
Informix Product Family
Informix Global Language Support
Version 4.50

IBM Informix GLS User's Guide

G229-6373-07

���

Informix Product Family
Informix Global Language Support
Version 4.50

IBM Informix GLS User's Guide

G229-6373-07

���

Note
Before using this information and the product it supports, read the information in “Notices” on page C-1.

This edition replaces G229-6373-06.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . vii
About this publication . vii

Types of users . vii
Software compatibility . vii
Assumptions about your locale. vii
Demonstration databases . viii

What's new in GLS, Version 4.50 . viii
Character-representation conventions . ix

Single-byte characters . ix
Multibyte characters . x
Single-byte and multibyte characters in the same string . x
White space characters in strings . x
Trailing white space characters . xi

Example code conventions . xi
Additional documentation . xii
Compliance with industry standards . xii
Syntax diagrams . xiii

How to read a command-line syntax diagram . xiv
Keywords and punctuation . xv
Identifiers and names . xv

How to provide documentation feedback . xv

Chapter 1. GLS fundamentals . 1-1
Character-representation conventions . 1-1

Single-byte characters . 1-1
Multibyte characters . 1-1
Single-byte and multibyte characters in the same string 1-2
White space characters in strings . 1-2
Trailing white space characters. 1-3

The GLS feature . 1-3
GLS support by IBM Informix products. 1-5

A GLS locale. 1-8
Code sets for character data . 1-9
Character classes of the code set . 1-10
Collation order for character data . 1-10
End-user formats . 1-13

Set a GLS locale . 1-16
Locales in the client/server environment . 1-16
The default locale. 1-21
Set a nondefault locale . 1-22

GLS locales with IBM Informix products . 1-23
Support for non-ASCII characters . 1-23
Establish a database connection . 1-24
Perform code-set conversion . 1-28
Locate message files . 1-31

Customize end-user formats . 1-32
Customize date and time end-user formats . 1-32
Customize monetary values . 1-33

Chapter 2. GLS environment variables . 2-1
Set and retrieve environment variables . 2-1
GLS-related environment variables . 2-1

The CC8BITLEVEL environment variable . 2-2
The CLIENT_LOCALE environment variable . 2-2
The DBDATE environment variable . 2-3

© Copyright IBM Corp. 1996, 2011 iii

The DBLANG environment variable . 2-3
The DB_LOCALE environment variable . 2-4
The DBMONEY environment variable . 2-5
The DBTIME environment variable (ESQL/C) . 2-6
The ESQLMF environment variable . 2-7
The GLS8BITFSYS environment variable . 2-7
The GL_DATE environment variable . 2-10
The GL_DATETIME environment variable . 2-15
The GL_USEGLU environment variable . 2-19
The SERVER_LOCALE environment variable . 2-20

Chapter 3. SQL features . 3-1
Name database objects . 3-1

Rules for identifiers . 3-1
Non-ASCII characters in identifiers . 3-1
Valid characters in identifiers . 3-5

Character data types . 3-6
Localized collation of character data . 3-6
Other character data types . 3-10

Handle character data . 3-12
Specify quoted strings . 3-12
Specify comments . 3-12
Specify column substrings . 3-13
Specify arguments to the TRIM function . 3-17
Search functions that are not case-sensitive . 3-17
Collate character data . 3-18
SQL length functions . 3-26

Locale-sensitive data types. 3-31
Handle the MONEY data type . 3-31
Handle extended data types . 3-32
Handle smart large objects. 3-33

Data manipulation statements . 3-34
Specify conditions in the WHERE clause . 3-34
Specify era-based dates . 3-34
Load and unload data . 3-35

Data definition statements . 3-36
Automatic resizing of the expansion factor . 3-38

Chapter 4. Database server features . 4-1
GLS support by IBM Informix database servers . 4-1

Database server code-set conversion . 4-2
Data that the database server converts . 4-2

Locale-specific support for utilities . 4-3
Non-ASCII characters in database server utilities . 4-3
Non-ASCII characters in SQL utilities . 4-4

Locale support for C User-defined routines (Informix and DB API) 4-5
Current processing locale for UDRs . 4-5
Non-ASCII characters in source code . 4-5
Copy character data . 4-6
The IBM Informix GLS library . 4-7
Code-set conversion and the DataBlade API . 4-8
Locale-specific data formatting. 4-9
Globalized exception messages . 4-9
Globalized tracing messages . 4-13
Locale-sensitive data in an opaque data type . 4-16

Chapter 5. General SQL API features (ESQL/C) 5-1
Support for GLS in IBM Informix client applications . 5-1

Client application code-set conversion . 5-1
Globalize client applications . 5-3

iv IBM Informix GLS User's Guide

Globalization . 5-3
Localization . 5-4

Handle locale-specific data . 5-6
Process characters . 5-6
Format data . 5-6
Avoid partial characters . 5-7

Chapter 6. IBM Informix ESQL/C features . 6-1
Handle non-ASCII characters . 6-1

Non-ASCII characters in host variables . 6-2
Generate non-ASCII file names . 6-3
Non-ASCII characters in ESQL/C source files. 6-3

Define variables for locale-sensitive data . 6-6
Enhanced ESQL/C library functions . 6-7

DATE-format functions . 6-7
DATETIME-format functions . 6-9
Numeric-format functions . 6-11
String functions . 6-14
GLS-specific error messages . 6-14

Handle code-set conversion . 6-14
Writing TEXT values. 6-15
The DESCRIBE statement . 6-16

The TRIM function . 6-17

Appendix A. Manage GLS files . A-1
Access GLS files . A-1
GLS locale files. A-2

Locale categories . A-2
Location of locale files . A-6

Other GLS files. A-8
Code-set-conversion files . A-8
Code-set files . A-10
The IBM Informix registry file (Windows) . A-10

Remove unused files . A-11
Remove locale and code-set-conversion files. A-11
Remove code-set files . A-12

The glfiles utility (UNIX) . A-12
List code-set-conversion files . A-13
List GLS locale files . A-13
List character-mapping files . A-14

Appendix B. Accessibility . B-1
Accessibility features for IBM Informix products. B-1

Accessibility features . B-1
Keyboard navigation . B-1
Related accessibility information . B-1
IBM and accessibility . B-1

Dotted decimal syntax diagrams . B-1

Notices . C-1
Trademarks . C-3

Index . X-1

Contents v

vi IBM Informix GLS User's Guide

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication
This publication describes the Global Language Support (GLS) feature available in
IBM® Informix® products.

The GLS feature allows IBM Informix application-programming interfaces (APIs)
and IBM Informix database servers to handle different languages, cultural
conventions, and code sets. This publication describes only the language-related
topics that are unique to GLS.

This publication provides GLS information about IBM Informix database servers
for both Microsoft Windows and UNIX.

Also see the IBM Informix GLS API Programmer's Guide, a companion document
that describes the global language support (GLS) application programming
interface (API) available in IBM Informix ESQL/C and IBM Informix DataBlade®

modules.

Types of users
This publication is written for system administrators and application developers
who want to use the GLS environment to create globalized database management
applications with IBM Informix products.

This publication is primarily intended for those users who must use IBM Informix
products with a nondefault locale. It assumes that you are familiar with IBM
Informix database servers and associated products.

If you need more information about features of your operating system to support
non-ASCII characters in file names, path names, and other contexts, see your
operating system documentation.

Software compatibility
For information about software compatibility, see the IBM Informix GLS release
notes.

Assumptions about your locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
DBDATE.

© Copyright IBM Corp. 1996, 2011 vii

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as é, è, and ñ.

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration databases
The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB–Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases are in the
$INFORMIXDIR/bin directory on UNIX platforms and in the %INFORMIXDIR%\bin
directory in Windows environments.

What's new in GLS, Version 4.50
This publication includes information about new features and changes in existing
functionality.

The following changes and enhancements are relevant to this publication. For a
comprehensive list of all new features for this release, see the IBM Informix Getting
Started Guide.

viii IBM Informix GLS User's Guide

Table 1. What's new in IBM Informix GLS User's Guide for Version 4.50.xC11

Overview Reference

New editions and product names

IBM Informix Dynamic Server editions were
withdrawn and new Informix editions are
available. Some products were also renamed.
The publications in the Informix library
pertain to the following products:

v IBM Informix database server, formerly
known as IBM Informix Dynamic Server
(IDS)

v IBM OpenAdmin Tool (OAT) for Informix,
formerly known as OpenAdmin Tool for
Informix Dynamic Server (IDS)

v IBM Informix SQL Warehousing Tool,
formerly known as Informix Warehouse
Feature

For more information about the Informix
product family, go to http://www.ibm.com/
software/data/informix/.

Table 2. What's new in IBM Informix GLS User's Guide for Version 4.50.xC5

Overview Reference

Enhanced support for multibyte character
strings

In database locales that support multibyte
code sets, such as UTF-8, a single logical
character can occupy up to four bytes of
storage. To prevent multibyte character
strings from being truncated, use the new
SQL_LOGICAL_CHAR session environment
variable to instruct IBM Informix to interpret
the declared size in units of logical
characters. By default, any explicit or default
size specifications are interpreted in units of
bytes.

“Data definition statements” on page 3-36

Character-representation conventions
Throughout this publication, examples show how single-byte and multibyte
characters are displayed. Multibyte characters are usually ideographic (such as
Japanese or Chinese characters), but this publication does not depict the actual
multibyte characters.

Instead, it uses ASCII characters to represent both single-byte and multibyte
characters. This section describes how this publication represents multibyte and
single-byte characters abstractly

Single-byte characters
This publication represents single-byte characters as a series of lowercase letters.

The format for representing one single-byte character abstractly is a. Here a stands
for any single-byte character, not for the letter “a” itself.

The format for representing a string of single-byte characters is a...z. Here a
stands for the first character and z stands for the last character in the string. For

Introduction ix

http://www.ibm.com/software/data/informix/
http://www.ibm.com/software/data/informix/

example, if the string Ludwig consists of six single-byte characters, the following
format represents this six-character string abstractly:
abcdef

Tip: The letter “s” does not show in examples that represent strings of single-byte
characters. The publication reserves the letter “s” as a symbol to represent a
single-byte white space character. See also “White space characters in strings.”

Multibyte characters
This publication does not attempt to show the actual appearance of multibyte
characters in text, examples, or diagrams.

Instead, the following convention shows abstractly how multibyte characters are
stored:
A1...An

One to four identical uppercase letters, each followed by a different superscript
number, represent one multibyte character. The superscripts show the first to the
nth byte of the multibyte character, where n has values 2 - 4. For example, the
following symbols represent a multibyte character that consists of 2 bytes:
A1A2

The following notation represents a multibyte character that consists of 4 bytes (the
maximum length of a multibyte character):
A1A2A3A4

The next example shows a string of multibyte characters in an SQL statement:
CREATE DATABASE A1A2B1B2C1C2D1D2E1E2;

This statement creates a database whose name consists of five multibyte characters,
each of which is 2 bytes long. For more about using multibyte characters in SQL
identifiers, see Name database objects.

Single-byte and multibyte characters in the same string
For a multibyte code set, a given string might be composed of both single-byte and
multibyte characters.

To represent mixed strings, this publication combines the formats for multibyte and
single-byte characters. The next example represents a string with four characters,
where the first and fourth characters are single-byte characters, and the second and
third characters are multibyte characters that consist of 2 bytes each:
aA1A2B1B2b

White space characters in strings
White space is a series of one or more characters that show as blank space, Each
GLS locale defines what characters are white space characters.

For example, both the TAB (ASCII 9) and blank space (ASCII 32) might be defined
as white space characters in one locale, but certain combinations of the CTRL key
and another character might be defined as white space characters in a different
locale.

x IBM Informix GLS User's Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.glsug.doc/ids_gug_093.htm

The convention for representing a single-byte white space in this publication is the
letter “s”. The following notation represents one single-byte white space:
s

In the ASCII code set, an example of a single-byte white space is the blank
character (ASCII 32). To represent a string that consists of two ASCII blank
characters, the publication uses the following notation:
ss

The following notation represents a multibyte white space character:
s1...sn

Here s1 represents the first byte of the white space character, and sn represents the
last byte of the white space character, where n can range 2 - 4. The following
notation represents one 4-byte white space character:
s1s2s3s4

Trailing white space characters
Combinations of characters with white space can occur in quoted strings, in CHAR
columns that contain fewer characters than the declared column length, and in
other contexts.

For example, if a CHAR(5) column in a single-byte code set contains three
characters, the string is padded with two white spaces so that its length is equal to
the column length:
abcss

The next example represents a string of five characters (three characters of data
and two trailing white space characters) in a multibyte code set where each of the
data characters and white space characters consists of 2 bytes:
A1A2B1B2C1C2s1s2s1s2

In some locales, a string can contain both single-byte and multibyte white space
characters. For example, consider the following string:
abcss1s2sss1s2

The string has three single-byte characters (abc), a single-byte white space
character (s), a multibyte white space character (s1s2), two single-byte white space
characters (ss), and one multibyte white space character (s1s2).

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

Introduction xi

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access or install the product documentation from the Quick Start CD that
is shipped with Informix products. To get the most current information, see the
Informix information centers at ibm.com®. You can access the information centers
and other Informix technical information such as technotes, white papers, and IBM
Redbooks® publications online at http://www.ibm.com/software/data/sw-
library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

IBM Informix Dynamic Server (IDS) Enterprise Edition, Version 11.50 is certified
under the Common Criteria. For more information, see Common Criteria
Certification: Requirements for IBM Informix Dynamic Server, which is available at
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US
&FNC=SRX&PBL=SC23-7690-00.

xii IBM Informix GLS User's Guide

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00

Syntax diagrams
Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 3. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next
line.

>----------------------- Statement continues from
previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---
’------LOCAL------’

Optional item.

---+-----ALL-------+---
+--DISTINCT-----+
’---UNIQUE------’

Required item with choice.
Only one item must be
present.

---+------------------+---
+--FOR UPDATE-----+
’--FOR READ ONLY--’

Optional items with choice
are shown below the main
line, one of which you might
specify.

.---NEXT---------.
----+----------------+---

+---PRIOR--------+
’---PREVIOUS-----’

The values below the main
line are optional, one of
which you might specify. If
you do not specify an item,
the value above the line is
used by default.

.-------,-----------.
V |
---+-----------------+---

+---index_name---+
’---table_name---’

Optional items. Several items
are allowed; a comma must
precede each repetition.

>>-| Table Reference |->< Reference to a syntax
segment.

Table Reference

|--+-----view--------+--|
+------table------+
’----synonym------’

Syntax segment.

Introduction xiii

How to read a command-line syntax diagram
Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a no-conversion job

�� onpladm create job job
-p project

-n -d device -D database �

� -t table �

� �
(1)

Setting the Run Mode
-S server -T target

��

Notes:

1 See page Z-1

This diagram has a segment named “Setting the Run Mode,” which according to
the diagram footnote is on page Z-1. If this was an actual cross-reference, you
would find this segment on the first page of Appendix Z. Instead, this segment is
shown in the following segment diagram. Notice that the diagram uses segment
start and end components.

Setting the run mode:

-f
d
p
a

l
c

u n N

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type onpladm create job and then the name of the job.
2. Optionally, type -p and then the name of the project.
3. Type the following required elements:

v -n

v -d and the name of the device
v -D and the name of the database
v -t and the name of the table

xiv IBM Informix GLS User's Guide

4. Optionally, you can choose one or more of the following elements and repeat
them an arbitrary number of times:
v -S and the server name
v -T and the target server name
v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then optionally
type l or u.

5. Follow the diagram to the terminator.

Keywords and punctuation
Keywords are words reserved for statements and all commands except
system-level commands.

When a keyword appears in a syntax diagram, it is shown in uppercase letters.
When you use a keyword in a command, you can write it in uppercase or
lowercase letters, but you must spell the keyword exactly as it appears in the
syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and names
Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in additional syntax diagrams. When a variable appears in a syntax
diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v In the Informix information center, which is available online at

http://www.ibm.com/software/data/sw-library/, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, fill out the
form, and submit your feedback.

Introduction xv

mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/

v Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support. For instructions, see the IBM Informix Technical
Support website at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

xvi IBM Informix GLS User's Guide

http://www.ibm.com/planetwide/

Chapter 1. GLS fundamentals

The Global Language Support (GLS) feature lets IBM Informix products handle
different languages, cultural conventions, and code sets for Asian, African,
European, Latin American, and Middle Eastern countries.

The GLS feature lets you create databases by using the diacritics, collating
sequence, and monetary and time conventions of the language that you select. No
ONCONFIG configuration parameters exist for GLS, but you must set the
appropriate environment variables.

This section introduces basic concepts and describes the GLS feature.

Character-representation conventions
Throughout this publication, examples show how single-byte and multibyte
characters are displayed. Multibyte characters are usually ideographic (such as
Japanese or Chinese characters), but this publication does not depict the actual
multibyte characters.

Instead, it uses ASCII characters to represent both single-byte and multibyte
characters. This section describes how this publication represents multibyte and
single-byte characters abstractly

Single-byte characters
This publication represents single-byte characters as a series of lowercase letters.

The format for representing one single-byte character abstractly is a. Here a stands
for any single-byte character, not for the letter “a” itself.

The format for representing a string of single-byte characters is a...z. Here a
stands for the first character and z stands for the last character in the string. For
example, if the string Ludwig consists of six single-byte characters, the following
format represents this six-character string abstractly:
abcdef

Tip: The letter “s” does not show in examples that represent strings of single-byte
characters. The publication reserves the letter “s” as a symbol to represent a
single-byte white space character. See also “White space characters in strings” on
page x.

Multibyte characters
This publication does not attempt to show the actual appearance of multibyte
characters in text, examples, or diagrams.

Instead, the following convention shows abstractly how multibyte characters are
stored:
A1...An

One to four identical uppercase letters, each followed by a different superscript
number, represent one multibyte character. The superscripts show the first to the

© Copyright IBM Corp. 1996, 2011 1-1

nth byte of the multibyte character, where n has values 2 - 4. For example, the
following symbols represent a multibyte character that consists of 2 bytes:
A1A2

The following notation represents a multibyte character that consists of 4 bytes (the
maximum length of a multibyte character):
A1A2A3A4

The next example shows a string of multibyte characters in an SQL statement:
CREATE DATABASE A1A2B1B2C1C2D1D2E1E2;

This statement creates a database whose name consists of five multibyte characters,
each of which is 2 bytes long. For more about using multibyte characters in SQL
identifiers, see Name database objects.

Single-byte and multibyte characters in the same string
For a multibyte code set, a given string might be composed of both single-byte and
multibyte characters.

To represent mixed strings, this publication combines the formats for multibyte and
single-byte characters. The next example represents a string with four characters,
where the first and fourth characters are single-byte characters, and the second and
third characters are multibyte characters that consist of 2 bytes each:
aA1A2B1B2b

White space characters in strings
White space is a series of one or more characters that show as blank space, Each
GLS locale defines what characters are white space characters.

For example, both the TAB (ASCII 9) and blank space (ASCII 32) might be defined
as white space characters in one locale, but certain combinations of the CTRL key
and another character might be defined as white space characters in a different
locale.

The convention for representing a single-byte white space in this publication is the
letter “s”. The following notation represents one single-byte white space:
s

In the ASCII code set, an example of a single-byte white space is the blank
character (ASCII 32). To represent a string that consists of two ASCII blank
characters, the publication uses the following notation:
ss

The following notation represents a multibyte white space character:
s1...sn

Here s1 represents the first byte of the white space character, and sn represents the
last byte of the white space character, where n can range 2 - 4. The following
notation represents one 4-byte white space character:
s1s2s3s4

1-2 IBM Informix GLS User's Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.glsug.doc/ids_gug_093.htm

Trailing white space characters
Combinations of characters with white space can occur in quoted strings, in CHAR
columns that contain fewer characters than the declared column length, and in
other contexts.

For example, if a CHAR(5) column in a single-byte code set contains three
characters, the string is padded with two white spaces so that its length is equal to
the column length:
abcss

The next example represents a string of five characters (three characters of data
and two trailing white space characters) in a multibyte code set where each of the
data characters and white space characters consists of 2 bytes:
A1A2B1B2C1C2s1s2s1s2

In some locales, a string can contain both single-byte and multibyte white space
characters. For example, consider the following string:
abcss1s2sss1s2

The string has three single-byte characters (abc), a single-byte white space
character (s), a multibyte white space character (s1s2), two single-byte white space
characters (ss), and one multibyte white space character (s1s2).

The GLS feature
In a database application, some of the tasks that the database server and the client
application perform depend on the language and culture conventions of the data
that they handle.

For example, the database server must sort U.S. English data differently from
Korean character data. The client application must show Canadian currency
differently from Thai currency.

If the IBM Informix database server or client product included the code to perform
these data-dependent tasks, each would need to be written specially to handle a
different set of culture-specific data.

With support for GLS, IBM Informix products no longer need to specify how to
process culture-specific information directly. Culture-specific information is in a
GLS locale. When an IBM Informix product needs culture-specific information, it
calls the GLS library, which accesses the GLS locale and returns the information to
the IBM Informix product.

The GLS feature is a portable way to support culture-specific information.
Although many operating systems provide support for non-English data, this
support is usually in a form that is specific to the operating system. Not many
standards yet exist for the format of culture-specific information. This lack of
conformity means that if you move an application from one operating-system
environment to another, you might need to change the way in which the
application requests language support from the operating system. You might even
find that the new operating-system environment does not provide the same aspect
of language support that the initial environment provided.

Chapter 1. GLS fundamentals 1-3

The GLS feature can access culture-specific information about a UNIX or Windows
operating system. IBM Informix products can locate the locale information about
any platform to which they are ported.

In order for GLS to support a nondefault locale, the version of Windows that you
are using must also support that locale. That is, you cannot support a Japanese
client application on Windows unless that application is running on the Japanese
version of Windows.

To use the GLS feature, the tasks that you must perform depend on whether you
are a system administrator, database administrator, user of a client application,
user of a database server utility, or client application developer. The following table
lists these optional and mandatory tasks.

Audience Optional tasks Mandatory tasks

System
administrator,
database
administrator, or
user of client
application

v For non-default locales, set the
DB_LOCALE, CLIENT_LOCALE, and
SERVER_LOCALE environment variables.

v To customize end-user formats, set the
GL_DATE, GL_DATETIME, and DBMONEY
environment variables. For Informix
ESQL/C, you can set DBTIME instead of
GL_DATETIME.

None

v To configure a GLS environment for
Informix ESQL/C, set the CC8BITLEVEL
and ESQLMF environment variables.

v To perform additional configuration for
the GLS environment, set the DBLANG
and GLS8BITFSYS environment variables.

v To issue an SQL statement, follow the
guidelines in Chapter 3, “SQL features,”
on page 3-1, and Chapter 4, “Database
server features,” on page 4-1.

v To remove GLS files, follow the
guidelines in “Remove unused files” on
page A-11.

v To get information about GLS files on
UNIX, follow the guidelines in “The
glfiles utility (UNIX)” on page A-12.

User of database
server utility

Same as above Follow the guidelines in
“Locale-specific support
for utilities” on page 4-3.

Client application
developer

v Same as above

v To develop a globalized client
application, follow the guidelines in
“Globalize client applications” on page
5-3 and the IBM Informix GLS User's
Guide.

v Follow the guidelines
in Chapter 5, “General
SQL API features
(ESQL/C),” on page
5-1.

v For an Informix
ESQL/C application,
also follow the
guidelines in
Chapter 6, “IBM
Informix ESQL/C
features,” on page 6-1.

1-4 IBM Informix GLS User's Guide

GLS support by IBM Informix products
IBM Informix GLS supports IBM Informix products and utilities.

GLS support is provided for these IBM Informix products and utilities:
v IBM Informix database servers
v IBM Informix client applications and database server utilities
v IBM Informix GLS application programming interface

Sections that follow outline the features that GLS support provides for the first two
types of IBM Informix products.

For information about how to migrate a database server whose databases contain
non-English data, see the IBM Informix Migration Guide.

IBM Informix database servers
GLS was introduced in IBM Informix OnLine Dynamic Server.

Previously, ALS language support was provided for non-English databases with
Asian (multibyte) characters and NLS language support for non-English databases
with single-byte characters. GLS is a single feature that provides support for
single-byte and multibyte data in non-English languages. For compatibility with
earlier versions, GLS products also support all of the NLS environment variables
and a subset of the ALS environment variables. For a list of these variables, see the
IBM Informix Migration Guide.

Culture-specific features:

With the GLS feature, IBM Informix database servers provide support for
culture-specific features.

The following culture-specific features are supported:
v Processing non-ASCII characters and strings

You can use non-ASCII characters to name user-specifiable database objects, such
as tables, columns, views, statements, cursors, and SPL routines, and you can
use a collation order that suits local customs.
You can also use non-ASCII characters in many other contexts. For example, you
can use them to specify the WHERE and ORDER BY clauses of your SELECT
statements or to sort data in NCHAR and NVARCHAR columns. You can use
GLS collation features without the modification of existing code.

v Evaluation of expressions
You can use non-ASCII characters in expression comparisons that involve any
character-based data type.

v Translation of locale-specific values for dates, times, numeric data, and monetary
data
You can use end-user formats that are specific to a country or culture outside the
U.S. to specify date, time, numeric, and monetary values when they are
displayed in literal strings. The database server can translate these formats to the
appropriate internal database format.

v Accessibility of formerly incompatible character code sets
The client application can perform code-set conversion between convertible code
sets to allow you to access and share data between databases and clients that
have different code sets. For more information about code-set conversion, see
“Perform code-set conversion” on page 1-28.

Chapter 1. GLS fundamentals 1-5

IBM Informix client applications and utilities
In general, a client application is a program that runs on a workstation or a PC on
a network.

To the GLS feature, a client application can be either an IBM Informix SQL API
product (such as IBM Informix ESQL/C) or an IBM Informix database server
utility (such as DB-Access, dbexport, or onmode). These IBM Informix client
applications support GLS:
v The DB-Access utility, which is provided with IBM Informix database servers,

allows user-specifiable database objects such as tables, columns, views,
statements, cursors, and SPL routines to include non-ASCII characters and to be
sorted according to localized collation rules. For more information about
identifiers, see “Non-ASCII characters in identifiers” on page 3-1. For general
information about DB-Access, see the IBM Informix DB-Access User's Guide.

v The SQL APIs allow host and indicator variable names and names of
user-specifiable database objects such as tables, columns, views, statements,
cursors, and SPL routines to include non-ASCII characters. For more
information, see Chapter 5, “General SQL API features (ESQL/C),” on page 5-1.

v Database server utilities such as dbexport or onmode allow many command-line
arguments to include non-ASCII characters. For more information, see Chapter 4,
“Database server features,” on page 4-1.

v GLS is also a feature of IBM Informix Dynamic 4GL (Version 3.0 and higher),
IBM Informix 4GL (Version 7.2 and higher), and IBM Informix SQL (Version 7.2
and higher). For details of GLS implementation, see the documentation of these
IBM Informix products.

The IBM Informix GLS application programming interface
IBM Informix GLS is an application programming interface (API) that lets
DataBlade module developers and Informix ESQL/C programmers develop
globalized applications with a C-language interface.

The macros and functions of IBM Informix GLS provide access within an
application to GLS locales, which contain culture-specific information. You can use
IBM Informix GLS to write programs (or change existing programs) to handle
different languages, cultural conventions, and code sets.

All IBM Informix GLS functions access the current processing locale, which is the
locale that is currently in effect for an application. It is based on either the client
locale (for Informix ESQL/C client applications and client LIBMI applications) or
the server-processing locale (for DataBlade user-defined routines).

IBM Informix GLS provides macros and functions to help you perform the
following globalization tasks:
v Process single-byte, multibyte, and wide characters
v Process single-byte, multibyte, and wide-character strings
v Memory management for multibyte and wide-character strings
v Convert date, time, money, and number strings to and from binary values
v Process input and output multibyte-character streams

IBM Informix client applications and database servers can access IBM Informix
GLS. For applications, you link the IBM Informix GLS library to your application
to perform locale-related tasks. IBM Informix database servers automatically
include the IBM Informix GLS library.

1-6 IBM Informix GLS User's Guide

Supported data types
The IBM Informix GLS feature supports SQL data types, user-defined data types,
and smart large objects.

The GLS feature supports the following data types:
v SQL character data types

– CHAR, VARCHAR, NCHAR, and NVARCHAR
– LVARCHAR
– DISTINCT types whose base type is one of the data types listed previously
– TEXT and BYTE
For information about GLS considerations for the character data types, see
“Character data types” on page 3-6.

v SQL number and MONEY data types
For information about GLS considerations for number and MONEY data types,
see “Numeric and monetary formats” on page 1-14.

v SQL DATE, and DATETIME data types
For information about GLS considerations for DATE, and DATETIME data types,
see “Date and time formats” on page 1-15.

v User-defined data types
– Opaque data types
– Complex data types
– Distinct data types

v Smart large objects
– BLOB
– CLOB
For GLS considerations regarding user-defined data types and smart large
objects, see “Handle extended data types” on page 3-32.

v Informix ESQL/C character data types
– char

– fixchar

– string

– varchar

– lvarchar

For information about Informix ESQL/C data types, see the IBM Informix
ESQL/C Programmer's Manual.

International Language Supplement
IBM Informix products include a core set of GLS locale files, including the default
locale and most locales to support English, Western European, Eastern European,
Asian, and African territories.

If you do not find a locale to support your language and territory, you can get
additional locales in the International Language Supplement (ILS) product, which
provides all available GLS locales and code-set conversion files. It also includes
error messages to support several languages.

International Language Supplement lets you localize time, date, number and
currency formats, character sets, and sorting orders. All of the provided locales
work with IBM Informix GLS-enabled products. After following the installation

Chapter 1. GLS fundamentals 1-7

instructions, set the DBLANG environment variable. Each user who wants to use a
localized user interface file must set the environment variable DBLANG to point to
the appropriate language msg directory.

Set DBLANG replacing <codeset-hex> with the appropriate code set that your system
uses:
v C-shell: setenv DBLANG msg/<lang>_<territory>/<codeset-hex>

v Bourne-shell: DBLANG=msg/<lang>_<territory>/<codeset-hex> export DBLANG

To unset the DBLANG variable, enter the following command:
v C-shell: unsetenv DBLANG

v Bourne-shell: unset DBLANG

For more information about how to create customized message files, see “Locate
message files” on page 1-31.

A GLS locale
In a client/server environment, both the database server and the client application
must know which language the data is in to be able to process the application data
correctly.

A GLS locale is a set of IBM Informix files that bring together the information
about data that is specific to a given culture, language, or territory. In particular, a
GLS locale can specify the following:
v The name of the code set that the application data uses
v The classification of the characters in the code set
v The collation (sorting) sequence to use for character data
v The user format for monetary, numeric, date, and time data

IBM Informix products use the following GLS files to obtain locale-related
information. For more information, see Appendix A, “Manage GLS files,” on page
A-1.

Type of GLS file Description

GLS locale files Specify language, territory, writing direction, and other cultural
conventions.

Code-set files Specify how to map each logical character in a character set to a unique
bit pattern.

Code-set-
conversion files

Specify how to map each character in a “source” code set to
corresponding characters in a “target” code set.

The registry file Associates code-set names and aliases with code-set numbers that
specify file names of locale files and code-set conversion files.

Each database is limited to a single locale, but different databases of the same
database server can support different locales.

A single database can store character data from two or more languages that require
different character sets by using the open source International Components for
Unicode (ICU) implementation of the Unicode code set (UTF-8). This code set is

1-8 IBM Informix GLS User's Guide

available in GLS database server locales for many languages and territories.
(Locales for some client-side systems also support the ICU code set UTF-8 and the
ICU code sets UTF-16 and UTF-32.)

The SET COLLATION statement of Informix supports more than one localized
collating order to sort NCHAR and NVARCHAR character strings.

Code sets for character data
A character set is one or more natural-language alphabets together with additional
symbols for digits, punctuation, and diacritical marks. Each character set has at
least one code set, which maps its characters to unique bit patterns. These bit
patterns are called code points.

ASCII, ISO8859-1, Windows Code Page 1252, and EBCDIC are examples of code
sets that support the English language.

The number of unique characters in the language determines the amount of
storage that each character requires in a code set. Because a single byte can store
values in the range 0 - 255, it can uniquely identify 256 characters. Most Western
languages have fewer than 256 characters and therefore have code sets made up of
single-byte characters. When an application handles data in such code sets, it can
assume that 1 byte stores 1 character.

The ASCII code set contains 128 characters. Therefore, the code point for each
character requires 7 bits of a byte. These single-byte characters with code points in
the range 0 - 128 are sometimes called ASCII or 7-bit characters. The ASCII code set
is a single-byte code set and is a subset of all code sets that IBM Informix products
support.

If a code set contains more than 128 characters, some of its characters have code
points that must set the eighth bit of the byte. These non-ASCII characters might
be either of the following types of characters:

8-bit characters
The 8-bit characters are single-byte characters whose code points are 128 -
255. Examples from the ISO8859-1 code set or Windows Code Page 1252
include the non-English é, ñ, and ö characters. Only if the software is 8-bit
clean can it interpret these characters correctly. For more information, see
“The GLS8BITFSYS environment variable” on page 2-7.

Multibyte characters
If a character set contains more than 256 characters, the code set must
contain multibyte characters. A multibyte character might require 2 - 4
bytes of storage. Some East-Asian locales support character sets that can
contain thousands of ideographic characters; GLS provides full support, for
example, for the unified Chinese GB18030-2000 code set, which contains
nearly 1.4 million code points. Such languages have code sets that include
both single-byte and multibyte characters. These code sets are called
multibyte code sets.

Some characters in the Japanese SJIS code set, for another example, are of 2 bytes
or 3 bytes. Applications that handle data in multibyte code sets cannot assume that
one character takes only 1 byte of storage.

Chapter 1. GLS fundamentals 1-9

Tip: In this publication, the term non-ASCII characters applies to all characters with
a code point greater than 127. Non-ASCII characters include both 8-bit and
multibyte characters.

IBM Informix products can support single-byte or multibyte code sets. For some
examples of GLS locales that support non-ASCII characters, see “Support for
non-ASCII characters” on page 1-23.

Tip: Throughout this publication, examples show how single-byte and multibyte
characters are displayed. Because multibyte characters are usually ideographic
(such as Japanese or Chinese characters), this publication does not use the actual
multibyte characters. Instead, it uses ASCII characters to represent both single-byte
and multibyte characters.

Character classes of the code set
A GLS locale groups the characters of a code set into character classes. Each class
contains characters that have a related purpose.

GLS supports 12 classes. The contents of a character class can be language specific.
For example, the lower class contains all alphabetic lowercase characters in a code
set. The code set of the default locale groups the letters a through z into the lower
class, which also includes other lowercase characters such as á, è, î, õ, and ü.

To be globalized, your application must not assume which characters belong in a
given character class. Instead, use IBM Informix GLS library functions to identify
the class of a particular character.

Collation order for character data
Collation is the process of sorting character strings according to some order. The
database server or the client application can perform collation.

The collating order affects the following tasks in SQL SELECT statements:
v Logical predicates in the WHERE clause

SELECT * FROM tab1 WHERE col1 > ’bob’
SELECT * FROM tab1 WHERE site BETWEEN ’abc’ AND ’xyz’

v Sorted data that the ORDER BY clause creates
SELECT * FROM tab1 ORDER BY col1

v Comparisons in MATCHES and LIKE clauses
SELECT * FROM tab1 WHERE col1 MATCHES ’a1*’
SELECT * FROM tab1 WHERE col1 LIKE ’dog’
SELECT * FROM tab1 WHERE col1 MATCHES ’abc[a-z]’

For more information about how the database locale can affect the SELECT
statement, see “Collation order in SELECT statements” on page 3-19.

IBM Informix database servers support two collation methods:
v Code-set order (the first-to-last order of characters in the code set)
v Localized order (if the locale defines a localized order)

Code-set order
Code-set order is the order of characters within a code set. The order of the code
points in the code set determines the collating order.

1-10 IBM Informix GLS User's Guide

For example, in the ASCII code set, A=65 and B=66. The character A always sorts
before B because a code point of 65 is less than one of 66. But because a=97 and
M=77, the string abc sorts after Me, which is not always the preferred result.

The database server uses code-set order to sort columns of these data types:
v CHAR
v LVARCHAR
v VARCHAR
v TEXT

All code sets that IBM Informix products support include the ASCII characters as
the first 127 characters. Therefore, other characters in the code set have the code
points 128 and greater. When the database server sorts values of these data types,
it puts character strings that begin with ASCII characters before characters strings
that begin with non-ASCII characters in the sorted results.

For an example of data sorted in code-set order, see Table 3-2 on page 3-19.

Localized order
Localized order is an order of the characters that relates to a natural language. The
locale defines the order of the characters in the localized order.

For example, even though the character À might have a code point of 133, the
localized order can list this character after A and before B (A=65, À=133, B=66). In
this case, the string B sorts after AC but before BD.

The database server uses localized order to sort columns of these data types:
v NCHAR
v NVARCHAR

The localized order can include equivalent characters, those characters that the
database server is to consider as equivalent when it collates them. For example, if
the locale defines uppercase and lowercase versions of a character as equivalent in
the localized order, then the strings Arizona, ARIZONA, and arizona are collated
together, as if all three strings were the same string.

Tip: The COLLATION category of the locale file specifies the localized order, if
one exists. For more information, see “The COLLATION category” on page A-3.

A localized order can also specify a collating sequence that does not match the
order of code points in the character set of the locale. For example, a telephone
book might require the following sort order:
Mabin
McDonald
MacDonald
Madden

A dictionary, however, might use this collating order for the same names:
Mabin
Madden
MacDonald
McDonald

Chapter 1. GLS fundamentals 1-11

If the GLS locale defines a localized order, the database server sorts data from
NCHAR and NVARCHAR columns in this localized order. For an example of data
sorted in a localized order, see Table 3-3 on page 3-20.

IBM Informix supports the SET COLLATION statement, which can specify a
localized collation different from the DB_LOCALE setting. The scope of the
non-default collating order is the current session, but database objects that perform
collation, such as indexes or triggers, use the collating order from the time of their
creation when they sort NCHAR or NVARCHAR values.

After the SET COLLATION statement has specified a localized collation order, and
you have completed all of the sorting tasks that require that localized order, you
can restore the collation that the DB_LOCALE setting implies by issuing the SET NO
COLLATION statement of SQL.

The SET COLLATION statement only affects localized collation operations that the
database server performs. Sorting of NCHAR or NVARCHAR data values by the
client always follows the collation order of the CLIENT_LOCALE setting, and ignores
any SET COLLATION specifications. For more information about the environment
variables that can define the client locale or the server locale, see “Locales in the
client/server environment” on page 1-16.

Unicode collation
The open source International Components for Unicode (ICU) implementation of
the Unicode code set (UTF-8) is available in GLS locales for many languages and
territories.

For example, the en_us.utf8 locale supports the Unicode code set. The GLS 4.50
library incorporates the International Components for Unicode (ICU) 3.4.1 library.
For more information about ICU, see the ICU website at http://www.ibm.com/
software/globalization/icu/index.jsp.

GLS locales that use the Unicode code set (UTF-8) support Unicode collation of
NCHAR and NVARCHAR data by the ICU Unicode Collation Algorithm. For more
information about this algorithm, see the Unicode website at http://
www.unicode.org/unicode/reports/tr10.

Important: If Unicode produces index keys that are too long to fit in the default
dbspace page size, use a larger, nondefault page size.

Collation support
Collation by IBM Informix database servers depends on the data type of the
database column.

The following table summarizes the collation rules.

Column data types Collating order

CHAR, VARCHAR, TEXT Code-set order

LVARCHAR Code-set order

NCHAR, NVARCHAR Localized order

The difference in collation is the only distinction between the CHAR and NCHAR
data types and between the VARCHAR and NVARCHAR data types. For more
information about collation, see “Character data types” on page 3-6. If a locale

1-12 IBM Informix GLS User's Guide

http://www.ibm.com/software/globalization/icu/index.jsp
http://www.ibm.com/software/globalization/icu/index.jsp
http://www.unicode.org/unicode/reports/tr10
http://www.unicode.org/unicode/reports/tr10

does not define a localized order, the database server collates NCHAR and
NVARCHAR data values in code-set order.

Important: There is an exception to the general rule that CHAR, LVARCHAR, and
VCHAR values are always sorted in the code-set order. The MATCHES operator
always uses the localized order, if one is defined, to evaluate range expressions for
character values, regardless of the data type. See “MATCHES condition” on page
3-24.

End-user formats
The end-user format is the format in which a data value is displayed or entered in a
client application as a literal string or a character variable.

An end-user format is useful for a data type whose format in the database is
different from the format to which users are accustomed. The database server
stores data for DATE, DATETIME, MONEY, and numeric data types in compact
internal formats within the database.

For example, the database server stores a DATE value as an integer number of
days since December 31, 1899, so the date 03/19/96 is 35142. This internal format is
not intuitive.

IBM Informix products support end-user formats so that a client application can
use this more intuitive form instead of the internal format. Literal strings or
character variables can show in SQL statements as column values or as arguments
of SQL API library functions.

An IBM Informix product uses an end-user format when it encounters a string (a
literal string or the value in a character variable) in these contexts:
v When an IBM Informix product reads a string, it uses an end-user format to

determine how to interpret the string so that it can convert it to a numeric value.
For example, suppose that DB-Access has the default (U.S. English) as its client
locale. The literal date in the following INSERT statement uses the end-user
format for dates that the default locale defines:
INSERT INTO mytab (date1) VALUES (’03/19/96’)

When it receives the data from the client application, the database server uses
the end-user format to interpret this literal date so that it can convert it to the
corresponding internal format (35142).

v When an IBM Informix product prints a string, it uses an end-user format to
determine how to format the numeric value as a string.
For example, suppose that an Informix ESQL/C client application has a French
locale as its client locale, and this locale defines a date end-user format that
formats dates as dd/mm/yy. The following rdatestr() function uses the end-user
format for dates to obtain the value in the datestr character variable:
err = rdatestr(jdate, datestr);

The rdatestr() function uses the end-user format to determine how to format the
internal format (35142) as a date string before it puts the value in the datestr
variable. For more information about the effect of the GLS feature on SQL API
library functions, see “Enhanced ESQL/C library functions” on page 6-7.

A GLS locale defines end-user formats for the following types of data:
v Representation of currency notation and numeric format
v Representation of dates and of time-of-day values

Chapter 1. GLS fundamentals 1-13

You can specify number, currency, date, and time values in an end-user format that
is specific to a given country or culture.

Important: End-user formats of date, time, number, and monetary values do not
affect the internal format of the corresponding data types in the database. They
affect only how the client application displays the data and interprets data entry.

The following table lists the values that define the end-user format for each data
type that uses end-user formats. For information about the environment variables,
see Chapter 2, “GLS environment variables,” on page 2-1. For information about
the locale categories, see Appendix A, “Manage GLS files,” on page A-1.

Data types Environment variables Locale category

DATE GL_DATE TIME

DATETIME

INTERVAL

GL_DATE

GL_DATETIME

TIME

MONEY DBMONEY MONETARY

Number (DEC, DECIMAL, DOUBLE
PRECISION, FLOAT, INT, INT8,
INTEGER, NUMERIC, REAL,
SMALLFLOAT, SMALLINT)

None NUMERIC

Numeric and monetary formats
When an IBM Informix product reads a string that contains numeric or monetary
data, it uses the end-user format to determine how to convert this string to the
internal value for the database column.

When an IBM Informix product prints a string that contains numeric or monetary
data, it uses the end-user format to determine how to format the internal value for
the database column as a string.

End-user formats for numbers and currency specify these elements:
v The decimal-separator symbol separates the part of the numeric value from the

fractional part. In the default locale, the period is the decimal separator (3.01). In
a locale such as French, the comma is the decimal separator (3,01).

v The thousands-separator symbol can show between groups of digits in the part of
the numeric value. In the default locale, the comma is the thousands separator
(3,255); in a French locale, the space is the thousands separator (3 255).

v The characters that indicate positive and negative numbers.
v The number of digits to group between each appearance of a non-monetary

thousands separator.

For example, this might specify that numbers always omit the separator after the
millions position, which produces the following output: 1234,345.

In addition to this notation, monetary data also uses a currency symbol to identify
the currency unit. This can show at the front ($100) or back (100FF) of the
monetary value. In this publication, the combination of currency symbol, decimal
separator, and thousands separator is called currency notation.

1-14 IBM Informix GLS User's Guide

Date and time formats
When an IBM Informix product reads a string that contains time data, it uses the
end-user format to determine how to convert this string to the internal integer
value for a DATETIME column.

When an IBM Informix product prints a string that contains time data, it uses the
time end-user format to determine how to format the internal integer value for a
DATETIME column as a string. In the same way, IBM Informix products use the
date end-user format to read and print strings for the internal values of the date
data types.

Important: End-user formats specify how client applications view data, but do not
affect the internal format of DATETIME or DATE values stored in the database.

The end-user formats for date and time can include the names and abbreviations
for days of the week and months of the year, and the commonly used
representations for dates, time (12-hour and 24-hour), and DATETIME values.

End-user formats can include names of eras (as in the Japanese Imperial date
system) and non-Gregorian calendars (such as the Arabic lunar calendar).

For example, the Taiwan culture uses the Ming Guo year format in addition to the
Gregorian calendar year. For dates before 1912, Ming Guo years are negative. The
Ming Guo year 0000 is undefined; any attempt to use it generates an error. The
following table shows some era-based dates.

Gregorian year Ming Guo year Remarks

1993 82 1993 – 1911 = 82

1912 01 1912 – 1911 = 01

1911 –01 1911 – 1912 = –01

1910 –02 1910 – 1912 = –02

1900 –12 1900 – 1912 = –12

Japanese Imperial-era dates are tied to the reign of the Japanese emperors. The
following table shows Julian and Japanese era dates. It shows the Japanese era
format in full, with abstract multibyte characters for the Japanese characters, and in
an abbreviated form that uses romanized characters (gengo). The abbreviated form
of the era uses the first letter of the English name for the Japanese era. For
example, H represents the Heisei era.

Gregorian date Abstract Japanese era (in full) Japanese era (gengo)

1868/09/08 A1A2B1B201/09/08 M01/09/08

1912/07/30 A1A2B1B245/07/30 M45/07/30

1912/07/31 A1A2B1B201/07/31 T01/07/31

1926/12/25 A1A2B1B215/12/25 T15/12/25

1926/12/26 A1A2B1B201/12/26 S01/12/26

1989/01/07 A1A2B1B264/01/07 S64/01/07

1989/01/08 A1A2B1B201/01/08 H01/01/08

1995/01/01 A1A2B1B207/01/01 H07/01/01

Chapter 1. GLS fundamentals 1-15

Here A1A2 and B1B2 represent multibyte Japanese characters. For more information,
see “Customize date and time end-user formats” on page 1-32.

Set a GLS locale
For the database server and the client application to communicate successfully, you
must establish the appropriate GLS locales for your environment.

A GLS locale name identifies the language, territory, and code set that you want
your IBM Informix product to use. For the syntax of the components of locale
names, see “The CLIENT_LOCALE environment variable” on page 2-2.

IBM Informix products use the locale name to find the corresponding locale files. A
locale file is a runtime version of the locale information. The locale name must
correspond to a GLS locale file in a subdirectory of the IBM Informix installation
directory (which INFORMIXDIR specifies) called gls. For more information about
GLS locale files, see Appendix A, “Manage GLS files,” on page A-1.

Locales in the client/server environment
In a client/server environment, the client application, database server, and one or
more databases might be on different computers.

The following figure shows an example of database server connections between an
IBM Informix ESQL/C client application and the acctng database through an IBM
Informix database server.

These computers might have different operating systems or different language
support. To ensure that these three parts of the database application communicate
locale information successfully, IBM Informix products support the following
locales:
v The client locale identifies the locale that the client application uses.
v The database locale identifies the locale of the data in a database.
v The server locale identifies the locale that the database server uses for its

server-specific files.

Server computer

Database server

Message-log file

Client computer

Log file

Informix

Client application

ESQL/C

Database

acctng

Figure 1-1. Example of a client/server environment

1-16 IBM Informix GLS User's Guide

The following figure shows the client locale, database locale, and server locale that
the example Informix ESQL/C application (from the previous figure) establishes.

When you set the same or compatible GLS locales for each of these locales, your
client application is not dependent on how the operating system of each computer
implements language-specific features.

Sections that follow describe each of these locales in more detail.

The client locale
The client locale specifies the language, territory, and code set that the client
application uses to perform read and write (I/O) operations.

In a client application, I/O operations include reading a keyboard entry or a file
for data to be sent to the database and writing data that the database server
retrieves from the database to the screen, a file, or a printer. In addition, an SQL
API client uses the client locale for literal strings (end-user formats), embedded
SQL (ESQL) statements, and host variables.

IBM Informix products use the CLIENT_LOCALE environment variable for the
following purposes:
v When the preprocessor for Informix ESQL/C processes a source file, it accepts C

source code that is written in the code set of the CLIENT_LOCALE.
The C compiler and the operating system that you use might impose limitations
on the Informix ESQL/C program. For more information, see “Generate
non-ASCII file names” on page 6-3.

v When an Informix ESQL/C client application executes, it checks CLIENT_LOCALE
for the name of the client locale, which affects operating-system file names,
contents of text files, and formats of date, time, and numeric data.
For more information, see “Handle non-ASCII characters” on page 6-1.

v When a client application and a database server exchange character data, the
client application performs code-set conversion when the code set of the
CLIENT_LOCALE environment variable is different from the code set of DB_LOCALE
(on the client computer).

Database locale

Client locale

Server computer

Database server

Message-log file

Client computer

Log file

Informix

Database

acctng

Server locale

Client application

ESQL/C

Figure 1-2. The client locale, database locale, and server locale

Chapter 1. GLS fundamentals 1-17

Code-set conversion prevents data corruption when these two code sets are
different. For more information, see “Perform code-set conversion” on page 1-28.

v When the client application requests a connection, it sends information,
including the CLIENT_LOCALE, to the database server.
The database server uses CLIENT_LOCALE when it determines how to set the
client-application information of the server-processing locale. For more
information, see “Establish a database connection” on page 1-24.

v When database utilities create files, the file names and file contents are in the
code set that CLIENT_LOCALE specifies.

v When a client application looks for product-specific message files, it checks the
message directory associated with the client locale.
For more information, see “Locate message files” on page 1-31.

In the example connection that Figure 1-2 on page 1-17 shows, if the client locale is
German with the Windows Code Page 1252 (de_de.1252@euro), the German
locale-specific information that the Informix ESQL/C client application uses
includes the following:
v Valid date end-user formats support the following format for the U.S. English

date of Tuesday, 02/11/1997:
Di., 11. Feb 1997

v Valid monetary end-user formats support the following format for the U.S.
English amount of $354,446.02:
EUR354.446,02

Tip: To provide this information for the client locale, the locale file contains the
following locale categories: COLLATION, CTYPE, TIME, MONETARY, and
NUMERIC. For more information, see “Locale categories” on page A-2.

To determine the client locale, client applications use environment variables set on
the client computer. To obtain the localized order and end-user formats of the
client locale, a client application uses the following precedence:
1. DBDATE and DBTIME environment variables for the end-user formats of date and

time data and DBMONEY for the end-user format of monetary data (if one of
environment variables is set)

2. GL_DATE and GL_DATETIME environment variables for the end-user formats of
date and time data (if one of environment variables is set)

3. The information that the client locale defines (CLIENT_LOCALE, if it is set)
4. The default locale (U.S. English)

Client applications that are based on IBM Informix use the precedence of steps 2, 3,
and 4 in the preceding list. You do not need to set the other environment variables
for Informix client applications.

Support for DBDATE and DBTIME provides compatibility with earlier versions for
client applications based on earlier versions of Informix products. It is
recommended that you use GL_DATE and GL_DATETIME for new applications.

The database locale
The database locale, which is set with the DB_LOCALE environment variable, specifies
the language, territory, and code set that the database server needs to correctly
interpret locale-sensitive data types (NCHAR and NVARCHAR) in a particular
database.

1-18 IBM Informix GLS User's Guide

The code set specified in DB_LOCALE determines which characters are valid in any
character column and the names of database objects such as databases, tables,
columns, and views. For more information, see “Name database objects” on page
3-1.

The database locale also specifies the writing direction. Most languages are written
left-to-right, but some are written right-to-left or top-to-bottom.

IBM Informix products use the DB_LOCALE environment variable for the following
purposes:
v When a client application and a database server exchange character data, the

client application performs code-set conversion when the value of the DB_LOCALE
environment variable (on the client computer) is different from the value of
CLIENT_LOCALE.
Code-set conversion prevents data corruption when these two code sets are
different. For more information, see “Perform code-set conversion” on page 1-28.

v When the client application requests a connection, it sends information,
including the DB_LOCALE (if it is set), to the database server.
The database server uses DB_LOCALE when it determines how to set the database
information of the server-processing locale. For more information, see “Establish
a database connection” on page 1-24.

v When a client application tries to open a database, the database server compares
the value of the DB_LOCALE environment variable that the client application
passes with the database locale that is stored in the database.
When the database server accesses columns of locale-sensitive data types, it uses
the locale that DB_LOCALE specifies. For more information, see “Verify the
database locale” on page 1-24.

v When the database server creates a database, it examines the database locale
(DB_LOCALE) to determine how to store character information in the system
catalog of the database. This information includes operations such as how to
handle regular expressions, compare character strings, and ensure correct use of
code sets.

The database server stores a condensed version of the database locale in the
systables system catalog table.

When the database server stores the database locale information directly in the
system catalog, it permanently attaches the locale to the database. This information
is used throughout the lifetime of the database. In this way, the database server
can always determine the locale that it needs to interpret the locale-sensitive data
correctly.

The SET COLLATION statement can specify the localized collation of a different
locale to sort NCHAR and NVARCHAR data in the current session.

The condensed version of the database locale is stored in the following two rows
of systables, which store the condensed locale name in the site column:
v The row with tabid 90 stores the COLLATION category of the database locale.

The collation order determines the order in which the characters of the code set
collate. If the database locale defines only a code-set order for collation (as does
the default locale, U.S. English), the database server creates CHAR and
VARCHAR columns to store the character information. If the database locale
defines a localized order for collation, however, the database server creates

Chapter 1. GLS fundamentals 1-19

NCHAR and NVARCHAR columns to store this character information. The
tabname value for this row is GLS_COLLATE.

v The row with tabid 91 stores the CTYPE category of the database locale. The
CTYPE category of a locale determines how characters of the code set are
classified. The database server uses character classification for case conversion
and some regular-expression evaluation. The tabname value for this row is
GLS_CTYPE.

The database server uses the value of the DB_LOCALE environment variable that the
client application sends. If you do not set DB_LOCALE on the client computer,
however, the database server uses the value of DB_LOCALE on the server computer
as the database locale.

In the connection shown in Figure 1-2 on page 1-17, the database server references
the database locale when the client application requests sorted information for an
NCHAR column in the acctng database. If this locale is German with the Windows
Code Page 1252 (de_de.1252), the database server uses a localized order that sorts
accented characters, such as ö, after their unaccented counterparts. Thus, the string
öff sorts after ord but before pre. For the syntax to set the database locale, see
“The DB_LOCALE environment variable” on page 2-4.

The server locale
The server locale, which is set with the SERVER_LOCALE environment variable,
specifies the language, territory, and code set that the database server uses to
perform read and write (I/O) operations on the server computer (the computer on
which the database server runs).

These I/O operations include reading or writing the following files:
v Diagnostic files that the database server generates to provide additional

diagnostic information
v Log files that the database server generates to record events
v The sqexplain.out file that the SQL statement SET EXPLAIN generates

The database server does not use the server locale, however, to write files that are
in an IBM Informix proprietary format (database and table files). For a more
detailed description of the files that the database server writes by using the server
locale, see Chapter 4, “Database server features,” on page 4-1.

The database server looks for product-specific message files in the message
directory that is associated with the locale specified in SERVER_LOCALE. For more
information, see “Locate message files” on page 1-31.

In the example connection that Figure 1-2 on page 1-17 shows, the IBM Informix
database server uses the locale specified in SERVER_LOCALE to determine the code
set to use when it writes a message-log file. For the syntax to set the server locale,
see “The SERVER_LOCALE environment variable” on page 2-20.

Tip: The database server is the only IBM Informix product that needs to know the
server locale. Any database server utilities that you run on the server computer use
the client locale to read from and write to files and the database locale (on the
server computer) to access databases that are set on the server computer.

The server locale and the server-processing locale are two different locales. For
more information about the server-processing locale, see “Determine the
server-processing locale” on page 1-25.

1-20 IBM Informix GLS User's Guide

The default locale
IBM Informix products use U.S. English as the default locale if you do not set the
environment variables that can specify a locale.

The default locale specifies the following information:
v The U.S. English language and an English-language code set
v Standard U.S. formats for monetary, numeric, date, and time data

To use the default locale for database applications requires no special steps. To use
a customized version of U.S. English, British English, or another language,
however, your environment must identify the appropriate locale.

For information about how to specify a GLS locale, see “Set a nondefault locale”
on page 1-22.

The default code set
The default code set is the code set that the default locale supports. When you use
the default locale, the default code set supports both the ASCII code set and some
set of 8-bit characters.

The default locale, U.S. English, has the following locale name, where en indicates
the English language, us indicates the United States territory, and the numbers
indicate the platform-specific name of the default code set.

For a chart of ASCII values, see the Relational Operator segment in the IBM
Informix Guide to SQL: Syntax. The following table describes the default code set for
UNIX and for Windows platforms.

Platform Default code set

UNIX ISO8859-1

Windows Microsoft 1252

In a locale name, you can specify the code set as either the code-set name or the
condensed form of the code-set name. For example, the following locale names
both identify the U.S. English locale with the ISO8859-1 code set:
v UNIX

The locale name en_us.8859-1 uses the code-set name to identify the ISO8859-1
code set.

v Windows
The locale name en_us.0333 uses the condensed form of the code-set name to
identify the ISO8859-1 code set.

For more information about the condensed form of a code-set name, see
“Code-set-conversion file names” on page A-9.

Default end-user formats for date and time
In the default locale, IBM Informix products use end-user formats for date and
time values.

IBM Informix products use the following user formats:
v For DATE values: %m/%d/%iy
v For DATETIME values: %iY-%m-%d %H:%M:%S

Chapter 1. GLS fundamentals 1-21

For information about these formatting directives, see “The GL_DATE environment
variable” on page 2-10 and “The GL_DATETIME environment variable” on page
2-15. For an introduction to date and time end-user formats, see “Date and time
formats” on page 1-15. For information about how to customize these end-user
formats, see “Customize date and time end-user formats” on page 1-32.

Default end-user formats for numeric and monetary values
When you use the default locale, IBM Informix products use end-user formats for
numeric and monetary values.

IBM Informix products use the following end-user formats:
v The thousands separator is the comma (,).
v The decimal separator is the period (.).
v Three digits show between each thousands separator.
v The positive sign is plus (+) and the negative sign is minus (-).

For monetary values, IBM Informix products also use a currency symbol, the dollar
($) sign, in front of a monetary value. For an introduction to numeric and
monetary end-user formats, see “Numeric and monetary formats” on page 1-14.
For information about how to customize these end-user formats, see “Customize
monetary values” on page 1-33.

Set a nondefault locale
By default, IBM Informix products use the U.S. English locale, but IBM Informix
products support many other locales.

To use a nondefault locale, you must set the following environment variables:
v Set the CLIENT_LOCALE environment variable to specify the appropriate client

locale.
If you do not set CLIENT_LOCALE, the client locale is the default locale, U.S.
English.

v Set DB_LOCALE on each client computer to specify the database locale for a client
application to use when it connects to a database.
If you do not set DB_LOCALE on the client system, the client application sets
DB_LOCALE to the client locale. This default value avoids the need for the client
application to perform code-set conversion.
You might also want to set DB_LOCALE on the server computer so that the
database server can perform operations such as the creation of databases (when
the client does not specify its own DB_LOCALE).

v Set the SERVER_LOCALE environment variable to specify the appropriate server
locale.
If you do not set SERVER_LOCALE, the server locale is the default locale, U.S.
English.

To access a database that has a nondefault locale, the CLIENT_LOCALE and DB_LOCALE
settings on the client system must support this nondefault locale. Both locales must
be the same, or their code sets must be convertible, as described in “Perform
code-set conversion” on page 1-28.

For example, to access a database with a Japanese SJIS locale, set both DB_LOCALE
and CLIENT_LOCALE to ja_jp.sjis on the client system. (If you set DB_LOCALE but not

1-22 IBM Informix GLS User's Guide

CLIENT_LOCALE, the client application returns an error, because it cannot set up
code-set conversion between the SJIS database code set and the code set of the
default locale on the client system.)

When a client application requests a connection, the database server uses
information in the client, database, and server locales to create the
server-processing locale. For more information, see “Establish a database
connection” on page 1-24.

GLS locales with IBM Informix products
IBM Informix products use GLS locales for several tasks.

These tasks include:
v When a client application requests a connection, the database server uses the

client and database locales to determine if these locales are compatible.
v When a client application first begins execution, it compares the client and

database locales to determine if it must perform code-set conversion.
v All IBM Informix products that show product-specific messages look in a

directory specific to the client locale to find these messages.

Support for non-ASCII characters
An IBM Informix product obtains its code set from its GLS locale. Locales are
available for both single-byte and multibyte code sets.

All supported code sets define the ASCII characters. Most also support additional
non-ASCII characters (8-bit or multibyte characters). For more information about
code sets and non-ASCII characters, see “Code sets for character data” on page 1-9.

The following types of GLS locales are examples of locales that contain non-ASCII
characters in their code sets:
v The default locale supports the default code set, which contains 8-bit characters

for non-English characters such as é, ñ, and ö.
The name of the default code set depends on the platform on which your IBM
Informix product is installed. For more information about the default code set,
“The default code set” on page 1-21.

v Many nondefault locales support the default code set.
Nondefault locales that support the UNIX default code set, ISO8859-1, include
British English (en_gb.8859-1), French (fr_fr.8859-1), Spanish (es_es.8859-1), and
German (de_de.8859-1).

v Other nondefault locales, such as Japanese SJIS (ja_jp.sjis), Korean (ko_kr.ksc),
and Chinese (zh_cn.gb), contain multibyte code sets. (The unified Chinese code
set is GB18030-2000.)

For the contexts in which you can use non-ASCII characters, including multibyte
characters, see Chapter 3, “SQL features,” on page 3-1, Chapter 4, “Database server
features,” on page 4-1, and Chapter 5, “General SQL API features (ESQL/C),” on
page 5-1.

For an IBM Informix product to support non-ASCII characters, however, it must
use a locale that supports a code set with the same non-ASCII characters.

Chapter 1. GLS fundamentals 1-23

Establish a database connection
To establish a database connection, the GLS locales performs a series of steps.

When a client application requests a connection to a database, the database server
uses GLS locales to perform the following steps:
1. Examine the client locale information that the client passes.
2. Verify that it can establish a connection between the client application and the

database that it requested.
3. Determine the server-processing locale, which the database server uses to

handle locale-specific information for the connection.

Send the client locale
When the client application requests a connection, it sends the environment
variables from the client locale to the database server.

The following environment variables are sent from the client locale to the database
server:
v Locale information

– CLIENT_LOCALE

If CLIENT_LOCALE is not set, the client sets it to the default locale.
– DB_LOCALE

If DB_LOCALE is not set, the client does not send a DB_LOCALE value to the
database server.

v User-customized end-user formats
– Date and time end-user formats: GL_DATE and GL_DATETIME

– Monetary end-user formats: DBMONEY
If you do not set any of these environment variables, the client application does
not send them to the database server, and the database server uses the end-user
formats that the CLIENT_LOCALE defines.

The database server uses these settings to extract the following information:
v How are numeric and monetary values formatted?
v How are dates and times formatted?
v What database locale does the client expect?

The database server uses this information to verify the database locale and to
establish the server-processing locale.

Verify the database locale
To open an existing database, the client application must correctly identify the
database locale for that database.

To verify the database locale, the database server compares the following two
locales:
v The locale specified by DB_LOCALE that the client application sends
v The database locale that is stored in the system catalog of the database that the

client application requests.
For more information, see “The database locale” on page 1-18.

1-24 IBM Informix GLS User's Guide

Two database locales match if their language, territory, code set, and any locale
modifiers are the same. If these database locales do not match, the database server
performs the following actions:
v It sets the eighth character field of the SQLWARN array in the SQL

Communications Area (SQLCA structure) to W as a warning flag. Values for W are
ASCII 32 (blank) and ASCII 87 (W).

v It uses the database locale that is stored in the system catalog of the requested
database as the database locale.

Important: Check for the SQLWARN warning flag after your client application
requests a connection. If the two database locales do not match, the client
application might incorrectly interpret data that it retrieves from the database
server, or the database server might incorrectly interpret data that it receives from
the client. If you proceed with such a connection, it is your responsibility to
understand the format of the data that is being exchanged.

Check for connection warnings
To check for the eighth character field of the SQLWARN array, an IBM Informix
ESQL/C client application can check the sqlca.sqlwarn.sqlwarn7 field.

If the sqlwarn7 field has a value of W, the database server has ignored the database
locale that the client specified and has instead used the locale in the database as
the database locale.

For more information about how to handle exceptions within an ESQL program,
see the IBM Informix ESQL/C Programmer's Manual.

Important: Array elements in SQLWARN arrays are numbered starting with zero
in IBM Informix ESQL/C, but starting with one in other languages. For IBM
Informix GLS tools that use one-based counts on arrays, such as IBM Informix 4GL
and IBM Informix Dynamic 4GL, the warning character that IBM Informix
ESQL/C calls sqlca.sqlwarn.sqlwarn7 is called SQLCA.SQLAWARN[8].

Determine the server-processing locale
The database server uses the server-processing locale to obtain locale information for
its own internal sessions and for any connections.

When the database server begins execution, it initializes the server-processing
locale to the default locale. When a client application requests a connection, the
database server must redetermine the server-processing locale to include the client
and database locales. The database server uses the server-processing locale to
obtain locale information that it needs when it transfers data between the client
system and the database.

After the IBM Informix database server verifies the database locale, it uses a
precedence of environment variables from the client and database locales to set the
server-processing locale.

The database server obtains the following information from the server-processing
locale:
v Locale information for the database

This database information includes the localized order and code set for data in
columns with the locale-sensitive data types (NCHAR and NVARCHAR). The
database server obtains this information from the name of the database locale
that it has verified.

Chapter 1. GLS fundamentals 1-25

v Locale information for client-application data
This client-application information provides the end-user formats for date, time,
numeric, and monetary data. The database server obtains this information from
the client application when the client requests a connection.

The following figure shows the relationship between the client locale, database
locale, server locale, and server-processing locale.

Tip: The database server uses the server locale, as specified by the SERVER_LOCALE
environment variable, for read and write operations on its own operating-system
files. For information about operating-system files, see “GLS support by IBM
Informix database servers” on page 4-1.

Locale information for the database:

The database server must know how to interpret the data in any columns with the
locale-specific data types, NCHAR and NVARCHAR.

To handle this locale-specific data correctly, the database server must know the
localized order for the collation of the data and the code set of the data. In
addition, the database server uses the code set of the database locale as the code
set of the server-processing locale.

The database server might have to perform code-set conversion between the code
sets of the server-processing locale and the server locale. For more information, see
“Perform code-set conversion” on page 1-28.

The database server uses the following precedence to determine this database
information:
1. The locale that the database server uses to determine the database information

for the server-processing locale depends on the state of the database to which
the client application requests a connection, as follows:

Server computer

Database server

Server locale

Database

acctng
Database locale

Client computer

Log file

Client locale

Server-processing
locale

Message-log file

InformixESQL/C

Client application

Figure 1-3. The server-processing locale

1-26 IBM Informix GLS User's Guide

a. For a connection to an existing database, the database server uses the
database information from the database locale that it obtains when it
verifies the database locale. If the client application does not send
DB_LOCALE, the database server uses the DB_LOCALE that is set on the server
computer.

b. For a new database, the database server uses the DB_LOCALE, which the
client application has sent.

2. The locale that the DB_LOCALE environment variable on the server computer
indicates

3. The default locale (U.S. English)

IBM Informix uses the precedence of steps 1 on page 1-26, 2, and 3 in the
preceding list to obtain the database information for the server-processing locale.
You are not required to set the other environment variables.

Tip: The precedence rules apply to how the database server determines both the
COLLATION category and the CTYPE category of the server-processing locale. For
more information about these locale categories, see “Locale categories” on page
A-2.

For more information about how the database server obtains these environment
variables, see “Send the client locale” on page 1-24.

If the client application makes another request to open a database, the database
server must reestablish the database information for the server-processing locale, as
follows:
1. Reverify the database locale by comparing the database locale in the database

to be opened with the value of the DB_LOCALE environment variable from the
client application.

2. Reestablish the server-processing locale with the newly verified database locale
(from the preceding step).

For example, suppose that your client application has DB_LOCALE set to
en_us.8859-1 (U.S. English with the ISO8859-1 code set). The client application then
opens a database with the U.S. English locale (en_us.8859-1), and the database
server establishes a server-processing locale with en_us.8859-1 as the locale that
defines the database information.

If the client application now closes the U.S. English database and opens another
database, one with the French locale (fr_fr.8859-1), the database server must
reestablish the server-processing locale. The database server sets the eighth
character field of the SQLWARN array to W indicate that the two locales are
different. The client application, however, might choose to use this connection
because both these locales support the ISO8859-1 code set. If the client application
opens a database with the Japanese SJIS locale (ja_jp.sjis) instead of one with a
French locale, your client application would probably not continue with this
connection because the locales are too different.

Locale information for the client application:

The database server must know how to interpret the end-user formats when they
show in monetary, date, or time data that the client application sends. It must also
convert data from the database to any appropriate end-user format before it sends
this data to the client application.

Chapter 1. GLS fundamentals 1-27

For more information about end-user formats, see “End-user formats” on page
1-13.

The database server uses the following precedence to determine this
client-application information:
1. DBDATE and DBTIME environment variables for the date and time end-user

formats and DBMONEY for the monetary end-user formats (if one of environment
variables is set on the client)
Support for DBDATE and DBTIME provides compatibility with earlier versions for
client applications that are based on earlier versions of IBM Informix products.
It is recommended that you use GL_DATE and GL_DATETIME for new applications.

2. GL_DATE and GL_DATETIME environment variables (if one of environment
variables is set on the client) for the date and time end-user formats

3. The locale that the CLIENT_LOCALE environment variable from the client
application indicates

Tip: The precedence rules apply to how the database server determines the
NUMERIC, MONETARY, TIME, and MESSAGES categories of the
server-processing locale. For more information about these locale categories, see
“Locale categories” on page A-2.

The client application passes the DBDATE, DBMONEY, DBTIME, GL_DATE, and
GL_DATETIME environment variables (if they are set) to the database server. It also
passes the CLIENT_LOCALE and DB_LOCALE environment variables. For more
information, see “Send the client locale” on page 1-24.

Perform code-set conversion
In a client/server environment, character data might need to be converted from
one code set to another if the client or server computer uses different code sets to
represent the same characters. The conversion of character data from one code set
(the source code set) to another (the target code set) is called code-set conversion.

Without code-set conversion, one computer cannot correctly process or show
character data that originates on the other (when the two computers use different
code sets).

IBM Informix products use GLS locales to perform code-set conversion. Both an
IBM Informix client application and a database server might perform code-set
conversion. For details, see “Database server code-set conversion” on page 4-2 and
“Client application code-set conversion” on page 5-1.

You specify a code set as part of the GLS locale. At runtime, IBM Informix
products adhere to the following rules to determine which code sets to use:
v The client application uses the client code set, which the CLIENT_LOCALE

environment variable specifies, to write all files on the client computer and to
interact with all client I/O devices.

v The database server uses the database code set, which the DB_LOCALE environment
variable specifies, to transfer data to and from the database.

v The database server uses the server code set, which the SERVER_LOCALE
environment variable specifies, to write files (such as debug and warning files).

Code-set conversion does not provide either of the following capabilities:
v Code-set conversion is not a semantic translation.

1-28 IBM Informix GLS User's Guide

It does not convert between words in different languages. For example, it does
not convert from the English word yes to the French word oui. It only ensures
that each character retains its meaning when it is processed or written,
regardless of how it is encoded.

v Code-set conversion does not create a character in the target code set if it exists
only in the source code set.
For example, if the character â is passed to a target computer whose code set
does not contain that character, the target computer cannot process or print the
character exactly.

For each character in the source code set, a corresponding character in the target
code set should exist. However, if the source code set contains characters that are
not in the target code set, the conversion must then define how to map these
mismatched characters to the target code set. (Absence of a mapping between a
character in the source and target code sets is often called a lossy error.) If all
characters in the source code set exist in the target code set, mismatch handling
does not apply.

A code-set conversion uses one of the following four methods to handle
mismatched characters:

Round-trip conversion
This method maps each mismatched character to a unique character in the
target code set so that the return mapping maps the original character back
to itself. This method guarantees that a two-way conversion results in no
loss of information; however, data that is converted just one way might
prevent correct processing or printing on the target computer.

Substitution conversion
This method maps all mismatched characters to one character in the target
code set that highlights mismatched characters. This method guarantees
that a one-way conversion clearly shows the mismatched characters;
however, a two-way conversion results in loss of information if
mismatched characters are present.

Graphical-replacement conversion
This method maps each mismatched character to a character in the target
code set that looks like the source character.

This method includes the mapping of one-character ligatures to their
two-character equivalents and vice versa, to make printing of mismatched
data more accurate on the target computer, but it most likely confuses the
processing of this data on the target computer.

A hybrid of two or three of the preceding conversion methods

Tip: Each code-set-conversion source file (.cv) indicates how the associated
conversion handles mismatched characters. For information about
code-set-conversion files, see Appendix A, “Manage GLS files,” on page A-1.

When code-set conversion is performed
An application must use code-set conversion only if the two code sets (client and
server-processing locale, or server-processing locale and server) are different.

The following situations are possible causes of code sets that differ:
v Different operating systems might encode the same characters in different ways.

For example, the code for the character â (a-circumflex) in Windows Code Page
1252 is hexadecimal 0xE2. In IBM Coded Character Set Identifier (CCSID) 437 (a

Chapter 1. GLS fundamentals 1-29

common IBM UNIX code set), the code is hexadecimal 0x83. If the code for â on
the client is sent unchanged to the IBM UNIX computer, it prints as the Greek
character g (gamma). This action occurs because the code for g is hexadecimal
0xE2 on the IBM UNIX computer.

Tip: IBM Informix products support IBM CCSID code-set numbers, a system of
16-bit numbers that uniquely identify the coded graphic character representations.
For more information, see Appendix A, “Manage GLS files,” on page A-1.
v One language can have several code sets. Each might represent a subset of the

language.
For example, the code sets ccdc and big5 are both internal representations of a
subset of the Chinese language. These subsets, however, include different
numbers of Chinese characters.

Important: GLS fully supports the unified Chinese GB18030-2000 code set,
including all characters in the Unicode Basic Multilingual Plane (BMP) and in the
extended planes.

If a code-set conversion is required for data transfer from computer A to computer
B, then it is also required for data transfer from computer B to computer A. In the
client/server environment, the following situations might require code-set
conversion:
v If the client locale and database locale specify different code sets, the client

application performs code-set conversion so that the server computer is not
loaded with this type of processing. For more information, see “Client
application code-set conversion” on page 5-1.

v If the server locale and server-processing locale specify different code sets, the
database server performs code-set conversion when it writes to and reads from
operating-system files such as log files. For more information, see “Database
server code-set conversion” on page 4-2.

In the following figure, the black dots indicate the two points in a client/server
environment at which code-set conversion might occur.

1-30 IBM Informix GLS User's Guide

In the example connection that the previous figure shows, the Informix ESQL/C
client application performs code-set conversion on the data that it sends to and
receives from the database server if the client and database code sets are
convertible. The IBM Informix database server also performs code-set conversion
when it writes to a message-log file if the code sets of the server locale and
server-processing locale are convertible.

Locate message files
IBM Informix products use GLS locales to locate product-specific message files. By
default, IBM Informix products automatically search a subdirectory that is
associated with the client locale for the product-specific message files.

The following table lists the subdirectory for each platform.

Platform Directory

UNIX $INFORMIXDIR/msg/lg_tr/code_set

Windows %INFORMIXDIR%\msg\lg_tr\code_set

In this path, lg is the language and tr is the territory, from the name of the client
locale, and code_set is the condensed form of the code-set name. For more
information about condensed code-set names, see “Locale-file subdirectories” on
page A-6.

IBM Informix products use a precedence of environment variables to locate
product-specific message files. The DBLANG environment variable lets you override
the client locale for the location of message files that IBM Informix products use.
You might use DBLANG to specify a directory where the message files are for each
locale that your environment supports.

Server computer

Database server

Server locale

Database

acctng
Database locale

Client computer

Log file

Client locale

Server processing
locale

Message-log file

InformixESQL/C

Client application

Figure 1-4. Points of GLS code-set conversion

Chapter 1. GLS fundamentals 1-31

Customize end-user formats
You can set environment variables to override end-user formats in the client locale.

You can override the following end-user formats in the client locale:
v End-user format of date and time (DATE, DATETIME) values
v End-user format of monetary (MONEY) values

This section explains how to customize these end-user formats. For an introduction
to end-user formats, see “End-user formats” on page 1-13.

Customize date and time end-user formats
The GLS locales define end-user formats for dates and times, which you do not
usually need to change, but customization is available.

You can customize end-user formats for DATE and DATETIME values (for
example, 10-27-97 for the date 10/27/97) with the following environment variables.

Environment variable Description

GL_DATE Supports extended format strings for international formats in
date end-user formats.

GL_DATETIME Supports extended format strings for international formats in
time end-user formats.

DBDATE Specifies a date end-user format. (Supported for compatibility
with earlier versions.)

DBTIME Specifies a time end-user format for certain embedded-language
(ESQL) library functions. (Supported for compatibility with
earlier versions.)

A date or time end-user format string specifies a format for the manipulation of
internal DATE or DATETIME values as a literal string.

Tip: When you set these environment variables, you do not affect the internal
format of the DATE and DATETIME values within a database.

The GL_DATE and GL_DATETIME environment variables support formatting directives
that allow you to specify an end-user format. A formatting directive has the form
%x (where x is one or more conversion characters).

Era-based date and time formats
The GL_DATE and GL_DATETIME environment variables provide support for
alternative dates and times such as era-based (Asian) formats. These alternative
formats support dates such as the Taiwanese Ming Guo year and the Japanese
Imperial-era dates.

Tip: DBDATE and DBTIME can also provide some support for era-based dates.

To specify era-based formats for DATE and DATETIME values, use the E
conversion modifier, as follows:
v For either GL_DATE or GL_DATETIME, E can show in several formatting directives.

For a list of valid formatting conversions for eras, see “Alternative time formats”
on page 2-16.

v For DBDATE, E can show in the format specification.

1-32 IBM Informix GLS User's Guide

Date and time precedence
IBM Informix products use a precedence to determine the end-user format for an
internal DATE value.

IBM Informix products use the following precedence:
1. DBDATE

2. GL_DATE

3. Information defined in the client locale (if CLIENT_LOCALE is set)
4. Default date format is %m/%d/%iy (if DBDATE and GL_DATE are not set, and no

locale is specified)

IBM Informix products use the following precedence to determine the end-user
format for an internal DATETIME value:
1. DBDATE and DBTIME

2. GL_DATETIME

3. Information that the client locale defines (CLIENT_LOCALE, if it is set)
4. Default DATETIME format is %iY-%m-%d %H:%M:%S (if CLIENT_LOCALE, DBTIME

and GL_DATETIME are not set)

For more information about these formatting directives, see “The GL_DATE
environment variable” on page 2-10 and “The GL_DATETIME environment
variable” on page 2-15.

Customize monetary values
The GLS locales contain end-user formats, which you do not usually need to
change. You can set the DBMONEY environment variable, however, to customize the
appearance of the currency notation.

For information about the DBMONEY environment variable, see the IBM Informix
Guide to SQL: Reference.

A monetary end-user format string specifies a format for the manipulation of
internal DECIMAL, FLOAT, and MONEY values as monetary literal strings. IBM
Informix products use the following precedence to determine the end-user format
for a MONEY value:
1. DBMONEY

2. Information that the client locale defines.
CLIENT_LOCALE identifies the client locale; if it is not set, the client locale is the
default locale.

3. Default currency notation = $,.
If DBMONEY is not set, and no locale is specified, the currency symbol is the
dollar sign, the thousands separator is the comma, and the decimal separator is
the period.

Chapter 1. GLS fundamentals 1-33

1-34 IBM Informix GLS User's Guide

Chapter 2. GLS environment variables

IBM Informix products establish the client, database, and server locales with
information from GLS-related environment variables and from data that is stored
in the database.

These topics provide descriptions of the GLS-related environment variables. For
more information about environment variables, see the IBM Informix Guide to SQL:
Reference.

Set and retrieve environment variables
The GLS feature lets you use the diacritics, collating sequence, and monetary, date,
and number conventions of the language that you select when you create
databases.

No configuration parameters exist for GLS, but you must set the appropriate
environment variables.

With IBM Informix ESQL/C, you can use the C putenv() function to modify,
create, and delete environment variables, and the C getenv() function to retrieve
the values of environment variables from the operating-system environment. For
details, see the IBM Informix ESQL/C Programmer's Manual.

On UNIX platforms, set environment variables with the appropriate shell
command (such as setenv for the C shell). For more information, see your UNIX
documentation.

On Windows, set environment variables in the InetLogin structure or use the
Setnet32 utility to set environment variables in the registry file. For more
information about InetLogin, see the Microsoft Windows documentation for your
SQL API. For more information about Setnet32, see your IBM Informix Installation
Guide.

Important: If you use ifx_putenv(), the application must set all environment
variables before it calls any other IBM Informix library routine to avoid initializing
the GLS routines and freezing the values of certain locale and formatting
environment variables.

GLS-related environment variables
These topics list the GLS-related environment variables that you can set for IBM
Informix database servers and SQL API products.

Important: Some previous releases of IBM Informix supported the GL_PATH
environment variable. For all current versions of Informix, however, if you set
GL_PATH before you initialize the database server (or any SUID/SGID programs
provided by Informix) you get an error and its value is ignored.

© Copyright IBM Corp. 1996, 2011 2-1

The CC8BITLEVEL environment variable
The CC8BITLEVEL environment variable determines the type of processing that the
IBM Informix ESQL/C filter, esqlmf, performs on non-ASCII (8-bit and multibyte)
characters.

See also “Generate non-ASCII file names” on page 6-3.

�� CC8BITLEVEL 0
1
2
3

��

Element
Description

0 The esqlmf filter converts all non-ASCII characters in literal strings and
comments to octal constants (for C compilers that do not support these
uses of non-ASCII characters).

1 The esqlmf filter converts non-ASCII characters in literal strings to octal
constants but allows them in comments (some C compilers do support
non-ASCII characters in comments).

2 The esqlmf filter allows non-ASCII characters in literal strings and ensures
that all the bytes in the non-ASCII characters have the eighth bit set (for C
compilers with this requirement).

3 The esqlmf filter does not filter non-ASCII characters (for C compilers that
support multibyte characters in literal strings and comments).

To start esqlmf each time that you process an Informix ESQL/C file with the esql
command, set the ESQLMF environment variable to 1. If you do not set CC8BITLEVEL,
the esql command assumes a value for CC8BITLEVEL of 0.

Important: For ESQLMF to take effect, do not set CC8BITLEVEL to 3.

The CLIENT_LOCALE environment variable
The CLIENT_LOCALE environment variable specifies the client locale, which the client
application uses in read and write operations, end-user formats, and processing
ESQL statements.

See also “The client locale” on page 1-17.

�� CLIENT_LOCALE Language _ territory . code_set
@modifier

��

Element
Description

code_set
Name of the code set that the locale supports.

language
Two-character name that represents the language for a specific locale.

modifier
Optional locale modifier that has a maximum of four alphanumeric
characters.

2-2 IBM Informix GLS User's Guide

territory
Two-character name that represents the cultural conventions. For example,
territory might specify the Swiss version of the French, German, or Italian
language.

The modifier specification modifies the cultural-convention settings that the language
and territory settings imply. The modifier usually indicates a special localized
collating order that the locale supports.

An example nondefault client locale for a French-Canadian locale follows:
CLIENT_LOCALE fr_ca.8859-1

You can use the glfiles utility to generate a list of the GLS locales that are available
on your UNIX system. For more information, see “The glfiles utility (UNIX)” on
page A-12.

If you do not set CLIENT_LOCALE, the client application uses the default locale, U.S.
English, as the client locale.

Changes to CLIENT_LOCALE also enter in the Windows registry database under
HKEY_LOCAL_MACHINE.

The DBDATE environment variable
The DBDATE environment variable specifies the end-user formats of values in DATE
columns.

IBM Informix products support the DBDATE environment variable for compatibility
with earlier products. It is recommend that you use the GL_DATE environment
variable for new applications.

For information about end-user formats, see “End-user formats” on page 1-13.

Important: DBDATE is evaluated at system initialization time. If it is invalid, the
system initialization fails.

��
(1)

DBDATE Standard DBDATE formats
(2)

Era-based DBDATE formats

��

Notes:

1 See IBM Informix Guide to SQL: Reference

2 See “DBDATE extensions” on page 6-7

Important: DBDATE variable takes precedence over the GL_DATE environment
variable and over the default DATE formats that CLIENT_LOCALE specifies.

The DBLANG environment variable
The DBLANG environment variable specifies the subdirectory of INFORMIXDIR that
contains the customized, language-specific message files that an IBM Informix
product uses.

Chapter 2. GLS environment variables 2-3

�� DBLANG relative_path
full_path
locale_name

��

Element
Description

relative_path
Subdirectory of the IBM Informix installation directory (which INFORMIXDIR
specifies)

full_path
Full path name of the directory that contains the compiled message files

locale_name
Name of a GLS locale that has the format lg_tr.code_set, where lg is a
two-character name that represents the language for a specific locale, tr is a
two-character name that represents the cultural conventions, and code_set is
the name of the code set that the locale supports

IBM Informix products locate product-specific message files in the following order:
1. If DBLANG is set to a full_path: the directory that full_name indicates
2. If DBLANG is set to a relative_path:

a. In $INFORMIXDIR/msg/$DBLANG on UNIX or %INFORMIXDIR%\msg\%DBLANG% on
Windows

b. In $INFORMIXDIR/$DBLANG on UNIX or %INFORMIXDIR%\%DBLANG% on Windows
3. If DBLANG is set to a locale_name: the msg subdirectory for the locale in

$INFORMIXDIR/msg/lg_tr/code_set on UNIX systems or %INFORMIXDIR%\msg\
lg_tr\code_set on Windows, where lg is the language, tr is the territory, and
code_set is the code set in locale_name.
The value of DBLANG does not affect the messages that the database server
writes to its message log. The database server obtains the locale for these
messages from the SERVER_LOCALE environment variable.

4. If DBLANG is not set: the msg subdirectory for the locale in $INFORMIXDIR/msg/
lg_tr/code_set on UNIX systems or %INFORMIXDIR%\msg\lg_tr\code_set on
Windows, where lg is the language and tr is the territory from the locale that is
associated with the IBM Informix product, and code_set is the condensed name
of the code set that the locale supports:
v For IBM Informix client products: lg and tr are from the client locale (from

CLIENT_LOCALE, if it is set)
v For IBM Informix database server products: lg and tr are from the server

locale (from SERVER_LOCALE, if it is set)
5. If DBLANG, CLIENT_LOCALE, and LANG are not set:

a. In $INFORMIXDIR/msg/en_us/0333 on UNIX systems or %INFORMIXDIR%\msg\
en_us\0333 on Windows, an internal message directory for the default locale

b. In $INFORMIXDIR/msg on UNIX systems or %INFORMIXDIR%\msg on Windows,
the default IBM Informix message directories

The compiled message files have the .iem file extension.

The DB_LOCALE environment variable
The DB_LOCALE environment variable specifies the database locale, which the
database server uses to process locale-sensitive data.

2-4 IBM Informix GLS User's Guide

See “The database locale” on page 1-18 and Appendix A, “Manage GLS files,” on
page A-1.

�� DB_LOCALE language _ territory . code_set
@modifier

��

Element
Description

code_set
Name of the code set that the locale supports.

language
Two-character name that represents the language for a specific locale.

modifier
Optional locale modifier that has a maximum of four alphanumeric
characters.

territory
Two-character name that represents the cultural conventions. For example,
territory might specify the Swiss version of the French, German, or Italian
language.

The modifier specification modifies the cultural-convention settings that the language
and territory settings imply. The modifier can indicate a localized collating order that
the locale supports. For example, you can set @modifier to specify dictionary or
telephone-book collation order.

An example nondefault database locale for a French-Canadian locale follows:
DB_LOCALE fr_ca.8859-1

The glfiles utility can generate a list of the GLS locales available on your UNIX
system. For more information, see “The glfiles utility (UNIX)” on page A-12.

The SET COLLATION statement can specify for the current session a localized
collation different from the COLLATION setting of the DB_LOCALE locale. This can
affect sorting operations on NCHAR and NVARCHAR data values.

If you do not set DB_LOCALE on the client computer, client applications assume that
the database locale has the value of the CLIENT_LOCALE environment variable. The
client application, however, does not send this default value to the database server
when it requests a connection.

Changes to DB_LOCALE also enter in the Windows registry database under
HKEY_LOCAL_MACHINE.

The DBMONEY environment variable
The DBMONEY environment variable specifies the end-user formats for values in
MONEY columns.

See also “End-user formats” on page 1-13.

�� DBMONEY '$' .
front , back

��

Chapter 2. GLS environment variables 2-5

Element
Description

front Specifies a currency symbol that is displayed before the monetary value.

back Specifies a currency symbol that is displayed after the value.

, (comma), . (period)
Monetary decimal separator. When you specify the comma or the period,
you implicitly assign the other symbol to the thousands separator.

With this environment variable, you can specify the currency notation:
v The currency symbol that shows before or after the monetary value.
v The monetary decimal separator, which separates the part of the monetary value

from the fractional part.

For example, suppose that you use ' DM,' as the DBMONEY setting. This DBMONEY
setting specifies the following currency notation:
v The currency symbol, DM, shows before a monetary value.
v The decimal separator is a comma.
v The thousands separator is (implicitly) a period.

The front or back symbol can be non-ASCII character if your client locale supports a
code set that defines the non-ASCII character. Any symbol that is not a letter must
be enclosed within quotation marks. Period or comma are not valid front or back
symbols. In the default locale, the dollar ($) sign is the default front currency
symbol, period (.) is the default decimal separator, and comma (,) is the default
thousands separator. The DBMONEY setting takes precedence over any notation
defined by the MONETARY category of the locale. See also “Customize monetary
values” on page 1-33.

Most GLS locales for European languages can support code sets that include the
euro symbol for monetary values.

The DBTIME environment variable (ESQL/C)
The DBTIME environment variable specifies the end-user formats of values in
DATETIME columns for SQL API routines.

IBM Informix products support DBTIME for compatibility with earlier products. It is
recommended that you use the GL_DATETIME environment variable for new
applications. See also “End-user formats” on page 1-13.

��
(1)

DBTIME Standard DBTIME formats
(2)

Era-based DBTIME formats

��

Notes:

1 See IBM Informix Guide to SQL: Reference

2 See “DBTIME support” on page 6-10

Tip: DBTIME affects only certain formatting routines in the ESQL/C function
libraries. See “DATETIME-format functions” on page 6-9.

2-6 IBM Informix GLS User's Guide

The ESQLMF environment variable
The ESQLMF environment variable can have the values 1 or 0.

�� ESQLMF 0
1

��

Element
Description

0 The esql command compiles source code whose non-ASCII characters have
already been converted.

1 The esql command calls esqlmf to filter multibyte characters when
preprocessing an ESQL/C source file.

The ESQLMF environment variable indicates whether the esql command
automatically starts the Informix ESQL/C multibyte filter, esqlmf.

The value of the CC8BITLEVEL environment variable determines the type of filtering
that esqlmf performs. For information about esqlmf, see “Generate non-ASCII file
names” on page 6-3.

Important: For ESQLMF to take effect, CC8BITLEVEL must not be set to 3.

If you want to compile existing source code whose non-ASCII characters have
already been converted, either set ESQLMF to 0 or do not set it. In either case, esql
does not start esqlmf.

The GLS8BITFSYS environment variable
Use the GLS8BITFSYS environment variable to tell IBM Informix products (such as
the Informix ESQL/C processor) whether the operating system is 8-bit clean.

This setting determines whether an IBM Informix product can use non-ASCII
characters in the file name of an operating-system file that it generates.

�� GLS8BITFSYS 0
1

��

Element
Description

0 IBM Informix products assume that the operating system is not 8-bit clean
and generate file names with 7-bit ASCII characters only.

1 IBM Informix products assume that the operating system is 8-bit clean and
can use non-ASCII characters (8-bit or multibyte characters) in the file
name of an operating-system file that it generates.

If you include non-ASCII characters in a file name that you specify within a client
application, you must ensure that the code set of the server-processing locale
supports these non-ASCII characters. If you do not set GLS8BITFSYS, IBM Informix
database servers behave as if GLS8BITFSYS is set to 1.

For example, create a database that is called A1A2B1B2, where A1A2 and B1B2 are
multibyte characters, with the following SQL statement:
CREATE DATABASE A1A2B1B2

Chapter 2. GLS environment variables 2-7

If GLS8BITFSYS is 1 (or is not set) on the server computer, the database server
assumes that the operating system is 8-bit clean, and it generates a database
directory, A1A2B1B2.dbs.

If GLS8BITFSYS is set to 0 on the server computer and you include non-ASCII
characters in the file name, the IBM Informix product uses an internal algorithm to
convert these non-ASCII characters to ASCII characters. The file names that result
are 7-bit clean.

File names with invalid byte sequences generate errors when they are used with
GLS-based products.

Only some database utilities, such as dbexport, and the compilers for IBM
Informix ESQL/C products use GLS8BITFSYS on the client computer to create and
use files. For example, suppose you compile an Informix ESQL/C source file that
is called A1A2B1B2.ec, where A1A2 and B1B2 are multibyte characters. If GLS8BITFSYS
is set to 1 (or is not set) on the client computer, the Informix ESQL/C processor
generates an intermediate C file that is called A1A2B1B2.c. For a list of Informix
ESQL/C files that check GLS8BITFSYS, see “Handle non-ASCII characters” on page
6-1.

Restrictions on non-ASCII file names
If your locale supports a code set with non-ASCII characters, restrictions apply to
file names for operating-system files that IBM Informix products generate.

Before you or an IBM Informix product creates a file and assigns a file name,
consider the following questions:
v Does your operating system support non-ASCII file names?
v Does the IBM Informix product accept non-ASCII file names?

Make sure that your operating system is 8-bit clean:

To support non-ASCII characters in file names, your operating system must be 8-bit
clean.

An operating system is 8-bit clean if it reads the eighth bit as part of the code
value. In other words, the operating system must not ignore or make its own
interpretation of the value of the eighth bit.

Consult your operating-system manual or system administrator to determine
whether your operating system is 8-bit clean before you decide to use a nondefault
locale that contains non-ASCII characters in file names that IBM Informix products
use and generate.

Make sure that your product supports the same code set:

After an IBM Informix product has generated an operating-system file whose file
name has non-ASCII characters, it has written that file name and the file contents
in a particular code set.

Whenever an IBM Informix product or client application must access that file, you
must ensure that the product uses a server-processing locale that supports that
same code set.

The server code set:

2-8 IBM Informix GLS User's Guide

When the database server creates a file whose file name contains non-ASCII
characters, the server locale must support these characters.

Before you start a database server, you must set the SERVER_LOCALE environment
variable to the name of a locale whose code set contains these non-ASCII
characters.

For example, suppose you want a message log with the UNIX path
/A1A2B1B2/C1C2D1D2, where A1A2, B1B2, C1C2, and D1D2 are multibyte characters in
the Japanese SJIS code set. To enable the database server to create this message-log
file on its computer:
1. Modify the MSGPATH parameter in the ONCONFIG file.

For UNIX:
MSGPATH /A1A2B1B2/C1C2D1D2

multibyte message-log filename

For Windows:
MSGPATH \A1A2B1B2\C1C2D1D2

multibyte message-log filename

2. Set the SERVER_LOCALE environment variable on the server computer to the
Japanese SJIS locale, ja_jp.sjis.

3. Start the database server with the oninit utility.

When the database server initializes, it assumes that the operating system is 8-bit
clean and creates the /A1A2B1B2/C1C2D1D2 message log on UNIX, or the
\A1A2B1B2\C1C2D1D2 file on Windows.

The client code set:

When an Informix ESQL/C processor creates a file whose file name has non-ASCII
characters, the client locale must support these non-ASCII characters.

Before you start an IBM Informix database server, you must ensure that the code
set of the client locale (the client code set) contains these characters.

When you use a nondefault locale, you must set the CLIENT_LOCALE environment
variable to the name of a locale whose code set contains these non-ASCII
characters.

For example, suppose you want to process an Informix ESQL/C source file with
the path /A1A2B1B2/C1C2D1D2, where A1A2, B1B2, C1C2, and D1D2 are multibyte
characters in the Japanese SJIS code set. You must perform the following steps to
enable the esql command to create the intermediate C source file on the client
computer:
1. Set the CLIENT_LOCALE environment variable on the client computer to the

Japanese SJIS locale, ja_jp.sjis.
2. Process the Informix ESQL/C source file with the esql command.

If the code sets that are associated with the file name and with the client locale do
not match, a valid file name might contain invalid characters with respect to the
client locale. The Informix ESQL/C processor rejects any file name that contains
invalid characters and the following error message is displayed:
Illegal characters in filename.

Chapter 2. GLS environment variables 2-9

The GL_DATE environment variable
The GL_DATE environment variable specifies end-user formats of values for DATE
columns.

For information about end-user formats, see “End-user formats” on page 1-13.

Important: GL_DATE is evaluated when it is used, rather than when it is set. If it is
invalid, the operation that called it fails.

�� GL_DATE 'string'
(1) (2)

Format qualifiers for reads Format qualifiers for output

��

Notes:

1 See “Field specification for reading a DATE value” on page 2-13

2 See “Field specification for displaying a DATE value” on page 2-14

Element
Description

string Formatting directives that specify the end-user format for GL_DATE values.
You can use any formatting directive that formats dates.

An end-user format in GL_DATE can contain the following characters:
v One or more white space characters, which the CTYPE category of the locale

specifies.
v An ordinary character (other than the % symbol or a white-space character).
v A formatting directive, which is composed of the % symbol followed by a

conversion character that specifies the required replacement.

The next list describes the formatting directives that are not based on era.

Formatting
directives Description

%a Is replaced by the abbreviated weekday name as defined in the locale.

%A Is replaced by the full weekday name as defined in the locale.

%b Is replaced by the abbreviated month name as defined in the locale.

%B Is replaced by the full month name as defined in the locale.

%C Is replaced by the century number (the year divided by 100 and truncated
to an integer) as an integer (00 through 99).

%d Is replaced by the day of the month as an integer (01 through 31). A single
digit is preceded by a zero (0).

%D Is the same as the %m/%d/%y format.

%e Is replaced by the day of the month as a number (1 through 31). A single
digit is preceded by a space.

%h Is the same as the %b formatting directive.

%iy Is replaced by the year as a two-digit number (00 - 99) for both reading
and printing. It is the formatting directive specific to IBM Informix for %y.

%iY Is replaced by the year as a four-digit number (0000 - 9999) for both
reading and printing. It is the formatting directive specific to IBM Informix
for %Y.

%m Is replaced by the month as a number (01 through 12).

2-10 IBM Informix GLS User's Guide

Formatting
directives Description

%n Is replaced by a newline character.

%t Is replaced by the TAB character.

%w Is replaced by the weekday as a number (0 through 6); 0 represents the
locale equivalent of Sunday.

%x Is replaced by a special date representation that the locale defines.

%y Requires that the year is a two-digit number (00 through 99) for both
reading and printing.

%Y Requires that the year is a four-digit number (0000 through 9999) for both
reading and printing.

%% Is replaced by % (to allow % in the format string).

White space or other nonalphanumeric characters must show between any two
formatting directives. For example, if you use a U.S. English locale, you might
want to format an internal DATE value for 03/05/1997 in the ASCII string format
that the following example shows:
Mar 05, 1997 (Wednesday)

To do so, set the GL_DATE environment variable as follows:
%b %d, %Y (%A)

If a GL_DATE format does not correspond to any of the valid formatting directives,
the behavior of the IBM Informix product when it tries to format is undefined.

Important: The setting of the DBDATE variable takes precedence over that of the
GL_DATE environment variable and over the default DATE formats that
CLIENT_LOCALE specifies.

The year formatting directives
You can use these formatting directives in the end-user format of the GL_DATE
environment variable to format the year of a date string: %y, %iy, %Y, and %iY.

The %iy and %iY formatting directives provide compatibility with the Y2 and Y4
year specifiers of the DBDATE environment variable.

For information about end-user formats, see “End-user formats” on page 1-13.

When an IBM Informix product uses an end-user format to print an internal date
value as a string, the %iy directive performs the same task as % y, and %iY
directive performs the same task as %Y. To print a year with one of these
formatting directives, an IBM Informix product performs the following actions:
v The %iy and %y formatting directives both print the year of an internal date

value as a two-digit decade.
For example, when you set GL_DATE to '%y %m %d' or '%iy %m %d', an internal date
for March 5, 1997 formats to '97 03 05'.

v The %iY and %Y formatting directives both print the year of an internal date
value as a four-digit year.
For example, when you set GL_DATE to '%Y %m %d' or '%iY %m %d', the internal date
for March 5, 1997 formats to '1997 03 05'.

Chapter 2. GLS environment variables 2-11

When an IBM Informix product uses an end-user format to read a date, the %iy
formatting directive performs different from %y and the %iY formatting directive
performs differently %Y. The following table summarizes how the year formatting
directives behave when an IBM Informix product uses them to read date strings.

GL_DATE format

Date string to read

'1994 03 06' '94 03 06'

%y %m %d Error Internal date for 1994 03 06

%iy %m %d Internal date for 1994 03 06 Internal date for 1994 03 06

%Y %m %d Internal date for 1994 03 06 Internal date for 0094 03 06

%iY %m %d Internal date for 1994 03 06 Internal date for 1994 03 06

In a read of a date string, the %iy and %y formatting directives both prefix the first
two digits of the current year to expand any 1-digit or 2-digit year. You can set the
DBCENTURY environment variable to change this default.

Alternative date formats
To support alternative date formats in an end-user format, GL_DATE accepts the
conversion modifiers.

These conversion modifiers are:
v E indicates use of an alternative era format, which the locale defines.
v O (the letter O) indicates use of locale-defined alternative digits.

These date-formatting directives can support conversion modifiers.

Date
format Description

%EC Accepts either the full or the abbreviated era name for reading; for printing,
%EC is replaced by the full name of the base year (period) of the era that the
locale defines (same as %C if locale does not define an era).

%Eg Accepts the full or the abbreviated era name for reading. For printing, %Eg is
replaced by the abbreviated name of the base year (period) of the era that the
locale defines (same as %C if locale does not define an era).

%Ex Is replaced by a special date representation for an era that the locale defines
(same as %x if locale does not define an era).

%Ey Is replaced by the offset from %EC of the era that the locale defines. This date
is the era year only (same as %y if locale does not define an era).

%EY Is replaced by the full era year, which the locale defines (same as %Y if locale
does not define an era).

%Od Is replaced by the day of the month in the alternative digits that the locale
defines (same as %d if locale does not define alternative digits).

%Oe Is the same as %Od (or %e if locale does not define alternative digits).

%Om Is replaced by the month in the alternative digits that the locale defines (same
as %m if locale does not define alternative digits).

%Ow Is replaced by the weekday as a single-digit number (0 through 6) in the
alternative digits that the locale defines (same as %w if locale does not define
alternative digits). The equivalent of zero (0) represents the locale equivalent of
Sunday.

2-12 IBM Informix GLS User's Guide

Date
format Description

%Oy Is replaced by the year as a two-digit number (00 through 99) in the alternative
digits that the locale defines (same as %y if locale does not define alternative
digits). For information about how to format a year value, see the description of
%y.

%OY Is the same as %EY (or %Y if locale does not define alternative digits).

The TIME category of the locale defines the following era information:
v The full and abbreviated names for an era
v A representation for the era (which the %Ex directive uses)

The NUMERIC category of the locale defines the alternative digits for a locale
(which the %Ox formatting directives use).

Optional date format qualifiers
You can specify optional format qualifiers immediately after the % symbol of the
formatting directive.

A date format qualifier defines a field specification for the date in read or print
operations. The following sections describe what a field specification means for the
read and print operations. For information about end-user formats, see “End-user
formats” on page 1-13.

Tip: The GL_DATETIME environment variable accepts these date format qualifiers in
addition to those qualifiers that “Optional time format qualifiers” on page 2-17
lists.

Field specification for reading a DATE value:

When an IBM Informix product uses an end-user format to read a date string, the
field specification defines the number of characters to expect as input.

This field specification has the following syntax.

Format qualifiers for reads

��
-
0 max_width . min_width

��

Element
Description

- (minus sign)
Field value is left-aligned and begins with a digit; this value can include
trailing spaces.

0 (zero)
Field value is right-aligned; any zeros on the left are pad characters that
are not significant.

max_width
Integer that indicates the maximum number of characters to read.

Chapter 2. GLS environment variables 2-13

min_width
Integer that indicates the minimum number of characters to read.

The first character of the field specification indicates whether to assume that the
field value is justified or padded. If the first character is not a minus sign or a zero,
the IBM Informix product assumes that the field value is right-aligned and any
spaces on the left are pad characters.

If the field value begins with a zero, however, it cannot include pad characters.

An IBM Informix product ignores the field specification if the field value is not a
numeric value.

Field specification for displaying a DATE value:

When an IBM Informix product uses an end-user format to print a date string, the
field specification defines the number of characters to print as output.

The syntax for the field specification is as follows.

Format qualifiers for output

��
-
0 width . precision

��

Element
Description

- (minus sign)
Field value is left-aligned and begins with a digit; value can include
trailing blank spaces.

0 (zero)
Field value is right-aligned; any zeros on the left are pad characters; they
are not significant.

width Integer that indicates a minimum field width for the printed value.

precision
Integer that indicates the precision to use for the field value.

The meaning of the precision value depends on the formatting directive with which
it is used, as the following table shows.

Formatting
Directives Description

%C, %d, %e, %Ey,
%iy, %iY,%m, %w,
%y, %Y

Value of precision specifies the minimum number of digits to print. If a
value supplies fewer digits than precision specifies, an IBM Informix
product pads the value with leading zeros. The %d, %Ey, %iy, %m, %w,
and %y formatting directives have a default precision of 2. The %Y
directive has no precision default; year 0001 would be formatted as 1
rather than as 0001.

%a, %A, %b, %B,
%EC, %Eg, %h

Value of precision specifies the maximum number of characters to print.
If a value supplies more characters than precision specifies, an IBM
Informix product truncates the value.

2-14 IBM Informix GLS User's Guide

Formatting
Directives Description

%D Values of width and precision affect each element of these formatting
directives. For example, the field specification %6.4D causes a DATE
value to be displayed as if the format were: %6.4m/%6.4d/%6.4y where
no fewer than four (but no more than six) characters represented the
month, day, and year values, in that order, with “/” as the separator.

%Ox For formatting directives that include the O modifier (alternative
digits), the value of precision is still the minimum number of digits to
print. The width value defines the format width rather than the actual
number of digits.

%Ex, %EY, %n, %t,
%x, %%

Values of width and precision have no effect on these formatting
directives.

For example, the following formatting directive displays the month as an integer
with a maximum field width of 4: %4m

The following formatting directive displays the day of the month as an integer
with a minimum field width of 3 and a maximum field width of 4: %4.3d

The GL_DATETIME environment variable
The GL_DATETIME environment variable specifies the end-user formats of values in
DATETIME columns.

For information about end-user formats, see “End-user formats” on page 1-13.

A GL_DATETIME format can contain the following characters:
v One or more white space characters, which the CTYPE category of the locale

specifies
v An ordinary character (other than the % symbol or a white-space character)
v A formatting directive, which is composed of the % symbol followed by a

conversion character that specifies the required replacement

�� GL_DATETIME 'string'
(1)

Optional time format qualifiers

��

Notes:

1 See “Optional time format qualifiers” on page 2-17

Element
Description

string Contains the formatting directives that specify the end-user format for
GL_DATETIME values. You can use any formatting directive that formats
dates or times. For a list of formatting directives for dates, see “The
GL_DATE environment variable” on page 2-10.

This list describes the time formatting directives that are not based on era.

Formatting
directives Description

%c Is replaced by a special datetime representation that the locale defines.

Chapter 2. GLS environment variables 2-15

Formatting
directives Description

%Fn Is replaced by the value of the fraction of a second with precision that is
specified by the integer n. The default value of n is 2; the range of n is 0 ≤ n
≤ 5. This value overrides any width or precision between the % and F
character. For more information, see “Optional time format qualifiers” on
page 2-17.

%H Is replaced by the hour as an integer (00 through 23) (24-hour clock).

%I Is replaced by the hour as an integer (00 through 12) (12-hour clock).

%M Is replaced by the minute as an integer (00 through 59).

%p Is replaced by the A.M. or P.M. equivalent as defined in the locale.

%r Is replaced by the commonly used time representation for a 12-hour clock
format (including the A.M. or P.M. equivalent) as defined in the locale.

%R Is replaced by the time in 24-hour notation (%H:%M).

%S Is replaced by the second as an integer (00 through 61). The second can be
up to 61 instead of 59 to allow for the occasional leap second and double
leap second.

%T Is replaced by the time in the %H:%M:%S format.

%X Is replaced by the commonly used time representation as defined in the
locale.

%% Is replaced by % (to allow % in the format string).

White space or other nonalphanumeric characters must show between any two
formatting directives. Any other characters in the GL_DATETIME setting that were not
listed in the table as formatting directives are interpreted as literal characters. If a
GL_DATETIME format does not correspond to any of the valid formatting directives,
the behavior of the IBM Informix product when it tries to format is undefined.

In addition to the formatting directives that the preceding table lists, you can
include the following date-formatting directives in the end-user format of
GL_DATETIME:
%a, %A, %b, %B, %C, %d, %D, %e, %h, %iy, %iY, %m, %n, %t,
%w, %x, %y, %Y, %%

For example, if you use an U.S. English locale, you might want to format an
internal DATETIME YEAR TO SECOND value to the ASCII string format that the
following example shows:
Mar 21, 1997 at 16 h 30 m 28 s

To do so, set the GL_DATETIME environment variable as the following line shows:
%b %d, %Y at %H h %M m %S s

Important: The value of GL_DATETIME affects the behavior of certain Informix
ESQL/C library functions if the DBTIME environment variable is not set. For
information about how these library functions are affected, see “DATETIME-format
functions” on page 6-9. The value of DBTIME takes precedence over the value of
GL_DATETIME.

Alternative time formats
To support alternative time formats in an end-user format, GL_DATE accepts the
conversion modifiers.

2-16 IBM Informix GLS User's Guide

The conversion modifiers are:
v E indicates use of an alternative era format, which the locale defines.
v O (the letter O) indicates use of alternative digits, which the locale also defines.

The following table shows time-formatting directives that support conversion
modifiers.

Alternative
time format Description

%Ec Is replaced by a special date/time representation for the era that the locale
defines. It is the same as %c if the locale does not define an era.

%EX Is replaced by a special time representation for the era that the locale
defines. It is the same as %X if the locale does not define an era.

%OH Is replaced by the hour in the alternative digits that the locale defines
(24-hour clock). It is the same as %H if the locale does not define alternative
digits).

%OI Is replaced by the hour in the alternative digits that the locale defines
(12-hour clock). It is the same as %I if the locale does not define alternative
digits).

%OM Is replaced by the minute with the alternative digits that the locale defines.
It is the same as %M if the locale does not define alternative digits.

%OS Is replaced by the second with the alternative digits that the locale defines.
It is the same as %S if the locale does not define alternative digits.

The TIME category of the locale defines the following era information:
v The full and abbreviated names for an era
v A special date representation for the era (which the %Ex formatting directive

uses)
v A special time representation for the era (which the %EX formatting directive

uses)
v A special date/time representation for the era (which the %Ec formatting

directive uses)

The NUMERIC category of the locale defines the alternative digits for a locale
(which the %Ox formatting directives use).

Optional time format qualifiers
You can specify the optional format qualifiers immediately after the % symbol of the
formatting directive.

A time format qualifier defines a field specification for the time (or date and time)
that the IBM Informix product reads or prints. This section describes what a field
specification means for the print operation. For a description of what a field
specification means for the read operation, see “Field specification for reading a
DATE value” on page 2-13. For information about end-user formats, see “End-user
formats” on page 1-13.

When an IBM Informix product uses an end-user format to print a string from an
internal format, the field specification defines the number of characters to print as
output. This field specification has the following syntax.

Chapter 2. GLS environment variables 2-17

Optional time format qualifiers

��
-
0 width . precision

��

Element
Description

- (minus sign)
IBM Informix product prints the field value as left-aligned and pads this
value with spaces on the right.

0 (zero)
IBM Informix product prints the field value as right-aligned and pads this
value with zeros on the left.

width Integer that indicates a minimum field width for the printed value.

precision
Integer that indicates the precision to use for the field value.

The first character of the field specification indicates whether to justify or pad the
field value. If the first character is not a minus sign or a zero, an IBM Informix
product prints the field value as right-aligned and pads this value with spaces on
the left.

The meaning of the precision value depends on the particular formatting directive
with which it is used, as the following table shows.

Formatting
directives Description

%F, %H, %I,
%M, %S

Value of precision specifies the minimum number of digits to print. If a
value supplies fewer digits than the precision specifies, an IBM Informix
product pads the value with leading zeros. The %H, %M, and %S
formatting directives have a default precision of 2.

%p Value of precision specifies the maximum number of characters to print. If a
value supplies more characters than the precision specifies, an IBM Informix
product truncates the value.

%R, %T Values of width and precision affect each element of these formatting
directives. For example, the field specification %6.4R causes a DATETIME
value to be displayed if the format were %6.4H:%6.4M. Here no fewer than
four (but no more than six) characters represented the hour and the
minute.

%F Value of precision can follow this directive as an optional precision
specification. This value must be 1 - 5. Otherwise, an IBM Informix product
generates an error. This precision value overrides any precision value that
you specify between the % symbol and the formatting directive.

%Ox For formatting directives that include the O modifier, value of precision is
still the minimum number of digits to print. The width value defines the
format width, rather than the actual number of digits.

%c, %Ec, %EX,
%X

Values of width and precision have no effect on these formatting directives.

For example, the following formatting directive displays the minute as an integer
with a maximum field width of 4: %4M

2-18 IBM Informix GLS User's Guide

The following formatting directive displays the hour as an integer with a
minimum field width of 3 and a maximum field width of 6: %6.3H

The specified format is applied to all displayed DATETIME values, regardless of
their declared precision. For example, suppose that the setting of GL_DATETIME is
'%Y/%m/%d %H:%M:%S' This setting would cause a value from a DATETIME YEAR TO
SECOND column to be displayed as follows:
[2000/08/28 14:43:17]

If a program executed on August 28 of the year 2000, the same GL_DATETIME setting
would also display a value from a DATETIME HOUR TO SECOND column as
follows:
[2000/08/28 14:43:17]

When GL_DATETIME is set, every DATETIME value is displayed in the specified
format, even if that format includes time units that were not included in the
DATETIME qualifier when the data type was declared. Time units outside the
declared precision are obtained from the system clock-calendar. To avoid
unexpected results, you might prefer to set GL_DATETIME only for applications
where the DATETIME data types that you display have the same precision as the
GL_DATETIME setting.

Creation-time settings
Like DBCENTURY, DBDATE, and GL_DATE, the GL_DATETIME variable can affect how
expressions that include literal time values are evaluated.

For some earlier releases, resetting environment variables can produce inconsistent
behavior in check constraints, triggers, fragmentation expressions, UDRs, and other
database objects whose definitions include time expressions. Objects created in this
release use the environment variable settings that were in effect at the time when
the object was created, rather than the settings at the time of execution (if these
settings are different) to avoid inconsistency.

The USE_DTENV environment variable
In a database for which the GL_DATETIME environment variable has a non-default
setting, you must set USE_DTENV environment variable to 1.

You must set USE_DTENV environment variable to 1 before you can process localized
DATETIME values correctly with the following:
v dbexport utility
v dbimport utility
v LOAD SQL statement
v UNLOAD SQL statement

For information about the USE_DTENV environment variable, see theIBM Informix
ESQL/C Programmer's Manual

The GL_USEGLU environment variable
For IBM Informix to support versions of Unicode up to 4.1, the GL_USEGLU
environment variable must be set to a value of 1 (one) in the server environment
before the server is started or before the database is created. This setting initializes
conversion routines that enable Unicode collation by the server in databases that
use UTF-8 character encoding, including the Chinese GB18030-2000 code set.

Chapter 2. GLS environment variables 2-19

You cannot access databases such as those that use the GB18030-2000 code set and
were created on an instance that was started with GL_USEGLU set to 1 if the
server is not started with GL_USEGLU=1 set to 1.

The SET COLLATION statement of SQL, for example, cannot enable localized
collation for a nondefault Unicode locale, such as sh_hr.utf8, which supports the
Serbo-Croatian language, unless GL_USEGLU was set to 1 when the server was
started.

When you set the GL_USEGLU environment variable to 1, also set the STACKSIZE
configuration parameter in the onconfig file to at least 64 KB.

Additionally, the GL_USEGLU setting must match between the source and target
server during migration.

To enable Unicode collation by Java/JDBC or ESQL/C client applications, and for
other client APIs that require compilation, set GL_USEGLU to 1 in the client
environment before the routine is compiled. For ESQL/C applications, an
alternative to setting GL_USEGLU is to compile with the -glu flags of esql when
linking the ESQL/C program, in order to access internal Unicode libraries.

�� GL_USEGLU 1 ��

The SERVER_LOCALE environment variable
The SERVER_LOCALE environment variable specifies the server locale, which the
database server uses to perform read and write operations that involve
operating-system files on the server computer.

For more information about the server locale, see “The server locale” on page 1-20
and “GLS support by IBM Informix database servers” on page 4-1.

�� SERVER_LOCALE language _ territory . code_set
@modifier

��

Element
Description

code_set
Name of the code set that the locale supports

language
Two-character name that represents the language for a specific locale

modifier
Optional locale modifier that has a maximum of four alphanumeric
characters.

territory
Two-character name that represents the cultural conventions. For example,
territory might specify the Swiss version of the French, German, or Italian
language.

The modifier specification modifies the cultural-convention settings that the language
and territory settings imply. The modifier usually indicates a special type of
localized collation that the locale supports. For example, you can set @modifier to
specify dictionary or telephone-book collating order.

2-20 IBM Informix GLS User's Guide

An example nondefault server locale for a French-Canadian locale follows:
SERVER_LOCALE fr_ca.8859-1

You can use the glfiles utility to generate a list of the GLS locales that are available
on your UNIX system. For more information, see “The glfiles utility (UNIX)” on
page A-12.

If you do not set SERVER_LOCALE, IBM Informix database servers use the default
locale, U.S. English, as the server locale.

Changes to SERVER_LOCALE also enter in the Windows registry database under
HKEY_LOCAL_MACHINE.

Chapter 2. GLS environment variables 2-21

2-22 IBM Informix GLS User's Guide

Chapter 3. SQL features

These topics explain how the GLS feature affects the IBM Informix implementation
of SQL.

For more information about the IBM Informix implementation of SQL, see the IBM
Informix Guide to SQL: Syntax, the IBM Informix Guide to SQL: Reference, the IBM
Informix Guide to SQL: Tutorial, and the IBM Informix Database Design and
Implementation Guide.

Name database objects
You must declare names for new database objects (and in some cases, for storage
objects, such as dbspaces) when you use data definition language (DDL)
statements such as CREATE TABLE, CREATE INDEX, and RENAME COLUMN.

These topics describe considerations for declaring names for database objects in a
nondefault locale. In particular, this section explains which SQL identifiers and
delimited identifiers accept non-ASCII characters.

Important: To use a nondefault locale, you must set the appropriate locale
environment variables for IBM Informix products. For more information, see “Set a
nondefault locale” on page 1-22.

Rules for identifiers
An SQL identifier is a string of letters, digits, and underscores that represents the
name of a database object such as a table, column, index, or view.

A non-delimited SQL identifier must begin with a letter or underscore (_) symbol.
Trailing characters in the identifier can be any combination of letters, digits,
underscores, or dollar ($) signs. Delimited identifiers, however, can include any
character in the code set of the database locale; see “Delimited identifiers” on page
3-4 for more information.

Declaring identifiers that are SQL keywords can cause syntactic ambiguity or
unexpected results. For additional information, see the Identifier segment in the
IBM Informix Guide to SQL: Syntax. See also “Non-ASCII characters in identifiers”
and “Valid characters in identifiers” on page 3-5.

SQL identifiers can occupy up to 128 bytes on IBM Informix. When you declare
identifiers, make sure not to exceed the size limit for your database server. For
example, the following statement creates a synonym name of eight multibyte
characters:
CREATE SYNONYM A1A2A3B1B2C1C2C3D1D2E1E2F1F2G1G2H1H2 FOR A1A2B1B2

Non-ASCII characters in identifiers
IBM Informix database servers support non-ASCII (wide, 8-bit, and multibyte)
characters from the code set of the database locale in most SQL identifiers, such as
the names of columns, connections, constraints, databases, indexes, roles, SPL
routines, sequences, synonyms, tables, triggers, and views.

© Copyright IBM Corp. 1996, 2011 3-1

On IBM Informix, you can use non-ASCII characters (8-bit and multibyte
characters) when you create or refer to any of these database server names:
v Chunk name
v Message-log file name
v Path name

The following restrictions affect the ability of the database server to generate file
names that contain non-ASCII characters:
v The database server must know whether the operating system is 8-bit clean.
v The code set specified by the DB_LOCALE setting must support these non-ASCII

characters.

In a database with a nondefault locale, whose code set supports multibyte (or
other non-ASCII) characters, you can use those non-ASCII characters when you
declare most SQL identifiers, as listed in the following table.

In the following table, the Type of identifier column lists various categories of
objects that can have SQL identifiers or operating-system identifiers. The SQL
segment column shows the segment that provides the syntax of the identifier in
the IBM Informix Guide to SQL: Syntax. The Example context column lists an SQL
statement that can declare or can reference the identifier.

Table 3-1. SQL identifiers that support non-ASCII characters

Type of identifier SQL segment Example context

Alias Identifier SELECT

Cast Expression CREATE CAST

Column name Identifier CREATE TABLE

Connection name Quoted String CONNECT (For more information, see
“Specify quoted strings” on page 3-12.)

Constraint name Database Object Name CREATE TABLE

Cursor name Identifier DECLARE (For more information, see
“Handle non-ASCII characters” on page
6-1.)

Database name Database Object Name CREATE DATABASE

Distinct data type
name

Identifier, Data Type CREATE DISTINCT

File name None LOAD

Function name Database Object Name CREATE FUNCTION

Host variable None FETCH (For more information, see
“Handle non-ASCII characters” on page
6-1.)

Index name Database Object Name CREATE INDEX

Opaque data type
name

Identifier, Data Type CREATE OPAQUE TYPE

Operator-class
name

Database Object Name CREATE OPCLASS

Partition Identifier ALTER FRAGMENT

Routine name Database Object Name CREATE FUNCTION

Routine name Database Object Name CREATE PROCEDURE

3-2 IBM Informix GLS User's Guide

Table 3-1. SQL identifiers that support non-ASCII characters (continued)

Type of identifier SQL segment Example context

Role name Identifier CREATE ROLE

Row data type Identifier CREATE ROW TYPE

Sequence name Database Object Name CREATE SEQUENCE

SQL Statement
identifier

Identifier PREPARE (For more information, see
“Handle non-ASCII characters” on page
6-1.)

SPL routine name Database Object Name CREATE PROCEDURE

SPL routine
variables

None (language-specific) CREATE PROCEDURE FROM

Synonym Database Object Name CREATE SYNONYM

Table name Database Object Name CREATE TABLE

Trigger correlation
name

Database Object Name CREATE TRIGGER

Trigger name Database Object Name CREATE TRIGGER

View name Database Object Name CREATE VIEW

Qualifiers of SQL identifiers
A complete syntax can include other identifiers.

The SQL segment column in Table 3-1 on page 3-2 shows the segment in the IBM
Informix Guide to SQL: Syntax that describes the syntax of the identifier. In many
cases, the complete syntax can include other identifiers. For example, the Database
Object Name segment shows that the syntax of an index name can also include a
database name, a database server name, and an owner name and the unqualified
name of the index.

Keep in mind that even if the simple, unqualified name of a database object
accepts multibyte characters, other identifiers in the fully qualified name of that
object, such as database@server:owner.index, can include multibyte characters only if
they also appear in the previous table. In this example, the database qualifier within
the fully qualified index name can include multibyte characters, but the identifier
of the database server that qualifies the index name cannot include multibyte
characters.

Owner names
The owner name is the identifier of the user (or of a pseudo-user, for an owner like
informix that does not correspond to the login name of an actual user) who is
associated with the creation of a database object.

The owner name qualifies the identifier of the database object, which the owner
typically can modify or drop. A synonym for the term owner name is authorization
identifier. Unlike SQL identifiers, an authorization identifier cannot be longer than
32 bytes.

The ANSI term for owner name is schema name. In an ANSI-compliant database,
you must specify the owner name as a qualifier of the identifier of any database
object that you do not own.

Chapter 3. SQL features 3-3

Non-ASCII characters are not valid in an owner name unless your operating
system supports those characters in user names.

If your database server is on a UNIX system, the owner-name qualifier defaults to
the UNIX login ID. Most versions of UNIX, however, do not support multibyte
characters in UNIX login IDs.

Important: You specify multibyte characters in an owner name at your own risk. If
a UNIX login ID is used to match the owner name, the match might fail if the
UNIX system does not support multibyte characters in login ID names. In this
situation, if you create a database object without explicitly specifying an owner
name, the owner name defaults to the UNIX login ID. It will attempt to reference
the same database object by qualifying its identifier with an owner name that
includes multibyte characters and fail because a string of only single-byte
characters cannot match any string containing multibyte characters.

In some East Asian locales, an owner name can include multibyte characters when
you create database objects and specify an explicit owner. For example, you can
assign an owner name that contains multibyte characters when you specify the
owner of an index (within quotation marks) in a CREATE INDEX statement. The
following statement declares an index with a multibyte owner name. In this
example, the owner name consists of three 2-byte characters:
CREATE INDEX ’A1A2B1B2C1C2’.myidx ON mytable (mycol)

The preceding example assumes that the client locale supports a multibyte code set
and that A1A2, B1B2, and C1C2 are valid characters in this code set.

Path names and file names
Valid path names and file names are operating system-dependent. Multibyte
characters in hard-coded path names, for example, limits the portability of your
application to operating systems that can support multibyte file names.

Delimited identifiers
A delimited identifier is an identifier that is enclosed in double quotation marks.

When the DELIMIDENT environment variable is set, the database server interprets
strings of characters in double quotation marks (") as delimited identifiers and
strings of characters in single quotation marks (') as data strings. This
interpretation of single and double quotation marks is compliant with the
ANSI/ISO standard for SQL.

In a nondefault locale, you can specify valid non-ASCII characters of the current
code set in most delimited identifiers. You can put non-ASCII characters in a
delimited identifier if you can put non-ASCII characters in the undelimited form of
the same identifier.

For example, Table 3-1 on page 3-2 indicates that you can specify non-ASCII
characters in the declaration of an index name. Thus, you can include non-ASCII
characters in an undelimited index name, or in an index name that you have
enclosed in double quotation marks to make it a delimited identifier, as in the
following SQL statement:
CREATE INDEX "A1A2#B1B2" ON mytable (mycol)

For a description of delimited identifiers, see the Identifier segment in the IBM
Informix Guide to SQL: Syntax.

3-4 IBM Informix GLS User's Guide

Valid characters in identifiers
In an SQL identifier, a letter can be any character in the alpha class that the locale
defines. The alpha class lists all characters that are classified as alphabetic.

For more information about character classification, see “The CTYPE category” on
page A-3. In the default locale, the alpha class of the code set includes the ASCII
characters in the ranges a to z and A to Z. SQL identifiers can use these ASCII
characters wherever letter is valid in an SQL identifier.

In a nondefault locale, the alpha class of the locale also includes the ASCII
characters in the ranges a to z and A to Z. It might also include non-ASCII
characters, such as letters from non-Roman alphabets (such as Greek or Cyrillic) or
ideographic characters. For example, the alpha class of the Japanese UJIS code set
(in the Japanese UJIS locale) contains Kanji characters. When IBM Informix
products use a nondefault locale, SQL identifiers can use non-ASCII characters
wherever letter is valid in the syntax of an SQL identifier. A non-ASCII character is
also valid for letter as long as this character is listed in the alpha class of the locale.

The SQL statements in the following example use non-ASCII characters as letters
in SQL identifiers:
CREATE DATABASE marché;

CREATE TABLE équipement
(
code NCHAR(6),
description NVARCHAR(128,10),
prix_courant MONEY(6,2)
);

CREATE VIEW çà_va AS
SELECT numéro, nom FROM abonnés;

In this example, the user creates the following database, table, and view with
French-language character names in a French locale (such as fr_fr.8859-1):
v The CREATE DATABASE statement declares the identifier marché, which

includes the 8-bit character é, for the database.
v The CREATE TABLE statement declares the identifier équipement, which

includes the 8-bit character é, for the table, and the identifiers code, description,
and prix_courant for the columns.

v The CREATE VIEW statement declares the identifier çà_va, which includes the
8-bit characters ç and à, for the view.

v The SELECT clause within the CREATE VIEW statement specifies the identifiers
numéro and nom as columns in the projection list, and the identifier abonnés
for the table in the FROM clause. Both numéro and abonnés include the 8-bit
character é.

All of the identifiers in this example conform to the rules for specifying identifiers
within a French locale. For these names to be valid, the database locale must
support a code set that includes these French characters in its alpha class.

For the syntax and usage of identifiers in SQL statements, see the Identifier
segment in the IBM Informix Guide to SQL: Syntax.

Chapter 3. SQL features 3-5

Character data types
The locale affects the collation of built-in SQL character data types.

The SQL character data types are:
v Character types that use localized collation: NCHAR and NVARCHAR
v Character types that use code-set order for collation:

– CHAR
– LVARCHAR
– VARCHAR
– TEXT

The IBM Informix Guide to SQL: Reference describes these types. For information
about collation, see “Character classes of the code set” on page 1-10.

Localized collation of character data
The choice of locale can affect the collating order of NCHAR and NVARCHAR
character data types.

The NCHAR data type
The NCHAR data type stores character data in a fixed-length field as a string of
single-byte or multibyte letters, numbers, and other characters that are supported
by the code set of your database locale.

The syntax of the NCHAR data type is as follows.

��
(1)

Data type segment
(1)

NCHAR (size) ��

Notes:

1 See IBM Informix Guide to SQL: Syntax.

Element
Description

size Specifies the number of bytes in the column. The total length of an
NCHAR column cannot exceed 32,767 bytes. If you do not specify size, the
default is NCHAR(1).

Because the length of this column is fixed, when the database server retrieves or
sends an NCHAR value, it transfers exactly size bytes of data. If the length of a
character string is shorter than size, the database server extends the string with
spaces to make up the size bytes. If the string is longer than size bytes, the database
server truncates the string.

Collate NCHAR data:

NCHAR is a locale-sensitive data type. The only difference between NCHAR and
CHAR data types is the collation order.

The database server sorts data in NCHAR columns in localized order, if the locale
defines a localized order. In contrast, the database server collates data in CHAR
columns in code-set order for most operations, even if the database locale (or the
SET COLLATION statement of SQL) defines a localized collation.

3-6 IBM Informix GLS User's Guide

Because the default locale (U.S. English) has no localized order, the database server
sorts NCHAR data in code-set order in the default locale, just as it sorts CHAR
data.

Handle NCHAR data:

A client application manipulates NCHAR data by using the CLIENT_LOCALE setting
of the client system.

The client application performs code-set conversion of NCHAR data automatically
if CLIENT_LOCALE differs from DB_LOCALE.

Multibyte characters with NCHAR:

To store multibyte character data in an NCHAR column, your database locale must
support a code set that includes the same multibyte characters.

When you store multibyte characters, make sure to calculate the number of bytes
that are needed. The size parameter of the NCHAR data type refers to the number
of bytes of storage that is reserved for the data, rather than to the number of
logical characters.

IBM Informix supports the SQL_LOGICAL_CHAR configuration parameter, which
can enable logical-character semantics in the declarations of NCHAR and other
built-in character data types. For more information, see “Data definition
statements” on page 3-36.

Because one multibyte character requires several bytes for storage, the value of size
bytes does not indicate the number of characters that the column can hold. The
total number of multibyte characters that you can store in the column is less than
the total number of bytes that you can store in the column. Make sure to declare
the size value of the NCHAR column in such a way that it can hold enough
characters for your purposes.

Treat NCHAR values as numeric values:

If you plan to perform calculations on numbers that are stored in a column, assign
a numeric data type (such as INTEGER or FLOAT) to that column.

The description of the CHAR data type in the IBM Informix Guide to SQL: Reference
provides detailed reasons you do not store certain numeric values in CHAR values.
The same reasons apply for certain numeric values as NCHAR values. Treat only
numbers that have leading zeros (such as postal codes) as NCHAR data types. Use
NCHAR only if you must sort the numeric values in localized order.

Nonprintable characters with NCHAR:

An NCHAR value can include tabs, spaces, and other white space and
nonprintable characters. Nonprintable NCHAR and CHAR values are entered,
displayed, and treated similarly.

The NVARCHAR data type
The NVARCHAR data type stores character data in a variable-length field. Data
can be a string of single-byte or multibyte letters, digits, and other characters that
are supported by the code set of your database locale.

Chapter 3. SQL features 3-7

The syntax of the NVARCHAR data type is as follows:

��
(1)

Data type segment
, 0

NVARCHAR (max , reserve) ��

Notes:

1 See IBM Informix Guide to SQL: Syntax.

Element
Description

max Specifies the maximum number of bytes that can be stored in the column.

reserve Specifies the minimum number of bytes that can be stored in the column.

You must specify max of the NVARCHAR column. The size of this parameter
cannot exceed 255 bytes.

When you place an index on an NVARCHAR column, the maximum size is 254
bytes. You can store shorter, but not longer, character strings than the value that
you specify.

Specify the reserve parameter when you initially intend to insert rows with data
values having few or no characters in this column but later expect the data to be
updated with longer values. This value can range from 0 to 255 bytes but must be
less than the max size of the NVARCHAR column. If you do not specify a
minimum space value, the default value of reserve is 0.

Although use of NVARCHAR economizes on space that is used in a table, it has
no effect on the size of an index. In an index that is based on an NVARCHAR
column, each index key has a length equal to max bytes, the maximum size of the
column.

The database server does not strip an NVARCHAR object of any user-entered
trailing white space, nor does it pad the NVARCHAR object to the full length of
the column. However, if you specify a minimum reserved space (reserve), and some
of the data values are shorter than that amount, some of the space that is reserved
for rows goes unused.

Collate NVARCHAR data:

The NVARCHAR data type is a locale-sensitive data type. The only difference
between NVARCHAR and VARCHAR data types is the collation order.

The database server collates data in NVARCHAR columns in localized order, if the
database locale defines a localized order. In contrast, the database server collates
data in VARCHAR columns in code-set order for most operations, even if the
database locale (or the SET COLLATION statement of SQL) defines a localized
collation.

Because the default locale (U.S. English) has no localized order, the database server
sorts NVARCHAR data in code-set order in the default locale, just as it sorts
VARCHAR data.

Handle NVARCHAR data:

3-8 IBM Informix GLS User's Guide

Within a client application, always manipulate NVARCHAR data in the
CLIENT_LOCALE of the client application.

The client application performs code-set conversion of NVARCHAR data
automatically if CLIENT_LOCALE differs from DB_LOCALE. (For information about
code-set conversion, see “Perform code-set conversion” on page 1-28.)

Multibyte characters with NVARCHAR:

To store multibyte character data in an NVARCHAR column, your database locale
must support a code set with these same multibyte characters.

When you store multibyte characters, make sure to calculate the number of bytes
that are needed. The max parameter of the NVARCHAR data type refers to the
maximum number of bytes that the column can store.

Because one multibyte character uses several bytes for storage, the value of max
bytes does not indicate the number of logical characters that the column can hold.
The total number of multibyte characters that you can store in the column is less
than the total number of bytes that the column can store. Make sure to declare the
max value of the NVARCHAR column so that it can hold enough multibyte
characters for your purposes.

IBM Informix supports the SQL_LOGICAL_CHAR configuration parameter, which
can enable logical-character semantics in the declarations of NVARCHAR and
other built-in character data types. For more information, see “Data definition
statements” on page 3-36.

Nonprintable characters with NVARCHAR:

An NVARCHAR value can include tabs, spaces, and nonprintable characters.
Nonprintable NVARCHAR characters are entered, displayed, and treated in the
same way as nonprintable VARCHAR characters.

Tip: The database server interprets the NULL character (ASCII 0) as a C null
terminator. In NVARCHAR data, the null terminator acts as a string-terminator
character.

Store numeric values in an NVARCHAR column:

The database server does not pad a numeric value in an NVARCHAR column with
trailing blanks up to the maximum length of the column.

The number of digits in a numeric NVARCHAR value is the number of characters
that you must store that value. For example, the database server stores a value of 1
in the mytab table when it executes the following SQL statements:
CREATE TABLE mytab (col1 NVARCHAR(10));
INSERT INTO mytab VALUES (1);

Performance considerations
The NCHAR data type is like the CHAR data type, and NVARCHAR is like the
VARCHAR data type.

These data types differ in two ways:
v The database server collates NCHAR and NVARCHAR column values in

localized order.

Chapter 3. SQL features 3-9

v The database server collates CHAR and VARCHAR column values in code-set
order.

Localized collation depends on the sorting rules that the locale defines, not on the
computer representation of the character (the code points). This difference means
that the database server might perform complex processing to compare and collate
NCHAR and NVARCHAR data. Therefore, access to NCHAR data might be slower
with respect to comparison and collation than to access CHAR data. Similarly,
access to data in an NVARCHAR column might be slower with respect to
comparison and collation than access to the same data in a VARCHAR column.

Assess whether your character data must take advantage of localized order for
collation and comparison. If code-set order is adequate, use the CHAR,
LVARCHAR, and VARCHAR data types.

Other character data types
The choice of locale can affect the character data types.

The CHAR data type
The CHAR data type stores character data in a fixed-length field. Data can be a
string of single-byte or multibyte letters, numbers, and other characters that are
supported by the code set of your database locale.

The following list summarizes how the choice of a locale affects the CHAR data
type:
v The size of a CHAR column is byte-based, not character-based.

For example, if you define a CHAR column as CHAR(10), the column has a
fixed length of 10 bytes, not 10 characters. If you want to store multibyte
characters in a CHAR column, keep in mind that the total number of characters
you can store in the column might be less than the total number of bytes you
can store in the column. Make sure to define the byte size of the CHAR column
so that it can hold enough characters for your purposes.

v You can enter single-byte or multibyte characters in a CHAR column.
The database locale must support the characters that you want to store in CHAR
columns.

v The database server sorts CHAR columns in code-set order, not in localized
order.

v Within a client application, always manipulate CHAR data in the CLIENT_LOCALE
of the client application.
The client application performs code-set conversion of CHAR data automatically
if CLIENT_LOCALE differs from DB_LOCALE.

The VARCHAR data type
The VARCHAR data type stores character strings of up to 255 bytes in a
variable-length field. Data can consist of letters, numbers, and symbols.
CHARACTER VARYING is handled the same as VARCHAR.

The following list summarizes how the choice of a locale affects the VARCHAR
data type:
v The maximum size and minimum reserved space for a VARCHAR column are

byte based, not character based.
For example, if you define a VARCHAR column as VARCHAR(10,6), the column
has a maximum length of 10 bytes and a minimum reserved space of 6 bytes. If

3-10 IBM Informix GLS User's Guide

you want to store multibyte characters in a VARCHAR column, keep in mind
that the total number of characters you can store in the column might be less
than the total number of bytes you can store in the column. Make sure to define
the maximum byte size of the VARCHAR column so that it can hold enough
characters for your purposes.

v You can enter single-byte or multibyte characters in a VARCHAR column.
The database locale must support the characters that you want to store in
VARCHAR columns.

v The database server sorts VARCHAR columns in code-set order, not in localized
order.

v Within a client application, always manipulate VARCHAR data in the
CLIENT_LOCALE of the client application.
The client application performs code-set conversion of VARCHAR data
automatically if CLIENT_LOCALE differs from DB_LOCALE.

The LVARCHAR data type
The LVARCHAR data type can store character strings of up to 32,739 bytes in a
variable-length field. If you specify no maximum size in its declaration, the default
upper size limit is 2048 bytes. Data values can include letters, numbers, symbols,
white space, and unprintable characters.

LVARCHAR is like the VARCHAR data type in several ways:
v Strings of the LVARCHAR data type are collated in code-set order.
v Client applications perform code-set conversion on LVARCHAR data.
v LVARCHAR supports the built-in SQL length functions. (See “SQL length

functions” on page 3-26.)
v LVARCHAR data type declarations can specify a maximum size.

Unlike VARCHAR, however, LVARCHAR has no reserved size parameter, and data
strings in LVARCHAR columns can be longer than the VARCHAR limit of 255
bytes.

The database server also uses LVARCHAR to represent the external format of
opaque data types. In I/O operations of the database server, LVARCHAR data
values have no upper limit on their size, apart from file size restrictions or limits of
your operating system or hardware resources.

The TEXT data type
The TEXT data type stores any text data. TEXT columns typically store memos,
manual chapters, business documents, program source files, and other types of
textual information.

The following list summarizes how the choice of a locale affects the TEXT data
type:
v The database server stores character data in a TEXT column in the code set of

the database locale.
v You can enter single-byte or multibyte characters in a TEXT column.

The database locale supports the characters that you want to store in TEXT
columns. However, you can put any type of character in a TEXT column.

v TEXT columns do not have an associated collation order.
The database server does not build indexes on TEXT columns. Therefore, it does
not perform collation tasks on these columns.

Chapter 3. SQL features 3-11

v Within a client application, always manipulate TEXT data in the CLIENT_LOCALE
of the client application.
The client application performs code-set conversion of TEXT data automatically
if CLIENT_LOCALE differs from DB_LOCALE.

Handle character data
The GLS feature allows you to put non-ASCII characters (including multibyte
characters) in the elements of an SQL statement.

You can put non-ASCII characters (including multibyte characters) in the following
elements of an SQL statement:
v Quoted strings
v Comments
v Column substrings
v TRIM function arguments
v UPPER, LOWER, and INITCAP function arguments

Specify quoted strings
You use quoted strings in various SQL statements, particularly data manipulation
statements such as SELECT and INSERT.

A quoted string is a string of consecutive characters that is delimited by quotation
marks. The marks can be single quotation marks or double quotation marks. If the
DELIMIDENT environment variable is set, however, the database server interprets a
string of characters in double quotation marks as a delimited identifier rather than
as a string. For more information about delimited identifiers, see “Non-ASCII
characters in identifiers” on page 3-1.

When you use a nondefault locale, you can use any characters in the code set of
your locale within a quoted string. If the locale supports a code set with non-ASCII
characters, you can use these characters in a quoted string. In the following
example, the user inserts column values that include multibyte characters in the
table mytable:
INSERT INTO mytable

VALUES (’A1A2B1B2abcd’, ’123X1X2Y1Y2’, ’efgh’)

In this example, the first quoted string includes the multibyte characters A1A2 and
B1B2. The second quoted string includes the multibyte characters X1X2 and Y1Y2.
The third quoted string contains only single-byte characters. This example assumes
that the locale supports a multibyte code set with the A1A2, B1B2, X1X2, and Y1Y2

characters.

For a description of quoted strings, see the Quoted String segment in the IBM
Informix Guide to SQL: Syntax.

Specify comments
To use comments after SQL statements, you must use a comment indicator.

Introduce the comment text with one of the following comment indicators:
v The double-hyphen (--) complies with the ANSI SQL standard.
v Braces ({ ... }) are an IBM Informix extension to the ANSI standard.
v C-style slash-and-asterisk (/* . . . */) complies with the SQL-99 standard.

3-12 IBM Informix GLS User's Guide

In a nondefault locale, you can use any characters in the code set of your locale
within a comment. If the locale supports a code set with non-ASCII characters, you
can use these characters in an SQL comment.

In the following example, the user inserts a column value that includes multibyte
characters in the table mytable:
EXEC SQL insert into mytable

values (’A1A2B1B2abcd’, ’123’) -- A1A2 and B1B2 are multibyte characters.

In this example, the SQL comment includes the multibyte characters A1A2 and
B1B2. This example assumes that the locale supports a multibyte code set that
includes the A1A2 and B1B2 characters. For more information about SQL comments
and comment indicators, see the IBM Informix Guide to SQL: Syntax.

Specify column substrings
In a query (or in any SQL statement containing an embedded SELECT statement),
you can use bracket ([]) symbols to specify that only a subset of the data in a
column of a character data type is to be retrieved. A column expression that
includes brackets to signify a subset of the data in the column is known as a
column substring.

The syntax of a column substring is as follows.

��
(1)

Expression segment column
[first , last]

��

Notes:

1 See IBM Informix Guide to SQL: Syntax.

Element
Description

column
Identifier of a column within a database table or view

first. last
Positions of the first and the last byte of the retrieved substring

Column substrings in single-byte code sets
You can use column substrings in single-byte code sets.

Suppose that you want to retrieve the customer_num column and the seventh
through ninth bytes of the lname column from the customer table. To perform this
query, use a column substring for the lname column in your SELECT statement, as
follows:
SELECT customer_num, lname[7,9] as lname_subset

FROM customer WHERE lname = ’Albertson’

If the lname column value is Albertson, the query returns these results.

customer_num lname_subset

114 son

Chapter 3. SQL features 3-13

Because the locale supports a single-byte code set, the preceding query seems to
return the seventh through ninth characters of the name Albertson. Column
substrings, however, are byte based, and the query returns the seventh through
ninth bytes of the name. Because one byte is equal to one character in single-byte
code sets, the distinction between characters and bytes in column substrings is not
apparent in these code sets.

Column substrings in multibyte code sets
For multibyte code sets, column substrings return the specified number of bytes,
not the number of characters.

If a character column multi_col contains a string of three 2-byte characters, this
6-byte string can be represented as follows:
A1A2B1B2C1C2

Suppose that a query specified this substring from the multi_col column:
multi_col[1,2]

The query returns the following result:
A1A2

The returned substring consists of 2 bytes (one character), not two characters.

To retrieve the first two characters from the multi_col column, specify a substring
in which first is the position of the first byte in the first character and last is the
position of the last byte in the second character. For the 6-byte string A1A2B1B2C1C2,
this g expression specifies the substring in your query:
multi_col[1,4]

The following result is returned:
A1A2B1B2

The substring that the query returns consists of the first 4 bytes of the column
value, representing the first two logical characters in the column.

Partial characters in column substrings
A multibyte character might consist of 2, 3, or 4 bytes. A multibyte character that
has lost one or more of its bytes so that the original intended meaning of the
character is lost is called a partial character.

Unless prevented, a column substring might truncate a multibyte character or split
it up in such a manner that it no longer retains the original sequence of bytes. A
partial character might be generated when you use column subscript operators on
columns that contain multibyte characters. Suppose that a user specifies the
following column substring for the multi_col column where the value of the string
in multi_col is A1A2B1B2C1C2:
multi_col[2,5]

The user requests the following bytes in the query: A2B1B2C1. If the database server
returned this column substring to the user, however, the first and third logical
characters in the column would be truncated.

Avoidance in a multibyte code set:

3-14 IBM Informix GLS User's Guide

IBM Informix database servers do not allow partial characters to occur. The GLS
feature prevents the database server from returning the specified range of bytes
literally when this range contains partial characters.

If your database locale supports a multibyte code set and you specify a particular
column substring in a query, the database server replaces any truncated multibyte
characters with single-byte white space characters.

For example, suppose the multi_col column contains the string A1A2A3A4B1B2B3B4,
and you execute the following SELECT statement:
SELECT multi_col FROM tablename WHERE multi_col[2,4] = ’A1A2B1B2’

The query returns no rows because the database server converts the substring
multi_col[2,4], namely the string A2A3A4, to three single-byte blank spaces (sss).
The WHERE clause specifies this search condition:
WHERE ’sss’ = ’A1A2A3’

Because this condition is never true, the query retrieves no matching rows.

IBM Informix database servers replace partial characters in each individual
substring operation, even when they are concatenated.

For example, suppose the multi_col column contains A1A2B1B2C1C2D1D2, and the
WHERE clause contains the following condition:
multi_col[2,4] | multi_col[6,8]

The query does not return any rows because the result of the concatenation
(A2B1B2C2D1D2) contains two partial characters, A2 and C2. The IBM Informix
database server converts these partial characters to single-byte blank spaces and
creates the following WHERE clause condition:
WHERE ’sB1B2sD1D2’ = ’A1A2B1B2’

This condition is also never true, so the query retrieves no matching rows.

Errors involving partial characters

Partial characters violate the relational model if the substrings strings can be
processed or presented to users in any way that can prevent the concatenation of
the substrings from reconstructing the original logical string.

This can occur when a multibyte character has a substring that is a valid character
by itself. For example, suppose a multibyte code set contains a four-byte character,
A1A2A3A4, that represents the digit 1 and a three-byte character, A2A3A4, that
represents the digit 6. Suppose also that your locale is using this multibyte code set
when you execute the following query:
SELECT multi_col FROM tablename WHERE multi_col[2,4] = ’A2A3A4’

The database server interprets multi_col[2,4] as the valid three-byte character (a
multibyte 6) instead of a substring of the valid four-byte character ('sss').

Therefore, the WHERE clause contains the following condition:
WHERE ’6’ = ’6’

Partial characters do not occur in single-byte code sets because each character is
stored in a single byte. If the database locale supports a single-byte code set, and

Chapter 3. SQL features 3-15

you specify a column substring in a query, the query returns exactly the requested
subset of data; no characters are replaced with white space.

Partial characters in an ORDER BY clause
Partial characters might also create a problem when you specify column substrings
in an ORDER BY clause of a SELECT statement.

The syntax for specifying column substrings in the ORDER BY clause is as follows.

��
(1)

SELECT statement ORDER BY column
[first , last]

��

Notes:

1 See IBM Informix Guide to SQL: Syntax.

Element
Description

column Name of a column in the specified table or view.

first. last
Positions of the first and last byte of the substring.

The query results are sorted by the values contained in this column.

In hierarchical queries, you can optionally specify the ORDER SIBLINGS BY
clause, which uses similar syntax to sort the rows returned by the CONNECT BY
clause for every level of the data hierarchy.

If the locale supports a multibyte code set whose characters are all of the same
length, you can use column substrings in an ORDER BY clause. The more typical
scenario, however, is that your multibyte code set contains characters with varying
lengths. In this case, you might not find it useful to specify column substrings in
the ORDER BY clause.

For example, suppose that you want to retrieve all the rows of the multi_data
table, and sort the results according to a substring defined as the fourth through
sixth characters of the multi_chars column, by using this query:
SELECT * FROM multi_data ORDER BY multi_chars[7,12]

If the locale supports a multibyte code set whose characters are all 2 bytes in
length, you know that the fourth character in the column begins in byte position 7,
and the sixth character in the column ends in byte position 12. The preceding
SELECT statement does not generate partial characters.

If the multibyte code set contains a mixture of single-byte characters, 2-byte
characters, and 3-byte characters, however, the substring multi_chars[7,12] might
create partial characters. In this case, you might get unexpected results when you
specify a column substring in the ORDER BY clause.

For information about the collation of different types of character data in the
ORDER BY clause, see “The ORDER BY clause” on page 3-19. For the complete
syntax and usage of the ORDER BY clause (and of the ORDER SIBLINGS BY
clause of hierarchical queries that include the CONNECT BY clause), see the
SELECT statement in the IBM Informix Guide to SQL: Syntax.

3-16 IBM Informix GLS User's Guide

Tip: A partial character might also be generated when a SQL API copies multibyte
data from one buffer to another. For more information, see “Generate non-ASCII
file names” on page 6-3.

Avoidance in TEXT and BYTE columns:

Partial characters are not a problem when you specify a column substring for a
column of the TEXT or BYTE data type.

The database server avoids partial characters in TEXT and BYTE columns in the
following way:
v Because the database server interprets a BYTE column as a series of bytes, not

characters, the splitting of multibyte characters as a result of the byte range that
a column substring specifies is not an issue.
A substring of a BYTE column returns the exact range of bytes that is specified
and does not replace any bytes with white space characters.

v The database server interprets a TEXT value as a character string.
A substring from a TEXT column returns the exact range of bytes that is
specified. Attempts to resolve partial characters in TEXT data are
resource-intensive, but the database server does not replace any bytes with white
space. For more information, see “The TEXT data type” on page 3-11.

Important: The processing and interpretation of TEXT and BYTE data are the
responsibility of the client application, which must handle the possibility of partial
characters in these operations.

Specify arguments to the TRIM function
The TRIM function is a built-in SQL function that removes leading or trailing pad
characters from character strings of 255 or fewer characters. By default, this pad
character is ASCII 32, the blank space.

If your locale supports a code set that defines a different white space character,
TRIM does not remove this locale-specific blank space from the front or back of a
string. If you specify the LEADING, TRAILING, or BOTH keywords for TRIM,
you can specify a different pad character.

You cannot, however, specify a non-ASCII character as a pad character, even if
your locale supports a code set that defines the non-ASCII character.

Search functions that are not case-sensitive
The SQL search functions UPPER, LOWER, and INITCAP support GLS. They
accept multibyte characters in character-type source strings and operate on them.

The returned data type is the same as the type of the source string:
v UPPER converts every letter in a string to uppercase.
v LOWER converts every letter in a string to lowercase.
v INITCAP changes the first letter of a word or series of words to uppercase.

For complete information about these search functions, see the IBM Informix Guide
to SQL: Syntax.

Chapter 3. SQL features 3-17

Collate character data
Collation is the process of sorting data values in columns that have character data
types.

For an explanation of collation order and a discussion of the two methods of
sorting character data (code-set order and localized order), see “Character classes
of the code set” on page 1-10.

By default, the database server sorts strings according to the collation that the
DB_LOCALE setting implies, and client applications sort according to the
CLIENT_LOCALE setting, if this setting is different from the DB_LOCALE setting.

The SET COLLATION statement of IBM Informix can specify a localized collation
different from the DB_LOCALE setting for the current session.

See the IBM Informix Guide to SQL: Syntax for the syntax of this statement.
Database objects that sort strings, such as indexes or triggers, use the collation that
was in effect at the time of their creation when they sort NCHAR or NVARCHAR
values, if this setting is different from the DB_LOCALE setting.

The collation order of the database server affects SQL statements that perform
sorting operations, including CREATE INDEX and SELECT statements.

Collation order in CREATE INDEX
The CREATE INDEX statement creates an index on one or more columns of a
table. The ASC and DESC keywords in the CREATE INDEX statement control
whether the index keys are stored in ascending or descending order.

When you use a nondefault locale, the following locale-specific considerations
apply to the CREATE INDEX statement:
v The index keys are stored in code-set order when you create an index on

columns of these data types:
– CHAR
– LVARCHAR
– VARCHAR
For example, if the database stores its database locale as the Japanese SJIS locale
(ja_jp.sjis), index keys for a CHAR column in any table of the database are
stored in Japanese SJIS code-set order.

v When you create an index on an NCHAR or NVARCHAR column, the index
keys are stored in localized order.
For example, if the database uses the Japanese SJIS locale, index keys for an
NCHAR column in any table of the database are stored in the localized order
that the ja_jp.sjis locale defines.

If the SET COLLATION statement specifies a database locale with localized
collation that is different from the DB_LOCALE setting, any indexes (and any check
constraints) that you then create in the same session always use that localized
collation for sorting NCHAR or NVARCHAR strings.

If you use the default locale (U.S. English), the index keys are stored in the
code-set order (in ascending or descending order) of the default code set regardless
of the data type of the character column. Because the default locale does not define

3-18 IBM Informix GLS User's Guide

a localized order, the database server that uses this locale (or any other locale that
does not define a localized collating order) sorts strings from columns of the
following data types in code-set order:
v CHAR
v LVARCHAR
v NCHAR
v NVARCHAR
v VARCHAR

Collation order in SELECT statements
The SELECT statement performs a query and collation can affect the order of parts
of the SELECT statement.

Collation order affects the following parts of the SELECT statement:
v The ORDER BY clause
v The relational, BETWEEN, and IN operators of the WHERE clause
v The MATCHES and LIKE conditions of the WHERE clause

The ORDER BY clause:

The ORDER BY clause sorts retrieved rows by the values that are contained in a
column or set of columns.

When this clause sorts character columns, the results of the sort depend on the
data type of the column, as follows:
v Columns that are sorted in code-set order:

– CHAR
– LVARCHAR
– VARCHAR

v NCHAR and NVARCHAR columns are sorted in localized order.

Assume that you use a nondefault locale for the client and database locale, and
you make a query against the table called abonnés. This SELECT statement
specifies three columns of CHAR data type in the select list: numéro (employee
number), nom (family name), and prénom (given name).
SELECT numéro,nom,prénom

FROM abonnés
ORDER BY nom;

The statement sorts the query results by the values that are contained in the nom
column. Because the nom column that is specified in the ORDER BY clause is a
CHAR column, the database server sorts the query results in the code-set order.

As this table shows, names that begin with uppercase letters come before names
beginning with lowercase letters, and names that begin with an accented letter
(Ålesund, Étaix, Ötker, and Øverst) are at the end of the list.

Table 3-2. Data set for code-set order of the abonnés table

numéro nom prénom

13612 Azevedo Edouardo Freire

13606 Dupré Michéle Françoise

13607 Hammer Gerhard

Chapter 3. SQL features 3-19

Table 3-2. Data set for code-set order of the abonnés table (continued)

numéro nom prénom

13602 Hämmerle Greta

13604 LaForêt Jean-Noël

13610 LeMaître Héloïse

13613 Llanero Gloria Dolores

13603 Montaña José Antonio

13611 Oatfield Emily

13609 Tiramisù Paolo Alfredo

13600 da Sousa João Lourenço Antunes

13615 di Girolamo Giuseppe

13601 Ålesund Sverre

13608 Étaix Émile

13605 Ötker Hans-Jürgen

13614 Øverst Per-Anders

Results of the query are different, however, if the numéro, nom, and prénom
columns of the abonnés table are defined as NCHAR rather than CHAR.

Suppose the nondefault locale defines a localized order that collates the data as the
following table shows. This localized order defines equivalence classes for
uppercase and lowercase letters and for unaccented and accented versions of the
same letter.

Table 3-3. Data set for localized order of the abonnés table

numéro nom prénom

13612 Azevedo Edouardo Freire

13601 Ålesund Sverre

13600 da Sousa João Lourenço Antunes

13615 di Girolamo Giuseppe

13606 Dupré Michéle Françoise

13608 Étaix Émile

13607 Hammer Gerhard

13602 Hämmerle Greta

13604 LaForêt Jean-Noël

13610 LeMaître Héloïse

13613 Llanero Gloria Dolores

13603 Montaña José Antonio

13611 Oatfield Emily

13605 Ötker Hans-Jürgen

13614 Øverst Per-Anders

13609 Tiramisù Paolo Alfredo

3-20 IBM Informix GLS User's Guide

The same SELECT statement now returns the query results in localized order
because the nom column that the ORDER BY clause specifies is an NCHAR
column.

The SELECT statement supports use of a column substring in an ORDER BY
clause. However, you need to ensure that this use for column substrings works
with the code set that your locale supports. For more information, see “Partial
characters in column substrings” on page 3-14.

Logical predicates in a WHERE clause:

The WHERE clause specifies search criteria and join conditions on the data that
you want to select.

Collation rules affect the WHERE clause when the expressions in the condition are
column expressions with character data types and the search condition is one of
the following logical predicates:
v Relational-operator condition
v BETWEEN condition
v IN condition
v EXISTS and ANY conditions

Relational-operator conditions:

The example SELECT statement assumes a nondefault locale and uses
relational-operator conditions.

It uses the less than (<) relational operator to specify that the only rows are to be
retrieved from the abonnés table are those in which the value of the nom column
is less than Hammer.
SELECT numéro,nom,prénom

FROM abonnés
WHERE nom < ’Hammer’;

If nom is a CHAR column, the database server uses code-set order of the default
code set to retrieve the rows that the WHERE clause specifies. The output shows
that this SELECT statement retrieves only two rows.

numéro nom prénom

13612 Azevedo Edouardo Freire

13606 Dupré Michéle Françoise

These two rows are those rows less than Hammer in the code-set-ordered data set
shown in Table 3-2 on page 3-19.

However, if nom is an NCHAR column, the database server uses localized order to
sort the rows that the WHERE clause specifies. The following example of output
shows that this SELECT statement retrieves six rows.

numéro nom prénom

13612 Azevedo Edouardo Freire

13601 Ålesund Sverre

13600 da Sousa João Lourenço Antunes

Chapter 3. SQL features 3-21

numéro nom prénom

13615 di Girolamo Giuseppe

13606 Dupré Michéle Françoise

13608 Étaix Émile

These six rows are those rows less than Hammer in the localized-order data set
shown in Table 3-3 on page 3-20.

BETWEEN conditions:

The example SELECT statement assumes a nondefault locale and uses BETWEEN
conditions.

The following SELECT statement uses a BETWEEN condition to retrieve only those
rows in which the values of the nom column are in the inclusive range of the
values of the two expressions that follow the BETWEEN keyword:
SELECT numéro,nom,prénom

FROM abonnés
WHERE nom BETWEEN ’A’ AND ’Z’;

The query result depends on whether nom is a CHAR or NCHAR column. If nom
is a CHAR column, the database server uses the code-set order of the default code
set to retrieve the rows that the WHERE clause specifies. The following example of
output shows the query results.

numéro nom prénom

13612 Azevedo Edouardo Freire

13606 Dupré Michéle Françoise

13607 Hammer Gerhard

13602 Hämmerle Greta

13604 LaForêt Jean-Noël

13610 LeMaître Héloïse

13613 Llanero Gloria Dolores

13603 Montaña José Antonio

13611 Oatfield Emily

13609 Tiramisù Paolo Alfredo

Because the database server uses the code-set order for the nom values, as
Table 3-2 on page 3-19 shows, these query results do not include the following
rows:
v Rows in which the value of nom begins with a lowercase letter: da Sousa and di

Girolamo

v Rows with an accented letter: Ålesund, Étaix, Ötker, and Øverst

However, if nom is an NCHAR column, the database server uses localized order to
sort the rows. The following output shows the query results.

numro nom prnom

13612 Azevedo Edouardo Freire

3-22 IBM Informix GLS User's Guide

numro nom prnom

13601 Ålesund Sverre

13600 da Sousa João Lourenço Antunes

13615 di Girolamo Giuseppe

13606 Dupré Michéle Françoise

13608 Étaix Émile

13607 Hammer Gerhard

13602 Hämmerle Greta

13604 LaForêt Jean-Noël

13610 LeMaître Héloïse

13613 Llanero Gloria Dolores

13603 Montaña José Antonio

13611 Oatfield Emily

13605 Ötker Hans-Jürgen

13614 Øverst Per-Anders

13609 Tiramisù Paolo Alfredo

Because the database server uses localized order for the nom values, these query
results include rows in which the value of nom begins with a lowercase letter or
accented letter.

IN conditions:

An IN condition is satisfied when the expression to the left of the IN keyword is
included in the parenthetical list of values to the right of the keyword.

This SELECT statement assumes a nondefault locale and uses an IN condition to
retrieve only those rows in which the value of the nom column is any of the
following: Azevedo, Llanero, or Oatfield.
SELECT numéro,nom,prénom

FROM abonnés
WHERE nom IN (’Azevedo’, ’Llanero’, ’Oatfield’);

The query result depends on whether nom is a CHAR or NCHAR column. If nom
is a CHAR column, the database server uses code-set order, as Table 3-2 on page
3-19 shows. The database server retrieves rows in which the value of nom is
Azevedo, but not rows in which the value of nom is azevedo or Åzevedo because the
characters A, a, and Å are not equivalent in the code-set order. The query also
returns rows with the nom values of Llanero and Oatfield.

However, if nom is an NCHAR column, the database server uses localized order,
as Table 3-3 on page 3-20 shows, to sort the rows. If the locale defines A, a, and Å as
equivalent characters in the localized order, the query returns rows in which the
value of nom is Azevedo, azevedo, or Åzevedo. The same selection rule applies to
the other names in the parenthetical list that follows the IN keyword.

Comparisons with MATCHES and LIKE conditions
Collation rules also affect the WHERE clause when the expressions in the condition
are column expressions with character data types and the search condition is either
the MATCHES or LIKE condition.

Chapter 3. SQL features 3-23

MATCHES condition:

A MATCHES condition tests for matching character strings.

The condition is true, or satisfied, when the value of the column to the left of the
MATCHES keyword matches the pattern that a quoted string specifies to the right
of the MATCHES keyword. You can use wildcard characters in the string. For
example, you can use brackets to specify a range of characters. For more
information about MATCHES, see the IBM Informix Guide to SQL: Syntax.

When a MATCHES expression does not list a range of characters in the string, it
specifies a literal match. For literal matches, the data type of the column determines
whether collation considerations come into play, as follows:
v For CHAR and VARCHAR columns, no collation considerations come into play.
v For NCHAR and NVARCHAR columns, collation considerations might come

into play, because these data types use localized order and the locale might
define equivalence classes of collation.
For example, the localized order might specify that a and A are an equivalent
class. That is, they have the same rank in the collation order. For more
information about localized order, see “Localized order” on page 1-11.

The examples in the following table illustrate the different results that CHAR and
NCHAR columns produce when a user specifies the MATCHES keyword without
a range in a SELECT statement. These examples assume use of a nondefault locale
that defines A and a in an equivalence class. It also assumes that col1 is a CHAR
column and col2 is an NCHAR column in table mytable.

Query Data type Query results

SELECT * FROM mytable
WHERE col1 MATCHES 'art'

CHAR All rows in which column col1 contains the
value 'art' with a lowercase a

SELECT * FROM mytable
WHERE col2 MATCHES 'art'

NCHAR All rows in which column col2 contains the
value 'art' or 'Art'

When you use the MATCHES keyword to specify a range, collation considerations
come into play for all columns with character data types. When the column to the
left of the MATCHES keyword is an NCHAR, NVARCHAR, CHAR, VARCHAR, or
LVARCHAR data type, and the string operand of the MATCHES keyword includes
brackets ([]) to specify a range, sorting follows a localized order, if the locale
defines one.

Important: When the database server determines the characters that fall within a
range with the MATCHES operator, it uses the localized order, if DB_LOCALE or SET
COLLATION has specified one, even for CHAR, LVARCHAR, and VARCHAR
columns. This behavior is an exception to the rule that the database server uses
code-set order for all operations on CHAR, LVARCHAR and VARCHAR columns,
and localized order (if one is defined) for sorting operations on NCHAR and
NVARCHAR columns.

Some simple examples show how the database server treats NCHAR,
NVARCHAR, LVARCHAR, CHAR, and VARCHAR columns when you use the
MATCHES keyword with a range in a SELECT statement. Suppose that you want
to retrieve from the abonnés table the employee number, given name, and family
name for all employees whose family name nom begins in the range of characters

3-24 IBM Informix GLS User's Guide

E through P. Also assume that the nom column is an NCHAR column. The
following SELECT statement uses a MATCHES condition in the WHERE clause to
pose this query:
SELECT numéro,nom,prénom

FROM abonnés
WHERE nom MATCHES ’[E-P]*’
ORDER BY nom;

The rows for Étaix, Ötker, and Øverst appear in the query result because, in the
localized order, as Table 3-3 on page 3-20 shows, the accented first letter of each
name falls within the E through P MATCHES range for the nom column.

numéro nom prénom

13608 Étaix Émile

13607 Hammer Gerhard

13602 Hämmerle Greta

13604 LaForêt Jean-Noël

13610 LeMaître Héloïse

13613 Llanero Gloria Dolores

13603 Montaña José Antonio

13611 Oatfield Emily

13605 Ötker Hans-Jürgen

13614 Øverst Per-Anders

If nom is a CHAR column, the query result is the same as when nom was an
NCHAR column. The database server always uses localized order to determine
what characters fall within a range, regardless of whether the column is CHAR or
NCHAR.

LIKE condition:

A LIKE condition tests for matching character strings.

As with the MATCHES condition, the LIKE condition is true, or satisfied, when the
value of the column to the left of the LIKE keyword matches the pattern that the
quoted string specifies to the right of the LIKE keyword. You can use only certain
symbols as wildcards in the quoted string. For more information about LIKE, see
the IBM Informix Guide to SQL: Syntax.

The LIKE condition can specify only a literal match. For literal matches, the data
type of the column determines whether collation considerations come into play, as
follows:
v For CHAR and VARCHAR columns, no collation considerations come into play.
v For NCHAR and NVARCHAR columns, collation considerations might come

into play because these data types use localized order, and the locale might
define equivalence classes of collation. For example, the localized order might
specify that a and A are an equivalent class.

The LIKE keyword does not support ranges of characters. That is, you cannot use
bracketed characters to specify a range in LIKE conditions.

Wildcard characters in LIKE and MATCHES conditions:

Chapter 3. SQL features 3-25

IBM Informix products support ASCII characters as wildcard characters in the
MATCHES and LIKE conditions.

IBM Informix products support the following ASCII characters as wildcard
characters:

Condition Wildcard characters

LIKE _ %

MATCHES * ? [] ^ -

For CHAR and VARCHAR data, the database server performs byte-by-byte
comparison for pattern matching in the LIKE and MATCHES conditions. For
NCHAR and NVARCHAR data, the database server performs pattern matching in
the LIKE and MATCHES conditions based on logical characters, not bytes.
Therefore, the underscore (_) wildcard of the LIKE clause and the ? (question
mark) wildcard of the MATCHES clause match any one single-byte or multibyte
character, as the following table shows.

Condition Quoted string Column value Result

LIKE 'ab_d' 'abcd' True

LIKE 'ab_d' 'abA1A2d' True

MATCHES 'ab?d' 'abcd' True

MATCHES 'ab?d' 'abA1A2d' True

The database server treats any multibyte character as a literal character. To tell the
database server to interpret a wildcard character as its literal meaning, you must
precede the character with an escape character. You must use single-byte characters
as escape characters; the database server does not recognize use of multibyte
characters for this purpose. The default escape character is the backslash (\)
symbol.

The following MATCHES condition returns a TRUE result for the column value that
is shown.

Condition Quoted string Column value Result

MATCHES 'ab\?d' 'ab?d' True

SQL length functions
You can use SQL length functions in the SELECT statement and other data
manipulation statements. Length functions return the length of a column, string, or
variable in bytes or characters.

For the syntax of these functions, see the Expression segment in the IBM Informix
Guide to SQL: Syntax.

The choice of locale affects the three SQL length functions.

The LENGTH function
The LENGTH function returns the number of bytes of data in character data.

3-26 IBM Informix GLS User's Guide

However, the behavior of the LENGTH function varies with the type of argument
that the user specifies. The argument can be a quoted string, a character-type
column other than the TEXT data type, a TEXT column, a host variable, or an SPL
routine variable.

The following table shows how the LENGTH function operates on each of these
argument types. The Example column in this table uses the symbol s to represent a
single-byte trailing white space character.

This table assumes that all arguments consist of single-byte characters.

LENGTH argument Behavior Example

Quoted string Returns number of bytes in
string, minus any trailing
white space (as defined in the
locale).

If the string is 'Ludwig', the result is
6. If the string is 'Ludwigssss', the
result is still 6.

CHAR, VARCHAR,
LVARCHAR,
NCHAR, or
NVARCHAR
column

Returns number of bytes in a
column, minus any trailing
white- space characters,
regardless of defined length of
the column.

If the fname column of the customer
table is a CHAR(15) column, and this
column contains the string 'Ludwig',
the result is 6. If the fname column
contains the string 'Ludwigssss', the
result is still 6.

TEXT column Returns number of bytes in a
column, including trailing
white space characters.

If the cat_descr column in the catalog
table is a TEXT column, and this
column contains the string 'Ludwig',
the result is 6. If the cat_descr
column contains the string
'Ludwigssss', the result is 10.

Host or procedure
variable

Returns number of bytes that
the variable contains, minus
any trailing white pace,
regardless of defined length of
the variable.

If the procedure variable f_name is
defined as CHAR(15), and this
variable contains the string 'Ludwig',
the result is 6. If the f_name variable
contains the string 'Ludwigssss', the
result is still 6.

When you use the default locale or any locale with a single-byte code set, the
LENGTH function seems to return the number of characters in the column. In the
following example, the stores_demo database, which contains the customer table,
uses the default code set for the U.S. English locale. Suppose a user enters a
SELECT statement with the LENGTH function to display the family name, length
of the family name, and customer number for rows where the customer number is
less than 106.
SELECT lname AS cust_name,

length (fname) AS length, customer_num AS cust_num
FROM customer WHERE customer_num < 106

The following example of output shows the result of the query. For each row that
is retrieved, the length column seems to show the number of characters in the
lname (cust_name) column. However, the length column actually displays the
number of bytes in the lname column.

In the default code set, one byte stores one character. For more information about
the default code set, see “The default locale” on page 1-21.

Chapter 3. SQL features 3-27

cust_name length cust_num

Ludwig 6 101

Carole 6 102

Philip 6 103

Anthony 7 104

Raymond 7 105

When you use the LENGTH function in a locale that supports a multibyte code
set, such as the Japanese SJIS code set, the distinction between characters and bytes
is meaningful. LENGTH returns the number of bytes in its argument. This result
might be different from the number of characters.

The next example assumes that the database that contains the customer_multi
table has locale with a multibyte code set. Suppose that the user enters a SELECT
statement with the LENGTH function to display lname, its length, and
customer_num for the customer whose number is 199.
SELECT lname AS cust_name,

length (fname) AS length, customer_num AS cust_num
FROM customer_multi WHERE customer_num = 199

Suppose that lname for customer 199 consists of four characters:
aA1A2bB1B2

In this representation, the first character (the symbol a) is a single-byte character.
The second character (the symbol A1A2) is a 2-byte character. The third character
(the symbol b) is a single-byte character. The fourth character (the symbol B1B2) is
a 2-byte character.

The following example of output shows the result of the query. Although the
customer given name consists of four characters, the length column shows that the
total number of bytes in this name is 6.

cust_name length cust_num

aA1A2bB1B2 6 199

The OCTET_LENGTH function
The OCTET_LENGTH function returns the number of bytes and generally includes
trailing white space characters in the byte count.

This SQL length function uses the definition of white space that the locale defines.
OCTET_LENGTH returns the number of bytes in a character column, quoted
string, host variable, or SPL variable. The actual behavior of OCTET_LENGTH
varies with the type of argument that the user specifies.

The following table shows how the OCTET_LENGTH function operates on each of
the argument types. The Example column in this table uses the symbol s to
represent a single-byte trailing white space character. For simplicity, the Example
column also assumes that the example strings consist of single-byte characters.

3-28 IBM Informix GLS User's Guide

OCTET_LENGTH
argument Behavior Example

Quoted string Returns number of bytes in
string, including any trailing
white- space characters.

If the string is 'Ludwig', the result is
6. If the string is 'Ludwigssss', the
result is 10.

CHAR or NCHAR
column

Returns number of bytes in
string, including trailing white
space characters. This value is
the defined length, in bytes,
of the column.

If the fname column of the customer
table is a CHAR(15) column, and this
column contains the string 'Ludwig',
the result is 15. If the fname column
contains the string 'Ludwigsss', the
result is still 15.

VARCHAR or
NVARCHAR column

Returns number of bytes in
string, including trailing white
space. Value is the actual
length, in bytes, of the
character string, not the
declared maximum column
size.

If the cat_advert column of the
catalog table is a VARCHAR(255, 65)
column, and this column contains the
string "Ludwig", the result is 6. If the
column contains the string
'Ludwigssss', the result is 10.

TEXT column Returns number of bytes in
column, including trailing
white- space characters.

If the cat_descr column in the catalog
table is a TEXT column, and this
column contains the string 'Ludwig',
the result is 6. If the cat_descr
column contains the string
'Ludwigssss', the result is 10.

Host or procedure
variable

Returns number of bytes that
the variable contains,
including any trailing white
space, regardless of defined
length of variable.

If the procedure variable f_name is
defined as CHAR(15), and this
variable contains the string 'Ludwig',
the result is 6. If the f_name variable
contains the string 'Ludwigssss', the
result is 10.

The difference between the LENGTH and OCTET_LENGTH functions is that
OCTET_LENGTH generally includes trailing white space in the byte count,
whereas LENGTH generally excludes trailing white space from the byte count.

The advantage of the OCTET_LENGTH function over the LENGTH function is
that the OCTET_LENGTH function provides the actual column size whereas the
LENGTH function trims the column values and returns the length of the trimmed
string. This advantage of the OCTET_LENGTH function applies both to single-byte
code sets such as ISO8859-1 and multibyte code sets such as the Japanese SJIS code
set.

The following table shows some results that the OCTET_LENGTH function might
generate.

OCTET_LENGTH
input string Description Result

'abc ' A quoted string with four single-byte characters (the
characters abc and one trailing space)

4

'A1A2B1B2' A quoted string with two multibyte characters 4

'aA1A2bB1B2' A quoted string with two single-byte and two multibyte
characters

6

Chapter 3. SQL features 3-29

The CHAR_LENGTH function
The CHAR_LENGTH function (also known as the CHARACTER_LENGTH
function) returns the number of characters in a quoted string, column with a
character data type, host variable, or procedure variable. However, the actual
behavior of this function varies with the type of argument that the user specifies.

The following table shows how the CHAR_LENGTH function operates on each of
the argument types. The Example column in this table uses the symbol s to
represent a single-byte trailing white space. For simplicity, the Example column
assumes that the strings consist of single-byte characters.

CHAR_LENGTH
argument Behavior Example

Quoted string Returns number of characters
in string, including any trailing
white- space (as defined in the
locale).

If the string is 'Ludwig', the result is
6. If the string is 'Ludwigssss', the
result is 10.

CHAR or NCHAR
column

Returns number of characters
in string, including trailing
white space characters. This
value is the defined length, in
bytes, of the column.

If the fname column of the customer
table is a CHAR(15) column, and this
column contains the string 'Ludwig',
the result is 15. If the fname column
contains the string 'Ludwigssss', the
result is 15.

VARCHAR or
NVARCHAR
column

Returns number of characters
in string, including white
space characters. Value is the
actual length, in bytes, of the
string, not the declared
maximum column size.

If the cat_advert column of the
catalog table is a VARCHAR(255, 65),
and this column contains the string
"Ludwig", the result is 6. If the
column contains the string
'Ludwigssss', the result is 10.

TEXT column Returns number of characters
in column, including trailing
white space characters.

If the cat_descr column in the catalog
table is a TEXT column, and this
column contains the string 'Ludwig',
the result is 6. If the cat_descr
column contains the string
'Ludwigssss', the result is 10.

Host or procedure
variable

Returns number of characters
that the variable contains,
including any trailing white
space, regardless of declared
length of the variable.

If the procedure variable f_name is
defined as CHAR(15), and this
variable contains the string 'Ludwig',
the result is 6. If the f_name variable
contains the string 'Ludwigssss', the
result is 10.

The CHAR_LENGTH function is especially useful with multibyte code sets. If a
quoted string of characters contains any multibyte characters, the number of
characters in the string differs from the number of bytes in the string. You can use
the CHAR_LENGTH function to determine the number of characters in the quoted
string.

However, the CHAR_LENGTH function can also be useful in single-byte code sets.
In these code sets, the number of bytes in a column is equal to the number of
characters in the column. If you use the LENGTH function to determine the
number of bytes in a column (which is equal to the number of characters in this
case), LENGTH trims the column values and returns the length of the trimmed
string. In contrast, CHAR_LENGTH does not trim the column values but returns
the declared size of the column.

3-30 IBM Informix GLS User's Guide

The following table shows some results that the CHAR_LENGTH function might
generate for quoted strings.

CHAR_LENGTH
input string Description Result

'abc ' A quoted string with 4 single-byte characters (the
characters abc and 1 trailing space)

4

'A1A2B1B2' A quoted string with 2 multibyte characters 2

'aA1A2B1B2' A quoted string with 2 single-byte and 2 multibyte
characters

4

Locale-sensitive data types
These topics explain how a locale affects the way that a database server handles
the MONEY data type, extended data types, and smart large objects (CLOB and
BLOB data types).

For the syntax of these data types, see the IBM Informix Guide to SQL: Syntax. For
descriptions of these data types, see the IBM Informix Guide to SQL: Reference.

Handle the MONEY data type
The MONEY data type stores currency amounts. This data type stores fixed-point
decimal numbers up to a maximum of 32 significant digits. You can specify
MONEY columns in data definition statements such as CREATE TABLE and
ALTER TABLE.

The choice of locale affects monetary data in the following ways:
v The default value of scale in the declaration of MONEY columns
v The currency notation that the client application uses

The locale defines the default scale and currency notation in the MONETARY
category of the locale file. For information about the MONETARY category of the
locale file, see “The MONETARY category” on page A-5.

Specify values for the scale parameter
You can define a MONEY column with a syntax.

Define a MONEY column with the following syntax.

��
(1)

Data type MONEY
16 2

(precision , scale)

��

Notes:

1 See IBM Informix Guide to SQL: Syntax.

Element
Description

precision
Total number of significant digits in a decimal or money data type

You must specify an integer 1 - 32, inclusive. The default precision is 16.

Chapter 3. SQL features 3-31

scale Number of digits to the right of the decimal point.

The scale must be an integer between 1 and precision. If you omit the scale, the
database server provides a default scale that the database locale defines. For the
default locale (U.S. English), the default is 2, as the diagram indicates.

Internally, the database server stores MONEY values as DECIMAL values. The
precision parameter defines the total number of significant digits, and the scale
parameter defines the total number of digits to the right of the decimal separator.
For example, if you define a column as MONEY(8,3), the column can contain a
maximum of eight digits, and three of these digits are to the right of the decimal
separator. An example of a data value in the column might be 12345.678.

If you omit the scale parameter from the declaration of a MONEY column, the
database server provides a scale that the locale defines. For the default locale (U.S.
English), the database server uses a default scale of 2. It stores the data type
MONEY(precision) in the same internal format as the data type
DECIMAL(precision,2). For example, if you define a column as MONEY(10), the
database server creates a column with the same format as the data type
DECIMAL(10,2). A data value in the column might be 12345678.90.

For nondefault locales, if you omit the scale when you declare a MONEY column,
the database server declares a column with the same internal format as DECIMAL
data types with a locale-specific default scale. For example, if you define a column
as MONEY(10), and the locale defines the default scale as 4, the database server
stores the data type of the column in the same format as DECIMAL(10,4). A data
value in the column might be 123456.7890.

The GLS code sets for most European languages can support the euro symbol in
monetary values. For the complete syntax of the MONEY data type, see the IBM
Informix Guide to SQL: Syntax. For a complete description of the MONEY data type,
see the IBM Informix Guide to SQL: Reference.

Format of currency notation
Client applications format values in MONEY columns with the currency notation
that the locale defines.

This notation specifies the currency symbol, thousands separator, and decimal
separator. For more information about currency notation, see “Numeric and
monetary formats” on page 1-14.

In the default locale, the default currency symbol is a dollar sign ($), the default
thousands separator is a comma (,), and the default decimal separator is a period
(.) symbol. For nondefault locales, the locale defines the appropriate
culture-specific currency notation for monetary values. You can also use the
DBMONEY environment variable to customize the currency symbol and decimal
separator for monetary values. For more information, see “Customize monetary
values” on page 1-33.

Handle extended data types
The extensible data type system of IBM Informix allows users to define new data
types and the behavior of these new data types to the database server.

This section explains how these types are handled in GLS processing. See also IBM
Informix User-Defined Routines and Data Types Developer's Guide.

3-32 IBM Informix GLS User's Guide

Opaque data types
An opaque data type is fully encapsulated to client applications; that is, its internal
structure is not known to the database server.

Therefore, the database server cannot automatically perform locale-specific tasks
such as code-set conversion for opaque types. All GLS processing (code-set
conversion, localized collation order, end-user formats, and so on) must be
performed in the opaque-type support functions.

When you create an opaque data type, you can write the support functions as C
UDRs that can handle any locale-sensitive data. For more information, see
“Locale-sensitive data in an opaque data type” on page 4-16.

Complex data types
IBM Informix also supports collection data types (SET, MULTISET, and LIST) and
row data types(named ROW types and unnamed ROW types).

Any of these data types can have members with character, time, or numeric data
types. The database server can still handle the GLS processing for these data types
when they are part of a complex data type.

Distinct data types
A distinct data type has the same internal storage representation as its source type
but has a different name. Its source type can be an opaque or built-in type, a
named ROW type, or another distinct data type. IBM Informix handles GLS
considerations for a distinct type as it would for the source type.

Handle smart large objects
A smart large object can store text or images. Smart large objects are stored and
retrieved in pieces and have database properties such as recovery and transaction
rollback.

IBM Informix supports two smart-large-object types:
v The BLOB data type stores any type of binary data, including images and video

clips.
v The CLOB data type stores text such as PostScript or HTML files.

You can seek smart large objects in bytes but not in characters. Therefore, you need
to manage the byte offset of multibyte characters when you search for information
in smart large objects.

To access smart large objects through a client application, you must use an API,
such as Informix ESQL/C or DataBlade API. Because GLS does not support direct
access to smart-large-object data through SQL, GLS does not automatically handle
the data (no automatic code-set conversion, localized collation order, end-user
formats, and so on). All support must be done within an API.

When you copy CLOB data from a file, IBM Informix performs any necessary
character-set conversions. If the client (when it copies from client files) or server
locale (when it copies from server files) differs from the database locale, IBM
Informix invokes the routines to convert to the database locale.

Chapter 3. SQL features 3-33

Data manipulation statements
The choice of a locale can affect certain SQL data manipulation statements.

These SQL data manipulation statements can be affected:
v DELETE
v INSERT
v LOAD
v MERGE
v UNLOAD
v UPDATE

Sections describe the GLS aspects of these SQL statements. For a complete
description of these statements, see the IBM Informix Guide to SQL: Syntax.

Specify conditions in the WHERE clause
You can specify conditions in the WHERE clause for several statements to specify
rows on which to operate.

These statements can include a WHERE clause to specify rows on which to
operate:
v For the DELETE statement, the WHERE clause specifies rows to delete.
v For the INSERT or MERGE statement with an embedded SELECT, the WHERE

clause specifies which rows to insert from another table.
v For the UPDATE or MERGE statement, the WHERE clause specifies which rows

to update. In addition, the SET clause of UPDATE or MERGE can include an
embedded SELECT statement whose WHERE clause identifies a row whose
values are to be assigned to another row.

v For the UNLOAD feature of DB-Access, the WHERE clause of the embedded
SELECT specifies which rows to unload.

The choice of a locale affects these uses of a WHERE clause in the same way that it
affects the WHERE clause of a SELECT. For more information, see “Logical
predicates in a WHERE clause” on page 3-21 and “Comparisons with MATCHES
and LIKE conditions” on page 3-23.

Specify era-based dates
You can specify era-based dates in several SQL statements.

These SQL statements might specify DATE and DATETIME column values:
v The WHERE clause of the DELETE statement
v The VALUES clause of the INSERT or MERGE statement
v The SET clause of the UPDATE or MERGE statement

When you specify a DATE column value in one of the preceding SQL statements,
the database server uses the GL_DATE (or DBDATE) environment variable to interpret
the date expression, as follows:
v If you have set GL_DATE (or DBDATE) to an era-based (Asian) date format, you can

use era-based date formats for date expressions.
v If you have not set the GL_DATE (or DBDATE) environment variable to an era-based

date format, you can use era-based date formats for date expressions only if the

3-34 IBM Informix GLS User's Guide

server-processing locale supports era-based dates. For more information about
the server-processing locale, see “Determine the server-processing locale” on
page 1-25.

v If your locale does not support era-based dates, you cannot use era-based date
formats for date expressions. If you attempt to specify an era-based date format
in this case, the SQL statement fails.

When you specify a DATETIME column value, the database server uses the
GL_DATETIME (or DBTIME) environment variable instead of the GL_DATE (or DBDATE)
environment variable to interpret the expression.

For more information, see “Era-based date and time formats” on page 1-32.

Load and unload data
The LOAD and UNLOAD features of DB-Access enable you to transfer data to and
from your database with operating-system text files.

The following topics describe the GLS aspects of the LOAD and UNLOAD
statements. For a complete description of the use and syntax of these DB-Access
features, see the IBM Informix Guide to SQL: Syntax.

Load data into a database
The LOAD statement inserts data from an operating-system file into an existing
table or view. This operating-system file is called a LOAD FROM file.

The data in this file can contain any character that the client code set defines. If the
client locale supports a multibyte code set, the data can contain multibyte
characters. If the database locale supports a code set that is different from but
convertible to the client code set, the client performs code-set conversion on the
data before sending the data to the database server. For more information, see
“Perform code-set conversion” on page 1-28.

The locale also defines the formats for date, time, numeric, and monetary data. You
can apply any format that the client locale supports to column values in the LOAD
FROM file. For example, a French locale might define monetary values that have a
blank space as the thousands separator and a comma as the decimal separator.
When you use this locale, the following literal value for a MONEY column is valid
in a LOAD FROM file:
3 411,99

You can specify alternative formats for date and monetary data. If you set
appropriate environment variables, the LOAD FROM files can use the alternative
end-user formats for DATE, DATETIME, and MONEY column values. For more
information, see “Customize date and time end-user formats” on page 1-32 and
“Customize monetary values” on page 1-33.

Unload data from a database
The UNLOAD statement writes the rows that a SELECT statement retrieves to an
operating-system file. This operating-system file is called an UNLOAD TO file.

The data values in this file contains characters that the client code set defines. If
the client locale supports a multibyte code set, the data can include multibyte
characters from the code set.

Chapter 3. SQL features 3-35

If the database locale supports a code set that is different from but convertible to
the client code set, the client performs code-set conversion on the data before it
writes the data to the UNLOAD TO file. (For more information, see “Perform code-set
conversion” on page 1-28.)

The client locale and certain environment variables determine the output format of
certain data types in the UNLOAD TO file. These data types include DATE values,
MONEY values, values of numeric data types, and DATETIME values. For further
information, see “End-user formats” on page 1-13 and “Customize end-user
formats” on page 1-32.

Important: You can use an UNLOAD TO file, which the UNLOAD statement
generates, as the input file (the LOAD FROM file) to a LOAD statement that loads
another table or database. When you use an UNLOAD TO file in this manner, make
sure that all environment variables and the client locale have the same values
when you perform the LOAD as they did when you performed the UNLOAD.

Data definition statements
IBM Informix supports a configuration parameter, SQL_LOGICAL_CHAR, whose
setting can simplify the use of certain Data Definition Language (DDL) statements
of SQL when you declare character data types in locales that support multibyte
code sets.

If the IBM Informix instance has SQL_LOGICAL_CHAR set to enable logical
character semantics in declarations of character data types, the maximum number
of bytes that are required to store a single character of the code set of the locale
can affect these SQL data definition statements:
v ALTER TABLE
v CREATE TABLE

The SQL_LOGICAL_CHAR setting can also affect the DEFINE statement of SPL
when it declares character variables.

The SQL_LOGICAL_CHAR feature addresses a potential problem for data
management applications that are developed in a single-byte locale, such as the
default locale, but that are later deployed in a multibyte locale. By default, numeric
size specifications in declarations of character data types are interpreted in units of
bytes. A character column that can store strings of up to 10 bytes, for example, can
store no more than two logical characters that each requires four bytes of storage.
A table schema that was designed for a single-byte locale might lead to data
truncation in operations on character strings in multibyte characters.

The setting of the SQL_LOGICAL_CHAR configuration parameter, however, can
change the behavior of the SQL parser, so that size specifications in character data
type declarations are interpreted in units of logical characters, rather than as bytes.
The maximum declared size is multiplied by a numeric factor, as specified by the
setting of this parameter.

The following table shows the valid settings and their effects:

Value Effect

OFF or 1 No expansion of declared sizes

2 Use 2 as the expansion factor for declared sizes.

3-36 IBM Informix GLS User's Guide

Value Effect

3 Use 3 as the expansion factor for declared sizes.

4 Use 4 as the expansion factor for declared sizes.

ON Use M as the expansion factor, where M is the maximum storage length in
bytes that any logical character requires in the code set of the current
database. Depending on the code set associated with the DB_LOCALE setting, M
has a positive integer range from 1 (in single-byte locales) up to 4.

When the SQL_LOGICAL_CHAR configuration parameter is set to a value greater
than 1, it instructs the SQL parser to interpret explicit and implicit size declarations
as logical characters, rather than as bytes, in declarations of SPL variables and in
CREATE TABLE and ALTER TABLE statements that define columns of the
following data types:
v CHAR and CHARACTER
v CHARACTER VARYING and VARCHAR
v LVARCHAR
v NCHAR
v NVARCHAR
v DISTINCT types whose base types are built in character data types.
v DISTINCT types whose base types are the previously listed data types.
v ROW data type fields of any of the previously listed data types.
v Elements of the previously listed data types within LIST, MULTISET, and SET

collection objects.

The SQL_LOGICAL_CHAR setting has no effect, however, on TEXT or CLOB
objects, nor on user-defined data types (UDTs) that store character strings.

Enabling logical character semantics for the database locale guarantees that
sufficient storage is available for the data type to store the specified number of
logical characters. The resulting size in bytes of a character column in a database
table or of an SPL character variable is the product of the declared size of the data
type multiplied by the SQL_LOGICAL_CHAR value, if this size is 2, 3, or 4, or (if
SQL_LOGICAL_CHAR is set to "ON" or "on") by the maximum number of bytes of
storage that the largest logical character in the code set of the database locale
requires.

For example, if the integer expansion factor is 4, then a CHAR(10) data type
specification requests 40 bytes of storage, creating a CHAR(40) data type in
standard SQL notation, despite the CHAR(10) declaration.

For NVARCHAR and VARCHAR data types, the declared reserved size, which
specifies the minimum storage, is not affected by this feature. For example, with
the same integer setting is 4, then a VARCHAR(10,5) data type specification, with 4
as the expansion factor, requests a maximum of 40 bytes of storage with 5 of these
bytes reserved, creating a VARCHAR(40, 5) data type in standard SQL notation,
despite the VARCHAR(10,5) declaration. (The reserve size parameters of
VARCHAR and NVARCHAR are not affected by the SQL_LOGICAL_CHAR
setting, because the minimum size of a multibyte character is 1 byte. In this
example, the minimum size of five multibyte characters is 5 bytes, so that declared
size remains unchanged.)

Chapter 3. SQL features 3-37

When a valid SQL_LOGICAL_CHAR setting greater than 1 is in effect, a
VARCHAR or NVARCHAR declaration with no size specification is interpreted as
one logical character, and the resulting data type occupies the same number of
bytes of storage as the SQL_LOGICAL_CHAR setting.

For LVARCHAR column declarations with no size specified, the default size is
interpreted as 2048 logical characters. When LVARCHAR is used in I/O operations
on opaque data types, however, the limit on the maximum size is determined by
the operation system, and the SQL_LOGICAL_CHAR setting is ignored.

If a client session connects to a database in which the SQL_LOGICAL_CHAR
configuration parameter was enabled at the time of database creation, this setting
takes effect at connection time. The SQL_LOGICAL_CHAR setting for a database
cannot be changed, and persists until the database is dropped, even if the Informix
instance that manages the database is stopped and restarted with a new
SQL_LOGICAL_CHAR setting.

Whether the SQL_LOGICAL_CHAR configuration parameter is set to enable or
disable the expansion of declared storage sizes, its setting specifies how data type
declarations are interpreted for all sessions of the Informix instance.

For embedded languages such as ESQL/C, character data type declarations are
expanded when they are passed to Informix by the client application.

Automatic resizing of the expansion factor
When SQL_LOGICAL_CHAR is set to a valid digit, and the current session creates
a database, IBM Informix compares the SQL_LOGICAL_CHAR value with the
maximum number of bytes that any logical character requires in the code set of the
database locale.

If the SQL_LOGICAL_CHAR setting is greater than that maximum number of
bytes, the database uses the maximum value for the locale as the new expansion
factor, overriding what the configuration file specifies. The SQL_LOGICAL_CHAR
setting in the configuration file remains unchanged, and continues to act as the
default expansion factor for the creation of other databases.

3-38 IBM Informix GLS User's Guide

Chapter 4. Database server features

These topics describe how the GLS feature affects the database server.

It covers the following main topics:
v Which operating-system files the database server can access
v When the database server uses code-set conversion
v Which database server utilities provide support for the GLS feature

For more information about these database server features, see the IBM Informix
Administrator's Guide. For more information about database server utilities, see the
IBM Informix Administrator's Reference. For information about migrating to a
different IBM Informix database server, see the IBM Informix Migration Guide.

GLS support by IBM Informix database servers
The database server can perform read and write operations to the operating-system
files:

The operating-system files are:
v Diagnostic files

Diagnostic files include the following files:
– af.xxx

– shmem.xxx

– gcore.xxx (UNIX)
– core
The database server generates diagnostic files when you set one or more of the
following configuration parameters in UNIX:
– DUMPDIR
– DUMPSHMEM
– DUMPCNT
– DUMPCORE
– DUMPGCORE

v Message-log file
The database server generates a user-specified message-log file when you set the
MSGPATH configuration parameter.

These operating-system files reside on the server computer, where the database
server resides. When the database server reads from or writes to these files, it must
use a code set that the server computer supports. The database server obtains this
code set from the server locale.

Set the server locale with the SERVER_LOCALE environment variable. If you do not
set SERVER_LOCALE, the database server uses the default locale, as the server locale.
For details, see “The SERVER_LOCALE environment variable” on page 2-20.

To perform code-set conversion and handle non-ASCII characters that are
associated with read and write operations on operating-system files, the database

© Copyright IBM Corp. 1996, 2011 4-1

server determines the database server code set (the code set that the database
server locale supports). For information about the use of non-ASCII characters, see
“Non-ASCII characters in identifiers” on page 3-1.

Database server code-set conversion
These topics summarize the code-set conversion that the database server performs.

For more general information about code-set conversion, see “Perform code-set
conversion” on page 1-28.

An IBM Informix database server automatically performs code-set conversion
between the code sets of the server-processing locale and the server locale when
the following conditions are true:
v The CLIENT_LOCALE, DB_LOCALE, and SERVER_LOCALE environment variables are set

such that the code sets of the server-processing locale and the server locale are
different.

v A valid code-set conversion exists between the code sets of the server-processing
locale and server locale.

For a list of files for which IBM Informix database servers perform code-set
conversion, see “GLS support by IBM Informix database servers” on page 4-1. For
information about GLS code-set conversion files, see “Code-set-conversion files” on
page A-8.

Enterprise Replication supports replication between database servers that use
different code sets. See Enabling code set conversion between replicates for more
information.

After the database server creates the operating-system file, it has generated a file
name and written file contents in the code set of the server locale (the server code
set). Any IBM Informix product or client application that needs to access this file
must have a server-processing locale that supports this same server code set. You
must ensure that the appropriate CLIENT_LOCALE, DB_LOCALE, and SERVER_LOCALE
environment variables are set so that the server-processing locale supports a code
set with these non-ASCII characters. For more information about the
server-processing locale, see “Determine the server-processing locale” on page 1-25.

The database server checks the validity of a file name with respect to the
server-processing locale before it references the file name.

Data that the database server converts
When the database server transfers data to and from its operating-system files, it
handles any differences in the code sets of the server-processing locale and the
server locale.

The database server handles these differences as follows:
v If these two code sets are the same, the database server can read from or write

to its operating-system files in the code set of the server locale.
v If these two code sets are different and an IBM Informix code-set conversion

exists between them, the database server automatically performs code-set
conversion when it reads from or writes to its operating-system files.

4-2 IBM Informix GLS User's Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.erep.doc/ids_erp_593.htm#ids_erp_593

For code-set conversion to resolve the difference in code sets, the server locale
must support the actual code set that the database server used to create the file.
For more information, see “Make sure that your product supports the same code
set” on page 2-8.

v If these two code sets are different, but no IBM Informix code-set conversion
exists, the database server cannot perform code-set conversion.
If the database server reads from or writes to an operating-system file for which
no code-set conversion exists, it uses the code set of the server-processing locale
to perform the read or write operation.

Locale-specific support for utilities
This section provides information that is specific to the use of the GLS feature by
database server utilities.

For a complete description of utilities, see your IBM Informix Administrator's
Reference.

For information about database server utilities for auditing, see the IBM Informix
Security Guide.

Enterprise Replication supports replication between database servers that use
different code sets. This functionality is useful for converting servers to the
Unicode code set with minimal application downtime, for converting servers from
one code set to another, and for replicating data between servers in different locals.
You enable replication between code sets by using the UTF8 option when creating
the replicate definition. See Enabling code set conversion between replicates for
more information.

Database server utilities and SQL utilities are client applications that request
information from an instance of the database server. Therefore, these utilities use
the CLIENT_LOCALE, DB_LOCALE, and SERVER_LOCALE environment variables to obtain
the name of a nondefault locale, as follows:
v If a database utility is to use a nondefault code set to accept input (including

command-line arguments) and to generate output, you must set the
CLIENT_LOCALE environment variable.

v If a database utility accesses a database with a nondefault locale, you must set
the DB_LOCALE environment variable.

v If a database utility causes the database server to write data on the server
computer that has a nondefault code set, you must set the SERVER_LOCALE
environment variable.

These utilities also perform code-set conversion if the database and the client
locales support convertible code sets. For more information about code-set
conversion, see “Perform code-set conversion” on page 1-28.

Changes to locale environment variables should also be reflected in the Windows
registry database under HKEY_LOCAL_MACHINE.

Non-ASCII characters in database server utilities
Most database server utilities support non-ASCII characters in command-line
arguments. These utilities interpret all command-line arguments in the client code
set (which CLIENT_LOCALE defines).

Chapter 4. Database server features 4-3

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.erep.doc/ids_erp_593.htm#ids_erp_593

The following table shows utilities that accept non-ASCII characters in
command-line arguments or produce non-ASCII output.

Utility name Non-ASCII characters in command-line arguments
Non-ASCII
output

onaudit -f input_file Yes

oncheck -cc -pc database

-ci -cI -pk -pK -pl -pL database:table#index_name

-ci -cI -pk -pK -pl -pL -cd -cD -pB -pt -pT -pd -pD -pp
database:table

Yes

onload database:table

-i old_index new_index

-t tape_device

Yes

onlog -d tape_device

onpload -d source

-j jobname

-p projectname

Yes

onshowaudit -f input_file

-s server_name

Yes

onspaces -p pathname

-f filename

onstat -o filename -dest

filename_source

Yes

onunload database:table

-t tape_device

Yes

Non-ASCII characters in SQL utilities
SQL utilities also accept non-ASCII characters in command-line arguments and
generate any output in the client code set.

These SQL utilities are:
v chkenv

v dbexport

v dbimport

v dbload

v dbschema

For a description of the chkenv utility, refer to the IBM Informix Guide to SQL:
Reference. For a description of the dbload, dbschema, dbexport, and dbimport
utilities, see the IBM Informix Migration Guide. For information about DB-Access,
see the IBM Informix DB-Access User's Guide.

The DB-Access utility generates labels and messages in the code set of the client
locale.

4-4 IBM Informix GLS User's Guide

Locale support for C User-defined routines (Informix and DB API)
IBM Informix allows you to create user-defined routines (UDRs) that are written in
the C programming language.

These C UDRs use the DataBlade API to communicate with the database server.
For a complete description of the DataBlade API, see the IBM Informix DataBlade
API Programmer's Guide. This section describes how to globalize a C UDR.

Globalization is the process of creating a user-defined routine (UDR) that can
support different languages, territories, and code sets without changing or
recompiling its code.

A globalized C UDR must handle the following GLS considerations:
v Where can the UDR use non-ASCII characters in source code?
v What steps must the C UDR take when copying character data?
v How can the UDR access GLS locales?
v How does the UDR handle code-set conversion?
v How does the UDR handle locale-specific end-user formats?
v How can the UDR access globalized exception messages?
v How can the UDR access globalized tracing messages?
v How do opaque-type support functions handle locale-sensitive data?

Current processing locale for UDRs
To access a database, a client application first requests a connection to the database
server, which must verify that it can access the specified database and establish the
connection between the client and this database.

In the process, the database server establishes the server-processing locale to use
the duration of the connection. When the client application executes a UDR, this
UDR executes on the server computer in the context of the server-processing
locale. This locale is often called the current processing locale.

Many user-defined routines handle non-ASCII data correctly even if they were
originally written for ASCII data. Some routines, however, might perform
abnormally. To globalize your C UDR, you must ensure that your UDR handles the
server-processing locale in any GLS-related operations. If the UDR does not
properly support the server-processing locale, the routine might return unexpected
results or an error message.

Non-ASCII characters in source code
Non-ASCII characters might appear in the contexts in a C-UDR source file:

These characters might appear in the following statements:
v In C-language statements, such as variable declarations and if statements
v In SQL statements, which are sent to the database server through the mi_exec()

or mi_exec_prepared_statement() functions

In C-language statements
The C compiler must recognize the code set that you use in your C-language
statements.

Chapter 4. Database server features 4-5

The capabilities of your C compiler might limit your ability to use non-ASCII
characters within the C-language statements in a UDR source file. For example,
some C-language compilers support multibyte characters in literals or comments
only.

If the C compiler does not fully support non-ASCII characters, it might not
successfully compile a UDR that contains these characters. In particular, the
following situations might affect compilation of your UDR:
v Multibyte characters might contain C-language tokens.

A component of a multibyte character might be indistinguishable from certain
single-byte characters such as percent (%), comma, backslash (\), and double
quotation mark ("). If such characters exist in a quoted string, the C compiler
might interpret them as C-language tokens, which can result in compilation
errors or even lost characters.

v The C compiler might not be 8-bit clean.
If a code set contains non-ASCII characters (with code values that are greater
than 127), the C compiler must be 8-bit clean to interpret the characters. To be
8-bit clean, a compiler must read the eighth bit as part of the code value; it must
not ignore or put its own interpretation on the meaning of this eighth bit.

Tip: The C compiler must also recognize the ASCII code set to be able to interpret
the names of the DataBlade API functions within your C UDR.

In SQL statements
In C UDRs, SQL statements occur as literal strings to the mi_exec() and
mi_prepare() functions.

The C compiler does not parse these literal strings. Therefore, it does not need to
recognize the code set of the characters in these SQL statements.

Within a C source file, you can use non-ASCII characters in SQL statements for the
following objects:
v Names of SQL identifiers such as databases, tables, columns, views, constraints,

prepared statements, and cursors
For more information, see “Name database objects” on page 3-1.

v Literal strings
For example, in a UDR, the following use of multibyte characters is valid:
mi_exec(conn,

"insert into tbl1 (nchr1) values ’A1A2B1B2’", 0);

v File names and path names, as long as your operating system supports
multibyte characters in file names and path names

Important: To use non-ASCII characters in your SQL statements, your
server-processing locale must include either a code set that supports these
characters or a code set that is compatible with the character code set. For
information about how to perform code-set conversion, see “Character strings in
UDRs” on page 4-8.

Copy character data
When you copy data, you must ensure that the buffers are an adequate size to
hold the data.

4-6 IBM Informix GLS User's Guide

If the destination buffer is not large enough for the multibyte data in the source
buffer, the data might be truncated during the copy. For example, the following C
code fragment copies the multibyte data A1A2A3B1B2B3 from buf1 to buf2:
char buf1[20], buf2[5];
...
stcopy("A1A2A3B1B2B3", buf1);
...
stcopy(buf1, buf2);

Because buf2 is not large enough to hold the multibyte string, the copy truncates
the string to A1A2A3B1B2. To prevent this situation, ensure that the multibyte string
fits into a buffer before the DataBlade API module performs the copy.

The IBM Informix GLS library
The IBM Informix GLS library is an application programming interface (API)
through which developers of user-defined routines and of DataBlade modules can
create globalized applications.

Character processing with IBM Informix GLS
The macros and functions of IBM Informix GLS provide access within a DataBlade
API module to GLS locales for culture-specific information.

This library contains functions that provide the following capabilities:
v Process single-byte and multibyte characters
v Format date, time, and numeric data to locale-specific formats

Compatibility of wide-character data types
Wide character data types are an alternative form for the processing of multibyte
characters. A wide-character form of a code set involves the normalization of the
size of each multibyte character so that each character is the same size.

A legacy DataBlade API module might use any of the following data types to hold
wide characters.

Wide-character
data type Description Drawback

mi_wchar A legacy DataBlade API data type
currently defined as unsigned
short on all systems

The DataBlade API does not provide
wide-character functions that operate
on mi_wchar values.

wchar_t An operating-system data type
that is platform-specific

The operating-system provides
wide-character functions that operate
on wchar_t values. Use of these
functions is platform-specific.

The IBM Informix GLS library provides the gl_wchar_t data type for support of
wide characters. IBM Informix GLS also provides its own set of wide-character
functions that operate on gl_wchar_t. Use of the IBM Informix GLS wide-character
functions removes platform dependency from your application and provides access
within your DataBlade API module to IBM Informix GLS locales.

The IBM Informix GLS library does not provide any functions for conversion
between gl_wchar_t and mi_wchar or gl_wchar_t an wchar_t. If a DataBlade API
module continues to use either mi_wchar or wchar_t and also needs to use the
IBM Informix GLS wide-character processing, you must write code to perform any
necessary conversions.

Chapter 4. Database server features 4-7

Code-set conversion and the DataBlade API
Within a UDR, the DataBlade API does not perform any code-set conversion
automatically.

Your C UDR might need to perform code-set conversion in the following
situations:
v In strings that contain SQL statements
v In an opaque-type support function for an opaque type that contains character

data

Character strings in UDRs
When your C UDR contains character strings that are sent to the database server, it
must perform any required code-set conversion on these strings.

This code-set conversion must handle any differences between the code set of this
character string and the code set of the server-processing locale in which the UDR
executes.

For example, the DataBlade API does not perform code-set conversion on the
multibyte table name, A1A2A3B1B2, in the following SELECT statement:
mi_exec(conn, "SELECT * from A1A2A3B1B2", 0);

If your UDR might execute in a server-processing locale that does not include a
code set that supports characters in your SQL statements, the UDR can explicitly
perform code-set conversion between the code sets of the server-processing locale
and a specified locale.

Character strings in opaque-type support functions
The client application performs code-set conversion of non-opaque-type data that
is transferred to and from the client, but the database server does not know about
the internal format of an opaque data type.

Therefore, for opaque data types, the support functions are responsible for
explicitly converting any string that is not in the code set of the server-processing
locale.

You might need to perform code-set conversion in the following opaque-type
support functions:
v In the input and output support functions: to convert the external format of the

opaque type between the code sets of the client locale and the
server-processing-locale

v In the receive and send support functions: to convert any character fields in the
internal structure of the opaque type

Tip: The code that the Informix DataBlade Developers Kit (DBDK) generates for
opaque-type input and output support functions handles external formats from
nondefault locales.

The DataBlade API provides the following functions for code-set conversion in the
support functions of an opaque data type.

4-8 IBM Informix GLS User's Guide

Code-set conversion on an opaque type DataBlade API function

Perform code-set conversion on a string argument from the
code set of the server-processing locale to that of the client
locale

mi_put_string()

Perform code-set conversion on a string from the code set of
the client locale to that of the server-processing locale

mi_get_string()

For more information about the syntax of these DataBlade API functions, see the
function reference in the IBM Informix DataBlade API Programmer's Guide.

Locale-specific data formatting
When a C UDR handles strings that contain end-user formats for date, time,
numeric, or monetary data, you must write the UDR so that it handles any
locale-specific formats of these end-user formats.

The DataBlade API provides functions that convert between the internal
representation of several data types and its end-user format.

The following DataBlade API functions convert an internal database value to a
string that uses the locale-specific end-user format.

DataBlade API function Description

mi_date_to_string() Uses the locale-specific end-user date format to convert an
internal DATE value to its string equivalent.

mi_money_to_string() Uses the locale-specific end-user monetary format to
convert an internal MONEY value to its string equivalent.

mi_decimal_to_string() Uses the locale-specific end-user numeric format to convert
an internal DECIMAL value to its string equivalent.

Important: The mi_datetime_to_string() and mi_interval_to_string() functions do
not format strings in the date and time formats of the current processing locale.
Instead, they create a date, time, or interval string in a fixed ANSI SQL format.

The following DataBlade API functions interpret a string in its locale-specific
end-user format and convert it to its internal database value.

DataBlade API function Description

mi_string_to_date() Converts a string in its locale-specific date end-user format
to its internal DATE format.

mi_string_to_money() Converts a string in its locale-specific currency end-user
format to its internal MONEY format.

mi_string_to_decimal() Converts a string in its locale-specific numeric end-user
format to its internal DECIMAL format.

Important: The mi_string_to_datetime() and mi_string_to_interval() functions do
not interpret the date and time formats of the current processing locale. Instead,
they interpret the date/time or interval string in a fixed ANSI SQL format.

Globalized exception messages
The DataBlade API function mi_db_error_raise() sends an exception message to an
exception callback.

Chapter 4. Database server features 4-9

This message can be either of the following:
v A literal message, which you provide as the third argument to

mi_db_error_raise()

v A customized message that is associated with a value of SQLSTATE, which you
provide as the third argument to mi_db_error_raise()

The mi_db_error_raise() function can raise exceptions with customized
messages, which DataBlade modules and UDRs can store in the syserrors system
catalog table. The syserrors table maps these messages to five-character SQLSTATE
values. In the syserrors table, you can associate a locale with the text of a
customized message.

For general information about how to specify a literal message in
mi_db_error_raise() and how to specify a customized message for
mi_db_error_raise(), see the topics on how to handle exceptions and events in the
IBM Informix DataBlade API Programmer's Guide.

This section describes the following tasks about how to raise locale-specific
exception messages:
v How to add a locale-specific exception message to the syserrors system catalog

table
v How the choice of locale in a customized message affects the way that

mi_db_error_raise() searches for a customized message
v How to specify parameter markers that contain non-ASCII characters

Insert customized exception messages
You can store customized status codes and their associated messages in the
syserrors system catalog table.

To create a customized exception message, insert a row directly in the syserrors
table. The syserrors table provides the following columns for a globalized
exception message.

Column name Description

sqlstate The SQLSTATE value that is associated with the exception You can
use the following query to determine the current list of SQLSTATE
message strings in syserrors:

SELECT sqlstate, locale, message
FROM syserrors
ORDER BY sqlstate, locale

For more information about how to determine SQLSTATE values,
see the IBM Informix DataBlade API Programmer's Guide.

message The text of the exception message, with characters in the code
set of the target locale By convention, do not include any
newline characters in the message.

locale The locale with which the exception message is to be used The
locale column identifies the language and code set used for the
globalization of error and warning messages. This name is the
name of the target locale of the message text.

For more information about the syserrors system catalog table, see the topics that
describe the system catalog in the IBM Informix Guide to SQL: Reference. Do not
allow any code-set conversion when you insert the text in syserrors.

4-10 IBM Informix GLS User's Guide

If the code sets of the client and database locales differ, temporarily set both the
CLIENT_LOCALE and DB_LOCALE environment variables in the client environment to
the name of the database locale. This workaround prevents the client application
from performing code-set conversion.

If you specify any parameters in the message text, include only ASCII characters in
the parameter names, so that the parameter name can be the same for all locales.
Most code sets include the ASCII characters. For example, the following INSERT
statements insert new messages in syserrors whose SQLSTATE value is "03I01":
INSERT INTO syserrors VALUES ("03I01", "en_us.8859-1", 0, 1,

"Operation Interrupted.")
INSERT INTO syserrors VALUES ("03I01", "fr_ca.8859-1", 0, 1,

"Traitement Interrompu.")

The '03I01' SQLSTATE value now has two locale-specific messages. The database
server chooses the appropriate message based on the server-processing locale of
the UDR when it executes. For more information about how mi_db_error_raise()
locates an exception message, see “Search for customized messages” on page 4-12.

Insert a localized exception message from a C UDR
As noted in the previous section, when you create messages for exceptions raised
within user-defined routines (UDRs) by mi_db_error_raise(), the locale of the
message text must match the server-processing locale. If these locales are different,
use of an SQL script or of a C UDR that calls the mi_exec() function to insert the
message is not reliable, because the SQL parser issues an exception when it
encounters characters that it does not recognize.

To avoid this restriction, you can use a UDR that prepares the INSERT statement
(with mi_prepare()) to load the error messages:
v Use placeholders ('?' symbols) for the SQLSTATE value and the error-message text.

These values are in the first (sqlstate) and last columns (message) of the
syserrors system catalog table.

v Hardcode the name of the locale that the message text uses. The locale name is
in the second column (locale) of syserrors.

For example, the following line prepares an INSERT statement for messages in the
default locale (en_us) on a UNIX system:
stmt = mi_prepare(conn,

"insert into syserrors (?, ’en_us.8859-1’, 0, 1, ?)", NULL);

When executing this statement, you must provide values for the placeholders
(sqlstate and message) and then use the mi_exec_prepared_statement() function
to send the prepared INSERT statement to the database server.

The following UDR code uses a message array (enus_msg) to hold the SQLSTATE
values and their associated message text. It puts information about each element of
this message array in the appropriate placeholder arrays (args, lens, nulls, and
types) of the mi_exec_prepared_statement() function.
#include <stdio.h>
#include <string.h>
#include "mi.h"

#define MAX_MSG 3
char *enus_msg[MAX_MSG][2] = {

"XT010", "First error message for insertion",
"XT020", "Second error message for insertion",
"XT030", "Third error message for insertion"

Chapter 4. Database server features 4-11

};

/*
* Title: gls_insert_enus
* Purpose: Add localized messages to ’syserrors’ system error table
* for given locale, independent of session locale setting.
*/
mi_integer
gls_insert_enus()
{
MI_DATUM args[2]; /* pointers to column values */
mi_integer lens[2]; /* lengths of column values */
mi_integer nulls[2]; /* null capability of columns */
mi_string *types[2]; /* types of columns */
mi_integer i;
MI_STATEMENT *stmt;
MI_CONNECTION *conn = mi_open(NULL, NULL, NULL);

/*
* Prepare statement using placeholder values for sqlstate and message
* columns and fixed values for locale, level, and seqno columns.
*/
stmt = mi_prepare(conn,

"insert into syserrors values(?,’en_us.8859-1’,0,1,?)", NULL);
for (i=0; i<MAX_MSG; i++) /* Loop through message array */
{

args[0] = (MI_DATUM)enus_msg[i][0];
/* Set pointer to sqlstate string */

lens[0] = strlen(args[0]); /* Set length of sqlstate string */
nulls[0] = MI_FALSE; /* Set null handling capability */
types[0] = "char(5)"; /* Set sqlstate column type */
args[1] = (MI_DATUM)enus_msg[i][1];

/* Set pointer to message string */
lens[1] = strlen(args[1]); /* Set length of message string */
nulls[1] = MI_FALSE; /* Set null handling capability */
types[1] = "varchar(255)"; /* Set message column type */

mi_exec_prepared_statement(stmt,0,0,2,args,lens,nulls,types,
NULL,NULL);

}
mi_close(conn);
return 0;
}

For descriptions of executing prepared statements and of how to add customized
messages to the syserrors system catalog table, see the IBM Informix DataBlade API
Programmer's Guide.

Search for customized messages
When the mi_db_error_raise() function initiates a search of the syserrors system
catalog table, it requests the message in which all components of the locale
(language, territory, code set, and optional modifier) are the same in the current
processing locale and the locale column of syserrors.

For C UDRs that use the default locale, the current processing locale is U.S. English
(en_us). When the current processing locale is U.S. English, mi_db_error_raise()
looks only for messages that use the U.S. English locale. For C UDRs that use
nondefault locales, however, the current processing locale is the server-processing
locale.

For a description of how mi_db_error_raise() searches for messages in the
syserrors system catalog table, see the chapter on exceptions in the IBM Informix
DataBlade API Programmer's Guide.

4-12 IBM Informix GLS User's Guide

Specify parameter markers
The customized message in the syserrors system catalog table can contain
parameter markers. These parameter markers are strings of characters enclosed by a
single percent (%) symbol on each end (for example, %TOKEN%).

A parameter marker is treated as a variable for which the mi_db_error_raise()
function can supply a value. The mi_db_error_raise() function assumes that any
message text or message parameter strings that you supply are in the
server-processing locale. For a complete description of how to specify parameter
markers for a customized message, see the IBM Informix DataBlade API
Programmer's Guide.

Globalized tracing messages
The API supports trace messages that correspond to a particular locale. The current
database locale determines which code set the trace message uses.

Based on the current database locale, a given tracepoint can produce a globalized
trace message. Globalized tracing enables you to develop and test the same code in
many different locales.

To provide globalized tracing support, the API provides the following capabilities:
v The systracemsgs system catalog table stores globalized trace messages.
v Two globalized trace functions, gl_dprintf() and gl_tprintf(), format globalized

trace messages.

Insert messages in the systracemsgs system catalog table
The systracemsgs system catalog table stores globalized trace messages that you
can use to debug your C UDRs.

To create a globalized trace message, insert a row directly into the systracemsgs
table.

The systracemsgs table describes each globalized trace message.

Column name Description

name The name of the trace message

locale The locale with which the trace message is to be used

message The text of the trace message

The combination of message name and locale must be unique within the table.
Once you insert a new trace class into systracemsgs, the database server assigns it
a unique identifier, called a trace-message identifier. It stores the trace-class identifier
in the msgid column of systracemsgs. Once a trace message exists in the
systracemsgs table, you can specify the message either by name or by
trace-message identifier to API tracing functions.

The trace-message text can be a string of text in the appropriate language and code
set for the locale, and can contain tokens to indicate where to substitute a piece of
text. Token names are delimited between percent (%) symbols. The following
INSERT statement puts a new message called qp1_exit in the systracemsgs table:
INSERT INTO informix.systracemsgs(name, locale, message)
VALUES (’qp1_exit’, ’en_us.8859-1’,

’Exiting msg number was the input is still %i%’)

Chapter 4. Database server features 4-13

This message text is in English and therefore the systracemsgs row specifies the
default locale of U.S. English.

This second message is the French version of the qp1_exit message and therefore
the systracemsgs row specifies a French locale on a UNIX system (fr_fr.8859-1):
INSERT INTO informix.systracemsgs(name, locale, message)
VALUES (’qp1_exit’, ’fr_fr.8859-1’,

’Le numéro de message en sortie était \
l’entrée est toujours %i%’)

Enter message text in the language of the server locale, with any characters
available in the server code set. To insert a variable, enclose the variable name with
a single percent sign on each end (for example, %a%). When the database server
prepares the trace message for output, it replaces each variable with its actual
value.

Put globalized trace messages into code
The DataBlade API provides the tracing functions to insert globalized tracepoints
into UDR code.

The following tracing functions can be used to insert globalized tracepoints into
UDR code:
v The GL_DPRINTF macro formats a globalized trace message and specifies the

threshold for the tracepoint. The syntax for GL_DPRINTF is as follows:
GL_DPRINTF(trace_class, threshold,

(message_name [,toktype, val]...,MI_LIST_END));

v The gl_tprintf() function formats a globalized trace message but does not
specify a tracepoint threshold.
The gl_tprintf() function is for use within a trace block, which uses the tf()
function to compare a specified threshold with the current trace level. The
syntax for gl_tprintf() is as follows:
gl_tprintf(message_name [,toktype ,val]...,

MI_LIST_END);

Syntax elements for both GL_DPRINTF and gl_tprintf() have these values:

trace_class
Either a trace-class name or the trace-class identifier integer value
expressed as a character string.

threshold
A nonnegative integer that sets the tracepoint threshold for execution.

message_name
The identifier for a globalized message stored in the systracemsgs system
catalog table of the database.

toktype A string made up of a token name followed by a single percent (%) symbol
followed by a single character output specifier as used in printf formats.

val A value expression to be output that must match the type of the output
specifier in the preceding token.

MI_LIST_END
A macro constant that ends the variable-length list.

Important: The MI_LIST_END constant marks the end of the
variable-length list. If you do not include MI_LIST_END, the user-defined
routine might fail.

4-14 IBM Informix GLS User's Guide

This globalized trace statement uses the GL_DPRINTF macro:
i = 6;
/* If the current trace level of the funcEntry class is greater
* than or equal to 20, find the version of the qp1_entry
* message whose locale matches the current database locale
*/
GL_DPRINTF("funcEntry", 20,

("qp1_entry",
"ident%s", "one",
"i%d", i,
MI_LIST_END));

In the default locale, if the current trace level of the funcEntry class is greater than
or equal to 20, this tracepoint generates the following trace message:
13:21:51 Exiting msg number was one; the input is still 6

The following globalized trace block that uses the gl_tprinf() function:
i = 6;
/* Compare current trace level of "funcEnd" class and
* with a tracepoint threshold of 25. Continue execution of
* trace block if trace level >= 25
*/
if (tf("funcEnd", 25))

{
i = doSomething();

/* Generate an internationalized trace message (based
* on current database locale) */

gl_tprintf("qp1_exit", "ident%s", "deux", "i%d", i,
MI_LIST_END);

}

If the locale is French and the current trace level of the funcEntry class is greater
than or equal to 25, the tracepoint generates this trace message:
13:21:53 Le numéro de message en sortie était deux; l’entrée
est toujours 6

The database server writes the trace messages in the trace-output file in the code
set of the locale associated with the message. If the trace message originated from
the systracemsgs system catalog table, its characters are in the code set of the
locale specified in the locale column of its systracemsgs entry. The database server
might have performed code-set conversion on these trace messages if the code set
in the UDR source is different from (but compatible with) the code set of the
server-processing locale.

Search for trace messages
To write a globalized trace message to your trace-output file, the database server
must locate a row in the systracemsgs system catalog table whose locale column
matches (or is compatible with) the server-processing locale for your UDR.

Therefore, to see a particular trace message in the trace-output file, environment
variables that specify the locale (CLIENT_LOCALE, DB_LOCALE, and SERVER_LOCALE)
must be set so that the database server generates a server-processing locale that
matches an entry in the systracemsgs system catalog table.

The database server searches the systracemsgs table for an entry with the same
name as the tracepoint and a locale in which all components of the locale
(language, territory, and code set) are the same in the current processing locale and
the locale column of systracemsgs. If only the language and territory match, the
database server converts the code set. If no message has matching language and

Chapter 4. Database server features 4-15

territory, it uses the first available message with the correct language. If there is no
message in the appropriate language, it uses the message for the default language,
en_us.

Locale-sensitive data in an opaque data type
An opaque data type is fully encapsulated. Its internal structure is not known to
the database server.

The database server cannot automatically perform the locale-specific tasks such as
code-set conversion on character data or locale-specific formatting of date, numeric,
or monetary data. When you create an opaque data type, you must write the
support functions of the opaque type so that they handle any locale-sensitive data.

In particular, consider how to handle any locale-sensitive data when you write the
following support functions:
v The input() and output() support functions
v The receive() and send() support functions

The DataBlade API and IBM Informix GLS provide GLS support for opaque-type
support functions written in C. The following sections summarize GLS
considerations for these support functions. For general information about the
support functions of an opaque data type, see IBM Informix User-Defined Routines
and Data Types Developer's Guide.

Globalized input and output support functions
The input() and output() support functions convert the opaque data type from its
internal to an external representation, and vice versa.

The internal representation of an opaque data type is the C structure that stores the
opaque-type data. Each opaque type also has a character-based format, known as
its external representation, which is received by the database server as an
LVARCHAR value. This can hold single-byte (ASCII and non-ASCII) and multibyte
character strings, depending on the locale of the client application. (The data
length of an LVARCHAR external representation is limited only by the operating
system, not by the 32,739 byte maximum size of LVARCHAR columns in IBM
Informix databases.)

Client applications perform code-set conversion on LVARCHAR data types. The
ability to transfer the data between a client application and database server,
however, is not sufficient to support locale-sensitive data in opaque data types. It
does not ensure that data values are correctly manipulated at the destination.

The input() and output() support functions convert the opaque data type as
follows:
v The input() function converts the external representation of the data type to the

internal representation.
v The output() function converts the internal representation of the data type to the

external representation.

Opaque-type support functions written as C UDRs must ensure that these
functions correctly handle any locale-sensitive data, including these tasks.

4-16 IBM Informix GLS User's Guide

Locale-sensitive task For more information

Any code-set conversion on character data “Code-set conversion and the DataBlade
API” on page 4-8

Any handling of multibyte or wide characters in
character data

“The IBM Informix GLS library” on page
4-7

Any formatting of locale-specific date, numeric,
or monetary data

“Locale-specific data formatting” on page
4-9

Globalized send and receive support functions
The send() and receive() functions support binary transfer of opaque data types.

That is, they convert the opaque data type from its internal representation on the
client computer to its internal representation on the server computer (where it is
stored), as follows:
v The receive() function converts the internal representation of the opaque data

type on the client computer to its internal representation on the server computer.
v The send() function converts the internal representation of the opaque data type

on the server computer to its internal representation on the client computer.

If the internal representation contains character data, the client application cannot
perform any locale-specific translations, including these.

Locale-sensitive task For more information

Any code-set conversion on character data “Character strings in opaque-type support
functions” on page 4-8

Any handling of multibyte or wide
characters in character data

“The IBM Informix GLS library” on page 4-7

When you write receive() and send() support functions as C UDRs, you must
ensure that these functions handle these locale-sensitive tasks correctly.

Chapter 4. Database server features 4-17

4-18 IBM Informix GLS User's Guide

Chapter 5. General SQL API features (ESQL/C)

These topics explain how the GLS feature affects applications that you develop
with the IBM Informix Client Software Development Kit.

Support for GLS in IBM Informix client applications
To connect to a database, an IBM Informix ESQL/C client application requests a
connection from the database server. The database server must verify that it can
access the database and establish the connection between the client and the
database.

Your client application performs the following tasks:
v Sends its client and database locale information to the database server

The Informix ESQL/C program performs this step automatically when it
requests a connection.

v Checks for connection warnings that the database server generates
You must include code in your Informix ESQL/C program to perform this step.

Client application code-set conversion
These topics summarize the code-set conversion that a client product performs.

For more general information about code-set conversion, see “Perform code-set
conversion” on page 1-28.

The client application automatically performs code-set conversion between the
client and database code sets when both of these conditions are true:
v The code sets of the client and database locales do not match.
v A valid object code-set conversion exists for the conversion between the client

and database code sets.

When the client application begins execution, it compares the names of the client
and database locales to determine whether to perform code-set conversion. If
CLIENT_LOCALE is not set, the client application assumes that the client locale is the
default locale. If DB_LOCALE is not set, the client application assumes that the
database locale is the same as the client locale (the value of the CLIENT_LOCALE
setting).

If the client and database code sets are the same, no code-set conversion is needed.
If the code sets do not match, however, the client application must determine
whether the two code sets are convertible. Two code sets are convertible if the client
can locate the associated code-set-conversion files. These code-set-conversion files
must exist on the client computer.

On UNIX, you can use the glfiles utility to obtain a list of code-set conversions
that your Informix product supports. For more information, see “The glfiles utility
(UNIX)” on page A-12. On Windows, you can examine the directory
%INFORMIXDIR%\gls\cvY to determine the GLS code-set conversions that your
Informix product supports. For more information about this directory, see
“Code-set-conversion files” on page A-8.

© Copyright IBM Corp. 1996, 2011 5-1

If no code-set-conversion files exist, the client application generates a run time
error when it starts to indicate incompatible code sets. If code-set-conversion files
exist, the client application automatically performs code-set conversion when it
sends data to or receives data from the database server.

When a client application performs code-set conversion, it assumes that:
v All data values that are processes are handled in the client code set.
v All databases that the client application accesses on a single database server use

the same database locale, territory, and code set. When the client application
opens a different database, it does not recheck the database locale to determine
if the code set has changed.

Important: Check the eighth character field of the SQLWARN array for a warning
flag after each request for a connection. If the two database locales do not match,
the client application might be performing code-set conversion incorrectly. The
client application continues to perform any code-set conversion based on the code
set that DB_LOCALE supports. If you proceed with such a connection, it is your
responsibility to understand the format of the data that is being exchanged.

For example, suppose your client application has CLIENT_LOCALE set to en_us.1252
and DB_LOCALE set to en_us.8859-1. The client application determines that it must
perform code-set conversion between the Windows Code Page 1252 (in the client
locale) and the ISO8859-1 code set (in the database locale). The client application
then opens a database with the French fr_fr.8859-1 locale. The database server sets
the eighth character field of the SQLWARN array to W because the languages and
territories of the two locales are different. The database server then uses the locale
of the database (fr_fr.8859-1) for the localized order of the data.

Your application, however, might use this connection. It might be acceptable for
the application to receive the NCHAR and NVARCHAR data that is sorted in a
French localized order. Any code-set conversion that the client application
performs is still valid because both database locales support the default ISO8859-1
code set.

Instead, if the application opens a database with the Japanese SJIS (ja_jp.sjis)
locale, the database server sets the SQLWARN warning flag because the language,
territory, and code sets differ. The database server then uses the ja_jp.sjis locale for
the localized order of the data.

Your application would probably not continue with this connection. When the
client application started, it determined that code-set conversion was required
between the Windows Code Page 1252 and ISO8859-1 code set. The client
application performs this code-set conversion until it terminates.

When you open a database with ja_jp.sjis, the client application would perform
code-set conversion incorrectly because the code sets are different. It would
continue to convert between Windows Code Page 1252 and ISO8859-1 instead of
between Windows Code Page 1252 and Japanese SJIS. This situation could lead to
corruption of data.

Tip: If your ESQL/C client application uses code-set conversion, you might need
to take special programming steps. For more information, see “Handle code-set
conversion” on page 6-14.

5-2 IBM Informix GLS User's Guide

Data that a client application converts
When the code sets of two locales differ, an IBM Informix client product must use
code-set conversion to prevent data corruption of character data.

Code-set conversion converts the following character data elements:
v Values of SQL data types:

– CHAR, VARCHAR, NCHAR, and NVARCHAR
– TEXT (the BYTE data type is not converted)
– LVARCHAR
– Character data in opaque data types (if their support functions perform the

code-set conversions)
v Values of Informix ESQL/C character types (char, fixchar, string, and varchar)
v SQL statements, both static and dynamic
v SQL identifiers. These include names of columns, tables, views, prepared

statements, cursors, constraints, indexes, triggers, and other database objects. For
a list of SQL objects that can include non-ASCII characters in their identifiers,
see “Non-ASCII characters in identifiers” on page 3-1.

v SPL text
v Command text
v Error message text in the sqlca.sqlerrm field

Globalize client applications
To globalize or localize a client application, use IBM Informix GLS, an application
programming interface (API) for applications that use a C-language interface.

For more information, see “GLS support by IBM Informix products” on page 1-5.

Globalization
Globalization is the process of creating or modifying an application so that it can
use the correct GLS locale to support different languages, territories, and code sets
without changing or recompiling the code.

This process makes IBM Informix database applications easily adaptable to any
culture and language. For a database application, you perform globalization on the
application that accesses a database, not on the database. The data in a database
that the application accesses should already be in a language that the user can
understand.

To globalize a database application, design the application so that the tasks in the
following table do not make any assumptions about the language, territory, and
code set that the application uses at run time.

Application Task Description

User interfaces Includes any text that is visible to users, including menus, buttons,
prompts, help text, status messages, error messages, and graphics

Chapter 5. General SQL API features (ESQL/C) 5-3

Application Task Description

Character
processing

Includes the following processing tasks:

v Character classification

v Character case conversion

v Collation and sorting

v Character versus byte processing

v String traversal

v Code-set conversion

Data formatting Includes any culture-specific formats for numeric, monetary, date, and
time values

Documentation Includes any explanatory material such as printed manuals, online
documentation, and readme files

Debugging via
tracing (Informix,
DB API)

The DataBlade API provides the application or DataBlade developer the
capability of using globalized trace messages. It uses in-line code
working with system catalog tables: systracemsgs and systraceclasses.
For more information, see the IBM Informix DataBlade API Programmer's
Guide.

A globalized application dynamically obtains language-specific information for
these application tasks. Therefore, one executable file for the application can
support multiple languages.

Localization
Localization is the process of adapting a product to a specific cultural environment.

This process usually involves the following tasks:
v Creating culture-specific resource files
v Translating message or resource files
v Setting date, time, and money formats
v Translating the product user interface

Localization might also include the translation and production of end-user
documentation, packaging, and collateral materials.

To localize a database application, you create a database application for a specific
language, territory, and code set. Localization involves the following tasks:
v Ensure that GLS locales exist for the language, territory, and code set you want.
v Translate the character strings in any external resource or message files that the

application uses.

Important: A globalized application is much easier localize than a non-globalized
application.

Choose a GLS locale
To localize your application, choose a locale that provides the culture-specific
information for the language, territory, and code set that the application is to
support.

For information about locales, see “Set a GLS locale” on page 1-16.

5-4 IBM Informix GLS User's Guide

A globalized application makes no assumptions about how these locales are set at
run time. Once the application environment specifies the locales to use, the
application can access the appropriate GLS locale files for locale-specific
information. As long as a GLS locale is provided that supports a particular
language, territory, and code set, the application can obtain the locale-specific
information dynamically.

The current processing locale (sometimes called just the current locale) is the locale
that is currently in effect for an application. It is based on one of the following
environments:
v The client environment

IBM Informix ESQL/C creates client applications. Therefore, the current
processing locale for Informix ESQL/C applications is the client locale.

v The database that the database server is currently accessing

The current processing locale for DataBlade client applications is the client locale.
The current processing locale for DataBlade UDRs is the server-processing locale,
which the database server determines from the client, database, and server locales.

Translate messages
A globalized application should not have any language-specific text within the
application code.

This language-specific text includes the following kinds of strings:
v Strings that the application displays or writes

Examples include error messages, informational messages, menu items, and
button labels.

v Strings that the application uses internally
Examples include constants, file names, and literal characters or strings.

v Strings that an user is expected to enter
Examples include yes and no responses.

Tip: You do not need to put SQL keywords (such as SELECT, WHERE, INSERT,
and CREATE) in a message file. In addition, language keywords (such as if,
switch, for, and char) do not need to appear in a message file.

In a globalized application, these strings appear as references to external files,
called resource files or message files. To localize these strings of the database
application, you must perform the following tasks:
v Translate all strings within the external files.

The new external files contain the translated versions of the strings that the
application uses.

v Set the DBLANG environment variable to the subdirectory within INFORMIXDIR that
contains the translated message files that the IBM Informix products use.
The INFORMIXDIR environment variable indicates the location where the Informix
products are installed. You can use the rgetmsg() and rgetlmsg() functions to
obtain Informix product messages. For more information about these functions,
see the IBM Informix ESQL/C Programmer's Manual.

Chapter 5. General SQL API features (ESQL/C) 5-5

Handle locale-specific data
Each IBM Informix SQL API product contains a processor to process an Informix
ESQL/C source file that has embedded SQL and preprocessor statements.

The Informix ESQL/C processor, esql, processes C source files.

The processors for Informix ESQL/C products use operating-system files in the
following situations:
v They write language-specific source files (.c) when they process an Informix

ESQL/C source file.
The Informix ESQL/C processors use the client code set (that the client locale
specifies) to generate the file names for these language-specific files.

v They read Informix ESQL/C source files (.ec) that the user creates.
The Informix ESQL/C processors use the client code set to interpret the contents
of these Informix ESQL/C source files.

Use the CLIENT_LOCALE environment variable to specify the client locale.

Process characters
A GLS locale supports a specific code set, which can contain single-byte characters
and multibyte characters.

When your application processes only single-byte characters, it can perform
string-processing tasks based on the assumption that the number of bytes in a
buffer equals the number of characters that the buffer can hold. For single-byte
code sets, you can rely on the built-in scaling for array allocation and access that
the C compiler provides.

If your application processes multibyte characters, however, it can no longer
assume that the number of bytes in a buffer equals the number of characters in the
buffer. Because of the potential of varying number of bytes for each character, you
can no longer rely on the C compiler to perform character-processing tasks such as
traversing a multibyte-character string and allocating sufficient space in memory
for a multibyte-character string.

You can use functions from the IBM Informix GLS library to communicate to your
application how to perform globalization on character-processing tasks.

Character-processing tasks include the following:
v String traversal
v String processing
v Character classification
v Case conversion
v Character comparison and sorting

Format data
When you globalize an application, consider how to handle the format of
locale-specific data.

The format in which numeric, monetary, and date and time data appears to the
user is locale-specific. The GLS locale file defines locale-specific formats for each of
these types of data, as the following table shows.

5-6 IBM Informix GLS User's Guide

Type of data Locale-file category

Numeric NUMERIC

Monetary MONETARY

Date and Time TIME

The IBM Informix GLS library provides functions that allow you to perform the
following tasks on locale-specific data:
v Conversion changes a string that contains locale-specific format to the internal

representation of its value.
You usually perform conversion on a locale-specific string to prepare it for
storage in a program variable or a database column.

v Formatting changes the internal representation of a value to locale-specific string.
You usually perform formatting of a locale-specific string to prepare the internal
representation of a value for display to the user.

Avoid partial characters
When you use a locale that supports a multibyte code set, make sure that you
define buffers large enough to avoid the generation of partial characters.

Possible areas for consideration are as follows:
v When you copy data from one buffer to another
v When you have character data that might undergo code-set conversion

For more detailed examples of partial characters, see “Partial characters in column
substrings” on page 3-14.

Copy character data
When you copy data, you must ensure that the buffers are an adequate size to
hold the data. If the destination buffer is not large enough for the multibyte data in
the source buffer, the data might be truncated during the copy.

For example, the following IBM Informix ESQL/C code fragment copies the
multibyte data A1A2A3B1B2B3 from buf1 to buf2:
char buf1[20], buf2[5];
...
stcopy("A1A2A3B1B2B3", buf1);
...
stcopy(buf1, buf2);

Because buf2 is not large enough to hold the multibyte string, the copy truncates
the string to A1A2A3B1B2. To prevent this situation, ensure that the multibyte
string fits into a buffer before the Informix ESQL/C program performs the copy.

Code-set conversion
If you have a character buffer to hold character data from a database, you must
ensure that this buffer is large enough to accommodate any expansion that might
occur if the application uses code-set conversion. If the client and database locales
are different and convertible, the application might need to expand this value.

For more information, see “Perform code-set conversion” on page 1-28.

Chapter 5. General SQL API features (ESQL/C) 5-7

For example, if the fname column is defined as CHAR(8), the following IBM
Informix ESQL/C code fragment selects an 8-byte character value into the 10-byte
buf1 host variable:
char buf1[10];
...
EXEC SQL select fname into :buf1 from tab1

where cust_num = 29;

You might expect a 10-byte buffer to be adequate to hold an 8-byte character value
from the database. If the client application expands this value to 12 bytes, however,
the value no longer fits in the buf1 buffer. The fname value is truncated to fit in
buf1, possibly creating partial characters if fname contains multibyte characters.
For more information, see “Partial characters in column substrings” on page 3-14.

To avoid this situation, define buffers to handle the maximum character-expansion
possible, 4 bytes, in the conversion between your client and database code sets.

5-8 IBM Informix GLS User's Guide

Chapter 6. IBM Informix ESQL/C features

These topics explain how the GLS feature affects IBM Informix ESQL/C, an SQL
application programming interface (API).

These topics also cover GLS information that is specific to Informix ESQL/C. For
additional GLS information for Informix ESQL/C, see Chapter 5, “General SQL
API features (ESQL/C),” on page 5-1.

Tip: For features that are not unique to the GLS feature, see the IBM Informix
ESQL/C Programmer's Manual. For information about the DataBlade API, a C
language API that is provided with IBM Informix, see the IBM Informix DataBlade
API Programmer's Guide.

Handle non-ASCII characters
The IBM Informix ESQL/C processors obtain the code set for use in Informix
ESQL/C source files from the client locale.

Within an Informix ESQL/C source file, you can use non-ASCII characters for the
following program objects:
v Informix ESQL/C comments
v Names of SQL identifiers such as databases, tables, columns, views, constraints,

prepared statements, and cursors
For more information, see “Name database objects” on page 3-1.

v Informix ESQL/C host variable and indicator variable names
For example, in an Informix ESQL/C program, this use of multibyte characters
is valid:
char A1A2[20], B1B2[20];

EXEC SQL select col1, col2 into :A1A2 :B1B2;

For more information about Informix ESQL/C host variables, see “Non-ASCII
characters in host variables” on page 6-2.

v Literal strings
For example, in an Informix ESQL/C program, the following use of multibyte
characters is valid:
EXEC SQL insert into tbl1 (nchr1) values ’A1A2B1B2’;

v File names and path names, if your operating system supports multibyte
characters in file names and path names.

Tip: Some C-language compilers support multibyte characters in literals or
comments only. For such compilers, you might need to set the ESQLMF and
CC8BITLEVEL environment variables so that the Informix ESQL/C processor calls a
multibyte filter. For more information, see “Generate non-ASCII file names” on
page 6-3.

To use non-ASCII characters in your Informix ESQL/C source file, the client locale
must support them. For information about the use of non-ASCII characters, see
“Non-ASCII characters in identifiers” on page 3-1.

© Copyright IBM Corp. 1996, 2011 6-1

Non-ASCII characters in host variables
IBM Informix ESQL/C allows the use of non-ASCII characters in host variables
when certain conditions are true.

The following conditions must be true to allow the use of non-ASCII characters:
v The client locale supports a code set with the non-ASCII characters that the

host-variable name contains. You must set the client locale correctly before you
preprocess and compile an Informix ESQL/C program. For more information,
see “Set a GLS locale” on page 1-16.

v Your C compiler supports compilation of the same non-ASCII characters as the
source code.
You must ensure that the C compiler supports use of non-ASCII characters in C
source code. For information about how to indicate the support that your C
compiler provides for non-ASCII characters, see “Invoke the ESQL/C filter” on
page 6-4.

Informix ESQL/C applications can also support non-ASCII characters in comments
and SQL identifiers. For more information, see “Non-ASCII characters in
identifiers” on page 3-1.

The following code fragment declares an integer host-variable that contains a
non-ASCII character in the host-variable name and then selects a serial value into
this variable:
/*

This code fragment declares an integer host variable
"hte_ent", which contains a non-ASCII character in the
name, and selects a serial value (code number in the
"numro" column of the "abonns" table) into it.

*/

EXEC SQL BEGIN DECLARE SECTION;
int hte_ent;

...

EXEC SQL END DECLARE SECTION;
...

EXEC SQL select numro into :hte_ent from abonns
where nom = ’tker’;

If the client locale supports the non-ASCII characters, you can use these characters
to define indicator variables, as the following example shows:
EXEC SQL BEGIN DECLARE SECTION;

char htevar[30];
short ind_de_htevar;

EXEC SQL END DECLARE SECTION;

You can then access indicator variables with these non-ASCII names, as the
following example shows:
:htevar INDICATOR :htevarind

:htevar :htevar ind

$htevar $htevar ind

6-2 IBM Informix GLS User's Guide

Generate non-ASCII file names
When an IBM Informix ESQL/C source file is processed, the Informix ESQL/C
processor generates a corresponding intermediate file for the source file.

If you use non-ASCII characters (8-bit and multibyte character) in these source file
names, the following restrictions affect the ability of the Informix ESQL/C
processor to generate file names that contain non-ASCII characters:
v The Informix ESQL/C processor must know whether the operating system is

8-bit clean.
For more information, see “The GLS8BITFSYS environment variable” on page
2-7.

v The code set of the client locale (the client code set) must support the non-ASCII
characters that are used in the Informix ESQL/C source file name.

v Your C compiler supports the non-ASCII characters that the file name of the
Informix ESQL/C source file uses.
If your C compiler does not support non-ASCII characters, you can use the
CC8BITLEVEL environment variable as a workaround when your source file
contains multibyte characters. For more information, see “Generate non-ASCII
file names.”

Non-ASCII characters in ESQL/C source files
The IBM Informix ESQL/C processor, esql, accepts C source programs that are
written in the client code set (the code set of the client locale). The Informix
ESQL/C preprocessor, esqlc, can accept non-ASCII characters (8-bit and multibyte)
in the Informix ESQL/C source code as long as the client code set defines them.

The capabilities of your C compiler, however, might limit your ability to use
non-ASCII characters within an Informix ESQL/C source file. If the C compiler
does not fully support non-ASCII characters, it might not successfully compile an
Informix ESQL/C program that contains these characters. To provide support for
common non-ASCII limitations of C compilers, Informix ESQL/C provides an
Informix ESQL/C filter that is called esqlmf.

This section provides the following information about the Informix ESQL/C filter:
v How the Informix ESQL/C filter processes non-ASCII characters
v How you invoke the Informix ESQL/C filter

Filter non-ASCII characters
As part of the compilation process of an IBM Informix ESQL/C source program,
the Informix ESQL/C processor calls the C compiler. When you develop Informix
ESQL/C source code that contains non-ASCII characters, the way that the C
compiler handles such characters can affect the success of the compilation process.

In particular, the following situations might affect compilation of your Informix
ESQL/C program:
v Multibyte characters might contain C-language tokens.

A component of a multibyte character might be indistinguishable from some
single-byte characters such as percent (%), comma (,), backslash (\), and
double quotation mark (") characters. If such characters are included in a
quoted string, the C compiler might interpret them as C-language tokens, which
can cause compilation errors or even lost characters.

v The C compiler might not be 8-bit clean.

Chapter 6. IBM Informix ESQL/C features 6-3

If a code set contains non-ASCII characters (with code values that are greater
than 127), the C compiler must be 8-bit clean to interpret the characters. To be
8-bit clean, a compiler must read the eighth bit as part of the code value; it must
not ignore or put its own interpretation on the meaning of this eighth bit.

To filter a non-ASCII character, the Informix ESQL/C filter converts each byte of
the character to its octal equivalent. For example, suppose the multibyte character
A1A2A3 has an octal representation of \160\042\244 and appears in the stcopy()
call.
stcopy("A1A2A3", dest);

After esqlmf filters the Informix ESQL/C source file, the C compiler sees this line
as follows:
stcopy("\160\042\244", dest); /* correct interpretation */

To handle the C-language-token situation, the filter prevents the C compiler from
interpreting the A2 byte (octal \042) as an ASCII double quotation mark and
incorrectly parsing the line as follows:
stcopy("A1"A3, dest); /* incorrect interpretation of A2 */

The C compiler would generate an error for the preceding line because the line has
terminated the string argument incorrectly. The esqlmf utility also handles the
8-bit-clean situation because it prevents the C compiler from ignoring the eighth bit
of the A3 byte. If the compiler ignores the eighth bit, it incorrectly interprets A3

(octal \244) as octal \044.

Invoke the ESQL/C filter
The esql command can automatically call the IBM Informix ESQL/C filter, esqlmf,
to process non-ASCII characters.

The following figure shows how an Informix ESQL/C program that contains
non-ASCII characters becomes an executable program.

When you set the following environment variables, you tell esql how to invoke
esqlmf:

Figure 6-1. Create an ESQL/C executable program from a non-ASCII source program

6-4 IBM Informix GLS User's Guide

v The ESQLMF environment variable indicates whether esql automatically calls the
Informix ESQL/C filter.
When you set ESQLMF to 1, esql automatically calls esqlmf after the Informix
ESQL/C preprocessor and before the C compiler.

v The CC8BITLEVEL environment variable indicates the non-ASCII characters in the
Informix ESQL/C source file that esqlmf filters.
Set CC8BITLEVEL to indicate the ability of your C compiler to process non-ASCII
characters.

How esqlmf filters an Informix ESQL/C source file depends on the value of the
CC8BITLEVEL environment variable. For each value of CC8BITLEVEL, the following
table shows the esqlmf command that the Informix ESQL/C processor invokes on
an Informix ESQL/C source file.

CC8BITLEVEL The esqlmf action

0 Converts all non-ASCII characters, in literal strings and comments, to
octal constants.

1 Converts non-ASCII characters in literal strings, but not in comments,
to octal constants.

2 Converts non-ASCII characters in literal strings to octal constants to
ensure that all the bytes in the non-ASCII characters have the eighth
bit set.

3 Does not invoke esqlmf.

Important: To start the esqlmf commands that CC8BITLEVEL can specify, you must
set the ESQLMF environment variable to 1.

When you set CC8BITLEVEL to 0, 1, or 2, the Informix ESQL/C processor performs
the following steps:
1. Converts the embedded-language statements (source.ec) to C-language source

code (source.c) with the Informix ESQL/C preprocessor
2. Filters non-ASCII characters in the preprocessed file (source.c) with the

Informix ESQL/C filter, esqlmf (if the ESQLMF environment variable is 1)
Before esqlmf begins filtering, it creates a copy of the C source file (source.c)
that has the .c_ file extension (source.c_).

3. Compiles the filtered C source file (source.c) with the C compiler to create an
object file (source.o)

4. Links the object file with the Informix ESQL/C libraries and your own libraries
to create an executable program

When you set CC8BITLEVEL to 3, the Informix ESQL/C processor omits step 2 in the
preceding list.

If you do not set CC8BITLEVEL, then esql converts non-ASCII characters in literal
strings and comments. You can modify the value of CC8BITLEVEL to reflect the
capabilities of your C compiler.

Chapter 6. IBM Informix ESQL/C features 6-5

Define variables for locale-sensitive data
The SQL data types NCHAR and NVARCHAR support locale-specific data, in the
sense that the database server uses localized collation (if the locale defines
localized collation), rather than code set order, for sorting data strings of these
types.

For more information about NCHAR and NVARCHAR data types, see “Character
data types” on page 3-6.

IBM Informix ESQL/C supports the predefined data types string, fixchar, and
varchar for host variables that contain character data. In addition, you can use the
C char data type for host variables. You can use these four host-variable data types
for NCHAR and NVARCHAR data.

Your Informix ESQL/C program can access columns of data types NCHAR and
NVARCHAR when it selects into or reads from character host variables. The
following code fragment declares a char host variable, hte, and then selects
NCHAR data into the hte variable:
/*

This code fragment declares a char host variable "hte",
which contains a non-ASCII character in the name, and
selects NCHAR data (non-ASCII names in the "nom" column
of the "abonns" table) into it.

*/

EXEC SQL BEGIN DECLARE SECTION;
char hte[10];

...
EXEC SQL END DECLARE SECTION;
...
EXEC SQL select nom into :hte from abonns

where numro > 13601;

When you declare Informix ESQL/C host variables for the NCHAR and
NVARCHAR data types, note the relationship between the declared size of the
variable and the amount of character data that it can hold, as follows:
v If your locale supports a single-byte code set, the size of the NCHAR and

NVARCHAR variable determines the number of characters that it can hold.
v If your locale supports a multibyte code set, you can no longer assume a

one-byte-per-character relationship.
In this case, you must ensure that you declare an Informix ESQL/C host
variable large enough to accommodate the number of characters that you expect
to receive from the database.

For more information, see “The NCHAR data type” on page 3-6 and “The
NVARCHAR data type” on page 3-7.

You can insert a value that a character host variable (char, fixchar, string, or
varchar) holds in columns of the NCHAR or NVARCHAR data types.

6-6 IBM Informix GLS User's Guide

Enhanced ESQL/C library functions
IBM Informix SQL API products support locale-specific enhancements to the
Informix ESQL/C library functions.

These Informix ESQL/C library functions fall into the following categories:
v DATE-format functions
v DATETIME-format functions
v Numeric-format functions
v String functions

In addition, this section describes the GLS-related error messages that these
Informix ESQL/C functions might produce.

DATE-format functions
There are several IBM Informix ESQL/C DATE-format functions that support
extensions to format era-based DATE values.

The Informix ESQL/C DATE-format functions are as follows:
v rdatestr()

v rstrdate()

v rdefmtdate()

v rfmtdate()

These functions support extensions to format era-based DATE values:
v Support for the GL_DATE environment variable
v Era-based date formats of the DBDATE environment variable
v Extensions to the date-format strings for Informix ESQL/C DATE-format

functions
v Support for a precedence of date end-user formats

These topics describe locale-specific behavior of the Informix ESQL/C
DATE-format functions. For details, see the IBM Informix ESQL/C Programmer's
Manual.

GL_DATE support
The GL_DATE setting can affect the results that the IBM Informix ESQL/C
DATE-format functions generate.

The end-user format that GL_DATE specifies overrides date end-user formats that the
client locale defines. For more information, see “Precedence for date end-user
formats” on page 6-9.

DBDATE extensions
When you set DBDATE to one of the era-based formats, the functions use era-based
dates to convert between date strings and internal DATE values.

The IBM Informix ESQL/C DATE-format functions that support the extended
era-based date syntax for the DBDATE environment variable are as follows:
v rdatestr()

v rstrdate()

Chapter 6. IBM Informix ESQL/C features 6-7

The following Informix ESQL/C example shows a call to the rdatestr() library
function:
char str[100];
long jdate;
...
rdatestr(jdate, str);
printf("%s\n", str);

If you set DBDATE to GY2MD/ and CLIENT_LOCALE to the Japanese SJIS locale
(ja_jp.sjis), the preceding code prints this value for the date 08/18/1990:
H02/08/18

Important: IBM Informix products treat any undefined characters in the alphabetic
era specification as an error.

If you set DBDATE to an era-based date format (which is specific to a Chinese or
Japanese locale), make sure to set the CLIENT_LOCALE environment variable to a
locale that supports era-based dates.

Extended DATE-format strings
The IBM Informix ESQL/C DATE-format functions that support the
extended-DATE format strings are rdefmtdate() and rfmtdate().

The following table shows the extended-format strings that these Informix ESQL/C
functions support for use with GLS locales. These extended-format strings format
eras with two-digit year offsets.

Era year Format Era used

Full era year: full name of the base year
(period) followed by a two-digit year offset.
Same as GL_DATE end-user format of
"%EC%02.2Ey"

eyy The era that the client locale
(which CLIENT_LOCALE indicates)
defines

Abbreviated era year: abbreviated name of
the base year (period) followed by a
two-digit year offset. Same as GL_DATE
end-user format of "%Eg%02.2Ey"

gyy The era that the client locale
(which CLIENT_LOCALE indicates)
defines

The following table shows some extended-format strings for era-based dates. These
examples assume that the client locale is Japanese SJIS (ja_jp.sjis).

Description Example format October 5, 1990 prints as:

Abbreviated era year gyymmd

gyy.mm.dd

H021005

H02.10.05

Full era year eyymmdd

eyy-mm-dd

eyyB1B2mmB1B2ddB1B2

A1A2021005

A1A202-10-05

A1A202B1B210B1B205B1B2

The following Informix ESQL/C code fragment contains a call to the rdefmtdate()
library function:
char fmt_str[100];
char in_str[100];
long jdate;
...

6-8 IBM Informix GLS User's Guide

rdatestr("10/05/95", &jdate);
stcopy("gyy/mm/dd", fmt_str);
rdefmtdate(&jdate, fmt_str, in_str);
printf("Abbreviated Era Year: %s\n", in_str);

stcopy("eyymmdd", fmt_str);
rdefmtdate(&jdate, fmt_str, in_str);
printf("Full Era Year: %s\n", in_str);

When the CLIENT_LOCALE specifies the Japanese SJIS (ja_jp.sjis) locale, the code
fragment displays the following output:
Abbreviated Era Year: H07/10/05
Full Era Year: H021005

Precedence for date end-user formats
The IBM Informix ESQL/C DATE-format functions use a precedence to determine
the end-user format for values in DATE columns:

The precedence is as follows:
1. The end-user format that DBDATE specifies (if DBDATE is set)
2. The end-user format that GL_DATE specifies (if GL_DATE is set)
3. The end-user date format that the client locale specifies (if CLIENT_LOCALE is set)
4. The end-user date format from the default locale: %m %d %iY

For more information about the precedence of DBDATE,GL_DATE and CLIENT_LOCALE,
see “Date and time precedence” on page 1-33.

Tip: IBM Informix products support DBDATE for compatibility with earlier products.
It is recommended that you use the GL_DATE environment variable for new client
applications.

DATETIME-format functions
The IBM Informix ESQL/C DATETIME-format functions are dtcvfmtasc() and
dttofmtasc().

These functions support extensions to format era-based DATETIME values:
v Support for the GL_DATETIME environment variable
v Support for era-based date and times of the DBTIME environment variable
v Extensions to the date and time format strings for Informix ESQL/C

DATETIME-format functions
v Support for a precedence of DATETIME end-user formats

These topics describe locale-specific behavior of the Informix ESQL/C
DATETIME-format functions. For general information about the Informix ESQL/C
DATETIME-format functions, see the IBM Informix ESQL/C Programmer's Manual.

GL_DATETIME support
The GL_DATETIME setting can affect results that the Informix ESQL/C
DATETIME-format functions generate.

The end-user format that GL_DATETIME specifies overrides date and time formats
that the client locale defines. For more information, see “Precedence for
DATETIME end-user formats” on page 6-10.

Chapter 6. IBM Informix ESQL/C features 6-9

DBTIME support
The IBM Informix ESQL/C DATETIME-format functions support the extended
era-based date and time format strings for the DBTIME environment variable.

When you set DBTIME to an era-based format, these functions can convert between
literal DATETIME strings and internal DATETIME values.

Tip: IBM Informix products support DBTIME for compatibility with earlier products.
It is recommended that you use the GL_DATETIME environment variable for new
applications.

If you set DBTIME to an era-based DATETIME format (which is specific to a Chinese
or Japanese locale), make sure to set the CLIENT_LOCALE environment variable to a
locale that supports era-based dates and times.

Extended DATETIME-format strings
IBM Informix ESQL/C DATETIME-format functions support extended-format
strings.

The following table shows the extended-format strings that the Informix ESQL/C
DATETIME-format functions support.

Format Description December 27, 1991 printed

%y %m %dc1 Taiwanese Ming Guo date 80 12 27

%Y %m %dc1 Taiwanese Ming Guo date 0080 12 27

%y %m %dj1 Japanese era with abbreviated era symbols H03 12 27

%Y %m %dj1 Japanese era with abbreviated era symbols H0003 12 27

%y %m %dj2 Japanese era with full era symbols A1A2B1B203 12 27

%Y %m %dj2 Japanese era with full era symbols A1A2B1B20003 12 27

In addition to the formats in the preceding table, these Informix ESQL/C
DATETIME-format functions support the GLS date and time specifiers. For a list of
these specifiers, see “The GL_DATE environment variable” on page 2-10 and “The
GL_DATETIME environment variable” on page 2-15.

Precedence for DATETIME end-user formats
The IBM Informix ESQL/C DATETIME-format functions use a precedence to
determine the end-user format of values in DATETIME columns.

The precedence is as follows:
1. The end-user format that DBTIME specifies (if DBTIME is set)
2. The end-user format that GL_DATETIME specifies (if GL_DATETIME is set)
3. The date and time end-user formats that the client locale specifies (if

CLIENT_LOCALE is set)
4. The date and time end-user format from the default locale: %iY-%m-%d

%H:%M:%S

For more information about the precedence of DBDATE, GL_DATE, and CLIENT_LOCALE,
see “Date and time precedence” on page 1-33.

6-10 IBM Informix GLS User's Guide

Numeric-format functions
The IBM Informix ESQL/C numeric-format functions are rfmtdec(), rfmtdouble(),
and rfmtlong().

These functions support the following extensions to format numeric values:
v Support for multibyte characters in format strings
v Locale-specific formats for numeric values
v Formatting characters for currency symbols
v Support for the DBMONEY environment variable

These topics describe locale-specific behavior of the Informix ESQL/C
numeric-format functions. For general information about the Informix ESQL/C
numeric-format functions, see the IBM Informix ESQL/C Programmer's Manual.

Tip: For a list of errors that these Informix ESQL/C numeric-format functions
might return, see “GLS-specific error messages” on page 6-14.

Support for multibyte characters
The IBM Informix ESQL/C numeric-format functions support multibyte characters
in their format strings if your client locale supports a multibyte code set that
defines these characters.

These Informix ESQL/C functions and routines, however, interpret multibyte
characters as literal characters. You cannot use multibyte equivalents of the ASCII
formatting characters.

For example, the following Informix ESQL/C code fragment shows a call to the
rfmtlong() function with the multibyte character A1A2 in the format string:
stcopy("A1A2***,***", fmtbuf);
rfmtlong(78941, fmtbuf, outbuf);
printf("Formatted value: %s\n", outbuf);

This code fragment generates the following output (if the client code set contains
the A1A2 character):
Formatting value: A1A2*78,941

Locale-specific numeric formatting
The IBM Informix ESQL/C numeric-format functions require a format string as an
argument.

This format string determines how the numeric-format function formats the
numeric value. A format string consists of a series of formatting characters and the
following currency notation.

Formatting character Function

Dollar sign ($) Currency symbol

Comma (,) Thousands separator

Period (.) Decimal separator

Regardless of the client locale that you use, you must use the preceding ASCII
symbols in the format string to identify where to place the currency symbol,
decimal separator, and thousands separator. The numeric-format function uses the
following precedence to translate these symbols to their locale-specific equivalents:

Chapter 6. IBM Informix ESQL/C features 6-11

1. The symbols that DBMONEY indicates (if DBMONEY is set)
For information about the locale-specific behavior of DBMONEY, see “DBMONEY
extensions” on page 6-13.

2. The symbols that the appropriate locale category of the client locale (if
CLIENT_LOCALE is set) specifies
If the format string contains either a $ or @ formatting character, a
numeric-format function assumes that the value is a monetary value and refers
to the MONETARY category of the client locale. If these two symbols are not in
the format string, a numeric-format function refers to the NUMERIC category
of the client locale.
For more information about the use of the $ and @ formatting characters, see
“Currency-symbol formatting.” For more information about the MONETARY
and NUMERIC locale categories, see “Locale categories” on page A-2.

3. The actual symbol that appears in the format string ($, comma, or period)

These numeric-format functions replace the dollar sign in the format string with
the currency symbol that DBMONEY specifies (if it is set) or with the currency symbol
that the client locale specifies (if DBMONEY is not set).

The same is true for the decimal separator and thousands separator. For example,
the following Informix ESQL/C code fragment shows a call to the rfmtlong()
function:
stcopy("$***,***.&&", fmtbuf);
rfmtlong(78941, fmtbuf, outbuf);
printf("Formatted value: %s\n", outbuf);

In the default, German, and Spanish locales, this code fragment produces the
following results for the logical MONEY value of 78941.00 (if DBMONEY is not set).

Format string Client locale Formatted Value

$***,***.&& Default locale (en_us.8859-1) $*78,941.00

German locale (de_de.8859-1) DM*78.941,00

Spanish locale (es_es.8859-1) Pts*78.941,00

Currency-symbol formatting
The IBM Informix ESQL/C numeric-format functions support all formatting
characters that the IBM Informix ESQL/C Programmer's Manual describes.

In addition, you can use the following formatting characters to indicate the
placement of a currency symbol in the formatted output.

Formatting
character Function

$ This character is replaced by the front currency symbol if the locale defines
one. The MONETARY category of the locale defines the front currency
symbol, which is the symbol that appears before a monetary value. When
you group several dollar signs in a row, a single currency symbol floats to
the rightmost position that it can occupy without interfering with the
number.

@ This character is replaced by the back currency symbol if the locale defines
one. The MONETARY category of the locale defines the back currency
symbol, the symbol that appears after a monetary value.

6-12 IBM Informix GLS User's Guide

For more information, see “The MONETARY category” on page A-5.

You can include both formatting characters in a format string. The locale defines
whether the currency symbol appears before or after the monetary value, as
follows:
v If the locale formats monetary values with a currency symbol before the value,

the locale sets the currency symbol to the front currency symbol and sets the back
currency symbol to a blank character.

v If the locale formats monetary values with a currency symbol after the value, the
locale sets the currency symbol to the back currency symbol and sets the front
currency symbol to a blank character.

The default locale defines the currency symbol as the front currency symbol, which
appears as a dollar sign ($). In the default locale, the back currency symbol appears
as a blank space. In the default, British, and French locales, the numeric-format
functions produce the following results for the internal MONEY value of 1.00.

Format string Client locale Formatted result

$***,*** Default locale (en_us.8859-1)
British locale (en_gb.8859-1)
French locale (fr_fr.8859-15)

$******1
£******1
s******1

$***,***@ Default locale (en_us.8859-1)
British locale (en_gb.8859-1)
French locale (fr_fr.8859-15)

$******1s
£******1s
s******1€

$$,$$$.$$ Default locale (en_us.8859-1)
British locale (en_gb.8859-1)
French locale (fr_fr.8859-15)

ssss$1.00
ssss£1.00
sssss1,00

,@ Default locale (en_us.8859-1)
British locale (en_gb.8859-1)
French locale (fr_fr.8859-15)

******1s
******1s
******1€

@***,*** Default locale (en_us.8859-1)
British locale (en_gb.8859-1)
French locale (fr_fr.8859-15)

s******1
s******1
€******1

In the preceding table, the character s represents a blank or space, € is the currency
symbol for Euros, and £ is the British currency symbol for pounds Sterling.

The DBMONEY environment variable can also set the precede-currency symbol and
the succeed-currency symbol. The syntax diagram in “The DBMONEY
environment variable” on page 2-5 refers to these symbols as front and back. The
DBMONEY setting, if one is specified, takes precedence over the symbols that the
MONETARY category of the locale defines.

DBMONEY extensions
You can specify the currency symbol and decimal-separator symbol with the
DBMONEY environment variable. These settings override any currency notation that
the client locale specifies.

You can use multibyte characters for these symbols if your client code set supports
them. For example, the following table shows how multibyte characters appear in
examples of output.

Chapter 6. IBM Informix ESQL/C features 6-13

Format string
Number to
format DBMONEY Output

"$$,$$$.$$" 1234 '$'. $1,234.00

"$$,$$$.$$" 1234 DM, DM1.234,00

"$$,$$$.$$" 1234 A1A2. A1A21,234.00

"$$,$$$.$$" 1234 .A1A2 s1,234.00

"&&,&&&.&&@" 1234 .A1A2 s1,234.00A1A2

"$&&,&&&.&&@" 1234 A1A2. A1A2s1,234.00

"$&&,&&&.&&@" 1234 .A1A2 s1,234.00A1A2

"@&&,&&&.&&" 1234 .A1A2 A1A2s1,234.00

In the preceding table, the character s represents a blank or space.

String functions
The rdownshift() and rupshift () IBM Informix ESQL/C string functions support
locale-specific shifted characters.

These string functions use the information in the CTYPE category of the client
locale to determine the shifted code points. If the client locale specifies a multibyte
code set, these functions can operate on multibyte strings.

Important: With multibyte character strings, a shifted string might occupy more
memory after a shift operation than before. You must ensure that the buffer you
pass to these Informix ESQL/C shift functions is large enough to accommodate
this expansion.

GLS-specific error messages
The IBM Informix ESQL/C DATE-format, DATETIME-format, and Numeric-format
functions might generate GLS-specific error messages.

For more information about GLS-specific error messages, use the finderr utility on
UNIX or the Informix Error Messages utility on Windows.

Handle code-set conversion
When the client and database code sets differ, the IBM Informix ESQL/C client
application performs code-set conversion on character data.

For more information, see “Perform code-set conversion” on page 1-28.

If your Informix ESQL/C application executes in an environment in which code-set
conversion might occur, check that the application correctly handles the following
situations:
v When the application writes simple large objects (TEXT or BYTE data) to the

database, it must set the loc_type field in the locator structure loc_t to indicate
the type of simple large object that it needs to write.

v When the application writes smart large objects (CLOB or BLOB data) to the
database, it uses various large-object file descriptors.

v When the application uses the sqlda structure to describe dynamic SQL
statements, it must account for possible size differences in character data.

6-14 IBM Informix GLS User's Guide

v When the application has character data that might undergo code-set conversion,
you must declare character buffers that can hold the data.
For more information, see “Avoid partial characters” on page 5-7.

Writing TEXT values
IBM Informix ESQL/C uses the loc_t locator structure to read simple large objects
from and write simple large objects to the database server.

The loc_type field of this structure indicates the data type of the simple large
object that the structure describes. When the client and database code sets are the
same (no code-set conversion), the client application does not need to set the
loc_type field explicitly because the database server can determine the simple large
object data type implicitly. The database server assumes character data in the TEXT
data type and noncharacter data in the BYTE data type.

If the client and database code sets are different and convertible, however, the
client application must know the data type of the simple large object in order to
determine whether to perform code-set conversion on the data.

Before an Informix ESQL/C client application inserts a simple large object in the
database, it must explicitly set the loc_type field of the simple large object:
v For a TEXT value, the Informix ESQL/C client application must set the loc_type

field to SQLTEXT before the INSERT statement. The client performs code-set
conversion on TEXT data before it sends this data to the database for insertion.

v For a BYTE value, the Informix ESQL/C client application must set the loc_type
field to SQLBYTES before the INSERT statement. The client does not perform
code-set conversion on BYTE data before it sends this data to the database for
insertion.

Important: The sqltypes.h header file defines the data type constants SQLTEXT
and SQLBYTES. To use these constants, you must include this header file in your
Informix ESQL/C source file.

Your Informix ESQL/C source code does not need to set loc_type before it reads
simple-large-object data from a database. The database server obtains the data type
of the simple large object from the database and sends this data type to the client
with the data.

If you set loc_bufsize to -1, Informix ESQL/C allocates memory to hold a single
simple large object. It stores the address of this memory buffer in the loc_buffer
field of the loc_t structure. If the client application performs code-set conversion on
TEXT data that the database server retrieves, Informix ESQL/C handles any
possible data expansion as follows:
1. Frees the existing memory that the loc_buffer field references
2. Reallocates a memory buffer that is large enough to store the expanded TEXT

data
3. Assigns the address of this new buffer to the loc_buffer field
4. Assigns the size of the new memory buffer to the loc_bufsize field

If this reallocation occurs, Informix ESQL/C changes the memory address at which
it stores the TEXT data. If your Informix ESQL/C program references this address,
the program must account for the address change.

Chapter 6. IBM Informix ESQL/C features 6-15

Informix ESQL/C does not need to reallocate memory for the TEXT data if
code-set conversion does not expand the TEXT data or if it condenses the data. In
either of these cases, the loc_buffer field remains unchanged, and the loc_bufsize
field contains the size of the buffer that the loc_buffer field references.

The DESCRIBE statement
The sqlda structure is a dynamic-management structure that contains information
about columns in dynamic SQL statements. The DESCRIBE...INTO statement uses
the sqlda structure to return information about the columns in the select list of the
Projection clause of a SELECT statement.

It sets the sqlvar field of an sqlda structure to point to a sequence of partially
filled sqlvar_struct structures. Each structure describes a single select-list column.

Each sqlvar_struct structure contains character data for the column name and the
column data. When the IBM Informix ESQL/C client application fills this structure,
the column name and the column data are in the client code set. When the
database server fills this structure and executes a DESCRIBE...INTO statement, this
character data is in the database code set.

When the client application performs code-set conversion between the client and
database code sets, the number of bytes that is required to store the column name
and column data in the client code set might not equal the number that is required
to store this same information in the database code set. Therefore, the size of the
character data in sqlvar_struct might increase or decrease during code-set
conversion. To handle this possible difference in size, the client application must
ensure that it correctly handles the character data in the sqlvar_struct structure.

The sqldata field
To hold the column data, the client application must allocate a buffer and set
sqldata to point to this buffer. If your client application might perform code-set
conversion, it must allocate sufficient storage to handle the increase in the size of
the column data that might occur.

When the DESCRIBE ... INTO statement sets the sqllen field, the sqllen value
indicates the length of the column data in the database code set. Therefore, if you
use the value of sqllen that the DESCRIBE ... INTO statement retrieves, you might
not allocate a buffer that is sufficiently large for the data values when they are in
the client code set.

For example, the following code fragment allocates an sqldata buffer with the
malloc() system call:
EXEC SQL include sqlda;
...
struct sqlda *q_desc;
...
EXEC SQL describe sqlstmt_id into q_desc;
...
q_desc->sqlvar[0].sqldata =

(char *)malloc(q_desc->sqlvar[0].sqllen);

In the preceding code fragment, the client application might truncate characters
that it converts because the client application uses the sqllen value to determine
the buffer size. Instead, increase the buffer to four times its original size when you
allocate a buffer, as the following code fragment shows:

6-16 IBM Informix GLS User's Guide

EXEC SQL include sqlda;
EXEC SQL define BUFSIZE_FACT 4;
...

struct sqlda *q_desc;
...

q_desc->sqlvar[0].sqllen =
q_desc->sqlvar[0].sqllen * BUFSIZE_FACT + 1;

q_desc->sqlvar[0].sqldata =
(char *)malloc(q_desc->sqlvar[0].sqllen);

A buffer-size factor (BUFSIZE_FACT) of 4 is suggested because a multibyte
character has a maximum size of 4 bytes.

The sqlname field
The sqlname field contains the name of the column.

When the client application performs code-set conversion, this column name might
also undergo expansion when the application converts it from the database code
set to the client code set. Because the Informix ESQL/C application stores the
buffer for sqlname data in its internal work area, your Informix ESQL/C source
code does not have to handle possible buffer-size increases. Your code processes
the contents of sqlname in the client code set.

The TRIM function
When you dynamically execute a SELECT statement, the DESCRIBE statement can
return information about the columns in the select list of the Projection clause at
run time. DESCRIBE returns the data type of a select-list column in the appropriate
field of the dynamic-management structure that you use.

When you use the DESCRIBE statement on a prepared SELECT statement with the
TRIM function in its select list, the data type of the trimmed column that
DESCRIBE returns depends on the database server that you use and the data type
of the column to be trimmed (the source character-value expression). For more
information about the source character-value expression, see the description of the
TRIM function in the IBM Informix Guide to SQL: Syntax.

The data type that the DESCRIBE statement returns depends on the data type of
the source character-value expression, as identified in the following table:

Table 6-1. The TRIM function

Sequence
number Operand type Result type Result length

1 (N)CHAR(1-255) (N)VARCHAR Up to 255

2 (N)CHAR(>255) LVARCHAR Up to 32739

3 (N)VARCHAR (N)VARCHAR Up to 255

4 LVARCHAR LVARCHAR Up to 32739

The following SELECT statement contains the manu_code column, which is
defined as a CHAR data type, and the cat_advert column, which is defined as a
VARCHAR column. When you describe the following SELECT statement and use
the TRIM function, DESCRIBE returns a data type of SQLVCHAR for both
trimmed columns:

Chapter 6. IBM Informix ESQL/C features 6-17

SELECT TRIM(manu_code), TRIM(cat_advert) FROM catalog;

If the manu_code column is defined as NCHAR instead, DESCRIBE returns a data
type of SQLNVCHAR for this trimmed column.

Important: The sqltypes.h header file defines the data type constants SQLCHAR,
SQLVCHAR, and SQLNVCHAR. To use these constants, include this header file in
your Informix ESQL/C source file.

6-18 IBM Informix GLS User's Guide

Appendix A. Manage GLS files

These topics describe the files provided for GLS, which are executable only.

Access GLS files
IBM Informix products access the GLS files to obtain locale-related information.

The following table shows the GLS files to obtain locale-related information. For an
overview of what type of information these files provide, see “A GLS locale” on
page 1-8.

GLS files Reference

GLS locale files “GLS locale files” on page A-2

Code-set-conversion files “Code-set-conversion files” on page A-8

Code-set files “Code-set files” on page A-10

The registry file “The IBM Informix registry file (Windows)” on
page A-10

In general, you do not need to examine the GLS files. You might, however, want to
look at these files to determine the following locale-specific information.

Locale-specific information GLS file to examine Reference

Collation order:

Exact localized order Source locale file (*.lc):
COLLATION category

“The
COLLATION
category” on
page A-3

Exact code-set collation order Source code-set file (*.cm) “Code-set
files” on
page A-10

Character mappings:

Locale-specific mapping between
uppercase and lowercase characters

Source locale file (*.lc): CTYPE
category

“The CTYPE
category” on
page A-3

Locale-specific classification of
characters

Source locale file (*.lc): CTYPE
category

“The CTYPE
category” on
page A-3

Code-set-specific character mappings Source code-set file (*.cm) “Code-set
files” on
page A-10

Mappings between characters of the
source and target code sets

Source code-set-conversion file
(*.cv)

“Code-set-
conversion
files” on
page A-8

Method for character mismatches
during code-set conversion

Source code-set-conversion file
(*.cv)

“Code-set-
conversion
files” on
page A-8

© Copyright IBM Corp. 1996, 2011 A-1

Locale-specific information GLS file to examine Reference

Code points for characters Source code-set file (*.cm) “Code-set
files” on
page A-10

End-user formats:

Numeric (nonmonetary) data Source locale file (*.lc): NUMERIC
category

“The
NUMERIC
category” on
page A-4

Monetary data Source locale file (*.lc):
MONETARY category

“The
MONETARY
category” on
page A-5

Date data Source locale file (*.lc): TIME
category

“The TIME
category” on
page A-5

Time data Source locale file (*.lc): TIME
category

“The TIME
category” on
page A-5

GLS locale files
The locale file defines a GLS locale. It describes the basic language and cultural
conventions that are relevant to the processing of data for a given language and
territory.

These topics describe the locale categories and the locations of the locale files.

Locale categories
A locale file specifies behaviors for the locale categories.

The CTYPE and COLLATION categories primarily affect how the database server
stores and retrieves character data in a database. The NUMERIC, MONETARY, and
TIME categories affect how a client application formats the internal values of the
associated SQL data types. For more information about end-user formats, see
“End-user formats” on page 1-13 and “Customize end-user formats” on page 1-32.
The following table describes the locale categories and the behaviors for the default
locale, U.S. English.

Locale category Description In default locale (U.S. English)

CTYPE Controls the behavior
of character
classification and case
conversion.

The default code set classifies characters. On
UNIX, the default code set is ISO8859-1. On
Windows, the default code set is Windows
Code Page 1252.

COLLATION Controls the behavior
of string comparisons.

The default locale does not define a localized
order. Therefore, the database server collates
NCHAR and NVARCHAR data in code-set
order (unless SET COLLATION has specified
some localized order).

A-2 IBM Informix GLS User's Guide

Locale category Description In default locale (U.S. English)

NUMERIC Controls the behavior
of non-monetary
numeric end-user
formats.

The following numeric notation for use in
numeric end-user formats:

v Thousands separator: comma (,)

v Decimal separator: period (.)

v Number of digits between thousands
separators: 3

v Symbol for positive number: plus (+)

v Symbol for negative number: minus (-)

v No alternative digits for era-based dates

MONETARY Controls the behavior
of currency end-user
formats.

The following currency notation for use in
monetary end-user formats:

v Currency symbol: dollar sign ($) appears
as the front symbol before the currency
value

v No back currency symbol is defined.

v Thousands separator: comma (,)

v Decimal separator: period (.)

v Number of digits between thousands
separators: 3

v Symbol for positive number: plus (+)

v Symbol for negative number: minus (-)

Default scale for MONEY columns: 2

TIME Controls the behavior
of date and time
end-user formats.

The following date and time end-user
formats:

v DATE values: %m/%d/%iy

v DATETIME values: %iY-%m-%d
%H:%M:%S

No definitions for era-based dates.

MESSAGES Controls the
definitions of
affirmative and
negative responses to
messages.

None

The CTYPE category
The CTYPE category defines how to classify the characters of the code set that the
locale supports.

This category includes specifications for which characters the locale classifies as
spaces, blanks, control characters, digits, uppercase letters, lowercase letters, and
punctuation symbols.

This category might also include mappings between uppercase and lowercase
letters. IBM Informix products access this category when they need to determine
the validity of an identifier name, to shift the letter case of a character, or to
compare characters.

The COLLATION category
The COLLATION category can define a localized order.

Appendix A. Manage GLS files A-3

When an IBM Informix product needs to compare two strings, it first breaks up the
strings into a series of collation elements. The database server compares each pair
of collation elements according to the collation weights of each element. The
COLLATION category supports the following capabilities:
v Multicharacter collation elements define sets of characters that the database

server should collate as a single unit. For example, the localized collating order
might treat the Spanish double-L (ll) as a single collation element instead of as a
pair of l's.

v Equivalence classes assign the same collation weight to different elements. For
example, the localized order might specify that a and A are an equivalence class
(a and A are equivalent characters).

The difference in collation order is the only distinction between the CHAR and
NCHAR data types and the VARCHAR and NVARCHAR data types. For more
information, see “Character data types” on page 3-6.

If a locale does not contain a COLLATION category, IBM Informix products use
code-set order for collation of all character data types:
v CHAR
v LVARCHAR
v NCHAR
v NVARCHAR
v TEXT
v VARCHAR

The SET COLLATION statement can specify a localized collation that is different
from the COLLATION setting of the locale that DB_LOCALE specifies. The scope of
the collating order that SET COLLATION specifies is the current session, but
database objects that can sort strings, such as constraints, indexes, UDRs, and
triggers, always use the collating order from the time of their creation when they
sort NCHAR or NVARCHAR values.

The NUMERIC category
The NUMERIC category defines the numeric notation for end-user formats of
nonmonetary numeric values.

The numeric notation for end-user formats of nonmonetary numeric values are:
v The numeric decimal separator
v The numeric thousands separator
v The number of digits to group together before inserting a thousands separator
v The characters that indicate positive and negative numbers

This numeric notation applies to the end-user formats of data for numeric
(DECIMAL, INTEGER, SMALLINT, FLOAT, SMALLFLOAT) columns within a
client application.

Important: Information in the NUMERIC category does not affect the internal
format of the numeric data types in the database.

The NUMERIC category also defines alternative digits for use in era-based dates
and times. For information about alternative digits, see “Alternative date formats”
on page 2-12 and “Alternative time formats” on page 2-16.

A-4 IBM Informix GLS User's Guide

The MONETARY category
The MONETARY category defines the currency notation for end-user formats of
monetary values.

The currency notion for end-user formats of monetary values are:
v The currency symbol, and whether it appears before or after a monetary value
v The monetary decimal separator
v The monetary thousands separator
v The number of digits to group between each appearance of a monetary

thousands separator
v The characters that indicate positive and negative monetary values and the

position of these characters (before or after)
v The scale (the number of fractional digits to the right of the decimal point) to

display

This currency notation applies to the end-user formats of data from MONEY
columns within a client application.

Important: Information in the MONETARY category does not affect the internal
format of the MONEY data type in the database.

The MONETARY category also defines the default scale for a MONEY column. For
the default locale (U.S. English), the database server stores values of the data type
MONEY(precision) in the same internal format as the data type
DECIMAL(precision,2). A nondefault locale can define a different default scale. For
more information about default scales, see “Specify values for the scale parameter”
on page 3-31.

The TIME category
The TIME category lists characters and symbols that format date and time values.

This information includes the names and abbreviations for days of the week and
months of the year. It also includes special representations for dates, time (12-hour
and 24-hour), and DATETIME values.

These representations can include the names of eras (as in the Japanese Imperial
era system) and non-Gregorian calendars (such as the Arabic lunar calendar). The
locale specifies the calendar (Gregorian, Hebrew, Arabic, Japanese Imperial, and so
on) for reading or printing a month, day, or year.

If the locale supports era-based dates and times, the TIME category defines the full
and abbreviated era names and special date and time representations. For more
information, see “Alternative date formats” on page 2-12 and “Alternative time
formats” on page 2-16.

This date and time information applies to the end-user formats of data in DATE
and DATETIME columns within a client application.

Important: Information in the TIME category does not affect the internal format of
the DATE and DATETIME data types in the database.

The MESSAGES category
The MESSAGES category defines the format for affirmative and negative
responses.

Appendix A. Manage GLS files A-5

This category is optional. IBM Informix products do not use the strings that the
MESSAGES category defines.

To obtain the locale name for the MESSAGES category of the client locale, a client
application uses the locale that CLIENT_LOCALE indicates. If CLIENT_LOCALE is not set,
the client sets the category to the default locale.

Location of locale files
When an IBM Informix product needs to obtain locale-specific information, it
accesses one of the GLS locale files.

IBM Informix access one of the files in the following table.

Platform Locale file

UNIX $INFORMIXDIR/gls/lcX/lg_tr/codemodf.lco

Windows %INFORMIXDIR%\gls\lcX\lg_tr\codemodf.lco

In these paths, INFORMIXDIR is the environment variable that specifies the directory
in which you install the IBM Informix product, and gls is the subdirectory that
contains the GLS files. This rest of this section describes the remaining elements in
the path name of GLS locale files.

Locale-file subdirectories
The subdirectories of the lcX subdirectory, where X represents the version number
for the locale object-file format, contain the GLS locale files. These subdirectories
have names of the form lg_tr, where lg is the 2-character language name and tr
is the 2-character territory name that the locale supports.

The next table shows some languages and territories that IBM Informix products
can support, and their associated locale-file subdirectory names.

Language Territory Locale-file subdirectory

English Australia

United States

Great Britain

en_au

en_us

en_gb

German Germany

Austria

Switzerland

de_de

de_at

de_ch

French Belgium

Canada

Switzerland

France

fr_be

fr_ca

fr_ch

fr_fr

Locale source and object files
Each locale file has two forms.

Each locale file has the following two forms:

A-6 IBM Informix GLS User's Guide

v A locale source file is an ASCII file that defines the locale categories for the
locale.
This file has the .lc file extension and serves as documentation for the
corresponding object file.

v A locale object file is a compiled form of the locale information.
IBM Informix products use the object file to obtain locale information quickly.
Locale object files have the .lco file extension.

The header of the locale source file (.lc) lists the language, territory, code set, and
any optional locale modifier of the locale. A section of the locale source file
supports each of the locale categories, unless that category is empty, as the next
table shows.

Locale category Reference Locale category Reference

CTYPE “The CTYPE
category” on
page A-3

MONETARY “The
MONETARY
category” on
page A-5

COLLATION “The
COLLATION
category” on
page A-3

TIME “The TIME
category” on
page A-5

NUMERIC “The NUMERIC
category” on
page A-4

MESSAGES “The MESSAGES
category” on
page A-5

Locale file names
To conform to the 8.3 filename.ext restriction on the maximum number of
characters in valid file names and file extensions on DOS systems, a GLS locale file
uses a condensed form of the code-set name, codemodf, in its file names.

The four-character code name of each locale file is the hexadecimal representation
of the code-set number for the code set that the locale supports. The four-character
modf name is the optional locale modifier.

For example, the ISO8859-1 code set has an IBM CCSID number of 819 in decimal
and 0333 in hexadecimal. Therefore, the four-character name of a locale source file
that supports the ISO8859-1 code set is 0333.lc.

The following table shows some code sets and locale modifiers that IBM Informix
products can support, along with their associated locale source file names.

Code set Locale modifier Locale source file

ISO8859-1 (IBM CCSID 819) None

Dictionary

0333.lc

0333dict.lc

Windows Code Page 1252 (West Europe) None

Dictionary

04e4.lc

04e4dict.lc

IBM CCSID 850 None

Dictionary

0352.lc

0352dict.lc

Appendix A. Manage GLS files A-7

A French locale that supports the ISO8859-1 code set has a GLS locale that is called
0333.lc file in the fr_fr locale-file subdirectory. The default locale, U.S. English,
also uses the ISO8859-1 code set (on UNIX platforms); a locale file that is called
0333.lc is also in the en_us locale-file subdirectory. Because both the French and
U.S. English locales support the Windows Code Page 1252, both the fr_fr and
en_us locale-file subdirectories contain a 04e4.lc locale file.

Other GLS files
In addition to GLS locale files, IBM Informix products might also use other GLS
files.

These other files are:
v Code-set-conversion files map one code set to another.
v Code-set files define code-point values for code sets.
v The Windows registry file converts locale aliases to valid locale file names.

Code-set-conversion files
The code-set-conversion file describes how to map each character in a particular
source code set to the characters of a particular target code set.

IBM Informix products can perform a given code-set conversion if
code-set-conversion files exist to describe the mapping between the two code sets.

Important: A client application checks the code sets that the client and database
locales support when it begins execution. If code sets are different, and no
code-set-conversion files exist, the client application generates an error. For
information, see “Establish a database connection” on page 1-24.

When an IBM Informix product needs to obtain code-set-conversion information, it
accesses one of the GLS code-set-conversion files in the following table.

Platform Code-set-conversion file

UNIX $INFORMIXDIR/gls/cvY/code1code2.cvo

Windows %INFORMIXDIR%\gls\cvY\code1code2.cvo

In these paths, INFORMIXDIR is the environment variable that specifies the directory
in which you install the IBM Informix product, gls is the subdirectory that
contains the GLS files, and Y represents the version number for the
code-set-conversion object-file format.

This rest of this section describes the remaining elements in the path name of GLS
code-set-conversion files.

Code-set-conversion source and object files
Each code-set conversion file has two forms.

Each code-set-conversion file has the following two forms:
v The code-set-conversion source file is an ASCII file that describes the mapping to

use for one direction of the code-set conversion.
This file has a .cv extension and serves as documentation for the corresponding
object file.

A-8 IBM Informix GLS User's Guide

v The code-set-conversion object file is a compiled form of the code-set-conversion
information.
IBM Informix products use the object file to obtain code-set-conversion
information quickly. Object code-set-conversion files have a .cvo file extension.

The header of the code-set-conversion source file (.cv) lists the two code sets that
it converts and the direction of the conversion.

Code-set-conversion file names
To conform to DOS 8.3 naming conventions, GLS code-set-conversion files use a
condensed form of the code-set names, code1code2, in their file names.

The eight-character name of each code-set-conversion file is derived from the
hexadecimal representation of the code-set numbers of the source code set (code1)
and the target code set (code2).

For example, the ISO8859-1 code set has an IBM CCSID number of 819 in decimal
and 0333 in hexadecimal. The IBM CCSID 437 code set, a common IBM UNIX code
set, has a hexadecimal value of 01b5. Therefore, the 033301b5.cv
code-set-conversion file describes the conversion from the CCSID 819 code set to
the CCSID 437 code set.

Required for code-set conversion
IBM Informix products use the Code-Set Name-Mapping file to translate between
code-set names and the more compact code-set numbers. You can use the registry
file to find the hexadecimal values that correspond to code-set names or code-set
numbers.

Most code-set conversion requires two code-set-conversion files. One file supports
conversion of characters in code set A to their counterparts in code set B. Another
supports the conversion in the return direction (from B to A). Such conversions are
called two-way code-set conversions. For example, the code-set conversion between
the CCSID 437 code set (hexadecimal 01b5 code number) and the CCSID 819 code
set (or ISO8859-1 with a hexademical 0333 code number) requires the following
two code-set-conversion files:
v The 01b50333.cv file describes the mappings to use when IBM Informix products

convert characters in the CCSID 437 code set to those in the ISO8859-1 code set.
v The 033301b5.cv file describes the mappings to use when IBM Informix products

convert characters in the ISO8859-1 code set to those in the CCSID 437 code set.

To be able to convert between these two code sets, an IBM Informix product must
be able to locate both these code-set-conversion object files. Performing the
conversion on only one direction would result in mismatched characters. For more
information about mismatched characters, see “Perform code-set conversion” on
page 1-28.

The following table shows some of the code-set conversions that IBM Informix
products can support, along with their associated code-set-conversion source file
names.

Source code set Target code set
Code-set-conversion
source file

ISO8859-1 Windows Code Page 1252 033304e4.cvo

Windows Code Page 1252 ISO8859-1 04e40333.cvo

Appendix A. Manage GLS files A-9

Source code set Target code set
Code-set-conversion
source file

ISO8859-1 IBM CCSID 850 03330352.cvo

IBM CCSID 850 ISO8859-1 03520333.cvo

Windows Code Page 1252 IBM CCSID 850 04e40352.cvo

IBM CCSID 850 Windows Code Page 1252 035204e4.cvo

Code-set files
A code-set file (also called a character-mapping or charmap file) defines a code set
for subsequent use by locale and code-set-conversion files.

A GLS locale includes the appropriate code-set file for the code set that it supports.
In addition, IBM Informix products can perform code-set conversion between the
code sets that have code-set files.

When an IBM Informix product needs to obtain code-set information, it accesses
one of the GLS code-set files in the following table.

Platform Code-set file

UNIX $INFORMIXDIR/gls/cmZ/code.cmo

Windows %INFORMIXDIR%\gls\cmZ\code.cmo

In these paths, INFORMIXDIR is the environment variable that specifies the directory
in which you install the IBM Informix product, gls is the subdirectory that
contains the GLS files, and Z represents the version number for the code-set
object-file format.

Each code-set file has the following two forms:
v The code-set source file is an ASCII file that describes the characters of a

character set.
This file has a .cm extension and serves as documentation for the corresponding
object file.

v The code-set object file is a compiled form of the code-set information.
The object file is used to create locale object files. Object code-set files have a
.cmo file extension.

The IBM Informix registry file (Windows)
The Code-Set Name-Mapping file, which is called registry, is an ASCII file that
associates code-set names and aliases with their code-set numbers.

A code-set number is based on the IBM CCSID numbering scheme. IBM Informix
products use code-set numbers to determine the file names of locale and
code-set-conversion files.

For example, you can specify the French locale that supports the ISO8859-1 code
set with any of the following locale names as locale aliases:
v The full code-set name

fr_fr.8859-1

v The decimal value of the IBM CCSID number

A-10 IBM Informix GLS User's Guide

fr_fr.819

v The hexadecimal value of the IBM CCSID number
fr_fr.0333

When you specify a locale name with either of the first two forms, IBM Informix
products use the Code-Set Name-Mapping file to translate between code-set names
(8859-1) or code-set number (819) to the condensed code-set name (0333). For
information about the file format and search algorithm that IBM Informix products
use to convert code-set names to code-set numbers, see the comments at the top of
the registry file.

When an IBM Informix product needs to obtain information about locale aliases, it
accesses the GLS code-set files in the following path:
%INFORMIXDIR%\gls\cmZ\registry

In these paths, INFORMIXDIR is the environment variable that specifies the directory
in which you install the IBM Informix product, gls is the subdirectory that
contains the GLS files, and Z represents the version number for the code-set
object-file format.

Restriction: Do not remove the Code-Set Name-Mapping file, registry, from the
IBM Informix directory. Do not modify this file. IBM Informix products use this file
for the language processing of all locales.

Remove unused files
An IBM Informix product contains the GLS files.

These GLS files are:
v Locale files: source (*.lc) and object (*.lco)
v Code-set-conversion files: source (*.cv) and object (*.cvo)
v Code-set files: source only (*.cm)

Remove locale and code-set-conversion files
To save disk space, you might want to keep only those files that you intend to use.

These topics describe which of these files you can safely remove from your IBM
Informix installation. You can safely remove the following GLS files from your IBM
Informix installation:
v For those locales that you do not intend to use, you can remove locale source

and object files (.lc and .lco) from the subdirectories of the lcX subdirectory in
your IBM Informix installation.
For more information about the lcX path name, see “Locale-file subdirectories”
on page A-6.

v For those code-set conversions that you do not intend to use, you can remove
code-set-conversion source and object files (.cv and .cvo) from the
subdirectories of the cvY subdirectory in your IBM Informix installation.
For more information about the cvY path name, see “Code-set-conversion file
names” on page A-9.

Appendix A. Manage GLS files A-11

Restriction: Do not remove the locale object file for the U.S. 8859-1 English locale,
0333.lco in the en_us locale-file subdirectory. In addition, do not remove the
Code-Set Name-Mapping file, registry. IBM Informix products use these files for
the language processing of all locales.

Because IBM Informix products do not access source versions of locale and
code-set conversion files, you can safely remove them. These files, however,
provide useful online documentation for the supported locales and code-set
conversions. If you have enough disk space, it is recommended that you keep
these source files for the GLS locales (*.lc) and code-set conversions (*.cv) that
your IBM Informix installation supports.

Remove code-set files
The source version of code-set files (.cm) are provided as online documentation for
the locales and code-set conversions that use them. Because IBM Informix products
do not access source code-set files, you can safely remove them.

However, if you have enough disk space, it is recommended that you keep these
source files for the GLS locales and code-set conversions that your IBM Informix
installation supports.

The glfiles utility (UNIX)
To comply with MS-DOS 8.3 legacy format for file names, IBM Informix products
use condensed file names to store GLS locales and code-set-conversion files.

These file names do not match the names of the locales and code sets that the user
uses. You can use the glfiles utility to generate a list of the following GLS-related
files:
v The GLS locales that are available on your system
v The IBM Informix code-set-conversion files that are available on your system
v The IBM Informix code-set files that are available on your system

Before you run glfiles, take the following steps:
v Set the INFORMIXDIR environment variable to the directory in which you install

your IBM Informix product.
If you do not set INFORMIXDIR, glfiles checks the /usr/informix directory for the
GLS files.

v Change to the directory where you want the files that glfiles generates.
The utility creates the GLS file listings in the current directory.

The following diagram shows the syntax of the glfiles utility.

�� �
-lc

glfiles -cv
-cm

��

Element
Purpose

-cv The glfiles utility creates a file that lists the available code-set-conversion
files.

A-12 IBM Informix GLS User's Guide

-lc The glfiles utility creates a file that lists the available GLS locales.

-cm The glfiles utility creates a file that lists the available character mapping
(charmap) files.

List code-set-conversion files
When you specify the -cv command-line option, the glfiles utility creates a file that
lists the available code-set-conversion files.

For each cvY subdirectory in $INFORMIXDIR/gls, glfiles creates a file in your current
directory that is called cvY.txt, where Y is the version number of the
code-set-conversion object-file format. The cvY.txt file lists the code-set
conversions in alphabetical order, sorted on the name of the object
code-set-conversion file.

For two-way code-set conversions, the $INFORMIXDIR/gls/cvY directory contains
two code-set-conversion files. One file supports conversion from the characters in
code set A to their mappings in code set B, and another supports the conversion in
the return direction (from code set B to code set A). For more information about
two-way code-set conversion, see page “Code-set-conversion files” on page A-8.

The following figure shows a file, cv9.txt, that lists available code-set conversions.

Examine the cvY.txt file to determine the code-set conversions that the
$INFORMIXDIR/gls/cvY directory on your system supports.

List GLS locale files
The glfiles utility can create a file that lists the available GLS locales.

The glfiles utility creates the file in the following ways:
v When you specify the -lc command-line option
v When you omit all command-line options

For each lcX subdirectory in the gls directory specified in INFORMIXDIR, glfiles
creates a file in the current directory that is called lcX.txt, where X is the version
number of the locale object-file format. The lcX.txt file lists the locales in
alphabetical order, sorted on the name of the GLS locale object file.

The following figure shows a sample file, lc11.txt, that contains the available GLS
locales.

Filenames: cv9/002501b5.cvo and cv9/01b50025.cvo
Between Code Set: Greek

and Code Set: IBM CCSID 437

Filenames: cv9/00250333.cvo and cv9/03330025.cvo
Between Code Set: Greek

and Code Set: ISO8859-1

Filenames: cv9/033304e4.cvo and cv9/004e40333.cvo
Between Code Set: 8859-1

and Code Set: 1252

Figure A-1. Sample glfiles file for IBM Informix code-set-conversion files

Appendix A. Manage GLS files A-13

Examine the lcX.txt files to determine the GLS locales that the
$INFORMIXDIR/gls/lcX directory on your system supports.

To find out which GLS locales are available on your Windows system, you must
look in the GLS system directories. A GLS locale resides in the file
%INFORMIXDIR%\gls\lcX\lg_tr\codemodf.lco

In this path, INFORMIXDIR is the environment variable that specifies the directory in
which you install the IBM Informix product, gls is the subdirectory that contains
the GLS system files, X represents the version number of the locale file format, lg
is the two-character language name, tr is the two-character territory name that the
locale supports, and codemodf is the condensed locale name.

List character-mapping files
When you specify the -cm command-line option, the glfiles utility creates a file
that lists the available character mapping (charmap) files.

For each cmZ subdirectory in $INFORMIXDIR/gls, glfiles creates a file in the current
directory that is called cmZ.txt, where Z is the version number of the charmap

Filename: lc11/ar_ae/0441.lco
Language: Arabic
Territory: United Arabic Emirates
Modifier: greg
Code Set: 8859-6
Locale Name: ar_ae.8859-6

Filename: lc11/ar_ae/0441greg.lco
Language: Arabic
Territory: United Arabic Emirates
Modifier: greg
Code Set: 8859-6
Locale Name: ar_ae.8859-6
. . .

Filename: lc11/en_us/0333.lco
Language: English
Territory: United States
Code Set: 8859-1
Locale Name: en_us.8859-1

Filename: lc11/en_us/0333dict.lco
Language: English
Territory: United States
Modifier: dict
Code Set: 8859-1
Locale Name: en_us.8859-1

Filename: lc11/en_us/0352.lco
Language: English
Territory: United States
Code Set: PC-Latin-1
Locale Name: en_us.PC-Latin-1

Filename: lc11/en_us/04e4.lco
Language: English
Territory: United States
Code Set: CP1252
Locale Name: en_us.CP1252
. . .

Figure A-2. Sample glfiles file for GLS Locales

A-14 IBM Informix GLS User's Guide

object-file format. The cmZ.txt file lists the character mappings in alphabetical
order, sorted on the name of the GLS object charmap file.

Figure A-3 shows a sample file, cm3.txt, that contains the available character
mappings.

Examine the cmZ.txt file to determine the character mappings that the
$INFORMIXDIR/gls/cmZ directory on your system supports.

Filename: cm3/032d.cm
Code Set: 8859-7

Filename: cm3/0333.cm
Code Set: 8859-1

Filename: cm3/0352.cm
Code Set: PC-Latin-1

Filename: cm3/04e4.cm
Code Set: CP1252

Figure A-3. Sample glfiles file for IBM Informix character-mapping files

Appendix A. Manage GLS files A-15

A-16 IBM Informix GLS User's Guide

Appendix B. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Tip: The information center and its related publications are accessibility-enabled
for the IBM Home Page Reader. You can operate all features by using the keyboard
instead of the mouse.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

You can view the publications in Adobe Portable Document Format (PDF) by using
the Adobe Acrobat Reader.

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the IBM commitment to accessibility.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive

© Copyright IBM Corp. 1996, 2011 B-1

http://www.ibm.com/able

alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.

B-2 IBM Informix GLS User's Guide

However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be
repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix B. Accessibility B-3

B-4 IBM Informix GLS User's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1996, 2011 C-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

C-2 IBM Informix GLS User's Guide

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices C-3

http://www.ibm.com/legal/copytrade.shtml

C-4 IBM Informix GLS User's Guide

Index

Special characters
_ (underscore), wildcard of LIKE operator 3-26
- (minus sign), wildcard in MATCHES clause 3-26
? (question mark), wildcard of MATCHES operator 3-26
.c file extension 5-6, 6-4
.c_ file extension 6-4
.cm file extension A-10, A-12
.cmo file extension A-10
.cv file extension 1-28, A-8, A-11
.cvo file extension A-8, A-11
.ec file extension 5-6, 6-4
.iem file extension 2-3
.lc file extension A-6, A-8, A-11
.lco file extension A-6, A-11
.o file extension 6-4
* (asterisk), wildcard of MATCHES operator 3-26
[] (brackets)

ranges with MATCHES operator 3-24, 3-26
substring operator 3-13

@ (at sign)
as formatting character 6-12

% (percent)
formatting directive 2-10, A-2
in parameter markers 4-13
in trace messages 4-13, 4-14
wildcard of LIKE operator 3-26

^ (caret), wildcard in MATCHES clause 3-26

Numerics
1-based counts 1-25
8-bit clean 1-9, 2-7, 6-3

A
Abbreviations 1-15
Accessibility B-1

dotted decimal format of syntax diagrams B-1
keyboard B-1
shortcut keys B-1
syntax diagrams, reading in a screen reader B-1

Alias 1-8, 3-2
Alpha class 3-5
Alphabetic characters 1-10, 3-5
ALTER TABLE statement 3-31
ALTER TABLE statements

character column declarations 3-36
Alternative formats

date 2-12, 6-8
time 2-17, 6-10

ANSI compliance
comment indicators 3-12
owner naming 3-3
quotation marks 3-4

ASCII code set 1-9, 1-21
ASCII letters (a - z, A - Z) 3-5
Asian language support (ALS) 1-5
Asterisk (*) symbol, with MATCHES operator 3-26
Authorization identifier 3-3

B
Basic Multilingual Plane (BMP) 1-29
BETWEEN conditions 3-22
BLOB data type, searching in 3-33
Bracket ([]) symbols

ranges for MATCHES operator 3-24
substring operator 3-13

BYTE data type
code-set conversion 5-3, 6-14
partial characters 3-17

C
C compiler

8-bit clean 4-6, 6-3
limitations 4-6, 6-3
multibyte characters 4-6, 6-3
non-ASCII filenames 6-3
non-ASCII source code 4-6, 6-3

Case-insensitive databases 3-6
Casts 3-2
CC8BITLEVEL environment variable 1-3, 2-2, 6-3, 6-4
CHAR data type

and GLS 1-7
code-set conversion 5-3
collation order 1-12
difference from NCHAR 3-6
GLS aspects 3-10

CHAR_LENGTH function 3-30
Character

7-bit 1-9
8-bit 1-9
ASCII 1-9
mismatched 1-28, A-9
nonprintable 3-7, 3-9
partial 3-14, 5-7
shifting lettercase 6-14
single-byte 1-9, 3-13

Character data
avoiding corruption of 5-3
collation of 1-26, 3-18, A-4
converting 1-28, 5-3
data types 3-6
equivalent characters 1-11, 3-19, 3-23, A-4
ESQL functions 6-14
interpreting 1-19, 1-26
mapping A-1
processing with locales 1-5

Character set 1-9, A-10
CHARACTER_LENGTH function 3-26
Character-mapping files A-14
Chinese locale 1-23
chkenv utility 4-4
Chunks 3-2
Client application

checking a connection 1-24, 1-26, 5-1
code-set conversion 5-1
definition of 1-6
end-user formats 1-13
establishing a connection 5-1

© Copyright IBM Corp. 1996, 2011 X-1

Client application (continued)
opening another database 1-26, 5-1
requesting a connection 1-19, 1-24
sending client locale to server 1-24, 1-28
setting a locale 1-8, 1-17, 1-22
support for locales 1-6, 1-7
uses of client locale 1-17
verifying locales 5-1

Client code set 1-28, 5-1
Client computer

client code set 1-28
code-set-conversion files 5-1
setting CLIENT_LOCALE 1-22
setting DB_LOCALE 1-22

Client locale
code set 1-28, 5-1
COLLATION category 1-17
CTYPE category 1-17
customizing 1-32
definition of 1-17
determining 1-17
ESQL/C source files 6-1
MESSAGES category A-6
MONETARY category 1-17
NUMERIC category 1-17
sample 1-17
sending to database server 1-24
setting 1-22
TIME category 1-17

CLIENT_LOCALE environment variable 1-3
default value 1-22
ESQL file names 5-6
ESQL source code 5-6
example of locale name 2-2
interpreting command-line arguments 4-4
location of message files 2-3
precedence of 1-17, 1-28, 1-33, 2-3, 6-9, 6-10, 6-11
role in code-set conversion 4-2, 5-1
role in exception messages 4-10
sending to database server 1-24
setting 1-22
syntax 2-2
with TEXT data 3-7, 3-9, 3-10, 3-11
with utilities 4-3

Client/server environment
client locale 1-17, 1-24
code-set conversion 1-28, 1-29
database locale 1-19
locales of 1-8, 1-16
server locale 1-20
server-processing locale 1-25
setting environment variables 1-22

cmZ.txt file A-14
Code points 1-9, 1-11, 3-9
Code sets

1252 1-9
8859-1 1-9, 1-21, A-7
affecting filenames 2-8
ASCII 1-9, 1-21
character classes 1-10
client code set 1-28
code points 1-9, 3-9
compatible 1-5
condensed name 1-19, 1-21, 1-31, A-7
convertible 1-22, 5-1, 5-3
database code set 1-28
default 1-10, 1-21, 1-23

Code sets (continued)
definition of 1-9
determining 1-23, 1-28
for client applications 1-28, 5-1
for database 1-28, 5-1
for database server 1-28, 5-1
GB18030-2000 1-9
in locale name 1-21, 1-24, 2-5, 2-20
incompatible 5-1
multibyte 1-9, 3-14, 3-15, 3-27, 5-7
server code set 1-28
single-byte 1-9, 3-13, 3-15, 3-27
source 1-28
target 1-28
UTF-8 1-12
wide-character form 4-7

Code-set conversion
by client application 5-1
by database server 4-2
by DataBlade API 4-8
character mismatches 1-28, A-9
data converted 5-3
definition of 1-28
for column names 5-3
for cursor names 5-3
for error message text 5-3
for LVARCHAR 5-3
for opaque types 4-8
for simple-large-object data 5-3, 6-15
for SQL data types 5-3
for SQL statements 5-3
for statement IDs 5-3
for table names 5-3
globalized error messages and 4-10
handling mismatched characters 1-28
in ESQL/C program 6-14
limitations 1-28
lossy error 1-28
performing 1-29, 4-2, 5-3
registry file A-10, A-11
role of CLIENT_LOCALE 4-2, 5-1
role of DB_LOCALE 4-2, 5-1
role of SERVER_LOCALE 4-2
two-way A-9

Code-set file
description of 1-8, A-10
listing A-14
location of A-10
object A-10
removing A-12
source A-10

Code-set-conversion file
description of 1-8, A-8
listing 5-1, A-13
location of A-8
object A-8, A-11
removing unused A-11
source 1-28, A-8, A-11

Collation
definition of 1-10
equivalence classes 1-11, 3-19, 3-23, 3-24, 3-25, A-4
of character data 3-18
of NCHAR 3-6
of NVARCHAR 3-8
Unicode collation 1-12
weights A-4

X-2 IBM Informix GLS User's Guide

COLLATION locale category
description of A-2, A-4
in client locale 1-17
in locale source file A-6
in server-processing locale 1-26

Collation order
code-set 1-11, 1-12, 3-9
localized 1-5, 1-11, 1-12, 1-26, 2-2, 2-5, 2-20, 3-9
tasks affected by 1-10
types of 1-10

Column (database)
expressions 3-13
in code-set conversion 5-3
naming 1-5, 1-6, 3-2, 4-6, 6-1
substrings 3-13, 3-17

Command-line
arguments 4-4

Comment indicators 3-12
Comments 2-2, 3-12, 6-1
compliance with standards xii
Conditions

BETWEEN 3-22
IN 3-23
LIKE 3-25
MATCHES 3-24
relational operator 3-21

Configuration parameters 4-1
SQL_LOGICAL_CHAR 3-36

CONNECT statement 3-2
Constraints 3-2, 4-6, 6-1
Conversion functions 5-6
Conversion modifier 1-32, 2-12, 2-17
CREATE CAST statement 3-2
CREATE DATABASE statement 3-2, 3-5
CREATE DISTINCT TYPE statement 3-2
CREATE FUNCTION statement 3-2
CREATE INDEX statement 3-1, 3-2, 3-18
CREATE OPAQUE TYPE statement 3-2
CREATE OPCLASS statement 3-2
CREATE PROCEDURE statement 3-2
CREATE ROLE statement 3-2
CREATE ROW TYPE statement 3-2
CREATE SEQUENCE statement 3-2
CREATE SYNONYM statement 3-2
CREATE TABLE statement 3-5

column name in 3-2
constraint name in 3-2
MONEY columns 3-31
names of database objects 3-1
table name in 3-2

CREATE TABLE statements
character column declarations 3-36

CREATE TRIGGER statement 3-2
CREATE VIEW statement 3-2, 3-5
CTYPE locale category

character case 6-14
description of A-2, A-3
in client locale 1-17
in locale source file A-6
in server-processing locale 1-26
white space characters 2-10, 2-15

Currency notation 1-14, 1-33, 2-5
Currency symbol 1-14, 1-22, 3-32, 6-11, A-5
Current processing locale 4-5, 4-12
Cursor 1-5, 1-6, 3-2, 4-6, 5-3, 6-1
cvY.txt file A-13
Cyrillic alphabet 3-5

D
Data

character 3-6
converting 5-3
corruption 1-17, 1-19
transferring 1-25

Data definition language (DDL) 3-1
Data types

BLOB 3-33
BYTE 5-3
CHAR 3-10, 5-3
character 3-6
CHARACTER 3-36
CHARACTER VARYING 3-36
CLOB 3-33, 3-36
code-set conversion of 5-3
collation order of 1-12
collection 3-36
complex 3-33
DATE A-5
DATETIME A-5
DECIMAL A-4
distinct 3-33, 3-36
FLOAT A-4
INTEGER A-4
internal format 1-13
LIST 3-36
locale-sensitive 1-19, 1-26, 3-6, 3-31, 6-6
locator structure 6-14
LVARCHAR 3-11, 3-36, 4-16
MULTISET 3-36
NCHAR 1-7, 3-6, 5-3, 6-6
numeric A-4
NVARCHAR 1-7, 3-8, 3-36, 5-3, 6-6
opaque 3-33, 4-8, 4-16
ROW 3-36
SET 3-36
SMALLFLOAT A-4
SMALLINT A-4
storage size declarations 3-36
TEXT 3-11, 3-36, 5-3
user-defined (UDTs) 3-36
VARCHAR 3-10, 3-36, 5-3

Database code set 1-28, 3-36, 5-1
Database locale

code set 1-28, 5-1
definition of 1-19
for UDR trace messages 4-13
in system catalog 1-19, 1-24
incompatible 1-24
setting 1-22
verifying 1-19, 1-24, 1-26

Database objects
and DB-Access 1-6
naming 3-1

Database server connection
client-locale information 1-24
establishing 1-24, 5-1
example 1-19
naming 3-2
sample 1-17
server-processing locale 1-17
verifying 1-24, 1-26, 5-1
warnings 1-24, 1-25

Database servers
chunk name 3-2
code-set conversion 1-29, 4-2

Index X-3

Database servers (continued)
collation 1-12
determining server-processing locale 1-24, 1-25
diagnostic files 4-1
end-user formats 1-13
internal formats 1-13
interpreting character data 1-19
log filename 3-2
message log file 4-1
multibyte characters 4-3
multibyte filenames 3-2
operating-system files 4-1
sample connection 1-16
setting a locale 1-8, 1-22
support for locales 1-5, 1-7
uses of client locale 1-24
uses of server locale 1-20, 4-1
using DB_LOCALE 1-19
utilities 1-6, 4-3
verifying a connection 1-24, 5-1
verifying database locale 1-24, 1-26

Databases
loading 3-35
naming 3-2, 4-6, 6-1
saving locale information 1-19
unloading 3-35

DataBlade Developers Kit (DBDK) 4-8
Date data

alternative formats 2-12
customizing format of 1-32
end-user format 1-21, 1-28, 1-32, A-5
format of A-5
locale-specific 1-5, 1-13
precedence of environment variables 1-33, 6-9

DATE data
setting GL_DATE 2-10

DATE data type
end-user format 1-21, 1-32, 2-3, 2-10, A-5
era-based dates 1-32
ESQL library functions 6-7
extended-format strings 6-8
internal format 1-13, 1-15
precedence of environment variables 1-33, 6-9

DATETIME data type
end-user format 1-21, 1-32, 2-6, 2-15, A-5
era-based dates 1-32
ESQL library functions 6-9
extended-format strings 6-10
formatting directives for 2-15
internal format 1-15
precedence of environment variables 1-33, 6-10

DB_LOCALE environment variable 1-3
default value 1-22
example of locale name 2-5
information it determines 1-19, 1-20
precedence of 1-26
role in code-set conversion 4-2, 5-1
role in exception messages 4-10
setting 1-22
syntax 2-5
verifying database locale 1-24
with utilities 4-3

DB-Access utility 1-6, 4-4
DBCENTURY environment variable 2-11
DBDATE environment variable

era-based dates 1-32, 3-34
ESQL library functions 6-7

DBDATE environment variable (continued)
precedence of 1-17, 1-28, 1-33, 6-9
setting 1-32
syntax 2-3

dbexport utility 1-6, 2-7, 4-4
dbimport utility 4-4
DBLANG environment variable 1-3, 5-5

precedence of 2-3
setting 1-31
syntax 2-3

dbload utility 4-4
DBMONEY environment variable 1-3

defining currency symbols 6-12
ESQL library functions 6-11, 6-13
precedence of 1-17, 1-28, 1-33, 6-11
sending to database server 1-24
setting 1-33
syntax 2-5

DBNLS environment variable 3-7, 5-1
dbschema utility 4-4
dbspaces

Unicode 1-12
DBTIME environment variable 1-3

era-based dates 3-34
ESQL library functions 6-10
precedence of 1-17, 1-28, 1-33, 6-10
setting 1-32
syntax 2-6

DECIMAL data type 1-33, A-4
Decimal separator 1-14, 1-22, 3-32, 6-11, A-2, A-4, A-5
DECLARE statement 3-2
Default locale

default code set 1-21, 1-23, A-7
for client application 1-22
for database server 1-22
locale name 1-21
required A-11

DEFINE statements of SPL 3-36
DELETE statements

era-based dates 3-34
GLS considerations 3-34
WHERE clause conditions 3-34

DELIMIDENT environment variable 3-4, 3-12
DESCRIBE statement 6-16
Diagnostic file 1-20, 4-1
Disabilities, visual

reading syntax diagrams B-1
Disability B-1
Distinct data types 3-2
Dollar ($) sign

as formatting character 6-12
currency symbol A-2
in identifiers 3-1

Dotted decimal format of syntax diagrams B-1
Double (") quotes 3-4
dtcvfmasc() library function 6-9
dttofmtasc() library function 6-9
DUMP* configuration parameters 4-1

E
End-user format

conversion modifier 2-12, 2-17
customizing 1-32
date data 1-15, 1-21, 1-32, 2-15, 4-9, A-5
DATE data 2-10
date format qualifiers 2-13

X-4 IBM Informix GLS User's Guide

End-user format (continued)
default 1-21, 1-22
definition of 1-13, 1-32, 1-33
environment variables 1-13
extended DATE-format strings 6-8
extended DATETIME format strings 6-10
formatting data 4-9, 5-6
locale categories 1-13
monetary data 1-14, 1-22, 1-33, 2-5, 4-9, A-5
numeric data 1-14, 1-22, 4-9, A-4
printing 1-14, 1-15, 2-14, 2-17
scanning 1-14, 1-15, 2-17
sending to database server 1-24, 1-28
time data 1-15, 1-21, 1-32, 2-15, A-5
time format qualifiers 2-17

English locale 1-23, A-6
Environment variables

CC8BITLEVEL 2-2, 6-4
CLIENT_LOCALE 1-22, 2-2
DB_LOCALE 1-22, 2-5
DBCENTURY 2-11
DBDATE 2-3
DBLANG 2-3, 5-5
DBMONEY 2-5
DBNLS 5-1
DBTIME 2-6
DELIMIDENT 3-4, 3-12
ESQLMF 2-7, 6-4
for end-user formats 1-13
GL_DATE 2-10
GL_DATETIME 2-15
GL_PATH 2-1
GL_USEGLU 2-20
GLS-related 2-1
GLS8BITFSYS 2-7
INFORMIXDIR 5-5
locale 4-3
locale-related 1-22
precedence for client locale 1-17
precedence for DATE data 1-33, 6-9
precedence for DATETIME data 1-33, 6-10
precedence for monetary data 1-33, 6-11
precedence for server-processing locale 1-26, 1-28
SERVER_LOCALE 1-22, 2-20

Era-based dates
DATE-format functions 6-7
DATETIME-format functions 6-9
DBDATE formats 6-7
DBTIME formats 6-10
defined in locale A-5
definition of 1-15
extended-format strings 6-8, 6-10
GL_DATE formats 1-32, 2-12
GL_DATETIME formats 1-32
in DELETE statement 3-34
in INSERT statement 3-34
in SQL statements 3-34
in UPDATE statement 3-34
sample 1-15

Error message files 5-5
Error messages

DATE-format 6-14
DATETIME-format 6-14
globalizing 4-10
GLS-specific 6-14
in code-set conversion 5-3
numeric-format 6-14

Escape character 3-26
ESQL library functions

currency notation in 6-11, 6-12
DATE-format functions 6-7
DATETIME-format functions 6-9
GLS enhancements 6-7
numeric-format functions 6-11
string functions 6-14

ESQL/C data types 1-7, 5-3, 6-6
ESQL/C filter

description of 6-3
invoking 6-4
non-ASCII characters 6-3
with CC8BITLEVEL 6-4
with CC8BITLEVEL environment variable 2-2
with ESQLMF 2-7, 6-4

ESQL/C function library
dtcvfmtasc() 6-9
dttofmtasc() 6-9
GLS error messages 6-14
precedence for DATE data 6-9
precedence for DATETIME data 6-10
precedence for MONEY data 6-11
rdatestr() 6-7
rdefmtdate() 6-7, 6-8
rdownshift() 6-14
rfmtdate() 6-7, 6-8
rfmtdec() 6-11
rfmtdouble() 6-11
rfmtlong() 6-11
rstrdate() 6-7
rupshift() 6-14

ESQL/C preprocessor 1-17, 6-3
ESQL/C processor

definition of 5-6
invoking ESQL/C filter 2-2, 6-4
multibyte characters 2-7, 6-3
non-ASCII file names 2-7
non-ASCII filenames 6-3
non-ASCII source code 6-4
operating-system files 5-6
with CC8BITLEVEL 2-2
with ESQLMF 2-7, 6-4

ESQL/C program
accessing NCHAR data 6-6
accessing NVARCHAR data 6-6
checking database connection 1-24, 1-25
comments 2-2, 6-1
compiling 6-4
data type constants 6-15
filenames 6-1
handling code-set conversion 6-14
host variables 1-17, 6-1
indicator variables 6-1
literal strings 1-13, 1-17, 2-2, 6-1
writing simple large objects to database 6-14

ESQLMF environment variable 1-3, 2-7, 6-4
Explain file 1-20
External representation of opaque data 4-16

F
FETCH statement 3-2
File extensions

.c 5-6, 6-4

.c_ 6-4

.cm A-10, A-12

Index X-5

File extensions (continued)
.cmo A-10
.cv 1-28, A-8, A-11
.cvo A-8, A-11
.ec 5-6, 6-4
.iem 2-3
.lc A-6, A-8, A-11
.lco A-6, A-11
.o 6-4

Filename
7-bit clean 2-7
8-bit clean 1-9
generating 2-8, 6-3
illegal characters in 2-7
non-ASCII 2-8, 3-2, 4-6, 6-1, 6-3
validating 4-2

Files
cmZ.txt A-14
cvY.txt A-13
diagnostic 1-20, 4-1
Informix-proprietary 1-20
lcX.txt A-13
LOAD FROM 3-35
locale object file A-6
locale source file A-6
log 1-20, 4-1
message 1-20, 1-29, 1-31, 2-3
registry 1-8, A-10, A-11
sqexplain.out 1-20
text 3-35
UNLOAD TO 3-35

finderr utility 6-14
FLOAT data type 1-33, A-4
Formatting 5-6
Formatting directive

conversion modifiers 1-32, 2-12
field precision 2-14, 2-17
field specification 2-13, 2-14, 2-17
field width 2-14, 2-17
white space 2-10
with GL_DATE 2-10
with GL_DATETIME 2-15

French locale 1-13, 1-14, 1-23, 1-26, 2-2, 2-5, 2-20, 3-5, 5-1, A-6
Functions, case-sensitive 3-17

G
GB18030-2000 code set 1-9, 1-29, 2-20
Gengo year format 1-15
German locale 1-17, 1-19, 1-23, A-6
GL_DATE environment variable 1-3

era-based dates 1-32, 3-34
ESQL library functions 6-7
formatting directives 2-10
precedence of 1-17, 1-28, 1-33, 6-9
sending to database server 1-24
setting 1-32
syntax 2-10

GL_DATETIME environment variable 1-3
era-based dates 3-34
era-based dates and times 1-32
ESQL library functions 6-9
formatting directives 2-15
precedence of 1-17, 1-28, 1-33, 6-10
sending to database server 1-24
setting 1-32
syntax 2-15

gl_dprintf() function 4-13
GL_DPRINTF() tracing function 4-14
GL_PATH environment variable 2-1
gl_tprintf() function 4-13
gl_tprintf() tracing function 4-14
GL_USEGLU environment variable 2-20
gl_wchar_t data type 4-7
glfiles utility

-cm option A-14
-cv option A-13
-lc option A-13
charmap files A-14
code-set files A-14
code-set-conversion files 5-1, A-13
locale files 2-2, 2-5, 2-20, A-13
sample output A-13, A-14
syntax A-12

Globalization
C UDRs and 4-5
definition of 5-3
formatting data 4-9, 5-6
of error messages 4-10
of trace messages 4-13
processing characters 4-7, 5-6
UDRs and 4-5

GLS feature
available locales 2-2, 2-5, 2-20
CHAR data type 3-10
character data types for host variables 6-6
client/server environment 1-8, 1-16
description of 1-1
environment variables 2-1
ESQL library functions 6-7
for DataBlade modules 1-6
for SQL 3-1
functionality listed 1-5
fundamentals 1-1
GLS files A-6, A-8, A-10
GLS library 1-3
managing GLS files A-1
NCHAR data type 3-6
NVARCHAR data type 3-8
TEXT data type 3-11
using character data types 3-6
VARCHAR data type 3-10

GLS locale file 1-8
GLS_COLLATE tabname 1-19
GLS_CTYPE tabname 1-19
GLS8BITFSYS environment variable 1-3, 2-7
Graphical-replacement conversion 1-28
Greek alphabet 3-5
Gregorian calendar 1-15

H
Heisei era 1-15
HKEY_LOCAL_MACHINE registry setting 2-20, 4-3
Host variable

end-user formats 1-13
ESQL/C example 6-1, 6-2
naming 1-6, 3-2, 6-1, 6-2

I
IBM CCSID code set

437 1-29, A-9

X-6 IBM Informix GLS User's Guide

IBM CCSID code set (continued)
819 A-7, A-9, A-10
definition of 1-29

IBM Informix Client Software Development Kit 5-1
IBM Informix Dynamic Server, pathnames 3-2
IBM Informix GLS API 1-6, 4-7
Identifier

delimited 3-2
Non-ASCII characters 3-2

IN conditions 3-23
Index 3-2
Index keys

Unicode 1-12
Indicator variable 1-6, 6-1, 6-2
industry standards xii
INFORMIXDIR environment variable 5-5

location of charmap files A-14
location of code-set files A-10, A-14
location of code-set-conversion files A-8, A-13
location of locale files 1-16, A-6, A-13
location of message files 2-3
location of registry file A-10
with glfiles A-12

INITCAP function 3-12, 3-17
INSERT statements

embedded SELECT 3-34
end-user formats 1-13
era-based dates 3-34
GLS considerations 3-34
specifying quoted strings 3-12
VALUES clause 3-34

INTEGER data type A-4
International Components for Unicode (ICU) 1-8
International Language Supplement 1-7
International Language Supplement (ILS) 1-7

J
ja_jp.sjis locale 6-7
Japanese Imperial dates 1-15, 1-32
Japanese locale 1-22, 1-23, 1-26, 5-1
Japanese UJIS locale 3-5
Join condition 3-21

K
Kanji characters 3-5
Korean locale 1-23

L
LANG environment variable

precedence of 2-3
Language

code sets 1-29
default 1-21
for client application 1-17
for database 1-19
for database server 1-20
in locale name 1-24, 2-5, 2-20, A-6

lcX.txt file A-13
Left-to-right writing direction 1-19
LENGTH function 3-27
LIBMI applications 1-6
LIKE relational operator 1-10, 3-25
Literal matches 3-24, 3-25

Literal string 1-13, 2-2, 4-6, 6-1
Load file 3-35
LOAD statement 3-2, 3-34, 3-35
loc_buffer field 6-15
loc_t data type 6-14, 6-15
loc_type field 6-15
Locale environment variables 4-3
Locale file

description of 1-8, 1-16, A-2
listing 2-2, 2-5, 2-20, A-12, A-13
location of 1-16, A-6
object A-6, A-11
removing unused A-11
required A-11
source A-6, A-11

Locale modifier 1-24, 2-2, 2-5, 2-20, A-7
Locale name 2-2

code-set name 1-21, 1-24, 2-2, 2-5, 2-20
example 2-2, 2-5, 2-20
language name 1-24, 2-2, 2-5, 2-20, A-6
locale modifier name 1-24, 2-2, 2-5, 2-20, A-7
territory name 1-24, 2-2, 2-5, 2-20, A-6

Locale-sensitive data types 1-25
Locales

alpha class 3-5
character classes 1-10
choosing 5-4
current 5-4
current processing 4-5, 4-12
definition of 1-8
environment variables 1-22
file name A-7
filename A-6
for database server connections 1-24
in custom messages 4-12
in trace messages 4-15
listing 2-2, 2-5, 2-20, A-12
locale categories 1-13, A-2
non-ASCII characters 1-23
setting 1-16, 1-22
verifying 1-24, 1-26

Localization 5-4
Locator structure 6-15
Log file name, non-ASCII characters in 3-2
Log files 1-20, 4-1
Logical character semantics in type declarations 3-36
Lossy error 1-28
Lower class 1-10
LOWER function 3-12, 3-17
LVARCHAR data type

code-set conversion 5-3
collation order 1-12
GLS aspects 3-11
multibyte characters 3-36
representing opaque data types 4-16

M
malloc() system call 6-16
MATCHES relational operator 1-10, 3-24
MERGE statement 3-34
MERGE statements

embedded SELECT 3-34
SET clause 3-34
VALUES clause 3-34
WHERE clause conditions 3-34

Index X-7

Message file
compiled 2-3
language-specific 2-3
localized 1-31
locating at runtime 2-3
requirements 5-5
specifying location of 1-31, 2-3

Message log
and code-set conversion 1-29
non-ASCII characters in 2-9

MESSAGES locale category
description of A-2, A-6
in locale source file A-6
in server-processing locale 1-28

mi_convert_from_codeset() DataBlade API function 4-8
mi_convert_to_codeset() DataBlade API function 4-8
mi_date_to_string() DataBlade API function 4-9
mi_datetime_to_string() function 4-9
mi_db_error_raise() function 4-10
mi_decimal_to_string() DataBlade API function 4-9
mi_exec_prepared_statement() function 4-5
mi_exec() function 4-5, 4-6, 4-11
mi_get_string() DataBlade API function 4-8
mi_interval_to_string() function 4-9
MI_LIST_END tracing constant 4-14
mi_money_to_string() DataBlade API function 4-9
mi_prepare() function 4-6
mi_put_string() DataBlade API function 4-8
mi_string_to_date() DataBlade API function 4-9
mi_string_to_datetime() function 4-9
mi_string_to_decimal() DataBlade API function 4-9
mi_string_to_interval() function 4-9
mi_string_to_money() DataBlade API function 4-9
mi_wchar data type 4-7
Ming Guo year format 1-15, 1-32
Minus (-) sign

unary operator A-2
Monetary data

currency notation 1-13, 3-32, A-5
currency symbol 1-14, 1-22, 3-32, 6-11, A-5
decimal separator 1-14, 1-22, 3-32, 6-11, A-5
default scale 3-31
end-user format 1-22, 1-28, 1-33, A-5
format of A-5
locale-specific 1-5
negative 1-14, 1-22, A-5
positive 1-14, 1-22, A-5
precedence of environment variables 1-33, 6-11
thousands separator 1-14, 1-22, 3-32, 6-11, A-5

MONETARY locale category
currency symbol 6-12
description of A-2, A-5
end-user formats A-5
in client locale 1-17
in locale source file A-6
in server-processing locale 1-28
numeric-formatting functions 6-11

MONEY data type
defining 3-31
end-user format 2-5
internal format 1-14, 1-33, 3-31
precedence of environment variables 1-33, 6-11

MSGPATH configuration parameter 2-9, 4-1
Multibyte characters 4-7

column substrings 3-14
definition of 1-9
filtering 6-3

Multibyte characters (continued)
in cast names 3-2
in column names 1-5, 1-6, 3-2, 4-6, 6-1
in comments 2-2, 6-1
in connection names 3-2
in constraint names 3-2, 4-6, 6-1
in cursor names 1-5, 1-6, 3-2, 4-6, 6-1
in data type names 3-2
in database names 3-2, 4-6, 6-1
in database server file names 3-2
in database server filenames 3-2
in database server utilities 4-3
in delimited identifiers 3-2
in ESQL file names 6-3
in file names 2-8, 3-2, 4-6, 6-1
in filenames 1-23
in function names 3-2
in host variables 1-6, 3-2, 6-1, 6-2
in index names 3-2
in indicator variables 1-6, 6-1
in literal strings 2-2, 4-6, 6-1
in LOAD FROM file 3-35
in NCHAR columns 3-7
in numeric formats 6-11
in NVARCHAR columns 3-9
in opaque data type names 3-2
in operator-class names 3-2
in owner names 3-3
in procedure names 3-2
in quoted strings 3-12
in role names 3-2
in routine names 3-2
in ROW data type names 3-2
in sequence names 3-2
in SPL routines 1-6, 3-2
in SQL comments 3-12
in statement IDs 1-5, 1-6, 3-2, 4-6, 6-1
in synonym names 3-2
in table aliases 3-2
in table names 1-5, 1-6, 3-2, 4-6, 6-1
in trigger names 3-2
in triggers 3-2
in UNLOAD TO file 3-35
in view names 1-5, 1-6, 3-2, 4-6, 6-1
partial characters 3-15, 5-7
processing 2-2, 5-6, 6-3
shifting case of 6-14
storage requirements 3-36
support by C compiler 4-6, 6-3
support for 1-23
with CC8BITLEVEL environment variable 2-2
with GLS8BITFSYS environment variable 2-8
with SQL_LOGICAL_CHAR configuration parameter 3-36

Multicharacter collation elements A-4

N
National language support (NLS) 1-5
NCHAR data type

code-set conversion 1-7, 5-3
collation order 1-12, 3-6
description of 3-6
difference from CHAR 3-6
in ESQL/C program 6-6
in regular expressions 1-5
inserting into database 6-6
multibyte characters 3-7

X-8 IBM Informix GLS User's Guide

NCHAR data type (continued)
nonprintable characters 3-7
with numeric values 3-7

NLSCASE INSENSITIVE database property 3-6
Non-ASCII character

definition of 1-9
examples 1-23
filtering 6-3
in cast names 3-2
in column names 1-5, 1-6, 3-2, 4-6, 6-1
in comments 2-2, 6-1
in connection names 3-2
in constraint names 3-2, 4-6, 6-1
in cursor names 1-5, 1-6, 3-2, 4-6, 6-1
in database names 3-2, 4-6, 6-1
in delimited identifiers 3-2
in distinct data type names 3-2
in ESQL filenames 6-3
in file names 2-8
in filenames 3-2, 4-6, 6-1
in host variables 1-6, 3-2, 6-1, 6-2
in index names 3-2
in indicator variables 1-6, 6-1
in literal strings 2-2, 4-6, 6-1
in LOAD FROM file 3-35
in opaque data type names 3-2
in operator-class names 3-2
in owner names 3-3
in quoted strings 3-12
in role names 3-2
in ROW data type names 3-2
in sequence names 3-2
in SPL routines 1-6, 3-2
in SQL comments 3-12
in statement IDs 1-5, 1-6, 3-2, 4-6, 6-1
in synonym names 3-2
in table names 1-5, 1-6, 3-2, 4-6, 6-1
in trigger names 3-2
in triggers 3-2
in UDR source files 4-5
in UNLOAD TO file 3-35
in view names 1-5, 1-6, 3-2, 4-6, 6-1
processing 2-2, 6-3
support for 1-23
with CC8BITLEVEL environment variable 2-2
with GLS8BITFSYS environment variable 2-8

Non-Gregorian calendar 1-15
Non-Roman alphabets 3-5
Nondefault page size and Unicode 1-12
Numeric data

currency notation in 6-11
decimal separator 1-14, 1-22, 6-11, A-4
end-user format 1-13, 1-22, 1-28, A-4
ESQL functions 6-11
format of A-4
locale-specific 1-5
negative 1-14, 1-22, A-4
positive 1-14, 1-22, A-4
thousands separator 1-14, 1-22, 6-11, A-4

NUMERIC locale category
alternative digits 2-12, 2-17, A-4
description of A-2, A-4
end-user formats A-4
in client locale 1-17
in locale source file A-6
in server-processing locale 1-28
numeric-formatting functions 6-11

Numeric notation 1-14
NVARCHAR data type

code-set conversion 1-7, 5-3
collation order 1-12, 3-8
description of 3-8
difference from VARCHAR 3-8
in ESQL/C program 6-6
in regular expressions 1-5
inserting into database 6-6
multibyte characters 3-9, 3-36
nonprintable characters 3-9

O
OCTET_LENGTH function 3-28
onaudit utility 4-4
oncheck utility 4-4
ONCONFIG configuration parameters 1-1
onload utility 4-4
onlog utility 4-4
onmode utility 1-6
onpload utility 4-4
onshowaudit utility 4-4
onspaces utility 4-4
onstat utility 4-4
onunload utility 4-4
Opaque data types 3-2, 3-33, 4-8, 4-16

identifier 3-2
Operating system

8-bit clean 1-9, 2-8
character encoding 1-29
limitations 6-3
need for code-set conversion 1-29
saving disk space A-11

Operator class 3-2
ORDER BY clause (SELECT) 1-10, 3-19
ORDER SIBLINGS BY clause of SELECT statements 3-16
Owner name 3-3

P
Parameter marker 4-13
Partial characters 3-14, 5-7
path name 3-2
Path name 3-4
Percent (%) symbol 4-13
PREPARE statement 3-2
Pseudo-user 3-3

Q
Question (?) mark wildcard 3-26
Quoted string 3-4, 3-12

R
Range matches 3-24
rdatestr() library function 1-13, 6-7
rdefmtdate() library function 6-7, 6-8
rdownshift() library function 6-14
receive() function 4-17
registry file 1-8, A-10, A-11
Regular expression 1-5, 1-19
Relational-operator conditions 3-21
RENAME COLUMN statement 3-1

Index X-9

Resource file 5-5
rfmtdate() library function 6-7, 6-8
rfmtdec() library function 6-11
rfmtdouble() library function 6-11
rfmtlong() library function 6-11
rgetlmsg() library function 5-5
rgetmsg() library function 5-5
Right-to-left writing direction 1-19
Role 3-2
Round-trip conversion 1-28
ROW data types 3-2
rstrdate() library function 6-7
Runtime error, custom message 4-10
rupshift() library function 6-14

S
Schema name 3-3
Screen reader

reading syntax diagrams B-1
Search functions 3-17
SELECT statements

and collation order 1-10
collation of character data 3-18, 3-19
embedded 3-34
LIKE keyword 3-25
MATCHES relational operator 3-24
ORDER BY clause 1-10, 3-19
select-list columns 6-16
specifying literal matches 3-24, 3-25
specifying matches with a range 3-24
specifying quoted strings 3-12
using length functions 3-26
using TRIM 3-17, 6-17
WHERE clause 1-10, 3-21

send() function 4-17
Sequence 3-2
Server code set 1-28
Server computer

server code set 1-28
setting DB_LOCALE 1-22
setting SERVER_LOCALE 1-22

Server locale
code set 1-28
definition of 1-20
in trace messages 4-13
setting 1-22
uses of 4-1

SERVER_LOCALE environment variable 1-3, 2-20
database server filenames 4-1
default value 1-22
example of locale name 2-20
location of message files 2-3
precedence of 2-3
role in code-set conversion 4-2
setting 1-22
syntax 2-20
with utilities 4-3

Server-processing locale
code-set conversion 4-2
COLLATION category 1-26
CTYPE category 1-26
date data 1-28
definition of 1-25
determining 1-25
filename checking 4-2
for exception messages 4-12

Server-processing locale (continued)
initialization of 1-25
localized collation 1-26
MESSAGES category 1-28
MONETARY category 1-28
monetary data 1-28
NUMERIC category 1-28
numeric data 1-28
precedence of environment variables 1-26, 1-28
TIME category 1-28
time data 1-28
UDRs and 4-5

SET clause of INSERT or MERGE 3-34
SET COLLATION statement 1-11, 2-5, 3-18, 3-24, A-4
SET EXPLAIN statement 1-20
SET NO COLLATION statement 1-11
Shortcut keys

keyboard B-1
Single quotes 3-4
Single-byte characters 1-9, 3-13, 3-15
SMALLFLOAT data type A-4
SMALLINT data type A-4
Spanish locale 1-23
SPL routines 1-5, 1-6, 3-2
SQL API products

comments 6-1
ESQL library enhancements 6-7
filenames 6-1
host variables 6-1
literal strings 6-1
SQL identifier names 6-1
using GLS8BITFSYS 2-7

SQL functions for case 3-17
SQL identifier

delimited 3-2
examples 3-5
non-ASCII characters 4-6, 6-1
owner names 3-3
rules for 3-1

SQL length function
CHAR_LENGTH 3-30
classification of 3-26
LENGTH 3-27
OCTET_LENGTH 3-28
using 3-26

SQL segments 3-3
SQL statements

ALTER TABLE 3-36
CONNECT 3-2
CREATE CAST 3-2
CREATE DISTINCT TYPE 3-2
CREATE FUNCTION 3-2
CREATE INDEX 3-1, 3-2, 3-18
CREATE OPAQUE TYPE 3-2
CREATE OPCLASS 3-2
CREATE PROCEDURE 3-2
CREATE ROLE 3-2
CREATE ROW TYPE 3-2
CREATE SEQUENCE 3-2
CREATE SYNONYM 3-2
CREATE TABLE 3-36
CREATE TRIGGER 3-2
CREATE VIEW 3-2
data definition 3-36
data manipulation 3-34
DECLARE 3-2
DELETE 3-34

X-10 IBM Informix GLS User's Guide

SQL statements (continued)
DESCRIBE 6-16
end-user formats in 1-13
FETCH 3-2
in code-set conversion 4-6, 5-3
in UDRs 4-6
LOAD 3-2, 3-34, 3-35
MERGE 3-34
PREPARE 3-2
RENAME COLUMN 3-1
SELECT 3-16
SET COLLATION 3-18, 3-24, A-4
SET COLLATION statement 1-11
SET EXPLAIN 1-20
UNLOAD 3-34, 3-35
UPDATE 3-34

SQL utilities 4-4
SQL_LOGICAL_CHAR configuration parameter 3-36
SQL-99 standard 3-12
SQLBYTES data type constant 6-15
sqlca structure

connection warnings 1-24
sqlerrm 5-3
SQLWARN array 1-24, 1-25, 1-26, 5-1
sqlwarn.sqlwarn7 1-25
warning character 1-24

sqlca.sqlwarn.sqlwarn7 flag 1-25
sqlda structure 6-14, 6-16
sqlda.sqlvar.sqldata field 6-16
sqlda.sqlvar.sqllen field 6-16
sqlda.sqlvar.sqlname field 6-17
SQLSTATE status value 4-10
SQLTEXT data type constant 6-15
sqltypes.h header file 6-15, 6-17
sqlvar_struct structure

description of 6-16
sqldata field 6-16
sqllen field 6-16
sqlname field 6-17
storing column data 6-16

SQLWARN warning flag 1-24, 1-25, 1-26, 5-1
standards xii
Statement identifier 1-5, 1-6, 3-2, 4-6, 5-3, 6-1
Substitution conversion 1-28
Substring 3-13, 3-17
Synonym 3-2
Syntax diagrams

reading in a screen reader B-1
syserrors system catalog table 4-10, 4-12
systables system catalog table 1-19
System catalogs 1-19
systracemsgs system catalog table 4-13, 4-14, 4-15

T
Table (database)

in code-set conversion 5-3
naming 1-5, 1-6, 3-2, 4-6, 6-1

Taiwanese dates 1-15, 1-32
Territory 1-21, 1-24, 2-2, 2-5, 2-20, A-6
TEXT data type

code-set conversion 5-3
collation order 1-12
GLS aspects 3-11
in code-set conversion 6-14
partial characters 3-17

Thousands separator 1-14, 1-22, 3-32, 6-11, A-4, A-5

Time data
customizing format of 1-32
end-user format 1-21, 1-28, 1-32, A-5
format of A-5
locale-specific 1-5, 1-13
precedence of environment variables 1-33, 6-10
with DBTIME 2-6
with GL_DATE 2-15

TIME locale category
description of A-2, A-5
end-user formats A-5
era information 2-12, 2-17, A-5
in client locale 1-17
in locale source file A-6
in server-processing locale 1-28

Token names 4-13
Top-to-bottom writing direction 1-19
Trace block 4-14
Trace message 4-13
Tracing

GL_DPRINTF macro 4-14
gl_tprintf() function 4-14
trace blocks 4-14
trace message 4-15

Triggers 3-2
TRIM function 3-12, 3-17, 6-17

U
Unicode

Basic Multilingual Plane (BMP) 1-29
Collation Algorithm 1-12
dbspaces 1-12
index keys 1-12
nondefault page size 1-12
UTF-8, UTF-16, and UTF-32 code sets 1-8

Unified Chinese code set (GB18030) 1-9, 1-29
UNIX environment

default locale 1-21
glfiles utility 2-2, 2-5, 2-20
supported code-set conversions 5-1
supported locales 2-2, 2-5, 2-20

Unload file 3-35
UNLOAD statement 3-34, 3-35
Unsigned short 4-7
UPDATE statements

embedded SELECT 3-34
era-based dates 3-34
GLS considerations 3-34
SET clause 3-34
WHERE clause conditions 3-34

UPPER function 3-12, 3-17
User-defined function 3-2
User-defined procedure 3-2
User-defined routine (UDR)

character strings in 4-7, 4-8
code-set conversion in 4-8
current processing locale 4-5
exception messages 4-10
file names 4-6
Globalized 4-5
IBM Informix GLS API 4-7
literal strings 4-6
locale support 4-5
non-ASCII source code 4-5
SQL identifier names 4-6
trace messages 4-13

Index X-11

User-defined routines 3-2
UTF-8 character encoding 2-20
UTF-8 code set 1-8
Utilities 1-6

chkenv 4-4
database server 1-6
database server utilities 4-3
DB-Access 1-6, 4-4
dbexport 1-6, 4-4
dbimport 4-4
dbload 4-4
dbschema 4-4
glfiles 2-2, 2-5, 2-20, 5-1, A-12
onaudit 4-4
oncheck 4-4
onload 4-4
onlog 4-4
onmode 1-6
onpload 4-4
onshowaudit 4-4
onspaces 4-4
onstat utility 4-4
onunload 4-4
SQL utilities 4-4
supporting multibyte characters 4-3

V
VALUES clause of INSERT or MERGE 3-34
VARCHAR data type

and GLS 1-7
code-set conversion 5-3
collation order 1-12
difference from NVARCHAR 3-8
GLS aspects 3-10
multibyte characters 3-36

View 1-5, 1-6, 3-2, 4-6, 6-1
Visual disabilities

reading syntax diagrams B-1

W
W warning character 1-24
Warnings 1-24, 1-25, 1-26, 5-1

custom 4-10
wchar_t data type 4-7
WHERE clause

and collation order 1-10
BETWEEN condition 3-22
IN condition 3-23
in DELETE statement 3-34
in INSERT statement 3-34
in MERGE statement 3-34
in UNLOAD statement 3-34
in UPDATE statement 3-34
logical predicates 3-21
relational-operator condition 3-21

White space
in formatting directives 2-10, 2-15
in locale A-3

Wide character 4-7
Wildcard character 3-26
Windows environments

default locale 1-21
supported code-set conversions 5-1

Writing direction 1-19

Y
Year 0000 1-15

Z
Zeros in number values 3-7

X-12 IBM Informix GLS User's Guide

����

Printed in USA

G229-6373-07

Sp
in
e
in
fo
rm
at
io
n:

In
fo

rm
ix

Pr
od

uc
tF

am
ily

In
fo

rm
ix

Gl
ob

al
La

ng
ua

ge
Su

pp
or

t
Ve

rs
io

n
4.

50
IB

M
In

fo
rm

ix
GL

S
Us

er
's

Gu
id

e
�
�

�

	Contents
	Introduction
	About this publication
	Types of users
	Software compatibility
	Assumptions about your locale
	Demonstration databases

	What's new in GLS, Version 4.50
	Character-representation conventions
	Single-byte characters
	Multibyte characters
	Single-byte and multibyte characters in the same string
	White space characters in strings
	Trailing white space characters

	Example code conventions
	Additional documentation
	Compliance with industry standards
	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback

	Chapter 1. GLS fundamentals
	Character-representation conventions
	Single-byte characters
	Multibyte characters
	Single-byte and multibyte characters in the same string
	White space characters in strings
	Trailing white space characters

	The GLS feature
	GLS support by IBM Informix products
	IBM Informix database servers
	IBM Informix client applications and utilities
	The IBM Informix GLS application programming interface
	Supported data types
	International Language Supplement

	A GLS locale
	Code sets for character data
	Character classes of the code set
	Collation order for character data
	Code-set order
	Localized order
	Unicode collation
	Collation support

	End-user formats
	Numeric and monetary formats
	Date and time formats

	Set a GLS locale
	Locales in the client/server environment
	The client locale
	The database locale
	The server locale

	The default locale
	The default code set
	Default end-user formats for date and time
	Default end-user formats for numeric and monetary values

	Set a nondefault locale

	GLS locales with IBM Informix products
	Support for non-ASCII characters
	Establish a database connection
	Send the client locale
	Verify the database locale
	Check for connection warnings
	Determine the server-processing locale

	Perform code-set conversion
	When code-set conversion is performed

	Locate message files

	Customize end-user formats
	Customize date and time end-user formats
	Era-based date and time formats
	Date and time precedence

	Customize monetary values

	Chapter 2. GLS environment variables
	Set and retrieve environment variables
	GLS-related environment variables
	The CC8BITLEVEL environment variable
	The CLIENT_LOCALE environment variable
	The DBDATE environment variable
	The DBLANG environment variable
	The DB_LOCALE environment variable
	The DBMONEY environment variable
	The DBTIME environment variable (ESQL/C)
	The ESQLMF environment variable
	The GLS8BITFSYS environment variable
	Restrictions on non-ASCII file names

	The GL_DATE environment variable
	The year formatting directives
	Alternative date formats
	Optional date format qualifiers

	The GL_DATETIME environment variable
	Alternative time formats
	Optional time format qualifiers
	Creation-time settings
	The USE_DTENV environment variable

	The GL_USEGLU environment variable
	The SERVER_LOCALE environment variable

	Chapter 3. SQL features
	Name database objects
	Rules for identifiers
	Non-ASCII characters in identifiers
	Qualifiers of SQL identifiers
	Owner names
	Path names and file names
	Delimited identifiers

	Valid characters in identifiers

	Character data types
	Localized collation of character data
	The NCHAR data type
	The NVARCHAR data type
	Performance considerations

	Other character data types
	The CHAR data type
	The VARCHAR data type
	The LVARCHAR data type
	The TEXT data type

	Handle character data
	Specify quoted strings
	Specify comments
	Specify column substrings
	Column substrings in single-byte code sets
	Column substrings in multibyte code sets
	Partial characters in column substrings
	Errors involving partial characters
	Partial characters in an ORDER BY clause

	Specify arguments to the TRIM function
	Search functions that are not case-sensitive
	Collate character data
	Collation order in CREATE INDEX
	Collation order in SELECT statements
	Comparisons with MATCHES and LIKE conditions

	SQL length functions
	The LENGTH function
	The OCTET_LENGTH function
	The CHAR_LENGTH function

	Locale-sensitive data types
	Handle the MONEY data type
	Specify values for the scale parameter
	Format of currency notation

	Handle extended data types
	Opaque data types
	Complex data types
	Distinct data types

	Handle smart large objects

	Data manipulation statements
	Specify conditions in the WHERE clause
	Specify era-based dates
	Load and unload data
	Load data into a database
	Unload data from a database

	Data definition statements
	Automatic resizing of the expansion factor

	Chapter 4. Database server features
	GLS support by IBM Informix database servers
	Database server code-set conversion
	Data that the database server converts

	Locale-specific support for utilities
	Non-ASCII characters in database server utilities
	Non-ASCII characters in SQL utilities

	Locale support for C User-defined routines (Informix and DB API)
	Current processing locale for UDRs
	Non-ASCII characters in source code
	In C-language statements
	In SQL statements

	Copy character data
	The IBM Informix GLS library
	Character processing with IBM Informix GLS
	Compatibility of wide-character data types

	Code-set conversion and the DataBlade API
	Character strings in UDRs
	Character strings in opaque-type support functions

	Locale-specific data formatting
	Globalized exception messages
	Insert customized exception messages
	Insert a localized exception message from a C UDR
	Search for customized messages
	Specify parameter markers

	Globalized tracing messages
	Insert messages in the systracemsgs system catalog table
	Put globalized trace messages into code
	Search for trace messages

	Locale-sensitive data in an opaque data type
	Globalized input and output support functions
	Globalized send and receive support functions

	Chapter 5. General SQL API features (ESQL/C)
	Support for GLS in IBM Informix client applications
	Client application code-set conversion
	Data that a client application converts

	Globalize client applications
	Globalization
	Localization
	Choose a GLS locale
	Translate messages

	Handle locale-specific data
	Process characters
	Format data
	Avoid partial characters
	Copy character data
	Code-set conversion

	Chapter 6. IBM Informix ESQL/C features
	Handle non-ASCII characters
	Non-ASCII characters in host variables
	Generate non-ASCII file names
	Non-ASCII characters in ESQL/C source files
	Filter non-ASCII characters
	Invoke the ESQL/C filter

	Define variables for locale-sensitive data
	Enhanced ESQL/C library functions
	DATE-format functions
	GL_DATE support
	DBDATE extensions
	Extended DATE-format strings
	Precedence for date end-user formats

	DATETIME-format functions
	GL_DATETIME support
	DBTIME support
	Extended DATETIME-format strings
	Precedence for DATETIME end-user formats

	Numeric-format functions
	Support for multibyte characters
	Locale-specific numeric formatting
	Currency-symbol formatting
	DBMONEY extensions

	String functions
	GLS-specific error messages

	Handle code-set conversion
	Writing TEXT values
	The DESCRIBE statement
	The sqldata field
	The sqlname field

	The TRIM function

	Appendix A. Manage GLS files
	Access GLS files
	GLS locale files
	Locale categories
	The CTYPE category
	The COLLATION category
	The NUMERIC category
	The MONETARY category
	The TIME category
	The MESSAGES category

	Location of locale files
	Locale-file subdirectories
	Locale source and object files
	Locale file names

	Other GLS files
	Code-set-conversion files
	Code-set-conversion source and object files
	Code-set-conversion file names
	Required for code-set conversion

	Code-set files
	The IBM Informix registry file (Windows)

	Remove unused files
	Remove locale and code-set-conversion files
	Remove code-set files

	The glfiles utility (UNIX)
	List code-set-conversion files
	List GLS locale files
	List character-mapping files

	Appendix B. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

