
Informix Product Family
Informix Client Software Development Kit
Version 3.50

IBM Informix .NET Provider
Reference Guide

SC23-9425-06

���

Informix Product Family
Informix Client Software Development Kit
Version 3.50

IBM Informix .NET Provider
Reference Guide

SC23-9425-06

���

Note
Before using this information and the product it supports, read the information in “Notices” on page B-1.

This edition replaces SC23-9425-05.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2003, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . vii
About this publication . vii
What's new in IBM Informix .NET Provider, Version 3.50 . vii
Example code conventions . viii
Additional documentation . ix
Compliance with industry standards . ix
Syntax diagrams . ix

How to read a command-line syntax diagram . x
Keywords and punctuation . xii
Identifiers and names . xii

How to provide documentation feedback . xii

Chapter 1. Overview of the IBM Informix .NET Provider 1-1
What is the Informix .NET Provider? . 1-1
Supported programming environments . 1-1
Visual Studio data access support . 1-2
Support for IPv6 . 1-2
Install the IBM Informix .NET Provider . 1-2

Update the PATH environment variable for Microsoft Windows 64-bit Systems 1-3
Prepare the database server . 1-3

Overview of the .NET provider class library . 1-4
Thread-safety of provider types . 1-5
Namespace requirements . 1-5
Connecting to a database . 1-5

Reconcile DataSet changes with the database . 1-6
The connection pool . 1-7
Set FullTrust permission . 1-7

The ? parameter markers . 1-8
Parameter arrays . 1-8
Call stored procedures . 1-8
IfxProviderFactory objects to write database-independent code 1-8
Distributed transactions . 1-8
The OUT and INOUT Parameters. 1-9
Generic coding with the ADO.NET common base classes 1-11
Error messages . 1-11

Tracing . 1-12
Error checking during data transfer. 1-12

Chapter 2. Mapping data types . 2-1
Retrieve data . 2-1
Set data types for a parameter . 2-2
Display format of FLOAT, DECIMAL, or MONEY data types 2-3

Chapter 3. Type reference . 3-1
Supported public .NET interfaces . 3-1
Supported Public .NET base classes . 3-2
Prototype syntax . 3-2
IfxBlob class . 3-3

The IfxBlob internal cursor . 3-3
Create an IfxBlob . 3-3
IfxBlob public properties . 3-4
IfxBlob public methods . 3-5

IfxClob class . 3-8
The IfxClob internal cursor . 3-8
Create an IfxClob . 3-8

© Copyright IBM Corp. 2003, 2011 iii

IfxClob public properties. 3-9
IfxClob public methods . 3-10

IfxCommand class . 3-13
Create an IfxCommand . 3-13
IfxCommand public properties . 3-13
IfxCommand public methods . 3-15
IfxCommand examples . 3-16

IfxCommandBuilder class . 3-17
Create an IfxCommandBuilder . 3-17
IfxCommandBuilder public properties . 3-17
IfxCommandBuilder public methods . 3-18
IfxCommandBuilder examples . 3-18

IfxConnection class . 3-19
Create an IfxConnection . 3-19
IfxConnection public properties . 3-19
IfxConnection public methods . 3-23
IfxConnection public events . 3-24
IfxConnection example . 3-24

IfxConnectionStringBuilder class . 3-24
Create an IfxConnectionStringBuilder . 3-24
IfxConnectionStringBuilder public properties . 3-25
IfxConnectionStringBuilder public methods . 3-25

IfxDataAdapter class. 3-26
Create an IfxDataAdapter . 3-26
IfxDataAdapter public properties . 3-26
IfxDataAdapter public methods . 3-28
IfxDataAdapter examples . 3-28

IfxDataReader class . 3-29
IfxDataReader public properties . 3-29
IfxDataReader public methods . 3-29
IfxDataReader example . 3-31

IfxDataSourceEnumerator class . 3-31
Create an IfxDataSourceEnumerator . 3-31
IfxDataSourceEnumerator public properties . 3-32
IfxDataSourceEnumerator public methods . 3-32

IfxDateTime structure . 3-32
Create an IfxDateTime . 3-33
IfxDateTime public properties . 3-34
IfxDateTime public methods . 3-35

IfxDecimal structure . 3-39
Create an IfxDecimal . 3-39
IfxDecimal properties . 3-40
IfxDecimal methods . 3-40

IfxError class . 3-44
IfxError public properties . 3-45

IfxErrorCollection class . 3-45
IfxErrorCollection public properties . 3-45
IfxErrorCollection public methods . 3-45

IfxException class. 3-45
IfxException public properties . 3-45

IfxMonthSpan structure. 3-46
Create an IfxMonthSpan . 3-46
IfxMonthSpan public properties . 3-46
IfxMonthSpan public methods . 3-47

IfxParameter class . 3-51
Create an IfxParameter class . 3-51
IfxParameter public properties . 3-52
IfxParameter examples . 3-52

IfxParameterCollection class . 3-53
Create an IfxParameterCollection . 3-53
IfxParameterCollection public properties . 3-53

iv IBM Informix .NET Provider Reference Guide

IfxParameterCollection public methods . 3-54
IfxProviderFactory class . 3-55

IfxProviderFactory public methods . 3-55
IfxSmartLOBCreateTimeFlags enumeration . 3-56
IfxSmartLOBFileLocation enumeration . 3-57
IfxSmartLOBLocator class . 3-57
IfxSmartLOBLockMode enumeration . 3-57
IfxSmartLOBOpenMode enumeration . 3-58
IfxSmartLOBWhence enumeration . 3-58
IfxTimeSpan structure . 3-58

Create an IfxTimeSpan . 3-59
IfxTimeSpan public properties . 3-60
IfxTimeSpan public methods . 3-61

IfxTimeUnit enumeration . 3-64
IfxTransaction class . 3-65

IfxTransaction public properties . 3-65
IfxTransaction public methods . 3-65
IfxTransaction example . 3-65

IfxType enumeration. 3-66

Chapter 4. Sample programs . 4-1
Demonstration programs . 4-1
IBM Informix .NET Provider examples . 4-1

Retrieve a single value . 4-1
Retrieve multiple rows . 4-2
Execute SQL that does not return data and using a transaction 4-2
Retrieve data into a DataSet . 4-3
IfxCommandBuilder object to reconcile changes with the database 4-4
Call a stored procedure . 4-5
Distributed transactions . 4-5
Write CLOBs to files . 4-7

Appendix. Accessibility . A-1
Accessibility features for IBM Informix products . A-1

Accessibility features . A-1
Keyboard navigation . A-1
Related accessibility information . A-1
IBM and accessibility. A-1

Dotted decimal syntax diagrams . A-1

Notices . B-1
Trademarks . B-3

Index . X-1

Contents v

vi IBM Informix .NET Provider Reference Guide

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication

This publication contains the information you need in order to use the IBM®

Informix® .NET Provider to access and manipulate data in IBM Informix databases.
This publication assumes you are familiar with the Microsoft .NET specification,
object-oriented programming principles, and using IBM Informix servers and
databases.

Microsoft provides information about programming with .NET on its website. For
more information about working with IBM Informix, see the release notes in your
server documentation set.

What's new in IBM Informix .NET Provider, Version 3.50
This publication includes information about new features and changes in existing
functionality.

The following changes and enhancements are relevant to this publication.

Table 1. What's New in IBM Informix .NET Provider Reference Guide for Version 3.50.xC8

Overview Reference

New editions and product names

IBM Informix Dynamic Server editions were
withdrawn and new Informix editions are
available. Some products were also renamed.
The publications in the Informix library
pertain to the following products:

v IBM Informix database server, formerly
known as IBM Informix Dynamic Server
(IDS)

v IBM OpenAdmin Tool (OAT) for Informix,
formerly known as OpenAdmin Tool for
Informix Dynamic Server (IDS)

v IBM Informix SQL Warehousing Tool,
formerly known as Informix Warehouse
Feature

For more information about the Informix
product family, go to http://www.ibm.com/
software/data/informix/.

© Copyright IBM Corp. 2003, 2011 vii

http://www.ibm.com/software/data/informix/
http://www.ibm.com/software/data/informix/

Table 2. What's New in IBM Informix .NET Provider Reference Guide for Version 3.50.xC4

Overview Reference

Error Checking During Data Transfer

With the IFX_LOB_XFERSIZE environment
variable, you can specify the number of
kilobytes in a CLOB or BLOB to transfer
from a client application to the database
server before checking whether an error has
occurred.

See “Error checking during data transfer” on
page 1-12 for more information.

SPL support for OUT and INOUT parameters

You can now execute SPL with OUT and
INOUT parameters.

See “The OUT and INOUT Parameters” on
page 1-9 for more information.

Table 3. What's New in IBM Informix .NET Provider Reference Guide for Version 3.50.xC3

Overview Reference

The Single Threaded and Skip Parsing
connection parameters can help improve
performance for some operations.

See “ConnectionString property” on page
3-20 for more information.

Table 4. What's New in IBM Informix .NET Provider Reference Guide for Version 3.50.xC1

Overview Reference

Informix BIGINT and BIGSERIAL data types
are supported.

These data types are similar to the IBM
Informix INT8 and SERIAL8 data types, but
have performance advantages.

See Table 2-1 on page 2-1 and “IfxType
enumeration” on page 3-66.

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL

viii IBM Informix .NET Provider Reference Guide

at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access or install the product documentation from the Quick Start CD that
is shipped with Informix products. To get the most current information, see the
Informix information centers at ibm.com®. You can access the information centers
and other Informix technical information such as technotes, white papers, and IBM
Redbooks® publications online at http://www.ibm.com/software/data/sw-
library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade® Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

IBM Informix Dynamic Server (IDS) Enterprise Edition, Version 11.50 is certified
under the Common Criteria. For more information, see Common Criteria
Certification: Requirements for IBM Informix Dynamic Server, which is available at
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US
&FNC=SRX&PBL=SC23-7690-00.

Syntax diagrams
Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 5. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

Introduction ix

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00

Table 5. Syntax Diagram Components (continued)

Component represented in PDF Component represented in HTML Meaning

-----------------------> Statement continues on next
line.

>----------------------- Statement continues from
previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---
’------LOCAL------’

Optional item.

---+-----ALL-------+---
+--DISTINCT-----+
’---UNIQUE------’

Required item with choice.
Only one item must be
present.

---+------------------+---
+--FOR UPDATE-----+
’--FOR READ ONLY--’

Optional items with choice
are shown below the main
line, one of which you might
specify.

.---NEXT---------.
----+----------------+---

+---PRIOR--------+
’---PREVIOUS-----’

The values below the main
line are optional, one of
which you might specify. If
you do not specify an item,
the value above the line is
used by default.

.-------,-----------.
V |
---+-----------------+---

+---index_name---+
’---table_name---’

Optional items. Several items
are allowed; a comma must
precede each repetition.

>>-| Table Reference |->< Reference to a syntax
segment.

Table Reference

|--+-----view--------+--|
+------table------+
’----synonym------’

Syntax segment.

How to read a command-line syntax diagram
Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a no-conversion job

x IBM Informix .NET Provider Reference Guide

�� onpladm create job job
-p project

-n -d device -D database �

� -t table �

� �
(1)

Setting the Run Mode
-S server -T target

��

Notes:

1 See page Z-1

This diagram has a segment named “Setting the Run Mode,” which according to
the diagram footnote is on page Z-1. If this was an actual cross-reference, you
would find this segment on the first page of Appendix Z. Instead, this segment is
shown in the following segment diagram. Notice that the diagram uses segment
start and end components.

Setting the run mode:

-f
d
p
a

l
c

u n N

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type onpladm create job and then the name of the job.
2. Optionally, type -p and then the name of the project.
3. Type the following required elements:

v -n

v -d and the name of the device
v -D and the name of the database
v -t and the name of the table

4. Optionally, you can choose one or more of the following elements and repeat
them an arbitrary number of times:
v -S and the server name
v -T and the target server name
v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then optionally
type l or u.

Introduction xi

5. Follow the diagram to the terminator.

Keywords and punctuation
Keywords are words reserved for statements and all commands except
system-level commands.

When a keyword appears in a syntax diagram, it is shown in uppercase letters.
When you use a keyword in a command, you can write it in uppercase or
lowercase letters, but you must spell the keyword exactly as it appears in the
syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and names
Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in additional syntax diagrams. When a variable appears in a syntax
diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v In the Informix information center, which is available online at

http://www.ibm.com/software/data/sw-library/, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, fill out the
form, and submit your feedback.

v Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support. For instructions, see the IBM Informix Technical
Support website at http://www.ibm.com/planetwide/.

xii IBM Informix .NET Provider Reference Guide

mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

We appreciate your suggestions.

Introduction xiii

xiv IBM Informix .NET Provider Reference Guide

Chapter 1. Overview of the IBM Informix .NET Provider

The topics in this overview describe the IBM Informix .NET Provider and provide
information on the environment in which to use it. These topics also provide
installation and connection information and general information to help you get
started using the IBM Informix .NET Provider.

What is the Informix .NET Provider?
The IBM Informix .NET Provider is a .NET assembly that lets .NET applications
access and manipulate data in Informix databases. It does this by implementing
several interfaces in the Microsoft .NET Framework that are used to access data
from a database.

Using the IBM Informix .NET Provider is more efficient than accessing an Informix
database through either of these two methods:
v Using the Microsoft .NET Framework Data Provider for ODBC along with the

IBM Informix ODBC Driver
v Using the Microsoft .NET Framework Data Provider for OLE DB along with the

IBM Informix OLE DB Provider
Related concepts

Differences between .NET Providers (Client Products Installation Guide)

Supported programming environments
The IBM Informix .NET Provider can be used by any application that can be
executed by the Microsoft .NET Framework.

The following list includes some examples of programming languages that create
applications that meet this criteria:
v Visual BASIC .NET
v Visual C# .NET
v Visual J# .NET
v ASP.NET

The IBM Informix .NET Provider runs on all Microsoft Windows platforms that
provide full .NET support. If you want to use the IBM Informix .NET Provider that
implements ADO.NET 2.0 interfaces, you must have Microsoft .NET Framework
Version 2.0 or later installed on your system. The IBM Informix .NET Provider that
implements ADO.NET 2.0 interfaces is available with IBM Informix Client Software
Development Kit (Client SDK) 3.0 and later releases.

You must have the Microsoft .NET Framework SDK Version 1.1 or later installed
on your system. You must have Version 2.90 or later of the Client SDK installed.

© Copyright IBM Corp. 2003, 2011 1-1

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.cpi.doc/ids_cpi_010.htm#ids_cpi_010

Visual Studio data access support
If you use Microsoft Visual Studio, an IBM Informix .NET Provider add-in is
installed automatically when you install the IBM Informix Client Software
Development Kit (Client SDK). The Visual Studio 2005 add-ins are available only
with Client SDK. The provider from Informix Connect does not include these
add-ins.

Look under the Data tab of the toolbox for tools that let you configure these IBM
Informix .NET Provider types visually:
v IfxConnection
v IfxCommand
v IfxDataAdapter

Support for IPv6
The IBM Informix .NET Provider can use Internet Protocol Version 6 (IPv6)
addresses, as well as Internet Protocol Version 4 (IPv4) addresses.

If your system uses IPv6 it is recommended that you use host names in your
connection strings instead of using IPv6 format IP addresses. Other than that, no
special actions need be taken.

Install the IBM Informix .NET Provider
You can install IBM Informix .NET Provider through a typical or custom
installation. After you install IBM Informix .NET Provider, you must verify the
version of the .NET assembly file and take additional steps to prepare to use IBM
Informix .NET Provider.

When you install the IBM Informix .NET Provider through a Client SDK Typical or
Custom installation, ifxnmpcfg.exe is automatically started. If you manually
update drivers or experience problems when using the driver, you can start
ifxnmpcfg.exe manually to resolve the problem.

The IBM Informix .NET Provider installation registers two strong-named
assemblies in the global assembly cache (GAC). The name of the DLL file is IBM
Informix .NET Provider. The assembly version for the IBM Informix .NET Provider
2.0 Framework is different from the assembly version for the 1.1 Framework. The
assembly version for IBM Informix .NET Provider 1.1 Framework is frozen at
Version 2.81.0.0.

The correct method to verify the version of the .NET assembly file is to see the
version information of the file itself, by right-clicking the file, choosing Properties,
and then viewing the version tab, which indicates the version of the Client SDK.
You will see version in C:\windows\assembly under IBM.Data.Informix.

If your application is not running in a debugger it will automatically find the
assembly that is registered in the GAC.

The location of the IBM Informix .NET Framework assemblies are shown in the
following table:

1-2 IBM Informix .NET Provider Reference Guide

Table 1-1. Locations of the .NET Framework assemblies

Framework that the assembly implements Location

IBM Informix .NET Provider 1.1 Framework %INFORMIXDIR%\bin\netf11

IBM Informix .NET Provider 2.0 Framework %INFORMIXDIR%\bin\netf20

Because of security functions in .NET, you must reference one of these versions
instead of the GAC version when running your application in a debugger. If you
are using Microsoft Visual Studio .NET, complete the following steps to add the
reference:
1. Right click on References in the Solution Explorer window.
2. Click Browse and navigate to the assembly. The file name of the assembly is

IBM.Data.Informix.dll. Select the file from %INFORMIXDIR%\bin\netf20 or
%INFORMIXDIR%\bin\netf11 folder, depending upon which provider you want to
use.

3. Select the assembly and click Open.
4. Click OK.

To verify the version of the .NET Assembly File, right-click the file and select
Properties.
Related concepts

Installing Client Products on UNIX, Linux, and Mac OS X (Client Products
Installation Guide)

Installing Client Products on Windows Systems (Client Products Installation
Guide)

Update the PATH environment variable for Microsoft Windows
64-bit Systems

If you run .NET programs on Microsoft Windows 64-bit systems, such as Windows
Vista and Windows Server 2003, set your PATH environment variable to include the
path to the IfxDotNetIntrinsicModule.dll file.

Set your PATH environment variable to include the path to
IfxDotNetIntrinsicModule.dll as follows:
v %INFORMIXDIR%/bin/netf11/ if you use the Microsoft .NET Framework Version

1.1
v %INFORMIXDIR%/bin/netf20/ if you use the Microsoft .NET Framework Version

2.0

The DLL is not required on 32-bit Windows operating systems. If you move your
application from a 32-bit to a 64-bit Windows operating system, you must update
the PATH environment variable or you will receive an error.

Prepare the database server
Before you use the IBM Informix .NET Provider to access databases on a particular
database server, you must execute the cdotnet.sql script against the sysmaster
database on that server as the user informix.

Chapter 1. Overview of the IBM Informix .NET Provider 1-3

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.cpi.doc/ids_cpi_005.htm#ids_cpi_005
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.cpi.doc/ids_cpi_005.htm#ids_cpi_005
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.cpi.doc/ids_cpi_006.htm#ids_cpi_006
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.cpi.doc/ids_cpi_006.htm#ids_cpi_006

Overview of the .NET provider class library
The IBM Informix .NET Provider supports all of the .NET public classes and base
classes that are needed to access an Informix database.

“Supported public .NET interfaces” on page 3-1 shows the supported public
objects, properties, and methods. “Supported Public .NET base classes” on page 3-2
shows the supported public base classes. See your Microsoft .NET Framework SDK
documentation for further information.

The Informix .NET Provider supports the System.Transaction namespace, but does
not support the System.EnterpriseServices namespace.

In the .NET Framework, access to a data source and its data is handled by the
ADO.NET classes (ADO.NET stands for ActiveX Data Objects on the .NET
platform). The .NET Framework is a set of services and programs that provide the
runtime environment for .NET applications. ADO.NET contains two primary
components: the data set classes and the .NET provider classes.

The DataSet object represents a data source in memory (in a disconnected state).
.NET applications use DataSet to manipulate data. The DataTable and DataColumn
interfaces represent the source table and its columns. The DataRelation interface
represents relationships, such as parent-child, between tables.

When you retrieve data from the database, the full result set is retrieved from the
server and converted to XML before it is put in a DataSet. The full result set is
stored on the client. Therefore, it is recommended that you keep your data sets as
small as possible. Remember to use MAX ROWS in your SELECT statements if you
do not need to return all data.

The main Informix .NET Provider classes that provide data access are:
v IfxConnection—for connection to a database and management of transactions.
v IfxCommand—for issuing SQL commands.
v IfxDataReader—for reading a forward-only stream of data records.
v IfxTransaction—for controlling transactions.
v IfxDataAdapter—for pushing data into a data set and for reconciling changes in

a data set with the database.

The following .NET Provider classes let you develop provider-independent code
when you use the .NET Provider for the 2.0 framework:
v DbProviderFactory
v DbConnectionStringBuilder
v DbCommand

The IfxDataReader object provides quick retrieval of data from the database.
However, the data is read-only and you can only move forward, one record at a
time, through the result set. Unlike DataSet objects, IfxDataReader objects do not
create temporary tables to hold the data, and so they use less memory.

If data is changed on the client, you might want to apply those changes to the
database. You can use the primary key of your database table to ensure that you
are updating the correct row in the table. For single-table updates, you can use the
IfxCommandBuilder class to facilitate automatic reconciliation of changes in the

1-4 IBM Informix .NET Provider Reference Guide

data set with the database (see “Reconcile DataSet changes with the database” on
page 1-6). See “IfxCommandBuilder class” on page 3-17 for more information
about the IfxCommandBuilder class.

Thread-safety of provider types
Only static members of an IBM Informix .NET Provider type are thread-safe.

No instance of any of the types is guaranteed to be safe when called from multiple
threads at the same time.

Namespace requirements
The namespace for the IBM Informix .NET Provider is: IBM.Data.Informix. This
means that the full name of the objects in the Informix .NET Provider all begin
with IBM.Data.Informix.

For example, the full name of IfxConnection is IBM.Data.Informix.IfxConnection.

To avoid having to enter the entire namespace for each of the objects you can
import the namespace. The exact way that you do this depends on your
programming language. The C# language uses the keyword using. If you are
programming in C#, you can reference the namespace by including this line at the
start of your module:
using IBM.Data.Informix;

Connecting to a database
You connect to a database using the Open method of an IfxConnection object.

You define information about how to connect to the database (such as the machine
and server where the database resides) by passing a connection string to the
IfxConnection object. The connection string has the form:
attribute=value[;attribute=value]...

The brackets ([]) and the ellipsis (...) are not part of the string. They show that
attribute/value pairs beyond the first are optional and any number of
attribute/value pairs can be included. Separate attribute/value pairs from each
other with a semicolon.

The full list of possible attributes is described in the topic “IfxConnection class” on
page 3-19.

If you are using Microsoft Visual Studio you can create a connection visually:
1. Drag an IfxConnection from the Data tab of the toolbox onto one of your

forms.
2. Click in the ConnectionString property of the new IfxConnection object.
3. Click the ellipses (...) button that appears in the ConnectionString text box. A

dialog box opens.
4. Fill in the items of the dialog to provide the connection information.. Click on

the Help button of the dialog box for details on how to use the dialog

The following fragment shows a simple connection to a database called testdb on
an IBM Informix server called testserver that resides on a machine named berry:

Chapter 1. Overview of the IBM Informix .NET Provider 1-5

IfxConnection conn=new IfxConnection("Host=berry; Service=9401;
Server=testserver;User ID=informix; password=ifxtest;
Database=testdb");

conn.Open();

In addition to the ConnectionString property, an IfxConnection object can also
determine connection properties from the Setnet utility, and from the environment
or registry (for example, the values of DELIMIDENT and OPTOFC can be
determined in this way). If properties are set in the connection string, the
IfxConnection object uses those values. If they are not set in the connection string,
it uses values set by the environment. For any properties that remain unset,
IfxConnection object takes values from the Setnet registry.

In compliance with industry standards, the IBM Informix .NET Provider acts as
though DELIMIDENT is set to Y unless you explicitly set it to N.

When your application has finished using the database, close the connection as in
the following fragment:
conn.Close();

Connection string attribute names are not case sensitive, but often their values are
not.

Reconcile DataSet changes with the database
If you retrieve data from the database using an IfxDataAdapter object and make
changes to the data in the data set, the IfxCommandBuilder class allows you to
generate automatic INSERT, DELETE, and UPDATE commands to reconcile those
changes with the database.

“Retrieve data into a DataSet” on page 4-3 includes an example that demonstrates
how to use IfxDataAdapter objects. “IfxCommandBuilder object to reconcile
changes with the database” on page 4-4 includes an example that demonstrates
how to use IfxCommandBuilder objects.

Automatic generation of SQL statements for data reconciliation is initiated when
you set the SelectCommand property of an IfxDataAdapter object with the SELECT
statement you want to execute. Then, when you create an IfxCommandBuilder
object, it automatically generates SQL statements for single-table updates to
reconcile changes in the data set with the database. An IfxCommandBuilder object
is always associated with an IfxDataAdapter object (in a one-to-one relationship).

The SELECT statement that you execute using the SelectCommand property must
return at least one primary key or unique column. If none are present, an
InvalidOperation exception is returned, and the reconciliation commands are not
generated.

The IfxCommandBuilder object also uses the IfxCommand Connection,
CommandTimeout, and Transaction properties for the SELECT statement you are
executing (set by the SelectCommand property). If any of these properties are
modified, or if the SELECT statement itself is replaced, you should call the
IfxCommandBuilder.RefreshSchema method. Otherwise, the InsertCommand,
UpdateCommand, and DeleteCommand properties retain their original values.

The IfxCommandBuilder.Dispose method disassociates the IfxCommandBuilder
object from the IfxDataAdapter object, and the generated commands are no longer
used.

1-6 IBM Informix .NET Provider Reference Guide

An IfxCommandBuilder object may not generate efficient SQL statements. You can
view the commands it generates by using the GetDeleteCommand,
GetInsertCommand, and GetUpdateCommand methods.

The following limitations apply to the use of IfxCommandBuilder objects:
v The SELECT statement must retrieve at least one primary key or unique column

as part of the query.
v The SELECT statement must refer to a single table; it cannot contain stored

procedures or views that contain JOIN operators.
v The SELECT statement must refer to columns that permit read-write operations.
v The IfxCommandBuilder object makes no attempt, nor does it provide any

mechanism, to fetch output arguments from the SELECT statement.
v If the CommandText, Connection, CommandTimeout or Transaction properties

for the query change, you must execute the IfxCommandBuilder.RefreshSchema
method.

v The UPDATE and DELETE commands generated by an IfxCommandBuilder
object will not change any row that was modified in the database after the data
was read by the SELECT.

v The IfxCommandBuilder object is designed to work with single, unrelated tables.
You cannot use IfxCommandBuilder objects to update tables with primary
key/foreign key relationships.

v If columns in your SELECT command contain special characters, such spaces,
periods, quotation marks or non-alphanumeric characters, you cannot use
IfxCommandBuilder objects unless you use the QuotePrefix and QuoteSuffix
properties to specify the delimiter for table and column names in the queries it
generates.

The IfxDataAdapter, IfxCommandBuilder, and other classes are described in detail
and illustrated with examples in Chapter 3, “Type reference,” on page 3-1.

The connection pool
Connection pooling allows client applications to reuse connections instead of
creating a new one each time the IBM Informix .NET Provider needs to connect to
a database.

To make a connection available in the pool, you must close it after your application
has finished using the connection. For reuse, a connection must currently be
unused and must still be connected to the server.

You use the Pooling, Max Pool Size, Connection Life Time, and Min Pool Size
connection string attributes to control the connection pool.

The Idle Timeout internal parameter is the standard protocol for removing
connections from the pool and prevents connections from remaining active
indefinitely in the server. Idle Timeout has a value of 120 seconds, which cannot be
changed by setting a new value in the connection string. With Idle Timeout, when
a connection is unused in the connection pool for more than 120 seconds, the
connection is closed and removed from the pool.

Set FullTrust permission
In order to use the IBM Informix .NET Provider, calling applications must have
FullTrust permission set.

Chapter 1. Overview of the IBM Informix .NET Provider 1-7

The ? parameter markers
You can use the question mark symbol (?) to mark a parameter's place in an SQL
statement or stored procedure.

Because the IBM Informix .NET Provider does not have access to names for these
parameters, you must pass them in the correct order. The order you add
IfxParameter objects to an IfxParameterCollection object must directly correspond
to the position of the placeholder ? symbol for that parameter. You use the
ParameterCollection.Add method to add a parameter to a collection.

Parameter arrays
The IBM Informix .NET Provider supports input parameter arrays for UPDATE
and INSERT statements.

This allows an application to use a single command to specify a row of parameter
values and these values can be sent in a single roundtrip to the server.

Call stored procedures
To use stored procedures in your applications, you must set some properties of the
IfxCommand object.

Set the following properties of the IfxCommand object as shown:
v CommandText - set to the name of the stored procedure
v CommandType - set to StoredProcedure

You can use the IfxCommandBuilder.DeriveParameters method to retrieve
information about parameters for stored procedures.

If a stored procedure returns a value, your application must add a parameter for
this to the parameter collection used by the IfxCommand object.

The topic “Call a stored procedure” on page 4-5 includes an example that shows
how to run a stored procedure and read any results that it returns.

IfxProviderFactory objects to write database-independent code
Starting with IBM Informix .NET Provider Version 2, you can use the
IfxProviderFactory class to write database-independent code.

For more information about the IfxProviderFactory class, see “IfxProviderFactory
class” on page 3-55.

Distributed transactions
Your application can enlist a connection for distributed transactions by setting the
Enlist connection string attribute to true, yes, or 1.

You should set the Pooling connection string attribute to true, yes, or 1 while
working with distributed transactions.

“Distributed transactions” on page 4-5 includes an example of how to use
distributed transactions with your application.

1-8 IBM Informix .NET Provider Reference Guide

Distributed transactions are supported through the Microsoft Distributed
Transaction Coordinator (MS DTC). The MS DTC components are required to call
some unmanaged code, which can affect the level of security available and
potentially degrade performance.

The OUT and INOUT Parameters
As of Version 3.50.xC4, IBM Informix Client Software Development Kit supports
the use of OUT and INOUT parameters during execution of SPL.

The following data types are supported:
v BIGINT
v BLOB
v BOOLEAN
v DATETIME
v CHAR
v CLOB
v DECIMAL
v FLOAT
v INT8
v INTEGER
v INTERVAL
v LVARCHAR
v MONEY
v NCHAR
v NVARCHAR
v SMALLFLOAT
v SMALLINT
v VARCHAR

These restrictions exist when using OUT or INOUT parameters in SPL execution:
v Collection data types such as LIST, MULTISET, ROW and SET are not

supported.
v Returning result sets is not supported. After executing SPL with OUT or INOUT

parameters, you cannot call SQLFetch or SQL GetData.
v Only one value can be returned; that is, only one set of OUT or INOUT

parameters can be returned per individual SPL execution.
The following SPL execution example creates one OUT, one INOUT, and one IN
(default) parameter and one return value.
create procedure myproc(OUT intparam INT, INOUT charparam char(20),
inparam int) returns int
<body of SPL>
end procedure;

The following code example shows how to use OUT and INOUT parameters.
using System;
using System.Data;
using System.IO;
using IBM.Data.Informix;

namespace SPLInOutParamTest

Chapter 1. Overview of the IBM Informix .NET Provider 1-9

{
class Program
{

static void Main(string[] args)
{

/* Build connection string and create connection object */
IfxConnection conn = new IfxConnection("Server=ol_ids1150;
Database=common_db1;UID=informix;PWD=informix");

/* Create command object */
IfxCommand cmd = new IfxCommand();

/* Connect to the server */
conn.Open();

/* Associate connection object to command object */
cmd.Connection = conn;

try
{

try
{

/* Drop the procedure */
cmd.CommandText = "DROP PROCEDURE test_proc;";
cmd.ExecuteNonQuery();

}
catch { /* Ignore the exception */ };

/* Create procedure with INOUT params */
cmd.CommandText = "CREATE PROCEDURE test_proc
(INOUT arg1 int, OUT arg2 int, INOUT arg3 int) " +

"returning int " +
"define ret int; " +
"let ret = (arg1 + arg3);" +
"let arg1 = 1; " +
"let arg2 = 2; " +
"let arg3 = 3;" +
"return ret; " +
"end procedure;";

cmd.ExecuteNonQuery();

cmd.CommandText = "{? = call test_proc(?,?,?)};";

/* Bind the required parameters */
IfxParameter p1 = cmd.Parameters.Add("ID", IfxType.Integer);
IfxParameter p2 = cmd.Parameters.Add("ID1", IfxType.Integer);
IfxParameter p3 = cmd.Parameters.Add("ID2", IfxType.Integer);
IfxParameter p4 = cmd.Parameters.Add("ID3", IfxType.Integer);

/* Initialize the values for the parameters */
p1.Value = 0;
p2.Value = 5;
p3.Value = 4;
p4.Value = 10;

/* Bind the appropriate direction */
p1.Direction = ParameterDirection.Output;
p2.Direction = ParameterDirection.InputOutput;
p3.Direction = ParameterDirection.Output;
p4.Direction = ParameterDirection.InputOutput;

/* Execute the procedure */
cmd.ExecuteNonQuery();

/* Print the data */
Console.WriteLine("\n Return value from procedure

1-10 IBM Informix .NET Provider Reference Guide

= " + (Int32)p1.Value);
Console.WriteLine("\n Out param1 value = " + (Int32)p2.Value);
Console.WriteLine("\n Out param2 value = " + (Int32)p3.Value);
Console.WriteLine("\n Out param3 value = " + (Int32)p4.Value);

}
catch (IfxException e)
{

Console.WriteLine(e.Message);
}

}
}

}

Generic coding with the ADO.NET common base classes
The .NET Framework version 2.0 features a namespace called
System.Data.Common, which features a set of base classes that can be shared by
any .NET data provider.

This facilitates a generic ADO.NET database application development approach,
featuring a constant programming interface. The main classes in the IBM Informix
.NET Data Provider for .NET Framework 2.0 are inherited from the
System.Data.Common base classes. As a result, generic ADO.NET applications will
work with Informix databases through the Informix .NET Data provider.

The following C# code demonstrates a generic approach to establishing a database
connection.
DbProviderFactory factory = DbProviderFactories.GetFactory("IBM.Data.Informix");
DbConnection conn = factory.CreateConnection();
DbConnectionStringBuilder sb = factory.CreateConnectionStringBuilder();

if(sb.ContainsKey("Database"))
{

sb.Remove("database");
sb.Add("database", "SAMPLE");

}

conn.ConnectionString = sb.ConnectionString;

conn.Open();

The DbProviderFactory object is the point where any generic ADO.NET application
begins. This object creates generic instances of .NET data provider objects, such as
connections, data adapters, commands, and data readers, which work with a
specific database product. In the case of the example above, the
"IBM.Data.Informix" string passed into the GetFactory method uniquely identifies
the Informix .NET Data Provider, and results in the initialization of a
DbProviderFactory instance that creates database provider object instances specific
to the Informix .NET Data Provider. The DbConnection object can connect to
Informix databases, just as a IfxConnection object, which is actually inherited from
DbConnection. Using the DbConnectionStringBuilder class, you can determine the
connection string keywords for a data provider, and generate a custom connection
string. The code in the above example checks if a keyword named "database"
exists in the Informix .NET Data Provider, and if so, generates a connection string
to connect to the SAMPLE database.

Error messages
Error messages from the IBM Informix server are represented as IBM Informix
.NET Provider exceptions.

Chapter 1. Overview of the IBM Informix .NET Provider 1-11

Tracing
An application can enable tracing by setting the IFXDOTNETTRACE environment
variable.

0 No tracing

1 Tracing of API entry and exit, with return code

2 Tracing of API entry and exit, with return code, plus tracing of parameters
to the API

Trace information is written to the file you set using the IFXDOTNETTRACEFILE
environment variable.

Error checking during data transfer
The IFX_LOB_XFERSIZE environment variable is used to specify the number of
kilobytes in a CLOB or BLOB to transfer from a client application to the database
server before checking whether an error has occurred. The error check occurs each
time the specified number of kilobytes is transferred.

If an error occurs, the remaining data is not sent and an error is reported. If no
error occurs, the file transfer will continue until it finishes.

The valid range for IFX_LOB_XFERSIZE is from 1 to 9223372036854775808 kilobytes.
The IFX_LOB_XFERSIZE environment variable is set on the client.

For more information on IFX_LOB_XFERSIZE, see the IBM Informix Guide to SQL:
Reference.

1-12 IBM Informix .NET Provider Reference Guide

Chapter 2. Mapping data types

These topics describe how data types are mapped between IBM Informix databases
and the .NET Framework.

The information on mapping includes:
v How data types are mapped when you retrieve data from the database using

IfxDataReader and IfxDataAdapter objects
v How a parameter's data type is mapped (when you use IfxParameter objects)

Retrieve data
Each IBM Informix data type can fit in a .NET Framework data type.

The following table shows each IBM Informix data type, the recommended type to
store that data type in, and the .NET Framework data type that it best fits in. The
recommended type should be used when accessing data through an IfxDataReader.
The best-fit .NET type is the type that an IfxDataAdapter object will use when it
fills a DataSet object.

You can use types other than those shown, for example you can use the
IfxDataReader.GetString method to get any data type that can be stored in an
Informix database. The types recommended are the most efficient and least likely
to change the value.

Table 2-1. Best-fit types for retrieving Informix data types

Informix data type Recommended type Best-fit native .NET data type

BIGINT Int64 Int64

BIGSERIAL Int64 Int64

BLOB IfxBlob Byte[]

BOOLEAN Boolean Boolean

BYTE Byte[] Byte[]

CHAR String String

CHAR(1) String String

CLOB IfxClob Byte[]

DATE IfxDateTime DateTime

DATETIME IfxDateTime DateTime

DECIMAL(p<=28) fixed scale IfxDecimal Decimal

DECIMAL (p<=28) floating
point

IfxDecimal Double

DECIMAL (p>28) IfxDecimal String

DOUBLE Double Double

FLOAT Double Double

IDSSECURITYLABEL Int64[] Int64[]

INTEGER Int32 Int32

INT8 Int64 Int64

© Copyright IBM Corp. 2003, 2011 2-1

Table 2-1. Best-fit types for retrieving Informix data types (continued)

Informix data type Recommended type Best-fit native .NET data type

INTERVAL, year-month IfxMonthSpan String

INTERVAL, day-fraction IfxTimeSpan TimeSpan

LVARCHAR String String

MONEY IfxDecimal As for Decimal with same
precision

NCHAR String String

REAL Float Float

SERIAL nt32 Int32

SERIAL8 Int64 Int64

SMALLFLOAT Float Float

TEXT String String

VARCHAR String String

For the format of Informix data types, DECIMAL, MONEY, DATETIME, and
INTERVAL returned using IfxDataReader.GetString method see the section about
the Literal Row segment in IBM Informix Guide to SQL: Syntax.

The ROW and TEXT types and the collection types, LIST, MULTISET, SET, can be
mapped to a string literal .NET Framework type and accessed with the
IfxDataReader.GetString method. The format for the string is documented in the
IBM Informix Guide to SQL: Syntax, in the section about the Literal Row segment.

In order to make the expression of any nested string literals simpler, a leading
quotation mark is not returned in the string. A single-quotation mark, rather than a
double-quotation mark, is used to begin and end any string literals embedded in
the ROW type. This is to avoid confusion if a double-quotation mark might be
used as a delimited identifier.

Set data types for a parameter
Your application should set the type for a parameter as an IBM Informix type
whenever possible (using the IfxType argument of IfxParameter constructor).

“IfxType enumeration” on page 3-66 shows the IfxType enumeration.

You can specify a parameter type as a .NET DbType instead, and the IBM Informix
.NET Provider will infer the Informix type as best it can. The .NET DbType
specifies the data type of a Parameter object of a .NET Framework data provider.
Some DbType types, such as GUID, do not map to any Informix type, and an error
will be returned. Some DbType types, such as AnsiString, can map to several
Informix types, such as VARCHAR, TEXT, or BLOB; you must be aware that the
IBM Informix .NET Provider may not choose the data type you intend.

If you do not specify either an Informix data type or a .NET DbType, the IBM
Informix .NET Provider attempts to infer an Informix data type from the value
itself. For example, if the value is 4, the provider maps this to an INTEGER data
type. Relying on these inferred mappings can lead to unexpected results.

2-2 IBM Informix .NET Provider Reference Guide

Display format of FLOAT, DECIMAL, or MONEY data types
The display format of the IBM Informix FLOAT, DECIMAL, or MONEY data types
is specified by the values of the DBMONEY or CLIENT_LOCALE environment variables.

The DBMONEY environment variable takes precedence over the CLIENT_LOCALE
environment variable. If you do not set DBMONEY, the locale setting (CLIENT_LOCALE)
is used to format the value. By default, DBMONEY is set to a dollar sign and a period
($.), and CLIENT_LOCALE is set to US English (en_us.CP1252). For example, if you set
DBMONEY=Pt, the separator becomes a comma (,). A decimal value of 169.0 will then
be formatted with a comma: 169,0.

The IBM Informix .NET Provider determines display format using the following
precedence:
1. Connection string
2. Environment
3. Registry (SetNet settings)

The values in the connection string override all other settings. For more
information, see the IBM Informix Guide to SQL: Reference.

Chapter 2. Mapping data types 2-3

2-4 IBM Informix .NET Provider Reference Guide

Chapter 3. Type reference

All of the classes described in these topics belong in the namespace
IBM.Data.Informix.

For example, the full identification of the IfxConnection class is
IBM.Data.Informix.IfxConnection.

Supported public .NET interfaces
The IBM Informix .NET Provider implements specified Microsoft .NET interfaces.

The following table shows the Microsoft .NET interfaces that are implemented by
the IBM Informix .NET Provider for the 1.1 .NET Framework and the 2.0 .NET
Framework.

See your Microsoft .NET Framework SDK documentation for further information
about the Microsoft public interfaces and classes. If the IBM Informix .NET
Provider does not support a particular .NET class or method, that class or method
is implemented as no-operation.

Table 3-1. Interfaces implemented by IBM Informix .NET Provider classes

Class Extends Description

IfxCommand IDbCommand Represents a query or command that is run when
the application is connected to the database

IfxCommandBuilder DbCommandBuilder Generates single-table INSERT, DELETE, and
UPDATE commands that reconcile changes made
in a data set with the associated Informix database

IfxConnection IDbConnection Represents an application's unique session with a
data source

IfxDataAdapter IDbDataAdapter Enables an application to execute SQL commands
against the database, fill data sets, and reconcile
changes in the data set with the database

IfxDataReader IDDataReader Allows forward-only, read-only, access to a stream
of data from the database

IfxError Represents an instance of a warning or an error
generated by the Informix database

IfxErrorCollection ICollection Represents a collection of IfxError objects in an
IfxException object

IfxException Represents an exception that is generated when a
warning or error is returned by an Informix
database

IfxParameter IDbDataParameter Implements a parameter to a command and maps
it to a column within a data set

IfxParameterCollection IDbParameterCollection Implements multiple parameters to a command
and maps them to columns within a data set

IfxTransaction IDbTransaction Represents a local transaction

© Copyright IBM Corp. 2003, 2011 3-1

Supported Public .NET base classes
The IBM Informix .NET Provider implements specified Microsoft .NET base
classes.

The following table shows the Microsoft .NET base classes that are implemented
by the IBM Informix .NET Provider for the .NET 2.0 Framework.

See your Microsoft .NET Framework SDK documentation for further information
about the Microsoft public classes. If the IBM Informix .NET Provider does not
support a particular .NET base class, that class is implemented as no-operation.

Table 3-2. Base classes implemented by IBM Informix .NET Provider classes

Class Base class Description

IfxCommand DbCommand Represents a query or command that is run when
the application is connected to the database

IfxCommandBuilder DBCommandBuilder Generates single-table INSERT, DELETE, and
UPDATE commands that reconcile changes made
in a data set with the associated Informix database

IfxConnection DbConnection Represents an application's unique session with a
data source

IfxConnectionStringBuilder DbConnectionStringBuilder Provides the base class from which the strongly
typed connection string builders
(OdbcConnectionStringBuilder and
SQLconnectionStringBuilder) derive.

IfxDataAdapter DbDataAdapter Enables an application to execute SQL commands
against the database, fill data sets, and reconcile
changes in the data set with the database

IfxDataReader DbDataReader Allows forward-only, read-only, access to a stream
of data from the database

IfxDataSourceEnumerator DbDataSourceEnumerator Lets data providers to obtain a list of data sources.

IfxParameter DbParameter Implements a parameter to a command and maps
it to a column within a data set

IfxParameterCollection DbParameterCollection Implements multiple parameters to a command
and maps them to columns within a data set

IfxProviderFactory DbProviderFactory Represents a set of methods that you can use to
create instances of a provider's implementation of
the data source classes.

IfxTransaction DbTransaction Represents a local transaction

Prototype syntax
Because the objects of the IBM Informix .NET Provider can be used in many
different programming languages, the prototypes of the methods are given in this
publication using a pseudo code.

The syntax of the pseudo code is as follows:
.-,-----------------------.
V |

>>-+--------+--returntype--methodname--(----+---------------------+-+--)-><
’-static-’ ’-parmtype--parmlabel-’

3-2 IBM Informix .NET Provider Reference Guide

returntype
This is the type of the object that is returned. If the method returns nothing
then this will be void.

methodname
The name of the method.

parmtype
What type of object is expected at this position in the argument list.

parmlabel
A name for the parameter. This is only used as a convenience when
referring to the parameter in the text. This parameter name will always be
italicized, even in the text.

If the static keyword is present it means that the method is callable without
creating an instance of the class of which it is a part. In place of the instance of the
class use the name of the class itself. In Visual Basic this is called a Shared method.
In C# it is called a static method.

Example: The IfxDecimal.Floor method is static and accepts a single IfxDecimal.
That means that if mydec is an instance of IfxDecimal you can call floor on it like
this: IfxDecimal.Floor(mydec). But you cannot call it like this: mydec.Floor(mydec).

The syntax for prototypes of constructors is the same as the syntax given above
except that static and returntype are not used.

IfxBlob class
An IfxBlob represents a BLOB, which is a large block of binary data that allows
random access of its contents. You can treat a BLOB in much the same way you
treat an operating system file. You can read or write to certain positions in the file
without reading or writing through all of the data up to that position.

BLOBs and CLOBs, are both types of smart large objects. Both types share many of
the same methods. BLOBs differ from CLOBs in that the data in a CLOB is treated
as text characters but the data in a BLOB is not. The data in a BLOB is considered
to be binary data and no translation or conversion of any kind is performed on it
as it is moved to or from the database server.

The IfxBlob internal cursor
Each IfxBlob has an internal pointer to a position in the BLOB. This is referred to
in this publication as the cursor of the instance.

The position of the cursor when an IfxBlob object is opened depends on the mode
in which it is opened. The section “IfxSmartLOBOpenMode enumeration” on page
3-58 lists the possible modes.

After a read or a write the cursor is moved to the character after the last one
affected by the operation. The method IfxBlob.Seek allows you to set the cursor
position explicitly.

Create an IfxBlob
You can get existing IfxBlob objects or you can create them.

You can get IfxBlob objects from these methods:

Chapter 3. Type reference 3-3

v IfxConnection.GetIfxBlob
v IfxDataReader.GetIfxBlob

You can create an IfxBlob with a constructor.

IfxBlob constructors
IfxBlob(IfxConnection connection)

Creates a new IfxBlob that is associated with connection.

IfxBlob public properties

These are the public properties of the IfxBlob object.

Table 3-3. IfxBlob public properties

Property Type
Access
notes Description

EstimatedSize System.Int64 Gets or sets the estimated final
size of the BLOB. You can set
this if you have a good estimate
of what the final size will be.
The database server's optimizer
can then use that information.

Do not set this unless you have
a good idea of the final size.
Setting it too large will cause
wasted resources on the
database server.

ExtentSize System.Int32 Gets or sets the next extent size
that the database server will use
when allocating disk space for
this BLOB.

Only applications that encounter
severe storage fragmentation
should ever set the allocation
extent size.

Flags System.Int32 Gets or sets the flags for this
BLOB.

To interpret this value compare
it to the members of the
IfxSmartLOBCreateTimeFlags
enumeration. See
“IfxSmartLOBCreateTimeFlags
enumeration” on page 3-56 for
details.

IsNull System.Boolean read-only Returns true if the instance is
null; otherwise it returns false.

IsOpen System.Boolean read-only Returns true if the instance is
open; otherwise it returns false.

3-4 IBM Informix .NET Provider Reference Guide

Table 3-3. IfxBlob public properties (continued)

Property Type
Access
notes Description

LastAccessTime System.Int32 read-only The system time on the database
server (rounded to the second)
at which the BLOB was last
accessed.

This information is only
available if KeepAccessTime is
set in the Flags property.

LastChangeTime System.Int32 read-only The system time on the database
server (rounded to the second)
at which the status of the BLOB
was last changed.

Updating, changing ownership,
and changes in the number of
references are all changes in
status.

LastModificationTime System.Int32 read-only The system time on the database
server (rounded to the second)
at which the BLOB was last
written to.

MaxBytes System.Int64 Get or set the maximum size for
this BLOB. The database server
will not let the BLOB be larger
than this value.

Null IfxBlob read-only
static

An IfxBlob object that has a null
value.

Position System.Int64 Returns the current position of
the cursor in the BLOB. The
value is the number of bytes
from the first byte of the BLOB.

ReferenceCount System.Int32 read-only Returns the number of rows in
the database that currently
contain a reference to this BLOB.

SBSpace System.String Gets or sets the name of the
sbspace in which the BLOB is
stored.

Size System.Int64 read-only Gets the current size of the
BLOB in bytes.

IfxBlob public methods
IfxBlob.Close
void IfxBlob.Close()

Closes the instance.

IfxBlob.FromFile
void IfxBlob.FromFile(System.String filename, System.Boolean
appendToSmartLOB, IfxSmartLOBFileLocation fileLocation)

Chapter 3. Type reference 3-5

Writes the operating system file filename into the BLOB. If appendToSmartLOB is
true the file is written to the end of the BLOB. If it is false it overwrites the current
contents of the BLOB.

The value of fileLocation indicates whether the file indicated in filename is located
on the client or the server. Server side files are not currently supported.

IfxBlob.GetLocator
IfxSmartLOBLocator IfxBlob.GetLocator()

Returns the IfxSmartLOBLocator associated with this instance.

IfxBlob.Lock
void IfxBlob.Lock(System.Int64 smartLOBOffset, IfxSmartLOBWhence whence,
System.Int64 range, IfxSmartLOBLockMode lockMode)

Use this method to place a lock on a portion of the BLOB. The type of lock
(exclusive or shared) is determined by lockMode.

The lock is placed on a group of contiguous bytes that is range bytes long. The
start of the locked range is determined by the values of smartLOBOffset and whence.
How these values interact is describe in the section “IfxSmartLOBWhence
enumeration” on page 3-58.

IfxBlob.Open
void IfxBlob.Open(IfxSmartLOBOpenMode mode)

Before an instance of IfxBlob can be read from or written to it must be opened
using this method. The value of mode determines what sort of access will be
allowed to the BLOB. See “IfxSmartLOBOpenMode enumeration” on page 3-58 for
a description of the different modes.

IfxBlob.Read
System.Int64 IfxBlob.Read(char[] buff)

System.Int64 IfxBlob.Read(char[] buff, System.Int64 buffOffset,
System.Int64 numBytesToRead, System.Int64 smartLOBOffset,
IfxSmartLOBWhence whence)

Reads characters into buff from the BLOB represented by this instance. The number
returned is how many bytes were successfully read into buff.

If only buff is given, then the BLOB is read into it starting at element 0. This
version of the method will not write past the end of the array buff. The BLOB is
truncated if it is longer than the buffer. The read begins at current cursor position
in the BLOB.

If the other arguments are provided then exactly numBytesToRead bytes are read
into buff starting at element buffOffset. An error is returned if this method is asked
to write outside the bounds of the array.

Before the read occurs the cursor is moved according to the values of whence and
smartLOBOffset. How these values interact is describe in the section
“IfxSmartLOBWhence enumeration” on page 3-58.

3-6 IBM Informix .NET Provider Reference Guide

IfxBlob.Release
void IfxBlob.Release()

Use this method to free database server resources used by this instance if the
instance was never read from or written to a database. Do not call this method if
you have written the BLOB to a database or if it was created because of a read
from a database.

After calling this method do not use the instance.

IfxBlob.Seek
System.Int64 IfxBlob.Seek(System.Int64 offset, IfxSmartLOBWhence whence)

Changes the position of the cursor within the BLOB. The value returned is the new
position of the cursor from the start of the BLOB.

The new position of the cursor is determined by the values of offset and whence.
How these values interact is describe in the section “IfxSmartLOBWhence
enumeration” on page 3-58.

IfxBlob.ToFile
System.String IfxBlob.ToFile(System.String filename, System.IO.FileMode mode,
IfxSmartLOBFileLocation fileLocation)

Writes the contents of the BLOB to an operating system file named filename. The
value of fileLocation determines whether the file will be written on the client or on
the server. Server side files are not currently supported.

The value of mode determines how the output file is opened. Look up
System.IO.FileMode in the .NET Framework Class Library for details on the available
modes.

IfxBlob.Truncate
void IfxBlob.Truncate(System.Int64 offset)

Deletes everything in the BLOB past the position offset.

IfxBlob.Unlock
void IfxBlob.Unlock(System.Int64 smartLOBOffset, IfxSmartLOBWhence whence,
System.Int64 range)

Use this method to remove all locks placed on a certain range of bytes in the
BLOB. The size of the range that is unlocked is range bytes.

The values of smartLOBOffset and whence determine where the range starts. How
these values interact is describe in the section “IfxSmartLOBWhence enumeration”
on page 3-58.

IfxBlob.Write
System.Int64 IfxBlob.Write(char[] buff)

System.Int64 IfxBlob.Write(char[] buff, System.Int64 buffOffset,
System.Int64 numBytesToWrite, System.Int64 smartLOBOffset,
IfxSmartLOBWhence whence)

Chapter 3. Type reference 3-7

Writes bytes from buff to the BLOB represented by this instance. The number
returned is how many bytes were successfully written.

If only buff is given, then the entire array is written to the BLOB starting at the
BLOB's current cursor position.

If the other arguments are provided then exactly numBytesToWrite bytes are written
to the BLOB from buff starting at array element buffOffset. An error is returned if
buffOffset is outside the bounds of the array.

Before the write is performed the cursor is moved according to the values of
whence and smartLOBOffset. How these values interact is describe in the section
“IfxSmartLOBWhence enumeration” on page 3-58.

If the write starts beyond the current end of the BLOB then it will be padded with
bytes that have a value of 0 from the current end to the point where the write
begins.

IfxClob class
An IfxClob represents a CLOB, which is a large block of character data that allows
random access of its contents. You can treat a CLOB in much the same way you
treat an operating system file. You can read or write to certain positions in the file
without reading or writing through all of the data up to that position.

CLOBs and BLOBs, are both types of smart large objects. Both types share many of
the same methods. A CLOB is different from a BLOB in that the data in it is
treated as characters instead of bytes. This means that it is subject to code set
conversion and other functions of the Global Language System (GLS). If a
multibyte character set is being used then one character may require more than
one byte to represent it in the CLOB.

The IfxClob internal cursor
Each IfxClob tracks an internal pointer to a position in the CLOB. This is referred
to as the cursor of the instance.

The position of the cursor when an IfxClob object is opened depends on the mode
in which it is opened. See “IfxSmartLOBOpenMode enumeration” on page 3-58 for
a list of the possible modes.

After a read or a write the cursor is moved to the next character after the last one
affected by the operation. The method IfxClob.Seek allows you to set the cursor
position explicitly.

Create an IfxClob

You can get IfxClob objects from these methods:
v IfxConnection.GetIfxClob
v IfxDataReader.GetIfxClob

You can also create an IfxClob with a constructor:

3-8 IBM Informix .NET Provider Reference Guide

IfxClob constructors
IfxClob(IfxConnection connection)

Creates a new IfxClob that is associated with connection.

IfxClob public properties

These are the public properties of the IfxClob object.

Table 3-4. IfxClob public properties

Property Type
Access
notes Description

EstimatedSize System.Int64 Gets or sets the estimated final
size of the CLOB. You can set
this if you have a good estimate
of what the final size will be. The
database server's optimizer can
then use that information.

Do not set this unless you have a
good idea of the final size.
Setting it too large will cause
wasted resources on the database
server.

ExtentSize System.Int32 Gets or sets the next extent size
that the database server will use
when allocating disk space for
this BLOB.

Only applications that encounter
severe storage fragmentation
should ever set the allocation
extent size.

Flags System.Int32 Gets or sets the flags for this
CLOB.

To interpret this value compare it
to the members of the
IfxSmartLOBCreateTimeFlags
enumeration. See
“IfxSmartLOBCreateTimeFlags
enumeration” on page 3-56 for
details.

IsNull System.Boolean read-only Returns true if the instance is
null; otherwise it returns false.

IsOpen System.Boolean read-only Returns true if the instance is
open; otherwise it returns false.

LastAccessTime System.Int32 read-only The system time on the database
server (rounded to the second) at
which the CLOB was last
accessed.

This information is only available
if KeepAccessTime is set in the
Flags property.

Chapter 3. Type reference 3-9

Table 3-4. IfxClob public properties (continued)

Property Type
Access
notes Description

LastChangeTime System.Int32 read-only The system time on the database
server (rounded to the second) at
which the status of the CLOB
was last changed.

Updating, changing ownership,
and changes in the number of
references are all changes in
status.

LastModificationTime System.Int32 read-only The system time on the database
server (rounded to the second) at
which the CLOB was last written
to.

MaxBytes System.Int64 Get or set the maximum size, in
bytes, for this CLOB. The
database server will not let the
CLOB be larger than this value.

Null IfxBlob read-only
static

An IfxBlob object that has a null
value.

Position System.Int64 Returns the current position of
the cursor in the CLOB. The
value is the number of bytes
from the first byte of the CLOB.

ReferenceCount System.Int32 read-only Returns the number of rows in
the database that currently
contain a reference to this CLOB.

SBSpace System.String Gets or sets the name of the
sbspace in which the BLOB is
stored.

Size System.Int64 read-only Gets the current size of the BLOB
in bytes.

IfxClob public methods
IfxClob.Close
void IfxClob.Close(IfxSmartLOBOpenMode mode)

Closes the instance.

IfxClob.FromFile
void FromFile(System.String filename, System.Boolean appendToSmartLOB,
IfxSmartLOBFileLocation fileLocation)

Writes the operating system file filename into the CLOB. If appendToSmartLOB is
true the file is written to the end of the CLOB. If it is false it overwrites the current
contents of the CLOB.

The value of fileLocation indicates whether the file indicated in filename is located
on the client or the server. Server side files are not currently supported.

3-10 IBM Informix .NET Provider Reference Guide

IfxClob.GetLocator
IfxSmartLOBLocator GetLocator()

Returns the IfxSmartLOBLocator associated with this instance.

IfxClob.Lock
void Lock(System.Int64 smartLOBOffset, IfxSmartLOBWhence whence,
System.Int64 range, IfxSmartLOBLockMode lockMode)

Use this method to place a lock on a portion of the CLOB. The type of lock
(exclusive or shared) is determined by lockMode.

The lock is placed on a group of contiguous characters that is range characters
long. The start of the locked range is determined by the values of smartLOBOffset
and whence. How these values interact is describe in the section
“IfxSmartLOBWhence enumeration” on page 3-58.

IfxClob.Open
void IfxClob.Open(IfxSmartLOBOpenMode mode)

Before an instance of IfxClob can be read from or written to it must be opened
using this method. The value of mode determines what sort of access will be
allowed to the CLOB. See “IfxSmartLOBOpenMode enumeration” on page 3-58 for
a description of the different modes.

IfxClob.Read
System.Int64 IfxClob.Read(char[] buff)

System.Int64 IfxClob.Read(char[] buff, System.Int64 buffOffset,
System.Int64 numCharsToRead, System.Int64 smartLOBOffset,
IfxSmartLOBWhence whence)

Reads characters into buff from the CLOB represented by this instance. The number
returned is how many bytes were successfully read into buff.

If only buff is given, then the CLOB is read into it starting at element 0. This
version of the method will not write past the end of the array buff. The CLOB is
truncated if it is longer than the buffer. The read begins at the current cursor
position of the CLOB.

If the other arguments are provided then exactly numCharsToRead characters are
read into buff starting at element buffOffset. An error is returned if this method is
asked to write outside the bounds of the array.

Before the read occurs the cursor is moved according to the values of whence and
smartLOBOffset. How these values interact is describe in the section
“IfxSmartLOBWhence enumeration” on page 3-58.

IfxClob.Release
void IfxClob.Release()

Use this method to free database server resources used by this instance if the
instance was never read from or written to a database. Do not call this method if
you have written the CLOB to a database or if it was created because of a read
from a database.

Chapter 3. Type reference 3-11

After calling this method do not use the instance.

IfxClob.Seek
System.Int64 IfxClob.Seek(System.Int64 offset, IfxSmartLOBWhence whence)

Changes the position of the cursor within the CLOB. The value returned is the new
value of IfxClob.Position.

The new position of the cursor is determined by the values of offset and whence.
How these values interact is describe in the section “IfxSmartLOBWhence
enumeration” on page 3-58.

IfxClob.ToFile
System.String IfxClob.ToFile(System.String filename, System.IO.FileMode mode,
IfxSmartLOBFileLocation fileLocation)

Writes the contents of the CLOB to an operating system file named filename. The
value of fileLocation determines whether the file will be written on the client or on
the server. Server side files are not currently supported.

The value of mode determines how the output file is opened. Look up
System.IO.FileMode in the .NET Framework Class Library for details on the available
modes.

IfxClob.Truncate
void IfxClob.Truncate(System.Int64 offset)

Deletes everything past offset bytes from the start of the CLOB.

IfxClob.Unlock
void IfxClob.Unlock(System.Int64 smartLOBOffset, IfxSmartLOBWhence whence,
System.Int64 range)

Use this method to remove all locks placed on a certain range of characters in the
CLOB. The size of the range that is unlocked is range characters.

The values of smartLOBOffset and whence determine where the range starts. How
these values interact is describe in the section “IfxSmartLOBWhence enumeration”
on page 3-58.

IfxClob.Write
System.Int64 IfxClob.Write(char[] buff)

System.Int64 IfxClob.Write(char[] buff, System.Int64 buffOffset,
System.Int64 numCharsToWrite, System.Int64 smartLOBOffset, IfxSmartLOBWhence whence)

Writes characters from buff to the CLOB represented by this instance. The number
returned is how many characters were successfully written.

If only buff is given, then the entire array is written to the CLOB starting at the
current cursor position.

If the other arguments are provided then exactly numCharsToWrite characters are
written to the CLOB from buff starting at array element buffOffset. An error is
returned if buffOffset is outside the bounds of the array.

3-12 IBM Informix .NET Provider Reference Guide

Before the write is performed the cursor is moved according to the values of
whence and smartLOBOffset. How these values interact is describe in the section
“IfxSmartLOBWhence enumeration” on page 3-58.

If the write starts beyond the current end of the CLOB then it will be padded with
values of 0 from the current end to the point where the write begins.

IfxCommand class
The IfxCommand class represents an SQL statement that is to be executed in the
database.

Create an IfxCommand

You can create an IfxCommand by using the constructors or by using these
methods of other objects:
v IfxConnection.CreateCommand (See “IfxConnection.CreateCommand” on page

3-23.)

To write provider-independent code, you can use the CreateCommand() method of
the DbProviderFactory class to create a provider-specific instance of DbCommand.
This capability is included in the .NET 2.0 framework.

IfxCommand constructors
v IfxCommand()

v IfxCommand(System.String cmdText)

v IfxCommand(System.String cmdText, IfxConnection connection)

v IfxCommand(System.String cmdText, IfxConnection connection,
IfxTransaction transaction)

v IfxCommand(System.String cmdText, IfxConnection connection, int
rowFetchCount)

If cmdText is given it is used as the SQL statement of the command. The connection
and transaction will be used when the command is executed if they are given.

IfxCommand public properties

The following table shows the public properties of the IfxCommand class.

Table 3-5. IfxCommand public properties

Property Type Description

CommandText System.String Gets or sets the text command to run against the
data source. The CommandType property is used
to interpret this property. All ODBC escape
sequence syntax that the IBM Informix ODBC
Driver supports is also supported by the IBM
Informix .NET Provider.

CommandTimeout System.Int32 Gets or sets the wait time before terminating the
attempt to execute a command and generating an
error.

Chapter 3. Type reference 3-13

Table 3-5. IfxCommand public properties (continued)

Property Type Description

CommandType System.Data.CommandType Indicates how the CommandText property is
interpreted. The possible values of the
CommandType property are described after the
table.

Connection IfxConnection Gets or sets the IfxConnection object used by this
IfxCommand object.

Parameters IfxParameterCollection Gets the IfxParameterCollection object.

RowFetchCount System.Int32 Sets the number of rows to fetch in each fetch
operation. This value affects the performance of
the fetch operation. The value is not applicable if
the table contains columns of BLOB, CLOB, TEXT
or BYTE data type.

Transaction IfxTransaction Gets or sets the transaction in which the
IfxCommand object executes.

UpdatedRowSource System.Data.UpdateRowSource Gets or sets how command results are applied to
the DataRow when used by the
IfxDataAdapter.Update method. The possible
values of the UpdatedRowSource property are
described after the table.

The CommandType property can have any of the following values:
v StoredProcedure—The name of a stored procedure.
v TableDirect—When the CommandType property is set to TableDirect, the

CommandText property should be set to the name of the table or tables to be
accessed. If any table names contain special characters, you might need to
dereference them, for example, by using escape-character syntax or including
qualifying characters. All rows and columns of the named tables are returned
when you call the ExecuteNonQuery, ExecuteScalar, or ExecuteReader methods
of the IfxCommand class. To access multiple tables, use a comma delimited list,
without spaces or padding, that contains the names of the tables to access. When
the CommandText property specifies multiple tables, a join of those tables is
returned.

v Text—An SQL text command (the default)

Set the RowFetchCount property immediately after creation of the IfxCommand
object or before invoking methods such as ExecuteReader that return an instance of
DataReader. You can also set the RowFetchCount value by using the constructor.
For example to set the RowFetchCount to 1, complete either of the following steps:
v IfxCommand SelCmd = new IfxCommand(SQLcom, conn1);

SelCmd.RowFetchCount = 1
v int rowFetchCount = 1; IfxCommand SelCmd = IfxCommand(cmdText,

connection, rowFetchCount)

The UpdatedRowSource property can have any of the following values:
v Both—Both the output parameters and the first returned row are mapped to the

changed row in the DataSet object.
v FirstReturnedRecord—The data in the first returned row is mapped to the

changed row in the DataSet object.
v None—Any returned parameters or rows are ignored.

3-14 IBM Informix .NET Provider Reference Guide

v OutputParameters—Output parameters are mapped to the changed row in the
DataSet object.

IfxCommand public methods
IfxCommand.Cancel
void IfxCommand.Cancel()

Attempts to cancel the execution of a command. If the attempt to cancel fails, no
exception is generated.

IfxCommand.CreateParameter
IfxParameter IfxCommand.CreateParameter()

Creates a new instance of an IfxParameter object.

IfxCommand.ExecuteNonQuery
System.Int32 IfxCommand.ExecuteNonQuery()

Executes an SQL statement against the IfxConnection object. For UPDATE, INSERT,
and DELETE statements the return value is the number of rows affected; for all
other statements, it is -1. Returns the InvalidOperationException error if the
connection does not exist or is not open.

IfxCommand.ExecuteReader
IfxDataReader IfxCommand.ExecuteReader()

IfxDataReader IfxCommand.ExecuteReader(System.DataCommandBehavior behavior)

Executes the command in the CommandText property against the IfxConnection
object and builds an IfxDataReader object. The IfxDataReader object is built using
the command behavior in behavior:
v CloseConnection—When the command is executed, the IfxConnection object is

closed when the associated IfxDataReader object is closed.
v Default—The query can return multiple result sets. Execution of the query can

affect the database state. The default sets no CommandBehavior flags.
v KeyInfo—The query returns column and primary key information. The query is

executed without any locking on the selected rows.
v SchemaOnly—The query returns column information only and does not affect

the database state.
v SequentialAccess—Provides a way for the IfxDataReader object to handle rows

that contain columns with large binary values. Rather than loading the entire
row, the SequentialAccess parameter enables the IfxDataReader object to load
data as a stream. You can then use the IfxDataReader.GetBytes or
IfxDataReader.GetChars method to specify a byte location to start the read
operation, and to specify a limited buffer size for the data being returned.
Specifying the SequentialAccess parameter does not limit you to reading the
columns in the order they are returned. However, after you have read past a
location in the returned stream of data, you can no longer read data from the
IfxDataReader object at or before that location.

v SingleResult—The query returns a single result set. Execution of the query can
affect the database state.

Chapter 3. Type reference 3-15

v SingleRow—The query is expected to return a single row. Execution of the query
can affect the database state. If you expect your SQL statement to return only
one row, specifying the SingleRow parameter can improve application
performance.

IfxCommand.ExecuteScalar
System.Object IfxCommand.ExecuteScalar()

Executes the query, and returns the first column of the first row in the result set
returned by the query. Extra columns or rows are ignored.

IfxCommand.Prepare
void IfxCommand.Prepare()

Creates a prepared (or compiled) version of the command against the database. If
the CommandType property is set to TableDirect, this method does nothing.

IfxCommand examples

The following example fills a data set, adds new customer information records,
and then updates the database with the changes.
IfxDataAdapter idap = new IfxDataAdapter("select * from customer",con);
DataSet ds = new DataSet("customer");
idap.Fill(ds,"customer");
DataRow drow = ds.Tables["customer"].NewRow();
drow["lname"]="";
ds.Tables["customer"].Rows.Add(drow);
idap.InsertCommand = new IfxCommand();
idap.InsertCommand.CommandType = CommandType.Text;
idap.InsertCommand.CommandText = "execute procedure add_cust(?,?,?)";
idap.InsertCommand.Connection = con;
IfxParameter iparam1 = idap.InsertCommand.CreateParameter();
IfxParameter iparam2 = idap.InsertCommand.CreateParameter();
IfxParameter iparam3 = idap.InsertCommand.CreateParameter();

iparam1.ParameterName = "fname";
iparam1.Value = "Hoopla";
iparam2.ParameterName = "lname";
iparam2.Value = "MAuie";
iparam3.ParameterName = "company";
iparam3.Value = "Fredonia";
idap.InsertCommand.Parameters.Add(iparam1);
idap.InsertCommand.Parameters.Add(iparam2);
idap.InsertCommand.Parameters.Add(iparam3);
//Inform the command object that the update
//results in data being returned and it must be
//updated against the changed row in the
//dataset. The source of the data is in the
//first returned row
idap.InsertCommand.UpdatedRowSource= UpdateRowSource.FirstReturnedRecord;
idap.RowUpdated += new IfxRowUpdatedEventHandler(OnRowUpdated);
idap.InsertCommand.Connection.Open();
idap.Update(ds,"customer");

IfxConnection conn = new IfxConnection
("Database=stores7;Server=ol_sigaram_11;UID=informix;Password=ids4data");

IfxCommand cmd = new IfxCommand("select col1 from tbltest", conn);
conn.Open();
IfxDataReader myReader = cmd.ExecuteReader();
while (myReader.Read())
{

Console.WriteLine("{0}", myReader.GetString(0));
}

3-16 IBM Informix .NET Provider Reference Guide

myReader.Close();
myReader.Dispose();
cmd.Dispose();
conn.Close();
conn.Dispose();

IfxCommandBuilder class
The IfxCommandBuilder class automatically generates single-table INSERT,
DELETE, and UPDATE commands that are used to reconcile changes made in a
data set with the associated instance of an IBM Informix database. An
IfxCommandBuilder object is always associated with an IfxDataAdapter object (in
a one-to-one relationship). The IfxDataAdapter object uses IfxCommand objects to
execute SQL commands against the database, fill data sets, and reconcile changes
in the data set with the database. Automatic generation of SQL statements for data
reconciliation is initiated when you set the SelectCommand property of the
IfxDataAdapter object. The SelectCommand property gets or sets an SQL SELECT
statement to be run against the database. Then, when you create an
IfxCommandBuilder object, it automatically generates SQL statements for
single-table updates to reconcile changes in the data set with the database. (The
IfxCommandBuilder object registers itself as a listener for RowUpdating events of
the IfxDataAdapter object.)

For more information about using IfxCommandBuilder objects, see “Reconcile
DataSet changes with the database” on page 1-6.

Create an IfxCommandBuilder

Use the constructor to create an IfxCommandBuilder.

IfxCommandBuilder constructors
IfxCommandBuilder()

IfxCommandBuilder(IfxDataAdapter adapter)

Initializes a new instance of the IfxCommandBuilder class optionally associated
with an IfxDataAdapter object.

IfxCommandBuilder public properties

The following table shows the public properties of the IfxCommandBuilder class.

Table 3-6. IfxCommandBuilder public properties

Property Type Description

ConflictOption Specifies which ConflictOption is to be used by the
IfxCommandBuilder.

DataAdapter IfxDataAdapter Gets or sets the IfxDataAdapter object for which the SQL statements
are generated.

QuotePrefix System.String Gets or sets the beginning character to use when specifying IBM
Informix server object names, (for example, tables or columns), that
contain characters such as spaces. QuotePrefix should only be set to a
quotation mark, not to an apostrophe or an empty or null string.

QuoteSuffix System.String Gets or sets the ending character to use when specifying IBM
Informix server object names, (for example, tables or columns), that
contain characters such as spaces. QuoteSuffix should only be set to a
quotation mark, not to an apostrophe or an empty or null string.

Chapter 3. Type reference 3-17

IfxCommandBuilder public methods
IfxCommandBuilder.DeriveParameters
void IfxCommandBuilder.DeriveParameters(IfxCommand command)

Retrieves information about parameters for the stored procedures specified by an
IfxCommand object and overwrites the IfxParameterCollection object with this
information.

IfxCommandBuilder.GetDeleteCommand
IfxCommand IfxCommandBuilder.GetDeleteCommand()

Gets the automatically generated IfxCommand object required to perform deletions
on the database when an application calls the IfxDataAdapter.Update method.

IfxCommandBuilder.GetInsertCommand
IfxCommand IfxCommandBuilder.GetInsertCommand()

Gets the automatically generated IfxCommand object required to perform inserts
on the database when an application calls the IfxDataAdapter.Update method.

IfxCommandBuilder.GetUpdateCommand
IfxCommand IfxCommandBuilder.GetUpdateCommand()

Gets the automatically generated IfxCommand object required to perform updates
on the database when an application calls the IfxDataAdapter.Update method.

IfxCommandBuilder.RefreshSchema
void IfxCommandBuilder.RefreshSchema

Refreshes the database schema information used to generate INSERT, UPDATE, or
DELETE statements.

IfxCommandBuilder examples

The first example shows you how to perform an update using an
IfxCommandBuilder object.
// IfxConnection -- con
DataSet ds = new DataSet();
string sql = "select fname, lname from customer";
IfxDataAdapter da = new IfxDataAdapter(sql,con);
//Build new CommandBuilder
IfxCommandBuilder ifxbuilder = new IfxCommandBuilder(da);
con.Open();
da.Fill(ds,"customer");
//code to modify data in DataSet goes here
ds.Tables[0].Rows[0].ItemArray[0] = "William";
//the following line will fail without the IfxCommandBuilder
//as we have not explicitly set an UpdateCommand in the DataAdapter
da.Update(ds,"customer");

This example shows how to retrieve information about parameters for stored
procedures.

3-18 IBM Informix .NET Provider Reference Guide

// IfxConnection - con
IfxCommand cmd = new IfxCommand("SP_GETUSERINFO",con);
IfxCommandBuilder cb = new IfxCommandBuilder();
con.Open();
IfxCommandBuilder.DeriveParameters(cmd);
foreach (IfxParameter param in cmd.Parameters)
{
Console.WriteLine(param.ParameterName);
}
con.Close();

IfxConnection class
The IfxConnection class represents a unique session with a data source, for
example, a network connection to an IBM Informix server. This class cannot be
inherited.

Create an IfxConnection

Some methods of other objects create IfxConnection objects implicitly. To create one
explicitly use one of its constructors.

To write provider-independent code, you can use the CreateConnection() method
of the DbProviderFactory class to create a provider-specific instance of
DbCommand. This capability is included in the .NET 2.0 framework.

IfxConnection constructors
IfxConnection()

IfxConnection(System.String connectionString)

Initializes a new instance of the IfxConnection class using the information in the
connectionString parameter, if provided.

IfxConnection public properties

The following table shows the public properties of the IfxConnection class.

Table 3-7. IfxConnection public properties

Property Type Description

ClientLocale System.String Gets or sets the locale used by the application.

ConnectionString System.String Gets or sets the string used to open a database.
See “ConnectionString property” on page 3-20
for more information.

ConnectionTimeout System.Int32 Gets the time (in seconds) to wait while trying to
establish a connection before terminating the
attempt and generating an error.

Database System.String Gets the name of the current database or the
database to be used after a connection is open.

DatabaseLocale System.String Gets the locale of the database. (Not valid if the
connection is not open.)

FetchBufferSize System.Int32 Gets or sets the default data transport buffer size
used by commands created using this
connection. Setting this property does not affect
commands already created.

GetActiveConnectionsCount System.Int32 Gets the number of opened, in-use connections.

Chapter 3. Type reference 3-19

Table 3-7. IfxConnection public properties (continued)

Property Type Description

GetIdleConnectionsCount System.Int32 Gets the number of opened, unused connections.

PacketSize System.Int32 Same as FetchBufferSize. The two settings are
semantically equivalent; changes in one are
reflected in the other.

ServerVersion System.String Gets a string containing the version of the
instance of the IBM Informix server to which the
client is connected.

State System.Data.Connection.State Gets the current state of the connection.

UserDefinedTypeFormat System.String Sets the mapping of user-defined types to either
DbType.String or DbType.Binary. See
“UserDefinedTypeFormat property” on page 3-22
for more information.

ConnectionString property
The value of the ConnectionString property is a connection string that includes the
source database name and the parameters you need to establish the connection.

The default value of the ConnectionString property is an empty string. The Server
attribute is mandatory in all situations.

The minimum required connection string attributes that must be set for non-DSN
connections are Server, Protocol, Service, and Host name. If any of those are
missing, the server ignores the remaining attributes and next checks the
environmental variables, followed by the values in specified in setnet32.

The following table shows the connection string attributes.

Table 3-8. Connection string attributes

Attribute Description Default value

Client Locale, Client_Locale The language locale used on the client side of the
client-server connection.

en_us.CP1252
(Windows)

Connection Lifetime When a connection is returned to the pool, the creation time
of the connection is compared with the current time, and the
connection is destroyed if that time span (in seconds)
exceeds the value specified by connection lifetime.

0

Database, DB The name of the database within the server instance. If no
database is specified, a server-only connection is created. You
can switch a server-only connection to a database connection
by using the ChangeDatabase method. If you use
DATABASE... or CREATE DATABASE... statements, you
must manage their execution fully, because the IBM Informix
.NET Provider does not automatically recognize when these
commands are issued. Using these statements without
proper management can lead to unexpected results.

"" (Empty string)

Database Locale, DB_LOCALE The language locale of the database. en_US.819

DELIMIDENT When set to true or y for yes, any string within double
quotes (") is treated as an identifier, and any string within
single quotes (') is treated as a string literal.

'y'

3-20 IBM Informix .NET Provider Reference Guide

Table 3-8. Connection string attributes (continued)

Attribute Description Default value

Enlist Enables or disables automatic enlistment in a distributed
transaction. You can disable automatic enlistment in existing
transactions by specifying Enlist=false as a connection string
parameter.

true

Exclusive, XCL The EXCLUSIVE keyword opens the database in exclusive
mode and prevents access by anyone but the current user. If
another user has already opened the database, exclusive
access is denied, an error is returned, and the database is not
opened. Valid values are No, 0, Yes, or 1.

No

Host The name or IP address of the machine on which the
Informix server is running. Required.

localhost

Max Pool Size The maximum number of connections allowed in the pool. 100

Min Pool Size The minimum number of connections allowed in the pool. 0

Optimize OpenFetchClose,
OPTOFC

Reduces the number of round trips to the server for
result-set queries. Recommended only for forward-only
retrieval of data.

"" (Empty string)

Packet Size, Fetch Buffer Size,
FBS

The size in bytes of the buffers used to send data to or from
the server.

32767

Password, PWD The password associated with the User ID. Required if the
client machine or user account is not trusted by the host.
Prohibited if a User ID is not given.

"" (Empty string)

Persist Security Info When set to false, security-sensitive information, such as the
password, is not returned as part of the connection if the
connection is open or has ever been in an open state.
Resetting the connection string resets all connection string
values, including the password.

'false'

Pooling When set to true, the IfxConnection object is drawn from the
appropriate pool, or if necessary, it is created and added to
the appropriate pool.

'true'

Protocol, PRO The communication protocol used between the
CreateConnection() and the database server.

"" (Empty string)

Server The name or alias of the instance of the Informix server to
which to connect. Required.

"" (Empty string)

Service The service name or port number through which the server
is listening for connection requests.

"" (Empty string)

Single Threaded If your application is single threaded, you might have better
performance with this property. Do not use this option in an
XA/MSDTC environment.

'false'

Skip Parsing You can avoid SQL parsing overhead by setting this value to
'true'. However, you must be certain that your queries are
correct, otherwise an error will result.

'false'

User ID, UID The login account. Required, unless the client machine is
trusted by the host machine.

"" (Empty string)

You can only set the ConnectionString property when the connection is closed.
Some of the connection string values have corresponding read-only properties.
When the connection string is set, all of these properties are updated, except when
an error is detected. In this case, none of the properties are updated. IfxConnection
properties return those settings contained in the ConnectionString as well as
default values or values gathered elsewhere.

Chapter 3. Type reference 3-21

Resetting the ConnectionString on a closed connection resets all connection string
values and related properties, including the password. For example, if you set a
connection string that includes "Database=superstores", and then reset the
connection string to "Server=myServer", the Database property is no longer set to
superstores.

The connection string is parsed immediately after being set. If errors in syntax are
found when parsing, a runtime exception, ArgumentException, is returned. Other
errors can be found only when an attempt is made to open the connection. If an
attribute name occurs more than once in the connection string, the value associated
with the last occurrence is used.

The CreateConnection() ConnectionString is not identical to an Informix ODBC
connection string. The connection string that is returned is the same as the one set
by the user. Neither the ODBC 'Driver' attribute or the OLE DB 'Provider' attribute
are supported.

If you set the Persist Security Info attribute to false (the default), if the connection
has ever been opened, the returned connection string will not contain any security
information. If the connection has not been opened, the returned connection string
does contain security information, regardless of the setting of Persist Security Info.
If you set the Persist Security Info attribute to true, the returned connection string
contains security information.

UserDefinedTypeFormat property
The UserDefinedTypeFormat property of IfxConnection and IfxCommand sets the
mapping of user-defined types to either DbType.String or DbType.Binary. Use this
property instead of FetchExtendedTypesAs.

To access user-defined types as String objects, set the UserDefinedTypeFormat
attribute or the UserDefinedTypeFormat property to string, "", or null. UDT
columns and parameters are mapped to DbType.String. The shorthand,
UDTFormat, is also a valid connection string attribute. These settings are not
case-sensitive.

To access user-defined types as Byte[] objects, set the UserDefinedTypeFormat
attribute or the UserDefinedTypeFormat property to bytes. UDT columns and
parameters are mapped to DbType.Binary. The IfxType property of a parameter or
column is not affected.

The following table shows what the IfxDataReader access methods, GetBytes() and
GetString(), return depending on the setting of the UserDefinedTypeFormat
property.

Table 3-9. Results for the UserDefinedTypeFormat setting with IfxDataReader access
methods

UserDefinedTypeFormat
Setting Operation Result

string GetBytes() Invalid cast exception

string GetString() Returns a string

bytes GetBytes() Returns bytes

bytes GetString() Returns the binary value as a
hexadecimal string

3-22 IBM Informix .NET Provider Reference Guide

When an IfxCommand object is bound to a connection, the object takes the
UserDefinedTypeFormat property of that connection. Later changes to the
connection setting of the property do not affect the IfxCommand object. Use one of
the following ways to associate a command with a connection:
v IfxConnection.CreateCommand()
v IfxCommand.Connection_set()
v IfxCommand.DbConnection_set()
v IfxCommand(string cmdText, IfxConnection connection)
v IfxCommand(string cmdText, IfxConnection connection, IfxTransaction

transaction)

You can set the UserDefinedTypeFormat property of an IfxCommand
independently from the UserDefinedTypeFormat property of its connection, but
you cannot set it during the following times:
v When executing a command
v Between the first call of an IfxDataReader.Read() method and the closing of that

data reader.

IfxConnection public methods
IfxConnection.BeginTransaction
IfxTransaction IfxConnection.BeginTransaction()

IfxTransaction IfxConnection.BeginTransaction(System.Data.IsolationLevel isoLevel)

Begins a database transaction.

IfxConnection.ChangeDatabase
void IfxConnection.ChangeDatabase(System.String value)

Changes the current database for an open IfxConnection object.

IfxConnection.Close
void IfxConnection.Close()

Closes the connection to the database.

IfxConnection.CreateCommand
IfxCommand IfxConnection.CreateCommand()

Creates and returns an IfxConnection object associated with the connection.

IfxConnection.GetIfxBlob
IfxBlob IfxConnection.GetIfxBlob()

Returns an IfxBlob structure based on this connection.

GetIfxClob
IfxClob IfxConnection.GetIfxClob()

Returns an IfxClob structure based on this connection.

Chapter 3. Type reference 3-23

IfxConnection.EnlistTransaction
void IfxConnection.EnlistTransaction()

Enlists in the specified transaction as a distributed transaction.

IfxConnection.Open
void IfxConnection.Open()

Opens a database connection with the settings specified by the ConnectionString
property of the IfxConnection object.

IfxConnection public events

The following table shows the public events of the IfxConnection class.

Table 3-10. IfxConnection public events

Event Description

Disposed Adds an event handler to listen to the Disposed event on the
component.

InfoMessage Occurs when the provider or server returns a warning or
informational message.

StateChange Occurs when the state of the connection changes.

IfxConnection example

The following C# example shows how to use a constructor to set the connection
string.
IfxConnection conn = new IfxConnection(

"User Id=me;Password=myPassword;" +
"Host=ajax;Server=myServer;" +
"Service=9401;Database=superstores"
);

IfxCommand cmd = new IfxCommand("select fname from customer", conn);
conn.Open();
IfxDataReader myReader = cmd.ExecuteReader();
while (myReader.Read())
{

Console.WriteLine("{0}", myReader.GetString(0));
}
myReader.Close();
myReader.Dispose();
cmd.Dispose();
conn.Close();
conn.Dispose();

IfxConnectionStringBuilder class
Provides the base class from which strongly typed connection string builders
derive. This class extends from the DbConnectionStringBuilder class. You can use
an instance of IfxConnectionString to construct the connection strings

Create an IfxConnectionStringBuilder

To create an IfxConnectionStringBuilder use one of the constructors.

3-24 IBM Informix .NET Provider Reference Guide

To develop provider independent code, you can use the
CreateConnectionStringBuilder() method from a provider-specific instance of the
DbProviderFactory class to create a provider-specific instance of the
DbConnectionStringBuilder class.

IfxConnectionStringBuilder public properties

The following table shows the public properties of the IfxConnectionStringBuilder
class.

Table 3-11. IfxConnectionStringBuilder public properties

Property Description

Count Returns the number of keys that are contained within
the connection string that is maintained by the
IfxConnectionStringBuilder instance.

ConnectionString Gets or sets the connection string that is associated with
the IfxConnectionStringBuilder. Returns a
semicolon-delimited list of key-value pairs stored in the
collection that is maintained by the
IfxConnectionStringBuilder. Each pair contains the key
and value, which are separated by an equal sign.

IsFixedSize Indicates whether the IfxConnectionStringBuilder has a
fixed size. A value of true indicates that the
IfxConnectionStringBuilder has a fixed size.

IsReadOnly Indicates whether the IfxConnectionStringBuilder is
read-only. A value of true indicates that the
IfxConnectionStringBuilder is read only. A read-only
collection prohibits adding, removing, or modifying
elements after the collection is created.

Keys Returns an ICollection that contains the keys that are in
the IfxConnectionStringBuilder.

The ICollection contains an unspecified order of values,
but it is the same order as the associated values in the
ICollection returned by the Values property.

Values Returns an ICollection that contains the values in the
DbConnectionStringBuilder.

The ICollection contains an unspecified order of values,
but it is the same order as the associated values in the
ICollection returned by the Keys property.

IfxConnectionStringBuilder public methods
IfxConnectionStringBuilder.Add

Adds an entry with the specified key and value into the
IfxConnectionStringBuilder.

IfxConnectionStringBuilder.AppendKeyValuePair
Appends a key and value to an existing StringBuilder object.

IfxConnectionStringBuilder.Clear
Clears the contents from the IfxConnectionStringBuilder instance.

IfxConnectionStringBuilder.ContainsKey
Indicates whether this IfxConnectionStringBuilder object contains a specific
key.

Chapter 3. Type reference 3-25

IfxConnectionStringBuilder.EquivalentTo
Compares the connection information in this IfxConnectionStringBuilder
object with the connection information in another object.

IfxConnectionStringBuilder.Remove
Removes the specified key from the IfxConnectionStringBuilder instance.

IfxConnectionStringBuilder.ToString
Returns the connection string that is associated with this
IfxConnectionStringBuilder object.

IfxConnectionStringBuilder.TryGetValue
Retrieves a value that corresponds to the supplied key from this
IfxConnectionStringBuilder object.

IfxDataAdapter class
The IfxDataAdapter object uses IfxCommand objects to execute SQL commands
against the database, fill data sets, and reconcile changes in the data set with the
database.

Create an IfxDataAdapter

To create an IfxDataAdapter use one of the constructors.

IfxDataAdapter constructors
v IfxDataAdapter()

v IfxDataAdapter(IfxCommand selectCommand)

v IfxDataAdapter(System.String selectCommandText, IfxConnection
selectConnection)

v IfxDataAdapter(System.String selectCommandText, System.String
selectConnectionString)

An SQL query that returns rows and connection to a database can be provided as
either .NET types or strings. The value of selectCommandText is the query written in
SQL. The value of selectConnectionString is a connection string as used by the
constructors for the IfxConnection object.

IfxDataAdapter public properties

The following table shows the public properties of the IfxDataAdapter class.

Table 3-12. IfxDataAdapter public properties

Property Description

AcceptChangedDuringFill Gets or sets a value indicating if AcceptChanges is
called on a DataRow after it is added to the DataTable
during any of the Fill operations.

AcceptChangesDuringUpdate Gets or sets whether AcceptChanges is called during
an Update.

DeleteCommand Gets or sets an SQL statement for deleting records from
the database.

FillLoadOption Gets or sets the LoadOption that determines how the
adapter fills the DataTable from the DbDataReader.

3-26 IBM Informix .NET Provider Reference Guide

Table 3-12. IfxDataAdapter public properties (continued)

Property Description

InsertCommand Gets or sets an SQL statement used to insert new
records into the database.

MissingMappingAction The action to be taken when incoming data does not
have matching table or column data sets. Indicates or
specifies whether unmapped source tables or columns
are passed with their source names so that they can be
filtered or to raise an error. The MissingMappingAction
property can have any of the values from the
MissingMappingAction enumeration, described after
the table.

MissingSchemaAction Indicates or specifies whether missing source tables,
columns, and their relationships are added to the data
set schema, ignored, or cause an error to be returned.
The MissingSchemaAction property can have any of
the MissingSchemaAction enumeration values
described after the table.

ReturnProviderSpecifictypes Gets or sets whether the Fill method should return
provider-specific values or common CLS-compliant
values.

SelectCommand Gets or sets an SQL statement used to select records in
the database.

TableMappings Indicates how a source table is mapped to a data set
table. The default table name of a DataTable is Table.
The default DataTableMapping that uses the default
DataTable name is also Table.

UpdateBatchSize Gets or sets a value that enables or disables batch
processing support, and specifies the number of
commands that can be executed in a batch.

UpdateCommand Gets or sets an SQL statement used to update records
in the database.

The MissingMappingAction property can have the following values:
v Error—A SystemException is generated.
v Ignore—A column or table without a mapping is ignored.
v Passthrough—The source column and table are created if they do not already

exist and they are added to the DataSet. This is the default value.

The MissingSchemaAction property can have the following values:
v Add—Adds any columns necessary to complete the schema.
v AddWithKey—Adds the necessary columns and primary key information to

complete the schema. By default, primary keys are not created in the DataSet
unless this property is specified. Setting this value ensures that incoming records
that match existing records are updated instead of getting appended, which
could potentially result in multiple copies of the same row.

v Error—A SystemException is generated.
v Ignore—Ignores the extra columns.

Chapter 3. Type reference 3-27

IfxDataAdapter public methods
IfxDataAdapter.Fill

Adds or refreshes rows in the DataSet to match those in the database using
the DataSet name, and creates a DataTable named Table.

IfxDataAdapter.FillSchema
Adds a DataTable to the specified DataSet and configures the schema to
match that in the database based on the specified SchemaType.

IfxDataAdapter.GetFillParameters
Gets the parameters set by the user when executing an SQL SELECT
statement.

IfxDataAdapter.Update
Calls the respective INSERT, UPDATE, or DELETE statements for each
inserted, updated, or deleted row in the specified DataSet from a
DataTable.

IfxDataAdapter examples

The first example demonstrates the use of the TableMappings and
MissingMappingAction properties.
// IfxConnection -- con
DataSet ds = new DataSet();
string sql = "select fname from customer";
IfxDataAdapter da = new IfxDataAdapter(sql,con);
// Default -- MissingMappingAction set to Passthrough.
// Database Column name is used as Data Set Column Name. This
//is the default setting
//da.MissingMappingAction = MissingMappingAction.Passthrough;
// MissingMappingAction set to Ignore
// The column or table not having a mapping is ignored. Returns a
// null reference . Will return error while accessing DataRow
da.MissingMappingAction = MissingMappingAction.Ignore;
// MissingMappingAction set to Error
// DataColumnMapping & DataTableMapping is not done
// then DataAdapter.Fill returns Exception
da.MissingMappingAction = MissingMappingAction.Error;
// If set to Error, DataColumnMapping and DataTableMapping has to
// be done
DataColumnMapping dcFnm = new DataColumnMapping("fname", "FirstName");
DataTableMapping dtCus = new DataTableMapping ("customer","CustomerTable");
dtCus.ColumnMappings.Add(dcFnm);
// Activates the Mapping
da.TableMappings.Add(dtCus);
da.Fill(ds,"customer");
foreach(DataRow dr in ds.Tables["CustomerTable"].Rows)
{

Console.WriteLine(dr["FirstName"]);
}
//Close Connection

The next example demonstrates how to use the FillSchema method in conjunction
with the MissingSchemaAction property.
// IfxConnection -- con
DataSet ds = new DataSet();
string sql = "select fname from customer";
IfxDataAdapter da = new IfxDataAdapter(sql,con);
//MissSchemaAction is set to error so Fill will return
// exception if Data Set and Customer table schema
// do not match
da.MissingSchemaAction = MissingSchemaAction.Error;

3-28 IBM Informix .NET Provider Reference Guide

// Fills Data Set Schema with the customer table schema
da.FillSchema(ds,SchemaType.Source,"customer");
da.Fill(ds,"customer");
foreach(DataRow dr in ds.Tables["customer"].Rows)
{

Console.WriteLine(dr["fname"]);
}
//Close Connection

The following example illustrates the use of the SelectCommand and
UpdateCommand properties.
IfxDataAdapter adpt = new IfxDataAdapter();
adpt.SelectCommand = new IfxCommand("SELECT CustomerID, Name FROM Customers

WHERE Country = ? AND City = ?", conn);
IfxParameter ifxp1 = new IfxParameter("Country",DbType.String);
IfxParameter ifxp2 = new IfxParameter("City",DbType.String);
Adpt.SelectCommand.Parameters.Add(ifxp1);
Adpt.SelectCommand.Parameters.Add(ifxp2);
//similarly for an UpdateCommand
//adpt.UpdateCommand.Parameters.Add("CustomerName",DbType.String);
adpt.UpdateCommand.Parameters.["CustomerName"] = "xyz";

IfxDataReader class
The IfxDataReader object is a forward-only cursor that allows read-only access to
the data it retrieves from the database. The data source connection must remain
active while your application accesses the IfxDataReader object.

In general, performance is better when you use an IfxDataReader object than when
you use an IfxDataAdapter object.

IfxDataReader public properties

The following table shows the public properties of the IfxDataReader class.

Table 3-13. IfxDataReader public properties

Property Type Description

Depth System.Int32 Always returns 0.

FieldCount System.Int32 Gets the number of columns in the current row.

IsClosed System.Boolean Gets a value indicating whether the IfxDataReader
object is closed.

RecordsAffected System.Int32 Gets the number of rows changed, inserted, or
deleted by execution of the SQL statement.

VisibleFieldCount System.Int32 Gets the number of fields in the DbDataReader
that are not hidden.

IfxDataReader public methods
IfxDataReader.Close

Closes the IfxDataReader object.

IfxDataReader.GetBoolean
Gets the value of the specified column as a Boolean.

IfxDataReader.GetByte
Throws a NotSupported exception.

Chapter 3. Type reference 3-29

IfxDataReader.GetBytes
Reads a stream of bytes from the specified column offset into the buffer as
an array, starting at the given buffer offset.

IfxDataReader.GetChar
Gets the character value of the specified column.

IfxDataReader.GetChars
Reads a stream of characters from the specified column offset into the
buffer as an array, starting at the given buffer offset.

IfxDataReader.GetData
Throws a NotSupported exception.

IfxDataReader.GetDateTime
Gets the date and time data value of the specified field.

IfxDataReader.GetDataTypeName
Gets the data type information for the specified field.

IfxDataReader.GetDecimal
Gets the fixed-point numeric value of the specified field.

IfxDataReader.GetDouble
Gets the double-precision floating point number of the specified field.

IfxDataReader.GetFieldType
Gets the Type information for the object returned by GetValue.

IfxDataReader.GetFloat
Gets the single-precision floating point number of the specified field.

IfxDataReader.GetGuid
Returns the GUID value of the specified field.

IfxDataReader.GetInt16
Gets the 16-bit signed integer value of the specified field.

IfxDataReader.GetInt32
Gets the 32-bit signed integer value of the specified field.

IfxDataReader.GetInt64
Gets the 64-bit signed integer value of the specified field.

IfxDataReader.GetName
Gets the name for the field to find.

IfxDataReader.GetOrdinal
Returns the index of the named field.

IfxDataReader.GetSchemaTable
Returns a DataTable object that describes the column metadata of the
IfxDataReader object.

IfxDataReader.GetString
Gets the string value of the specified field.

IfxDataReader.GetTimeSpan
Gets the time span value of the specified field.

IfxDataReader.GetValue
Returns the value of the specified field.

IfxDataReader.GetValues
Gets all the attribute fields in the collection for the current record.

3-30 IBM Informix .NET Provider Reference Guide

IfxDataReader.IsDBNull
Returns whether the specified field is set to null.

IfxDataReader.NextResult
When reading the results of batch SQL statements, advances the
IfxDataReader object to the next result.

IfxDataReader.Read
Advances the IfxDataReader object to the next record.

IfxDataReader example

The following example demonstrates how to use the properties and methods of the
IfxDataReader class.
// IfxConnection - con
string sql = "select stock_num,manu_code,description from stock";
con.Open();
IfxCommand selectCommand = new IfxCommand(sql,con);
IfxDataReader reader = selectCommand.ExecuteReader(CommandBehavior.Default);
//schema for Dataset can be created by GetSchemaTable()
DataTable schema = reader.GetSchemaTable();
//read to use reader properties.
reader.Read();
Console.WriteLine("Depth is ");
Console.WriteLine(reader.Depth);
Console.WriteLine("Number of Columns are");
Console.WriteLine(reader.FieldCount);
Console.WriteLine("Number of Rows Changed");
Console.WriteLine(reader.RecordsAffected);
Console.WriteLine("Is Data Reader Closed ?");
Console.WriteLine(reader.IsClosed);
do
{

while (reader.Read())
{

Int32 num = reader.GetInt32(0);
Console.WriteLine(num);
String string1 = reader.GetString(1);
Console.WriteLine(string1);
String string2 = reader.GetString(2);
Console.WriteLine(string2);

}
} while (reader.NextResult());
reader.Close();
reader.Dispose(); //To prevent high memory usage, Dispose() method is called.
//Close Connection

IfxDataSourceEnumerator class
IfxDataSourceEnumerator allows .NET applications to read IBM Informix
SQLHOST entries programmatically. Setnet32 is utility that provides a GUI
interface to SQLHOST entries.

Create an IfxDataSourceEnumerator

You can create an IfxDataSourceEnumerator by using the following method:
DbDataSourceEnumerator enum = factory.CreateDataSourceEnumerator();

where factory is a provider-specific instance of DbProviderFactory.

Chapter 3. Type reference 3-31

IfxDataSourceEnumerator public properties

The following table shows the public properties of the IfxDataSourceEnumerator
class.

Table 3-14. IfxDataSourceEnumerator public properties

Property Description

Instance Retrieves an enumerator.

IfxDataSourceEnumerator public methods
IfxDataSourceEnumerator.GetDataSources

Returns a DataTable. Each DataRecord in the DataTable represents a client server
entry that is configured on the computer.

Table 3-15. Columns of System.Data.DataTable

Column name Ordinal position Description

IfxDatabaseServer 0 Name of the server instance.
Multiple instances can exist
on a single server.

HostComputer 1 Host entry in SQLHOSTS.

UserName 2 User name used to connect
to the database.

PasswordOption 3 Password option as stored
through SetNet32 for the
host.

Password 4 Empty string.

Protocol 5 Protocol used for
communication.

Service 6 Service name.

Option 7 Option field from SetNet32.

IfxDateTime structure
An IfxDateTime represents a single moment in the span of time from midnight on
1 January 0001 to 11:59:59.99999 pm. on 31 December 9999.

An IfxDateTime is treated as if it were made up of a separate value for each of
these time units:
v Year
v Month
v Day
v Hour
v Minute
v Second
v Fractions of a second

3-32 IBM Informix .NET Provider Reference Guide

You can create an IfxDateTime that uses only a subset of these time units. This is
allowed in order to mimic the behavior of the database server's DATETIME data
type. It does not save any space in memory when you use fewer time units in an
IfxDateTime.

The largest time unit of an IfxDateTime is called the start time unit. The smallest
time unit of an IfxDateTime is called the end time unit. The start time unit, the end
time unit, and all time units in between are called the range of the IfxDateTime.

Example: If an IfxDateTime uses the year, month, and day portions then the start
time unit is year, the end time unit is day, and the range is year to day.

Time units that are not included in the range of the IfxDateTime are assumed to
have a default value as listed in this table.

Table 3-16. Default values for time units in IfxDateTime objects

Time unit Default value

Year 1200

Month 1

Day 1

Hour 0

Minute 0

Second 0

Fraction 0

When creating an IfxDateTime you specify time units using the members of the
IfxTimeUnit enumeration. For details about this enumeration see “IfxTimeUnit
enumeration” on page 3-64.

Create an IfxDateTime

All values for time units other than ticks are assumed to be numeric
representations for the unit in an actual date.

Example: If you use a value of 13 for a month then you will get an error because
there are only twelve months in a year. The 13 will not be converted to one year
and one month.

IfxDateTime constructors
IfxDateTime(System.Int64 ticks)

The new instance is set to a value equal to ticks since midnight on 1 Jan 0001.
There are 10 000 000 ticks in one second.

The range of the new instance is Year to Fraction5.

Ticks are more precise than Fraction5. The extra precision is ignored by all
methods and operators.
IfxDateTime(System.DateTime dt)

The new instance is set to the same value as dt. The range of the new instance is
Year to Fraction5.

Chapter 3. Type reference 3-33

IfxDateTime(System.Int32 numUnits, IfxTimeUnit unit)

The instance has a range of unit to unit. The value is set to numUnits units past
midnight on 1 Jan 0001.
v IfxDateTime(System.Int32 numUnits1, System.Int32 numUnits2, IfxTimeUnit

end)

v IfxDateTime(System.Int32 numUnits1, System.Int32 numUnits2, System.Int32
numUnits3, IfxTimeUnit end)

v IfxDateTime(System.Int32 numUnits1, System.Int32 numUnits2, System.Int32
numUnits3, System.Int32 numUnits4, IfxTimeUnit end)

v IfxDateTime(System.Int32 numUnits1, System.Int32 numUnits2, System.Int32
numUnits3, System.Int32 numUnits4, System.Int32 numUnits5, IfxTimeUnit
end)

v IfxDateTime(System.Int32 numUnits1, System.Int32 numUnits2, System.Int32
numUnits3, System.Int32 numUnits4, System.Int32 numUnits5, System.Int32
numUnits6, IfxTimeUnit end)

v IfxDateTime(System.Int32 numUnits1, System.Int32 numUnits2, System.Int32
numUnits3, System.Int32 numUnits4, System.Int32 numUnits5, System.Int32
numUnits6, System.Int32 numUnits7, IfxTimeUnit end)

If numUnits1 through numUnits7 are given then there is no start parameter because
the start time unit is automatically assumed to be Year; otherwise the range of the
new instance is start to end. The end time unit is always required because it
determines the precision of the fractional portion.

Values must be provided for all units in the range. The numUnits1 parameter is
interpreted as the value for the start time unit. The rest of the values are
interpreted as the values of the other time units in the range in order.

IfxDateTime public properties

These are the public properties of the IfxDateTime object.

Table 3-17. IfxDateTime public properties

Property Type Access notes Description

Date IfxDateTime read-only An IfxDateTime that has the same
value as the instance but has a range
of Year to Day.

Day System.Int32 read-only The day portion of the value.

EndTimeUnit IfxTimeUnit read-only The end time unit of the instance.

Hour System.Int32 read-only The hour portion of the value.

MaxValue IfxDateTime read-only
static

An IfxDateTime that has the largest
value possible in an IfxDateTime. The
range of the IfxDateTime is Year to
Fraction5.

Millisecond System.Int32 read-only The number of whole milliseconds in
the fractional portion of the instance.
There are 1000 milliseconds in one
second.

3-34 IBM Informix .NET Provider Reference Guide

Table 3-17. IfxDateTime public properties (continued)

Property Type Access notes Description

MinValue IfxDateTime read-only
static

An IfxDateTime that has the smallest
value possible in an IfxDateTime. The
range of the IfxDateTime is Year to
Fraction5.

Minute System.Int32 read-only The minute portion of the value.

Month System.Int32 read-only The month portion of the value.

Now IfxDateTime read-only
static

An IfxDateTime that is set to the
current date and time and has a range
of Year to Fraction5.

Null IfxDateTime read-only
static

An IfxDateTime that is set to null.

Second System.Int32 read-only The seconds portion of the value.

StartTimeUnit IfxTimeUnit read-only The start time unit of the instance.

Ticks System.Int64 read-only The number of ticks from midnight
on 1 Jan 0001 to the time in this
instance. There are 10 000 000 ticks in
one second.

Today IfxDateTime read-only
static

An IfxDateTime set to the current
time and having a range of Year to
Day.

Year System.Int32 read-only The year portion of the value.

IfxDateTime public methods
IfxDateTime.Add
IfxDateTime IfxDateTime.Add(IfxTimeSpan ifxTS)

IfxDateTime IfxDateTime.Add(IfxMonthSpan ifxMS)

Returns a new IfxDateTime set to the value of the instance plus the amount of time
represented by ifxTS or ifxMS. The new IfxDateTime has the same range as the
instance. The instance itself is not changed.

Adding an IfxMonthSpan is not the same as adding a well defined span of time
because there are a varying number of days in a month. When you add an
IfxMonthSpan the addition is performed only on the year and month portions of
the IfxDateTime. All other time units will be the same as they are in the instance.

IfxDateTime.AddDays
IfxDateTime IfxDateTime.AddDays(System.Double days)

Returns a new IfxDateTime set to the same value as this instance plus the number
of days in days. The value of days can be negative. Fractional values are permitted.
The instance itself is not changed.

The new IfxDateTime has the same range as the instance. If the resulting date will
not fit in that range an error is given.

IfxDateTime.AddMilliseconds
IfxDateTime IfxDateTime.AddMilliseconds(System.Double milliseconds)

Chapter 3. Type reference 3-35

Returns a new IfxDateTime set to the same value as this instance plus the number
of milliseconds in milliseconds. The value of milliseconds can be negative. It must be
greater than -1 000 000 000 and less than 1 000 000 000. Fractional values are
permitted. The instance itself is not changed.

The new IfxDateTime has the same range as the instance. If the resulting date will
not fit in that range an error is given.

IfxDateTime.AddMinutes
IfxDateTime IfxDateTime.AddMinutes(System.Double minutes)

Returns a new IfxDateTime set to the same value as this instance plus the number
of minutes in minutes. The value of minutes can be negative. It must be greater than
-1 000 000 000 and less than 1 000 000 000. Fractional values are permitted.

The new IfxDateTime has the same range as the instance. The instance itself is not
changed. If the resulting date will not fit in that range an error is given.

IfxDateTime.AddMonths
IfxDateTime IfxDateTime.AddMonths(System.Double months)

Returns a new IfxDateTime set to the same value as this instance except that the
months portion has the value of months added to it. The value of months can be
negative. The instance itself is not changed.

This is not the same as adding a well-defined span of time because the length of a
month varies. Units smaller than month will never be affected by the addition.

The new IfxDateTime has the same range as the instance. If the resulting date will
not fit in that range an error is given. You will also get an error if the resulting
date is invalid, such as February 31.

IfxDateTime.AddSeconds
IfxDateTime IfxDateTime.AddSeconds(System.Double seconds)

Returns a new IfxDateTime set to the same value as this instance plus the number
of seconds in seconds. The value of seconds can be negative. It must be greater than
-1 000 000 and less than 1 000 000 000. Fractional values are permitted. The
instance itself is not changed.

The new IfxDateTime has the same range as the instance. If the resulting date will
not fit in that range an error is given.

IfxDateTime.AddYears
IfxDateTime IfxDateTime.AddYears(System.Int32 years)

Returns a new IfxDateTime set to the same value as this instance except that the
years portion has the value of years added to it. The value of years can be negative.
The instance itself is not changed.

This is not the same as adding a well-defined span of time because the length of a
year varies. Units smaller than year will never be affected by the addition.

3-36 IBM Informix .NET Provider Reference Guide

The new IfxDateTime has the same range as the instance. If the resulting date will
not fit in that range an error is given. You will also get an error if the resulting
date is February 29 on a non-leap year.

IfxDateTime.Compare
static IfxDateTime IfxDateTime.Compare(IfxDateTime ifxDT1, IfxDateTime ifxDT1)

Returns a value based on the relative values of ifxDT1 and ifxDT2:

-1 ifxDT1 is earlier than ifxDT2

0 ifxDT1 and ifxDT2 are the same time

1 ifxDT1 is later than ifxDT2

Objects in the IBM Informix .NET Provider consider two null values to be equal to
each other. They also consider a null value to be less than any non-null value.

Any two IfxDateTime objects can be compared. Default values are used for any
time units that are not in the range of the IfxDateTime. See Table 3-16 on page 3-33
for the default values that are used.

IfxDateTime.CompareTo
System.Int32 IfxDateTime.CompareTo(System.Object obj)

The object obj must be an IfxDateTime.

This is equivalent to calling IfxDateTime.Compare with this instance as ifxDT1 and
obj as ifxDT2.

IfxDateTime.DaysInMonth
static System.Int32 IfxDateTime.DaysInMonth(System.Int32 year, System.Int32 month)

Returns the number of days in the month of the year.

IfxDateTime.Equals
static System.Boolean IfxDateTime.Equals(IfxDateTime ifxDT1, IfxDateTime ifxDT2)

This method returns true if IfxDateTime.Compare(ifxDT1, ifxDT2) would return 0.
If not it returns false.

IfxDateTime.GetHashCode
System.Int32 IfxDateTime.GetHashCode()

Returns the hash code for this instance.

The hash code will be the same for any two IfxDateTime objects that have the
same value but might also be the same for two IfxDateTime objects with different
values.

See the description of the Object.GetHashCode method in the .NET Framework Class
Library for details about hash codes.

IfxDateTime.GreaterThan
static System.Boolean IfxDateTime.GreaterThan(IfxDateTime ifxDT1, IfxDateTime
ifxDT2)

Chapter 3. Type reference 3-37

This method returns true if IfxDateTime.Compare(ifxDT1, ifxDT2) would return 1.
If not it returns false.

IfxDateTime.GreaterThanOrEqual
static System.Boolean IfxDateTime.GreaterThanOrEqual(IfxDateTime ifxDT1, IfxDateTime
ifxDT2)

This method returns true if IfxDateTime.Compare(ifxDT1, ifxDT2) would return 0
or 1. If not, it returns false.

IfxDateTime.LessThan
static System.Boolean IfxDateTime.LessThan(IfxDateTime ifxDT1, IfxDateTime
ifxDT2)

This method returns true if IfxDateTime.Compare(ifxDT1, ifxDT2) would return
-1. If not it returns false.

IfxDateTime.LessThanOrEqual
static System.Boolean IfxDateTime.LessThanOrEqual(IfxDateTime ifxDT1, IfxDateTime
ifxDT2)

This method returns true if IfxDateTime.Compare(ifxDT1, ifxDT2) would return 0
or -1. If not it returns false.

IfxDateTime.NotEquals
static System.Boolean IfxDateTime.NotEquals(IfxDateTime ifxDT1, IfxDateTime
ifxDT2)

This method returns true if IfxDateTime.Compare(ifxDT1, ifxDT2) would return 1
or -1. If not it returns false.

IfxDateTime.Parse
static IfxDateTime IfxDateTime.Parse(System.String dateTimeString)

static IfxDateTime IfxDateTime.Parse(System.String dateTimeString, IfxTimeUnit
start, IfxTimeUnit end)

static IfxDateTime IfxDateTime.Parse(System.String dateTimeString, System.String
format, IfxTimeUnit start, IfxTimeUnit end)

Returns a new IfxDateTime with a value based on dateTimeString. If format is not
given, the dateTimeString string must be in this format:
Y-M-DD hh:mm:ss.f

Y An integer indicating the year.

M The number of the month in the range 1 to 12.

D The number of day in the month.

h The hour of the day in the range 0 to 23.

m The minute of the hour in the range 0 to 59.

s The second of the minute in the range 0 to 59.

f The fractional portion of the seconds. Precision beyond 5 decimal places is
ignored.

The range of the new IfxDateTime is start to end. If start and end are not given the
range is Day to Fraction5.

3-38 IBM Informix .NET Provider Reference Guide

All time units in the range must be present in dateTimeString, even if they are zero.
If format is provided then time units outside the range are optional. If they are
present they are ignored. If format is not provided then time units outside the
range are not allowed.

The format string uses the same syntax as the DBTIME environment variable. For the
details about the syntax, refer to the description of the DBTIME environment
variable in the IBM Informix Guide to SQL: Reference.

IfxDateTime.ToString
System.String IfxDateTime.ToString()

System.String IfxDateTime.ToString (System.String format)

Returns the value of the instance as a string. If format is not present the format
used is:
YYYY-MM-DD hh:mm:ss.f

YYYY Four digit year

MM Two digit month

DD Two digit day

hh Two digit hour in range of 00 to 23

mm Two digit minute

ss Two digit second

f The fractional portion of the seconds

Portions outside the range of the instance are not included in the string.

If format is provided the output is formatted in the way indicated in that string.
The format string uses the same syntax as the DBTIME environment variable. For the
details of the syntax, refer to the description of the DBTIME environment variable in
the IBM Informix Guide to SQL: Reference.

IfxDecimal structure
An IfxDecimal object represents a decimal number with up to 32 significant digits.
The range of valid values is from 10-129 to 10129.

The DECIMAL data type in an IBM Informix database can represent a larger range
of values than will fit in any of the .NET Framework data types. It can also be a
floating point number rather than a fixed point number. This is why you should
use an IfxDecimal object to store values that are stored on the database as a
DECIMAL or its equivalent.

You can use IfxDecimal to preserving numerical value, but not for preserving the
scale. For example, a value 100 can be displayed as 100.0. Similarly, 100.00 can be
displayed as 100.0. IfxDecimal always stores a floating point value. To preserve
scale, use Decimal instead of IfxDecimal.

Create an IfxDecimal

IfxDecimal objects are created automatically by some methods of other objects. You
can create them explicitly by using one of the constructors.

Chapter 3. Type reference 3-39

IfxDecimal constructors
IfxDecimal(System.Double d)

IfxDecimal(System.Decimal d)

IfxDecimal(System.Int64 d)

IfxDecimal(System.Int32 i32)

The new instance will have the value of the parameter.

IfxDecimal properties
Table 3-18. IfxDateTime public properties

Property Type Access notes Description

E IfxDecimal read-only
static

The value of the irrational number e.

IsFloating System.Boolean read-only This is true if the instance is a floating
point number; otherwise it is false.

IsNull System.Boolean read-only This is true if the instance is null
otherwise it is false.

IsPositive System.Boolean read-only This is true if the instance is a
positive number; otherwise it is false.

MaxPrecision System.Byte read-only
static

The highest precision (number of
significant digits) supported by an
IfxDecimal. This is currently 32.

MaxValue IfxDecimal read-only
static

The largest value that can be held in
an IfxDecimal.

MinusOne IfxDecimal read-only
static

The value -1.

MinValue IfxDecimal read-only
static

The smallest value that can be held in
an IfxDecimal.

Null IfxDecimal read-only
static

An IfxDecimal that is set to null.

One IfxDecimal read-only
static

The value 1.

Pi IfxDecimal read-only
static

The value of the irrational number pi.

Zero IfxDecimal read-only
static

The value 0.

IfxDecimal methods
IfxDecimal.Abs
static IfxDecimal IfxDecimal.Abs(IfxDecimal IfxDec_)

Creates a new IfxDecimal that has a value equal to the absolute value of IfxDec_.

IfxDecimal.Add
static IfxDecimal IfxDecimal.Add(IfxDecimal IfxDec1, IfxDecimal IfxDec2)

Creates a new IfxDecimal that has a value equal to the sum of IfxDec1 and IfxDec2.

3-40 IBM Informix .NET Provider Reference Guide

IfxDecimal.Ceiling
static IfxDecimal IfxDecimal.Ceiling(IfxDecimal IfxDec)

Creates a new IfxDecimal that is the smallest integer that is not less than IfxDec.

IfxDecimal.Clone
IfxDecimal IfxDecimal.Clone()

Creates a new IfxDecimal that is a duplicate of this instance.

IfxDecimal.Compare
static System.Int32 IfxDecimal.Compare(IfxDecimal IfxDec1, IfxDecimal IfxDec2)

The value returned is based on the relative values of IfxDec1 and IfxDec2.

-1 The value of IfxDec1 is less than the value of IfxDec2

0 The IfxDecimal objects have the same value

1 The value of IfxDec1 is greater than the value of IfxDec2

Objects in the IBM Informix .NET Provider consider two null values to be equal to
each other. They also consider a null value to be less than any non-null value.

IfxDecimal.CompareTo
System.Int32 IfxDecimal.CompareTo(System.Object obj)

This is the same as calling IfxDecimal.Compare with the instance as IfxDec1 and obj
as IfxDec2.

The object obj must be an IfxDecimal object. You will get an error if you call this
method from an instance that is null.

IfxDecimal.Divide
static IfxDecimal IfxDecimal.Divide(IfxDecimal Dividend, IfxDecimal Divisor)

Creates a new IfxDecimal that is the result of dividing Dividend by Divisor.

IfxDecimal.Equals
static System.Boolean IfxDecimal.Equals(IfxDecimal IfxDec1, IfxDecimal
IfxDec2)

System.Boolean IfxDecimal.Equals(System.Object obj)

Returns true if IfxDecimal.Compare(IfxDec1, IfxDec2) would return 0.

If just obj is given then the instance is used as IfxDec1 and obj is used as IfxDec2.
The obj object must be an IfxDecimal.

IfxDecimal.Floor
static IfxDecimal IfxDecimal.Floor(IfxDecimal IfxDec)

Creates a new IfxDecimal whose value is the largest integer not larger than the
value of IfxDec.

Chapter 3. Type reference 3-41

IfxDecimal.GetHashCode
System.Int32 IfxDecimal.GetHashCode()

Returns the hash code for this instance.

The hash code will be the same for any two IfxDecimal objects that have the same
value but might also be the same for two IfxDecimal objects with different values.

See the description of the Object.GetHashCode method in the .NET Framework Class
Library for details about hash codes.

IfxDecimal.GreaterThan
static System.Boolean IfxDecimal.GreaterThan(IfxDecimal IfxDec1, IfxDecimal
IfxDec2)

Returns true if IfxDecimal.Compare(IfxDec1, IfxDec2) would return 1; otherwise
returns false.

IfxDecimal.GreaterThanOrEqual
static System.Boolean IfxDecimal.GreaterThanOrEqual(IfxDecimal IfxDec1, IfxDecimal
IfxDec2)

Returns true if IfxDecimal.Compare(IfxDec1, IfxDec2) would return 0 or 1;
otherwise returns false.

IfxDecimal.LessThan
static System.Boolean IfxDecimal.LessThan(IfxDecimal IfxDec1, IfxDecimal
IfxDec2)

Returns true if IfxDecimal.Compare(IfxDec1, IfxDec2) would return -1; otherwise
returns false.

IfxDecimal.LessThanOrEqual
static System.Boolean IfxDecimal.LessThanOrEqual(IfxDecimal IfxDec1, IfxDecimal
IfxDec2)

Returns true if IfxDecimal.Compare(IfxDec1, IfxDec2) would return 0 or -1;
otherwise returns false.

IfxDecimal.Max
static IfxDecimal IfxDecimal.Max(IfxDecimal IfxDec1, IfxDecimal IfxDec2)

Creates a new IfxDecimal with a value equal to the value of IfxDec1 or IfxDec2,
whichever is larger.

Neither IfxDec1 nor IfxDec2 can be null.

IfxDecimal.Min
static IfxDecimal IfxDecimal.Min(IfxDecimal IfxDec1, IfxDecimal IfxDec2)

Creates a new IfxDecimal with a value equal to the value of IfxDec1 or IfxDec2,
whichever is smaller.

Neither IfxDec1 nor IfxDec2 can be null.

3-42 IBM Informix .NET Provider Reference Guide

IfxDecimal.Modulo
static IfxDecimal IfxDecimal.Modulo(IfxDecimal a, IfxDecimal b)

Synonym for IfxDecimal.Remainder.

IfxDecimal.Multiply
static IfxDecimal IfxDecimal.Multiply(IfxDecimal IfxDec1, IfxDecimal IfxDec2)

Creates a new IfxDecimal that has a value equal to IfxDec1 times IfxDec2.

IfxDecimal.Negate
static IfxDecimal IfxDecimal.Negate(IfxDecimal IfxDec)

Creates a new IfxDecimal that is the result of reversing the sign (positive or
negative) of this instance.

IfxDecimal.NotEquals
static System.Boolean IfxDecimal.NotEquals(IfxDecimal IfxDec1, IfxDecimal
IfxDec2)

Returns true if IfxDecimal.Compare(IfxDec1, IfxDec2) would return 1 or -1.

IfxDecimal.Parse
static IfxDecimal IfxDecimal.Parse(System.String s)

Leading and trailing spaces in s are ignored. You can include an optional exponent
by placing an e or E between the decimal value and the exponent. Exponents can
be negative.

Example: This C# statement creates an IfxDecimal named d that has a value of
-0.000032:
IfxDecimal d = IfxDecimal.Parse(" -3.2e-5 ");

Creates a new IfxDecimal with a value equal to the decimal value represented in s.

IfxDecimal.Remainder
static IfxDecimal IfxDecimal.Remainder(IfxDecimal a, IfxDecimal b)

Creates a new IfxDecimal the value of which is the remainder of the integer
division of a by b. Integer division in this case means that b goes into a an integral
(whole) number of times and what is left over is the remainder.

The sign (positive or negative) of the remainder will always match the sign of a.

IfxDecimal.Round
static IfxDecimal IfxDecimal.Round(IfxDecimal IfxDec1, System.Int32
FractionDigits)

Returns a new IfxDecimal that has the value of IfxDec1 rounded to FractionDigits
digits to the right of the decimal point. If FractionDigits is 0 the value is rounded to
the ones place. If FractionDigits is -1 the value is rounded to the tens place, and so
on.

Example: If IfxDec1 is an IfxDecimal with a value of 123.45 then this table gives
the results of rounding to different positions.

Chapter 3. Type reference 3-43

Value of
FractionDigits Result of IfxDecimal.Round(IfxDec1,FractionDigits)

-2 100.0

-1 120.0

0 123.0

1 123.5

2 123.45

IfxDecimal.Subtract
static IfxDecimal IfxDecimal.Subtract(IfxDecimal IfxDec1, IfxDecimal IfxDec2)

Creates a new IfxDecimal that has a value of IfxDec1 minus IfxDec2.

IfxDecimal.ToString
System.String IfxDecimal.ToString()

System.String IfxDecimal.ToString (System.String format)

Returns the value of the instance as a string. If format is not present the format
used is that of an ordinary decimal number, no exponent is used.

If format is provided, the output is formatted in the way indicated in that string.
The syntax of format is as described in the section "Formatting Numeric Strings" in
IBM Informix ESQL/C Programmer's Manual.

IfxDecimal.Truncate
static IfxDecimal IfxDecimal.Truncate(IfxDecimal IfxDec1, System.Int32
FractionDigits)

Like IfxDecimal.Round(IfxDec1, FractionDigits) except that all digits to the right of
the indicated digit are set to zero rather than rounded.

Example: This table gives the results of truncating an IfxDecimal named IfxDec1
that has a value of 999.99.

Value of
FractionDigits Result of IfxDecimal.Truncate(IfxDec1,FractionDigits)

-2 900.0

-1 990.0

0 999.0

1 999.9

2 999.99

IfxError class
The IfxError class represents an instance of a warning or an error generated by the
IBM Informix database.

3-44 IBM Informix .NET Provider Reference Guide

IfxError public properties

The following table shows the public properties of the IfxError class.

Table 3-19. IfxError public properties

Property Description

Message Gets the description of the error.

NativeError Gets the error code returned from the IBM Informix database.

SQLState Gets the five-character error code that follows the ANSI SQL standard
for the database.

IfxErrorCollection class
The IfxErrorCollection class represents a collection of IfxError object occurrences in
an IfxException object.

IfxErrorCollection public properties

The following table shows the public properties of the IfxErrorCollection class.

Table 3-20. IfxErrorCollection public properties

Property Description

Count Returns the number of IfxError occurrences in the collection.

IfxErrorCollection public methods
IfxErrorCollection.GetEnumerator

Returns an Enumerator (IEnumerator) to this collection.

IfxException class
The IfxException class represents an exception that is generated when a warning or
error is returned by the IBM Informix database.

IfxException public properties

The following table shows the public properties of the IfxException class.

Table 3-21. IfxException public properties

Property Description

Errors Gets the collection of IfxError objects as an IfxErrorCollection object.

HelpLink Gets the help link URL for the exception errors, if available.

InnerException Gets the exception that caused the current exception.

Message Gets the text describing the exception.

StackTrace Gets a string representation of the frames on the call stack when the
exception occurred.

TargetSite Gets the method that returned the exception.

Chapter 3. Type reference 3-45

IfxMonthSpan structure
An IfxMonthSpan represents an offset of a particular number of months and years.
A positive IfxMonthSpan represents an offset forward in time and a negative
IfxMonthSpan represents an offset backward in time. An IfxMonthSpan can hold
values from -11 999 999 999 months to 11 999 999 999 months (11 999 999 999
months = 999 999 999 years and 11 months).

An IfxMonthSpan is treated as if it were made up of a separate value for years and
months.

You can create an IfxMonthSpan that uses only years or only months. This is
allowed to mimic the behavior of the database server's INTERVAL data type. It
does not save any space in memory to use only one time unit.

The largest time unit of an IfxMonthSpan is called the start time unit. The smallest
time unit of an IfxMonthSpan is called the end time unit. The start time unit and
the end time unit together are called the range of the IfxMonthSpan.

Example: If an IfxMonthSpan uses years and months, start time unit is year, the
end time unit is month, and the range is year to month. If only months are used
then the range is month to month and both the start time unit and end time unit
are month.

When creating an IfxMonthSpan you specify time units using the members of the
enumeration “IfxTimeUnit enumeration” on page 3-64. For details about this
enumeration see “IfxTimeUnit enumeration” on page 3-64.

Create an IfxMonthSpan

IfxMonthSpan constructors
IfxMonthSpan(System.Int32 val, IfxTimeUnit timeUnit)

The new instance has only one time unit and it is set to the value val.

The StartTimeUnit and EndTimeUnit are both set to timeUnit.
IfxMonthSpan(System.Int32 _years, System.Int32 _months)

The new instance has a value equal to the sum of _years years and _months
months. Negative values are allowed.

IfxMonthSpan public properties
Table 3-22. IfxMonthSpan public properties

Property Type Access notes Description

EndTimeUnit IfxTimeUnit read-only An IfxTimeUnit enumeration element
indicating the end time unit of this
instance.

IsNull System.Boolean read-only Returns true if the instance is null;
otherwise false.

MaxValue IfxMonthSpan read-only
static

An IfxMonthSpan set to the largest
value that it can hold.

MinValue IfxMonthSpan read-only
static

An IfxMonthSpan set to the smallest
value that it can hold.

3-46 IBM Informix .NET Provider Reference Guide

Table 3-22. IfxMonthSpan public properties (continued)

Property Type Access notes Description

Months System.Int32 read-only Returns the remainder of dividing the
total number of months in the
IfxTimeSpan by 12.

If the IfxMonthSpan is negative then
this value will be negative.

Null IfxMonthSpan read-only
static

An IfxMonthSpan set to null.

StartTimeUnit IfxTimeUnit read-only The largest unit included in the
IfxMonthSpan.

TotalMonths System.Int64 read-only The total number of months in the
IfxMonthSpan.

If the IfxMonthSpan is negative then
this value will be negative.

Years System.Int32 read-only The number of full years in the
IfxMonthSpan.

If the IfxMonthSpan is negative then
this value will be negative.

Zero IfxMonthSpan read-only
static

An IfxMonthSpan set to 0.

IfxMonthSpan public methods
IfxMonthSpan.Add
IfxMonthSpan IfxMonthSpan.Add(IfxMonthSpan ms)

Returns a new IfxMonthSpan set to the value of the this instance plus the amount
of time in ms.

The resulting IfxMonthSpan has the same range as this instance. This instance is
not changed.

IfxMonthSpan.Compare
static System.Int32 IfxMonthSpan.Compare(IfxMonthSpan ms1, IfxMonthSpan ms2)

This method does not compare the relative sizes of the spans, rather the
IfxTimeSpan objects are compared as if they were both numbers. This means, for
instance, that a span of -12 years is less than a span of 2 months.

Returns a value based on the relative values of ms1 and ms2.

-1 ms1 is less than ms2

0 ms1 and ms2 have the same value

1 ms1 is greater than ms2

Objects in the IBM Informix .NET Provider consider two null values to be equal to
each other. They also consider a null value to be less than any non-null value

Chapter 3. Type reference 3-47

IfxMonthSpan.CompareTo
System.Boolean IfxMonthSpan.CompareTo(System.Object obj)

The object obj must be an IfxMonthSpan.

This is equivalent to calling IfxMonthSpan.Compare with this instance as ms1 and
obj as ms2.

IfxMonthSpan.Divide
IfxMonthSpan IfxMonthSpan.Divide(Decimal val)

Returns a new IfxMonthSpan set to the value of this instance divided by val.
IfxMonthSpan IfxMonthSpan.Divide(IfxMonthSpan ms)

Returns the number of spans of time that are the size of ms that will fit in the span
of time represented by this instance. The result is negative if one of the
IfxMonthSpan objects is negative and the other is not.

IfxMonthSpan.Duration
IfxMonthSpan IfxMonthSpan.Duration()

Returns a new IfxMonthSpan with a value that is the absolute value of this
instance.

IfxMonthSpan.Equals
static Boolean IfxMonthSpan.Equals(IfxMonthSpan ms1, IfxMonthSpan ms2)

Returns true if ms1 and ms2 have the same value; otherwise returns false.
Boolean IfxMonthSpan.Equals(System.Object obj)

Returns true if obj is an IfxMonthSpan that represents the same time offset as this
instance; otherwise it returns false.

IfxMonthSpan.GetHashCode
System.Int32 IfxMonthSpan.GetHashCode()

Returns the hash code for this instance.

The hash code will be the same for any two IfxMonthSpan objects that have the
same value but might also be the same for two IfxMonthSpan objects with
different values.

See the description of the Object.GetHashCode method in the .NET Framework Class
Library for details about hash codes.

IfxMonthSpan.GreaterThan
static System.Boolean IfxMonthSpan.GreaterThan(IfxMonthSpan ms1, IfxMonthSpan ms2)

Returns true if IfxMonthSpan.Compare(ms1, ms2) would return 1; otherwise, it
returns false.

IfxMonthSpan.GreaterThanOrEqual
static System.Boolean IfxMonthSpan.GreaterThanOrEqual(IfxMonthSpan ms1, IfxMonthSpan
ms2)

3-48 IBM Informix .NET Provider Reference Guide

Returns true if IfxMonthSpan.Compare(ms1, ms2) would return either 1 or 0;
otherwise, it is false.

IfxMonthSpan.LessThan
System.Boolean IfxMonthSpan.LessThan(IfxMonthSpan ms1, IfxMonthSpan ms2)

Returns true if IfxMonthSpan.Compare(ms1, ms2) would return -1; otherwise, it
returns false.

IfxMonthSpan.LessThanOrEqual
System.Boolean IfxMonthSpan.LessThanOrEqual(IfxMonthSpan ms1, IfxMonthSpan ms2)

Returns true if IfxMonthSpan.Compare(ms1, ms2) would return -1 or 0; otherwise,
it returns false.

IfxMonthSpan.Multiply
IfxMonthSpan IfxMonthSpan.Multiply(Decimal val)

Returns a new IfxMonthSpan set to the value of this instance multiplied by val.

IfxMonthSpan.Negate
IfxMonthSpan IfxMonthSpan.Negate()

Returns a new IfxMonthSpan with a value equal to this instance but with opposite
sign (positive or negative).

IfxMonthSpan.NotEquals
static System.Boolean IfxMonthSpan.NotEquals(IfxMonthSpan ms1, IfxMonthSpan ms2)

Returns true if IfxMonthSpan.Compare(ms1, ms2) would return -1 or 1; otherwise,
it returns false.

IfxMonthSpan.Parse
static IfxTimeSpan IfxMonthSpan.Parse(System.String val)

static IfxTimeSpan IfxMonthSpan.Parse(System.String val, IfxTimeUnit start,
IfxTimeUnit end)

static IfxTimeSpan IfxMonthSpan.Parse(System.String val, System.String format,
IfxTimeUnit start, IfxTimeUnit end)

Returns a new IfxMonthSpan with a value based on val. If format is not given, the
val string must be in this format:
[s]y- m

s Optional sign. If present this can be either + or -. The default is +. The
brackets ([]) are not part of the time span. They indicate that the sign is
optional.

y The number of whole years in the span. This must be an integer in the
range 0 to 999 999 999.

m The number of months. This must be an integer in the range 0 to 11.

The range of the new IfxMonthSpan is start to end. Only Year and Month are
allowed in an IfxMonthSpan. If start and end are not given, the range is Year to

Chapter 3. Type reference 3-49

Month. Values each unit in the range must be present in val, even if one or both
are zero. Values outside the range must not be present. If only one time unit is
used then the - is not used.

The format string uses the same syntax as the DBTIME environment variable except
that the only placeholders it can include are %Y and %m. The %Y placeholder in
this context accepts the number of years in a range from 0 to 999 999 999. All units
for which there are placeholders must be present . For the details of the syntax,
refer to the description of the DBTIME environment variable in the IBM Informix
Guide to SQL: Reference.

If both year and month are given in val and accepted in format, then they are both
used even if the range is year to year or month to month. If a IfxMonthSpan has a
range of year to year and its value includes a total number of months that is not
evenly divisible by 12 the extra months are ignored.

Example: The string output by this command is 1.
IfxMonthSpan.Parse("1-11","%Y-%m",
System.Double.Year,System.Double.Year).ToString()

If the range of an IfxMonthSpan is month to month and both years and months are
given in val and accepted by format then the years are converted to months.

Example: The string output by this command is 23.
IfxMonthSpan.Parse("1-11","%Y-%m",
System.Double.Month,System.Double.Month).ToString()

IfxMonthSpan.Subtract
IfxMonthSpan IfxMonthSpan.Subtract(IfxMonthSpan ms)

Returns a new IfxMonthSpan set to the value of this instance minus the value of
ms.

IfxMonthSpan.ToString
System.String IfxMonthSpan.ToString()

System.String IfxMonthSpan.ToString (System.String format)

Returns the value of the instance as a string. If format is not present the format
used is:
sy-m

s Optional sign. A minus sign is shown here if the IfxMonthSpan is negative.
Nothing is shown for positive values.

y The number of whole years in the value

m The number of months left over after calculating y

If the IfxMonthSpan has only one time unit then only that time unit is output and
the dash that goes between the year and month is omitted.

If format is provided, the output is formatted in the way indicated in that string.
The format string uses the same syntax as the DBTIME environment variable except
that only the %m, %y and %Y placeholders are allowed. The %y and %Y
placeholders work the same way in this string. For the details of the syntax, refer
to the description of the DBTIME environment variable in the IBM Informix Guide to
SQL: Reference.

3-50 IBM Informix .NET Provider Reference Guide

IfxParameter class
The IfxParameter class represents a parameter to an IfxCommand object. It
represents a single parameter stored in a collection that is represented by an
IfxParameterCollection object.

Create an IfxParameter class

IfxParameter constructors
v IfxParameter()

v IfxParameter(System.String name, System.Object value)

v IfxParameter(System.String name, IfxType type)

v IfxParameter(System.String name, IfxType type, System.Int32 size)

v IfxParameter(System.String name, IfxType type, System.Int32 size,
System.String sourceColumn)

v IfxParameter(System.String name, IfxType type, System.Int32 size,
System.Data.ParameterDirection parameterDirection, System.Boolean
isNullable, System.Byte precision, System.Byte scale, System.String
sourceColumn, System.Data.DataRowVersion srcVersion, System.Object value)

The parameters are as follows:

name
The name of the parameter.

value
The value that will be assigned to the parameter.

type
The informix type of the parameter. See “IfxType enumeration” on page 3-66
for details.

size
The size of the parameter.

parameterDirection
Whether this parameter is an input, output, or input/output parameter. Look
up System.Data.ParameterDirection in the .NET Framework Class Library for
details on the directions.

sourceColumn
The source column for the parameter.

isNullable
Set to true if the parameter can accept null values; otherwise false.

precision
The precision of the parameter.

scale
The scale of the parameter.

srcVersion
The source version of the parameter.

Chapter 3. Type reference 3-51

IfxParameter public properties

The following table shows the public properties of the IfxParameter class.

Table 3-23. IfxParameter public properties

Property Description

DbType Gets or sets the DbType of the parameter. The DbType property
specifies the data type of the IfxParameter object.

Direction Gets or sets a value indicating whether the parameter is input-only,
output-only, bidirectional, or a stored procedure return value
parameter. If the direction is output, and execution of the associated
IfxCommand does not return a value, the IfxParameter contains a
null value. After the last row from the last result set is read, Output,
InputOut, and ReturnValue parameters are updated. The possible
values for the Direction property are shown after the table.

IfxType Gets or sets the IfxType of the parameter. The IfxType property
specifies the data type enumeration of the IBM Informix .NET
Provider that maps to the Informix data type.

IsNullable Gets or sets a value indicating whether the parameter accepts null
values.

ParameterName Gets or sets the name of the parameter. The ParameterName is used
to reference the parameter in the parameter collection.

SourceColumn Gets or sets the name of the source column that is mapped to the
DataSet and used for loading or returning the value. The
SourceColumn property can be passed as an argument to the
IfxParameter constructor, or set as a property of an existing
IfxParameter object (See “IfxParameter examples”).

SourceVersion Gets or sets the DataRowVersion to use when loading value. The
SourceVersion specifies which DataRow version the IfxDataAdapter
object uses to retrieve the value. The SourceVersion property can be
passed as an argument to the IfxParameter constructor, or set as a
property of an existing IfxParameter (See “IfxParameter examples”).

Value Gets or sets the value of the parameter.

IfxParameter examples

The first example creates an IfxParameter object.
//illustrates example of creating and using IfxParameter
//assume we have obtained a connection
IfxDataAdapter adpt = new IfxDataAdapter();
adpt.SelectCommand = new IfxCommand("SELECT CustomerID, Name FROM Customers

WHERE Country = ? AND City = ?", conn);
IfxParameter ifxp1 = new IfxParameter("Country",DbType.String);
IfxParameter ifxp2 = new IfxParameter("City",DbType.String);
//add parameter to the Parameter collection
//since our provider does not support named parameters, the order of parameters
//added to the collection is important.
Adpt.SelectCommand.Parameters.Add(ifxp1);
Adpt.SelectCommand.Parameters.Add(ifxp2);
//the above method of creating and adding a parameter can also be done in a
//single step as shown
//adpt.UpdateCommand.Parameters.Add("CustomerName",DbType.String);
//assign value to the parameter
adpt.UpdateCommand.Parameters.["CustomerName"] = "xyz";

3-52 IBM Informix .NET Provider Reference Guide

The next example demonstrates the use of the SourceVersion and SourceColumn
properties:
//The following assumptions have been made:
// 1.We have obtained a connection (conn) to our data source
//2. We have a filled a DataSet using a DataAdapter(custDA) that has the
//following SelectCommand:
// "SELECT CustomerID, CompanyName FROM Customers WHERE Country = ? AND City =
// ?";
// 3. following is the update statement for the UpdateCommand:
// string updateSQL = "UPDATE Customers SET CustomerID = ?, CompanyName = ? " +
// "WHERE CustomerID = ? ";
// 4.The CustomerID column in the DataRow being used has been modified with a
// new value.
custDA.UpdateCommand = new IfxCommand(updateSQL,conn);
//The customer id column is being used as a source for 2 parameters.
//(set CustomerID = ?, and //where CustomerID = ?)
//the last parameter to the Add command specifies the SourceColumn for the
//parameter
IfxParameter myParam1 = custDA.UpdateCommand.Parameters.Add(

"CustomerID", IfxType.Char,5,"CustomerID");
//The following line of code is implied as default, but is provided for
//illustrative purposes
//We want to update CustomerID with the current value in the DataRow.
myParam1.SourceVersion = DataRowVersion.Current;
//Current is the default value
custDA.UpdateCommand.Parameters.Add("CompanyName", IfxType.VarChar);
//The last parameter to the Add command specifies the SourceColumn for the
//parameter
IfxParameter myParm2 = custDA.UpdateCommand.Parameters.Add(

"OldCustomerID", IfxType.Char,5,"CustomerID");
//We want to use in our search filter, the original value of CustomerID in
//the DataRow
MyParm2.SourceVersion = DataRowVersion.Original;
CustDA.Update();

IfxParameterCollection class
The IfxParameterCollection class represents the parameters for an IfxCommand
object.

Create an IfxParameterCollection

You do not create an IfxParameterCollection directly. It is created automatically as
part of an IfxCommand. To access it use the IfxCommand.Parameters property.

IfxParameterCollection public properties

The following table shows the public properties of the IfxParameterCollection class.

Table 3-24. IfxParameterCollection public properties

Property Description

Count Returns the number of parameters in the collection.

Item Gets the parameter at the specified index.

Chapter 3. Type reference 3-53

IfxParameterCollection public methods
IfxParameterCollection.Add
IfxParameter Add(IfxParameter value)

Adds the IfxParameter object value to the IfxParameterCollection.
IfxParameter Add(System.Object value)

IfxParameter Add(System.String parameterName, System.Object value)

IfxParameter Add(System.String parameterName, IfxType IfxType)

IfxParameter Add(System.String parameterName, IfxType ifxType, System.Int32
size)

IfxParameter Add(System.String parameterName, IfxType ifxType, System.Int32
size, System.String sourceColumn)

Create an IfxParameter object using the parameters given, then add it to the
IfxParameterCollection. See “Create an IfxParameterCollection” on page 3-53 for
information on what each parameter does.

This method returns the IfxParameter that was added.

IfxParameterCollection.Clear
void IfxParameterCollection.Clear()

Removes all the elements in the IfxParameterCollection object.

IfxParameterCollection.Contains
System.Boolean IfxParameterCollection.Contains(System.Object value)

System.Boolean IfxParameterCollection.Contains(System.String value)

Gets a value indicating whether a parameter in the collection has the specified
source table name.

IfxParameterCollection.CopyTo
void IfxParameterCollection.CopyTo(System.Array array, System.Int32 index)

Copies the elements of a collection into an array at a specified index.

IfxParameterCollection.GetEnumerator
System.Collections.IEnumerator IfxParameterCollection.GetEnumerator()

Returns an enumerator to the collection.

IfxParameterCollection.IndexOf
System.Int32 IfxParameterCollection.IndexOf(System.Object value)

System.Int32 IfxParameterCollection.IndexOf(System.String value)

Gets the location of the IfxParameter object within the collection.

IfxParameterCollection.Insert
void IfxParameterCollection.Insert(System.Int32 index, System.Object value)

Inserts a parameter at a specified location.

3-54 IBM Informix .NET Provider Reference Guide

IfxParameterCollection.Remove
void IfxParameterCollection.RemoveAt(System.Object value)

Removes the IfxParameter object from the collection.

IfxParameterCollection.RemoveAt
void IfxParameterCollection.RemoveAt(System.String parameterName)

void IfxParameterCollection.RemoveAt(System.Int32 index)

Removes the IfxParameter object named parameterName or at location index from
the collection.

IfxProviderFactory class
You can use the IfxProviderFactory class to write provider-independent data access
code. After getting an instance of the required provider factory, you can use that
provider factory to create instances of the provider-specific data access classes.
IfxProviderFactory exposes a series of methods that return these class instances.

You can use the DbProviderFactory class to create a DbProvider instance
specifically for the IBM Informix invariant, IBM.Data.Informix, as shown in the
following example:
DbProviderFactory factory = DbProviderFactories.GetFactory("IBM.Data.Informix");

IfxProviderFactory public methods
IfxProviderFactory.CreateConnectionStringBuilder
IfxProviderFactory CreateConnectionStringBuilder(IfxProviderFactory)

Returns an instance of a DbConnectionStringBuilder that the application
developers can use to create connection strings dynamically.

IfxProviderFactory.CreateConnection
IfxProviderFactory.CreateConnection(IfxParameter value)

Returns an instance of a DbConnection that the application developers can use to
connect to a data store. The DbConnection class exposes a method
CreateCommand() that returns a new DbCommand instance. The developers can
use this instead of the DbProviderFactory.CreateCommand() method to create a
command for that connection

IfxProviderFactory.CreateCommand
IfxProviderFactory.CreateCommand()

Developers can use to execute SQL statements and stored procedures. The
DbCommand class exposes a method CreateParameter() that returns a new
DbParameter instance. The developers can use this instead of the
DbProviderFactory.CreateParameter() method to create parameters for that
command.

IfxProviderFactory.CreateParameter
IfxProviderFactory.CreateParameter()

Returns an instance of a DbParameter that the application developers can use to
pass values into and out of SQL statements and stored procedures.

Chapter 3. Type reference 3-55

IfxProviderFactory.CreateCommandBuilder
IfxProviderFactory.CreateCommandBuilder()

Returns an instance of a DbCommandBuilder that the application developers can
use to create the UPDATE, INSERT and DELETE SQL statements for a
DataAdapter automatically.

IfxProviderFactory.CreateDataAdapter
IfxProviderFactory.CreateDataAdapter()

Returns an instance of a DbDataAdapter that the application developers can use to
fill or update a DataSet or DataTable.

IfxProviderFactory.CreateDataSourceEnumerator
IfxProviderFactory.CreateDataSourceEnumerator()

Returns an instance of a DbDataSourceEnumerator that the application developers
can use to examine the data sources available through this DbProviderFactory
instance.

IfxProviderFactory.CreatePermission (PermissionState)
IfxProviderFactory.CreatePermission (PermissionState)

Takes a value from the PermissionState enumeration and returns an instance of a
CodeAccessPermission that you can use to ensure that callers have been granted
appropriate permission for all the objects to which they require access.

IfxSmartLOBCreateTimeFlags enumeration

The table below indicates the flags that can be set while creating a CLOB or BLOB
object. The logical OR operation can be performed on one or more enumeration
members listed in the table below and assigned to the IfxBlob.Flags or
IfxClob.Flags property.

Member Meaning

DontKeepAccessTime If read this means that the smart large object does not keep
track of the last time it was accessed.

If written it tells the database server not to track the last access
time for this smart large object.

This flag overrides KeepAccessTime if both are given.

KeepAccessTime If read this means that the smart large object keeps track of the
last time it was accessed.

If written it tells the database server to track the last access time
for this smart large object.

Use of the access time tracking feature causes significant extra
work for the database server. Consider carefully before turning
it on.

3-56 IBM Informix .NET Provider Reference Guide

Member Meaning

Log If read this means that the database server logs changes to this
smart large object in the system log file.

If written it tells the database server to log changes to this smart
large object in the system log file.

Consider the extra overhead for the database server and the
extra information that will be placed in the system log file
before turning this feature on.

NoLog If read this means that changes to this smart large object are not
logged in the system log file.

If written it tells the database server not to log changes to this
smart large object in the system log file.

This flag overrides Log if both are given.

IfxSmartLOBFileLocation enumeration

This enumeration is used to indicate which computer a particular file is on (or
should be created on).

Member Lock

Client The file is on the computer that is running the client application.

Server The file is on the computer that is running the database server.

IfxSmartLOBLocator class
This is a lower-level class that holds information about where a smart large object
is stored. It encapsulates the locator structure of ESQL/C. You should never have
to create or access an instance of this class explicitly.

IfxSmartLOBLockMode enumeration

This enumeration is used to indicate a particular type of lock.

Member Lock

Exclusive Open for writing only.

Shared Open for reading and writing. The data is buffered locally and only
written to the database server when the smart large object is closed.

Chapter 3. Type reference 3-57

IfxSmartLOBOpenMode enumeration

This enumeration is used to indicate what mode an IfxBlob or IfxClob object
should be opened in. You OR the members of your choice together to specify how
the smart large object will be accessed.

Member Meaning

Append If used by itself the smart large object is opened for reading only. If
used with either ReadWrite or Write then the cursor is moved to the
end of the smart large object before every write so that writes are
always appended.

Buffer If this is part of the access mode then reads and writes will use the
standard database server buffer pool

DirtyRead Open for reading only. You are allowed to read uncommitted pages
in the smart large object.

LockAll If this is part of the access mode then any locks placed on the smart
large object will lock the entire smart large object.

LockRange If this is part of the access mode then you are allowed to lock a
range in the smart large object without locking the entire smart large
object.

Nobuffer If this is part of the access mode the reads and writes will use
private buffers from the session pool of the database server.

ReadOnly Open for reading only.

ReadWrite Open for reading and writing.

WriteOnly Open for writing only.

IfxSmartLOBWhence enumeration

This enumeration is used to specify the meaning of an offset value. It is only used
by methods of an IfxBlob or an IfxClob (collectively known as smart large objects).

Member Lock

Begin The offset is considered to be from the start of the smart large object. In
this case the offset cannot be negative.

Current The offset is considered to be from the current position of the smart large
object's internal cursor.

End The offset is considered to be from the current end of the smart large
object.

IfxTimeSpan structure
An IfxTimeSpan represents an offset of a particular length either forward or
backward in time. A positive IfxTimeSpan represents an offset forward in time and
a negative IfxTimeSpan represents an offset backward in time.

An IfxTimeSpan is treated as if it is made up of a separate value for each of these
time units:
v Day
v Hour

3-58 IBM Informix .NET Provider Reference Guide

v Minute
v Second
v Fraction of a second

You can create an IfxTimeSpan that uses only a subset of these time units. This is
allowed in order to mimic the behavior of the database server's INTERVAL data
type. It does not save any space in memory when you use fewer time units in an
IfxTimeSpan.

The largest time unit of an IfxTimeSpan is called the start time unit. The smallest
time unit of an IfxTimeSpan is called the end time unit. The start time unit, the end
time unit, and all units in between are called the range of the IfxTimeSpan.

Example: If an IfxTimeSpan uses hour, minute, and second units then the start
time unit is hour, the end time unit is second, and the range is hour to second.

When creating an IfxTimeSpan you specify time units using the members of the
IfxTimeUnit enumeration. For details about this enumeration see “IfxTimeUnit
enumeration” on page 3-64.

Create an IfxTimeSpan

In constructors that accept values for multiple time units, the values do not have to
make sense with each other the way that they do in the constructors for an
IfxDateTime. The values for one or more of the time units can be negative. The
value of the created IfxTimeSpan is the sum of the time represented by each of the
units.

Example: If you create an IfxTimeSpan using values of 50 days, 27 hours, and -5
minutes. The resulting IfxTimeSpan will be set to 51 days, 2 hours, and 55 minutes.

IfxTimeSpan constructors
IfxTimeSpan(System.Int64 _ticks)

IfxTimeSpan(System.Decimal _ticks)

The new instance has a range of Day to Fraction5 and is set to a value of _ticks
ticks.

There are 10 000 000 ticks in one second.

Ticks are more precise than Fraction5. The extra precision is ignored by all
methods and operators.
IfxTimeSpan(System.TimeSpan ts)

The new instance has the same value as ts and a range of Day to Fraction5.
IfxTimeSpan(System.Int32 val, IfxTimeUnit timeUnit)

The new instance has only one time unit and it is set to the value val.

The StartTimeUnit and EndTimeUnit are both set to timeUnit.
v IfxTimeSpan(System.Int32 val1, System.Int32 val2, IfxTimeUnit start,

IfxTimeUnit end)

v IfxTimeSpan(System.Int32 val1, System.Int32 val2, System.Int32 val3,
IfxTimeUnit start, IfxTimeUnit end)

Chapter 3. Type reference 3-59

v IfxTimeSpan(System.Int32 val1, System.Int32 val2, System.Int32 val3,
System.Int32 val4, IfxTimeUnit start, IfxTimeUnit end)

v IfxTimeSpan(System.Int32 val1, System.Int32 val2, System.Int32 val3,
System.Int32 val4, System.Int32 val5, IfxTimeUnit end)

If val1 through val5 are given then there is no start parameter because the start
time unit is automatically assumed to be Day; otherwise the range of the new
instance is start to end. The end time unit is always required because it determines
the precision of the fractional portion.

Values must be provided for all units in the range. The val1 parameter is
interpreted as the value for the start time unit. The rest of the values are
interpreted as the values of the other time units in the range in order.

IfxTimeSpan public properties
Table 3-25. IfxTimeSpan public properties

Property Type Access notes Description

Days System.Int64 read-only The number of full days in the IfxTimeSpan. If the
IfxTimeSpan is negative then this value will be
negative.

EndTimeUnit IfxTimeUnit read-only The smallest unit included in the IfxTimeSpan.
Example: If the IfxTimeSpan uses Day to Minute then
Minute is the EndTimeUnit.

Hours System.Int64 read-only Returns the remainder of dividing the number of full
hours in the IfxTimeSpan by 24.

IsNull System.Boolean read-only True if the IfxTimeSpan is null, otherwise False.

MaxScale System.Int32 read-only
static

The largest number of digits allowed in the fraction of
a second portion of the value. This currently has a
value of 5.

MaxValue IfxTimeSpan read-only
static

An IfxTimeSpan set to the largest value that it can
hold.

Milliseconds System.Int64 read-only Returns the remainder of dividing the number of full
milliseconds in the IfxTimeSpan by 1000. If the
IfxTimeSpan is negative then this value will be
negative.

Minutes System.Int64 read-only The component of TimeSpan that indicates the
number of minutes. The value ranges from -59 to 59.
If the IfxTimeSpan is negative then this value will be
negative.

MinValue IfxTimeSpan read-only
static

The smallest value that can be held in an
IfxTimeSpan.

Null IfxTimeSpan read-only
static

An IfxTimeSpan set to null.

Seconds System.Int64 read-only Returns the remainder of dividing the number of full
minutes in the instance by 60. If the instance is
negative then this value will be negative.

StartTimeUnit IfxTimeUnit read-only The largest unit included in the IfxTimeSpan.

3-60 IBM Informix .NET Provider Reference Guide

Table 3-25. IfxTimeSpan public properties (continued)

Property Type Access notes Description

Ticks System.Decimal read-only The total number of ticks in the length of time
represented by the IfxTimeSpan. There are 10 000 000
ticks in one second.

If the IfxTimeSpan is negative then this value will be
negative.

Zero IfxTimeSpan read-only
static

The value 0.

IfxTimeSpan public methods

These are the methods of the IfxTimeSpan object.

IfxTimeSpan.Add
IfxTimeSpan IfxTimeSpan.Add(IfxTimeSpan ts)

Returns a new IfxTimeSpan set to the value of the this instance plus the amount of
time in ts.

The resulting IfxTimeSpan has the same range as this instance. This instance is not
changed.

IfxTimeSpan.Compare
static System.Int32 IfxTimeSpan.Compare(IfxTimeSpan ts1, IfxTimeSpan ts2)

This method does not compare the relative sizes of the spans, rather the
IfxTimeSpan objects are compared as if they were both numbers. This means, for
instance, that a span of -12 hours is less than a span of 2 hours.

Returns a value based on the relative values of ts1 and ts2.

-1 ts1 is less than ts2

0 ts1 and ts2 have the same value

1 ts1 is greater than ts2

Objects in the IBM Informix .NET Provider consider two null values to be equal to
each other. They also consider a null value to be less than any non-null value.

IfxTimeSpan.CompareTo
System.Boolean IfxTimeSpan.CompareTo(System.Object obj)

The object obj must be an IfxTimeSpan.

This is equivalent to calling IfxTimeSpan.Compare with the IfxTimeSpan as ts1 and
obj as ts2.

IfxTimeSpan.Divide
IfxTimeSpan IfxTimeSpan.Divide(Decimal val)

Returns a new IfxTimeSpan set to the original IfxTimeSpan divided by val.
IfxTimeSpan IfxTimeSpan.Divide(IfxTimeSpan ts)

Chapter 3. Type reference 3-61

Returns the number of spans of time that are the size of ts that will fit in the span
of time represented by this instance of IfxTimeSpan. The result is negative if one of
the IfxTimeSpan objects is negative and the other is not.

IfxTimeSpan.Duration
IfxTimeSpan IfxTimeSpan.Duration()

Returns a new IfxTimeSpan with a value that is the absolute value of this instance.

IfxTimeSpan.Equals
static Boolean IfxTimeSpan.Equals(IfxTimeSpan ts1, IfxTimeSpan ts2)

Returns true if ts1 and ts2 have the same value; otherwise returns false.
Boolean IfxTimeSpan.Equals(System.Object obj)

Returns true if obj is an IfxTimeSpan that has the same value as this instance;
otherwise it returns false.

IfxTimeSpan.GetHashCode
System.Int32 IfxTimeSpan.GetHashCode()

Returns the hash code for this IfxTimeSpan.

The hash code will be the same for any two IfxTimeSpan objects that have the
same value but might also be the same for two IfxTimeSpan objects with different
values.

See the description of the Object.GetHashCode method in the .NET Framework Class
Library for details about hash codes.

IfxTimeSpan.GreaterThan
static System.Boolean IfxTimeSpan.GreaterThan(IfxTimeSpan ts1, IfxTimeSpan ts2)

Returns true if IfxTimeSpan.Compare(ts1, ts2) would return 1. Otherwise, it
returns false.

IfxTimeSpan.GreaterThanOrEqual
static System.Boolean IfxTimeSpan.GreaterThanOrEqual(IfxTimeSpan ts1, IfxTimeSpan
ts2)

Returns true if IfxTimeSpan.Compare(ts1, ts2) would return either 1 or 0.
Otherwise, it is false.

IfxTimeSpan.LessThan
System.Boolean IfxTimeSpan.LessThan(IfxTimeSpan ts1, IfxTimeSpan ts2)

Returns true if IfxTimeSpan.Compare(ts1, ts2) would return -1. Otherwise, it
returns false.

IfxTimeSpan.LessThanOrEqual
System.Boolean IfxTimeSpan.LessThanOrEqual(IfxTimeSpan ts1, IfxTimeSpan ts2)

Returns true if IfxTimeSpan.Compare(ts1, ts2) would return -1 or 0. Otherwise, it
returns false.

3-62 IBM Informix .NET Provider Reference Guide

IfxTimeSpan.Negate
IfxTimeSpan IfxTimeSpan.Negate()

Returns a new IfxTimeSpan with a value equal to this instance but with opposite
sign (positive or negative).

IfxTimeSpan.NotEquals
static System.Boolean IfxTimeSpan.NotEquals(IfxTimeSpan ts1, IfxTimeSpan ts2)

Returns true if IfxTimeSpan.Compare(ts1, ts2) would return -1 or 1. Otherwise, it
returns false.

IfxTimeSpan.Parse
static IfxTimeSpan IfxTimeSpan.Parse(System.String _szTime)

static IfxTimeSpan IfxTimeSpan.Parse(System.String _szTime,
IfxTimeUnit start, IfxTimeUnit end)

static IfxTimeSpan IfxTimeSpan.Parse(System.String _szTime, System.String format,
IfxTimeUnit start, IfxTimeUnit end)

Returns a new IfxTimeSpan with a value based on _szTime. If format is not given,
the _szTime string must be in this format:
[-]d h:m:s.f

- Optional sign. If this is present the IfxTimeSpan will be negative. The
brackets ([]) indicate that the sign is optional. They are not part of the
format.

d An integer indicating the number of days. This must be an integer in the
range 0 to 999 999 999.

h The number of hours. This must be an integer in the range 0 to 23.

m The number of minutes. This must be an integer in the range 0 to 59.

s The number of whole seconds. This must be an integer in the range 0 to
59.

f The fractional portion of the seconds. Precision beyond 5 decimal places is
ignored.

The range of the new IfxTimeSpan is start to end. If start and end are not given the
range is Day to Fraction5.

All time units in the range must be present in _szTime, even if they are zero. If
format is provided then time units outside the range are optional. If they are
present they are ignored. If format is not provided then time units outside the
range are not allowed.

The format string uses the same syntax as the DBTIME environment variable except
that it cannot contain placeholders for month or year. For the details about the
syntax, refer to the description of the DBTIME environment variable in the IBM
Informix ESQL/C Programmer's Manual.

IfxTimeSpan.ToString
System.String IfxTimeSpan.ToString()

System.String IfxTimeSpan.ToString (System.String format)

Chapter 3. Type reference 3-63

Returns the value of the instance as a string. If format is not present the format
used is:
D hh:mm:ss.f

D The number of whole days in the value

hh Two digit hour in range of 00 to 23

mm Two digit minute

ss Two digit second

f The fractional portion of the seconds

Portions outside the range of the instance are not included in the string.

If format is provided the output is formatted in the way indicated in that string.
The format string uses the same syntax as the DBTIME environment variable. For the
details of the syntax, refer to the description of the DBTIME environment variable in
the IBM Informix Guide to SQL: Reference.

IfxTimeUnit enumeration

IfxTimeUnit is an enumeration that holds the valid time units used with
IfxDateTime, IfxMonthSpan, and IfxTimeSpan. IfxTimeUnit has members for each
of the major time units.

Table 3-26. The non-fraction members of IfxTimeUnit

IfxTimeUnit
member Unit

Year Years

Month Months

Day Days

Hour Hours

Minute Minutes

Second Full seconds

It also has several members that represent fractions of a second at several different
precisions.

Table 3-27. Fractional members of IfxTimeUnit

IfxTimeUnit
member Precision Example

Fraction1 Tenths of a second 1962-04-16 11:35:10.1

Fraction2 Hundredths of a second 1962-04-16 11:35:10.12

Fraction or
Fraction3

Thousandths of a second 1962-04-16 11:35:10.123

Fraction4 Ten thousandths of a second 1962-04-16 11:35:10.1234

Fraction5 Hundred thousandths of a second 1962-04-16 11:35:10.12345

3-64 IBM Informix .NET Provider Reference Guide

The IBM Informix time data types include properties that return the fractions of a
second portion as milliseconds (thousandths of a second). They do not, however,
include properties that return the fractions of a second in any of the other
precisions.

IfxTransaction class
The IfxTransaction class represents the transaction to be performed with the
database.

IfxTransaction public properties

The following table shows the public properties of the IfxTransaction class.

Table 3-28. IfxTransaction public properties

Property Description

Connection The IfxTransaction object to associate with the transaction.

IsolationLevel The isolation level for this transaction.

With IBM Informix database servers the serializable isolation level is
identical to the repeatable-read isolation level. If you set the isolation
level to repeatable-read in .NET it will actually be set to serializable
in the database server.

IfxTransaction public methods
IfxTransaction.Commit

Commits the database transaction.

IfxTransaction.Rollback
Rolls back a transaction from a pending state.

Before your application executes a command for which you want to control
the transaction, you must assign the active transaction used in a connection
to the Transaction property of the IfxCommand object, as shown in the
example, below. If you do not do this, an exception is returned.

IfxTransaction example

The following example shows how to perform an insert within a local transaction.
The command MyCommand.Transaction = myTrans; assigns the active transaction to
the Transaction property of the IfxCommand object.
IfxConnection myConn = new IfxConnection("Host=ajax;Server=myServer;

Service=9401;database=dotnet;user id=xxx;password=xxx");
myConn.open();
IfxTransaction myTrans = myConn.BeginTransaction();
IfxCommand myCommand = new IfxCommand();
MyCommand.Transaction = myTrans;
MyCommand.CommandText = "INSERT INTO mytab(custid,custname)

values(1005,\"Name\");"
MyCommand.ExecuteNonQuery();
MyTrans.Commit();
MyConn.Close();

Chapter 3. Type reference 3-65

IfxType enumeration

This enumerator is used with the IfxParameter object. Each member represents a
data type that is supported by IBM Informix database servers. The following table
shows all of the members and how each maps to .NET DbType types and to .NET
Framework types. For detailed information about Informix types, see the IBM
Informix Guide to SQL: Reference.

Table 3-29. IfxType enumeration

Member .NET DbType (best fit) .NET Framework type (best fit)

Bigint Int64 Int64

BigSerial Int64 Int64

Blob Binary Byte[]

Boolean Boolean Boolean

Byte Binary Byte[]

Char StringFixedLength String

Char1 StringFixedLength Char

Clob String String

Collection String String

Date Date DateTime

DateTime DateTime DateTime

Decimal Decimal Decimal

Float Double Double

Int8 Int64 Int64

Integer Int32 Int32

IntervalDayFraction String TimeSpan

IntervalYearMonth String String

List String String

LVarChar String String

Money Currency Decimal

MultiSet String String

NChar StringFixedLength String

NVarChar String String

Row String String

Serial Int32 Int32

Serial8 Int64 Int64

Set String String

SmallFloat Single Single

SmallInt Int16 Int16

SmartLOBLocator Binary Byte[]

Text String String

VarChar String String

3-66 IBM Informix .NET Provider Reference Guide

Chapter 4. Sample programs

Demonstration programs
Demonstration programs for the IBM Informix .NET Provider are available in the
%INFORMIXDIR%\demo\dotnetdemo folder.

The %INFORMIXDIR%\demo\dotnetdemo\QuickStart folder contains sample programs
for C#.NET and VB.NET. The %INFORMIXDIR%\demo\dotnetdemo\Samples folder
contains sample programs for C# Windows Forms.

IBM Informix .NET Provider examples
This section contains short examples that demonstrate the use of particular objects
or show how to perform particular database tasks. The examples are short, in
order to enhance clarity.

Therefore, they do not represent real-world, full-size applications. All of these
example are assumed to be in console applications written in the C# language.
They all assume that you have already imported the IBM.Data.Informix namespace
by including this directive in the program:
using IBM.Data.Informix;

Many of the examples use one of the sample databases that are included with IBM
Informix database servers. The sample databases used are stores_demo and
superstores_demo. Instructions on how to create these databases are in the IBM
Informix DB-Access User's Guide.

Retrieve a single value
You can use the IfxCommand.ExecuteScalar method when you know that the SQL
you want to execute will return a single value.

The IfxCommand.ExecuteScalar method returns a System.Object. You must cast
this to the type of data that you expect to be returned. This example returns the
output of COUNT(*) which is a decimal value so the System.Object is cast to type
System.Decimal.

For more information about the IfxCommand class, see “IfxCommand class” on
page 3-13.
try
{

// Open a connection
IfxConnection conn =

new IfxConnection(
"Host=myhost;Service=1541;Server=myifxserver;Database=stores_demo;"
+ "User ID=mylogin;password=mypassword"
);

conn.Open();

// Create an SQL command
IfxCommand cmd = new IfxCommand(

"SELECT COUNT(*) FROM customer",
conn
);

Decimal ccount = (Decimal)cmd.ExecuteScalar();

© Copyright IBM Corp. 2003, 2011 4-1

Console.WriteLine("There are " + ccount + " customers");

// Close the connection
conn.Close();
Console.ReadLine(); // Wait for a Return

}
catch(IfxException e)
{

Console.WriteLine(e.ToString());
Console.ReadLine(); //Wait for a Return

}

Retrieve multiple rows
You can use an IfxDataReader object for simple access to data when you do not
have to write and do not have to move backward.

The following example connects to the stores_demo database and uses an
IfxDataReader object to retrieve all of the first names from the customer table. For
more information about the IfxDataReader class, see “IfxDataReader class” on page
3-29.
try
{

// Open a connection
IfxConnection conn =

new IfxConnection(
"Host=myhost;Service=1541;Server=myifxserver;Database=stores_demo;"
+ "User ID=mylogin;password=mypassword"
);

conn.Open();

// Create an SQL command
IfxCommand cmd = new IfxCommand(

"SELECT fname FROM customer",
conn);

IfxDataReader dr = cmd.ExecuteReader();
// Write the data to the console
while (dr.Read())
{

Console.WriteLine(dr["fname"].ToString());
}
Console.ReadLine(); // Wait for a Return
dr.Close();

// Close the connection
conn.Close();
}
catch(IfxException e)
{

Console.WriteLine(e.ToString());
Console.ReadLine(); // Wait for a Return

}

Execute SQL that does not return data and using a
transaction

You can use the IfxCommand.ExecuteNonQuery method to execute SQL statements
that do not return any data

Types of SQL statements that do not return data include:
v Inserts
v Updates

4-2 IBM Informix .NET Provider Reference Guide

v Deletes
v Creating or altering database objects

The example in this topic shows how to use IfxCommand.ExecuteNonQuery to
perform an insert and also how to execute an IfxCommand inside a local
transaction. For this example to work, the stores_demo database must have
transaction logging. To create a stores_demo database that has transaction logging
run the dbaccessdemo command with the -log option.

For the details about the IfxCommand class, see “IfxCommand class” on page 3-13.
For the details about the IfxTransaction class see “IfxTransaction class” on page
3-65
try
{
// Open a connection
IfxConnection conn = new IfxConnection(

"Host=myhost;Service=1541;"
+ "Server=myifxserver;Database=stores_demo;"
+ "User ID=mylogin;password=mypassword"

);
conn.Open();

//Begin the transaction
IfxTransaction tx = conn.BeginTransaction();

//Create an IfxCommand that uses the connection and transaction
IfxCommand cmd = new IfxCommand(

"INSERT INTO state VALUES(’XX’,’No State’)",
conn,
tx);

//Execute the command
cmd.ExecuteNonQuery();

//Commit the transaction
tx.Commit();

// Close the connection
conn.Close();
}
catch(IfxException e)
{
Console.WriteLine(e.ToString());
Console.ReadLine(); //Wait for a Return
}

Retrieve data into a DataSet
You can use an IfxDataAdapter object to retrieve database information into a
System.Data.DataSet object for further processing.

The following example creates a System.Data.DataSet and populates it with the
first and last names from the customer table. Then, to show that it is populated, it
outputs the System.Data.DataSet to the console in the form of XML.

For the details about the IfxDataAdapter object, see “IfxDataAdapter class” on
page 3-26. For more information about data sets see your .NET or ADO
documentation.
try
{

// Open a connection
IfxConnection conn =

Chapter 4. Sample programs 4-3

new IfxConnection(
"Host=myhost;Service=1541;Server=myifxserver;Database=stores_demo;"
+ "User ID=mylogin;password=mypassword"
);

conn.Open();

IfxDataAdapter da = new IfxDataAdapter(
"SELECT fname, lname FROM customer",
conn);

System.Data.DataSet ds = new System.Data.DataSet("Names");

//Fill the DataSet
da.Fill(ds);

//The DataSet is ready to use.
//This example outputs the DataSet to the Console as XML
//just to show that it is populated.
ds.WriteXml(Console.Out);
Console.ReadLine(); //Wait for a Return

// Close the connection
conn.Close();

}
catch(IfxException e)
{

Console.WriteLine(e.ToString());
Console.ReadLine(); //Wait for a Return

}

IfxCommandBuilder object to reconcile changes with the
database

You can use the IfxCommandBuilder object to retrieve data with an SQL SELECT
statement, make changes in the data set, and then reconcile those changes with the
IBM Informix database.

The IfxCommandBuilder object facilitates easy reconciliation of changes made in
your data set with the database.

For more information about the IfxCommandBuilder class, see
“IfxCommandBuilder class” on page 3-17. For more information about reconciling
changes in the database, see “Reconcile DataSet changes with the database” on
page 1-6.

The following example shows how to use the IfxCommandBuilder object.
// Add the IBM Informix namespace
using System.Data;
using IBM.Data.Informix;
// Create a connection
IfxConnection conn=new IfxConnection("Host=berry; Service=3500;

Server=testserver; User ID=informix; password=ifxtest;
Database=testdb");

// Create a DataAdapter object
IfxDataAdapter allDataAdapter = new IfxDataAdapter();
IfxCommand selCmd = new IfxCommand("SELECT * FROM students", conn);
allDataAdapter.SelectCommand = selCmd;
//Set up the CommandBuilder object
IfxCommandBuilder cbuild = new IfxCommandBuilder(allDataAdapter);
DataSet allDataSet = new DataSet ();
try
{

// Open the connection
conn.Open();
allDataAdapter.Fill(allDataSet);

4-4 IBM Informix .NET Provider Reference Guide

// Change the age of a student
DataRow chRow;
chRow = allDataSet.Tables["Table"].Rows[5];
chRow["age"] = 24;
// Use IfxDataAdapter.Update() to reconcile changes with the database
allDataAdapter.Update(allDataSet);

}
catch (Exception ex)
{

// Use a messagebox to show any errors
MessageBox.Show (ex.Message);

}
// Close the connection
conn.Close();

Call a stored procedure
You can use an IfxCommand object to call a stored procedure. You must set the
IfxCommand object CommandType property to StoredProcedure.

The example in this topic shows how to run a stored procedure and read any
results returned by the stored procedure using an IfxDataReader object.

For more information about the IfxCommand class, see “IfxCommand class” on
page 3-13. For more information about calling stored procedures, see “Call stored
procedures” on page 1-8.
// Add the IBM Informix namespace
using System.Data;
using IBM.Data.Informix;
// Create a connection
IfxConnection conn=new IfxConnection("Host=berry; Service=3500;

Server=testserver; User ID=informix; password=ifxtest;
Database=testdb");

conn.Open();
//Create a command object for the stored procedure
IfxCommand spCmd = new IfxCommand("testproc", conn);
// Set the CommandType property to Storedprocedure
spCmd.CommandType = CommandType.StoredProcedure
IfxDataReader testDataReader;
try
{

testDataReader = spCmd.ExecuteReader();
testDataReader.Close();

}
catch (Exception ex)
{

// Use a messagebox to show any errors
MessageBox.Show (ex.Message);

}
// Close the connection
conn.Close();

Distributed transactions
The example in this topic uses pseudo-code to demonstrate how to use distributed
transactions.
...
using System.EnterpriseServices;
using IBM.Data.Informix;
...
[assembly: AssemblyKeyFile("test.snk")]
...

public static void Main()
{

Chapter 4. Sample programs 4-5

...
/* The ’using’ construct below results in a call to Dispose on
exiting the curly braces. It is important to dispose of COM+
objects as soon as possible, so that COM+ services such as
Object Pooling work properly */

using (TwoPhaseTxn txn = new TwoPhaseTxn)
{

txn.TestAutoComplete_Exception();
}

using (TwoPhaseTxn txn = new TwoPhaseTxn)
{

txn.TestAutoComplete_TransactionVote();
}
...

}

//Transaction attributes specify the type of transaction requested

[Transaction(TransactionOption.RequiresNew)]
public class TwoPhaseTxn : ServicedComponent
{

[AutoComplete]
public void TestAutoComplete_Exception()
{

IfxConnection ifxConn1 = new IfxConnection(“db=db1;server=srv1;
enlist=true;”);

IfxConnection ifxConn2 = new IfxConnection(“db=db2;server=srv2;
enlist=true;”);

try
{

// db operation on ifxConn1
}
catch
{

// throw exception
}

try
{

// db operation on ifxConn2
}
catch
{

// throw exception
}

}
[AutoComplete]

public void TestAutoComplete_TransactionVote()
{

IfxConnection ifxConn1 = new IfxConnection(“db=db1;server=srv1;
enlist=true;”);

IfxConnection ifxConn2 = new IfxConnection(“db=db2;server=srv2;
enlist=true;”);

try
{

// db operation on ifxConn1
}
catch
{

// In case of any failure, flag abort
ContextUtil.MyTransactionVote = TransactionVote.Abort

}

4-6 IBM Informix .NET Provider Reference Guide

try
{

// db operation on ifxConn2
}
catch
{

// In case of any failure, flag abort
ContextUtil.MyTransactionVote = TransactionVote.Abort

}
}

Write CLOBs to files
The example in this topic connects to the superstores_demo database and writes
all of the CLOBs in the table catalog into files in the directory C:\tmp. The same
technique is used to write BLOBs to files.

Note that the IfxClob instance must be opened before it is accessed.

For more information about the IfxClob class see “IfxClob class” on page 3-8.
try
{

// Open a connection
IfxConnection conn =

new IfxConnection(
"Host=myhost;" +
"Service=1576;" +
"Server=mydbserver;"+
"Database=superstores_demo;" +
"User ID=mylogin;password=mypassword"
);

conn.Open();

// Create an SQL command
IfxCommand cmd = new IfxCommand(

"SELECT advert_descr, catalog_num FROM catalog",
conn
);

IfxDataReader dr = cmd.ExecuteReader();

// Write any CLOBs to files in C:\tmp
while (dr.Read())
{

if(!dr.IsDBNull(0)){
IfxClob c = dr.GetIfxClob(0);
long num = dr.GetInt64(1);

c.Open(IBM.Data.Informix.IfxSmartLOBOpenMode.ReadOnly);
c.ToFile(

"C:\\tmp\\" + num.ToString() + ".txt",
System.IO.FileMode.Create,
IfxSmartLOBFileLocation.Client
);

}
}
dr.Close();

// Close the connection
conn.Close();

}
catch(Exception e)
{

//This is assumed to be a console application
Console.WriteLine(e.ToString());

}

Chapter 4. Sample programs 4-7

4-8 IBM Informix .NET Provider Reference Guide

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Tip: The information center and its related publications are accessibility-enabled
for the IBM Home Page Reader. You can operate all features by using the keyboard
instead of the mouse.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

You can view the publications in Adobe Portable Document Format (PDF) by using
the Adobe Acrobat Reader.

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the IBM commitment to accessibility.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive

© Copyright IBM Corp. 2003, 2011 A-1

http://www.ibm.com/able

alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.

A-2 IBM Informix .NET Provider Reference Guide

However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be
repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Informix .NET Provider Reference Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2003, 2011 B-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

B-2 IBM Informix .NET Provider Reference Guide

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices B-3

http://www.ibm.com/legal/copytrade.shtml

B-4 IBM Informix .NET Provider Reference Guide

Index

Special characters
? symbol, parameters 1-8
.NET base classes 3-2
.NET DbType types 2-2, 3-66
.NET Framework types 3-66
.NET interfaces 3-1

A
Abs method

of IfxDecimal structure 3-40
AcceptChangesDuringFill property

of IfxDataAdapter class 3-26
AcceptChangesDuringUpdate property

of IfxDataAdapter class 3-26
Accessibility A-1

dotted decimal format of syntax diagrams A-1
keyboard A-1
shortcut keys A-1
syntax diagrams, reading in a screen reader A-1

Add method
of IfxConnectionStringBuilder class 3-25
of IfxDateTime structure 3-35
of IfxDecimal structure 3-40
of IfxMonthSpan structure 3-47
of IfxParameterCollection class 3-54
of IfxTimeSpan structure 3-61

Add value 3-26
AddDays method

of IfxDateTime structure 3-35
AddMilliseconds method

of IfxDateTime structure 3-35
AddMinutes method

of IfxDateTime structure 3-36
AddMonths method

of IfxDateTime structure 3-36
AddSeconds method

of IfxDateTime structure 3-36
AddWithKey value 3-26
AddYears method

of IfxDateTime structure 3-36
ADO.NET 1-4
AnsiString type 2-2
Append member

of IfxSmartLOBOpenMode enumeration 3-58
AppendKeyValuePair method

of IfxConnectionStringBuilder class 3-25
ArgumentException exception 3-20
Arrays 1-8
ASP.NET 1-1
Assembly, strong-named 1-2
Attributes, for connecting 1-5
Automatic INSERT, DELETE and UPDATE 1-6, 3-17

B
Begin member

of IfxSmartLOBWhence enumeration 3-58
BeginTransaction method

of IfxConnection class 3-23

Bigint member
of IfxType enumeration 3-66

BIGINT type 2-1
BigSerial member

of IfxType enumeration 3-66
BIGSERIAL type 2-1
Blob member

of IfxType enumeration 3-66
BLOB type 2-1
Boolean member

of IfxType enumeration 3-66
BOOLEAN type 2-1
Both value 3-13
Buffer member

of IfxSmartLOBOpenMode enumeration 3-58
Byte member

of IfxType enumeration 3-66
BYTE type 2-1

C
Calling a stored procedure

example of 4-5
Cancel method

of IfxCommand class 3-15
casting, example of 4-1
cdotnet.sql script 1-4
Ceiling method

of IfxDecimal structure 3-41
ChangeDatabase method

of IfxConnection class 3-23
Char member

of IfxType enumeration 3-66
CHAR type 2-1
CHAR(1) type 2-1
Char1 member

of IfxType enumeration 3-66
Classes, unsupported 3-1, 3-2
Clear method

of IfxConnectionStringBuilder class 3-25
of IfxParameterCollection class 3-54

Client Locale connection string attribute 3-20
Client member

of IfxSmartLOBFileLocation enumeration 3-57
Client SDK 1-1
ClientLocale property

of IfxConnection class 3-19
Clob member

of IfxType enumeration 3-66
CLOB type 2-1
Clone method

of IfxDecimal structure 3-41
Close method

of IfxBlob class 3-5
of IfxClob class 3-10
of IfxConnection class 3-23
of IfxDataReader class 3-29

Close property
of IfxConnection

use of 1-5
CloseConnection value 3-15

© Copyright IBM Corp. 2003, 2011 X-1

Closing connections 1-5
Codes, errors 3-45
Collection member

of IfxType enumeration 3-66
COLLECTION type 2-1
CommandText property 1-8

of IfxCommand 3-13
CommandTimeout property 1-6

of IfxCommand 3-13
CommandType property 1-8

of IfxCommand 3-13
of IfxCommand class

example of use 4-5
Commit method

of IfxTransaction class 3-65
Compare method

of IfxDateTime structure 3-37
of IfxDecimal structure 3-41
of IfxMonthSpan structure 3-47
of IfxTimeSpan structure 3-61

CompareTo method
of IfxDateTime structure 3-37
of IfxDecimal structure 3-41
of IfxMonthSpan structure 3-48
of IfxTimeSpan structure 3-61

compliance with standards ix
ConflictOption property

of IfxCommandBuilder class 3-17
Connecting to databases 1-5
Connection Lifetime connection string attribute 3-20
Connection pool 1-7, 3-20
Connection property 1-6

of IfxCommand 3-13
of IfxTransaction class 3-65

Connection string 1-5
attributes of 3-20
defining visually 1-5
example of 3-24

ConnectionString property
attributes of 3-20
of IfxConnection

use of 1-5
of IfxConnection class 3-19
of IfxConnectionStringBuilder class 3-25

ConnectionString property of IfxConnection
defining visually 1-5

ConnectionTimeout property
of IfxConnection class 3-19

Constructors
of IfxBlob class 3-4
of IfxClob class 3-9
of IfxCommand class 3-13
of IfxCommandBuilder class 3-17
of IfxConnection class 3-19
of IfxDataAdapter class 3-26
of IfxDateTime structure 3-33
of IfxDecimal structure 3-40
of IfxMonthSpan structures 3-46
of IfxParameter class 3-51
of IfxTimeSpan structure 3-59

Contains method
of IfxParameterCollection class 3-54

ContainsKey method
of IfxConnectionStringBuilder class 3-25

CopyTo method
of IfxParameterCollection class 3-54

Count property
of IfxConnectionStringBuilder class 3-25
of IfxErrorCollection class 3-45
of IfxParameterCollection class 3-53

CREATE DATABASE... statements 3-20
CreateCommand method

of IfxConnection class 3-23
of IfxProviderFactory class 3-55

CreateCommandBuilder method
of IfxProviderFactory class 3-56

CreateConnection method
of IfxProviderFactory class 3-55

CreateConnectionStringBuilder method
of IfxProviderFactory class 3-55

CreateDataAdapter method
of IfxProviderFactory class 3-56

CreateDataSourceEnumerator method
of IfxProviderFactory class 3-56

CreateParameter method
of IfxCommand class 3-15
of IfxProviderFactory class 3-55

CreatePermission method
of IfxProviderFactory class 3-56

Creating
IfxCommand class 3-13
IfxCommandBuilder class 3-17
IfxConnection class 3-19
IfxConnectionStringBuilder class 3-24
IfxDataAdapter class 3-26
IfxDataSourceEnumerator class 3-31
IfxDateTime structure 3-33
IfxDecimal structure 3-39
IfxMonthSpan structure 3-46
IfxParameter class 3-51
IfxParameterCollection class 3-53
IfxTimeSpan structure 3-59

Current member
of IfxSmartLOBWhence enumeration 3-58

D
Data source 1-4
Data transfer

error checking 1-12
DataAdapter property

of IfxCommandBuilder class 3-17
Database connection string attribute 3-20
Database Locale connection string attribute 3-20
Database property

of IfxConnection class 3-19
DATABASE... statements 3-20
DatabaseLocale property

of IfxConnection class 3-19
Databases

connecting to 1-5
DataColumn interface 1-4
DataReader object 1-4
DataRelation interface 1-4
DataSet object 1-4, 2-1

example of use 4-3
DataTable interface 1-4
Date member

of IfxType enumeration 3-66
Date property

of IfxDateTime structure 3-34
DATE type 2-1
DATETIME data type 3-32

X-2 IBM Informix .NET Provider Reference Guide

DateTime member
of IfxType enumeration 3-66

DATETIME type 2-1
Day member

of IfxTimeUnit enumeration 3-64
Day property

of IfxDateTime structure 3-34
Days property

of IfxTimeSpan structure 3-60
DaysInMonth method

of IfxDateTime structure 3-37
DB connection string attribute 3-20
DB_LOCALE connection string attribute 3-20
DbProviderFactory class 3-55
DbType property

of IfxParameter class 3-52
Decimal member

of IfxType enumeration 3-66
DECIMAL type 2-1
Default value 3-15
DELETE statements 3-17
DELETE, automatic 1-6
DeleteCommand property 1-6

of IfxDataAdapter class 3-26
DELIMIDENT connections string attribute 3-20
DELIMIDENT environment variable 1-5

default setting of 1-5
Delimiters 1-6, 2-1, 3-17
Demonstration programs

Informix .NET Provider 4-1
Depth property

of IfxDataReader class 3-29
DeriveParameters method 1-8

of IfxCommandBuilder class 3-18
Direction property

of IfxParameter class 3-52
DirtyRead member

of IfxSmartLOBOpenMode enumeration 3-58
Disabilities, visual

reading syntax diagrams A-1
Disability A-1
Dispose method 1-6
Disposed event

of IfxConnection class 3-24
Distributed transactions 3-20, 4-5

example of use 4-5
Divide method

of IfxDecimal structure 3-41
of IfxMonthSpan structure 3-48
of IfxTimeSpan structure 3-61

DontKeepAccessTime member
of IfxSmartLOBCreateTimeFlags enumeration 3-56

dotnetdemo folder 4-1
Dotted decimal format of syntax diagrams A-1
DOUBLE type 2-1
Double-quote characters 2-1
Duration method

of IfxMonthSpan structure 3-48
of IfxTimeSpan structure 3-62

Dynamic SQL 1-8

E
E property

of IfxDecimal structure 3-40
Efficient SQL statements 1-6

End member
of IfxSmartLOBWhence enumeration 3-58

end time unit 3-32, 3-46
EndTimeUnit property

of IfxDateTime structure 3-34
of IfxMonthSpan structure 3-46
of IfxTimeSpan structure 3-60

Enlist attribute 1-8
Enlist connection string attribute 3-20
Environment variables

IFX_LOB_XFERSIZE 1-12
Equals method

of IfxDateTime structure 3-37
of IfxDecimal structure 3-41
of IfxMonthSpan structure 3-48
of IfxTimeSpan structure 3-62

EquivalentTo method
of IfxConnectionStringBuilder class 3-25

Error handling
checking during data transfer 1-12

Error messages 1-12, 3-44
Error value 3-26
Errors property

of IfxException class 3-45
EstimatedSize property

of IfxBlob 3-4
of IfxClob 3-9

Events
of IfxConnection class 3-24

Example code
IfxCommand class 3-16

Examples
calling a stored procedure 4-5
casting a data type to a new type 4-1
Informix .NET Provider 4-1
Inserting rows 4-2
of a connection string 3-24
Reconciling changes in a DataSet with the database 4-4
retrieving a single value 4-1
Retrieving data into a DataSet 4-3
retrieving multiple rows 4-2
use of ExecuteNonQuery 4-2
use of ExecuteScalar method 4-1
use of IfxCommand.CommandType property 4-5
use of IfxCommandBuilder 4-4
use of IfxDataAdapter 4-3
use of IfxDataReader class 4-2
use of IfxParameter class 3-52
use of IfxTransaction class 3-65
use of local transaction 4-2
use of System.DataSet 4-3
using distributed transactions 4-5

Exceptions 1-12
Exclusive connection string attribute 3-20
Exclusive member

of IfxSmartLOBLockMode enumeration 3-57
ExecuteNonQuery method

example of use 4-2
of IfxCommand class 3-15

ExecuteNonQuery() method 4-2
ExecuteReader method

of IfxCommand class 3-15
ExecuteScalar method

of IfxCommand class 3-16
ExecuteScalar method, example of use 4-1
ExtentSize property

of IfxBlob 3-4

Index X-3

ExtentSize property (continued)
of IfxClob 3-9

F
FBS connection string attribute 3-20
Fetch Buffer Size connection string attribute 3-20
FetchBufferSize property

of IfxConnection class 3-19
FieldCount property

of IfxDataReader class 3-29
Fill method

of IfxDataAdapter class 3-28
FilLoadOption property

of IfxDataAdapter class 3-26
FillSchema method

of IfxDataAdapter class 3-28
FirstReturnedRecord value 3-13
Flags property

of IfxBlob 3-4
of IfxClob 3-9

Float member
of IfxType enumeration 3-66

FLOAT type 2-1
Floor method

of IfxDecimal structure 3-41
Foreign keys 1-6
Forward-only cursor 1-4, 3-20, 3-29, 4-2
Fraction member

of IfxTimeUnit enumeration 3-64
Fraction1 member

of IfxTimeUnit enumeration 3-64
Fraction2 member

of IfxTimeUnit enumeration 3-64
Fraction3 member

of IfxTimeUnit enumeration 3-64
Fraction4 member

of IfxTimeUnit enumeration 3-64
Fraction5 member

of IfxTimeUnit enumeration 3-64
FromFile method

of IfxBlob class 3-5
of IfxClob class 3-10

FullTrust permission 1-8

G
GAC. 1-2
GetActiveConnectionsCount property

of IfxConnection class 3-19
GetBoolean method

of IfxDataReader class 3-29
GetByte method

of IfxDataReader class 3-29
GetBytes method

of IfxDataReader class 3-29
GetChar method

of IfxDataReader class 3-29
GetChars method

of IfxDataReader class 3-29
GetData method

of IfxDataReader class 3-29
GetDataSources method

of IfxDataSourceEnumerator class 3-32
GetDataTypeName method

of IfxDataReader class 3-29

GetDateTime method
of IfxDataReader class 3-29

GetDecimal method
of IfxDataReader class 3-29

GetDeleteCommand method 1-6
of IfxCommandBuilder class 3-18

GetDouble method
of IfxDataReader class 3-29

GetEnumerator method
of IfxErrorCollection class 3-45
of IfxParameterCollection class 3-54

GetFieldType method
of IfxDataReader class 3-29

GetFillParameters method
of IfxDataAdapter class 3-28

GetFloat method
of IfxDataReader class 3-29

GetGuid method
of IfxDataReader class 3-29

GetHashCode method
of IfxDateTime structure 3-37
of IfxDecimal structure 3-42
of IfxMonthSpan structure 3-48
of IfxTimeSpan structure 3-62

GetIdleConnectionsCount property
of IfxConnection class 3-19

GetIfxBlob method
of IfxConnection class 3-23

GetIfxClob method
of IfxConnection class 3-23

GetInsertCommand method 1-6
of IfxCommandBuilder class 3-18

GetInt16 method
of IfxDataReader class 3-29

GetInt32 method
of IfxDataReader class 3-29

GetInt64 method
of IfxDataReader class 3-29

GetLocator method
of IfxBlob class 3-6
of IfxClob class 3-11

GetName method
of IfxDataReader class 3-29

GetOrdinal method
of IfxDataReader class 3-29

GetSchemaTable method
of IfxDataReader class 3-29

GetString method
of IfxDataReader class 3-29

GetString() method 2-1
GetTimeSpan method

of IfxDataReader class 3-29
GetUpdateCommand method 1-6

of IfxCommandBuilder class 3-18
GetValue method

of IfxDataReader class 3-29
GetValues method

of IfxDataReader class 3-29
Global assembly cache (GAC) 1-2
GreaterThan method

of IfxDateTime structure 3-37
of IfxDecimal structure 3-42
of IfxMonthSpan structure 3-48
of IfxTimeSpan structure 3-62

GreaterThanOrEqual method
of IfxDateTime structure 3-38
of IfxDecimal structure 3-42

X-4 IBM Informix .NET Provider Reference Guide

GreaterThanOrEqual method (continued)
of IfxMonthSpan structure 3-48
of IfxTimeSpan structure 3-62

GUID type 2-2

H
HelpLink property

of IfxException class 3-45
Host connection string attribute 3-20
Hostnames

using in sqlhosts 1-2
Hour member

of IfxTimeUnit enumeration 3-64
Hour property

of IfxDateTime structure 3-34
Hours property

of IfxTimeSpan structure 3-60

I
IBM Informix .NET Provider

installing 1-2
namespace of 1-5
overview 1-4

IBM Informix Client SDK 1-1
IBM Informix ODBC Driver 1-1
IBM Informix OLE DB Provider 1-1
IBM.Data.Informix 3-55
IBM.Data.Informix namespace 1-5
IDSSECURITYLABEL type 2-1
IFX_LOB_XFERSIZE

environment variable 1-12
IfxBlob class 3-3, 3-5

Close method 3-5
constructors 3-4
creating 3-3
EstimatedSize property 3-4
ExtentSize property 3-4
Flags property 3-4
FromFile method 3-5
GetLocator method 3-6
IfxBlob class

SBSpace property 3-4
Size property 3-4

internal cursor 3-3
IsNull property 3-4
IsOpen property 3-4
LastAccessTime property 3-4
LastChangeTime property 3-4
LastModificationTime property 3-4
Lock method 3-6
MaxBytes property 3-4
Null property 3-4
Open method 3-6
Position property 3-4
properties 3-4
Read method 3-6
ReferenceCount property 3-4
Release method 3-7
SBSpace property

of IfxBlob 3-4
Seek method 3-7
Size property

of IfxBlob 3-4
ToFile method 3-7

IfxBlob class (continued)
Truncate method 3-7
Unlock method 3-7
Write method 3-7

IfxBlob class methods
Methods

of IfxBlob class 3-5
IfxClob 3-8, 3-10

constructors 3-9
IfxClob class

Close method 3-10
creating 3-8
EstimatedSize property 3-9
ExtentSize property 3-9
Flags property 3-9
FromFile method 3-10
GetLocator method 3-11
IfxClob class

SBSpace property 3-9
Size property 3-9

internal cursor of 3-8
IsNull property 3-9
IsOpen property 3-9
LastAccessTime property 3-9
LastChangeTime property 3-9
LastModification property 3-9
Lock method 3-11
MaxBytes property 3-9
methods of 3-10
Null property 3-9
Open method 3-11
Position property 3-9
Read method 3-11
ReferenceCount property 3-9
Release method 3-11
SBSpace property

of IfxClob 3-9
Seek method 3-12
Size property

of IfxClob 3-9
ToFile method 3-12
Truncate method 3-12
Unlock method 3-12
Write method 3-12

IfxClob class properties
Properties

of IfxClob class 3-9
IfxCommand class 3-13

Cancel method 3-15
CommandText property 3-13
CommandTimeout property 3-13
CommandType property 3-13
Connection property 3-13
constructors 3-13
CreateParameter method 3-15
creating 3-13
example code 3-16
ExecuteNonQuery method 3-15
ExecuteReader method 3-15
ExecuteScalar method 3-16
methods 3-15
Parameters property 3-13
Prepare method 3-16
properties 3-13
RowFetchCount property 3-13
Transaction property 3-13
UpdatedRowSource property 3-13

Index X-5

IfxCommand.ExecuteNonQuery() method 4-2
IfxCommandBuilder class 1-4, 1-6, 3-17

ConflictOption property 3-17
constructors 3-17
creating 3-17
DataAdapter property 3-17
DeriveParameters method 3-18
example of use 3-18, 4-4
GetDeleteCommand method 3-18
GetInsertCommand method 3-18
GetUpdateCommand method 3-18
methods of 3-18
properties of 3-17
QuotePrefix property 3-17
QuoteSuffix property 3-17
RefreshSchema method 3-18

IfxConnection class 3-19
BeginTransaction method 3-23
ChangeDatabase method 3-23
ClientLocale property 3-19
Close method 3-23
connecting to a database 1-5
ConnectionString property 3-19
ConnectionTimeout property 3-19
CreateCommand method 3-23
creating 3-19
creating visually 1-5
Database property 3-19
DatabaseLocale property 3-19
Disposed event 3-24
events of 3-24
FetchBufferSize property 3-19
GetActiveConnectionsCount property 3-19
GetIdleConnectionsCount property 3-19
GetIfxBlob method 3-23
GetIfxClob method 3-23
InfoMessage event 3-24
methods 3-23
Open method 1-5, 3-24
PacketSize property 3-19
properties 3-19
ServerVersion property 3-19
State property 3-19
StateChange event 3-24
UserDefinedTypeFormat property 3-19

IfxConnection class constructors 3-19
IfxConnection object

Close property
use of 1-5

ConnectionString property
defining visually 1-5
use of 1-5

IfxConnectionStringBuilder class 3-24
Add method 3-25
AppendKeyValuePair method 3-25
Clear method 3-25
ConnectionString property 3-25
ContainsKey method 3-25
Count property 3-25
creating 3-24
EquivalentTo method 3-25
IsFixedSize property 3-25
IsReadOnly property 3-25
Keys property 3-25
methods 3-25
properties 3-25
Remove method 3-25

IfxConnectionStringBuilder class (continued)
ToString method 3-25
TryGetValue method 3-25
Values property 3-25

IfxDataAdapter
examples of use 3-28

IfxDataAdapter class 1-6, 2-1, 3-17, 3-26
AcceptChangesDuringFill property 3-26
AcceptChangesDuringUpdate property 3-26
constructors 3-26
creating 3-26
DeleteCommand property 3-26
example of use 4-3
Fill method 3-28
FillLoadOption property 3-26
FillSchema method 3-28
GetFillParameters method 3-28
InsertCommand property 3-26
methods 3-28
MissingMappingAction property 3-26
MissingSchemaAction property 3-26
properties 3-26
ReturnProviderSpecifictypes property 3-26
SelectCommand property 3-26
TableMappings property 3-26
Update method 3-28
UpdateBatchSize property 3-26
UpdateCommand property 3-26

IfxDataReader class 3-29, 4-2
Close method 3-29
Depth property 3-29
example of use 3-31, 4-2
FieldCount property 3-29
GetBoolean method 3-29
GetByte method 3-29
GetBytes method 3-29
GetChar method 3-29
GetChars method 3-29
IsClosed property 3-29
methods 3-29
properties 3-29
RecordsAffected property 3-29
VisibleFieldCount property 3-29

IfxDataReader.GetString() method 2-1
IfxDataSourceEnumerator class 3-31

creating 3-31
GetDataSources method 3-32
Instance property 3-32
methods 3-32
properties 3-32

IfxDateTime structure 3-32
Add method 3-35
AddDays method 3-35
AddMilliseconds method 3-35
AddMinutes method 3-36
AddMonths method 3-36
AddSeconds method 3-36
AddYears method 3-36
Compare method 3-37
CompareTo method 3-37
constructors 3-33
creating 3-33
Date property 3-34
Day property 3-34
DaysInMonth method 3-37
default values 3-32
EndTimeUnit property 3-34

X-6 IBM Informix .NET Provider Reference Guide

IfxDateTime structure (continued)
Equals method 3-37
GetHashCode method 3-37
GreaterThan method 3-37
GreaterThanOrEqual method 3-38
Hour property 3-34
LessThan method 3-38
LessThanOrEqual method 3-38
limits of 3-32
MaxValue property 3-34
methods 3-35
Millisecond property 3-34
Minute property 3-34
MinValue property 3-34
Month property 3-34
NotEquals method 3-38
Now property 3-34
Null property 3-34
Parse method 3-38
properties 3-34
Second property 3-34
StartTimeUnit property 3-34
Ticks property 3-34
time units in 3-32
Today property 3-34
ToString method 3-39
Year property 3-34

IfxDecimal structure 3-39
Abs method 3-40
Add method 3-40
Ceiling method 3-41
Clone method 3-41
Compare method 3-41
CompareTo method 3-41
constructors 3-40
creating 3-39
Divide method 3-41
E property 3-40
Equals method 3-41
Floor method 3-41
GetHashCode method 3-42
GreaterThan method 3-42
GreaterThanOrEqual method 3-42
IsFloating property 3-40
IsNull property 3-40
IsPositive property 3-40
LessThan method 3-42
LessThanOrEqual method 3-42
Max method 3-42
MaxPrecision property 3-40
MaxValue property 3-40
methods 3-40
Min method 3-42
MinusOne property 3-40
MinValue property 3-40
Modulo method 3-43
Multiply method 3-43
Negate method 3-43
NotEquals method 3-43
Null property 3-40
One property 3-40
Parse method 3-43
Pi property 3-40
properties 3-40
Remainder method 3-43
Round method 3-43
Subtract method 3-44

IfxDecimal structure (continued)
ToString method 3-44
Truncate method 3-44

example of use 3-44
Zero property 3-40

IFXDOTNETTRACE environment variable 1-12
IFXDOTNETTRACEFILE environment variable 1-12
IfxError class 3-44

Message property 3-45
NativeError property 3-45
properties 3-45
SQLState property 3-45

IfxErrorCollection class 3-45
Count property 3-45
GetEnumerator method 3-45
methods 3-45

IfxErrorCollection class properties 3-45
IfxException class 3-45

Errors property 3-45
HelpLink property 3-45
InnerException property 3-45
Message property 3-45
properties 3-45
StackTrace property 3-45
TargetSite property 3-45

IfxMonthSpan structure 3-46
Add method 3-47
Compare method 3-47
CompareTo method 3-48
constructors 3-46
creating 3-46
Divide method 3-48
Duration method 3-48
EndTimeUnit property 3-46
Equals method 3-48
GetHashCode method 3-48
GreaterThan method 3-48
GreaterThanOrEqual method 3-48
IsNull property 3-46
LessThan method 3-49
LessThanOrEqual method 3-49
limits of 3-46
MaxValue property 3-46
MinValue property 3-46
Months property 3-46
Multiply method 3-49
Negate method 3-49
NotEquals method 3-49
Null property 3-46
Parse method 3-49
properties 3-46
StartTimeUnit property 3-46
ToString method 3-50
TotalMonths property 3-46
Years property 3-46
Zero property 3-46

IfxMonthSpan structure methods 3-47
IfxParameter class 3-51

constructors 3-51
creating 3-51
DbType property 3-52
Direction property 3-52
example of use 3-52
IfxType property 3-52
IsNullable property 3-52
ParameterName property 3-52
properties 3-52

Index X-7

IfxParameter class (continued)
SourceColumn property 3-52
SourceVersion property 3-52
Value property 3-52

IfxParameter constructors 2-2
IfxParameterCollection class 3-53

Add method 3-54
Clear method 3-54
Contains method 3-54
CopyTo method 3-54
Count property 3-53
creating 3-53
GetEnumerator method 3-54
IndexOf method 3-54
Insert method 3-54
Item property 3-53
methods 3-54
properties 3-53
Remove method 3-55
RemoveAt method 3-55

IfxProviderFactory class 3-55
CreateCommand method 3-55
CreateCommandBuilder method 3-56
CreateConnection method 3-55
CreateConnectionStringBuilder method 3-55
CreateDataAdapter method 3-56
CreateDataSourceEnumerator method 3-56
CreateParameter method 3-55
CreatePermission method 3-56
methods 3-55

IfxSmartLOBCreateTimeFlags enumeration 3-56
DontKeepAccessTime member 3-56
KeepAccessTime member 3-56
Log member 3-56
NoLog member 3-56

IfxSmartLOBFileLocation enumeration 3-57
Client member 3-57
Server member 3-57

IfxSmartLOBLockMode enumeration 3-57
Exclusive member 3-57
Shared member 3-57

IfxSmartLOBOpenMode enumeration 3-58
Append member 3-58
Buffer member 3-58
DirtyRead member 3-58
LockAll member 3-58
LockRange member 3-58
NoBuffer member 3-58
ReadOnly member 3-58
ReadWrite member 3-58
WriteOnly member 3-58

IfxSmartLOBWhence enumeration 3-58
Begin member 3-58
Current member 3-58
End member 3-58

IfxTimeSpan structure 3-58
Add method 3-61
Compare method 3-61
CompareTo method 3-61
constructors 3-59
creating 3-59
Days property 3-60
Divide method 3-61
Duration method 3-62
EndTimeUnit property 3-60
Equals method 3-62
GetHashCode method 3-62

IfxTimeSpan structure (continued)
GreaterThan method 3-62
GreaterThanOrEqual method 3-62
Hours property 3-60
IsNull property 3-60
LessThan method 3-62
LessThanOrEqual method 3-62
MaxScale property 3-60
MaxValue property 3-60
methods 3-61
Milliseconds property 3-60
Minutes property 3-60
MinValue property 3-60
Negate method 3-63
NotEquals method 3-63
Null property 3-60
Parse method 3-63
properties 3-60
Seconds property 3-60
StartTimeUnit property 3-60
Ticks property 3-60
ToString method 3-63
Zero property 3-60

IfxTimeUnit enumeration 3-64
Day member 3-64
Fraction member 3-64
Fraction1 member 3-64
Fraction2 member 3-64
Fraction3 member 3-64
Fraction4 member 3-64
Fraction5 member 3-64
Hour member 3-64
Minute member 3-64
Month member 3-64
Second member 3-64
Year member 3-64

IfxTransaction class 3-65
Commit method 3-65
Connection property 3-65
example of use 3-65
IsolationLevel property 3-65
methods 3-65
properties 3-65
Rollback method 3-65

IfxType argument 2-2
IfxType enumeration 3-66

Bigint member 3-66
BigSerial member 3-66
Blob member 3-66
Boolean member 3-66
Byte member 3-66
Char member 3-66
Char1 member 3-66
Clob member 3-66
Collection member 3-66
Date member 3-66
DateTime member 3-66
Decimal member 3-66
Float member 3-66
Int8 member 3-66
Integer member 3-66
IntervalDayFraction member 3-66
IntervalYearMonth member 3-66
List member 3-66
LVarChar member 3-66
Money member 3-66
MultiSet member 3-66

X-8 IBM Informix .NET Provider Reference Guide

IfxType enumeration (continued)
NChar member 3-66
NVarChar member 3-66
Row member 3-66
Serial member 3-66
Serial8 member 3-66
Set member 3-66
SmallFloat member 3-66
SmallInt member 3-66
SmartLOBLocator member 3-66
Text member 3-66
VarChar member 3-66

IfxType property
of IfxParameter class 3-52

Ignore value 3-26
Importing a namespace 1-5
IN parameters

used during execution of SPL 1-9
IndexOf method

of IfxParameterCollection class 3-54
industry standards ix
InfoMessage event

of IfxConnection class 3-24
Informix Client SDK 1-1
Informix data types 3-52
Informix ODBC Driver 1-1
Informix OLE DB Provider 1-1
Informix types 3-66
InnerException property

of IfxException class 3-45
Input parameters 1-8, 3-52
Insert method

of IfxParameterCollection class 3-54
INSERT statements 3-17
INSERT, automatic 1-6
InsertCommand property 1-6

of IfxDataAdapter class 3-26
Inserting rows, example of 4-2
Installing

IBM Informix .NET Provider Add-in for Microsoft Visual
Studio 1-2

Installing IBM Informix .NET Provider 1-2
Instance property

of IfxDataSourceEnumerator class 3-32
Int32 type 2-1
Int64 type 2-1
Int64[] type 2-1
Int8 member

of IfxType enumeration 3-66
INT8 type 2-1
Integer member

of IfxType enumeration 3-66
INTEGER type 2-1
Internet protocol version 6 (IPv6) 1-2
INTERVAL type 2-1
IntervalDayFraction member

of IfxType enumeration 3-66
IntervalYearMonth member

of IfxType enumeration 3-66
IP address 3-20
IP addresses

IPv6 format in sqlhosts 1-2
IPv6. 1-2
IsClosed property

of IfxDataReader class 3-29
IsDBNull method

of IfxDataReader class 3-29

IsFixedSize property
of IfxConnectionStringBuilder class 3-25

IsFloating property
of IfxDecimal structure 3-40

IsNull property
of IfxBlob 3-4
of IfxClob 3-9
of IfxDecimal structure 3-40
of IfxMonthSpan structure 3-46
of IfxTimeSpan structure 3-60

IsNullable property
of IfxParameter class 3-52

IsolationLevel property
of IfxTransaction class 3-65

IsOpen property
of IfxBlob 3-4
of IfxClob 3-9

IsPositive property
of IfxDecimal structure 3-40

IsReadOnly property
of IfxConnectionStringBuilder class 3-25

Item property
of IfxParameterCollection class 3-53

J
JOIN operators 1-6

K
KeepAccessTime member

of IfxSmartLOBCreateTimeFlags enumeration 3-56
KeyInfo value 3-15
Keys property

of IfxConnectionStringBuilder class 3-25

L
Language locale 3-20
LastAccessTime property

of IfxBlob 3-4
of IfxClob 3-9

LastChangeTime property
of IfxBlob 3-4
of IfxClob 3-9

LastModificationTime property
of IfxBlob 3-4
of IfxClob 3-9

LessThan method
of IfxDateTime structure 3-38
of IfxDecimal structure 3-42
of IfxMonthSpan structure 3-49
of IfxTimeSpan structure 3-62

LessThanOrEqual method
of IfxDateTime structure 3-38
of IfxDecimal structure 3-42
of IfxMonthSpan structure 3-49
of IfxTimeSpan structure 3-62

List member
of IfxType enumeration 3-66

LIST type 2-1
Local transactions

example of use 4-2
Locales 3-20
Lock method

of IfxBlob class 3-6

Index X-9

Lock method (continued)
of IfxClob class 3-11

LockAll member
of IfxSmartLOBOpenMode enumeration 3-58

LockRange member
of IfxSmartLOBOpenMode enumeration 3-58

Log member
of IfxSmartLOBCreateTimeFlags enumeration 3-56

LVarChar member
of IfxType enumeration 3-66

LVARCHAR type 2-1

M
Max method

of IfxDecimal structure 3-42
Max Pool Size attribute 1-7
Max Pool Size connection string attribute 3-20
MAX ROWS parameter 1-4
MaxBytes property

of IfxBlob 3-4
of IfxClob 3-9

MaxPrecision property
of IfxDecimal structure 3-40

MaxScale property
of IfxTimeSpan structure 3-60

MaxValue property
of IfxDateTime structure 3-34
of IfxDecimal structure 3-40
of IfxMonthSpan structure 3-46
of IfxTimeSpan structure 3-60

Message property
of IfxError class 3-45
of IfxException class 3-45

Messages 3-44
Methods

GetData method 3-29
GetDataTypeName method 3-29
GetDateTime method 3-29
GetDecimal method 3-29
GetDouble method 3-29
GetFieldType method 3-29
GetFloat method 3-29
GetGuid method 3-29
GetInt16 method 3-29
GetInt32 method 3-29
GetInt64 method 3-29
GetName method 3-29
GetOrdinal method 3-29
GetSchemaTable method 3-29
GetString method 3-29
GetTimeSpan method 3-29
GetValue method 3-29
GetValues method 3-29
IsDBNull method 3-29
NextResult method 3-29
of IfxClob class 3-10
of IfxCommand class 3-15
of IfxCommandBuilder class 3-18
of IfxConnection class 3-23
of IfxConnectionStringBuilder class 3-25
of IfxDataAdapter class 3-28
of IfxDataReader class 3-29
of IfxDataSourceEnumerator class 3-32
of IfxDateTime structure 3-35
of IfxDecimal structure 3-40
of IfxErrorCollection class 3-45

Methods (continued)
of IfxMonthSpan structure 3-47
of IfxParameterCollection class 3-54
of IfxProviderFactory class 3-55
of IfxTimeSpan structure 3-61
of IfxTransaction class 3-65
Read method 3-29

Methods, unsupported 3-1, 3-2
Microsoft .NET Framework SDK 1-1
Microsoft .NET specification vii
Microsoft ODBC .NET 1-1
Microsoft OLE DB .NET 1-1
Microsoft public .NET base classes 3-2
Microsoft public .NET interfaces 3-1
Microsoft Visual Studio Add-in

Installing 1-2
Millisecond property

of IfxDateTime structure 3-34
Milliseconds property

of IfxTimeSpan structure 3-60
Min method

of IfxDecimal structure 3-42
Min Pool Size attribute 1-7
Min Pool Size connection string attribute 3-20
MinusOne property

of IfxDecimal structure 3-40
Minute member

of IfxTimeUnit enumeration 3-64
Minute property

of IfxDateTime structure 3-34
Minutes property

of IfxTimeSpan structure 3-60
MinValue property

of IfxDateTime structure 3-34
of IfxDecimal structure 3-40
of IfxMonthSpan structure 3-46
of IfxTimeSpan structure 3-60

MissingMappingAction property 3-28
of IfxDataAdapter class 3-26

MissingSchemaAction property
of IfxDataAdapter class 3-26

Modulo method
of IfxDecimal structure 3-43

Money member
of IfxType enumeration 3-66

MONEY type 2-1
Month member

of IfxTimeUnit enumeration 3-64
Month property

of IfxDateTime structure 3-34
Months property

of IfxMonthSpan structure 3-46
Multiply method

of IfxDecimal structure 3-43
of IfxMonthSpan structure 3-49

MultiSet member
of IfxType enumeration 3-66

MULTISET type 2-1

N
Namespace

importing 1-5
of IBM Informix .NET Provider 1-5

namespaces, System.EnterpriseServices 1-4
namespaces, System.Transaction 1-4

X-10 IBM Informix .NET Provider Reference Guide

NativeError property
of IfxError class 3-45

NChar member
of IfxType enumeration 3-66

NCHAR type 2-1
Negate method

of IfxDecimal structure 3-43
of IfxMonthSpan structure 3-49
of IfxTimeSpan structure 3-63

Nested string literals 2-1
NextResult method

of IfxDataReader class 3-29
Nobuffer member

of IfxSmartLOBOpenMode enumeration 3-58
NoLog member

of IfxSmartLOBCreateTimeFlags enumeration 3-56
None value 3-13
NotEquals method

of IfxDateTime structure 3-38
of IfxDecimal structure 3-43
of IfxMonthSpan structure 3-49
of IfxTimeSpan structure 3-63

Now property
of IfxDateTime structure 3-34

Null property
of IfxBlob 3-4
of IfxClob 3-9
of IfxDateTime structure 3-34
of IfxDecimal structure 3-40
of IfxMonthSpan structure 3-46
of IfxTimeSpan structure 3-60

Null values 3-52
NVarChar member

of IfxType enumeration 3-66

O
ODBC .NET 1-1
ODBC connection string 3-20
ODBC Driver 1-1
OLE DB .NET 1-1
OLE DB Provider 1-1
One property

of IfxDecimal structure 3-40
Open method

of IfxBlob class 3-6
of IfxClob class 3-11
of IfxConnection class 3-24

Optimize OpenFetchClose connection string attribute 3-20
OPTOFC connection string attribute 3-20
OPTOFC environment variable 1-5
OUT parameters

used during execution of SPL 1-9
Output parameters 1-6, 3-52
OutputParameters value 3-13

P
Packet Size connection string attribute 3-20
PacketSize property

of IfxConnection class 3-19
Parameter arrays 1-8
Parameter types 2-2
ParameterCollection.Add method 1-8
ParameterName property

of IfxParameter class 3-52

Parameters
used during execution of SPL 1-9

Parameters property
of IfxCommand 3-13

Parse method
of IfxDateTime structure 3-38
of IfxDecimal structure 3-43
of IfxMonthSpan structure 3-49
of IfxTimeSpan structure 3-63

Passthrough value 3-26
Password connection string attribute 3-20
Performance 3-29
Persist Security Info attribute 3-20
Persist Security Info connection string attribute 3-20
Pi property

of IfxDecimal structure 3-40
Placeholder symbols 1-8
Platforms 1-1
Pooling attribute 1-7, 1-8
Pooling connection string attribute 3-20
Port numbers 3-20
Position property

of IfxBlob 3-4
of IfxClob 3-9

Prepare method
of IfxCommand class 3-16

Primary key 1-6
PRO connection string attribute 3-20
Properties

IfxErrorCollection class 3-45
of IfxBlob class 3-4
of IfxCommand class 3-13
of IfxCommandBuilder class 3-17
of IfxConnection class 3-19
of IfxConnectionStringBuilder class 3-25
of IfxDataAdapter class 3-26
of IfxDataReader class 3-29
of IfxDataSourceEnumerator class 3-32
of IfxDateTime structure 3-34
of IfxDecimal structure 3-40
of IfxError class 3-45
of IfxException class 3-45
of IfxMonthSpan structure 3-46
of IfxParameter class 3-52
of IfxParameterCollection class 3-53
of IfxTimeSpan structure 3-60
of IfxTransaction class 3-65

Protocol connection string attribute 3-20
Provider independence 1-4
Public base classes 3-2
Public interfaces 3-1
Public interfaces, objects 1-4
PWD connection string attribute 3-20

Q
QuotePrefix property 1-6

of IfxCommandBuilder class 3-17
QuoteSuffix property 1-6

of IfxCommandBuilder class 3-17

R
range of time types 3-32, 3-46
Read method

of IfxBlob class 3-6

Index X-11

Read method (continued)
of IfxClob class 3-11
of IfxDataReader class 3-29

Read-only data 1-4, 3-29, 4-2
ReadOnly member

of IfxSmartLOBOpenMode enumeration 3-58
ReadWrite member

of IfxSmartLOBOpenMode enumeration 3-58
REAL type 2-1
Reconciling changed data 1-4, 1-6, 3-17, 3-26, 4-4
RecordsAffected property

of IfxDataReader class 3-29
ReferenceCount property

of IfxBlob 3-4
of IfxClob 3-9

RefreshSchema method 1-6
of IfxCommandBuilder class 3-18

Registry 1-5
Relationships 1-4
Release method

of IfxBlob class 3-7
of IfxClob class 3-11

Remainder method
of IfxDecimal structure 3-43

Remove method
of IfxConnectionStringBuilder class 3-25
of IfxParameterCollection class 3-55

RemoveAt method
of IfxParameterCollection class 3-55

Retrieving a single value, example of 4-1
Retrieving data 4-2
Retrieving data into a DataSet

example of 4-3
Retrieving multiple rows

example of 4-2
ReturnProviderSpecifictypes property

of IfxDataAdapter class 3-26
Rollback method

of IfxTransaction class 3-65
Round method

of IfxDecimal structure 3-43
Row member

of IfxType enumeration 3-66
RowFetchCount property

of IfxCommand 3-13
RowUpdating events 3-17

S
Sample programs

Informix .NET Provider 4-1
SchemaOnly value 3-15
Screen reader

reading syntax diagrams A-1
Second member

of IfxTimeUnit enumeration 3-64
Second property

of IfxDateTime structure 3-34
Seconds property

of IfxTimeSpan structure 3-60
Seek method

of IfxBlob class 3-7
of IfxClob class 3-12

SELECT statements 1-4
SelectCommand property 1-6, 3-17

of IfxDataAdapter class 3-26
SequentialAccess value 3-15

Serial member
of IfxType enumeration 3-66

SERIAL type 2-1
Serial8 member

of IfxType enumeration 3-66
Server connection string attribute 3-20
Server member

of IfxSmartLOBFileLocation enumeration 3-57
ServerVersion property

of IfxConnection class 3-19
Service connection string attribute 3-20
Set member

of IfxType enumeration 3-66
SET type 2-1
Setnet utility 1-5
Shared member

of IfxSmartLOBLockMode enumeration 3-57
Shortcut keys

keyboard A-1
Single-quote characters 2-1
Single-table updates 3-17
SingleResult value 3-15
SingleRow value 3-15
SmallFloat member

of IfxType enumeration 3-66
SMALLFLOAT type 2-1
SmallInt member

of IfxType enumeration 3-66
SmartLOBLocator member

of IfxType enumeration 3-66
SourceColumn property

of IfxParameter class 3-52
SourceVersion property

of IfxParameter class 3-52
Special characters 1-6
sqlhosts

IPv6 IP addresses in 1-2
using hostnames in 1-2

SQLState property
of IfxError class 3-45

StackTrace property
of IfxException class 3-45

standards ix
start time unit 3-32, 3-46
StartTimeUnit property

of IfxDateTime structure 3-34
of IfxMonthSpan structure 3-46
of IfxTimeSpan structure 3-60

State property
of IfxConnection class 3-19

StateChange event
of IfxConnection class 3-24

Stored procedures 1-8, 3-18, 4-5
StoredProcedure value 3-13
String literals 2-1
String type 2-1
Strong-named assembly 1-2
Subtract method

of IfxDecimal structure 3-44
Syntax diagrams

reading in a screen reader A-1
sysmaster database 1-4
System.DataSet class

Reconciling changes with the database
example of 4-4

System.EnterpriseServices namespace 1-4
System.Transaction namespace 1-4

X-12 IBM Informix .NET Provider Reference Guide

SystemException exception 3-26

T
TableDirect value 3-13
TableMappings property 3-28

of IfxDataAdapter class 3-26
TargetSite property

of IfxException class 3-45
Text member

of IfxType enumeration 3-66
TEXT type 2-1
Text value 3-13
Thread-safety of provider 1-5
Ticks property

of IfxDateTime structure 3-34
of IfxTimeSpan structure 3-60

Time units
in IfxDateTime 3-32

Today property
of IfxDateTime structure 3-34

ToFile method
of IfxBlob class 3-7
of IfxClob class 3-12

ToString method
of IfxConnectionStringBuilder class 3-25
of IfxDateTime structure 3-39
of IfxDecimal structure 3-44
of IfxMonthSpan structure 3-50
of IfxTimeSpan structure 3-63

TotalMonths property
of IfxMonthSpan structure 3-46

Tracing 1-12
Transaction property 1-6, 3-65

of IfxCommand 3-13
Transactions 3-65

distributed 1-8, 3-20, 4-5
local

example of use 4-2
Truncate method

of IfxBlob class 3-7
of IfxClob class 3-12
of IfxDecimal structure 3-44

TryGetValue method
of IfxConnectionStringBuilder class 3-25

U
UID connection string attribute 3-20
Unlock method

of IfxBlob class 3-7
of IfxClob class 3-12

Unsupported methods 3-1, 3-2
Update method

of IfxDataAdapter class 3-28
UPDATE statements 3-17
UPDATE, automatic 1-6
UpdateBatchSize property

of IfxDataAdapter class 3-26
UpdateCommand property 1-6

of IfxDataAdapter class 3-26
UpdatedRowSource property

of IfxCommand 3-13
User ID connection string attribute 3-20
UserDefinedTypeFormat

attributes of 3-22

UserDefinedTypeFormat property
attributes of 3-22
of IfxConnection class 3-19

V
Value property

of IfxParameter class 3-52
Values property

of IfxConnectionStringBuilder class 3-25
VarChar member

of IfxType enumeration 3-66
VARCHAR type 2-1
VisibleFieldCount property

of IfxDataReader class 3-29
Visual BASIC .NET 1-1
Visual C# .NET 1-1
Visual disabilities

reading syntax diagrams A-1
Visual J# .NET 1-1

W
Warning messages 3-44
Write method

of IfxBlob class 3-7
of IfxClob class 3-12

WriteOnly member
of IfxSmartLOBOpenMode enumeration 3-58

X
XCL connection string attribute 3-20

Y
Year member

of IfxTimeUnit enumeration 3-64
Year property

of IfxDateTime structure 3-34
Years property

of IfxMonthSpan structure 3-46

Z
Zero property

of IfxDecimal structure 3-40
of IfxMonthSpan structure 3-46
of IfxTimeSpan structure 3-60

Index X-13

X-14 IBM Informix .NET Provider Reference Guide

����

Printed in USA

SC23-9425-06

	Contents
	Introduction
	About this publication
	What's new in IBM Informix .NET Provider, Version 3.50
	Example code conventions
	Additional documentation
	Compliance with industry standards
	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback

	Chapter 1. Overview of the IBM Informix .NET Provider
	What is the Informix .NET Provider?
	Supported programming environments
	Visual Studio data access support
	Support for IPv6
	Install the IBM Informix .NET Provider
	Update the PATH environment variable for Microsoft Windows 64-bit Systems
	Prepare the database server

	Overview of the .NET provider class library
	Thread-safety of provider types
	Namespace requirements
	Connecting to a database
	Reconcile DataSet changes with the database
	The connection pool
	Set FullTrust permission

	The ? parameter markers
	Parameter arrays
	Call stored procedures
	IfxProviderFactory objects to write database-independent code
	Distributed transactions
	The OUT and INOUT Parameters
	Generic coding with the ADO.NET common base classes
	Error messages
	Tracing
	Error checking during data transfer

	Chapter 2. Mapping data types
	Retrieve data
	Set data types for a parameter
	Display format of FLOAT, DECIMAL, or MONEY data types

	Chapter 3. Type reference
	Supported public .NET interfaces
	Supported Public .NET base classes
	Prototype syntax
	IfxBlob class
	The IfxBlob internal cursor
	Create an IfxBlob
	IfxBlob constructors

	IfxBlob public properties
	IfxBlob public methods

	IfxClob class
	The IfxClob internal cursor
	Create an IfxClob
	IfxClob constructors

	IfxClob public properties
	IfxClob public methods

	IfxCommand class
	Create an IfxCommand
	IfxCommand constructors

	IfxCommand public properties
	IfxCommand public methods
	IfxCommand examples

	IfxCommandBuilder class
	Create an IfxCommandBuilder
	IfxCommandBuilder constructors

	IfxCommandBuilder public properties
	IfxCommandBuilder public methods
	IfxCommandBuilder examples

	IfxConnection class
	Create an IfxConnection
	IfxConnection constructors

	IfxConnection public properties
	ConnectionString property
	UserDefinedTypeFormat property

	IfxConnection public methods
	IfxConnection public events
	IfxConnection example

	IfxConnectionStringBuilder class
	Create an IfxConnectionStringBuilder
	IfxConnectionStringBuilder public properties
	IfxConnectionStringBuilder public methods

	IfxDataAdapter class
	Create an IfxDataAdapter
	IfxDataAdapter constructors

	IfxDataAdapter public properties
	IfxDataAdapter public methods
	IfxDataAdapter examples

	IfxDataReader class
	IfxDataReader public properties
	IfxDataReader public methods
	IfxDataReader example

	IfxDataSourceEnumerator class
	Create an IfxDataSourceEnumerator
	IfxDataSourceEnumerator public properties
	IfxDataSourceEnumerator public methods

	IfxDateTime structure
	Create an IfxDateTime
	IfxDateTime constructors

	IfxDateTime public properties
	IfxDateTime public methods

	IfxDecimal structure
	Create an IfxDecimal
	IfxDecimal constructors

	IfxDecimal properties
	IfxDecimal methods

	IfxError class
	IfxError public properties

	IfxErrorCollection class
	IfxErrorCollection public properties
	IfxErrorCollection public methods

	IfxException class
	IfxException public properties

	IfxMonthSpan structure
	Create an IfxMonthSpan
	IfxMonthSpan constructors

	IfxMonthSpan public properties
	IfxMonthSpan public methods

	IfxParameter class
	Create an IfxParameter class
	IfxParameter constructors

	IfxParameter public properties
	IfxParameter examples

	IfxParameterCollection class
	Create an IfxParameterCollection
	IfxParameterCollection public properties
	IfxParameterCollection public methods

	IfxProviderFactory class
	IfxProviderFactory public methods

	IfxSmartLOBCreateTimeFlags enumeration
	IfxSmartLOBFileLocation enumeration
	IfxSmartLOBLocator class
	IfxSmartLOBLockMode enumeration
	IfxSmartLOBOpenMode enumeration
	IfxSmartLOBWhence enumeration
	IfxTimeSpan structure
	Create an IfxTimeSpan
	IfxTimeSpan constructors

	IfxTimeSpan public properties
	IfxTimeSpan public methods

	IfxTimeUnit enumeration
	IfxTransaction class
	IfxTransaction public properties
	IfxTransaction public methods
	IfxTransaction example

	IfxType enumeration

	Chapter 4. Sample programs
	Demonstration programs
	IBM Informix .NET Provider examples
	Retrieve a single value
	Retrieve multiple rows
	Execute SQL that does not return data and using a transaction
	Retrieve data into a DataSet
	IfxCommandBuilder object to reconcile changes with the database
	Call a stored procedure
	Distributed transactions
	Write CLOBs to files

	Appendix. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

