
IBM Informix
Version 11.50

IBM Informix Guide to SQL: Tutorial

SC27-3810-00

���

IBM Informix
Version 11.50

IBM Informix Guide to SQL: Tutorial

SC27-3810-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page B-1.

Edition

This publication contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . ix
In this introduction . ix
About this publication . ix

Types of users . ix
Software dependencies . ix
Assumptions about your locale . ix
Demonstration database . x

What's new in IBM Informix Guide to SQL: Tutorial, Version 11.50 x
Example code conventions . xi
Additional documentation . xii
Compliance with industry standards . xii

Chapter 1. Database concepts . 1-1
Illustration of a data model . 1-1

Store data. 1-2
Query data . 1-3
Modify data . 1-4

Concurrent use and security . 1-4
Control database use . 1-5
Centralized management . 1-7

Important database terms . 1-7
The relational database model . 1-7
Tables . 1-8
Columns . 1-8
Rows . 1-9
Views . 1-9
Sequences. 1-9
Operations on tables . 1-9
The object-relational model . 1-10

Structured Query Language . 1-11
Standard SQL . 1-11
Informix SQL and ANSI SQL . 1-11
Interactive SQL . 1-12
General programming . 1-12
ANSI-compliant databases . 1-12
Global Language Support . 1-12

Summary . 1-12

Chapter 2. Compose SELECT statements . 2-1
SELECT statement overview . 2-1

Output from SELECT statements . 2-2
Some basic concepts . 2-2

Single-table SELECT statements . 2-6
The asterisk symbol (*) . 2-6
The ORDER BY clause to sort the rows . 2-7
Select specific columns . 2-10
The WHERE clause . 2-16
Create a comparison condition . 2-17
FIRST clause to select specific rows . 2-30
Expressions and derived values . 2-33
Rowid values in SELECT statements . 2-39

Multiple-table SELECT statements . 2-40
Create a Cartesian product. 2-40
Create a join . 2-41
Some query shortcuts . 2-47

© Copyright IBM Corp. 1996, 2010 iii

Summary . 2-50

Chapter 3. Select data from complex types . 3-1
Select row-type data . 3-1

Select columns of a typed table . 3-2
Select columns that contain row-type data . 3-3

Select from a collection . 3-6
Select nested collections . 3-7
The IN keyword to search for elements in a collection . 3-8

Select rows within a table hierarchy . 3-9
Select rows of the supertable without the ONLY keyword 3-10
Select rows from a supertable with the ONLY keyword 3-11
An alias for a supertable . 3-11

Summary . 3-12

Chapter 4. Functions in SELECT statements 4-1
Functions in SELECT statements . 4-1

Aggregate functions . 4-1
Time functions . 4-6
Date-conversion functions . 4-10
Cardinality function . 4-13
Smart large object functions . 4-14
String-manipulation functions . 4-15
Other functions . 4-20

SPL routines in SELECT statements . 4-26
Data encryption functions . 4-28

Using column-level data encryption to secure credit card data 4-28
Summary . 4-29

Chapter 5. Compose advanced SELECT statements 5-1
The GROUP BY and HAVING clauses . 5-1

The GROUP BY clause . 5-2
The HAVING clause . 5-5

Create advanced joins. 5-7
Self-joins . 5-7
Outer joins . 5-10

Subqueries in SELECT statements . 5-17
Correlated subqueries . 5-18
Using subqueries to combine SELECT statements . 5-18
Subqueries in a Projection clause . 5-19
Subqueries in the FROM clause . 5-20
Subqueries in WHERE clauses . 5-21
Subqueries in DELETE and UPDATE statements . 5-27

Handle collections in SELECT statements . 5-27
Collection subqueries . 5-28
Collection-derived tables . 5-30
ISO-compliant syntax for collection derived tables . 5-31

Set operations . 5-32
Union . 5-32
Intersection . 5-38
Difference . 5-39

Summary . 5-40

Chapter 6. Modify data . 6-1
Modify data in your database . 6-1
Delete rows . 6-1

Delete all rows of a table . 6-2
Delete all rows using TRUNCATE . 6-2
Delete specified rows . 6-3
Delete selected rows . 6-3

iv IBM Informix Guide to SQL: Tutorial

Delete rows that contain row types . 6-4
Delete rows that contain collection types . 6-4
Delete rows from a supertable . 6-4
Complicated delete conditions . 6-4
The Delete clause of MERGE . 6-5

Insert rows . 6-6
Single rows . 6-6
Insert rows into typed tables . 6-8
Syntax rules for inserts on columns . 6-9
Insert rows into supertables . 6-10
Insert collection values into columns . 6-11
Insert smart large objects . 6-12
Multiple rows and expressions . 6-13
Restrictions on the insert selection . 6-13

Update rows . 6-14
Select rows to update . 6-15
Update with uniform values . 6-15
Restrictions on updates . 6-16
Update with selected values . 6-16
Update row types . 6-17
Update collection types . 6-18
Update rows of a supertable . 6-19
CASE expression to update a column . 6-19
SQL functions to update smart large objects . 6-20
The MERGE statement to update a table . 6-20
A join to update a column . 6-21

Privileges on a database and on its objects . 6-21
Database-level privileges . 6-21
Table-level privileges . 6-22
Display table privileges . 6-22
Grant privileges to roles . 6-23

Data integrity . 6-23
Entity integrity . 6-24
Semantic integrity . 6-24
Referential integrity . 6-25
Object modes and violation detection . 6-27

Interrupted modifications . 6-33
Transactions . 6-34
Transaction logging . 6-34
Specify transactions . 6-35

Backups and logs with IBM Informix database servers . 6-36
Concurrency and locks . 6-37
IBM Informix data replication . 6-37
Summary . 6-38

Chapter 7. Access and modify data in an external database 7-1
Access other database servers . 7-1

Access ANSI databases . 7-1
Create joins between external database servers . 7-1
Access external routines . 7-2

Restrictions for remote database access . 7-2
SQL statements and logging modes . 7-2
Access external database objects . 7-3

Chapter 8. SQL programming. 8-1
SQL in programs . 8-1

SQL in SQL APIs . 8-1
SQL in application languages . 8-2
Static embedding . 8-2
Dynamic statements . 8-2

Contents v

||

Program variables and host variables . 8-3
Call the database server . 8-4

SQL Communications Area . 8-4
SQLCODE field . 8-4
SQLERRD array . 8-5
SQLWARN array . 8-6
SQLERRM character string . 8-7
SQLSTATE value . 8-7

Retrieve single rows . 8-8
Data type conversion . 8-9
What if the program retrieves a NULL value? . 8-9
Dealing with errors . 8-10

Retrieve multiple rows . 8-11
Declare a cursor . 8-12
Open a cursor . 8-12
Fetch rows . 8-13
Cursor input modes . 8-14
Active set of a cursor . 8-14
Parts-explosion problem . 8-16

Dynamic SQL . 8-18
Prepare a statement . 8-19
Execute prepared SQL . 8-19
Dynamic host variables . 8-20
Free prepared statements . 8-20
Quick execution . 8-21

Embed data-definition statements . 8-21
Grant and revoke privileges in applications . 8-21

Assign roles . 8-23
Summary . 8-23

Chapter 9. Modify data through SQL programs 9-1
The DELETE statement . 9-1

Direct deletions . 9-1
Delete with a cursor . 9-3

The INSERT statement . 9-4
An insert cursor . 9-5
Rows of constants . 9-6
An insert example . 9-7

The UPDATE statement . 9-9
An update cursor . 9-9
Cleanup a table . 9-10

Summary . 9-11

Chapter 10. Programming for a multiuser environment 10-1
Concurrency and performance . 10-1
Locks and integrity . 10-1
Locks and performance . 10-1
Concurrency issues . 10-2
How locks work . 10-3

Kinds of locks . 10-3
Lock scope . 10-3
Duration of a lock . 10-8
Locks while modifying . 10-8

Lock with the SELECT statement . 10-9
Set the isolation level . 10-9
Update cursors . 10-13

Retain update locks. 10-14
Locks placed with INSERT, UPDATE, and DELETE . 10-14
The behavior of the lock types . 10-14
Control data modification with access modes . 10-15

vi IBM Informix Guide to SQL: Tutorial

Set the lock mode . 10-16
Waiting for locks . 10-16
Not waiting for locks . 10-16
Limited time wait . 10-17
Handle a deadlock . 10-17
Handling external deadlock . 10-17

Simple concurrency. 10-17
Hold cursors . 10-18
The SQL statement cache . 10-19
Summary . 10-19

Chapter 11. Create and use SPL routines . 11-1
Introduction to SPL routines . 11-1

What you can do with SPL routines . 11-1
SPL routines format . 11-2

The CREATE PROCEDURE or CREATE FUNCTION statement 11-2
Example of a complete routine . 11-11
Create an SPL routine in a program . 11-11
Routines in distributed operation . 11-12

Define and use variables . 11-13
Declare local variables . 11-13
Declare global variables . 11-20
Assign values to variables . 11-21

Expressions in SPL routines . 11-23
Writing the statement block . 11-23

Implicit and explicit statement blocks . 11-23
The FOREACH loop . 11-24
The FOREACH loop to define cursors . 11-25
An IF - ELIF - ELSE structure . 11-27
Add WHILE and FOR loops . 11-28
Exit a loop. 11-30

Return values from an SPL function . 11-31
Return a single value . 11-31
Return multiple values . 11-32

Handle row-type data . 11-34
Precedence of dot notation . 11-34
Update a row-type expression . 11-34

Handle collections . 11-35
Collection data types . 11-35
Prepare for collection data types . 11-36
Insert elements into a collection variable . 11-38
Select elements from a collection . 11-40
Delete a collection element . 11-42
Update a collection element . 11-45
Update the entire collection . 11-46
Insert into a collection . 11-49

Executing routines . 11-53
The EXECUTE statements . 11-54
The CALL statement . 11-55
Execute routines in expressions . 11-56
Execute an external function with the RETURN statement 11-56
Execute cursor functions from an SPL routine . 11-57
Dynamic routine-name specification . 11-57

Privileges on routines . 11-59
Privileges for registering a routine . 11-59
Privileges for executing a routine . 11-59
Privileges on objects associated with a routine . 11-61
DBA privileges for executing a routine . 11-62

Find errors in an SPL routine . 11-63
Compile-time warnings . 11-63
Generate the text of the routine . 11-63

Contents vii

Debug an SPL routine . 11-64
Exception handling . 11-66

Error trapping and recovering . 11-66
Scope of control of an ON EXCEPTION statement . 11-67
User-generated exceptions . 11-67

Check the number of rows processed in an SPL routine. 11-69
Summary . 11-69

Chapter 12. Create and use triggers . 12-1
When to use triggers . 12-1
How to create a trigger . 12-1

Declare a trigger name . 12-2
Specify the trigger event . 12-2
Define the triggered actions . 12-3
A complete CREATE TRIGGER statement . 12-3

Triggered actions . 12-4
BEFORE and AFTER triggered actions . 12-4
FOR EACH ROW triggered actions . 12-5
SPL routines as triggered actions . 12-6

Trigger routines . 12-7
Triggers in a table hierarchy . 12-8
Select triggers . 12-8

SELECT statements that execute triggered actions . 12-8
Restrictions on execution of select triggers . 12-9
Select triggers on tables in a table hierarchy . 12-10

Re-entrant triggers . 12-10
INSTEAD OF triggers on views . 12-10

INSTEAD OF trigger to update on a view . 12-10
Trace triggered actions . 12-11

Example of TRACE statements in an SPL routine . 12-11
Example of TRACE output . 12-12

Generate error messages . 12-12
Apply a fixed error message. 12-12
Generate a variable error message . 12-13

Summary . 12-14

Appendix. Accessibility . A-1
Accessibility features for IBM Informix products . A-1

Accessibility features . A-1
Keyboard navigation . A-1
Related accessibility information . A-1
IBM and accessibility. A-1

Dotted decimal syntax diagrams . A-1

Notices . B-1
Trademarks . B-3

Index . X-1

viii IBM Informix Guide to SQL: Tutorial

Introduction

In this introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication
This publication shows how to use basic and advanced structured query language
(SQL) to access and manipulate the data in your databases. It discusses the data
manipulation language (DML) statements as well as triggers and stored procedure
language (SPL) routines, which DML statements often use.

This publication is one of a series of publications that discusses the IBM® Informix®

implementation of SQL. The IBM Informix Guide to SQL: Syntax contains all the
syntax descriptions for SQL and SPL. The IBM Informix Guide to SQL: Reference
provides reference information for aspects of SQL other than the language
statements. The IBM Informix Database Design and Implementation Guide shows how
to use SQL to implement and manage your databases.

Types of users

This publication is written for the following users:
v Database users
v Database administrators
v Database-application programmers

This publication assumes that you have the following background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational databases or exposure to database

concepts
v Some experience with computer programming

If you have limited experience with relational databases, SQL, or your operating
system, refer to the IBM Informix Getting Started Guide for your database server for
a list of supplementary titles.

Software dependencies

This publication is written with the assumption that you are using IBM Informix
Version 11.50.

Assumptions about your locale

IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation, and representation of numeric
data, currency, date, and time is brought together in a single environment, called a
Global Language Support (GLS) locale.

© Copyright IBM Corp. 1996, 2010 ix

The examples in this publication are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English format
conventions for date, time, and currency. In addition, this locale supports the ISO
8859-1 code set, which includes the ASCII code set plus many 8-bit characters such
as è, é, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers, or if
you want to conform to the nondefault collation rules of character data, you need
to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration database

The DB-Access utility, which is provided with the database server products,
includes one or more of the following demonstration databases:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX platforms and in the
%INFORMIXDIR%\bin directory in Windows environments.

What's new in IBM Informix Guide to SQL: Tutorial, Version 11.50
This publication includes information about new features and changes in existing
functionality.

The following changes and enhancements are relevant to this publication. For a
comprehensive list of all new features for this release, see the IBM Informix Getting
Started Guide.

x IBM Informix Guide to SQL: Tutorial

Table 1. What's new in IBM Informix Guide to SQL: Tutorial in Version 11.50xC8

Overview Reference

New editions and product names

IBM Informix Dynamic Server editions were withdrawn
and new Informix editions are available. Some products
were also renamed. The publications in the Informix
library pertain to the following products:

v IBM Informix database server, formerly known as IBM
Informix Dynamic Server (IDS)

v IBM OpenAdmin Tool (OAT) for Informix, formerly
known as OpenAdmin Tool for Informix Dynamic
Server (IDS)

v IBM Informix SQL Warehousing Tool, formerly known
as Informix Warehouse Feature

For more information about the Informix product family,
go to http://www.ibm.com/software/data/informix/.

Table 2. What's new in IBM Informix Guide to SQL: Tutorial for Version 11.50.xC6

Overview Reference

Enhancements to Merging Information into a Target Table
with the MERGE Statement

You can remove rows from a target table when you are
merging information into it from a source table by using the
Delete clause in the MERGE statement. You can combine the
Delete clause and the Insert clause to add new rows to the
target table if they do not match the join condition, and
delete the rows that do match the join condition.

You can use an external table, created by the CREATE
EXTERNAL TABLE statement, as a source table in the
MERGE statement. You can use a table protected by LBAC
as a source or target table in a MERGE statement.

You can include savepoints in a transaction to preserve the
effects of the MERGE statement after a partial rollback.

You can specify a more selective join predicate because you
no longer need to include an equality condition.

“The Delete clause of MERGE” on page 6-5

Table 3. What's new in IBM Informix Guide to SQL: Tutorial for Version 11.50.xC1

Overview Reference

Support in the WHERE clause of UPDATE and DELETE
statements for uncorrelated subqueries whose FROM clause
specifies the same table object that the FROM clause of the
DELETE statement or the Table Options clause of the
UPDATE statement specifies.

Subqueries of the same tables on which an outer INSERT or
SELECT statement operates are unchanged from their
behavior in earlier IBM Informix versions.

“Subqueries in DELETE and UPDATE statements” on
page 5-27

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

Introduction xi

||

||

|

|
|
|
|

|
|

|
|
|

|
|

|
|

|

||

||

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|

|

|

http://www.ibm.com/software/data/informix/

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

All of the product documentation (including release notes, machine notes, and
documentation notes) is available from the information center on the web at
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp. Alternatively,
you can access or install the product documentation from the Quick Start CD that
is shipped with the product.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade® Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

IBM Informix Dynamic Server (IDS) Enterprise Edition, Version 11.50 is certified
under the Common Criteria. For more information, see Common Criteria
Certification: Requirements for IBM Informix Dynamic Server, which is available at
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US
&FNC=SRX&PBL=SC23-7690-00.

xii IBM Informix Guide to SQL: Tutorial

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00

Chapter 1. Database concepts

This chapter describes fundamental database concepts and focuses on the
following topics:
v Data models
v Multiple users
v Database terminology
v SQL (Structured Query Language)

Your real use of a database begins with the SELECT statement, which Chapter 2,
“Compose SELECT statements,” on page 2-1, describes.

Illustration of a data model
The principal difference between information collected in a database versus
information collected in a file is the way the data is organized. A flat file is
organized physically; certain items precede or follow other items. But the contents
of a database are organized according to a data model. A data model is a plan, or
map, that defines the units of data and specifies how each unit relates to the
others.

For example, a number can appear in either a file or a database. In a file, it is
simply a number that occurs at a certain point in the file. A number in a database,
however, has a role that the data model assigns to it. The role might be a price that
is associated with a product that was sold as one item of an order that a customer
placed. Each of these components, price, product, item, order, and customer, also
has a role that the data model specifies. For an illustration of a data model, see the
following figure.

© Copyright IBM Corp. 1996, 2010 1-1

You design the data model when you create the database. You then insert units of
data according to the plan that the model lays out. Some books use the term
schema instead of data model.

Store data
Another difference between a database and a file is that the organization of the
database is stored with the database.

A file can have a complex inner structure, but the definition of that structure is not
within the file; it is in the programs that create or use the file. For example, a
document file that a word-processing program stores might contain detailed
structures that describe the format of the document. However, only the
word-processing program can decipher the contents of the file, because the
structure is defined within the program, not within the file.

A data model, however, is contained in the database it describes. It travels with the
database and is available to any program that uses the database. The model
defines not only the names of the data items but also their data types, so a
program can adapt itself to the database. For example, a program can find out that,
in the current database, a price item is a decimal number with eight digits, two to
the right of the decimal point; then it can allocate storage for a number of that

1015 06/27/98 1 case baseball gloves $450.00

1014 06/25/98 1 case footballs $960.00

1013 06/22/98 1 each tennis racquet $19.80

1012 06/18/98 1 case volleyballs $840.00

1011 06/18/98 5 each tennis racquet $99.00

1010 06/17/98 1 case tennis balls $36.00

ORDERS

order
1011

06/18/98

order
1003

05/22/98

order
1001

05/20/98

customer
Anthony
Higgins

item
2

volleyball
nets

item
1 case
tennis
balls

order
1013

06/22/98

item
tennis

racquet
$19.80

Figure 1-1. The advantage of using a data model

1-2 IBM Informix Guide to SQL: Tutorial

type. How programs work with databases is the subject of Chapter 8, “SQL
programming,” on page 8-1, and Chapter 9, “Modify data through SQL programs,”
on page 9-1.

Query data
Another difference between a database and a file is the way you can access them.
You can search a file sequentially, looking for particular values at particular
physical locations in each line or record. That is, you might ask, “What records
have the number 1013 in the first field?” The following figure shows this type of
search.

In contrast, when you query a database, you use the terms that the model defines.
You can query the database with questions such as, “What orders have been placed
for products made by the Shimara Corporation, by customers in New Jersey, with
ship dates in the third quarter?” The following figure shows this type of query.

ORDERS

1015 06/27/98 1 case baseball gloves $450.00
1013 06/22/98 1 each tennis racquet $19.80

06/22/98 1 case tennis balls $36.00
06/22/98 1 case tennis balls $48.00

1012 06/18/98 1 case volleyballs $840.00

1011 06/18/98 5 each tennis racquet $99.00

1010 06/17/98 1 case tennis balls $36.00

Figure 1-2. Search a file sequentially

Chapter 1. Database concepts 1-3

In other words, when you access data that is stored in a file, you must state your
question in terms of the physical layout of the file. When you query a database,
you can ignore the arcane details of computer storage and state your query in
terms that reflect the real world, at least to the extent that the data model reflects
the real world.

Chapter 2, “Compose SELECT statements,” on page 2-1, and Chapter 5, “Compose
advanced SELECT statements,” on page 5-1, discuss the language you use to make
queries.

For information about how to build and implement your data model, see the IBM
Informix Database Design and Implementation Guide.

Modify data
The data model also makes it possible to modify the contents of the database with
less chance for error. You can query the database with statements such as, “Find
every stock item with a manufacturer of Presta or Schraeder, and increase its price by
13 percent.” You state changes in terms that reflect the meaning of the data. You do
not have to waste time and effort thinking about details of fields within records in
a file, so the chances for error are fewer.

The statements you use to modify stored data are covered in Chapter 6, “Modify
data,” on page 6-1.

Concurrent use and security
A database can be a common resource for many users. Multiple users can query
and modify a database simultaneously. The database server (the program that
manages the contents of all databases) ensures that the queries and modifications
are done in sequence and without conflict.

order
1016

06/29/98

order
1023

07/24/98

manufacturer
Shimara

Run: Next Restart Exit
Display the next page of query results

--------stores-----------Press CTRL-W for Help------

1019 Bob Shorter SHM swim cap 07/16/98

order
1019

07/16/98

customer
Cathy

O’Brian

state
New Jersey

customer
Bob

Shorter

Figure 1-3. Query a database

1-4 IBM Informix Guide to SQL: Tutorial

Having concurrent users on a database provides great advantages but also
introduces new problems of security and privacy. Some databases are private;
individuals set them up for their own use. Other databases contain confidential
material that must be shared, but only among a restricted group; still other
databases provide public access.

Control database use
IBM Informix database software provides the means to control database use. When
you design a database, you can perform any of the following functions:
v Keep the database completely private
v Open its entire contents to all users or to selected users
v Restrict the selection of data that some users can view (different selections of

data to different groups of users)
v Allow specified users to view certain items, but not modify them
v Allow specified users to add new data, but not modify old data
v Allow specified users to modify all, or specified items of, existing data
v Ensure that added or modified data conforms to the data model

Access-management strategies
IBM Informix supports two access-management systems:

Label-Based Access Control (LBAC)
Label-Based Access Control is an implementation of Mandatory Access
Control, which is typically used in databases that store highly sensitive
data, such as systems maintained by armed forces or security services. The
primary documentation of IBM Informix features relating to LBAC is the
IBM Informix Security Guide. IBM Informix Guide to SQL: Syntax describes
how LBAC security objects are created and maintained by the Database
Security Administrator (DBSECADM). Only the Database Server
Administrator (DBSA) can grant the DBSECADM role.

Discretionary Access Control (DAC)
Discretionary Access Control is a simpler system that involves less
overhead than LBAC. Based on access privileges and roles, DAC is enabled
in all Informix databases, including those that implement LBAC.

Creating and granting a role:

To support DAC, the database administrator (DBA) can define roles and assign
them to users to standardize the access privileges of groups of users who need
access to the same database objects. When the DBA assigns privileges to that role,
every user who is granted role holds those privileges when that role is activated.
In order to activate a specific role, a user must issue the SET ROLE statement. The
SQL statements used for defining and manipulating roles include: CREATE ROLE,
DROP ROLE, GRANT, REVOKE, and SET ROLE.

For more information on the SQL syntax statements for defining and manipulating
roles, see the IBM Informix Guide to SQL: Syntax.

To create and grant a role:
1. Use the CREATE ROLE statement to create a new role in the current database.
2. Use the GRANT statement to grant access privileges to that role
3. Use the GRANT statement to grant the role to a user or to PUBLIC (all users).
4. The user must issue the SET ROLE statement to enable that role.

Chapter 1. Database concepts 1-5

Defining and granting privileges for a default role:

The DBA can also define a default role to assign to individual users or to the
PUBLIC group for a specific database. The role is automatically activated when the
user establishes a connection with that database, without the requiring the user to
issue a SET ROLE statement. At connection time, each user who holds a default
role has whatever access privileges are granted to the user individually, as well as
the privileges of the default role.

Only one role that the CREATE ROLE statement defines can be in effect for a given
user at a given time. If a user who holds both a default role and one or more other
roles uses the SET ROLE statement to make a nondefault role the active role, then
any access privileges that were granted only to the default role (and not to the user
individually, nor to PUBLIC, nor to the new active role) are no longer in effect for
that user. The same user can issue the SET ROLE DEFAULT statement to reactivate
the default role, but this action disables any privileges that the user held only
through the previously enabled nondefault role.

If different default roles are assigned to the user and to PUBLIC, the default role of
the user takes precedence.

To define and grant privileges for a default role:
1. Use the CREATE ROLE statement to create a new role in the current database.
2. Use the GRANT statement to grant privileges to the role.
3. Grant the role to a user and set the role as the default user or PUBLIC role

using the one of the following syntax:
v GRANT DEFAULT ROLE rolename TO username;

v GRANT DEFAULT ROLE rolename TO PUBLIC;

4. Use the REVOKE DEFAULT ROLE statement to disassociate a default role from
a user.

Restriction: Only the DBA or the database owner can remove the default role.
5. Use the SET ROLE DEFAULT statement to reset the current role back to the

default role.

Built-in roles:

For security reasons, IBM Informix supports certain built-in roles that are in effect
for any user who is granted the role and is connected to the database, regardless of
whether any other role is also active.

For example, in a database in which the IFX_EXTEND_ROLE configuration
parameter is set to ON, only the Database Server Administrator (DBSA) or users to
whom the DBSA has granted the built-in EXTEND role can create or drop UDRs
that are defined with the EXTERNAL keyword.

Similarly, in a database that implements LBAC security policies, the DBSA can
grant the built-in DBSECADM role. The grantee of this role becomes the Database
Security Administrator, who can define and implement LBAC security policies and
can assign security labels to data and to users.

1-6 IBM Informix Guide to SQL: Tutorial

Unlike user-defined roles, built-in roles cannot be destroyed by the DROP ROLE
statement. The SET ROLE statement has no effect on a built-in role, because it is
always active while users are connected to a database in which they have been
granted the built-in role.

For more information on the External Routine Reference segment or SQL
statements for defining and manipulating roles, see the IBM Informix Guide to SQL:
Syntax.

For more information on the DBSECADM role or SQL statements for defining and
manipulating LBAC security objects, see the IBM Informix Security Guide.

For more information on default roles, see the IBM Informix Administrator's Guide.

For more information about how to grant and limit access to your database, see
the IBM Informix Database Design and Implementation Guide.

Centralized management
Databases that many people use are valuable and must be protected as important
business assets. You create a significant problem when you compile a store of
valuable data and simultaneously allow many employees to access it. You handle
this problem by protecting data while maintaining performance. The database
server lets you centralize these tasks.

Databases must be guarded against loss or damage. The hazards are many: failures
in software and hardware, and the risks of fire, flood, and other natural disasters.
Losing an important database creates a huge potential for damage. The damage
could include not only the expense and difficulty of re-creating the lost data, but
also the loss of productive time by the database users as well as the loss of
business and goodwill while users cannot work. A plan for regular backups helps
avoid or mitigate these potential disasters.

A large database that many people use must be maintained and tuned. Someone
must monitor its use of system resources, chart its growth, anticipate bottlenecks,
and plan for expansion. Users will report problems in the application programs;
someone must diagnose these problems and correct them. If rapid response is
important, someone must analyze the performance of the system and find the
causes of slow responses.

Important database terms
You should know a number of terms before you begin the next chapter. Depending
on the database server you use, a different set of terms can describe the database
and the data model that apply.

The relational database model
The databases you create with an IBM Informix database server are object-relational
databases. In practical terms this means that all data is presented in the form of
tables with rows and columns where the following simple corresponding
relationships apply.

Relationship
Description

Chapter 1. Database concepts 1-7

table = entity
A table represents all that the database knows about one subject or kind of
thing.

column = attribute
A column represents one feature, characteristic, or fact that is true of the
table subject.

row = instance
A row represents one individual instance of the table subject.

Some rules apply about how you choose entities and attributes, but they are
important only when you are designing a new database. (For more information
about database design, see the IBM Informix Database Design and Implementation
Guide.) The data model in an existing database is already set. To use the database,
you need to know only the names of the tables and columns and how they
correspond to the real world.

Tables
A database is a collection of information that is grouped into one or more tables. A
table is an array of data items organized into rows and columns. A demonstration
database is distributed with every IBM Informix database server product. A partial
table from the demonstration database follows.

stock_num manu_code description unit_price unit unit_descr

.

1 HRO baseball gloves 250.00 case 10 gloves/case

1 HSK baseball gloves 800.00 case 10 gloves/case

1 SMT baseball gloves 450.00 case 10 gloves/case

2 HRO baseball 126.00 case 24/case

3 HSK baseball bat 240.00 case 12/case

4 HSK football 960.00 case 24/case

4 HRO football 480.00 case 24/case

5 NRG tennis racquet 28.00 each each

.

313 ANZ swim cap 60.00 case 12/box

A table represents all that the database administrator (DBA) wants to store about
one entity, one type of thing that the database describes. The example table, stock,
represents all that the DBA wants to store about the merchandise that a sporting
goods store stocks. Other tables in the demonstration database represent such
entities as customer and orders.

Columns
Each column of a table contains one attribute, which is one characteristic, feature,
or fact that describes the subject of the table. The stock table has columns for the
following facts about items of merchandise: stock numbers, manufacturer codes,
descriptions, prices, and units of measure.

1-8 IBM Informix Guide to SQL: Tutorial

Rows
Each row of a table is one instance of the subject of the table, which is one
particular example of that entity. Each row of the stock table stands for one item of
merchandise that the sporting goods store sells.

Views
A view is a virtual table based on a specified SELECT statement. A view is a
dynamically controlled picture of the contents in a database and allows a
programmer to determine what information the user sees and manipulates.
Different users can be given different views of the contents of a database, and their
access to those contents can be restricted in several ways.

Sequences
A sequence is a database object that generates a sequence of whole numbers within
a defined range. The sequence of numbers can run in either ascending or
descending order, and is monotonic. For more information about sequences, see the
IBM Informix Guide to SQL: Syntax.

Operations on tables
Because a database is really a collection of tables, database operations are
operations on tables. The object-relational model supports three fundamental
operations: selection, projection, and joining. The following figure shows the
selection and projection operations. (All three operations are defined in detail, with
many examples, in the following topics.)

When you select data from a table, you are choosing certain rows and ignoring
others. For example, you can query the stock table by asking the database
management system to, “Select all rows in which the manufacturer code is HSK
and the unit price is between 200.00 and 300.00.”

SELECTION

stock table

P R O J E C T I O N

stock_num manu_code description unit_price unit unit_descr

1 HRO baseball gloves 250.00 case 10 gloves/case
1 HSK baseball gloves 800.00 case 10 gloves/case
1 SMT baseball gloves 450.00 case 10 gloves/case
2 HRO baseball 126.00 case 24/case
3 HSK baseball bat 240.00 case 12/case
4 HSK football 960.00 case 24/case
4 HRO football 480.00 case 24/case
5 NRG tennis racquet 28.00 each each

313 ANZ swim cap 60.00 case 12/box

Figure 1-4. Illustration of selection and projection

Chapter 1. Database concepts 1-9

When you project from a table, you are choosing certain columns and ignoring
others. For example, you can query the stock table by asking the database
management system to “project the stock_num, unit_descr, and unit_price
columns.”

A table contains information about only one entity; when you want information
about multiple entities, you must join their tables. You can join tables in many
ways. For more information about join operations, refer to Chapter 5, “Compose
advanced SELECT statements,” on page 5-1.

The object-relational model
IBM Informix (Informix) allows you to build object-relational databases. In addition
to supporting alphanumeric data such as character strings, integers, date, and
decimal, an object-relational database extends the features of a relational model
with the following object-oriented capabilities:

Extensibility
You can extend the capability of the database server by defining new data
types (and the access methods and functions to support them) and
user-defined routines (UDRs) that allow you to store and manage images,
audio, video, large text documents, and so forth.

IBM, as well as third-party vendors, packages some data types and access
methods into DataBlade modules or shared class libraries, that you can
add on to the database server, if it suits your needs. A DataBlade module
enables you to store non-traditional data types such as two-dimensional
spatial objects (lines, polygons, ellipses, and circles) and to access them
through R-tree indexes. A DataBlade module might also provide new types
of access to large text documents, including phrase matching, fuzzy
searches, and synonym matching.

You can also extend the database server on your own by using the features
of IBM Informix that enable you to add data types and access methods.
For more information, see IBM Informix User-Defined Routines and Data
Types Developer's Guide.

You can create UDRs in SPL and the C programming language to
encapsulate application logic or to enhance the functionality of the
Informix. For more information, see Chapter 11, “Create and use SPL
routines,” on page 11-1.

Complex types
You can define new data types that combine one or more existing data
types. Complex types enable greater flexibility in organizing data at the
level of columns and tables. For example, with complex types, you can
define columns that contain collections of values of a single type and
columns that contain multiple component types.

Inheritance
You can define objects (types and tables) that acquire the properties of
other objects and add new properties that are specific to the object that you
define.

Informix provides object-oriented capabilities beyond those of the relational model
but represents all data in the form of tables with rows and columns. Although the
object-relational model extends the capabilities of the relational model, you can
implement your data model as a traditional relational database if you choose.

1-10 IBM Informix Guide to SQL: Tutorial

Some rules apply about how you choose entities and attributes, but they are
important only when you are designing a new database. For more information
about object-relational database design, see the IBM Informix Database Design and
Implementation Guide.

Structured Query Language
Most computer software has not yet reached a point where you can literally ask a
database, “What orders have been placed by customers in New Jersey with ship
dates in the third quarter?” You must still phrase questions in a restricted syntax
that the software can easily parse. You can pose the same question to the
demonstration database in the following terms:
SELECT * FROM customer, orders

WHERE customer.customer_num = orders.customer_num
AND customer.state = ’NJ’
AND orders.ship_date
BETWEEN DATE(’7/1/98’) AND DATE(’9/30/98’);

This question is a sample of Structured Query Language (SQL). It is the language
that you use to direct all operations on the database. SQL is composed of
statements, each of which begins with one or two keywords that specify a
function. The IBM Informix implementation of SQL includes a large number of
SQL statements, from ALLOCATE DESCRIPTOR to WHENEVER.

You will use most of the statements only when you set up or tune your database.
You will use three or four statements regularly to query or update your database.
For details on SQL statements, see the IBM Informix Guide to SQL: Syntax.

One statement, SELECT, is in almost constant use. SELECT is the only statement
that you can use to retrieve data from the database. It is also the most complicated
statement, and the next two chapters of this book explore its many uses.

Standard SQL
The relational model and SQL and were invented and developed at IBM in the
early and middle 1970s. Once IBM proved that it was possible to implement
practical relational databases and that SQL was a usable language for manipulating
them, other implementations of SQL were developed.

For reasons of performance or competitive advantage, or to take advantage of local
hardware or software features, each SQL implementation differed in small ways
from the others and from the IBM version of the language. To ensure that the
differences remained small, a standards committee was formed in the early 1980s.

Committee X3H2, sponsored by the American National Standards Institute (ANSI),
issued the SQL1 standard in 1986. This standard defines a core set of SQL features
and the syntax of statements such as SELECT.

Informix SQL and ANSI SQL
The IBM Informix implementation of SQL is compatible with standard SQL. IBM
Informix SQL is also compatible with the IBM version of the language. However,
Informix SQL contains extensions to the standard; that is, extra options or features
for certain statements, and looser rules for others. Most of the differences occur in
the statements that are not in everyday use. For example, few differences occur in
the SELECT statement, which accounts for 90 percent of SQL use.

Chapter 1. Database concepts 1-11

When a difference exists between Informix SQL and ANSI standard, the IBM
Informix Guide to SQL: Syntax identifies the Informix syntax as an extension to the
ANSI standard for SQL.

Interactive SQL
To carry out the examples in this book and to experiment with SQL and database
design, you need a program that lets you execute SQL statements interactively.
DB-Access is such a program. It helps you compose SQL statements and then
passes your SQL statements to the database server for execution and displays the
results to you.

General programming
You can write programs that incorporate SQL statements and exchange data with
the database server. That is, you can write a program to retrieve data from the
database and format it however you choose. You can also write programs that take
data from any source in any format, prepare it, and insert it into the database.

You can also write programs called stored routines to work with database data and
objects. The stored routines that you write are stored directly in a database in
tables. You can then execute a stored routine from DB-Access or an SQL
Application Programming Interface (API) such as IBM Informix ESQL/C.

Chapter 8, “SQL programming,” on page 8-1, and Chapter 9, “Modify data through
SQL programs,” on page 9-1, present an overview of how SQL is used in
programs.

ANSI-compliant databases
Use the MODE ANSI keywords when you create a database to designate it as
ANSI compliant. Within such a database, certain characteristics of the ANSI/ISO
standard apply. For example, all actions that modify data take place within a
transaction automatically, which means that the changes are made in their entirety
or not at all. Differences in the behavior of ANSI-compliant databases are noted,
where appropriate, in the statement descriptions in the IBM Informix Guide to SQL:
Syntax. For a detailed discussion of ANSI-compliant databases, see the IBM
Informix Database Design and Implementation Guide.

Global Language Support
IBM Informix database server products provide the Global Language Support
(GLS) feature. In addition to U.S. ASCII English, GLS allows you to work in other
locales and use non-ASCII characters in SQL data and identifiers. You can use the
GLS feature to conform to the customs of a specific locale. The locale files contain
culture-specific information, such as money and date formats and collation orders.
For more GLS information, see the IBM Informix GLS User's Guide.

Summary
A database contains a collection of related information but differs in a fundamental
way from other methods of storing data. The database contains not only the data,
but also a data model that defines each data item and specifies its meaning with
respect to the other items and to the real world.

More than one user can access and modify a database at the same time. Each user
has a different view of the contents of a database, and each user's access to those
contents can be restricted in several ways.

1-12 IBM Informix Guide to SQL: Tutorial

A relational database consists of tables, and the tables consist of columns and rows.
The relational model supports three fundamental operations on tables: selections,
projections, and joins.

An object-relational database extends the features of a relational database. You can
define new data types to store and manage audio, video, large text documents, and
so forth. You can define complex types that combine one or more existing data
types to provide greater flexibility in how you organize your data in columns and
tables. You can define types and tables that inherit the properties of other database
objects and add new properties that are specific to the object that you define.

To manipulate and query a database, use SQL. IBM pioneered SQL and ANSI
standardized it. IBM Informix extensions that you can use to your advantage add
to the ANSI-defined language. IBM Informix tools also make it possible to
maintain strict compliance with ANSI standards.

Two layers of software mediate all your work with databases. The bottom layer is
always a database server that executes SQL statements and manages the data on
disk and in computer memory. The top layer is one of many applications, some
from IBM and some written by you, by other vendors, or your colleagues.
Middleware is the component that links the database server to the application, and
is provided by the database vendor to bind the client programs with the database
server. IBM Informix Stored Procedure Language (SPL) is an example of such a
tool.

Chapter 1. Database concepts 1-13

1-14 IBM Informix Guide to SQL: Tutorial

Chapter 2. Compose SELECT statements

The SELECT statement is the most important and the most complex SQL
statement. You can use it and the SQL statements INSERT, UPDATE, and DELETE
to manipulate data. You can use the SELECT statement to retrieve data from a
database, as part of an INSERT statement to produce new rows, or as part of an
UPDATE statement to update information.

The SELECT statement is the primary way to query information in a database. It is
your key to retrieving data in a program, report, form, or spreadsheet. You can use
SELECT statements with a query tool such as DB-Access or embed SELECT
statements in an application.

This chapter introduces the basic methods for using the SELECT statement to
query and retrieve data from relational databases. It discusses how to tailor your
statements to select columns or rows of information from one or more tables, how
to include expressions and functions in SELECT statements, and how to create
various join conditions between database tables. The syntax and usage for the
SELECT statement are described in detail in the IBM Informix Guide to SQL: Syntax.

Most examples in this publication come from the tables in the stores_demo
database, which is included with the software for your IBM Informix SQL API or
database utility. In the interest of brevity, the examples show only part of the data
that is retrieved for each SELECT statement. For information on the structure and
contents of the demonstration database, see the IBM Informix Guide to SQL:
Reference. For emphasis, keywords are shown in uppercase letters in the examples,
although SQL is not case sensitive.

SELECT statement overview

The SELECT statement is constructed of clauses that let you look at data in a
relational database. These clauses let you select columns and rows from one or
more database tables or views, specify one or more conditions, order and
summarize the data, and put the selected data in a temporary table.

This chapter shows how to use five SELECT statement clauses. If you include all
five of these clauses, they must appear in the SELECT statement in the following
order:
1. Projection clause
2. FROM clause
3. WHERE clause
4. ORDER BY clause
5. INTO TEMP clause

Only the Projection clause and FROM clause are required. These two clauses form
the basis for every database query, because they specify the column values to be
retrieved, and the tables that contain those columns. Use one or more of the other
clauses from the following list:
v Add a WHERE clause to select specific rows or create a join condition.
v Add an ORDER BY clause to change the order in which data is produced.

© Copyright IBM Corp. 1996, 2010 2-1

v Add an INTO TEMP clause to save the results as a table for further queries.

Two additional SELECT statement clauses, GROUP BY and HAVING, let you
perform more complex data retrieval. They are introduced in Chapter 5, “Compose
advanced SELECT statements,” on page 5-1. Another clause, INTO, specifies the
program or host variable to receive data from a SELECT statement in an
application program. Complete syntax and rules for using the SELECT statement
are in the IBM Informix Guide to SQL: Syntax.

Output from SELECT statements

Although the syntax remains the same across all IBM Informix products, the
formatting and display of the resulting output depends on the application. The
examples in this chapter and in Chapter 5, “Compose advanced SELECT
statements,” on page 5-1 display the SELECT statements and their output as they
appear when you use the interactive Query-language option in DB-Access.

Output from large object data types

When you issue a SELECT statement that includes a large object, DB-Access
displays the results as follows:
v For a TEXT column or CLOB column, the contents of the column are displayed.
v For a BYTE column, the words <BYTE value> are displayed instead of the actual

value.
v For a BLOB column, the words <SBlob data> are displayed instead of the actual

value.

Output from user-defined data types

DB-Access uses special conventions to display output from columns that contain
complex or opaque data types. For more information about these data types, refer
to the IBM Informix Database Design and Implementation Guide.

Output in non-default code sets

You can issue a SELECT statement that queries NCHAR columns instead of CHAR
columns or NVARCHAR columns instead of VARCHAR columns.

For more Global Language Support (GLS) information, see the IBM Informix GLS
User's Guide. For additional information on using NCHAR and NVARCHAR data
types with non-default code sets, see the IBM Informix Database Design and
Implementation Guide and the IBM Informix Guide to SQL: Reference.

Some basic concepts
The SELECT statement, unlike INSERT, UPDATE, and DELETE statements, does
not modify the data in a database. It simply queries the data. Whereas only one
user at a time can modify data, multiple users can query or select the data
concurrently. For more information about statements that modify data, see
Chapter 6, “Modify data,” on page 6-1. The syntax descriptions of the INSERT,
UPDATE, and DELETE statements appear in the IBM Informix Guide to SQL:
Syntax.

In a relational database, a column is a data element that contains a particular type
of information that occurs in every row in the table. A row is a group of related
items of information about a single entity across all columns in a database table.

2-2 IBM Informix Guide to SQL: Tutorial

You can select columns and rows from a database table; from a system catalog table,
a special table that contains information on the database; or from a view, a virtual
table created to contain a customized set of data. System catalog tables are
described in the IBM Informix Guide to SQL: Reference. Views are discussed in the
IBM Informix Database Design and Implementation Guide.

Privileges
Before you make a query against data, make sure you have the Connect privilege
on the database and the Select privilege on the table. These privileges are normally
granted to all users. Database access privileges are discussed in the IBM Informix
Database Design and Implementation Guide and in the GRANT and REVOKE
statements in the IBM Informix Guide to SQL: Syntax.

Relational operations
A relational operation involves manipulating one or more tables, or relations, to result
in another table. The three kinds of relational operations are selection, projection,
and join. This chapter includes examples of selection, projection, and simple
joining.

Selection and projection
In relational terminology, selection is defined as taking the horizontal subset of rows
of a single table that satisfies a particular condition. This kind of SELECT
statement returns some of the rows and all the columns in a table. Selection is
implemented through the WHERE clause of a SELECT statement, as the following
figure shows.

The result contains the same number of columns as the customer table, but only a
subset of its rows. In this example, DB-Access displays the data from each column
on a separate line.

SELECT * FROM customer WHERE state = ’NJ’;

Figure 2-1. Query

customer_num 119
fname Bob
lname Shorter
company The Triathletes Club
address1 2405 Kings Highway
address2
city Cherry Hill
state NJ
zipcode 08002
phone 609-663-6079

customer_num 122
fname Cathy
lname O'Brian
company The Sporting Life
address1 543d Nassau
address2
city Princeton
state NJ
zipcode 08540
phone 609-342-0054

Figure 2-2. Query result

Chapter 2. Compose SELECT statements 2-3

In relational terminology, projection is defined as taking a vertical subset from the
columns of a single table that retains the unique rows. This kind of SELECT
statement returns some of the columns and all the rows in a table.

Projection is implemented through the projection list in the Projection clause of a
SELECT statement, as the following figure shows.

The result contains the same number of rows as the customer table, but it projects
only a subset of the columns in the table. Because only a small amount of data is
selected from each row, DB-Access is able to display all of the data from the row
on one line.

The most common kind of SELECT statement uses both selection and projection. A
query of this kind returns some of the rows and some of the columns in a table, as
the following figure shows.

Figure 2-6 on page 2-5 contains a subset of the rows and a subset of the columns in
the customer table.

SELECT city, state, zipcode FROM customer;

Figure 2-3. Query

city state zipcode

Sunnyvale CA 94086
San Francisco CA 94117
Palo Alto CA 94303
Redwood City CA 94026
Los Altos CA 94022
Mountain View CA 94063
Palo Alto CA 94304
Redwood City CA 94063
Sunnyvale CA 94086
Redwood City CA 94062
Sunnyvale CA 94085...
Oakland CA 94609
Cherry Hill NJ 08002
Phoenix AZ 85016
Wilmington DE 19898
Princeton NJ 08540
Jacksonville FL 32256
Bartlesville OK 74006

Figure 2-4. Query result

SELECT UNIQUE city, state, zipcode
FROM customer
WHERE state = ’NJ’;

Figure 2-5. Query

2-4 IBM Informix Guide to SQL: Tutorial

Join
A join occurs when two or more tables are connected by one or more columns in
common, which creates a new table of results. The following figure shows a query
that uses a subset of the items and stock tables to illustrate the concept of a join.

The following query joins the customer and state tables.

The result consists of specified rows and columns from both the customer and
state tables.

city state zipcode

Cherry Hill NJ 08002
Princeton NJ 08540

Figure 2-6. Query result

item_num order_num stock_num

1 1001 1
1 1002 4
2 1002 3
3 1003 5
1 1005 5

stock_num manu_code description

1 HRO baseball gloves
1 HSK baseball gloves
2 HRO baseball
4 HSK football
5 NRG tennis racquet

SELECT UNIQUE item_num, order_num,
stock.stock_num, description

FROM items, stock
WHERE items.stock_num = stock.stock_num

items table (example) stock table (example)

item_num or der_num stock_num description

1 1001 1 baseball gloves
1 1002 4 football
3 1003 5 tennis racquet
1 1005 5 tennis racquet

Figure 2-7. A join between two tables

SELECT UNIQUE city, state, zipcode, sname
FROM customer, state
WHERE customer.state = state.code;

Figure 2-8. Query

Chapter 2. Compose SELECT statements 2-5

Single-table SELECT statements

You can query a single table in a database in many ways. You can tailor a SELECT
statement to perform the following actions:
v Retrieve all or specific columns
v Retrieve all or specific rows
v Perform computations or other functions on the retrieved data
v Order the data in various ways

The most basic SELECT statement contains only the two required clauses, the
Projection clause and FROM.

The asterisk symbol (*)
The following query specifies all the columns in the manufact table in a projection
list. An explicit projection list is a list of the column names or expressions that you
want to project from a table.

The following query uses the wildcard asterisk symbol (*) as shorthand in the
projection list to represent the names of all the columns in the table. You can use
the asterisk symbol (*) when you want all the columns in their defined order. An
implicit select list uses the asterisk symbol.

city state zipcode sname

Bartlesville OK 74006 Oklahoma
Blue Island NY 60406 New York
Brighton MA 02135 Massachusetts
Cherry Hill NJ 08002 New Jersey
Denver CO 80219 Colorado
Jacksonville FL 32256 Florida
Los Altos CA 94022 California
Menlo Park CA 94025 California
Mountain View CA 94040 California
Mountain View CA 94063 California
Oakland CA 94609 California
Palo Alto CA 94303 California
Palo Alto CA 94304 California
Phoenix AZ 85008 Arizona
Phoenix AZ 85016 Arizona
Princeton NJ 08540 New Jersey
Redwood City CA 94026 California
Redwood City CA 94062 California
Redwood City CA 94063 California
San Francisco CA 94117 California
Sunnyvale CA 94085 California
Sunnyvale CA 94086 California
Wilmington DE 19898 Delaware

Figure 2-9. Query result

SELECT manu_code, manu_name, lead_time FROM manufact;

Figure 2-10. Query

2-6 IBM Informix Guide to SQL: Tutorial

Because the manufact table has only three columns, Figure 2-10 on page 2-6 and
Figure 2-11 are equivalent and display the same results; that is, a list of every
column and row in the manufact table. The following figure shows the results.

Reorder the columns
The following query shows how you can change the order in which the columns
are listed by changing their order in your projection list.

The query result includes the same columns as the previous query result, but
because the columns are specified in a different order, the display is also different.

The ORDER BY clause to sort the rows
The results from a query are not arranged in any particular order. For example,
Figure 2-4 on page 2-4 and Figure 2-14 appear to be in random order.

You can add an ORDER BY clause to your SELECT statement to direct the system
to sort the data in a specific order. The ORDER BY clause is a list of column names
from any remote or local table or view. Any expressions that are allowed in the
projection list are allowed in the ORDER BY list. If a column used in the ORDER
BY list has a Select trigger on it, the trigger will not be activated.

SELECT * FROM manufact;

Figure 2-11. Query

manu_code manu_name lead_time

SMT Smith 3
ANZ Anza 5
NRG Norge 7
HSK Husky 5
HRO Hero 4
SHM Shimara 30
KAR Karsten 21
NKL Nikolus 8
PRC ProCycle 9

Figure 2-12. Query result

SELECT manu_name, manu_code, lead_time FROM manufact;

Figure 2-13. Query

manu_name manu_code lead_time

Smith SMT 3
Anza ANZ 5
Norge NRG 7
Husky HSK 5
Hero HRO 4
Shimara SHM 30
Karsten KAR 21
Nikolus NKL 8
ProCycle PRC 9

Figure 2-14. Query result

Chapter 2. Compose SELECT statements 2-7

The following query returns every row from the manu_code, manu_name, and
lead_time columns in the manufact table, sorted according to lead_time.

For IBM Informix, you do not need to include the columns that you want to use in
the ORDER BY clause in the projection list. That is, you can sort the data according
to a column that is not retrieved in the projection list. The following query returns
every row from the manu_code and manu_name columns in the manufact table,
sorted according to lead_time. The lead_time column is in the ORDER BY clause
although it is not included in the projection list.

Ascending order

The retrieved data is sorted and displayed, by default, in ascending order. In the
ASCII character set, ascending order is uppercase A to lowercase z for character
data types, and lowest to highest value for numeric data types. DATE and
DATETIME data is sorted from earliest to latest, and INTERVAL data is ordered
from shortest to longest span of time.

Descending order

Descending order is the opposite of ascending order, from lowercase z to uppercase
A for character types, and from highest to lowest for numeric data types. DATE
and DATETIME data is sorted from latest to earliest, and INTERVAL data is
ordered from longest to shortest span of time. The following query shows an
example of descending order.

The keyword DESC following a column name causes the retrieved data to be
sorted in descending order, as the result shows.

SELECT manu_code, manu_name, lead_time
FROM manufact
ORDER BY lead_time;

Figure 2-15. Query

SELECT manu_code, manu_name
FROM manufact
ORDER BY lead_time;

Figure 2-16. Query

SELECT * FROM manufact ORDER BY lead_time DESC;

Figure 2-17. Query

manu_code manu_name lead_time

SHM Shimara 30
KAR Karsten 21
PRC ProCycle 9
NKL Nikolus 8
NRG Norge 7
HSK Husky 5
ANZ Anza 5
HRO Hero 4
SMT Smith 3

Figure 2-18. Query result

2-8 IBM Informix Guide to SQL: Tutorial

You can specify any column of a built-in data type (except TEXT, BYTE, BLOB, or
CLOB) in the ORDER BY clause, and the database server sorts the data based on
the values in that column.

Sorting on multiple columns

You can also ORDER BY two or more columns, which creates a nested sort. The
default is still ascending, and the column that is listed first in the ORDER BY
clause takes precedence.

The following query and Figure 2-21 and the corresponding query results show
nested sorts. To modify the order in which selected data is displayed, change the
order of the two columns that are named in the ORDER BY clause.

In the query result, the manu_code column data appears in alphabetical order and,
within each set of rows with the same manu_code (for example, ANZ, HRO), the
unit_price is listed in ascending order.

The following query shows the reverse order of the columns in the ORDER BY
clause.

In the query result, the data appears in ascending order of unit_price and, where
two or more rows have the same unit_price (for example, $20.00, $48.00, $312.00),
the manu_code is in alphabetical order.

SELECT stock_num, manu_code, description, unit_price
FROM stock
ORDER BY manu_code, unit_price;

Figure 2-19. Query

stock_num manu_code description unit_price

5 ANZ tennis racquet $19.80
9 ANZ volleyball net $20.00
6 ANZ tennis ball $48.00

313 ANZ swim cap $60.00
201 ANZ golf shoes $75.00
310 ANZ kick board $84.00

...
111 SHM 10-spd, assmbld $499.99
112 SHM 12-spd, assmbld $549.00
113 SHM 18-spd, assmbld $685.90

5 SMT tennis racquet $25.00
6 SMT tennis ball $36.00
1 SMT baseball gloves $450.00

Figure 2-20. Query result

SELECT stock_num, manu_code, description, unit_price
FROM stock
ORDER BY unit_price, manu_code;

Figure 2-21. Query

Chapter 2. Compose SELECT statements 2-9

The order of the columns in the ORDER BY clause is important, and so is the
position of the DESC keyword. Although the statements in the following query
contain the same components in the ORDER BY clause, each produces a different
result (not shown).

Select specific columns

The previous section shows how to select and order all data from a table.
However, often all you want to see is the data in one or more specific columns.
Again, the formula is to use the Projection and FROM clauses, specify the columns
and table, and perhaps order the data in ascending or descending order with an
ORDER BY clause.

If you want to find all the customer numbers in the orders table, use a statement
such as the one in the following query.

The result shows how the statement simply selects all data in the customer_num
column in the orders table and lists the customer numbers on all the orders,
including duplicates.

stock_num manu_code description unit_price

302 HRO ice pack $4.50
302 KAR ice pack $5.00

5 ANZ tennis racquet $19.80
9 ANZ volleyball net $20.00

103 PRC frnt derailleur $20.00

...
108 SHM crankset $45.00

6 ANZ tennis ball $48.00
305 HRO first-aid kit $48.00
303 PRC socks $48.00
311 SHM water gloves $48.00

...
113 SHM 18-spd, assmbld $685.90

1 HSK baseball gloves $800.00
8 ANZ volleyball $840.00
4 HSK football $960.00

Figure 2-22. Query result

SELECT * FROM stock ORDER BY manu_code, unit_price DESC;

SELECT * FROM stock ORDER BY unit_price, manu_code DESC;

SELECT * FROM stock ORDER BY manu_code DESC, unit_price;

SELECT * FROM stock ORDER BY unit_price DESC, manu_code;

Figure 2-23. Query

SELECT customer_num FROM orders;

Figure 2-24. Query

2-10 IBM Informix Guide to SQL: Tutorial

The output includes several duplicates because some customers have placed more
than one order. Sometimes you want to see duplicate rows in a projection. At other
times, you want to see only the distinct values, not how often each value appears.

To suppress duplicate rows, you can include the keyword DISTINCT or its
synonym UNIQUE at the start of the select list, once in each level of a query, as
the following query shows.

To produce a more readable list, Figure 2-26 limits the display to show each
customer number in the orders table only once, as the result shows.

Suppose you are handling a customer call, and you want to locate purchase order
number DM354331. To list all the purchase order numbers in the orders table, use
a statement such as the following query shows.

customer_num

104
101
104

...
122
123
124
126
127

Figure 2-25. Query result

SELECT DISTINCT customer_num FROM orders;

SELECT UNIQUE customer_num FROM orders;

Figure 2-26. Query

customer_num

101
104
106
110
111
112
115
116
117
119
120
121
122
123
124
126
127

Figure 2-27. Query result

Chapter 2. Compose SELECT statements 2-11

The result shows how the statement retrieves data in the po_num column in the
orders table.

However, the list is not in a useful order. You can add an ORDER BY clause to sort
the column data in ascending order and make it easier to find that particular
po_num, as shown in the following query.

To select multiple columns from a table, list them in the projection list in the
Projection clause. The following query shows that the order in which the columns
are selected is the order in which they are retrieved, from left to right.

As “Sorting on multiple columns” on page 2-9 shows, you can use the ORDER BY
clause to sort the data in ascending or descending order and perform nested sorts.
The result shows ascending order.

SELECT po_num FROM orders;

Figure 2-28. Query

po_num

B77836
9270
B77890
8006
2865
Q13557
278693...

Figure 2-29. Query result

SELECT po_num FROM orders ORDER BY po_num;

Figure 2-30. Query

po_num

278693
278701
2865
429Q
4745
8006
8052
9270
B77836
B77890...

Figure 2-31. Query result

SELECT ship_date, order_date, customer_num,
order_num, po_num

FROM orders
ORDER BY order_date, ship_date;

Figure 2-32. Query

2-12 IBM Informix Guide to SQL: Tutorial

When you use SELECT and ORDER BY on several columns in a table, you might
find it helpful to use integers to refer to the position of the columns in the ORDER
BY clause. When an integer is an element in the ORDER BY list, the database
server treats it as the position in the projection list. For example, using 3 in the
ORDER BY list (ORDER BY 3) refers to the third item in the projection list. The
statements in the following query retrieve and display the same data, as
Figure 2-35 on page 2-14 shows.

ship_date order_date customer_num order_num po_num

06/01/1998 05/20/1998 104 1001 B77836
05/26/1998 05/21/1998 101 1002 9270
05/23/1998 05/22/1998 104 1003 B77890
05/30/1998 05/22/1998 106 1004 8006
06/09/1998 05/24/1998 116 1005 2865

05/30/1998 112 1006 Q13557
06/05/1998 05/31/1998 117 1007 278693
07/06/1998 06/07/1998 110 1008 LZ230
06/21/1998 06/14/1998 111 1009 4745
06/29/1998 06/17/1998 115 1010 429Q
06/29/1998 06/18/1998 117 1012 278701
07/03/1998 06/18/1998 104 1011 B77897
07/10/1998 06/22/1998 104 1013 B77930
07/03/1998 06/25/1998 106 1014 8052
07/16/1998 06/27/1998 110 1015 MA003
07/12/1998 06/29/1998 119 1016 PC6782
07/13/1998 07/09/1998 120 1017 DM354331
07/13/1998 07/10/1998 121 1018 S22942
07/16/1998 07/11/1998 122 1019 Z55709
07/16/1998 07/11/1998 123 1020 W2286
07/25/1998 07/23/1998 124 1021 C3288
07/30/1998 07/24/1998 126 1022 W9925
07/30/1998 07/24/1998 127 1023 KF2961

Figure 2-33. Query result

SELECT customer_num, order_num, po_num, order_date
FROM orders
ORDER BY 4, 1;

SELECT customer_num, order_num, po_num, order_date
FROM orders
ORDER BY order_date, customer_num;

Figure 2-34. Query

Chapter 2. Compose SELECT statements 2-13

You can include the DESC keyword in the ORDER BY clause when you assign
integers to column names, as the following query shows.

In this case, data is first sorted in descending order by order_date and in
ascending order by customer_num.

Select substrings

To select part of the value of a character column, include a substring in the
projection list. Suppose your marketing department is planning a mailing to your
customers and wants their geographical distribution based on zip codes. You could
write a query similar to the following.

The query uses a substring to select the first three characters of the zipcode
column (which identify the state) and the full customer_num, and lists them in
ascending order by zip code, as the result shows.

customer_num order_num po_num order_date

104 1001 B77836 05/20/1998
101 1002 9270 05/21/1998
104 1003 B77890 05/22/1998
106 1004 8006 05/22/1998
116 1005 2865 05/24/1998
112 1006 Q13557 05/30/1998
117 1007 278693 05/31/1998
110 1008 LZ230 06/07/1998
111 1009 4745 06/14/1998
115 1010 429Q 06/17/1998
104 1011 B77897 06/18/1998
117 1012 278701 06/18/1998
104 1013 B77930 06/22/1998
106 1014 8052 06/25/1998
110 1015 MA003 06/27/1998
119 1016 PC6782 06/29/1998
120 1017 DM354331 07/09/1998
121 1018 S22942 07/10/1998
122 1019 Z55709 07/11/1998
123 1020 W2286 07/11/1998
124 1021 C3288 07/23/1998
126 1022 W9925 07/24/1998
127 1023 KF2961 07/24/1998

Figure 2-35. Query result

SELECT customer_num, order_num, po_num, order_date
FROM orders
ORDER BY 4 DESC, 1;

Figure 2-36. Query

SELECT zipcode[1,3], customer_num
FROM customer
ORDER BY zipcode;

Figure 2-37. Query

2-14 IBM Informix Guide to SQL: Tutorial

ORDER BY and non-English data

By default, IBM Informix database servers use the U.S. English language
environment, called a locale, for database data. The U.S. English locale specifies
data sorted in code-set order. This default locale uses the ISO 8859-1 code set.

If your database contains non-English data, you should store non-English data in
NCHAR (or NVARCHAR) columns to obtain results sorted by the language. The
ORDER BY clause should return data in the order appropriate to that language.
The following query uses a SELECT statement with an ORDER BY clause to search
the table, abonnés, and to order the selected information by the data in the nom
column.

The collation order for the results of this query can vary, depending on the
following system variations:
v Whether the nom column is CHAR or NCHAR data type. The database server

sorts data in CHAR columns by the order the characters appear in the code set.
The database server sorts data in NCHAR columns by the order the characters
are listed in the collation portion of the locale.

v Whether the database server is using the correct non-English locale when it
accesses the database. To use a non-English locale, you must set the
CLIENT_LOCALE and DB_LOCALE environment variables to the appropriate
locale name.

For the query to return expected results, the nom column should be NCHAR data
type in a database that uses a French locale. Other operations, such as less than,
greater than, or equal to, are also affected by the user-specified locale. For more
information on non-English data and locales, see the IBM Informix GLS User's
Guide.

The following result and Figure 2-41 on page 2-16 show two sample sets of output.

zipcode customer_num

021 125
080 119
085 122
198 121
322 123...
943 103
943 107
946 118

Figure 2-38. Query result

SELECT numéro,nom,prénom
FROM abonnés
ORDER BY nom;

Figure 2-39. Query

Chapter 2. Compose SELECT statements 2-15

The following query result follows the ISO 8859-1 code-set order, which ranks
uppercase letters before lowercase letters and moves names that contain an
accented character (Ålesund, Étaix, Ötker, and Øverst) to the end of the list.

The result shows that when the appropriate locale file is referenced by the
database server, names including non-English characters (Ålesund, Étaix, Ötker,
and Øverst) are collated differently than they are in the ISO 8859-1 code set. They
are sorted correctly for the locale. It does not distinguish between uppercase and
lowercase letters.

The WHERE clause
The set of rows that a SELECT statement returns is its active set. A singleton
SELECT statement returns a single row. You can add a WHERE clause to a
SELECT statement if you want to see only specific rows. For example, you use a

numéro nom prénom

13612 Azevedo Edouardo Freire
13606 Dupré Michèle Françoise
13607 Hammer Gerhard
13602 Hämmer le Greta
13604 LaForêt Jean-Noël
13610 LeMaître Héloïse
13613 Llanero Gloria Dolores
13603 Montaña José Antonio
13611 Oatfield Emily
13609 Tiramisù Paolo Alfredo
13600 da Sousa João Lourenço Antunes
13615 di Girolamo Giuseppe
13601 Ålesund Sverre
13608 Étaix Émile
13605 Ötker Hans-Jürgen
13614 Øverst Per-Anders

Figure 2-40. Query result

numéro nom prénom

13601 Ålesund Sverre
13612 Azevedo Edouardo Freire
13600 da Sousa João Lourenço Antunes
13615 di Girolamo Giuseppe
13606 Dupré Michèle Françoise
13608 Étaix Émile
13607 Hammer Gerhard
13602 Hämmer le Greta
13604 LaForêt Jean-Noël
13610 LeMaître Héloïse
13613 Llanero Gloria Dolores
13603 Montaña José Antonio
13611 Oatfield Emily
13605 Ötker Hans-Jürgen
13614 Øverst Per-Anders
13609 Tiramisù Paolo Alfredo

Figure 2-41. Query result

2-16 IBM Informix Guide to SQL: Tutorial

WHERE clause to restrict the rows that the database server returns to only the
orders that a particular customer placed or the calls that a particular customer
service representative entered.

You can use the WHERE clause to set up a comparison condition or a join
condition. This section demonstrates only the first use. Join conditions are
described in a later section and in the next chapter.

Create a comparison condition

The WHERE clause of a SELECT statement specifies the rows that you want to see.
A comparison condition employs specific keywords and operators to define the
search criteria.

For example, you might use one of the keywords BETWEEN, IN, LIKE, or
MATCHES to test for equality, or the keywords IS NULL to test for null values.
You can combine the keyword NOT with any of these keywords to specify the
opposite condition.

The following table lists the relational operators that you can use in a WHERE
clause in place of a keyword to test for equality.

Operator
Operation

= equals

!= or <>
does not equal

> greater than

>= greater than or equal to

< less than

<= less than or equal to

For CHAR expressions, greater than means after in ASCII collating order, where
lowercase letters are after uppercase letters, and both are after numerals. See the
ASCII Character Set chart in the IBM Informix Guide to SQL: Syntax. For DATE and
DATETIME expressions, greater than means later in time, and for INTERVAL
expressions, it means of longer duration.

You cannot use TEXT or BYTE columns to create a comparison condition, except
when you use the IS NULL or IS NOT NULL keywords to test for NULL values.

You cannot specify BLOB or CLOB columns to create a comparison condition on
IBM Informix, except when you use the IS NULL or IS NOT NULL keywords to
test for NULL values.

You can use the preceding keywords and operators in a WHERE clause to create
comparison-condition queries that perform the following actions:
v Include values
v Exclude values
v Find a range of values
v Find a subset of values
v Identify NULL values

Chapter 2. Compose SELECT statements 2-17

To perform variable text searches using the following criteria, use the preceding
keywords and operators in a WHERE clause to create comparison-condition
queries:
v Exact-text comparison
v Single-character wildcards
v Restricted single-character wildcards
v Variable-length wildcards
v Subscripting

The following section contains examples that illustrate these types of queries.

Include rows

Use the equal sign (=) relational operator to include rows in a WHERE clause, as
the following query shows.

The query returns the set of rows that is shown.

Exclude rows

Use the relational operators != or <> to exclude rows in a WHERE clause.

The following query assumes that you are selecting from an ANSI-compliant
database; the statements specify the owner or login name of the creator of the
customer table. This qualifier is not required when the creator of the table is the
current user, or when the database is not ANSI compliant. However, you can
include the qualifier in either case. For a detailed discussion of owner naming, see
the IBM Informix Guide to SQL: Syntax.

Both statements in the query exclude values by specifying that, in the customer
table that the user odin owns, the value in the state column should not be equal to
CA, as the result shows.

SELECT customer_num, call_code, call_dtime, res_dtime
FROM cust_calls
WHERE user_id = ’maryj’;

Figure 2-42. Query

customer_num call_code call_dtime res_dtime

106 D 1998-06-12 08:20 1998-06-12 08:25
121 O 1998-07-10 14:05 1998-07-10 14:06
127 I 1998-07-31 14:30

Figure 2-43. Query result

SELECT customer_num, company, city, state
FROM odin.customer
WHERE state != ’CA’;

SELECT customer_num, company, city, state
FROM odin.customer
WHERE state <> ’CA’;

Figure 2-44. Query

2-18 IBM Informix Guide to SQL: Tutorial

Specify a range of rows

The following query shows two ways to specify a range of rows in a WHERE
clause.

Each statement in the query specifies a range for catalog_num from 10005 through
10008, inclusive. The first statement uses keywords, and the second statement uses
relational operators to retrieve the rows, as the result shows.

customer_num company city state

119 The Triathletes Club Cherry Hill NJ
120 Century Pro Shop Phoenix AZ
121 City Sports Wilmington DE
122 The Sporting Life Princeton NJ
123 Bay Sports Jacksonville FL
124 Putnum’s Putters Bartlesville OK
125 Total Fitness Sports Brighton MA
126 Neelie’s Discount Sp Denver CO
127 Big Blue Bike Shop Blue Island NY
128 Phoenix College Phoenix AZ

Figure 2-45. Query result

SELECT catalog_num, stock_num, manu_code, cat_advert
FROM catalog
WHERE catalog_num BETWEEN 10005 AND 10008;

SELECT catalog_num, stock_num, manu_code, cat_advert
FROM catalog
WHERE catalog_num >= 10005 AND catalog_num <= 10008;

Figure 2-46. Query

catalog_num 10005
stock_num 3
manu_code HSK
cat_advert High-Technology Design Expands the Sweet Spot

catalog_num 10006
stock_num 3
manu_code SHM
cat_advert Durable Aluminum for High School and Collegiate Athletes

catalog_num 10007
stock_num 4
manu_code HSK
cat_advert Quality Pigskin with Joe Namath Signature

catalog_num 10008
stock_num 4
manu_code HRO
cat_advert Highest Quality Football for High School

and Collegiate Competitions

Figure 2-47. Query result

Chapter 2. Compose SELECT statements 2-19

Although the catalog table includes a column with the BYTE data type, that
column is not included in this SELECT statement because the output would show
only the words <BYTE value> by the column name. You can write an SQL API
application to display TEXT and BYTE values.

Exclude a range of rows

The following query uses the keywords NOT BETWEEN to exclude rows that have
the character range 94000 through 94999 in the zipcode column, as the result
shows.

Use a WHERE clause to find a subset of values

Like “Exclude rows” on page 2-18, the following query assumes the use of an
ANSI-compliant database. The owner qualifier is in quotation marks to preserve
the case sensitivity of the literal string.

Each statement in the query retrieves rows that include the subset of AZ or NJ in
the state column of the Aleta.customer table.

SELECT fname, lname, city, state
FROM customer
WHERE zipcode NOT BETWEEN ’94000’ AND ’94999’
ORDER BY state;

Figure 2-48. Query

fname lname city state

Frank Lessor Phoenix AZ
Fred Jewell Phoenix AZ
Eileen Neelie Denver CO
Jason Wallack Wilmington DE
Marvin Hanlon Jacksonville FL
James Henry Brighton MA
Bob Shorter Cherry Hill NJ
Cathy O’Brian Princeton NJ
Kim Satifer Blue Island NY
Chris Putnum Bartlesville OK

Figure 2-49. Query result

SELECT lname, city, state, phone
FROM ’Aleta’.customer
WHERE state = ’AZ’ OR state = ’NJ’
ORDER BY lname;

SELECT lname, city, state, phone
FROM ’Aleta’.customer
WHERE state IN (’AZ’, ’NJ’)
ORDER BY lname;

Figure 2-50. Query

2-20 IBM Informix Guide to SQL: Tutorial

You cannot test TEXT or BYTE columns with the IN keyword.

Also, when you use IBM Informix, you cannot test BLOB or CLOB columns with
the IN keyword.

In the example of a query on an ANSI-compliant database, no quotation marks
exist around the table owner name. Whereas the two statements in Figure 2-50 on
page 2-20 searched the Aleta.customer table, the following query searches the table
ALETA.customer, which is a different table, because of the way ANSI-compliant
databases look at owner names.

The previous query adds the keywords NOT IN, so the subset changes to exclude
the subsets AZ and NJ in the state column. The following figure shows the results
in order of the state column.

lname city state phone

Jewell Phoenix AZ 602-265-8754
Lessor Phoenix AZ 602-533-1817
O’Brian Princeton NJ 609-342-0054
Shorter Cherry Hill NJ 609-663-6079

Figure 2-51. Query result

SELECT lname, city, state, phone
FROM Aleta.customer
WHERE state NOT IN (’AZ’, ’NJ’)
ORDER BY state;

Figure 2-52. Query

Chapter 2. Compose SELECT statements 2-21

Identify NULL values

Use the IS NULL or IS NOT NULL option to check for NULL values. A NULL
value represents either the absence of data or an unknown value. A NULL value is
not the same as a zero or a blank.

The following query returns all rows that have a null paid_date, as the result
shows.

lname city state phone

Pauli Sunnyvale CA 408-789-8075
Sadler San Francisco CA 415-822-1289
Currie Palo Alto CA 415-328-4543
Higgins Redwood City CA 415-368-1100
Vector Los Altos CA 415-776-3249
Watson Mountain View CA 415-389-8789
Ream Palo Alto CA 415-356-9876
Quinn Redwood City CA 415-544-8729
Miller Sunnyvale CA 408-723-8789
Jaeger Redwood City CA 415-743-3611
Keyes Sunnyvale CA 408-277-7245
Lawson Los Altos CA 415-887-7235
Beatty Menlo Park CA 415-356-9982
Albertson Redwood City CA 415-886-6677
Grant Menlo Park CA 415-356-1123
Parmelee Mountain View CA 415-534-8822
Sipes Redwood City CA 415-245-4578
Baxter Oakland CA 415-655-0011
Neelie Denver CO 303-936-7731
Wallack Wilmington DE 302-366-7511
Hanlon Jacksonville FL 904-823-4239
Henry Brighton MA 617-232-4159
Satifer Blue Island NY 312-944-5691
Putnum Bartlesville OK 918-355-2074

Figure 2-53. Query result

SELECT order_num, customer_num, po_num, ship_date
FROM orders
WHERE paid_date IS NULL
ORDER BY customer_num;

Figure 2-54. Query

order_num customer_num po_num ship_date

1004 106 8006 05/30/1998
1006 112 Q13557
1007 117 278693 06/05/1998
1012 117 278701 06/29/1998
1016 119 PC6782 07/12/1998
1017 120 DM354331 07/13/1998

Figure 2-55. Query result

2-22 IBM Informix Guide to SQL: Tutorial

Form compound conditions

To connect two or more comparison conditions, or Boolean expressions, use the
logical operators AND, OR, and NOT. A Boolean expression evaluates as true or
false or, if NULL values are involved, as unknown.

In the following query, the operator AND combines two comparison expressions in
the WHERE clause.

The query returns all rows that have NULL paid_date or a NOT NULL ship_date.

Exact-text comparisons

The following examples include a WHERE clause that searches for exact-text
comparisons by using the keyword LIKE or MATCHES or the equal sign (=)
relational operator. Unlike earlier examples, these examples illustrate how to query
a table that is not in the current database. You can access a table that is not in the
current database only if the database that contains the table has the same ANSI
compliance status as the current database. If the current database is an
ANSI-compliant database, the table you want to access must also reside in an
ANSI-compliant database. If the current database is not an ANSI-compliant
database, the table you want to access must also reside in a database that is not an
ANSI-compliant database.

Although the database used previously in this chapter is the demonstration
database, the FROM clause in the following examples specifies the manatee table,
created by the owner bubba, which resides in an ANSI-compliant database named
syzygy. For more information on how to access tables that are not in the current
database, see the IBM Informix Guide to SQL: Syntax.

Each statement in the following query retrieves all the rows that have the single
word helmet in the description column, as the result shows.

SELECT order_num, customer_num, po_num, ship_date
FROM orders
WHERE paid_date IS NULL

AND ship_date IS NOT NULL
ORDER BY customer_num;

Figure 2-56. Query

order_num customer_num po_num ship_date

1004 106 8006 05/30/1998
1007 117 278693 06/05/1998
1012 117 278701 06/29/1998
1017 120 DM354331 07/13/1998

Figure 2-57. Query result

Chapter 2. Compose SELECT statements 2-23

The results might look like the following figure.

Variable-text searches

You can use the keywords LIKE and MATCHES for variable-text queries that are
based on substring searches of fields. Include the keyword NOT to indicate the
opposite condition. The keyword LIKE complies with the ISO/ANSI standard for
SQL, whereas MATCHES is an IBM Informix extension.

Variable-text search strings can include the wildcards listed with LIKE or
MATCHES in the following table.

Keyword Symbol Meaning

LIKE % Evaluates to zero or more characters

LIKE _ Evaluates to a single character

LIKE \ Escapes special significance of next character

MATCHES * Evaluates to zero or more characters

MATCHES ? Evaluates to a single character (except null)

MATCHES [] Evaluates to a single character or range of values

MATCHES \ Escapes special significance of next character

You cannot test BLOB, CLOB, TEXT, or BYTE columns with the LIKE or
MATCHES operators.

A single-character wildcard

The statements in the following query illustrate the use of a single-character
wildcard in a WHERE clause. Further, they demonstrate a query on a table that is

SELECT stock_no, mfg_code, description, unit_price
FROM syzygy:bubba.manatee
WHERE description = ’helmet’
ORDER BY mfg_code;

SELECT stock_no, mfg_code, description, unit_price
FROM syzygy:bubba.manatee
WHERE description LIKE ’helmet’
ORDER BY mfg_code;

SELECT stock_no, mfg_code, description, unit_price
FROM syzygy:bubba.manatee
WHERE description MATCHES ’helmet’
ORDER BY mfg_code;

Figure 2-58. Query

stock_no mfg_code description unit_price

991 ABC helmet $222.00
991 BKE helmet $269.00
991 HSK helmet $311.00
991 PRC helmet $234.00
991 SPR helmet $245.00

Figure 2-59. Query result

2-24 IBM Informix Guide to SQL: Tutorial

not in the current database. The stock table is in the database sloth. Besides being
outside the current demonstration database, sloth is on a separate database server
called meerkat.

For more information, see Chapter 7, “Access and modify data in an external
database,” on page 7-1 and the IBM Informix Guide to SQL: Syntax.

Each statement in the query retrieves only those rows for which the middle letter
of the manu_code is R, as the result shows. The comparison '_R_' (for LIKE) or '?R?'
(for MATCHES) specifies, from left to right, the following items:
v Any single character
v The letter R

v Any single character

WHERE clause to specify a range of initial characters:

The following query selects only those rows where the manu_code begins with A
through H and returns the rows that the result shows. The test '[A-H]' specifies any
single letter from A through H, inclusive. No equivalent wildcard symbol exists for
the LIKE keyword.

SELECT stock_num, manu_code, description, unit_price
FROM sloth@meerkat:stock
WHERE manu_code LIKE ’_R_’

AND unit_price >= 100
ORDER BY description, unit_price;

SELECT stock_num, manu_code, description, unit_price
FROM sloth@meerkat:stock
WHERE manu_code MATCHES ’?R?’

AND unit_price >= 100
ORDER BY description, unit_price;

Figure 2-60. Query

stock_num manu_code description unit_price

205 HRO 3 golf balls $312.00
2 HRO baseball $126.00
1 HRO baseball gloves $250.00
7 HRO basketball $600.00

102 PRC bicycle brakes $480.00
114 PRC bicycle gloves $120.00

4 HRO football $480.00
110 PRC helmet $236.00
110 HRO helmet $260.00
307 PRC infant jogger $250.00
306 PRC tandem adapter $160.00
308 PRC twin jogger $280.00
304 HRO watch $280.00

Figure 2-61. Query result

Chapter 2. Compose SELECT statements 2-25

WHERE clause with variable-length wildcard:

The statements in the following query use a wildcard at the end of a string to
retrieve all the rows where the description begins with the characters bicycle.

Either statement returns the following rows.

SELECT stock_num, manu_code, description, unit_price
FROM stock
WHERE manu_code MATCHES ’[A-H]*’
ORDER BY description, manu_code;

Figure 2-62. Query

stock_num manu_code description unit_price

205 ANZ 3 golf balls $312.00
205 HRO 3 golf balls $312.00

2 HRO baseball $126.00
3 HSK baseball bat $240.00
1 HRO baseball gloves $250.00
1 HSK baseball gloves $800.00
7 HRO basketball $600.00

...
313 ANZ swim cap $60.00

6 ANZ tennis ball $48.00
5 ANZ tennis racquet $19.80
8 ANZ volleyball $840.00
9 ANZ volleyball net $20.00

304 ANZ watch $170.00

Figure 2-63. Query result

SELECT stock_num, manu_code, description, unit_price
FROM stock
WHERE description LIKE ’bicycle%’
ORDER BY description, manu_code;

SELECT stock_num, manu_code, description, unit_price
FROM stock
WHERE description MATCHES ’bicycle*’
ORDER BY description, manu_code;

Figure 2-64. Query

2-26 IBM Informix Guide to SQL: Tutorial

The comparison 'bicycle%' or 'bicycle*' specifies the characters bicycle followed
by any sequence of zero or more characters. It matches bicycle stem with stem
matched by the wildcard. It matches to the characters bicycle alone, if a row exists
with that description.

The following query narrows the search by adding another comparison condition
that excludes a manu_code of PRC.

The statement retrieves only the following rows.

When you select from a large table and use an initial wildcard in the comparison
string (such as '%cycle'), the query often takes longer to execute. Because indexes
cannot be used, every row is searched.

MATCHES clause and non-default locales

By default, IBM Informix database servers use the U.S. English language
environment, called a locale, for database data. This default locale uses the ISO
8859-1 code set. The U.S. English locale specifies that MATCHES will use code-set
order.

If your database uses a non-default locale, a MATCHES clause that specifies a
range uses the collation order of that locale for character data types (including
CHAR, NCHAR, VARCHAR, NVARCHAR, and LVARCHAR). This feature of
MATCHES ranges is an exception to the general rule that only NCHAR and

stock_num manu_code description unit_price

102 PRC bicycle brakes $480.00
102 SHM bicycle brakes $220.00
114 PRC bicycle gloves $120.00
107 PRC bicycle saddle $70.00
106 PRC bicycle stem $23.00
101 PRC bicycle tires $88.00
101 SHM bicycle tires $68.00
105 PRC bicycle wheels $53.00
105 SHM bicycle wheels $80.00

Figure 2-65. Query result

SELECT stock_num, manu_code, description, unit_price
FROM stock
WHERE description LIKE ’bicycle%’

AND manu_code NOT LIKE ’PRC’
ORDER BY description, manu_code;

Figure 2-66. Query

stock_num manu_code description unit_price

102 SHM bicycle brakes $220.00
101 SHM bicycle tires $68.00
105 SHM bicycle wheels $80.00

Figure 2-67. Query result

Chapter 2. Compose SELECT statements 2-27

NVARCHAR columns can use locale-specific collation. If the locale does not
specify any special collation order, however, then MATCHES uses the code-set
order.

With IBM Informix, you can use the SET COLLATION statement to specify a
database locale for your session that is different from the DB_LOCALE setting. See
the IBM Informix Guide to SQL: Syntax for a description of SET COLLATION.

In the result, the rows for Étaix, Ötker, and Øverst are not selected and listed
because, with ISO 8859-1 code-set order, the accented first letter of each name is
not in the E through P MATCHES range for the nom column.

For more information on non-English data and locales, see the IBM Informix GLS
User's Guide.

Protect special characters

The following query uses the keyword ESCAPE with LIKE or MATCHES so you
can protect a special character from misinterpretation as a wildcard symbol.

The ESCAPE keyword designates an escape character (! in this example) that
protects the next character so that it is interpreted as data and not as a wildcard. In
the example, the escape character causes the middle percent sign (%) to be treated
as data. By using the ESCAPE keyword, you can search for occurrences of a
percent sign (%) in the res_descr column by using the LIKE wildcard percent sign
(%). The query retrieves the following row.

SELECT numéro,nom,prénom
FROM abonnés
WHERE nom MATCHES ’[E-P]*’
ORDER BY nom;

Figure 2-68. Query

numéro nom prénom

13607 Hammer Gerhard
13602 Hämmer Greta
13604 LaForêt Jean-Noël
13610 LeMaître Héloïse
13613 Llanero Gloria Dolores
13603 Montaña José Antonio
13611 Oatfield Emily

Figure 2-69. Query result

SELECT * FROM cust_calls
WHERE res_descr LIKE ’%!%%’ ESCAPE ’!’;

Figure 2-70. Query

2-28 IBM Informix Guide to SQL: Tutorial

Subscripting in a WHERE clause

You can use subscripting in the WHERE clause of a SELECT statement to specify a
range of characters or numbers in a column, as the following query shows.

The subscript [1,4] causes the query to retrieve all rows in which the first four
letters of the cat_advert column are High, as result shows.

customer_num 116
call_dtime 1997-12-21 11:24
user_id mannyn
call_code I
call_descr Second complaint from this customer!

Received two cases righthanded outfielder
glove (1 HRO) instead of one case lefties.

res_dtime 1997-12-27 08:19
res_descr Memo to shipping (Ava Brown) to send case

of lefthanded gloves, pick up wrong case;
memo to billing requesting 5% discount to
placate customer due to second offense
and lateness of resolution because of
holiday.

Figure 2-71. Query result

SELECT catalog_num, stock_num, manu_code, cat_advert,
cat_descr

FROM catalog
WHERE cat_advert[1,4] = ’High’;

Figure 2-72. Query

Chapter 2. Compose SELECT statements 2-29

FIRST clause to select specific rows

You can include a FIRST max specification in the Projection clause of a SELECT
statement, where max has an integer value, to instruct the query to return no more
than the first max rows that match the conditions of the SELECT statement. You
can also use the keyword LIMIT as a synonym for FIRST in this context (and only
in this context). The rows that a SELECT statement with a FIRST clause returns
might depend on whether the statement also includes an ORDER BY clause.

The keyword SKIP, followed by an unsigned integer, can precede the FIRST or
LIMIT keyword in the Projection clause. The SKIP offset clause instructs the
database server to exclude the first offset qualifying rows from the result set of the
query before returning the number of rows that the FIRST clause specifies. In SPL
routines, the parameter of SKIP, FIRST, or LIMIT can be a literal integer or a local
SPL variable. If the Projection clause includes SKIP offset but no FIRST or LIMIT
specification, then the query returns all of the qualifying rows except for the first
offset rows.

The Projection clause cannot include the SKIP, FIRST, or LIMIT keywords in these
contexts:
v when the SELECT statement is part of a view definition
v in a subquery, except in the FROM clause of the outer query

catalog_num 10004
stock_num 2
manu_code HRO
cat_advert Highest Quality Ball Available, from Hand-Sti

tching to the Robinson Signature
cat_descr
Jackie Robinson signature ball. Highest professional quality,
used by National League.

catalog_num 10005
stock_num 3
manu_code HSK
cat_advert High-Technology Design Expands the Sweet Spot
cat_descr
Pro-style wood. Available in sizes: 31, 32, 33, 34, 35....
catalog_num 10045
stock_num 204
manu_code KAR
cat_advert High-Quality Beginning Set of Irons. Appropriate

for High School Competitions
cat_descr
Ideally balanced for optimum control. Nylon covered shaft.

catalog_num 10068
stock_num 310
manu_code ANZ
cat_advert High-Quality Kickboard
cat_descr
White. Standard size.

Figure 2-73. Query result

2-30 IBM Informix Guide to SQL: Tutorial

v in a cross-server distributed query in which a participating database server does
not support the SKIP, FIRST, or LIMIT keywords.

For information about restrictions on use of the FIRST clause, see the description of
the Projection clause of the SELECT statement in the IBM Informix Guide to SQL:
Syntax.

FIRST clause without an ORDER BY clause

If you do not include an ORDER BY clause in a SELECT statement with a FIRST
clause, any rows that match the conditions of the SELECT statement might be
returned. In other words, the database server determines which of the qualifying
rows to return, and the query result can vary depending on the query plan that the
optimizer chooses.

The following query uses the FIRST clause to return the first five rows from the
state table.

You can use a FIRST clause when you simply want to know the names of all the
columns and the type of data that a table contains, or to test a query that
otherwise would return many rows. The following query shows how to use the
FIRST clause to return column values for the first row of a table.

SELECT FIRST 5 * FROM state;

Figure 2-74. Query

code sname

AK Alaska
HI Hawaii
CA California
OR Oregon
WA Washington

Figure 2-75. Query result

SELECT FIRST 1 * FROM orders;

Figure 2-76. Query

order_num 1001
order_date 05/20/1998
customer_num 104
ship_instruct express
backlog n
po_num B77836
ship_date 06/01/1998
ship_weight 20.40
ship_charge $10.00
paid_date 07/22/1998

Figure 2-77. Query result

Chapter 2. Compose SELECT statements 2-31

FIRST clause with an ORDER BY clause

You can include an ORDER BY clause in a SELECT statement with a FIRST clause
to return rows that contain the highest or lowest values for a specified column.
The following query shows a query that includes an ORDER BY clause to return
(by alphabetical order) the first five states contained in the state table. The query,
which is the same as Figure 2-74 on page 2-31 except for the ORDER BY clause,
returns a different set of rows than Figure 2-74 on page 2-31.

The following query shows how to use a FIRST clause in a query with an ORDER
BY clause to find the 10 most expensive items listed in the stock table.

Applications can use the SKIP and FIRST keywords of the Projection clause, in
conjunction with the ORDER BY clause, to perform successive queries that
incrementally retrieve all of the qualifying rows in subsets of some fixed size (for
example, the maximum number of rows that are visible without scrolling a screen
display). You can accomplish this by incrementing the offset parameter of the SKIP
clause by the max parameter of the FIRST clause after each query. By imposing a
unique order on the qualifying rows, the ORDER BY clause ensures that each
query returns a disjunct subset of the qualifying rows.

The following query shows a query that includes SKIP, FIRST, and ORDER BY
specifications to return (by alphabetical order) the sixth through tenth states in the

SELECT FIRST 5 * FROM state ORDER BY sname;

Figure 2-78. Query

code sname

AL Alabama
AK Alaska
AZ Arizona
AR Arkansas
CA California

Figure 2-79. Query result

SELECT FIRST 10 description, unit_price
FROM stock ORDER BY unit_price DESC;

Figure 2-80. Query

description unit_price

football $960.00
volleyball $840.00
baseball gloves $800.00
18-spd, assmbld $685.90
irons/wedge $670.00
basketball $600.00
12-spd, assmbld $549.00
10-spd, assmbld $499.99
football $480.00
bicycle brakes $480.00

Figure 2-81. Query result

2-32 IBM Informix Guide to SQL: Tutorial

state table, but not the first five states. This query resembles Figure 2-74 on page
2-31, except that the SKIP 5 specification instructs the database server to returns a
different set of rows than Figure 2-74 on page 2-31.

If you use the SKIP, FIRST, or LIMIT keywords, you must take care to specify
parameters that correspond to the design goals of your application. If the offset
parameter of skip is larger than the number of qualifying rows, then any FIRST or
LIMIT specification has no effect, and the query returns nothing.

Expressions and derived values

You are not limited to selecting columns by name. You can list an expression in the
Projection clause of a SELECT statement to perform computations on column data
and to display information derived from the contents of one or more columns.

An expression consists of a column name, a constant, a quoted string, a keyword,
or any combination of these items connected by operators. It can also include host
variables (program data) when the SELECT statement is embedded in a program.

Arithmetic expressions

An arithmetic expression contains at least one of the arithmetic operators listed in
the following table and produces a number.

Operator
Operation

+ addition

- subtraction

* multiplication

/ division

You cannot use TEXT or BYTE columns in arithmetic expressions.

With IBM Informix, you cannot specify BLOB or CLOB in arithmetic expressions.

Arithmetic operations enable you to see the results of proposed computations
without actually altering the data in the database. You can add an INTO TEMP
clause to save the altered data in a temporary table for further reference,
computations, or impromptu reports. The following query calculates a 7 percent
sales tax on the unit_price column when the unit_price is $400 or more (but does

SELECT SKIP 5 FIRST 5 * FROM state ORDER BY sname;

Figure 2-82. Query

code sname

CO Colorado
CT Connecticut
DE Delaware
FL Florida
GA Georgia

Figure 2-83. Query result

Chapter 2. Compose SELECT statements 2-33

not update it in the database).

The result appears in the expression column.

The following query calculates a surcharge of $6.50 on orders when the quantity
ordered is less than 5.

The result appears in the expression column.

SELECT stock_num, description, unit_price, unit_price * 1.07
FROM stock
WHERE unit_price >= 400;

Figure 2-84. Query

stock_num description unit_price (expression)

1 baseball gloves $800.00 $856.00
1 baseball gloves $450.00 $481.50
4 football $960.00 $1027.20
4 football $480.00 $513.60
7 basketball $600.00 $642.00
8 volleyball $840.00 $898.80

102 bicycle brakes $480.00 $513.60
111 10-spd, assmbld $499.99 $534.99
112 12-spd, assmbld $549.00 $587.43
113 18-spd, assmbld $685.90 $733.91
203 irons/wedge $670.00 $716.90

Figure 2-85. Query result

SELECT item_num, order_num, quantity,
total_price, total_price + 6.50

FROM items
WHERE quantity < 5;

Figure 2-86. Query

item_num order_num quantity total_price (expression)

1 1001 1 $250.00 $256.50
1 1002 1 $960.00 $966.50
2 1002 1 $240.00 $246.50
1 1003 1 $20.00 $26.50
2 1003 1 $840.00 $846.50
1 1004 1 $250.00 $256.50
2 1004 1 $126.00 $132.50
3 1004 1 $240.00 $246.50
4 1004 1 $800.00 $806.50...
1 1023 2 $40.00 $46.50
2 1023 2 $116.00 $122.50
3 1023 1 $80.00 $86.50
4 1023 1 $228.00 $234.50
5 1023 1 $170.00 $176.50
6 1023 1 $190.00 $196.50

Figure 2-87. Query result

2-34 IBM Informix Guide to SQL: Tutorial

The following query calculates and displays in the expression column the interval
between when the customer call was received (call_dtime) and when the call was
resolved (res_dtime), in days, hours, and minutes.

Display labels:

You can assign a display label to a computed or derived data column to replace the
default column header expression. In Figure 2-84 on page 2-34, Figure 2-86 on page
2-34, and Figure 2-90, the derived data appears in the expression column. The
following query also presents derived values, but the column that displays the
derived values has the descriptive header taxed.

The result shows that the label taxed is assigned to the expression in the projection
list that displays the results of the operation unit_price * 1.07.

SELECT customer_num, call_code, call_dtime,
res_dtime - call_dtime

FROM cust_calls
ORDER BY customer_num;

Figure 2-88. Query

customer_num call_code call_dtime (expression)

106 D 1998-06-12 08:20 0 00:05
110 L 1998-07-07 10:24 0 00:06
116 I 1997-11-28 13:34 0 03:13
116 I 1997-12-21 11:24 5 20:55
119 B 1998-07-01 15:00 0 17:21
121 O 1998-07-10 14:05 0 00:01
127 I 1998-07-31 14:30

Figure 2-89. Query result

SELECT stock_num, description, unit_price,
unit_price * 1.07 taxed

FROM stock
WHERE unit_price >= 400;

Figure 2-90. Query

stock_num description unit_price taxed

1 baseball gloves $800.00 $856.00
1 baseball gloves $450.00 $481.50
4 football $960.00 $1027.20
4 football $480.00 $513.60
7 basketball $600.00 $642.00
8 volleyball $840.00 $898.80

102 bicycle brakes $480.00 $513.60
111 10-spd, assmbld $499.99 $534.99
112 12-spd, assmbld $549.00 $587.43
113 18-spd, assmbld $685.90 $733.91
203 irons/wedge $670.00 $716.90

Figure 2-91. Query result

Chapter 2. Compose SELECT statements 2-35

In the following query, the label surcharge is defined for the column that displays
the results of the operation total_price + 6.50.

The surcharge column is labeled in the output.

The following query assigns the label span to the column that displays the results
of subtracting the DATETIME column call_dtime from the DATETIME column
res_dtime.

The span column is labeled in the output.

CASE expressions

A CASE expression is a conditional expression, which is similar to the concept of
the CASE statement in programming languages. You can use a CASE expression
when you want to change the way data is represented. The CASE expression

SELECT item_num, order_num, quantity,
total_price, total_price + 6.50 surcharge

FROM items
WHERE quantity < 5;

Figure 2-92. Query

item_num order_num quantity total_price surcharge

1 1001 1 $250.00 $256.50
1 1002 1 $960.00 $966.50
2 1002 1 $240.00 $246.50
1 1003 1 $20.00 $26.50
2 1003 1 $840.00 $846.50...
1 1023 2 $40.00 $46.50
2 1023 2 $116.00 $122.50
3 1023 1 $80.00 $86.50
4 1023 1 $228.00 $234.50
5 1023 1 $170.00 $176.50
6 1023 1 $190.00 $196.50

Figure 2-93. Query result

SELECT customer_num, call_code, call_dtime,
res_dtime - call_dtime span

FROM cust_calls
ORDER BY customer_num;

Figure 2-94. Query

customer_num call_code call_dtime span

106 D 1998-06-12 08:20 0 00:05
110 L 1998-07-07 10:24 0 00:06
116 I 1997-11-28 13:34 0 03:13
116 I 1997-12-21 11:24 5 20:55
119 B 1998-07-01 15:00 0 17:21
121 O 1998-07-10 14:05 0 00:01
127 I 1998-07-31 14:30

Figure 2-95. Query result

2-36 IBM Informix Guide to SQL: Tutorial

allows a statement to return one of several possible results, depending on which of
several condition tests evaluates to TRUE.

TEXT or BYTE values are not allowed in a CASE expression.

Consider a column that represents marital status numerically as 1,2,3,4 with the
corresponding values meaning single, married, divorced, widowed. In some cases,
you might prefer to store the short values (1,2,3,4) for database efficiency, but
employees in human resources might prefer the more descriptive values (single,
married, divorced, widowed). The CASE expression makes such conversions
between different sets of values easy.

In IBM Informix, the CASE expression also supports extended data types and cast
expressions.

The following example shows a CASE expression with multiple WHEN clauses
that returns more descriptive values for the manu_code column of the stock table.
If none of the WHEN conditions is true, NULL is the default result. (You can omit
the ELSE NULL clause.)
SELECT

CASE
WHEN manu_code = "HRO" THEN "Hero"
WHEN manu_code = "SHM" THEN "Shimara"
WHEN manu_code = "PRC" THEN "ProCycle"
WHEN manu_code = "ANZ" THEN "Anza"
ELSE NULL

END
FROM stock;

You must include at least one WHEN clause within the CASE expression;
subsequent WHEN clauses and the ELSE clause are optional. If no WHEN
condition evaluates to true, the resulting value is NULL. You can use the IS NULL
expression to handle NULL results. For information on handling NULL values, see
the IBM Informix Guide to SQL: Syntax.

The following query shows a simple CASE expression that returns a character
string value to flag any orders from the orders table that have not been shipped to
the customer.

SELECT order_num, order_date,
CASE

WHEN ship_date IS NULL
THEN "order not shipped"

END
FROM orders;

Figure 2-96. Query

Chapter 2. Compose SELECT statements 2-37

For information about how to use the CASE expression to update a column, see
“CASE expression to update a column” on page 6-19.

Sorting on derived columns

When you want to use ORDER BY on an expression, you can use either the
display label assigned to the expression or an integer, as Figure 2-98 and
Figure 2-100 on page 2-39 show.

The query retrieves the same data from the cust_calls table as Figure 2-94 on page
2-36. In the query, the ORDER BY clause causes the data to be displayed in
ascending order of the derived values in the span column, as the result shows.

The following query uses an integer to represent the result of the operation
res_dtime - call_dtime and retrieves the same rows that appear in the above
result.

order_num order_date (expression)

1001 05/20/1998
1002 05/21/1998
1003 05/22/1998
1004 05/22/1998
1005 05/24/1998
1006 05/30/1998 order not shipped
1007 05/31/1998

...
1019 07/11/1998
1020 07/11/1998
1021 07/23/1998
1022 07/24/1998
1023 07/24/1998

Figure 2-97. Query result

SELECT customer_num, call_code, call_dtime,
res_dtime - call_dtime span

FROM cust_calls
ORDER BY span;

Figure 2-98. Query

customer_num call_code call_dtime span

127 I 1998-07-31 14:30
121 O 1998-07-10 14:05 0 00:01
106 D 1998-06-12 08:20 0 00:05
110 L 1998-07-07 10:24 0 00:06
116 I 1997-11-28 13:34 0 03:13
119 B 1998-07-01 15:00 0 17:21
116 I 1997-12-21 11:24 5 20:55

Figure 2-99. Query result

2-38 IBM Informix Guide to SQL: Tutorial

Rowid values in SELECT statements

The database server assigns a unique rowid to rows in nonfragmented tables. The
rowid is, in effect, a hidden column in every table. The sequential values of rowid
have no special significance and can vary depending on the location of the
physical data in the chunk. You can use a rowid to locate the internal record
number that is associated with a row in a table. Rows in fragmented tables do not
automatically contain the rowid column.

It is recommended that you use primary keys as a method of access in your
applications rather than rowids. Because primary keys are defined in the ANSI
specification of SQL, using them to access data makes your applications more
portable. In addition, the database server requires less time to access data in a
fragmented table when it uses a primary key than it requires to access the same
data when it uses rowid.

For more information about rowids, see the IBM Informix Database Design and
Implementation Guide and your IBM Informix Administrator's Guide.

The following query uses the rowid and the wildcard asterisk symbol (*) in the
Projection clause to retrieve each row in the manufact table and its corresponding
rowid.

Never store a rowid in a permanent table or attempt to use it as a foreign key. If a
table is dropped and then reloaded from external data, all the rowids will be
different.

SELECT customer_num, call_code, call_dtime,
res_dtime - call_dtime span

FROM cust_calls
ORDER BY 4;

Figure 2-100. Query

SELECT rowid, * FROM manufact;

Figure 2-101. Query

rowid manu_code manu_name lead_time

257 SMT Smith 3
258 ANZ Anza 5
259 NRG Norge 7
260 HSK Husky 5
261 HRO Hero 4
262 SHM Shimara 30
263 KAR Karsten 21
264 NKL Nikolus 8
265 PRC ProCycle 9

Figure 2-102. Query result

Chapter 2. Compose SELECT statements 2-39

Multiple-table SELECT statements

To select data from two or more tables, specify the table names in the FROM
clause. Add a WHERE clause to create a join condition between at least one related
column in each table. This WHERE clause creates a temporary composite table in
which each pair of rows that satisfies the join condition is linked to form a single
row.

A simple join combines information from two or more tables based on the
relationship between one column in each table. A composite join is a join between
two or more tables based on the relationship between two or more columns in
each table.

To create a join, you must specify a relationship, called a join condition, between at
least one column from each table. Because the columns are being compared, they
must have compatible data types. When you join large tables, performance
improves when you index the columns in the join condition.

Data types are described in the IBM Informix Guide to SQL: Reference and the IBM
Informix Database Design and Implementation Guide. Indexing is discussed in detail in
the IBM Informix Administrator's Guide.

Create a Cartesian product

When you perform a multiple-table query that does not explicitly state a join
condition among the tables, you create a Cartesian product. A Cartesian product
consists of every possible combination of rows from the tables. This result is
usually large and unwieldy.

The following query selects from two tables and produces a Cartesian product.

Although only 52 rows exist in the state table and 28 rows in the customer table,
the effect of the query is to multiply the rows of one table by the rows of the other
and retrieve an impractical 1,456 rows, as the result shows.

SELECT * FROM customer, state;

Figure 2-103. Query

2-40 IBM Informix Guide to SQL: Tutorial

In addition, some of the data that is displayed in the concatenated rows is
contradictory. For example, although the city and state from the customer table
indicate an address in California, the code and sname from the state table might
be for a different state.

Create a join

Conceptually, the first stage of any join is the creation of a Cartesian product. To
refine or constrain this Cartesian product and eliminate meaningless combinations
of rows of data, include a WHERE clause with a valid join condition in your
SELECT statement.

This section illustrates cross joins, equi-joins, natural joins, and multiple-table joins.
Additional complex forms, such as self-joins and outer joins, are discussed in
Chapter 5, “Compose advanced SELECT statements,” on page 5-1.

customer_num 101
fname Ludwig
lname Pauli
company All Sports Supplies
address1 213 Erstwild Court
address2
city Sunnyvale
state CA
zipcode 94086
phone 408-789-8075
code AK
sname Alaska

customer_num 101
fname Ludwig
lname Pauli
company All Sports Supplies
address1 213 Erstwild Court
address2
city Sunnyvale
state CA
zipcode 94086
phone 408-789-8075
code HI
sname Hawaii

customer_num 101
fname Ludwig
lname Pauli
company All Sports Supplies
address1 213 Erstwild Court
address2
city Sunnyvale
state CA
zipcode 94086
phone 408-789-8075
code CA
sname California...

Figure 2-104. Query result

Chapter 2. Compose SELECT statements 2-41

Cross join

A cross join combines all rows in all tables selected and creates a Cartesian product.
The results of a cross join can be very large and difficult to manage.

The following query uses ANSI join syntax to create a cross join.

The results of the query are identical to the results of Figure 2-103 on page 2-40. In
addition, you can filter a cross join by specifying a WHERE clause.

For more information about Cartesian products, see “Create a Cartesian product”
on page 2-40. For more information about ANSI syntax, see “ANSI join syntax” on
page 5-11.

Equi-join

An equi-join is a join based on equality or matching column values. This equality is
indicated with an equal sign (=) as the comparison operator in the WHERE clause,
as the following query shows.

The query joins the manufact and stock tables on the manu_code column. It
retrieves only those rows for which the values of the two columns are equal, some
of which the result shows.

SELECT * FROM customer CROSS JOIN state;

Figure 2-105. Query

SELECT * FROM manufact, stock
WHERE manufact.manu_code = stock.manu_code;

Figure 2-106. Query

2-42 IBM Informix Guide to SQL: Tutorial

In this equi-join, the result includes the manu_code column from both the
manufact and stock tables because the select list requested every column.

You can also create an equi-join with additional constraints, where the comparison
condition is based on the inequality of values in the joined columns. These joins
use a relational operator in addition to the equal sign (=) in the comparison
condition that is specified in the WHERE clause.

To join tables that contain columns with the same name, qualify each column name
with the name of its table and a period symbol (.), as the following query shows.

manu_code SMT
manu_name Smith
lead_time 3
stock_num 1
manu_code SMT
description baseball gloves
unit_price $450.00
unit case
unit_descr 10 gloves/case

manu_code SMT
manu_name Smith
lead_time 3
stock_num 5
manu_code SMT
description tennis racquet
unit_price $25.00
unit each
unit_descr each

manu_code SMT
manu_name Smith
lead_time 3
stock_num 6
manu_code SMT
description tennis ball
unit_price $36.00
unit case
unit_descr 24 cans/case

manu_code ANZ
manu_name Anza
lead_time 5
stock_num 5
manu_code ANZ
description tennis racquet
unit_price $19.80
unit each
unit_descr each...

Figure 2-107. Query result

SELECT order_num, order_date, ship_date, cust_calls.*
FROM orders, cust_calls
WHERE call_dtime >= ship_date

AND cust_calls.customer_num = orders.customer_num
ORDER BY orders.customer_num;

Figure 2-108. Query

Chapter 2. Compose SELECT statements 2-43

The query joins the customer_num column and then selects only those rows where
the call_dtime in the cust_calls table is greater than or equal to the ship_date in
the orders table. The result shows the combined rows that it returns.

Natural join

A natural join is a type of equi-join and is structured so that the join column does
not display data redundantly, as the following query shows.

Like the example for equi-join, the query joins the manufact and stock tables on
the manu_code column. Because the Projection list is more closely defined, the
manu_code is listed only once for each row retrieved, as the result shows.

order_num 1004
order_date 05/22/1998
ship_date 05/30/1998
customer_num 106
call_dtime 1998-06-12 08:20
user_id maryj
call_code D
call_descr Order received okay, but two of the cans of

ANZ tennis balls within the case were empty
res_dtime 1998-06-12 08:25
res_descr Authorized credit for two cans to customer,

issued apology. Called ANZ buyer to report
the qa problem.

order_num 1008
order_date 06/07/1998
ship_date 07/06/1998
customer_num 110
call_dtime 1998-07-07 10:24
user_id richc
call_code L
call_descr Order placed one month ago (6/7) not received.
res_dtime 1998-07-07 10:30
res_descr Checked with shipping (Ed Smith). Order out

yesterday-was waiting for goods from ANZ.
Next time will call with delay if necessary.

order_num 1023
order_date 07/24/1998
ship_date 07/30/1998
customer_num 127
call_dtime 1998-07-31 14:30
user_id maryj
call_code I
call_descr Received Hero watches (item # 304) instead

of ANZ watches
res_dtime
res_descr Sent memo to shipping to send ANZ item 304

to customer and pickup HRO watches. Should
be done tomorrow, 8/1

Figure 2-109. Query result

SELECT manu_name, lead_time, stock.*
FROM manufact, stock
WHERE manufact.manu_code = stock.manu_code;

Figure 2-110. Query

2-44 IBM Informix Guide to SQL: Tutorial

All joins are associative; that is, the order of the joining terms in the WHERE clause
does not affect the meaning of the join.

Both statements in the following query create the same natural join.

Each statement retrieves the following row.

manu_name Smith
lead_time 3
stock_num 1
manu_code SMT
description baseball gloves
unit_price $450.00
unit case
unit_descr 10 gloves/case

manu_name Smith
lead_time 3
stock_num 5
manu_code SMT
description tennis racquet
unit_price $25.00
unit each
unit_descr each

manu_name Smith
lead_time 3
stock_num 6
manu_code SMT
description tennis ball
unit_price $36.00
unit case
unit_descr 24 cans/case

manu_name Anza
lead_time 5
stock_num 5
manu_code ANZ
description tennis racquet
unit_price $19.80
unit each
unit_descr each...

Figure 2-111. Query result

SELECT catalog.*, description, unit_price, unit, unit_descr
FROM catalog, stock
WHERE catalog.stock_num = stock.stock_num

AND catalog.manu_code = stock.manu_code
AND catalog_num = 10017;

SELECT catalog.*, description, unit_price, unit, unit_descr
FROM catalog, stock
WHERE catalog_num = 10017

AND catalog.manu_code = stock.manu_code
AND catalog.stock_num = stock.stock_num;

Figure 2-112. Query

Chapter 2. Compose SELECT statements 2-45

Figure 2-112 on page 2-45 includes a TEXT column, cat_descr; a BYTE column,
cat_picture; and a VARCHAR column, cat_advert.

Multiple-table join

A multiple-table join connects more than two tables on one or more associated
columns; it can be an equi-join or a natural join.

The following query creates an equi-join on the catalog, stock, and manufact
tables.

The query retrieves the following rows.

catalog_num 10017
stock_num 101
manu_code PRC
cat_descr
Reinforced, hand-finished tubular. Polyurethane belted.
Effective against punctures. Mixed tread for super wear
and road grip.
cat_picture <BYTE value>

cat_advert Ultimate in Puncture Protection, Tires
Designed for In-City Riding

description bicycle tires
unit_price $88.00
unit box
unit_descr 4/box

Figure 2-113. Query result

SELECT * FROM catalog, stock, manufact
WHERE catalog.stock_num = stock.stock_num

AND stock.manu_code = manufact.manu_code
AND catalog_num = 10025;

Figure 2-114. Query

catalog_num 10025
stock_num 106
manu_code PRC
cat_descr
Hard anodized alloy with pearl finish; 6mm hex bolt hard ware.
Available in lengths of 90-140mm in 10mm increments.
cat_picture <BYTE value>

cat_advert ProCycle Stem with Pearl Finish
stock_num 106
manu_code PRC
description bicycle stem
unit_price $23.00
unit each
unit_descr each
manu_code PRC
manu_name ProCycle
lead_time 9

Figure 2-115. Query result

2-46 IBM Informix Guide to SQL: Tutorial

The manu_code is repeated three times, once for each table, and stock_num is
repeated twice.

To avoid the considerable duplication of a multiple-table query such as
Figure 2-114 on page 2-46, include specific columns in the projection list to define
the SELECT statement more closely, as the following query shows.

The query uses a wildcard to select all columns from the table with the most
columns and then specifies columns from the other two tables. The result shows
the natural join that the query produces. It displays the same information as the
previous example, but without duplication.

Some query shortcuts

You can use aliases, the INTO TEMP clause, and display labels to speed your way
through joins and multiple-table queries and to produce output for other uses.

Aliases

You can assign aliases to the tables in the FROM clause of a SELECT statement to
make multiple-table queries shorter and more readable. You can use an alias
wherever the table name would be used, for instance, as a prefix to the column
names in the other clauses.

SELECT catalog.*, description, unit_price, unit,
unit_descr, manu_name, lead_time

FROM catalog, stock, manufact
WHERE catalog.stock_num = stock.stock_num

AND stock.manu_code = manufact.manu_code
AND catalog_num = 10025;

Figure 2-116. Query

catalog_num 10025
stock_num 106
manu_code PRC
cat_descr
Hard anodized alloy with pearl finish. 6mm hex bolt
hardware. Available in lengths of 90-140mm in 10mm increments.
cat_picture <BYTE value>

cat_advert ProCycle Stem with Pearl Finish
description bicycle stem
unit_price $23.00
unit each
unit_descr each
manu_name ProCycle
lead_time 9

Figure 2-117. Query result

Chapter 2. Compose SELECT statements 2-47

The associative nature of the SELECT statement allows you to use an alias before
you define it. In the query above, the aliases s for the stock table, c for the catalog
table, and m for the manufact table are specified in the FROM clause and used
throughout the SELECT and WHERE clauses as column prefixes.

Compare the length of Figure 2-118 with the following query, which does not use
aliases.

Figure 2-118 and Figure 2-119 are equivalent and retrieve the data that the
following query shows.

You cannot use the ORDER BY clause for the TEXT column cat_descr or the BYTE
column cat_picture.

SELECT s.stock_num, s.manu_code, s.description,
s.unit_price, c.catalog_num,
c.cat_advert, m.lead_time

FROM stock s, catalog c, manufact m
WHERE s.stock_num = c.stock_num

AND s.manu_code = c.manu_code
AND s.manu_code = m.manu_code
AND s.manu_code IN (’HRO’, ’HSK’)
AND s.stock_num BETWEEN 100 AND 301

ORDER BY catalog_num;

Figure 2-118. Query

SELECT stock.stock_num, stock.manu_code, stock.description,
stock.unit_price, catalog.catalog_num,
catalog.cat_advert,
manufact.lead_time

FROM stock, catalog, manufact
WHERE stock.stock_num = catalog.stock_num

AND stock.manu_code = catalog.manu_code
AND stock.manu_code = manufact.manu_code
AND stock.manu_code IN (’HRO’, ’HSK’)
AND stock.stock_num BETWEEN 100 AND 301

ORDER BY catalog_num;

Figure 2-119. Query

stock_num 110
manu_code HRO
description helmet
unit_price $260.00
catalog_num 10033
cat_advert Lightweight Plastic with Vents Assures Cool

Comfort Without Sacrificing Protection
lead_time 4

stock_num 110
manu_code HSK
description helmet
unit_price $308.00
catalog_num 10034
cat_advert Teardrop Design Used by Yellow Jerseys; You

Can Time the Difference
lead_time 5...

Figure 2-120. Query result

2-48 IBM Informix Guide to SQL: Tutorial

You can use aliases to shorten your queries on tables that are not in the current
database.

The following query joins columns from two tables that reside in different
databases and systems, neither of which is the current database or system.

By assigning the aliases c and o to the long database@system:table names,
masterdb@central:customer and sales@western:orders, respectively, you can use
the aliases to shorten the expression in the WHERE clause and retrieve the data, as
the result shows.

For more information on how to access tables that are not in the current database,
see “Access other database servers” on page 7-1 and the IBM Informix Guide to
SQL: Syntax.

You can also use synonyms as shorthand references to the long names of tables
that are not in the current database as well as current tables and views. For details
on how to create and use synonyms, see the IBM Informix Database Design and
Implementation Guide.

The INTO TEMP clause

By adding an INTO TEMP clause to your SELECT statement, you can temporarily
save the results of a multiple-table query in a separate table that you can query or
manipulate without modifying the database. Temporary tables are dropped when
you end your SQL session or when your program or report terminates.

The following query creates a temporary table called stockman and stores the
results of the query in it. Because all columns in a temporary table must have
names, the alias adj_price is required.

SELECT order_num, lname, fname, phone
FROM masterdb@central:customer c, sales@western:orders o

WHERE c.customer_num = o.customer_num
AND order_num <= 1010;

Figure 2-121. Query

order_num lname fname phone

1001 Higgins Anthony 415-368-1100
1002 Pauli Ludwig 408-789-8075
1003 Higgins Anthony 415-368-1100
1004 Watson George 415-389-8789
1005 Parmelee Jean 415-534-8822
1006 Lawson Margaret 415-887-7235
1007 Sipes Arnold 415-245-4578
1008 Jaeger Roy 415-743-3611
1009 Keyes Frances 408-277-7245
1010 Grant Alfred 415-356-1123

Figure 2-122. Query result

Chapter 2. Compose SELECT statements 2-49

You can query this table and join it with other tables, which avoids a multiple sort
and lets you move more quickly through the database. For more information on
temporary tables, see the IBM Informix Guide to SQL: Syntax and the IBM Informix
Administrator's Guide.

Summary

This chapter presented syntax examples and results for basic kinds of SELECT
statements that are used to query a relational database. The section “Single-table
SELECT statements” on page 2-6 shows how to perform the following actions:
v Select columns and rows from a table with the Projection and FROM clauses
v Select rows from a table with the Projection, FROM, and WHERE clauses
v Use the DISTINCT or UNIQUE keyword in the Projection clause to eliminate

duplicate rows from query results
v Sort retrieved data with the ORDER BY clause and the DESC keyword
v Select and order data values that contain non-English characters
v Use the BETWEEN, IN, MATCHES, and LIKE keywords and various relational

operators in the WHERE clause to create comparison conditions
v Create comparison conditions that include values, exclude values, find a range

of values (with keywords, relational operators, and subscripting), and find a
subset of values

SELECT DISTINCT stock_num, manu_name, description,
unit_price, unit_price * 1.05 adj_price

FROM stock, manufact
WHERE manufact.manu_code = stock.manu_code
INTO TEMP stockman;

SELECT * from stockman;

Figure 2-123. Query

stock_num manu_name description unit_price adj_price

1 Hero baseball gloves $250.00 $262.5000
1 Husky baseball gloves $800.00 $840.0000
1 Smith baseball gloves $450.00 $472.5000
2 Hero baseball $126.00 $132.3000
3 Husky baseball bat $240.00 $252.0000
4 Hero football $480.00 $504.0000
4 Husky football $960.00 $1008.0000

...
306 Shimara tandem adapter $190.00 $199.5000
307 ProCycle infant jogger $250.00 $262.5000
308 ProCycle twin jogger $280.00 $294.0000
309 Hero ear drops $40.00 $42.0000
309 Shimara ear drops $40.00 $42.0000
310 Anza kick board $84.00 $88.2000
310 Shimara kick board $80.00 $84.0000
311 Shimara water gloves $48.00 $50.4000
312 Hero racer goggles $72.00 $75.6000
312 Shimara racer goggles $96.00 $100.8000
313 Anza swim cap $60.00 $63.0000
313 Shimara swim cap $72.00 $75.6000

Figure 2-124. Query result

2-50 IBM Informix Guide to SQL: Tutorial

v Use exact-text comparisons, variable-length wildcards, and restricted and
unrestricted wildcards to perform variable text searches

v Use the logical operators AND, OR, and NOT to connect search conditions or
Boolean expressions in a WHERE clause

v Use the ESCAPE keyword to protect special characters in a query
v Search for NULL values with the IS NULL and IS NOT NULL keywords in the

WHERE clause
v Use the FIRST clause to specify that a query returns only a specified number of

the rows that match the conditions of the SELECT statement
v Use arithmetic operators in the Projection clause to perform computations on

number fields and display derived data
v Assign display labels to computed columns as a formatting tool for reports

This chapter also introduced simple join conditions that enable you to select and
display data from two or more tables. The section “Multiple-table SELECT
statements” on page 2-40 describes how to perform the following actions:
v Create a Cartesian product
v Create a CROSS JOIN, which creates a Cartesian product
v Include a WHERE clause with a valid join condition in your query to constrain a

Cartesian product
v Define and create a natural join and an equi-join
v Join two or more tables on one or more columns
v Use aliases as a shortcut in multiple-table queries
v Retrieve selected data into a separate, temporary table with the INTO TEMP

clause to perform computations outside the database

Chapter 2. Compose SELECT statements 2-51

2-52 IBM Informix Guide to SQL: Tutorial

Chapter 3. Select data from complex types

This chapter describes how to query complex data types. A complex data type is
built from a combination of other data types with an SQL type constructor. An
SQL statement can access individual components within the complex type.
Complex data types are row types or collection types.

ROW types have instances that combine one or more related data fields. The two
kinds of ROW types are named and unnamed.

Collection types have instances where each collection value contains a group of
elements of the same data type, which can be any fundamental or complex data
type. A collection can consist of a LIST, SET, or MULTISET datatype.

Important: There is no cross-database support for complex data types. They can
only be manipulated in local databases.

For a more complete description of the data types that the database server
supports, see the chapter on data types in the IBM Informix Guide to SQL: Reference.

For information about how to create and use complex types, see the IBM Informix
Database Design and Implementation Guide, IBM Informix Guide to SQL: Reference, and
IBM Informix Guide to SQL: Syntax.

Select row-type data

This section describes how to query data that is defined as row-type data. A ROW
type is a complex type that combines one or more related data fields.

The two kinds of ROW types are as follows:

Named ROW type
A named ROW type can define tables, columns, fields of another row-type
column, program variables, statement local variables, and routine return
values.

Unnamed ROW type
An unnamed ROW type can define columns, fields of another row-type
column, program variables, statement local variables, routine return values,
and constants.

The examples used throughout this section use the named ROW types zip_t,
address_t, and employee_t, which define the employee table. The following figure
shows the SQL syntax that creates the ROW types and table.

© Copyright IBM Corp. 1996, 2010 3-1

The named ROW types zip_t, address_t and employee_t serve as templates for the
fields and columns of the typed table, employee. A typed table is a table that is
defined on a named ROW type. The employee_t type that serves as the template
for the employee table uses the address_t type as the data type of the address
field. The address_t type uses the zip_t type as the data type of the zip field.

The following figure shows the SQL syntax that creates the student table. The
s_address column of the student table is defined on an unnamed ROW type. (The
s_address column could also have been defined as a named ROW type.)

Select columns of a typed table

A query on a typed table is no different from a query on any other table. For
example, the following query uses the asterisk symbol (*) to specify a SELECT
statement that returns all columns of the employee table.

The SELECT statement on the employee table returns all rows for all columns.

CREATE ROW TYPE zip_t
(

z_code CHAR(5),
z_suffix CHAR(4)

)

CREATE ROW TYPE address_t
(

street VARCHAR(20),
city VARCHAR(20),
state CHAR(2),
zip zip_t

)

CREATE ROW TYPE employee_t
(
name VARCHAR(30),
address address_t,
salary INTEGER
)

CREATE TABLE employee OF TYPE employee_t

Figure 3-1. SQL syntax that creates the ROW types and table.

CREATE TABLE student
(
s_name VARCHAR(30),
s_address ROW(street VARCHAR (20), city VARCHAR(20),

state CHAR(2), zip VARCHAR(9)),
grade_point_avg DECIMAL(3,2)

)

Figure 3-2. SQL syntax that creates the student table.

SELECT * FROM employee

Figure 3-3. Query

3-2 IBM Informix Guide to SQL: Tutorial

The following query shows how to construct a query that returns rows for the
name and address columns of the employee table.

Select columns that contain row-type data

A row-type column is a column that is defined on a named ROW type or unnamed
ROW type. You use the same SQL syntax to query a named ROW type and an
unnamed row-type column.

A query on a row-type column returns data from all the fields of the ROW type. A
field is a component data type within a ROW type. For example, the address
column of the employee table contains the street, city, state, and zip fields. The
following query shows how to construct a query that returns all fields of the
address column.

To access individual fields that a column contains, use single-dot notation to
project the individual fields of the column. For example, suppose you want to
access specific fields from the address column of the employee table. The
following SELECT statement projects the city and state fields from the address

name Paul, J.
address ROW(102 Ruby, Belmont, CA, 49932, 1000)
salary 78000

name Davis, J.
address ROW(133 First, San Jose, CA, 85744, 4900)
salary 75000...

Figure 3-4. Query result

SELECT name, address FROM employee

Figure 3-5. Query

name Paul, J.
address ROW(102 Ruby, Belmont, CA, 49932, 1000)

name Davis, J.
address ROW(133 First, San Jose, CA, 85744, 4900)...

Figure 3-6. Query result

SELECT address FROM employee

Figure 3-7. Query

address ROW(102 Ruby, Belmont, CA, 49932, 1000)
address ROW(133 First, San Jose, CA, 85744, 4900)
address ROW(152 Topaz, Willits, CA, 69445, 1000))...

Figure 3-8. Query result

Chapter 3. Select data from complex types 3-3

column.

You construct a query on an unnamed row-type column in the same way you
construct a query on a named row-type column. For example, suppose you want
to access data from the s_address column of the student table in Figure 3-2 on
page 3-2. You can use dot notation to query the individual fields of a column that
are defined on an unnamed row type. The following query shows how to construct
a SELECT statement on the student table that returns rows for the city and state
fields of the s_address column.

Field projections

Do not confuse fields with columns. Columns are only associated with tables, and
column projections use conventional dot notation of the form name_1.name2 for a
table and column, respectively. A field is a component data type within a ROW
type. With ROW types (and the capability to assign a ROW type to a single
column), you can project individual fields of a column with single dot notation of
the form: name_a.name_b.name_c.name_d. IBM Informix database servers use the
following precedence rules to interpret dot notation:
1. table_name_a . column_name_b . field_name_c . field_name_d
2. column_name_a . field_name_b . field_name_c . field_name_d

When the meaning of a particular identifier is ambiguous, the database server uses
precedence rules to determine which database object the identifier specifies.
Consider the following two statements:
CREATE TABLE b (c ROW(d INTEGER, e CHAR(2)))
CREATE TABLE c (d INTEGER)

SELECT address.city, address.state FROM employee

Figure 3-9. Query

city state

Belmont CA
San Jose CA
Willits CA...

Figure 3-10. Query result

SELECT s_address.city, s_address.state FROM student

Figure 3-11. Query

city state

Belmont CA
Mount Prospect IL
Greeley CO...

Figure 3-12. Query result

3-4 IBM Informix Guide to SQL: Tutorial

In the following SELECT statement, the expression c.d references column d of
table c (rather than field d of column c in table b) because a table identifier has a
higher precedence than a column identifier:
SELECT * FROM b,c WHERE c.d = 10

To avoid referencing the wrong database object, you can specify the full notation
for a field projection. Suppose, for example, you want to reference field d of
column c in table b (not column d of table c). The following statement specifies the
table, column, and field identifiers of the object you want to reference:
SELECT * FROM b,c WHERE b.c.d = 10

Important: Although precedence rules reduce the chance of the database server
misinterpreting field projections, it is recommended that you use unique names for
all table, column, and field identifiers.

Field projections to select nested fields

Typically the row type is a column, but you can use any row-type expression for
field projection. When the row-type expression itself contains other row types, the
expression contains nested fields. To access nested fields within an expression or
individual fields, use dot notation. To access all the fields of the row type, use an
asterisk (*). This section describes both methods of row-type access.

For a discussion of how to use dot notation and asterisk notation with row-type
expressions, see the Expression segment in the IBM Informix Guide to SQL: Syntax.

Select individual fields of a row type:

Consider the address column of the employee table, which contains the fields
street, city, state, and zip. In addition, the zip field contains the nested fields:
z_code and z_suffix. (You might want to review the row type and table definitions
of Figure 3-1 on page 3-2.) A query on the zip field returns rows for the z_code
and z_suffix fields. However, you can specify that a query returns only specific
nested fields. The following query shows how to use dot notation to construct a
SELECT statement that returns rows for the z_code field of the address column
only.

Asterisk notation to access all fields of a row type

Asterisk notation is supported only within the select list of a SELECT statement.
When you specify the column name for a row-type column in a projection list, the

SELECT address.zip.z_code FROM employee

Figure 3-13. Query

z_code

39444
6500
76055
19004...

Figure 3-14. Query result

Chapter 3. Select data from complex types 3-5

database server returns values for all fields of the column. You can also use
asterisk notation when you want to project all the fields within a ROW type.

The following query uses asterisk notation to return all fields of the address
column in the employee table.

The asterisk notation makes it easier to perform some SQL tasks. Suppose you
create a function new_row() that returns a row-type value and you want to call
this function and insert the row that is returned into a table. The database server
provides no easy way to handle such operations. However, the following query
shows how to use asterisk notation to return all fields of new_row() and insert the
returned fields into the tab_2 table.

For information about how to use the INSERT statement, see Chapter 6, “Modify
data,” on page 6-1.

Important: An expression that uses the .* notation is evaluated only once.

Select from a collection

This section describes how to query columns that are defined on collection types.
A collection type is a complex data type in which each collection value contains a
group of elements of the same data type. For a detailed description of collection
data types, see the IBM Informix Database Design and Implementation Guide. For
information about how to access the individual elements that a collection contains,
see “Handle collections in SELECT statements” on page 5-27.

The following figure shows the manager table, which is used in examples
throughout this section. The manager table contains both simple and nested
collection types. A simple collection is a collection type that does not contain any
fields that are themselves collection types. The direct_reports column of the
manager table is a simple collection. A nested collection is a collection type that
contains another collection type. The projects column of the manager table is a
nested collection.

SELECT address.* FROM employee;

Figure 3-15. Query

address ROW(102 Ruby, Belmont, CA, 49932, 1000)
address ROW(133 First, San Jose, CA, 85744, 4900)
address ROW(152 Topaz, Willits, CA, 69445, 1000))...

Figure 3-16. Query result

INSERT INTO tab_2 SELECT new_row(exp).* FROM tab_1

Figure 3-17. Query

3-6 IBM Informix Guide to SQL: Tutorial

A query on a column that is a collection type returns, for each row in the table, all
the elements that the particular collection contains. For example, the following
query shows a query that returns data in the department column and all elements
in the direct_reports column for each row of the manager table.

The output of a query on a collection type always includes the type constructor
that specifies whether the collection is a SET, MULTISET, or LIST. For example, in
the result, the SET constructor precedes the elements of each collection. Braces ({})
demarcate the elements of a collection; commas separate individual elements of a
collection.

Select nested collections

The projects column of the manager table (see Figure 3-18) is a nested collection. A
query on a nested collection type returns all the elements that the particular
collection contains. The following query shows a query that returns all elements
from the projects column for a specified row. The WHERE clause limits the query
to a single row in which the value in the mgr_name column is Sayles.

The query result shows a project column collection for a single row of the
manager table. The query returns the names of those projects that the manager
Sayles oversees. The collection contains, for each element in the LIST, the project
name (pro_name) and the SET of individuals (pro_members) who are assigned to

CREATE TABLE manager
(

mgr_name VARCHAR(30),
department VARCHAR(12),
direct_reports SET(VARCHAR(30) NOT NULL),
projects LIST(ROW(pro_name VARCHAR(15),

pro_members SET(VARCHAR(20) NOT NULL)
) NOT NULL)

)

Figure 3-18. The manager table

SELECT department, direct_reports FROM manager

Figure 3-19. Query

department marketing
direct_reports SET {Smith, Waters, Adams, Davis, Kurasawa}

department engineering
ddirect_reports SET {Joshi, Davis, Smith, Waters, Fosmire, Evans, Jones}

department publications
direct_reports SET {Walker, Fremont, Porat, Johnson}

department accounting
direct_reports SET {Baker, Freeman, Jacobs}...

Figure 3-20. Query result

SELECT projects
FROM manager
WHERE mgr_name = ’Sayles’

Figure 3-21. Query

Chapter 3. Select data from complex types 3-7

each project.

The IN keyword to search for elements in a collection

You can use the IN keyword in the WHERE clause of an SQL statement to
determine whether a collection contains a certain element. For example, the
following query shows how to construct a query that returns values for mgr_name
and department where Adams is an element of a collection in the direct_reports
column.

Although you can use a WHERE clause with the IN keyword to search for a
particular element in a simple collection, the query always returns the complete
collection. For example, the following query returns all the elements of the
collection where Adams is an element of a collection in the direct_reports column.

As the result shows, a query on a collection column returns the entire collection,
not a particular element within the collection.

You can use the IN keyword in a WHERE clause to reference a simple collection
only. You cannot use the IN keyword to reference a collection that contains fields
that are themselves collections. For example, you cannot use the IN keyword to
reference the projects column in the manager table because projects is a nested
collection.

projects LIST {ROW(voyager_project, SET{Simonian, Waters, Adams, Davis})}

projects LIST {ROW(horizon_project, SET{Freeman, Jacobs, Walker, Cannan})}

projects LIST {ROW(sapphire_project, SET{Villers, Reeves, Doyle, Strongin})}...

Figure 3-22. Query result

SELECT mgr_name, department
FROM manager
WHERE ’Adams’ IN direct_reports

Figure 3-23. Query

mgr_name Sayles
department marketing

Figure 3-24. Query result

SELECT mgr_name, direct_reports
FROM manager
WHERE ’Adams’ IN direct_reports

Figure 3-25. Query

mgr_name Sayles
direct_reports SET {Smith, Waters, Adams, Davis, Kurasawa}

Figure 3-26. Query result

3-8 IBM Informix Guide to SQL: Tutorial

You can combine the NOT and IN keywords in the WHERE clause of a SELECT
statement to search for collections that do not contain a certain element. For
example, the following query shows a query that returns values for mgr_name and
department where Adams is not an element of a collection in the direct_reports
column.

For information about how to count the elements in a collection column, see
“Cardinality function” on page 4-13.

Select rows within a table hierarchy

This section describes how to query rows from tables within a table hierarchy. For
more information about how to create and use a table hierarchy, see the IBM
Informix Database Design and Implementation Guide.

The following figure shows the statements that create the type and table
hierarchies that the examples in this section use.

SELECT mgr_name, department
FROM manager
WHERE ’Adams’ NOT IN direct_reports

Figure 3-27. Query

mgr_name Williams
department engineering

mgr_name Lyman
department publications

mgr_name Cole
department accounting

Figure 3-28. Query result

Chapter 3. Select data from complex types 3-9

The following figure shows the hierarchical relationships of the row types and
tables in the previous figure.

Select rows of the supertable without the ONLY keyword

A table hierarchy allows you to construct, in a single SQL statement, a query
whose scope is a supertable and its subtables. A query on a supertable returns
rows from both the supertable and its subtables. The following query shows a
query on the person table, which is the root supertable in the table hierarchy.

CREATE ROW TYPE address_t
(

street VARCHAR (20),
city VARCHAR(20),
state CHAR(2),
zip VARCHAR(9)

)

CREATE ROW TYPE person_t
(

name VARCHAR(30),
address address_t,
soc_sec CHAR(9)

)

CREATE ROW TYPE employee_t
(
salary INTEGER
)
UNDER person_t

CREATE ROW TYPE sales_rep_t
(

rep_num SERIAL8,
region_num INTEGER

)
UNDER employee_t

CREATE TABLE person OF TYPE person_t

CREATE TABLE employee OF TYPE employee_t
UNDER person

CREATE TABLE sales_rep OF TYPE sales_rep_t
UNDER employee

Figure 3-29. Statements that create the type and table hierarchies.

employee_t

sales_rep

person

employee

sales_rep_t

person_t

Type hierarchy Table hierarchy

Figure 3-30. Type and table hierarchies

3-10 IBM Informix Guide to SQL: Tutorial

Figure 2-31 on page 2-12 returns all columns in the supertable and those columns
in subtables (employee and sales_rep) that are inherited from the supertable. A
query on a supertable does not return columns from subtables that are not in the
supertable. The query result shows the name, address, and soc_sec columns in the
person, employee, and sales_rep tables.

Select rows from a supertable with the ONLY keyword

Although a SELECT statement on a supertable returns rows from both the
supertable and its subtables, you cannot tell which rows come from the supertable
and which rows come from the subtables. To limit the results of a query to the
supertable only, you must include the ONLY keyword in the SELECT statement.
For example, the following query returns rows in the person table only.

An alias for a supertable

An alias is a word that immediately follows the name of a table in the FROM
clause. You can specify an alias for a typed table in a SELECT or UPDATE
statement and then use the alias (in the same SELECT or UPDATE statement) as an
expression by itself. If you create an alias for a supertable, the alias can represent
values from the supertable or the subtables that inherit from the supertable. In
DB-Access, the following query returns row values for all instances of the person,
employee, and sales_rep tables.

Informix ESQL/C does not recognize this construct. In an Informix ESQL/C
program, the query returns an error.

SELECT * FROM person

Figure 3-31. Query

name Rogers, J.
address ROW(102 Ruby Ave, Belmont, CA, 69055)
soc_sec 454849344

name Sallie, A.
address ROW(134 Rose St, San Carlos, CA, 69025)
soc_sec 348441214...

Figure 3-32. Query result

SELECT * FROM ONLY(person);

Figure 3-33. Query

name Rogers, J.
address ROW(102 Ruby Ave, Belmont, CA, 69055)
soc_sec 454849344...

Figure 3-34. Query result

SELECT p FROM person p;

Figure 3-35. Query

Chapter 3. Select data from complex types 3-11

Summary

This chapter introduced sample syntax and results for selecting data from complex
types using SELECT statements to query a relational database. The section “Select
row-type data” on page 3-1 shows how to perform the following actions:
v Select row-type data from typed tables and columns
v Use row-type expressions for field projections

The section “Select from a collection” on page 3-6 shows how to perform the
following actions:
v Query columns that are defined on collection types
v Search for elements in a collection
v Query columns that are defined on nested collection types

The section “Select rows within a table hierarchy” on page 3-9 shows how to
perform the following actions:
v Query a supertable with or without the ONLY keyword
v Specify an alias for a supertable

3-12 IBM Informix Guide to SQL: Tutorial

Chapter 4. Functions in SELECT statements

In addition to column names and operators, an expression can also include one or
more functions. This chapter shows how to use functions in SELECT statements to
perform more complex database queries and data manipulation.

For information about the syntax of the following SQL functions and other SQL
functions, see the Expressions segment in the IBM Informix Guide to SQL: Syntax.

Tip: You can also use functions that you create yourself. For information about
user-defined functions, see Chapter 11, “Create and use SPL routines,” on page
11-1, and IBM Informix User-Defined Routines and Data Types Developer's Guide.

Functions in SELECT statements

You can use any basic type of expression (column, constant, function, aggregate
function, and procedure), or combination thereof, in the select list.

A function expression uses a function that is evaluated for each row in the query.
All function expressions require arguments. This set of expressions contains the
time function and the length function when they are used with a column name as
an argument.

Aggregate functions
An aggregate function returns one value for a set of queried rows. The aggregate
functions take on values that depend on the set of rows that the WHERE clause of
the SELECT statement returns. In the absence of a WHERE clause, the aggregate
functions take on values that depend on all the rows that the FROM clause forms.

You cannot use aggregate functions for expressions that contain the following data
types:
v TEXT
v BYTE
v CLOB
v BLOB
v Collection data types (LIST, MULTISET, and SET
v ROW types
v Opaque data types (except with user-defined aggregate functions that support

opaque types)

Aggregates are often used to summarize information about groups of rows in a
table. This use is discussed in Chapter 5, “Compose advanced SELECT statements,”
on page 5-1. When you apply an aggregate function to an entire table, the result
contains a single row that summarizes all the selected rows.

All IBM Informix database servers support the following aggregate functions.

© Copyright IBM Corp. 1996, 2010 4-1

The AVG function

The following query computes the average unit_price of all rows in the stock
table.

The following query computes the average unit_price of just those rows in the
stock table that have a manu_code of SHM.

The COUNT function

The following query counts and displays the total number of rows in the stock
table.

The following query includes a WHERE clause to count specific rows in the stock
table, in this case, only those rows that have a manu_code of SHM.

SELECT AVG (unit_price) FROM stock;

Figure 4-1. Query

(avg)

$197.14

Figure 4-2. Query result

SELECT AVG (unit_price) FROM stock WHERE manu_code = ’SHM’;

Figure 4-3. Query

(avg)

$204.93

Figure 4-4. Query result

SELECT COUNT(*) FROM stock;

Figure 4-5. Query

(count(*))

73

Figure 4-6. Query result

SELECT COUNT (*) FROM stock WHERE manu_code = ’SHM’;

Figure 4-7. Query

4-2 IBM Informix Guide to SQL: Tutorial

By including the keyword DISTINCT (or its synonym UNIQUE) and a column
name in the following query, you can tally the number of different manufacturer
codes in the stock table.

The MAX and MIN functions

You can combine aggregate functions in the same SELECT statement. For example,
you can include both the MAX and the MIN functions in the select list, as the
following query shows.

The query finds and displays both the highest and lowest ship_charge in the
orders table.

The RANGE function

The RANGE function computes the difference between the maximum and the
minimum values for the selected rows.

You can apply the RANGE function only to numeric columns. The following query
finds the range of prices for items in the stock table.

(count(*))

17

Figure 4-8. Query result

SELECT COUNT (DISTINCT manu_code) FROM stock;

Figure 4-9. Query

(count)

9

Figure 4-10. Query result

SELECT MAX (ship_charge), MIN (ship_charge) FROM orders;

Figure 4-11. Query

(max) (min)

$25.20 $5.00

Figure 4-12. Query result

SELECT RANGE(unit_price) FROM stock;

Figure 4-13. Query

Chapter 4. Functions in SELECT statements 4-3

As with other aggregates, the RANGE function applies to the rows of a group
when the query includes a GROUP BY clause, which the following query shows.

The STDEV function

The STDEV function computes the standard deviation for the selected rows. It is
the square root of the VARIANCE function.

You can apply the STDEV function only to numeric columns. The following query
finds the standard deviation on a population:
SELECT STDEV(age) FROM u_pop WHERE age > 21;

As with the other aggregates, the STDEV function applies to the rows of a group
when the query includes a GROUP BY clause, as the following example shows:
SELECT STDEV(age) FROM u_pop

GROUP BY state
WHERE STDEV(age) > 21;

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the STDEV function returns a null for that column. For more
information about the STDEV function, see the Expression segment in the IBM
Informix Guide to SQL: Syntax.

The SUM function

The following query calculates the total ship_weight of orders that were shipped
on July 13, 1998.

(range)

955.50

Figure 4-14. Query result

SELECT RANGE(unit_price) FROM stock
GROUP BY manu_code;

Figure 4-15. Query

(range)

820.20
595.50
720.00
225.00
632.50

0.00
460.00
645.90
425.00

Figure 4-16. Query result

4-4 IBM Informix Guide to SQL: Tutorial

The VARIANCE function

The VARIANCE function returns the variance for a sample of values as an
unbiased estimate of the variance for all rows selected. It computes the following
value:
(SUM(Xi**2) - (SUM(Xi)**2)/N)/(N-1)

In this example, Xi is each value in the column and N is the total number of values
in the column. You can apply the VARIANCE function only to numeric columns.
The following query finds the variance on a population:
SELECT VARIANCE(age) FROM u_pop WHERE age > 21;

As with the other aggregates, the VARIANCE function applies to the rows of a
group when the query includes a GROUP BY clause, which the following example
shows:
SELECT VARIANCE(age) FROM u_pop

GROUP BY birth
WHERE VARIANCE(age) > 21;

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the VARIANCE function returns a null for that column. For
more information about the VARIANCE function, see the Expression segment in
the IBM Informix Guide to SQL: Syntax.

Apply functions to expressions

The following query shows how you can apply functions to expressions and
supply display labels for their results.

The query finds and displays the maximum, minimum, and average amounts of
time (in days, hours, and minutes) between the reception and resolution of a
customer call and labels the derived values appropriately. The query result shows
these qualities of time.

SELECT SUM (ship_weight) FROM orders
WHERE ship_date = ’07/13/1998’;

Figure 4-17. Query

(sum)

130.5

Figure 4-18. Query result

SELECT MAX (res_dtime - call_dtime) maximum,
MIN (res_dtime - call_dtime) minimum,
AVG (res_dtime - call_dtime) average
FROM cust_calls;

Figure 4-19. Query

Chapter 4. Functions in SELECT statements 4-5

Time functions

You can use the time functions DAY, MONTH, WEEKDAY, and YEAR in either
the Projection clause or the WHERE clause of a query. These functions return a
value that corresponds to the expressions or arguments that you use to call the
function. You can also use the CURRENT or SYSDATE function to return a value
with the current date and time, or use the EXTEND function to adjust the
precision of a DATE or DATETIME value.

The DAY and CURRENT functions

The following query returns the day of the month for the call_dtime and
res_dtime columns in two expression columns.

The following query uses the DAY and CURRENT functions to compare column
values to the current day of the month. It selects only those rows where the value
is earlier than the current day. In this example, the CURRENT day is 15.

maximum minimum average

5 20:55 0 00:01 1 02:56

Figure 4-20. Query result

SELECT customer_num, DAY (call_dtime), DAY (res_dtime)
FROM cust_calls;

Figure 4-21. Query

customer_num (expression) (expression)

106 12 12
110 7 7
119 1 2
121 10 10
127 31
116 28 28
116 21 27

Figure 4-22. Query result

SELECT customer_num, DAY (call_dtime), DAY (res_dtime)
FROM cust_calls
WHERE DAY (call_dtime) < DAY (CURRENT);

Figure 4-23. Query

4-6 IBM Informix Guide to SQL: Tutorial

The following query uses the CURRENT function to select all calls except those
that came in today.

The SYSDATE function closely resembles the CURRENT function, but the default
precision of its returned value is DATETIME YEAR TO FRACTION(5), rather than
the default DATETIME YEAR TO FRACTION(3) precision of CURRENT when no
DATETIME qualifier is specified.

The MONTH function

The following query uses the MONTH function to extract and show what month
the customer call was received and resolved, and it uses display labels for the
resulting columns. However, it does not make a distinction between years.

customer_num (expression) (expression)
106 12 12
110 7 7
119 1 2
121 10 10

Figure 4-24. Query result

SELECT customer_num, call_code, call_descr
FROM cust_calls
WHERE call_dtime < CURRENT YEAR TO DAY;

Figure 4-25. Query

customer_num 106
call_code D
call_descr Order was received, but two of the cans of ANZ tennis balls

within the case were empty

customer_num 110
call_code L
call_descr Order placed one month ago (6/7) not received....
customer_num 116
call_code I
call_descr Second complaint from this customer! Received two cases

right-handed outfielder gloves (1 HRO) instead of one case
lefties.

Figure 4-26. Query result

SELECT customer_num,
MONTH (call_dtime) call_month,
MONTH (res_dtime) res_month
FROM cust_calls;

Figure 4-27. Query

Chapter 4. Functions in SELECT statements 4-7

The following query uses the MONTH function plus DAY and CURRENT to
show what month the customer call was received and resolved if DAY is earlier
than the current day.

The WEEKDAY function

The following query uses the WEEKDAY function to indicate which day of the
week calls are received and resolved (0 represents Sunday, 1 is Monday, and so
on), and the expression columns are labeled.

customer_num call_month res_month

106 6 6
110 7 7
119 7 7
121 7 7
127 7
116 11 11
116 12 12

Figure 4-28. Query result

SELECT customer_num,
MONTH (call_dtime) called,
MONTH (res_dtime) resolved
FROM cust_calls
WHERE DAY (res_dtime) < DAY (CURRENT);

Figure 4-29. Query

customer_num called resolved

106 6 6
119 7 7
121 7 7

Figure 4-30. Query result

SELECT customer_num,
WEEKDAY (call_dtime) called,
WEEKDAY (res_dtime) resolved
FROM cust_calls
ORDER BY resolved;

Figure 4-31. Query

customer_num called resolved

127 3
110 0 0
119 1 2
121 3 3
116 3 3
106 3 3
116 5 4

Figure 4-32. Query result

4-8 IBM Informix Guide to SQL: Tutorial

The following query uses the COUNT and WEEKDAY functions to count how
many calls were received on a weekend. This kind of statement can give you an
idea of customer-call patterns or indicate whether overtime pay might be required.

The YEAR function

The following query retrieves rows where the call_dtime is earlier than the
beginning of the current year.

Format DATETIME values

In the following query, the EXTEND function displays only the specified subfields
to restrict the two DATETIME values.

The query returns the month-to-minute range for the columns labeled call_time
and res_time and gives an indication of the work load.

SELECT COUNT(*)
FROM cust_calls
WHERE WEEKDAY (call_dtime) IN (0,6);

Figure 4-33. Query

(count(*))

4

Figure 4-34. Query result

SELECT customer_num, call_code,
YEAR (call_dtime) call_year,
YEAR (res_dtime) res_year
FROM cust_calls
WHERE YEAR (call_dtime) < YEAR (TODAY);

Figure 4-35. Query

customer_num call_code call_year res_year

116 I 1997 1997
116 I 1997 1997

Figure 4-36. Query result

SELECT customer_num,
EXTEND (call_dtime, month to minute) call_time,
EXTEND (res_dtime, month to minute) res_time
FROM cust_calls
ORDER BY res_time;

Figure 4-37. Query

Chapter 4. Functions in SELECT statements 4-9

The TO_CHAR function can also format DATETIME values. See “The TO_CHAR
function” on page 4-11 for information about this built-in function, which can also
accept DATE values or numeric values as an argument, and returns a formatted
character string.

Besides the built-in time functions that these examples illustrate, IBM Informix also
supports the ADD_MONTHS, LAST_DAY, MDY, MONTHS_BETWEEN, and
NEXT_DAY functions. In addition to these functions, the TRUNC and ROUND
functions can return values that change the precision of DATE or DATETIME
arguments. These additional time functions are described in the IBM Informix Guide
to SQL: Syntax.

Date-conversion functions

You can use a date-conversion function anywhere you use an expression.

The following conversion functions convert between date and character values:

The DATE function

The DATE function converts a character string to a DATE value. In the following
query, the DATE function converts a character string to a DATE value to allow for
comparisons with DATETIME values. The query retrieves DATETIME values only
when call_dtime is later than the specified DATE.

The following query converts DATETIME values to DATE format and displays the
values, with labels, only when call_dtime is greater than or equal to the specified

customer_num call_time res_time

127 07-31 14:30
106 06-12 08:20 06-12 08:25
119 07-01 15:00 07-02 08:21
110 07-07 10:24 07-07 10:30
121 07-10 14:05 07-10 14:06
116 11-28 13:34 11-28 16:47
116 12-21 11:24 12-27 08:19

Figure 4-38. Query result

SELECT customer_num, call_dtime, res_dtime
FROM cust_calls
WHERE call_dtime > DATE (’12/31/97’);

Figure 4-39. Query

customer_num call_dtime res_dtime

106 1998-06-12 08:20 1998-06-12 08:25
110 1998-07-07 10:24 1998-07-07 10:30
119 1998-07-01 15:00 1998-07-02 08:21
121 1998-07-10 14:05 1998-07-10 14:06
127 1998-07-31 14:30

Figure 4-40. Query result

4-10 IBM Informix Guide to SQL: Tutorial

date.

The TO_CHAR function

The TO_CHAR function converts DATETIME or DATE values to character string
values. The TO_CHAR function evaluates a DATETIME value according to the
date-formatting directive that you specify and returns an NVARCHAR value. For a
complete list of the supported date-formatting directives, see the description of the
GL_DATETIME environment variable in the IBM Informix GLS User's Guide.

You can also use the TO_CHAR function to convert a DATETIME or DATE value
to an LVARCHAR value.

The following query uses the TO_CHAR function to convert a DATETIME value
to a more readable character string.

The following query uses the TO_CHAR function to convert DATE values to more
readable character strings.

SELECT customer_num,
DATE (call_dtime) called,
DATE (res_dtime) resolved
FROM cust_calls
WHERE call_dtime >= DATE (’1/1/98’);

Figure 4-41. Query

customer_num called resolved

106 06/12/1998 06/12/1998
110 07/07/1998 07/07/1998
119 07/01/1998 07/02/1998
121 07/10/1998 07/10/1998
127 07/31/1998

Figure 4-42. Query result

SELECT customer_num,
TO_CHAR(call_dtime, "%A %B %d %Y") call_date
FROM cust_calls
WHERE call_code = "B";

Figure 4-43. Query

customer_num 119
call_date Friday July 01 1998

Figure 4-44. Query result

SELECT order_num,
TO_CHAR(ship_date,"%A %B %d %Y") date_shipped
FROM orders
WHERE paid_date IS NULL;

Figure 4-45. Query

Chapter 4. Functions in SELECT statements 4-11

The TO_CHAR function can also format numeric values. For more information
about the built-in TO_CHAR function, see the IBM Informix Guide to SQL: Syntax.

The TO_DATE function

The TO_DATE function accepts an argument of a character data type and converts
this value to a DATETIME value. The TO_DATE function evaluates a character
string according to the date-formatting directive that you specify and returns a
DATETIME value. For a complete list of the supported date-formatting directives,
see the description of the GL_DATETIME environment variable in the IBM
Informix GLS User's Guide.

You can also use the TO_DATE function to convert an LVARCHAR value to a
DATETIME value.

The following query uses the TO_DATE function to convert character string values
to DATETIME values whose format you specify.

You can use the DATE or TO_DATE function to convert a character string to a
DATE value. One advantage of the TO_DATE function is that it allows you to
specify a format for the value returned. (You can use the TO_DATE function,
which always returns a DATETIME value, to convert a character string to a DATE
value because the database server implicitly handles conversions between DATE
and DATETIME values.)

order_num 1004
date_shipped Monday May 30 1998

order_num 1006
date_shipped

order_num 1007
date_shipped Sunday June 05 1998

order_num 1012
date_shipped Wednesday June 29 1998

order_num 1016
date_shipped Tuesday July 12 1998

order_num 1017
date_shipped Wednesday July 13 1998

Figure 4-46. Query result

SELECT customer_num, call_descr
FROM cust_calls
WHERE call_dtime = TO_DATE("1998-07-07 10:24",
"%Y-%m-%d

Figure 4-47. Query

customer_num 110

call_descr Order placed one month ago (6/7) not received.

Figure 4-48. Query result

4-12 IBM Informix Guide to SQL: Tutorial

The following query uses the TO_DATE function to convert character string values
to DATE values whose format you specify.

Cardinality function

The CARDINALITY function counts the number of elements that a collection
contains. You can use the CARDINALITY function with simple or nested
collections. Any duplicates in a collection are counted as individual elements. The
following query shows a query that returns, for every row in the manager table,
department values and the number of elements in each direct_reports collection.

You can also evaluate the number of elements in a collection from within a
predicate expression, as the following query shows.

SELECT order_num, paid_date
FROM orders
WHERE order_date = TO_DATE("6/7/98", "

Figure 4-49. Query

order_num paid_date

1008 07/21/1998

Figure 4-50. Query result

SELECT department, CARDINALITY(direct_reports) FROM manager;

Figure 4-51. Query

department marketing 5

department engineering 7

department publications 4

department accounting 3

Figure 4-52. Query result

SELECT department, CARDINALITY(direct_reports) FROM manager
WHERE CARDINALITY(direct_reports) < 6
GROUP BY department;

Figure 4-53. Query

department accounting 3

department marketing 5

department publications 4

Figure 4-54. Query result

Chapter 4. Functions in SELECT statements 4-13

Smart large object functions

The database server provides four SQL functions that you can call from within an
SQL statement to import and export smart large objects. The following table shows
the smart-large-object functions.

Table 4-1. SQL functions for smart large objects

Function name Purpose

FILETOBLOB() Copies a file into a BLOB column

FILETOCLOB() Copies a file into a CLOB column

LOCOPY() Copies BLOB or CLOB data into another BLOB or CLOB column

LOTOFILE() Copies a BLOB or CLOB into a file

For detailed information and the syntax of smart-large-object functions, see the
Expression segment in the IBM Informix Guide to SQL: Syntax.

You can use any of the functions that the table shows in SELECT, UPDATE, and
INSERT statements. For examples of how to use the preceding functions in INSERT
and UPDATE statements, see Chapter 6, “Modify data,” on page 6-1.

Suppose you create the inmate and fbi_list tables, as the following figure shows.

The following SELECT statement uses the LOTOFILE() function to copy data from
the felony column into the felon_322.txt file that is located on the client
computer:
SELECT id_num, LOTOFILE(felony, ’felon_322.txt’, ’client’)

FROM inmate
WHERE id = 322;

The first argument for LOTOFILE() specifies the name of the column from which
data is to be exported. The second argument specifies the name of the file into
which data is to be copied. The third argument specifies whether the target file is
located on the client computer ('client') or server computer ('server').

The following rules apply for specifying the path of a file name in a function
argument, depending on whether the file resides on the client or server computer:
v If the source file resides on the server computer, you must specify the full path

name to the file (not the path name relative to the current working directory).

CREATE TABLE inmate
(

id_num INT,
picture BLOB,
felony CLOB

);

CREATE TABLE fbi_list
(

id INTEGER,
mugshot BLOB

) PUT mugshot IN (sbspace1);

Figure 4-55. Create the inmate and fbi_list tables.

4-14 IBM Informix Guide to SQL: Tutorial

v If the source file resides on the client computer, you can specify either the full or
relative path name to the file.

String-manipulation functions

String-manipulation functions accept arguments of type CHAR, NCHAR,
VARCHAR, NVARCHAR, or LVARCHAR. You can use a string-manipulation
function anywhere you use an expression.

The following functions convert between upper and lowercase letters in a character
string:
v LOWER

v UPPER

v INITCAP

The following functions manipulate character strings in various ways:
v REPLACE

v SUBSTR

v SUBSTRING

v LPAD

v RPAD

Restriction: You cannot overload any of the string-manipulation functions to
handle extended data types.

The LOWER function

Use the LOWER function to replace every uppercase letter in a character string
with a lowercase letter. The LOWER function accepts an argument of a character
data type and returns a value of the same data type as the argument you specify.

The following query uses the LOWER function to convert any uppercase letters in
a character string to lowercase letters.

SELECT manu_code, LOWER(manu_code)
FROM items
WHERE order_num = 1018

Figure 4-56. Query

manu_code (expression)

PRC prc
KAR kar
PRC prc
SMT smt
HRO hro

Figure 4-57. Query result

Chapter 4. Functions in SELECT statements 4-15

The UPPER function

Use the UPPER function to replace every lowercase letter in a character string with
an uppercase letter. The UPPER function accepts an argument of a character data
type and returns a value of the same data type as the argument you specify.

The following query uses the UPPER function to convert any lowercase letters in a
character string to uppercase letters.

The INITCAP function

Use the INITCAP function to replace the first letter of every word in a character
string with an uppercase letter. The INITCAP function assumes a new word
whenever the function encounters a letter that is preceded by any character other
than a letter. The INITCAP function accepts an argument of a character data type
and returns a value of the same data type as the argument you specify.

The following query uses the INITCAP function to convert the first letter of every
word in a character string to an uppercase letter.

SELECT call_code, UPPER(code_descr) FROM call_type

Figure 4-58. Query

call_code (expression)

B BILLING ERROR
D DAMAGED GOODS
I INCORRECT MERCHANDISE SENT
L LATE SHIPMENT
O OTHER

Figure 4-59. Query result

SELECT INITCAP(description) FROM stock
WHERE manu_code = "ANZ";

Figure 4-60. Query

(expression)

Tennis Racquet
Tennis Ball
Volleyball
Volleyball Net
Helmet
Golf Shoes
3 Golf Balls
Running Shoes
Watch
Kick Board
Swim Cap

Figure 4-61. Query result

4-16 IBM Informix Guide to SQL: Tutorial

The REPLACE function

Use the REPLACE function to replace a certain set of characters in a character
string with other characters.

In the following query, the REPLACE function replaces the unit column value each
with item for every row that the query returns. The first argument of the
REPLACE function is the expression to be evaluated. The second argument
specifies the characters that you want to replace. The third argument specifies a
new character string to replace the characters removed.

The SUBSTRING and SUBSTR functions

You can use the SUBSTRING and SUBSTR functions to return a portion of a
character string. You specify the start position and length (optional) to determine
which portion of the character string the function returns.

Restriction: The units of measurement in the arguments to these two functions are
bytes, rather than logical characters. This is of no importance in the default locale,
nor in other single-byte locales, but you should not invoke SUBSTRING or
SUBSTR in locales in which the logical characters of the code set can differ in their
storage lengths.

The SUBSTRING function

You can use the SUBSTRING function to return some portion of a character
string. You specify the start position and length (optional) to determine which
portion of the character string the function returns. You can specify a positive or
negative number for the start position. A start position of 1 specifies that the
SUBSTRING function begins from the first position in the string. When the start
position is zero (0) or a negative number, the SUBSTRING function counts
backward from the beginning of the string.

The following query shows an example of the SUBSTRING function, which
returns the first four characters for any sname column values that the query

SELECT stock_num, REPLACE(unit,"each", "item") cost_per, unit_price
FROM stock
WHERE manu_code = "HRO";

Figure 4-62. Query

stock_num cost_per unit_price

1 case $250.00
2 case $126.00
4 case $480.00
7 case $600.00
110 case $260.00
205 case $312.00
301 item $42.50
302 item $4.50
304 box $280.00
305 case $48.00
309 case $40.00
312 box $72.00

Figure 4-63. Query result

Chapter 4. Functions in SELECT statements 4-17

returns. In this example, the SUBSTRING function starts at the beginning of the
string and returns four characters counting forward from the start position.

In the following query, the SUBSTRING function specifies a start position of 6 but
does not specify the length. The function returns a character string that extends
from the sixth position to the end of the string.

In the following query, the SUBSTRING function returns only the first character
for any sname column value that the query returns. For the SUBSTRING function,
a start position of -2 counts backward three positions (0, -1, -2) from the start
position of the string (for a start position of 0, the function counts backward one
position from the beginning of the string).

The SUBSTR function

The SUBSTR function serves the same purpose as the SUBSTRING function, but
the syntax of the two functions differs.

To return a portion of a character string, specify the start position and length
(optional) to determine which portion of the character string the SUBSTR function
returns. The start position that you specify for the SUBSTR function can be a
positive or a negative number. However, the SUBSTR function treats a negative

SELECT sname, SUBSTRING(sname FROM 1 FOR 4) FROM state
WHERE code = "AZ";

Figure 4-64. Query

sname (expression)

Arizona Ariz

Figure 4-65. Query result

SELECT sname, SUBSTRING(sname FROM 6) FROM state
WHERE code = "WV";

Figure 4-66. Query

sname (expression)

West Virginia Virginia

Figure 4-67. Query result

SELECT sname, SUBSTRING(sname FROM -2 FOR 4) FROM state
WHERE code = "AZ";

Figure 4-68. Query

sname (expression)

Arizona A

Figure 4-69. Query result

4-18 IBM Informix Guide to SQL: Tutorial

number in the start position differently than does the SUBSTRING function. When
the start position is a negative number, the SUBSTR function counts backward
from the end of the character string, which depends on the length of the string, not
the character length of a word or visible characters that the string contains. The
SUBSTR function recognizes zero (0) or 1 in the start position as the first position
in the string.

The following query shows an example of the SUBSTR function that includes a
negative number for the start position. Given a start position of -15, the SUBSTR
function counts backward 15 positions from the end of the string to find the start
position and then returns the next five characters.

To use a negative number for the start position, you need to know the length of
the value that is evaluated. The sname column is defined as CHAR(15), so a
SUBSTR function that accepts an argument of type sname can use a start position
of 0, 1, or -15 for the function to return a character string that begins from the first
position in the string.

The following query returns the same result as Figure 4-70.

The LPAD function

Use the LPAD function to return a copy of a string that has been left padded with
a sequence of characters that are repeated as many times as necessary or truncated,
depending on the specified length of the padded portion of the string. Specify the
source string, the length of the string to be returned, and the character string to
serve as padding.

The data type of the source string and the character string that serves as padding
can be any data type that converts to VARCHAR or NVARCHAR.

The following query shows an example of the LPAD function with a specified
length of 21 bytes. Because the source string has a length of 15 bytes (sname is
defined as CHAR(15)), the LPAD function pads the first six positions to the left of
the source string.

SELECT sname, SUBSTR(sname, -15, 5) FROM state
WHERE code = "CA";

Figure 4-70. Query

sname (expression)

California Calif

Figure 4-71. Query result

SELECT sname, SUBSTR(sname, 1, 5) FROM state
WHERE code = "CA";

Figure 4-72. Query

SELECT sname, LPAD(sname, 21, "-")
FROM state
WHERE code = "CA" OR code = "AZ";

Figure 4-73. Query

Chapter 4. Functions in SELECT statements 4-19

The RPAD function

Use the RPAD function to return a copy of a string that has been right padded
with a sequence of characters that are repeated as many times as necessary or
truncated, depending on the specified length of the padded portion of the string.
Specify the source string, the length of the string to be returned, and the character
string to serve as padding.

The data type of the source string and the character string that serves as padding
can be any data type that converts to VARCHAR or NVARCHAR.

The following query shows an example of the RPAD function with a specified
length of 21 bytes. Because the source string has a length of 15 bytes (sname is
defined as CHAR(15)), the RPAD function pads the first six positions to the right
of the source string.

In addition to these functions, the LTRIM and RTRIM functions can return a value
that drops specified leading or trailing padding characters from their string
argument, and the ASCII function can return the numeric value of the codepoint
within the ASCII character set of the first character in its string argument. These
built-in functions for operations on string values are described in theIBM Informix
Guide to SQL: Syntax.

Other functions

You can also use the LENGTH, USER, CURRENT, SYSDATE, and TODAY
functions anywhere in an SQL expression that you would use a constant. In
addition, you can include the DBSERVERNAME function in a SELECT statement
to display the name of the database server where the current database resides.

You can use these functions to select an expression that consists entirely of constant
values or an expression that includes column data. In the first instance, the result
is the same for all rows of output.

sname (expression)

California ------California
Arizona ------Arizona

Figure 4-74. Query result

SELECT sname, RPAD(sname, 21, "-")
FROM state
WHERE code = "WV" OR code = "AZ";

Figure 4-75. Query

sname (expression)
West Virginia West Virginia ------
Arizona Arizona ------

Figure 4-76. Query result

4-20 IBM Informix Guide to SQL: Tutorial

In addition, you can use the HEX function to return the hexadecimal encoding of
an expression, the ROUND function to return the rounded value of an expression,
and the TRUNC function to return the truncated value of an expression. For more
information on the preceding functions, see the IBM Informix Guide to SQL: Syntax.

The LENGTH function

In the following query, the LENGTH function calculates the number of bytes in the
combined fname and lname columns for each row where the length of company is
greater than 15.

Although the LENGTH function might not be useful when you work with
DB-Access, it can be important to determine the string length for programs and
reports. The LENGTH function returns the clipped length of a CHARACTER or
VARCHAR string and the full number of bytes in a TEXT or BYTE string.

IBM Informix also supports the CHAR_LENGTH function, which returns the
number of logical characters in its string argument, rather than the number of
bytes. This function is useful in locales where a single logical character might
require more than a single byte of storage. For more information about the
CHAR_LENGTH function, see the IBM Informix Guide to SQL: Syntax and the IBM
Informix GLS User's Guide.

The USER function

Use the USER function when you want to define a restricted view of a table that
contains only rows that include your user ID. For information about how to create
views, see the IBM Informix Database Design and Implementation Guide and the
GRANT and CREATE VIEW statements in the IBM Informix Guide to SQL: Syntax.

The following query returns the user name (login account name) of the user who
executes the query. It is repeated once for each row in the table.

SELECT customer_num,
LENGTH (fname) + LENGTH (lname) namelength
FROM customer
WHERE LENGTH (company) > 15;

Figure 4-77. Query

customer_num namelength

101 11
105 13
107 11
112 14
115 11
118 10
119 10
120 10
122 12
124 11
125 10
126 12
127 10
128 11

Figure 4-78. Query result

Chapter 4. Functions in SELECT statements 4-21

If the user name of the current user is richc, the query retrieves only those rows in
the cust_calls table where user_id = richc.

The TODAY function

The TODAY function returns the current system date. If the following query is
issued when the current system date is July 10, 1998, it returns this one row.

The DBSERVERNAME and SITENAME functions

You can include the function DBSERVERNAME (or its synonym, SITENAME) in
a SELECT statement to find the name of the database server. You can query the
DBSERVERNAME for any table that has rows, including system catalog tables.

In the following query, you assign the label server to the DBSERVERNAME
expression and also select the tabid column from the systables system catalog

SELECT * FROM cust_calls
WHERE user_id = USER;

Figure 4-79. Query

customer_num 110
call_dtime 1998-07-07 10:24
user_id richc
call_code L
call_descr Order placed one month ago (6/7) not received.
res_dtime 1998-07-07 10:30
res_descr Checked with shipping (Ed Smith). Order sent yesterday-we

were waiting for goods from ANZ. Next time will call with
delay if necessary

customer_num 119
call_dtime 1998-07-01 15:00
user_id richc
call_code B
call_descr Bill does not reflect credit from previous order
res_dtime 1998-07-02 08:21
res_descr Spoke with Jane Akant in Finance. She found the error and is

sending new bill to customer

Figure 4-80. Query result

SELECT * FROM orders WHERE order_date = TODAY;

Figure 4-81. Query

order_num 1018
order_date 07/10/1998
customer_num 121
ship_instruct SW corner of Biltmore Mall
backlog n
po_num S22942
ship_date 07/13/1998
ship_weight 70.50
ship_charge $20.00
paid_date 08/06/1998

Figure 4-82. Query result

4-22 IBM Informix Guide to SQL: Tutorial

table. This table describes database tables, and tabid is the table identifier.

The WHERE clause restricts the numbers of rows displayed. Otherwise, the
database server name would be displayed once for each row of the systables table.

The HEX function

In the following query, the HEX function returns the hexadecimal format of two
columns in the customer table, as the result shows.

The DBINFO function

You can call the DBINFO function in a SELECT statement to find any of the
following information:
v The name of a dbspace corresponding to a tblspace number or expression
v The last SERIAL, SERIAL8 or BIGSERIAL value inserted into a table
v The number of rows processed by the SELECT, INSERT, DELETE, UPDATE,

MERGE, EXECUTE FUNCTION, EXECUTE PROCEDURE, or EXECUTE
ROUTINE statement

v The session ID of the current session
v The name of the current database to which the session is connected
v The name of the host computer on which the database server runs
v The type of operating system and the word length of the host computer

SELECT DBSERVERNAME server, tabid
FROM systables
WHERE tabid <= 4;

Figure 4-83. Query

server tabid

montague 1
montague 2
montague 3
montague 4

Figure 4-84. Query result

SELECT HEX (customer_num) hexnum, HEX (zipcode) hexzip
FROM customer;

Figure 4-85. Query

hexnum hexzip

0x00000065 0x00016F86
0x00000066 0x00016FA5
0x00000067 0x0001705F
0x00000068 0x00016F4A
0x00000069 0x00016F46
0x0000006A 0x00016F6F...

Figure 4-86. Query result

Chapter 4. Functions in SELECT statements 4-23

v The local time zone and the current date and time in Coordinated Universal
Time (UTC) format

v The DATETIME value corresponding to a specified integer column or to a
specified UTC time value (as an integer number of seconds since 1970-01-01
00:00:00+00:00)

v The exact version of the database server to which a client application is
connected, or a specified component of the full version string.

You can use the DBINFO function anywhere within SQL statements and within
SPL routines.

The following query shows how you might use the DBINFO function to find out
the name of the host computer on which the database server runs.

Without the FIRST 1 clause to restrict the values in the tabid, the host name of the
computer on which the database server runs would be repeated for each row of
the systables table. The following query shows how you might use the DBINFO
function to find out the complete version number and the type of the current
database server.

For more information about how to use the DBINFO function to find information
about your current database server, database session, or database, see the IBM
Informix Guide to SQL: Syntax.

The DECODE function

You can use the DECODE function to convert an expression of one value to
another value. The DECODE function has the following form:
DECODE(test, a, a_value, b, b_value, ..., n, n_value, exp_m)

The DECODE function returns a_value when a equals test, and returns b_value
when b equals test, and, in general, returns n_value when n equals test.

If several expressions match test, DECODE returns n_value for the first expression
found. If no expression matches test, DECODE returns exp_m; if no expression
matches test and there is no exp_m, DECODE returns NULL.

Restriction: The DECODE function does not support arguments of type TEXT or
BYTE.

Suppose an employee table exists that includes emp_id and evaluation columns.
Suppose also that execution of the following query on the employee table returns

SELECT FIRST 1 DBINFO(’dbhostname’) FROM systables;

Figure 4-87. Query

(constant)

lyceum

Figure 4-88. Query result

SELECT FIRST 1 DBINFO(’version’,’full’) FROM systables;

Figure 4-89. Query

4-24 IBM Informix Guide to SQL: Tutorial

the rows that the result shows.

In some cases, you might want to convert a set of values. For example, suppose
you want to convert the descriptive values of the evaluation column in the
preceding example to corresponding numeric values. The following query shows
how you might use the DECODE function to convert values from the evaluation
column to numeric values for each row in the employee table.

You can specify any data type for the arguments of the DECODE function
provided that the arguments meet the following requirements:
v The arguments test, a,b, ..., n all have the same data type or evaluate to a

common compatible data type.
v The arguments a_value, b_value, ..., n_value all have the same data type or

evaluate to a common compatible data type.

The NVL function

You can use the NVL function to convert an expression that evaluates to NULL to
a value that you specify. The NVL function accepts two arguments: the first
argument takes the name of the expression to be evaluated; the second argument
specifies the value that the function returns when the first argument evaluates to
NULL. If the first argument does not evaluate to NULL, the function returns the
value of the first argument. Suppose a student table exists that includes name and
address columns. Suppose also that execution of the following query on the
student table returns the rows that the result shows.

SELECT emp_id, evaluation FROM employee;

Figure 4-90. Query

emp_id evaluation

012233 great
012344 poor
012677 NULL
012288 good
012555 very good

Figure 4-91. Query result

SELECT emp_id, DECODE(evaluation, "poor", 0, "fair", 25, "good",
50, "very good", 75, "great", 100, -1) AS evaluation

FROM employee;

Figure 4-92. Query

emp_id evaluation

012233 100
012344 0
012677 -1
012288 50
012555 75...

Figure 4-93. Query result

Chapter 4. Functions in SELECT statements 4-25

The following query includes the NVL function, which returns a new value for
each row in the table where the address column contains a NULL value.

You can specify any data type for the arguments of the NVL function provided
that the two arguments evaluate to a common compatible data type.

If both arguments of the NVL function evaluate to NULL, the function returns
NULL.

IBM Informix also supports the NULLIF function, which resembles the NVL
function, but has different semantics. NULLIF returns NULL if its two arguments
are equal, or returns its first argument if its arguments are not equal. For more
information about the NULLIF function, see the IBM Informix Guide to SQL: Syntax.

SPL routines in SELECT statements

Previous examples in this chapter show SELECT statement expressions that consist
of column names, operators, and SQL functions. This section shows expressions
that contain an SPL routine call.

SPL routines contain special Stored Procedure Language (SPL) statements as well
as SQL statements. For more information on SPL routines, see Chapter 11, “Create
and use SPL routines,” on page 11-1.

IBM Informix allows you to write external routines in C and in Java. For more
information, see IBM Informix User-Defined Routines and Data Types Developer's
Guide.

SELECT name, address FROM student;

Figure 4-94. Query

name address

John Smith 333 Vista Drive
Lauren Collier 1129 Greenridge Street
Fred Frith NULL
Susan Jordan NULL

Figure 4-95. Query result

SELECT name, NVL(address, "address is unknown") AS address
FROM student;

Figure 4-96. Query

name address

John Smith 333 Vista Drive
Lauren Collier 1129 Greenridge Street
Fred Frith address is unknown
Susan Jordan address is unknown

Figure 4-97. Query result

4-26 IBM Informix Guide to SQL: Tutorial

When you include an SPL routine expression in a projection list, the SPL routine
must be one that returns a single value (one column of one row). For example, the
following statement is valid only if test_func() returns a single value:
SELECT col_a, test_func(col_b) FROM tab1

WHERE col_c = "Davis";

SPL routines that return more than a single value are not supported in the
Projection clause of SELECT statements. In the preceding example, if test_func()
returns more than one value, the database server returns an error message.

SPL routines provide a way to extend the range of functions available by allowing
you to perform a subquery on each row you select.

For example, suppose you want a listing of the customer number, the customer's
last name, and the number of orders the customer has made. The following query
shows one way to retrieve this information. The customer table has customer_num
and lname columns but no record of the number of orders each customer has
made. You could write a get_orders routine, which queries the orders table for
each customer_num and returns the number of corresponding orders (labeled
n_orders).

The result shows the output from this SPL routine.

Use SPL routines to encapsulate operations that you frequently perform in your
queries. For example, the condition in the following query contains a routine,
conv_price, that converts the unit price of a stock item to a different currency and
adds any import tariffs.

SELECT customer_num, lname, get_orders(customer_num) n_orders
FROM customer;

Figure 4-98. Query

customer_num lname n_orders

101 Pauli 1
102 Sadler 9
103 Currie 9
104 Higgins 4

...
123 Hanlon 1
124 Putnum 1
125 Henry 0
126 Neelie 1
127 Satifer 1
128 Lessor 0

Figure 4-99. Query result

SELECT stock_num, manu_code, description FROM stock
WHERE conv_price(unit_price, ex_rate = 1.50,
tariff = 50.00) < 1000;

Figure 4-100. Query

Chapter 4. Functions in SELECT statements 4-27

Data encryption functions

You can use the SET ENCRYPTION PASSWORD statement with built-in SQL
encryption functions that use Advanced Encryption Standard (AES) and Triple DES
(3DES) encryption to secure your sensitive data. When you use encryption, only
those users who have the correct password will be able to read, copy, or modify
the data.

Use the SET ENCRYPTION PASSWORD statement with the following built-in
encryption and decryption functions:
v ENCRYPT_AES

ENCRYPT_AES(data-string-expression
[, password-string-expression [, hint-string-expression]])

v ENCRYPT_TDES
ENCRYPT_TDES (data-string-expression
[, password-string-expression [, hint-string-expression]])

v DECRYPT_CHAR
DECRYPT_CHAR(EncryptedData [, PasswordOrPhrase])

v DECRYPT_BINARY
DECRYPT_BINARY(EncryptedData [, PasswordOrPhrase])

v GETHINT
GETHINT(EncryptedData)

If you have used the SET ENCRYPTION PASSWORD statement to specify a
default password, then the database server applies that password in subsequent
calls to encryption and decryption functions that you invoke in the same session.

Use ENCRYPT_AES and ENCRYPT_TDES to define encrypted data and use
DECRYPT_CHAR and DECRYPT_BINARY to query encrypted data. Use
GETHINT to display the password hint string, if set, on the server.

You can use these SQL built-in functions to implement column-level or cell-level
encryption.
v Use column-level encryption to encrypt all values in a given column with the

same password.
v Use cell-level encryption to encrypt data within the column with different

passwords.

Tip: If you intend to select encrypted data from a large table, specify an
unencrypted column on which to select the rows. You can create indexes or
foreign-key constraints on columns that contain encrypted data, but to do so is an
inefficient use of resources, because such indexes and foreign-key constraints are
not used by the query optimizer.

Using column-level data encryption to secure credit card data

The following example uses column-level encryption to secure credit card data.

To use column-level data encryption to secure credit card data:
1. Create the table: create table customer (id char(30), creditcard

lvarchar(67));

2. Insert the encryption data:

4-28 IBM Informix Guide to SQL: Tutorial

a. Set session password: SET ENCRYPTION PASSWORD "credit card number is
encrypted";

b. Encrypt data.
INSERT INTO customer VALUES

("Alice", encrypt_aes("1234567890123456"));
INSERT INTO customer VALUES

("Bob", encrypt_aes("2345678901234567"));

3. Query encryption data with decryption function.
SET ENCRYPTION PASSWORD "credit card number is encrypted";
SELECT id FROM customer

WHERE DECRYPT_CHAR(creditcard) = "2345678901234567";

Important: Encrypted data values occupy more storage space than the
corresponding unencrypted data. A column whose width is sufficient to store plain
text might need to be increased before it can support column-level encryption or
cell-level encryption. If you attempt to insert an encrypted value into a column
whose declared width is shorter than the encrypted string, the column stores a
truncated value that cannot be decrypted.

For more information on encryption security, see IBM Informix Administrator's
Guide.

For more information on the syntax and storage requirements of built-in
encryption and decryption functions, see IBM Informix Guide to SQL: Syntax.

Summary

This chapter introduced sample syntax and results for functions in basic SELECT
statements to query a relational database and to manipulate the returned data.
“Functions in SELECT statements” on page 4-1 shows how to perform the
following actions:
v Use the aggregate functions in the Projection clause to calculate and retrieve

specific data.
v Include the time functions DATE, DAY, MDY, MONTH, WEEKDAY, YEAR,

CURRENT, and EXTEND plus the TODAY, LENGTH, and USER functions in
your SELECT statements.

v Use conversion functions in the SELECT clause to convert between date and
character values.

v Use string-manipulation functions in the SELECT clause to convert between
upper and lower case letters or to manipulate character strings in various ways.

“SPL routines in SELECT statements” on page 4-26 shows how to include SPL
routines in your SELECT statements.

“Data encryption functions” on page 4-28 shows how the use of the SET
ENCRYPTION statement and built-in encryption and decryption functions can
prevent users who cannot provide a password from viewing or modifying
sensitive data.

Chapter 4. Functions in SELECT statements 4-29

4-30 IBM Informix Guide to SQL: Tutorial

Chapter 5. Compose advanced SELECT statements

This section increases the scope of what you can do with the SELECT statement
and enables you to perform more complex database queries and data
manipulation. Chapter 2, “Compose SELECT statements,” on page 2-1, focused on
five of the clauses in the SELECT statement syntax. This section adds the GROUP
BY clause and the HAVING clause. You can use the GROUP BY clause with
aggregate functions to organize rows returned by the FROM clause. You can
include a HAVING clause to place conditions on the values that the GROUP BY
clause returns.

This section also extends the earlier discussion of joins. It illustrates self-joins,
which enable you to join a table to itself, and four kinds of outer joins, in which
you apply the keyword OUTER to treat two or more joined tables unequally. It
also introduces correlated and uncorrelated subqueries and their operational
keywords, shows how to combine queries with the UNION operator, and defines
the set operations known as union, intersection, and difference.

Examples in this section show how to use some or all of the SELECT statement
clauses in your queries. The clauses must appear in the following order:
1. Projection
2. FROM
3. WHERE
4. GROUP BY
5. HAVING
6. ORDER BY
7. INTO TEMP

For an example of a SELECT statement that uses all these clauses in the correct
order, see Figure 5-15 on page 5-6.

An additional SELECT statement clause, INTO, which you can use to specify
program and host variables in SQL APIs, is described in Chapter 8, “SQL
programming,” on page 8-1, as well as in the publications that come with the
product.

This section also describes nested SELECT statements, in which subqueries are
specified within the Projection, FROM, or WHERE clauses of the main query. Other
sections show how SELECT statements can define and manipulate collections, and
how to perform set operations on query results.

The GROUP BY and HAVING clauses
The optional GROUP BY and HAVING clauses add functionality to your SELECT
statement. You can include one or both in a basic SELECT statement to increase
your ability to manipulate aggregates.

The GROUP BY clause combines similar rows, producing a single result row for
each group of rows that have the same values, for each column listed in the
Projection clause. The HAVING clause sets conditions on those groups after you

© Copyright IBM Corp. 1996, 2010 5-1

form them. You can use a GROUP BY clause without a HAVING clause, or a
HAVING clause without a GROUP BY clause.

The GROUP BY clause

The GROUP BY clause divides a table into sets. This clause is most often combined
with aggregate functions that produce summary values for each of those sets.
Some examples in Chapter 2, “Compose SELECT statements,” on page 2-1 show
the use of aggregate functions applied to a whole table. This section illustrates
aggregate functions applied to groups of rows.

Using the GROUP BY clause without aggregates is much like using the DISTINCT
(or UNIQUE) keyword in the SELECT clause. The following query is described in
“Select specific columns” on page 2-10.

You could also write the statement as the following query shows.

Figure 5-1 and Figure 5-2 return the following rows.

The GROUP BY clause collects the rows into sets so that each row in each set has
the same customer numbers. With no other columns selected, the result is a list of
the unique customer_num values.

The power of the GROUP BY clause is more apparent when you use it with
aggregate functions.

The following query retrieves the number of items and the total price of all items
for each order.

SELECT DISTINCT customer_num FROM orders;

Figure 5-1. Query

SELECT customer_num FROM orders
GROUP BY customer_num;

Figure 5-2. Query

customer_num

101
104
106
110

...
124
126
127

Figure 5-3. Query result

SELECT order_num, COUNT (*) number, SUM (total_price) price
FROM items
GROUP BY order_num;

Figure 5-4. Query

5-2 IBM Informix Guide to SQL: Tutorial

The GROUP BY clause causes the rows of the items table to be collected into
groups, each group composed of rows that have identical order_num values (that
is, the items of each order are grouped together). After the database server forms
the groups, the aggregate functions COUNT and SUM are applied within each
group.

Figure 5-4 on page 5-2 returns one row for each group. It uses labels to give names
to the results of the COUNT and SUM expressions, as the result shows.

The result collects the rows of the items table into groups that have identical order
numbers and computes the COUNT of rows in each group and the SUM of the
prices.

You cannot include a TEXT, BYTE, CLOB, or BLOB column in a GROUP BY clause.
To group, you must be able to sort, and no natural sort order exists for these data
types.

Unlike the ORDER BY clause, the GROUP BY clause does not order data. Include
an ORDER BY clause after your GROUP BY clause if you want to sort data in a
particular order or sort on an aggregate in the projection list.

The following query is the same as Figure 5-4 on page 5-2 but includes an ORDER
BY clause to sort the retrieved rows in ascending order of price, as the result
shows.

order_num number price

1001 1 $250.00
1002 2 $1200.00
1003 3 $959.00
1004 4 $1416.00

...
1021 4 $1614.00
1022 3 $232.00
1023 6 $824.00

Figure 5-5. Query result

SELECT order_num, COUNT(*) number, SUM (total_price) price
FROM items
GROUP BY order_num
ORDER BY price;

Figure 5-6. Query

Chapter 5. Compose advanced SELECT statements 5-3

The topic “Select specific columns” on page 2-10 describes how to use an integer in
an ORDER BY clause to indicate the position of a column in the projection list. You
can also use an integer in a GROUP BY clause to indicate the position of column
names or display labels in the GROUP BY list.

The following query returns the same rows as Figure 5-6 on page 5-3 shows.

When you build a query, all non-aggregate columns that are in the projection list in
the Projection clause must also be included in the GROUP BY clause. A SELECT
statement with a GROUP BY clause must return only one row per group. Columns
that are listed after GROUP BY are certain to reflect only one distinct value within
a group, and that value can be returned. However, a column not listed after
GROUP BY might contain different values in the rows that are contained in the
group.

The following query shows how to use the GROUP BY clause in a SELECT
statement that joins tables.

The query joins the orders and items tables, assigns table aliases to them, and
returns the rows.

order_num number price

1010 2 $84.00
1011 1 $99.00
1013 4 $143.80
1022 3 $232.00
1001 1 $250.00
1020 2 $438.00
1006 5 $448.00

...
1002 2 $1200.00
1004 4 $1416.00
1014 2 $1440.00
1019 1 $1499.97
1021 4 $1614.00
1007 5 $1696.00

Figure 5-7. Query result

SELECT order_num, COUNT(*) number, SUM (total_price) price
FROM items
GROUP BY 1
ORDER BY 3;

Figure 5-8. Query

SELECT o.order_num, SUM (i.total_price)
FROM orders o, items i
WHERE o.order_date > ’01/01/98’

AND o.customer_num = 110
AND o.order_num = i.order_num

GROUP BY o.order_num;

Figure 5-9. Query

5-4 IBM Informix Guide to SQL: Tutorial

The HAVING clause

To complement a GROUP BY clause, use a HAVING clause to apply one or more
qualifying conditions to groups after they are formed. The effect of the HAVING
clause on groups is similar to the way the WHERE clause qualifies individual
rows. One advantage of using a HAVING clause is that you can include aggregates
in the search condition, whereas you cannot include aggregates in the search
condition of a WHERE clause.

Each HAVING condition compares one column or aggregate expression of the
group with another aggregate expression of the group or with a constant. You can
use HAVING to place conditions on both column values and aggregate values in
the group list.

The following query returns the average total price per item on all orders that have
more than two items. The HAVING clause tests each group as it is formed and
selects those that are composed of more than two rows.

If you use a HAVING clause without a GROUP BY clause, the HAVING condition
applies to all rows that satisfy the search condition. In other words, all rows that
satisfy the search condition make up a single group.

order_num (sum)

1008 $940.00
1015 $450.00

Figure 5-10. Query result

SELECT order_num, COUNT(*) number, AVG (total_price) average
FROM items
GROUP BY order_num
HAVING COUNT(*) > 2;

Figure 5-11. Query

order_num number average

1003 3 $319.67
1004 4 $354.00
1005 4 $140.50
1006 5 $89.60
1007 5 $339.20
1013 4 $35.95
1016 4 $163.50
1017 3 $194.67
1018 5 $226.20
1021 4 $403.50
1022 3 $77.33
1023 6 $137.33

Figure 5-12. Query result

Chapter 5. Compose advanced SELECT statements 5-5

The following query, a modified version of Figure 5-11 on page 5-5, returns just
one row, the average of all total_price values in the table, as the result shows.

If Figure 5-13, like Figure 5-11 on page 5-5, had included the non-aggregate column
order_num in the Projection clause, you would have to include a GROUP BY
clause with that column in the group list. In addition, if the condition in the
HAVING clause was not satisfied, the output would show the column heading and
a message would indicate that no rows were found.

The following query contains all the SELECT statement clauses that you can use in
the IBM Informix version of interactive SQL (the INTO clause that names host
variables is available only in an SQL API).

The query joins the orders and items tables; employs display labels, table aliases,
and integers that are used as column indicators; groups and orders the data; and
puts the results in a temporary table, as the result shows.

SELECT AVG (total_price) average
FROM items
HAVING count(*) > 2;

Figure 5-13. Query

average

$270.97

Figure 5-14. Query result

SELECT o.order_num, SUM (i.total_price) price,
paid_date - order_date span

FROM orders o, items i
WHERE o.order_date > ’01/01/98’

AND o.customer_num > 110
AND o.order_num = i.order_num

GROUP BY 1, 3
HAVING COUNT (*) < 5
ORDER BY 3
INTO TEMP temptab1;

Figure 5-15. Query

order_num price span

1017 $584.00
1016 $654.00
1012 $1040.00
1019 $1499.97 26
1005 $562.00 28
1021 $1614.00 30
1022 $232.00 40
1010 $84.00 66
1009 $450.00 68
1020 $438.00 71

Figure 5-16. Query result

5-6 IBM Informix Guide to SQL: Tutorial

Create advanced joins

The topic “Create a join” on page 2-41 shows how to include a WHERE clause in a
SELECT statement to join two or more tables on one or more columns. It illustrates
natural joins and equi-joins.

This section discusses how to use two more complex kinds of joins, self-joins and
outer joins. As described for simple joins, you can define aliases for tables and
assign display labels to expressions to shorten your multiple-table queries. You can
also issue a SELECT statement with an ORDER BY clause that sorts data into a
temporary table.

Self-joins

A join does not always have to involve two different tables. You can join a table to
itself, creating a self-join. Joining a table to itself can be useful when you want to
compare values in a column to other values in the same column.

To create a self-join, list a table twice in the FROM clause, and assign it a different
alias each time. Use the aliases to refer to the table in the Projection and WHERE
clauses as if it were two separate tables. (Aliases in SELECT statements are
discussed in “Aliases” on page 2-47 and in the IBM Informix Guide to SQL: Syntax.)

Just as in joins between tables, you can use arithmetic expressions in self-joins. You
can test for null values, and you can use an ORDER BY clause to sort the values in
a specified column in ascending or descending order.

The following query finds pairs of orders where the ship_weight differs by a
factor of five or more and the ship_date is not null. The query then orders the data
by ship_date.

Table 5-1. Query result

order_num ship_weight ship_date order_num ship_weight ship_date

1004 95.80 05/30/1998 1011 10.40 07/03/1998

1004 95.80 05/30/1998 1020 14.00 07/16/1998

1004 95.80 05/30/1998 1022 15.00 07/30/1998

1007 125.90 06/05/1998 1015 20.60 07/16/1998

1007 125.90 06/05/1998 1020 14.00 07/16/1998

If you want to store the results of a self-join into a temporary table, append an
INTO TEMP clause to the SELECT statement and assign display labels to at least
one set of columns to rename them. Otherwise, the duplicate column names cause
an error and the temporary table is not created.

SELECT x.order_num, x.ship_weight, x.ship_date,
y.order_num, y.ship_weight, y.ship_date

FROM orders x, orders y
WHERE x.ship_weight >= 5 * y.ship_weight

AND x.ship_date IS NOT NULL
AND y.ship_date IS NOT NULL

ORDER BY x.ship_date;

Figure 5-17. Query

Chapter 5. Compose advanced SELECT statements 5-7

The following query, which is similar to Figure 5-17 on page 5-7, labels all columns
selected from the orders table and puts them in a temporary table called shipping.

If you query with SELECT * from table shipping, you see the following rows.

You can join a table to itself more than once. The maximum number of self-joins
depends on the resources available to you.

The self-join in the following query creates a list of those items in the stock table
that are supplied by three manufacturers. The self-join includes the last two
conditions in the WHERE clause to eliminate duplicate manufacturer codes in rows
that are retrieved.

SELECT x.order_num orders1, x.po_num purch1,
x.ship_date ship1, y.order_num orders2,
y.po_num purch2, y.ship_date ship2

FROM orders x, orders y
WHERE x.ship_weight >= 5 * y.ship_weight

AND x.ship_date IS NOT NULL
AND y.ship_date IS NOT NULL

ORDER BY orders1, orders2
INTO TEMP shipping;

Figure 5-18. Query

orders1 purch1 ship1 orders2 purch2 ship2

1004 8006 05/30/1998 1011 B77897 07/03/1998
1004 8006 05/30/1998 1020 W2286 07/16/1998
1004 8006 05/30/1998 1022 W9925 07/30/1998
1005 2865 06/09/1998 1011 B77897 07/03/1998

...
1019 Z55709 07/16/1998 1020 W2286 07/16/1998
1019 Z55709 07/16/1998 1022 W9925 07/30/1998
1023 KF2961 07/30/1998 1011 B77897 07/03/1998

Figure 5-19. Query result

SELECT s1.manu_code, s2.manu_code, s3.manu_code,
s1.stock_num, s1.description

FROM stock s1, stock s2, stock s3
WHERE s1.stock_num = s2.stock_num

AND s2.stock_num = s3.stock_num
AND s1.manu_code < s2.manu_code
AND s2.manu_code < s3.manu_code

ORDER BY stock_num;

Figure 5-20. Query

5-8 IBM Informix Guide to SQL: Tutorial

If you want to select rows from a payroll table to determine which employees earn
more than their manager, you might construct the self-join as the following
SELECT statement shows:
SELECT emp.employee_num, emp.gross_pay, emp.level,

emp.dept_num, mgr.employee_num, mgr.gross_pay,
mgr.dept_num, mgr.level

FROM payroll emp, payroll mgr
WHERE emp.gross_pay > mgr.gross_pay

AND emp.level < mgr.level
AND emp.dept_num = mgr.dept_num

ORDER BY 4;

The following query uses a correlated subquery to retrieve and list the 10
highest-priced items ordered.

The query returns the 10 rows.

manu_code manu_code manu_code stock_num description

HRO HSK SMT 1 baseball gloves
ANZ NRG SMT 5 tennis racquet
ANZ HRO HSK 110 helmet
ANZ HRO PRC 110 helmet
ANZ HRO SHM 110 helmet
ANZ HSK PRC 110 helmet
ANZ HSK SHM 110 helmet
ANZ PRC SHM 110 helmet
HRO HSK PRC 110 helmet
HRO HSK SHM 110 helmet
HRO PRC SHM 110 helmet...
KAR NKL PRC 301 running shoes
KAR NKL SHM 301 running shoes
KAR PRC SHM 301 running shoes
NKL PRC SHM 301 running shoes

Figure 5-21. Query result

SELECT order_num, total_price
FROM items a
WHERE 10 >

(SELECT COUNT (*)
FROM items b
WHERE b.total_price < a.total_price)

ORDER BY total_price;

Figure 5-22. Query

Chapter 5. Compose advanced SELECT statements 5-9

You can create a similar query to find and list the 10 employees in the company
who have the most seniority.

For more information about correlated subqueries, refer to “Subqueries in SELECT
statements” on page 5-17.

Outer joins

This section shows how to create and use outer joins in a SELECT statement.
“Create a join” on page 2-41 discusses inner joins. Whereas an inner join treats two
or more joined tables equally, an outer join treats two or more joined tables
asymmetrically. An outer join makes one of the tables dominant (also called the
outer table) over the other subordinate tables (also called inner tables).

In an inner join or in a simple join, the result contains only the combinations of
rows that satisfy the join conditions. Rows that do not satisfy the join conditions
are discarded.

In an outer join, the result contains the combinations of rows that satisfy the join
conditions and the rows from the dominant table that would otherwise be
discarded because no matching row was found in the subordinate table. The rows
from the dominant table that do not have matching rows in the subordinate table
contain NULL values in the columns selected from the subordinate table.

An outer join allows you to apply join filters to the inner table before the join
condition is applied.

Earlier versions of the database server supported only the IBM Informix extension
to the ANSI-SQL standard syntax for outer joins. This syntax is still supported.
However, the ANSI-SQL standard syntax provides for more flexibility with creating
queries. It is recommended that you use the ANSI-SQL standard syntax to create
new queries. Whichever form of syntax you use, you must use it for all outer joins
in a single query block.

Before you rely on outer joins, determine whether one or more inner joins can
work. You can often use an inner join when you do not need supplemental
information from other tables.

Restriction: You cannot combine IBM Informix and ANSI outer-join syntax in the
same query block.

order_num total_price

1018 $15.00
1013 $19.80
1003 $20.00
1005 $36.00
1006 $36.00
1013 $36.00
1010 $36.00
1013 $40.00
1022 $40.00
1023 $40.00

Figure 5-23. Query result

5-10 IBM Informix Guide to SQL: Tutorial

For information on the syntax of outer joins, see the IBM Informix Guide to SQL:
Syntax.

IBM Informix extension to outer join syntax

The IBM Informix extension to outer-join syntax begins an outer join with the
OUTER keyword. When you use the Informix syntax, you must include the join
condition in the WHERE clause. When you use the Informix syntax for an outer
join, the database server supports the following three basic types of outer joins:
v A simple outer join on two tables
v An outer join for a simple join to a third table
v An outer join of two tables to a third table

An outer join must have a Projection clause, a FROM clause, and a WHERE clause.
The join conditions are expressed in a WHERE clause. To transform a simple join
into an outer join, insert the keyword OUTER directly before the name of the
subordinate tables in the FROM clause. As shown later in this section, you can
include the OUTER keyword more than once in your query.

No IBM Informix extension to outer-join syntax is equivalent to the ANSI right
outer join.

ANSI join syntax

The following ANSI joins are supported:
v Left outer join
v Right outer join

The ANSI outer-join syntax begins an outer join with the LEFT JOIN, LEFT
OUTER JOIN, RIGHT JOIN, or RIGHT OUTER JOIN keywords. The OUTER
keyword is optional. Queries can specify a join condition and optional join filters
in the ON clause. The WHERE clause specifies a post-join filter. In addition, you
can explicitly specify the type of join using the LEFT or right clause. ANSI join
syntax also allows the dominant or subordinate part of an outer join to be the
result set of another join, when you begin the join with a left parenthesis.

If you use ANSI syntax for an outer join, you must use the ANSI syntax for all
outer joins in a single query block.

Tip: The examples in this section use table aliases for brevity. “Aliases” on page
2-47 discusses table aliases.

Left outer join
In the syntax of a left outer join, the dominant table of the outer join appears to
the left of the keyword that begins the outer join. A left outer join returns all of the
rows for which the join condition is true and, in addition, returns all other rows
from the dominant table and displays the corresponding values from the
subservient table as NULL.

The following query uses ANSI syntax LEFT OUTER JOIN to achieve the same
results as Figure 5-30 on page 5-14, which uses the IBM Informix outer-join syntax:

Chapter 5. Compose advanced SELECT statements 5-11

In this example, you can use the ON clause to specify the join condition. You can
add an additional filter in the WHERE clause to limit your result set; such a filter
is a post-join filter.

The following query returns only rows in which customers have not made any
calls to customer service. In this query, the database server applies the filter in the
WHERE clause after it performs the outer join on the customer_num column of the
customer and cust_calls tables.

In addition to the previous examples, the following examples show various types
of query constructions that are available with ANSI join syntax:
SELECT *
FROM (t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)

ON t1.c1=t3.c1) JOIN (t4 LEFT OUTER JOIN t5 ON t4.c1=t5.c1)
ON t1.c1=t4.c1;

SELECT *
FROM (t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)

ON t1.c1=t3.c1),
(t4 LEFT OUTER JOIN t5 ON t4.c1=t5.c1)
WHERE t1.c1 = t4.c1;

SELECT *
FROM (t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)

ON t1.c1=t3.c1) LEFT OUTER JOIN (t4 JOIN t5 ON t4.c1=t5.c1)
ON t1.c1=t4.c1;

SELECT *
FROM t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)

ON t1.c1=t2.c1;

SELECT *
FROM t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)

ON t1.c1=t3.c1;

SELECT *
FROM (t1 LEFT OUTER JOIN t2 ON t1.c1=t2.c1)

LEFT OUTER JOIN t3 ON t2.c1=t3.c1;

SELECT *
FROM (t1 LEFT OUTER JOIN t2 ON t1.c1=t2.c1)

LEFT OUTER JOIN t3 ON t1.c1=t3.c1;

SELECT *
FROM t9, (t1 LEFT JOIN t2 ON t1.c1=t2.c1),

(t3 LEFT JOIN t4 ON t3.c1=10), t10, t11,
(t12 LEFT JOIN t14 ON t12.c1=100);

SELECT * FROM
((SELECT c1,c2 FROM t3) AS vt3(v31,v32)

SELECT c.customer_num, c.lname, c.company, c.phone,
u.call_dtime, u.call_descr

FROM customer c LEFT OUTER JOIN cust_calls u
ON c.customer_num = u.customer_num;

Figure 5-24. Query

SELECT c.customer_num, c.lname, c.company, c.phone,
u.call_dtime, u.call_descr
FROM customer c LEFT OUTER JOIN cust_calls u
ON c.customer_num = u.customer_num
WHERE u.customer_num IS NULL;

Figure 5-25. Query

5-12 IBM Informix Guide to SQL: Tutorial

LEFT OUTER JOIN
((SELECT c1,c2 FROM t1) AS vt1(vc1,vc2)
LEFT OUTER JOIN
(SELECT c1,c2 FROM t2) AS vt2(vc3,vc4)
ON vt1.vc1 = vt2.vc3)

ON vt3.v31 = vt2.vc3);

The last example above illustrates joins on derived tables. It specifies a left outer
join on the results of a subquery in the FROM clause of the outer query with the
results of another left outer join on two other subquery results. See the section
“Subqueries in the FROM clause” on page 5-20 for less complex examples of the
ANSI-compliant syntax for subqueries.

Right outer join
In the syntax of a right outer join, the dominant table of the outer join appears to
the right of the keyword that begins the outer join. A right outer join returns all of
the rows for which the join condition is true and, in addition, returns all other
rows from the dominant table and displays the corresponding values from the
subservient table as NULL.

The following query is an example of a right outer join on the customer and
orders tables.

The query returns all rows from the dominant table orders and, as necessary,
displays the corresponding values from the subservient table customer as NULL.

Simple join

The following query is an example of a simple join on the customer and cust_calls
tables.

The query returns only those rows in which the customer has made a call to
customer service, as the result shows.

SELECT c.customer_num, c.fname, c.lname, o.order_num,
o.order_date, o.customer_num
FROM customer c RIGHT OUTER JOIN orders o
ON (c.customer_num = o.customer_num);

Figure 5-26. Query

customer_num fname lname order_num order_date customer_num
104 Anthony Wiggins 1001 05/30/1998 104
101 Ludwig Pauli 1002 05/30/1998 101
104 Anthony Wiggins 1003 05/30/1998 104

<NULL> <NULL> <NULL> 1004 06/05/1998 106

Figure 5-27. Query result

SELECT c.customer_num, c.lname, c.company,
c.phone, u.call_dtime, u.call_descr

FROM customer c, cust_calls u
WHERE c.customer_num = u.customer_num;

Figure 5-28. Query

Chapter 5. Compose advanced SELECT statements 5-13

Simple outer join on two tables

The following query uses the same Projection clause, tables, and comparison
condition as the preceding example, but this time it creates a simple outer join in
IBM Informix extension syntax.

The addition of the keyword OUTER before the cust_calls table makes it the
subservient table. An outer join causes the query to return information on all
customers, whether or not they have made calls to customer service. All rows from
the dominant customer table are retrieved, and NULL values are assigned to
columns of the subservient cust_calls table, as the result shows.

customer_num 106
lname Watson
company Watson & Son
phone 415-389-8789
call_dtime 1998-06-12 08:20
call_descr Order was received, but two of the cans of

ANZ tennis balls within the case were empty...
customer_num 116
lname Parmelee
company Olympic City
phone 415-534-8822
call_dtime 1997-12-21 11:24
call_descr Second complaint from this customer! Received

two cases right-handed outfielder gloves (1 HRO)
instead of one case lefties.

Figure 5-29. Query result

SELECT c.customer_num, c.lname, c.company,
c.phone, u.call_dtime, u.call_descr

FROM customer c, OUTER cust_calls u
WHERE c.customer_num = u.customer_num;

Figure 5-30. Query

5-14 IBM Informix Guide to SQL: Tutorial

Outer join for a simple join to a third table

Using the IBM Informix syntax, the following query shows an outer join that is the
result of a simple join to a third table. This second type of outer join is known as a
nested simple join.

The query first performs a simple join on the orders and items tables, retrieving
information on all orders for items with a manu_code of KAR or SHM. It then
performs an outer join to combine this information with data from the dominant
customer table. An optional ORDER BY clause reorganizes the data into the
following form.

customer_num 101
lname Pauli
company All Sports Supplies
phone 408-789-8075
call_dtime
call_descr

customer_num 102
lname Sadler
company Sports Spot
phone 415-822-1289
call_dtime
call_descr...
customer_num 107
lname Ream
company Athletic Supplies
phone 415-356-9876
call_dtime
call_descr

customer_num 108
lname Quinn
company Quinn’s Sports
phone 415-544-8729
call_dtime
call_descr

Figure 5-31. Query result

SELECT c.customer_num, c.lname, o.order_num,
i.stock_num, i.manu_code, i.quantity

FROM customer c, OUTER (orders o, items i)
WHERE c.customer_num = o.customer_num

AND o.order_num = i.order_num
AND manu_code IN (’KAR’, ’SHM’)

ORDER BY lname;

Figure 5-32. Query

Chapter 5. Compose advanced SELECT statements 5-15

Outer join of two tables to a third table

Using the IBM Informix extension syntax, the following query shows an outer join
that is the result of an outer join of each of two tables to a third table. In this third
type of outer join, join relationships are possible only between the dominant table
and the subservient tables.

The query individually joins the subservient tables orders and cust_calls to the
dominant customer table; it does not join the two subservient tables. An INTO
TEMP clause selects the results into a temporary table for further manipulation or
queries, as the result shows.

If Figure 5-34 had tried to create a join condition between the two subservient
tables o and x, as the following query shows, an error message would indicate the
creation of a two-sided outer join.

customer_num lname order_num stock_num manu_code quantity

114 Albertson
118 Baxter
113 Beatty

...
105 Vector
121 Wallack 1018 302 KAR 3
106 Watson

Figure 5-33. Query result

SELECT c.customer_num, c.lname, o.order_num,
order_date, call_dtime

FROM customer c, OUTER orders o, OUTER cust_calls x
WHERE c.customer_num = o.customer_num

AND c.customer_num = x.customer_num
ORDER BY lname
INTO TEMP service;

Figure 5-34. Query

customer_num lname order_num order_date call_dtime

114 Albertson
118 Baxter
113 Beatty
103 Currie
115 Grant 1010 06/17/1998

...
117 Sipes 1012 06/18/1998
105 Vector
121 Wallack 1018 07/10/1998 1998-07-10 14:05
106 Watson 1004 05/22/1998 1998-06-12 08:20
106 Watson 1014 06/25/1998 1998-06-12 08:20

Figure 5-35. Query result

5-16 IBM Informix Guide to SQL: Tutorial

Joins that combine outer joins

To achieve multiple levels of nesting, you can create a join that employs any
combination of the three types of outer joins. Using the ANSI syntax, the following
query creates a join that is the result of a combination of a simple outer join on
two tables and a second outer join.

The query first performs an outer join on the orders and items tables, retrieving
information on all orders for items with a manu_code of KAR or SHM. It then
performs a second outer join that combines this information with data from the
dominant customer table.

You can specify the join conditions in two ways when you apply an outer join to
the result of an outer join to a third table. The two subservient tables are joined,
but you can join the dominant table to either subservient table without affecting
the results if the dominant table and the subservient table share a common
column.

Subqueries in SELECT statements

A subquery (the inner SELECT statement, where one SELECT statement is nested
within another) can return zero or more rows or expressions. Each subquery must
be delimited by parentheses, and must contain a Projection clause and a FROM
clause. A subquery can itself contain other subqueries, with the depth of nesting
limited only by the maximum length of 64 kilobytes for an SQL statement.

WHERE o.customer_num = x.customer_num

Figure 5-36. Query

SELECT c.customer_num, c.lname, o.order_num,
stock_num, manu_code, quantity

FROM customer c, OUTER (orders o, OUTER items i)
WHERE c.customer_num = o.customer_num

AND o.order_num = i.order_num
AND manu_code IN (’KAR’, ’SHM’)

ORDER BY lname;

Figure 5-37. Query

customer_num lname order_num stock_num manu_code quantity

114 Albertson
118 Baxter
113 Beatty
103 Currie
115 Grant 1010

...
117 Sipes 1012
117 Sipes 1007
105 Vector
121 Wallack 1018 302 KAR 3
106 Watson 1014
106 Watson 1004

Figure 5-38. Query result

Chapter 5. Compose advanced SELECT statements 5-17

The database server supports subqueries in the following contexts:
v A SELECT statement nested in the Projection clause of another SELECT

statement
v a SELECT statement nested in the WHERE clause of another SELECT statement
v a SELECT statement nested in the FROM clause of another SELECT statement.

You can also specify a subquery in various clauses of the INSERT, DELETE,
MERGE, or UPDATE statements where a subquery is valid.

Subqueries in the Projection clause or in the WHERE clause can be correlated or
uncorrelated. A subquery is correlated when the value that it produces depends on
a value produced by the outer SELECT statement that contains it. For more
information, see “Correlated subqueries.”

Any other kind of subquery is considered uncorrelated. Only uncorrelated
subqueries are valid in the FROM clause of the SELECT statement.

Correlated subqueries

A correlated subquery is a subquery that refers to a column of a table that is not
listed in its FROM clause. The column can be in the Projection clause or in the
WHERE clause. To find the table to which the correlated subquery refers, search
the columns until a correlation is found.

In general, correlated subqueries diminish performance. Use the table name or
alias in the subquery so that there is no doubt as to which table the column is in.

The database server will use the outer query to get values. For example, if the
table taba has the column col1 and table tabb has the column col2 and they
contain the following:
taba.col1 aa,bb,null
tabb.col2 bb, null

And the query is:
select * from taba where col1 in (select col1 from tabb);

Then the results might be meaningless. The database server will provide all values
in taba.col1 and then compare them to taba.col1 (outer query WHERE clause). This
will return all rows. You usually use the subquery to return column values from
the inner table. Had the query been written as:
select * from taba where col1 in (select tabb.col1 from tabb);

Then the error -217 column not found would have resulted.

The important feature of a correlated subquery is that, because it depends on a
value from the outer SELECT, it must be executed repeatedly, once for every value
that the outer SELECT produces. An uncorrelated subquery is executed only once.

Using subqueries to combine SELECT statements

You can construct a SELECT statement with a subquery to replace two separate
SELECT statements.

5-18 IBM Informix Guide to SQL: Tutorial

Subqueries in SELECT statements allow you to perform various tasks, including
the following actions:
v Compare an expression to the result of another SELECT statement
v Determine whether the results of another SELECT statement include a specific

expression
v Determine whether another SELECT statement returns any rows

An optional WHERE clause in a subquery is often used to narrow the search
condition.

A subquery selects and returns values to the first or outer SELECT statement. A
subquery can return no value, a single value, or a set of values, as follows:
v If a subquery returns no value, the query does not return any rows. Such a

subquery is equivalent to a NULL value.
v If a subquery returns one value, the value is in the form of either one aggregate

expression or exactly one row and one column. Such a subquery is equivalent to
a single number or character value.

v If a subquery returns a list or set of values, the values can represent one row or
one column.

v In the FROM clause of the outer query, a subquery can represent a set of rows
(sometimes called a derived table or a table expression).

Subqueries in a Projection clause

A subquery can occur in the Projection clause of another SELECT statement. The
following query shows how you might use a subquery in a Projection clause to
return the total shipping charges (from the orders table) for each customer in the
customer table. You could also write this query as a join between two tables.

SELECT customer.customer_num,
(SELECT SUM(ship_charge)

FROM orders
WHERE customer.customer_num = orders.customer_num)

AS total_ship_chg
FROM customer;

Figure 5-39. Query

customer_num total_ship_chg

101 $15.30
102
103
104 $38.00
105

...
123 $8.50
124 $12.00
125
126 $13.00
127 $18.00
128

Figure 5-40. Query result

Chapter 5. Compose advanced SELECT statements 5-19

Subqueries in the FROM clause

This topic describes subqueries that occur as nested SELECT statements in the
FROM clause of an outer SELECT statement. Such subqueries are sometimes called
derived tables or table expressions because the outer query uses the results of the
subquery as a data source.

The following query uses asterisk notation in the outer query to return the results
of a subquery that retrieves all fields of the address column in the employee table.

This illustrates how to specify a derived table, but it is a trivial example of this
syntax, because the outer query does not manipulate any values in the table
expression that the subquery in the FROM clause returns. (See Figure 3-15 on page
3-6 for a simple query that returns the same results.)

The following query is a more complex example in which the outer query selects
only the first qualifying row of a derived table that a subquery in the FROM clause
specifies as a simple join on the customer and cust_calls tables.

The query returns only those rows in which the customer has made a call to
customer service, as the result shows.

In the preceding example, the subquery includes an ORDER BY clause that
specifies a column that appears in Projection list of the subquery, but the query

SELECT * FROM (SELECT address.* FROM employee);

Figure 5-41. Query

address ROW(102 Ruby, Belmont, CA, 49932, 1000)
address ROW(133 First, San Jose, CA, 85744, 4900)
address ROW(152 Topaz, Willits, CA, 69445, 1000))...

Figure 5-42. Query result

SELECT LIMIT 1 * FROM
(SELECT c.customer_num, c.lname, c.company,

c.phone, u.call_dtime, u.call_descr
FROM customer c, cust_calls u
WHERE c.customer_num = u.customer_num

ORDER BY u.call_dtime DESC);

Figure 5-43. Query

customer_num 106
lname Watson
company Watson & Son
phone 415-389-8789
call_dtime 1998-06-12 08:20
call_descr Order was received, but two of the cans of

ANZ tennis balls within the case were empty

Figure 5-44. Query result

5-20 IBM Informix Guide to SQL: Tutorial

would also be valid if the Projection list had omitted the u.call_dtime column. The
FROM clause is the only context in which a subquery can specify the ORDER BY
clause.

Subqueries in WHERE clauses

This section describes subqueries that occur as a SELECT statement that is nested
in the WHERE clause of another SELECT statement.

You can use any relational operator with ALL and ANY to compare something to
every one of (ALL) or to any one of (ANY) the values that the subquery produces.
You can use the keyword SOME in place of ANY. The operator IN is equivalent to
= ANY. To create the opposite search condition, use the keyword NOT or a
different relational operator.

The EXISTS operator tests a subquery to see if it found any values; that is, it asks
if the result of the subquery is not null. You cannot use the EXISTS keyword in a
subquery that contains a column with a TEXT or BYTE data type.

For the syntax that you use to create a condition with a subquery, see the IBM
Informix Guide to SQL: Syntax.

The following keywords introduce a subquery in the WHERE clause of a SELECT
statement.

The ALL keyword

Use the keyword ALL preceding a subquery to determine whether a comparison is
true for every value returned. If the subquery returns no values, the search
condition is true. (If it returns no values, the condition is true of all the zero
values.)

The following query lists the following information for all orders that contain an
item for which the total price is less than the total price on every item in order
number 1023.

SELECT order_num, stock_num, manu_code, total_price
FROM items
WHERE total_price < ALL

(SELECT total_price FROM items
WHERE order_num = 1023);

Figure 5-45. Query

order_num stock_num manu_code total_price

1003 9 ANZ $20.00
1005 6 SMT $36.00
1006 6 SMT $36.00
1010 6 SMT $36.00
1013 5 ANZ $19.80
1013 6 SMT $36.00
1018 302 KAR $15.00

Figure 5-46. Query result

Chapter 5. Compose advanced SELECT statements 5-21

The ANY keyword

Use the keyword ANY (or its synonym SOME) before a subquery to determine
whether a comparison is true for at least one of the values returned. If the
subquery returns no values, the search condition is false. (Because no values exist,
the condition cannot be true for one of them.)

The following query finds the order number of all orders that contain an item for
which the total price is greater than the total price of any one of the items in order
number 1005.

Single-valued subqueries

You do not need to include the keyword ALL or ANY if you know the subquery
can return exactly one value to the outer-level query. A subquery that returns
exactly one value can be treated like a function. This kind of subquery often uses
an aggregate function because aggregate functions always return single values.

The following query uses the aggregate function MAX in a subquery to find the
order_num for orders that include the maximum number of volleyball nets.

SELECT DISTINCT order_num
FROM items
WHERE total_price > ANY

(SELECT total_price
FROM items
WHERE order_num = 1005);

Figure 5-47. Query

order_num

1001
1002
1003
1004

...
1020
1021
1022
1023

Figure 5-48. Query result

SELECT order_num FROM items
WHERE stock_num = 9

AND quantity =
(SELECT MAX (quantity)

FROM items
WHERE stock_num = 9);

Figure 5-49. Query

5-22 IBM Informix Guide to SQL: Tutorial

The following query uses the aggregate function MIN in the subquery to select
items for which the total price is higher than 10 times the minimum price.

Correlated subqueries

A correlated subquery is a subquery that refers to a column of a table that is not in
its FROM clause. The column can be in the Projection clause or in the WHERE
clause.

In general, correlated subqueries diminish performance. It is recommended that
you qualify the column name in subqueries with the name or alias of the table, in
order to remove any doubt regarding in which table the column resides.

The following query is an example of a correlated subquery that returns a list of
the 10 latest shipping dates in the orders table. It includes an ORDER BY clause
after the subquery to order the results because (except in the FROM clause) you
cannot include ORDER BY within a subquery.

The subquery is correlated because the number that it produces depends on
main.ship_date, a value that the outer SELECT produces. Thus, the subquery must
be re-executed for every row that the outer query considers.

order_num

1012

Figure 5-50. Query result

SELECT order_num, stock_num, manu_code, total_price
FROM items x
WHERE total_price >

(SELECT 10 * MIN (total_price)
FROM items
WHERE order_num = x.order_num);

Figure 5-51. Query

order_num stock_num manu_code total_price

1003 8 ANZ $840.00
1018 307 PRC $500.00
1018 110 PRC $236.00
1018 304 HRO $280.00

Figure 5-52. Query result

SELECT po_num, ship_date FROM orders main
WHERE 10 >

(SELECT COUNT (DISTINCT ship_date)
FROM orders sub
WHERE sub.ship_date < main.ship_date)

AND ship_date IS NOT NULL
ORDER BY ship_date, po_num;

Figure 5-53. Query

Chapter 5. Compose advanced SELECT statements 5-23

The query uses the COUNT function to return a value to the main query. The
ORDER BY clause then orders the data. The query locates and returns the 16 rows
that have the 10 latest shipping dates, as the result shows.

If you use a correlated subquery, such as Figure 5-53 on page 5-23, on a large table,
you should index the ship_date column to improve performance. Otherwise, this
SELECT statement is inefficient, because it executes the subquery once for every
row of the table. For information about indexing and performance issues, see the
IBM Informix Administrator's Guide and your IBM Informix Performance Guide.

You cannot use a correlated subquery in the FROM clause, however, as the
following invalid example illustrates:
SELECT item_num, stock_num FROM items,

(SELECT stock_num FROM catalog
WHERE stock_num = items.item_num) AS vtab;

The subquery in this example fails with error -24138:
ALL COLUMN REFERENCES IN A TABLE EXPRESSION MUST REFER
TO TABLES IN THE FROM CLAUSE OF THE TABLE EXPRESSION.

The database server issues this error because the items.item_num column in the
subquery also appears in the Projection clause of the outer query, but the FROM
clause of the inner query specifies only the catalog table. The term table expression
in the error message text refers to the set of column values or expressions that are
returned by a subquery in the FROM clause, where only uncorrelated subqueries
are valid.

The EXISTS keyword

The keyword EXISTS is known as an existential qualifier because the subquery is
true only if the outer SELECT, as the following query shows, finds at least one
row.

po_num ship_date

4745 06/21/1998
278701 06/29/1998
429Q 06/29/1998
8052 07/03/1998
B77897 07/03/1998
LZ230 07/06/1998
B77930 07/10/1998
PC6782 07/12/1998
DM354331 07/13/1998
S22942 07/13/1998
MA003 07/16/1998
W2286 07/16/1998
Z55709 07/16/1998
C3288 07/25/1998
KF2961 07/30/1998
W9925 07/30/1998

Figure 5-54. Query result

5-24 IBM Informix Guide to SQL: Tutorial

You can often construct a query with EXISTS that is equivalent to one that uses IN.
The following query uses an IN predicate to construct a query that returns the
same result as the query above.

Figure 5-55 and Figure 5-56 return rows for the manufacturers that produce a kind
of shoe, as well as the lead time for ordering the product. The result shows the
return values.

Add the keyword NOT to IN or to EXISTS to create a search condition that is the
opposite of the condition in the preceding queries. You can also substitute !=ALL
for NOT IN.

The following query shows two ways to do the same thing. One way might allow
the database server to do less work than the other, depending on the design of the
database and the size of the tables. To find out which query might be better, use
the SET EXPLAIN command to get a listing of the query plan. SET EXPLAIN is
discussed in your IBM Informix Performance Guide and IBM Informix Guide to SQL:
Syntax.

SELECT UNIQUE manu_name, lead_time
FROM manufact
WHERE EXISTS

(SELECT * FROM stock
WHERE description MATCHES ’*shoe*’

AND manufact.manu_code = stock.manu_code);

Figure 5-55. Query

SELECT UNIQUE manu_name, lead_time
FROM stock, manufact
WHERE manufact.manu_code IN

(SELECT manu_code FROM stock
WHERE description MATCHES ’*shoe*’)

AND stock.manu_code = manufact.manu_code;

Figure 5-56. Query

manu_name lead_time

Anza 5
Hero 4
Karsten 21
Nikolus 8
ProCycle 9
Shimara 30

Figure 5-57. Query result

SELECT customer_num, company FROM customer
WHERE customer_num NOT IN

(SELECT customer_num FROM orders
WHERE customer.customer_num = orders.customer_num);

SELECT customer_num, company FROM customer
WHERE NOT EXISTS

(SELECT * FROM orders
WHERE customer.customer_num = orders.customer_num);

Figure 5-58. Query

Chapter 5. Compose advanced SELECT statements 5-25

Each statement in the query above returns the following rows, which identify
customers who have not placed orders.

The keywords EXISTS and IN are used for the set operation known as intersection,
and the keywords NOT EXISTS and NOT IN are used for the set operation known
as difference. These concepts are discussed in “Set operations” on page 5-32.

The following query performs a subquery on the items table to identify all the
items in the stock table that have not yet been ordered.

The query returns the following rows.

No logical limit exists to the number of subqueries a SELECT statement can have,
but the size of any SQL statement as a character string is physically limited to 64
kilobytes. This limit is typically larger, however, than most queries that you are
likely to compose.

Perhaps you want to check whether information has been entered correctly in the
database. One way to find errors in a database is to write a query that returns
output only when errors exist. A subquery of this type serves as a kind of audit

customer_num company

102 Sports Spot
103 Phil’s Sports
105 Los Altos Sports
107 Athletic Supplies
108 Quinn’s Sports
109 Sport Stuff
113 Sportstown
114 Sporting Place
118 Blue Ribbon Sports
125 Total Fitness Sports
128 Phoenix University

Figure 5-59. Query result

SELECT * FROM stock
WHERE NOT EXISTS

(SELECT * FROM items
WHERE stock.stock_num = items.stock_num

AND stock.manu_code = items.manu_code);

Figure 5-60. Query

stock_num manu_code description unit_price unit unit_descr

101 PRC bicycle tires $88.00 box 4/box
102 SHM bicycle brakes $220.00 case 4 sets/case
102 PRC bicycle brakes $480.00 case 4 sets/case
105 PRC bicycle wheels $53.00 pair pair

...
312 HRO racer goggles $72.00 box 12/box
313 SHM swim cap $72.00 box 12/box
313 ANZ swim cap $60.00 box 12/box

Figure 5-61. Query result

5-26 IBM Informix Guide to SQL: Tutorial

query, as the following query shows.

The query returns only those rows for which the total price of an item on an order
is not equal to the stock unit price times the order quantity. If no discount has been
applied, such rows were probably entered incorrectly in the database. The query
returns rows only when errors occur. If information is correctly inserted into the
database, no rows are returned.

Subqueries in DELETE and UPDATE statements

Besides subqueries within the WHERE clause of a SELECT statement, you can use
subqueries within other data manipulation language (DML) statements, including
the WHERE clause of DELETE and UPDATE statements.

Certain restrictions apply. If the FROM clause of a subquery returns more than one
row, and the clause specifies the same table or view that the outer DML statement
is modifying, the DML operation will succeed under these circumstances:
v The DML statement is not an INSERT statement.
v No SPL routine within the subquery references the table that is being modified.
v The subquery does not include a correlated column name.
v The subquery is specified using the Condition with Subquery syntax in the

WHERE clause of the DELETE or UPDATE statement.

If any of these conditions are not met, the DML operation fails with error -360.

The following example updates the stock table by increasing the unit_price value
by 10% for a subset of prices. The WHERE clause specifies which prices to increase
by applying the IN operator to the rows returned by a subquery that selects only
the rows of the stock table where the unit_price value is less than 75.
UPDATE stock SET unit_price = unit_price * 1.1

WHERE unit_price IN
(SELECT unit_price FROM stock WHERE unit_price < 75);

Handle collections in SELECT statements
The database server provides the following SQL features to handle collection
expressions:

Collection subquery
A collection subquery takes a virtual table (the result of a subquery) and
converts it into a collection.

SELECT * FROM items
WHERE total_price != quantity *

(SELECT unit_price FROM stock
WHERE stock.stock_num = items.stock_num

AND stock.manu_code = items.manu_code);

Figure 5-62. Query

item_num order_num stock_num manu_code quantity total_price

1 1004 1 HRO 1 $960.00
2 1006 5 NRG 5 $190.00

Figure 5-63. Query result

Chapter 5. Compose advanced SELECT statements 5-27

A collection subquery always returns a collection of type MULTISET. You
can use a collection subquery to convert a Query result of relational data
into a MULTISET collection. For information about the collection data
types, see the IBM Informix Database Design and Implementation Guide.

Collection-derived table
A collection-derived table takes a collection and converts it into a virtual
table.

Each element of the collection is constructed as a row in the
collection-derived table. You can use a collection-derived table to access the
individual elements of a collection.

The collection subquery and collection-derived table features represent inverse
operations: the collection subquery converts row values from a relational table into
a collection whereas the collection-derived table converts the elements of a
collection into rows of a relational table.

Collection subqueries
A collection subquery enables users to construct a collection expression from a
subquery expression. A collection subquery uses the MULTISET keyword
immediately before the subquery to convert the values returned into a MULTISET
collection. When you use the MULTISET keyword before a subquery expression,
however, the database server does not change the rows of the underlying table but
only modifies a copy of those rows. For example, if a collection subquery is passed
to a user-defined routine that modifies the collection, then a copy of the collection
is modified but not the underlying table.

A collection subquery is an expression that can take either of the following forms:
MULTISET(SELECT expression1, expression2... FROM tab_name...)

MULTISET(SELECT ITEM expression FROM tab_name...)

Omit the ITEM keyword in a collection subquery

If you omit the ITEM keyword in the collection subquery expression, the collection
subquery is a MULTISET whose element type is always an unnamed ROW type.
The fields of the unnamed ROW type match the data types of the expressions
specified in the Projection clause of the subquery.

Suppose you create the following table that contains a column of type MULTISET:
CREATE TABLE tab2
(

id_num INT,
ms_col MULTISET(ROW(a INT) NOT NULL)

);

The following query shows how you might use a collection subquery in a WHERE
clause to convert the rows of INT values that the subquery returns to a collection
of type MULTISET. In this example, the database server returns rows when the
ms_col column of tab2 is equal to the result of the collection subquery expression

SELECT id_num FROM tab2
WHERE ms_col = (MULTISET(SELECT int_col FROM tab1));

Figure 5-64. Query

5-28 IBM Informix Guide to SQL: Tutorial

The query omits the ITEM keyword in the collection subquery, so the INT values
the subquery returns are of type MULTISET (ROW(a INT) NOT NULL) that
matches the data type of the ms_col column of tab2.

Specify the ITEM keyword in a collection subquery

When the projection list of the subquery contains a single expression, you can
preface the projection list of the subquery with the ITEM keyword to specify that
the element type of the MULTISET matches the data type of the subquery result. In
other words, when you include the ITEM keyword, the database server does not
put a row wrapper around the projection list. For example, if the subquery (that
immediately follows the MULTISET keyword) returns INT values, the collection
subquery is of type MULTISET(INT NOT NULL).

Suppose you create a function int_func() that accepts an argument of type
MULTISET(INT NOT NULL). The following query shows a collection subquery
that converts rows of INT values to a MULTISET and uses the collection subquery
as an argument in the function int_func().

The query includes the ITEM keyword in the subquery, so the int_col values that
the query returns are converted to a collection of type MULTISET (INT NOT
NULL). Without the ITEM keyword, the collection subquery would return a
collection of type MULTISET (ROW(a INT) NOT NULL).

Collection subqueries in the FROM clause

Collection subqueries are valid in the FROM clause of SELECT statements, where
the outer query can use the values returned by the subquery as a source of data.

The query examples in the section “Collection subqueries” on page 5-28 specify
collection subqueries by using the TABLE keyword followed (within parentheses)
by the MULTISET keyword, followed by a subquery. This syntax is an IBM
Informix extension to the ANSI/ISO standard for the SQL language.

In the FROM clause of the SELECT statement, and only in that context, you can
substitute syntax that complies with the ANSI/ISO standard for SQL by specifying
a subquery, omitting the TABLE and MULTISET keywords and the nested
parentheses, to specify a collection subquery.

The following query uses the IBM Informix extension syntax to join two collection
subqueries in the FROM clause of the outer query:

The following logically equivalent query returns the same results as the query
above by using ANSI/ISO-compliant syntax to join two derived tables in the
FROM clause of the outer query:

EXECUTE FUNCTION int_func(MULTISET(SELECT ITEM int_col
FROM tab1
WHERE int_col BETWEEN 1 AND 10));

Figure 5-65. Query

SELECT * FROM TABLE(MULTISET(SELECT SUM(C1) FROM T1 GROUP BY C1)),
TABLE(MULTISET(SELECT SUM(C1) FROM T2 GROUP BY C2));

Figure 5-66. Query

Chapter 5. Compose advanced SELECT statements 5-29

An advantage of this query over the TABLE(MULTISET(SELECT ...)) IBM Informix
extension version is that it can also be executed by any database server that
supports the ANSI/ISO-compliant syntax in the FROM clause. For more
information about syntax and restrictions for collection subqueries, see the IBM
Informix Guide to SQL: Syntax.

Collection-derived tables

A collection-derived table enables you to handle the elements of a collection
expression as rows in a virtual table. Use the TABLE keyword in the FROM clause
of a SELECT statement to create a collection-derived table. The database server
supports collection-derived tables in SELECT, INSERT, UPDATE, and DELETE
statements.

The following query uses a collection-derived table named c_table to access
elements from the sales column of the sales_rep table in the superstores_demo
database. The sales column is a collection of an unnamed row type whose two
fields, month and amount, store sales data. The query returns an element for
sales.amount when sales.month equals 98-03. Because the inner select is itself an
expression, it cannot return more than one column value per iteration of the outer
query. The outer query specifies how many rows of the sales_rep table are
evaluated.

The following query uses a collection-derived table to access elements from the
sales collection column where the rep_num column equals 102. With a
collection-derived table, you can specify aliases for the table and columns. If no
table name is specified for a collection-derived table, the database server creates
one automatically. This example specifies the derived column list s_month and
s_amount for the collection-derived table c_table.

SELECT * FROM (SELECT SUM(C1) FROM T1 GROUP BY C1),
(SELECT SUM(C1) FROM T2 GROUP BY C2);

Figure 5-67. Query

SELECT (SELECT c_table.amount FROM TABLE (sales_rep.sales) c_table
WHERE c_table.month = ’98-03’)
FROM sales_rep;

Figure 5-68. Query

(expression)

$47.22
$53.22

Figure 5-69. Query result

SELECT * FROM TABLE((SELECT sales FROM sales_rep
WHERE sales_rep.rep_num = 102)) c_table(s_month, s_amount);

Figure 5-70. Query

5-30 IBM Informix Guide to SQL: Tutorial

The following query creates a collection-derived table but does not specify a
derived table or derived column names. The query returns the same result as
Figure 5-70 on page 5-30 except the derived columns assume the default field
names of the sales column in the sales_rep table.

Restriction: A collection-derived table is read-only, so it cannot be the target table
of INSERT, UPDATE, or DELETE statements or the underlying table of an
updatable cursor or view.

For a complete description of the syntax and restrictions on collection-derived
tables, see the IBM Informix Guide to SQL: Syntax.

ISO-compliant syntax for collection derived tables

The query examples in the topic “Collection-derived tables” on page 5-30 specify
collection-derived tables by using the TABLE keyword followed by a SELECT
statement enclosed within double parentheses. This syntax is an IBM Informix
extension to the ANSI/ISO standard for the SQL language.

In the FROM clause of the SELECT statement, however, and only in that context,
you can instead use syntax that complies with the ANSI/ISO standard for SQL by
specifying a subquery, without the TABLE keyword or the nested parentheses, to
define a collection-derived table.

The following example is logically equivalent to Figure 5-70 on page 5-30, and
specifies the derived column list s_month and s_amount for the collection-derived
table c_table.

s_month s_amount

1998-03 $53.22
1998-04 $18.22

Figure 5-71. Query result

SELECT * FROM TABLE((SELECT sales FROM sales_rep
WHERE sales_rep.rep_num = 102));

Figure 5-72. Query

month amount

1998-03 $53.22
1998-04 $18.22

Figure 5-73. Query result

SELECT * FROM (SELECT sales FROM sales_rep
WHERE sales_rep.rep_num = 102) c_table(s_month, s_amount);

Figure 5-74. Query

Chapter 5. Compose advanced SELECT statements 5-31

As in the IBM Informix extension syntax, declaring names for the derived table or
for its columns is optional, rather than required. The following query uses
ANSI/ISO-compliant syntax for a derived table in the FROM clause of the outer
query, and produces the same results as Figure 5-72 on page 5-31:

Set operations

The standard set operations union, intersection, and difference let you manipulate
database information. These three operations let you use SELECT statements to
check the integrity of your database after you perform an update, insert, or delete.
They can be useful when you transfer data to a history table, for example, and
want to verify that the correct data is in the history table before you delete the
data from the original table.

Union

A union operation uses the UNION operator to combine two queries into a single
compound query. You can use the UNION operator between two or more SELECT
statements to produce a temporary table that contains rows that exist in any or all
of the original tables. You can also use the UNION operator in the definition of a
view.

You cannot use the UNION operator inside a subquery in the following contexts
v in the Projection clause of the SELECT statement
v in the WHERE clause of the SELECT, INSERT, DELETE, or UPDATE statement.

The UNION operator is valid, however, in a subquery in the FROM clause of the
SELECT statement, as in the following example:
SELECT * FROM (SELECT col1 FROM tab1 WHERE col1 = 100) AS vtab1(c1),

(SELECT col1 FROM tab2 WHERE col1 = 10
UNION ALL
SELECT col1 FROM tab1 WHERE col1 < 50) AS vtab2(vc1);

IBM Informix does not support ordering on ROW types. Because a UNION
operation requires a sort to remove duplicate values, you cannot use a UNION

s_month s_amount

1998-03 $53.22
1998-04 $18.22

Figure 5-75. Query result

SELECT * FROM (SELECT sales FROM sales_rep
WHERE sales_rep.rep_num = 102);

Figure 5-76. Query

month amount

1998-03 $53.22
1998-04 $18.22

Figure 5-77. Query result

5-32 IBM Informix Guide to SQL: Tutorial

operator when either query in the union operation includes ROW type data.
However, the database server does support UNION ALL with ROW type data,
because this type of operation does not require a sort.

The following figure illustrates the UNION set operation.

The UNION keyword selects all rows from the two queries, removes duplicates,
and returns what is left. Because the results of the queries are combined into a
single result, the projection list in each query must have the same number of
columns. Also, the corresponding columns that are selected from each table must
contain compatible data types (CHARACTER data type columns must be the same
length), and these corresponding columns must all allow or all disallow NULL
values.

For the complete syntax of the SELECT statement and the UNION operator, see
the IBM Informix Guide to SQL: Syntax. For information specific to the IBM Informix
ESQL/C product and any limitations that involve the INTO clause and compound
queries, see the IBM Informix ESQL/C Programmer's Manual.

The following query performs a union on the stock_num and manu_code columns
in the stock and items tables.

The query selects those items that have a unit price of less than $25.00 or that have
been ordered in quantities greater than three and lists their stock_num and
manu_code, as the result shows.

quantity > 3

unit_price < 25.00

unit_price

quantity

qualifies qualifies

qualifies

less than or
equal to 3

greater than or
equal to 25.00

less than
25.00

greater
than 3

SELECT DISTINCT stock_num,
manu_code
FROM stock
WHERE unit_price < 25.00

UNION

SELECT stock_num, manu_code
FROM items

WHERE quantity > 3

Figure 5-78. The Union set operation

SELECT DISTINCT stock_num, manu_code FROM stock
WHERE unit_price < 25.00

UNION
SELECT stock_num, manu_code FROM items

WHERE quantity > 3;

Figure 5-79. Query

Chapter 5. Compose advanced SELECT statements 5-33

ORDER BY clause with UNION

As the following query shows, when you include an ORDER BY clause, it must
follow the final SELECT statement and use an integer, not an identifier, to refer to
the ordering column. Ordering takes place after the set operation is complete.

The compound query above selects the same rows as Figure 5-79 on page 5-33 but
displays them in order of the manufacturer code, as the result shows.

The UNION ALL keywords

By default, the UNION keyword excludes duplicate rows. To retain the duplicate
values, add the optional keyword ALL, as the following query shows.

stock_num manu_code

5 ANZ
5 NRG
5 SMT
9 ANZ

103 PRC
106 PRC
201 NKL
301 KAR
302 HRO
302 KAR

Figure 5-80. Query result

SELECT DISTINCT stock_num, manu_code FROM stock
WHERE unit_price < 25.00

UNION
SELECT stock_num, manu_code FROM items

WHERE quantity > 3
ORDER BY 2;

Figure 5-81. Query

stock_num manu_code

5 ANZ
9 ANZ

302 HRO
301 KAR
302 KAR
201 NKL

5 NRG
103 PRC
106 PRC

5 SMT

Figure 5-82. Query result

5-34 IBM Informix Guide to SQL: Tutorial

The query uses the UNION ALL keywords to unite two SELECT statements and
adds an INTO TEMP clause after the final SELECT to put the results into a
temporary table. It returns the same rows as Figure 5-81 on page 5-34 but also
includes duplicate values.

Different column names

Corresponding columns in the Projection clauses for the combined queries must
have compatible data types, but the columns do not need to use the same column
names.

The following query selects the state column from the customer table and the
corresponding code column from the state table.

The query returns state code abbreviations for customer numbers 120 through 125
and for states whose sname ends in a.

SELECT stock_num, manu_code FROM stock
WHERE unit_price < 25.00

UNION ALL
SELECT stock_num, manu_code FROM items

WHERE quantity > 3
ORDER BY 2
INTO TEMP stock item;

Figure 5-83. Query

stock_num manu_code

9 ANZ
5 ANZ
9 ANZ
5 ANZ
9 ANZ

...
5 NRG
5 NRG

103 PRC
106 PRC

5 SMT
5 SMT

Figure 5-84. Query result

SELECT DISTINCT state FROM customer
WHERE customer_num BETWEEN 120 AND 125

UNION
SELECT DISTINCT code FROM state

WHERE sname MATCHES ’*a’;

Figure 5-85. Query

Chapter 5. Compose advanced SELECT statements 5-35

In compound queries, the column names or display labels in the first SELECT
statement are the ones that appear in the results. Thus, in the query, the column
name state from the first SELECT statement is used instead of the column name
code from the second.

UNION with multiple tables

The following query performs a union on three tables. The maximum number of
unions depends on the practicality of the application and any memory limitations.

The query selects items where the unit_price in the stock table is greater than
$600, the catalog_num in the catalog table is 10025, or the quantity in the items
table is 10; and the query orders the data by manu_code. The result shows the
return values.

A literal in the Projection clause

The following query uses a literal in the projection list to tag the output of part of
a union so it can be distinguished later. The tag is given the label sortkey. The

state

AK
AL
AZ
CA
DE...
SD
VA
WV

Figure 5-86. Query result

SELECT stock_num, manu_code FROM stock
WHERE unit_price > 600.00

UNION ALL
SELECT stock_num, manu_code FROM catalog

WHERE catalog_num = 10025
UNION ALL
SELECT stock_num, manu_code FROM items

WHERE quantity = 10
ORDER BY 2;

Figure 5-87. Query

stock_num manu_code

5 ANZ
9 ANZ
8 ANZ
4 HSK
1 HSK

203 NKL
5 NRG

106 PRC
113 SHM

Figure 5-88. Query result

5-36 IBM Informix Guide to SQL: Tutorial

query uses sortkey to order the retrieved rows.

The query creates a list in which the customers from California appear first.

A FIRST clause

You can use the FIRST clause to select the first rows that result from a union query.
The following query uses a FIRST clause to return the first five rows of a union
between the stock and items tables.

SELECT ’1’ sortkey, lname, fname, company,
city, state, phone

FROM customer x
WHERE state = ’CA’

UNION
SELECT ’2’ sortkey, lname, fname, company,

city, state, phone
FROM customer y
WHERE state <> ’CA’
INTO TEMP calcust;

SELECT * FROM calcust
ORDER BY 1;

Figure 5-89. Query

sortkey 1
lname Baxter
fname Dick
company Blue Ribbon Sports
city Oakland
state CA
phone 415-655-0011

sortkey 1
lname Beatty
fname Lana
company Sportstown
city Menlo Park
state CA
phone 415-356-9982...
sortkey 2
lname Wallack
fname Jason
company City Sports
city Wilmington
state DE
phone 302-366-7511

Figure 5-90. Query result

SELECT FIRST 5 DISTINCT stock_num, manu_code
FROM stock
WHERE unit_price < 55.00

UNION
SELECT stock_num, manu_code

FROM items
WHERE quantity > 3;

Figure 5-91. Query

Chapter 5. Compose advanced SELECT statements 5-37

Intersection

The intersection of two sets of rows produces a table that contains rows that exist in
both the original tables. Use the keyword EXISTS or IN to introduce subqueries
that show the intersection of two sets. The following figure illustrates the
intersection set operation.

The following query is an example of a nested SELECT statement that shows the
intersection of the stock and items tables. The result contains all the elements that
appear in both sets and returns the following rows.

stock_num manu_code

5 NRG
5 ANZ
6 SMT
6 ANZ
9 ANZ

Figure 5-92. Query result

Figure 5-93. The intersection set operation

SELECT stock_num, manu_code, unit_price FROM stock
WHERE stock_num IN

(SELECT stock_num FROM items)
ORDER BY stock_num;

Figure 5-94. Query

5-38 IBM Informix Guide to SQL: Tutorial

Difference

The difference between two sets of rows produces a table that contains rows in the
first set that are not also in the second set. Use the keywords NOT EXISTS or NOT
IN to introduce subqueries that show the difference between two sets. The
following figure illustrates the difference set operation.

The following query is an example of a nested SELECT statement that shows the
difference between the stock and items tables.

The result contains all the elements from only the first set, which returns 17 rows.

stock_num manu_code unit_price

1 HRO $250.00
1 HSK $800.00
1 SMT $450.00
2 HRO $126.00
3 HSK $240.00
3 SHM $280.00

...
306 SHM $190.00
307 PRC $250.00
309 HRO $40.00
309 SHM $40.00

Figure 5-95. Query result

stock_num

stock_num

qualifies

not in items
table

exists in
items table

not in stock
table

exists in stock
table

SELECT stock_num, manu_code,
unit_price

FROM stock
WHERE stock_num NOT IN

(SELECT stock_num
FROM items)
ORDER BY stock_num stock table

items table

Figure 5-96. The difference set operation

SELECT stock_num, manu_code, unit_price FROM stock
WHERE stock_num NOT IN

(SELECT stock_num FROM items)
ORDER BY stock_num;

Figure 5-97. Query

Chapter 5. Compose advanced SELECT statements 5-39

Summary

This chapter builds on concepts introduced in Chapter 2, “Compose SELECT
statements,” on page 2-1. It provides sample syntax and results for more advanced
kinds of SELECT statements, which are used to query a relational database. This
chapter presents the following material:
v Introduces the GROUP BY and HAVING clauses, which you can use with

aggregates to return groups of rows and apply conditions to those groups
v Shows how to join a table to itself with a self-join to compare values in a column

with other values in the same column and to identify duplicates
v Explains how an outer join treats two or more tables asymmetrically, and

provides examples of the four kinds of outer join using both the IBM Informix
extension and ANSI join syntax.

v Describes how to nest a SELECT statement in the WHERE clause of another
SELECT statement to create correlated and uncorrelated subqueries and shows
how to use aggregate functions in subqueries

v Describes how to nest SELECT statements in the FROM clause of another
SELECT statement to specify uncorrelated subqueries whose results are a data
source for the outer SELECT statement

v Demonstrates how to use the keywords ALL, ANY, EXISTS, IN, and SOME to
create subqueries, and the effect of adding the keyword NOT or a relational
operator

v Describes how to use collection subqueries to convert relational data to a
collection of type MULTISET and how to use collection-derived tables to access
elements within a collection

v Discusses the union, intersection, and difference set operations
v Shows how to use the UNION and UNION ALL keywords to create compound

queries that consist of two or more SELECT statements

stock_num manu_code unit_price

102 PRC $480.00
102 SHM $220.00
106 PRC $23.00

...
312 HRO $72.00
312 SHM $96.00
313 ANZ $60.00
313 SHM $72.00

Figure 5-98. Query result

5-40 IBM Informix Guide to SQL: Tutorial

Chapter 6. Modify data

This section describes how to modify the data in your databases. Modifying data is
fundamentally different from querying data. Querying data involves examining the
contents of tables. To modify data involves changing the contents of tables.

Modify data in your database

The following statements modify data:
v DELETE
v INSERT
v MERGE
v UPDATE

Although these SQL statements are relatively simple when compared with the
more advanced SELECT statements, use them carefully because they change the
contents of the database.

Think about what happens if the system hardware or software fails during a query.
Even if the effect on the application is severe, the database itself is unharmed.
However, if the system fails while a modification is under way, the state of the
database is in doubt. Obviously, a database in an uncertain state has far-reaching
implications. Before you delete, insert, or update rows in a database, ask yourself
the following questions:
v Is user access to the database and its tables secure; that is, are specific users

given limited database and table-level privileges?
v Does the modified data preserve the existing integrity of the database?
v Are systems in place that make the database relatively immune to external

events that might cause system or hardware failures?

If you cannot answer yes to each of these questions, do not panic. Solutions to all
these problems are built into the IBM Informix database servers. After a
description of the statements that modify data, this section discusses these
solutions. The IBM Informix Database Design and Implementation Guide covers these
topics in greater detail.

Delete rows

The DELETE statement removes any row or combination of rows from a table. You
cannot recover a deleted row after the transaction is committed. (Transactions are
discussed under “Interrupted modifications” on page 6-33. For now, think of a
transaction and a statement as the same thing.)

When you delete a row, you must also be careful to delete any rows of other tables
whose values depend on the deleted row. If your database enforces referential
constraints, you can use the ON DELETE CASCADE option of the CREATE TABLE
or ALTER TABLE statements to allow deletes to cascade from one table in a
relationship to another. For more information on referential constraints and the ON
DELETE CASCADE option, refer to “Referential integrity” on page 6-25.

© Copyright IBM Corp. 1996, 2010 6-1

Delete all rows of a table

The DELETE statement specifies a table and usually contains a WHERE clause that
designates the row or rows that are to be removed from the table. If the WHERE
clause is left out, all rows are deleted.

Important: Do not execute the following statement.
DELETE FROM customer;

You can write DELETE statements with or without the FROM keyword.
DELETE customer;

Because these DELETE statements do not contain a WHERE clause, all rows from
the customer table are deleted. If you attempt an unconditional delete using the
DB-Access menu options, the program warns you and asks for confirmation.
However, an unconditional DELETE from within a program can occur without
warning.

If you want to delete rows from a table named from, you must first set the
DELIMIDENT environment variable, or qualify the name of the table with the
name of its owner:
DELETE legree.from;

For more information about delimited identifiers and DELIMIDENT environment
variable, see the descriptions of the Quoted String expression and of the Identifier
segment in the IBM Informix Guide to SQL: Syntax.

Delete all rows using TRUNCATE

You can use the TRUNCATE statement to quickly remove all rows from a table
and also remove all corresponding index data. You cannot recover deleted rows
after the transaction is committed. You can use the TRUNCATE statement on tables
that contain any type of columns, including smart large objects.

Removing rows with the TRUNCATE statement is faster than removing them with
the DELETE statement. It is not necessary to run the UPDATE STATISTICS
statement immediately after the TRUNCATE statement. After TRUNCATE executes
successfully, IBM Informix automatically updates the statistics and distributions for
the table and for its indexes in the system catalog to show no rows in the table or
in its dbspace partitions.

For a description of logging, see “Transaction logging” on page 6-34.

TRUNCATE is a data-definition language statement that does not activate DELETE
triggers, if any are defined on the table. For an explanation on using triggers, see
Chapter 12, “Create and use triggers,” on page 12-1.

If the table that the TRUNCATE statement specifies is a typed table, a successful
TRUNCATE operation removes all the rows and B-tree structures from that table
and from all its subtables within the table hierarchy. TRUNCATE has no equivalent
to the ONLY keyword of the DELETE statement to restricts the operation to a
single table within the typed table hierarchy.

IBM Informix always logs the TRUNCATE operation, even for a non-logging table.
In databases that support transaction logging, only the COMMIT WORK or

6-2 IBM Informix Guide to SQL: Tutorial

ROLLBACK WORK statement of SQL is valid after TRUNCATE within the same
transaction. For information on the performance impact of using the TRUNCATE
statement, see your IBM Informix Performance Guide. For the complete syntax, see
the IBM Informix Guide to SQL: Syntax.

Delete specified rows

The WHERE clause in a DELETE statement has the same form as the WHERE
clause in a SELECT statement. You can use it to designate exactly which row or
rows should be deleted. You can delete a customer with a specific customer
number, as the following example shows:
DELETE FROM customer WHERE customer_num = 175;

In this example, because the customer_num column has a unique constraint, you
can ensure that no more than one row is deleted.

Delete selected rows

You can also choose rows that are based on nonindexed columns, as the following
example shows:
DELETE FROM customer WHERE company = ’Druid Cyclery’;

Because the column that is tested does not have a unique constraint, this statement
might delete more than one row. (Druid Cyclery might have two stores, both with
the same name but different customer numbers.)

To find out how many rows a DELETE statement affects, select the count of
qualifying rows from the customer table for Druid Cyclery.
SELECT COUNT(*) FROM customer WHERE company = ’Druid Cyclery’;

You can also select the rows and display them to ensure that they are the ones you
want to delete.

Using a SELECT statement as a test is only an approximation, however, when the
database is available to multiple users concurrently. Between the time you execute
the SELECT statement and the subsequent DELETE statement, other users could
have modified the table and changed the result. In this example, another user
might perform the following actions:
v Insert a new row for another customer named Druid Cyclery
v Delete one or more of the Druid Cyclery rows before you insert the new row
v Update a Druid Cyclery row to have a new company name, or update some

other customer to have the name Druid Cyclery.

Although it is not likely that other users would do these things in that brief
interval, the possibility does exist. This same problem affects the UPDATE
statement. Ways of addressing this problem are discussed under “Concurrency and
locks” on page 6-37, and in greater detail in Chapter 10, “Programming for a
multiuser environment,” on page 10-1.

Another problem you might encounter is a hardware or software failure before the
statement finishes. In this case, the database might have deleted no rows, some
rows, or all specified rows. The state of the database is unknown, which is
undesirable. To prevent this situation, use transaction logging, as “Interrupted
modifications” on page 6-33 discusses.

Chapter 6. Modify data 6-3

Delete rows that contain row types

When a row contains a column that is defined on a ROW type, you can use dot
notation to specify that the only rows deleted are those that contain a specific field
value. For example, the following statement deletes only those rows from the
employee table in which the value of the city field in the address column is San
Jose:
DELETE FROM employee

WHERE address.city = ’San Jose’;

In the preceding statement, the address column might be a named ROW type or
an unnamed ROW type. The syntax you use to specify field values of a ROW type
is the same.

Delete rows that contain collection types

When a row contains a column that is defined on a collection type, you can search
for a particular element in a collection and delete the row or rows in which that
element is found. For example, the following statement deletes rows in which the
direct_reports column contains a collection with the element Baker:
DELETE FROM manager

WHERE ’Baker’ IN direct_reports;

Delete rows from a supertable

When you delete the rows of a supertable, the scope of the delete is a supertable
and its subtables. Suppose you create a supertable person that has two subtables
employee and sales_rep defined under it. The following DELETE statement on the
person table can delete rows from all the tables person, employee, and sales_rep:
DELETE FROM person

WHERE name =’Walker’;

To limit a delete to rows of the supertable only, you must use the ONLY keyword
in the DELETE statement. For example, the following statement deletes rows of the
person table only:
DELETE FROM ONLY(person)

WHERE name =’Walker’;

Important: Use caution when you delete rows from a supertable because the scope
of a delete on a supertable includes the supertable and all its subtables.

Complicated delete conditions

The WHERE clause in a DELETE statement can be almost as complicated as the
one in a SELECT statement. It can contain multiple conditions that are connected
by AND and OR, and it might contain subqueries.

Suppose you discover that some rows of the stock table contain incorrect
manufacturer codes. Rather than update them, you want to delete them so that
they can be re-entered. You know that these rows, unlike the correct ones, have no
matching rows in the manufact table. The fact that these incorrect rows have no
matching rows in the manufact table allows you to write a DELETE statement
such as the one in the following example:

6-4 IBM Informix Guide to SQL: Tutorial

DELETE FROM stock
WHERE 0 = (SELECT COUNT(*) FROM manufact

WHERE manufact.manu_code = stock.manu_code);

The subquery counts the number of rows of manufact that match; the count is 1
for a correct row of stock and 0 for an incorrect one. The latter rows are chosen for
deletion.

Tip: One way to develop a DELETE statement with a complicated condition is to
first develop a SELECT statement that returns precisely the rows to be deleted.
Write it as SELECT *; when it returns the desired set of rows, change SELECT * to
read DELETE and execute it once more.

The WHERE clause of a DELETE statement cannot use a subquery that tests the
same table. That is, when you delete from stock, you cannot use a subquery in the
WHERE clause that also selects from stock.

The key to this rule is in the FROM clause. If a table is named in the FROM clause
of a DELETE statement, it cannot also appear in the FROM clause of a subquery of
the DELETE statement.

The Delete clause of MERGE

Instead of writing a subquery in the WHERE clause, you can use the MERGE
statement to join rows from a source tables and a target table, and then delete from
the target the rows that match the join condition. (The source table in a Delete
MERGE can also be a collection-derived table whose rows are the result of a query
that joins other tables and views, but in the example that follows, the source is a
single table.)

As in the previous example, suppose you discover that some rows of the stock
table contain incorrect manufacturer codes. Rather than update them, you want to
delete them so that they can be re-entered. You can use the MERGE statement that
specifies stock as the target table, manufact as the source table, a join condition in
the ON clause, and with the Delete clause for the stock rows with incorrect
manufacturer codes, as in the following example:
MERGE INTO stock USING manufact

ON stock.manu_code != manufact.manu_code
WHEN MATCHED THEN DELETE;

In this example, all the rows of the stock table for which the join condition in the
ON clause is satisfied will be deleted. Here the inequality predicate in the join
condition (stock.manu_code != manufact.manu_code) evaluates to true for the rows
of stock in which the manu_code column value is not equal to any manu_code
value in the manufact table.

The source table that is being joined to the target table must be listed in the USING
clause.

The MERGE statement can also update rows of the target table, or insert data from
the source table into the target table, according to whether or not the row satisfies
the condition that the ON clause specifies for joining the target and source tables.
A single MERGE statement can also combine both DELETE and INSERT
operations, or can combine both UPDATE and INSERT operations without deleting
any rows. The source table is unchanged by the MERGE statement. For more

Chapter 6. Modify data 6-5

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

information on the syntax and restrictions for Delete merges, Insert merges, and
Update merges, see the description of the MERGE statement in the IBM Informix
Guide to SQL: Syntax.

Insert rows

The INSERT statement adds a new row, or rows, to a table. The statement has two
basic functions. It can create a single new row using column values you supply, or
it can create a group of new rows using data selected from other tables.

Single rows

In its simplest form, the INSERT statement creates one new row from a list of
column values and puts that row in the table. The following statement shows how
to add a row to the stock table:
INSERT INTO stock

VALUES (115, ’PRC’, ’tire pump’, 108, ’box’, ’6/box’);

The stock table has the following columns:

stock_num
A number that identifies the type of merchandise.

manu_code
A foreign key to the manufact table.

description
A description of the merchandise.

unit_price
The unit price of the merchandise.

unit The unit of measure

unit_descr
Characterizes the unit of measure.

The values that are listed in the VALUES clause in the preceding example have a
one-to-one correspondence with the columns of the stock table. To write a VALUES
clause, you must know the columns of the tables as well as their sequence from
first to last.

Possible column values

The VALUES clause accepts only constant values, not general SQL expressions. You
can supply the following values:
v Literal numbers
v Literal DATETIME values
v Literal INTERVAL values
v Quoted strings of characters
v The word NULL for a NULL value
v The word TODAY for the current date
v The word CURRENT (or SYSDATE) for the current date and time
v The word USER for your authorization identifier
v The word DBSERVERNAME (or SITENAME) for the name of the computer

where the database server is running

6-6 IBM Informix Guide to SQL: Tutorial

|
|
|

Note: An alternative to the INSERT statement is the MERGE statement, which can
use the same VALUES clause syntax as the INSERT statement to insert rows into a
table. The MERGE statement performs an outer join of a source table and a target
table, and then inserts into the target table any rows in the result set of the join for
which the join predicate evaluates to FALSE. The source table is unchanged by the
MERGE statement. Besides inserting rows, the MERGE statement can optionally
combine both DELETE and INSERT operations, or combine both UPDATE and
INSERT operations. For more information about the syntax and the restrictions on
Insert merges, Delete merges, and Update merges, see the description of the
MERGE statement in the IBM Informix Guide to SQL: Syntax.

Restrictions on column values

Some columns of a table might not allow null values. If you attempt to insert
NULL in such a column, the statement is rejected. Other columns in the table
might not permit duplicate values. If you specify a value that is a duplicate of one
that is already in such a column, the statement is rejected. Some columns might
even restrict the possible column values allowed. Use data integrity constraints to
restrict columns. For more information, see “Data integrity” on page 6-23.

Restriction: Do not specify the currency symbols for columns that contain money
values. Just specify the numeric value of the amount.

The database server can convert between numeric and character data types. You
can give a string of numeric characters (for example, ’-0075.6') as the value of a
numeric column. The database server converts the numeric string to a number. An
error occurs only if the string does not represent a number.

You can specify a number or a date as the value for a character column. The
database server converts that value to a character string. For example, if you
specify TODAY as the value for a character column, a character string that
represents the current date is used. (The DBDATE environment variable specifies
the format that is used.)

Serial data types
A table can have only one column of the SERIAL data type. It can also have either
a SERIAL8 column or a BIGSERIAL column.

When you insert values, specify the value zero for the serial column. The database
server generates the next actual value in sequence. Serial columns do not allow
NULL values.

You can specify a nonzero value for a serial column (as long as it does not
duplicate any existing value in that column), and the database server uses the
value. That nonzero value might set a new starting point for values that the
database server generates. (The next value the database server generates for you is
one greater than the maximum value in the column.)

List specific column names

You do not have to specify values for every column. Instead, you can list the
column names after the table name and then supply values for only those columns
that you named. The following example shows a statement that inserts a new row
into the stock table:
INSERT INTO stock (stock_num, description, unit_price, manu_code)

VALUES (115, ’tyre pump ’, 114, ’SHM’);

Chapter 6. Modify data 6-7

|
|
|
|
|
|
|
|
|
|

Only the data for the stock number, description, unit price, and manufacturer code
is provided. The database server supplies the following values for the remaining
columns:
v It generates a serial number for an unlisted serial column.
v It generates a default value for a column with a specific default associated with

it.
v It generates a NULL value for any column that allows nulls but it does not

specify a default value for any column that specifies NULL as the default value.
You must list and supply values for all columns that do not specify a default
value or do not permit NULL values.

You can list the columns in any order, as long as the values for those columns are
listed in the same order. For information about how to designate null or default
values for a column, see the IBM Informix Database Design and Implementation Guide.

After the INSERT statement in the preceding example is executed, the following
new row is inserted into the stock table:
stock_num manu_code description unit_price unit unit_descr

115 SHM tyre pump 114

Both unit and unit_descr are blank, which indicates that NULL values exist in
those two columns. Because the unit column permits NULL values, the number of
tire pumps that can be purchased for $114 is not known. Of course, if a default
value of box were specified for this column, then box would be the unit of
measure. In any case, when you insert values into specific columns of a table, pay
attention to what data is needed for that row.

Insert rows into typed tables

You can insert rows into a typed table in the same way you insert rows into a table
not based on a ROW type.

When a typed table contains a row-type column (the named ROW type that
defines the typed table contains a nested ROW type), you insert into the row-type
column in the same way you insert into a row-type column for a table not based
on a ROW type. The following section, “Syntax rules for inserts on columns” on
page 6-9, describes how to perform inserts into row-type columns.

This section uses row types zip_t, address_t, and employee_t and typed table
employee for examples. The following figure shows the SQL syntax that creates
the row types and table.

6-8 IBM Informix Guide to SQL: Tutorial

Syntax rules for inserts on columns

The following syntax rules apply for inserts on columns that are defined on named
ROW types or unnamed ROW types:
v Specify the ROW constructor before the field values to be inserted.
v Enclose the field values of the ROW type in parentheses.
v Cast the ROW expression to the appropriate named ROW type (for named ROW

types).

Rows that contain named row types

The following statement shows you how to insert a row into the employee table in
Figure 6-2 on page 6-10:
INSERT INTO employee

VALUES (’Poole, John’,
ROW(’402 High St’, ’Willits’, ’CA’,
ROW(69055,1450))::address_t, 35000);

Because the address column of the employee table is a named ROW type, you
must use a cast operator and the name of the ROW type (address_t) to insert a
value of type address_t.

Rows that contain unnamed row types

Suppose you create the table that the following figure shows. The student table
defines the s_address column as an unnamed row type.

CREATE ROW TYPE zip_t
(

z_code CHAR(5),
z_suffix CHAR(4)

);

CREATE ROW TYPE address_t
(

street VARCHAR(20),
city VARCHAR(20),
state CHAR(2),
zip zip_t

);

CREATE ROW TYPE employee_t
(

name VARCHAR(30),
address address_t,
salary INTEGER

);

CREATE TABLE employee OF TYPE employee_t;

Figure 6-1. SQL syntax that creates the row types and table.

Chapter 6. Modify data 6-9

The following statement shows you how to add a row to the student table. To
insert into the unnamed row-type column s_address, use the ROW constructor but
do not cast the row-type value.
INSERT INTO student

VALUES (’Keene, Terry’,
ROW(’53 Terra Villa’, ’Wheeling’, ’IL’, ’45052’),
3.75);

Specify NULL values for row types

The fields of a row-type column can contain NULL values. You can specify NULL
values either at the level of the column or the field.

The following statement specifies a NULL value at the column level to insert
NULL values for all fields of the s_address column. When you insert a NULL
value at the column level, do not include the ROW constructor.
INSERT INTO student VALUES (’Brauer, Howie’, NULL, 3.75);

When you insert a NULL value for particular fields of a ROW type, you must
include the ROW constructor. The following INSERT statement shows how you
might insert NULL values into particular fields of the address column of the
employee table. (The address column is defined as a named ROW type.)
INSERT INTO employee

VALUES (
’Singer, John’,
ROW(NULL, ’Davis’, ’CA’,
ROW(97000, 2000))::address_t, 67000
);

When you specify a NULL value for the field of a ROW type, you do not need to
explicitly cast the NULL value when the ROW type occurs in an INSERT
statement, an UPDATE statement, or a program variable assignment.

The following INSERT statement shows how you insert NULL values for the street
and zip fields of the s_address column for the student table:
INSERT INTO student

VALUES(
’Henry, John’,
ROW(NULL, ’Seattle’, ’WA’, NULL), 3.82
);

Insert rows into supertables

No special considerations exist when you insert a row into a supertable. An
INSERT statement applies only to the table that is specified in the statement. For
example, the following statement inserts values into the supertable but does not
insert values into any subtables:

CREATE TABLE student
(
s_name VARCHAR(30),
s_address ROW(street VARCHAR (20), city VARCHAR(20),

state CHAR(2), zip VARCHAR(9)),
grade_point_avg DECIMAL(3,2)

);

Figure 6-2. Create the student table.

6-10 IBM Informix Guide to SQL: Tutorial

INSERT INTO person
VALUES (

’Poole, John’,
ROW(’402 Saphire St.’, ’Elmondo’, ’CA’, ’69055’),
345605900
);

Insert collection values into columns

This section describes how to insert a collection value into a column with
DB-Access. It does not discuss how to insert individual elements into a collection
column. To access or modify the individual elements of a collection, use an
Informix ESQL/C program or SPL routine. For information about how to create an
Informix ESQL/C program to insert into a collection, see the IBM Informix ESQL/C
Programmer's Manual. For information about how to create an SPL routine to insert
into a collection, see Chapter 11, “Create and use SPL routines,” on page 11-1.

The examples that this section provides are based on the manager table in the
following figure. The manager table contains both simple and nested collection
types.

Insert values into simple collections and nested collections

When you insert values into a row that contains a collection column, you insert the
values of all the elements that the collection contains as well as values for the other
columns. For example, the following statement inserts a single row into the
manager table, which includes columns for both simple collections and nested
collections:
INSERT INTO manager(mgr_name, department,

direct_reports, projects)
VALUES

(
’Sayles’, ’marketing’,
"SET{’Simonian’, ’Waters’, ’Adams’, ’Davis’, ’Jones’}",
LIST{

ROW(’voyager_project’, SET{’Simonian’, ’Waters’,
’Adams’, ’Davis’}),
ROW (’horizon_project’, SET{’Freeman’, ’Jacobs’,
’Walker’, ’Smith’, ’Cannan’}),
ROW (’saphire_project’, SET{’Villers’, ’Reeves’,
’Doyle’, ’Strongin’})
}

);

CREATE TABLE manager
(

mgr_name VARCHAR(30),
department VARCHAR(12),
direct_reports SET(VARCHAR(30) NOT NULL),
projects LIST(ROW(pro_name VARCHAR(15),

pro_members SET(VARCHAR(20) NOT NULL))
NOT NULL)

);

Figure 6-3. Create the manager table.

Chapter 6. Modify data 6-11

Insert NULL values into a collection that contains a row type

To insert values into a collection that is a ROW type, you must specify a value for
each field in the ROW type.

In general, NULL values are not allowed in a collection. However, if the element
type of the collection is a ROW type, you can insert NULL values into individual
fields of the row type.

You can also specify an empty collection. An empty collection is a collection that
contains no elements. To specify an empty collection, use the braces ({}). For
example, the following statement inserts data into a row in the manager table but
specifies that the direct_reports and projects columns are empty collections:
INSERT INTO manager

VALUES (’Sayles’, ’marketing’, "SET{}",
"LIST{ROW(NULL, SET{})}"

);

A collection column cannot contain NULL elements. The following statement
returns an error because NULL values are specified as elements of collections:
INSERT INTO manager

VALUES (’Cole’, ’accounting’, "SET{NULL}",
"LIST{ROW(NULL, ""SET{NULL}"")}"

The following syntax rules apply for performing inserts and updates on collection
types:
v Use braces ({}) to demarcate the elements that each collection contains.
v If the collection is a nested collection, use braces ({}) to demarcate the elements

of both the inner and outer collections.

Insert smart large objects

When you use the INSERT statement to insert an object into a BLOB or CLOB
column, the database server stores the object in an sbspace, rather than the table.
The database server provides SQL functions that you can call from within an
INSERT statement to import and export BLOB or CLOB data, otherwise known as
smart large objects. For a description of these functions, see “Smart large object
functions” on page 4-14.

The following INSERT statement uses the filetoblob() and filetoclob() functions to
insert a row of the inmate table. (Figure 4-55 on page 4-14 defines the inmate
table.)
INSERT INTO inmate

VALUES (437, FILETOBLOB(’datafile’, ’client’),
FILETOCLOB(’tmp/text’, ’server’));

In the preceding example, the first argument for the FILETOBLOB() and
FILETOCLOB() functions specifies the path of the source file to be copied into the
BLOB and CLOB columns of the inmate table, respectively. The second argument
for each function specifies whether the source file is located on the client computer
('client') or server computer ('server'). To specify the path of a file name in the
function argument, apply the following rules:
v If the source file resides on the server computer, you must specify the full path

name to the file (not the path name relative to the current working directory).

6-12 IBM Informix Guide to SQL: Tutorial

v If the source file resides on the client computer, you can specify either the full or
relative path name to the file.

Multiple rows and expressions

The other major form of the INSERT statement replaces the VALUES clause with a
SELECT statement. This feature allows you to insert the following data:
v Multiple rows with only one statement (each time the SELECT statement returns

a row, a row is inserted)
v Calculated values (the VALUES clause permits only constants) because the

projection list can contain expressions

For example, suppose a follow-up call is required for every order that has been
paid for but not shipped. The INSERT statement in the following example finds
those orders and inserts a row in cust_calls for each order:
INSERT INTO cust_calls (customer_num, call_descr)

SELECT customer_num, order_num FROM orders
WHERE paid_date IS NOT NULL
AND ship_date IS NULL;

This SELECT statement returns two columns. The data from these columns (in
each selected row) is inserted into the named columns of the cust_calls table. Then
an order number (from order_num, a SERIAL column) is inserted into the call
description, which is a character column. Remember that the database server
allows you to insert integer values into a character column. It automatically
converts the serial number to a character string of decimal digits.

Restrictions on the insert selection

The following list contains the restrictions on the SELECT statement for inserting
rows:
v It cannot contain an INTO clause.
v It cannot contain an INTO TEMP clause.
v It cannot contain an ORDER BY clause.
v It cannot refer to the table into which you are inserting rows.

The INTO, INTO TEMP, and ORDER BY clause restrictions are minor. The INTO
clause is not useful in this context. (For more information, see Chapter 8, “SQL
programming,” on page 8-1.) To work around the INTO TEMP clause restriction,
first select the data you want to insert into a temporary table and then insert the
data from the temporary table with the INSERT statement. Likewise, the lack of an
ORDER BY clause is not important. If you need to ensure that the new rows are
physically ordered in the table, you can first select them into a temporary table
and order it, and then insert from the temporary table. You can also apply a
physical order to the table using a clustered index after all insertions are done.

Important: The last restriction is more serious because it prevents you from
naming the same table in both the INTO clause of the INSERT statement and the
FROM clause of the SELECT statement. Naming the same table in both the INTO
clause of the INSERT statement and the FROM clause of the SELECT statement
causes the database server to enter an endless loop in which each inserted row is
reselected and reinserted.

Chapter 6. Modify data 6-13

In some cases, however, you might want to select from the same table into which
you must insert data. For example, suppose that you have learned that the Nikolus
company supplies the same products as the Anza company, but at half the price.
You want to add rows to the stock table to reflect the difference between the two
companies. Optimally, you want to select data from all the Anza stock rows and
reinsert it with the Nikolus manufacturer code. However, you cannot select from
the same table into which you are inserting.

To get around this restriction, select the data you want to insert into a temporary
table. Then select from that temporary table in the INSERT statement, as the
following example shows:
SELECT stock_num, ’NIK’ temp_manu, description, unit_price/2

half_price, unit, unit_descr FROM stock
WHERE manu_code = ’ANZ’

AND stock_num < 110
INTO TEMP anzrows;

INSERT INTO stock SELECT * FROM anzrows;

DROP TABLE anzrows;

This SELECT statement takes existing rows from stock and substitutes a literal
value for the manufacturer code and a computed value for the unit price. These
rows are then saved in a temporary table, anzrows, which is immediately inserted
into the stock table.

When you insert multiple rows, a risk exists that one of the rows contains invalid
data that might cause the database server to report an error. When such an error
occurs, the statement terminates early. Even if no error occurs, a small risk exists
that a hardware or software failure might occur while the statement is executing
(for example, the disk might fill up).

In either event, you cannot easily tell how many new rows were inserted. If you
repeat the statement in its entirety, you might create duplicate rows, or you might
not. Because the database is in an unknown state, you cannot know what to do.
The solution lies in using transactions, as “Interrupted modifications” on page 6-33
discusses.

Update rows

Use the UPDATE statement to change the contents of one or more existing rows of
a table, according to the specifications of the SET clause. This statement takes two
fundamentally different forms. One lets you assign specific values to columns by
name; the other lets you assign a list of values (that might be returned by a
SELECT statement) to a list of columns. In either case, if you are updating rows,
and some of the columns have data integrity constraints, the data that you change
must conform to the constraints placed on those columns. For more information,
refer to “Data integrity” on page 6-23.

Note: An alternative to the UPDATE statement is the MERGE statement, which
can use the same SET clause syntax as the UPDATE statement to modify one or
more values in existing rows of a table. The MERGE statement performs an outer
join of a source table and a target table, and then updates rows in the target table
with values from the result set of the join for which the join predicate evaluates to
TRUE. Values in the source table are unchanged by the MERGE statement. Besides
updating rows, the MERGE statement can optionally combine both UPDATE and

6-14 IBM Informix Guide to SQL: Tutorial

|
|
|
|
|
|
|

INSERT operations, or can combine both DELETE and INSERT operations without
updating any rows. For more information about the syntax and the restrictions on
Update merges, Delete merges, and Insert merges, see the description of the
MERGE statement in the IBM Informix Guide to SQL: Syntax.

Select rows to update

Either form of the UPDATE statement can end with a WHERE clause that
determines which rows are modified. If you omit the WHERE clause, all rows are
modified. To select the precise set of rows that need changing in the WHERE
clause can be quite complicated. The only restriction on the WHERE clause is that
the table that you update cannot be named in the FROM clause of a subquery.

The first form of an UPDATE statement uses a series of assignment clauses to
specify new column values, as the following example shows:
UPDATE customer

SET fname = ’Barnaby’, lname = ’Dorfler’
WHERE customer_num = 103;

The WHERE clause selects the row you want to update. In the demonstration
database, the customer.customer_num column is the primary key for that table, so
this statement can update no more than one row.

You can also use subqueries in the WHERE clause. Suppose that the Anza
Corporation issues a safety recall of their tennis balls. As a result, any unshipped
orders that include stock number 6 from manufacturer ANZ must be put on back
order, as the following example shows:
UPDATE orders

SET backlog = ’y’
WHERE ship_date IS NULL
AND order_num IN

(SELECT DISTINCT items.order_num FROM items
WHERE items.stock_num = 6
AND items.manu_code = ’ANZ’);

This subquery returns a column of order numbers (zero or more). The UPDATE
operation then tests each row of orders against the list and performs the update if
that row matches.

Update with uniform values

Each assignment after the keyword SET specifies a new value for a column. That
value is applied uniformly to every row that you update. In the examples in the
previous section, the new values were constants, but you can assign any
expression, including one based on the column value itself. Suppose the
manufacturer code HRO has raised all prices by five percent, and you must update
the stock table to reflect this increase. Use the following statement:
UPDATE stock

SET unit_price = unit_price * 1.05
WHERE manu_code = ’HRO’;

You can also use a subquery as part of the assigned value. When a subquery is
used as an element of an expression, it must return exactly one value (one column
and one row). Perhaps you decide that for any stock number, you must charge a

Chapter 6. Modify data 6-15

|
|
|
|

higher price than any manufacturer of that product. You need to update the prices
of all unshipped orders. The SELECT statements in the following example specify
the criteria:
UPDATE items

SET total_price = quantity *
(SELECT MAX (unit_price) FROM stock

WHERE stock.stock_num = items.stock_num)
WHERE items.order_num IN

(SELECT order_num FROM orders
WHERE ship_date IS NULL);

The first SELECT statement returns a single value: the highest price in the stock
table for a particular product. The first SELECT statement is a correlated subquery
because, when a value from items appears in the WHERE clause for the first
SELECT statement, you must execute the query for every row that you update.

The second SELECT statement produces a list of the order numbers of unshipped
orders. It is an uncorrelated subquery that is executed once.

Restrictions on updates

Restrictions exist on the use of subqueries when you modify data. In particular,
you cannot query the table that is being modified. You can refer to the present
value of a column in an expression, as in the example that increments the
unit_price column by 5 percent. You can also refer to a value of a column in a
WHERE clause in a subquery, as in the example that updated the stock table, in
which the items table is updated and items.stock_num is used in a join
expression.

The need to update and query a table at the same time does not occur often in a
well-designed database. (For more information about database design, see the IBM
Informix Database Design and Implementation Guide.) However, you might want to
update and query at the same time when a database is first being developed,
before its design has been carefully thought through. A typical problem arises
when a table inadvertently and incorrectly contains a few rows with duplicate
values in a column that should be unique. You might want to delete the duplicate
rows or update only the duplicate rows. Either way, a test for duplicate rows
inevitably requires a subquery on the same table that you want to modify, which is
not allowed in an UPDATE statement or DELETE statement. Chapter 9, “Modify
data through SQL programs,” on page 9-1 discusses how to use an update cursor to
perform this kind of modification.

Update with selected values

The second form of UPDATE statement replaces the list of assignments with a
single bulk assignment, in which a list of columns is set equal to a list of values.
When the values are simple constants, this form is nothing more than the form of
the previous example with its parts rearranged, as the following example shows:
UPDATE customer

SET (fname, lname) = (’Barnaby’, ’Dorfler’)
WHERE customer_num = 103;

No advantage exists to writing the statement this way. In fact, it is harder to read
because it is not obvious which values are assigned to which columns.

6-16 IBM Informix Guide to SQL: Tutorial

However, when the values to be assigned come from a single SELECT statement,
this form makes sense. Suppose that changes of address are to be applied to
several customers. Instead of updating the customer table each time a change is
reported, the new addresses are collected in a single temporary table named
newaddr. It contains columns for the customer number and the address-related
fields of the customer table. Now the time comes to apply all the new addresses at
once.
UPDATE customer

SET (address1, address2, city, state, zipcode) =
((SELECT address1, address2, city, state, zipcode

FROM newaddr
WHERE newaddr.customer_num=customer.customer_num))

WHERE customer_num IN (SELECT customer_num FROM newaddr);

A single SELECT statement produces the values for multiple columns. If you
rewrite this example in the other form, with an assignment for each updated
column, you must write five SELECT statements, one for each column to be
updated. Not only is such a statement harder to write, but it also takes much
longer to execute.

Tip: In SQL API programs, you can use record or host variables to update values.
For more information, refer to Chapter 8, “SQL programming,” on page 8-1.

Update row types

The syntax you use to update a row-type value differs somewhat depending on
whether the column is a named ROW type or unnamed ROW type. This section
describes those differences and also describes how to specify NULL values for the
fields of a ROW type.

Update rows that contain named row types

To update a column that is defined on a named ROW type, you must specify all
fields of the ROW type. For example, the following statement updates only the
street and city fields of the address column in the employee table, but each field
of the ROW type must contain a value (NULL values are allowed):
UPDATE employee

SET address = ROW(’103 California St’,
San Francisco’, address.state, address.zip)::address_t

WHERE name = ’zawinul, joe’;

In this example, the values of the state and zip fields are read from and then
immediately reinserted into the row. Only the street and city fields of the address
column are updated.

When you update the fields of a column that are defined on a named ROW type,
you must use a ROW constructor and cast the row value to the appropriate named
ROW type.

Update rows that contain unnamed row types

To update a column that is defined on an unnamed ROW type, you must specify
all fields of the ROW type. For example, the following statement updates only the
street and city fields of the address column in the student table, but each field of
the ROW type must contain a value (NULL values are allowed):

Chapter 6. Modify data 6-17

UPDATE student
SET s_address = ROW(’13 Sunset’, ’Fresno’,
s_address.state, s_address.zip)
WHERE s_name = ’henry, john’;

To update the fields of a column that are defined on an unnamed ROW type,
always specify the ROW constructor before the field values to be inserted.

Specify Null values for the fields of a row type

The fields of a row-type column can contain NULL values. When you insert into or
update a row-type field with a NULL value, you must cast the value to the data
type of that field.

The following UPDATE statement shows how you might specify NULL values for
particular fields of a named row-type column:
UPDATE employee

SET address = ROW(NULL::VARCHAR(20), ’Davis’, ’CA’,
ROW(NULL::CHAR(5), NULL::CHAR(4)))::address_t)
WHERE name = ’henry, john’;

The following UPDATE statement shows how you specify NULL values for the
street and zip fields of the address column for the student table.
UPDATE student

SET address = ROW(NULL::VARCHAR(20), address.city,
address.state, NULL::VARCHAR(9))
WHERE s_name = ’henry, john’;

Important: You cannot specify NULL values for a row-type column. You can only
specify NULL values for the individual fields of the row type.

Update collection types

When you use DB-Access to update a collection type, you must update the entire
collection. The following statement shows how to update the projects column. To
locate the row that needs to be updated, use the IN keyword to perform a search
on the direct_reports column.
UPDATE manager
SET projects = "LIST
{

ROW(’brazil_project’, SET{’Pryor’, ’Murphy’, ’Kinsley’,
’Bryant’}),

ROW (’cuba_project’, SET{’Forester’, ’Barth’, ’Lewis’,
’Leonard’})

}"
WHERE ’Williams’ IN direct_reports;

The first occurrence of the SET keyword in the preceding statement is part of the
UPDATE statement syntax.

Important: Do not confuse the SET keyword of an UPDATE statement with the
SET constructor that indicates that a collection is a SET data type.

Although you can use the IN keyword to locate specific elements of a simple
collection, you cannot update individual elements of a collection column from
DB-Access. However, you can create Informix ESQL/C programs and SPL routines
to update elements within a collection. For information about how to create an
Informix ESQL/C program to update a collection, see the IBM Informix ESQL/C

6-18 IBM Informix Guide to SQL: Tutorial

Programmer's Manual. For information about how to create SPL routines to update
a collection, see the section “Handle collections” on page 11-35.

Update rows of a supertable

When you update the rows of a supertable, the scope of the update is a supertable
and its subtables.

When you construct an UPDATE statement on a supertable, you can update all
columns in the supertable and columns of subtables that are inherited from the
supertable. For example, the following statement updates rows from the employee
and sales_rep tables, which are subtables of the supertable person:
UPDATE person

SET salary=65000
WHERE address.state = ’CA’;

However, an update on a supertable does not allow you to update columns from
subtables that are not in the supertable. For example, in the previous update
statement, you cannot update the region_num column of the sales_rep table
because the region_num column does not occur in the employee table.

When you perform updates on supertables, be aware of the scope of the update.
For example, an UPDATE statement on the person table that does not include a
WHERE clause to restrict which rows to update, modifies all rows of the person,
employee, and sales_rep table.

To limit an update to rows of the supertable only, you must use the ONLY
keyword in the UPDATE statement. For example, the following statement updates
rows of the person table only:
UPDATE ONLY(person)

SET address = ROW(’14 Jackson St’, ’Berkeley’,
address.state, address.zip)
WHERE name = ’Sallie, A.’;

Important: Use caution when you update rows of a supertable because the scope
of an update on a supertable includes the supertable and all its subtables.

CASE expression to update a column

The CASE expression allows a statement to return one of several possible results,
depending on which of several condition tests evaluates to TRUE.

The following example shows how to use a CASE expression in an UPDATE
statement to increase the unit price of certain items in the stock table:
UPDATE stock

SET unit_price = CASE
WHEN stock_num = 1
AND manu_code = "HRO"
THEN unit_price * 1.2
WHEN stock_num = 1
AND manu_code = "SMT"
THEN unit_price * 1.1
ELSE 0
END

Chapter 6. Modify data 6-19

You must include at least one WHEN clause within the CASE expression;
subsequent WHEN clauses and the ELSE clause are optional. If no WHEN
condition evaluates to true, the resulting value is null.

SQL functions to update smart large objects

You can use an SQL function that you can call from within an UPDATE statement
to import and export smart large objects. For a description of these functions, see
page “Smart large object functions” on page 4-14.

The following UPDATE statement uses the LOCOPY() function to copy BLOB data
from the mugshot column of the fbi_list table into the picture column of the
inmate table. (Figure 4-55 on page 4-14 defines the inmate and fbi_list tables.)
UPDATE inmate (picture)

SET picture = (SELECT LOCOPY(mugshot, ’inmate’, ’picture’)
FROM fbi_list WHERE fbi_list.id = 669)

WHERE inmate.id_num = 437;

The first argument for LOCOPY() specifies the column (mugshot) from which the
object is exported. The second and third arguments specify the name of the table
(inmate) and column (picture) whose storage characteristics the newly created
object will use. After execution of the UPDATE statement, the picture column
contains data from the mugshot column.

When you specify the path of a file name in the function argument, apply the
following rules:
v If the source file resides on the server computer, you must specify the full path

name to the file (not the path name relative to the current working directory).
v If the source file resides on the client computer, you can specify either the full or

relative path name to the file.

The MERGE statement to update a table

The MERGE statement allows you to apply a Boolean condition to the result of an
outer join of a source table and a target table. If the MERGE statement includes the
Update clause, rows that satisfy the join condition that you specify after the ON
keyword are used in UPDATE operations on the target. The SET clause of the
MERGE statement supports the same syntax as the SET clause of the UPDATE
statement, and specifies which columns of the target table to update.

The following example illustrates how you can use the Update clause of the
MERGE statement to update a target table:
MERGE INTO t_target AS t USING t_source AS s ON t.col_a = s.col_a

WHEN MATCHED THEN UPDATE
SET t.col_b = t.col_b + s.col_b ;

In the preceding example, the name of the target table is t_target and the name of
the source table is t_source. For rows of the join result where col_a has the same
value in both the source and the target tables, the MERGE statement updates the
t_target table by adding the value of column col_b in the source table to the
current value of the col_b column in the t_target table.

An UPDATE operation of the MERGE statement does not modify the source table,
and cannot update any row in the target table more than once.

6-20 IBM Informix Guide to SQL: Tutorial

A single MERGE statement can combine both UPDATE and INSERT operations, or
can combine both DELETE and INSERT operations but the delete clause is not
required. For a different example of MERGE that includes no Update clause, see
the topic “The Delete clause of MERGE” on page 6-5

A join to update a column

When you use the FROM clause, you must include the name of the table in which
the update is to be performed. Otherwise, an error results. The following example
illustrates how you can use the UPDATE statement with a FROM clause:
UPDATE t SET a = t2.a FROM t, t2 WHERE t.b = t2.b;

The statement performs the same action as it does when you omit the FROM
clause altogether. You are allowed to specify more than one table in the FROM
clause of the UPDATE statement. However, if you specify only one table, it must
be the target table.

Privileges on a database and on its objects

You can use the following database privileges to control who accesses a database:
v Database-level privileges
v Table-level privileges
v Routine-level privileges
v Language-level privileges
v Type-level privileges
v Sequence-level privileges
v Fragment-level privileges

This section briefly describes database- and table-level privileges. For more
information about database privileges, see the IBM Informix Database Design and
Implementation Guide. For a list of privileges and a description of the GRANT and
REVOKE statements, see the IBM Informix Guide to SQL: Syntax.

Database-level privileges

When you create a database, you are the only one who can access it until you, as
the owner or database administrator (DBA) of the database, grant database-level
privileges to others. The following table shows database-level privileges.

Privilege Effect

Connect Allows you to open a database, issue queries,
and create and place indexes on temporary
tables.

Resource Allows you to create permanent tables.

DBA Allows you to perform several additional
functions as the DBA.

Chapter 6. Modify data 6-21

Table-level privileges

When you create a table in a database that is not ANSI compliant, all users have
access privileges to the table until you, as the owner of the table, revoke table-level
privileges from specific users. The following table introduces the four privileges
that govern how users can access a table.

Privilege Purpose

Select Granted on a table-by-table basis and allows
you to select rows from a table. (This
privilege can be limited to specific columns
in a table.)

Delete Allows you to delete rows.

Insert Allows you to insert rows.

Update Allows you to update existing rows (that is,
to change their content).

The people who create databases and tables often grant the Connect and Select
privileges to public so that all users have them. If you can query a table, you have
at least the Connect and Select privileges for that database and table.

You need the other table-level privileges to modify data. The owners of tables
often withhold these privileges or grant them only to specific users. As a result,
you might not be able to modify some tables that you can query freely.

Because these privileges are granted on a table-by-table basis, you can have only
Insert privileges on one table and only Update privileges on another, for example.
The Update privileges can be restricted even further to specific columns in a table.

For more information on these and other table-level privileges, see the IBM
Informix Database Design and Implementation Guide.

Display table privileges

If you are the owner of a table (that is, if you created it), you have all privileges on
that table. Otherwise, you can determine the privileges you have for a certain table
by querying the system catalog. The system catalog consists of system tables that
describe the database structure. The privileges granted on each table are recorded
in the systabauth system table. To display these privileges, you must also know
the unique identifier number of the table. This number is specified in the systables
system table. To display privileges granted on the orders table, you might enter the
following SELECT statement:
SELECT * FROM systabauth

WHERE tabid = (SELECT tabid FROM systables
WHERE tabname = ’orders’);

The output of the query resembles the following example:
grantorgrantee tabid tabauth

tfecitmutator 101 su-i-x--
tfecitprocrustes101 s--idx--
tfecitpublic 101 s--i-x--

6-22 IBM Informix Guide to SQL: Tutorial

The grantor is the user who grants the privilege. The grantor is usually the owner
of the table but the owner can be another user that the grantor empowered. The
grantee is the user to whom the privilege is granted, and the grantee public means
any user with Connect privilege. If your user name does not appear, you have only
those privileges granted to public.

The tabauth column specifies the privileges granted. The letters in each row of this
column are the initial letters of the privilege names, except that i means Insert and
x means Index. In this example, public has Select, Insert, and Index privileges.
Only the user mutator has Update privileges, and only the user procrustes has
Delete privileges.

Before the database server performs any action for you (for example, execution of a
DELETE statement), it performs a query similar to the preceding one. If you are
not the owner of the table, and if the database server cannot find the necessary
privilege on the table for your user name or for public, it refuses to perform the
operation.

Grant privileges to roles

As DBA, you can create roles to standardize the privileges given to a class of users.
When you assign privileges to that role, every user of that role has those access
privileges. The SQL statements used for defining and manipulating roles include:
CREATE ROLE, DROP ROLE, GRANT, REVOKE, and SET ROLE. For more
information on the SQL syntax statements for defining and manipulating roles, see
the IBM Informix Guide to SQL: Syntax.

Default roles automatically apply upon connection to the database for particular
users and groups, without requiring the user to issue a SET ROLE statement. For
example:
GRANT DEFAULT ROLE manager TO larry;

For more information on roles and default roles, see “Control database use” on
page 1-5 or see the IBM Informix Administrator's Guide.

For more information on granting and revoking privileges, see “Grant and revoke
privileges in applications” on page 8-21. Also see IBM Informix Database Design and
Implementation Guide.

Data integrity
The INSERT, UPDATE, and DELETE statements modify data in an existing
database. Whenever you modify existing data, the integrity of the data can be
affected. For example, an order for a nonexistent product could be entered into the
orders table, a customer with outstanding orders could be deleted from the
customer table, or the order number could be updated in the orders table and not
in the items table. In each of these cases, the integrity of the stored data is lost.

Data integrity is actually made up of the following parts:

Entity integrity
Each row of a table has a unique identifier.

Semantic integrity
The data in the columns properly reflects the types of information the
column was designed to hold.

Chapter 6. Modify data 6-23

Referential integrity
The relationships between tables are enforced.

Well-designed databases incorporate these principles so that when you modify
data, the database itself prevents you from doing anything that might harm the
integrity of the data.

Entity integrity
An entity is any person, place, or thing to be recorded in a database. Each table
represents an entity, and each row of a table represents an instance of that entity.
For example, if order is an entity, the orders table represents the idea of an order
and each row in the table represents a specific order.

To identify each row in a table, the table must have a primary key. The primary
key is a unique value that identifies each row. This requirement is called the entity
integrity constraint.

For example, the orders table primary key is order_num. The order_num column
holds a unique system-generated order number for each row in the table. To access
a row of data in the orders table, use the following SELECT statement:
SELECT * FROM orders WHERE order_num = 1001;

Using the order number in the WHERE clause of this statement enables you to
access a row easily because the order number uniquely identifies that row. If the
table allowed duplicate order numbers, it would be almost impossible to access
one single row because all other columns of this table allow duplicate values.

For more information on primary keys and entity integrity, see the IBM Informix
Database Design and Implementation Guide.

Semantic integrity
Semantic integrity ensures that data entered into a row reflects an allowable value
for that row. The value must be within the domain, or allowable set of values, for
that column. For example, the quantity column of the items table permits only
numbers. If a value outside the domain can be entered into a column, the semantic
integrity of the data is violated.

The following constraints enforce semantic integrity:

Data type
The data type defines the types of values that you can store in a column.
For example, the data type SMALLINT allows you to enter values from
-32,767 to 32,767 into a column.

Default value
The default value is the value inserted into the column when an explicit
value is not specified. For example, the user_id column of the cust_calls
table defaults to the login name of the user if no name is entered.

Check constraint
The check constraint specifies conditions on data inserted into a column.
Each row inserted into a table must meet these conditions. For example,
the quantity column of the items table might check for quantities greater
than or equal to one.

6-24 IBM Informix Guide to SQL: Tutorial

For more information on how to use semantic integrity constraints in database
design, see the IBM Informix Database Design and Implementation Guide.

Referential integrity
Referential integrity refers to the relationship between tables. Because each table in
a database must have a primary key, this primary key can appear in other tables
because of its relationship to data within those tables. When a primary key from
one table appears in another table, it is called a foreign key.

Foreign keys join tables and establish dependencies between tables. tables can form
a hierarchy of dependencies in such a way that if you change or delete a row in
one table, you destroy the meaning of rows in other tables. For example, the
following figure shows that the customer_num column of the customer table is a
primary key for that table and a foreign key in the orders and cust_call tables.
Customer number 106, George Watson, is referenced in both the orders and
cust_calls tables. If customer 106 is deleted from the customer table, the link
between the three tables and this particular customer is destroyed.

When you delete a row that contains a primary key or update it with a different
primary key, you destroy the meaning of any rows that contain that value as a
foreign key. Referential integrity is the logical dependency of a foreign key on a
primary key. The integrity of a row that contains a foreign key depends on the
integrity of the row that it references—the row that contains the matching primary
key.

By default, the database server does not allow you to violate referential integrity
and gives you an error message if you attempt to delete rows from the parent table
before you delete rows from the child table. You can, however, use the ON
DELETE CASCADE option to cause deletes from a parent table to trip deletes on
child tables. See “The ON DELETE CASCADE option” on page 6-26.

To define primary and foreign keys, and the relationship between them, use the
CREATE TABLE and ALTER TABLE statements. For more information on these
statements, see the IBM Informix Guide to SQL: Syntax. For information about how
to build a data model with primary and foreign keys, see the IBM Informix Database
Design and Implementation Guide.

Figure 6-4. Referential integrity in the demonstration database

Chapter 6. Modify data 6-25

The ON DELETE CASCADE option
To maintain referential integrity when you delete rows from a primary key for a
table, use the ON DELETE CASCADE option in the REFERENCES clause of the
CREATE TABLE and ALTER TABLE statements. This option allows you to delete a
row from a parent table and its corresponding rows in matching child tables with a
single delete command.

Lock during cascading deletes

During deletes, locks are held on all qualifying rows of the parent and child tables.
When you specify a delete, the delete that is requested from the parent table occurs
before any referential actions are performed.

What happens to multiple children tables

If you have a parent table with two child constraints, one child with cascading
deletes specified and one child without cascading deletes, and you attempt to
delete a row from the parent table that applies to both child tables, the DELETE
statement fails, and no rows are deleted from either the parent or child tables.

Logging must be turned on

You must turn on logging in your current database for cascading deletes to work.
Logging and cascading deletes are discussed in “Transaction logging” on page
6-34.

Example of cascading deletes

Suppose you have two tables with referential integrity rules applied, a parent table,
accounts, and a child table, sub_accounts. The following CREATE TABLE
statements define the referential constraints:
CREATE TABLE accounts (

acc_num SERIAL primary key,
acc_type INT,
acc_descr CHAR(20));

CREATE TABLE sub_accounts (
sub_acc INTEGER primary key,
ref_num INTEGER REFERENCES accounts (acc_num)

ON DELETE CASCADE,
sub_descr CHAR(20));

The primary key of the accounts table, the acc_num column, uses a SERIAL data
type, and the foreign key of the sub_accounts table, the ref_num column, uses an
INTEGER data type. Combining the SERIAL data type on the primary key and the
INTEGER data type on the foreign key is allowed. Only in this condition can you
mix and match data types. The SERIAL data type is an INTEGER, and the
database automatically generates the values for the column. All other primary and
foreign key combinations must match explicitly. For example, a primary key that is
defined as CHAR must match a foreign key that is defined as CHAR.

The definition of the foreign key of the sub_accounts table, the ref_num column,
includes the ON DELETE CASCADE option. This option specifies that a delete of
any row in the parent table accounts will automatically cause the corresponding
rows of the child table sub_accounts to be deleted.

6-26 IBM Informix Guide to SQL: Tutorial

To delete a row from the accounts table that will cascade a delete to the
sub_accounts table, you must turn on logging. After logging is turned on, you can
delete the account number 2 from both tables, as the following example shows:
DELETE FROM accounts WHERE acc_num = 2;

Restrictions on cascading deletes

You can use cascading deletes for most deletes, including deletes on
self-referencing and cyclic queries. The only exception is correlated subqueries,
which are nested SELECT statements in which the value that the subquery (or
inner SELECT) produces depends on a value produced by the outer SELECT
statement that contains it. If you have implemented cascading deletes, you cannot
write deletes that use a child table in the correlated subquery. You receive an error
when you attempt to delete from a correlated subquery.

Restriction: You cannot define a DELETE trigger event on a table if the table
defines a referential constraint with ON DELETE CASCADE.

Object modes and violation detection

The object modes and violation detection features of the database can help you
monitor data integrity. These features are particularly powerful when they are
combined during schema changes or when insert, delete, and update operations
are performed on large volumes of data over short periods.

Database objects, within the context of a discussion of the object modes feature, are
constraints, indexes, and triggers, and each of them have different modes. Do not
confuse database objects that are relevant to the object modes feature with generic
database objects. Generic database objects are things like tables and synonyms.

Definitions of object modes
You can set disabled, enabled, or filtering modes for a constraint or a unique index.
You can set disabled or enabled modes for a trigger or a duplicate index. You can
use database object modes to control the effects of INSERT, DELETE, and UPDATE
statements.

Enabled mode: Constraints, indexes, and triggers are enabled by default.

When a database object is enabled, the database server recognizes the existence of
the database object and takes the database object into consideration while it
executes an INSERT, DELETE, or UPDATE statement. Thus, an enabled constraint
is enforced, an enabled index updated, and an enabled trigger is executed when
the trigger event takes place.

When you enable constraints and unique indexes, if a violating row exists, the data
manipulation statement fails (that is no rows change) and the database server
returns an error message.

You can identify the reason for the failure when you analyze the information in the
violations and diagnostic tables. You can then take corrective action or roll back the
operation.

Disabled mode: When a database object is disabled, the database server does not
take it into consideration during the execution of an INSERT, DELETE, or UPDATE
statement. A disabled constraint is not enforced, a disabled index is not updated,
and a disabled trigger is not executed when the trigger event takes place. When

Chapter 6. Modify data 6-27

you disable constraints and unique indexes, any data manipulation statement that
violates the restriction of the constraint or unique index succeed, (that is, the target
row is changed), and the database server does not return an error message.

Filtering mode: When a constraint or unique index is in filtering mode, the
statement succeeds and the database server enforces the constraint or the unique
index requirement during an INSERT, DELETE, or UPDATE statement by writing
the failed rows to the violations table associated with the target table. Diagnostic
information about the constraint violation is written to the diagnostics table
associated with the target table.

Example of modes with data manipulation statements

An example with the INSERT statement can illustrate the differences between the
enabled, disabled, and filtering modes. Consider an INSERT statement in which a
user tries to add a row that does not satisfy an integrity constraint on a table. For
example, assume that user joe created a table named cust_subset, and this table
consists of the following columns: ssn (customer's social security number), fname
(customer's first name), lname (customer's last name), and city (city in which the
customer lives). The ssn column has the INT data type. The other three columns
have the CHAR data type.

Assume that user joe defined the lname column as not null but has not assigned a
name to the not null constraint, so the database server has implicitly assigned the
name n104_7 to this constraint. Finally, assume that user joe created a unique
index named unq_ssn on the ssn column.

Now user linda who has the Insert privilege on the cust_subset table enters the
following INSERT statement on this table:
INSERT INTO cust_subset (ssn, fname, city)

VALUES (973824499, "jane", "los altos");

To better understand the distinctions among enabled, disabled, and filtering
modes, you can view the results of the preceding INSERT statement in the
following three sections.

Results of the insert operation when the constraint is enabled:

If the NOT NULL constraint on the cust_subset table is enabled, the INSERT
statement fails to insert the new row in this table. Instead user linda receives the
following error message when she enters the INSERT statement:
-292 An implied insert column lname does not accept NULLs.

Results of the insert operation when the constraint is disabled:

If the NOT NULL constraint on the cust_subset table is disabled, the INSERT
statement that user linda issues successfully inserts the new row in this table. The
new row of the cust_subset table has the following column values.

ssn fname lname city

973824499 jane NULL los altos

Results of the insert when constraint is in filtering mode:

6-28 IBM Informix Guide to SQL: Tutorial

If the NOT NULL constraint on the cust_subset table is set to the filtering mode,
the INSERT statement that user linda issues fails to insert the new row in this
table. Instead the new row is inserted into the violations table, and a diagnostic
row that describes the integrity violation is added to the diagnostics table.

Assume that user joe has started a violations and diagnostics table for the
cust_subset table. The violations table is named cust_subset_vio, and the
diagnostics table is named cust_subset_dia. The new row added to the
cust_subset_vio violations table when user linda issues the INSERT statement on
the cust_subset target table has the following column values.

ssn fname lname city informix_tupleid informix_optype informix_recowner

973824499 jane NULL los
altos

1 I linda

This new row in the cust_subset_vio violations table has the following
characteristics:
v The first four columns of the violations table exactly match the columns of the

target table. These four columns have the same names and the same data types
as the corresponding columns of the target table, and they have the column
values that were supplied by the INSERT statement that user linda entered.

v The value 1 in the informix_tupleid column is a unique serial identifier that is
assigned to the nonconforming row.

v The value I in the informix_optype column is a code that identifies the type of
operation that has caused this nonconforming row to be created. Specifically, I
stands for an INSERT operation.

v The value linda in the informix_recowner column identifies the user who
issued the statement that caused this nonconforming row to be created.

The INSERT statement that user linda issued on the cust_subset target table also
causes a diagnostic row to be added to the cust_subset_dia diagnostics table. The
new diagnostic row added to the diagnostics table has the following column
values.

informix_tupleid objtype objowner objname

1 C joe n104_7

This new diagnostic row in the cust_subset_dia diagnostics table has the following
characteristics:
v This row of the diagnostics table is linked to the corresponding row of the

violations table by means of the informix_tupleid column that appears in both
tables. The value 1 appears in this column in both tables.

v The value C in the objtype column identifies the type of integrity violation that
the corresponding row in the violations table caused. Specifically, the value C
stands for a constraint violation.

v The value joe in the objowner column identifies the owner of the constraint for
which an integrity violation was detected.

v The value n104_7 in the objname column gives the name of the constraint for
which an integrity violation was detected.

By joining the violations and diagnostics tables, user joe (who owns the
cust_subset target table and its associated special tables) or the DBA can find out

Chapter 6. Modify data 6-29

that the row in the violations table whose informix_tupleid value is 1 was created
after an INSERT statement and that this row is violating a constraint. The table
owner or DBA can query the sysconstraints system catalog table to determine that
this constraint is a NOT NULL constraint. Now that the reason for the failure of
the INSERT statement is known, user joe or the DBA can take corrective action.

Multiple diagnostic rows for one violations row:

In the preceding example, only one row in the diagnostics table corresponds to the
new row in the violations table. However, more than one diagnostic row can be
added to the diagnostics table when a single new row is added to the violations
table. For example, if the ssn value (973824499) that user linda entered in the
INSERT statement had been the same as an existing value in the ssn column of the
cust_subset target table, only one new row would appear in the violations table,
but the following two diagnostic rows would be present in the cust_subset_dia
diagnostics table.

informix_tupleid objtype objowner objname

1 C joe n104_7

1 I joe unq_ssn

Both rows in the diagnostics table correspond to the same row of the violations
table because both of these rows have the value 1 in the informix_tupleid column.
However, the first diagnostic row identifies the constraint violation caused by the
INSERT statement that user linda issued, while the second diagnostic row
identifies the unique-index violation caused by the same INSERT statement. In this
second diagnostic row, the value I in the objtype column stands for a
unique-index violation, and the value unq_ssn in the objname column gives the
name of the index for which the integrity violation was detected.

For more information about how to set database object modes, see the SET
Database object mode statement in the IBM Informix Guide to SQL: Syntax.

Violations and diagnostics tables
When you start a violations table for a target table, any rows that violate
constraints and unique indexes during INSERT, UPDATE, and DELETE operations
on the target table do not cause the entire operation to fail, but are filtered out to
the violations table. The diagnostics table contains information about the integrity
violations caused by each row in the violations table. By examining these tables,
you can identify the cause of failure and take corrective action by either fixing the
violation or rolling back the operation.

After you create a violations table for a target table, you cannot alter the columns
or the fragmentation of the base table or the violations table. If you alter the
constraints on a target table after you have started the violations table,
nonconforming rows will be filtered to the violations table.

For information about how to start and stop the violations tables, see the START
VIOLATIONS TABLE and STOP VIOLATIONS TABLE statements in the IBM
Informix Guide to SQL: Syntax.

Relationship of violations tables and database object modes: If you set the
constraints or unique indexes defined on a table to the filtering mode, but you do
not create the violations and diagnostics tables for this target table, any rows that
violate a constraint or unique-index requirement during an insert, update, or delete

6-30 IBM Informix Guide to SQL: Tutorial

operation are not filtered to a violations table. Instead, you receive an error
message that indicates that you must start a violations table for the target table.

Similarly, if you set a disabled constraint or disabled unique index to the enabled
or filtering mode and you want the ability to identify existing rows that do not
satisfy the constraint or unique-index requirement, you must create the violations
tables before you issue the SET DATABASE OBJECT MODE statement.

Examples of START VIOLATIONS TABLE statements:

The following examples show different ways to execute the START VIOLATIONS
TABLE statement.

Start violations and diagnostics tables without specifying their names:

To start a violations and diagnostics table for the target table named customer in
the demonstration database, enter the following statement:
START VIOLATIONS TABLE FOR customer;

Because your START VIOLATIONS TABLE statement does not include a USING
clause, the violations table is named customer_vio by default, and the diagnostics
table is named customer_dia by default. The customer_vio table includes the
following columns:
customer_num
fname
lname
company
address1
address2
city
state
zipcode
phone
informix_tupleid
informix_optype
informix_recowner

The customer_vio table has the same table definition as the customer table except
that the customer_vio table has three additional columns that contain information
about the operation that caused the bad row.

The customer_dia table includes the following columns:
informix_tupleid
objtype
objowner
objname

This list of columns shows an important difference between the diagnostics table
and violations table for a target table. Whereas the violations table has a matching
column for every column in the target table, the columns of the diagnostics table
do not match any columns in the target table. The diagnostics table created by any
START VIOLATIONS TABLE statement always has the same columns with the
same column names and data types.

Start violations and diagnostics tables and specify their names:

Chapter 6. Modify data 6-31

The following statement starts a violations and diagnostics table for the target table
named items. The USING clause assigns explicit names to the violations and
diagnostics tables. The violations table is to be named exceptions, and the
diagnostics table is to be named reasons.
START VIOLATIONS TABLE FOR items

USING exceptions, reasons;

Specify the maximum number of rows in the diagnostics table:

The following statement starts violations and diagnostics tables for the target table
named orders. The MAX ROWS clause specifies the maximum number of rows
that can be inserted into the diagnostics table when a single statement, such as an
INSERT or SET DATABASE OBJECT MODE statement, is executed on the target
table.
START VIOLATIONS TABLE FOR orders MAX ROWS 50000;

If you do not specify a value for MAX ROWS when you create a violations table,
no maximum (other than disk space) will be imposed.

Example of privileges on the violations table:

The following example illustrates how the initial set of privileges on a violations
table is derived from the current set of privileges on the target table.

For example, assume that we created a table named cust_subset and that this table
consists of the following columns: ssn (customer's social security number), fname
(customer's first name), lname (customer's last name), and city (city in which the
customer lives).

The following set of privileges exists on the cust_subset table:
v User alvin is the owner of the table.
v User barbara has the Insert and Index privileges on the table. She also has the

Select privilege on the ssn and lname columns.
v User carrie has the Update privilege on the city column. She also has the Select

privilege on the ssn column.
v User danny has the Alter privilege on the table.

Now user alvin starts a violations table named cust_subset_viols and a diagnostics
table named cust_subset_diags for the cust_subset table, as follows:
START VIOLATIONS TABLE FOR cust_subset

USING cust_subset_viols, cust_subset_diags;

The database server grants the following set of initial privileges on the
cust_subset_viols violations table:
v User alvin is the owner of the violations table, so he has all table-level privileges

on the table.
v User barbara has the Insert, Delete, and Index privileges on the violations table.

She also has the Select privilege on the following columns of the violations table:
the ssn column, the lname column, the informix_tupleid column, the
informix_optype column, and the informix_recowner column.

v User carrie has the Insert and Delete privileges on the violations table. She has
the Update privilege on the following columns of the violations table: the city
column, the informix_tupleid column, the informix_optype column, and the
informix_recowner column. She has the Select privilege on the following

6-32 IBM Informix Guide to SQL: Tutorial

columns of the violations table: the ssn column, the informix_tupleid column,
the informix_optype column, and the informix_recowner column.

v User danny has no privileges on the violations table.

Example of privileges on the diagnostics table:

The following example illustrates how the initial set of privileges on a diagnostics
table is derived from the current set of privileges on the target table.

For example, assume that a table called cust_subset consists of the following
columns: ssn (customer's social security number), fname (customer's first name),
lname (customer's last name), and city (city in which the customer lives).

The following set of privileges exists on the cust_subset table:
v User alvin is the owner of the table.
v User barbara has the Insert and Index privileges on the table. She also has the

Select privilege on the ssn and lname columns.
v User carrie has the Update privilege on the city column. She also has the Select

privilege on the ssn column.
v User danny has the Alter privilege on the table.

Now user alvin starts a violations table named cust_subset_viols and a diagnostics
table named cust_subset_diags for the cust_subset table, as follows:
START VIOLATIONS TABLE FOR cust_subset

USING cust_subset_viols, cust_subset_diags;

The database server grants the following set of initial privileges on the
cust_subset_diags diagnostics table:
v User alvin is the owner of the diagnostics table, so he has all table-level

privileges on the table.
v User barbara has the Insert, Delete, Select, and Index privileges on the

diagnostics table.
v User carrie has the Insert, Delete, Select, and Update privileges on the

diagnostics table.
v User danny has no privileges on the diagnostics table.

Interrupted modifications

Even if all the software is error-free and all the hardware is utterly reliable, the
world outside the computer can interfere. Lightning might strike the building,
interrupting the electrical supply and stopping the computer in the middle of your
UPDATE statement. A more likely scenario occurs when a disk fills up or a user
supplies incorrect data, causing your multirow insert to stop early with an error. In
any case, whenever you modify data, you must assume that some unforeseen
event can interrupt the modification.

When an external cause interrupts a modification, you cannot be sure how much
of the operation was completed. Even in a single-row operation, you cannot know
whether the data reached the disk or the indexes were properly updated.

Chapter 6. Modify data 6-33

If multirow modifications are a problem, multistatement modifications are worse.
They are usually embedded in programs so you do not see the individual SQL
statements being executed. For example, to enter a new order in the demonstration
database, perform the following steps:
1. Insert a row in the orders table. (This insert generates an order number.)
2. For each item ordered, insert a row in the items table.

Two ways to program an order-entry application exist. One way is to make it
completely interactive so that the program inserts the first row immediately and
then inserts each item as the user enters data. But this approach exposes the
operation to the possibility of many more unforeseen events: the customer's
telephone disconnecting, the user pressing the wrong key, the user's terminal or
computer losing power, and so on.

The following list describes the correct way to build an order-entry application:
v Accept all the data interactively.
v Validate the data, and expand it (look up codes in stock and manufact, for

example).
v Display the information on the screen for inspection.
v Wait for the operator to make a final commitment.
v Perform the insertions quickly.

Even with these steps, an unforeseen circumstance can halt the program after it
inserts the order but before it finishes inserting the items. If that happens, the
database is in an unpredictable condition: its data integrity is compromised.

Transactions

The solution to all these potential problems is called the transaction. A transaction
is a sequence of modifications that must be accomplished either completely or not
at all. The database server guarantees that operations performed within the bounds
of a transaction are either completely and perfectly committed to disk, or the
database is restored to the same state as before the transaction started.

The transaction is not merely protection against unforeseen failures; it also offers a
program a way to escape when the program detects a logical error.

Transaction logging
The database server can keep a record of each change that it makes to the database
during a transaction. If something happens to cancel the transaction, the database
server automatically uses the records to reverse the changes. Many things can
make a transaction fail. For example, the program that issues the SQL statements
can fail or be terminated. As soon as the database server discovers that the
transaction failed, which might be only after the computer and the database server
are restarted, it uses the records from the transaction to return the database to the
same state as before.

The process of keeping records of transactions is called transaction logging or
simply logging. The records of the transactions, called log records, are stored in a
portion of disk space separate from the database. This space is called the logical log
because the log records represent logical units of the transactions.

IBM Informix provides support to:

6-34 IBM Informix Guide to SQL: Tutorial

v Create nonlogging (raw) or logging (standard) tables in a logging database.
v Alter a table from nonlogging to logging and vice-versa using the ALTER TABLE

statement.

IBM Informix supports nonlogging tables for fast loads of very large tables. It is
recommended that you do not use nonlogging tables within a transaction. To avoid
concurrency problems, use the ALTER TABLE statement to make the table
standard (that is, logging) before you use the table in a transaction.

For more information about nonlogging tables for IBM Informix, see the IBM
Informix Administrator's Guide. For the performance advantages of nonlogging
tables, see the IBM Informix Performance Guide. For information about the ALTER
TABLE statement, see the IBM Informix Guide to SQL: Syntax.

Most IBM Informix databases do not generate transaction records automatically.
The DBA decides whether to make a database use transaction logging. Without
transaction logging, you cannot roll back transactions.

Logging and cascading deletes
Logging must be turned on in your database for cascading deletes to work
because, when you specify a cascading delete, the delete is first performed on the
primary key of the parent table. If the system fails after the rows of the primary
key of the parent table are performed but before the rows of the foreign key of the
child table are deleted, referential integrity is violated. If logging is turned off, even
temporarily, deletes do not cascade. After logging is turned back on, however,
deletes can cascade again.

IBM Informix allows you to turn on logging with the WITH LOG clause in the
CREATE DATABASE statement.

Specify transactions
You can use two methods to specify the boundaries of transactions with SQL
statements. In the most common method, you specify the start of a multistatement
transaction by executing the BEGIN WORK statement. In databases that are created
with the MODE ANSI option, no need exists to mark the beginning of a
transaction. One is always in effect; you indicate only the end of each transaction.

In both methods, to specify the end of a successful transaction, execute the
COMMIT WORK statement. This statement tells the database server that you
reached the end of a series of statements that must succeed together. The database
server does whatever is necessary to make sure that all modifications are properly
completed and committed to disk.

A program can also cancel a transaction deliberately by executing the ROLLBACK
WORK statement. This statement asks the database server to cancel the current
transaction and undo any changes.

An order-entry application can use a transaction in the following ways when it
creates a new order:
v Accept all data interactively
v Validate and expand it
v Wait for the operator to make a final commitment
v Execute BEGIN WORK

Chapter 6. Modify data 6-35

v Insert rows in the orders and items tables, checking the error code that the
database server returns

v If no errors occurred, execute COMMIT WORK; otherwise execute ROLLBACK
WORK

If any external failure prevents the transaction from being completed, the partial
transaction rolls back when the system restarts. In all cases, the database is in a
predictable state. Either the new order is completely entered, or it is not entered at
all.

Backups and logs with IBM Informix database servers
By using transactions, you can ensure that the database is always in a consistent
state and that your modifications are properly recorded on disk. But the disk itself
is not perfectly safe. It is vulnerable to mechanical failures and to flood, fire, and
earthquake. The only safeguard is to keep multiple copies of the data. These
redundant copies are called backup copies.

The transaction log (also called the logical log) complements the backup copy of a
database. Its contents are a history of all modifications that occurred since the last
time the database was backed up. If you ever need to restore the database from the
backup copy, you can use the transaction log to roll the database forward to its
most recent state.

The database server contains elaborate features to support backups and logging.
Your database server archive and backup guide describes these features.

The database server has stringent requirements for performance and reliability (for
example, it supports making backup copies while databases are in use).

The database server manages its own disk space, which is devoted to logging.

The database server performs logging concurrently for all databases using a
limited set of log files. The log files can be copied to another medium (backed up)
while transactions are active.

Database users never have to be concerned with these facilities because the DBA
usually manages them from a central location.

IBM Informix supports the onload and onunload utilities. Use the onunload utility
to make a personal backup copy of a single database or table. This program copies
a table or a database to tape. Its output consists of binary images of the disk pages
as they were stored in the database server. As a result, the copy can be made
quickly, and the corresponding onload program can restore the file quickly.
However, the data format is not meaningful to any other programs. For
information about how to use the onload and onunload utilities, see the IBM
Informix Migration Guide.

If your DBA uses ON-Bar to create backups and back up logical logs, you might
also be able to create your own backup copies using ON-Bar. For more
information, see your IBM Informix Backup and Restore Guide.

6-36 IBM Informix Guide to SQL: Tutorial

Concurrency and locks

If your database is contained in a single-user workstation, without a network
connecting it to other computers, concurrency is unimportant. In all other cases,
you must allow for the possibility that, while your program is modifying data,
another program is also reading or modifying the same data. Concurrency involves
two or more independent uses of the same data at the same time.

A high level of concurrency is crucial to good performance in a multiuser database
system. Unless controls exist on the use of data, however, concurrency can lead to
a variety of negative effects. Programs could read obsolete data; modifications
could be lost even though it seems they were entered successfully.

To prevent errors of this kind, the database server imposes a system of locks. A lock
is a claim, or reservation, that a program can place on a piece of data. The
database server guarantees that, as long as the data is locked, no other program
can modify it. When another program requests the data, the database server either
makes the program wait or turns it back with an error.

To control the effect that locks have on your data access, use a combination of SQL
statements: SET LOCK MODE and either SET ISOLATION or SET
TRANSACTION. You can understand the details of these statements after reading
a discussion on the use of cursors from within programs. Cursors are covered in
Chapter 8, “SQL programming,” on page 8-1, and Chapter 9, “Modify data through
SQL programs,” on page 9-1. For more information about locking and concurrency,
see Chapter 10, “Programming for a multiuser environment,” on page 10-1.

IBM Informix data replication
Data replication, in the broadest sense of the term, means that database objects have
more than one representation at more than one distinct site. For example, one way
to replicate data, so that reports can be run against the data without disturbing
client applications that are using the original database, is to copy the database to a
database server on a different computer.

The following list describes the advantages of data replication:
v Clients who access replicated data locally, as opposed to remote data that is not

replicated, experience improved performance because they do not have to use
network services.

v Clients at all sites experience improved availability with replicated data, because
if local replicated data is unavailable, a copy of the data is still available, albeit
remotely.

These advantages do not come without a cost. Data replication obviously requires
more storage for replicated data than for unreplicated data, and updating
replicated data can take more processing time than updating a single object.

Data replication can actually be implemented in the logic of client applications, by
explicitly specifying where data should be found or updated. However, this
method of achieving data replication is costly, error-prone, and difficult to
maintain. Instead, the concept of data replication is often coupled with replication
transparency. Replication transparency is functionality built into a database server
(instead of client applications) to handle the details of locating and maintaining
data replicas automatically.

Chapter 6. Modify data 6-37

Within the broad framework of data replication, an IBM Informix database server
implements nearly transparent data replication of entire database servers. All the
data that one database server manages is replicated and dynamically updated on
another database server, usually at a remote site. Data replication of an IBM
Informix database server is sometimes called hot-site backup, because it provides a
means of maintaining a backup copy of the entire database server that can be used
quickly in the event of a catastrophic failure.

Because the database server provides replication transparency, you generally do
not need to be concerned with or aware of data replication; the DBA takes care of
it. However, if your organization decides to use data replication, you should be
aware that special connectivity considerations exist for client applications in a data
replication environment. These considerations are described in the IBM Informix
Administrator's Guide.

The IBM Informix Enterprise Replication feature provides a different method of
data replication. For information on this feature, see the IBM Informix Enterprise
Replication Guide.

Summary
Database access is regulated by the privileges that the database owner grants to
you. The privileges that let you query data are often granted automatically, but the
ability to modify data is regulated by specific Insert, Delete, and Update privileges
that are granted on a table-by-table basis.

If data integrity constraints are imposed on the database, your ability to modify
data is restricted by those constraints. Your database- and table-level privileges and
any data constraints control how and when you can modify data. In addition, the
object modes and violation detection features of the database affect how you can
modify data and help to preserve the integrity of your data.

You can delete one or more rows from a table with the DELETE statement. Its
WHERE clause selects the rows; use a SELECT statement with the same clause to
preview the deletes.

The TRUNCATE statement deletes all the rows of a table.

Rows are added to a table with the INSERT statement. You can insert a single row
that contains specified column values, or you can insert a block of rows that a
SELECT statement generates.

Use the UPDATE statement to modify the contents of existing rows. You specify
the new contents with expressions that can include subqueries, so that you can use
data that is based on other tables or the updated table itself. The statement has two
forms. In the first form, you specify new values column by column. In the second
form, a SELECT statement or a record variable generates a set of new values.

Use the REFERENCES clause of the CREATE TABLE and ALTER TABLE
statements to create relationships between tables. The ON DELETE CASCADE
option of the REFERENCES clause allows you to delete rows from parent and
associated child tables with one DELETE statement.

Use transactions to prevent unforeseen interruptions in a modification from leaving
the database in an indeterminate state. When modifications are performed within a
transaction, they are rolled back after an error occurs. The transaction log also

6-38 IBM Informix Guide to SQL: Tutorial

extends the periodically made backup copy of the database. If the database must
be restored, it can be brought back to its most recent state.

Data replication, which is transparent to users, offers another type of protection
from catastrophic failures.

Chapter 6. Modify data 6-39

6-40 IBM Informix Guide to SQL: Tutorial

Chapter 7. Access and modify data in an external database

This section summarizes accessing tables and routines that are not in the current
database.

Access other database servers

You can access any table or routine in an external database by qualifying the name
of the database object (table, view, synonym, or routine).

When the external database is on the same database server as the current database,
you must qualify the object name with the database name and a colon. For
example, to refer to a table in a database other than the local database, the
following SELECT statement accesses information from an external database:
SELECT name, number FROM salesdb:contacts

In this example, the query returns data from the table, contacts, that is in the
database, salesdb.

A remote database server is any database server that is not the current database
server. When the external database is on a remote database server, you must
qualify the name of the database object with the database server name and the
database name, as the following example illustrates:
SELECT name, number FROM salesdb@distantserver:contacts

In this example, the query returns data from the table, contacts, that is in the
database, salesdb on the remote database server, distantserver.

For the syntax and rules on how to specify database object names in an external
database, see the IBM Informix Guide to SQL: Syntax.

Access ANSI databases

In ANSI databases, the owner of the object is part of the object name:
ownername.objectname. When both the current and external databases are ANSI
databases, unless you are the owner of the object, you must include the owner
name. The following SELECT statement shows a fully-qualified table name:
SELECT name, number FROM salesdb@aserver:ownername.contacts

Tip: You can always over-qualify an object name. That is, you can specify the full
object name, database@servername:ownername.objectname, even in situations that
do not require the full object name.

For more information about ANSI-compliant databases, refer to the IBM Informix
Database Design and Implementation Guide.

Create joins between external database servers

You can use the same notation in a join. When you specify the database name
explicitly, the long table names can become cumbersome unless you use aliases to
shorten them, as the following example shows:

© Copyright IBM Corp. 1996, 2010 7-1

SELECT O.order_num, C.fname, C.lname
FROM masterdb@central:customer C, sales@boston:orders O
WHERE C.customer_num = O.Customer_num

Access external routines

To refer to a routine on a database server other than the current database server,
qualify the routine name with the database server name and database name (and
the owner name if the remote database is ANSI compliant), as the following
SELECT statement illustrates:
SELECT name, salesdb@boston:how_long()

FROM salesdb@boston:contacts

Restrictions for remote database access

This section summarizes the restrictions for remote database access.

SQL statements and logging modes

You can run the following SQL statements across databases and across database
servers:
v CREATE DATABASE
v CREATE SYNONYM
v CREATE VIEW
v DATABASE
v DELETE
v DROP DATABASE
v EXECUTE FUNCTION
v EXECUTE PROCEDURE
v INFO
v INSERT
v LOAD
v LOCK TABLE
v SELECT
v UNLOAD
v UNLOCK TABLE
v UPDATE

To run each statement successfully across databases or database servers, the local
and external databases must have the same logging mode.

Distributed operations that use SQL statements or UDRs to access other databases
of the local IBM Informix instance, however, can also return the opaque built-in
data types BLOB, BOOLEAN, CLOB, and LVARCHAR. They can also access
DISTINCT types based on built-in types, as well as UDTs that can be cast to
built-in types, provided that the DISTINCT or UDT values are explicitly cast to
built-in types, and that all the DISTINCT types, UDTs, and casts are defined in all
of the participating databases.

Distributed operations that access databases of other Informix instances can access
or return values of the following data types:

7-2 IBM Informix Guide to SQL: Tutorial

v Built-in data types that are not opaque
v BOOLEAN
v LVARCHAR
v DISTINCT of built-in types that are not opaque
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of the DISTINCT data types in this list.

These data types can be returned by SPL, C, and Java-language UDRs as
parameters or as return values, if the UDRs are defined in all of the participating
databases. Any implicit or explicit casts defined over these data types must be
duplicated across all the participating Informix instances. The DISTINCT data
types must have exactly the same data type hierarchy defined in all databases that
participate in the distributed query.

Access external database objects

To access external database objects:
v You must hold appropriate access permissions on these objects.
v Both databases must be set to the same locale.

Important: Distributed transactions cannot access objects in a database of another
Informix server instance unless both server instances support either a TCP/IP or
an IPCSTR connection, as defined in their DBSERVERNAME or
DBSERVERALIASES configuration parameters and in the sqlhosts file or registry.
This connection-type requirement applies to any communication between Informix
database server instances, even if both database servers reside on the same
computer.

Chapter 7. Access and modify data in an external database 7-3

7-4 IBM Informix Guide to SQL: Tutorial

Chapter 8. SQL programming

The previous examples treat SQL as if it were an interactive computer language;
that is, as if you could type a SELECT statement directly into the database server
and see rows of data rolling back to you.

Of course, that is not the case. Many layers of software stand between you and the
database server. The database server retains data in a binary form that must be
formatted before it can be displayed. It does not return a mass of data at once; it
returns one row at a time, as a program requests it.

You can access information in your database through interactive access with
DB-Access, through application programs written with an SQL API such as
Informix ESQL/C, or through an application language such as SPL.

Almost any program can contain SQL statements, execute them, and retrieve data
from a database server. This chapter explains how these activities are performed
and indicates how you can write programs that perform them.

This chapter introduces concepts that are common to SQL programming in any
language. Before you can write a successful program in a particular programming
language, you must first become fluent in that language. Then, because the details
of the process are different in every language, you must become familiar with the
publication for the IBM Informix SQL API specific to that language.

SQL in programs

You can write a program in any of several languages and mix SQL statements
among the other statements of the program, just as if they were ordinary
statements of that programming language. These SQL statements are embedded in
the program, and the program contains embedded SQL, which is often abbreviated
as ESQL.

SQL in SQL APIs

ESQL products are IBM Informix SQL APIs (application programming interfaces).
IBM produces an SQL API for the C programming language.

The following figure shows how an SQL API product works. You write a source
program in which you treat SQL statements as executable code. Your source
program is processed by an embedded SQL preprocessor, a program that locates the
embedded SQL statements and converts them into a series of procedure calls and
special data structures.

© Copyright IBM Corp. 1996, 2010 8-1

The converted source program then passes through the programming language
compiler. The compiler output becomes an executable program after it is linked
with a static or dynamic library of SQL API procedures. When the program runs,
the SQL API library procedures are called; they set up communication with the
database server to carry out the SQL operations.

If you link your executable program to a threading library package, you can
develop Informix ESQL/C multithreaded applications. A multithreaded application
can have many threads of control. It separates a process into multiple execution
threads, each of which runs independently. The major advantage of a
multithreaded Informix ESQL/C application is that each thread can have many
active connections to a database server simultaneously. While a nonthreaded
Informix ESQL/C application can establish many connections to one or more
databases, it can have only one connection active at a time. A multithreaded
Informix ESQL/C application can have one active connection per thread and many
threads per application.

For more information on multithreaded applications, see the IBM Informix ESQL/C
Programmer's Manual.

SQL in application languages
Whereas an IBM Informix SQL API product allows you to embed SQL in the host
language, some languages include SQL as a natural part of their statement set. IBM
Informix Stored Procedure Language (SPL) uses SQL as a natural part of its
statement set. You use an SQL API product to write application programs. You use
SPL to write routines that are stored with a database and called from an
application program.

Static embedding
You can introduce SQL statements into a program through static embedding or
dynamic statements. The simpler and more common way is by static embedding,
which means that the SQL statements are written as part of the code. The
statements are static because they are a fixed part of the source text. For more
information on static embedding, see “Retrieve single rows” on page 8-8 and
“Retrieve multiple rows” on page 8-11.

Dynamic statements
Some applications require the ability to compose SQL statements dynamically, in
response to user input. For example, a program might have to select different
columns or apply different criteria to rows, depending on what the user wants.

With dynamic SQL, the program composes an SQL statement as a string of
characters in memory and passes it to the database server to be executed. Dynamic
statements are not part of the code; they are constructed in memory during
execution. For more information, see “Dynamic SQL” on page 8-18.

ESQL source
program

Source program
with procedure calls

Language
compiler

Executable
program

ESQL
preprocessor

Figure 8-1. Overview of processing a program with embedded SQL statements

8-2 IBM Informix Guide to SQL: Tutorial

Program variables and host variables
Application programs can use program variables within SQL statements. In SPL,
you put the program variable in the SQL statement as syntax allows. For example,
a DELETE statement can use a program variable in its WHERE clause.

The following code example shows a program variable in SPL.

In applications that use embedded SQL statements, the SQL statements can refer to
the contents of program variables. A program variable that is named in an
embedded SQL statement is called a host variable because the SQL statement is
thought of as a guest in the program.

The following example shows a DELETE statement as it might appear when it is
embedded in an IBM Informix ESQL/C source program:
EXEC SQL delete FROM items

WHERE order_num = :onum;

In this program, you see an ordinary DELETE statement, as Chapter 6, “Modify
data,” on page 6-1 describes. When the Informix ESQL/C program is executed, a
row of the items table is deleted; multiple rows can also be deleted.

The statement contains one new feature. It compares the order_num column to an
item written as :onum, which is the name of a host variable.

An SQL API product provides a way to delimit the names of host variables when
they appear in the context of an SQL statement. In Informix ESQL/C, a host
variable can be introduced with either a dollar sign ($) or a colon (:). The colon is
the ANSI-compatible format. The example statement asks the database server to
delete rows in which the order number equals the current contents of the host
variable named :onum. This numeric variable was declared and assigned a value
earlier in the program.

In IBM Informix ESQL/C, an SQL statement can be introduced with either a
leading dollar sign ($) or the words EXEC SQL.

The differences of syntax as illustrated in the preceding examples are trivial; the
essential point is that the SQL API and SPL languages let you perform the
following tasks:
v Embed SQL statements in a source program as if they were executable

statements of the host language.
v Use program variables in SQL expressions the way literal values are used.

If you have programming experience, you can immediately see the possibilities. In
the example, the order number to be deleted is passed in the variable onum. That
value comes from any source that a program can use. It can be read from a file, the
program can prompt a user to enter it, or it can be read from the database. The
DELETE statement itself can be part of a subroutine (in which case onum can be a
parameter of the subroutine); the subroutine can be called once or repetitively.

CREATE PROCEDURE delete_item (drop_number INT)...
DELETE FROM items WHERE order_num = drop_number...

Chapter 8. SQL programming 8-3

In short, when you embed SQL statements in a program, you can apply to them all
the power of the host language. You can hide the SQL statements under many
interfaces, and you can embellish the SQL functions in many ways.

Call the database server
Executing an SQL statement is essentially calling the database server as a
subroutine. Information must pass from the program to the database server, and
information must be returned from the database server to the program.

Some of this communication is done through host variables. You can think of the
host variables named in an SQL statement as the parameters of the procedure call
to the database server. In the preceding example, a host variable acts as a
parameter of the WHERE clause. Host variables receive data that the database
server returns, as “Retrieve multiple rows” on page 8-11 describes.

SQL Communications Area
The database server always returns a result code, and possibly other information
about the effect of an operation, in a data structure known as the SQL
Communications Area (SQLCA). If the database server executes an SQL statement
in a user-defined routine, the SQLCA of the calling application contains the values
that the SQL statement triggers in the routine.

The principal fields of the SQLCA are listed in Table 8-1 through Table 8-3 on page
8-6. The syntax that you use to describe a data structure such as the SQLCA, as
well as the syntax that you use to refer to a field in it, differs among programming
languages. For details, see your SQL API publication.

In particular, the subscript by which you name one element of the SQLERRD and
SQLWARN arrays differs. Array elements are numbered starting with zero in IBM
Informix ESQL/C, but starting with one in other languages. In this discussion, the
fields are named with specific words such as third, and you must translate these
words into the syntax of your programming language.

You can also use the SQLSTATE variable of the GET DIAGNOSTICS statement to
detect, handle, and diagnose errors. See “SQLSTATE value” on page 8-7.

SQLCODE field
The SQLCODE field is the primary return code of the database server. After every
SQL statement, SQLCODE is set to an integer value as the following table shows.
When that value is zero, the statement is performed without error. In particular,
when a statement is supposed to return data into a host variable, a code of zero
means that the data has been returned and can be used. Any nonzero code means
the opposite. No useful data was returned to host variables.

Table 8-1. Values of SQLCODE

Return value Interpretation

value < 0 Specifies an error code.

value = 0 Indicates success.

0 < value < 100 After a DESCRIBE statement, an integer value that represents the type
of SQL statement that is described.

8-4 IBM Informix Guide to SQL: Tutorial

Table 8-1. Values of SQLCODE (continued)

Return value Interpretation

100 After a successful query that returns no rows, indicates the NOT
FOUND condition. NOT FOUND can also occur in an ANSI-compliant
database after an INSERT INTO/SELECT, UPDATE, DELETE, or
SELECT... INTO TEMP statement fails to access any rows.

End of data
The database server sets SQLCODE to 100 when the statement is performed
correctly but no rows are found. This condition can occur in two situations.

The first situation involves a query that uses a cursor. (“Retrieve multiple rows” on
page 8-11 describes queries that use cursors.) In these queries, the FETCH
statement retrieves each value from the active set into memory. After the last row
is retrieved, a subsequent FETCH statement cannot return any data. When this
condition occurs, the database server sets SQLCODE to 100, which indicates end of
data, no rows found.

The second situation involves a query that does not use a cursor. In this case, the
database server sets SQLCODE to 100 when no rows satisfy the query condition. In
databases that are not ANSI compliant, only a SELECT statement that returns no
rows causes SQLCODE to be set to 100.

In ANSI-compliant databases, SELECT, DELETE, UPDATE, and INSERT statements
all set SQLCODE to 100 if no rows are returned.

Negative Codes
When something unexpected goes wrong during a statement, the database server
returns a negative number in SQLCODE to explain the problem. The meanings of
these codes are documented in the online error message file.

SQLERRD array
Some error codes that can be reported in SQLCODE reflect general problems. The
database server can set a more detailed code in the second field of SQLERRD that
reveals the error that the database server I/O routines or the operating system
encountered.

The integers in the SQLERRD array are set to different values following different
statements. The first and fourth elements of the array are used only in IBM
Informix ESQL/C. The following table shows how the fields are used.

Table 8-2. Fields of SQLERRD

Field Interpretation

First After a successful PREPARE statement for a SELECT, UPDATE, INSERT, or
DELETE statement, or after a Select cursor is opened, this field contains the
estimated number of rows affected.

Second When SQLCODE contains an error code, this field contains either zero or an
additional error code, called the ISAM error code, that explains the cause of
the main error. After a successful insert operation of a single row, this field
contains the value of any SERIAL, BIGSERIAL, or SERIAL8 value generated
for that row. (This field is not updated, however, when a serial column is
directly inserted as a triggered action by a trigger on a table, or by an
INSTEAD OF trigger on a view.)

Chapter 8. SQL programming 8-5

Table 8-2. Fields of SQLERRD (continued)

Field Interpretation

Third After a successful multirow insert, update, or delete operation, this field
contains the number of rows that were processed. After a multirow insert,
update, or delete operation that ends with an error, this field contains the
number of rows that were successfully processed before the error was detected.

Fourth After a successful PREPARE statement for a SELECT, UPDATE, INSERT, or
DELETE statement, or after a select cursor has been opened, this field contains
the estimated weighted sum of disk accesses and total rows processed.

Fifth After a syntax error in a PREPARE, EXECUTE IMMEDIATE, DECLARE, or
static SQL statement, this field contains the offset in the statement text where
the error was detected.

Sixth After a successful fetch of a selected row, or a successful insert, update, or
delete operation, this field contains the rowid (physical address) of the last row
that was processed. Whether this rowid value corresponds to a row that the
database server returns to the user depends on how the database server
processes a query, particularly for SELECT statements.

Seventh The SQL is not executed because SET EXPLAIN ON AVOID_EXECUTE is set.

These additional details can be useful. For example, you can use the value in the
third field to report how many rows were deleted or updated. When your program
prepares an SQL statement that the user enters and an error is found, the value in
the fifth field enables you to display the exact point of error to the user.
(DB-Access uses this feature to position the cursor when you ask to modify a
statement after an error.)

SQLWARN array
The eight character fields in the SQLWARN array are set to either a blank or to W
to indicate a variety of special conditions. Their meanings depend on the statement
just executed.

A set of warning flags appears when a database opens, that is, following a
CONNECT, DATABASE, or CREATE DATABASE statement. These flags tell you
some characteristics of the database as a whole.

A second set of flags appears following any other statement. These flags reflect
unusual events that occur during the statement, which are usually not serious
enough to be reflected by SQLCODE.

Both sets of SQLWARN values are summarized in the following table.

Table 8-3. Fields of SQLWARN

Field
When opening or connecting to a
database

All other insert operation when the
constraints

First Set to W when any other warning
field is set to W. If blank, others need
not be checked.

Set to W when any other warning field is
set to W.

Second Set to W when the database now
open uses a transaction log.

Set to W if a column value is truncated
when it is fetched into a host variable
using a FETCH or a SELECT...INTO
statement. On a REVOKE ALL statement,
set to W when not all seven table-level
privileges are revoked.

8-6 IBM Informix Guide to SQL: Tutorial

Table 8-3. Fields of SQLWARN (continued)

Field
When opening or connecting to a
database

All other insert operation when the
constraints

Third Set to W when the database now
open is ANSI compliant.

Set to W when a FETCH or SELECT
statement returns an aggregate function
(SUM, AVG, MIN, MAX) value that is
null.

Fourth Set to W when the database server is
IBM Informix.

On a SELECT...INTO, FETCH...INTO, or
EXECUTE...INTO statement, set to W
when the number of items in the select
list is not the same as the number of host
variables given in the INTO clause to
receive them. On a GRANT ALL
statement, set to W when not all seven
table-level privileges are granted.

Fifth Set to W when the database server
stores the FLOAT data type in
DECIMAL form (done when the
host system lacks support for
FLOAT types).

Set to W after a DESCRIBE statement if the
prepared statement contains a DELETE
statement or an UPDATE statement
without a WHERE clause.

Sixth Reserved. Set to W following execution of a
statement that does not use
ANSI-standard SQL syntax (provided the
DBANSIWARN environment variable is
set).

Seventh Set to W when the application is
connected to a database server that
is the secondary server in a
data-replication pair. That is, the
server is available only for read
operations.

Set to W when a data fragment (a dbspace)
has been skipped during query
processing (when the DATASKIP feature
is on).

Eighth Set to W when client DB_LOCALE
does not match the database locale.
For more information, see the IBM
Informix GLS User's Guide.

Reserved.

SQLERRM character string
SQLERRM can store a character string of up to 72 bytes. The SQLERRM character
string contains identifiers, such as a table names, that are placed in the error
message. For some networked applications, it contains an error message that the
networking software generates.

If an INSERT operation fails because a constraint is violated, the name of the
constraint that failed is written to SQLERRM.

Tip: If an error string is longer than 72 bytes, the overflow is silently discarded. In
some contexts, this can result in the loss of information about runtime errors.

SQLSTATE value
Certain IBM Informix products, such as IBM Informix ESQL/C, support the
SQLSTATE value in compliance with X/Open and ANSI SQL standards. The GET
DIAGNOSTICS statement reads the SQLSTATE value to diagnose errors after you
run an SQL statement. The database server returns a result code in a five-character

Chapter 8. SQL programming 8-7

string that is stored in a variable called SQLSTATE. The SQLSTATE error code, or
value, tells you the following information about the most recently executed SQL
statement:
v If the statement was successful
v If the statement was successful but generated warnings
v If the statement was successful but generated no data
v If the statement failed

For more information on the GET DIAGNOSTICS statement, the SQLSTATE
variable, and the meaning of the SQLSTATE return codes, see the GET
DIAGNOSTICS statement in the IBM Informix Guide to SQL: Syntax.

Tip: If your IBM Informix product supports GET DIAGNOSTICS and SQLSTATE,
it is recommended that you use them as the primary structure to detect, handle,
and diagnose errors. Using SQLSTATE allows you to detect multiple errors, and it
is ANSI compliant.

Retrieve single rows
The set of rows that a SELECT statement returns is its active set. A singleton
SELECT statement returns a single row. You can use embedded SELECT statements
to retrieve single rows from the database into host variables. When a SELECT
statement returns more than one row of data, however, a program must use a
cursor to retrieve rows one at a time. Multiple-row select operations are discussed
in “Retrieve multiple rows” on page 8-11.

To retrieve a single row of data, simply embed a SELECT statement in your
program. The following example shows how you can write the embedded SELECT
statement using IBM Informix ESQL/C:
EXEC SQL SELECT avg (total_price)

INTO :avg_price
FROM items
WHERE order_num in

(SELECT order_num from orders
WHERE order_date < date(’6/1/98’));

The INTO clause is the only detail that distinguishes this statement from any
example in Chapter 2, “Compose SELECT statements,” on page 2-1 or Chapter 5,
“Compose advanced SELECT statements,” on page 5-1. This clause specifies the
host variables that are to receive the data that is produced.

When the program executes an embedded SELECT statement, the database server
performs the query. The example statement selects an aggregate value so that it
produces exactly one row of data. The row has only a single column, and its value
is deposited in the host variable named avg_price. Subsequent lines of the
program can use that variable.

You can use statements of this kind to retrieve single rows of data into host
variables. The single row can have as many columns as desired. If a query
produces more than one row of data, the database server cannot return any data. It
returns an error code instead.

You should list as many host variables in the INTO clause as there are items in the
select list. If, by accident, these lists are of different lengths, the database server
returns as many values as it can and sets the warning flag in the fourth field of
SQLWARN.

8-8 IBM Informix Guide to SQL: Tutorial

Data type conversion
The following Informix ESQL/C example retrieves the average of a DECIMAL
column, which is itself a DECIMAL value. However, the host variable into which
the average of the DECIMAL column is placed is not required to have that data
type.
EXEC SQL SELECT avg (total_price) into :avg_price

FROM items;

The declaration of the receiving variable avg_price in the previous example of
Informix ESQL/C code is not shown. The declaration could be any one of the
following definitions:
int avg_price;
double avg_price;
char avg_price[16];
dec_t avg_price; /* typedef of decimal number structure */

The data type of each host variable that is used in a statement is noted and passed
to the database server with the statement. The database server does its best to
convert column data into the form that the receiving variables use. Almost any
conversion is allowed, although some conversions cause a precision loss. The
results of the preceding example differ, depending on the data type of the
receiving host variable, as the following table shows.

Data type Result

FLOAT The database server converts the decimal result to FLOAT, possibly
truncating some fractional digits. If the magnitude of a decimal exceeds
the maximum magnitude of the FLOAT format, an error is returned.

INTEGER The database server converts the result to INTEGER, truncating
fractional digits if necessary. If the integer part of the converted number
does not fit the receiving variable, an error occurs.

CHARACTER The database server converts the decimal value to a CHARACTER
string. If the string is too long for the receiving variable, it is truncated.
The second field of SQLWARN is set to W and the value in the
SQLSTATE variable is 01004.

What if the program retrieves a NULL value?
NULL values can be stored in the database, but the data types that programming
languages support do not recognize a NULL state. A program must have some
way to recognize a NULL item to avoid processing it as data.

Indicator variables meet this need in SQL APIs. An indicator variable is an
additional variable that is associated with a host variable that might receive a
NULL item. When the database server puts data in the main variable, it also puts a
special value in the indicator variable to show whether the data is NULL. In the
following IBM Informix ESQL/C example, a single row is selected, and a single
value is retrieved into the host variable op_date:
EXEC SQL SELECT paid_date

INTO :op_date:op_d_ind
FROM orders
WHERE order_num = $the_order;

if (op_d_ind < 0) /* data was null */
rstrdate (’01/01/1900’, :op_date);

Chapter 8. SQL programming 8-9

Because the value might be NULL, an indicator variable named op_d_ind is
associated with the host variable. (It must be declared as a short integer elsewhere
in the program.)

Following execution of the SELECT statement, the program tests the indicator
variable for a negative value. A negative number (usually -1) means that the value
retrieved into the main variable is NULL. If the variable is NULL, this program
uses an Informix ESQL/C library function to assign a default value to the host
variable. (The function rstrdate is part of the IBM Informix ESQL/C product.)

The syntax that you use to associate an indicator variable with a host variable
differs with the language you are using, but the principle is the same in all
languages.

Dealing with errors

Although the database server automatically handles conversion between data
types, several things still can go wrong with a SELECT statement. In SQL
programming, as in any kind of programming, you must anticipate errors and
provide for them at every point.

End of data

One common event is that no rows satisfy a query. This event is signalled by an
SQLSTATE code of 02000 and by a code of 100 in SQLCODE after a SELECT
statement. This code indicates an error or a normal event, depending entirely on
your application. If you are sure a row or rows should satisfy the query (for
example, if you are reading a row using a key value that you just read from a row
of another table), then the end-of-data code represents a serious failure in the logic
of the program. On the other hand, if you select a row based on a key that a user
supplies or some other source supplies that is less reliable than a program, a lack
of data can be a normal event.

End of data with databases that are not ANSI compliant

If your database is not ANSI compliant, the end-of-data return code, 100, is set in
SQLCODE following SELECT statements only. In addition, the SQLSTATE value is
set to 02000. (Other statements, such as INSERT, UPDATE, and DELETE, set the
third element of SQLERRD to show how many rows they affected; Chapter 9,
“Modify data through SQL programs,” on page 9-1 covers this topic.)

Serious errors

Errors that set SQLCODE to a negative value or SQLSTATE to a value that begins
with anything other than 00, 01, or 02 are usually serious. Programs that you have
developed and that are in production should rarely report these errors.
Nevertheless, it is difficult to anticipate every problematic situation, so your
program must be able to deal with these errors.

For example, a query can return error -206, which means that a table specified in
the query is not in the database. This condition occurs if someone dropped the
table after the program was written, or if the program opened the wrong database
through some error of logic or mistake in input.

8-10 IBM Informix Guide to SQL: Tutorial

Interpret end of data with aggregate functions

A SELECT statement that uses an aggregate function such as SUM, MIN, or AVG
always succeeds in returning at least one row of data, even when no rows satisfy
the WHERE clause. An aggregate value based on an empty set of rows is null, but
it exists nonetheless.

However, an aggregate value is also null if it is based on one or more rows that all
contain null values. If you must be able to detect the difference between an
aggregate value that is based on no rows and one that is based on some rows that
are all null, you must include a COUNT function in the statement and an indicator
variable on the aggregate value. You can then work out the following cases.

Count Value Indicator Case

0 -1 Zero rows selected

>0 -1 Some rows selected; all were null

>0 0 Some non-null rows selected

Default values

You can handle these inevitable errors in many ways. In some applications, more
lines of code are used to handle errors than to execute functionality. In the
examples in this section, however, one of the simplest solutions, the default value,
should work, as the following example shows:
avg_price = 0; /* set default for errors */
EXEC SQL SELECT avg (total_price)

INTO :avg_price:null_flag
FROM items;

if (null_flag < 0) /* probably no rows */
avg_price = 0; /* set default for 0 rows */

The previous example deals with the following considerations:
v If the query selects some non-null rows, the correct value is returned and used.

This result is the expected and most frequent one.
v If the query selects no rows, or in the much less likely event, selects only rows

that have null values in the total_price column (a column that should never be
null), the indicator variable is set, and the default value is assigned.

v If any serious error occurs, the host variable is left unchanged; it contains the
default value initially set. At this point in the program, the programmer sees no
need to trap such errors and report them.

Retrieve multiple rows

When any chance exists that a query could return more than one row, the program
must execute the query differently. Multirow queries are handled in two stages.
First, the program starts the query. (No data is returned immediately.) Then the
program requests the rows of data one at a time.

These operations are performed using a special data object called a cursor. A cursor
is a data structure that represents the current state of a query. The following list
shows the general sequence of program operations:
1. The program declares the cursor and its associated SELECT statement, which

merely allocates storage to hold the cursor.

Chapter 8. SQL programming 8-11

2. The program opens the cursor, which starts the execution of the associated
SELECT statement and detects any errors in it.

3. The program fetches a row of data into host variables and processes it.
4. The program closes the cursor after the last row is fetched.
5. When the cursor is no longer needed, the program frees the cursor to deallocate

the resources it uses.

These operations are performed with SQL statements named DECLARE, OPEN,
FETCH, CLOSE, and FREE.

Declare a cursor

You use the DECLARE statement to declare a cursor. This statement gives the
cursor a name, specifies its use, and associates it with a statement. The following
example is written in IBM Informix ESQL/C:
EXEC SQL DECLARE the_item CURSOR FOR

SELECT order_num, item_num, stock_num
INTO :o_num, :i_num, :s_num
FROM items

FOR READ ONLY;

The declaration gives the cursor a name (the_item in this case) and associates it
with a SELECT statement. (Chapter 9, “Modify data through SQL programs,” on
page 9-1 discusses how a cursor can also be associated with an INSERT statement.)

The SELECT statement in this example contains an INTO clause. The INTO clause
specifies which variables receive data. You can also use the FETCH statement to
specify which variables receive data, as “Locate the INTO clause” on page 8-13
discusses.

The DECLARE statement is not an active statement; it merely establishes the
features of the cursor and allocates storage for it. You can use the cursor declared
in the preceding example to read through the items table once. Cursors can be
declared to read backward and forward (see “Cursor input modes” on page 8-14).
This cursor, because it lacks a FOR UPDATE clause and because it is designated
FOR READ ONLY, is used only to read data, not to modify it. Chapter 9, “Modify
data through SQL programs,” on page 9-1 covers the use of cursors to modify
data.

Open a cursor

The program opens the cursor when it is ready to use it. The OPEN statement
activates the cursor. It passes the associated SELECT statement to the database
server, which begins the search for matching rows. The database server processes
the query to the point of locating or constructing the first row of output. It does
not actually return that row of data, but it does set a return code in SQLSTATE
and in SQLCODE for SQL APIs. The following example shows the OPEN
statement in Informix ESQL/C:
EXEC SQL OPEN the_item;

Because the database server is seeing the query for the first time, it might detect a
number of errors. After the program opens the cursor, it should test SQLSTATE or
SQLCODE. If the SQLSTATE value is greater than 02000 or the SQLCODE contains

8-12 IBM Informix Guide to SQL: Tutorial

a negative number, the cursor is not usable. An error might be present in the
SELECT statement, or some other problem might prevent the database server from
executing the statement.

If SQLSTATE is equal to 00000, or SQLCODE contains a zero, the SELECT
statement is syntactically valid, and the cursor is ready to use. At this point,
however, the program does not know if the cursor can produce any rows.

Fetch rows

The program uses the FETCH statement to retrieve each row of output. This
statement names a cursor and can also name the host variables that receive the
data. The following example shows the completed IBM Informix ESQL/C code:
EXEC SQL DECLARE the_item CURSOR FOR

SELECT order_num, item_num, stock_num
INTO :o_num, :i_num, :s_num
FROM items;

EXEC SQL OPEN the_item;
while(SQLCODE == 0)
{

EXEC SQL FETCH the_item;
if(SQLCODE == 0)

printf("%d, %d, %d", o_num, i_num, s_num);
}

Detect end of data

In the previous example, the WHILE condition prevents execution of the loop in
case the OPEN statement returns an error. The same condition terminates the loop
when SQLCODE is set to 100 to signal the end of data. However, the loop contains
a test of SQLCODE. This test is necessary because, if the SELECT statement is
valid yet finds no matching rows, the OPEN statement returns a zero, but the first
fetch returns 100 (end of data) and no data. The following example shows another
way to write the same loop:
EXEC SQL DECLARE the_item CURSOR FOR

SELECT order_num, item_num, stock_num
INTO :o_num, :i_num, :s_num
FROM items;

EXEC SQL OPEN the_item;
if(SQLCODE == 0)

EXEC SQL FETCH the_item; /* fetch 1st row*/
while(SQLCODE == 0)
{

printf("%d, %d, %d", o_num, i_num, s_num);
EXEC SQL FETCH the_item;

}

In this version, the case of no returned rows is handled early, so no second test of
SQLCODE exists within the loop. These versions have no measurable difference in
performance because the time cost of a test of SQLCODE is a tiny fraction of the
cost of a fetch.

Locate the INTO clause

The INTO clause names the host variables that are to receive the data that the
database server returns. The INTO clause must appear in either the SELECT or the
FETCH statement. However it cannot appear in both statements. The following
example specifies host variables in the FETCH statement:

Chapter 8. SQL programming 8-13

EXEC SQL DECLARE the_item CURSOR FOR
SELECT order_num, item_num, stock_num

FROM items;
EXEC SQL OPEN the_item;
while(SQLCODE == 0)
{

EXEC SQL FETCH the_item INTO :o_num, :i_num, :s_num;
if(SQLCODE == 0)

printf("%d, %d, %d", o_num, i_num, s_num);
}

This form lets you fetch different rows into different locations. For example, you
could use this form to fetch successive rows into successive elements of an array.

Cursor input modes

For purposes of input, a cursor operates in one of two modes, sequential or
scrolling. A sequential cursor can fetch only the next row in sequence, so a
sequential cursor can read through a table only once each time the cursor is
opened. A scroll cursor can fetch the next row or any of the output rows, so a
scroll cursor can read the same rows multiple times. The following example shows
a sequential cursor declared in IBM Informix ESQL/C.
EXEC SQL DECLARE pcurs cursor for

SELECT customer_num, lname, city
FROM customer;

After the cursor is opened, it can be used only with a sequential fetch that
retrieves the next row of data, as the following example shows:
EXEC SQL FETCH p_curs into:cnum, :clname, :ccity;

Each sequential fetch returns a new row.

A scroll cursor is declared with the keywords SCROLL CURSOR, as the following
example from IBM Informix ESQL/C shows:
EXEC SQL DECLARE s_curs SCROLL CURSOR FOR

SELECT order_num, order_date FROM orders
WHERE customer_num > 104

Use the scroll cursor with a variety of fetch options. For example, the ABSOLUTE
option specifies the absolute row position of the row to fetch.
EXEC SQL FETCH ABSOLUTE :numrow s_curs

INTO :nordr, :nodat

This statement fetches the row whose position is given in the host variable
numrow. You can also fetch the current row again, or you can fetch the first row
and then scan through all the rows again. However, these features can cause the
application to run more slowly, as the next section describes. For additional options
that apply to scroll cursors, see the FETCH statement in the IBM Informix Guide to
SQL: Syntax.

Active set of a cursor
Once a cursor is opened, it stands for some selection of rows. The set of all rows
that the query produces is called the active set of the cursor. It is easy to think of
the active set as a well-defined collection of rows and to think of the cursor as
pointing to one row of the collection. This situation is true as long as no other
programs are modifying the same data concurrently.

8-14 IBM Informix Guide to SQL: Tutorial

Create the active set

When a cursor is opened, the database server does whatever is necessary to locate
the first row of selected data. Depending on how the query is phrased, this action
can be easy, or it can require a great deal of work and time. Consider the following
declaration of a cursor:
EXEC SQL DECLARE easy CURSOR FOR

SELECT fname, lname FROM customer
WHERE state = ’NJ’

Because this cursor queries only a single table in a simple way, the database server
quickly determines whether any rows satisfy the query and identifies the first one.
The first row is the only row the cursor finds at this time. The rest of the rows in
the active set remain unknown. As a contrast, consider the following declaration of
a cursor:
EXEC SQL DECLARE hard SCROLL CURSOR FOR

SELECT C.customer_num, O.order_num, sum (items.total_price)
FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num

AND O.order_num = I.order_num
AND O.paid_date is null

GROUP BY C.customer_num, O.order_num

The active set of this cursor is generated by joining three tables and grouping the
output rows. The optimizer might be able to use indexes to produce the rows in
the correct order, but generally the use of ORDER BY or GROUP BY clauses
requires the database server to generate all the rows, copy them to a temporary
table, and sort the table, before it can determine which row to present first.

In cases where the active set is entirely generated and saved in a temporary table,
the database server can take quite some time to open the cursor. Afterwards, the
database server could tell the program exactly how many rows the active set
contains. However, this information is not made available. One reason is that you
can never be sure which method the optimizer uses. If the optimizer can avoid
sorts and temporary tables, it does so; but small changes in the query, in the sizes
of the tables, or in the available indexes can change the methods of the optimizer.

Active set for a sequential cursor

The database server attempts to use as few resources as possible to maintain the
active set of a cursor. If it can do so, the database server never retains more than
the single row that is fetched next. It can do this for most sequential cursors. On
each fetch, it returns the contents of the current row and locates the next one.

Active set for a SCROLL cursor

All the rows in the active set for a SCROLL cursor must be retained until the
cursor closes because the database server cannot be sure which row the program
will ask for next.

Most frequently, the database server implements the active set of a scroll cursor as
a temporary table. The database server might not fill this table immediately,
however (unless it created a temporary table to process the query). Usually it
creates the temporary table when the cursor is opened. Then, the first time a row is
fetched, the database server copies it into the temporary table and returns it to the
program. When a row is fetched for a second time, it can be taken from the

Chapter 8. SQL programming 8-15

temporary table. This scheme uses the fewest resources, in the event that the
program abandons the query before it fetches all the rows. Rows that are never
fetched are not created or saved.

Active set and concurrency
When only one program is using a database, the members of the active set cannot
change. This situation describes most personal computers, and it is the easiest
situation to think about. But some programs must be designed for use in a
multiprogramming system, where two, three, or dozens of different programs can
work on the same tables simultaneously.

When other programs can update the tables while your cursor is open, the idea of
the active set becomes less useful. Your program can see only one row of data at a
time, but all other rows in the table can be changing.

In the case of a simple query, when the database server holds only one row of the
active set, any other row can change. The instant after your program fetches a row,
another program can delete the same row, or update it so that if it is examined
again, it is no longer part of the active set.

When the active set, or part of it, is saved in a temporary table, stale data can
present a problem. That is, the rows in the actual tables from which the active-set
rows are derived can change. If they do, some of the active-set rows no longer
reflect the current table contents.

These ideas seem unsettling at first, but as long as your program only reads the
data, stale data does not exist, or rather, all data is equally stale. The active set is a
snapshot of the data as it is at one moment. A row is different the next day; it does
not matter if it is also different in the next millisecond. To put it another way, no
practical difference exists between changes that occur while the program is running
and changes that are saved and applied the instant that the program terminates.

The only time that stale data can cause a problem is when the program intends to
use the input data to modify the same database; for example, when a banking
application must read an account balance, change it, and write it back. Chapter 9,
“Modify data through SQL programs,” on page 9-1 discusses programs that
modify data.

Parts-explosion problem
When you use a cursor supplemented by program logic, you can solve problems
that plain SQL cannot solve. One of these problems is the parts-explosion problem,
sometimes called bill-of-materials processing. At the heart of this problem is a
recursive relationship among objects; one object contains other objects, which
contain yet others.

The problem is usually stated in terms of a manufacturing inventory. A company
makes a variety of parts, for example. Some parts are discrete, but some are
assemblages of other parts.

These relationships are documented in a single table, which might be called
contains. The column contains.parent holds the part numbers of parts that are
assemblages. The column contains.child has the part number of a part that is a
component of the parent. If part number 123400 is an assembly of nine parts, nine
rows exist with 123400 in the first column and other part numbers in the second.
The following figure shows one of the rows that describe part number 123400.

8-16 IBM Informix Guide to SQL: Tutorial

Here is the parts-explosion problem: given a part number, produce a list of all
parts that are components of that part. The following example is a sketch of one
solution, as implemented in IBM Informix ESQL/C:
int part_list[200];

boom(top_part)
int top_part;
{

long this_part, child_part;
int next_to_do = 0, next_free = 1;
part_list[next_to_do] = top_part;

EXEC SQL DECLARE part_scan CURSOR FOR
SELECT child INTO child_part FROM contains

WHERE parent = this_part;
while(next_to_do < next_free)
{

this_part = part_list[next_to_do];
EXEC SQL OPEN part_scan;
while(SQLCODE == 0)
{

EXEC SQL FETCH part_scan;
if(SQLCODE == 0)
{

part_list[next_free] = child_part;
next_free += 1;

}
}
EXEC SQL CLOSE part_scan;
next_to_do += 1;

}
return (next_free - 1);

}

Technically speaking, each row of the contains table is the head node of a directed
acyclic graph, or tree. The function performs a breadth-first search of the tree
whose root is the part number passed as its parameter. The function uses a cursor
named part_scan to return all the rows with a particular value in the parent
column. The innermost while loop opens the part_scan cursor, fetches each row in
the selection set, and closes the cursor when the part number of each component
has been retrieved.

This function addresses the heart of the parts-explosion problem, but the function
is not a complete solution. For example, it does not allow for components that
appear at more than one level in the tree. Furthermore, a practical contains table
would also have a column count, giving the count of child parts used in each
parent. A program that returns a total count of each component part is much more
complicated.

PARENT

FKNN

CONTAINS

432100
765899

FKNN

CHILD

123400
432100

Figure 8-2. Parts-explosion problem

Chapter 8. SQL programming 8-17

The iterative approach described previously is not the only way to approach the
parts-explosion problem. If the number of generations has a fixed limit, you can
solve the problem with a single SELECT statement using nested, outer self-joins.

If up to four generations of parts can be contained within one top-level part, the
following SELECT statement returns all of them:
SELECT a.parent, a.child, b.child, c.child, d.child

FROM contains a
OUTER (contains b,

OUTER (contains c, outer contains d))
WHERE a.parent = top_part_number

AND a.child = b.parent
AND b.child = c.parent
AND c.child = d.parent

This SELECT statement returns one row for each line of descent rooted in the part
given as top_part_number. Null values are returned for levels that do not exist.
(Use indicator variables to detect them.) To extend this solution to more levels,
select additional nested outer joins of the contains table. You can also revise this
solution to return counts of the number of parts at each level.

Dynamic SQL
Although static SQL is useful, it requires that you know the exact content of every
SQL statement at the time you write the program. For example, you must state
exactly which columns are tested in any WHERE clause and exactly which
columns are named in any select list.

No problem exists when you write a program to perform a well-defined task. But
the database tasks of some programs cannot be perfectly defined in advance. In
particular, a program that must respond to an interactive user might need to
compose SQL statements in response to what the user enters.

Dynamic SQL allows a program to form an SQL statement during execution, so
that user input determines the contents of the statement. This action is performed
in the following steps:
1. The program assembles the text of an SQL statement as a character string,

which is stored in a program variable.
2. It executes a PREPARE statement, which asks the database server to examine

the statement text and prepare it for execution.
3. It uses the EXECUTE statement to execute the prepared statement.

In this way, a program can construct and then use any SQL statement, based on
user input of any kind. For example, it can read a file of SQL statements and
prepare and execute each one.

DB-Access, a utility that you can use to explore SQL interactively, is an IBM
Informix ESQL/C program that constructs, prepares, and executes SQL statements
dynamically. For example, DB-Access lets you use simple, interactive menus to
specify the columns of a table. When you are finished, DB-Access builds the
necessary CREATE TABLE or ALTER TABLE statement dynamically and prepares
and executes it.

8-18 IBM Informix Guide to SQL: Tutorial

Prepare a statement

In form, a dynamic SQL statement is like any other SQL statement that is written
into a program, except that it cannot contain the names of any host variables.

A prepared SQL statement has two restrictions. First, if it is a SELECT statement, it
cannot include the INTO variable clause. The INTO variable clause specifies host
variables into which column data is placed, and host variables are not allowed in
the text of a prepared object. Second, wherever the name of a host variable
normally appears in an expression, a question mark (?) is written as a placeholder
in the PREPARE statement. Only the PREPARE statement can specify question
mark (?) placeholders.

You can prepare a statement in this form for execution with the PREPARE
statement. The following example is written in IBM Informix ESQL/C:
EXEC SQL prepare query_2 from

’SELECT * from orders
WHERE customer_num = ? and order_date > ?’;

The two question marks in this example indicate that when the statement is
executed, the values of host variables are used at those two points.

You can prepare almost any SQL statement dynamically. The only statements that
you cannot prepare are the ones directly concerned with dynamic SQL and cursor
management, such as the PREPARE and OPEN statements. After you prepare an
UPDATE or DELETE statement, it is a good idea to test the fifth field of
SQLWARN to see if you used a WHERE clause (see “SQLWARN array” on page
8-6).

The result of preparing a statement is a data structure that represents the
statement. This data structure is not the same as the string of characters that
produced it. In the PREPARE statement, you give a name to the data structure; it is
query_2 in the preceding example. This name is used to execute the prepared SQL
statement.

The PREPARE statement does not limit the character string to one statement. It can
contain multiple SQL statements, separated by semicolons. The following example
shows a fairly complex transaction in IBM Informix ESQL/C:
strcpy(big_query, "UPDATE account SET balance = balance + ?
WHERE customer_id = ?; \ UPDATE teller SET balance =
balance + ? WHERE teller_id = ?;");
EXEC SQL PREPARE big1 FROM :big_query;

When this list of statements is executed, host variables must provide values for six
place-holding question marks. Although it is more complicated to set up a
multistatement list, performance is often better because fewer exchanges take place
between the program and the database server.

Execute prepared SQL

After you prepare a statement, you can execute it multiple times. statements other
than SELECT statements, and SELECT statements that return only a single row, are
executed with the EXECUTE statement.

The following IBM Informix ESQL/C code prepares and executes a multistatement
update of a bank account:

Chapter 8. SQL programming 8-19

EXEC SQL BEGIN DECLARE SECTION;
char bigquery[270] = "begin work;";
EXEC SQL END DECLARE SECTION;
stcat ("update account set balance = balance + ? where ", bigquery);
stcat ("acct_number = ?;’, bigquery);
stcat ("update teller set balance = balance + ? where ", bigquery);
stcat ("teller_number = ?;’, bigquery);
stcat ("update branch set balance = balance + ? where ", bigquery);
stcat ("branch_number = ?;’, bigquery);
stcat ("insert into history values(timestamp, values);", bigquery);

EXEC SQL prepare bigq from :bigquery;

EXEC SQL execute bigq using :delta, :acct_number, :delta,
:teller_number, :delta, :branch_number;

EXEC SQL commit work;

The USING clause of the EXECUTE statement supplies a list of host variables
whose values are to take the place of the question marks in the prepared
statement. If a SELECT (or EXECUTE FUNCTION) returns only one row, you can
use the INTO clause of EXECUTE to specify the host variables that receive the
values.

Dynamic host variables
SQL APIs, which support dynamically allocated data objects, take dynamic
statements one step further. They let you dynamically allocate the host variables
that receive column data.

Dynamic allocation of variables makes it possible to take an arbitrary SELECT
statement from program input, determine how many values it produces and their
data types, and allocate the host variables of the appropriate types to hold them.

The key to this ability is the DESCRIBE statement. It takes the name of a prepared
SQL statement and returns information about the statement and its contents. It sets
SQLCODE to specify the type of statement; that is, the verb with which it begins.
If the prepared statement is a SELECT statement, the DESCRIBE statement also
returns information about the selected output data. If the prepared statement is an
INSERT statement, the DESCRIBE statement returns information about the input
parameters. The data structure to which a DESCRIBE statement returns
information is a predefined data structure that is allocated for this purpose and is
known as a system-descriptor area. If you are using IBM Informix ESQL/C, you
can use a system-descriptor area or, as an alternative, an sqlda structure.

The data structure that a DESCRIBE statement returns or references for a SELECT
statement includes an array of structures. Each structure describes the data that is
returned for one item in the select list. The program can examine the array and
discover that a row of data includes a decimal value, a character value of a certain
length, and an integer.

With this information, the program can allocate memory to hold the retrieved
values and put the necessary pointers in the data structure for the database server
to use.

Free prepared statements
A prepared SQL statement occupies space in memory. With some database servers,
it can consume space that the database server owns as well as space that belongs

8-20 IBM Informix Guide to SQL: Tutorial

to the program. This space is released when the program terminates, but in
general, you should free this space when you finish with it.

You can use the FREE statement to release this space. The FREE statement takes
either the name of a statement or the name of a cursor that was declared for a
statement name, and releases the space allocated to the prepared statement. If more
than one cursor is defined on the statement, freeing the statement does not free the
cursor.

Quick execution

For simple statements that do not require a cursor or host variables, you can
combine the actions of the PREPARE, EXECUTE, and FREE statements into a
single operation. The following example shows how the EXECUTE IMMEDIATE
statement takes a character string, prepares it, executes it, and frees the storage in
one operation:
EXEC SQL execute immediate ’drop index my_temp_index’;

This capability makes it easy to write simple SQL operations. However, because no
USING clause is allowed, the EXECUTE IMMEDIATE statement cannot be used for
SELECT statements.

Embed data-definition statements

Data-definition statements, the SQL statements that create databases and modify
the definitions of tables, are not usually put into programs. The reason is that they
are rarely performed. A database is created once, but it is queried and updated
many times.

The creation of a database and its tables is generally done interactively, using
DB-Access. These tools can also be run from a file of statements, so that the
creation of a database can be done with one operating-system command. The
data-definition statements are documented in the IBM Informix Guide to SQL:
Syntax and the IBM Informix Database Design and Implementation Guide.

Grant and revoke privileges in applications

One task related to data definition is performed repeatedly: granting and revoking
privileges. Because privileges must be granted and revoked frequently, possibly by
users who are not skilled in SQL, one strategy is to package the GRANT and
REVOKE statements in programs to give them a simpler, more convenient user
interface.

The GRANT and REVOKE statements are especially good candidates for dynamic
SQL. Each statement takes the following parameters:
v A list of one or more privileges
v A table name
v The name of a user

You probably need to supply at least some of these values based on program input
(from the user, command-line parameters, or a file) but none can be supplied in
the form of a host variable. The syntax of these statements does not allow host
variables at any point.

Chapter 8. SQL programming 8-21

An alternative is to assemble the parts of a statement into a character string and to
prepare and execute the assembled statement. Program input can be incorporated
into the prepared statement as characters.

The following IBM Informix ESQL/C function assembles a GRANT statement from
parameters, and then prepares and executes it:
char priv_to_grant[100];
char table_name[20];
char user_id[20];

table_grant(priv_to_grant, table_name, user_id)
char *priv_to_grant;
char *table_name;
char *user_id;
{

EXEC SQL BEGIN DECLARE SECTION;
char grant_stmt[200];
EXEC SQL END DECLARE SECTION;

sprintf(grant_stmt, " GRANT %s ON %s TO %s",
priv_to_grant, table_name, user_id);

PREPARE the_grant FROM :grant_stmt;
if(SQLCODE == 0)

EXEC SQL EXECUTE the_grant;
else

printf("Sorry, got error # %d attempting %s",
SQLCODE, grant_stmt);

EXEC SQL FREE the_grant;
}

The opening statement of the function that the following example shows specifies
its name and its three parameters. The three parameters specify the privileges to
grant, the name of the table on which to grant privileges, and the ID of the user to
receive them.
table_grant(priv_to_grant, table_name, user_id)
char *priv_to_grant;
char *table_name;
char *user_id;

The function uses the statements in the following example to define a local
variable, grant_stmt, which is used to assemble and hold the GRANT statement:
EXEC SQL BEGIN DECLARE SECTION;

char grant_stmt[200];
EXEC SQL END DECLARE SECTION;

As the following example illustrates, the GRANT statement is created by
concatenating the constant parts of the statement and the function parameters:
sprintf(grant_stmt, " GRANT %s ON %s TO %s",priv_to_grant,

table_name, user_id);

This statement concatenates the following six character strings:
v 'GRANT'
v The parameter that specifies the privileges to be granted
v 'ON'
v The parameter that specifies the table name
v 'TO'
v The parameter that specifies the user

8-22 IBM Informix Guide to SQL: Tutorial

The result is a complete GRANT statement composed partly of program input. The
PREPARE statement passes the assembled statement text to the database server for
parsing.

If the database server returns an error code in SQLCODE following the PREPARE
statement, the function displays an error message. If the database server approves
the form of the statement, it sets a zero return code. This action does not guarantee
that the statement is executed properly; it means only that the statement has
correct syntax. It might refer to a nonexistent table or contain many other kinds of
errors that can be detected only during execution. The following portion of the
example checks that the_grant was prepared successfully before executing it:
if(SQLCODE == 0)

EXEC SQL EXECUTE the_grant;
else

printf("Sorry, got error # %d attempting %s", SQLCODE, grant_stmt);

If the preparation is successful, SQLCODE = = 0, the next step executes the prepared
statement.

Assign roles

Alternatively, the DBA can define a role with the CREATE ROLE statement, and
use the GRANT and REVOKE statements to cancel or assign roles to users, and to
grant and revoke privileges of roles. For example:
GRANT engineer TO nmartin;

The SET ROLE statement is needed to activate a non-default role. For more
information on roles and privileges, see “Access-management strategies” on page
1-5 and “Privileges on a database and on its objects” on page 6-21. For more
information on the GRANT and REVOKE statements, see the IBM Informix
Database Design and Implementation Guide. For more information about the syntax of
these statements, see IBM Informix Guide to SQL: Syntax.

Summary

SQL statements can be written into programs as if they were normal statements of
the programming language. Program variables can be used in WHERE clauses, and
data from the database can be fetched into them. A preprocessor translates the SQL
code into procedure calls and data structures.

Statements that do not return data, or queries that return only one row of data, are
written like ordinary imperative statements of the language. Queries that can
return more than one row are associated with a cursor that represents the current
row of data. Through the cursor, the program can fetch each row of data as it is
needed.

Static SQL statements are written into the text of the program. However, the
program can form new SQL statements dynamically, as it runs, and execute them
also. In the most advanced cases, the program can obtain information about the
number and types of columns that a query returns and dynamically allocate the
memory space to hold them.

Chapter 8. SQL programming 8-23

8-24 IBM Informix Guide to SQL: Tutorial

Chapter 9. Modify data through SQL programs

The previous chapter describes how to insert or embed SQL statements, especially
the SELECT statement, into programs written in other languages. Embedded SQL
enables a program to retrieve rows of data from a database.

This chapter discusses the issues that arise when a program needs to delete, insert,
or update rows to modify the database. As in Chapter 8, “SQL programming,” on
page 8-1, this chapter prepares you for reading your IBM Informix embedded
language publication.

The general use of the INSERT, UPDATE, and DELETE statements is discussed in
Chapter 6, “Modify data,” on page 6-1. This chapter examines their use from
within a program. You can easily embed the statements in a program, but it can be
difficult to handle errors and to deal with concurrent modifications from multiple
programs.

The DELETE statement

To delete rows from a table, a program executes a DELETE statement. The DELETE
statement can specify rows in the usual way, with a WHERE clause, or it can refer
to a single row, the last one fetched through a specified cursor.

Whenever you delete rows, you must consider whether rows in other tables
depend on the deleted rows. This problem of coordinated deletions is covered in
Chapter 6, “Modify data,” on page 6-1. The problem is the same when deletions
are made from within a program.

Direct deletions

You can embed a DELETE statement in a program. The following example uses
IBM Informix ESQL/C:
EXEC SQL delete from items

WHERE order_num = :onum;

You can also prepare and execute a statement of the same form dynamically. In
either case, the statement works directly on the database to affect one or more
rows.

The WHERE clause in the example uses the value of a host variable named onum.
Following the operation, results are posted in SQLSTATE and in the sqlca
structure, as usual. The third element of the SQLERRD array contains the count of
rows deleted even if an error occurs. The value in SQLCODE shows the overall
success of the operation. If the value is not negative, no errors occurred and the
third element of SQLERRD is the count of all rows that satisfied the WHERE
clause and were deleted.

Errors during direct deletions

When an error occurs, the statement ends prematurely. The values in SQLSTATE
and in SQLCODE and the second element of SQLERRD explain its cause, and the
count of rows reveals how many rows were deleted. For many errors, that count is

© Copyright IBM Corp. 1996, 2010 9-1

zero because the errors prevented the database server from beginning the
operation. For example, if the named table does not exist, or if a column tested in
the WHERE clause is renamed, no deletions are attempted.

However, certain errors can be discovered after the operation begins and some
rows are processed. The most common of these errors is a lock conflict. The
database server must obtain an exclusive lock on a row before it can delete that
row. Other programs might be using the rows from the table, preventing the
database server from locking a row. Because the issue of locking affects all types of
modifications, Chapter 10, “Programming for a multiuser environment,” on page
10-1, discusses it.

Other, rarer types of errors can strike after deletions begin. For example, hardware
errors that occur while the database is being updated.

Transaction logging

The best way to prepare for any kind of error during a modification is to use
transaction logging. In the event of an error, you can tell the database server to put
the database back the way it was. The following example is based on the example
in the section “Direct deletions” on page 9-1, which is extended to use transactions:
EXEC SQL begin work; /* start the transaction*/
EXEC SQL delete from items

where order_num = :onum;
del_result = sqlca.sqlcode; /* save two error */
del_isamno = sqlca.sqlerrd[1]; /* code numbers */
del_rowcnt = sqlca.sqlerrd[2]; /* and count of rows */
if (del_result < 0) /* problem found: */

EXEC SQL rollback work; /* put everything back */
else /* everything worked OK:*/

EXEC SQL commit work; /* finish transaction */

A key point in this example is that the program saves the important return values
in the sqlca structure before it ends the transaction. Both the ROLLBACK WORK
and COMMIT WORK statements, like other SQL statements, set return codes in the
sqlca structure. However, if you want to report the codes that the error generated,
you must save them before executing ROLLBACK WORK. The ROLLBACK
WORK statement removes all of the pending transaction, including its error codes.

The advantage of using transactions is that the database is left in a known,
predictable state no matter what goes wrong. No question remains about how
much of the modification is completed; either all of it or none of it is completed.

In a database with logging, if a user does not start an explicit transaction, the
database server initiates an internal transaction prior to execution of the statement
and terminates the transaction after execution completes or fails. If the statement
execution succeeds, the internal transaction is committed. If the statement fails, the
internal transaction is rolled back.

Coordinated deletions

The usefulness of transaction logging is particularly clear when you must modify
more than one table. For example, consider the problem of deleting an order from
the demonstration database. In the simplest form of the problem, you must delete
rows from two tables, orders and items, as the following example of IBM Informix
ESQL/C shows:

9-2 IBM Informix Guide to SQL: Tutorial

EXEC SQL BEGIN WORK;
EXEC SQL DELETE FROM items

WHERE order_num = :o_num;
if (SQLCODE >= 0)
{

EXEC SQL DELETE FROM orders
WHERE order_num == :o_num;

{
if (SQLCODE >= 0)

EXEC SQL COMMIT WORK;

{
else

{
printf("Error %d on DELETE", SQLCODE);
EXEC SQL ROLLBACK WORK;

}

The logic of this program is much the same whether or not transactions are used.
If they are not used, the person who sees the error message has a much more
difficult set of decisions to make. Depending on when the error occurred, one of
the following situations applies:
v No deletions were performed; all rows with this order number remain in the

database.
v Some, but not all, item rows were deleted; an order record with only some items

remains.
v All item rows were deleted, but the order row remains.
v All rows were deleted.

In the second and third cases, the database is corrupted to some extent; it contains
partial information that can cause some queries to produce wrong answers. You
must take careful action to restore consistency to the information. When
transactions are used, all these uncertainties are prevented.

Delete with a cursor

You can also write a DELETE statement with a cursor to delete the row that was
last fetched. Deleting rows in this manner lets you program deletions based on
conditions that cannot be tested in a WHERE clause, as the following example
shows. The following example applies only to databases that are not ANSI
compliant because of the way that the beginning and ending of the transaction are
set up.

Warning: The design of the Informix ESQL/C function in this example is unsafe. It
depends on the current isolation level for correct operation. Isolation levels are
discussed later in the chapter. For more information on isolation levels, see
Chapter 10, “Programming for a multiuser environment,” on page 10-1. Even when
the function works as intended, its effects depend on the physical order of rows in
the table, which is not generally a good idea.
int delDupOrder()
{

int ord_num;
int dup_cnt, ret_code;

EXEC SQL declare scan_ord cursor for
select order_num, order_date

into :ord_num, :ord_date
from orders for update;

EXEC SQL open scan_ord;

Chapter 9. Modify data through SQL programs 9-3

if (sqlca.sqlcode != 0)
return (sqlca.sqlcode);

EXEC SQL begin work;
for(;;)
{

EXEC SQL fetch next scan_ord;
if (sqlca.sqlcode != 0) break;
dup_cnt = 0; /* default in case of error */
EXEC SQL select count(*) into dup_cnt from orders

where order_num = :ord_num;
if (dup_cnt > 1)
{

EXEC SQL delete from orders
where current of scan_ord;

if (sqlca.sqlcode != 0)
break;

}
}
ret_code = sqlca.sqlcode;
if (ret_code == 100) /* merely end of data */

EXEC SQL commit work;
else /* error on fetch or on delete */

EXEC SQL rollback work;
return (ret_code);

}

The purpose of the function is to delete rows that contain duplicate order numbers.
In fact, in the demonstration database, the orders.order_num column has a unique
index, so duplicate rows cannot occur in it. However, a similar function can be
written for another database; this one uses familiar column names.

The function declares scan_ord, a cursor to scan all rows in the orders table. It is
declared with the FOR UPDATE clause, which states that the cursor can modify
data. If the cursor opens properly, the function begins a transaction and then loops
over rows of the table. For each row, it uses an embedded SELECT statement to
determine how many rows of the table have the order number of the current row.
(This step fails without the correct isolation level, as Chapter 10, “Programming for
a multiuser environment,” on page 10-1 describes.)

In the demonstration database, with its unique index on this table, the count
returned to dup_cnt is always one. However, if it is greater, the function deletes
the current row of the table, reducing the count of duplicates by one.

Cleanup functions of this sort are sometimes needed, but they generally need more
sophisticated design. This function deletes all duplicate rows except the last one
that the database server returns. That order has nothing to do with the content of
the rows or their meanings. You can improve the function in the previous example
by adding, perhaps, an ORDER BY clause to the cursor declaration. However, you
cannot use ORDER BY and FOR UPDATE together. “An insert example” on page
9-7 presents a better approach.

The INSERT statement

You can embed the INSERT statement in programs. Its form and use in a program
are the same as described in Chapter 6, “Modify data,” on page 6-1 with the
additional feature that you can use host variables in expressions, both in the
VALUES and WHERE clauses. Moreover, in a program you have the additional
ability to insert rows with a cursor.

9-4 IBM Informix Guide to SQL: Tutorial

An insert cursor

The DECLARE CURSOR statement has many variations. Most are used to create
cursors for different kinds of scans over data, but one variation creates a special
kind of cursor, called an insert cursor. You use an insert cursor with the PUT and
FLUSH statements to efficiently insert rows into a table in bulk.

Declare an insert cursor

To create an insert cursor, declare a cursor to be for an INSERT statement instead
of a SELECT statement. You cannot use such a cursor to fetch rows of data; you
can use it only to insert them. The following 4GL code fragment shows the
declaration of an insert cursor:
DEFINE the_company LIKE customer.company,

the_fname LIKE customer.fname,
the_lname LIKE customer.lname

DECLARE new_custs CURSOR FOR
INSERT INTO customer (company, fname, lname)

VALUES (the_company, the_fname, the_lname)

When you open an insert cursor, a buffer is created in memory to hold a block of
rows. The buffer receives rows of data as the program produces them; then they
are passed to the database server in a block when the buffer is full. The buffer
reduces the amount of communication between the program and the database
server, and it lets the database server insert the rows with less difficulty. As a
result, the insertions go faster.

The buffer is always made large enough to hold at least two rows of inserted
values. It is large enough to hold more than two rows when the rows are shorter
than the minimum buffer size.

Insert with a cursor

The code in the previous example (“Declare an insert cursor”) prepares an insert
cursor for use. The continuation, as the following example shows, demonstrates
how the cursor can be used. For simplicity, this example assumes that a function
named next_cust returns either information about a new customer or null data to
signal the end of input.
EXEC SQL BEGIN WORK;
EXEC SQL OPEN new_custs;
while(SQLCODE == 0)
{

next_cust();
if(the_company == NULL)

break;
EXEC SQL PUT new_custs;

}
if(SQLCODE == 0) /* if no problem with PUT */
{

EXEC SQL FLUSH new_custs; /* write any rows left */
if(SQLCODE == 0) /* if no problem with FLUSH */

EXEC SQL COMMIT WORK; /* commit changes */
}
else

EXEC SQL ROLLBACK WORK; /* else undo changes */

The code in this example calls next_cust repeatedly. When it returns non-null data,
the PUT statement sends the returned data to the row buffer. When the buffer fills,
the rows it contains are automatically sent to the database server. The loop

Chapter 9. Modify data through SQL programs 9-5

normally ends when next_cust has no more data to return. Then the FLUSH
statement writes any rows that remain in the buffer, after which the transaction
terminates.

Re-examine the information about the INSERT statement. See “The INSERT
statement” on page 9-4. The statement by itself, not part of a cursor definition,
inserts a single row into the customer table. In fact, the whole apparatus of the
insert cursor can be dropped from the example code, and the INSERT statement
can be written into the code where the PUT statement now stands. The difference
is that an insert cursor causes a program to run somewhat faster.

Status codes after PUT and FLUSH

When a program executes a PUT statement, the program should test whether the
row is placed in the buffer successfully. If the new row fits in the buffer, the only
action of PUT is to copy the row to the buffer. No errors can occur in this case.
However, if the row does not fit, the entire buffer load is passed to the database
server for insertion, and an error can occur.

The values returned into the SQL Communications Area (SQLCA) give the
program the information it needs to sort out each case. SQLCODE and SQLSTATE
are set to zero after every PUT statement if no error occurs and to a negative error
code if an error occurs.

The database server sets the third element of SQLERRD to the number of rows
actually inserted into the table, as follows
v Zero, if the new row is merely moved to the buffer
v The number of rows that are in the buffer, if the buffer load is inserted without

error
v The number of rows inserted before an error occurs, if one did occur

Read the code once again to see how SQLCODE is used (see the previous
example). First, if the OPEN statement yields an error, the loop is not executed
because the WHILE condition fails, the FLUSH operation is not performed, and the
transaction rolls back. Second, if the PUT statement returns an error, the loop ends
because of the WHILE condition, the FLUSH operation is not performed, and the
transaction rolls back. This condition can occur only if the loop generates enough
rows to fill the buffer at least once; otherwise, the PUT statement cannot generate
an error.

The program might end the loop with rows still in the buffer, possibly without
inserting any rows. At this point, the SQL status is zero, and the FLUSH operation
occurs. If the FLUSH operation produces an error code, the transaction rolls back.
Only when all inserts are successfully performed is the transaction committed.

Rows of constants

The insert cursor mechanism supports one special case where high performance is
easy to obtain. In this case, all the values listed in the INSERT statement are
constants: no expressions and no host variables are listed, just literal numbers and
strings of characters. No matter how many times such an INSERT operation
occurs, the rows it produces are identical. When the rows are identical, copying,
buffering, and transmitting each identical row is pointless.

9-6 IBM Informix Guide to SQL: Tutorial

Instead, for this kind of INSERT operation, the PUT statement does nothing except
to increment a counter. When a FLUSH operation is finally performed, a single
copy of the row and the count of inserts are passed to the database server. The
database server creates and inserts that many rows in one operation.

You do not usually insert a quantity of identical rows. You can insert identical
rows when you first establish a database to populate a large table with null data.

An insert example

“Delete with a cursor” on page 9-3 contains an example of the DELETE statement
whose purpose is to look for and delete duplicate rows of a table. A better way to
perform this task is to select the desired rows instead of deleting the undesired
ones. The code in the following IBM Informix ESQL/C example shows one way to
do this task:
EXEC SQL BEGIN DECLARE SECTION;

long last_ord = 1;
struct {

long int o_num;
date o_date;
long c_num;
char o_shipinst[40];
char o_backlog;
char o_po[10];
date o_shipdate;
decimal o_shipwt;
decimal o_shipchg;
date o_paiddate;
} ord_row;

EXEC SQL END DECLARE SECTION;

EXEC SQL BEGIN WORK;
EXEC SQL INSERT INTO new_orders

SELECT * FROM orders main
WHERE 1 = (SELECT COUNT(*) FROM orders minor

WHERE main.order_num = minor.order_num);
EXEC SQL COMMIT WORK;

EXEC SQL DECLARE dup_row CURSOR FOR
SELECT * FROM orders main INTO :ord_row

WHERE 1 < (SELECT COUNT(*) FROM orders minor
WHERE main.order_num = minor.order_num)

ORDER BY order_date;
EXEC SQL DECLARE ins_row CURSOR FOR

INSERT INTO new_orders VALUES (:ord_row);

EXEC SQL BEGIN WORK;
EXEC SQL OPEN ins_row;
EXEC SQL OPEN dup_row;
while(SQLCODE == 0)
{

EXEC SQL FETCH dup_row;
if(SQLCODE == 0)
{

if(ord_row.o_num != last_ord)
EXEC SQL PUT ins_row;

last_ord = ord_row.o_num
continue;

}
break;

}
if(SQLCODE != 0 && SQLCODE != 100)

EXEC SQL ROLLBACK WORK;

Chapter 9. Modify data through SQL programs 9-7

else
EXEC SQL COMMIT WORK;

EXEC SQL CLOSE ins_row;
EXEC SQL CLOSE dup_row;

This example begins with an ordinary INSERT statement, which finds all the
nonduplicated rows of the table and inserts them into another table, presumably
created before the program started. That action leaves only the duplicate rows. (In
the demonstration database, the orders table has a unique index and cannot have
duplicate rows. Assume that this example deals with some other database.)

The code in the previous example then declares two cursors. The first, called
dup_row, returns the duplicate rows in the table. Because dup_row is for input
only, it can use the ORDER BY clause to impose some order on the duplicates
other than the physical record order used in the example on page “Delete with a
cursor” on page 9-3. In this example, the duplicate rows are ordered by their dates
(the oldest one remains), but you can use any other order based on the data.

The second cursor, ins_row, is an insert cursor. This cursor takes advantage of the
ability to use a C structure, ord_row, to supply values for all columns in the row.

The remainder of the code examines the rows that are returned through dup_row.
It inserts the first one from each group of duplicates into the new table and
disregards the rest.

For the sake of brevity, the preceding example uses the simplest kind of error
handling. If an error occurs before all rows have been processed, the sample code
rolls back the active transaction.

How many rows were affected?

When your program uses a cursor to select rows, it can test SQLCODE for 100 (or
SQLSTATE for 02000), the end-of-data return code. This code is set to indicate that
no rows, or no more rows, satisfy the query conditions. For databases that are not
ANSI compliant, the end-of-data return code is set in SQLCODE or SQLSTATE
only following SELECT statements; it is not used following DELETE, INSERT, or
UPDATE statements. For ANSI-compliant databases, SQLCODE is also set to 100
for updates, deletes, and inserts that affect zero rows.

A query that finds no data is not a success. However, an UPDATE or DELETE
statement that happens to update or delete no rows is still considered a success. It
updated or deleted the set of rows that its WHERE clause said it should; however,
the set was empty.

In the same way, the INSERT statement does not set the end-of-data return code
even when the source of the inserted rows is a SELECT statement, and the SELECT
statement selected no rows. The INSERT statement is a success because it inserted
as many rows as it was asked to (that is, zero).

To find out how many rows are inserted, updated, or deleted, a program can test
the third element of SQLERRD. The count of rows is there, regardless of the value
(zero or negative) in SQLCODE.

9-8 IBM Informix Guide to SQL: Tutorial

The UPDATE statement

You can embed the UPDATE statement in a program in any of the forms that
Chapter 6, “Modify data,” on page 6-1 describes with the additional feature that
you can name host variables in expressions, both in the SET and WHERE clauses.
Moreover, a program can update the row that a cursor addresses.

An update cursor

An update cursor permits you to delete or update the current row; that is, the most
recently fetched row. The following example in IBM Informix ESQL/C shows the
declaration of an update cursor:
EXEC SQL

DECLARE names CURSOR FOR
SELECT fname, lname, company
FROM customer

FOR UPDATE;

The program that uses this cursor can fetch rows in the usual way.
EXEC SQL

FETCH names INTO :FNAME, :LNAME, :COMPANY;

If the program then decides that the row needs to be changed, it can do so.
if (strcmp(COMPANY, "SONY") ==0)

{
EXEC SQL

UPDATE customer
SET fname = ’Midori’, lname = ’Tokugawa’
WHERE CURRENT OF names;

}

The words CURRENT OF names take the place of the usual test expressions in the
WHERE clause. In other respects, the UPDATE statement is the same as usual,
even including the specification of the table name, which is implicit in the cursor
name but still required.

The purpose of the keyword UPDATE
The purpose of the keyword UPDATE in a cursor is to let the database server
know that the program can update (or delete) any row that it fetches. The database
server places a more demanding lock on rows that are fetched through an update
cursor and a less demanding lock when it fetches a row for a cursor that is not
declared with that keyword. This action results in better performance for ordinary
cursors and a higher level of concurrent use in a multiprocessing system.
(Chapter 10, “Programming for a multiuser environment,” on page 10-1 discusses
levels of locks and concurrent use.)

Update specific columns

The following example has updated specific columns of the preceding example of
an update cursor:
EXEC SQL

DECLARE names CURSOR FOR
SELECT fname, lname, company, phone

INTO :FNAME,:LNAME,:COMPANY,:PHONE FROM customer
FOR UPDATE OF fname, lname

END-EXEC.

Chapter 9. Modify data through SQL programs 9-9

Only the fname and lname columns can be updated through this cursor. A
statement such as the following one is rejected as an error:
EXEC SQL

UPDATE customer
SET company = ’Siemens’
WHERE CURRENT OF names

END-EXEC.

If the program attempts such an update, an error code is returned and no update
occurs. An attempt to delete with WHERE CURRENT OF is also rejected, because
deletion affects all columns.

UPDATE keyword not always needed

The ANSI standard for SQL does not provide for the FOR UPDATE clause in a
cursor definition. When a program uses an ANSI-compliant database, it can update
or delete with any cursor.

Cleanup a table

A final, hypothetical example of how to use an update cursor presents a problem
that should never arise with an established database but could arise in the initial
design phases of an application.

In the example, a large table named target is created and populated. A character
column, dactyl, inadvertently acquires some null values. These rows should be
deleted. Furthermore, a new column, serials, is added to the table with the ALTER
TABLE statement. This column is to have unique integer values installed. The
following example shows the IBM Informix ESQL/C code you use to accomplish
these tasks:
EXEC SQL BEGIN DECLARE SECTION;
char dcol[80];
short dcolint;
int sequence;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE target_row CURSOR FOR
SELECT datcol

INTO :dcol:dcolint
FROM target

FOR UPDATE OF serials;
EXEC SQL BEGIN WORK;
EXEC SQL OPEN target_row;
if (sqlca.sqlcode == 0) EXEC SQL FETCH NEXT target_row;
for(sequence = 1; sqlca.sqlcode == 0; ++sequence)
{

if (dcolint < 0) /* null datcol */
EXEC SQL DELETE WHERE CURRENT OF target_row;

else
EXEC SQL UPDATE target SET serials = :sequence

WHERE CURRENT OF target_row;
}
if (sqlca.sqlcode >= 0)

EXEC SQL COMMIT WORK;
else EXEC SQL ROLLBACK WORK;

9-10 IBM Informix Guide to SQL: Tutorial

Summary

A program can execute the INSERT, DELETE, and UPDATE statements, as
Chapter 6, “Modify data,” on page 6-1 describes. A program can also scan through
a table with a cursor, updating or deleting selected rows. It can also use a cursor to
insert rows, with the benefit that the rows are buffered and sent to the database
server in blocks.

In all these activities, you must make sure that the program detects errors and
returns the database to a known state when an error occurs. The most important
tool for doing this is transaction logging. Without transaction logging, it is more
difficult to write programs that can recover from errors.

Chapter 9. Modify data through SQL programs 9-11

9-12 IBM Informix Guide to SQL: Tutorial

Chapter 10. Programming for a multiuser environment

This section describes several programming issues you need to be aware of when
you work in a multiuser environment.

If your database is contained in a single-user workstation and does not access data
from another computer, your programs can modify data freely. In all other cases,
you must allow for the possibility that, while your program is modifying data,
another program is reading or modifying the same data. This situation is described
as concurrency: two or more independent uses of the same data at the same time.
This section addresses concurrency, locking, and isolation levels.

This section also describes the statement cache feature, which can reduce
per-session memory allocation and speed up query processing. The statement
cache stores statements that can then be shared among different user sessions that
use identical SQL statements.

Concurrency and performance

Concurrency is crucial to good performance in a multiprogramming system. When
access to the data is serialized so that only one program at a time can use it,
processing slows dramatically.

Locks and integrity

Unless controls are placed on the use of data, concurrency can lead to a variety of
negative effects. Programs can read obsolete data, or modifications can be lost even
though they were apparently completed.

To prevent errors of this kind, the database server imposes a system of locks. A lock
is a claim, or reservation, that a program can place on a piece of data. The
database server guarantees that, as long as the data is locked, no other program
can modify it. When another program requests the data, the database server either
makes the program wait or turns it back with an error.

Locks and performance

Because a lock serializes access to one piece of data, it reduces concurrency; any
other programs that want access to that data must wait. The database server can
place a lock on a single row, a disk page, a whole table, or an entire database. (A
disk page might hold multiple rows and a row might require multiple disk pages.)
The more locks it places and the larger the objects it locks, the more concurrency is
reduced. The fewer the locks and the smaller the locked objects, the greater
concurrency and performance can be.

The following sections discuss how you can achieve the following goals with your
program:
v Place all the locks necessary to ensure data integrity.
v Lock the fewest, smallest pieces of data possible consistent with the preceding

goal.

© Copyright IBM Corp. 1996, 2010 10-1

Concurrency issues

To understand the hazards of concurrency, you must think in terms of multiple
programs, each executing at its own speed. Suppose that your program is fetching
rows through the following cursor:
EXEC SQL DECLARE sto_curse CURSOR FOR

SELECT * FROM stock
WHERE manu_code = ’ANZ’;

The transfer of each row from the database server to the program takes time.
During and between transfers, other programs can perform other database
operations. At about the same time that your program fetches the rows produced
by that query, another user's program might execute the following update:
EXEC SQL UPDATE stock

SET unit_price = 1.15 * unit_price
WHERE manu_code = ’ANZ’;

In other words, both programs are reading through the same table, one fetching
certain rows and the other changing the same rows. The following scenarios are
possible:
1. The other program finishes its update before your program fetches its first row.

Your program shows you only updated rows.
2. Your program fetches every row before the other program has a chance to

update it.
Your program shows you only original rows.

3. After your program fetches some original rows, the other program catches up
and goes on to update some rows that your program has yet to read; then it
executes the COMMIT WORK statement.
Your program might return a mixture of original rows and updated rows.

4. Same as number 3, except that after updating the table, the other program
issues a ROLLBACK WORK statement.
Your program can show you a mixture of original rows and updated rows that
no longer exist in the database.

The first two possibilities are harmless. In possibility number 1, the update is
complete before your query begins. It makes no difference whether the update
finished a microsecond ago or a week ago.

In possibility number 2, your query is, in effect, complete before the update begins.
The other program might have been working just one row behind yours, or it
might not start until tomorrow night; it does not matter.

The last two possibilities, however, can be important to the design of some
applications. In possibility number 3, the query returns a mix of updated and
original data. That result can be detrimental in some applications. In others, such
as one that is taking an average of all prices, it might not matter at all.

Possibility number 4 can be disastrous if a program returns some rows of data
that, because their transaction was cancelled, can no longer be found in the table.

Another concern arises when your program uses a cursor to update or delete the
last-fetched row. Erroneous results occur with the following sequence of events:
v Your program fetches the row.

10-2 IBM Informix Guide to SQL: Tutorial

v Another program updates or deletes the row.
v Your program updates or deletes WHERE CURRENT OF cursor_name.

To control concurrent events such as these, use the locking and isolation level
features of the database server.

How locks work
IBM Informix database servers support a complex, flexible set of locking features
that this section describes. For a summary of locking features, see your IBM
Informix Getting Started Guide.

Kinds of locks
The following table shows the types of locks that IBM Informix database servers
support for different situations.

Lock type Use

Shared A shared lock reserves its object for reading
only. It prevents the object from changing
while the lock remains. More than one
program can place a shared lock on the same
object. More than one object can read the
record while it is locked in shared mode.

Exclusive An exclusive lock reserves its object for the
use of a single program. This lock is used
when the program intends to change the
object.

You cannot place an exclusive lock where
any other kind of lock exists. After you place
an exclusive lock, you cannot place another
lock on the same object.

Promotable (or Update) A promotable (or update) lock establishes the
intent to update. You can only place it where
no other promotable or exclusive lock exists.
You can place promotable locks on records
that already have shared locks. When the
program is about to change the locked object,
you can promote the promotable lock to an
exclusive lock, but only if no other locks,
including shared locks, are on the record at
the time the lock would change from
promotable to exclusive. If a shared lock was
on the record when the promotable lock was
set, you must drop the shared lock before the
promotable lock can be promoted to an
exclusive lock.

Lock scope
You can apply locks to entire databases, entire tables, disk pages, single rows, or
index-key values. The size of the object that is being locked is referred to as the
scope of the lock (also called the lock granularity). In general, the larger the scope of
a lock, the more concurrency is reduced, but the simpler programming becomes.

Chapter 10. Programming for a multiuser environment 10-3

Database locks
You can lock an entire database. The act of opening a database places a shared lock
on the name of the database. A database is opened with the CONNECT,
DATABASE, or CREATE DATABASE statements. As long as a program has a
database open, the shared lock on the name prevents any other program from
dropping the database or putting an exclusive lock on it.

The following statement shows how you might lock an entire database exclusively:
DATABASE database_one EXCLUSIVE

This statement succeeds if no other program has opened that database. After the
lock is placed, no other program can open the database, even for reading, because
its attempt to place a shared lock on the database name fails.

A database lock is released only when the database closes. That action can be
performed explicitly with the DISCONNECT or CLOSE DATABASE statements or
implicitly by executing another DATABASE statement.

Because locking a database reduces concurrency in that database to zero, it makes
programming simple; concurrent effects cannot happen. However, you should lock
a database only when no other programs need access. Database locking is often
used before applying massive changes to data during off-peak hours.

Table locks
You can lock entire tables. In some cases, the database server performs this action
automatically. You can also use the LOCK TABLE statement to lock an entire table
explicitly.

The LOCK TABLE statement or the database server can place the following types
of table locks:

Shared lock
No users can write to the table. In shared mode, the database server places
one shared lock on the table, which informs other users that no updates
can be performed. In addition, the database server adds locks for every
row updated, deleted, or inserted.

Exclusive lock
No other users can read from or write to the table. In exclusive mode, the
database server places only one exclusive lock on the table, no matter how
many rows it updates. An exclusive table lock prevents any concurrent use
of the table and, therefore, can have a serious effect on performance if
many other programs are contending for the use of the table. However,
when you need to update most of the rows in a table, place an exclusive
lock on the table.

Lock a table with the LOCK TABLE statement: A transaction tells the database
server to use table-level locking for a table with the LOCK TABLE statement. The
following example shows how to place an exclusive lock on a table:
LOCK TABLE tab1 IN EXCLUSIVE MODE

The following example shows how to place a shared lock on a table:
LOCK TABLE tab2 IN SHARE MODE

Tip: You can set the isolation level for your database server to achieve the same
degree of protection as the shared table lock while providing greater concurrency.

10-4 IBM Informix Guide to SQL: Tutorial

When the database server automatically locks a table: The database server
always locks an entire table while it performs operations for any of the following
statements:
v ALTER FRAGMENT
v ALTER INDEX
v ALTER TABLE
v CREATE INDEX
v DROP INDEX
v RENAME COLUMN
v RENAME TABLE

Completion of the statement (or end of the transaction) releases the lock. An entire
table can also be locked automatically during certain queries.

Avoid table locking with the ONLINE keyword:

You can avoid table locking when you CREATE or DROP an index using the
ONLINE keyword. While the index is being created or dropped online, no DDL
operations on the table are supported, but operations that were concurrent when
the CREATE INDEX or DROP INDEX statement was issued can be completed. The
specified index is not created or dropped until no other processes are concurrently
accessing the table. Then locks are held briefly to write the system catalog data
associated with the index. This increases the availability of the system, since the
table is still readable by ongoing and new sessions. The following statement shows
how to use the ONLINE keyword to avoid automatic table locking with a CREATE
INDEX statement:
CREATE INDEX idx_1 ON customer (lname) ONLINE;

Row and key locks
You can lock one row of a table. A program can lock one row or a selection of
rows while other programs continue to work on other rows of the same table.

Row and key locking are not the default behaviors. You must specify row-level
locking when you create the table. The following example creates a table with
row-level locking:
CREATE TABLE tab1
(
col1...
) LOCK MODE ROW;

If you specify a LOCK MODE clause when you create a table, you can later change
the lock mode with the ALTER TABLE statement. The following statement changes
the lock mode on the reservations table to page-level locking:
ALTER TABLE tab1 LOCK MODE PAGE

In certain cases, the database server has to lock a row that does not exist. To do
this, the database server places a lock on an index-key value. Key locks are used
identically to row locks. When the table uses row locking, key locks are
implemented as locks on imaginary rows. When the table uses page locking, a key
lock is placed on the index page that contains the key or that would contain the
key if it existed.

Chapter 10. Programming for a multiuser environment 10-5

When you insert, update, or delete a key (performed automatically when you
insert, update, or delete a row), the database server creates a lock on the key in the
index.

Row and key locks generally provide the best performance overall when you
update a relatively small number of rows because they increase concurrency.
However, the database server incurs some overhead in obtaining a lock.

When one or more rows in a table are locked by an exclusive lock, the effect on
other users partly depends on their transaction isolation level. Other users whose
isolation levels is not Dirty Read might encounter transactions that fail because the
exclusive lock was not released within a specified time limit.

For Committed Read or Dirty Read isolation level operations that attempt to access
tables on which a concurrent session has set exclusive row-level locks, the risk of
locking conflicts can be reduced by enabling transactions to read the most recently
committed version of the data in the locked rows, rather than waiting for the
transaction that set the lock to be committed or rolled back. Enabling access to the
last committed version of exclusively locked rows can be accomplished in several
ways:
v For an individual session, issue this SQL statement

SET ISOLATION TO COMMITTED READ LAST COMMITTED;

v For all sessions using the Committed Read or Read Committed isolation level,
the DBA can set the USELASTCOMMITTED configuration parameter to ’ALL’ or
to ’COMMITTED READ’.

v For an individual session using the Committed Read or Read Committed
isolation level, any user can issue the SET ENVIRONMENT
USELASTCOMMITTED statement with ’ALL’ or ’COMMITTED READ’ as the value
of this session environment option.

v For all sessions using Dirty Read or Read Uncommitted isolation levels, the DBA
can set the USELASTCOMMITTED configuration parameter to ’ALL’ or to
’DIRTY READ’.

v For an individual session using the Dirty Read or Read Uncommitted isolation
levels, any user can issue the SET ENVIRONMENT USELASTCOMMITTED
statement with ’ALL’ or ’DIRTY READ’ as the value of this session environment
option.

This LAST COMMITTED feature is useful only when row-level locking is in effect,
rather than when another session holds an exclusive lock on the entire table. This
feature is disabled for any table on which the LOCK TABLE statement applies a
table-level lock. See the description of the SET ENVIRONMENT statement in the
IBM Informix Guide to SQL: Syntax and the description of the
USELASTCOMMITTED configuration parameter inIBM Informix Administrator's
Reference for more information about this feature for concurrent access to tables in
which some rows are locked by exclusive locks, and for restrictions on the kinds of
tables that can support this feature.

Page locks
The database server stores data in units called disk pages. A disk page contains one
or more rows. In some cases, it is better to lock a disk page than to lock individual
rows on it. For example, with operations that require changing a large number of
rows, you might choose page-level locking because row-level locking (one lock per
row) might not be cost effective.

10-6 IBM Informix Guide to SQL: Tutorial

If you do not specify a LOCK MODE clause when you create a table, the default
behavior for the database server is page-level locking. With page locking, the
database server locks the entire page that contains the row. If you update several
rows that are stored on the same page, the database server uses only one lock for
the page.

Set the row or page lock mode for all CREATE TABLE statements: IBM Informix
allows you to set the lock mode to page-level locking or row-level locking for all
newly created tables for a single user (per session) or for multiple users (per
server). You no longer need to specify the lock mode every time that you create a
new table with the CREATE TABLE statement.

If you want every new table created within your session to be created with a
particular lock mode, you have to set the IFX_DEF_TABLE_LOCKMODE
environment variable. For example, for every new table created within your
session to be created with lock mode row, set IFX_DEF_TABLE_LOCKMODE to
ROW. To override this behavior, use the CREATE TABLE or ALTER TABLE
statements and redefine the LOCK MODE clause.

Single-user lock mode: Set the single-user lock mode if all of the new tables that
you create in your session require the same lock mode. Set the single-user lock
mode with the IFX_DEF_TABLE_LOCKMODE environment variable. For
example, for every new table created within your session to be created with
row-level locking, set IFX_DEF_TABLE_LOCKMODE to ROW. To override this
behavior, use the CREATE TABLE or ALTER TABLE statements and redefine the
LOCK MODE clause. For more information on setting environment variables, see
the IBM Informix Guide to SQL: Reference.

Multiple-user lock mode: Database administrators can use the multiple-user lock
mode to create greater concurrency by designating the lock mode for all users on
the same server. All tables that any user creates on that server will then have the
same lock mode. To enable multiple-user lock mode, set the
IFX_DEF_TABLE_LOCKMODE environment variable before starting the database
server or set the DEF_TABLES_LOCKMODE configuration parameter.

Rules of precedence:

Locking mode for CREATE TABLE or ALTER TABLE has the following rules of
precedence, listed in order of highest precedence to lowest:
1. CREATE TABLE or ALTER TABLE SQL statements that use the LOCK MODE

clause
2. Single-user environment variable setting
3. Multi-user environment variable setting in the server environment
4. Configuration parameters in the configuration file
5. Default behavior (page-level locking)

Coarse index locks
When you change the lock mode of an index from normal to coarse lock mode,
index-level locks are acquired on the index instead of item-level or page-level
locks, which are the normal locks. This mode reduces the number of lock calls on
an index.

Use the coarse lock mode when you know the index is not going to change; that is,
when read-only operations are performed on the index.

Chapter 10. Programming for a multiuser environment 10-7

Use the normal lock mode to have the database server place item-level or
page-level locks on the index as necessary. Use this mode when the index gets
updated frequently.

When the database server executes the command to change the lock mode to
coarse, it acquires an exclusive lock on the table for the duration of the command.
Any transactions that are currently using a lock of finer granularity must complete
before the database server switches to the coarse lock mode.

Smart-large-object locks
Locks on a CLOB or BLOB column are separate from the lock on the row. Smart
large objects are locked only when they are accessed. When you lock a table that
contains a CLOB or BLOB column, no smart large objects are locked. If accessed
for writing, the smart large object is locked in update mode, and the lock is
promoted to exclusive when the actual write occurs. If accessed for reading, the
smart large object is locked in shared mode. The database server recognizes the
transaction isolation mode, so if Repeatable Read isolation level is set, the database
server does not release smart-large-object read locks before end of transaction.

When the database server retrieves a row and updates a smart large object that the
row points to, only the smart large object is exclusively locked during the time it is
being updated.

Byte-range locks:

You can lock a range of bytes for a smart large object. Byte-range locks allow a
transaction to selectively lock only those bytes that are accessed so that writers and
readers simultaneously can access different byte ranges in the same smart large
object.

For information about how to use byte-range locks, see your IBM Informix
Performance Guide.

Byte-range locks support deadlock detection. For information about deadlock
detection, see “Handle a deadlock” on page 10-17.

Duration of a lock
The program controls the duration of a database lock. A database lock is released
when the database closes.

Depending on whether the database uses transactions, table lock durations vary. If
the database does not use transactions (that is, if no transaction log exists and you
do not use a COMMIT WORK statement), a table lock remains until it is removed
by the execution of the UNLOCK TABLE statement.

The duration of table, row, and index locks depends on what SQL statements you
use and on whether transactions are in use.

When you use transactions, the end of a transaction releases all table, row, page,
and index locks. When a transaction ends, all locks are released.

Locks while modifying
When the database server fetches a row through an update cursor, it places a
promotable lock on the fetched row. If this action succeeds, the database server
knows that no other program can alter that row. Because a promotable lock is not

10-8 IBM Informix Guide to SQL: Tutorial

exclusive, other programs can continue to read the row. A promotable lock can
improve performance because the program that fetched the row can take some
time before it issues the UPDATE or DELETE statement, or it can simply fetch the
next row. When it is time to modify a row, the database server obtains an exclusive
lock on the row. If it already has a promotable lock, it changes that lock to
exclusive status.

The duration of an exclusive row lock depends on whether transactions are in use.
If they are not in use, the lock is released as soon as the modified row is written to
disk. When transactions are in use, all such locks are held until the end of the
transaction. This action prevents other programs from using rows that might be
rolled back to their original state.

When transactions are in use, a key lock is used whenever a row is deleted. Using
a key lock prevents the following error from occurring:
v Program A deletes a row.
v Program B inserts a row that has the same key.
v Program A rolls back its transaction, forcing the database server to restore its

deleted row.
What is to be done with the row inserted by Program B?

By locking the index, the database server prevents a second program from
inserting a row until the first program commits its transaction.

The locks placed while the database server reads various rows are controlled by
the current isolation level, as discussed in the next section.

Lock with the SELECT statement
The type and duration of locks that the database server places depend on the
isolation set in the application and whether the SELECT statement is within an
update cursor. This section describes the different isolation levels and update
cursors.

Set the isolation level
The isolation level is the degree to which your program is isolated from the
concurrent actions of other programs. The database server offers a choice of
isolation levels that reflect a different set of rules for how a program uses locks
when it reads data.

To set the isolation level, use either the SET ISOLATION or SET TRANSACTION
statement. The SET TRANSACTION statement also lets you set access modes. For
more information about access modes, see “Control data modification with access
modes” on page 10-15.

SET TRANSACTION versus SET ISOLATION
The SET TRANSACTION statement complies with ANSI SQL-92. This statement is
similar to the IBM Informix SET ISOLATION statement; however, the SET
ISOLATION statement is not ANSI compliant and does not provide access modes.

The following table shows the relationships between the isolation levels that you
set with the SET TRANSACTION and SET ISOLATION statements.

Chapter 10. Programming for a multiuser environment 10-9

SET TRANSACTION correlates with SET ISOLATION

Read Uncommitted Dirty Read

Read Committed Committed Read

Not Supported Cursor Stability

(ANSI) Repeatable Read

Serializable

(IBM Informix) Repeatable Read

(IBM Informix) Repeatable Read

The major difference between the SET TRANSACTION and SET ISOLATION
statements is the behavior of the isolation levels within transactions. The SET
TRANSACTION statement can be issued only once for a transaction. Any cursors
opened during that transaction are guaranteed to have that isolation level (or
access mode if you are defining an access mode). With the SET ISOLATION
statement, after a transaction is started, you can change the isolation level more
than once within the transaction. The following examples illustrate the difference
between the use of SET ISOLATION and the use of SET TRANSACTION.

SET ISOLATION:
EXEC SQL BEGIN WORK;
EXEC SQL SET ISOLATION TO DIRTY READ;
EXEC SQL SELECT ... ;
EXEC SQL SET ISOLATION TO REPEATABLE READ;
EXEC SQL INSERT ... ;
EXEC SQL COMMIT WORK;

-- Executes without error

SET TRANSACTION:
EXEC SQL BEGIN WORK;
EXEC SQL SET TRANSACTION ISOLATION LEVEL TO SERIALIZABLE;
EXEC SQL SELECT ... ;
EXEC SQL SET TRANSACTION ISOLATION LEVEL TO READ COMMITTED;
Error -876: Cannot issue SET TRANSACTION once a transaction has started.

ANSI Read Uncommitted and IBM Informix Dirty Read isolation
The simplest isolation level, ANSI Read Uncommitted and IBM Informix Dirty
Read, amounts to virtually no isolation. When a program fetches a row, it places
no locks, and it respects none; it simply copies rows from the database without
regard to what other programs are doing.

A program always receives complete rows of data. Even under ANSI Read
Uncommitted or IBM Informix Dirty Read isolation, a program never sees a row in
which some columns are updated and some are not. However, a program that uses
ANSI Read Uncommitted or IBM Informix Dirty Read isolation sometimes reads
updated rows before the updating program ends its transaction. If the updating
program later rolls back its transaction, the reading program processes data that
never really existed (possibility number 4 on page 10-2 in the list of concurrency
issues).

ANSI Read Uncommitted or IBM Informix Dirty Read is the most efficient
isolation level. The reading program never waits and never makes another
program wait. It is the preferred level in any of the following cases:
v All tables are static; that is, concurrent programs only read and never modify

data.
v The table is held in an exclusive lock.
v Only one program is using the table.

10-10 IBM Informix Guide to SQL: Tutorial

ANSI Read Committed and IBM Informix Committed Read
isolation

When a program requests the ANSI Read Committed or IBM Informix Committed
Read isolation level, the database server guarantees that it never returns a row that
is not committed to the database. This action prevents reading data that is not
committed and that is subsequently rolled back.

ANSI Read Committed or IBM Informix Committed Read is implemented simply.
Before it fetches a row, the database server tests to determine whether an updating
process placed a lock on the row; if not, it returns the row. Because rows that have
been updated (but that are not yet committed) have locks on them, this test
ensures that the program does not read uncommitted data.

ANSI Read Committed or IBM Informix Committed Read does not actually place a
lock on the fetched row, so this isolation level is almost as efficient as ANSI Read
Uncommitted or IBM Informix Dirty Read. This isolation level is appropriate to
use when each row of data is processed as an independent unit, without reference
to other rows in the same or other tables.

Locking conflicts can occur in ANSI Read Committed or IBM Informix Committed
Read sessions, however, if the attempt to place the test lock is not successful
because a concurrent session holds a shared lock on the row. To avoid waiting for
concurrent transactions to release shared locks (by committing or rolling back),
Informix supports the Last Committed option to the Committed Read isolation
level. When this Last Committed option is in effect, a shared lock by another
session causes the query to return the most recently committed version of the row.

The Last Committed feature can also be activated by setting the
USELASTCOMMITTED configuration parameter to ’COMMITTED READ’ or to ’ALL’,
or by setting USELASTCOMMITTED session environment option in the SET
ENVIRONMENT statement in the sysdbopen() procedure when the user connects
to the database. For more information about the Last Committed option to the
ANSI Read Committed or IBM Informix Committed Read isolation levels, see the
description of the SET ISOLATION statement in the IBM Informix Guide to SQL:
Syntax. For information about the USELASTCOMMITTED configuration parameter,
see the IBM Informix Administrator's Reference.

IBM Informix Cursor Stability isolation

The next level, Cursor Stability, is available only with the IBM Informix SQL
statement SET ISOLATION.

When Cursor Stability is in effect, IBM Informix places a lock on the latest row
fetched. It places a shared lock for an ordinary cursor or a promotable lock for an
update cursor. Only one row is locked at a time; that is, each time a row is fetched,
the lock on the previous row is released (unless that row is updated, in which case
the lock holds until the end of the transaction). Because Cursor Stability locks only
one row at a time, it restricts concurrency less than a table lock or database lock.

Cursor Stability ensures that a row does not change while the program examines
it. Such row stability is important when the program updates some other table
based on the data it reads from the row. Because of Cursor Stability, the program is
assured that the update is based on current information. It prevents the use of stale
data.

Chapter 10. Programming for a multiuser environment 10-11

The following example illustrates effective use of Cursor Stability isolation. In
terms of the demonstration database, Program A wants to insert a new stock item
for manufacturer Hero (HRO). Concurrently, Program B wants to delete
manufacturer HRO and all stock associated with it. The following sequence of
events can occur:
1. Program A, operating under Cursor Stability, fetches the HRO row from the

manufact table to learn the manufacturer code. This action places a shared lock
on the row.

2. Program B issues a DELETE statement for that row. Because of the lock, the
database server makes the program wait.

3. Program A inserts a new row in the stock table using the manufacturer code it
obtained from the manufact table.

4. Program A closes its cursor on the manufact table or reads a different row of it,
releasing its lock.

5. Program B, released from its wait, completes the deletion of the row and goes
on to delete the rows of stock that use manufacturer code HRO, including the
row that Program A just inserted.

If Program A used a lesser level of isolation, the following sequence could occur:
1. Program A reads the HRO row of the manufact table to learn the manufacturer

code. No lock is placed.
2. Program B issues a DELETE statement for that row. It succeeds.
3. Program B deletes all rows of stock that use manufacturer code HRO.
4. Program B ends.
5. Program A, not aware that its copy of the HRO row is now invalid, inserts a

new row of stock using the manufacturer code HRO.
6. Program A ends.

At the end, a row occurs in stock that has no matching manufacturer code in
manufact. Furthermore, Program B apparently has a bug; it did not delete the rows
that it was supposed to delete. Use of the Cursor Stability isolation level prevents
these effects.

The preceding scenario could be rearranged to fail even with Cursor Stability. All
that is required is for Program B to operate on tables in the reverse sequence to
Program A. If Program B deletes from stock before it removes the row of
manufact, no degree of isolation can prevent an error. Whenever this kind of error
is possible, all programs that are involved must use the same sequence of access.

ANSI Serializable, ANSI Repeatable Read, and IBM Informix
Repeatable Read isolation
Where ANSI Serializable or ANSI Repeatable Read are required, a single isolation
level is provided, called IBM Informix Repeatable Read. This is logically equivalent
to ANSI Serializable. Because ANSI Serializable is more restrictive than ANSI
Repeatable Read, IBM Informix Repeatable Read can be used when ANSI
Repeatable Read is desired (although IBM Informix Repeatable Read is more
restrictive than is necessary in such contexts).

The Repeatable Read isolation level asks the database server to put a lock on every
row the program examines and fetches. The locks that are placed are shareable for
an ordinary cursor and promotable for an update cursor. The locks are placed
individually as each row is examined. They are not released until the cursor closes
or a transaction ends.

10-12 IBM Informix Guide to SQL: Tutorial

Repeatable Read allows a program that uses a scroll cursor to read selected rows
more than once and to be sure that they are not modified or deleted between
readings. (Chapter 8, “SQL programming,” on page 8-1 describes scroll cursors.)
No lower isolation level guarantees that rows still exist and are unchanged the
second time they are read.

Repeatable Read isolation places the largest number of locks and holds them the
longest. Therefore, it is the level that reduces concurrency the most. If your
program uses this level of isolation, think carefully about how many locks it
places, how long they are held, and what the effect can be on other programs.

In addition to the effect on concurrency, the large number of locks can be a
problem. The database server records the number of locks by each program in a
lock table. If the maximum number of locks is exceeded, the lock table fills up, and
the database server cannot place a lock. An error code is returned. The person who
administers an Informix database server system can monitor the lock table and tell
you when it is heavily used.

The isolation level in an ANSI-compliant database is set to Serializable by default.
The Serializable isolation level is required to ensure that operations behave
according to the ANSI standard for SQL.

Update cursors
An update cursor is a special kind of cursor that applications can use when the
row might potentially be updated. To use an update cursor, execute SELECT FOR
UPDATE in your application. Update cursors use promotable locks; that is, the
database server places an update lock (meaning other users can still view the row)
when the application fetches the row, but the lock is changed to an exclusive lock
when the application updates the row using an update cursor and
UPDATE...WHERE CURRENT OF.

The advantage of using an update cursor is that you can view the row with the
confidence that other users cannot change it or view it with an update cursor
while you are viewing it and before you update it.

Tip: In an ANSI-compliant database, update cursors are unnecessary because any
select cursor behaves the same as an update cursor.

The pseudocode in the following figure shows when the database server places
and releases locks with a cursor.

declare update cursor
begin work
open the cursor
fetch the row
do stuff
update the row (use WHERE CURRENT OF)
commit work

Add an update lock for this row..

Promote lock to
exclusive.Release lock.

Figure 10-1. Locks Placed for Update

Chapter 10. Programming for a multiuser environment 10-13

Retain update locks

If a user has the isolation level set lower than Repeatable Read, the database server
releases update locks placed on rows as soon as the next row is fetched from a
cursor. With this feature, you can use the RETAIN UPDATE LOCKS clause to
retain an update lock until the end of a transaction when you set any of the
following isolation levels:
v Dirty Read
v Committed Read
v Cursor Stability

This feature lets you avoid the overhead of Repeatable Read isolation level or
workarounds such as dummy updates on a row. When the RETAIN UPDATE
LOCKS feature is turned on and an update lock is implicitly placed on a row
during a fetch of a SELECT...FOR UPDATE statement, the update lock is not
released until the end of the transaction. With the RETAIN UPDATE LOCKS
feature, only update locks are held until end of transaction, whereas the Repeatable
Read isolation level holds both update locks and shared locks until end of
transaction.

The following example shows how to use the RETAIN UPDATE LOCKS clause
when you set the isolation level to Committed Read.
SET ISOLATION TO COMMITTED READ RETAIN UPDATE LOCKS

To turn off the RETAIN UPDATE LOCKS feature, set the isolation level without
the RETAIN UPDATE LOCKS clause. When you turn off the feature, update locks
are not released directly. However, from this point on, a subsequent fetch releases
the update lock of the immediately preceding fetch but not of earlier fetch
operations. A close cursor releases the update lock on the current row.

For more information about how to use the RETAIN UPDATE LOCKS feature
when you specify an isolation level, see the IBM Informix Guide to SQL: Syntax.

Locks placed with INSERT, UPDATE, and DELETE
When you execute an INSERT, UPDATE, or DELETE statement, the database
server uses exclusive locks. An exclusive lock means that no other users can view
the row unless they are using the Dirty Read isolation level. In addition, no other
users can update or delete the item until the database server removes the lock.

When the database server removes the exclusive lock depends on the type of
logging set for the database. If the database has logging, the database server
removes all exclusive locks when the transaction completes (commits or rolls back).
If the database does not have logging, the database server removes all exclusive
locks immediately after the INSERT, UPDATE, or DELETE statement completes.

The behavior of the lock types
IBM Informix database servers store locks in an internal lock table. When the
database server reads a row, it checks if the row or its associated page, table, or
database is listed in the lock table. If it is in the lock table, the database server
must also check the lock type. The lock table can contain the following types of
locks.

10-14 IBM Informix Guide to SQL: Tutorial

Lock name Description Statement usually placing the lock

S Shared lock SELECT

X Exclusive lock INSERT, UPDATE, DELETE

U Update lock SELECT in an update cursor

B Byte lock Any statement that updates VARCHAR columns

In addition, the lock table might store intent locks. An intent lock can be an intent
shared (IS), intent exclusive (IX), or intent shared exclusive (SIX). An intent lock is
the lock the database server (lock manager) places on a higher granularity object
when a lower granularity object needs to be locked. For example, when a user
locks a row or page in Shared lock mode, the database server places an IS (intent
shared) lock on the table to provide an instant check that no other user holds an X
lock on the table. In this case, intent locks are placed on the table only and not on
the row or page. Intent locks can be placed at the level of a row, page, or table
only.

The user does not have direct control over intent locks; the lock manager internally
manages all intent locks.

The following table shows what locks a user (or the database server) can place if
another user (or the database server) holds a certain type of lock. For example, if
one user holds an exclusive lock on an item, another user requesting any kind of
lock (exclusive, update or shared) receives an error. In addition, the database
server is unable to place any intent locks on an item if a user holds an exclusive
lock on the item.

Hold X
lock

Hold U
lock

Hold S
lock

Hold IS
lock

Hold SIX
lock

Hold IX
lock

Request X lock No No No No No No

Request U lock No No Yes Yes No No

Request S lock No Yes Yes Yes No No

Request IS lock No Yes Yes Yes Yes Yes

Request SIX lock No No No Yes No No

Request IX lock No No No Yes No Yes

For information about how locking affects performance, see your IBM Informix
Performance Guide.

Control data modification with access modes
IBM Informix database servers support access modes. Access modes affect read
and write concurrency for rows within transactions and are set with the SET
TRANSACTION statement. You can use access modes to control data modification
among shared files.

Transactions are read-write by default. If you specify that a transaction is read-only,
that transaction cannot perform the following tasks:
v Insert, delete, or update table rows
v Create, alter, or drop any database object such as a schema, table, temporary

table, index, or stored routine

Chapter 10. Programming for a multiuser environment 10-15

v Grant or revoke privileges
v Update statistics
v Rename columns or tables

Read-only access mode prohibits updates.

You can execute stored routines in a read-only transaction as long as the routine
does not try to perform any restricted operations.

For information about how to use the SET TRANSACTION statement to specify an
access mode, see the IBM Informix Guide to SQL: Syntax.

Set the lock mode

The lock mode determines what happens when your program encounters locked
data. One of the following situations occurs when a program attempts to fetch or
modify a locked row:
v The database server immediately returns an error code in SQLCODE or

SQLSTATE to the program.
v The database server suspends the program until the program that placed the

lock removes the lock.
v The database server suspends the program for a time and then, if the lock is not

removed, the database server sends an error-return code to the program.

You choose among these results with the SET LOCK MODE statement.

Waiting for locks

When a user encounters a lock, the default behavior of a database server is to
return an error to the application. If you prefer to wait indefinitely for a lock (this
choice is best for many applications), you can execute the following SQL statement:
SET LOCK MODE TO WAIT

When this lock mode is set, your program usually ignores the existence of other
concurrent programs. When your program needs to access a row that another
program has locked, it waits until the lock is removed, then proceeds. In most
cases, the delays are imperceptible.

You can also wait for a specific number of seconds, as in the following example:
SET LOCK MODE TO WAIT 20

Not waiting for locks

The disadvantage of waiting for locks is that the wait might become long
(although properly designed applications should hold their locks briefly). When
the possibility of a long delay is not acceptable, a program can execute the
following statement:
SET LOCK MODE TO NOT WAIT

When the program requests a locked row, it immediately receives an error code
(for example, error -107 Record is locked), and the current SQL statement
terminates. The program must roll back its current transaction and try again.

10-16 IBM Informix Guide to SQL: Tutorial

The initial setting is not waiting when a program starts up. If you are using SQL
interactively and see an error related to locking, set the lock mode to wait. If you
are writing a program, consider making that one of the first embedded SQL
statements that the program executes.

Limited time wait

You can ask the database server to set an upper limit on a wait with the following
statement:
SET LOCK MODE TO WAIT 17

This statement places an upper limit of 17 seconds on the length of any wait. If a
lock is not removed in that time, the error code is returned.

Handle a deadlock
A deadlock is a situation in which a pair of programs blocks the progress of each
other. Each program has a lock on some object that the other program wants to
access. A deadlock arises only when all programs concerned set their lock modes
to wait for locks.

An IBM Informix database server detects deadlocks immediately when they only
involve data at a single network server. It prevents the deadlock from occurring by
returning an error code (error -143 ISAM error: deadlock detected) to the second
program to request a lock. The error code is the one the program receives if it sets
its lock mode to not wait for locks. If your program receives an error code related
to locks even after it sets lock mode to wait, you know the cause is an impending
deadlock.

Handling external deadlock
A deadlock can also occur between programs on different database servers. In this
case, the database server cannot instantly detect the deadlock. (Perfect deadlock
detection requires excessive communications traffic among all database servers in a
network.) Instead, each database server sets an upper limit on the amount of time
that a program can wait to obtain a lock on data at a different database server. If
the time expires, the database server assumes that a deadlock was the cause and
returns a lock-related error code.

In other words, when external databases are involved, every program runs with a
maximum lock-waiting time. The DBA can set or modify the maximum for the
database server.

Simple concurrency

If you are not sure which choice to make concerning locking and concurrency, you
can use the following guideline: If your application accesses non-static tables, and
there is no risk of deadlock, have your program execute the following statements
when it starts up (immediately after the first CONNECT or DATABASE statement):
SET LOCK MODE TO WAIT
SET ISOLATION TO REPEATABLE READ

Ignore the return codes from both statements. Proceed as if no other programs
exist. If no performance problems arise, you do not need to read this section again.

Chapter 10. Programming for a multiuser environment 10-17

Hold cursors

When transaction logging is used, IBM Informix guarantees that anything done
within a transaction can be rolled back at the end of it. To handle transactions
reliably, the database server normally applies the following rules:
v When a transaction ends, all cursors are closed.
v When a transaction ends, all locks are released.

The rules that are used to handle transactions reliably are normal with most
database systems that support transactions, and they do not cause any trouble for
most applications. However, circumstances exist in which using standard
transactions with cursors is not possible. For example, the following code works
fine without transactions. However, when transactions are added, closing the
cursor conflicts with using two cursors simultaneously.
EXEC SQL DECLARE master CURSOR FOR
EXEC SQL DECLARE detail CURSOR FOR FOR UPDATE
EXEC SQL OPEN master;
while(SQLCODE == 0)
{

EXEC SQL FETCH master INTO
if(SQLCODE == 0)
{

EXEC SQL BEGIN WORK;
EXEC SQL OPEN detail USING
EXEC SQL FETCH detail
EXEC SQL UPDATE WHERE CURRENT OF detail
EXEC SQL COMMIT WORK;

}
}
EXEC SQL CLOSE master;

In this design, one cursor is used to scan a table. Selected records are used as the
basis for updating a different table. The problem is that when each update is
treated as a separate transaction (as the pseudocode in the previous example
shows), the COMMIT WORK statement following the UPDATE closes all cursors,
including the master cursor.

The simplest alternative is to move the COMMIT WORK and BEGIN WORK
statements to be the last and first statements, respectively, so that the entire scan
over the master table is one large transaction. Treating the scan of the master table
as one large transaction is sometimes possible, but it can become impractical if
many rows need to be updated. The number of locks can be too large, and they are
held for the duration of the program.

A solution that IBM Informix database servers support is to add the keywords
WITH HOLD to the declaration of the master cursor. Such a cursor is referred to as
a hold cursor and is not closed at the end of a transaction. The database server still
closes all other cursors, and it still releases all locks, but the hold cursor remains
open until it is explicitly closed.

Before you attempt to use a hold cursor, you must be sure that you understand the
locking mechanism described here, and you must also understand the programs
that are running concurrently. Whenever COMMIT WORK is executed, all locks are
released, including any locks placed on rows fetched through the hold cursor.

The removal of locks has little importance if the cursor is used as intended, for a
single forward scan over a table. However, you can specify WITH HOLD for any

10-18 IBM Informix Guide to SQL: Tutorial

cursor, including update cursors and scroll cursors. Before you do this, you must
understand the implications of the fact that all locks (including locks on entire
tables) are released at the end of a transaction.

The SQL statement cache
The SQL statement cache is a feature that lets you store in a buffer identical SQL
statements that are executed repeatedly so the statements can be reused among
different user sessions without the need for per-session memory allocation.
Statement caching can dramatically improve performance for applications that
contain a large number of prepared statements. However, performance
improvements are less dramatic when statement caching is used to cache
statements that are prepared once and executed many times.

Use SQL to turn on or turn off statement caching for an individual database
session when statement caching is enabled for the database server. The following
statement shows how to use SQL to turn on caching for the current database
session:
SET STATEMENT CACHE ON

The following statement shows how to use SQL to turn off caching for the current
database session:
SET STATEMENT CACHE OFF

If you attempt to turn on or turn off statement caching when caching is disabled,
the database server returns an error.

For information about syntax for the SET STATEMENT CACHE statement, see the
IBM Informix Guide to SQL: Syntax. For information about the STMT_CACHE and
STMT_CACHE_SIZE configuration parameters, see the IBM Informix Administrator's
Reference and your IBM Informix Performance Guide. For information about the
STMT_CACHE environment variable, see the IBM Informix Guide to SQL: Reference.

Summary

Whenever multiple programs have access to a database concurrently (and when at
least one of them can modify data), all programs must allow for the possibility that
another program can change the data even as they read it. The database server
provides a mechanism of locks and isolation levels that usually allow programs to
run as if they were alone with the data.

The SET STATEMENT CACHE statement allows you to store in a buffer identical
SQL statements that are used repeatedly. When statement caching is turned on, the
database server stores the identical statements so they can be reused among
different user sessions without the need for per-session memory allocation.

Chapter 10. Programming for a multiuser environment 10-19

10-20 IBM Informix Guide to SQL: Tutorial

Chapter 11. Create and use SPL routines

This section describes how to create and use SPL routines. An SPL routine is a
user-defined routine written in IBM Informix Stored Procedure Language (SPL).
IBM Informix SPL is an extension to SQL that provides flow control, such as
looping and branching. Anyone who has the Resource privilege on a database can
create an SPL routine.

Routines written in SQL are parsed, optimized as far as possible, and then stored
in the system catalog tables in executable format. An SPL routine might be a good
choice for SQL-intensive tasks. SPL routines can execute routines written in C or
other external languages, and external routines can execute SPL routines.

You can use SPL routines to perform any task that you can perform in SQL and to
expand what you can accomplish with SQL alone. Because SPL is a language
native to the database, and because SPL routines are parsed and optimized when
they are created rather than at runtime, SPL routines can improve performance for
some tasks. SPL routines can also reduce traffic between a client application and
the database server and reduce program complexity.

The syntax for each SPL statement is described in the IBM Informix Guide to SQL:
Syntax. Examples accompany the syntax for each statement.

Introduction to SPL routines
An SPL routine is a generic term that includes SPL procedures and SPL functions. An
SPL procedure is a routine written in SPL and SQL that does not return a value.
An SPL function is a routine written in SPL and SQL that returns a single value, a
value with a complex data type, or multiple values. Generally, a routine written in
SPL that returns a value is an SPL function.

You use SQL and SPL statements to write an SPL routine. SPL statements can be
used only inside the CREATE PROCEDURE, CREATE PROCEDURE FROM,
CREATE FUNCTION, and CREATE FUNCTION FROM statements. All these
statements are available with SQL APIs such as IBM Informix ESQL/C. The
CREATE PROCEDURE and CREATE FUNCTION statements are available with
DB-Access.

What you can do with SPL routines
You can accomplish a wide range of objectives with SPL routines, including
improving database performance, simplifying writing applications, and limiting or
monitoring access to data.

Because an SPL routine is stored in an executable format, you can use it to execute
frequently repeated tasks to improve performance. When you execute an SPL
routine rather than straight SQL code, you can bypass repeated parsing, validity
checking, and query optimization.

You can use an SPL routine in a data-manipulation SQL statement to supply values
to that statement. For example, you can use a routine to perform the following
actions:
v Supply values to be inserted into a table

© Copyright IBM Corp. 1996, 2010 11-1

v Supply a value that makes up part of a condition clause in a SELECT, DELETE,
or UPDATE statement

These actions are two possible uses of a routine in a data-manipulation statement,
but others exist. In fact, any expression in a data-manipulation SQL statement can
consist of a routine call.

You can also issue SQL statements in an SPL routine to hide those SQL statements
from a database user. Rather than having all users learn how to use SQL, one
experienced SQL user can write an SPL routine to encapsulate an SQL activity and
let others know that the routine is stored in the database so that they can execute
it.

You can write an SPL routine to be run with the DBA privilege by a user who does
not have the DBA privilege. This feature allows you to limit and control access to
data in the database. Alternatively, an SPL routine can monitor the users who
access certain tables or data. For more information about how to use SPL routines
to control access to data, see the IBM Informix Database Design and Implementation
Guide.

SPL routines format
An SPL routine consists of a beginning statement, a statement block, and an
ending statement. Within the statement block, you can use SQL or SPL statements.

The maximum size of an SPL routine is 64 kilobytes. The maximum size includes
any SPL global variables in the database and the routine itself.

The CREATE PROCEDURE or CREATE FUNCTION statement

You must first decide if the routine that you are creating returns values or not. If
the routine does not return a value, use the CREATE PROCEDURE statement to
create an SPL procedure. If the routine returns a value, use the CREATE
FUNCTION statement to create an SPL function.

To create an SPL routine, use one CREATE PROCEDURE or CREATE FUNCTION
statement to write the body of the routine and register it.

Begin and end the routine

To create an SPL routine that does not return values, start with the CREATE
PROCEDURE statement and end with the END PROCEDURE keyword. The
following figure shows how to begin and end an SPL procedure.

For more information about naming conventions, see the Identifier segment in the
IBM Informix Guide to SQL: Syntax.

To create an SPL function that returns one or more values, start with the CREATE
FUNCTION statement and end with the END FUNCTION keyword. The following

CREATE PROCEDURE new_price(per_cent REAL)
. . .
END PROCEDURE;

Figure 11-1. Begin and end an SPL procedure.

11-2 IBM Informix Guide to SQL: Tutorial

figure shows how to begin and end an SPL function.

The entire text of an SPL routine, including spaces and tabs, must not exceed 64
kilobytes. In SPL routines, the END PROCEDURE or END FUNCTION keywords
are required.

Important: For compatibility with earlier IBM Informix products, you can use
CREATE PROCEDURE with a RETURNING clause to create a user-defined routine
that returns a value. Your code will be easier to read and to maintain, however, it
you use CREATE PROCEDURE for SPL routines that do not return values (SPL
procedures) and CREATE FUNCTION for SPL routines that return one or more
values (SPL functions).

Specify a routine name

You specify a name for the SPL routine immediately following the CREATE
PROCEDURE or CREATE FUNCTION statement and before the parameter list, as
the figure shows.

IBM Informix allows you to create more than one SPL routine with the same name
but with different parameters. This feature is known as routine overloading. For
example, you might create each of the following SPL routines in your database:
CREATE PROCEDURE multiply (a INT, b FLOAT)
CREATE PROCEDURE multiply (a INT, b SMALLINT)
CREATE PROCEDURE multiply (a REAL, b REAL)

If you call a routine with the name multiply(), the database server evaluates the
name of the routine and its arguments to determine which routine to execute.

Routine resolution is the process in which the database server searches for a routine
signature that it can use, given the name of the routine and a list of arguments.
Every routine has a signature that uniquely identifies the routine based on the
following information:
v The type of routine (procedure or function)
v The routine name
v The number of parameters
v The data types of the parameters
v The order of the parameters

The routine signature is used in a CREATE, DROP, or EXECUTE statement if you
enter the full parameter list of the routine. For example, each statement in the

CREATE FUNCTION discount_price(per_cent REAL)
RETURNING MONEY;

. . .
END FUNCTION;

Figure 11-2. Begin and end an SPL function.

CREATE PROCEDURE add_price (arg INT)

Figure 11-3. Specify a name for the SPL routine.

Chapter 11. Create and use SPL routines 11-3

following figure uses a routine signature.

Add a specific name

Because IBM Informix supports routine overloading, an SPL routine might not be
uniquely identified by its name alone. However, a routine can be uniquely
identified by a specific name. A specific name is a unique identifier that you define
in the CREATE PROCEDURE or CREATE FUNCTION statement, in addition to
the routine name. A specific name is defined with the SPECIFIC keyword and is
unique in the database. Two routines in the same database cannot have the same
specific name, even if they have different owners.

A specific name can be up to 128 bytes long. The following figure shows how to
define the specific name calc1 in a CREATE FUNCTION statement that creates the
calculate() function.

Because the owner bsmith has given the SPL function the specific name calc1, no
other user can define a routine—SPL or external—with the specific name calc1.
Now you can refer to the routine as bsmith.calculate or with the SPECIFIC
keyword calc1 in any statement that requires the SPECIFIC keyword.

Add a parameter list

When you create an SPL routine, you can define a parameter list so that the
routine accepts one or more arguments when it is invoked. The parameter list is
optional.

A parameter to an SPL routine must have a name and can be defined with a
default value. The following are the categories of data types that a parameter can
specify:
v Built-in data types
v Opaque data types
v Distinct data types
v Row types
v Collection types
v Smart large objects (CLOB and BLOB)

CREATE FUNCTION multiply(a INT, b INT);

DROP PROCEDURE end_of_list(n SET, row_id INT);

EXECUTE FUNCTION compare_point(m point, n point);

Figure 11-4. Routine signatures.

CREATE FUNCTION calculate(a INT, b INT, c INT)
RETURNING INT
SPECIFIC calc1;

. . .
END FUNCTION;

Figure 11-5. Define the specific name.

11-4 IBM Informix Guide to SQL: Tutorial

The parameter list cannot specify any of the following data types directly:
v SERIAL
v SERIAL8
v BIGSERIAL
v TEXT
v BYTE

For the serial data types, however, a routine can return numerically equivalent
values that are cast to a corresponding integer type (INT, INT8, or BIGINT).
Similarly, for a routine to support the simple large object data types, the parameter
list can include the REFERENCES keyword to return a descriptor that points to the
storage location of the TEXT or BYTE object.

The following figure shows examples of parameter lists.

When you define a parameter, you accomplish two tasks at once:
v You request that the user supply a value when the routine is executed.
v You implicitly define a variable (with the same name as the parameter name)

that you can use as a local variable in the body of the routine.

If you define a parameter with a default value, the user can execute the SPL
routine with or without the corresponding argument. If the user executes the SPL
routine without the argument, the database server assigns the parameter the
default value as an argument.

When you invoke an SPL routine, you can give an argument a NULL value. SPL
routines handle NULL values by default. However, you cannot give an argument a
NULL value if the argument is a collection element.

Simple large objects as parameters:

Although you cannot define a parameter with a simple large object (a large object
that contains TEXT or BYTE data types), you can use the REFERENCES keyword
to define a parameter that points to a simple large object, as the following figure
shows.

CREATE PROCEDURE raise_price(per_cent INT);

CREATE FUNCTION raise_price(per_cent INT DEFAULT 5);

CREATE PROCEDURE update_emp(n employee_t);
CREATE FUNCTION update_nums(list1 LIST(ROW (a VARCHAR(10),

b VARCHAR(10),
c INT) NOT NULL));

Figure 11-6. Examples of different parameter lists.

CREATE PROCEDURE proc1(lo_text REFERENCES TEXT)

CREATE FUNCTION proc2(lo_byte REFERENCES BYTE DEFAULT NULL)

Figure 11-7. Use of the REFERENCES keyword.

Chapter 11. Create and use SPL routines 11-5

The REFERENCES keyword means that the SPL routine is passed a descriptor that
contains a pointer to the simple large object, not the object itself.

Undefined arguments:

When you invoke an SPL routine, you can specify all, some, or none of the defined
arguments. If you do not specify an argument, and if its corresponding parameter
does not have a default value, the argument, which is used as a variable within the
SPL routine, is given a status of undefined.

Undefined is a special status used for SPL variables that have no value. The SPL
routine executes without error, as long as you do not attempt to use the variable
that has the status undefined in the body of the routine.

The undefined status is not the same as a NULL value. (The NULL value means
that the value is not known, or does not exist, or is not applicable.)

Add a return clause

If you use CREATE FUNCTION to create an SPL routine, you must specify a
return clause that returns one or more values.

Tip: If you use the CREATE PROCEDURE statement to create an SPL routine, you
have the option of specifying a return clause. Your code will be easier to read and
to maintain, however, it you instead use the CREATE FUNCTION statement to
create a routine that returns values.

To specify a return clause, use the RETURNING or RETURNS keyword with a list
of data types the routine will return. The data types can be any SQL data types
except SERIAL, SERIAL8, TEXT, or BYTE.

The return clause in the following figure specifies that the SPL routine will return
an INT value and a REAL value.

After you specify a return clause, you must also specify a RETURN statement in
the body of the routine that explicitly returns the values to the calling routine. For
more information on writing the RETURN statement, see “Return values from an
SPL function” on page 11-31.

To specify that the function should return a simple large object (a TEXT or BYTE
value), you must use the REFERENCES clause, as in the following figure, because
an SPL routine returns only a pointer to the object, not the object itself.

FUNCTION find_group(id INT)
RETURNING INT, REAL;

. . .
END FUNCTION;

Figure 11-8. Specify the return clause.

11-6 IBM Informix Guide to SQL: Tutorial

Add display labels

You can use CREATE FUNCTION to create a routine that specifies names for the
display labels for the values returned. If you do not specify names for the display
labels, the labels will display as expression.

In addition, although using CREATE FUNCTION for routines that return values is
recommended, you can use CREATE PROCEDURE to create a routine that returns
values and specifies display labels for the values returned.

If you choose to specify a display label for one return value, you must specify a
display label for every return value. In addition, each return value must have a
unique display label.

To add display labels, you must specify a return clause, use the RETURNING
keyword. The return clause in the following figure specifies that the routine will
return an INT value with a serial_num display label, a CHAR value with a name
display label, and an INT value with a points display label. You could use either
CREATE FUNCTION or CREATE PROCEDURE in the following figure.

The returned values and their display labels are shown in the following figure.

Tip: Because you can specify display labels for return values directly in a SELECT
statement, when a SPL routine is used in a SELECT statement, the labels will
display as expression. For more information on specifying display labels for return
values in a SELECT statement, see Chapter 2, “Compose SELECT statements,” on
page 2-1.

Specify whether the SPL function is variant
When you create an SPL function, the function is variant by default. A function is
variant if it returns different results when it is invoked with the same arguments or
if it modifies a database or variable state. For example, a function that returns the
current date or time is a variant function.

CREATE FUNCTION find_obj(id INT)
RETURNING REFERENCES BYTE;

Figure 11-9. Use of the REFERENCES clause.

CREATE FUNCTION p(inval INT DEFAULT 0)
RETURNING INT AS serial_num, CHAR (10) AS name, INT AS points;
RETURN (inval + 1002), "Newton", 100;

END FUNCTION;

Figure 11-10. Specify the return clause.

serial_num name points

1002 Newton 100

Figure 11-11. Returned values and their display labels.

Chapter 11. Create and use SPL routines 11-7

Although SPL functions are variant by default, if you specify WITH NOT
VARIANT when you create a function, the function cannot contain any SQL
statements. You can create a functional index on a nonvariant function.

Add a modifier

When you write SPL functions, you can use the WITH clause to add a modifier to
the CREATE FUNCTION statement. In the WITH clause, you can specify the
COMMUTATOR or NEGATOR functions. The other modifiers are for external
routines.

Restriction: You can use the COMMUTATOR or NEGATOR modifiers with SPL
functions only. You cannot use any modifiers with SPL procedures.

The COMMUTATOR modifier:

The COMMUTATOR modifier allows you to specify an SPL function that is the
commutator function of the SPL function you are creating. A commutator function
accepts the same arguments as the SPL function you are creating, but in opposite
order, and returns the same value. The commutator function might be more cost
effective for the SQL optimizer to execute.

For example, the functions lessthan(a,b), which returns TRUE if a is less than b,
and greaterthan(b,a), which returns TRUE if b is greater than or equal to a, are
commutator functions. The following figure uses the WITH clause to define a
commutator function.

The optimizer might use greaterthan(b,a) if it is less expensive to execute than
lessthan(a,b). To specify a commutator function, you must own both the
commutator function and the SPL function you are writing. You must also grant
the user of your SPL function the Execute privilege on both functions.

For a detailed description of granting privileges, see the description of the GRANT
statement in the IBM Informix Guide to SQL: Syntax.

The NEGATOR modifier:

The NEGATOR modifier is available for Boolean functions. Two Boolean functions
are negator functions if they take the same arguments, in the same order, and return
complementary Boolean values.

For example, the functions equal(a,b), which returns TRUE if a is equal to b, and
notequal(a,b), which returns FALSE if a is equal to b, are negator functions. The
optimizer might choose to execute the negator function you specify if it is less
expensive than the original function.

CREATE FUNCTION lessthan(a dtype1, b dtype2)
RETURNING BOOLEAN
WITH (COMMUTATOR = greaterthan);

. . .
END FUNCTION;

Figure 11-12. Define a commutator function.

11-8 IBM Informix Guide to SQL: Tutorial

Tthe following figure shows how to use the WITH clause of a CREATE
FUNCTION statement to specify a negator function.

Tip: By default, any SPL routine can handle NULL values that are passed to it in
the argument list. In other words, the HANDLESNULLS modifier is set to YES for
SPL routines, and you cannot change its value.

For more information on the COMMUTATOR and NEGATOR modifiers, see the
Routine Modifier segment in the IBM Informix Guide to SQL: Syntax.

Specify a DOCUMENT clause

The DOCUMENT and WITH LISTING IN clauses follow END PROCEDURE or
END FUNCTION statements.

The DOCUMENT clause lets you add comments to your SPL routine that another
routine can select from the system catalog tables, if needed. The DOCUMENT
clause in the following figure contains a usage statement that shows a user how to
run the SPL routine.

Remember to place single or double quotation marks around the literal clause. If
the literal clause extends past one line, place quotation marks around each line.

Specify a listing file

The WITH LISTING IN option allows you to direct any compile-time warnings
that might occur to a file.

The following figure shows how to log the compile-time warnings in
/tmp/warn_file when you work on UNIX.

CREATE FUNCTION equal(a dtype1, b dtype2)
RETURNING BOOLEAN
WITH (NEGATOR = notequal);

. . .
END FUNCTION;

Figure 11-13. Specify a negator function.

CREATE FUNCTION raise_prices(per_cent INT)
. . .
END FUNCTION

DOCUMENT "USAGE: EXECUTE FUNCTION raise_prices (xxx)",
"xxx = percentage from 1 - 100";

Figure 11-14. Usage statement that shows a user how to run the SPL routine.

CREATE FUNCTION raise_prices(per_cent INT)
. . .
END FUNCTION

WITH LISTING IN ’/tmp/warn_file’

Figure 11-15. Log the compile-time warnings on UNIX.

Chapter 11. Create and use SPL routines 11-9

The following figure shows how to log the compile-time warnings in
\tmp\listfile when you work on Windows.

Always remember to place single or double quotation marks around the file name
or path name.

Add comments

You can add a comment to any line of an SPL routine, even a blank line.

To add a comment, use any of the following comment notation styles:
v Place a double hyphen (--) at the left of the comment.
v Enclose the comment text between a pair of braces ({ . . . }).
v Delimit the comment between C-style "slash and asterisk" comment indicators (

/* . . . */).

To add a multiple-line comment, take one of the following actions:
v Place a double hyphen before each line of the comment
v Enclose the entire comment within the pair of braces.
v Place /* at the left of the first line of the comment, and place */ at the end of

the last line of the comment.

Braces as comment indicators are IBM Informix an extension to the ANSI/ISO
standard for the SQL language. All three comment styles are also valid in SPL
routines.

If you use braces or C-style comment indicators to delimit the text of a comment,
the opening indicator must be in the same style as the closing indicator.

All the examples in the following figure are valid comments.

CREATE FUNCTION raise_prices(per_cent INT)
. . .
END FUNCTION

WITH LISTING IN ’C:\tmp\listfile’

Figure 11-16. Log the compile-time warnings on Windows.

SELECT * FROM customer -- Selects all columns and rows

SELECT * FROM customer
-- Selects all columns and rows
-- from the customer table

SELECT * FROM customer
{ Selects all columns and rows

from the customer table }

SELECT * FROM customer
/* Selects all columns and rows

from the customer table */

Figure 11-17. Valid comment examples.

11-10 IBM Informix Guide to SQL: Tutorial

Important: Braces ({ }) can be used to delimit comments and also to delimit the
list of elements in a collection. To ensure that the parser correctly recognizes the
end of a comment or list of elements in a collection, use the double hyphen (--)
for comments in an SPL routine that handles collection data types.

Example of a complete routine

The following CREATE FUNCTION statement creates a routine that reads a
customer address:
CREATE FUNCTION read_address (lastname CHAR(15)) -- one argument

RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),CHAR(2)
CHAR(5); -- 6 items

DEFINE p_lname,p_fname, p_city CHAR(15);
--define each routine variable

DEFINE p_add CHAR(20);
DEFINE p_state CHAR(2);
DEFINE p_zip CHAR(5);

SELECT fname, address1, city, state, zipcode
INTO p_fname, p_add, p_city, p_state, p_zip
FROM customer
WHERE lname = lastname;

RETURN p_fname, lastname, p_add, p_city, p_state, p_zip;
--6 items

END FUNCTION;

DOCUMENT ’This routine takes the last name of a customer as’,
--brief description
’its only argument. It returns the full name and address’,
’of the customer.’

WITH LISTING IN ’pathname’ -- modify this pathname according
-- to the conventions that your operating system requires

-- compile-time warnings go here
; -- end of the routine read_address

Create an SPL routine in a program

To use an SQL API to create an SPL routine, put the text of the CREATE
PROCEDURE or CREATE FUNCTION statement in a file. Use the CREATE
PROCEDURE FROM or CREATE FUNCTION FROM statement and refer to that
file to compile the routine. For example, to create a routine to read a customer
name, you can use a statement such as the one in the previous example and store
it in a file. If the file is named read_add_source, the following statement compiles
the read_address routine:
CREATE PROCEDURE FROM ’read_add_source’;

The following example shows how the previous SQL statement looks in an
Informix ESQL/C program:
/* This program creates whatever routine is in *
* the file ’read_add_source’.
*/
#include <stdio.h>
EXEC SQL include sqlca;
EXEC SQL include sqlda;
EXEC SQL include datetime;
/* Program to create a routine from the pwd */

Chapter 11. Create and use SPL routines 11-11

main()
{
EXEC SQL database play;
EXEC SQL create procedure from ’read_add_source’;
}

Routines in distributed operation

After you create an SPL routine, you cannot change the body of the routine.
Instead, you need to drop the routine and re-create it. Before you drop the routine,
however, make sure that you have a copy of its text somewhere outside the
database.

In general, use DROP PROCEDURE with an SPL procedure name and DROP
FUNCTION with an SPL function name, as the following figure shows.

Tip: You can also use DROP PROCEDURE with a function name to drop an SPL
function. However, it is recommended that you use DROP PROCEDURE only with
procedure names and DROP FUNCTION only with function names.

However, if the database has other routines of the same name (overloaded
routines), you cannot drop the SPL routine by its routine name alone. To drop a
routine that has been overloaded, you must specify either its signature or its
specific name. The following figure shows two ways that you might drop a routine
that is overloaded.

If you do not know the type of a routine (function or procedure), you can use the
DROP ROUTINE statement to drop it. DROP ROUTINE works with either
functions or procedures. DROP ROUTINE also has a SPECIFIC keyword, as the
following figure shows.

Before you drop an SPL routine stored on a remote database server, be aware of
the following restriction. You can drop an SPL routine with a fully qualified
routine name in the form database@dbservername:owner.routinename only if the
routine name alone, without its arguments, is enough to identify the routine. SPL

DROP PROCEDURE raise_prices;
DROP FUNCTION read_address;

Figure 11-18. DROP PROCEDURE and DROP FUNCTION.

DROP FUNCTION calculate(a INT, b INT, c INT);
-- this is a signature

DROP SPECIFIC FUNCTION calc1;
-- this is a specific name

Figure 11-19. Drop a routine that is overloaded.

DROP ROUTINE calculate;
DROP SPECIFIC ROUTINE calc1;

Figure 11-20. The DROP ROUTINE statement.

11-12 IBM Informix Guide to SQL: Tutorial

routines that access tables in databases of non-local database servers, or that are
invoked as UDRs of a database of another database server, can only have
non-opaque built-in data types as their arguments or returned values. If the tables
or the UDR resides on another database of the same Informix instance, however,
the arguments and returned values of routines written in SPL (or in external
languages that Informix supports) can be the built-in opaque data types BLOB,
BOOLEAN, CLOB, and LVARCHAR. They can also be UDTs or DISTINCT data
types if the following conditions are true:
v The remote database has the same server as the current database.
v The UDT arguments are explicitly cast to a built-in data type.
v The DISTINCT types are based on built-in types and are explicitly cast to

built-in types.
v The SPL routine and all the casts are defined in all participating databases.

Define and use variables

Any variable that you use in an SPL routine, other than a variable that is implicitly
defined in the parameter list of the routine, must be defined in the body of the
routine.

The value of a variable is held in memory; the variable is not a database object.
Therefore, rolling back a transaction does not restore the values of SPL variables.

To define a variable in an SPL routine, use the DEFINE statement. DEFINE is not
an executable statement. DEFINE must appear after the CREATE PROCEDURE
statement and before any other statements. The examples in the following figure
are all legal variable definitions.

For more information on DEFINE, see the description in the IBM Informix Guide to
SQL: Syntax.

An SPL variable has a name and a data type. The variable name must be a valid
identifier, as described in the Identifier segment in the IBM Informix Guide to SQL:
Syntax.

Declare local variables

You can define a variable to be either local or global in scope. This section describes
local variables. In an SPL routine, local variables:
v Are valid only for the duration of the SPL routine
v Are reset to their initial values or to a value the user passes to the routine, each

time the routine is executed
v Cannot have default values

You can define a local variable on any of the following data types:
v Built-in data types (except SERIAL, SERIAL8, BIGSERIAL, TEXT, or BYTE)

DEFINE a INT;
DEFINE person person_t;
DEFINE GLOBAL gl_out INT DEFAULT 13;

Figure 11-21. Variable definitions.

Chapter 11. Create and use SPL routines 11-13

v Any extended data type (row type, opaque, distinct, or collection type) that is
defined in the database prior to execution of the SPL routine

The scope of a local variable is the statement block in which it is declared. You can
use the same variable name outside the statement block with a different definition.

For more information on defining global variables, see “Declare global variables”
on page 11-20.

Scope of local variables

A local variable is valid within the statement block in which it is defined and
within any nested statement blocks, unless you redefine the variable within the
statement block.

In the beginning of the SPL procedure in the following figure, the integer variables
x, y, and z are defined and initialized.

The BEGIN and END statements mark a nested statement block in which the
integer variables x and q are defined as well as the CHAR variable z. Within the
nested block, the redefined variable x masks the original variable x. After the END
statement, which marks the end of the nested block, the original value of x is
accessible again.

Declare variables of built-in data types

A variable that you declare as a built-in SQL data type can hold a value retrieved
from a column of that built-in type. You can declare an SPL variable as most
built-in types, except BIGSERIAL, SERIAL, and SERIAL8, as the following figure
illustrates.

CREATE PROCEDURE scope()
DEFINE x,y,z INT;
LET x = 5;
LET y = 10;
LET z = x + y; --z is 15
BEGIN

DEFINE x, q INT;
DEFINE z CHAR(5);
LET x = 100;
LET q = x + y; -- q = 110
LET z = ’silly’; -- z receives a character value

END
LET y = x; -- y is now 5
LET x = z; -- z is now 15, not ’silly’

END PROCEDURE;

Figure 11-22. Define and initialize variables.

DEFINE x INT;
DEFINE y INT8;
DEFINE name CHAR(15);
DEFINE this_day DATETIME YEAR TO DAY;

Figure 11-23. Built-in type variables.

11-14 IBM Informix Guide to SQL: Tutorial

You can declare SPL variables of appropriate integer data types (such as BIGINT,
INT, or INT8) to store the values of serial columns or of sequence objects.

Declare variables for smart large objects

A variable for a BLOB or CLOB object (or a data type that contains a smart large
object) does not contain the object itself but rather a pointer to the object. The
following figure shows how to define a variable for BLOB and CLOB objects.

Declare variables for simple large objects

A variable for a simple large object (a TEXT or BYTE object) does not contain the
object itself but rather a pointer to the object. When you define a variable on the
TEXT or BYTE data type, you must use the keyword REFERENCES before the data
type, as the following figure shows.

Declare collection variables

In order to hold a collection fetched from the database, a variable must be of type
SET, MULTISET, or LIST.

Important: A collection variable must be defined as a local variable. You cannot
define a collection variable as a global variable.

A variable of SET, MULTISET, or LIST type is a collection variable that holds a
collection of the type named in the DEFINE statement. The following figure shows
how to define typed collection variables.

You must always define the elements of a collection variable as NOT NULL. In this
example, the variable a is defined to hold a SET of non-NULL integers; the
variable b holds a MULTISET of non-NULL row types; and the variable c holds a
LIST of non-NULL sets of non-NULL decimal values.

DEFINE a_blob BLOB;
DEFINE b_clob CLOB;

Figure 11-24. Variables for BLOB or CLOB objects.

DEFINE t REFERENCES TEXT;
DEFINE b REFERENCES BYTE;

Figure 11-25. Use the REFERENCES keyword before the data type.

DEFINE a SET (INT NOT NULL);

DEFINE b MULTISET (ROW (b1 INT,
b2 CHAR(50),

) NOT NULL);

DEFINE c LIST (SET (DECIMAL NOT NULL) NOT NULL);

Figure 11-26. Define typed collection variables.

Chapter 11. Create and use SPL routines 11-15

In a variable definition, you can nest complex types in any combination or depth
to match the data types stored in your database.

You cannot assign a collection variable of one type to a collection variable of
another type. For example, if you define a collection variable as a SET, you cannot
assign another collection variable of MULTISET or LIST type to it.

Declare row-type variables

Row-type variables hold data from named or unnamed row types. You can define
a named row variable or an unnamed row variable. Suppose you define the named row
types that the following figure shows.

If you define a variable with the name of a named row type, the variable can only
hold data of that row type. In the following figure, the person variable can only
hold data of employee_t type.

To define a variable that holds data stored in an unnamed row type, use the ROW
keyword followed by the fields of the row type, as the following figure shows.

CREATE ROW TYPE zip_t
(

z_code CHAR(5),
z_suffix CHAR(4)

);

CREATE ROW TYPE address_t
(

street VARCHAR(20),
city VARCHAR(20),
state CHAR(2),
zip zip_t

);

CREATE ROW TYPE employee_t
(

name VARCHAR(30),
address address_t
salary INTEGER

);

CREATE TABLE employee OF TYPE employee_t;

Figure 11-27. Named and unnamed row variables.

DEFINE person employee_t;

Figure 11-28. Defining the person variable.

DEFINE manager ROW (name VARCHAR(30),
department VARCHAR(30),
salary INTEGER);

Figure 11-29. Use the ROW keyword followed by the fields of the row type.

11-16 IBM Informix Guide to SQL: Tutorial

Because unnamed row types are type-checked for structural equivalence only, a
variable defined with an unnamed row type can hold data from any unnamed row
type that has the same number of fields and the same type definitions. Therefore,
the variable manager can hold data from any of the row types in the following
figure.

Important: Before you can use a row type variable, you must initialize the row
variable with a LET statement or SELECTINTO statement.

Declare opaque- and distinct-type variables

Opaque-type variables hold data retrieved from opaque data types. Distinct-type
variables hold data retrieved from distinct data types. If you define a variable with
an opaque data type or a distinct data type, the variable can only hold data of that
type.

If you define an opaque data type named point and a distinct data type named
centerpoint, you can define SPL variables to hold data from the two types, as the
following figure shows.

The variable a can only hold data of type point, and b can only hold data of type
centerpoint.

Declare variables for column data with the LIKE clause

If you use the LIKE clause, the database server defines a variable to have the same
data type as a column in a table or view.

If the column contains a collection, row type, or nested complex type, the variable
has the complex or nested complex type defined in the column.

In the following figure, the variable loc1 defines the data type for the locations
column in the image table.

ROW (name VARCHAR(30),
department VARCHAR(30),
salary INTEGER);

ROW (french VARCHAR(30),
spanish VARCHAR(30),
number INTEGER);

ROW (title VARCHAR(30),
musician VARCHAR(30),
price INTEGER);

Figure 11-30. Unnamed row types.

DEFINE a point;
DEFINE b centerpoint;

Figure 11-31. Defining SPL variables to hold opaque and distinct data types.

Chapter 11. Create and use SPL routines 11-17

Declare PROCEDURE type variables

In an SPL routine, you can define a variable of type PROCEDURE and assign the
variable the name of an existing SPL routine or external routine. Defining a
variable of PROCEDURE type indicates that the variable is a call to a user-defined
routine, not a built-in routine of the same name.

For example, the statement in the following figure defines length as an SPL
procedure or SPL function, not as the built-in LENGTH function.

This definition disables the built-in LENGTH function within the scope of the
statement block. You would use such a definition if you had already created an
SPL or external routine with the name LENGTH.

Because IBM Informix supports routine overloading, you can define more than one
SPL routine or external routine with the same name. If you call any routine from
an SPL routine, Informix determines which routine to use, based on the arguments
specified and the routine determination rules. For information about routine
overloading and routine determination, see IBM Informix User-Defined Routines and
Data Types Developer's Guide.

Tip: If you create an SPL routine with the same name as an aggregate function
(SUM, MAX, MIN, AVG, COUNT) or with the name extend, you must qualify the
routine name with an owner name.

Subscripts with variables

You can use subscripts with variables of CHAR, VARCHAR, NCHAR,
NVARCHAR, BYTE, or TEXT data type. The subscripts indicate the starting and
ending character positions that you want to use within the variable.

Subscripts must always be constants. You cannot use variables as subscripts. The
following figure illustrates how to use a subscript with a CHAR(15) variable.

DEFINE loc1 LIKE image.locations;

Figure 11-32. Define the loc1 data type for the locations column in the image table.

DEFINE length PROCEDURE;
LET x = length(a,b,c);

Figure 11-33. Define length as an SPL procedure.

DEFINE name CHAR(15);
LET name[4,7] = ’Ream’;
SELECT fname[1,3] INTO name[1,3] FROM customer

WHERE lname = ’Ream’;

Figure 11-34. A subscript with a CHAR(15) variable.

11-18 IBM Informix Guide to SQL: Tutorial

In this example, the customer's last name is placed between positions 4 and 7 of
name. The first three characters of the customer's first name is retrieved into
positions 1 through 3 of name. The part of the variable that is delimited by the
two subscripts is referred to as a substring.

Variable and keyword ambiguity

If you declare a variable whose name is an SQL keyword, ambiguities can occur.
The following rules for identifiers help you avoid ambiguities for SPL variables,
SPL routine names, and built-in function names:
v Defined variables take the highest precedence.
v Routines defined with the PROCEDURE keyword in a DEFINE statement take

precedence over SQL functions.
v SQL functions take precedence over SPL routines that exist but are not identified

with the PROCEDURE keyword in a DEFINE statement.

In general, avoid using an ANSI-reserved word for the name of the variable. For
example, you cannot define a variable with the name count or max because they
are the names of aggregate functions. For a list of the reserved keywords that you
should avoid using as variable names, see the Identifier segment in the IBM
Informix Guide to SQL: Syntax.

For information about ambiguities between SPL routine names and SQL function
names, see the IBM Informix Guide to SQL: Syntax.

Variables and column names:

If you use the same identifier for an SPL variable that you use for a column name,
the database server assumes that each instance of the identifier is a variable.
Qualify the column name with the table name, using dot notation, in order to use
the identifier as a column name.

In the SELECT statement in the following figure, customer.lname is a column
name and lname is a variable name.

Variables and SQL functions:

If you use the same identifier for an SPL variable as for an SQL function, the
database server assumes that an instance of the identifier is a variable and
disallows the use of the SQL function. You cannot use the SQL function within the
block of code in which the variable is defined. The example in the following figure
shows a block within an SPL procedure in which the variable called user is
defined. This definition disallows the use of the USER function in the BEGIN END

CREATE PROCEDURE table_test()

DEFINE lname CHAR(15);
LET lname = ’Miller’;

SELECT customer.lname INTO lname FROM customer
WHERE customer_num = 502;

. . .
END PROCEDURE;

Figure 11-35. Column names and variable names in a SELECT statement.

Chapter 11. Create and use SPL routines 11-19

block.

Declare global variables

A global variable has its value stored in memory and is available to other SPL
routines, run by the same user session, on the same database. A global variable has
the following characteristics:
v It requires a default value.
v It can be used in any SPL routine, although it must be defined in each routine in

which it is used.
v It carries its value from one SPL routine to another until the session ends.

Restriction: You cannot define a collection variable as a global variable.

The following figure shows two SPL functions that share a global variable.

Although you must define a global variable with a default value, the variable is
only set to the default the first time you use it. If you execute the two functions in
the following figure in the order given, the value of gvar would be 4.

CREATE PROCEDURE user_test()
DEFINE name CHAR(10);
DEFINE name2 CHAR(10);
LET name = user; -- the SQL function

BEGIN
DEFINE user CHAR(15); -- disables user function
LET user = ’Miller’;
LET name = user; -- assigns ’Miller’ to variable name

END
. . .
LET name2 = user; -- SQL function again

Figure 11-36. A procedure that disallows the use of the USER function in the BEGIN END
block.

CREATE FUNCTION func1() RETURNING INT;
DEFINE GLOBAL gvar INT DEFAULT 2;
LET gvar = gvar + 1;
RETURN gvar;

END FUNCTION;

CREATE FUNCTION func2() RETURNING INT;
DEFINE GLOBAL gvar INT DEFAULT 5;
LET gvar = gvar + 1;
RETURN gvar;

END FUNCTION;

Figure 11-37. Two SPL functions that share a global variable.

11-20 IBM Informix Guide to SQL: Tutorial

But if you execute the functions in the opposite order, as the following figure
shows, the value of gvar would be 7.

For more information, see “Executing routines” on page 11-53.

Assign values to variables

Within an SPL routine, use the LET statement to assign values to the variables you
have already defined.

If you do not assign a value to a variable, either by an argument passed to the
routine or by a LET statement, the variable has an undefined value.

An undefined value is different from a NULL value. If you attempt to use a
variable with an undefined value within the SPL routine, you receive an error.

You can assign a value to a routine variable in any of the following ways:
v Use a LET statement.
v Use a SELECT INTO statement.
v Use a CALL statement with a procedure that has a RETURNING clause.
v Use an EXECUTE PROCEDURE INTO or EXECUTE FUNCTION INTO

statement.

The LET statement

With a LET statement, you can use one or more variable names with an equal (=)
sign and a valid expression or function name. Each example in the following figure
is a valid LET statement.

IBM Informix allows you to assign a value to an opaque-type variable, a row-type
variable, or a field of a row type. You can also return the value of an external
function or another SPL function to an SPL variable.

EXECUTE FUNCTION func1();
EXECUTE FUNCTION func2();

Figure 11-38. Global variable default values.

EXECUTE FUNCTION func2();
EXECUTE FUNCTION func1();

Figure 11-39. Global variable default values.

LET a = 5;
LET b = 6; LET c = 10;
LET a,b = 10,c+d;
LET a,b = (SELECT cola,colb

FROM tab1 WHERE cola=10);
LET d = func1(x,y);

Figure 11-40. Valid LET statements.

Chapter 11. Create and use SPL routines 11-21

Suppose you define the named row types zip_t and address_t, as Figure 11-27 on
page 11-16 shows. Anytime you define a row-type variable, you must initialize the
variable before you can use it. The following figure shows how you might define
and initialize a row-type variable. You can use any row-type value to initialize the
variable.

After you define and initialize the row-type variable, you can write the LET
statements that the following figure shows.

Tip: Use dot notation in the form variable.field or variable.field.field to access
the fields of a row type, as “Handle row-type data” on page 11-34 describes.

Suppose you define an opaque-type point that contains two values that define a
two-dimensional point, and the text representation of the values is '(x,y)'. You
might also have a function circum() that calculates the circumference of a circle,
given the point '(x,y)' and a radius r.

If you define an opaque-type center that defines a point as the center of a circle,
and a function circum() that calculates the circumference of a circle, based on a
point and the radius, you can write variable declarations for each. In the following
figure, c is an opaque type variable and d holds the value that the external
function circum() returns.

The IBM Informix Guide to SQL: Syntax describes in detail the syntax of the LET
statement.

DEFINE a address_t;
LET a = ROW (’A Street’, ’Nowhere’, ’AA’,

ROW(NULL, NULL))::address_t

Figure 11-41. Define and initialize a row-type variable.

LET a.zip.z_code = 32601;
LET a.zip.z_suffix = 4555;

-- Assign values to the fields of address_t

Figure 11-42. Write the LET statements.

DEFINE c point;
DEFINE r REAL;
DEFINE d REAL;

LET c = ’(29.9,1.0)’ ;
-- Assign a value to an opaque type variable

LET d = circum(c, r);
-- Assign a value returned from circum()

Figure 11-43. Writing variable declarations.

11-22 IBM Informix Guide to SQL: Tutorial

Other ways to assign values to variables

You can use the SELECT statement to fetch a value from the database and assign it
directly to a variable, as the following figure shows.

Use the CALL or EXECUTE PROCEDURE statements to assign values returned by
an SPL function or an external function to one or more SPL variables. You might
use either of the statements in the following figure to return the full name and
address from the SPL function read_address into the specified SPL variables.

Expressions in SPL routines

You can use any SQL expression in an SPL routine, except for an aggregate
expression. The IBM Informix Guide to SQL: Syntax provides the complete syntax
and descriptions for SQL expressions.

The following examples contain SQL expressions:
var1
var1 + var2 + 5
read_address(’Miller’)
read_address(lastname = ’Miller’)
get_duedate(acct_num) + 10 UNITS DAY

fname[1,5] || ’’|| lname ’(415)’ || get_phonenum(cust_name)

Writing the statement block

Every SPL routine has at least one statement block, which is a group of SQL and
SPL statements between the CREATE statement and the END statement. You can
use any SPL statement or any allowed SQL statement within a statement block. For
a list of SQL statements that are not allowed within an SPL statement block, see
the description of the statement block segment in the IBM Informix Guide to SQL:
Syntax.

Implicit and explicit statement blocks

In an SPL routine, the implicit statement block extends from the end of the CREATE
statement to the beginning of the END statement. You can also define an explicit
statement block, which starts with a BEGIN statement and ends with an END

SELECT fname, lname INTO a, b FROM customer
WHERE customer_num = 101

Figure 11-44. Fetch a value from the database and assign it directly to a variable.

EXECUTE FUNCTION read_address(’Smith’)
INTO p_fname, p_lname, p_add, p_city, p_state,

p_zip;

CALL read_address(’Smith’)
RETURNING p_fname, p_lname, p_add, p_city,

p_state, p_zip;

Figure 11-45. Return the full name and address from the SPL function.

Chapter 11. Create and use SPL routines 11-23

statement, as the following figure shows.

The explicit statement block allows you to define variables or processing that are
valid only within the statement block. For example, you can define or redefine
variables, or handle exceptions differently, for just the scope of the explicit
statement block.

The SPL function in the following figure has an explicit statement block that
redefines a variable defined in the implicit block.

In this example, the implicit statement block defines the variable distance and
gives it a value of 37. The explicit statement block defines a different variable
named distance and gives it a value of 2. However, the RETURN statement returns
the value stored in the first distance variable, or 37.

The FOREACH loop

A FOREACH loop defines a cursor, a specific identifier that points to one item in a
group, whether a group of rows or the elements in a collection.

The FOREACH loop declares and opens a cursor, fetches rows from the database,
works on each item in the group, and then closes the cursor. You must declare a
cursor if a SELECT, EXECUTE PROCEDURE, or EXECUTE FUNCTION statement
might return more than one row. After you declare the cursor, you place the
SELECT, EXECUTE PROCEDURE, or EXECUTE FUNCTION statement within it.

An SPL routine that returns a group of rows is called a cursor routine because you
must use a cursor to access the data it returns. An SPL routine that returns no
value, a single value, or any other value that does not require a cursor is called a
noncursor routine. The FOREACH loop declares and opens a cursor, fetches rows or
a collection from the database, works on each item in the group, and then closes
the cursor. You must declare a cursor if a SELECT, EXECUTE PROCEDURE, or
EXECUTE FUNCTION statement might return more than one row or a collection.

BEGIN
DEFINE distance INT;
LET distance = 2;

END

Figure 11-46. Explicit statement block.

CREATE FUNCTION block_demo()
RETURNING INT;

DEFINE distance INT;
LET distance = 37;
BEGIN

DEFINE distance INT;
LET distance = 2;

END
RETURN distance;

END FUNCTION;

Figure 11-47. An explicit statement block that redefines a variable defined in the implicit
block.

11-24 IBM Informix Guide to SQL: Tutorial

After you declare the cursor, you place the SELECT, EXECUTE PROCEDURE, or
EXECUTE FUNCTION statement within it.

In a FOREACH loop, you can use an EXECUTE FUNCTION or SELECT INTO
statement to execute an external function that is an iterator function.

The FOREACH loop to define cursors

A FOREACH loop begins with the FOREACH keyword and ends with END
FOREACH. Between FOREACH and END FOREACH, you can declare a cursor or
use EXECUTE PROCEDURE or EXECUTE FUNCTION. The two examples in the
following figure show the structure of FOREACH loops.

The following figure creates a routine that uses a FOREACH loop to operate on the
employee table.

The routine in preceding figure performs these tasks within the FOREACH loop:
v Declares a cursor
v Selects one salary value at a time from employee

v Increases the salary by a percentage
v Updates employee with the new salary
v Fetches the next salary value

The SELECT statement is placed within a cursor because it returns all the salaries
in the table greater than 35000.

The WHERE CURRENT OF clause in the UPDATE statement updates only the row
on which the cursor is currently positioned, and sets an update cursor on the

FOREACH cursor FOR
SELECT column INTO variable FROM table

. . .
END FOREACH;

FOREACH
EXECUTE FUNCTION name() INTO variable;

END FOREACH;

Figure 11-48. Structure of FOREACH loops.

CREATE_PROCEDURE increase_by_pct(pct INTEGER)
DEFINE s INTEGER;

FOREACH sal_cursor FOR
SELECT salary INTO s FROM employee

WHERE salary > 35000
LET s = s + s * (pct/100);
UPDATE employee SET salary = s

WHERE CURRENT OF sal_cursor;
END FOREACH;

END PROCEDURE;

Figure 11-49. A FOREACH loop that operates on the employee table.

Chapter 11. Create and use SPL routines 11-25

current row. An update cursor places an update lock on the row so that no other
user can update the row until your update occurs.

An SPL routine will set an update cursor automatically if an UPDATE or DELETE
statement within the FOREACH loop uses the WHERE CURRENT OF clause. If
you use WHERE CURRENT OF, you must explicitly reference the cursor within
the FOREACH statement. If you are using an update cursor, you can add a BEGIN
WORK statement before the FOREACH statement and a COMMIT WORK
statement after END FOREACH, as the following figure shows.

For each iteration of the FOREACH loop in the preceding figure, a new lock is
acquired (if you use row level locking). The COMMIT WORK statement releases all
of the locks (and commits all of the updated rows as a single transaction) after the
last iteration of the FOREACH loop.

To commit an updated row after each iteration of the loop, you must open the
cursor WITH HOLD, and include the BEGIN WORK and COMMIT WORK
statements within the FOREACH loop, as in the following SPL routine.

SPL routine serial_update() commits each row as a separate transaction.

Restriction for FOREACH loops

Within a FOREACH loop, the SELECT query must complete execution before any
DELETE, INSERT, or UPDATE operation that changes the data set of the SELECT
cursor. One way to ensure that the SELECT query completes, use an ORDER BY
clause in the SELECT statement. The ORDER BY clause creates an index on the
columns and prevents errors caused by UPDATE, INSERT, DELETE statements
modifying the query results of the SELECT statement in the same FOREACH loop

BEGIN WORK;
FOREACH sal_cursor FOR

SELECT salary INTO s FROM employee WHERE salary > 35000;
LET s = s + s * (pct/100);
UPDATE employee SET salary = s WHERE CURRENT OF sal_cursor

END FOREACH;
COMMIT WORK;

Figure 11-50. Set an update cursor automatically.

CREATE PROCEDURE serial_update();
DEFINE p_col2 INT;
DEFINE i INT;
LET i = 1;
FOREACH cur_su WITH HOLD FOR

SELECT col2 INTO p_col2 FROM customer WHERE 1=1
BEGIN WORK;

UPDATE customer SET customer_num = p_col2 WHERE CURRENT OF cur_su;
COMMIT WORK;
LET i = i + 1;

END FOREACH;
END PROCEDURE;

Figure 11-51. Committing an updated row after each iteration of the loop.

11-26 IBM Informix Guide to SQL: Tutorial

An IF - ELIF - ELSE structure

The following SPL routine uses an IF - ELIF - ELSE structure to compare the two
arguments that the routine accepts.

Suppose you define a table named manager with the columns that the following
figure shows.

The following SPL routine uses an IF - ELIF - ELSE structure to check the number
of elements in the SET in the direct_reports column and call various external
routines based on the results.

CREATE FUNCTION str_compare(str1 CHAR(20), str2 CHAR(20))
RETURNING INTEGER;

DEFINE result INTEGER;

IF str1 > str2 THEN
LET result = 1;

ELIF str2 > str1 THEN
LET result = -1;

ELSE
LET result = 0;

END IF
RETURN result;

END FUNCTION;

Figure 11-52. An IF - ELIF - ELSE structure to compare two arguments.

CREATE TABLE manager
(

mgr_name VARCHAR(30),
department VARCHAR(12),
dept_no SMALLINT,
direct_reports SET(VARCHAR(30) NOT NULL),
projects LIST(ROW (pro_name VARCHAR(15),
pro_members SET(VARCHAR(20) NOT NULL))

NOT NULL),
salary INTEGER,

);

Figure 11-53. Define the manager table.

Chapter 11. Create and use SPL routines 11-27

The cardinality() function counts the number of elements that a collection contains.
For more information, see “Cardinality function” on page 4-13.

An IF - ELIF - ELSE structure in an SPL routine has up to the following four parts:
v An IF THEN condition

If the condition following the IF statement is TRUE, the routine executes the
statements in the IF block. If the condition is false, the routine evaluates the
ELIF condition.
The expression in an IF statement can be any valid condition, as the Condition
segment of the IBM Informix Guide to SQL: Syntax describes. For the complete
syntax and a detailed discussion of the IF statement, see the IBM Informix Guide
to SQL: Syntax.

v One or more ELIF conditions (optional)
The routine evaluates the ELIF condition only if the IF condition is false. If the
ELIF condition is true, the routine executes the statements in the ELIF block. If
the ELIF condition is false, the routine either evaluates the next ELIF block or
executes the ELSE statement.

v An ELSE condition (optional)
The routine executes the statements in the ELSE block if the IF condition and all
of the ELIF conditions are false.

v An END IF statement
The END IF statement ends the statement block.

Add WHILE and FOR loops

Both the WHILE and FOR statements create execution loops in SPL routines. A
WHILE loop starts with a WHILE condition, executes a block of statements as long
as the condition is true, and ends with END WHILE.

The following figure shows a valid WHILE condition. The routine executes the
WHILE loop as long as the condition specified in the WHILE statement is true.

CREATE FUNCTION checklist(d SMALLINT)
RETURNING VARCHAR(30), VARCHAR(12), INTEGER;

DEFINE name VARCHAR(30);
DEFINE dept VARCHAR(12);
DEFINE num INTEGER;

SELECT mgr_name, department,
CARDINALITY(direct_reports)

FROM manager INTO name, dept, num
WHERE dept_no = d;

IF num > 20 THEN
EXECUTE FUNCTION add_mgr(dept);

ELIF num = 0 THEN
EXECUTE FUNCTION del_mgr(dept);

ELSE
RETURN name, dept, num;

END IF;

END FUNCTION;

Figure 11-54. An IF - ELIF - ELSE structure to check the number of elements in the SET.

11-28 IBM Informix Guide to SQL: Tutorial

The SPL routine in the previous figure accepts an integer as an argument and then
inserts an integer value into the numbers column of table1 each time it executes
the WHILE loop. The values inserted start at 1 and increase to num - 1.

Be careful that you do not create an endless loop, as the following figure shows.

A FOR loop extends from a FOR statement to an END FOR statement and executes
for a specified number of iterations, which are defined in the FOR statement. The
following figure shows several ways to define the iterations in the FOR loop.

For each iteration of the FOR loop, the iteration variable (declared as i in the
examples that follow) is reset, and the statements within the loop are executed
with the new value of the variable.

CREATE PROCEDURE test_rows(num INT)

DEFINE i INTEGER;
LET i = 1;

WHILE i < num
INSERT INTO table1 (numbers) VALUES (i);
LET i = i + 1;

END WHILE;

END PROCEDURE;

Figure 11-55. Routine to execute the WHILE loop as long as the condition specified in the
WHILE statement is true.

CREATE PROCEDURE endless_loop()

DEFINE i INTEGER;
LET i = 1;
WHILE (1 = 1) -- don’t do this!

LET i = i + 1;
INSERT INTO table1 VALUES (i);

END WHILE;

END PROCEDURE;

Figure 11-56. Routine to accept an integer as an argument and then insert an integer value
into the numbers column.

Chapter 11. Create and use SPL routines 11-29

In the first example, the SPL procedure executes the FOR loop as long as i is
between 1 and 10, inclusive. In the second example, i steps from 1 to 3, 5, 7, and so
on, but never exceeds 10. The third example checks whether i is within a defined
set of values. In the fourth example, the SPL procedure executes the loop when i is
1, 6, 11, 16, 20, 15, 10, 5, 1, 2, 3, 4, or 5—in other words, 13 times.

Tip: The main difference between a WHILE loop and a FOR loop is that a FOR
loop is guaranteed to finish, but a WHILE loop is not. The FOR statement specifies
the exact number of times the loop executes, unless a statement causes the routine
to exit the loop. With WHILE, it is possible to create an endless loop.

Exit a loop

In a FOR, FOREACH, LOOP, or WHILE loop that has no label, you can use the
CONTINUE or EXIT statement to control the execution of the loop.
v CONTINUE causes the routine to skip the statements in the rest of the loop and

move to the next iteration of the FOR, LOOP, or WHILE statement.
v EXIT ends the loop and causes the routine to continue executing with the first

statement following the END FOR, the END LOOP, or the END WHILE
keywords.

Remember that EXIT must be followed by the FOREACH keyword when it
appears within a FOREACH statement that is the innermost loop of nested loop
statements. EXIT can appear with no immediately following keyword when it
appears within the FOR, LOOP, or WHILE statement, but an error is issued if you
specify a keyword that does not match the loop statement from which the EXIT
statement was issued. An error is also issued if EXIT appears outside the context of
a loop statement.

For more information about loops in SPL routines, including labelled loops, see
IBM Informix Guide to SQL: Syntax.

The following figure shows examples of CONTINUE and EXIT within a FOR loop.

FOR i = 1 TO 10
. . .
END FOR;

FOR i = 1 TO 10 STEP 2
. . .
END FOR;

FOR i IN (2,4,8,14,22,32)
. . .
END FOR;

FOR i IN (1 TO 20 STEP 5, 20 to 1 STEP -5, 1,2,3,4,5)
. . .
END FOR:

Figure 11-57. Defining iterations in the FOR loop.

11-30 IBM Informix Guide to SQL: Tutorial

Tip: You can use CONTINUE and EXIT to improve the performance of SPL
routines so that loops do not execute unnecessarily.

Return values from an SPL function
SPL functions can return one or more values. To have your SPL function return
values, you need to include the following two parts:
1. Write a RETURNING clause in the CREATE PROCEDURE or CREATE

FUNCTION statement that specifies the number of values to be returned and
their data types.

2. In the body of the function, enter a RETURN statement that explicitly returns
the values.

Tip: You can define a routine with the CREATE PROCEDURE statement that
returns values, but in that case, the routine is actually a function. It is
recommended that you use the CREATE FUNCTION statement when the routine
returns values.

After you define a return clause (with a RETURNING statement), the SPL function
can return values that match those specified in number and data type, or no values
at all. If you specify a return clause, and the SPL routine returns no actual values,
it is still considered a function. In that case, the routine returns a NULL value for
each value defined in the return clause.

An SPL function can return variables, expressions, or the result of another function
call. If the SPL function returns a variable, the function must first assign the
variable a value by one of the following methods:
v A LET statement
v A default value
v A SELECT statement
v Another function that passes a value into the variable

Each value an SPL function returns can be up to 32 kilobytes long.

Important: The return value for an SPL function must be a specific data type. You
cannot specify a generic row or generic collection data type as a return type.

Return a single value

The following figure shows how an SPL function can return a single value.

FOR i = 1 TO 10
IF i = 5 THEN

CONTINUE FOR;
. . .

ELIF i = 8 THEN
EXIT FOR;

END IF;

END FOR;

Figure 11-58. Examples of CONTINUE and EXIT within a FOR loop.

Chapter 11. Create and use SPL routines 11-31

The increase_by_pct function receives two arguments of DECIMAL value, an
amount to be increased and a percentage by which to increase it. The return clause
specifies that the function will return one DECIMAL value. The RETURN
statement returns the DECIMAL value stored in result.

Return multiple values

An SPL function can return more than one value from a single row of a table. The
following figure shows an SPL function that returns two column values from a
single row of a table.

The function returns two values (a name and birthdate) to the calling routine from
one row of the emp_tab table. In this case, the calling routine must be prepared to
handle the VARCHAR and DATE values returned.

The following figure shows an SPL function that returns more than one value from
more than one row.

CREATE FUNCTION increase_by_pct(amt DECIMAL, pct DECIMAL)
RETURNING DECIMAL;

DEFINE result DECIMAL;

LET result = amt + amt * (pct/100);

RETURN result;

END FUNCTION;

Figure 11-59. SPL function that returns a single value.

CREATE FUNCTION birth_date(num INTEGER)
RETURNING VARCHAR(30), DATE;

DEFINE n VARCHAR(30);
DEFINE b DATE;

SELECT name, bdate INTO n, b FROM emp_tab
WHERE emp_no = num;

RETURN n, b;

END FUNCTION;

Figure 11-60. SPL function that returns two column values from a single row of a table.

11-32 IBM Informix Guide to SQL: Tutorial

In preceding figure, the SELECT statement fetches two values from the set of rows
whose employee number is higher than the number the user enters. The set of
rows that satisfy the condition could contain one row, many rows, or zero rows.
Because the SELECT statement can return many rows, it is placed within a cursor.

Tip: When a statement within an SPL routine returns no rows, the corresponding
SPL variables are assigned NULL values.

The RETURN statement uses the WITH RESUME keywords. When RETURN
WITH RESUME is executed, control is returned to the calling routine. But the next
time the SPL function is called (by a FETCH or the next iteration of a cursor in the
calling routine), all the variables in the SPL function keep their same values, and
execution continues at the statement immediately following the RETURN WITH
RESUME statement.

If your SPL routine returns multiple values, the calling routine must be able to
handle the multiple values through a cursor or loop, as follows:
v If the calling routine is an SPL routine, it needs a FOREACH loop.
v If the calling routine is an Informix ESQL/C program, it needs a cursor declared

with the DECLARE statement.
v If the calling routine is an external routine, it needs a cursor or loop appropriate

to the language in which the routine is written.

Important: The values returned by a UDR from external databases of a local server
must be built-in data types or UDTs explicitly cast to built-in types or DISTINCT
types based on built-in types and explicitly cast to built-in types. In addition, you
must define the UDR and all the casts in the participating databases.

An example of SQL operations you can perform across databases follows:
database db1;
create table ltab1(lcol1 integer, lcol2 boolean, lcol3 lvarchar);
insert into ltab1 values(1, ’t’, "test string 1");

database db2;
create table rtab1(r1col1 boolean, r1col2 blob, r1col3 integer)
put r1col2 in (sbsp);
create table rtab2(r2col1 lvarchar, r2col2 clob) put r2col2 in (sbsp);
create table rtab3(r3col1 integer, r3col2 boolean,
r3col3 lvarchar, r3col4 circle);

create view rvw1 as select * from rtab3;

(The example is a cross-database Insert.)

CREATE FUNCTION birth_date_2(num INTEGER)
RETURNING VARCHAR(30), DATE;
DEFINE n VARCHAR(30);
DEFINE b DATE;
FOREACH cursor1 FOR

SELECT name, bdate INTO n, b FROM emp_tab
WHERE emp_no > num

RETURN n, b WITH RESUME;
END FOREACH;

END FUNCTION;

Figure 11-61. SPL function that returns more than one value from more than one row.

Chapter 11. Create and use SPL routines 11-33

database db1;
create view lvw1 as select * from db2:rtab2;
insert into db2:rtab1 values(’t’,
filetoblob(’blobfile’, ’client’, ’db2:rtab1’, ’r1col2’), 100);
insert into db2:rtab2 values("inserted directly to rtab2",
filetoclob(’clobfile’, ’client’, ’db2:rtab2’, ’r2col2’));
insert into db2:rtab3 (r3col1, r3col2, r3col3)
select lcol1, lcol2, lcol3 from ltab1;
insert into db2:rvw1 values(200, ’f’, "inserted via rvw1");
insert into lvw1 values ("inserted via lvw1", NULL);

Handle row-type data

In an SPL routine, you can use named ROW types and unnamed ROW types as
parameter definitions, arguments, variable definitions, and return values. For
information about how to declare a ROW variable in SPL, see “Declare row-type
variables” on page 11-16.

The following figure defines a row type salary_t and an emp_info table, which are
the examples that this section uses.

The emp_info table has columns for the employee name and salary information.

Precedence of dot notation

With IBM Informix, a value that uses dot notation (as in proj.name) in an SQL
statement in an SPL routine is interpreted as having one of three meanings, in the
following order of precedence:
1. variable.field

2. column.field

3. table.column

In other words, the expression proj.name is first evaluated as variable.field. If the
routine does not find a variable proj, it evaluates the expression as column.field. If
the routine does not find a column proj, it evaluates the expression as table.column.
(If the names cannot be resolved as identifiers of objects in the database or of
variables or fields that were declared in the SPL routine, then an error is returned.)

Update a row-type expression

From within an SPL routine, you can use a ROW variable to update a row-type
expression. The following figure shows an SPL procedure emp_raise that is used to
update the emp_info table when an employee's base salary increases by a certain
percentage.

CREATE ROW TYPE salary_t(base MONEY(9,2), bonus MONEY(9,2))

CREATE TABLE emp_info (emp_name VARCHAR(30), salary salary_t);

Figure 11-62. Define a row type salary_t and an emp_info table

11-34 IBM Informix Guide to SQL: Tutorial

The SELECT statement selects a row from the salary column of emp_info table
into the ROW variable row_var.

The emp_raise procedure uses SPL dot notation to directly access the base field of
the variable row_var. In this case, the dot notation means variable.field. The
emp_raise procedure recalculates the value of row_var.base as (row_var.base *
pct). The procedure then updates the salary column of the emp_info table with
the new row_var value.

Important: A row-type variable must be initialized as a row before its fields can be
set or referenced. You can initialize a row-type variable with a SELECT INTO
statement or LET statement.

Handle collections

A collection is a group of elements of the same data type, such as a SET,
MULTISET, or LIST.

A table might contain a collection stored as the contents of a column or as a field
of a ROW type within a column. A collection can be either simple or nested. A
simple collection is a SET, MULTISET, or LIST of built-in, opaque, or distinct data
types. A nested collection is a collection that contains other collections.

Collection data types

The following sections of the chapter rely on several different examples to show
how you can manipulate collections in SPL programs.

The basics of handling collections in SPL programs are illustrated with the
numbers table, as the following figure shows.

CREATE PROCEDURE emp_raise(name VARCHAR(30),
pct DECIMAL(3,2))

DEFINE row_var salary_t;

SELECT salary INTO row_var FROM emp_info
WHERE emp_name = name;

LET row_var.base = row_var.base * pct;

UPDATE emp_info SET salary = row_var
WHERE emp_name = name;

END PROCEDURE;

Figure 11-63. SPL procedure used to update the emp_info table.

Chapter 11. Create and use SPL routines 11-35

The primes and evens columns hold simple collections. The twin_primes column
holds a nested collection, a LIST of SETs. (Twin prime numbers are pairs of
consecutive prime numbers whose difference is 2, such as 5 and 7, or 11 and 13.
The twin_primes column is designed to allow you to enter such pairs.

Some examples in this chapter use the polygons table in the following figure to
illustrate how to manipulate collections. The polygons table contains a collection to
represent two-dimensional graphical data. For example, suppose that you define an
opaque data type named point that has two double-precision values that represent
the x and y coordinates of a two-dimensional point whose coordinates might be
represented as ’1.0, 3.0’. Using the point data type, you can create a table that
contains a set of points that define a polygon.

The definition column in the polygons table contains a simple collection, a SET of
point values.

Prepare for collection data types

Before you can access and handle an individual element of a simple or nested
collection, you must perform the following tasks:
v Declare a collection variable to hold the collection.
v Declare an element variable to hold an individual element of the collection.
v Select the collection from the database into the collection variable.

After you take these initial steps, you can insert elements into the collection or
select and handle elements that are already in the collection.

Each of these steps is explained in the following sections, using the numbers table
as an example.

Tip: You can handle collections in any SPL routine.

CREATE TABLE numbers
(

id INTEGER PRIMARY KEY,
primes SET(INTEGER NOT NULL),
evens LIST(INTEGER NOT NULL),
twin_primes LIST(SET(INTEGER NOT NULL)

NOT NULL)

Figure 11-64. Handle collections in SPL programs.

CREATE OPAQUE TYPE point (INTERNALLENGTH = 8);

CREATE TABLE polygons
(

id INTEGER PRIMARY KEY,
definition SET(point NOT NULL)

);

Figure 11-65. Manipulate collections.

11-36 IBM Informix Guide to SQL: Tutorial

Declare a collection variable

Before you can retrieve a collection from the database into an SPL routine, you
must declare a collection variable. The following figure shows how to declare a
collection variable to retrieve the primes column from the numbers table.

The DEFINE statement declares a collection variable p_coll, whose type matches
the data type of the collection stored in the primes column.

Declare an element variable

After you declare a collection variable, you declare an element variable to hold
individual elements of the collection. The data type of the element variable must
match the data type of the collection elements.

For example, to hold an element of the SET in the primes column, use an element
variable declaration such as the one that the following figure shows.

To declare a variable that holds an element of the twin_primes column, which
holds a nested collection, use a variable declaration such as the one that the
following figure shows.

The variable s holds a SET of integers. Each SET is an element of the LIST stored
in twin_primes.

Select a collection into a collection variable

After you declare a collection variable, you can fetch a collection into it. To fetch a
collection into a collection variable, enter a SELECT INTO statement that selects
the collection column from the database into the collection variable you have
named.

For example, to select the collection stored in one row of the primes column of
numbers, add a SELECT statement, such as the one that the following figure
shows, to your SPL routine.

DEFINE p_coll SET(INTEGER NOT NULL);

Figure 11-66. Declare a collection variable.

DEFINE p INTEGER;

Figure 11-67. An element variable declaration.

DEFINE s SET(INTEGER NOT NULL);

Figure 11-68. A variable declaration.

Chapter 11. Create and use SPL routines 11-37

The WHERE clause in the SELECT statement specifies that you want to select the
collection stored in just one row of numbers. The statement places the collection
into the collection variable p_coll, which Figure 11-66 on page 11-37 declares.

The variable p_coll now holds a collection from the primes column, which could
contain the value SET {5,7,31,19,13}.

Insert elements into a collection variable

After you retrieve a collection into a collection variable, you can insert a value into
the collection variable. The syntax of the INSERT statement varies slightly,
depending on the type of the collection to which you want to add values.

Insert into a SET or MULTISET

To insert into a SET or MULTISET stored in a collection variable, use an INSERT
statement and follow the TABLE keyword with the collection variable, as the
following figure shows.

The TABLE keyword makes the collection variable a collection-derived table.
Collection-derived tables are described in the section “Handle collections in
SELECT statements” on page 5-27. The collection that the previous figure derives is
a virtual table of one column, with each element of the collection representing a
row of the table. Before the insert, consider p_coll as a virtual table that contains
the rows (elements) that the following figure shows.

After the insert, p_coll might look like the virtual table that the following figure
shows.

SELECT primes INTO p_coll FROM numbers
WHERE id = 220;

Figure 11-69. Add a SELECT statement to select the collection stored in one row.

INSERT INTO TABLE(p_coll) VALUES(3);

Figure 11-70. Insert into a SET or MULTISET stored in a collection variable.

5
7
31
19
13

Figure 11-71. Virtual table elements.

11-38 IBM Informix Guide to SQL: Tutorial

Because the collection is a SET, the new value is added to the collection, but the
position of the new element is undefined. The same principle is true for a
MULTISET.

Tip: You can only insert one value at a time into a simple collection.

Insert into a LIST

If the collection is a LIST, you can add the new element at a specific point in the
LIST or at the end of the LIST. As with a SET or MULTISET, you must first define
a collection variable and select a collection from the database into the collection
variable.

The following figure shows the statements you need to define a collection variable
and select a LIST from the numbers table into the collection variable.

At this point, the value of e_coll might be LIST {2,4,6,8,10}. Because e_coll holds
a LIST, each element has a numbered position in the list. To add an element at a
specific point in a LIST, add an AT position clause to the INSERT statement, as the
following figure shows.

Now the LIST in e_coll has the elements {2,4,12,6,8,10}, in that order.

The value you enter for the position in the AT clause can be a number or a variable,
but it must have an INTEGER or SMALLINT data type. You cannot use a letter,
floating-point number, decimal value, or expression.

Check the cardinality of a LIST collection

At times you might want to add an element at the end of a LIST. In this case, you
can use the cardinality() function to find the number of elements in a LIST and
then enter a position that is greater than the value cardinality() returns.

5
7
31
19
13
3

Figure 11-72. Virtual table elements.

DEFINE e_coll LIST(INTEGER NOT NULL);

SELECT evens INTO e_coll FROM numbers
WHERE id = 99;

Figure 11-73. Defining a collection variable and selecting a LIST.

INSERT AT 3 INTO TABLE(e_coll) VALUES(12);

Figure 11-74. Add an element at a specific point in a LIST.

Chapter 11. Create and use SPL routines 11-39

IBM Informix allows you to use the cardinality() function with a collection that is
stored in a column but not with a collection that is stored in a collection variable.
In an SPL routine, you can check the cardinality of a collection in a column with a
SELECT statement and return the value to a variable.

Suppose that in the numbers table, the evens column of the row whose id column
is 99 still contains the collection LIST {2,4,6,8,10}. This time, you want to add the
element 12 at the end of the LIST. You can do so with the SPL procedure
end_of_list, as the following figure shows.

In end_of_list, the variable n holds the value that cardinality() returns, that is, the
count of the items in the LIST. The LET statement increments n, so that the
INSERT statement can insert a value at the last position of the LIST. The SELECT
statement selects the collection from one row of the table into the collection
variable list_var. The INSERT statement inserts the element 12 at the end of the
list.

Syntax of the VALUES clause

The syntax of the VALUES clause is different when you insert into an SPL
collection variable from when you insert into a collection column. The syntax rules
for inserting literals into collection variables are as follows:
v Use parentheses after the VALUES keyword to enclose the complete list of

values.
v If you are inserting into a simple collection, you do not need to use a type

constructor or brackets.
v If you are inserting into a nested collection, you need to specify a literal

collection.

Select elements from a collection

Suppose you want your SPL routine to select elements from the collection stored in
the collection variable, one at time, so that you can handle the elements.

To move through the elements of a collection, you first need to declare a cursor
using a FOREACH statement, just as you would declare a cursor to move through
a set of rows. The following figure shows the FOREACH and END FOREACH

CREATE PROCEDURE end_of_list()

DEFINE n SMALLINT;
DEFINE list_var LIST(INTEGER NOT NULL);

SELECT CARDINALITY(evens) FROM numbers INTO n
WHERE id = 100;

LET n = n + 1;

SELECT evens INTO list_var FROM numbers
WHERE id = 100;

INSERT AT n INTO TABLE(list_var) VALUES(12);

END PROCEDURE;

Figure 11-75. The end_of_list SPL procedure.

11-40 IBM Informix Guide to SQL: Tutorial

statements, with no statements between them yet.

The FOREACH statement is described in “The FOREACH loop” on page 11-24 and
the IBM Informix Guide to SQL: Syntax.

The next topic, “The collection query,” describes the statements that are omitted
between the FOREACH and END FOREACH statements.

The examples in the following sections are based on the polygons table of
Figure 11-65 on page 11-36.

The collection query
After you declare the cursor between the FOREACH and END FOREACH
statements, you enter a special, restricted form of the SELECT statement known as
a collection query.

A collection query is a SELECT statement that uses the FROM TABLE keywords
followed by the name of a collection variable. The following figure shows this
structure, which is known as a collection-derived table.

The SELECT statement uses the collection variable vertexes as a collection-derived
table. You can think of a collection-derived table as a table of one column, with
each element of the collection being a row of the table. For example, you can
visualize the SET of four points stored in vertexes as a table with four rows, such
as the one that the following figure shows.

After the first iteration of the FOREACH statement in the previous figure, the
collection query selects the first element in vertexes and stores it in pnt, so that pnt
contains the value '(3.0,1.0)'.

FOREACH cursor1 FOR
. . .
END FOREACH

Figure 11-76. FOREACH and END FOREACH statements.

FOREACH cursor1 FOR

SELECT * INTO pnt FROM TABLE(vertexes)
. . .

END FOREACH

Figure 11-77. Collection-derived table.

’(3.0,1.0)’
’(8.0,1.0)’
’(3.0,4.0)’
’(8.0,4.0)’

Figure 11-78. Table with four rows.

Chapter 11. Create and use SPL routines 11-41

Tip: Because the collection variable vertexes contains a SET, not a LIST, the
elements in vertexes have no defined order. In a real database, the value
’(3.0,1.0)’ might not be the first element in the SET.

Add the collection query to the SPL routine

Now you can add the cursor defined with FOREACH and the collection query to
the SPL routine, as the following figure shows.

The statements above show form the framework of an SPL routine that handles the
elements of a collection variable. To decompose a collection into its elements, use a
collection-derived table. After the collection is decomposed into its elements, the
routine can access elements individually as table rows of the collection-derived
table. Now that you have selected one element in pnt, you can update or delete
that element, as “Update a collection element” on page 11-45 and “Delete a
collection element” describe.

For the complete syntax of the collection query, see the SELECT statement in the
IBM Informix Guide to SQL: Syntax. For the syntax of a collection-derived table, see
the Collection-Derived Table segment in the IBM Informix Guide to SQL: Syntax.

Tip: If you are selecting from a collection that contains no elements or zero
elements, you can use a collection query without declaring a cursor. However, if
the collection contains more than one element and you do not use a cursor, you
will receive an error message.

Delete a collection element

After you select an individual element from a collection variable into an element
variable, you can delete the element from the collection. For example, after you
select a point from the collection variable vertexes with a collection query, you can
remove the point from the collection.

The steps involved in deleting a collection element include:
1. Declare a collection variable and an element variable.
2. Select the collection from the database into the collection variable.
3. Declare a cursor so that you can select elements one at a time from the

collection variable.
4. Write a loop or branch that locates the element that you want to delete.

CREATE PROCEDURE shapes()

DEFINE vertexes SET(point NOT NULL);
DEFINE pnt point;

SELECT definition INTO vertexes FROM polygons
WHERE id = 207;

FOREACH cursor1 FOR
SELECT * INTO pnt FROM TABLE(vertexes);

. . .
END FOREACH

. . .
END PROCEDURE;

Figure 11-79. Cursor defined with FOREACH and the collection query.

11-42 IBM Informix Guide to SQL: Tutorial

5. Delete the element from the collection using a DELETE WHERE CURRENT OF
statement that uses the collection variable as a collection-derived table.

The following figure shows a routine that deletes one of the four points in
vertexes, so that the polygon becomes a triangle instead of a rectangle.

In previous figure, the FOREACH statement declares a cursor. The SELECT
statement is a collection-derived query that selects one element at a time from the
collection variable vertexes into the element variable pnt.

The IF THEN ELSE structure tests the value currently in pnt to see if it is the point
’(3,4)’. Note that the expression pnt = ’(3,4)’ calls the instance of the equal()
function defined on the point data type. If the current value in pnt is ’(3,4)’, the
DELETE statement deletes it, and the EXIT FOREACH statement exits the cursor.

Tip: Deleting an element from a collection stored in a collection variable does not
delete it from the collection stored in the database. After you delete the element
from a collection variable, you must update the collection stored in the database
with the new collection. For an example that shows how to update a collection
column, see “Update the collection in the database.”

The syntax for the DELETE statement is described in the IBM Informix Guide to
SQL: Syntax.

Update the collection in the database

After you change the contents of a collection variable in an SPL routine (by
deleting, updating, or inserting an element), you must update the database with
the new collection.

To update a collection in the database, add an UPDATE statement that sets the
collection column in the table to the contents of the updated collection variable.
For example, the UPDATE statement in the following figure shows how to update

CREATE PROCEDURE shapes()

DEFINE vertexes SET(point NOT NULL);
DEFINE pnt point;

SELECT definition INTO vertexes FROM polygons
WHERE id = 207;

FOREACH cursor1 FOR
SELECT * INTO pnt FROM TABLE(vertexes)
IF pnt = ’(3,4)’ THEN

-- calls the equals function that
-- compares two values of point type

DELETE FROM TABLE(vertexes)
WHERE CURRENT OF cursor1;

EXIT FOREACH;
ELSE

CONTINUE FOREACH;
END IF;

END FOREACH
. . .
END PROCEDURE;

Figure 11-80. Routine that deletes one of the four points.

Chapter 11. Create and use SPL routines 11-43

the polygons table to set the definition column to the new collection stored in the
collection variable vertexes.

Now the shapes() routine is complete. After you run shapes(), the collection stored
in the row whose ID column is 207 is updated so that it contains three values
instead of four.

You can use the shapes() routine as a framework for writing other SPL routines
that manipulate collections.

The elements of the collection now stored in the definition column of row 207 of
the polygons table are listed as follows:
’(3,1)’
’(8,1)’
’(8,4)’

Delete the entire collection

If you want to delete all the elements of a collection, you can use a single SQL
statement. You do not need to declare a cursor. To delete an entire collection, you
must perform the following tasks:
v Define a collection variable.
v Select the collection from the database into a collection variable.
v Enter a DELETE statement that uses the collection variable as a

collection-derived table.
v Update the collection from the database.

The following figure shows the statements that you might use in an SPL routine to
delete an entire collection.

CREATE PROCEDURE shapes()

DEFINE vertexes SET(point NOT NULL);
DEFINE pnt point;

SELECT definition INTO vertexes FROM polygons
WHERE id = 207;

FOREACH cursor1 FOR
SELECT * INTO pnt FROM TABLE(vertexes)
IF pnt = ’(3,4)’ THEN

-- calls the equals function that
-- compares two values of point type

DELETE FROM TABLE(vertexes)
WHERE CURRENT OF cursor1;

EXIT FOREACH;
ELSE

CONTINUE FOREACH;
END IF;

END FOREACH

UPDATE polygons SET definition = vertexes
WHERE id = 207;

END PROCEDURE;

Figure 11-81. Update a collection in the database.

11-44 IBM Informix Guide to SQL: Tutorial

This form of the DELETE statement deletes the entire collection in the collection
variable vertexes. You cannot use a WHERE clause in a DELETE statement that
uses a collection-derived table.

After the UPDATE statement, the polygons table contains an empty collection
where the id column is equal to 207.

The syntax for the DELETE statement is described in the IBM Informix Guide to
SQL: Syntax.

Update a collection element

You can update a collection element by accessing the collection within a cursor just
as you select or delete an individual element.

If you want to update the collection SET{100, 200, 300, 500} to change the value
500 to 400, retrieve the SET from the database into a collection variable and then
declare a cursor to move through the elements in the SET, as the following figure
shows.

The UPDATE statement uses the collection variable s as a collection-derived table.
To specify a collection-derived table, use the TABLE keyword. The value (x) that
follows (s) in the UPDATE statement is a derived column, a column name you
supply because the SET clause requires it, even though the collection-derived table
does not have columns.

DEFINE vertexes SET(INTEGER NOT NULL);

SELECT definition INTO vertexes FROM polygons
WHERE id = 207;

DELETE FROM TABLE(vertexes);

UPDATE polygons SET definition = vertexes
WHERE id = 207;

Figure 11-82. SPL routine to delete an entire collection.

DEFINE s SET(INTEGER NOT NULL);
DEFINE n INTEGER;

SELECT numbers INTO s FROM orders
WHERE order_num = 10;

FOREACH cursor1 FOR
SELECT * INTO n FROM TABLE(s)
IF (n == 500) THEN

UPDATE TABLE(s)(x)
SET x = 400 WHERE CURRENT OF cursor1;

EXIT FOREACH;
ELSE

CONTINUE FOREACH;
END IF;

END FOREACH

Figure 11-83. Update the collection element.

Chapter 11. Create and use SPL routines 11-45

Think of the collection-derived table as having one row and looking something like
the following example:
100 200 300 500

In this example, x is a fictitious column name for the “column” that contains the
value 500. You only specify a derived column if you are updating a collection of
built-in, opaque, distinct, or collection type elements. If you are updating a
collection of row types, use a field name instead of a derived column, as “Update a
collection of row types” on page 11-47 describes.

Update a collection with a variable

You can also update a collection with the value stored in a variable instead of a
literal value.

The SPL procedure in the following figure uses statements that are similar to the
ones that Figure 11-83 on page 11-45 shows, except that this procedure updates the
SET in the direct_reports column of the manager table with a variable, rather than
with a literal value. Figure 11-53 on page 11-27 defines the manager table.

The UPDATE statement nested in the FOREACH loop uses the collection- derived
table s and the derived column x. If the current value of n is the same as old, the
UPDATE statement changes it to the value of new. The second UPDATE statement
stores the new collection in the manager table.

Update the entire collection

If you want to update all the elements of a collection to the same value, or if the
collection contains only one element, you do not need to use a cursor. The
statements in the following figure show how you can retrieve the collection into a

CREATE PROCEDURE new_report(mgr VARCHAR(30),
old VARCHAR(30), new VARCHAR(30))

DEFINE s SET (VARCHAR(30) NOT NULL);
DEFINE n VARCHAR(30);

SELECT direct_reports INTO s FROM manager
WHERE mgr_name = mgr;

FOREACH cursor1 FOR
SELECT * INTO n FROM TABLE(s)
IF (n == old) THEN

UPDATE TABLE(s)(x)
SET x = new WHERE CURRENT OF cursor1;

EXIT FOREACH;
ELSE

CONTINUE FOREACH;
END IF;

END FOREACH

UPDATE manager SET mgr_name = s
WHERE mgr_name = mgr;

END PROCEDURE;

Figure 11-84. Update a collection with a variable.

11-46 IBM Informix Guide to SQL: Tutorial

collection variable and then update it with one statement.

The first UPDATE statement in this example uses a derived column named x with
the collection-derived table s and gives all the elements in the collection the value
0. The second UPDATE statement stores the new collection in the database.

Update a collection of row types

To update a collection of ROW types, you can take these steps:
1. Declare a collection variable whose field data types match those of the ROW

types in the collection.
2. Set the individual fields of the collection variable to the correct data values for

the ROW type.
3. For each ROW type, update the entire row of the collection derived table using

the collection variable.

The manager table in Figure 11-53 on page 11-27 has a column named projects that
contains a LIST of ROW types with the definition that the following figure shows.

To access the ROW types in the LIST, declare a cursor and select the LIST into a
collection variable. After you retrieve each ROW type value in the projects column,
however, you cannot update the pro_name or pro_members fields individually.
Instead, for each ROW value that needs to be updated in the collection, you must
replace the entire ROW with values from a collection variable that include the new
field values, as the following figure shows.

DEFINE s SET (INTEGER NOT NULL);

SELECT numbers INTO s FROM orders
WHERE order_num = 10;

UPDATE TABLE(s)(x) SET x = 0;

UPDATE orders SET numbers = s
WHERE order_num = 10;

Figure 11-85. Retrieve and update the collection.

projects LIST(ROW(pro_name VARCHAR(15),
pro_members SET(VARCHAR(20) NOT NULL)) NOT NULL)

Figure 11-86. LIST of ROW types definition.

Chapter 11. Create and use SPL routines 11-47

Before you can use a row-type variable in an SPL program, you must initialize the
row variable with a LET statement or a SELECT INTO statement. The UPDATE
statement nested in the FOREACH loop of the previous figure sets the pro_name
field of the row type to the value supplied in the variable pro.

Tip: To update a value in a SET in the pro_members field of the ROW type,
declare a cursor and use an UPDATE statement with a derived column, as “Update
a collection element” on page 11-45 explains.

Update a nested collection

If you want to update a collection of collections, you must declare a cursor to
access the outer collection and then declare a nested cursor to access the inner
collection.

For example, suppose that the manager table has an additional column, scores,
which contains a LIST whose element type is a MULTISET of integers, as the
following figure shows.

To update a value in the MULTISET, declare a cursor that moves through each
value in the LIST and a nested cursor that moves through each value in the
MULTISET, as the following figure shows.

CREATE PROCEDURE update_pro(mgr VARCHAR(30),
pro VARCHAR(15))

DEFINE p LIST(ROW(a VARCHAR(15), b SET(VARCHAR(20)
NOT NULL)) NOT NULL);

DEFINE r ROW(p_name VARCHAR(15), p_member SET(VARCHAR(20) NOT NULL));
LET r = ROW("project", "SET{’member’}");

SELECT projects INTO p FROM manager
WHERE mgr_name = mgr;

FOREACH cursor1 FOR
SELECT * INTO r FROM TABLE(p)
IF (r.p_name == ’Zephyr’) THEN

LET r.p_name = pro;
UPDATE TABLE(p)(x) SET x = r

WHERE CURRENT OF cursor1;
EXIT FOREACH;

END IF;
END FOREACH

UPDATE manager SET projects = p
WHERE mgr_name = mgr;

END PROCEDURE;

Figure 11-87. Access the ROW types in the LIST.

scores LIST(MULTISET(INT NOT NULL) NOT NULL);

Figure 11-88. Update a collection of collections.

11-48 IBM Informix Guide to SQL: Tutorial

The SPL function selects each MULTISET in the scores column into l, and then
each value in the MULTISET into m. If a value in m is 0, the function deletes it
from the MULTISET. After the values of 0 are deleted, the function counts the
remaining elements in each MULTISET and returns an integer.

Tip: Because this function returns a value for each MULTISET in the LIST, you
must use a cursor to enclose the EXECUTE FUNCTION statement when you
execute the function.

Insert into a collection

You can insert a value into a collection without declaring a cursor. If the collection
is a SET or MULTISET, the value is added to the collection but the position of the
new element is undefined because the collection has no particular order. If the
value is a LIST, you can add the new element at a specific point in the LIST or at
the end of the LIST.

In the manager table, the direct_reports column contains collections of SET type,
and the projects column contains a LIST. To add a name to the SET in the
direct_reports column, use an INSERT statement with a collection-derived table, as
the following figure shows.

CREATE FUNCTION check_scores (mgr VARCHAR(30))
SPECIFIC NAME nested;
RETURNING INT;

DEFINE l LIST(MULTISET(INT NOT NULL) NOT NULL);
DEFINE m MULTISET(INT NOT NULL);
DEFINE n INT;
DEFINE c INT;

SELECT scores INTO l FROM manager
WHERE mgr_name = mgr;

FOREACH list_cursor FOR
SELECT * FROM TABLE(l) INTO m;

FOREACH set_cursor FOR
SELECT * FROM TABLE(m) INTO n;
IF (n == 0) THEN

DELETE FROM TABLE(m)
WHERE CURRENT OF set_cursor;

ENDIF;
END FOREACH;
LET c = CARDINALITY(m);
RETURN c WITH RESUME;

END FOREACH

END FUNCTION
WITH LISTING IN ’/tmp/nested.out’;

Figure 11-89. Update a value in the MULTISET.

Chapter 11. Create and use SPL routines 11-49

This SPL procedure takes an employee name and a manager name as arguments.
The procedure then selects the collection in the direct_reports column for the
manager the user has entered, adds the employee name the user has entered, and
updates the manager table with the new collection.

The INSERT statement in the previous figure inserts the new employee name that
the user supplies into the SET contained in the collection variable r. The UPDATE
statement then stores the new collection in the manager table.

Notice the syntax of the VALUES clause. The syntax rules for inserting literal data
and variables into collection variables are as follows:
v Use parentheses after the VALUES keyword to enclose the complete list of

values.
v If the collection is SET, MULTISET, or LIST, use the type constructor followed by

brackets to enclose the list of values to be inserted. In addition, the collection
value must be enclosed in quotes.
VALUES("SET{ 1,4,8,9 }")

v If the collection contains a row type, use ROW followed by parentheses to
enclose the list of values to be inserted:
VALUES(ROW(’Waters’, ’voyager_project’))

v If the collection is a nested collection, nest keywords, parentheses, and brackets
according to how the data type is defined:
VALUES("SET{ ROW(’Waters’, ’voyager_project’),

ROW(’Adams’, ’horizon_project’) }")

For more information on inserting values into collections, see Chapter 6, “Modify
data,” on page 6-1.

Insert into a nested collection

If you want to insert into a nested collection, the syntax of the VALUES clause
changes. Suppose, for example, that you want to insert a value into the
twin_primes column of the numbers table that Figure 11-64 on page 11-36 shows.

With the twin_primes column, you might want to insert a SET into the LIST or an
element into the inner SET. The following sections describe each of these tasks.

Insert a collection into the outer collection:

CREATE PROCEDURE new_emp(emp VARCHAR(30), mgr VARCHAR(30))

DEFINE r SET(VARCHAR(30) NOT NULL);

SELECT direct_reports INTO r FROM manager
WHERE mgr_name = mgr;

INSERT INTO TABLE (r) VALUES(emp);

UPDATE manager SET direct_reports = r
WHERE mgr_name = mgr;

END PROCEDURE;

Figure 11-90. Insert a value into a collection.

11-50 IBM Informix Guide to SQL: Tutorial

Inserting a SET into the LIST is similar to inserting a single value into a simple
collection.

To insert a SET into the LIST, declare a collection variable to hold the LIST and
select the entire collection into it. When you use the collection variable as a
collection-derived table, each SET in the LIST becomes a row in the table. You can
then insert another SET at the end of the LIST or at a specified point.

For example, the twin_primes column of one row of numbers might contain the
following LIST, as the following figure shows.

If you think of the LIST as a collection-derived table, it might look similar to the
following.

You might want to insert the value "SET{17,19}" as a second item in the LIST. The
statements in the following figure show how to do this.

In the INSERT statement, the VALUES clause inserts the value SET {17,19} at the
second position of the LIST. Now the LIST looks like the following figure.

LIST(SET{3,5}, SET{5,7}, SET{11,13})

Figure 11-91. Sample LIST.

{3,5}
{5,7}
{11,13}

Figure 11-92. Thinking of the LIST as a collection-derived table.

CREATE PROCEDURE add_set()

DEFINE l_var LIST(SET(INTEGER NOT NULL) NOT NULL);

SELECT twin_primes INTO l_var FROM numbers
WHERE id = 100;

INSERT AT 2 INTO TABLE (l_var) VALUES("SET{17,19}");

UPDATE numbers SET twin_primes = l
WHERE id = 100;

END PROCEDURE;

Figure 11-93. Insert a value in the LIST.

{3,5}
{17,19}
{5,7}
{11,13}

Figure 11-94. LIST items.

Chapter 11. Create and use SPL routines 11-51

You can perform the same insert by passing a SET to an SPL routine as an
argument, as the following figure shows.

In add_set(), the user supplies a SET to add to the LIST and an INTEGER value
that is the id of the row in which the SET will be inserted.

Insert a value into the inner collection:

In an SPL routine, you can also insert a value into the inner collection of a nested
collection. In general, to access the inner collection of a nested collection and add a
value to it, perform the following steps:
1. Declare a collection variable to hold the entire collection stored in one row of a

table.
2. Declare an element variable to hold one element of the outer collection. The

element variable is itself a collection variable.
3. Select the entire collection from one row of a table into the collection variable.
4. Declare a cursor so that you can move through the elements of the outer

collection.
5. Select one element at a time into the element variable.
6. Use a branch or loop to locate the inner collection you want to update.
7. Insert the new value into the inner collection.
8. Close the cursor.
9. Update the database table with the new collection.

As an example, you can use this process on the twin_primes column of numbers.
For example, suppose that twin_primes contains the values that the following
figure shows, and you want to insert the value 18 into the last SET in the LIST.

CREATE PROCEDURE add_set(set_var SET(INTEGER NOT NULL),
row_id INTEGER);

DEFINE list_var LIST(SET(INTEGER NOT NULL) NOT NULL);
DEFINE n SMALLINT;

SELECT CARDINALITY(twin_primes) INTO n FROM numbers
WHERE id = row_id;

LET n = n + 1;

SELECT twin_primes INTO list_var FROM numbers
WHERE id = row_id;

INSERT AT n INTO TABLE(list_var) VALUES(set_var);

UPDATE numbers SET twin_primes = list_var
WHERE id = row_id;

END PROCEDURE;

Figure 11-95. Passing a SET to an SPL routine as an argument.

11-52 IBM Informix Guide to SQL: Tutorial

The following figure shows the beginning of a procedure that inserts the value.

So far, the attaint procedure has performed steps 1 on page 11-52, 2 on page 11-52,
and 3 on page 11-52. The first DEFINE statement declares a collection variable that
holds the entire collection stored in one row of numbers.

The second DEFINE statement declares an element variable that holds an element
of the collection. In this case, the element variable is itself a collection variable
because it holds a SET. The SELECT statement selects the entire collection from one
row into the collection variable, list_var.

The following figure shows how to declare a cursor so that you can move through
the elements of the outer collection.

Executing routines

You can execute an SPL routine or external routine in any of these ways:
v Using a stand-alone EXECUTE PROCEDURE or EXECUTE FUNCTION

statement that you execute from DB-Access
v Calling the routine explicitly from another SPL routine or an external routine
v Using the routine name with an expression in an SQL statement

An additional mechanism for executing routines supports only the sysdbopen and
sysdbclose procedures, which the DBA can define. If a sysdbopen procedure
whose owner matches the login identifier of a user exists in the database when the
user connects to the database by the CONNECT or DATABASE statement, that
routine is executed automatically. If no sysdbopen routine has an owner that
matches the login identifier of the user, but a PUBLIC.sysdbopen routine exists,
that routine is executed. This automatic invocation enables the DBA to customize
the session environment for users at connection time. The sysdbclose routine is
similarly invoked when the user disconnects from the database. (For more

LIST(SET({3,5}, {5,7}, {11,13}, {17,19}))

Figure 11-96. The twin_primes list.

CREATE PROCEDURE add_int()

DEFINE list_var LIST(SET(INTEGER NOT NULL) NOT NULL);
DEFINE set_var SET(INTEGER NOT NULL);

SELECT twin_primes INTO list_var FROM numbers
WHERE id = 100;

Figure 11-97. Procedure that inserts the value.

FOREACH list_cursor FOR
SELECT * INTO set_var FROM TABLE(list_var);

FOREACH element_cursor FOR

Figure 11-98. Declare a cursor to move through the elements of the outer collection.

Chapter 11. Create and use SPL routines 11-53

information about these session configuration routines, see the IBM Informix Guide
to SQL: Syntax and the IBM Informix Administrator's Guide.)

An external routine is a routine written in C or some other external language.

The EXECUTE statements

You can use EXECUTE PROCEDURE or EXECUTE FUNCTION to execute an SPL
routine or external routine. In general, it is best to use EXECUTE PROCEDURE
with procedures and EXECUTE FUNCTION with functions.

Tip: For backward compatibility, the EXECUTE PROCEDURE statement allows
you to use an SPL function name and an INTO clause to return values. However, it
is recommended that you use EXECUTE PROCEDURE only with procedures and
EXECUTE FUNCTION only with functions.

You can issue EXECUTE PROCEDURE and EXECUTE FUNCTION statements as
stand-alone statements from DB-Access or from within an SPL routine or external
routine. If the routine name is unique within the database, and if it does not
require arguments, you can execute it by entering just its name and parentheses
after EXECUTE PROCEDURE, as he following figure shows.

The INTO clause is never present when you invoke a procedure with the
EXECUTE statement because a procedure does not return a value.

If the routine expects arguments, you must enter the argument values within
parentheses, as the following figure shows.

The statement executes a function. Because a function returns a value, EXECUTE
FUNCTION uses an INTO clause that specifies a variable where the return value is
stored. The INTO clause must always be present when you use an EXECUTE
statement to execute a function.

If the database has more than one procedure or function of the same name, IBM
Informix locates the right function based on the data types of the arguments. For
example, the statement in the previous figure supplies INTEGER and REAL values
as arguments, so if your database contains multiple routines named
scale_rectangles(), the database server executes only the scale_rectangles() function
that accepts INTEGER and REAL data types.

The parameter list of an SPL routine always has parameter names as well as data
types. When you execute the routine, the parameter names are optional. However,
if you pass arguments by name (instead of just by value) to EXECUTE
PROCEDURE or EXECUTE FUNCTION, as in the following figure, Informix

EXECUTE PROCEDURE update_orders();

Figure 11-99. Execute a procedure.

EXECUTE FUNCTION scale_rectangles(107, 1.9)
INTO new;

Figure 11-100. Execute a procedure with arguments.

11-54 IBM Informix Guide to SQL: Tutorial

resolves the routine-by-routine name and arguments only, a process known as
partial routine resolution.

You can also execute an SPL routine stored on another database server by adding a
qualified routine name to the statement; that is, a name in the form
database@dbserver:owner_name.routine_name, as in the following figure.

When you execute a routine remotely, the owner_name in the qualified routine name
is optional.

The CALL statement

You can call an SPL routine or an external routine from an SPL routine using the
CALL statement. CALL can execute both procedures and functions. If you use
CALL to execute a function, add a RETURNING clause and the name of an SPL
variable (or variables) that will receive the value (or values) the function returns.

Suppose, for example, that you want the scale_rectangles function to call an
external function that calculates the area of the rectangle and then returns the area
with the rectangle description, as in the following figure.

EXECUTE FUNCTION scale_rectangles(rectid = 107,
scale = 1.9) INTO new_rectangle;

Figure 11-101. Execute a routine passing arguments by name.

EXECUTE PROCEDURE informix@davinci:bsmith.update_orders();

Figure 11-102. Execute an SPL routine stored on another database server.

CREATE FUNCTION scale_rectangles(rectid INTEGER,
scale REAL)

RETURNING rectangle_t, REAL;

DEFINE rectv rectangle_t;
DEFINE a REAL;
SELECT rect INTO rectv

FROM rectangles WHERE id = rectid;
IF (rectv IS NULL) THEN

LET rectv.start = (0.0,0.0);
LET rectv.length = 1.0;
LET rectv.width = 1.0;
LET a = 1.0;
RETURN rectv, a;

ELSE
LET rectv.length = scale * rectv.length;
LET rectv.width = scale * rectv.width;
CALL area(rectv.length, rectv.width) RETURNING a;
RETURN rectv, a;

END IF;

END FUNCTION;

Figure 11-103. Call an external function.

Chapter 11. Create and use SPL routines 11-55

The SPL function uses a CALL statement that executes the external function area().
The value area() returns is stored in a and returned to the calling routine by the
RETURN statement.

In this example, area() is an external function, but you can use CALL in the same
manner with an SPL function.

Execute routines in expressions

Just as with built-in functions, you can execute SPL routines (and external routines
from SPL routines) by using them in expressions in SQL and SPL statements. A
routine used in an expression is usually a function, because it returns a value to
the rest of the statement.

For example, you might execute a function by a LET statement that assigns the
return value to a variable. The statements in the following figure perform the same
task. They execute an external function within an SPL routine and assign the
return value to the variable a.

You can also execute an SPL routine from an SQL statement, as the following
figure shows. Suppose you write an SPL function, increase_by_pct, which
increases a given price by a given percentage. After you write an SPL routine, it is
available for use in any other SPL routine.

The example selects the price column of a specified row of inventory and uses the
value as an argument to the SPL function increase_by_pct. The function then
returns the new value of price, increased by 20 percent, in the variable p.

Execute an external function with the RETURN statement

You can use a RETURN statement to execute any external function from within an
SPL routine. The following figure shows an external function that is used in the
RETURN statement of an SPL program.

LET a = area(rectv.length, rectv.width);

CALL area(rectv.length, rectv.width) RETURNING a;
-- these statements are equivalent

Figure 11-104. Execute an external function within an SPL routine.

CREATE FUNCTION raise_price (num INT)
RETURNING DECIMAL;

DEFINE p DECIMAL;

SELECT increase_by_pct(price, 20) INTO p
FROM inventory WHERE prod_num = num;

RETURN p;

END FUNCTION;

Figure 11-105. Execute an SPL routine from an SQL statement.

11-56 IBM Informix Guide to SQL: Tutorial

When you execute the spl_func() function, the c_func() function is invoked, and
the SPL function returns the value that the external function returns.

Execute cursor functions from an SPL routine

A cursor function is a user-defined function that returns one or more rows of data
and therefore requires a cursor to execute. A cursor function can be either of the
following functions:
v An SPL function whose RETURN statement includes WITH RESUME
v An external function that is defined as an iterator function

The behavior of a cursor function is the same whether the function is an SPL
function or an external function. However, an SPL cursor function can return more
than one value per iteration, whereas an external cursor function (iterator function)
can return only one value per iteration.

To execute a cursor function from an SPL routine, you must include the function in
a FOREACH loop of an SPL routine. The following examples show different ways
to execute a cursor function in a FOREACH loop:
FOREACH SELECT cur_func1(col_name) INTO spl_var FROM tab1

INSERT INTO tab2 VALUES (spl_var);
END FOREACH

FOREACH EXECUTE FUNCTION cur_func2() INTO spl_var
INSERT INTO tab2 VALUES (spl_var);

END FOREACH

Dynamic routine-name specification

Dynamic routine-name specification allows you to execute an SPL routine from
another SPL routine, by building the name of the called routine within the calling
routine. Dynamic routine-name specification simplifies how you can write an SPL
routine that calls another SPL routine whose name is not known until runtime. The
database server lets you specify an SPL variable instead of the explicit name of an
SPL routine in the EXECUTE PROCEDURE or EXECUTE FUNCTION statement.

In the following figure, the SPL procedure company_proc updates a large company
sales table and then assigns an SPL variable named salesperson_proc to hold the
dynamically created name of an SPL procedure that updates another, smaller table
that contains the monthly sales of an individual salesperson.

CREATE FUNCTION c_func() RETURNS int
LANGUAGE C;

CREATE FUNCTION spl_func() RETURNS INT;
RETURN(c_func());

END FUNCTION;

EXECUTE FUNCTION spl_func();

Figure 11-106. A RETURN statement to execute an external function from within an SPL
routine.

Chapter 11. Create and use SPL routines 11-57

In example, the procedure company_proc accepts five arguments and inserts them
into company_tbl. Then the LET statement uses various values and the
concatenation operator || to generate the name of another SPL procedure to
execute. In the LET statement:

sales_person
An argument passed to the company_proc procedure.

current_month
The current month in the system date.

current_year
The current year in the system date.

Therefore, if a salesperson named Bill makes a sale in July 1998, company_proc
inserts a record in company_tbl and executes the SPL procedure
bill.tbl07_1998_proc, which updates a smaller table that contains the monthly sales
of an individual salesperson.

Rules for dynamic routine-name specification

You must define the SPL variable that holds the name of the dynamically executed
SPL routine as CHAR, VARCHAR, NCHAR, or NVARCHAR type. You must also
give the SPL variable a valid and non-NULL name.

The SPL routine that the dynamic routine-name specification identifies must exist
before it can be executed. If you assign the SPL variable the name of a valid SPL
routine, the EXECUTE PROCEDURE or EXECUTE FUNCTION statement executes
the routine whose name is contained in the variable, even if a built-in function of
the same name exists.

In an EXECUTE PROCEDURE or EXECUTE FUNCTION statement, you cannot
use two SPL variables to create a variable name in the form owner.routine_name.
However, you can use an SPL variable that contains a fully qualified routine name,
for example, bill.proc1. The following figure shows both cases.

CREATE PROCEDURE company_proc (no_of_items INT,
itm_quantity SMALLINT, sale_amount MONEY,
customer VARCHAR(50), sales_person VARCHAR(30))

DEFINE salesperson_proc VARCHAR(60);

-- Update the company table
INSERT INTO company_tbl VALUES (no_of_items, itm_quantity,

sale_amount, customer, sales_person);

-- Generate the procedure name for the variable salesperson_proc
LET salesperson_proc = sales_person || "." || "tbl" ||

current_month || "_" || current_year || "_proc" ;

-- Execute the SPL procedure that the salesperson_proc
-- variable specifies
EXECUTE PROCEDURE salesperson_proc (no_of_items,

itm_quantity, sale_amount, customer)
END PROCEDURE;

Figure 11-107. Dynamic routine-name specification.

11-58 IBM Informix Guide to SQL: Tutorial

Privileges on routines

Privileges differentiate users who can create a routine from users who can execute
a routine. Some privileges accrue as part of other privileges. For example, the DBA
privilege includes permissions to create routines, execute routines, and grant these
privileges to other users.

Privileges for registering a routine

To register a routine in the database, an authorized user wraps the SPL commands
in a CREATE FUNCTION or CREATE PROCEDURE statement. The database
server stores a registered SPL routine internally. The following users qualify to
register a new routine in the database:
v Any user with the DBA privilege can register a routine with or without the DBA

keyword in the CREATE statement.
For an explanation of the DBA keyword, see “DBA privileges for executing a
routine” on page 11-62.

v A user who does not have the DBA privilege needs the Resource privilege to
register an SPL routine. The creator is the owner of the routine.
A user who does not have the DBA privilege cannot use the DBA keyword to
register the routine.
A DBA must give other users the Resource privilege needed to create routines.
The DBA can also revoke the Resource privilege, preventing the user from
creating further routines.

A DBA or the routine owner can cancel the registration with the DROP
FUNCTION or DROP PROCEDURE statement.

For routines written in the C or Java language, the DBSA can require that only
users to whom the EXTERNAL role has been granted can register or alter external
UDRs. This security feature does not, however, affect SPL routines.

Privileges for executing a routine

The Execute privilege enables users to invoke a routine. The routine might be
invoked by the EXECUTE or CALL statements, or by using a function in an
expression. The following users have a default Execute privilege, which enables
them to invoke a routine:
v By default, any user with the DBA privilege can execute any routine in the

database.

EXECUTE PROCEDURE owner_variable.proc_variable;
-- this is not allowed

LET proc1 = bill.proc1;
EXECUTE PROCEDURE proc1; -- this is allowed

Figure 11-108. SPL variable that contains a fully qualified routine name.

Chapter 11. Create and use SPL routines 11-59

v If the routine is registered with the qualified CREATE DBA FUNCTION or
CREATE DBA PROCEDURE statements, only users with the DBA privilege have
a default Execute privilege for that routine.

v If the database is not ANSI compliant, user public (any user with Connect
database privilege) automatically has the Execute privilege to a routine that is
not registered with the DBA keyword.

v In an ANSI-compliant database, the procedure owner and any user with the
DBA privilege can execute the routine without receiving additional privileges.

Grant and revoke the Execute privilege

Routines have the following GRANT and REVOKE requirements:
v The DBA can grant or revoke the Execute privilege to any routine in the

database.
v The creator of a routine can grant or revoke the Execute privilege on that

particular routine. The creator forfeits the ability to grant or revoke by including
the AS grantor clause with the GRANT EXECUTE ON statement.

v Another user can grant the Execute privilege if the owner applied the WITH
GRANT keywords in the GRANT EXECUTE ON statement.

A DBA or the routine owner must explicitly grant the Execute privilege to
non-DBA users for the following conditions:
v A routine in an ANSI-compliant database
v A database with the NODEFDAC environment variable set to yes

v A routine that was created with the DBA keyword

An owner can restrict the Execute privilege on a routine even though the database
server grants that privilege to public by default. To do this, issue the REVOKE
EXECUTE ON PUBLIC statement. The DBA and owner can still execute the
routine and can grant the Execute privilege to specific users, if applicable.

Execute privileges with COMMUTATOR and NEGATOR functions

Important: If you explicitly grant the Execute privilege on an SPL function that is
the commutator or negator function of a UDR, you must also grant that privilege
on the commutator or the negator function before the grantee can use either. You
cannot specify COMMUTATOR or NEGATOR modifiers with SPL procedures.

The following example demonstrates both limiting privileges for a function and its
negator to one group of users. Suppose you create the following pair of negator
functions:
CREATE FUNCTION greater(y PERCENT, z PERCENT)
RETURNS BOOLEAN
NEGATOR= less(y PERCENT, z PERCENT);
. . .
CREATE FUNCTION less(y PERCENT, z PERCENT)
RETURNS BOOLEAN
NEGATOR= greater(y PERCENT, z PERCENT);

By default, any user can execute both the function and negator. The following
statements allow only accounting to execute these functions:
REVOKE EXECUTE ON FUNCTION greater FROM PUBLIC;
REVOKE EXECUTE ON FUNCTION less FROM PUBLIC;
GRANT accounting TO mary, jim, ted;
GRANT EXECUTE ON FUNCTION greater TO accounting;
GRANT EXECUTE ON FUNCTION less TO accounting;

11-60 IBM Informix Guide to SQL: Tutorial

A user might receive the Execute privilege accompanied by the WITH GRANT
OPTION authority to grant the Execute privilege to other users. If a user loses the
Execute privilege on a routine, the Execute privilege is also revoked from all users
who were granted the Execute privilege by that user.

For more information, see the GRANT and REVOKE statement descriptions in the
IBM Informix Guide to SQL: Syntax.

Privileges on objects associated with a routine
The database server checks the existence of any referenced objects and verifies that
the user invoking the routine has the necessary privileges to access the referenced
objects.

Objects referenced by a routine can include:
v Tables and columns
v Sequence objects
v User-defined data types
v Other routines executed by the routine

When a routine is run, the effective privilege is defined as the union of:
v The privileges of the user running the routine,
v The privileges that the owner has with the GRANT option.

By default, the database administrator has all the privileges in a database with the
GRANT option. Therefore, users executing routines that are owned by database
administrators can select from all of the tables in a given database.

A GRANT EXECUTE ON statement confers to the grantee any table-level
privileges that the grantor received from a GRANT statement that contained the
WITH GRANT keywords.

The owner of the routine, and not the user who runs the routine, owns the
unqualified objects created in the course of executing the routine. For example,
assume user howie registers an SPL routine that creates two tables, with the
following SPL routine:
CREATE PROCEDURE promo()
. . .

CREATE TABLE newcatalog
(
catlog_num INTEGER
cat_advert VARCHAR(255, 65)
cat_picture BLOB
) ;
CREATE TABLE dawn.mailers
(
cust_num INTEGER
interested_in SET(catlog_num INTEGER)
);

END PROCEDURE;

User julia runs the routine, which creates the table newcatalog. Because no owner
name qualifies table name newcatalog, the routine owner (howie) owns
newcatalog. By contrast, the qualified name dawn.maillist identifies dawn as the
owner of maillist.

Chapter 11. Create and use SPL routines 11-61

DBA privileges for executing a routine
If a DBA creates a routine using the DBA keyword, the database server
automatically grants the Execute privilege only to other users with the DBA
privilege. A DBA can, however, explicitly grant the Execute privilege on a DBA
routine to a user who does not have the DBA privilege.

When a user executes a routine that was registered with the DBA keyword, that
user assumes the privileges of a DBA for the duration of the routine. If a user who
does not have the DBA privilege runs a DBA routine, the database server implicitly
grants a temporary DBA privilege to the invoker. Before exiting a DBA routine, the
database server implicitly revokes the temporary DBA privilege.

Objects created in the course of running a DBA routine are owned by the user who
executes the routine, unless a statement in the routine explicitly names someone
else as the owner. For example, suppose that tony registers the promo() routine
with the DBA keyword, as follows:
CREATE DBA PROCEDURE promo()

. . .
CREATE TABLE catalog
. . .
CREATE TABLE libby.mailers
. . .

END PROCEDURE;

Although tony owns the routine, if marty runs it, then marty owns the catalog
table, but user libby owns libby.mailers because her name qualifies the table
name, making her the table owner.

A called routine does not inherit the DBA privilege. If a DBA routine executes a
routine that was created without the DBA keyword, the DBA privileges do not
affect the called routine.

If a routine that is registered without the DBA keyword calls a DBA routine, the
caller must have Execute privileges on the called DBA routine. Statements within
the DBA routine execute as they would within any DBA routine.

The following example demonstrates what occurs when a DBA and non-DBA
routine interact. Suppose procedure dbspc_cleanup() executes another procedure
clust_catalog(). Suppose also that the procedure clust_catalog() creates an index
and that the SPL source code for clust_catalog() includes the following statements:
CREATE CLUSTER INDEX c_clust_ix ON catalog (catalog_num);

The DBA procedure dbspc_cleanup() invokes the other routine with the following
statement:
EXECUTE PROCEDURE clust_catalog(catalog);

Assume tony registered dbspc_cleanup() as a DBA procedure and clust_catalog()
is registered without the DBA keyword, as the following statements show:
CREATE DBA PROCEDURE dbspc_cleanup(loc CHAR)
CREATE PROCEDURE clust_catalog(catalog CHAR)
GRANT EXECUTE ON dbspc_cleanup(CHAR) to marty;

Suppose user marty runs dbspc_cleanup(). Because index c_clust_ix is created by a
non-DBA routine, tony, who owns both routines, also owns c_clust_ix. By contrast,
marty would own index c_clust_ix if clust_catalog() is a DBA procedure, as the
following registering and grant statements show:

11-62 IBM Informix Guide to SQL: Tutorial

CREATE PROCEDURE dbspc_cleanup(loc CHAR);
CREATE DBA PROCEDURE clust_catalog(catalog CHAR);
GRANT EXECUTE ON clust_catalog(CHAR) to marty;

Notice that dbspc_cleanup() need not be a DBA procedure to call a DBA
procedure.

Find errors in an SPL routine
When you use CREATE PROCEDURE or CREATE FUNCTION to write an SPL
routine with DB-Access, the statement fails when you select Run from the menu, if
a syntax error occurs in the body of the routine.

If you are creating the routine in DB-Access, when you choose the Modify option
from the menu, the cursor moves to the line that contains the syntax error. You can
select Run and Modify again to check subsequent lines.

Compile-time warnings
If the database server detects a potential problem, but the syntax of the SPL routine
is correct, the database server generates a warning and places it in a listing file.
You can examine this file to check for potential problems before you execute the
routine.

The file name and path name of the listing file are specified in the WITH LISTING
IN clause of the CREATE PROCEDURE or CREATE FUNCTION statement. For
information about how to specify the path name of the listing file, see “Specify a
DOCUMENT clause” on page 11-9.

If you are working on a network, the listing file is created on the system where the
database resides. If you provide an absolute path name and file name for the file,
the file is created at the location you specify.

For UNIX, if you provide a relative path name for the listing file, the file is created
in your home directory on the computer where the database resides. (If you do not
have a home directory, the file is created in the root directory.)

For Windows, if you provide a relative path name for the listing file, the default
directory is your current working directory if the database is on the local
computer. Otherwise the default directory is %INFORMIXDIR%\bin.

After you create the routine, you can view the file that is specified in the WITH
LISTING IN clause to see the warnings that it contains.

Generate the text of the routine

After you create an SPL routine, it is stored in the sysprocbody system catalog
table. The sysprocbody system catalog table contains the executable routine, as
well as its text.

To retrieve the text of the routine, select the data column from the sysprocbody
system catalog table. The datakey column for a text entry has the code T.

The SELECT statement in the following figure reads the text of the SPL routine
read_address.

Chapter 11. Create and use SPL routines 11-63

Debug an SPL routine

After you successfully create and run an SPL routine, you can encounter logic
errors. If the routine has logic errors, use the TRACE statement to help find them.
You can trace the values of the following items:
v Variables
v Arguments
v Return values
v SQL error codes
v ISAM error codes

To generate a listing of traced values, first use the SQL statement SET DEBUG FILE
to name the file that is to contain the traced output. When you create the SPL
routine, include a TRACE statement.

The following methods specify the form of TRACE output.

Statement
Action

TRACE ON
Traces all statements except SQL statements. Prints the contents of
variables before they are used. Traces routine calls and returned values.

TRACE PROCEDURE
Traces only the routine calls and returned values.

TRACE expression
Prints a literal or an expression. If necessary, the value of the expression is
calculated before it is sent to the file.

The following figure demonstrates how you can use the TRACE statement to
monitor how an SPL function executes.

SELECT data FROM informix.sysprocbody
WHERE datakey = ’T’ -- find text lines
AND procid =

(SELECT procid
FROM informix.sysprocedures
WHERE informix.sysprocedures.procname =

’read_address’)

Figure 11-109. SELECT statement to read the text of the SPL routine.

11-64 IBM Informix Guide to SQL: Tutorial

With the TRACE ON statement, each time you execute the traced routine, entries
are added to the file you specified in the SET DEBUG FILE statement. To see the
debug entries, view the output file with any text editor.

The following list contains some of the output that the function in previous
example generates. Next to each traced statement is an explanation of its contents.

Statement
Action

TRACE ON
Echoes TRACE ON statement.

TRACE Foreach starts
Traces expression, in this case, the literal string Foreach starts.

start select cursor
Provides notification that a cursor is opened to handle a FOREACH loop.

select cursor iteration
Provides notification of the start of each iteration of the select cursor.

expression: (+lcount, 1)
Evaluates the encountered expression, (lcount+1), to 2.

let lcount = 2
Echoes each LET statement with the value.

CREATE FUNCTION read_many (lastname CHAR(15))
RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),

CHAR(2), CHAR(5);

DEFINE p_lname,p_fname, p_city CHAR(15);
DEFINE p_add CHAR(20);
DEFINE p_state CHAR(2);
DEFINE p_zip CHAR(5);
DEFINE lcount, i INT;

LET lcount = 1;

TRACE ON; -- Trace every expression from here on
TRACE ’Foreach starts’; -- Trace statement with a literal

FOREACH
SELECT fname, lname, address1, city, state, zipcode

INTO p_fname, p_lname, p_add, p_city, p_state, p_zip

FROM customer
WHERE lname = lastname

RETURN p_fname, p_lname, p_add, p_city, p_state, p_zip
WITH RESUME;

LET lcount = lcount + 1; -- count of returned addresses
END FOREACH

TRACE ’Loop starts’; -- Another literal
FOR i IN (1 TO 5)

BEGIN
RETURN i , i+1, i*i, i/i, i-1,i WITH RESUME;

END
END FOR;

END FUNCTION;

Figure 11-110. The TRACE statement.

Chapter 11. Create and use SPL routines 11-65

Exception handling

You can use the ON EXCEPTION statement to trap any exception (or error) that
the database server returns to your SPL routine or any exception that the routine
raises. The RAISE EXCEPTION statement lets you generate an exception within the
SPL routine.

In an SPL routine, you cannot use exception handling to handle the following
conditions:
v Success (row returned)
v Success (no rows returned)

Error trapping and recovering

The ON EXCEPTION statement provides a mechanism to trap any error.

To trap an error, enclose a group of statements in a statement block marked with
BEGIN and END and add an ON EXCEPTION IN statement at the beginning of
the statement block. If an error occurs in the block that follows the ON
EXCEPTION statement, you can take recovery action.

The following figure shows an ON EXCEPTION statement within a statement
block.

When an error occurs, the SPL interpreter searches for the innermost ON
EXCEPTION declaration that traps the error. The first action after trapping the
error is to reset the error. When execution of the error action code is complete, and
if the ON EXCEPTION declaration that was raised included the WITH RESUME
keywords, execution resumes automatically with the statement following the
statement that generated the error. If the ON EXCEPTION declaration did not
include the WITH RESUME keywords, execution exits the current block entirely.

BEGIN
DEFINE c INT;
ON EXCEPTION IN

(
-206, -- table does not exist
-217 -- column does not exist
) SET err_num

IF err_num = -206 THEN
CREATE TABLE t (c INT);
INSERT INTO t VALUES (10);
-- continue after the insert statement

ELSE
ALTER TABLE t ADD(d INT);
LET c = (SELECT d FROM t);
-- continue after the select statement.

END IF
END EXCEPTION WITH RESUME

INSERT INTO t VALUES (10); -- fails if t does not exist

LET c = (SELECT d FROM t); -- fails if d does not exist
END

Figure 11-111. Trap errors.

11-66 IBM Informix Guide to SQL: Tutorial

Scope of control of an ON EXCEPTION statement

An ON EXCEPTION statement is valid for the statement block that follows the ON
EXCEPTION statement, all the statement blocks nested within the following
statement block, and all the statement blocks that follow the ON EXCEPTION
statement. It is not valid in the statement block that contains the ON EXCEPTION
statement.

The following pseudocode shows where the exception is valid within the routine.
That is, if error 201 occurs in any of the indicated blocks, the action labeled a201
occurs.

User-generated exceptions

You can generate your own error using the RAISE EXCEPTION statement, as the
following figure shows.

CREATE PROCEDURE scope()
DEFINE i INT;

. . .
BEGIN -- begin statement block A

. . .
ON EXCEPTION IN (201)
-- do action a201
END EXCEPTION
BEGIN -- statement block aa

-- do action, a201 valid here
END
BEGIN -- statement block bb

-- do action, a201 valid here
END
WHILE i < 10

-- do something, a201 is valid here
END WHILE

END
BEGIN -- begin statement block B

-- do something
-- a201 is NOT valid here

END
END PROCEDURE;

Figure 11-112. ON EXCEPTION statement scope of control.

BEGIN
ON EXCEPTION SET esql, eisam -- trap all errors

IF esql = -206 THEN -- table not found
-- recover somehow

ELSE
RAISE exception esql, eisam; -- pass the error up

END IF
END EXCEPTION

-- do something
END

Figure 11-113. The RAISE EXCEPTION statement.

Chapter 11. Create and use SPL routines 11-67

In the example, the ON EXCEPTION statement uses two variables, esql and eisam,
to hold the error numbers that the database server returns. The IF clause executes
if an error occurs and if the SQL error number is -206. If any other SQL error is
caught, it is passed out of this BEGINEND block to the last BEGINEND block of
the previous example.

Simulate SQL errors

You can generate errors to simulate SQL errors, as the following figure shows. If
the user is pault, then the SPL routine acts as if that user has no update privileges,
even if the user really does have that privilege.

RAISE EXCEPTION to exit nested code

The following figure shows how you can use the RAISE EXCEPTION statement to
break out of a deeply nested block.

If the innermost condition is true (if aa is negative), then the exception is raised
and execution jumps to the code following the END of the block. In this case,
execution jumps to the TRACE statement.

Remember that a BEGINEND block is a single statement. If an error occurs
somewhere inside a block and the trap is outside the block, the rest of the block is
skipped when execution resumes, and execution begins at the next statement.

BEGIN
IF user = ’pault’ THEN

RAISE EXCEPTION -273; -- deny Paul update privilege
END IF

END

Figure 11-114. Simulate SQL errors.

BEGIN
ON EXCEPTION IN (1)
END EXCEPTION WITH RESUME -- do nothing significant (cont)

BEGIN
FOR i IN (1 TO 1000)

FOREACH select ..INTO aa FROM t
IF aa < 0 THEN

RAISE EXCEPTION 1; -- emergency exit
END IF

END FOREACH
END FOR
RETURN 1;

END

--do something; -- emergency exit to
-- this statement.

TRACE ’Negative value returned’;
RETURN -10;

END

Figure 11-115. The RAISE EXCEPTION statement.

11-68 IBM Informix Guide to SQL: Tutorial

Unless you set a trap for this error somewhere in the block, the error condition is
passed back to the block that contains the call and back to any blocks that contain
the block. If no ON EXCEPTION statement exists that is set to handle the error,
execution of the SPL routine stops, creating an error for the routine that is
executing the SPL routine.

Check the number of rows processed in an SPL routine

Within SPL routines, you can use the DBINFO function to find out the number of
rows that have been processed in SELECT, INSERT, UPDATE, DELETE, EXECUTE
PROCEDURE, and EXECUTE FUNCTION statements.

The following figure shows an SPL function that uses the DBINFO function with
the 'sqlca.sqlerrd2' option to determine the number of rows that are deleted from a
table.

To ensure valid results, use this option after SELECT and EXECUTE PROCEDURE
or EXECUTE FUNCTION statements have completed executing. In addition, if you
use the 'sqlca.sqlerrd2' option within cursors, make sure that all rows are fetched
before the cursors are closed, to ensure valid results.

Summary

SPL routines provide many opportunities for streamlining your database process,
including enhanced database performance, simplified applications, and limited or
monitored access to data. You can also use SPL routines to handle extended data
types, such as collection types, row types, opaque types, and distinct types. For
syntax diagrams of SPL statements, see the IBM Informix Guide to SQL: Syntax.

CREATE FUNCTION del_rows (pnumb INT)
RETURNING INT;

DEFINE nrows INT;

DELETE FROM sec_tab WHERE part_num = pnumb;
LET nrows = DBINFO(’sqlca.sqlerrd2’);

RETURN nrows;

END FUNCTION;

Figure 11-116. Determine the number of rows deleted from a table.

Chapter 11. Create and use SPL routines 11-69

11-70 IBM Informix Guide to SQL: Tutorial

Chapter 12. Create and use triggers

This section describes each component of the CREATE TRIGGER statement,
illustrates some uses for triggers, and describes the advantages of using an SPL
routine as a triggered action.

In addition, this section describes INSTEAD OF trigger that can be defined on
views.

An SQL trigger is a mechanism that resides in the database. It is available to any
user who has permission to use it. An SQL trigger specifies that when a
data-manipulation language (DML) operation (an INSERT, SELECT, DELETE, or
UPDATE statement) occurs on a particular table, the database server automatically
performs one or more additional actions. For triggers defined on views, the
triggered action on the base tables of the view replaces the triggering event. For
triggers on tables or views, the triggered actions can be INSERT, DELETE,
UPDATE, EXECUTE PROCEDURE or EXECUTE FUNCTION statements.

IBM Informix also supports user-defined routines written in C or in Java as
triggered actions.

For information on how to write a C UDR to obtain metadata information about
trigger events, see the IBM Informix DataBlade API Programmer's Guide.

When to use triggers
Because a trigger resides in the database and anyone who has the required
privilege can use it, a trigger lets you write a set of SQL statements that multiple
applications can use. It lets you avoid redundant code when multiple programs
need to perform the same database operation.

You can use triggers to perform the following actions, as well as others that are not
found in this list:
v Create an audit trail of activity in the database. For example, you can track

updates to the orders table by updating corroborating information to an audit
table.

v Implement a business rule. For example, you can determine when an order
exceeds a customer's credit limit and display a message to that effect.

v Derive additional data that is not available within a table or within the database.
For example, when an update occurs to the quantity column of the items table,
you can calculate the corresponding adjustment to the total_price column.

v Enforce referential integrity. When you delete a customer, for example, you can
use a trigger to delete corresponding rows that have the same customer number
in the orders table.

How to create a trigger

You use the CREATE TRIGGER statement to define a new trigger. The CREATE
TRIGGER statement is a data-definition statement that associates SQL statements,
called the triggered action, with a precipitating event on a table. When the event
occurs, it triggers the associated SQL statements, which are stored in the database.

© Copyright IBM Corp. 1996, 2010 12-1

In this example, the triggering event is an UPDATE statement that references the
quantity column of the items table. The following figure illustrates the relationship
of the DML operation that activates the trigger, called the trigger event, to the
triggered action.

The CREATE TRIGGER statement consists of clauses that perform the following
actions:
v Declare a name for the trigger .
v Specify the DML operation on a specified table or view as the triggering event.
v Define the SQL operations that this event triggers.

An optional clause, called the REFERENCING clause, is discussed in “FOR EACH
ROW triggered actions” on page 12-5.

To create a trigger, use DB-Access or one of the SQL APIs. This section describes
the CREATE TRIGGER statement as you enter it with the interactive
Query-language option in DB-Access. In an SQL API, you precede the statement
with the symbol or keywords that identify it as an embedded statement.

Declare a trigger name

The trigger name identifies the trigger, and must be unique among trigger names
within the database. The trigger name follows the words CREATE TRIGGER in the
statement. Like any SQL identifier, can be up to 128 bytes in length, beginning
with a letter and consisting of letters, digits, and the underscore (_) symbol. In
the following example, the portion of the CREATE TRIGGER statement that is
shown declares the name upqty for the trigger:
CREATE TRIGGER upqty -- declare trigger name

Specify the trigger event

The trigger event is the type of DML statement that activates the trigger. When a
statement of this type is performed on the table, the database server executes the
SQL statements that make up the triggered action. For tables, the trigger event can
be an INSERT, SELECT, DELETE, or UPDATE statement. For UPDATE or SELECT
trigger event, you can specify one or more columns in the table to activate the
trigger. If you do not specify any columns, then an UPDATE or SELECT of any
column in the table activates the trigger. You can define multiple INSERT, DELETE,
UPDATE and SELECT triggers on the same table, and multiple INSERT, DELETE,
and UPDATE triggers on the same view.

item_num quantity total_price
2 3 15.00
3 1 236.00
4 4 100.00
5 1 280.00

UPDATE

trigger event

EXECUTE PROCEDURE
upd_items

Figure 12-1. Trigger event and triggered action

12-2 IBM Informix Guide to SQL: Tutorial

You can only create a trigger on a table or view in the current database. Triggers
cannot reference a remote table or view.

In the following excerpt from a CREATE TRIGGER statement, the trigger event is
defined as an update of the quantity column in the items table:
CREATE TRIGGER upqty

UPDATE OF quantity ON items -- an UPDATE trigger event

This portion of the statement identifies the table on which you define the trigger. If
the trigger event is an insert or delete operation, only the type of statement and
the table name are required, as the following example shows:
CREATE TRIGGER ins_qty

INSERT ON items -- an INSERT trigger event

Define the triggered actions

The triggered actions are the SQL statements that are performed when the trigger
event occurs. The triggered actions can consist of INSERT, DELETE, UPDATE,
EXECUTE FUNCTION and EXECUTE PROCEDURE statements. In addition to
specifying what actions are to be performed, however, you must also specify when
they are to be performed in relation to the triggering statement. You have the
following choices:
v Before the triggering statement executes
v After the triggering statement executes
v For each row that is affected by the triggering statement

A single trigger on a table can define actions for each of these times.

To define a triggered action, specify when it occurs and then provide the SQL
statement or statements to execute. You specify when the action is to occur with
the keywords BEFORE, AFTER, or FOR EACH ROW. The triggered actions follow,
enclosed in parentheses. The following triggered-action definition specifies that the
SPL routine upd_items_p1 is to be executed before the triggering statement:
BEFORE(EXECUTE PROCEDURE upd_items_p1) -- a BEFORE action

A complete CREATE TRIGGER statement

To define a complete CREATE TRIGGER statement, combine the trigger-name
clause, the trigger-event clause, and the triggered-action clause. The following
CREATE TRIGGER statement is the result of combining the components of the
statement from the preceding examples. This trigger executes the SPL routine
upd_items_p1 whenever the quantity column of the items table is updated.
CREATE TRIGGER upqty

UPDATE OF quantity ON items
BEFORE(EXECUTE PROCEDURE upd_items_p1);

If a database object in the trigger definition, such as the SPL routine upd_items_p1
in this example, does not exist when the database server processes the CREATE
TRIGGER statement, it returns an error.

Chapter 12. Create and use triggers 12-3

Triggered actions

To use triggers effectively, you need to understand the relationship between the
triggering statement and the resulting triggered actions. You define this
relationship when you specify the time that the triggered action occurs; that is,
BEFORE, AFTER, or FOR EACH ROW.

BEFORE and AFTER triggered actions

Triggered actions that occur before or after the trigger event execute only once. A
BEFORE triggered action executes before the triggering statement, that is, before the
occurrence of the trigger event. An AFTER triggered action executes after the
action of the triggering statement is complete. BEFORE and AFTER triggered
actions execute even if the triggering statement does not process any rows.

Among other uses, you can use BEFORE and AFTER triggered actions to
determine the effect of the triggering statement. For example, before you update
the quantity column in the items table, you could call the SPL routine
upd_items_p1 to calculate the total quantity on order for all items in the table, as
the following example shows. The procedure stores the total in a global variable
called old_qty.
CREATE PROCEDURE upd_items_p1()

DEFINE GLOBAL old_qty INT DEFAULT 0;
LET old_qty = (SELECT SUM(quantity) FROM items);

END PROCEDURE;

After the triggering update completes, you can calculate the total again to see how
much it has changed. The following SPL routine, upd_items_p2, calculates the total
of quantity again and stores the result in the local variable new_qty. Then it
compares new_qty to the global variable old_qty to see if the total quantity for all
orders has increased by more than 50 percent. If so, the procedure uses the RAISE
EXCEPTION statement to simulate an SQL error.
CREATE PROCEDURE upd_items_p2()

DEFINE GLOBAL old_qty INT DEFAULT 0;
DEFINE new_qty INT;
LET new_qty = (SELECT SUM(quantity) FROM items);
IF new_qty > old_qty * 1.50 THEN

RAISE EXCEPTION -746, 0, ’Not allowed - rule violation’;
END IF

END PROCEDURE;

The following trigger calls upd_items_p1 and upd_items_p2 to prevent an
extraordinary update on the quantity column of the items table:
CREATE TRIGGER up_items

UPDATE OF quantity ON items
BEFORE(EXECUTE PROCEDURE upd_items_p1())
AFTER(EXECUTE PROCEDURE upd_items_p2());

If an update raises the total quantity on order for all items by more than 50
percent, the RAISE EXCEPTION statement in upd_items_p2 terminates the trigger
with an error. When a trigger fails in a database that has transaction logging, the
database server rolls back the changes that both the triggering statement and the
triggered actions make. For more information on what happens when a trigger
fails, see the CREATE TRIGGER statement in the IBM Informix Guide to SQL:
Syntax.

12-4 IBM Informix Guide to SQL: Tutorial

FOR EACH ROW triggered actions

A FOR EACH ROW triggered action executes once for each row that the triggering
statement affects. For example, if the triggering statement has the following syntax,
a FOR EACH ROW triggered action executes once for each row in the items table
in which the manu_code column has a value of 'KAR’:
UPDATE items SET quantity = quantity * 2

WHERE manu_code = ’KAR’;

If the triggering event does not process any rows, a FOR EACH ROW triggered
action does not execute.

For a trigger on a table, if the triggering event is a SELECT statement, the trigger is
a called a Select trigger, and the triggered actions execute after all processing on
the retrieved row is complete. The triggered actions might not execute
immediately; however, because a FOR EACH ROW action executes for every
instance of a row that the query returns. For example, in a SELECT statement with
an ORDER BY clause, all rows must be qualified against the WHERE clause before
they are sorted and returned.

The REFERENCING clause

When you create a FOR EACH ROW triggered action, you must usually indicate in
the triggered action statements whether you are referring to the value of a column
before or after the effect of the triggering statement. For example, imagine that you
want to track updates to the quantity column of the items table. To do this, create
the following table to record the activity:
CREATE TABLE log_record

(item_num SMALLINT,
ord_num INTEGER,
username CHARACTER(8),
update_time DATETIME YEAR TO MINUTE,
old_qty SMALLINT,
new_qty SMALLINT);

To supply values for the old_qty and new_qty columns in this table, you must be
able to refer to the old and new values of quantity in the items table; that is, the
values before and after the effect of the triggering statement. The REFERENCING
clause enables you to do this.

The REFERENCING clause lets you create two prefixes that you can combine with
a column name, one to reference the old value of the column, and one to reference
its new value. These prefixes are called correlation names. You can create one or
both correlation names, depending on your requirements. You indicate which one
you are creating with the keywords OLD and NEW. The following REFERENCING
clause creates the correlation names pre_upd and post_upd to refer to the old and
new values in a row:
REFERENCING OLD AS pre_upd NEW AS post_upd

The following triggered action creates a row in log_record when quantity is
updated in a row of the items table. The INSERT statement refers to the old values
of the item_num and order_num columns and to both the old and new values of
the quantity column.
FOR EACH ROW(INSERT INTO log_record

VALUES (pre_upd.item_num, pre_upd.order_num, USER,
CURRENT, pre_upd.quantity, post_upd.quantity));

Chapter 12. Create and use triggers 12-5

The correlation names defined in the REFERENCING clause apply to all rows that
the triggering statement affects.

Important: If you refer to a column name that is not qualified by a correlation
name, the database server makes no special effort to search for the column in the
definition of the triggering table. You must always use a correlation name with a
column name in SQL statements in a FOR EACH ROW triggered action, unless the
statement is valid independent of the triggered action. For more information, see
the CREATE TRIGGER statement in the IBM Informix Guide to SQL: Syntax.

The WHEN condition

As an option for triggers on tables, you can precede a triggered action with a
WHEN clause to make the action dependent on the outcome of a test. The WHEN
clause consists of the keyword WHEN followed by the condition statement given
in parentheses. In the CREATE TRIGGER statement, the WHEN clause follows the
keywords BEFORE, AFTER, or FOR EACH ROW and precedes the triggered-action
list.

When a WHEN condition is present, if it evaluates to true, the triggered actions
execute in the order in which they appear. If the WHEN condition evaluates to
false or unknown, the actions in the triggered-action list do not execute. If the
trigger specifies FOR EACH ROW, the condition is evaluated for each row also.

In the following trigger example, the triggered action executes only if the condition
in the WHEN clause is true; that is, if the post-update unit price is greater than
two times the pre-update unit price:
CREATE TRIGGER up_price

UPDATE OF unit_price ON stock
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW WHEN(post.unit_price > pre.unit_price * 2)
(INSERT INTO warn_tab
VALUES(pre.stock_num, pre.manu_code, pre.unit_price,

post.unit_price, CURRENT));

For more information on the WHEN condition, see the CREATE TRIGGER
statement in the IBM Informix Guide to SQL: Syntax.

SPL routines as triggered actions
Probably the most powerful feature of triggers is the ability to call an SPL routine
as a triggered action. The EXECUTE PROCEDURE or EXECUTE FUNCTION
statement, which calls an SPL routine, lets you pass data from the triggering table
to the SPL routine and also to update the triggering table with data returned by
the SPL routine. SPL also lets you define variables, assign data to them, make
comparisons, and use procedural statements to accomplish complex tasks within a
triggered action.

Pass data to an SPL routine

You can pass data to an SPL routine in the argument list of the EXECUTE
PROCEDURE or EXECUTE FUNCTION statement. The EXECUTE PROCEDURE
statement in the following example passes values from the quantity and
total_price columns of the items table to the SPL routine calc_totpr:

12-6 IBM Informix Guide to SQL: Tutorial

CREATE TRIGGER upd_totpr
UPDATE OF quantity ON items
REFERENCING OLD AS pre_upd NEW AS post_upd
FOR EACH ROW(EXECUTE PROCEDURE calc_totpr(pre_upd.quantity,

post_upd.quantity, pre_upd.total_price) INTO total_price);

Passing data to an SPL routine lets you use data values in the operations that the
routine performs.

Using SPL

The EXECUTE PROCEDURE statement in the preceding trigger calls the SPL
routine that the following example shows. The procedure uses SPL to calculate the
change that needs to be made to the total_price column when quantity is updated
in the items table. The procedure receives both the old and new values of quantity
and the old value of total_price. It divides the old total price by the old quantity to
derive the unit price. It then multiplies the unit price by the new quantity to obtain
the new total price.
CREATE PROCEDURE calc_totpr(old_qty SMALLINT, new_qty SMALLINT,

total MONEY(8)) RETURNING MONEY(8);
DEFINE u_price LIKE items.total_price;
DEFINE n_total LIKE items.total_price;
LET u_price = total / old_qty;
LET n_total = new_qty * u_price;
RETURN n_total;

END PROCEDURE;

In this example, SPL lets the trigger derive data that is not directly available from
the triggering table.

Update nontriggering columns with data from an SPL routine

Within a triggered action, the INTO clause of the EXECUTE PROCEDURE
statement lets you update nontriggering columns in the triggering table. The
EXECUTE PROCEDURE statement in the following example calls the calc_totpr
SPL procedure that contains an INTO clause, which references the column
total_price:
FOR EACH ROW(EXECUTE PROCEDURE calc_totpr(pre_upd.quantity,

post_upd.quantity, pre_upd.total_price) INTO total_price);

The value that is updated into total_price is returned by the RETURN statement at
the conclusion of the SPL procedure. The total_price column is updated for each
row that the triggering statement affects.

Trigger routines
You can define specialized SPL routines, called trigger routines, that can be invoked
only from the FOR EACH ROW section of the triggered action. Unlike ordinary
UDRs that EXECUTE FUNCTION or EXECUTE PROCEDURE routines can call
from the triggered action list, trigger routines include their own REFERENCING
clause that defines correlation names for the old and new column values in rows
that the triggered action modifies. These correlation names can be referenced in
SPL statements within the trigger routine, providing greater flexibility in how the
triggered action can modify data in the table or view.

Trigger routines can also use trigger-type Boolean operators, called DELETING,
INSERTING, SELECTING, and UPDATING, to identify what type of trigger has
called the trigger routine. Trigger routines can also invoke the mi_trigger* routines,

Chapter 12. Create and use triggers 12-7

which are sometimes called trigger introspection routines, to obtain information
about the context in which the trigger routine has been called.

Trigger routines are invoked by EXECUTE FUNCTION or EXECUTE PROCEDURE
statements that include the WITH TRIGGER REFERENCES keywords. These
statements must call the trigger routine from the FOR EACH ROW section of the
triggered action, rather than from the BEFORE or AFTER sections.

For information about syntax features that the CREATE FUNCTION, CREATE
PROCEDURE, EXECUTE FUNCTION, and EXECUTE PROCEDURE statements of
SQL support for defining and executing trigger routines, see your IBM Informix
Guide to SQL: Syntax. For more information about the mi_trigger* routines, see
your IBM Informix DataBlade API Programmer's Guide.

Triggers in a table hierarchy
When you define a trigger on a supertable, any subtables in the table hierarchy
also inherit the trigger. Consequently when you perform operations on tables in
the hierarchy, triggers can execute for any table in the hierarchy that is a subtable
of the table on which a trigger is defined.

Select triggers
You can create a select trigger on a table or column(s) to perform certain types of
application-specific auditing, such as tracking the number of hits on a table. You
might create a select trigger to insert an audit record to an audit table each time a
user queries a certain table. For example, a DBA might create a select trigger to
provide a Web transaction history for Web DataBlade modules.

SELECT statements that execute triggered actions
When you create a select trigger, only certain types of select statements can execute
the actions defined on that trigger. A select trigger executes for the following types
of SELECT statements only:
v Stand-alone SELECT statements
v Collection subqueries in the select list of a SELECT statement
v SELECT statements embedded in user-defined routines
v Views

Stand-alone SELECT statements

Suppose you define the following Select trigger on a table:
CREATE TRIGGER hits_trig SELECT OF col_a ON tab_a

REFERENCING OLD AS hit
FOR EACH ROW (INSERT INTO hits_log

VALUES (hit.col_a, CURRENT, USER));

A Select trigger executes when the triggering column appears in the select list of a
stand-alone SELECT statement. The following statement executes a triggered action
on the hits_trig trigger for each instance of a row that the database server returns:
SELECT col_a FROM tab_a;

Collection subqueries in the projection list of a query

A Select trigger executes when the triggering column appears in a collection
subquery that occurs in the projection list of another SELECT statement. The

12-8 IBM Informix Guide to SQL: Tutorial

following statement executes a triggered action on the hits_trig trigger for each
instance of a row that the collection subquery returns:
SELECT MULTISET(SELECT col_a FROM tab_a) FROM ...

SELECT statements embedded in user-defined routines

A select trigger that is defined on a SELECT statement embedded in a user defined
routine (UDR) executes a triggered action in the following instances only:
v The UDR appears in the select list of a SELECT statement
v The UDR is invoked with an EXECUTE PROCEDURE statement

Suppose you create a routine new_proc that contains the statement SELECT col_a
FROM tab_a. Each of the following statements executes a triggered action on the
hits_trig trigger for each instance of a row that the embedded SELECT statement
returns:
SELECT new_proc() FROM tab_b;
EXECUTE PROCEDURE new_proc;

Views

Select triggers execute a triggered action for views whose base tables contain a
reference to a triggering column. You cannot, however, define a Select trigger on a
view.

Suppose you create the following view:
CREATE VIEW view_tab AS

SELECT * FROM tab_a;

The following statements execute a triggered action on the hits_trig trigger for
each instance of a row that the view returns:
SELECT * FROM view_tab;

SELECT col_a FROM tab_a;

Restrictions on execution of select triggers

The following types of statements do not trigger any actions on select triggers:
v The triggering column or columns are not in the projection list (for example, a

column that appears in the WHERE clause of a SELECT statement does not
execute a select trigger).

v The SELECT statement includes a remote table.
v The SELECT statement contains an aggregate function.
v The SELECT statement includes UNION or UNION ALL operations.
v The SELECT statement includes a DISTINCT or UNIQUE keyword.
v The UDR expression that contains the SELECT statement is not in the projection

list.
v The SELECT statement appears within an INSERT INTO statement.
v The SELECT statement appears within a scroll cursor.
v The trigger is a cascading select trigger.

A cascading select trigger is a trigger whose actions includes an SPL routine that
itself has a triggering select statement. However, the actions of a cascading select
trigger do not execute and the database server does not return an error.

Chapter 12. Create and use triggers 12-9

Select triggers on tables in a table hierarchy
When you define a select trigger on a supertable, any subtables in the table
hierarchy also inherit the trigger.

For information about overriding and disabling inherited triggers, see “Triggers in
a table hierarchy” on page 12-8.

Re-entrant triggers

A re-entrant trigger refers to a case in which the triggered action can reference the
triggering table. In other words, both the triggering event and the triggered action
can operate on the same table. For example, suppose the following UPDATE
statement represents the triggering event:
UPDATE tab1 SET (col_a, col_b) = (col_a + 1, col_b + 1);

The following triggered action is legal because column col_c is not a column that
the triggering event has updated:
UPDATE tab1 SET (col_c) = (col_c + 3);

In the preceding example, a triggered action on col_a or col_b would be illegal
because a triggered action cannot be an UPDATE statement that references a
column that was updated by the triggering event.

Important: Select triggers cannot be re-entrant triggers. If the triggering event is a
SELECT statement, the triggered action cannot operate on the same table.

For a list of the rules that describe those situations in which a trigger can and
cannot be re-entrant, see the CREATE TRIGGER statement in the IBM Informix
Guide to SQL: Syntax.

INSTEAD OF triggers on views

A view is a synthetic table that you create with the CREATE VIEW statement and
define with a SELECT statement. Each view consists of the set of rows and
columns that the SELECT statement in the view definition returns each time you
refer to the view in a query. To insert, update, or delete rows in the base tables of a
view, you can define an INSTEAD OF trigger.

Unlike a trigger on a table, the INSTEAD OF trigger on a view causes IBM
Informix to ignore the triggering event, and instead perform only the triggered
action.

For information on the CREATE VIEW statement and the INSTEAD OF trigger
syntax and rules, including an example of an INSTEAD OF trigger that will insert
rows on a view, see the IBM Informix Guide to SQL: Syntax.

INSTEAD OF trigger to update on a view

After you create one or more tables (like those named dept and emp in the
following example), and then created a view (like the one named manager_info)
from dept and emp, you can use an INSTEAD OF trigger to update that view.

12-10 IBM Informix Guide to SQL: Tutorial

The following CREATE TRIGGER statement creates manager_info_update, an
INSTEAD OF trigger that is designed to update rows within the dept and emp
tables through the manager_info view.
CREATE TRIGGER manager_info_update

INSTEAD OF UPDATE ON manager_info
REFERENCING NEW AS n

FOR EACH ROW
(EXECUTE PROCEDURE updtab (n.empno, n.empname, n.deptno,));

CREATE PROCEDURE updtab (eno INT, ename CHAR(20), dno INT,)
DEFINE deptcode INT;
UPDATE dept SET manager_num = eno where deptno = dno;
SELECT deptno INTO deptcode FROM emp WHERE empno = eno;
IF dno !=deptcode THEN

UPDATE emp SET deptno = dno WHERE empno = eno;
END IF;
END PROCEDURE;

After the tables, view, trigger, and SPL routine have been created, the database
server treats the following UPDATE statement as a triggering event:
UPDATE manager_info

SET empno = 3666, empname = “Steve”
WHERE deptno = 01;

This triggering UPDATE statement is not executed, but this event causes the
trigger action to be executed instead, invoking the updtab() SPL routine. The
UPDATE statements in the SPL routine update values into both the emp and dept
base tables of the manager_info view.

Trace triggered actions

If a triggered action does not behave as you expect, place it in an SPL routine and
use the SPL TRACE statement to monitor its operation. Before you start the trace,
you must direct the output to a file with the SET DEBUG FILE TO statement.

Example of TRACE statements in an SPL routine

The following example shows TRACE statements that you add to the SPL routine
items_pct. The SET DEBUG FILE TO statement directs the trace output to the file
that the path name specifies. The TRACE ON statement begins tracing the
statements and variables within the procedure.
CREATE PROCEDURE items_pct(mac CHAR(3))
DEFINE tp MONEY;
DEFINE mc_tot MONEY;
DEFINE pct DECIMAL;
SET DEBUG FILE TO ’pathname’;

TRACE ’begin trace’;
TRACE ON;
LET tp = (SELECT SUM(total_price) FROM items);
LET mc_tot = (SELECT SUM(total_price) FROM items

WHERE manu_code = mac);
LET pct = mc_tot / tp;
IF pct > .10 THEN

RAISE EXCEPTION -745;
END IF
TRACE OFF;
END PROCEDURE;

CREATE TRIGGER items_ins

Chapter 12. Create and use triggers 12-11

INSERT ON items
REFERENCING NEW AS post_ins
FOR EACH ROW(EXECUTE PROCEDURE items_pct (post_ins.manu_code));

Example of TRACE output

The following example shows sample trace output from the items_pct procedure
as it appears in the file that was named in the SET DEBUG FILE TO statement.
The output reveals the values of procedure variables, procedure arguments, return
values, and error codes.
trace expression :begin trace
trace on
expression:

(select (sum total_price)
from items)

evaluates to $18280.77 ;
let tp = $18280.77
expression:

(select (sum total_price)
from items
where (= manu_code, mac))

evaluates to $3008.00 ;
let mc_tot = $3008.00
expression:(/ mc_tot, tp)
evaluates to 0.16
let pct = 0.16
expression:(> pct, 0.1)
evaluates to 1
expression:(- 745)
evaluates to -745
raise exception :-745, 0, ’’
exception : looking for handler
SQL error = -745 ISAM error = 0 error string = = ’’
exception : no appropriate handler

For more information about how to use the TRACE statement to diagnose logic
errors in SPL routines, see Chapter 11, “Create and use SPL routines,” on page 11-1.

Generate error messages
When a trigger fails because of an SQL statement, the database server returns the
SQL error number that applies to the specific cause of the failure.

When the triggered action is an SPL routine, you can generate error messages for
other error conditions with one of two reserved error numbers. The first one is
error number -745, which has a generalized and fixed error message. The second
one is error number -746, which allows you to supply the message text, up to a
maximum of 70 bytes.

Apply a fixed error message

You can apply error number -745 to any trigger failure that is not an SQL error.
The following fixed message is for this error: -745 Trigger execution has failed.

You can apply this message with the RAISE EXCEPTION statement in SPL. The
following example generates error -745 if new_qty is greater than old_qty
multiplied by 1.50:

12-12 IBM Informix Guide to SQL: Tutorial

CREATE PROCEDURE upd_items_p2()
DEFINE GLOBAL old_qty INT DEFAULT 0;
DEFINE new_qty INT;
LET new_qty = (SELECT SUM(quantity) FROM items);
IF new_qty > old_qty * 1.50 THEN

RAISE EXCEPTION -745;
END IF

END PROCEDURE

If you are using DB-Access, the text of the message for error -745 displays on the
bottom of the screen, as the following figure shows.

If your trigger calls a procedure that contains an error through an SQL statement
in your SQL API, the database server sets the SQL error status variable to -745 and
returns it to your program. To display the text of the message, follow the
procedure that your IBM Informix application development tool provides for
retrieving the text of an SQL error message.

Generate a variable error message

Error number -746 allows you to provide the text of the error message. Like the
preceding example, the following one also generates an error if new_qty is greater
than old_qty multiplied by 1.50. However, in this case the error number is -746,
and the message text Too many items for Mfr. is supplied as the third argument
in the RAISE EXCEPTION statement. For more information on the syntax and use
of this statement, see the RAISE EXCEPTION statement in Chapter 11, “Create and
use SPL routines,” on page 11-1.
CREATE PROCEDURE upd_items_p2()

DEFINE GLOBAL old_qty INT DEFAULT 0;
DEFINE new_qty INT;
LET new_qty = (SELECT SUM(quantity) FROM items);
IF new_qty > old_qty * 1.50 THEN

RAISE EXCEPTION -746, 0, ’Too many items for Mfr.’;
END IF

END PROCEDURE;

Press CTRL-W for Help
SQL: New Run �Modify� Use-editor Output Choose Save Info Drop Exit
Modify the current SQL statements using the SQL editor.

--------------------- stores8@myserver --------- Press CTRL-W for Help ----

INSERT INTO items VALUES(2, 1001, 2, ’HRO’, 1, 126.00);

�745: Trigger execution has failed.�

Figure 12-2. Error message -745 with fixed message

Chapter 12. Create and use triggers 12-13

If you use DB-Access to submit the triggering statement, and if new_qty is greater
than old_qty, you will get the result that the following figure shows.

If you invoke the trigger through an SQL statement in an SQL API, the database
server sets sqlcode to -746 and returns the message text in the sqlerrm field of the
SQL communications area (SQL;CA). For more information about how to use the
SQL;CA, see your SQL API publication.

Summary

To introduce triggers, this chapter discussed the following topics:
v The components of the CREATE TRIGGER statement
v Types of DML statements that can be triggering events
v Types of SQL statements that can be triggered actions
v How to create BEFORE and AFTER triggered actions and how to use them to

determine the impact of the triggering statement
v How to create a FOR EACH ROW triggered action and how to use the

REFERENCING clause to refer to the values of columns both before and after
the action of the triggering statement

v INSTEAD OF triggers on views, whose triggering event is ignored, but whose
triggered actions can modify the base tables of the view

v The advantages of using SPL routines as triggered actions
v Special features of calls to trigger routines as triggered actions
v How to trace triggered actions if they behave unexpectedly
v How to generate two types of error messages within a triggered action.

Press CTRL-W for Help
SQL: New Run �Modify� Use-editor Output Choose Save Info Drop Exit
Modify the current SQL statements using the SQL editor.

-------------------- store7@myserver --------- Press CTRL-W for Help -----

INSERT INTO items VALUES(2, 1001, 2, ’HRO’, 1, 126.00);

�746: Too many items for Mfr.�

Figure 12-3. Error Number -746 with User-Specified message Text

12-14 IBM Informix Guide to SQL: Tutorial

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Tip: The information center and its related publications are accessibility-enabled
for the IBM Home Page Reader. You can operate all features by using the keyboard
instead of the mouse.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

You can view the publications in Adobe Portable Document Format (PDF) by using
the Adobe Acrobat Reader.

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the IBM commitment to accessibility.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive

© Copyright IBM Corp. 1996, 2010 A-1

http://www.ibm.com/able

alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 means that you should refer to a separate
syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In

A-2 IBM Informix Guide to SQL: Tutorial

this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be
repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can only repeat a particular item if
it is the only item with that dotted decimal number. The + symbol, like the
* symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Informix Guide to SQL: Tutorial

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1996, 2010 B-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

B-2 IBM Informix Guide to SQL: Tutorial

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices B-3

http://www.ibm.com/legal/copytrade.shtml

B-4 IBM Informix Guide to SQL: Tutorial

Index

Special characters
!=, not equal, relational operator 2-18
?, question mark

as placeholder in PREPARE 8-19
>=, greater than or equal to, relational operator 2-19
=, equals, relational operator 2-18, 2-42

A
Access modes, description of 10-15
Accessibility A-1

dotted decimal format of syntax diagrams A-1
keyboard A-1
shortcut keys A-1
syntax diagrams, reading in a screen reader A-1

Active set
definition of 2-16, 8-8
of a cursor 8-14

Aggregate functions
and GROUP BY clause 5-2
AVG 4-2
COUNT 4-2
description of 4-1, 4-10
finding NULL values 8-11
in ESQL 8-8
in expressions 4-1
in SPL routine 11-23
in subquery 5-22
MAX 4-3
MIN 4-3
null value signalled 8-6
RANGE 4-3
standard deviation 4-4
STDEV 4-4
SUM 4-4
VARIANCE 4-5

Alias
for table name 2-47
to assign column names in temporary table 5-7
using

as a query shortcut 2-47
with a supertable 3-11

with self-join 5-7
ALL keyword

beginning a subquery 5-21
in subquery 5-21

ALTER INDEX statement, locking table 10-5
AND logical operator 2-23
ANSI

isolation levels 10-12
SQL version 1-11

ANSI standard
as extension to Informix syntax 1-11

ANSI-compliant database
FOR UPDATE not required in 9-10
signalled in SQLWARN 8-6

ANY keyword, in SELECT statement 5-22
Application

handling errors 8-10
isolation level 10-9

Application (continued)
update cursor 10-13

Archiving
database server methods 6-36
description of 6-36
transaction log 6-36

Arithmetic expressions 2-33
Arithmetic operators, in expression 2-33
Ascending order in SELECT 2-8
Asterisk notation, in a SELECT statement 3-5
Asterisk, wildcard character in SELECT 2-6
Authorization identifier 6-6
AVG function, as aggregate function 4-2

B
BEGIN WORK statement 6-35
BETWEEN keyword

using in WHERE clause 2-17
using to specify a range of rows 2-19

BIGSERIAL data type
last BIGSERIAL value inserted 4-23

Boolean expression 2-23
Braces ({ }) comment delimiters 11-10
Built-in data type, declaring variables 11-14
BYTE data type

restrictions with GROUP BY 5-3
using LENGTH function on 4-21
with relational expression 2-17

C
CALL statement, in SPL function 11-55
Cardinality function

description of 4-13
CARDINALITY function 4-13
Cartesian product

basis of joins 2-41
description of 2-40

Cascading deletes
child tables 6-26
definition of 6-26
locking associated with 6-26
logging 6-26, 6-35
referential integrity 6-26
restriction 6-27

Case conversion
with INITCAP function 4-16
with LOWER function 4-15
with UPPER function 4-16

CASE expression
description of 2-36
in UPDATE statement 6-19
using 2-36

CHAR data type
converting to a DATE value 4-10
converting to a DATETIME value 4-12
in relational expressions 2-17
substrings of 2-14
truncation signalled 8-6

© Copyright IBM Corp. 1996, 2010 X-1

Character string
converting to a DATE value 4-10
converting to a DATETIME value 4-12

Check constraints, definition of 6-24
Class libraries, shared 1-10
CLOSE DATABASE statement, effect on database locks 10-4
Collation order and GLS 2-15
Collection data types

accessing 3-1, 3-6
counting elements in 4-13
description of 3-6
element, searching for with IN 3-8
simple 3-6
updating 6-18
using the CARDINALITY function 4-13

Collection subquery
description of 5-27
ITEM keyword 5-28, 5-29
using ITEM keyword in 5-29

Collection types
in an SPL routine 11-10
in DELETE statement 6-4

Collection values, inserting into columns 6-11
Collection variable

defining, restrictions on 11-15
nested 3-6, 3-7
selecting 3-7

collection-derived table
using in SPL 11-45

Collection-derived table 5-30
accessing elements in a collection 5-30
description of 5-27, 11-42
restrictions on 5-31

Collections, with INSERT statement 6-11
Column number, using 2-13
Columns

definition of 2-2
descending order 2-8
description of 1-8
in relational model 1-8
label on 5-35
ordering the selection of 2-7
row-type, definition of 3-3

COMMIT WORK statement
closing cursors 10-18
releasing locks 10-8, 10-18
setting SQLCODE 9-2

Committed Read isolation level (Informix) 10-11
commutator function

definition 11-8
Comparison condition, description of 2-17
compliance with standards xii
Compound query 5-32
Concurrency

access modes 10-15
active set 8-16
ANSI isolation levels 10-10
Cursor Stability isolation (Informix) 10-11
database lock 10-4
deadlock 10-17
description of 6-37, 10-1
Informix isolation levels 10-10
isolation level 10-9
kinds of locks 10-3
lock duration 10-8
lock scope 10-3
multiple programs 10-2

Concurrency (continued)
table lock 10-4

Configuration parameters
ISOLATION_LOCKS 10-11

Constant expressions 6-6
Constraints, entity integrity 6-24
Conversion function, description of 4-10
Coordinated deletes 9-2
Coordinated Universal Time (UTC) 4-23
Correlated subquery

definition of 5-17
restriction with cascading deletes 6-27

COUNT function
and GROUP BY 5-3
as aggregate function 4-2
count rows to delete 6-3
use in a subquery 6-4
with DISTINCT 4-2

CREATE DATABASE statement
setting shared lock 10-4
SQLWARN after 8-6

CREATE FUNCTION FROM statement, in embedded
languages 11-11

CREATE FUNCTION statement
inside CREATE FUNCTION FROM statement 11-11
using 11-2
WITH LISTING IN clause 11-63

CREATE FUNCTION, return clause 11-6
CREATE INDEX statement, locking table 10-5
CREATE PROCEDURE FROM statement, in embedded

languages 11-11
CREATE PROCEDURE statement

inside CREATE PROCEDURE FROM 11-11
using 11-2
WITH LISTING IN clause 11-63

CREATE TABLE statement
cascading deletes 6-26
collection types 3-6
hierarchy 3-9
multiset columns 5-28
ON DELETE CASCADE clause 6-1
primary keys 6-25
row type columns 3-1
setting the lock mode 10-7
smart large object columns 4-14
typed table 3-1

CREATE TRIGGER statement 12-3
Cross join 2-42
Cross-server connection requirements 7-3
CURRENT function

as constant expression 6-6
comparing column values 4-6
using 4-6

Cursor
active set of 8-14
closing 10-18
declaring 8-12
definition of 8-11
end of transaction 10-18
for insert 9-5
for update 9-9, 10-8
opening 8-12, 8-15
retrieving values with FETCH 8-13
scroll 8-14
sequence of program operations 8-11
sequential 8-14, 8-15

Cursor Stability isolation level (Informix) 10-11

X-2 IBM Informix Guide to SQL: Tutorial

Cyclic query 6-27

D
Data definition statements 8-21
Data encryption functions 4-28
Data integrity 6-23

failures 6-33
Data models, description of 1-1
Data replication 6-37
Data types

automatic conversions 8-9
collection, accessing 3-1, 3-6
conversion 6-7, 8-9

Database object
constraints as a 6-27
index as a 6-27
object modes 6-27
trigger as a 6-27
violation detection 6-27

Database object mode
examples 6-28

Database servers
archiving 6-36
identifying host computer name 4-23
identifying version number 4-23
locking tables 10-4
signalled in SQLWARN 8-6
statement caching 10-19

DATABASE statement
locking 10-4
SQLWARN after 8-6

Databases
ANSI-compliant 1-12
compared to file 1-2
concurrent use 1-4
control of 1-5
definition of 1-8
external 7-1
locking 10-4
management of 1-7
modifying contents of 1-4
object-relational, description of 1-10
relational, description of 1-7
remote 7-1
server 1-4

DataBlade modules 1-10
DATE data type

converting to a character string 4-11
functions returning 4-6
in ORDER BY sequence 2-8
in relational expressions 2-17

DATE function, as conversion function 4-10
DATETIME data type

converting to a character string 4-11
displaying format 4-9
functions returning 4-6
in ORDER BY sequence 2-8
in relational expressions 2-17

DATETIME values, formatting 4-9
DAY function 4-6
DB-Access

creating database with 8-21
DBDATE environment variable 6-7
DBINFO function, in SELECT statement 4-23
DBSERVERALIASES configuration parameter 7-3
DBSERVERNAME configuration parameter 7-3

DBSERVERNAME function, in INSERT statement 6-6
DBSERVERNAME function, in SELECT statement 4-22
dbspace, name returned by DBINFO function 4-23
Deadlock detection 10-17
DECIMAL data type, signalled in SQLWARN 8-6
DECLARE CURSOR statement 9-5
DECLARE statement

description of 8-12
FOR INSERT clause 9-5
FOR UPDATE 9-9
SCROLL keyword 8-14
WITH HOLD clause 10-18

DECODE function 4-24
DECRYPT_BINARY function 4-28
DECRYPT_CHAR function 4-28
DEF_TABLES_LOCKMODE configuration parameter 10-7
Default values

in column 6-24
using 8-11

Delete MERGE operations 6-5
DELETE statements

collection types 6-4
coordinated deletes 9-2
count of rows 9-1
description of 6-1
developing 6-4
duplicate rows 9-7
embedded 8-3, 9-1
lock mode 10-14
number of rows 8-5
preparing 8-19
remove all rows 6-2
row types 6-4
selected rows 6-3
specific rows 6-3
transactions with 9-2
using 9-1
using subquery 6-4
WHERE clause restriction 6-4
with cursor 9-3
with supertables 6-4

Delete using TRUNCATE 6-2
Descending order in SELECT 2-8
Diagnostics table

description of 6-30
example of privileges 6-33
examples of starting 6-31

Difference set operation 5-39
Dirty Read isolation level (Informix) 10-10
Disabilities, visual

reading syntax diagrams A-1
Disability A-1
Display label

in ORDER BY clause 2-38
with SELECT 2-35

DISTINCT keyword
relation to GROUP BY 5-2
using in SELECT 2-11
using with COUNT function 4-2

Distinct-type variable 11-17
DOCUMENT clause, use in SPL routine 11-9
Domain of column 6-24
Dot notation 3-4
Dotted decimal format of syntax diagrams A-1
double hyphen (--) comment indicator 11-10
DROP INDEX statement, locking table 10-5
Duplicate values, finding 2-39

Index X-3

Dynamic routine-name specification
for SPL function 11-57
for SPL routine 11-57
rules for 11-58

Dynamic SQL
description of 8-2, 8-18
freeing prepared statements 8-20

E
Embedded SQL

definition of 8-1
languages available 8-1

ENCRYPT_AES function 4-28
ENCRYPT_TDES function 4-28
End of data

signal in SQLCODE 8-5, 8-10
signal only for SELECT 9-8
SQLCODE 8-13
when opening cursor 8-12

Entity integrity 6-24
Equals (=) relational operator 2-18, 2-42
Equi-join 2-42
Error checking

simulating errors 11-68
SPL routines 11-66, 11-68

Error message files 8-7
Error messages

applying fixed 12-12
for trigger failure 12-12
generating a variable 12-13
generating in a trigger 12-12
retrieving trigger text in a program 12-12, 12-13

Errors
after DELETE 9-1
codes for 8-5
dealing with 8-10
detected on opening cursor 8-12
during updates 6-33
inserting with a cursor 9-6
ISAM error code 8-5

ESCAPE keyword, using in WHERE clause 2-28
ESQL/C

cursor use 8-11, 8-16
DELETE statement in 9-1
delimiting host variables 8-3
dynamic embedding 8-2, 8-18
error handling 8-10
fetching rows from cursor 8-13
host variable 8-3, 8-4
indicator variable 8-9
INSERT in 9-4
overview 8-1, 8-23, 9-1
preprocessor 8-1
scroll cursor 8-14
selecting single rows 8-8
SQL Communications Area 8-4
SQLCODE 8-4
SQLERRD fields 8-5
static embedding 8-2
UPDATE in 9-9

EXCLUSIVE keyword
in DATABASE statement 10-4

Exclusive lock 10-3
EXECUTE FUNCTION statement

with SPL 11-54
EXECUTE IMMEDIATE statement, description of 8-21

Execute privilege
DBA keyword, effect of 11-62
objects referenced by a routine 11-61

EXECUTE PROCEDURE statement
with SPL 11-54

EXISTS keyword 5-38
in a WHERE clause 5-21
in SELECT statement 5-24

Expression
CASE 2-36
date-oriented 4-6
description of 2-33
display label for 2-35
in SPL routine 11-23

EXTEND function
using in expression 4-9
with DATE and DATETIME values 4-6

Extensibility, description of 1-10
External database 7-1

F
FETCH statement 8-13

ABSOLUTE keyword 8-14
description of 8-13
sequential 8-14
with sequential cursor 8-15

Field projection 3-4
Field, definition of 3-3
Files, compared to database 1-1
Filtering mode 6-28
FIRST clause

description of 2-30
using 2-31
with ORDER BY clause 2-32

FLUSH statement
count of rows inserted 9-6
rollback 9-6
writing rows to buffer 9-5

FOR UPDATE keywords
conflicts with ORDER BY 9-4
not needed in ANSI-compliant database 9-10
specific columns 9-9

FOREACH statement 11-24
Foreign key 6-25
FREE statement, freeing prepared statements 8-20
FROM clause

subqueries in 5-20
FROM keyword, alias names 2-47
Functions

aggregate 4-1
applying to expressions 4-5
conversion 4-10
DATE 4-10
date-oriented 4-6
DBINFO 4-23
DECODE 4-24
in SELECT statements 4-1
INITCAP 4-16
LOWER 4-15
LPAD 4-19
name confusion in SPL routine 11-19
NVL 4-25
REPLACE 4-17
RPAD 4-20
smart large object 4-14
string manipulation 4-15

X-4 IBM Informix Guide to SQL: Tutorial

Functions (continued)
SUBSTR 4-18
SUBSTRING 4-17
time 4-6
TO_CHAR 4-11
TO_DATE 4-12
UPPER 4-16

Functions, data encryption 4-28

G
GET DIAGNOSTICS statement 8-7
GETHINT function 4-28
Global Language Support (GLS)

and MATCHES keyword 2-27
and ORDER BY keywords 2-15
default locale 2-15
sort order 2-15

Global variable
declaring 11-20
description of 11-20

GRANT statement, in embedded SQL 8-21, 8-23
Granularity, of locks 10-3
Greater than or equal to (>=) relational operator 2-19
GROUP BY clause

description of 5-1
GROUP BY keywords

column number with 5-4
description of 5-1

H
HAVING clause, description of 5-1
HAVING keyword 5-5
HEX function, using in expression 4-23
hierarchy

table and row 3-9
Hold cursor, definition of 10-18
Host variable 8-4

delimiter for 8-3
description of 8-3
fetching data into 8-13
in DELETE statement 9-1
in INSERT statement 9-4
in UPDATE statement 9-9
in WHERE clause 8-8
INTO keyword sets 8-8
null indicator 8-9
restrictions in prepared statement 8-19
truncation signalled 8-6

I
IF statement, in SPL 11-27
IFX_DEF_TABLE_LOCKMODE environment variable 10-7
IN keyword

to form an intersection 5-38
using in WHERE clause 2-17

IN relational operator 5-21
Indicator variable, definition of 8-9
industry standards xii
Informix database, object-relational databases 1-10
INITCAP function, as string manipulation function 4-16
Insert cursor

definition of 9-5
using 9-6

Insert MERGE operations 6-6
INSERT statements

and end of data 9-8
collection columns 6-11
constant data with 9-6
count of rows inserted 9-6
description 6-6
embedded 9-4
inserting

collections 6-11
into supertables 6-10
multiple rows 6-13

lock mode 10-14
named row type 6-9
null values in collection 6-12
number of rows 8-5
SELECT restrictions 6-13
SELECT statement in 6-13
selected columns 6-7
serial values 6-7
smart large objects in 6-12
unnamed row type 6-9
VALUES clause 6-6
with row-type columns 6-9
with SELECT statement 6-13

Inserting rows of constant data 9-6
INSTEAD OF trigger 12-10
Intent lock 10-14
Intersection

definition of 5-38
set operation 5-36

INTERVAL data type
in relational expressions 2-17

INTO clause 8-13
INTO keyword

choice of location 8-13
in FETCH statement 8-13
mismatch signalled in SQLWARN 8-6
restrictions in INSERT 6-13
restrictions in prepared statement 8-19
retrieving multiple rows 8-12
retrieving single rows 8-8

INTO TEMP keywords, description of 2-49
IPCSTR connection 7-3
IS NOT NULL keywords 2-22
IS NULL keywords 2-22
ISAM error code 8-5
ISO 8859-1 code set 2-15
Isolation level

ANSI 10-10, 10-12
Cursor Stability (Informix) 10-11
description of 10-9
dirty read 10-10
Informix 10-10
read uncommitted 10-10
repeatable read 10-12

ISOLATION_LOCKS configuration parameter 10-11
ITEM keyword, collection subquery 5-28, 5-29

J
Join

ANSI outer-join syntax 5-11
associative 2-44
composite 2-40
condition 2-40
creating 2-41

Index X-5

Join (continued)
cross 2-42
definition of 2-5, 2-40
equi-join 2-42
in an UPDATE statement 6-21
in MERGE statement 6-5, 6-6, 6-14
Informix outer join syntax 5-11
left outer 5-11
multiple-table join 2-46
natural 2-44
nested simple 5-14
on derived tables 5-13
outer 5-10
right outer 5-13
self-join 5-7
simple 2-40

K
Keywords

in a subquery 5-21
in a WHERE clause 2-17

L
Label 2-35, 5-35
Left outer join 5-11
LENGTH function

on TEXT or BYTE strings 4-21
on VARCHAR 4-21
use in expression 4-21

Less than or equal to (>=) relational operator 2-19
LET statement 11-21
LIKE clause

in SPL function 11-17
LIKE keyword

description of 2-24
using in WHERE clause 2-17

Local variable, description of 11-13
LOCK TABLE statement, locking a table explicitly 10-4
Locking

and concurrency 6-37
behavior of different lock types 10-14
deadlock 10-17
description of 10-3
end of transaction 10-18
integrity 10-1
intent locks 10-14
lock duration 10-8
number of rows to lock 10-11
row and key locks 10-5
scope of lock 10-3
setting lock mode 10-16
time limit 10-17
types of locks 10-3

coarse index lock 10-7
database lock 10-4
exclusive 10-3
page lock 10-5, 10-6
promotable 10-3
promotable lock 10-8
row and key locks 10-5
shared 10-3
smart-large-object locks 10-8
table lock 10-4

update cursor 10-8

Locking (continued)
update lock 10-14
WAIT keyword 10-16
with DELETE 9-1

Logical log
and backups 6-36
description of 6-34

Logical operator
= (equals) 2-23
AND 2-23
NOT 2-23
OR 2-23

Loop, exiting with RAISE exception 11-68
LOWER function, as string manipulation function 4-15
LPAD function, as string manipulation function 4-19

M
MATCHES keyword

using GLS 2-27
using in WHERE clause 2-17

MATCHES relational operator
how locale affects 2-27
in WHERE clause 2-24

MAX function, as aggregate function 4-3
MERGE statement

using Insert join 6-6
using Update join 6-14

MERGE statements
using Delete join 6-5

MIN function, as aggregate function 4-3
MODE ANSI keywords, specifying transactions 6-35
MONEY data type

in INSERT statement 6-7
MONTH function

using, TIME function
MONTH 4-7

MONTH function, as time function 4-6
Multiple-table join 2-46
Multiple-Table SELECTs 2-40
MULTISET keyword

collection subquery 5-28
Multithreaded application, definition of 8-1

N
Named row type, in VALUES clause 6-9
Natural join 2-44
NCHAR data type, querying on 2-2
Nested ordering, in SELECT 2-9
NODEFDAC environment variable, effect on privileges of

public 11-60
NOT BETWEEN keywords in WHERE clause 2-20
Not equal (!=) relational operator 2-18
NOT EXISTS keywords 5-39
NOT IN keywords 5-39
NOT logical operator 2-23
Null values

detecting in ESQL 8-9
testing for 2-22
with logical operator 2-23

NVARCHAR data type, querying on 2-2
NVL function 4-25

X-6 IBM Informix Guide to SQL: Tutorial

O
Object mode

description of 6-27
disabled 6-27
enabled 6-27
filtering 6-28

Object-relational database, description of 1-10
ON DELETE CASCADE option 6-26
ON EXCEPTION statement

scope of control 11-67
trapping errors 11-66
user-generated errors 11-67

onload utility 6-36
onunload utility 6-36
Opaque-type variable 11-17
OPEN statement 8-12
Opening a cursor 8-15
OR logical operator 2-23
OR relational operator 2-20
ORDER BY keywords

and GLS 2-15
ascending order 2-8
DESC keyword 2-8, 2-14
display label with 2-38
multiple columns 2-9
relation to GROUP BY 5-3
restrictions in INSERT 6-13
restrictions with FOR UPDATE 9-4
select columns by number 2-13
sorting rows 2-7

Outer-join syntax
ANSI 5-11
Informix 5-11

P
Page locking 10-5
Parts explosion 8-16
Performance

effect of concurrency 10-1
increasing with stored routines 11-1

PREPARE statement
description of 8-19
error return in SQLERRD 8-5
multiple SQL statements 8-19

Primary key constraint, definition of 6-25
Primary key, definition of 6-24
Privileges

database-level 6-21
displaying 6-22
needed to modify data 6-21
on a database 6-21
overview 1-4
table-level 6-22

Procedure-type variables 11-18
Program variables

SPL 8-3
Projection, definition of 2-4
Projects, description of 1-9
Promotable lock 10-3, 10-8
PUT statement

constant data with 9-6
count of rows inserted 9-6
insert data 9-5
sends returned data to buffer 9-5
status code 9-6

Q
Qualifier, existential 5-24
Query

audit 5-26
compound 5-32
cyclic 6-27
self-referencing 6-27
stated in terms of data model 1-3

Quoted string, as constant expression 6-6

R
RAISE EXCEPTION statement 11-66
RANGE function, as aggregate function 4-3
Re-entrant trigger, description of 12-10
Read Committed isolation level (ANSI) 10-11
Read Uncommitted isolation level (ANSI) 10-10
Recursive relationship, example of 8-16
REFERENCES keyword

in CREATE FUNCTION statement 11-4
in CREATE PROCEDURE statement 11-4

REFERENCES keyword, in SPL function 11-15
Referential constraint, definition of 6-25
Referential integrity, definition of 6-25
Relational database, description of 1-7
Relational model

join 2-5
projection 2-3
selection 2-3

Relational operation 2-3
Relational operators

BETWEEN 2-19
EXISTS 5-21
IN 5-21
in a WHERE clause 2-17
LIKE 2-24
MATCHES 2-24
NULL 2-22
OR 2-20

Remote database 7-1
Repeatable read isolation level 10-12
REPLACE function, as string manipulation function 4-17
Replication

of data 6-37
transparency 6-37

Return types, in SPL function 11-6
REVOKE statement, in embedded SQL 8-21, 8-23
Right outer join 5-13
Roles

default 1-5
definition 1-5

ROLLBACK WORK statement
closes cursors 10-18
releases locks 10-8, 10-18
setting SQLCODE 9-2

ROW data types
dot notation with 3-4
field projection 3-4
field projections in SELECT 3-5
field, definition of 3-3
in DELETE statement 6-4
selecting columns from 3-3
selecting data from 3-1
updating 6-17
using asterisk notation with SELECT 3-5

Index X-7

Row type columns
definition of 3-3
Null values 6-18

Row-type data, selecting columns of 3-3
Row-type variables, delcaring 11-16
ROWID, using to locate internal row numbers 2-39
Rows

checking rows processed in SPL routines 11-69
definition of 1-9, 2-2
finding number of rows processed 4-23
in relational model 1-9
inserting 6-6
locking 10-5
number of rows returned 2-30
removing 6-1
updating 6-14

RPAD function, as string manipulation function 4-20

S
Screen reader

reading syntax diagrams A-1
Screens, example 12-12
Scroll cursors

active set 8-15
definition of 8-14

SCROLL keyword, using in DECLARE 8-14
Select cursor

opening 8-12
using 8-12

Select list
display label 2-35
expressions in 2-33
functions in 4-1, 4-23
labels in 5-35
selecting all columns 2-6
selecting specific columns 2-10
specifying a substring in 2-14

SELECT statements
accessing collections 3-1, 3-6
active set 2-16, 8-8
advanced 5-1
aggregate functions in 4-1, 4-10
alias names 2-47
ALL keyword 5-21
and end-of-data return code 9-8
ANY keyword 5-22
basic concepts 2-2
collection expressions 5-27
collection subquery 5-28
collection-derived table 5-30
compound query 5-32
cursor for 8-11, 8-12
date-oriented functions in 4-6
description of 2-1
display label 2-35
DISTINCT keyword 2-11
embedded 8-8, 8-9
executing triggered actions 12-8
EXISTS keyword 5-24
FIRST clause 2-30
for joined tables 2-49
for single tables 2-6, 4-23
forms of 2-2
functions 4-1, 4-23
GROUP BY clause 5-2
HAVING clause 5-5

SELECT statements (continued)
in UPDATE statement 6-15
INTO clause with ESQL 8-8
INTO TEMP clause 2-49
isolation level 10-9
join 2-41
multiple-table 2-40
natural join 2-44
ORDER BY clause 2-7
outer join 5-10
select list 2-3
selecting a row type 3-1
selecting a substring 2-14
selecting expressions 2-33
selection list 2-6
self-join 5-7
set operations 5-32
simple 2-1
single-table 2-6
singleton 2-16, 8-8
smart-large-object functions in 4-14
stand-alone 12-8
subquery 5-17
UNION operator 5-32
using

for join 2-5
for projection 2-4
for selection 2-3

using functions 4-1
SELECT triggers, description of 12-8
Select, description of 1-9
Selection, description of 2-3
Self-join 5-7

assigning column names with INTO TEMP 5-7
description of 5-7

Self-referencing query 5-7, 6-27
Semantic integrity 6-24
Sequence

definition of 1-9
Sequential cursor, definition of 8-14
SERIAL data type

generated number in SQLERRD 8-5
inserting a starting value 6-7
last SERIAL value inserted 4-23

SERIAL8 data type
last SERIAL8 value inserted 4-23

Session ID, returned by DBINFO function 4-23
SET clause, in UPDATE statement 6-16
SET COLLATION 2-27
Set intersection 5-38
SET ISOLATION statement

and SET TRANSACTION 10-9
use of 10-9

SET keyword, in MERGE statement 6-14
SET keyword, in UPDATE statement 6-15
SET LOCK MODE statement, description of 10-16
Set operation

difference 5-39
intersection 5-36
union 5-32
use of 5-32

SET TRANSACTION statement
and SET ISOLATION 10-9
use of 10-9

Shared class libraries 1-10
Shared lock 10-3

X-8 IBM Informix Guide to SQL: Tutorial

Shortcut keys
keyboard A-1

Simple large objects, SPL variable 11-15
Singleton SELECT statement 2-16, 8-8
SITENAME function, in INSERT statement 6-6
SITENAME function, in SELECT statement 4-22
Smart large objects

functions for copying 4-14
importing and exporting 4-14, 6-12
in an UPDATE statement 6-20
SPL variables 11-15
using SQL functions

in a SELECT statement 4-14
in an INSERT statement 6-12

SOME keyword, beginning a subquery 5-21
Sorting

as affected by a locale 2-15
effects of GLS 2-15
nested 2-9
with ORDER BY 2-8

Special character, protecting 2-28
Specific name, for SPL routine 11-4
SPL

assigning values to variables 11-21, 11-23
FOREACH loop 11-24
LET statement 11-21
parameter list 11-4
program variable 8-3
relation to SQL 11-1
return clause 11-6
statement block 11-23
tracing triggered actions 12-11
using cursors 11-24
WITH LISTING IN clause 11-9

SPL function
CALL statement 11-55
collection query 11-42
dynamic routine-name specification 11-57
large object variables 11-15
variant vs. not variant 11-7
WITH clause 11-8

SPL routines
adding comments to 11-9
as triggered action 12-6
collection data types 11-35
comments 11-10
compiler messages 11-63
CONTINUE statement 11-30
debugging 11-64
definition of 11-1
dot notation 11-34
dropping 11-12
dynamic routine-name specification 11-57
example of 11-11
exceptions 11-66, 11-68
EXECUTE PROCEDURE 12-7
executing 11-53
EXIT statement 11-30
exiting a loop 11-30
finding errors 11-63
FOR loop 11-28
IF..ELIF..ELSE structure 11-27
in an embedded language 11-11
in SELECT statements 4-26
introduction to 11-1
name confusion with SQL functions 11-19
passing data 12-6

SPL routines (continued)
privileges 11-59
return types 11-6
returning values 11-31
row-type data 11-34
specific name 11-4
SQL expressions 11-23
syntax error 11-63
system catalog entries 11-63
text of 11-63
TRACE statement 12-11
updating nontriggering columns 12-7
uses 11-1
variables, scope of 11-14
WHILE loop 11-28
writing 11-2

SQL
application languages 8-2
Application Programming Interfaces 8-1
compliance of statements with ANSI standard 1-11
cursor 8-11
description of 1-11
difference between Informix syntax and ANSI

standard 1-11
dynamic statements 8-2
error handling 8-10
history 1-11
Informix SQL and ANSI SQL 1-11
interactive use 1-12
standardization 1-11
static embedding 8-2

SQL Communications Area
altered by end of transaction 9-2
description of 8-4
inserting rows 9-6

SQL statement cache 10-19
SQLCODE

end of data 8-13
negative values 8-10

SQLCODE field
after opening cursor 8-12
and FLUSH operation 9-6
description of 8-4
end of data on SELECT only 9-8
end of data signalled 8-10
set by DELETE statement 9-1
set by PUT statement 9-6

SQLERRD array
count of deleted rows 9-1
count of inserted rows 9-6
count of rows 9-8
description of 8-5
syntax of naming 8-4

SQLERRM character string 8-7
sqlhosts file 7-3
SQLSTATE values 8-7
SQLSTATE variable

in non-ANSI-compliant databases 8-10
using with a cursor 8-12

SQLSTATE, problem values 8-10
SQLWARN array

description of 8-6
syntax of naming 8-4
with PREPARE 8-19

Standard deviation, aggregate function 4-4
standards xii
START VIOLATIONS TABLE 6-31

Index X-9

Statement block 11-23
Statement cache, SQL 10-19
Static SQL 8-2
STDEV function, as aggregate function 4-4
Stored routine, general programming 1-12
Stream pipe connection 7-3
Subquery

ALL keyword 5-21
ANY keyword 5-22
correlated 5-17, 5-23, 6-27
in DELETE statement 6-4
in FROM clause 5-20
in select list 5-19
in SELECT statement 5-17
in UPDATE statement 6-15

with SET clause 6-15
in WHERE clause 5-21
single-valued 5-22

Subscripting
in a WHERE clause 2-29
SPL variables 11-18

SUBSTR function, as string manipulation function 4-18
Substring 2-14, 11-18
SUBSTRING function, as string manipulation function 4-17
SUM function, as aggregate function 4-4
Supertable 3-11

in a table hierarchy 3-9
inserting into 6-10
selecting from 3-10
using an alias 3-11

Syntax diagrams
reading in a screen reader A-1

SYSDATE function, as time function 4-6, 6-6
sysprocbody, system catalog table 11-63
System catalogs

privileges in 6-22
querying 6-22
sysprocbody 11-63
systabauth 6-22

System descriptor area 8-20

T
Table

description of 1-8
hierarchy 3-9
in relational model 1-8
loading data

with onload utility 6-36
lock 10-4
not in the current database 2-23
operations on a 1-9

Table hierarchy
triggers in 12-8
UPDATE statements 6-19

TCP/IP connection 7-3
Temporary tables

and active set of cursor 8-15
assigning column names 5-7
example 6-13

TEXT data type
restrictions

with GROUP BY 5-3
using LENGTH function on 4-21
with relational expressions 2-17

Time function
description of 4-6

Time function (continued)
use in SELECT 4-1

TIME function
DAY and CURRENT 4-6
WEEKDAY 4-8
YEAR 4-9

TO_CHAR function, as conversion function 4-11
TO_DATE function, as conversion function 4-12
TODAY function, in constant expression 4-22, 6-7
TRACE statement

debugging an SPL routine 11-64
output 12-12

Transaction logging
contents of log 6-36
description of 6-34

Transactions
description of 6-34
end of 10-18
example with DELETE 9-2
locks held to end of 10-8
locks released at end of 10-8
logging 6-34
use signalled in SQLWARN 8-6

Trigger action
definition of 12-3
REFERENCING clause 12-5

Trigger event
definition of 12-2
example of 12-2

Trigger routines 12-7
Triggered action

BEFORE and AFTER 12-4
FOR EACH ROW 12-5
generating an error message 12-12
in relation to triggering statement 12-3
SELECT statements 12-8
statements 12-1
tracing 12-11
using 12-4
using SPL routines 12-6
WHEN condition 12-6

Triggers
creating 12-1
declaring the name 12-2
definition of 12-1
in a table hierarchy 12-8
INSTEAD OF 12-10
re-entrant 12-10
select

defining on a table hierarchy 12-10
description of 12-8
restrictions on execution 12-9

when to use 12-1
TRUNCATE statement 6-2
Truncation, signalled in SQLWARN 8-6
Typed table

definition of 3-1
inserting rows 6-8
selecting from 3-2

U
UNION keyword, in set operations 5-32
UNION operator, display labels with 5-35
Union set operation 5-32
UNIQUE keyword, in SELECT statement 2-11
Unnamed row type, in VALUES clause 6-9

X-10 IBM Informix Guide to SQL: Tutorial

untyped 11-15
Update cursor 10-13
Update cursor, definition of 9-9
UPDATE keyword 9-9
Update locks, retaining 10-14
Update MERGE operations 6-14
UPDATE statements

and end of data 9-8
collection data types 6-18
description of 6-14
embedded 9-9
failures 6-33
lock mode 10-14
number of rows 8-5
preparing 8-19
restrictions on subqueries 6-16
SET clause 6-16
smart large objects 6-20
using a join to update a column 6-21
WHERE clause 6-15
with a supertable 6-19
with row data types 6-17
with uniform values 6-15

UPPER function, as string manipulation function 4-16
USER function, in expression 4-21, 6-6
Using the GROUP BY and HAVING Clauses 5-1
UTC time and time zone, returned by DBINFO function 4-23
Utility program

onload 6-36
onunload 6-36

V
VALUES clause

in INSERT statement 6-6
in MERGE statement 6-6
NULL values 6-10
restrictions 6-7
selected columns 6-7
valid values 6-6

VARCHAR data type, using LENGTH function on 4-21
Variables

defining and using in SPL routine 11-13
scope in SPL routine 11-14
with same name as a keyword 11-19

VARIANCE function, as aggregate function 4-5
variant SPL function 11-7
Version number, returned by DBINFO function 4-23
View

definition of 1-9
deleting in a 12-10
inserting into a 12-10
INSTEAD OF trigger on a 12-10
updating in a 12-10

Violation detection 6-27
Violations table

assigning a name 6-31
description of 6-30
example of privileges 6-32
examples 6-28
examples of starting 6-31
starting 6-31

Visual disabilities
reading syntax diagrams A-1

W
Warnings, with SPL routine at compile time 11-63
WEEKDAY function

as time function 4-6, 4-8
using 4-8

WHERE clause
Boolean expression in 2-23
comparison condition 2-17
date-oriented functions in 4-8
description of 2-16
equal sign relational operator 2-18
host variables in 8-8
in DELETE 6-2
in UPDATE statement 6-15
less-than relational operator 2-19
not-equal relational operator 2-18
relational operators 2-17
selecting a range of characters 2-29
subqueries in 5-21
wildcard comparisons 2-24
with NOT keyword 2-20
with OR keyword 2-20

WHERE CURRENT OF clause
in DELETE statement 9-3
in UPDATE statement 9-9

WHERE keyword
null data tests 2-22
range of values 2-19

Wildcard character
asterisk 2-6
protecting 2-28

Wildcard comparison in WHERE clause 2-24
Wildcard, using single character 2-24
WITH clause, in SPL function 11-8
WITH HOLD keywords, declaring a hold cursor 10-18
WITH LISTING IN clause, use in SPL routine 11-9

Y
YEAR function

as time function 4-6
using 4-9

Index X-11

X-12 IBM Informix Guide to SQL: Tutorial

����

Printed in USA

SC27-3810-00

Sp
in
e
in
fo
rm
at
io
n:

IB
M

In
fo

rm
ix

Ve
rs

io
n

11
.5

0
IB

M
In

fo
rm

ix
Gu

id
e

to
SQ

L:
Tu

to
ria

l
�
�

�

	Contents
	Introduction
	In this introduction
	About this publication
	Types of users
	Software dependencies
	Assumptions about your locale
	Demonstration database

	What's new in IBM Informix Guide to SQL: Tutorial, Version 11.50
	Example code conventions
	Additional documentation
	Compliance with industry standards

	Chapter 1. Database concepts
	Illustration of a data model
	Store data
	Query data
	Modify data

	Concurrent use and security
	Control database use
	Access-management strategies

	Centralized management

	Important database terms
	The relational database model
	Tables
	Columns
	Rows
	Views
	Sequences
	Operations on tables
	The object-relational model

	Structured Query Language
	Standard SQL
	Informix SQL and ANSI SQL
	Interactive SQL
	General programming
	ANSI-compliant databases
	Global Language Support

	Summary

	Chapter 2. Compose SELECT statements
	SELECT statement overview
	Output from SELECT statements
	Output from large object data types
	Output from user-defined data types
	Output in non-default code sets

	Some basic concepts
	Privileges
	Relational operations
	Selection and projection
	Join

	Single-table SELECT statements
	The asterisk symbol (*)
	Reorder the columns

	The ORDER BY clause to sort the rows
	Ascending order
	Descending order
	Sorting on multiple columns

	Select specific columns
	Select substrings
	ORDER BY and non-English data

	The WHERE clause
	Create a comparison condition
	Include rows
	Exclude rows
	Specify a range of rows
	Exclude a range of rows
	Use a WHERE clause to find a subset of values
	Identify NULL values
	Form compound conditions
	Exact-text comparisons
	Variable-text searches
	A single-character wildcard
	MATCHES clause and non-default locales
	Protect special characters
	Subscripting in a WHERE clause

	FIRST clause to select specific rows
	FIRST clause without an ORDER BY clause
	FIRST clause with an ORDER BY clause

	Expressions and derived values
	Arithmetic expressions
	CASE expressions
	Sorting on derived columns

	Rowid values in SELECT statements

	Multiple-table SELECT statements
	Create a Cartesian product
	Create a join
	Cross join
	Equi-join
	Natural join
	Multiple-table join

	Some query shortcuts
	Aliases
	The INTO TEMP clause

	Summary

	Chapter 3. Select data from complex types
	Select row-type data
	Select columns of a typed table
	Select columns that contain row-type data
	Field projections
	Field projections to select nested fields
	Asterisk notation to access all fields of a row type

	Select from a collection
	Select nested collections
	The IN keyword to search for elements in a collection

	Select rows within a table hierarchy
	Select rows of the supertable without the ONLY keyword
	Select rows from a supertable with the ONLY keyword
	An alias for a supertable

	Summary

	Chapter 4. Functions in SELECT statements
	Functions in SELECT statements
	Aggregate functions
	The AVG function
	The COUNT function
	The MAX and MIN functions
	The RANGE function
	The STDEV function
	The SUM function
	The VARIANCE function
	Apply functions to expressions

	Time functions
	The DAY and CURRENT functions
	The MONTH function
	The WEEKDAY function
	The YEAR function
	Format DATETIME values

	Date-conversion functions
	The DATE function
	The TO_CHAR function
	The TO_DATE function

	Cardinality function
	Smart large object functions
	String-manipulation functions
	The LOWER function
	The UPPER function
	The INITCAP function
	The REPLACE function
	The SUBSTRING and SUBSTR functions
	The SUBSTRING function
	The SUBSTR function
	The LPAD function
	The RPAD function

	Other functions
	The LENGTH function
	The USER function
	The TODAY function
	The DBSERVERNAME and SITENAME functions
	The HEX function
	The DBINFO function
	The DECODE function
	The NVL function

	SPL routines in SELECT statements
	Data encryption functions
	Using column-level data encryption to secure credit card data

	Summary

	Chapter 5. Compose advanced SELECT statements
	The GROUP BY and HAVING clauses
	The GROUP BY clause
	The HAVING clause

	Create advanced joins
	Self-joins
	Outer joins
	IBM Informix extension to outer join syntax
	ANSI join syntax
	Left outer join
	Right outer join
	Simple join
	Simple outer join on two tables
	Outer join for a simple join to a third table
	Outer join of two tables to a third table
	Joins that combine outer joins

	Subqueries in SELECT statements
	Correlated subqueries
	Using subqueries to combine SELECT statements
	Subqueries in a Projection clause
	Subqueries in the FROM clause
	Subqueries in WHERE clauses
	The ALL keyword
	The ANY keyword
	Single-valued subqueries
	Correlated subqueries
	The EXISTS keyword

	Subqueries in DELETE and UPDATE statements

	Handle collections in SELECT statements
	Collection subqueries
	Omit the ITEM keyword in a collection subquery
	Specify the ITEM keyword in a collection subquery
	Collection subqueries in the FROM clause

	Collection-derived tables
	ISO-compliant syntax for collection derived tables

	Set operations
	Union
	ORDER BY clause with UNION
	The UNION ALL keywords
	Different column names
	UNION with multiple tables
	A literal in the Projection clause
	A FIRST clause

	Intersection
	Difference

	Summary

	Chapter 6. Modify data
	Modify data in your database
	Delete rows
	Delete all rows of a table
	Delete all rows using TRUNCATE
	Delete specified rows
	Delete selected rows
	Delete rows that contain row types
	Delete rows that contain collection types
	Delete rows from a supertable
	Complicated delete conditions
	The Delete clause of MERGE

	Insert rows
	Single rows
	Possible column values
	Restrictions on column values
	Serial data types
	List specific column names

	Insert rows into typed tables
	Syntax rules for inserts on columns
	Rows that contain named row types
	Rows that contain unnamed row types
	Specify NULL values for row types

	Insert rows into supertables
	Insert collection values into columns
	Insert values into simple collections and nested collections
	Insert NULL values into a collection that contains a row type

	Insert smart large objects
	Multiple rows and expressions
	Restrictions on the insert selection

	Update rows
	Select rows to update
	Update with uniform values
	Restrictions on updates
	Update with selected values
	Update row types
	Update rows that contain named row types
	Update rows that contain unnamed row types
	Specify Null values for the fields of a row type

	Update collection types
	Update rows of a supertable
	CASE expression to update a column
	SQL functions to update smart large objects
	The MERGE statement to update a table
	A join to update a column

	Privileges on a database and on its objects
	Database-level privileges
	Table-level privileges
	Display table privileges
	Grant privileges to roles

	Data integrity
	Entity integrity
	Semantic integrity
	Referential integrity
	The ON DELETE CASCADE option
	Example of cascading deletes
	Restrictions on cascading deletes

	Object modes and violation detection
	Definitions of object modes
	Example of modes with data manipulation statements
	Violations and diagnostics tables

	Interrupted modifications
	Transactions
	Transaction logging
	Logging and cascading deletes

	Specify transactions

	Backups and logs with IBM Informix database servers
	Concurrency and locks
	IBM Informix data replication
	Summary

	Chapter 7. Access and modify data in an external database
	Access other database servers
	Access ANSI databases
	Create joins between external database servers
	Access external routines

	Restrictions for remote database access
	SQL statements and logging modes
	Access external database objects

	Chapter 8. SQL programming
	SQL in programs
	SQL in SQL APIs
	SQL in application languages
	Static embedding
	Dynamic statements
	Program variables and host variables

	Call the database server
	SQL Communications Area
	SQLCODE field
	End of data
	Negative Codes

	SQLERRD array
	SQLWARN array
	SQLERRM character string
	SQLSTATE value

	Retrieve single rows
	Data type conversion
	What if the program retrieves a NULL value?
	Dealing with errors
	End of data
	End of data with databases that are not ANSI compliant
	Serious errors
	Interpret end of data with aggregate functions
	Default values

	Retrieve multiple rows
	Declare a cursor
	Open a cursor
	Fetch rows
	Detect end of data
	Locate the INTO clause

	Cursor input modes
	Active set of a cursor
	Create the active set
	Active set for a sequential cursor
	Active set for a SCROLL cursor
	Active set and concurrency

	Parts-explosion problem

	Dynamic SQL
	Prepare a statement
	Execute prepared SQL
	Dynamic host variables
	Free prepared statements
	Quick execution

	Embed data-definition statements
	Grant and revoke privileges in applications
	Assign roles

	Summary

	Chapter 9. Modify data through SQL programs
	The DELETE statement
	Direct deletions
	Errors during direct deletions
	Transaction logging
	Coordinated deletions

	Delete with a cursor

	The INSERT statement
	An insert cursor
	Declare an insert cursor
	Insert with a cursor
	Status codes after PUT and FLUSH

	Rows of constants
	An insert example
	How many rows were affected?

	The UPDATE statement
	An update cursor
	The purpose of the keyword UPDATE
	Update specific columns
	UPDATE keyword not always needed

	Cleanup a table

	Summary

	Chapter 10. Programming for a multiuser environment
	Concurrency and performance
	Locks and integrity
	Locks and performance
	Concurrency issues
	How locks work
	Kinds of locks
	Lock scope
	Database locks
	Table locks
	Row and key locks
	Page locks
	Coarse index locks
	Smart-large-object locks

	Duration of a lock
	Locks while modifying

	Lock with the SELECT statement
	Set the isolation level
	SET TRANSACTION versus SET ISOLATION
	ANSI Read Uncommitted and IBM Informix Dirty Read isolation
	ANSI Read Committed and IBM Informix Committed Read isolation
	IBM Informix Cursor Stability isolation
	ANSI Serializable, ANSI Repeatable Read, and IBM Informix Repeatable Read isolation

	Update cursors

	Retain update locks
	Locks placed with INSERT, UPDATE, and DELETE
	The behavior of the lock types
	Control data modification with access modes
	Set the lock mode
	Waiting for locks
	Not waiting for locks
	Limited time wait
	Handle a deadlock
	Handling external deadlock

	Simple concurrency
	Hold cursors
	The SQL statement cache
	Summary

	Chapter 11. Create and use SPL routines
	Introduction to SPL routines
	What you can do with SPL routines

	SPL routines format
	The CREATE PROCEDURE or CREATE FUNCTION statement
	Begin and end the routine
	Specify a routine name
	Add a specific name
	Add a parameter list
	Add a return clause
	Add display labels
	Specify whether the SPL function is variant
	Add a modifier
	Specify a DOCUMENT clause
	Specify a listing file
	Add comments

	Example of a complete routine
	Create an SPL routine in a program
	Routines in distributed operation

	Define and use variables
	Declare local variables
	Scope of local variables
	Declare variables of built-in data types
	Declare variables for smart large objects
	Declare variables for simple large objects
	Declare collection variables
	Declare row-type variables
	Declare opaque- and distinct-type variables
	Declare variables for column data with the LIKE clause
	Declare PROCEDURE type variables
	Subscripts with variables
	Variable and keyword ambiguity

	Declare global variables
	Assign values to variables
	The LET statement
	Other ways to assign values to variables

	Expressions in SPL routines
	Writing the statement block
	Implicit and explicit statement blocks
	The FOREACH loop
	The FOREACH loop to define cursors
	Restriction for FOREACH loops

	An IF - ELIF - ELSE structure
	Add WHILE and FOR loops
	Exit a loop

	Return values from an SPL function
	Return a single value
	Return multiple values

	Handle row-type data
	Precedence of dot notation
	Update a row-type expression

	Handle collections
	Collection data types
	Prepare for collection data types
	Declare a collection variable
	Declare an element variable
	Select a collection into a collection variable

	Insert elements into a collection variable
	Insert into a SET or MULTISET
	Insert into a LIST
	Check the cardinality of a LIST collection
	Syntax of the VALUES clause

	Select elements from a collection
	The collection query
	Add the collection query to the SPL routine

	Delete a collection element
	Update the collection in the database
	Delete the entire collection

	Update a collection element
	Update a collection with a variable

	Update the entire collection
	Update a collection of row types
	Update a nested collection

	Insert into a collection
	Insert into a nested collection

	Executing routines
	The EXECUTE statements
	The CALL statement
	Execute routines in expressions
	Execute an external function with the RETURN statement
	Execute cursor functions from an SPL routine
	Dynamic routine-name specification
	Rules for dynamic routine-name specification

	Privileges on routines
	Privileges for registering a routine
	Privileges for executing a routine
	Grant and revoke the Execute privilege
	Execute privileges with COMMUTATOR and NEGATOR functions

	Privileges on objects associated with a routine
	DBA privileges for executing a routine

	Find errors in an SPL routine
	Compile-time warnings
	Generate the text of the routine

	Debug an SPL routine
	Exception handling
	Error trapping and recovering
	Scope of control of an ON EXCEPTION statement
	User-generated exceptions
	Simulate SQL errors
	RAISE EXCEPTION to exit nested code

	Check the number of rows processed in an SPL routine
	Summary

	Chapter 12. Create and use triggers
	When to use triggers
	How to create a trigger
	Declare a trigger name
	Specify the trigger event
	Define the triggered actions
	A complete CREATE TRIGGER statement

	Triggered actions
	BEFORE and AFTER triggered actions
	FOR EACH ROW triggered actions
	The REFERENCING clause
	The WHEN condition

	SPL routines as triggered actions
	Pass data to an SPL routine
	Using SPL
	Update nontriggering columns with data from an SPL routine

	Trigger routines
	Triggers in a table hierarchy
	Select triggers
	SELECT statements that execute triggered actions
	Stand-alone SELECT statements
	Collection subqueries in the projection list of a query
	SELECT statements embedded in user-defined routines
	Views

	Restrictions on execution of select triggers
	Select triggers on tables in a table hierarchy

	Re-entrant triggers
	INSTEAD OF triggers on views
	INSTEAD OF trigger to update on a view

	Trace triggered actions
	Example of TRACE statements in an SPL routine
	Example of TRACE output

	Generate error messages
	Apply a fixed error message
	Generate a variable error message

	Summary

	Appendix. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

