online checking to occur.

-user Enables online checking and specifies the user name with which

the translator connects to the database (see “Online Checking” on

page 5-8)

 For example, to enable online checking on the default connection

context and connect with the user name fred, use the following

option:

-user=fred

If you are using multiple connection contexts, the setting for -user

for the default connection context also applies to any connection

context that does not have a specific setting.

If you want to enable online checking for the default context, but

turn off online checking for another connection—for example

ctxcon2—you need to specify the -user option twice:

-user=fred -user@ctxcon2=

To enable online checking for a particular connection context,

specify that context with the user name, as in:

-user@ctxcon3=joyce

The classes of the connection contexts you specify must all be

declared in your source code or previously compiled into a .class

file.

-vm Specifies a particular Java interpreter for the java ifxsqlj command

to use

 You must also include the path to the interpreter. If you do not

specify a particular Java interpreter using this option, the translator

uses java as a default.

The -vm option must be specified on the command line; you

cannot set it in a property file.

5-6 IBM Informix Embedded SQLJ User’s Guide

Setting Options

You specify options for the java ifxsqlj command either on the command line or in

a property file. Command line options are discussed in “Setting Options on the

Command Line” on page 5-7. Property files are discussed in “Supplying Options in

Property Files” on page 5-7.

For Boolean options (those that are either on or off), you can set the option simply

by specifying the option name; for example, -linemap. You can also set the option

to TRUE, as in -linemap=true. To turn off a Boolean option, you must set it to FALSE:

for example, -linemap=false. You can also set Boolean options to yes or no, or to 1

or 0.

Setting Options on the Command Line

Options on the command line override any options set in default files. If the same

option appears more than once on the command line, the translator uses the final

(rightmost) option’s value.

Command-line option names are case sensitive.

You can attach prefixes to options to pass the option to the Java compiler or to the

Java interpreter. If you do not use a prefix, the option is passed to the SQLJ

translator.

The prefixes are:

v -C

Passes compiler options to the Java compiler, as shown in the following

example:

-C-classpath=/user/jdk/bin

v -J

Passes interpreter options to the Java interpreter, as shown in the following

example:

-J-Duser.language=ja

The options available to pass to the interpreter depend on the release and brand

of Java you are using.

Do not use the -C prefix with the -d and -encoding options; when you specify

these SQLJ translator options, they are automatically passed to the Java compiler.

Supplying Options in Property Files

You can use property files to supply options to the java ifxsqlj command. The

default name of a property file is sqlj.properties; you can specify a different name

by using the -props option on the command line (see “Basic Options” on page 5-3).

You cannot use a property file to specify:

v The -props, -help, and -version basic options

v The -vm advanced option

v Options with the prefix -J (for passing options to the Java interpreter)

Precedence of Options

The java ifxsqlj command checks for the existence of files called sqlj.properties in

the following directories in the following order:

Chapter 5. Processing Embedded SQLJ Source Code 5-7

1. The Java home directory

2. Your home directory

3. The current directory

The translator processes each property file it finds and overrides any previously set

option if it finds a new setting for that option.

Later entries in the same property file override earlier entries.

Options on the command line override options set by property files.

If you set options on the command line or in a property file specified using the

-props option, these options override any options set in sqlj.properties files.

Format of Property Files

In a property file, you:

v Specify one option per line.

v Begin a line with the symbol # to denote a comment.

Tip: The translator ignores empty lines.

The syntax for specifying options is the same as shown in “Command Options” on

page 5-2, except you replace the initial hyphen with a string followed by a period

that indicates to which utility the option is passed.

You can pass options to the SQLJ translator or the Java compiler; however, you

cannot pass options to the Java interpreter from a property file. The strings for

specifying utilities are as follows.

Precede an option with... To pass it to this utility...

sqlj. SQLJ translator

compile. Java compiler

 An example property file looks like this:

Turn on online checking and specify the user to connect with

sqlj.user=joyce

sqlj.password=*******

JDBC Driver to connect with

sqlj.driver=com.informix.jdbc.IfxDriver

Database URL

sqlj.url=jdbc:<ipaddr>:<portno>/demo_isqlj:informixserver=<$INFORMIXSERVER>

Instruct the compiler to output status messages during compile

compile.verbose

Online Checking

Online checking analyzes the validity of the embedded SQL statements against the

database schema (user name, password, and database) you specify.

Online checking performs the following operations:

v Passes SQL data manipulation statements (DML) to the database to verify their

syntax and semantics and their validity for the database schema

v Checks stored procedures and functions for overloading

v Runs the checks covered by off-line checking

5-8 IBM Informix Embedded SQLJ User’s Guide

Off-line checking verifies SQL syntax and usage of Java types; there is no

connection to a database for off-line checking.

To set up online checking, you use the following options with the java ifxsqlj

command or set them in a property file: -user, -password, -url, and -driver. These

options are described in “Advanced Options” on page 5-4.

Setting the -user and -password Options

You enable online checking by setting the -user option. The -user option also

supplies the user name for the database connection to be used for checking. You

do not have to specify the same database or user name for online checking as the

application uses at runtime.

In the simplest case, you supply a user name with the -user option, and online

checking is performed using the default connection context, as in:

-user = joyce

You can supply the password for the user name by using the -password option or

by combining the password with the user name; for example,

-user = joyce/jcs123 or -user = joyce -password =jcs123.

To disable online checking on the command line, set the -user option to an empty

value (as in -user=) or omit the option entirely. To disable online checking in a

property file, comment out the line specifying sqlj.user.

To enable online checking against a nondefault connection context, you specify the

connection context with the user name in the -user option. In the following

example, the SQLJ translator connects to the database specified in the

connection-context object, conctx, using the user name fred:

-user@conctx = fred

Setting the -url and -driver Options

The -url option specifies a JDBC URL for establishing a database connection (see

“Database URLs” on page A-1).

The -driver option specifies a list of JDBC drivers that can be used to interpret

JDBC connection URLs for online checking.

Both of these options are shown in “Advanced Options” on page 5-4.

The ifxprofp Tool

Embedded SQLJ includes the ifxprofp tool. The tool ifxprofp enables you to print

out the information stored in internal resource .ser files, for debugging purposes.

You invoke the tool as follows:

java ifxprofp filename.ser

Here is an example of the output of the ifxprofp tool:

===

printing contents of profile Demo02_SJProfile0

created 918584057644 (2/9/99 10:14 AM)

associated context is sqlj.runtime.ref.DefaultContext

profile loader is sqlj.runtime.profile.DefaultLoader@1f7f1941

contains no customizations

original source file:Demo02.sqlj

contains 8 entries

Chapter 5. Processing Embedded SQLJ Source Code 5-9

===

profile Demo02_SJProfile0 entry 0

#sql { CREATE DATABASE demo_sqlj WITH LOG MODE ANSI

 };

line number:59

PREPARED_STATEMENT executed via EXECUTE_UPDATE

role is STATEMENT

descriptor is null

contains no parameters

result set type is NO_RESULT

result set name is null

contains no result columns

===

5-10 IBM Informix Embedded SQLJ User’s Guide

Appendix A. Connecting to Databases

“Connecting to a Database” on page 3-1 describes how Embedded SQLJ programs

connect to databases. This appendix provides background information and

information about using nondefault connection contexts.

The ConnectionManager Class

You use the ConnectionManager class to make a connection to a database, as

described in “Connecting to a Database” on page 3-1. The ConnectionManager

class has two methods:

v newConnection()

v initContext()

The newConnection() method creates and returns a new JDBC Connection object

using the current values of the DRIVER, DBURL, UID, and PWD attributes. If any

of the needed attributes is null or a connection cannot be established, an error

message is printed to System.out, and the program exits.

The initContext() method returns the currently installed default context. If the

current default context is null, a new default context instance is created and

installed using a connection obtained from a call to getConnection.

Database URLs

The DBURL data member of the ConnectionManager class and the value for the

-url option that you specify for online checking are database URLs. (For

information about online checking, see “Online Checking” on page 5-8.) Database

URLs specify the subprotocol (the database connectivity mechanism), the database

or server identifier, and a list of properties.

Your Embedded SQLJ program uses IBM Informix JDBC Driver to connect to an

Informix database. IBM Informix JDBC Driver supports database URLs of the

following format:

jdbc:informix-sqli://[{ip-address|host-name}:port-number][/dbname]:

 INFORMIXSERVER=server-name;[user=user;password=password]

 [;name=value[;name=value]...]

In the preceding syntax:

v Curly brackets ({}) together with vertical lines (|) denote more than one

choice of variable.

v Italics denote a variable value.

v Brackets ([]) denote an optional value.

v Words or symbols not enclosed in brackets are required (INFORMIXSERVER=, for

example).

Important: Spaces are not allowed in the database URL.

© Copyright IBM Corp. 1996, 2008 A-1

The following table describes the variable parts of the database URL.

 Database URL Variable Required? Description

ip-address or

domain-name

Yes The IP address or the domain name of the

computer running the Informix database server

An example of an IP address is 123.45.67.89.

An example of a domain name is myhost.com.

port-number Yes The port number of the Informix database server

dbname No The name of the Informix database to which you

want to connect

If you do not specify the name of a database, a

connection is made to the Informix database

server.

server-name Yes The name of the Informix server to which you

want to connect

This is the value of the INFORMIXSERVER

environment variable.

The INFORMIXSERVER environment variable is

required in the database URL, unless it is included

in the property list.

username Yes The name of the user you want to connect to the

Informix database or database server as

password Yes The password of the user specified by username

name=value No A name-value pair that specifies a value for the

Informix environment variable contained in the

name variable, recognized by either IBM Informix

JDBC Driver or Informix database servers

The value of name is case insensitive.

For information about environment variables

supported by IBM Informix JDBC Driver and how

to set them, refer to the IBM Informix JDBC Driver

Programmer’s Guide.

Using Nondefault Connection Contexts

This section explains how to use nondefault connection contexts. Embedded SQLJ

uses a connection-context object to manage the connection to the database in which

you want an SQL statement to execute. You can specify different

connection-context objects for different SQL statements in the same Embedded

SQLJ program, as shown in the sample program MultiConnect.sqlj included in

this section.

 To use a nondefault connection context:

1. Define the connection-context class by using an Embedded SQLJ connection

statement. The syntax of the connection statement is as follows:

#sql [modifiers] context java_class_name;

modifiers A list of Java class modifiers: for example, public

A-2 IBM Informix Embedded SQLJ User’s Guide

java_class_name

The name of the Java class of the new connection context
2. Create a connection-context object for connecting to the database.

3. Specify the connection-context object in your Embedded SQLJ statement in

parentheses following the #sql string.

MultiConnect.sqlj

The sample program MultiConnect.sqlj creates two databases with one table each,

Orders and Items, and inserts two records in the Orders table and corresponding

records in the Items table. The program prints the order line items for all the

orders from both tables, which exist in different databases, by creating separate

connection contexts for each database.

MultiConnect.sqlj calls the methods executeSQLScript() and getConnect(). These

methods are contained in demoUtil.java, which follows this program.

/***

 *

 * IBM CORPORATION

 *

 * PROPRIETARY DATA

 *

 * THIS DOCUMENT CONTAINS TRADE SECRET DATA WHICH IS THE PROPERTY OF

 * IBM CORPORATION. THIS DOCUMENT IS SUBMITTED TO RECIPIENT IN

 * CONFIDENCE. INFORMATION CONTAINED HEREIN MAY NOT BE USED, COPIED OR

 * DISCLOSED IN WHOLE OR IN PART EXCEPT AS PERMITTED BY WRITTEN AGREEMENT

 * SIGNED BY AN OFFICER OF IBM CORPORATION.

 *

 * THIS MATERIAL IS ALSO COPYRIGHTED AS AN UNPUBLISHED WORK UNDER

 * SECTIONS 104 AND 408 OF TITLE 17 OF THE UNITED STATES CODE.

 * UNAUTHORIZED USE, COPYING OR OTHER REPRODUCTION IS PROHIBITED BY LAW.

 *

 *

 * Title: MultiConnect.sqlj

 *

 * Description: This demonstrates usage of 2 connection contexts using

 * different URLs.

 *

 *

*/

import java.sql.*;

import java.math.*;

import java.lang.*;

import sqlj.runtime.*; //SQLJ runtime classes

import sqlj.runtime.ref.*;

/* Declare ConnectionContext classes OrdersCtx and ItemsCtx.

 * OrdersCtx is related to the orders table which is in orders_db database

 * ItemsCtx is related to the items table which is in items_db database

 * Instances of these classes are used to specify where SQL operations

 * on orders table or items table shld should execute.

 * We create the 2 databases using a default context using ConnectionManager

 *

 * For an order (from the orders table in the orders_db database), we try

 * to query the items table(in the items_db database) for the line items which

 * make up that order

 *

 */

#sql context OrdersCtx;

#sql context ItemsCtx;

// Declare 2 named iterators for Items and Orders

#sql iterator OrdersRec (

Appendix A. Connecting to Databases A-3

Integer order_num,

 Date order_date,

 String po_num,

 Date paid_date

);

#sql iterator ItemsRec (

 Short item_num,

 int order_num,

 Short stock_num,

 String manu_code,

 Integer quantity,

 BigDecimal total_price

);

public class MultiConnect extends demoUtil

{

 private OrdersCtx o_ctx = null;

 private ItemsCtx i_ctx = null;

 private DefaultContext ctx = null;

 // The constructor sets up a default database context

 MultiConnect()

 {

 /* Initialize database connection thru Connection Manager

 * and create a default context

 */

 ctx = ConnectionManager.initContext();

 }

 public static void main (String args[]) throws SQLException

 {

 MultiConnect mc_ob = new MultiConnect();

 try

 {

 System.out.println("Running demo program MultiConnect....");

 mc_ob.runDemo();

 //Close the connection

 mc_ob.o_ctx.close() ;

 mc_ob.i_ctx.close() ;

 }

 catch (SQLException s)

 {

 System.err.println("Error running demo program: " + s);

 System.err.println("Error Code : " +

 s.getErrorCode());

 System.err.println("Error Message : " +

 s.getMessage());

 }

 }

 void runDemo() throws SQLException

 {

 // We drop the 2 databases using the default context

 drop_db();

 /*

 * We create the 2 databases needed for the program using the

 * default Connection Context

 */

 #sql [ctx] { CREATE DATABASE orders_db WITH LOG MODE ANSI };

 #sql [ctx] { CREATE DATABASE items_db WITH LOG MODE ANSI };

 ctx.close();

 String driver = "com.informix.jdbc.IfxDriver";

 String url = "jdbc:158.58.9.121:1527:informixserver=tulua2";

 String user = "rdtest";

A-4 IBM Informix Embedded SQLJ User’s Guide

String password = "1RDSRDS";

 set_driver(driver);

 set_url(url);

 set_user(user);

 set_passwd(password);

 getConnect();

 // Create the schema and the tables by running the SQL scripts

 executeSQLScript("./schema.sql");

 conn.close();

 // We now set up the Connection context OrdersCtx

 url = "jdbc:158.58.9.121:1527/orders_db:informixserver=tulua2";

 set_url(url);

 o_ctx = new OrdersCtx(getConnect());

 /* Change the url to reflect items database

 * Here we are changing the database name

 * the machine name and the port no could also be different

 */

 url = "jdbc:158.58.9.121:1527/items_db:informixserver=tulua2";

 set_url(url);

 i_ctx = new ItemsCtx(getConnect());

 // Declare orders_rec of type OrdersRec

 OrdersRec orders_rec;

 // Using context o_ctx query orders

 #sql [o_ctx] orders_rec =

 { SELECT order_num, order_date, po_num, paid_date

 FROM orders

 };

 while (orders_rec.next())

 {

 System.out.println("================================="+

 "=====================");

 System.out.print("ORDER NUMBER:" + orders_rec.order_num() + "\t\t");

 System.out.println("ORDER DATE:" + orders_rec.order_date());

 System.out.print("PURCHASE ORDER NUMBER:" +

 orders_rec.po_num() + "\t");

 System.out.println("PAID DATE:" + orders_rec.paid_date());

 System.out.println("================================="+

 "=====================");

 System.out.print("\n");

 int ord_no = orders_rec.order_num().intValue();

 printItemRec(fetchItemRec(ord_no)) ;

 }

 System.out.println("\n");

 }

 ItemsRec fetchItemRec(int ord_no) throws SQLException

 {

 ItemsRec items_rec;

 #sql [i_ctx] items_rec =

 { SELECT item_num, order_num, stock_num, manu_code, quantity,

 total_price

 FROM items

 WHERE order_num = :ord_no

 };

 return items_rec;

 }

 void printItemRec(ItemsRec items_rec) throws SQLException

 {

 System.out.print("ITEM NUMBER ");

 System.out.print("STOCK NUMBER ");

 System.out.print("MANUFACTURER CODE ");

 System.out.print("QUANTITY ");

 System.out.print("TOTAL PRICE ");

 System.out.println("\n---------------------------------"+

 "---------------------------------------");

Appendix A. Connecting to Databases A-5

while (items_rec.next())

 {

 System.out.print(items_rec.item_num() + "\t\t");

 System.out.print(items_rec.stock_num() + "\t\t");

 System.out.print(items_rec.manu_code()+ "\t\t");

 System.out.print(items_rec.quantity() + " " + "\t\t");

 System.out.print(items_rec.total_price() + "\t\t");

 System.out.print("\n");

 }

 System.out.println("\n");

 }

 void drop_db() throws SQLException

 {

 try

 {

 #sql [ctx] { drop database orders_db };

 #sql [ctx] { drop database items_db };

 }

 catch (SQLException s) { }

 }

}

/***

 *

 * IBM CORPORATION

 *

 * PROPRIETARY DATA

 *

 * THIS DOCUMENT CONTAINS TRADE SECRET DATA WHICH IS THE PROPERTY OF

 * IBM CORPORATION THIS DOCUMENT IS SUBMITTED TO RECIPIENT IN

 * CONFIDENCE. INFORMATION CONTAINED HEREIN MAY NOT BE USED, COPIED OR

 * DISCLOSED IN WHOLE OR IN PART EXCEPT AS PERMITTED BY WRITTEN AGREEMENT

 * SIGNED BY AN OFFICER OF IBM CORPORATION.

 *

 * THIS MATERIAL IS ALSO COPYRIGHTED AS AN UNPUBLISHED WORK UNDER

 * SECTIONS 104 AND 408 OF TITLE 17 OF THE UNITED STATES CODE.

 * UNAUTHORIZED USE, COPYING OR OTHER REPRODUCTION IS PROHIBITED BY LAW.

 *

 *

 * Title: demoUtil.java

 *

 * Description: Utilities used in the demo programs

 *

 *

 *

*/

import java.io.*;

import java.util.*;

import java.lang.*;

import java.sql.*;

public class demoUtil

{

 private String driver;

 private String URL;

 private String myURL;

 private String user;

 private String passwd;

 private int count = 0;

 private int lineno = 0;

 private int errors = 0;

 private boolean end_of_file = false;

 private FileInputStream fs = null;

 private DataInputStream in = null;

 private BufferedReader br = null;

 private String line = null;

 private StringBuffer read_line = null;

 public Connection conn;

A-6 IBM Informix Embedded SQLJ User’s Guide

public void executeSQLScript(String SQLscript)

 {

 try

 {

 fs = new FileInputStream(SQLscript);

 }

 catch (Exception e)

 {

 System.out.println("Script File Not Found");

 e.printStackTrace();

 }

 in = new DataInputStream(fs);

 br = new BufferedReader(new InputStreamReader(in));

 line = getNextLine();

 read_line = (line==null) ? new StringBuffer() : new StringBuffer(line);

 while (!end_of_file)

 {

 if (line!=null && line.indexOf(’;’)==line.length()-1)

 {

 tryExecute(read_line);

 read_line = new StringBuffer();

 }

 line = getNextLine();

 if (line!=null)

 read_line.append(line).append(" ");

 }

 if (read_line!=null && read_line.length()>0)

 {

 tryExecute(read_line);

 }

 System.out.println("\n");

 }

 private boolean isComment(String s)

 {

 if (s!=null)

 s.trim();

 return (

 s==null || s.equals("")

 || (s.length()>=2 && s.substring(0,2).equals("--"))

 || (s.length()>=4 && s.substring(0,4).toUpperCase().equals(

 "REM "))

);

 }

 private String getNextLine()

 {

 String line = null;

 lineno++;

 try

 {

 line = br.readLine();

 if (line==null)

 end_of_file=true;

 }

 catch (IOException e)

 {

 line = null;

 end_of_file=true;

 }

 return ((isComment(line)) ? null : line);

 }

 private String bufferToCommand(StringBuffer sb)

 {

 String s = sb.toString().trim();

 // chop off trailing semicolon

 if (s.substring(s.length()-1,s.length()).equals(";"))

Appendix A. Connecting to Databases A-7

s = s.substring(0,s.length()-1);

 return s;

 }

 private void tryExecute(StringBuffer sb)

 {

 String cmd = bufferToCommand(sb);

 System.out.print(".");

 System.out.flush();

 try

 {

 count++;

 Statement stmt = conn.createStatement();

 stmt.executeUpdate(cmd);

 stmt.close();

 }

 catch (SQLException e)

 {

 errors++;

 System.out.println("SQL Error line "+lineno+": "+e.getMessage());

 System.out.println("SQLState: " + e.getSQLState());

 System.out.println("ErrorCode: " + e.getErrorCode());

 System.out.println("Offending statement: ’"+cmd+"’");

 e.printStackTrace();

 }

 }

 public void set_driver(String driver)

 {

 this.driver = driver;

 }

 public void set_url(String url)

 {

 this.URL = url;

 }

 public void set_user(String userName)

 {

 this.user = userName;

 }

 public void set_passwd(String passwd)

 {

 this.passwd = passwd;

 }

 public void connSetup()

 {

 try

 {

 Class.forName(driver);

 }

 catch (Exception e)

 {

 System.out.println("Failed to load IBM Informix JDBC driver.");

 e.printStackTrace();

 }

 myURL = URL ;

 myURL = myURL + ";user=" + user + ";password=" + passwd;

 }

 public Connection getConnect()

 {

 connSetup();

 try

 {

 conn = DriverManager.getConnection(myURL);

 }

 catch (SQLException e)

 {

 System.out.println("Connect Error : " + e.getErrorCode());

 System.out.println("Failed to connect: " + e.toString());

 e.printStackTrace();

 }

 return conn;

A-8 IBM Informix Embedded SQLJ User’s Guide

}

 public Connection getConnect(Connection i_conn)

 {

 connSetup();

 try

 {

 i_conn = DriverManager.getConnection(myURL);

 }

 catch (SQLException e)

 {

 System.out.println("Connect Error : " + e.getErrorCode());

 System.out.println("Failed to connect: " + e.toString());

 e.printStackTrace();

 }

 return i_conn;

 }

}

Appendix A. Connecting to Databases A-9

A-10 IBM Informix Embedded SQLJ User’s Guide

Appendix B. Sample Programs

The following table lists and describes the online sample programs that are

included with IBM Informix Embedded SQLJ.

Demo Program Name Description

Demo01.sqlj Demonstrates a simple connection to the database

Demo02.sqlj Demonstrates a simple SELECT statement and the

use of host variables

Demo03.sqlj Demonstrates the use of a named iterator

Demo04.sqlj Demonstrates the use of a positional iterator

Demo05.sqlj Demonstrates interoperability between a JDBC

ResultSet object and an SQLJ iterator

Demo06.sqlj Demonstrates interoperability between a JDBC

Connection object and an SQLJ connection-context

object

 The sample programs are located in the IFXJLOCATION/

demo/sqlj directory (IFXJLOCATION refers to the directory where you chose to

install Embedded SQLJ). The README file in the directory explains how to

compile and run the programs.

© Copyright IBM Corp. 1996, 2008 B-1

B-2 IBM Informix Embedded SQLJ User’s Guide

Appendix C. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age

or ability.

Accessibility features for IBM Informix Dynamic Server

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility Features

The following list includes the major accessibility features in IBM Informix

Dynamic Server. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v The attachment of alternative input and output devices.

Tip: The IBM Informix Dynamic Server Information Center and its related

publications are accessibility-enabled for the IBM Home Page Reader. You can

operate all features using the keyboard instead of the mouse.

Keyboard Navigation

This product uses standard Microsoft® Windows® navigation keys.

Related Accessibility Information

IBM is committed to making our documentation accessible to persons with

disabilities. Our publications are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our publications are available in dotted decimal format.

You can view the publications for IBM Informix Dynamic Server in Adobe Portable

Document Format (PDF) using the Adobe Acrobat Reader.

IBM and Accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 1996, 2008 C-1

http://www.ibm.com/able

C-2 IBM Informix Embedded SQLJ User’s Guide

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1996, 2008 D-1

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

D-2 IBM Informix Embedded SQLJ User’s Guide

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All

rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A current list of IBM trademarks is available on the

Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices D-3

http://www.ibm.com/legal/copytrade.shtml

D-4 IBM Informix Embedded SQLJ User’s Guide

Index

Special characters
__sJT prefix 4-10

-C prefix 5-7

-cache option 5-4

-compile option 5-5

-compiler-encoding-flag option 5-5

-compiler-executable option 5-5

-compiler-output-file option 5-5

-d option 5-3

-dir option 5-3

-driver option 5-5

-encoding option 5-3

-help option 5-3

-J prefix 5-7

-linemap option 5-3

-offline option 5-5

-online option 5-5

-password option 5-5

-props option 5-3, 5-7

-ser2class option 5-5

-status option 5-3

-url option 5-6

-user option 5-6

-version option 5-3

-vm option 5-6

-warn option 5-4

.class files 1-1

.ser files 5-1, 5-5, 5-9

.sqlj file extension 4-2

A
accessibility C-1

keyboard C-1

shortcut keys C-1

Accessor methods 3-3, 4-1, 4-4

B
BEGIN DECLARE SECTION statement 4-1

BEGIN...END block 4-2

Binding of variables 1-2

Boolean options 5-7

C
CLASSPATH environment variable 3-1, 5-1

close() method 4-6

Column aliases 4-5

Command options, ifxsqlj 5-2

Compiling code 5-1

Connecting to a database 3-1

Connection-context class A-2

Connection-context object A-3

ConnectionManager class 3-1, 3-4, A-1

ConnectionManager.java file 3-1

Curly braces, {} 4-2

Cursors 3-2, 4-1

D
Database server names, setting in database URLs A-2

Database servers 2-1

Database URLs 3-1, A-1

Databases, connecting to 3-1

Default connection context 1-2, 3-2

Deletes, positioned 4-6

Demo01.sqlj program B-1

Demo02.sqlj program B-1

Demo03.sqlj program 3-3, B-1

Demo04.sqlj program B-1

Demo05.sqlj program B-1

Demo06.sqlj program B-1

demoUtil.java program A-3

disability C-1

Domain names, setting in database URLs A-2

Dynamic SQL 4-2

E
Embedded SQL, traditional 4-1

END DECLARE SECTION statement 4-1

endFetch() method 4-6

Errors 4-10

ESQL/C 4-1

EXECUTE FUNCTION statement 4-2, 4-7

EXECUTE PROCEDURE statement 4-2, 4-7

Execution context 4-6

F
FETCH statement 3-3, 4-1, 4-3, 4-4

file.encoding property 4-9, 5-3

Files
.ser 5-1, 5-5, 5-9

ConnectionManager.java 3-1

ifxjdbc.jar 5-2

ifxsqlj.jar 5-1

ifxtools.jar 5-2

iterator_name.class 5-1

java.properties 4-9

profilekeys.class 5-1

Property files 5-7

SQLChecker.cache 5-4

sqlj.properties 5-7

Functions 4-7

G
getExecutionContext() method 4-6

getMaxFieldSize() method 4-7

getMaxRows() method 4-7

getQueryTimeout() method 4-7

getSQLWarnings() method 4-7

getUpdateCount() method 4-7

GLS feature 5-3

© Copyright IBM Corp. 1996, 2008 X-1

H
Host variables 3-2, 4-1, 4-3

I
IBM Informix JDBC Driver 1-1, 2-1, A-1

ifxjdbc.jar file 5-2

ifxprofp tool 5-9

ifxsqlj command 5-1

ifxsqlj.jar file 5-1

ifxtools.jar file 5-2

Informix database servers 2-1

INFORMIXSERVER environment variable A-2

initContext() method 3-1, 3-4, A-1

Internal resource files 5-1

IP addresses, setting in database URLs A-2

isClosed() method 4-6

Iterator objects 3-2, 3-4, 4-1, 4-3

iterator_name.class file 5-1

J
Java compiler 1-1

Java Development Kit (JDK) 2-1

Java interpreter 5-2

Java types 4-7

java.properties file 4-9

JDBC 1-1, 1-2, 4-9, 5-5, 5-6

L
Language character sets 4-9

Latin-1 character set 4-9

Line numbers 5-3

M
main() method 3-4

MultiConnect.sqlj program A-2

Multiple database connections 4-1

N
Name-value pairs of database URLs A-2

Named iterators 3-3, 4-4

native2ascii tool 4-9

newConnection() method A-1

next() method 4-5, 4-6

Nondefault connections A-2

Null data 4-2

Null indicator variables 4-9

O
Off-line checking 5-9

On-line checking 5-6, 5-8

Online checking 5-5

Output directory 5-3

P
Passwords, setting in database URLs A-2

PATH environment variable 5-5

Port numbers, setting in database URLs A-2

Positional iterators 3-3, 4-3

Positioned updates, deletes 4-6

Preprocessing source code 5-1

profilekeys.class file 5-1

Property files 5-7

R
README file 2-1, B-1

Reserved names 4-10

Result sets 3-2, 4-3

Root output directory 5-3

rowCount() method 4-5

Running Embedded SQLJ programs 5-1

S
Sample programs 2-1, 3-3, B-1

Schema checking 1-2

SELECT statements 3-2

SELECT...AS statement 4-5

SELECT...INTO statement 3-2, 4-3

Semantics checking 1-2, 5-8

Servers 2-1

setMaxFieldSize() method 4-7

setMaxRows() method 4-7

setQueryTimeou() method 4-7

setUpdateCount() method 4-7

shortcut keys
keyboard C-1

Specifying environment variables A-2

SPL routines 4-7

SQL statements 3-2

SQL types 4-7

SQL92 Entry level 4-2

SQLChecker.cache file 5-4

SQLException class 4-9

SQLException methods 4-10

SQLJ consortium 1-1

SQLJ runtime package 4-9

SQLJ translator 1-1, 4-10, 5-1

sqlj.properties file 5-7

sqlj.semantics.JdbcChecker class 5-5

sqlj.semantics.OfflineChecker class 5-5

Stored functions 4-7

Syntax checking 1-2, 5-8

T
Translating source code 5-1

Type checking 1-2, 4-4, 4-5

Type mappings 4-7

U
Unicode escape sequences 4-9

Updates, positioned 4-6

User names, setting in database URLs A-2

W
WHENEVER...GOTO/CONTINUE statement 4-1

WHERE CURRENT OF clause 4-6

X-2 IBM Informix Embedded SQLJ User’s Guide

����

Printed in USA

SC23-9414-00

	Contents
	Introduction
	In This Introduction
	About This Publication
	Types of Users
	Software Dependencies
	Global Language Support

	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform Markup
	Example Code Conventions

	Additional Documentation
	Compliance with Industry Standards
	How to Provide Documentation Feedback

	Chapter 1. Introducing IBM Informix Embedded SQLJ
	In This Chapter
	What Is Embedded SQLJ?
	How Does Embedded SQLJ Work?
	Embedded SQLJ Versus JDBC

	Chapter 2. Preparing to Use Embedded SQLJ
	In This Chapter
	What Components Do You Need?
	Setting Up Your Software
	Examples

	Chapter 3. Building an Embedded SQLJ Program
	In This Chapter
	Fundamentals of Embedded SQLJ
	SQLJ Statement Identifier
	Connecting to a Database
	Embedding SQL Statements
	Handling Result Sets
	Positional Iterators
	Named Iterators

	A Simple Embedded SQLJ Program

	Chapter 4. The Embedded SQLJ Language
	In This Chapter
	Embedded SQLJ Versus Traditional Embedded SQL
	Embedded SQLJ Source Files
	Identifying Embedded SQLJ Statements
	SQL Statements
	Host Variables
	SELECT Statements That Return a Single Row
	Handling Result Sets
	Positional Iterators
	Named Iterators
	Using Column Aliases
	Iterator Methods
	Positioned Updates and Deletes

	Monitoring the Execution of an SQL Query
	Calling SPL Routines and Functions
	SQL and Java Type Mappings
	Language Character Sets
	Importing Java Packages
	SQLJ Reserved Names
	Parameter, Field, and Variable Names
	Class Names and Filenames

	Handling Errors

	Chapter 5. Processing Embedded SQLJ Source Code
	In This Chapter
	Translating, Compiling, and Running Embedded SQLJ Programs
	The ifxsqlj Command
	Command Options
	Basic Options
	Advanced Options

	Setting Options
	Setting Options on the Command Line
	Supplying Options in Property Files
	Precedence of Options
	Format of Property Files

	Online Checking
	Setting the -user and -password Options
	Setting the -url and -driver Options

	The ifxprofp Tool

	Appendix A. Connecting to Databases
	Appendix B. Sample Programs
	Appendix C. Accessibility
	Accessibility features for IBM Informix Dynamic Server
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	Notices
	Trademarks

	Index

