
IBM Informix

IBM Informix R-Tree Index User’s Guide

Version 11.50

SC23-9436-00

���

IBM Informix

IBM Informix R-Tree Index User’s Guide

Version 11.50

SC23-9436-00

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page C-1.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . v

In This Introduction . v

About This Publication . v

Types of Users . v

Software Dependencies . vi

Assumptions About Your Locale . vi

Demonstration Database . vii

Documentation Conventions . vii

Typographical Conventions . vii

Feature, Product, and Platform Markup . vii

Example Code Conventions . viii

Additional Documentation . viii

Compliance with Industry Standards . ix

How to Provide Documentation Feedback . ix

Chapter 1. R-Tree Secondary Access Method Concepts 1-1

In This Chapter . 1-1

About Access Methods . 1-1

The R-Tree Secondary Access Method . 1-2

R-Tree Index Structure . 1-3

Searching with an R-Tree Index . 1-6

Nearest-Neighbor Searching . 1-7

Inserting into an R-Tree Index . 1-7

R-Link Trees and Concurrency . 1-9

About Operator Classes . 1-10

R-Tree Functionality That IBM Provides . 1-11

R-Tree Functionality in IBM Informix Dynamic Server 1-11

R-Tree Secondary Access Method DataBlade Module . 1-12

IBM Informix DataBlade Modules That Use the R-Tree Access Method 1-13

Chapter 2. Using the R-Tree Secondary Access Method 2-1

In This Chapter . 2-1

Before You Begin . 2-1

Creating R-Tree Indexes . 2-2

Syntax . 2-2

R-Tree Index Parameters . 2-3

Bottom-Up Building of R-Tree Indexes . 2-5

Using the NO_SORT Index Parameter . 2-6

R-Tree Index Options . 2-6

Examples of Creating R-Tree Indexes . 2-7

When Does the Query Optimizer Use an R-Tree Index? . 2-8

Complex Qualifications . 2-9

R-Tree Indexes and Null Values . 2-10

How an R-Tree Index Internally Handles Null Values . 2-10

How Strategy Functions Handle Null Values . 2-10

Performing Nearest-Neighbor Searches . 2-11

Limitations . 2-11

Example . 2-11

Database Isolation Levels and R-Tree Indexes . 2-12

Functional R-Tree Indexes . 2-12

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access

Method . 3-1

In This Chapter . 3-1

Overview of DataBlade Module Development . 3-2

© Copyright IBM Corp. 1996, 2008 iii

Deciding Whether to Use the R-Tree Access Method . 3-2

Designing a User-Defined Data Type . 3-3

Data Objects and Bounding Boxes . 3-3

Data Type Hierarchies . 3-5

Maximum Size of the User-Defined Data Type . 3-6

Loose Bounding Box Calculations . 3-7

Other User-Defined Data Type Design Considerations . 3-7

Creating a New Operator Class . 3-8

Support Functions . 3-9

Strategy Functions . 3-21

Selectivity and Cost Functions . 3-30

Syntax for Creating a New Operator Class . 3-31

Setting Up Nearest-Neighbor Searching . 3-33

Setting Up a Strategy Function for Nearest-Neighbor Searching 3-33

Creating Registration Scripts for Dependent DataBlade Modules 3-35

Importing the ifxrltree Interface Object . 3-36

Repairing R-tree Indexes After Migrating to a Different Version of a DataBlade Module 3-37

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method . . . 4-1

In This Chapter . 4-1

Performance Tips . 4-1

Updating Statistics . 4-2

Deletions . 4-3

Effectiveness of Bounding Box Representation . 4-4

Clustering Spatial Data on the Disk . 4-4

Returning the Coordinates of the Root Bounding Box . 4-5

Syntax . 4-5

Estimating the Size of an R-Tree Index . 4-6

Calculating Index Size Based on Number of Rows . 4-6

Using the oncheck Utility to Calculate Index Size . 4-7

R-Tree Index and Logging . 4-7

Description of the R-Tree-Specific Logical-Log Records . 4-8

Using the onlog Utility to View R-Tree Logical-Log Records 4-9

Cannot Rename Databases that Use the Secondary Access Method 4-10

Drop R-Tree Indexes Before Truncating a Table . 4-10

System Catalogs . 4-10

sysams . 4-10

sysopclasses . 4-11

sysindices . 4-12

Checking R-Tree Indexes with the oncheck Utility . 4-12

Checking Pages with the -ci and -cI Options . 4-13

Checking Pages with the -pT Option . 4-14

Checking Pages with the -pk and -pK Options . 4-14

Checking Pages with the -pl and -pL Options . 4-15

Other Options with -u . 4-15

Appendix A. Shapes3 Sample DataBlade Module A-1

Appendix B. Accessibility . B-1

Accessibility features for IBM Informix Dynamic Server . B-1

Accessibility Features . B-1

Keyboard Navigation . B-1

Related Accessibility Information . B-1

IBM and Accessibility . B-1

Notices . C-1

Trademarks . C-3

Index . X-1

iv IBM Informix R-Tree Index User’s Guide

Introduction

In This Introduction . v

About This Publication . v

Types of Users . v

Software Dependencies . vi

Assumptions About Your Locale . vi

Demonstration Database . vii

Documentation Conventions . vii

Typographical Conventions . vii

Feature, Product, and Platform Markup . vii

Example Code Conventions . viii

Additional Documentation . viii

Compliance with Industry Standards . ix

How to Provide Documentation Feedback . ix

In This Introduction

This introduction provides an overview of the information in this publication and

describes the conventions it uses.

About This Publication

This publication describes the Informix® R-tree secondary access method and how

to access and use its components. It describes how to create an R-tree index on

appropriate data types, how to create a new operator class that uses the R-tree

access method to index a user-defined data type, and how to manage databases

that use the R-tree secondary access method.

Types of Users

This publication is written for three distinct audiences:

v Application developers

v DataBlade® module developers

v Database administrators

The following table describes the chapters that are most relevant to each audience

type. Although each chapter has a specific audience, all users can benefit from

reading the entire guide.

 Chapter Audience

Chapter 1, “R-Tree Secondary Access

Method Concepts,” on page 1-1

All users who want in-depth knowledge of how

R-tree indexes work

Chapter 2, “Using the R-Tree Secondary

Access Method,” on page 2-1

Application developers and schema designers

who use R-tree indexes to index existing tables or

design schemas that contain tables indexed by

R-tree indexes

Chapter 3, “Developing DataBlade

Modules That Use the R-Tree Secondary

Access Method,” on page 3-1

DataBlade module developers who want to use

the R-tree access method to index new data types

by creating a new operator class

Chapter 4, “Managing Databases That

Use the R-Tree Secondary Access

Method,” on page 4-1

Database administrators who manage databases

that contain R-tree indexes

© Copyright IBM Corp. 1996, 2008 v

This publication is written with the assumption that you have the following

background:

v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides

v Some experience working with relational databases or exposure to database

concepts

v Some experience with computer programming

v Some experience with database server administration, operating-system

administration, or network administration

If you have limited experience with relational databases, SQL, or your operating

system, refer to the IBM Informix Dynamic Server Getting Started Guide for your

database server for a list of supplementary titles.

Software Dependencies

This publication assumes you are using IBM Informix Dynamic Server (IDS),

Version 11.50. You must also have the following IBM Informix software to use the

R-tree secondary access method:

v The IBM Informix R-Tree Secondary Access Method DataBlade module)

v A DataBlade module that uses the Informix R-tree secondary access method,

such as the IBM Informix Geodetic DataBlade Module

You can use the Informix DataBlade Developers Kit to develop a DataBlade

module that uses the R-tree secondary access method.

You can use the following application development tools with the R-tree secondary

access method:

v DB–Access

v IBM Informix ESQL/C

v DataBlade API

You do not, however, need to install or use these tools to use the R-tree access

method.

Assumptions About Your Locale

IBM Informix products can support many languages, cultures, and code sets. All

the information related to character set, collation, and representation of numeric

data, currency, date, and time is brought together in a single environment, called a

Global Language Support (GLS) locale.

The examples in this publication are written with the assumption that you are

using the default locale, en_us.8859-1. This locale supports U.S. English format

conventions for date, time, and currency. In addition, this locale supports the ISO

8859-1 code set, which includes the ASCII code set plus many 8-bit characters such

as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers, or if

you want to conform to the nondefault collation rules of character data, you need

to specify the appropriate nondefault locale.

vi IBM Informix R-Tree Index User’s Guide

For instructions on how to specify a nondefault locale, additional syntax, and other

considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

Demonstration Database

The DB–Access utility, which is provided with the IBM Informix database server

products, includes one or more of the following demonstration databases:

v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM

Informix manuals are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema. The

superstores_demo database contains examples of extended data types, type and

table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,

see the IBM Informix DB–Access User’s Guide. For descriptions of the databases and

their contents, see the IBM Informix Guide to SQL: Reference.

Documentation Conventions

This section describes the following conventions, which are used in the product

documentation for IBM® Informix Dynamic Server:

v Typographical conventions

v Feature, product, and platform conventions

v Example code conventions

Typographical Conventions

This publication uses the following conventions to introduce new terms, illustrate

screen displays, describe command syntax, and so forth.

 Convention Meaning

KEYWORD Keywords of SQL, SPL, and some other programming languages appear

in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics. Within

syntax and code examples, variable values that you are to specify

appear in italics.

boldface Names of program entities (such as classes, events, and tables),

environment variables, file names, path names, and interface elements

(such as icons, menu items, and buttons) appear in boldface.

monospace Information that the product displays and information that you enter

appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Feature, Product, and Platform Markup

Feature, product, and platform markup identifies paragraphs that contain

feature-specific, product-specific, or platform-specific information. Some examples

Introduction vii

of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Windows Only

Identifies information that is specific to the Windows operating system

End of Windows Only

 This markup can apply to one or more paragraphs within a section. When an

entire section applies to a particular product or platform, this is noted as part of

the heading text, for example:

 Table Sorting (Windows)

Example Code Conventions

Examples of SQL code occur throughout this publication. Except as noted, the code

is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for

that product. For example, if you are using an SQL API, you must use EXEC SQL

at the start of each statement and a semicolon (or other appropriate delimiter) at

the end of the statement. If you are using DB–Access, you must delimit multiple

statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in

a full application, but it is not necessary to show it to describe the concept

being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the documentation for your product.

Additional Documentation

You can view, search, and print all of the product documentation from the IBM

Informix Dynamic Server information center on the Web at http://
publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.

For additional documentation about IBM Informix Dynamic Server and related

products, including release notes, machine notes, and documentation notes, go to

the online product library page at http://www.ibm.com/software/data/informix/

viii IBM Informix R-Tree Index User’s Guide

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/software/data/informix/pubs/library/

pubs/library/. Alternatively, you can access or install the product documentation

from the Quick Start CD that is shipped with the product.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of industry

standards for the Structured Query Language (SQL). IBM Informix SQL-based

products are fully compliant with SQL-92 Entry Level (published as ANSI

X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of

IBM Informix database servers comply with the SQL-92 Intermediate and Full

Level and X/Open SQL Common Applications Environment (CAE) standards.

How to Provide Documentation Feedback

You are encouraged to send your comments about IBM Informix user

documentation by using one of the following methods:

v Send e-mail to docinf@us.ibm.com.

v Go to the Information Center at http://publib.boulder.ibm.com/infocenter/
idshelp/v115/index.jsp and open the topic that you want to comment on. Click

Feedback at the bottom of the page, fill out the form, and submit your feedback.

Feedback from both methods is monitored by those who maintain the user

documentation of Dynamic Server. The feedback methods are reserved for

reporting errors and omissions in our documentation. For immediate help with a

technical problem, contact IBM Technical Support. For instructions, see the IBM

Informix Technical Support Web site at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction ix

http://www.ibm.com/software/data/informix/pubs/library/
mailto:docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/planetwide/

x IBM Informix R-Tree Index User’s Guide

Chapter 1. R-Tree Secondary Access Method Concepts

In This Chapter . 1-1

About Access Methods . 1-1

The R-Tree Secondary Access Method . 1-2

R-Tree Index Structure . 1-3

Bounding Boxes . 1-3

Bounding-Box-Only R-Tree Indexes . 1-4

Hierarchical Index Structure . 1-5

Searching with an R-Tree Index . 1-6

Nearest-Neighbor Searching . 1-7

Inserting into an R-Tree Index . 1-7

R-Link Trees and Concurrency . 1-9

About Operator Classes . 1-10

R-Tree Functionality That IBM Provides . 1-11

R-Tree Functionality in IBM Informix Dynamic Server 1-11

R-Tree Secondary Access Method DataBlade Module . 1-12

Contents of the DataBlade Module . 1-12

DataBlade Module Registration . 1-12

IBM Informix DataBlade Modules That Use the R-Tree Access Method 1-13

In This Chapter

This chapter provides a detailed discussion of the R-tree secondary access method

and an in-depth discussion about how R-tree indexes work. It includes the

following topics:

v About Access Methods

v The R-Tree Secondary Access Method

v About Operator Classes

v R-Tree Functionality That IBM Provides

v IBM Informix DataBlade Modules That Use the R-Tree Access Method

DataBlade module developers can use the Informix DataBlade Developers Kit to

develop the objects that form the DataBlade module that uses the R-tree access

method. The Informix DataBlade Developers Kit automatically generates most of

the SQL commands and some of the C code needed to create the objects. For

purposes of clarity, however, this guide gives examples of the SQL commands and

C code so that the process of creating the objects is easier to understand.

This guide uses the Shapes3 sample DataBlade module, described in Appendix A,

to illustrate how to use the R-tree access method and how to create DataBlade

modules that implement the R-tree access method.

About Access Methods

An access method is a set of database server routines that IBM Informix Dynamic

Server (IDS) uses to access and manipulate a table or an index. The two types of

access methods are primary and secondary.

Dynamic Server uses a primary access method to perform standard table operations,

such as inserting, deleting, updating, and retrieving data.

© Copyright IBM Corp. 1996, 2008 1-1

Dynamic Server uses a secondary access method to build, use, and manipulate an

index structure. Indexes are built on one or more columns of a table to provide a

quick way to find rows in a database based on the value in the indexed column or

columns.

The routines of a secondary access method encapsulate index operations, such as

how to:

v Build an index

v Scan the index

v Insert new information into an index as new data is inserted into the indexed

table

v Update an index as the indexed table is updated

v Delete data from an index as data is deleted from the indexed table

These routines are collectively called purpose functions.

Secondary access methods are used in combination with operator classes that

describe when an access method can be used in a query and how to perform the

index operations, such as scanning and updating. Operator classes are a way of

specifying the routines that play particular roles in access-method operations.

Operator classes are described in more detail in the section “About Operator

Classes” on page 1-10.

Dynamic Server provides two secondary access methods:

v B-tree, which stands for balanced tree. B-tree is the default secondary access

method for ordered data values.

v R-tree, which stands for range tree. R-tree is an access method for

multidimensional (spatial) and interval data.

The B-tree access method is described in your IBM Informix Administrator’s Guide.

Tip: Indexes that are created and manipulated by a particular secondary access

method are referred to by the name of the access method. For example, the

R-tree secondary access method is used to create and manipulate R-tree

indexes.

The R-Tree Secondary Access Method

R-tree is a type of secondary access method that is specifically designed to index

table columns that contain the following types of data:

v Multidimensional data, such as:

– Spatial data in two or three dimensions

An extra dimension that represents time could also be included.

– Combinations of numerical values treated as multidimensional values, such as

a configuration for a house that includes the number of stories, the number of

bedrooms, the number of baths, the age of the house, and the square feet of

floor space
v Range values, as opposed to single point values, such as the time of a television

program (9:00 P.M. to 9:30 P.M.) or the north-south extent of a county on a map

Important: You can build R-tree indexes only on a single column of a table or on

the result of a single function (functional R-tree indexes); you cannot

build a single R-tree index on multiple columns.

1-2 IBM Informix R-Tree Index User’s Guide

To index multiple attributes, incorporate them into a single data type.

For more information on how to create a new data type, refer to

“Designing a User-Defined Data Type” on page 3-3.

The R-tree access method is implemented internally using the Virtual-Index

Interface, a mechanism provided with Dynamic Server so you can create new

secondary access methods.

The purpose of a spatial index, such as R-tree, is to produce, during query

processing, a candidate result set that is much smaller than the original set being

searched (the table), as opposed to immediately finding the correct result set. The

candidate result set that is found by traversing the R-tree index often contains false

hits as well as true hits because the index uses enclosing boxes instead of the true

shapes of the data objects. The false hits are eliminated by applying a more

expensive, exact test to the small candidate set.

An R-tree index is inexact, but it is inclusive. This means that a search that uses

the R-tree index often retrieves too much information, but never too little. The final

result of a search that uses the R-tree index is the same as a search that does not

use the index or a search that uses an exact test on every object in the table.

Another way to look at an R-tree index is that it eliminates large amounts of data

that could not possibly qualify in a search, without actually examining the data

itself. It does this by eliminating data that falls outside boxes that enclose the area

of interest.

R-tree indexes are dynamic. This means that an R-tree index maintains itself

during updates, inserts, and deletes of the indexed table. In addition, you do not

need to know anything about the amount of data or the range of values in the

column to be indexed before you create an R-tree index.

R-Tree Index Structure

The hierarchical structure of an R-tree index is similar to that of a B-tree index,

although the data stored in the index is quite different.

Bounding Boxes

The R-tree access method organizes data in a tree-shaped structure called an R-tree

index. The index uses a bounding box, which is a rectilinear shape that completely

contains the bounded object or objects. Bounding boxes can enclose data objects or

other bounding boxes.

Bounding boxes are usually stored as a set of coordinates of equal dimension as

the bounded object. While it is useful for performance reasons to choose the

bounding box that is as small as possible, the R-tree access method does not

require it. The minimum bounding box is often, however, the most efficient one.

For example, the minimum bounding box for a two-dimensional circle is a square

whose side is equal to the diameter of the circle. The minimum bounding box for a

three-dimensional sphere is a cube whose edge is equal to the diameter of the

sphere.

Tip: A dimension of a bounding box can be time or some other nonspatial

quantity.

The lower part of Figure 1-1 shows a set of bounding boxes that enclose data

objects and other bounding boxes. In the diagram, the data objects are shaded.

Chapter 1. R-Tree Secondary Access Method Concepts 1-3

Important: Data objects are only shown for bounding boxes R8, R9, and R10. The

other bounding boxes at the leaf level (R11 through R19) also contain

data items, but they are omitted from the figure to simplify the

graphic.

As the figure shows, bounding boxes can enclose a single data object or one or

more bounding boxes. For example, bounding box R8, which is at the leaf level of

the tree, contains the data object D1. Bounding box R3, which is at the branch level

of the tree, contains the bounding boxes R8, R9, and R10. Bounding box R1, which

is at the root level, contains the bounding boxes R3, R4, and R5.

The R-tree access method evaluates the index entries (data objects and bounding

boxes) as opaque objects (strings of bytes). The R-tree access method uses the

support and strategy functions to interpret these objects.

Bounding-Box-Only R-Tree Indexes

For R-tree indexes created with Version 9.21 or later of the database server, if the

datablade module you are working with is appropriately set up, default R-tree

indexes no longer store a copy of the data object in leaf pages. Instead, the leaf

pages store bounding box representations of the data object. This type of R-tree

index is called a bounding-box-only R-tree index.

Figure 1-1. R-Tree Index Structure

1-4 IBM Informix R-Tree Index User’s Guide

Important: The Informix Geodetic and Spatial DataBlade modules support

bounding-box-only R-tree indexes. To set up your own DataBlade

module to support these indexes, you must implement the RtreeInfo

function with the operation strat_func_substitutions. You might also

need to redesign your strategy functions that occupy slots 5 and up, if

you want them to behave differently at non-leaf pages. This is because

you cannot distinguish between leaf and non-leaf items in a

bounding-box-only index. For more information, see “The RtreeInfo

Function” on page 3-14.

Important: Only R-tree indexes created using Version 9.21 or later of the database

server can be bounding-box-only R-tree indexes. R-tree indexes created

in Version 9.20 and earlier versions of the database server continue to

store copies of data objects in leaf pages.

The advantages of bounding-box-only R-tree indexes are the following:

v The R-tree index is significantly smaller, saving both disk space and the time to

build and maintain the index.

v Bottom-up build performance is improved, because memory and temporary

dbspace usage are reduced.

v The log space needed to update the index is reduced.

You might want to override this behavior if your table contains other large

columns in addition to the column being indexed with the R-tree index. For more

information about the BOUNDING_BOX_INDEX index parameter, see “R-Tree

Index Parameters” on page 2-3.

Functional R-tree indexes are not bounding-box-only indexes; they store the data

objects themselves in leaf pages.

R-tree indexes built in Version 9.20 of the database server continue to work

correctly in Version 9.21. If, however, you build a new bounding-box-only R-tree

index in Version 9.21 of the database server, this index will not work correctly if

you revert to Version 9.20 of the database server.

Hierarchical Index Structure

An R-tree index is arranged as a hierarchy of pages. The topmost level of the

hierarchy is the root page. Intermediate levels, when needed, are branch pages. Each

branch page contains entries that refer to a subset of pages, or a subtree, in the

next level of the index. The bottom level of the index contains a set of leaf pages.

Each leaf page contains a list of index entries that refer back to rows in the indexed

table. Each index entry also includes a copy of the bounding-box of the indexed

key from the table, or data object. The pages of an R-tree index do not usually

contain the maximum possible number of index entries.

An R-tree index is height-balanced, which means that all paths down the tree, from

the root page to any leaf page, traverse the same number of levels. This also means

that all leaf nodes are at the same level.

Each page in an R-tree index structure is a physical disk page. The R-tree index is

designed to minimize the number of pages that need to be fetched from disk

during the execution of a query, since disk I/O is often the most costly part.

The upper section of Figure 1-1 shows how the data objects and the bounding

boxes (described in “Bounding Boxes” on page 1-3) stored in an R-tree index

Chapter 1. R-Tree Secondary Access Method Concepts 1-5

structure are related. The root page contains entries for bounding boxes R1 and R2.

Together, these two bounding boxes enclose all the objects in the index.

Tip: Use the rtreeRootBB() function to return coordinates of the bounding box that

enclose all objects in an R-tree index. For detailed instructions on how to use

this function, refer to Chapter 4, “Managing Databases That Use the R-Tree

Secondary Access Method,” on page 4-1.

The bounding boxes of an index page can overlap. However, a data object appears

only once in the index even if it falls inside more than one bounding box at the

branch levels. For example, data object D2 appears only once in the index that

Figure 1-1 on page 1-4 shows, even though it falls inside bounding boxes R9, R3,

R4, and R1.

The reason data objects appear only once in an R-tree index is to keep the index

small. If each object had to be replicated in several index pages, the size of the

R-tree index would be larger than it needs to be.

An index entry in a leaf page consists of:

v A copy of the key, or data object, from the table

v A pointer back to the row in the indexed table (also known as a row ID)

The size of an index entry in a leaf page is the size of the data object plus 20 bytes.

An index entry in a root or branch page consists of:

v A bounding box that contains all the objects in its child pages

v A page number that points to a lower-level (branch or leaf) page in the index

The size of an index entry in a root or branch page is the size of the bounding box

plus 12 bytes.

Each type of page in an R-tree index (leaf, branch, or root) also has an overhead of

20 bytes plus the size of the overall bounding box of the page.

The number of levels needed to support an R-tree index depends on the number of

index entries each index page can hold. The number of entries per index page

depends, in turn, on the size of the key value. The number of entries per page

determines the branching factor of the tree. More entries per page, or a higher

branching factor, means that fewer levels are needed for the same number of leaf

pages as well as fewer leaf pages for a given number of base table keys. For any

reasonable branching factor, almost all the space that an R-tree index needs is used

by leaf pages.

The next sections describe a search and an update of an R-tree index that results

from a search or update of the indexed table.

Searching with an R-Tree Index

The simplest kind of search that uses an R-tree access method is for objects that

overlap a search object. For example, you might want to search for all the polygons

stored in the column of a table that overlap a specified polygon. To use the R-tree

access method to improve the performance of this type of search, you must create

an R-tree index on the table column that contains the polygons, and then you must

specify a function that checks for overlap (listed in the operator class definition as

1-6 IBM Informix R-Tree Index User’s Guide

a strategy function) in the WHERE clause of the query statement. Operator classes

and strategy functions are described in more detail in “About Operator Classes” on

page 1-10.

The R-tree secondary access method uses the bounding box of the search object to

guide the search. The access method begins a search at the root of the R-tree index

structure. The access method compares the bounding box of the search object to

the bounding boxes stored in the index entries of the root page. All subtrees whose

bounding boxes overlap the search bounding box must be searched, because they

might contain qualifying data. Any number of subtrees might need to be searched.

The access method then recursively applies the same process to each qualifying

subtree. Subtrees whose bounding boxes do not overlap are skipped; this is where

the R-tree access method saves search time and work. The access method uses the

appropriate strategy function to test for overlap of bounding box entries in branch

index pages.

When the search encounters a leaf page, it applies the appropriate strategy

function to each key on the leaf page. The strategy function tests for bounding box

overlap between the search object’s bounding box and the key’s bounding box. If

this test passes, the strategy function then applies an exact overlap test between the

actual search object and the actual key. Keys that qualify according to the strategy

function satisfy the query restriction being tested because of this final exact test

and result in the set of rows that are returned from the original query.

Nearest-Neighbor Searching

The R-tree access method provides support for nearest-neighbor searches, that is,

querying for objects in a spatial database that are closest to a specified object or

location. Traditionally, without nearest-neighbor support, these kinds of searches

are awkward to perform and involve several iterative stages.

To perform nearest-neighbor searches, the DataBlade module you are using must

be set up for it. For example, the IBM Informix Geodetic DataBlade Module and

the IBM Informix Spatial DataBlade Module both provide nearest-neighbor search

support.

“Performing Nearest-Neighbor Searches” on page 2-11 explains how to perform

nearest-neighbor searches using a DataBlade module that provides this feature.

“Setting Up Nearest-Neighbor Searching” on page 3-33 explains how to add

nearest-neighbor support to a DataBlade module.

In this release, nearest-neighbor search is not supported with fragmented indexes.

Inserting into an R-Tree Index

When data is inserted into an R-tree indexed table column, the R-tree index must

also be updated with the new information. Insertion into an R-tree index is similar

to insertion into a B-tree index in that new index records are added to the leaves,

nodes that overflow are split, and splits propagate up the tree.

First, the R-tree secondary access method calculates a bounding box for the new

data object. The access method then searches for a leaf page whose existing entries

form the tightest group with the new data object. The access method searches

down the tree from the root page, looking for data objects whose bounding box

best fits the new data object. Then it descends into that subtree, repeating the

selection process at each internal page until it reaches a leaf page.

Chapter 1. R-Tree Secondary Access Method Concepts 1-7

As the R-tree access method searches down the tree, it looks for bounding boxes

that will be enlarged the least to accommodate the new data object. The access

method might also use internal criteria other than the bounding box being

enlarged by the smallest amount when it chooses the best leaf page.

Once the access method finds the best leaf page, and there is space on the

corresponding disk page, the access method adds a new index entry that consists

of a copy of the new data object. The bounding boxes of the parent index pages all

the way up to the root page might also need to be enlarged.

If no space is left on the leaf page for the new data object, the leaf page is split

into two pages. This means that a new page is allocated and the contents of the

old page, plus the new data object, are divided between the old and the new

pages. If the parent page is full, it might also need to split, and so on up to the

root page. If the root page splits, the tree becomes one level deeper.

When an index page splits, the index entries in the original page must be divided

between the two new pages. The division is done in a way that makes it as

unlikely as possible that both new pages will need to be examined on subsequent

searches. Because the decision to visit a page is based on whether the bounding

box of the search object overlaps the bounding boxes of the index entries, the total

area of the two new bounding boxes should be as small as possible. Figure 1-2

illustrates this point by comparing efficient and inefficient ways to divide five

items into two groups. Notice that the total area of the new bounding boxes in the

efficient split example is smaller than the bounding boxes in the inefficient

example.

Figure 1-3 compares a page split in which the resulting pages overlap each other

with a split where the resulting pages do not overlap each other. The split with

overlapping pages is more efficient because the total area of the bounding boxes of

the two overlapping pages is smaller than that of the nonoverlapping pages.

Figure 1-2. Comparison of Efficient and Inefficient Splits of Five Items Into Two Groups

1-8 IBM Informix R-Tree Index User’s Guide

The preceding example shows that avoiding overlap is not necessarily the best,

and definitely not the only, criterion for dividing index entries between the two

resulting pages of a page split.

The R-tree index is initially created by starting with an empty root page and

inserting index entries one by one.

R-Link Trees and Concurrency

The basic R-tree index structure described in the previous sections works well in a

single-user environment but might run into problems if multiple users search and

update the index concurrently. R-tree indexes require a particular type of locking

during page splits to preserve the integrity of the index structure and ensure

correct results from queries. For example, while a page is being split, it is necessary

to hold locks on all pages up to and including the root page. This locking behavior

is problematic in a concurrent environment. To solve this problem, Informix uses a

modified structure called an R-link tree instead of the basic R-tree.

R-link trees are similar to the R-tree structure described in the preceding sections,

with the following two key differences:

v All the pages at the same level in the index structure contain a pointer to their

right sibling (except for the rightmost page, which has a null pointer). This

creates a single list of right-pointing links that includes every page in a

particular level.

When a page splits and a new page is created, the new page is inserted into the

list of right-pointing links directly to the right of the old page.

This sibling relationship between pages has no semantic or spatial meaning and

is not used in a search of the index. It is only used to keep the index structure

consistent and to maintain the correct functioning of the index while it allows

concurrent access and updates.

v Each page in the index is assigned a sequence number that is unique within the

tree. Each index entry in a root or branch page includes the expected sequence

number of its child page, in addition to the information listed in “Hierarchical

Index Structure” on page 1-5.

When a page splits, the new right sibling page is assigned the old page’s

sequence number, and the old page receives a new sequence number.

Figure 1-3. Comparison of a Split in Which the Resulting Pages Overlap (an Efficient Split)

and Do Not Overlap (an Inefficient Split)

Chapter 1. R-Tree Secondary Access Method Concepts 1-9

The R-link structure allows the R-tree access method to perform index operations

without holding locks on pages that might be needed again later. The combination

of right-pointing links and sequence numbers lets the R-tree access method detect

page splits made by other users and correctly find all the needed pages.

About Operator Classes

Although an R-tree index might exist on a table column, it might not always be

possible for the query optimizer to use it when you execute a query, even if the

WHERE clause of the query specifies the indexed column.

For example, a query might search for polygons whose area is greater than a

specified number. An R-tree index will not likely be of use in this type of query

because the access method uses the bounding box of the polygons, and not the

area, to create the index. However, a query that searches for polygons that overlap

a specified polygon will likely use the R-tree index.

An operator class helps the query optimizer determine whether a secondary access

method can be used in a query. It also defines how to access and modify the index

if it is used in a query. An operator class specifies a group of functions that work

with a new data type and an access method. It links each function to the role it

will play in the access method operations.

An operator class defines a way to organize the functions that are implemented in

a DataBlade module and defines how to make them known to the query optimizer

and the access method. It identifies the functions that fill particular roles that fall

into the following two categories:

v Strategy functions

Strategy functions include all the functions whose evaluation can be assisted by

an R-tree index. If a strategy function is specified in the WHERE clause of a

query, the R-tree index can be used to evaluate the query. Strategy functions are

used both directly by end users in the WHERE clause of SQL queries and

internally by the R-tree access method to search the index.

An example of a strategy function is the Overlap function, which determines

whether two bounding boxes have any points in common.

v Support functions

The access method uses the support functions of a secondary access method to

build, update, and maintain the index. These functions are not called directly by

end users.

An example of a support function is the Size function, which calculates the size

of a bounding box.

The R-tree access method, similar to all secondary access methods, has specific

operator class requirements for the type and number of strategy and support

functions that must be defined. By creating a new operator class, DataBlade

developers attach names of actual functions to the placeholders for required

functions in the operator class structure, which completes the information the

database server needs.

A secondary access method usually has a default operator class associated with it.

The default operator class for the R-tree access method is called rtree_ops.

The rtree_ops operator class is generally only used for generic R-tree access

method testing and as an example of how to create a new operator class for use

1-10 IBM Informix R-Tree Index User’s Guide

with the R-tree access method. It is almost never used directly to create an R-tree

index. The rtree_ops operator class has a fixed set of four strategy functions, and it

cannot be extended. For this reason, and others described in Chapter 3,

“Developing DataBlade Modules That Use the R-Tree Secondary Access Method,”

on page 3-1, DataBlade developers should always create a new operator class to

use the R-tree access method to index the new data types or to extend the types of

queries that use the access method.

Chapter 3 describes in detail how to create an operator class and how to set up the

necessary strategy and support functions.

R-Tree Functionality That IBM Provides

R-tree access method functionality is provided in the following products:

v IBM Informix Dynamic Server (IDS)

v R-Tree Secondary Access Method DataBlade Module

The following sections describe the parts of the R-tree functionality that each

product provides.

R-Tree Functionality in IBM Informix Dynamic Server

IBM Informix Dynamic Server (IDS) includes the definition of the R-tree access

method and the definition of its default operator class, rtree_ops. However, the

support and strategy functions that perform the indexing work are not included;

they must be implemented outside the database server, usually as part of a

DataBlade module. The rtree_ops operator class is intended to be used for generic

R-tree testing. While you can reuse it, it is recommended that you create a new

operator class for each new data type that is to be indexed with an R-tree index.

Newly created Informix databases include only standard data types, such as

INTEGER, DATETIME, and VARCHAR. Columns of these data types cannot be

indexed with R-tree indexes. Therefore, to create and use an R-tree index, you

must add the following objects to your database:

v One or more user-defined data types that can be indexed with an R-tree index

v A new operator class for the R-tree access method so that you can create R-tree

indexes on the user-defined data type

v The strategy and support functions required by the operator class

You must supply the function code in the form of a shared-object library.

To add new data types to an Informix database, you register a DataBlade module

that includes the definition of the data types. The DataBlade module might also

include a new operator class so you can index the user-defined data type with an

R-tree index. For a list of IBM Informix DataBlade modules that include new data

types, support and strategy functions, and operator classes, refer to “IBM Informix

DataBlade Modules That Use the R-Tree Access Method” on page 1-13.

If you are developing a new DataBlade module, read Chapter 3, “Developing

DataBlade Modules That Use the R-Tree Secondary Access Method,” on page 3-1. It

describes in detail how to create the required strategy and support functions in

order to create a new operator class. The chapter also describes the issues you

should be aware of when you design the user-defined data type that will be

indexed with the R-tree index.

Chapter 1. R-Tree Secondary Access Method Concepts 1-11

R-Tree Secondary Access Method DataBlade Module

The IBM Informix R-Tree Secondary Access Method DataBlade module is

automatically installed at the time you install Dynamic Server.

UNIX Only

On UNIX®, the IBM Informix R-Tree Secondary Access Method DataBlade module

is installed in the directory $INFORMIXDIR/extend/ifxrltree.version, where version

refers to the latest version number of the DataBlade module installed on your

computer.

End of UNIX Only

Windows Only

On Windows, the IBM Informix R-Tree Secondary Access Method DataBlade

module is installed in the directory %INFORMIXDIR%\extend\ifxrltree.version,

where version refers to the latest version number of the DataBlade module installed

on your computer.

End of Windows Only

Contents of the DataBlade Module

The IBM Informix R-Tree Secondary Access Method DataBlade module consists of:

v A list of error messages that the R-tree access method uses

v A BladeSmith interface object ifxrltree1 that the DataBlade modules that depend

on the IBM Informix R-Tree Secondary Access Method DataBlade module use

For more information on how to use this interface object, refer to Chapter 3,

“Developing DataBlade Modules That Use the R-Tree Secondary Access

Method,” on page 3-1.

As the preceding section describes, the R-tree access method itself is built into

Dynamic Server. The error messages that the access method uses, however, are

only available if the IBM Informix R-Tree Secondary Access Method DataBlade

module is registered in a database.

The R-tree error messages contained in this DataBlade module have error codes of

the form RTRnn, where:

v RTR is the three-character prefix for all IBM Informix R-Tree Secondary Access

Method DataBlade module error codes.

v nn are two characters (0 to 9 or A to Z) that uniquely identify each error code.

DataBlade Module Registration

You must register the IBM Informix R-Tree Secondary Access Method DataBlade

module in each database in which you plan to use it. To register DataBlade

modules, use BladeManager.

This registration normally occurs when you register a dependent DataBlade

module, that is, one that can only be registered if the IBM Informix R-Tree

Secondary Access Method DataBlade module has been previously registered. The

dependent DataBlade module first signals to BladeManager that it depends on the

IBM Informix R-Tree Secondary Access Method DataBlade module. BladeManager

then registers the IBM Informix R-Tree Secondary Access Method DataBlade

module before it registers the dependent DataBlade module.

1-12 IBM Informix R-Tree Index User’s Guide

The dependent DataBlade module usually contains the definition of the

user-defined data type the R-tree access method can index.

For more information about BladeManager, refer to the IBM Informix DataBlade

Module Installation and Registration Guide.

IBM Informix DataBlade Modules That Use the R-Tree Access Method

The following IBM Informix DataBlade modules use the R-tree access method:

v IBM Informix Geodetic DataBlade Module

This DataBlade module is designed to manage spatio-temporal data with global

content, such as metadata associated with satellite images.

The DataBlade module creates a variety of data types, such as GeoPoint and

GeoObject, as well as a variety of functions that operate on the data types, such

as Intersects and Outside. It also provides an operator class, called

GeoObject_ops, so you can create R-tree indexes on columns of data type

GeoObject, and the Nearest function to allow you to perform nearest-neighbor

searches.

v IBM Informix Spatial DataBlade Module

This DataBlade module also manages spatio-temporal data. It treats the earth as

a flat map and uses planimetric (flat-plane) geometry. The Spatial DataBlade

module is best used for regional data sets and applications.

The DataBlade module creates a variety of data types, such as ST_LineString and

ST_Polygon, as well as a variety of functions that operate on the data types,

such as ST_Distance and ST_Overlaps. It also provides an operator class, called

ST_Geometry_Ops, so you can create R-tree indexes on columns of spatial data

types, and the SE_Nearest and SE_NearestBBox functions to allow you to

perform nearest-neighbor searches.

v IBM Informix Video Foundation DataBlade Module

This DataBlade module is designed to store, manage, and manipulate video data

and its metadata.

The DataBlade module creates a variety of data types, such as MedChunk, as

well as a variety of functions that operate on the data types, such as Within and

Overlap. It also provides an operator class, called MedChunk_ops, so you can

create R-tree indexes on columns of type MedChunk.

Appendix A describes the Shapes3 sample DataBlade module that defines four

spatial data types and an operator class to allow you to create an R-tree index on

columns of these data types. The sample module is not an IBM Informix product,

but is provided as an example of creating an operator class.

Chapter 1. R-Tree Secondary Access Method Concepts 1-13

1-14 IBM Informix R-Tree Index User’s Guide

Chapter 2. Using the R-Tree Secondary Access Method

In This Chapter . 2-1

Before You Begin . 2-1

Creating R-Tree Indexes . 2-2

Syntax . 2-2

R-Tree Index Parameters . 2-3

Bottom-Up Building of R-Tree Indexes . 2-5

Using the NO_SORT Index Parameter . 2-6

R-Tree Index Options . 2-6

Using the FRAGMENT Clause . 2-6

Using the IN Clause . 2-7

Examples of Creating R-Tree Indexes . 2-7

When Does the Query Optimizer Use an R-Tree Index? . 2-8

Complex Qualifications . 2-9

R-Tree Indexes and Null Values . 2-10

How an R-Tree Index Internally Handles Null Values . 2-10

How Strategy Functions Handle Null Values . 2-10

Performing Nearest-Neighbor Searches . 2-11

Limitations . 2-11

Example . 2-11

Database Isolation Levels and R-Tree Indexes . 2-12

Functional R-Tree Indexes . 2-12

In This Chapter

This chapter describes how to use the R-tree access method. It is written for

application developers and schema designers who use R-tree indexes to index

existing tables or design schemas that contain tables indexed by R-tree indexes.

The chapter includes the following topics:

v Before You Begin

v Creating R-Tree Indexes

v When Does the Query Optimizer Use an R-Tree Index?

v R-Tree Indexes and Null Values

v Performing Nearest-Neighbor Searches

v Database Isolation Levels and R-Tree Indexes

v Functional R-Tree Indexes

Before You Begin

You can create an R-tree index on a table after you complete the following tasks:

1. Install a DataBlade module on your database server that includes the following

objects:

v A user-defined data type that can be indexed with an R-tree index

v An operator class that specifies the functions to be used with the R-tree

index

v The support and strategy functions required by the operator class
Examples of DataBlade modules that use the R-tree access method are the IBM

Informix Geodetic DataBlade Module and the IBM Informix Video Foundation

DataBlade Module.

© Copyright IBM Corp. 1996, 2008 2-1

For more information on these modules, refer to “IBM Informix DataBlade

Modules That Use the R-Tree Access Method” on page 1-13.

2. Create a database.

3. Register the IBM Informix R-Tree Secondary Access Method DataBlade module

into your database using BladeManager.

If the DataBlade module described in step 1 defines a dependency on the IBM

Informix R-Tree Secondary Access Method DataBlade module, you can skip this

step, because BladeManager automatically prompts you to register the IBM

Informix R-Tree Secondary Access Method DataBlade module when you

register the DataBlade module described in step 1.

For more information on the IBM Informix R-Tree Secondary Access Method

DataBlade module, refer to “R-Tree Secondary Access Method DataBlade

Module” on page 1-12.

4. Register the DataBlade module described in step 1 into your database using

BladeManager.

5. Create a table that contains one or more columns of the user-defined data type

that can be indexed with the R-tree access method.

For information on how to install and register DataBlade modules, refer to the IBM

Informix DataBlade Module Installation and Registration Guide and to the release notes

of your DataBlade module.

Important: The examples of this chapter use objects defined in the sample Shapes3

DataBlade module that Appendix A describes. These objects include the

data type MyShape and the operator class MyShape_ops. Columns of

data type MyShape can store points, boxes, and circles.

Creating R-Tree Indexes

To use the R-tree secondary access method, you must first create an R-tree index

on a column whose data type can be indexed by the R-tree access method.

Important: R-tree indexes must be created in dbspaces with the default page size.

You can create an R-tree index either before or after you insert data into the table.

However, if you are loading large amounts of data into the table, you should

create the R-tree index after you load the data. When you create an R-tree index on

a loaded table, the generation of log records is suppressed, so you do not run out

of log space. If, however, you create the index first and then load large amounts of

data in a single transaction, you might run out of log space, which causes the

transaction to abort.

In addition, if you use the bottom-up build method, described later in this chapter,

to create the R-tree index after you have loaded the data, the size of the index is

typically about two-thirds the size of the index built with a slower method. The

R-tree access method uses bottom-up building when creating an R-tree index only

when data currently exists in the table.

Syntax

The basic syntax for creating an R-tree index is:

CREATE INDEX index_name

ON table_name (column_name op_class)

USING RTREE (parameters)

index_options;

2-2 IBM Informix R-Tree Index User’s Guide

The parameters and index_options arguments are optional.

Important: The ONLINE keyword of the CREATE INDEX and DROP INDEX

statements is not supported for R-Tree indexes.

The arguments are described in the following table.

 Arguments Purpose Restrictions

index_name The name you want to give your

index

The name must be unique in the database.

table_name The name of the table that contains

the column you want to index

The table must already exist.

column_name The name of the column you want

to index For example, you can

create an R-tree index on columns

of data type MyShape, defined in

the sample DataBlade module.

You can create an R-tree index on a single column only;

you cannot create a single R-tree index on multiple

columns. The data type of this column must support

R-tree indexes. For more information on the data types

that support R-tree indexes, check the DataBlade module

user’s guide.

op_class The name of the operator class For

example, to index columns of data

type MyShape, defined in the

sample DataBlade module, you

must specify the MyShape_ops

operator class.

If you have registered in your database a DataBlade

module that supplies its own operator class, you must

specify it when you create an R-tree index.

If you do not specify an operator class, or if you specify

the default rtree_ops operator class without knowingly

setting up your data type and functions to use it, the

R-tree index might appear to work correctly but will

function unpredictably. Check the DataBlade module

user’s guide for more information on which operator class

you must specify when you create an R-tree index.

You must run the UPDATE STATISTICS statement after

you create the index or the query optimizer might not

choose to use the index at appropriate times.

parameters The parameters that specify how

an R-tree index is built These

parameters only affect the building

of the index, not the subsequent

use of the index.

You can specify the following index parameters:

BOTTOM_UP_BUILD, BOUNDING_BOX_INDEX,

NO_SORT, SORT_MEMORY, FILLFACTOR. For detailed

information about each index parameter and when you

should use it, refer to “R-Tree Index Parameters” on page

2-3.

index_options The fragmentation and storage

options of the index, described in

detail in the section “R-Tree Index

Options” on page 2-6

The options available for R-tree indexes are FRAGMENT

BY and IN. The options CLUSTER, UNIQUE, DISTINCT,

ASC, DESC, and FILLFACTOR are not supported.

For more information on the CREATE INDEX statement, refer to the IBM Informix

Guide to SQL: Syntax.

R-Tree Index Parameters

You use index parameters to specify how the R-tree access method builds an R-tree

index on a table column. The index parameters only affect the creation of the

index; they do not affect subsequent use of the index.

Each index parameter is set to a value in single quotes. For example, if you want

to specify a fill factor of 80, you specify the index parameter as FILLFACTOR=’80’.

For detailed examples of using index parameters, refer to “Examples of Creating

R-Tree Indexes” on page 2-7.

Chapter 2. Using the R-Tree Secondary Access Method 2-3

The following table describes each R-tree index parameter in detail.

 Index Parameter Description Default Value

BOTTOM_UP_BUILD Specifies whether to use bottom-up building when

creating an R-tree index By default, the R-tree

secondary access method builds an R-tree index by

using an algorithm that bulk loads data very quickly

into the index. This is also called bottom-up

building. To use bottom-up building, you must

create a temporary dbspace. You can set this index

parameter to NO (do not use bottom-up building to

build the R-tree index) or YES. For detailed

information on bottom-up building of R-tree indexes,

refer to “Bottom-Up Building of R-Tree Indexes” on

page 2-5.

Yes

SORT_MEMORY Specifies the amount of shared memory in kilobytes

(per index fragment) that the R-tree secondary access

method uses for sorting when it creates an R-tree

index with the bottom-up building method. This

index parameter only applies if

BOTTOM_UP_BUILD is also specified. Increase the

value of SORT_MEMORY to speed up the R-tree

index creation. The minimum value you can set this

index parameter to is 8. The maximum value is

determined by the amount of shared memory

available on your computer. You can also specify the

shared memory the R-tree access method uses for

sorting by setting the ONCONFIG parameters

DS_TOTAL_MEMORY and DS_MAX_QUERIES, as

described in the Default Value column.

The value of the ONCONFIG

parameter

DS_TOTAL_MEMORY divided

by the value of the

ONCONFIG parameter

DS_MAX_QUERIES If the two

ONCONFIG parameters are

not specified in the

ONCONFIG file, then the

default values of the two

ONCONFIG parameters are

used. The default value for

DS_TOTAL_MEMORY is 256

KB and the default value for

DS_MAX_QUERIES is 2.

FILLFACTOR Specifies what percentage of an index page should

be filled with entries as the R-tree access method

creates the R-tree index The unfilled part of an index

page is then available for future growth of the index.

This index parameter only applies if

BOTTOM_UP_BUILD is also specified. If you specify

a low value, the index will be larger, but there will

be more space on each index page to accommodate

future entries in the index. Although it is not

necessary to leave space for future entries, if the

pages are too full, the first few new entries will

cause many page splits and thus slow performance.

If you specify a high value, the R-tree index will be

smaller, but new additions to the index might cause

more page splits. This index parameter is similar to

that for B-tree indexes. You can set this index

parameter to an integer between 1 and 100.

100

This means that all index

pages will be completely filled.

NO_SORT Speeds up the creation of R-tree indexes on

already-sorted tables

The NO_SORT index parameter is only valid with

R-tree indexes that support bottom-up build. The

DataBlade module you are using must provide a

function that returns a numeric spatial key given an

object of the data type that is being indexed. The

procedure shown in“Using the NO_SORT Index

Parameter” on page 2-6 explains how to first sort a

table and then create an R-tree index using the

NO_SORT index parameter.

NO

2-4 IBM Informix R-Tree Index User’s Guide

Index Parameter Description Default Value

BOUNDING_BOX_

INDEX

When set to NO, creates an R-tree index that stores

copies of the data objects themselves in the leaf

pages (instead of just their bounding boxes) During

an R-tree index scan, if the index is a

bounding-box-only index (the default), the table is

accessed for the final exact geometry check. For this

reason, many more additional page reads might

occur during a scan if the row size of the table is

large due to large columns. In this case, to improve

performance, you might want to create your R-tree

index so that copies of the data objects are stored in

the leaf pages. Specify

BOUNDING_BOX_INDEX=’NO’ in the CREATE

INDEX statement, as the following example shows:

CREATE INDEX circle_tab_index5

ON circle_tab (circles MyShape_ops)

USING RTREE

(BOUNDING_BOX_INDEX=’NO’);

YES

Bottom-Up Building of R-Tree Indexes

When you create an R-tree index, by default, the access method builds the index

using a fast bulk-loading algorithm, called bottom-up building. You can set

BOTTOM_UP_BUILD=’NO’ to not use bottom-up building to build the R-tree

index.

The algorithm assumes that the four bulk-loading support functions (SFCbits,

ObjectLength, SFCvalue, and SetUnion) exist and are defined by the operator

class specified in the CREATE INDEX statement. The section Support Functions in

“Creating a New Operator Class” on page 3-8 explains what these functions do, if

they are supplied by the DataBlade module you are using. For example, the

SFCvalue function returns a spatial key, which you can use to sort input data. If

the four bulk-loading functions do not exist, the access method builds the R-tree

index using a slower algorithm.

You must also have previously created a temporary dbspace for the access method

to use bottom-up building when you create an R-tree index. If a temporary

dbspace does not exist, or it is too small, then the access method builds the R-tree

index using a slower algorithm.

Use the following expression to calculate the minimum size, in bytes, of the

temporary dbspace you need to create an R-tree index with a 4-byte spatial key:

numrows * (24 + L)

The numrows variable is the number of rows in the table, and L is the maximum

size of the data objects being indexed.

Use the following expression to calculate the minimum size, in bytes, of the

temporary dbspace you need to create an R-tree index with an 8-byte spatial key:

numrows * (30 + L)

The default value of the SORT_MEMORY index parameter, specified in “R-Tree

Index Parameters” on page 2-3, is too small for most R-tree indexes. For this

reason, you should specify a larger value when you create the index.

Chapter 2. Using the R-Tree Secondary Access Method 2-5

Using the NO_SORT Index Parameter

If the DataBlade module that you are using provides a function that returns a

numeric spatial key given an object of the data type that is being indexed, you can

use this function to create a statically clustered table according to a functional

B-tree index. Then, when you create an R-tree index on the resulting clustered

table, the R-tree secondary access method does not need to sort the data as it

builds an index from the bottom up, because the table is already sorted according

to the same criterion that the R-tree bottom-up build would use.

 To first sort a table and then create an R-tree index using the NO_SORT index

parameter:

1. Check your DataBlade module documentation for a function that returns a

spatial key given an object of the data type that is being indexed.

For this procedure, assume this function is called SpatKey().

2. Create a clustered functional B-tree index on your table using the SpatKey()

function, as in:

CREATE CLUSTER INDEX btree_func_index on

 table1 (SpatKey(column1));

btree_func_index is the name of the clustered functional B-tree index, table1 is

the name of the table, and column1 is the name of the column that contains the

spatial data.

3. Create the R-tree index on the spatial_column_name column, specifying the

NO_SORT=’YES’ index parameter:

CREATE INDEX rtree_index ON table1 (column1 my_ops)

 USING RTREE (NO_SORT = ’YES’);

In the example, rtree_index is the name of the R-tree index and my_ops is the

name of the operator class associated with the data type of column column1.

4. Because the R-tree index does not use the clustered functional B-tree index, you

can drop the B-tree index if you want:

DROP INDEX btree_func_index;

R-Tree Index Options

This section discusses the options to the CREATE INDEX command that R-tree

indexes support.

Using the FRAGMENT Clause

R-tree indexes can be fragmented by expression. You cannot, however, fragment

R-tree indexes on the multidimensional column they index.

For example, if you create an R-tree index on a column of type MyShape, you

cannot specify this column in the fragment clause. You must fragment the R-tree

index on another column of a standard data type, such as INTEGER or VARCHAR.

If you create an R-tree index on a fragmented table in a dbspace with the default

page size, the R-tree index is also fragmented by default. The index fragments are

automatically stored in the same dbspace as the table fragments. You cannot create

an R-tree index on a fragmented table in a dbspace with a non-default page size.

The next section describes where you can store R-tree indexes or fragments of

R-tree indexes.

2-6 IBM Informix R-Tree Index User’s Guide

Using the IN Clause

R-tree indexes are stored in dbspaces. If you do not specify an IN clause when you

create an R-tree index, the index is stored in the same dbspace or dbspaces as the

table on which it is built and inherits the distribution scheme of the table.

You cannot store R-tree indexes in sbspaces. If you specify an sbspace in the IN

clause of the CREATE INDEX statement, the index is actually stored in the same

dbspace or dbspaces as the table.

Examples of Creating R-Tree Indexes

The following example shows how to create a table called circle_tab that contains

a column of data type MyCircle and an R-tree index called circle_tab_index on the

circles column:

CREATE TABLE circle_tab

(

 id INTEGER,

 circles MyCircle

);

CREATE INDEX circle_tab_index

ON circle_tab (circles MyShape_ops)

USING RTREE;

The following example shows how to create a similar R-tree index that is stored in

the dbsp1 dbspace instead of the dbspace in which the circle_tab table is stored:

CREATE INDEX circle_tab_index2

ON circle_tab (circles MyShape_ops)

USING RTREE

IN dbsp1;

The following example shows how to create a fragmented R-tree index on the

circle_tab table:

CREATE INDEX circle_tab_index3

ON circle_tab (circles MyShape_ops)

USING RTREE

FRAGMENT BY EXPRESSION

id < 100 IN dbsp1,

id >= 100 IN dbsp2;

All shapes with id less than 100 are stored in the dbsp1 dbspace, and the

remainder are stored in the dbsp2 dbspace.

The following example shows how to create a fragmented table called

circle_tab_frag and then an R-tree index on the table called circle_tab_index4:

CREATE TABLE circle_tab_frag

(

 id INTEGER,

 circles MyCircle

)

FRAGMENT BY EXPRESSION

id < 100 IN dbsp1,

id >= 100 IN dbsp2;

CREATE INDEX circle_tab_index4

ON circle_tab_frag (circles MyShape_ops)

USING RTREE;

All shapes with id less than 100 are stored in the dbsp1 dbspace, and the

remainder are stored in the dbsp2 dbspace.

Chapter 2. Using the R-Tree Secondary Access Method 2-7

The following example shows how to create a fragmented table called

circle_tab_frag and then an R-tree index on the table called circle_tab_index4:

CREATE TABLE circle_tab_frag

(

 id INTEGER,

 circles MyCircle

)

FRAGMENT BY EXPRESSION

id < 100 IN dbsp1,

id >= 100 IN dbsp2;

CREATE INDEX circle_tab_index4

ON circle_tab_frag (circles MyShape_ops)

USING RTREE;

Although the R-tree index is not explicitly created with fragmentation, it is

fragmented by default because the table it is indexing, circle_tab_frag, is

fragmented.

The following example shows how to specify index parameters when you create an

R-tree index:

CREATE INDEX circle_tab_index5

ON circle_tab (circles MyShape_ops)

USING RTREE (BOTTOM_UP_BUILD=’YES’, FILLFACTOR=’80’, SORT_MEMORY=’320’);

The parameters specify that the R-tree index should be built using fast bulk

loading, that the fillfactor is 80, and that the R-tree access method has 320 KB of

shared memory available for sorting.

The following example shows how to drop an R-tree index:

DROP INDEX circle_tab_index;

When Does the Query Optimizer Use an R-Tree Index?

The query optimizer can choose to use an R-tree index when it evaluates a query if

the following statements are true:

v A strategy function of the operator class is used in the WHERE clause of the

query.

v One or more arguments of the strategy function are table columns with R-tree

indexes associated with the operator class.

v The data type of the arguments of the strategy function specified in the WHERE

clause of the query are compatible with the signature of the strategy function.

The query optimizer might cast one or both arguments to other data types in an

effort to make the arguments match the signature of the strategy function.

For example, the following query can use an R-tree index:

SELECT * FROM circle_tab

WHERE Contains (circles, ’circle(-5,-10, 20)’::MyCircle);

The query optimizer can use the R-tree index in the preceding example for the

following reasons:

v The Contains function, specified in the WHERE clause of the query, is a strategy

function of the MyShape_ops operator class.

v The circles column, specified in the Contains function in the WHERE clause of

the query, is of data type MyCircle and has an R-tree index built on it.

2-8 IBM Informix R-Tree Index User’s Guide

v When the cast from a string data type to the MyCircle data type is applied to

the second argument, the cast from MyCircle to MyShape can be internally

applied to both arguments. The result of these casts matches the signature of the

Contains strategy function.

The query optimizer might sometimes decide not to use an R-tree index, even

when it could be used. Consider the following query:

SELECT * FROM circle_tab

WHERE Contains (circles, ’circle(-5,-10, 20)’::MyCircle)

 AND id = 99;

If a B-tree index is on the id column, the query optimizer might use the B-tree

index instead of the R-tree index. It might even decide to perform a sequential

scan for a small table to avoid the overhead of using either index. The optimizer

chooses which index to use, or whether to use an index at all, by comparing the

cost of each option. Cost is an estimate of the number of pages that need to be

accessed. The cost of using an R-tree index is calculated by using the selectivity

and per-row cost functions provided by the DataBlade module (for example, the

IBM Informix Geodetic DataBlade Module and the IBM Informix Spatial DataBlade

Module both provide these support functions). See “Selectivity and Cost

Functions” on page 3-30 for information about how to include selectivity and

per-row cost functions in a DataBlade module.

The following query retrieves cities with names that start with San that are located

within the specified polygon. The optimizer can choose either a B-tree index (on

name), an R-tree index (on obj) or a sequential table scan:

SELECT location FROM cities WHERE

name LIKE “San%” AND

Intersect(obj, ‘GeoPolygon((((-49,45), (34, 48),

(3, -45), (0, -48))), ANY, ANY)’);

To determine which index was actually used, use SET EXPLAIN ON.

Important: The query optimizer also uses statistical data on the indexed column to

decide whether to use an R-tree index. This statistical data must be

kept up-to-date and correct for the query optimizer to make a good

decision. Use the UPDATE STATISTICS command to update the

statistics for the indexed column. For more information on statistics,

see Chapter 4, “Managing Databases That Use the R-Tree Secondary

Access Method,” on page 4-1.

Complex Qualifications

A complex qualification is a WHERE clause in which two or more logical operators

are used on the same column on which the R-tree index is defined.

If you specify a complex qualification in a query that includes only AND or only

OR logical operators, then the entire qualification is evaluated using one R-tree

index scan. An example of a complex qualification that uses only AND logical

operators is WHERE Overlap(A,B) AND Contains(A,C) AND Contains(A,D), where A

is the indexed column. An example of a complex qualification that uses only OR

logical operators is WHERE Overlap(A,B) OR Contains(A,C) OR Contains(A,D).

If, however, you mix AND and OR logical operators in the same complex

qualification, the R-tree index is not used at all for any of the predicates. This

means that arbitrary logical expressions cannot necessarily use an R-tree index. An

Chapter 2. Using the R-Tree Secondary Access Method 2-9

example of a complex qualification that mixes AND and OR logical operators is

WHERE Overlap(A,B) AND Contains(A,C) OR Contains(A,D), where A is the indexed

column.

R-Tree Indexes and Null Values

The R-tree secondary access method uses bounding boxes of data objects to

calculate how to insert the object into an R-tree index and how to subsequently

search for the object. An R-tree index, however, cannot create a bounding box for a

null value. For this reason, an R-tree index treats null values differently from

non-null values, as the following sections describe.

How an R-Tree Index Internally Handles Null Values

If you insert a null value into a spatial column on which you created an R-tree

index, the index ignores the insertion and does not create a reference back to the

row in the table. Similarly, if you delete a null value from the table, the R-tree

index ignores the deletion and the index is not changed, because no reference back

to the table row ever existed.

If you update a null value in the table to a non-null value, the R-tree index ignores

the deletion of the null value and inserts the non-null value into the R-tree index.

Similarly, if you update a non-null value to a null value, the R-tree index deletes

the non-null value from the R-tree index and ignores the insertion of the null

value.

How Strategy Functions Handle Null Values

If you specify a null value for any of the arguments of a strategy function in the

WHERE clause of a query, the query always returns 0 rows. This is true even if you

specified that the strategy function handles nulls when you created the strategy

function with the CREATE FUNCTION statement.

For example, assume you previously inserted a null value into the circle_tab table

with the following INSERT statement:

INSERT INTO circle_tab VALUES (1, NULL);

The following query that uses the Equal strategy function to search for null values

always returns 0 rows, even though a null value does exist in the table:

SELECT * FROM circle_tab WHERE Equal (circles, NULL);

Zero rows are always returned because null values are never part of an R-tree

index; they are stored only in the table. To search for null values in a column on

which you created an R-tree index, use the IS NULL condition in the WHERE

clause of the query, as the following example shows:

SELECT * FROM circle_tab WHERE circles IS NULL;

The preceding query does not use the R-tree index, and thus the database server

must perform a full table scan. However, because the query is searching the table,

the query returns what you expect: those rows whose circles column is null.

2-10 IBM Informix R-Tree Index User’s Guide

Performing Nearest-Neighbor Searches

If the DataBlade module you are using is set up for it, you can perform

nearest-neighbor searches. For example, the IBM Informix Geodetic DataBlade

Module and the IBM Informix Spatial DataBlade Module both provide

nearest-neighbor search support.

After you create an R-tree index on the column on which you want to perform

nearest-neighbor queries, you can use the functions that your DataBlade

documentation identifies as nearest-neighbor functions to perform nearest-neighbor

queries.

Nearest-neighbor searches return results in order of increasing distance from the

specified object or location. Without any other restriction, a nearest-neighbor query

returns a result for all rows returned by the query. Often, you will want to restrict

the results, for example, using the FIRST n syntax to obtain just the first few

results (as shown in the example below).

The WHERE clause of a nearest-neighbor query can include other qualifications,

provided the clause is connected by AND.

A DataBlade module might provide more than one nearest-neighbor function. For

example, the IBM Informix Spatial DataBlade Module provides the SE_Nearest and

SE_NearestBBox functions. The SE_Nearest function calculates precise distances

between objects. SE_NearestBBox calculates distances as measured between

objects’ bounding boxes (envelopes). Because this calculation is simpler,

SE_NearestBBox executes more quickly but might return objects in a different

order depending on the actual shape of the objects.

Limitations

The WHERE clause of a nearest-neighbor query cannot include:

v Clauses connected by OR

v Clauses connected by AND NOT

Only one nearest-neighbor function can be used per query.

Using a fragmented R-tree index for nearest-neighbor queries raises an error. The

results are not returned in nearest-distance order because the query is executed on

each separate index fragment, and results from each fragment are combined in an

unspecified order.

Example

The following example shows how to perform a nearest-neighbor search using the

IBM Informix Spatial DataBlade Module. The SE_Nearest function allows you to

perform the search.

The cities table was created with the following statement. It contains the names

and locations of approximately 300 world cities.

CREATE TABLE cities (name varchar(255),

 locn ST_Point);

An R-tree index is created on the locn column:

Chapter 2. Using the R-Tree Secondary Access Method 2-11

CREATE INDEX cities_idx ON cities (locn ST_Geometry_ops)

 USING RTREE;

UPDATE STATISTICS FOR TABLE cities (locn);

Now search for the five cities nearest London:

SELECT FIRST 5 name FROM cities

 WHERE SE_Nearest(locn, ’0 point(0 51)’);

The query returns the following results:

name London

name Birmingham

name Paris

name Nantes

name Amsterdam

Database Isolation Levels and R-Tree Indexes

Database isolation levels affect the degree of concurrency among processes that

attempt to access the same rows at the same time. There are four levels of

isolation:

v DIRTY READ

v REPEATABLE READ

v COMMITTED READ

v CURSOR STABILITY

Use the SQL statement SET ISOLATION to set the isolation level for your session.

If you specify the COMMITTED READ isolation level and use an R-tree index to

select rows in a table, all the rows returned by the search are guaranteed to be

committed. The same query, however, might not read some of the rows that have

been deleted, but not yet committed, by another concurrent transaction.

While R-tree indexes can use the COMMITTED READ isolation level as described

in the previous paragraph, R-Tree indexes cannot use the COMMITTED READ

LAST COMMITTED isolation level feature.

This behavior differs slightly from that of Informix B-tree indexes. IBM Informix

Guide to SQL: Syntax provides detailed information on the type of concurrency that

each isolation level enforces for B-tree indexes.

Functional R-Tree Indexes

You can also use the R-tree access method to create a functional R-tree index. A

functional index supports retrieval of table rows according to the value of some

computation done on the columns of the rows. The value is not actually stored in

the table, but it is precomputed and used to build an index.

To create a functional R-tree index, the return type of the function must be a data

type that is compatible with an R-tree index.

2-12 IBM Informix R-Tree Index User’s Guide

You cannot build a functional R-tree index with a function that specifies an opaque

data type that contains a reference to a smart large object as a return type. This is

true for all functional indexes, not just R-tree functional indexes.

Functional R-tree indexes are not bounding-box-only indexes; they store the data

objects themselves in leaf pages.

The examples in the rest of this section show how to create and use a functional

R-tree index on a table that stores point coordinates. Although the table does not

contain any columns of a data type that can be indexed by an R-tree index, the

functional R-tree index allows you to use the R-tree access method to search for

specific points in the table.

The following example shows how to create and populate a coordinates table that

has two columns that store the point coordinates; the x column stores x-coordinates

and the y column stores y-coordinates:

CREATE TABLE coordinates

(

 id INTEGER,

 x FLOAT,

 y FLOAT

);

INSERT INTO coordinates VALUES (1, 2.0, 3.0);

INSERT INTO coordinates VALUES (2, 4.0, 5.0);

The following example shows how to create a functional R-tree index called

coordinates_idx on the two coordinate columns of the coordinates table using the

MyPoint() function:

CREATE INDEX coordinates_idx

ON coordinates (MyPoint (x,y) MyShape_ops)

USING RTREE;

The following example shows a query that could use the coordinates_idx

functional R-tree index:

SELECT id FROM coordinates

WHERE MyPoint(x,y) = ’point(2.0, 3.0)’;

The query searches for all points in the coordinates table that have the coordinates

(2.0, 3.0).

For more information on how to create functional indexes, refer to the IBM

Informix Guide to SQL: Syntax.

Chapter 2. Using the R-Tree Secondary Access Method 2-13

2-14 IBM Informix R-Tree Index User’s Guide

Chapter 3. Developing DataBlade Modules That Use the

R-Tree Secondary Access Method

In This Chapter . 3-1

Overview of DataBlade Module Development . 3-2

Deciding Whether to Use the R-Tree Access Method . 3-2

Designing a User-Defined Data Type . 3-3

Data Objects and Bounding Boxes . 3-3

Operations on Data Objects . 3-4

Operations on Bounding Boxes . 3-4

Internal C Structure for the User-Defined Data Type 3-4

Data Type Hierarchies . 3-5

Example Data Type Hierarchy . 3-5

Strategy Functions in a Data Type Hierarchy . 3-6

Union Support Function in a Data Type Hierarchy . 3-6

Maximum Size of the User-Defined Data Type . 3-6

Loose Bounding Box Calculations . 3-7

Other User-Defined Data Type Design Considerations . 3-7

Creating a New Operator Class . 3-8

Support Functions . 3-9

Internal Uses of the Support Functions . 3-11

The Union Function . 3-11

The Size Function . 3-12

The Inter Function . 3-13

The RtreeInfo Function . 3-14

The SFCbits Function . 3-18

The ObjectLength Function . 3-18

The SFCvalue Function . 3-19

The SetUnion Function . 3-19

Implicit Casts . 3-20

Example of Creating a Support Function . 3-20

Strategy Functions . 3-21

Internal Uses of the Strategy Functions . 3-22

The Overlap Function . 3-24

The Equal Function . 3-25

The Contains Function . 3-25

The Within Function . 3-27

Other Strategy Functions . 3-29

Example of Creating a Strategy Function . 3-29

Selectivity and Cost Functions . 3-30

Syntax for Creating a New Operator Class . 3-31

Setting Up Nearest-Neighbor Searching . 3-33

Setting Up a Strategy Function for Nearest-Neighbor Searching 3-33

The Distance-Measuring Function . 3-33

Distance Function: Using Bounding Boxes . 3-34

Setting RtreeInfo to Indicate Nearest-Neighbor Functions 3-34

Creating Registration Scripts for Dependent DataBlade Modules 3-35

Importing the ifxrltree Interface Object . 3-36

Repairing R-tree Indexes After Migrating to a Different Version of a DataBlade Module 3-37

In This Chapter

This chapter provides information for DataBlade developers who might want to

use the R-tree secondary access method to index a new data type by creating a

new operator class. It discusses the following topics:

v Overview of DataBlade Module Development

© Copyright IBM Corp. 1996, 2008 3-1

v Deciding Whether to Use the R-Tree Access Method

v Designing a User-Defined Data Type

v Creating a New Operator Class

v Setting Up Nearest-Neighbor Searching

v Creating Registration Scripts for Dependent DataBlade Modules

v “Repairing R-tree Indexes After Migrating to a Different Version of a DataBlade

Module” on page 3-37

Overview of DataBlade Module Development

A DataBlade module is a software package that extends the functionality of

Dynamic Server. It adds new database objects, such as data types and routines,

that extend the SQL syntax and commands you can use with Dynamic Server.

Use the DataBlade Developers Kit (DBDK) to create and package DataBlade

modules. With the DBDK, you define the new database objects that will be

included in your DataBlade module, import objects from other modules, and

generate the source code, SQL scripts, and installation scripts that make up your

DataBlade module.

For example, you can use the DBDK to create a DataBlade module that contains

spatial data types, such as polygons and circles. The module will probably also

include a set of routines that operate on the data types, such as Area and

Circumference.

Your DataBlade module might also include the required routines and operator

class to enable users to create R-tree indexes on columns of the user-defined data

type. This chapter describes how to add this functionality to your DataBlade

module.

The DBDK automatically generates some of the C code and SQL scripts that make

up a DataBlade module. This means that most DataBlade module developers do

not need to write most of the SQL commands described in this chapter. The

commands are provided, however, to better explain the concepts.

For more information on how to design and create DataBlade modules with the

DBDK, refer to the IBM Informix DataBlade Developers Kit User’s Guide.

Important: The examples in this chapter are taken from the definition of the

objects of the Shapes3 sample DataBlade module, described in

Appendix A. The appendix provides both a description of the

DataBlade module and the C code used to create the functions of the

operator class.

Deciding Whether to Use the R-Tree Access Method

The R-tree secondary access method is specifically designed to index data with the

following two special properties:

v The data is multidimensional.

v On a given dimension, a data object spans some width. That is, it corresponds to

an interval or range, not a point.

Examples of these types of data include:

v Two-dimensional spatial objects, such as points, lines, and polygons

3-2 IBM Informix R-Tree Index User’s Guide

v Geographic mapping information, defined in terms of latitude and longitude,

that includes pointlike objects, such as cities; linelike objects, such as roads and

rivers; and regionlike objects, such as counties, states, and land masses

v Video or audio clips, each with a start and stop time

If you create a time range user-defined data type, you can search for

overlapping clips more efficiently with an R-tree index than with a B-tree index.

v Color information that includes hue, brightness, and saturation

v Multidimensional views of standard relational quantitative data, such as age,

salary, sales commission, hire date, and so on

An R-tree index works on data with only one of these properties

(multi-dimensional points or ranges along a single dimension) but data

corresponding to points on a single dimension is better indexed with a B-tree

index.

Unlike other data structures, such as a grid-file and a quad-tree, the R-tree access

method does not require that data values be in a known bounded area.

If you are developing a DataBlade module that includes a user-defined data type

of a multidimensional or interval nature, you might want to use the R-tree access

method to index columns of this data type.

The type of data most suited to B-tree indexes (the other indexing method

included in Dynamic Server) is ordered numeric values in one dimension. Do not

use B-tree indexes to index range or interval data. The following types of data are

suited to being indexed with the B-tree access method and not the R-tree access

method:

v Numerical data, such as employee IDs

v Character data, such as last names and product names

After you decide to use the R-tree access method to index a user-defined data type,

you must create a new operator class. “Creating a New Operator Class” on page

3-8 describes this process. The next section describes issues you should be aware of

when you design the user-defined data type.

Designing a User-Defined Data Type

This section contains the topics you should consider when you design a

user-defined data type.

Important: This section does not discuss how to create a user-defined data type.

For detailed instructions on how to create a new data type, refer to

IBM Informix User-Defined Routines and Data Types Developer’s Guide .

Data Objects and Bounding Boxes

As discussed in Chapter 1, “R-Tree Secondary Access Method Concepts,” on page

1-1, R-tree indexes store both the bounding boxes of data objects in the indexed

table and copies of the data objects in the table. This means that the support and

strategy functions that maintain the R-tree index must also operate on both

bounding boxes and data objects.

The data type of the parameters to the support and strategy functions is the

user-defined data type of the indexed column. Therefore, the user-defined data

type of the indexed column must be able to be referred to as both a bounding box

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-3

and the data object itself. For example, the bounding box information can be

hidden inside the object, such as in a header, with the actual object data.

The R-tree access method code never operates directly on the data inside the

objects in the indexed column. Instead, it passes the complete objects to the

user-defined support and strategy functions, which can use the bounding box

information or the full data object description, as appropriate. It is therefore up to

the designer of user-defined support and strategy functions to decide when to use

the bounding box and when to use the data object in a calculation.

The next two sections describe when the support and strategy functions operate on

data objects and when they operate on the bounding boxes of the data objects. Use

these descriptions to correctly design your own support and strategy functions.

Operations on Data Objects

When a user creates a table with a user-defined data type column and inserts a

new row, the user-defined data type’s input functions operate on the actual data

object to physically create the new object and insert the row into the table.

If an R-tree index exists on the column, the R-tree access method calls the

appropriate support and strategy functions to expand the R-tree index. The

functions use the bounding box of the new data object to decide where the copy of

the data object, with its bounding box, should be placed in the R-tree index.

Searches can also operate on the actual data object. The search function used in the

WHERE clause of a query, such as Contains, must be evaluated on the actual data

object when a qualifying leaf entry in the R-tree index is found. In other words,

true geometry on the actual data object must be used to find a real match. If a user

does not create an R-tree index on the column, then the search function is

evaluated for every data object according to its true geometry. If an R-tree index

exists on a column, but the query optimizer decides not to use it, then the search

function again operates on all data objects and not on the keys stored in the R-tree

index.

Operations on Bounding Boxes

Once a table contains enough rows so that the R-tree index has split into more

than one level, the support and strategy functions use a combination of bounding

boxes and data objects in their internal calculations when a new row is inserted in

the table. The functions generate a new bounding box for the affected pages based

on existing key information already stored in the R-tree index and the data object

itself, and they calculate where the new key should be placed in the R-tree index.

The affected pages are the leaf page on which the new key is stored and the parent

pages whose bounding boxes need to be enlarged.

If the query optimizer decides to use an R-tree index in a search, the R-tree index

begins its search at the root, and searches the tree as described in “Searching with

an R-Tree Index” on page 1-6. Because searches of R-tree indexes involve both the

bounding boxes and data objects, the support and strategy functions in this case

also use both the bounding boxes and data objects in their internal calculations.

Internal C Structure for the User-Defined Data Type

In summary, although the internal C structure for the user-defined data type can

be anything the developer wants it to be, the following two rules must be true if

columns of this data type are to be indexed with the R-tree access method:

v The data structure must support both the actual data object and its bounding

box.

3-4 IBM Informix R-Tree Index User’s Guide

v Only one C data structure can be defined for the internal representation of the

user-defined data.

The same data structure must be passed to all functions that accept the

user-defined data type as an argument. Examples of such functions are the

support and strategy functions that maintain the R-tree index.

Data Type Hierarchies

If you are designing two or more similar data types, you should consider

implementing your own data type hierarchy to avoid writing strategy and support

functions for every possible combination of data type signatures.

 To implement your own data type hierarchy:

1. Design a single supertype to which the strategy functions apply.

2. Create implicit casts in SQL from all the subtypes to the supertype.

3. Create implicit casts in SQL from the built-in data types LVARCHAR,

SENDRECV, IMPEXP, and IMPEXPBIN to the supertype and all subtypes.

This is part of the normal opaque user-defined data type creation. For more

information about how to create these implicit casts, refer to IBM Informix

User-Defined Routines and Data Types Developer’s Guide.

4. Create the required strategy functions in SQL for just the supertype.

You do not need to create strategy functions for the subtypes because casts

from the subtype to the supertype exist.

5. In SQL, create support functions for the supertype and all the subtypes.

All of these SQL functions, however, can usually be mapped to the same C

code; thus only one C function needs to be written.

If the query optimizer is unable to find a function for a particular subtype when it

is executing a query, the query optimizer implicitly casts the subtype to the

supertype and uses the function defined for the supertype.

The support or strategy function that is defined for the supertype must internally

determine what actual data type it is operating on, and then it must execute the

code that applies for that particular data type. This means that the internal C code

for a function defined for the supertype also contains the C code that applies to all

subtypes.

Example Data Type Hierarchy

Assume you are designing three data types: MyPoint, MyBox, and MyCircle.

Because they are all two-dimensional spatial data types, a supertype called

MyShape could also be defined. This type hierarchy is described in Figure 3-1.

Using SQL, create casts between the three subtypes (MyPoint, MyBox, and

MyCircle) and the supertype, MyShape.

MyCircleMyBoxMyPoint

MyShape

Figure 3-1. Data Type Hierarchy

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-5

The following two sections describe how to create the strategy and support

functions.

Strategy Functions in a Data Type Hierarchy

When you create the strategy functions, such as Overlaps, only one function needs

to be created in SQL: Overlaps (MyShape, MyShape). The internal C code for this

Overlaps function first checks to see what actual data type it is operating on

(either MyPoint, MyBox, or MyCircle), and then calls the appropriate code for that

data type. For example, if the function call in the query was actually Overlaps

(MyCircle, MyCircle), the appropriate code for the overlap between two MyCircle

data types is executed.

If a query contains the expression Overlaps (MyCircle, MyCircle), the query

optimizer first looks for a function with the same signature. It will not find one,

because none has been defined. It does, however, find a cast from MyCircle to

MyShape, so it searches for an Overlaps function that applies to the MyShape data

type. Because this function does exist, the query optimizer executes it after

implicitly casting MyCircle to MyShape.

By taking advantage of type hierarchies and casting, you avoid having to explicitly

create the various combinations of Overlaps functions within SQL, such as

Overlaps(MyPoint, MyPoint), Overlaps(MyBox, MyCircle), and so on.

The preceding discussion about type hierarchies and strategy functions is true for

all strategy functions, not just for the Overlaps function.

Union Support Function in a Data Type Hierarchy

When you create the Union support function, you must create separate SQL

functions for each indexable column type. For example, you must create the

following SQL Union functions:

Union (MyPoint, MyPoint, MyPoint)

Union (MyBox, MyBox, MyBox)

Union (MyCircle, MyCircle, MyCircle)

Union (MyShape, MyShape, MyShape)

All these Union support functions, however, can be mapped to the same C code.

Similar to strategy functions, the internal C code that the Union functions map to

first checks to see what actual data type it is operating on (either MyPoint, MyBox,

or MyCircle) and then calls the appropriate code for that data type. For example, if

the function call is Union (MyCircle, MyCircle, MyCircle), it executes the

appropriate code for the union of two MyCircle data types.

The preceding discussion is true only for the Union support function and not for

the other support functions.

Maximum Size of the User-Defined Data Type

A copy of the data object is stored as part of the key in the leaf pages of an R-tree

index. Each index page is a database disk page. R-tree index entries, however,

cannot span disk pages as table rows can.

Therefore, the maximum size of a data object that is stored in a table, and thus the

maximum size of its user-defined data type, is governed by the R-tree disk page

size of 2 KB. After allowing for R-tree index overhead, about 1960 bytes, minus the

size in bytes of the bounding box of the data object, are available.

3-6 IBM Informix R-Tree Index User’s Guide

Furthermore, R-tree indexes should always fit at least two keys on a single leaf

page. Although the R-tree index works correctly with just one key per leaf page,

the index performs better when two or more keys fit on single page. This means

that the maximum size, in bytes, of a user-defined data type that is to be indexed

with an R-tree index should optimally be:

(2000 - B - (K * 20)) / K

In the formula, B refers to the size, in bytes, of the bounding box of the data object,

and K refers to the number of keys you want to fit on a page. For example, if you

want to fit three keys on a single page, then the maximum size of the data type is:

(1940 - B) / 3

Although this maximum size might be sufficient to store simple boxes and circles,

it is probably not sufficient to store very large polygons. DataBlade modules that

create user-defined data types that store very large values must implement them as

either smart large objects or multirepresentational data types. Multirepresentational

user-defined data types store a value in the table if it is smaller than the maximum

size of the user-defined data type, or in a smart large object otherwise. There is no

size limitation on smart large objects or multirepresentational data types.

Loose Bounding Box Calculations

In an R-tree index, bounding boxes are used to identify all data that might qualify

during a search. A more accurate check is always applied as a second step. For this

reason, one might think that the bounding box of an object could be loose, or not

an exact fit, without causing anything worse than a few initial false hits. It is often

difficult to calculate an exact bounding box for some objects, such as great circle

arcs on the surface of the earth, so there is a compelling reason to use an

approximation.

However, there is a possibility you might get inaccurate results when you use

loose bounding boxes. For example, assume the bounding box for data object A is

looser than the bounding box for data object B. Even if data object A is within data

object B, A’s bounding box might extend beyond B’s, due to its looseness. The

Within strategy function, if written to rely on a preliminary bounding box check,

might return FALSE when it should return TRUE. As a result, the R-tree access

method code that called the Within function might miss some qualifying data.

There are two solutions to this problem:

v Calculate exact bounding boxes for all data objects.

v Add a compensating factor, the maximum looseness, to the size of one of the

arguments before comparing bounding boxes. You program this compensating

factor in the bounding box portion of the strategy function code.

In the example in the preceding paragraph, add X to the size of B’s bounding

box, where X is the maximum looseness of A’s bounding box, before comparing A

and B’s bounding boxes.

The R-tree access method code might call a different strategy function when it

processes internal pages. For example, the access method uses the Contains

strategy function for internal pages when it processes a query that specifies the

Equal function. The bounding box logic must be correct in all cases.

Other User-Defined Data Type Design Considerations

When you design a new user-defined data type to store multidimensional data,

include all the dimensions likely to be used in a query. For example, suppose you

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-7

are designing a user-defined data type to store information on beach resorts for a

travel application. Because queries for resorts often include a time element, such as

when are the high and low season rates for a particular resort, you might want to

include a time dimension in the resort data type, as well as the usual location.

When you create an R-tree index on a column of this data type, the time

dimension is built into the index, and queries that specify time might execute

faster.

Include dimensions that are also selective. This means that the values in a

particular dimension effectively separate desired data from undesired data. For

example, latitude and longitude spans are probably selective in a database of

satellite photos because they can separate out just the few pictures in an area of

interest from many other pictures scattered over the earth.

Creating a New Operator Class

DataBlade modules usually supply their own operator class when implementing

the R-tree access method. For example, the IBM Informix Geodetic DataBlade

Module adds the GeoObject_ops operator class. This section describes how to

create a new operator class.

Although the R-tree access method includes a default operator class called

rtree_ops, it is recommended that you always create a new operator class if you

are developing a DataBlade module that uses the R-tree access method.

The rtree_ops operator class is provided primarily for generic R-tree testing and as

an example of how to create a new operator class. The rtree_ops operator class

includes only the four required strategy functions: Overlap, Equal, Contains, and

Within. If you want to create more than these four strategy functions, you must

create your own operator class.

The rtree_ops operator class also restricts the number of support functions to the

three required ones: Union, Size, and Inter. Because bottom-up building of R-tree

indexes requires that you also create the SFCbits, ObjectLength, SFCvalue, and

SetUnion functions, the rtree_ops operator class does not support bottom-up

building.

 To create a new operator class:

1. Create the required support functions.

This step includes writing the C code using the DataBlade API to implement

the required support functions and defining in BladeSmith the SQL statements

to register the function with the database server.

This step is described in “Support Functions” on page 3-9.

2. Create the required strategy functions. Similar to support functions, this step

includes writing the C code using the DataBlade API to implement the required

strategy functions and defining in BladeSmith the SQL statements to register

the function with the database server.

This step is described in “Strategy Functions” on page 3-21.

3. Create the operator class by creating custom SQL in BladeSmith to register the

operator class with the database server.

This step is described in “Syntax for Creating a New Operator Class” on page

3-31.

3-8 IBM Informix R-Tree Index User’s Guide

Each access method has different requirements for the support and strategy

functions. The following sections describe the support and strategy functions that

the R-tree access method requires and examples of how to create them.

When you use the DBDK to create an operator class, you do not have to create the

SQL statements to register the support and strategy functions with the database

server because the DBDK automatically generates the necessary scripts. You do,

however, need to write the C code that actually implements the support and

strategy functions.

The DBDK does not automatically generate the SQL statement to create an

operator class. Instead, you must create custom SQL files from BladeSmith by

choosing Edit > Insert > SQL Files.

For more information about DBDK and BladeSmith, refer to the IBM Informix

DataBlade Developers Kit User’s Guide.

For more information on the DataBlade API, refer to the IBM Informix DataBlade

API Programmer’s Guide.

Important: The R-tree access method requires that all support and strategy

functions be nonvariant or that they always return the same results

when invoked with the same arguments. To define a nonvariant

function, specify NOT VARIANT in the WITH clause of the CREATE

FUNCTION statement.

If you use the DBDK to create the data type that is to be indexed by an

R-tree index and specify that the R-tree support and strategy functions

be automatically generated, the NOT VARIANT clause is included

automatically in the CREATE FUNCTION statement. If, however, you

create the support and strategy functions yourself, the function is

VARIANT by default.

Support Functions

Support functions are user-defined functions that the Informix database server uses

to construct and maintain an R-tree index. They are never explicitly executed by

end users.

The R-tree access method uses support functions to determine the leaf page on

which an index key belongs and to create the special bounding-box-only keys used

internally by the R-tree index. For more information on bounding boxes, refer to

“Bounding Boxes” on page 1-3.

The R-tree access method requires that you create the following three support

functions:

v Union

v Size

v Inter

If you plan to support bounding-box-only R-tree indexes (described in

“Bounding-Box-Only R-Tree Indexes” on page 1-4), which are the default R-tree

indexes created by Version 9.21.UC1 or later of the database server, or you plan to

support nearest-neighbor searches, you must also implement the RtreeInfo support

function with the operation strat_func_substitutions.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-9

Important: To support bounding-box-only indexes or nearest-neighbor searches,

you might also need to redesign your strategy functions that occupy

slots 5 and up, if you want them to behave differently at nonleaf pages.

This is because you cannot distinguish between leaf and nonleaf items

in a bounding-box-only index. For more information, see “The

RtreeInfo Function” on page 3-14.

You must list the Union, Size, and Inter support functions in the order shown

when you execute the CREATE OPCLASS statement to register the operator class

with the database server. In other words, you must list the Union, Size, and Inter

support functions as the first, second, and third support functions, respectively, in

the CREATE OPCLASS statement. This SQL statement is described in “Syntax for

Creating a New Operator Class” on page 3-31.

In addition to the required support functions, the R-tree access method also

recognizes the following four optional support functions that it uses to enhance the

performance of the statement that creates the R-tree index:

v SFCbits

v ObjectLength

v SFCvalue

v SetUnion

You are not required to include these support functions in your operator class.

However, since these functions are specifically designed to improve the

performance of the creation of R-tree indexes, it is highly recommended that you

include them in your operator class.

If you decide to include these optional support functions in your operator class,

you must list them after the required support functions, in the order shown, when

you execute the CREATE OPCLASS statement to register the operator class with

the database server. In other words, you must list the SFCbits, ObjectLength,

SFCvalue, and SetUnion support functions as the fourth, fifth, sixth, and seventh

support functions, respectively, in the CREATE OPCLASS statement. This SQL

statement is described in “Syntax for Creating a New Operator Class” on page

3-31.

You must list the RtreeInfo support function in the eighth position, after Union,

Size, and Inter, and the four optional bulk-loading support functions. If you do

not provide the four optional bulk-loading support functions in your DataBlade

module, specify NULL in the fourth, fifth, sixth, and seventh positions in the

CREATE OPCLASS statement.

The following sections describe how the R-tree access method uses the support

functions and how you should write each function, and provide an example of an

SQL statement used to create the Union function. Examples of the SQL statements

to create the Size, Inter, SFCbits, ObjectLength, SFCvalue, and SetUnion

functions are not provided because they are similar to the Union example.

Tip: It is useful to name support functions in a way that describes what they do.

For example, it makes sense to name a function that calculates the size of a

bounding box Size. For convenience, this guide uses the names Union, Size,

and Inter when it describes the three required support functions. These are

also the names that the default operator class rtree_ops uses for its support

functions.

3-10 IBM Informix R-Tree Index User’s Guide

Internal Uses of the Support Functions

The R-tree access method uses the required support functions in combination when

it maintains the R-tree index. For example, when the access method is deciding

into which subtree to place a new entry, it uses the Union and Size functions to

determine how much each bounding box needs to expand if the new entry were

added to that subtree. After a page splits, the access method uses the Union

function to calculate a new bounding box for all entries on a page.

The RtreeInfo support function determines, for a given strategy function, which

strategy function should actually be called when the R-tree access method is

working on an internal nonleaf page. It also provides support for nearest-neighbor

searches. You must define the RtreeInfo function if your DataBlade module is

going to support bounding-box-only R-tree indexes or nearest-neighbor searches.

The R-tree access method uses the four optional support functions (SFCbits,

ObjectLength, SFCvalue, and SetUnion) to increase the performance of initial

R-tree index creation by performing fast bulk loading of data into the index from a

populated table. First, the R-tree access method groups together the rows that

belong to the same page. At the same time, the access method identifies the

neighbors of each page. Once this process is completed, the R-tree access method

stores all the rows in a singly linked list of leaf pages, filled as compactly as

possible. As the leaf pages become full, the access method recursively builds the

pages at the higher levels. The R-tree access method repeats this process until all

the rows are written into the leaf pages.

The R-tree access method uses this method of building R-tree indexes only if you

specify the optional support functions in the appropriate operator class. If you do

not specify these support functions, then the R-tree access method uses a slower

method to create the R-tree index.

Important: Support functions can be executed many times during the creation of

an R-tree index. For this reason, it is recommended that the

corresponding C code for the support function be as fast and efficient

as possible. Examples of increasing speed and efficiency in C code are

to not allocate memory, not open and close database connections, and

so on.

The Union Function

The R-tree access method uses the Union function to find a new all-inclusive

bounding box for the index entries on an index page when a new entry is added.

The union of the old bounding box and the bounding box of the new entry is the

new, possibly enlarged, bounding box for the entire index page.

The R-tree access method also uses the Union function when it calculates onto

which index page it should put a new index entry. In conjunction with the Size

function, the Union function shows how much the old bounding box must be

enlarged to include the new index entry. In other words, the Union function tells

the R-tree access method the data size of a bounding box.

The access method also uses the Union function after a page split to calculate the

bounding box for the new page and to evaluate the new groupings between the

old and new pages.

The SQL signature of the Union support function must be:

Union (UDT, UDT, UDT) RETURNS INTEGER

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-11

UDT refers to user-defined type, or the data type you want to index with the R-tree

access method.

Write the Union function to calculate the overall bounding box of the bounding

boxes of the objects in the first two parameters and to store the result in the third

parameter.

The return value of the Union function is not used by the R-tree access method.

The Union function should call the mi_db_error_raise() DataBlade API function to

return errors.

For variable UDTs, the third parameter of the Union function is not initialized; it

contains a valid mi_lvarchar data type with slightly more memory than necessary

allocated to it. Be sure you set the size in the function to the size, in bytes, of the

largest possible result.

The result returned in the third parameter of the Union function must be a fixed

size and not a large object. Set its size large enough for any return value.

The R-tree access method implementation assumes that the size returned from the

first call to the Union function is the size of all internal index keys. Therefore,

when you write the code for the Union function, pick a maximum size for any

internal index keys of an R-tree index and set the size of the union to that value.

For sample C code of the Union function, see “Union Support Function” on page

A-11. C code uses the DataBlade API to interact with the database server.

The Size Function

The R-tree access method uses the Size function to evaluate different ways to

group objects by comparing the sizes of bounding boxes around objects or groups

of objects. It does this when it decides where to place a new data object and when

it splits a page. Ideally, a disk page is divided into two pages whose overall

bounding boxes are as compact and small as possible.

For sample C code of the Size function, see “Size Support Function” on page A-12.

C code uses the DataBlade API to interact with the database server.

Signature of the Size Function: The SQL signature of the Size support function

must be:

Size (UDT, DOUBLE PRECISION) RETURNS INTEGER

UDT refers to user-defined type, or the data type you want to index with the R-tree

access method.

Write the Size function to calculate the relative size of the bounding box of the

object in the first parameter and to store the result in the second parameter as a

double-precision value.

The return value of the Size function is not used by the R-tree access method. The

Size function should call the mi_db_error_raise() DataBlade API function to return

errors.

Calculating the Size of a Bounding Box: Write the Size function to always return

a different value as a bounding box expands or shrinks by the addition or removal

of objects inside it. This means that you should add a compensating factor when

3-12 IBM Informix R-Tree Index User’s Guide

calculating the size to take care of degenerate bounding boxes. A degenerate

bounding box is one that has one or more sides of 0 length.

Assume your data is in a two-dimensional space and you decide to use a simple

length times width calculation to compute the size of a bounding box. If the width

of the bounding box subsequently shrinks to 0, then the size of the bounding box

is 0. However, if it was the length of the original bounding box that shrunk to 0,

then the size would also be 0, breaking the rule that different bounding boxes

return different sizes. Figure 3-2 describes this situation.

In this situation, a better formula for calculating the size of a bounding box would

be:

(length times width) plus (length plus width)

This formula for the Size function always returns a larger value if the box changes

by the inclusion of a new item and returns a smaller value if it shrinks because

something inside was removed.

The Inter Function

The SQL signature of the Inter support function must be:

Inter (UDT, UDT, UDT) RETURNS INTEGER

UDT refers to user-defined type, or the data type you want to index with the R-tree

access method.

Write the Inter function to calculate the intersection of the bounding boxes of the

objects in the first two parameters and to store the result in the third parameter.

The R-tree access method uses the resulting bounding box in a subsequent call to

the Size function to find out how much two bounding boxes overlap.

The return value of the Inter function is not used by the R-tree access method. The

Inter function should call the mi_db_error_raise() DataBlade API function to

return errors.

For variable length UDTs, the third argument of the Inter function is not

initialized; it contains a valid mi_lvarchar data type. You must set the size in the

function to the size, in bytes, of the largest possible result.

For sample C code of the Inter function, see “Inter Support Function” on page

A-13. C code uses the DataBlade API to interact with the database server.

Figure 3-2. Size Calculation of Degenerate Bounding Boxes

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-13

The RtreeInfo Function

The RtreeInfo support function defines the switching semantics for the strategy

functions in your DataBlade module. The R-tree access method calls the RtreeInfo

function, if it exists, to determine, for a given strategy function, which strategy

function it should actually call when working on an internal nonleaf page.

Earlier versions of the R-tree access method required DataBlade module strategy

functions to test whether a page stored a bounding box or not to determine if that

page was a leaf page or an internal page (only internal pages used to store

bounding boxes). In the current version of the R-tree access method, if your

DataBlade module implements the RtreeInfo function with the

strat_func_substitutions operation, by default, indexes are created as

bounding-box-only R-tree indexes; leaf pages store only bounding boxes (and not

data objects).

For this version of the R-tree access method, if you are supporting

bounding-box-only indexes, you must use a different method to specify how

strategy functions behave when called on an internal nonleaf page or on a leaf

page. To better understand why you might want your strategy function to behave

differently on an internal nonleaf page or on a leaf page, see the following example

and “Internal Uses of the Strategy Functions” on page 3-22. This section describes

why each of the four required strategy functions sometimes uses different strategy

functions on internal nonleaf pages and which function is actually used on the

internal nonleaf pages. If necessary, you must redesign your strategy functions if

you want them to behave differently for leaf and nonleaf pages. This is because

you cannot distinguish between leaf and nonleaf items in a bounding-box-only

index.

For example, suppose you have a strategy function in slot 5 named MyEqual,

which is a variation on the Equal function. When this function is called on a

nonleaf page, you want it to behave like Contains; you cannot eliminate nonleaf

items by testing their bounding boxes for equality, because the test is too stringent.

But when MyEqual is called on a leaf page, you do want it to test for equality. If

the leaf pages contain the complete objects (the index is not a bounding-box-only

index), you can implement this behavior switch yourself in the MyEqual function

by checking to see if one or both operands are bounding boxes. However, with a

bounding-box-only index, the leaf pages hold only the objects’ bounding boxes. In

this case, an implementation of MyEqual, which performs a Contains check

whenever it is called with bounding boxes, would be inefficient because it would

force the R-tree access method to make the extra step of retrieving a complete

object from the table. Instead, a candidate data object could be eliminated

immediately by performing an equality check on its leaf page bounding box.

To detect whether the operands are leaf or nonleaf data, and switch behavior

accordingly, use the RtreeInfo support function, as described in this section, or

design your own strategy functions to make this determination.

Important: If you create an RtreeInfo support function that defines the switching

semantics of your strategy functions, you must modify your DataBlade

module code to ensure that the strategy functions in slots 5 and up do

not try to determine whether they are being executed on an internal or

leaf page based on whether the input is a bounding box.

3-14 IBM Informix R-Tree Index User’s Guide

Important: If the R-tree access method detects an RtreeInfo support function that

implements the strat_func_substitutions operation, the R-tree access

method sets the default mode of index creation to

“bounding-box-only.”

The R-tree access method checks for the RtreeInfo function when it creates an

R-tree index and updates the root page with the information. This means that if

you create an RtreeInfo support function that defines the switching semantics of

your strategy functions, you must update existing R-tree indexes so they know

about it.

Use the oncheck utility to update any existing indexes, using the following syntax:

oncheck -ci -u "info_anchor_update"

{database[:[owner.]table[,fragdbs|#index]]}

Arguments of the RtreeInfo Support Function: Write the RtreeInfo support

function to take four arguments.

 Argument Signature Description

First mi_lvarchar *dummy_obj Should be NULL.

Second mi_lvarchar *operation_ptr A pointer to an MI_LVARCHAR structure that contains a string

that represents the information needed from the DataBlade module.

When writing the RtreeInfo function to return the internal-page

equivalents of strategy functions, the string is

strat_func_substitutions.

Third mi_lvarchar *opclass_ptr This argument points to an MI_LVARCHAR structure that contains

a string that represents the name of the operator class.

Fourth mi_lvarchar *answer_ptr This argument points to an MI_LVARCHAR structure that contains

a pointer to the structure that returns information to the R-tree

access method. If answer_ptr is NULL, then the R-tree access

method calls the RtreeInfo function to determine if a particular

operation is supported by your DataBlade module. If the operation

is not supported, set the return value of the function to

RLT_OP_UNSUPPORTED. If the operation is supported, set the

return value of the function to MI_OK. If answer_ptr is not NULL,

fill in the array of integers with the slot numbers of the

internal-page equivalent strategy functions. (This array is allocated

by the R-tree access method). Then set the return value of the

function to MI_OK.

SQL Definition of the RtreeInfo Support Function: Use the following CREATE

FUNCTION SQL statement template to create the RtreeInfo support function after

you write and compile the code:

CREATE FUNCTION rtreeInfo(UDT, pointer, pointer, pointer)

 RETURNS INT WITH (NOT VARIANT, PARALLELIZABLE)

 EXTERNAL NAME ’$INFORMIXDIR/extend/bladedir/xxx.bld(funcname)

 LANGUAGE C;

In the statement template, the text UDT refers to user-defined type or the data type

you want to index with the R-tree access method; bladedir refers to the name of

your DataBlade module under the extend directory; xxx refers to the name of the

shared object that contains the code for your DataBlade module; and funcname

refers to the name of the function within the shared object that contains the code

for the RtreeInfo function.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-15

When you create the operator class with the CREATE OPCLASS statement, include

the RtreeInfo support function in the eighth position, after the three required

support functions Union, Size, and Inter, and the four optional bulk-loading

support functions SFCbits, ObjectLength, SFCvalue, and SetUnion. If you do not

provide the four optional bulk-loading support functions in your DataBlade

module, specify NULL in the fourth, fifth, sixth, and seventh positions in the

CREATE OPCLASS statement.

C Code Example for the RtreeInfo Support Function: You can use the following

sample C code to help write your own RtreeInfo function.

/**

* Description: Example of new support function used to return *

* requested Information to R-tree. *

* *

* Arguments: *

* *

* dummy_obj - (is NULL) *

* *

* operation_ptr - ptr to string that represents the operation. *

* *

* opclass_ptr - ptr to string that represents the opclass name. *

* *

* answer_ptr - pointer to the pointer to the structure used to *

* return information to R-tree. *

* answer_ptr is a "pointer to a pointer" to make *

* the interface generic to support later *

* operations to implement which the blade might *

* need to allocate memory and return its address *

* to R-tree. For the operation *

* "strat_func_substitutions", memory is allocated *

* by R-tree. *

* *

* *

* Support function slot no: 8 *

* *

* Return values: MI_OK - Success, operation supported. *

* MI_ERROR - Error. *

* RLT_OP_UNSUPPORTED - operation not supported. *

* *

*/

 #define RLT_OP_UNSUPPORTED 1

 mi_integer

 rtreeInfo (mi_lvarchar *dummy_obj, mi_lvarchar *operation_ptr,

 mi_lvarchar *opclass_ptr, mi_lvarchar *answer_ptr)

 {

 mi_integer status = MI_OK;

 mi_string *operation = NULL, *opclassname = NULL;

 /* opclassname may be used if required */

 operation = mi_lvarchar_to_string(operation_ptr);

 if (operation == NULL)

 {

 status = MI_ERROR;

 goto bad;

 }

 opclassname = mi_lvarchar_to_string(opclass_ptr);

 if (opclassname == NULL)

 {

 status = MI_ERROR;

 goto bad;

 }

 if (!strcmp(operation,"strat_func_substitutions"))

 {

 mi_integer *answer = NULL;

3-16 IBM Informix R-Tree Index User’s Guide

if (answer_ptr == NULL)

 {

 status = MI_OK;

 goto done;

 }/* Option is supported */

 /* For operation "strat_func_substitutions" memory

 * for 64 slots is allocated by R-tree. For later

 * operations, we might need to allocate the return

 * structure and set its address.

 */

 answer =(mi_integer*)

 mi_get_vardata((mi_lvarchar*)

 (mi_get_vardata(answer_ptr)));

 if (answer == NULL)

 {

 status = MI_ERROR;

 goto bad;

 }

 /* Provide mapping for strategy functions to be used at

 * internal nodes.

 * If the mapping changes for the opclasses I support,

 * use the opclassname

 */

 if (!strcmp(opclass,"my_opclass1"))

 {

 answer[0] = 0;

 answer[1] = 2;

 answer[2] = 2;

 answer[3] = 0;

 answer[4] = 4;

 answer[5] = 4;

 /* as many slots as strategy functions. max is 64 */

 }

 else if (!strcmp(opclass,"my_opclass2")) {

 answer[0] = 0;

 answer[1] = 2;

 answer[2] = 2;

 answer[3] = 0;

 answer[4] = 4;

 }

 else /* for all other opclasses that I support */

 {

 answer[0] = 0;

 answer[1] = 2;

 answer[2] = 2;

 answer[3] = 0;

 }

 status = MI_OK;

 }

 else

 status = RLT_OP_UNSUPPORTED;

 /* Only "strat_func_substitutions" is

 * supported, as yet. */

 done:

 bad:

 if (opclassname)

 mi_free(opclassname);

 if (operation)

 mi_free(operation);

 return status;

 }

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-17

The SFCbits Function

The R-tree secondary access method uses the SFCbits function to determine the

number of bits required by the internal space-filling curve (SFC) algorithm to

represent the spatial key. An example of a space-filling curve is the Hilbert

function.

The SFCbits support function is optional. If you create it and specify it in the

operator class with the other optional support functions, the R-tree secondary

access method uses a fast bulk-loading algorithm to initially create an R-tree index.

If you have not specified this function in the operator class, then the access method

uses a slower method to create R-tree indexes.

The SQL signature of the SFCbits support function must be:

SFCbits (UDT, POINTER) RETURNS INTEGER

UDT refers to user-defined type, or the data type you want to index with the R-tree

access method.

The sample C signature of the SFCbits function for a variable length UDT is:

mi_integer SFCbits(mi_lvarchar *object, mi_integer *bits)

Write the SFCbits function to return, in the second parameter, the number of bits

required to build a spatial key on the data type you want to index. This value

must be either 32 or 64.

The return value of the SFCbits function is not used by the R-tree access method.

The SFCbits function should call the mi_db_error_raise() DataBlade API function

to return errors.

For sample C code of the SFCbits function, see SFCbits Support Function in

Appendix A. C code uses the DataBlade API to interact with the database server.

The ObjectLength Function

The R-tree secondary access method uses the ObjectLength function to determine

the maximum size, in bytes, of the objects stored in the column that is being

indexed with an R-tree index.

The ObjectLength support function is optional. If you create it and specify it in the

operator class with the other optional support functions, the R-tree secondary

access method uses a fast bulk-loading algorithm to initially create an R-tree index.

If you have not specified this function in the operator class, then the access method

uses a slower method to create R-tree indexes.

The SQL signature of the ObjectLength support function must be:

ObjectLength (UDT, POINTER) RETURNS INTEGER

UDT refers to user-defined type, or the data type you want to index with the R-tree

access method.

The sample C signature of the ObjectLength function is:

mi_integer ObjectLength(mi_lvarchar *object, mi_integer *obj_max_length)

The first parameter of the ObjectLength function contains the name of the data

type to be indexed; it does not contain a row value. For example, if the data type

to be indexed is MyPoint, the parameter contains the string MyPoint.

3-18 IBM Informix R-Tree Index User’s Guide

Write the ObjectLength function to return, in the second parameter, the maximum

possible size, in bytes, of the objects in the column to be indexed.

The return value of the ObjectLength function is not used by the R-tree access

method. The ObjectLength function should call the mi_db_error_raise() DataBlade

API function to return errors.

For sample C code of the ObjectLength function, see ObjectLength Support

Function in Appendix A. C code uses the DataBlade API to interact with the

database server.

The SFCvalue Function

The R-tree secondary access method uses the SFCvalue function to determine the

sort values of an array of objects of the data type of the column that is being

indexed with an R-tree index.

The SFCvalue support function is optional. If you create it and specify it in the

operator class with the other optional support functions, the R-tree secondary

access method uses a fast bulk-loading algorithm to initially create an R-tree index.

If you have not specified this function in the operator class, then the access method

uses a slower method to create R-tree indexes.

The SQL signature of the SFCvalue support function must be:

SFCvalue (UDT, INTEGER, POINTER) RETURNS INTEGER

UDT refers to user-defined type, or the data type you want to index with the R-tree

access method.

The sample C signature of the SFCvalue function is:

mi_integer SFCvalue(mi_lvarchar *objects, mi_integer array_size,

 void *spatialKey)

Write the SFCvalue function to store an array of mi_lvarchar pointers in the data

portion of the first parameter. Each mi_lvarchar pointer points to a data object in

the table for which the R-tree access method needs to compute a sort value.

The second parameter is the number of elements in the array.

The third output parameter is an array of either 32-bit or 64-bit values, depending

on the number of bits specified in the corresponding SFCbits function. This array

stores a spatial key for each data object. The number of elements in this array is

always the same as the number of elements in the array of the first parameter. The

R-tree secondary access method automatically allocates enough space for the array

of the third parameter.

The return value of the SFCvalue function is not used by the R-tree access method.

The SFCvalue function should call the mi_db_error_raise() DataBlade API function

to return errors.

For sample C code of the SFCvalue function, see “SFCValue Support Function” on

page A-17. C code uses the DataBlade API to interact with the database server.

The SetUnion Function

The R-tree secondary access method uses the SetUnion function to determine the

union of all the elements in an array of objects of the data type of the column that

is being indexed with an R-tree index.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-19

The SetUnion support function is optional. If you create it and specify it in the

operator class with the other optional support functions, the R-tree secondary

access method uses a fast bulk-loading algorithm to initially create an R-tree index.

If you have not specified this function in the operator class, then the access method

uses a slower method to create R-tree indexes.

The SQL signature of the SetUnion support function must be:

SetUnion (UDT, INTEGER, POINTER) RETURNS INTEGER

UDT refers to user-defined type, or the data type you want to index with the R-tree

access method.

The sample C signature of the SetUnion function is:

mi_integer SetUnion (mi_lvarchar *objects, mi_integer array_size,

 void *UnionObject)

Write the SetUnion function to store an array of mi_lvarchar pointers in the data

portion of the first parameter. Each mi_lvarchar pointer points to objects in the

table for which the R-tree access method needs to compute the union. Each of the

objects is either a data object or a bounding box.

The second parameter is the number of elements in the array.

The third output parameter is a single object that contains the union of all the

objects in the input array of the first parameter. The R-tree secondary access

method uses the Union support function to automatically allocate enough space

for the output value.

The return value of the SetUnion function is not used by the R-tree access method.

The SetUnion function should call the mi_db_error_raise() DataBlade API function

to return errors.

For sample C code of the SetUnion function, see “SetUnion Support Function” on

page A-18. C code uses the DataBlade API to interact with the database server.

Implicit Casts

The database server automatically resolves internal function signatures for a

subtype that inherits a function from a supertype in the following two cases:

v Distinct types. The database server automatically creates casts between the

distinct type and source type.

v Opaque types. You must create the casts to support a type hierarchy.

You must first create a cast with the CREATE IMPLICIT CAST statement for it to

be used implicitly during the execution of a query. The query optimizer tries to

find implicit casts when it tries to make arguments fit support and strategy

function signatures.

Example of Creating a Support Function

This example describes the SQL statement that registers the Union support

function with the database server. The example is based on the objects of the

sample DataBlade module, described in Appendix A.

The SQL statements to register the Size, Inter, SFCbits, ObjectLength, SFCvalue,

and SetUnion support functions with the database server are similar to the SQL

statement to register the Union function.

3-20 IBM Informix R-Tree Index User’s Guide

Tip: The Informix DataBlade Developers Kit automatically generates the SQL

statement to create the function.

The following SQL statement shows how to register the Union support function

with the database server:

CREATE FUNCTION Union (MyShape, MyShape, MyShape)

RETURNS INTEGER

WITH

(

 NOT VARIANT

)

EXTERNAL NAME "$INFORMIXDIR/extend/shapes.3.0/shapes.bld (MyShapeUnion)"

LANGUAGE C;

The three parameters of the function are all of data type MyShape. The C function

MyShapeUnion, found in the shared object file $INFORMIXDIR/extend/
Shapes.3.6/Shapes.bld, contains the actual C code that calculates the union of two

objects of type MyShape.

For the sample C code of the MyShapeUnion function, see “Union Support

Function” on page A-11. C code uses the DataBlade API to interact with the

database server. Sample C code to implement the Size and Inter functions is also

provided in that appendix.

For more information on the DataBlade API, refer to the IBM Informix DataBlade

API Programmer’s Guide.

For more information and examples on how to create user-defined functions, refer

to IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Strategy Functions

Strategy functions are user-defined functions that can be used in queries to select

data. Registering them as strategy functions with the CREATE OPCLASS statement

lets the optimizer know that an associated R-tree index can be used to execute a

query that contains one of those functions.

For example, assume there is an R-tree index on a column called boxes, and

Overlap is defined as a strategy function. If a query contains the qualification

WHERE Overlap (boxes, region), the query optimizer considers using the R-tree

index to evaluate the query.

You can include up to 64 strategy functions when you create a new operator class

for the R-tree access method. You must, however, include the following four

strategy functions:

v Overlap

v Equal

v Contains

v Within

You must list these functions first, in the order shown, when you execute the

CREATE OPCLASS statement to register the operator class with the database

server. This SQL statement is described in “Syntax for Creating a New Operator

Class” on page 3-31.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-21

The four required strategy functions are defined in detail in later sections of this

chapter, with an example of creating the Contains strategy function.

Tip: It is useful to name strategy functions in a way that describes what they do.

For example, it makes sense to name a function that calculates whether one

object overlaps another Overlap. For convenience, this guide uses the names

Overlap, Equal, Contains, and Within when it describes the four required

strategy functions. These are also the names that the default operator class

rtree_ops uses for its strategy functions.

Internal Uses of the Strategy Functions

The main purpose of the strategy functions is to tell the query optimizer when it

should consider using an R-tree index, as described in the preceding section.

However, the R-tree access method also uses the strategy functions internally to

search in the R-tree index, to delete entries from the index, and to optimize the

performance of updates to the index.

Searches: The R-tree access method uses the four required strategy functions in a

variety of combinations when searching in an R-tree index, as the following table

shows.

Slot

Number Strategy Function Commutator Function

Function Called on an

Index Key in a Nonleaf

Page

1 Overlap Overlap Overlap

2 Equal Equal Contains

3 Contains Within Contains

4 Within Contains Overlap

5 Available for use Same function Same function

...

64 Available for use Same function Same function

You can use the

RtreeInfo function to

redefine these switching

semantics.

The first column of the table refers to the position in the CREATE OPCLASS

statement of the strategy function. The four required strategy functions must be

listed first, in the order shown in the second column.

The third column specifies the function that the R-tree access method uses as the

commutator of a particular strategy function. The Within and Contains functions

are commutators of each other. Other functions, including those numbered 5 and

up, are assumed to be their own commutators. This means that the R-tree access

method assumes that when it calls the function, the access method can reverse the

order of the arguments without changing the results of the function. Strategy

functions should be implemented with these commutator substitutions in mind.

In certain cases, the query optimizer uses the commutator functions as substitute

functions. For example, suppose a query has the predicate Within(A, B) in its

WHERE clause, where A is a constant search object and B is a table column with an

R-tree index defined on it. Predicate functions in WHERE clauses are written to

work with an index on the first argument, so the Within function cannot be used

3-22 IBM Informix R-Tree Index User’s Guide

in this case, because the R-tree index is on the second argument. The commutator

information allows the optimizer to substitute Contains(B, A), which allows the

R-tree index on B to be used in the execution of the query.

The strategy functions in slots 5 through 64 can have commutator functions

specified by the COMMUTATOR = FUNCTION modifier of the CREATE

FUNCTION statements used to register the functions in SQL. If you do not specify

a commutator function, the query optimizer does not attempt to change the order

of the arguments in order to get an indexed column as the first argument. The

following example registers the Contains strategy function and specifies that the

Within function is its commutator:

CREATE FUNCTION Contains (MyShape, MyShape)

RETURNS BOOLEAN

WITH

(

 COMMUTATOR = Within,

 NOT VARIANT

)

EXTERNAL NAME "$INFORMIXDIR/extend/shapes.3.0/shapes.bld (MyShapeContains)"

LANGUAGE C;

The strategy functions in slots 5 through 64 can also have negator functions

specified by the NEGATOR = FUNCTION modifier of the CREATE FUNCTION

statements used to register the functions in SQL. The R-tree access method cannot

process queries with a negated strategy function, such as NOT Separated(A,B).

However, if the Separated strategy function declares the Overlap function as its

negator, the query optimizer is able to substitute the predicate Overlap(A,B) for the

NOT Separated(A,B), which allows the use of an R-tree index on column A.

The fourth column specifies the function that the R-tree access method uses when

searching for an index key in a nonleaf page. The following paragraph explains

why the entry for Within is Overlap, and the entry for Equal is Contains.

Suppose a query has the predicate Within(A, B) in its WHERE clause, where B is a

constant search object and A is a table column with an R-tree index defined on it.

When a leaf page of the index is searched, the index entries are true candidates to

match the query, so the Within function is used directly for each index entry. The

search of a branch page tests to see if there exists an entry in the subtree below the

branch page that is within the search object B. In this case, the search does not test

whether the bounding box of the subtree is within B, but whether the bounding box

of the subtree overlaps B. This is because a small entry within the subtree, in the

overlapping portion of the bounding box, could be completely within B. Therefore,

an index search that uses the Within function must substitute the Overlap function

for nonleaf (branch) index pages.

Similarly, an index search that uses the Contains function must substitute the

Equal function for nonleaf index pages because a qualifying index entry could be

in any subtree whose bounding box contains the search object.

Tip: The RtreeInfo function allows you to specify which function you want the

R-tree access method to call for nonleaf data.

Deletes and Updates: The access method uses the Contains function for index

scans that search for leaf objects that must be deleted from the R-tree index after

their associated row in the table is deleted.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-23

The access method uses the Equal function to optimize the performance of updates

to the R-tree index. When a row in a table is updated, any R-tree index on the

table might also need to be updated. Updates usually mean deleting the old entry

and inserting the new entry. First, however, the access method uses the Equal

strategy function to check whether the new entry is different from the old entry. If

they are both equal, the access method does not perform the update.

The Overlap Function

The Overlap function returns a Boolean value that indicates whether two objects

overlap or have at least one point in common.

Figure 3-3 shows a circle that overlaps a triangle. The circle, however, does not

overlap the box, because the circle does not have any points in common with the

box.

The signature of the Overlap function must be:

Overlap (UDT, UDT) RETURNS BOOLEAN

UDT refers to user-defined type, or the data type you want to index with the R-tree

access method.

The Overlap function returns TRUE if the object in the first parameter overlaps or

intersects the object in the second parameter and FALSE otherwise.

When you design the Overlaps function, you might want to first test if the

bounding boxes of the two data objects overlap; and if they do, then test if the

data objects overlap. The first test is a relatively quick and easy calculation and

might eliminate many candidates before the second, more complicated test.

For example, Figure 3-4 shows that the first bounding box test eliminates the

box-circle overlap immediately, but the second data object test is required to find

out if the triangle and circle overlap. In this case, they do not.

y

x

Figure 3-3. Example of a Circle That Overlaps a Triangle

3-24 IBM Informix R-Tree Index User’s Guide

Appendix A contains sample C code to create an Overlap function that takes the

MyShape data type as its two parameters.

The Equal Function

The Equal function returns a Boolean value that indicates whether two objects are

equal. For example, in two-dimensional space, two points that have the same

coordinates might be equal, as are two circles that have the same center and

radius.

Important: The meaning of “equality” between two spatial objects is often unclear,

especially when floating point numbers are used. Bit-wise equality

might be useful for eliminating duplicate data, but not much else.

Application and data type designers need to define carefully what they

mean when they say two spatial objects are equal. SQL requires that

you define an Equal function for your data type so that SELECT

UNIQUE queries can execute successfully.

The signature of the Equal function must be:

Equal (UDT, UDT) RETURNS BOOLEAN

UDT refers to user-defined type, or the data type you want to index with the R-tree

access method.

The Equal function returns TRUE if the two objects contained in the two parameters

are equal and FALSE otherwise. It is up to the application or data type designer to

define what equal means for the user-defined data type.

Appendix A contains sample C code to create an Equal function that takes the

MyShape data type as its two parameters.

The Contains Function

The Contains function returns a Boolean value that indicates whether an object

entirely contains another object.

Figure 3-5 shows a circle that contains a box. The circle, however, does not contain

the triangle, because part of the triangle lies outside the circle.

y

x

Figure 3-4. Bounding Box Example of the Overlap Function

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-25

The signature of the Contains function must be:

Contains (UDT, UDT) RETURNS BOOLEAN

UDT refers to user-defined type, or the data type you want to index with the R-tree

access method.

The Contains function returns TRUE if the object in the first parameter completely

contains the object in the second parameter and FALSE otherwise.

When you design the Contains function, you might want to first test if the

bounding box of the first object contains the bounding box of the second object;

and if it does, then test if the first data object contains the second data object. The

first test is a relatively quick and easy calculation and might eliminate many

candidates before the second, more complicated test.

For example, Figure 3-6 shows that the first bounding box test eliminates the

box-circle containment immediately, but the second data object test is required to

find out if the circle contains the triangle. In this case, it does not.

If you allow loose, or inexact, bounding boxes, be careful when you calculate the

containment of bounding boxes. For example, Figure 3-7 shows that although the

exact bounding box of the rectangle does not contain the loose bounding box of

the circle, the rectangle still contains the circle.

y

x

Figure 3-5. Example of a Circle That Contains a Box

y

x

Figure 3-6. Bounding Box Example of the Contains Function

3-26 IBM Informix R-Tree Index User’s Guide

In this case, a preliminary test for bounding box containment returns inaccurate

results unless you used a compensating factor to account for the circle’s loose

bounding box. For more information on loose bounding boxes, refer to “Loose

Bounding Box Calculations” on page 3-7.

Tip: The Within strategy function is the commutator of the Contains strategy

function. Remember to specify the Within function in the COMMUTATOR

clause in the CREATE FUNCTION command when you create the Contains

function, and vice versa. For an example of how to specify a commutator

when you create a function, see “Example of Creating a Strategy Function” on

page 3-29.

Appendix A contains sample C code to create a Contains function that takes the

MyShape data type as its two parameters.

The Within Function

The Within function returns a Boolean value that indicates whether an object is

contained by another object. It is similar to the Contains function, but the order of

the two parameters is switched.

Figure 3-8 shows a box that is within, or contained by, a circle. The triangle,

however, is not within either the circle or the box, because all or part of the

triangle lies outside both the circle and the box.

The signature of the Within function must be:

Within (UDT, UDT) RETURNS BOOLEAN

y

x

Figure 3-7. Containment and Loose Bounding Boxes

y

x

Figure 3-8. Example of a Box That is Within a Circle

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-27

UDT refers to user-defined type, or the data type you want to index with the R-tree

access method.

The Within function returns TRUE if the object in the first parameter is within, or

completely contained in, the object in the second parameter and FALSE otherwise.

When you design the Within function, you might want to first test if the bounding

box of the first object is contained in the bounding box of the second object; and if

it is, then test if the first data object is contained in the second data object. The first

test is a relatively quick and easy calculation and might eliminate many candidates

before the second, more complicated test.

For example, Figure 3-9 shows that the first bounding box test eliminates the

box-circle containment immediately, but the second data object test is required to

find out if the triangle is within the circle. In this case, it is not.

If you allow loose, or inexact, bounding boxes, be careful when you calculate the

containment of bounding boxes. For example, Figure 3-10 shows that although the

loose bounding box of the circle is not within the exact bounding box of the

rectangle, the circle is still within the rectangle.

For more information on loose bounding boxes, refer to “Loose Bounding Box

Calculations” on page 3-7.

Tip: The Contains function is the commutator of the Within function. Remember

to specify the Contains function in the COMMUTATOR clause in the

CREATE FUNCTION command when you create the Within function. For an

y

x

Figure 3-9. Bounding Box Example of the Within Function

y

x

Figure 3-10. Containment and Loose Bounding Boxes

3-28 IBM Informix R-Tree Index User’s Guide

example of how to specify a commutator when you create a function, see

“Example of Creating a Strategy Function” on page 3-29.

Appendix A contains sample C code to create a Within function that takes the

MyShape data type as its two parameters.

Other Strategy Functions

You can create up to 60 nonrequired strategy functions for an operator class. This

means that together with the four required functions, you can have a total of 64

strategy functions defined for a particular operator class.

For example, you might want to create a function that calculates whether one

object is outside a second object. You create the Outside function in the same way

you create the other required functions, except that the C code to implement the

function is quite different. When you create the operator class with the CREATE

OPCLASS statement, you list the Outside function as the fifth strategy function,

right after the four required strategy functions.

Other types of strategy functions you might want to create include specialized

Overlap and Within functions. For example, these functions could implement

whether two objects overlap a lot, overlap a little, or interlock but do not touch.

The CREATE OPCLASS statement is described in “Syntax for Creating a New

Operator Class” on page 3-31.

Example of Creating a Strategy Function

This example describes the SQL statement that registers the Contains strategy

function with the database server. The sample C code to create the function is

provided in Appendix A; the example is based on the objects of the sample

DataBlade module, described in that appendix.

The SQL statements to register the Overlap, Equal, and Within strategy functions

with the database server are similar to the SQL statement to register the Contains

function.

Tip: The DBDK automatically generates the SQL statement to create the function.

The following SQL statement shows how to register the Contains strategy function

with the database server:

CREATE FUNCTION Contains (MyShape, MyShape)

RETURNS BOOLEAN

WITH

(

 COMMUTATOR = Within,

 NOT VARIANT

)

EXTERNAL NAME "$INFORMIXDIR/extend/shapes.3.0/shapes.bld (MyShapeContains)"

LANGUAGE C;

The two parameters of the function are both of data type MyShape. The C function

MyShapeContains, found in the shared object file $INFORMIXDIR/extend/
Shapes.3.6/Shapes.bld, contains the actual C code that calculates whether the first

object contains the second object. The statement specifies that the commutator of

the Contains function is the Within function.

For the sample C code of the MyShapeContains function, see “Contains Strategy

Function” on page A-8. C code uses the DataBlade API to interact with the

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-29

database server. Sample C code to implement the Overlap, Equal, and Within

functions is also provided in that appendix.

For more information on the DataBlade API, refer to the IBM Informix DataBlade

API Programmer’s Guide.

For more information and examples on how to create user-defined functions, refer

to IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Selectivity and Cost Functions

For the optimizer to accurately assess the cost of using an R-Tree index, your

DataBlade module must provide selectivity and per-row cost functions. If these

functions are not present, or only one of the functions is present, the cost of using

an R-Tree index defaults to 50, except when the nearest neighbor strategy function

is used. When the nearest neighbor strategy function is used, the server always

uses the R-tree index.

Selectivity is defined as the number of rows in the result set divided by the total

number of rows in the table queried (and must be between 0.0 and 1.0):

The per-row cost function calculates the cost of evaluating the predicate of the

query for each row (and must be greater than or equal to 0).

For information about how to write selectivity and cost functions, see the IBM

Informix DataBlade API Programmer’s Guide, which describes how to create

selectivity and cost functions for an expensive UDR. For a general description of

how the query optimizer uses cost and selectivity for UDRs, see IBM Informix

User-Defined Routines and Data Types Developer’s Guide.

The paper, Accurate Estimation of the Cost of Spatial Selections by A. Aboulnaga and J.

F. Naughton, might also provide useful information. It is available in the

proceedings of the IEEE International Conference on Data Engineering, San Diego,

California, 2000.

The cost of using the R-tree index is calculated when you run UPDATE

STATISTICS. See “Updating Statistics” on page 4-2 for more information about

how statistics are gathered.

You register the selectivity and per-row cost functions when you register the

strategy functions for the R-tree index. For example:

-- The selectivity function for the strategy function equal

CREATE FUNCTION GeoObjectEqualSelectivity(pointer, pointer)

RETURNS float

WITH (not variant, parallelizable) EXTERNAL NAME

’$INFORMIXDIR/extend/GEO/geodetic.bld(GeoObjectEqualSelectivity)’ LANGUAGE

c;

-- The per-row cost function for the strategy function equal

CREATE FUNCTION GeoObjectEqualCost(pointer, pointer)

RETURNS int

WITH (not variant, parallelizable) EXTERNAL NAME

’$INFORMIXDIR/extend/GEO/geodetic.bld(GeoObjectEqualCost)’ LANGUAGE c;

--Register the selectivity and per-row cost functions as

--you register the strategy function equal

CREATE FUNCTION equal(GeoObject, GeoObject) RETURNS Boolean

3-30 IBM Informix R-Tree Index User’s Guide

WITH (not variant, parallelizable,

selfunc=GeoObjectEqualSelectivity,

costfunc=GeoObjectEqualCost)

EXTERNAL NAME

‘$INFORMIXDIR/extend/GEO/geodetic.bld(GeoObjectEqual)’ LANGUAGE c;

It is recommended that you specify the selectivity and per-row cost functions with

each strategy function that you register. If you have already registered a strategy

function and you want to add the selectivity and per-row cost functions, use the

ALTER FUNCTION statement as shown in the following example:

ALTER FUNCTION Contains(GeoObject, GeoObject) WITH

(ADD selfunc= GeoObjectContainsSelectivity);

ALTER FUNCTION Contains(GeoObject, GeoObject) WITH

(ADD costfunc= GeoObjectContainsCost);

Important: Do not set the selectivity or per-row cost at a constant value; this will

cause the cost of using an R-tree index to be set at 50. (If required, you

can set your selectivity and per-row cost functions to return a constant

value.)

Syntax for Creating a New Operator Class

After you create all the required support and strategy functions, you are ready to

create the operator class.

The following syntax creates an operator class for use with the R-tree access

method:

CREATE OPCLASS opclass

FOR RTREE

STRATEGIES (strategy, strategy, strategy, strategy [, strategy])

SUPPORT (support, support, support

 {, support, support, support, support {,support}});

The FOR RTREE clause indicates to the database server that the operator class is

for use with the R-tree access method.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-31

The parameters are described in the following table.

 Arguments Purpose Restrictions

opclass The name you want to give your

operator class

The name must be unique in the

database.

strategy The names of the strategy

functions you previously created

Four strategy functions are

required; any others are optional.

You can list a maximum of 64 functions.

You must include the following four

strategy functions: Overlap, Equal,

Contains, and Within. You can name

them whatever you choose, but they

must be listed as the first, second, third,

and fourth functions, respectively.

support The names of the three required

support functions you previously

created; the four support functions

for bulk-loading are optional. The

support function RtreeInfo is also

optional but must be in the eighth

position if specified.

You must include the following three

support functions: Union, Size, and

Inter. You can name them whatever you

choose, but they must be listed as the

first, second, and third functions,

respectively. You can optionally include

the four bulk-loading support functions:

SFCbits, ObjectLength, SFCvalue, and

SetUnion. You can name them

whatever you choose, but they must be

listed as the fourth, fifth, sixth, and

seventh functions, respectively. If you

do not specify the four optional

bulk-loading support functions and you

do specify RtreeInfo, put NULL in

positions four, five, six, and seven.

If you use the DBDK to create an operator class, you do not have to create the SQL

statements to register the support and strategy functions with the database server

because the DBDK automatically generates the necessary scripts. However, the

DBDK does not automatically generate the SQL statement to create an operator

class. Instead, you must create custom SQL files from BladeSmith by choosing Edit

> Insert > SQL Files.

The following example shows how to create the MyShape_ops1 operator class:

CREATE OPCLASS MyShape_ops1

FOR RTREE

STRATEGIES (Overlap, Equal, Contains, Within)

SUPPORT (Union, Size, Inter);

The strategy functions are called Overlap, Equal, Contains, and Within. The

support functions are called Union, Size, and Inter.

The following example shows how to create an operator class that also supports

bulk loading:

CREATE OPCLASS MyShape_ops2

FOR RTREE

STRATEGIES (Overlap, Equal, Contains, Within)

SUPPORT (Union, Size, Inter, SFCbits, ObjectLength, SFCvalue, SetUnion);

Note the additional optional bulk-loading support functions SFCbits,

ObjectLength, SFCvalue, and SetUnion.

The following example shows how to create an operator class that does not

support bulk loading but does include the RtreeInfo support function:

3-32 IBM Informix R-Tree Index User’s Guide

CREATE OPCLASS MyShape_ops3

FOR RTREE

STRATEGIES (Overlap, Equal, Contains, Within)

SUPPORT (Union, Size, Inter, NULL, NULL, NULL, NULL, RtreeInfo);

Important: You cannot alter an existing operator class that has only the Union,

Size, and Inter support functions defined to add the bulk-loading

support functions. Instead, you must create a new operator class to use

these support functions for bottom-up building of R-tree indexes.

For more information on the CREATE OPCLASS statement, refer to the IBM

Informix Guide to SQL: Syntax.

For more information on the DBDK and BladeSmith, refer to the IBM Informix

DataBlade Developers Kit User’s Guide.

Setting Up Nearest-Neighbor Searching

To enable users of a datablade module to perform nearest-neighbor searches, your

datablade module must provide one or more strategy functions in your R-tree

operator class, which are set up as nearest-neighbor functions.

You need to provide documentation to your users that explains how to perform

nearest-neighbor searches.

Setting Up a Strategy Function for Nearest-Neighbor

Searching

For each nearest-neighbor strategy function, there must exist a separate

distance-measuring function of the same name but with a different signature. The

R-tree access method calls only the distance-measuring function associated with the

strategy function; the strategy function itself should not be called directly. The

appearance of the strategy function in a query allows the query planner to set up a

scan using the related R-tree index. You must raise an error if a user calls the

strategy function directly, with a message such as, “An attempt was made to use

the nearest-neighbor function name as a filter during a non-index table scan.

Nearest-neighbor queries require an index scan.”

You must also set up the RtreeInfo support function (described in “Support

Functions” on page 3-9) to indicate that the strategy function is for

nearest-neighbor searches, as “Setting RtreeInfo to Indicate Nearest-Neighbor

Functions” on page 3-34 shows.

The Distance-Measuring Function

The distance measuring function is not itself a part of the operator class.

The first and second arguments of the distance function must be the same as the

first and second arguments of the strategy function. The third argument must be

INTEGER and the return value DOUBLE PRECISION. For example, for the

strategy function Nearest, created by the following SQL statement:

CREATE FUNCTION Nearest(UDT, UDT)

 RETURNS BOOLEAN

 WITH (NOT VARIANT);

The associated distance function, Nearest, looks like this:

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-33

CREATE FUNCTION Nearest(UDT, UDT, INTEGER)

 RETURNS DOUBLE PRECISION

 WITH (NOT VARIANT);

where UDT is a user-defined data type, such as the point data type, ST_Point,

from the IBM Informix Spatial DataBlade Module.

In C, the distance function declaration looks like this:

mi_double_precision *Nearest(UDT *x1,

 UDT *x2,

 mi_integer flags,

 MI_FPARAM *fp);

The first two arguments are the objects or locations between which the function

calculates the distance (or the bounding-boxes of the objects, as “Distance Function:

Using Bounding Boxes” on page 3-34 describes).

The third argument is not used in this version of the R-tree access method.

The DOUBLE PRECISION return value is not interpreted by the R-tree access

method.

Distance Function: Using Bounding Boxes

Optionally, you can provide a distance function (paired with a strategy function)

that calculates distances between bounding boxes rather than exact distances

between objects. The distances calculated this way are imprecise, but the function

runs more quickly. For example, the IBM Informix Spatial DataBlade Module

provides the SE_Nearest and SE_NearestBBox functions so that the users can

choose whether to run searches using precise or estimated distances.

In this case, set the RtreeInfo support function to match the strategy function with

the operation key bbox_only_distance as the following section, Setting RtreeInfo to

Indicate Nearest-Neighbor Functions shows.

Setting RtreeInfo to Indicate Nearest-Neighbor Functions

This C code fragment shows how to set the RtreeInfo support function to indicate

that a strategy function is a nearest-neighbor function, and that a nearest-neighbor

function exists that makes approximate distance calculations. To do this, use the

operation keys (operation_ptr arguments), nearest_neighbor_functions, and

bbox_only_distance, respectively. You can combine this fragment with the example

shown in “C Code Example for the RtreeInfo Support Function” on page 3-16.

For each operation (nearest_neighbor_functions and bbox_only_distance), if the

answer_ptr argument is NULL, the function should return either MI_OK or

RLT_OP_UNSUPPORTED, depending whether that operation is supported.

If the answer_ptr argument is not NULL, it is a pointer to a pointer to an

MI_LVARCHAR containing an array of 64 MI_BOOLEANS, one for each strategy

function slot (allocated by the caller). For the nearest_neighbor_functions

operation, the RtreeInfo function should fill in either MI_TRUE or MI_FALSE for

each entry corresponding to a nearest-neighbor strategy function. For the

bbox_only_distance operation, the RtreeInfo function should fill in MI_TRUE to

indicate that the distance function uses bounding-box measurements only or

MI_FALSE to indicate that exact calculation distance calculations are required. If

the bbox_only_distance operation is not supported, the R-tree access method

assumes that exact distance calculations are required.

3-34 IBM Informix R-Tree Index User’s Guide

...

else if (matches(operation, “nearest_neighbor_functions”))

 {

 /*

 ** Indicate which strategy functions are nearest-neighbor

 ** functions. In this case, the 6th strategy function.

 */

 mi_boolean *answer = NULL;

 if (answer_ptr == NULL)

 goto done; /* Operation is supported */

 /* Memory for 64 booleans is allocated by R-tree */

 answer = (mi_boolean*) mi_get_vardata((mi_lvarchar*)

 mi_get_vardata(answer_ptr));

 answer[0] = MI_FALSE; /* intersect */

 answer[1] = MI_FALSE; /* equal */

 answer[2] = MI_FALSE; /* contains */

 answer[3] = MI_FALSE; /* inside */

 answer[4] = MI_FALSE; /* outside */

 answer[5] = MI_TRUE; /* nearest */

 }

else if (matches(operation, “bbox_only_distance”))

 {

 /*

 ** Indicate which nearest-neighbor distance functions

 ** do their calculation using only bounding box information,

 ** giving an approximate distance. In this case, the 7th

 ** strategy function.

 */

 mi_boolean *answer = NULL;

 if (answer_ptr == NULL)

 goto done; /* Operation is supported */

 /* Memory for 64 booleans is allocated by R-tree */

 answer = (mi_boolean*) mi_get_vardata((mi_lvarchar*)

 (mi_get_vardata(answer_ptr));

 if (answer == NULL)

 {

 status = MI_ERROR;

 goto bad;

 }

 answer[0] = MI_FALSE; /* intersect */

 answer[1] = MI_FALSE; /* equal */

 answer[2] = MI_FALSE; /* contains */

 answer[3] = MI_FALSE; /* inside */

 answer[4] = MI_FALSE; /* outside */

 answer[5] = MI_FALSE; /* nearest */

 answer[6] = MI_TRUE; /* nearest_bbox*/

 }

Creating Registration Scripts for Dependent DataBlade Modules

After you create one or more user-defined data types, an operator class, and other

objects, use the DBDK to package all the objects into an installable module.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-35

All R-tree error messages are contained in the IBM Informix R-Tree Secondary

Access Method DataBlade module. Therefore, you must always register the IBM

Informix R-Tree Secondary Access Method DataBlade module into your database if

you use the R-tree access method so that the correct error message is returned if

you encounter an R-tree error.

When you develop a DataBlade module that uses the R-tree secondary access

method, you can create a dependency on the IBM Informix R-Tree Secondary

Access Method DataBlade module so that BladeManager automatically registers

both DataBlade modules in the correct order. BladeManager is the IBM Informix

product you use to register DataBlade modules in a database. You can use the

DBDK to create a registration script that signals this dependency.

The dependency is signaled by importing an interface object provided by the IBM

Informix R-Tree Secondary Access Method DataBlade module. During registration

of the dependent DataBlade module, BladeManager checks interface dependencies

and warns the user registering the DataBlade modules if the IBM Informix R-Tree

Secondary Access Method DataBlade module is not already registered in the

database.

Importing the ifxrltree Interface Object

In the BladeSmith tool, which is part of the DBDK, an interface object represents a

set of functionality provided by the DataBlade module that defines the interface.

Each interface object has a unique name. The interface for the IBM Informix R-Tree

Secondary Access Method DataBlade module is named ifxrltree1. The functionality

that it represents is the set of error objects defined in the module.

To complete the BladeSmith project for a DataBlade module dependent on the

R-Tree access method, you must import the ifxrltree1 interface object into the

dependent DataBlade module’s BladeSmith project file.

The ifxrltree1 interface object is located in the IBM Informix R-Tree Secondary

Access Method DataBlade module BladeSmith project file, ifxrltree.ibs. This

BladeSmith project file is located in the $INFORMIXDIR/extend/ifxrltree.version

directory, where version refers to the version of the IBM Informix R-Tree Secondary

Access Method DataBlade module installed on your computer.

 To import the ifxrltree1 interface object:

1. If necessary, copy the ifxrltree.ibs BladeSmith project file from its location

under the $INFORMIXDIR/extend/ifxrltree.version directory to a directory

accessible from the Windows environment in which you run BladeSmith.

2. In BladeSmith, open ifxrltree.ibs in addition to opening the project of the

dependent DataBlade module.

3. In the ifxrltree project (the project name for the IBM Informix R-Tree Secondary

Access Method DataBlade module), select the ifxrltree1 interface object and

copy it to the clipboard.

4. In the project of the dependent DataBlade module, choose Edit > Import >

From Clipboard to import the ifxrltree1 interface.

For details on how to use BladeSmith, see the IBM Informix DataBlade Developers Kit

User’s Guide. For more information on BladeManager, refer to the IBM Informix

DataBlade Module Installation and Registration Guide.

3-36 IBM Informix R-Tree Index User’s Guide

Repairing R-tree Indexes After Migrating to a Different Version of a

DataBlade Module

After you migrate to a different version of a DataBlade module, you must

synchronize R-tree index information and operator class functions for every R-tree

index that uses the migrated DataBlade module.

To repair R-tree indexes after migrating a DataBlade module:

1. Determine which R-tree indexes are dependent on the migrated DataBlade

module.

2. Run the following command for every affected R-tree index:

oncheck -u update_capsules database:table# index

Identify each index with its name, the name of the table it is based on, and the

name of the database containing that table.

3. Restart the database server.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-37

3-38 IBM Informix R-Tree Index User’s Guide

Chapter 4. Managing Databases That Use the R-Tree

Secondary Access Method

In This Chapter . 4-1

Performance Tips . 4-1

Updating Statistics . 4-2

Deletions . 4-3

Effectiveness of Bounding Box Representation . 4-4

Clustering Spatial Data on the Disk . 4-4

Returning the Coordinates of the Root Bounding Box . 4-5

Syntax . 4-5

Estimating the Size of an R-Tree Index . 4-6

Calculating Index Size Based on Number of Rows . 4-6

Using the oncheck Utility to Calculate Index Size . 4-7

R-Tree Index and Logging . 4-7

Description of the R-Tree-Specific Logical-Log Records . 4-8

Logical-Log Records of Insertions of Items into a Leaf Page 4-8

Logical-Log Records of Deletions of Items from a Leaf Page 4-8

Using the onlog Utility to View R-Tree Logical-Log Records 4-9

Cannot Rename Databases that Use the Secondary Access Method 4-10

Drop R-Tree Indexes Before Truncating a Table . 4-10

System Catalogs . 4-10

sysams . 4-10

sysopclasses . 4-11

sysindices . 4-12

Checking R-Tree Indexes with the oncheck Utility . 4-12

Checking Pages with the -ci and -cI Options . 4-13

Checking Pages with the -pT Option . 4-14

Checking Pages with the -pk and -pK Options . 4-14

Checking Pages with the -pl and -pL Options . 4-15

Other Options with -u . 4-15

In This Chapter

This chapter discusses the following administrative issues related to the R-tree

secondary access method:

v Performance Tips

v Returning the Coordinates of the Root Bounding Box

v Estimating the Size of an R-Tree Index

v R-Tree Index and Logging

v “Cannot Rename Databases that Use the Secondary Access Method” on page

4-10

v “Drop R-Tree Indexes Before Truncating a Table” on page 4-10

v System Catalogs

v Checking R-Tree Indexes with the oncheck Utility

Performance Tips

This section discusses tips on how to improve the performance of using R-tree

indexes. It includes topics on how to maintain accurate statistics and how to

improve the performance of queries that use R-tree indexes.

© Copyright IBM Corp. 1996, 2008 4-1

You might also want to refer to “Designing a User-Defined Data Type” on page

3-3, which describes performance considerations when designing the user-defined

data type of the column that is indexed with an R-tree index.

For other performance issues that are also relevant to R-tree indexes, refer to the

IBM Informix Performance Guide.

Updating Statistics

The operator class that is specified when you create an R-tree index defines the

strategy functions that tell the query optimizer when to consider using an R-tree

index when the strategy function appears in the WHERE clause of a query.

The query optimizer, however, might decide not to use an R-tree index when it

calculates how to execute a query, even if a strategy function is specified in the

WHERE clause. The query optimizer uses available statistics to calculate the cost of

using or not using the index. If not using an R-tree index is less costly than using

it, the query optimizer might decide to execute a table scan instead of an index

scan.

Use the SQL statement UPDATE STATISTICS to ensure that the statistics on an

R-tree indexed column are always correct and up to date. Incorrect statistics can

cause a query to execute more slowly than if there are no statistics on the indexed

column at all.

You should run UPDATE STATISTICS whenever you make extensive modifications

to a table or whenever the distribution of the data in the indexed column changes

significantly.

Important: Be sure to always run UPDATE STATISTICS after you load data into a

table that has an R-tree index. Without the new statistics, the query

optimizer might think the table is small and never consider using the

R-tree index.

The following example shows how to update the statistics of the boxes column of

the box_tab table:

UPDATE STATISTICS FOR TABLE box_tab (boxes);

When you run UPDATE STATISTICS on a column of user-defined type, the

Informix server calls the statcollect() user-defined routine (if present) to gather

statistics. See the IBM Informix User-Defined Routines and Data Types Developer’s

Guide and the IBM Informix DataBlade API Programmer’s Guide for more information

about the statcollect() routine.

When you run UPDATE STATISTICS on a column with an R-tree index, the

DataBlade module that implements the user-defined type determines how statistics

are gathered to assess the cost of using the R-tree index.

If the DataBlade module provides functions to evaluate selectivity and per-row

cost, the following formula is used to calculate the cost of using an R-tree index:

Cost = filtering cost + refinement cost + data-access cost

Where:

v filtering cost = selectivity * (number of rows in table/average number of rows

per page)

4-2 IBM Informix R-Tree Index User’s Guide

v refinement cost = selectivity * number of rows * per-row cost

v data-access cost = selectivity * number of data pages

This approach assumes that IO cost is significantly greater than the cost of

evaluating the filters. See “Selectivity and Cost Functions” on page 3-30 for

information about adding selectivity and per-row cost functions.

If the DataBlade module does not provide functions to evaluate selectivity and

per-row cost, the cost is set at 50. The documentation for the DataBlade module

should state which method is used.

The following statistics are generated when the UPDATE STATISTICS command is

executed on a column that has an R-tree index:

v The number of levels in the R-tree index

v An estimated number of entries in a branch page

v An estimated number of entries in a leaf page

v An estimated number of leaf pages

v The number of unique values in the index

v The number of clusters in the index

For more detailed information on the UPDATE STATISTICS statement, refer to the

IBM Informix Guide to SQL: Syntax.

Deletions

Deletions from tables that have an R-tree index might be slow if the WHERE

clause of the DELETE statement does not specify the R-tree indexed column.

When deletions from tables are done with a DELETE statement that uses an R-tree

index to find the rows to be deleted, the entries in the R-tree index can also be

deleted or marked as deleted at the same time. This is relatively efficient. However,

when rows are deleted by a query that does not use an R-tree index, a separate

index search is needed for each deleted row to find the corresponding index entry.

This might slow the overall performance of the delete operation.

Therefore, if a large fraction of rows are to be deleted this way, it might be faster to

first drop the R-tree index, delete all the rows, and then re-create the index.

For example, assume you have an employees table that includes the following two

columns: id, the employee’s unique ID, and location, a map that shows the

location of the employee’s office. A B-tree index exists on the id column, and an

R-tree index exists on the location column.

Further assume that all current employees have IDs greater than 2000, and you

want to clean up the table by deleting all the rows whose id is less than 2000, or

nonexistent employees. The DELETE statement might look like the following

example:

DELETE FROM employees

WHERE id < 2000;

Because a B-tree index exists on the id column, the database server will quickly

find and delete all the relevant rows in the table. However, because an R-tree index

exists on the location column, each corresponding entry in the R-tree index must

also be flagged for deletion. Because the database server has no quick way of

finding the deleted rows in the R-tree index, it must perform an index search for

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-3

each row that is deleted. The performance of this deletion might improve if the

R-tree index on the location column is dropped first and then re-created after the

deletion is complete.

Important: Although a delete that affects many rows might execute slowly due to

the presence of an R-tree index, the deletion of data and the update of

the index will still execute correctly.

Effectiveness of Bounding Box Representation

The characteristics of the data stored in an R-tree indexed column can affect the

performance of queries that search the data. The higher the selectivity of the data,

the faster the queries execute. Although you might not have any control over what

your data looks like, it is useful to know how it can affect queries.

The selectivity of data indexed with the R-tree access method is affected by two

characteristics of the data: how much overlap occurs and the relative sizes of close

objects. The more overlap that occurs between the bounding boxes of the objects,

the lower the selectivity of the data. Grouping many small bounding boxes close to

one large bounding box lowers the selectivity of the small bounding boxes as it

increases the selectivity of the large bounding box.

An example of data that has high selectivity is the set of lakes on a map. Although

the lakes might be oddly shaped, they are compact and well represented by

bounding boxes. In a small area, the bounding boxes of faraway lakes do not

appear.

An example of data that has low selectivity is satellite ground tracks. Over time,

the tracks cover most of the earth, so the bounding boxes of a particular satellite

greatly overlap the bounding boxes of other satellites. Checking for bounding

boxes overlapping a particular place on earth does not eliminate many satellites,

unless time can also be used for finer resolution. Airline routes behave similarly.

Clustering Spatial Data on the Disk

If the rows of a table with an R-tree index are clustered on disk the same way as

the corresponding entries in the R-tree index that indexes the column, the

performance of the retrieval of the data is improved. This section describes how

you can cluster existing spatial data on the disk to reflect the ordering in the R-tree

index.

Important: Because the following procedure requires that the data in the original

table be temporarily deleted, make a backup copy of the table either by

loading all the rows into a new table or by taking a full backup of the

database.

 To cluster existing spatial data on the disk to reflect the ordering in an R-tree

index:

1. Create a new table that is exactly the same as the original table and insert all

rows from the original table into the new table.

For example, if the original table is called circle_tab, the following SQL

statements create an exact copy called circle_tab_temp and insert all rows from

the circle_tab table into the circle_tab_temp table:

CREATE TABLE circle_tab_temp

(

 id INTEGER,

 circles MyCircle

4-4 IBM Informix R-Tree Index User’s Guide

);

INSERT INTO circle_tab_temp

SELECT * FROM circle_tab;

2. Create an R-tree index on the relevant column of the new table.

3. Update statistics on the new table.

4. Drop the R-tree index on the original table and delete all rows.

5. Insert all rows from the new table back into the original table with a SELECT

statement that returns all rows in the new table and uses the R-tree index at the

same time. Be careful that you design this SELECT statement carefully so it

satisfies both restrictions.

You might consider using the Overlap strategy function in your query, passing

as the second parameter the coordinates of the entire space in which the spatial

objects in the table exist. Because each spatial object obviously overlaps with

the entire possible space, the query returns every row in the table. In addition,

because the Overlap strategy function is specified in the WHERE clause of the

query, the query must use the R-tree index.

For example, assume all the spatial objects in the table exist within a box

defined by the coordinates (-1000,-1000,1000,1000). In this case, the query

might look like the following example:

INSERT INTO circle_tab

SELECT * FROM circle_tab_temp

WHERE Overlap(circles, ’box(-1000,-1000,1000,1000)::MyBox’);

6. Create a new R-tree index on the appropriate column of the original table.

7. Drop the new table.

If your original table is fragmented, be sure to use the same fragmentation scheme

throughout the procedure. In other words, fragment the new table and its index

the same way the original table and index are fragmented and make sure that the

data is re-inserted into the correct fragment of the original table.

Subsequent updates will gradually degrade the clustering of data achieved with

this procedure.

Returning the Coordinates of the Root Bounding Box

The root page of an R-tree index contains the bounding box that encloses all the

objects in the index. It is often useful to know the exact coordinates of this

bounding box. For example, Step 5 in the procedure described in the section

“Clustering Spatial Data on the Disk” on page 4-4 uses this measurement. One

common use of this information is to set the scale of a display screen before

retrieving data.

To return the coordinates of the root bounding box, use the rtreeRootBB() function.

Syntax

The syntax of the rtreeRootBB() function is:

execute function rtreeRootBB (index_name, spatial_datatype);

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-5

The arguments are described in the following table.

 Arguments Purpose

index_name The name of the R-tree index for which you want to find the

coordinates of the root bounding box

spatial_datatype The spatial data type of the column that is indexed with the R-tree

index named index_name

If the R-tree index is fragmented, then the rtreeRootBB() function returns the

union of the root bounding box for each index fragment.

The format of the return value of the rtreeRootBB() function is defined by the

output function of the specified data type. The output function of the spatial data

type is a user-defined routine that specifies how to convert between the internal

representation of the data type to its external representation. This output function

must be able to display the bounding box of the corresponding data type as well

as the data type itself.

Example

Assume the table circle_tab contains a column of data type MyCircle indexed with

an R-tree index called circle_tab_index5. To return the coordinates of the root

bounding box, execute the following statement:

EXECUTE FUNCTION rtreeRootBB (’circle_tab_index5’ , ’MyCircle’);

Estimating the Size of an R-Tree Index

There are two ways to estimate the size of an R-tree index:

v “Calculating Index Size Based on Number of Rows” on page 4-6 shows how to

estimate index size by performing a series of calculations.

v “Using the oncheck Utility to Calculate Index Size” on page 4-7 shows how to

use the oncheck utility to estimate index size.

Calculating Index Size Based on Number of Rows

You can estimate the size of an R-tree index in pages by performing a series of

calculations based on the number of rows in the table.

The following procedure estimates only the number of leaf pages in the R-tree

index; it does not calculate the number of branch pages. This is because almost all

of the space in an R-tree index is usually taken up by leaf pages, due to the wide

shape of the tree. Therefore, calculating the number of leaf pages is usually

adequate for a rough estimate of the total number of disk pages that make up the

R-tree index.

 To estimate the size of an R-tree index in disk pages:

1. Determine the size, in bytes, of the key value for the data type being indexed.

This value is referred to in this section as colsize.

Entries of this size appear in index leaf pages.

If you are indexing a user-defined data type, the size of the key value is the

value of the INTERNALLENGTH variable of the CREATE OPAQUE TYPE

statement.

2. Determine the size, in bytes, of each index entry in the leaf page with the

following formula that incorporates the overhead:

4-6 IBM Informix R-Tree Index User’s Guide

leafentrysize = colsize + 16 bytes

3. Determine the pagesize in bytes of the database server that you use. To obtain

the page size, run the following command and look for the value next to Page

Size:

oncheck -pr

4. Estimate the number of entries per index-leaf page with the following formula:

leafpagents = trunc (pagefree / leafentrysize) * 60%

where

pagefree = pagesize - 88

The value leafpagents is multiplied by 60 percent because index leaf pages are

usually just over half full.

The trunc() function notation indicates you should round down to the nearest

integer value.

5. Estimate the number of leaf pages with the following formula:

leaves = rows / leafpagents

Use the SQL statement SELECT COUNT(*) FROM table to calculate the number of

rows in the table.

The number of leaf pages that make up the R-tree index is close to the total

number of disk pages that make up the index.

Important: As rows are deleted from the table, and new ones are inserted, the

number of index entries can vary within a page. The calculation

described in this section yields an estimate for an R-tree index whose

leaf pages are 60 percent full. Your R-tree index might be smaller or

larger depending on the activity within the table and the data that you

store.

Using the oncheck Utility to Calculate Index Size

You can also use the -pT option of the oncheck utility to estimate the size of an

existing R-tree index. The syntax is as follows:

oncheck -pT dbname:tablename

The -pT option of the oncheck utility prints out space allocation information for

the specified table and all the indexes that exist on the table, including R-tree

indexes. For example, to display space allocation information for the circle_tab

table in the shapes database, run the following command as user informix at the

UNIX shell or Windows command prompt:

oncheck -pT shapes:circle_tab

For more information on the oncheck utility, refer to your IBM Informix

Administrator’s Guide.

R-Tree Index and Logging

The R-tree secondary access method uses the extensible log manager of the

Informix database server to perform logical logging of its operations. These

logical-log records can be used to recover an R-tree index after a database server

failure or to abort the R-tree operations after a rollback.

The R-tree secondary access method creates its own logical-log records for only

some of the R-tree index operations, in particular:

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-7

v Insertion of an item into a leaf page

v Deletion of an item from a leaf page

The R-tree secondary access method does not create its own logical-log records for

the following operations; instead, the access method allows the extensible log

manager to create the logical-log records:

v Insertion of an item into or deletion from an internal branch page

v Creation of a new page due to split of a page

v Update of the bounding box or other metadata in a page

v Update of the child page of an internal branch page

v Update of the root page number in the root page when a new root page is

created

The following R-tree operations are not logged at all:

v CREATE INDEX statement to create an R-tree index

v Any operation on an R-tree index of a temporary table

Description of the R-Tree-Specific Logical-Log Records

As described in the preceding section, the R-tree secondary access method creates

its own logical-log records for only two types of R-tree operations: insertion of an

item into a leaf page and deletion of an item from a leaf page. For all other logged

R-tree operations, the R-tree secondary access method allows the extensible log

manager to create the logical-log record. This section describes the format of the

two logical-log records created by the R-tree secondary access method.

The first six columns of the R-tree-specific logical-log records are the standard

columns displayed for all logical-log records. You can identify these log records as

R-tree log records because the third column always has a value of RTREE. The

R-tree-specific information is contained in the seventh column of the log record. An

eighth column is also displayed, although its value is always 0.

For detailed information about the standard first six columns of logical-log records,

refer to the IBM Informix Administrator’s Guide for your database server.

Logical-Log Records of Insertions of Items into a Leaf Page

The format of the seventh column of the logical-log record of an insertion into an

R-tree leaf page is as follows:

LEAFINST [page number, base table rowid, base table fragid, delete flag]

The following example shows an actual log record of this type displayed with the

onlog utility:

c104 192 RTREE 8 0 c040 LEAFINST [9,257,1048960,0] 0

Logical-Log Records of Deletions of Items from a Leaf Page

The format of the seventh column of the logical-log record of a deletion from an

R-tree leaf page is as follows:

LEAFDEL [page number, base table rowid, base table fragid, delete flag]

The following example shows an actual log record of this type displayed with the

onlog utility:

288 192 RTREE 8 0 1c4 LEAFDEL [39,258,1048960,0] 0

4-8 IBM Informix R-Tree Index User’s Guide

Using the onlog Utility to View R-Tree Logical-Log Records

This section describes how you can use the onlog utility to view R-tree logical-log

records. The following procedure first shows how to force the log manager to start

using a new logical log file; this is done for ease of searching the logical log file for

R-tree-specific records.

 To use the onlog utility to view R-tree log records:

1. Log in as the informix user.

2. Execute the following utility at the operating system prompt:

onmode -l

This utility forces the log manager to switch to the next available logical log.

3. Execute the following utility to find the unique identifier of the logical log file

that the log manager will next use:

onstat -l

In the output of the onstat utility, look under the Logical Logging heading for

the list of logical log files currently in use. Find the log file that has a value of 0

in the used column.

The following sample onstat output shows that the logical file with a unique

identifier of 11 will be the next logical log file that the log manager uses:

address number flags uniqid begin size used %used

a13a6a4 1 U-B---- 7 100a03 10000 655 6.55

a13a6c0 2 U-B---- 8 103113 10000 62 0.62

a13a6dc 3 U-B---- 9 105823 10000 500 5.00

a13a6f8 4 U-B---L 10 107f33 10000 197 1.97

a13a714 5 U---C-- 11 10a643 10000 0 0.00

a13a730 6 U-B---- 6 10cd53 10000 57 0.57

4. Execute SQL commands that manipulate an R-tree index. For example, create a

table with a column of a spatial data type and then create an R-tree index on

the column.

5. Execute the onlog utility, specifying a particular log file with the -n option so

you can search for R-tree entries.

For example, the following sample use of the onlog utility shows how to view

the log file whose unique id is 11 and pipe the output to the UNIX grep

command to search for the term RTREE:

onlog -n 11 | grep RTREE

The following sample output shows both log records made by the extensible

log manager and log entries made by the R-tree access method:

addr len type xid id link

5680 436 HINSERT 6 0 5328 600002 102 391

6050 372 BLDCL 6 0 5680 700002 6 6 2056 0 polyidx

61c4 36 CHALLOC 6 0 6050 800035 6

61e8 40 PTEXTEND 6 0 61c4 700002 5 800035

e4a4 64 HUPDAT 6 0 e460 100056 80e 0 94

94 2

e4e4 36 COMMIT 6 0 e4a4 07/23/1999 21:08:30

f018 40 BEGIN 6 2 0 07/23/1999 21:08:30 12 rk

f040 932 HINSERT 6 0 f018 100085 101 888

f3e4 72 HUPDAT 6 0 f040 600002 101 0 812

812 3

f42c 140 HINSERT 6 0 f3e4 600002 801 96

10018 928 RTREE 6 0 f42c LEAFINS [802,880,257,1048709 0]

10074 116 HUPDAT 6 0 f4b8 600002 801 0 96

96 2

100e8 932 HINSERT 6 0 10074 100085 102 888

11018 928 RTREE 6 0 100e8 LEAFINS [803,880,258,1048709 0]

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-9

11048 84 HUPDAT 6 0 1048c 600002 801 0 96

96 3

1109c 932 HINSERT 6 0 11048 100085 201 888

11440 72 HUPDAT 6 0 1109c 700002 101 0 812

812 3

11488 140 HINSERT 6 0 11440 700002 801 96

12018 928 RTREE 6 0 11488 LEAFINS [802,880,513,1048709 0]

120d0 116 HUPDAT 6 0 11514 700002 801 0 96

96 2

12144 36 COMMIT 6 0 120d0 07/23/1999 21:08:30

Cannot Rename Databases that Use the Secondary Access Method

You cannot rename a database if the database has any tables that were created

using the primary access method (also known as virtual table interface) or indexes

using the secondary access method (also known as virtual index interface). R-tree

indexes are implemented using the secondary access method. Therefore, you

cannot rename databases with R-tree indexes.

Drop R-Tree Indexes Before Truncating a Table

Before truncating a table that contains an R-tree index, you must drop the R-Tree

index.

After you issue a TRUNCATE command, you can re-create the R-tree index.

System Catalogs

The R-tree access method is table driven. This means that information about the

R-tree access method is stored in system catalogs, which the database server

queries when it uses the R-tree access method.

The principal system catalogs that contain access method information are sysams,

sysopclasses, and sysindices.

sysams

When the R-tree access method is initially created, information about the access

method is stored in the sysams system catalog. The database server uses this

information to dynamically load support for the access method and call the correct

user-defined function for a given task. These tasks include creating an R-tree index,

scanning the index, inserting into the index, and updating the index.

Some of the columns of the sysams table include:

v am_name, the internal name of the access method. For the R-tree access method,

the value of this column is rtree.

v am_type, the type of the index: primary (P) or secondary (S). R-tree is a

secondary (S) index.

v am_sptype, the storage type of the index: dbspace (D), external to the database

(X), sbspace (S), or any (A). R-tree indexes are stored in dbspaces (D).

v am_defopclass, the unique identifier of the default operator class. The unique

identifier for the R-tree access method is 2, which corresponds to the row for

rtree_ops in the sysopclasses system catalog.

The following query returns values for the am_name, am_owner, am_id,

am_sptype, and am_defopclass columns of the sysams system catalog for the

rtree entry:

4-10 IBM Informix R-Tree Index User’s Guide

SELECT am_name, am_owner, am_id, am_type, am_sptype, am_defopclass

FROM sysams

WHERE am_name = ’rtree’;

am_name rtree

am_owner informix

am_id 2

am_type S

am_sptype D

am_defopclass 2

The query shows that the internal name of the R-tree access method is rtree,

which is the name you specify in the USING clause of the CREATE INDEX

statement when you create an R-tree index. The am_sptype column shows that

R-tree indexes are stored in dbspaces, often in the same dbspace the indexed table

is stored. The identifier for the default operator class, shown by the am_defopclass

column, is 2. A query of the sysopclasses system catalog would show that

rtree_ops has a unique identifier of 2 and is thus the default operator class for the

R-tree access method.

For a complete description of the columns of the sysams system table, refer to the

IBM Informix Guide to SQL: Reference.

sysopclasses

The sysopclasses system catalog stores information about operator classes. Each

time a new operator class is created with the CREATE OPCLASS statement, a row

is added to this table.

Some of the columns of the sysopclasses table include:

v opclassname, the internal name of the operator class.

v amid, the unique identifier of the access method that uses the operator class.

v ops, the list of strategy functions defined for the operator class. Information

about the strategy function is stored in the sysprocedures system table.

v support, the list of support functions defined for the operator class. Information

about the support function is stored in the sysprocedures system table.

The following query returns all columns of the sysopclasses system catalog for the

MyShape_ops operator class:

SELECT *

FROM sysopclasses

WHERE opclassname = ’myshape_ops’;

opclassname myshape_ops

owner informix

amid 2

opclassid 100

ops overlap;equal;contains;within;

support union;size;inter;sfcbits;objectlength;sfcvalue;setunion;

Tip: Because Informix always converts object names to lowercase when updating

system catalogs, the preceding query searches for the myshape_ops operator

class instead of the MyShape_ops operator class.

The query shows that the strategy functions for the MyShape_ops operator class

are Overlap, Equal, Contains, and Within. The support functions are Union, Size,

and Inter, as required. The MyShape_ops operator class also defines the

bottom-up building support functions SFCbits, ObjectLength, SFCvalue, and

SetUnion.

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-11

The following query of the sysprocedures table returns information about the

available Within strategy functions, such as their signatures and connections to the

shared library:

SELECT paramtypes, externalname

FROM sysprocedures

WHERE procname = ’within’;

paramtypes myshape,myshape

externalname

$INFORMIXDIR/extend/shapes.3.0/shapes.bld(MyShapeWithin)

The result shows that a Within function exists in the database for the MyShape

data type.

To determine the operator classes that are already available in your database for

the R-tree access method, execute the following query:

SELECT opclassname, opclassid

FROM sysopclasses, sysams

WHERE sysopclasses.amid = sysams.am_id AND

 sysams.am_name = ’rtree’;

opclassname rtree_ops

opclassid 2

opclassname myshape_ops

opclassid 100

The result shows that the database contains two operator classes that can be used

with the R-tree access method: rtree_ops and myshape_ops.

Important: If you have registered a DataBlade module that supplies its own

operator class, you must specify it when you create an R-tree index. Do

not specify the default rtree_ops operator class.

For a complete description of the columns of the sysopclasses system table, refer

to the IBM Informix Guide to SQL: Reference.

sysindices

The sysindices system catalog stores information about indexes, including R-tree

indexes.

Some of the columns of the sysindices table include:

v idxname, the name of the index.

v tabid, the unique identifier of the indexed table.

v amid, the unique identifier of the access method used to create the index. This is

a join column with the sysams table.

Because DB–Access provides information about the indexes that exist for a

particular table, you do not have to query the sysindices table directly.

Checking R-Tree Indexes with the oncheck Utility

The oncheck utility is a database server utility that checks and displays

information about database server disk structures. You can use all the default

options of the oncheck utility to check R-tree indexes.

For R-tree indexes, you can use the default oncheck options to check that the

bounding boxes for each item on a given page are contained in the master

4-12 IBM Informix R-Tree Index User’s Guide

bounding box for the page. You can also check for possible incomplete splits,

which can be detected by the oncheck utility by comparing some internal

information between pages. You can also use the oncheck utility to check that the

bounding box of a parent entry on a given page matches the bounding box of the

child page. Finally, you can check that all leaf pages that have a right sibling

contain a right-pointing link that points to the correct leaf page.

When you check an R-tree index with the default options of the oncheck utility,

the database server takes a shared lock on the index fragment currently being

checked.

Important: If you specify the -u “rtree_cleanup” option, described later in this

chapter, the database server takes an exclusive lock on the index

fragment currently being cleaned up.

The following oncheck options check and display information for an R-tree index.

Option Purpose

-ci, -cI Performs standard index checking with minimal output

 Both options display the same output.

-pT Performs some index checking and displays only index summary

information

-pk, -pK Performs index checking of each page in the index

 Primarily displays internal page information about the root and

branch pages, although it also displays minimal information about

the leaf pages.

Both options display the same output.

-pl, -pL Similar to -pk and -pK except that it displays additional

information about leaf pages

 Both options display the same output.

-u parameter Depending on the parameter you specify, restricts the checking of an

R-tree index to specified levels and pages or performs a cleanup of

an R-tree index

 This option applies to R-tree indexes only. You cannot use this

option to check other types of indexes.

 For information about the exact syntax of oncheck options, refer to the IBM

Informix Administrator’s Guide for your database server.

Checking Pages with the -ci and -cI Options

The -ci and -cI options tell the oncheck utility to walk through the R-tree structure,

checking that the bounding box in the parent page matches the master bounding

box on the child page for all nonleaf pages. In addition, the utility checks that the

master bounding box on each page contains all of the bounding boxes for items on

the page. Finally, the utility checks that the right-pointing links point to a valid

R-tree page.

The following example shows how to use the -ci and -cI options:

oncheck -cI rtree_db:polygons

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-13

In the example, the oncheck utility is checking any R-tree indexes that exist on the

polygons table in the rtree_db database.

Checking Pages with the -pT Option

The -pT option performs standard R-tree index checks and prints out a summary

of information about the index for each index fragment. In addition, this option

also displays information about the indexed table.

The following example shows how to use the -pT option:

oncheck -pT rtree_db:polygons

The following example shows the type of output that oncheck -pT displays:

Tree Depth: 3

Internal Pages: 11

Leaf Pages: 125

Empty Pages: 0

Total Pages: 136

Root page items: 10

Leaf Page Tuples: 1000

Internal Page Tuples: 135

Avg. Leaf Page Tuples per Leaf Page: 8.0

Space utilization:

Total Space: 278528

Free Space: 82880

Total Page Overhead: 59028

User Data Space: 136620

User Free Space: 119380

User Page Overhead: 36500

Total: user data: 49.1%, free 29.8%, overhead 21.2%

User Pages Only: data 53.4%, free 42.9%, overhead 14.3%

Checking Pages with the -pk and -pK Options

The -pk and -pK options display detailed information about the root and branch

pages in an R-tree index. These options also display minimal information about the

leaf pages.

The -pk and -pK options of the oncheck utility display the following type of

information about root and branch pages:

v Level. The level of the page within the R-tree structure

The root page is at level 0.

v Pagenum. Unique identifier of the page

v Usage. The percent of the total space on the page that is currently in use

v Number of children. The number of entries on the page

v Right. The page number of the right sibling

If the page does not have a right sibling, then this value is -1.

v Bounding box. The global bounding box on the page (root page only)

v Children. A list of the page’s children

The following example shows how to use the -pK option:

oncheck -pK rtree_db:polygons

The following partial example shows the type of output that oncheck -pK

displays:

4-14 IBM Informix R-Tree Index User’s Guide

Node: Level 0, Pagenum 31, Usage 51.2%, No. of Children 10, right -1

X(2.49752E-05,1) Y(-1,1) Z(-1,1) A(any) T(any)

Child 10, Fullness 0x0

X(0.000161568,1) Y(-1,1) Z(-1,1) A(any) T(any)

.

.

.

Node: Level 1, Pagenum 136, Usage 37.7%, No. of Children 7, right -1

Child 104, Fullness 0x0

X(0.0547637,0.73305) Y(-1,-0.670752) Z(-0.583419,0.588895) A(any) T(any)

.

.

.

The example shows output for a root page (level 0) and a branch page (level 1).

The example displays only one child for each page; the output for the remaining

children is similar.

Checking Pages with the -pl and -pL Options

The -pl and -pL options display similar information about the root and branch

pages as the -pk and -pK options. In addition, the -pl and -pL options also display

detailed information about the leaf pages in an R-tree index followed by

information about the data objects on the leaf page.

The -pl and -pL options of the oncheck utility display the same information listed

in “Checking Pages with the -pk and -pK Options” on page 4-14 about the root,

branch, and leaf pages. In addition, for each data object on a leaf page, the

following information is displayed:

v size. The size of the data object in bytes

v rowid. The row ID of the data object in the indexed table

v The bounding box of the data object

The following example shows how to use the -pL option:

oncheck -pL rtree_db:polygons

The following example shows the type of output about leaf pages that oncheck

-pL displays:

Node: Level 2, Pagenum 143, Usage 44.3%, No. of Children 5, right -1

Data record on page 143: size 136, rowid 1048992/30467

X(0.893479,1) Y(-0.176591,0.267366) Z(-0.0306181,0.388314) A(any) T(any)

Data record on page 143: size 136, rowid 1048992/16386

X(0.916716,1) Y(-0.399292,0.126833) Z(0.00581815,0.025057) A(any) T(any)

The example displays only two of the five children of the leaf page; the output for

the remaining children is similar.

Other Options with -u

Use the -u option of the oncheck utility to restrict the checking of an R-tree index

to specific levels or pages. You can also use this option to perform a cleanup of the

index. Unlike the other default options of the oncheck utility, the -u option always

takes at least one parameter, enclosed in double quotes. The available parameters

are described later on in this section.

You must use the -u option of the oncheck utility in combination with one of the

default options (-pk, -pK, -pl, -pL, -ci, or -cI).

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-15

The -u option applies to R-tree indexes only. You cannot use this option to check

other types of indexes, such as B-tree.

The following table describes the parameters you can specify with the -u option of

the oncheck utility.

Parameter Description

slevel(N) Starts checking at the level in the R-tree structure specified by the

value of N

 By default, the oncheck utility starts checking at level 0 or at the

root page.

elevel(M) Stops checking the R-tree structure after you check level M

 By default, the oncheck utility stops checking at the last level of

the R-tree structure.

spage(pg) Starts checking only when a page number matches pg

 By default, the oncheck utility starts checking at the root page.

rtree_cleanup Cleans up an R-tree index

 Cleaning up an index includes freeing unused pages, tightening

bounding boxes, and merging almost-unused pages.

If you specify this parameter, the database server takes an

exclusive lock on the index fragment currently being cleaned up.

You cannot specify any of the other -u parameters with the

rtree_cleanup parameter.

 The preceding parameters apply to each fragment. For example, if you specify -u

"spage(5)″, each fragment is checked starting at page 5, assuming it exists in the

fragment.

The following example shows how to use the -pk option in combination with the

-u option to check only those pages in levels 2 or higher in all the R-tree indexes

that exist on the polygons table in the rtree_db database:

oncheck -pk -u "slevel(2)" rtree_db:polygons

The following example shows how to combine two parameters in the -u option to

specify where the oncheck utility should start and stop checking the R-tree index:

oncheck -pk -u "slevel(2),elevel(5)" rtree_db:polygons

The following example shows how to perform a cleanup of all R-tree indexes on

the polygons table:

oncheck -pk -u "rtree_cleanup" rtree_db:polygons

4-16 IBM Informix R-Tree Index User’s Guide

Appendix A. Shapes3 Sample DataBlade Module

This appendix describes the Shapes3 sample DataBlade module used in the

examples in this guide.

Sample DataBlade modules are provided as downloadable examples as part of the

IBM Informix Developer Zone at http://www.ibm.com/developerworks/

db2/zones/informix/library/samples/db_downloads.html.

The downloadable example provides instructions on how to install the DataBlade

module on your database server. It includes the C code used to create the data

types and functions that make up the DataBlade module and a description of how

the module works. It also provides all the SQL scripts needed to register the

DataBlade module in your database.

The first section of this appendix, “Description of the Sample DataBlade Module”

on page A-1, describes the data types and operators the sample DataBlade module

provides. The second section, “Sample C Code” on page A-3, provides the C code

to create the strategy and support functions defined in the operator class. The

header file shape.h that describes common elements is also included at the end of

this appendix.

Description of the Sample DataBlade Module

This section describes the data types, operators, and operator class that make up

the sample DataBlade module.

Data Types

The sample DataBlade module defines four spatial data types that allow you to

create table columns that contain two-dimensional objects such as points, circles,

and boxes. The four new data types are called MyShape, MyPoint, MyCircle, and

MyBox. The MyShape data type is the supertype in the type hierarchy and the

MyPoint, MyCircle, and MyBox data types are the subtypes.

The following example creates a table called box_tab that has a column called

boxes of data type MyBox:

CREATE TABLE box_tab

(

 id INTEGER,

 boxes MyBox

);

The following INSERT statements show how to insert two different boxes into the

box_tab table:

INSERT INTO box_tab

VALUES (1, ’box(10,10,40,40)’);

INSERT INTO box_tab

VALUES (2, ’box(-10,-20,5,9)’);

A box is described by its lower-left and upper-right coordinates. For example, the

first INSERT statement inserts a box whose lower-left coordinate is (10,10) and

upper-right coordinate is (40,40).

© Copyright IBM Corp. 1996, 2008 A-1

http://www.ibm.com/developerworks/db2/zones/informix/library/samples/db_downloads.html
http://www.ibm.com/developerworks/db2/zones/informix/library/samples/db_downloads.html

Similarly, the following examples show how to create and insert into tables that

have MyCircle and MyPoint columns:

CREATE TABLE circle_point_tab

(

 id INTEGER,

 circles MyCircle,

 points MyPoint

);

INSERT INTO circle_point_tab

VALUES (1, ’circle(20,30,15)’, ’point(10,15)’);

INSERT INTO circle_point_tab

VALUES (2, ’circle(-30,-10,25)’, ’point(-20,-5)’);

Operators

The sample DataBlade module defines the following four operators that can be

used on columns of data type MyShape, MyBox, MyCircle, and MyPoint in the

WHERE clause of a query:

v Overlap returns a Boolean value to indicate whether two shapes intersect or

overlap.

v Equal returns a Boolean value to indicate whether two shapes are the same or

occupy the same space.

v Contains returns a Boolean value to indicate whether the first shape contains the

second shape.

v Within returns a Boolean value to indicate whether the first shape is within or is

contained by the second shape.

These operators, of course, are also the strategy functions defined by the operator

class.

The following example uses the Overlap operator to return all the boxes in the

box_tab table that overlap a box whose lower-left coordinate is (30,20) and

upper-right coordinate is (60,50):

SELECT * FROM box_tab

WHERE Overlap (boxes, ’box(30,20,60,50)’);

id 1

boxes box(10,10,40,40)

The following example uses the Contains operator to return all the boxes in the

box_tab table that contain a box whose lower-left coordinate is (-5,-10) and

upper-right coordinate is (2,5):

SELECT * FROM box_tab

WHERE Contains (boxes, ’box(-5,-10,2,5)’);

id 2

boxes box(-10,-20,5,9)

Operator Class

The sample DataBlade module defines the MyShape_ops operator class that you

should use when you create R-tree indexes on columns of data type MyBox,

MyCircle, and MyPoint.

The sample DataBlade module defines the MyShape_ops operator class as follows:

CREATE OPCLASS MyShape_ops FOR RTREE

STRATEGIES (Overlap, Equal, Contains, Within)

SUPPORT (Union, Size, Inter, SFCbits, ObjectLength, SFCvalue, SetUnion);

A-2 IBM Informix R-Tree Index User’s Guide

The operator class specifies the four required strategy functions (Overlap, Equal,

Contains, and Within), the three required support functions (Union, Size, and

Inter), as well as the four optional bulk-loading support functions (SFCbits,

ObjectLength, SFCValue, and SetUnion.)

The following example shows how to specify the MyShape_ops operator class

when you create an R-tree index:

CREATE INDEX box_tab_index

ON box_tab (boxes MyShape_ops)

USING RTREE;

Sample C Code

The sample DataBlade module includes four data types: MyShape, MyBox,

MyCircle, and MyPoint.

The MyShape data type implements the behavior of all four types. The MyPoint,

MyCircle, and MyBox data types delegate to the MyShape data type for their

functionality. This means that the C code that implements the functions of

MyShape also implements the same function for the subtypes MyPoint, MyCircle,

and MyBox.

This section includes C code for the following objects:

v shape.h Header File

v Overlap Strategy Function

v Equal Strategy Function

v Contains Strategy Function

v Within Strategy Function

v Union Support Function

v Size Support Function

v Inter Support Function

v SFCbits Support Function

v ObjectLength Support Function

v SFCValue Support Function

v SetUnion Support Function

shape.h Header File

#ifndef SHAPES_BLADE_H

#define SHAPES_BLADE_H

/***

**

** Project:

**

** Shapes.3.0 DataBlade

**

** File:

**

** shape.h

**

** Description:

**

** This is the header file for the Shapes DataBlade.

** It contains constants, structure definitions, and function

** prototypes.

**

***/

Appendix A. Shapes3 Sample DataBlade Module A-3

#include <mi.h>

/*

 * Convenience typedefs. Saves typing!

 */

typedef mi_double_precision mi_double;

typedef mi_unsigned_char1 mi_uchar;

/*

 * Datablade version. This string is returned by the ShapeRelease UDR.

 */

#define BLADE_VERSION “Shapes DataBlade version 3.0”

/*

 * Data structure version. Also serves as a magic number.

 */

#define SHAPE_VERSION 0x53687033 /* ‘Shp3’ in ascii hex */

/*

 * Subtype tag definitions.

 */

#define MyPointTag 1

#define MyCircleTag 2

#define MyBoxTag 3

#define MyHeaderTag 4

#define LastTag 4

/*

 * Size of spatial key generated by SFCvalue routine.

 */

#define SPATIAL_KEY_BITS 32

/*

 * Mathematical constants

 */

#define MyEpsilon 0.000001

#define Pi 3.14159265358979323846

/*

 * Tracing-related macros

 */

#define TRACE_CLASS “Shapes”

#define TRACE_LEVEL 20

#define SHAPE_TRACE_ENTER(fn) DPRINTF(TRACE_CLASS, TRACE_LEVEL, (“Enter “ #fn))

#define SHAPE_TRACE_EXIT(fn) DPRINTF(TRACE_CLASS, TRACE_LEVEL, (“Exit “ #fn))

#define SHAPE_TRACE(args) DPRINTF(TRACE_CLASS, TRACE_LEVEL, args)

/*

 * UDREXPORT is normally used to export a function from the DataBlade when

 * linking on NT. UNIX source files should maintain this define in source

 * for use when porting back to NT.

 */

#ifndef UDREXPORT

#define UDREXPORT

#endif

/*

 * Data structures.

 */

/*

 * The data structures for the supertype (MyShape) and its subtypes

 * (MyPoint, MyBox, MyCircle) all share a common header, called

 * MyShapeHdr. This contains a version number, a tag which indicates

 * what the subtype is, and a bounding box. This structure is also

 * what gets stored in R-Tree internal-node pages, with the tag field

 * set to MyHeaderTag.

 */

typedef struct

A-4 IBM Informix R-Tree Index User’s Guide

{

 mi_integer version;

 mi_integer tag; /* type of this object */

 mi_double xmin, ymin; /* bounding box */

 mi_double xmax, ymax;

}

MyShapeHdr;

/*

 * Data structures for each subtype’s actual geometry data.

 */

typedef struct

{

 mi_double x;

 mi_double y;

}

MyPointData;

typedef struct

{

 MyPointData ll; /* coordinates of lower left corner */

 MyPointData ur; /* coordinates of upper right corner */

}

MyBoxData;

typedef struct

{

 MyPointData c; /* center */

 mi_double r; /* radius */

}

MyCircleData;

/*

 * MyShape is the structure which contains both the header information

 * and the geometry data; it is the full definition of a shape object.

 */

typedef struct

{

 MyShapeHdr hdr;

 mi_char data[8]; /* start of subtype geometry data */

}

MyShape;

/*

 * Typedefs for the function dispatch tables.

 */

typedef mi_boolean (*operatorFunction) (MyShape*, MyShape*);

typedef operatorFunction* functionTable;

/*

 * Function prototypes for the functions in the function dispatch tables.

 */

mi_boolean CircleIBox (MyShape *obj1, MyShape *obj2);

mi_boolean CircleICircle (MyShape *obj1, MyShape *obj2);

mi_boolean CircleXBox (MyShape *obj1, MyShape *obj2);

mi_boolean CircleXCircle (MyShape *obj1, MyShape *obj2);

mi_boolean BoxICircle (MyShape *obj1, MyShape *obj2);

mi_boolean BoxIBox (MyShape *obj1, MyShape *obj2);

mi_boolean BoxXBox (MyShape *obj1, MyShape *obj2);

mi_boolean PointXBox (MyShape *obj1, MyShape *obj2);

mi_boolean PointXCircle (MyShape *obj1, MyShape *obj2);

mi_boolean PointXPoint (MyShape *obj1, MyShape *obj2);

mi_boolean Dispatch (functionTable tab,

 mi_boolean commutative,

 MyShape *obj1,

 MyShape *obj2);

Appendix A. Shapes3 Sample DataBlade Module A-5

/*

 * Function dispatch tables.

 * These are essentially NxN matrices (where N is the number of subtypes),

 * with only the upper diagonal of each matrix filled in.

 */

static operatorFunction intersectTable[] =

{

 /* PointT = 1 */

 PointXPoint, /* PointT = 1 */

 PointXCircle, /* CircleT = 2 */

 PointXBox, /* BoxT = 3 */

 /* CircleT = 2 */

 NULL,

 CircleXCircle, /* CircleT = 2 */

 CircleXBox, /* BoxT = 3 */

 /* BoxT = 3 */

 NULL,

 NULL,

 BoxXBox /* BoxT = 3 */

};

static operatorFunction insideTable[] =

{

 /* PointT = 1 */

 NULL, /* PointT = 1 */

 PointXCircle, /* CircleT = 2 */

 PointXBox, /* BoxT = 3 */

 /* CircleT = 2 */

 NULL, /* PointT = 1 */

 CircleICircle, /* CircleT = 2 */

 CircleIBox, /* BoxT = 3 */

 /* BoxT = 3 */

 NULL, /* PointT = 1 */

 BoxICircle, /* CircleT = 2 */

 BoxIBox /* BoxT = 3 */

};

/*

 * Miscellaneous internal subroutines

 */

mi_lvarchar *MyShapeInCommon (mi_integer tag,

 mi_lvarchar *text,

 MI_FPARAM *fp);

mi_lvarchar *MyShapeRecvCommon (mi_integer tag,

 mi_sendrecv *recv_data,

 MI_FPARAM *fp);

void CheckVersion (mi_integer v);

#endif

Overlap Strategy Function

/***

**

** Function name:

**

** MyShapeOverlap

**

** Description:

**

** Entrypoint for the SQL routine "Overlap (MyShape,MyShape)

** returns boolean". This is an Rtree strategy function.

**

** Special Comments:

**

** Because MyShape and its subtypes are variable length opaque

A-6 IBM Informix R-Tree Index User’s Guide

** datatypes, the UDT instances are passed in from the server

** wrapped in mi_lvarchars.

**

** Parameters:

**

** mi_lvarchar *in1, *in2 UDT instances to be spatially compared.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_boolean True if the two shapes overlap.

**

***/

UDREXPORT mi_boolean

MyShapeOverlap (mi_lvarchar *shape1,

 mi_lvarchar *shape2,

 MI_FPARAM *fp)

{

 mi_boolean bbox_overlap;

 mi_boolean retval;

 MyShape *s1 = (MyShape *) mi_get_vardata (shape1);

 MyShape *s2 = (MyShape *) mi_get_vardata (shape2);

 SHAPE_TRACE_ENTER (MyShapeOverlap);

 CheckVersion (s1->hdr.version);

 CheckVersion (s2->hdr.version);

 /*

 * First check if bounding boxes overlap.

 */

 bbox_overlap = (s1->hdr.xmin <= s2->hdr.xmax && s2->hdr.xmin <= s1->hdr.xmax &&

 s1->hdr.ymin <= s2->hdr.ymax && s2->hdr.ymin <= s1->hdr.ymax);

 /*

 * If bounding boxes do not overlap then it is not possible for

 * the actual shapes to overlap.

 */

 if (!bbox_overlap)

 {

 retval = MI_FALSE;

 goto OverlapDone;

 }

 /*

 * If bounding boxes overlap and one or both of the objects are

 * R-Tree internal nodes there are no actual geometries to test.

 */

 if (s1->hdr.tag == MyHeaderTag || s2->hdr.tag == MyHeaderTag)

 {

 retval = MI_TRUE;

 goto OverlapDone;

 }

 /*

 * Both objects are ’real’ objects or objects on R-Tree leaf nodes.

 */

 retval = Dispatch (intersectTable, MI_TRUE, s1, s2);

OverlapDone:

 SHAPE_TRACE_EXIT (MyShapeOverlap);

 return retval;

}

Appendix A. Shapes3 Sample DataBlade Module A-7

Equal Strategy Function

/***

**

** Function name:

**

** MyShapeEqual

**

** Description:

**

** Determine if one UDT value is equal to another.

**

** Special Comments:

**

** Compares two variable-length opaque types for equality

**

** Parameters:

**

** mi_lvarchar *in1, *in2 UDT instances to be compared.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_boolean The comparison result.

**

**/

UDREXPORT mi_boolean

MyShapeEqual (mi_lvarchar *shape1,

 mi_lvarchar *shape2,

 MI_FPARAM *fp)

{

 /* Call Compare to perform the comparison. */

 return (mi_boolean) (0 == MyShapeCompare (shape1, shape2, fp));

}

Contains Strategy Function

/***

**

** Function name:

**

** MyShapeContains

**

** Description:

**

** Entrypoint for the SQL routine "Contains (MyShape,MyShape) returns

** boolean". This is an Rtree strategy function.

**

** Special Comments:

**

** Because MyShape and its subtypes are variable length opaque

** datatypes, the UDT instances are passed in from the server

** wrapped in mi_lvarchars.

**

** Parameters:

**

** mi_lvarchar *in1, *in2 UDT instances to be spatially compared.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_boolean True if shape2 is completely inside

** shape1. If shape1 is a non-region

** subtype (e.g. a point), returns NULL.

**

***/

UDREXPORT mi_boolean

MyShapeContains (mi_lvarchar *shape1,

 mi_lvarchar *shape2,

A-8 IBM Informix R-Tree Index User’s Guide

MI_FPARAM *fp)

{

 mi_boolean bbox_overlap;

 mi_boolean retval;

 MyShape *s1 = (MyShape *) mi_get_vardata (shape1);

 MyShape *s2 = (MyShape *) mi_get_vardata (shape2);

 SHAPE_TRACE_ENTER (MyShapeContains);

 CheckVersion (s1->hdr.version);

 CheckVersion (s2->hdr.version);

 /*

 * If shape1 is a non-region shape (e.g. point) it is not

 * possible for shape1 to contain shape2 so return NULL.

 */

 switch (s1->hdr.tag)

 {

 case MyHeaderTag:

 case MyBoxTag:

 case MyCircleTag:

 break;

 case MyPointTag:

 default:

 mi_fp_setreturnisnull((fp), 0, MI_TRUE);

 retval = MI_FALSE;

 goto ContainsDone;

 }

 bbox_overlap = (s1->hdr.xmin <= s2->hdr.xmax &&

 s2->hdr.xmin <= s1->hdr.xmax &&

 s1->hdr.ymin <= s2->hdr.ymax &&

 s2->hdr.ymin <= s1->hdr.ymax);

 /*

 * If bounding boxes do not overlap then it is not possible for

 * shape1 to contain shape2.

 */

 if (!bbox_overlap)

 {

 retval = MI_FALSE;

 goto ContainsDone;

 }

 /*

 * If bounding boxes overlap, and one or both objects are internal

 * index nodes, we cannot rule out the possibility that objects

 * in the subtree below this node satisfy the spatial test,

 * so return true.

 */

 if (s1->hdr.tag == MyHeaderTag || s2->hdr.tag == MyHeaderTag)

 {

 retval = MI_TRUE;

 goto ContainsDone;

 }

 /*

 * Both objects are actual shapes so perform an exact geometric test.

 * Note operand order is reversed so we can simply use the insideTable.

 */

 retval = Dispatch(insideTable, MI_FALSE, s2, s1);

ContainsDone:

 SHAPE_TRACE_EXIT (MyShapeContains);

 return retval;

}

Appendix A. Shapes3 Sample DataBlade Module A-9

Within Strategy Function

/***

**

** Function name:

**

** MyShapeWithin

**

** Description:

**

** Entrypoint for the SQL routine "Within (MyShape,MyShape)

** returns integer". This is an Rtree strategy function.

**

** Special Comments:

**

** Because MyShape and its subtypes are variable length opaque

** datatypes, the UDT instances are passed in from the server

** wrapped in mi_lvarchars.

**

** Parameters:

**

** mi_lvarchar *in1, *in2 UDT instances to be spatially compared.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_boolean True if

**

***/

UDREXPORT mi_boolean

MyShapeWithin (mi_lvarchar *shape1,

 mi_lvarchar *shape2,

 MI_FPARAM *fp)

{

 mi_boolean bbox_overlap;

 mi_boolean retval;

 MyShape *s1 = (MyShape *) mi_get_vardata (shape1);

 MyShape *s2 = (MyShape *) mi_get_vardata (shape2);

 SHAPE_TRACE_ENTER (MyShapeWithin);

 CheckVersion (s1->hdr.version);

 CheckVersion (s2->hdr.version);

 /*

 * If shape2 is a non-region shape (e.g. point) it is not

 * possible for shape1 to be within shape2 so return NULL.

 */

 switch (s2->hdr.tag)

 {

 case MyHeaderTag:

 case MyBoxTag:

 case MyCircleTag:

 break;

 case MyPointTag:

 default:

 mi_fp_setreturnisnull((fp), 0, MI_TRUE);

 return MI_FALSE;

 }

 bbox_overlap = (s1->hdr.xmin <= s2->hdr.xmax &&

 s2->hdr.xmin <= s1->hdr.xmax &&

 s1->hdr.ymin <= s2->hdr.ymax &&

 s2->hdr.ymin <= s1->hdr.ymax);

 /*

 * If bounding boxes do not overlap then it is not possible for

 * shape1 to be within shape2.

 */

 if (!bbox_overlap)

A-10 IBM Informix R-Tree Index User’s Guide

{

 retval = MI_FALSE;

 goto WithinDone;

 }

 /*

 * If bounding boxes overlap, and one or both objects are internal

 * index nodes, we cannot rule out the possibility that objects

 * in the subtree below this node satisfy the spatial test,

 * so return true.

 */

 if (s1->hdr.tag == MyHeaderTag || s2->hdr.tag == MyHeaderTag)

 {

 retval = MI_TRUE;

 goto WithinDone;

 }

 /*

 * Both objects are actual shapes so perform an exact geometric test.

 */

 retval = Dispatch (insideTable, MI_FALSE, s1, s2);

WithinDone:

 SHAPE_TRACE_EXIT (MyShapeWithin);

 return retval;

}

Union Support Function

/***

**

** Function name:

**

** MyShapeUnion

**

** Description:

**

** This is an R-Tree support function which enables

** the server to maintain an R-Tree index. It computes the

** union of two objects’ bounding boxes.

**

** Special Comments:

**

** Because MyShape and its subtypes are variable length opaque

** datatypes, the UDT instances are passed in from the server

** wrapped in mi_lvarchars.

**

** Parameters:

**

** mi_lvarchar *in1, *in2 UDT instances to be unioned together.

** mi_lvarchar *out Resulting union.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeUnion (mi_lvarchar *shape_in1,

 mi_lvarchar *shape_in2,

 mi_lvarchar *shape_out,

 MI_FPARAM *fp)

{

 MyShapeHdr *h1;

 MyShapeHdr *h2;

 MyShapeHdr *h3;

 SHAPE_TRACE_ENTER (MyShapeUnion);

Appendix A. Shapes3 Sample DataBlade Module A-11

h1 = (MyShapeHdr *) mi_get_vardata (shape_in1);

 h2 = (MyShapeHdr *) mi_get_vardata (shape_in2);

 h3 = (MyShapeHdr *) mi_get_vardata (shape_out);

 CheckVersion (h1->version);

 CheckVersion (h2->version);

 if (h1 == h2)

 {

 /*

 * This is a ’self-union’, which is how the R-Tree determines how

 * big your header structure is. This situation will occur just

 * once, on the first index insert operation.

 */

 h3->version = SHAPE_VERSION;

 h3->tag = MyHeaderTag;

 h3->xmin = h1->xmin;

 h3->ymin = h1->ymin;

 h3->xmax = h1->xmax;

 h3->ymax = h1->ymax;

 }

 else

 {

 /*

 * CAUTION! h1 and h3 may both reference the same structure!

 * Likewise, h2 and h3 may both reference the same structure!

 * This is because the R-Tree reuses variables to save memory.

 * This means we have to be careful not to prematurely overwrite

 * any elements of h1 or h2 as we assign values to h3.

 * The following algorithm is safe in this regard.

 */

 h3->version = SHAPE_VERSION;

 h3->tag = MyHeaderTag;

 h3->xmin = (h1->xmin < h2->xmin) ? h1->xmin : h2->xmin;

 h3->ymin = (h1->ymin < h2->ymin) ? h1->ymin : h2->ymin;

 h3->xmax = (h1->xmax > h2->xmax) ? h1->xmax : h2->xmax;

 h3->ymax = (h1->ymax > h2->ymax) ? h1->ymax : h2->ymax;

 }

 /*

 * Set the size of the mi_lvarchar to tell the R-Tree how

 * big each element to be stored on internal node pages will be.

 * IMPORTANT NOTE: You must do this in every Union() call,

 * not just the first one (where h1 == h2).

 */

 mi_set_varlen (shape_out, sizeof(MyShapeHdr));

 SHAPE_TRACE_EXIT (MyShapeUnion);

 return MI_OK;

}

Size Support Function

/***

**

** Function name:

**

** MyShapeSize

**

** Description:

**

** This is an R-Tree support function which enables

** the server to maintain an R-Tree index. It computes the

** size of an object’s bounding box.

**

** Special Comments:

**

** Because MyShape and its subtypes are variable length opaque

** datatypes, the UDT instance is passed in from the server

** wrapped in an mi_lvarchar.

A-12 IBM Informix R-Tree Index User’s Guide

**

** Parameters:

**

** mi_lvarchar *shape MyShape UDT whose bbox size is to be computed.

** mi_double *bbox_size Return value, size of UDT’s bbox.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeSize (mi_lvarchar *shape,

 mi_double *bbox_size,

 MI_FPARAM *fp)

{

 mi_double length;

 mi_double width;

 MyShapeHdr *hdr = (MyShapeHdr *) mi_get_vardata (shape);

 SHAPE_TRACE_ENTER (MyShapeSize);

 length = hdr->xmax - hdr->xmin;

 width = hdr->ymax - hdr->ymin;

 if (length < 0 && width < 0)

 {

 /*

 * No intersection case.

 * R-Tree preceded this Size() call with an Inter() call that

 * detected no intersection between two bounding boxes.

 */

 *bbox_size = 0;

 }

 else

 {

 /*

 * Normal case.

 * Take care to always return a different value as a bounding box

 * expands or shrinks. The following algorithm (area + extent) will

 * correctly account for zero-width or zero-height bounding boxes.

 */

 *bbox_size = (length * width) + (length + width);

 }

 SHAPE_TRACE_EXIT (MyShapeSize);

 return MI_OK;

}

Inter Support Function

/***

**

** Function name:

**

** MyShapeInter

**

** Description:

**

** This is an R-Tree support function which enables

** the server to maintain an R-Tree index. It computes

** the intersection of two objects’ bounding boxes.

**

** Special Comments:

**

** Because MyShape and its subtypes are variable length opaque

** datatypes, the UDT instances are passed in from the server

** wrapped in mi_lvarchars.

Appendix A. Shapes3 Sample DataBlade Module A-13

**

** Parameters:

**

** mi_lvarchar *in1, *in2 UDT instances to be intersected.

** mi_lvarchar *out Resulting intersection.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeInter (mi_lvarchar *shape_in1,

 mi_lvarchar *shape_in2,

 mi_lvarchar *shape_out,

 MI_FPARAM *fp)

{

 MyShapeHdr *h1;

 MyShapeHdr *h2;

 MyShapeHdr *h3;

 SHAPE_TRACE_ENTER (MyShapeInter);

 h1 = (MyShapeHdr *) mi_get_vardata (shape_in1);

 h2 = (MyShapeHdr *) mi_get_vardata (shape_in2);

 h3 = (MyShapeHdr *) mi_get_vardata (shape_out);

 CheckVersion (h1->version);

 CheckVersion (h2->version);

 h3->version = SHAPE_VERSION;

 h3->tag = MyHeaderTag;

 if (!((h1->xmin <= h2->xmax) &&

 (h1->xmax >= h2->xmin) &&

 (h1->ymin <= h2->ymax) &&

 (h1->ymax >= h2->ymin)))

 {

 /*

 * Bounding boxes of the two shapes do not intersect.

 * Indicate this by swapping xmin & xmax and ymin & ymax.

 * R-Tree will follow this Inter() call with a Size() call;

 * at that time we will return zero to indicate no intersection.

 * PROGRAMMING TIP: There are several ways to indicate no

 * intersection. You might also consider using a flag in

 * the header structure.

 */

 mi_double temp;

 temp = h1->xmax;

 h3->xmax = h1->xmin;

 h3->xmin = temp;

 temp = h1->ymax;

 h3->ymax = h1->ymin;

 h3->ymin = temp;

 }

 else

 {

 /*

 * Bounding boxes of the two shapes do intersect.

 * Like MyShapeUnion, h1 and h3 may both reference the same

 * structure, or h2 and h3 may both reference the same structure.

 * This means we have to be careful not to prematurely overwrite

 * any elements of h1 or h2 as we assign values to h3.

 * The following algorithm is safe in this regard.

 */

 h3->xmin = (h1->xmin > h2->xmin) ? h1->xmin : h2->xmin;

 h3->ymin = (h1->ymin > h2->ymin) ? h1->ymin : h2->ymin;

 h3->xmax = (h1->xmax < h2->xmax) ? h1->xmax : h2->xmax;

 h3->ymax = (h1->ymax < h2->ymax) ? h1->ymax : h2->ymax;

 }

A-14 IBM Informix R-Tree Index User’s Guide

SHAPE_TRACE_EXIT (MyShapeInter);

 return MI_OK;

}

SFCbits Support Function

/***

**

** Function name:

**

** MyShapeSFCbits

**

** Description:

**

** This is an R-Tree support function which enables the

** server to use a fast method of building an R-Tree index.

**

** Special Comments:

**

** The SQL function signature for this function is

** "SFCbits (UDT, pointer)". This requires an explanation:

**

** The purpose of the first argument is to provide function signature

** uniqueness, since you must declare a separate SFCbits function for

** each subtype in that can participate in the opclass.

**

** The second argument is declared to be an SQL pointer (i.e. void *);

** in reality it is a pointer to an integer. You must not allocate

** space for this returned value; the server will allocate it for you.

**

** Parameters:

**

** mi_lvarchar *udt UDT instance

** mi_integer *bits Returned value, size of spatial key.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeSFCbits (mi_lvarchar *shape,

 mi_integer *bits,

 MI_FPARAM *fp)

{

 SHAPE_TRACE_ENTER (MyShapeSFCbits);

 *bits = SPATIAL_KEY_BITS;

 SHAPE_TRACE_EXIT (MyShapeSFCbits);

 return MI_OK;

}

ObjectLength Support Function

/***

**

** Function name:

**

** MyShapeObjectLength

**

** Description:

**

** This is an R-Tree support function which enables the

** server to use a fast method of building an R-Tree index.

**

Appendix A. Shapes3 Sample DataBlade Module A-15

** Special Comments:

**

** The SQL function signature for this function is

** "ObjectLength (UDT, pointer)". This requires an explanation:

**

** The purpose of the first argument is to provide function signature

** uniqueness, since you must declare a separate ObjectLength function

** for each subtype in that can participate in the opclass. In reality

** the server will pass an lvarchar containing the subtype name,

** and it will be lower case.

**

** The second argument is declared to be an SQL pointer (i.e. void *);

** in reality it is a pointer to an integer. You must not allocate

** space for this returned value; the server will allocate it for you.

**

** Parameters:

**

** mi_lvarchar *typename Type name of this UDT (e.g. ’MyShape’)

** mi_integer *maxlen Returned value, max length of object

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeObjectLength (mi_lvarchar *typename,

 mi_integer *maxlen,

 MI_FPARAM *fp)

{

 mi_char *col_type_name;

 SHAPE_TRACE_ENTER (MyShapeObjectLength);

 col_type_name = mi_lvarchar_to_string (typename);

 if (strcmp (col_type_name, "myshape") == 0)

 {

 /*

 * This is a supertype column. It could contain any

 * combination of points, boxes, or circles, so return

 * the size of the largest possible subtype.

 */

 *maxlen = sizeof(MyShapeHdr) + sizeof(MyBoxData);

 }

 else if (strcmp (col_type_name, "mypoint") == 0)

 {

 *maxlen = sizeof(MyShapeHdr) + sizeof(MyPointData);

 }

 else if (strcmp (col_type_name, "mybox") == 0)

 {

 *maxlen = sizeof(MyShapeHdr) + sizeof(MyBoxData);

 }

 else if (strcmp (col_type_name, "mycircle") == 0)

 {

 *maxlen = sizeof(MyShapeHdr) + sizeof(MyCircleData);

 }

 else

 {

 mi_db_error_raise (NULL, MI_EXCEPTION,

 "unknown column type name", (mi_char *) 0);

 }

 SHAPE_TRACE_EXIT (MyShapeObjectLength);

 return MI_OK;

}

A-16 IBM Informix R-Tree Index User’s Guide

SFCValue Support Function

/***

**

** Function name:

**

** MyShapeSFCvalue

**

** Description:

**

** This is an R-Tree support function which enables the

** server to use a fast method of building an R-Tree index.

**

** Special Comments:

**

** The SQL function signature for this function is

** “SFCvalue (UDT, integer, pointer)”. This requires an explanation:

**

** The purpose of the first argument is to provide function signature

** uniqueness, since you must declare a separate ObjectLength function

** for each subtype in that can participate in the opclass. In reality

** the server will pass an lvarchar containing an array of UDTs.

**

** The second argument is an integer containing the size of the

** arrays in the first and third arguments.

**

** The third argument is declared to be an SQL pointer (i.e. void *);

** in reality it is a pointer to an array of spatial keys. This

** array is allocated for you by the server. The array element size

** will be the size that you returned in the SFCbits support function.

**

** Parameters:

**

** mi_lvarchar *objects Array of UDTs, wrapped in an mi_lvarchar.

** mi_integer *array_size Size of arrays.

** void *keys Array of spatial keys to be computed.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeSFCvalue (mi_lvarchar *objects,

 mi_integer array_size,

 void *keys,

 MI_FPARAM *fp)

{

 mi_unsigned_integer *key_ptr = (mi_unsigned_integer *) keys;

 mi_lvarchar **shape_array = (mi_lvarchar **) mi_get_vardata (objects);

 mi_integer i;

 SHAPE_TRACE_ENTER (MyShapeSFCvalue);

 for (i = 0; i < array_size; i++)

 {

#ifdef USE_HILBERT_KEY

 Compute32BitHilbertKey (shape_array[i], &key_ptr[i]);

#else

 Compute32BitMortonKey (shape_array[i], &key_ptr[i]);

#endif

 }

 SHAPE_TRACE_EXIT (MyShapeSFCvalue);

 return MI_OK;

}

Appendix A. Shapes3 Sample DataBlade Module A-17

SetUnion Support Function

/***

**

** Function name:

**

** MyShapeSetUnion

**

** Description:

**

** This is an R-Tree support function which enables the

** server to use a fast method of building an R-Tree index.

**

** Special Comments:

**

** The SQL function signature for this function is

** "SetUnion (UDT, integer, pointer)". This requires an explanation:

**

** The purpose of the first argument is to provide function signature

** uniqueness, since you must declare a separate ObjectLength function

** for each subtype in that can participate in the opclass. In reality

** the server will pass an lvarchar containing an array of UDTs.

**

** The second argument is an integer containing the size of the

** array in the first arguments

**

** The third argument is declared to be an SQL pointer (i.e. void *);

** in reality it is an instance of a ’header’ subtype. A ’header’

** subtype is the data structure that contains just a bounding box;

** it is the same thing as the 3rd argument of the Union support

** function. If your UDTs are variable length, this UDT instance

** will be wrapped in an mi_lvarchar. If your UDTs are fixed length

** you will get a pointer to the structure itself. In both cases

** the server allocates memory for the structure for you.

**

** Parameters:

**

** mi_lvarchar *objects Array of UDTs, wrapped in an mi_lvarchar

** mi_integer *array_size Size of array.

** void *union Pointer to resultant union shape.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeSetUnion (mi_lvarchar *objects,

 mi_integer array_size,

 mi_lvarchar *union_shape,

 MI_FPARAM *fp)

{

 mi_lvarchar **shape_array = (mi_lvarchar **) mi_get_vardata (objects);

 mi_integer i;

 SHAPE_TRACE_ENTER (MyShapeSetUnion);

 MyShapeUnion (shape_array[0], shape_array[0], union_shape, fp);

 for (i = 1; i < array_size; i++)

 {

 MyShapeUnion (shape_array[i], union_shape, union_shape, fp);

 }

 SHAPE_TRACE_EXIT (MyShapeSetUnion);

 return MI_OK;

}

A-18 IBM Informix R-Tree Index User’s Guide

Appendix B. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age

or ability.

Accessibility features for IBM Informix Dynamic Server

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility Features

The following list includes the major accessibility features in IBM Informix

Dynamic Server. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v The attachment of alternative input and output devices.

Tip: The IBM Informix Dynamic Server Information Center and its related

publications are accessibility-enabled for the IBM Home Page Reader. You can

operate all features using the keyboard instead of the mouse.

Keyboard Navigation

This product uses standard Microsoft® Windows® navigation keys.

Related Accessibility Information

IBM is committed to making our documentation accessible to persons with

disabilities. Our publications are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our publications are available in dotted decimal format.

You can view the publications for IBM Informix Dynamic Server in Adobe Portable

Document Format (PDF) using the Adobe Acrobat Reader.

IBM and Accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 1996, 2008 B-1

http://www.ibm.com/able

B-2 IBM Informix R-Tree Index User’s Guide

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1996, 2008 C-1

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

C-2 IBM Informix R-Tree Index User’s Guide

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All

rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A current list of IBM trademarks is available on the

Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, Portable Document Format (PDF), and PostScript are either

registered trademarks or trademarks of Adobe Systems Incorporated in the United

States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices C-3

http://www.ibm.com/legal/copytrade.shtml

C-4 IBM Informix R-Tree Index User’s Guide

Index

A
Access methods, general 1-1

See also R-tree access method.

B-tree 1-2, 3-3

Informix Dynamic Server provides 1-2

primary 1-1

secondary 1-1, 1-2

accessibility B-1

keyboard B-1

shortcut keys B-1

B
B-tree access method 1-2, 2-9, 3-3

B-tree index vs R-tree 2-9

bbox_only_distance operation key 3-34

BladeManager 1-12, 2-2

BladeSmith 1-12, 3-8, 3-36

BOTTOM_UP_BUILD index parameter 2-3, 2-4

Bottom-up build 1-5, 2-4

Bounding boxes
checking with the oncheck utility 4-13

discussion of 1-3, 3-3, 3-4

effectiveness of 4-4

finding coordinates of root bounding box 1-6, 4-5

loose 3-7, 3-26, 3-28

strategy function switching semantics 3-14

with Contains strategy function 3-26

with Overlap strategy function 3-24

with Within strategy function 3-28

BOUNDING_BOX_INDEX index parameter 1-5, 2-5

Bounding-box-only indexes 1-4, 2-5, 3-14

Branch page 1-5

Bulk-loading data support functions 3-10

Bulk-loading of data 2-3, 2-4

C
Casts, implicit 3-5, 3-20

Cleaning up an R-tree index 4-16

Clustering spatial data on the disk 4-4

COMMITTED READ isolation level 2-12

Commutator functions 3-22, 3-27, 3-28

Concurrency using R-link trees 1-9

Contains strategy function 2-8, 3-4, 3-21, 3-25

Cost functions 3-30

Cost, using R-tree index 2-9, 4-2

CREATE OPCLASS statement 3-16

Creating operator classes 3-8

Creating R-tree indexes 2-2

Creating registration scripts for dependent DataBlade

modules 3-35

CURSOR STABILITY isolation level 2-12

D
Data objects 1-4, 1-5, 3-3, 3-4

Data type hierarchies 3-5

Data-access cost 4-2

DataBlade API 3-8, 3-12, 3-21, 3-29, 3-30

DataBlade Developers Kit (DBDK) 1-12, 2-2, 3-2, 3-21, 3-29,

3-32, 3-35

DataBlade module development 1-11, 3-2, 3-3, 3-35

DataBlade modules
that use R-tree 1-13

Default R-tree operator class, rtree_ops 1-10, 1-11, 2-3, 3-8

Designing user-defined data types 3-3, 3-7

DIRTY READ isolation level 2-12

disability B-1

Distance-measuring function 3-33

Dropping R-tree indexes 2-8

DS_MAX_QUERIES ONCONFIG parameter 2-4

DS_TOTAL_MEMORY ONCONFIG parameter 2-4

E
Equal strategy function 3-21, 3-25

Error messages of the R-tree secondary access method 1-12,

3-36

Estimating the size of an R-tree index 4-6

F
FILLFACTOR index parameter 2-3, 2-4

Filtering cost 4-2

FIRST n syntax 2-11

FRAGMENT, option to CREATE INDEX statement 2-6

Fragmented R-tree indexes 2-6, 2-11

Functional R-tree indexes 1-5, 2-12

G
Geodetic DataBlade module 1-13, 3-8

GeoObject_ops, operator class of Informix Geodetic DataBlade

module 3-8

Global Language Support (GLS) vi

H
Hierarchies, of data types 3-5

I
ifxrltree interface object 3-36

Implicit casts 3-5, 3-20

Importing the ifxrltree interface object 3-36

IN, option to CREATE INDEX statement 2-7

Index parameters
BOTTOM_UP_BUILD 2-3, 2-4

BOUNDING_BOX_INDEX 2-5

FILLFACTOR 2-3, 2-4

NO_SORT 2-4

SORT_MEMORY 2-3, 2-4

specifying 2-3

Informix Dynamic Server 1-1, 1-3, 1-11, 1-12, 3-2, 3-3

Informix Geodetic DataBlade module 1-13, 3-8

Informix R-Tree Secondary Access Method DataBlade module
contents of 1-12

© Copyright IBM Corp. 1996, 2008 X-1

Informix R-Tree Secondary Access Method DataBlade module

(continued)
creating dependencies on 3-36

registering 1-12, 2-2

Informix Spatial DataBlade module 1-13, 3-34

Informix Video Foundation DataBlade module 1-13

Inserting data into an R-tree index 1-7

Installing DataBlade modules 2-1

Inter support function 3-9, 3-13

Interface object ifxrltree 3-36

Internal C structure of user-defined data type 3-4

Isolation levels and R-tree indexes 2-12

L
Leaf page 1-5, 1-8

strategy function switching semantics 3-14

Loading data into an R-tree index 2-2

Locking of R-tree index 1-9

Logging and R-tree indexes 4-7

Loose bounding boxes 3-7, 3-26, 3-28

M
Maximum size of the user-defined data type 3-6

N
nearest_neighbor_functions operation key 3-34

Nearest-neighbor searches 1-7, 2-11, 3-33

Nearest-neighbor strategy function 3-30

NO_SORT index parameter 2-4, 2-6

Null values in R-tree index 2-10

O
ObjectLength support function 2-5, 3-8, 3-10, 3-18

oncheck utility 3-15, 4-7, 4-12

ONCONFIG parameters
DS_MAX_QUERIES 2-4

DS_TOTAL_MEMORY 2-4

onlog utility 4-9

Operator class
creating 3-8, 3-31

discussion of 1-2, 1-6, 1-10

requirements for R-tree access method 1-10

specifying in CREATE INDEX statement 2-3

strategy functions 1-6, 1-10, 2-8, 3-3, 3-6, 3-21

support functions 1-10, 3-3, 3-6, 3-9

Overlap strategy function 1-10, 3-6, 3-21, 3-24, 4-5

P
Page splitting 1-8, 1-9

Per-row cost functions 3-30

Performance
clustering spatial data on the disk 4-4

deleting rows from an indexed table 4-3

effectiveness of bounding box representations 4-4

updating statistics 4-2

Primary access method 1-1

Purpose functions 1-2

Q
Query optimizer 2-8

R
R-link trees 1-9

R-tree indexes
and database isolation levels 2-12

and logging 4-7

and null values 2-10

checking with the oncheck utility 4-12

contents of leaf page 1-6

contents of root or branch page 1-6

creating 2-2

description of logical log records 4-8

drop before a truncating a table 4-10

dropping 2-8

estimating the size of 4-6

example of creating 2-7

example of creating fragmented 2-7, 2-8

fragmenting 2-6

functional 2-12

improving performance of 4-1

improving performance of deletions from 4-3

inserting into 1-7

loading data into 2-2

locking of 1-9

page splitting (figure) 1-8, 1-9

page splitting in 1-8, 1-9

performing a cleanup of 4-16

purpose of 1-3

searching with 1-6

sequence numbers in 1-9

steps to perform before creating 2-1

storing 2-7

structure of 1-3, 1-5

structure of (figure) 1-4

subtrees of 1-7

supported CREATE INDEX options 2-3

updating statistics for 2-3, 2-9, 4-2

viewing logical log records of 4-9

vs B-tree 2-9

when used by query optimizer 2-8

R-tree secondary access method
cannot rename databases 4-10

creating operator classes for 3-31

deciding whether to use 3-2

discussion of 1-2

error messages 1-12

example in DBDK 2-2, 3-2, A-1

functionality Informix provides 1-11

specifying 2-2

system catalogs 4-10, 4-11, 4-12

types of data indexed by 1-2, 3-2

R-Tree Secondary Access Method DataBlade module
contents of 1-12

creating dependencies on 3-36

registering 1-12, 2-2

repairing after migration to a new version 3-37

Refinement cost 4-2

Registering DataBlade modules 2-2

Registering selectivity and cost functions 3-30

REPEATABLE READ isolation level 2-12

Right-pointing link 1-9

Root page 1-5, 1-9

ROWID 1-6

X-2 IBM Informix R-Tree Index User’s Guide

rtree_ops, default R-tree operator class 1-10, 1-11, 2-3, 3-8

RtreeInfo support function 3-9, 3-11, 3-14, 3-16

nearest-neighbor searches 3-33

rtreeRootBB() function 1-6, 4-5

S
SE_Nearest function 2-11

SE_NearestBBox function 2-11

Search object 1-6

Searching with an R-tree index 1-6

Secondary-access methods, general 1-2

Selectivity functions 3-30

Selectivity of data 4-4

Sequence numbers in R-tree indexes 1-9

SetUnion support function 2-5, 3-8, 3-10, 3-19

SFCbits support function 2-5, 3-8, 3-10, 3-18

SFCvalue support function 2-5, 3-8, 3-10, 3-19

shortcut keys
keyboard B-1

Size support function 1-10, 3-9, 3-12

SORT_MEMORY index parameter 2-3, 2-4

Sorted tables 2-4

Spatial DataBlade module 1-13, 3-34

Spatial key 2-6

Specifying the R-tree secondary access method 2-2

Statistics, updating 2-3, 2-9, 4-2

Storage of R-tree indexes 2-7

stores_demo database vii

Strategy functions
commutators of 3-22, 3-27, 3-28

Contains 2-8, 3-4, 3-21, 3-25

creating 3-20, 3-29

designing 3-3

discussion of 1-6, 1-10, 2-8, 3-21

Equal 3-21, 3-25

example of creating 3-29

in a data type hierarchy 3-6

internal uses of 3-22

other types of 3-29

Overlap 1-10, 3-6, 3-21, 3-24, 4-5

switching semantics 3-14

Within 3-21, 3-27

Structure of an R-tree index 1-3

Subtrees of an R-tree index 1-7

Subtypes, in a data type hierarchy 3-5

superstores_demo database vii

Supertypes, in a data type hierarchy 3-5

Support functions
designing 3-3

discussion of 1-10, 3-9

example of creating 3-20

for bulk-loading of data 3-10

in a data type hierarchy 3-6

Inter 3-9, 3-13

internal uses of 3-11

ObjectLength 2-5, 3-8, 3-10, 3-18

required for R-tree secondary access method 3-9, 3-21

SetUnion 2-5, 3-8, 3-10, 3-19

SFCbits 2-5, 3-8, 3-10, 3-18

SFCvalue 2-5, 3-8, 3-10, 3-19

Size 1-10, 3-9, 3-12

Union 3-9, 3-11

Switching semantics, strategy functions 3-14

sysams system catalog 4-10

sysindexes system catalog 4-12

sysopclasses system catalog 4-11

System catalogs
sysams 4-10

sysindices 4-12

sysopclasses 4-11

T
Types of data indexed by R-tree secondary access method 3-2

Types of data R-tree secondary access method indexes 1-2

U
Union support function 3-9, 3-11

UPDATE STATISTICS command 2-3, 2-9

UPDATE STATISTICS, cost of using index 4-2

Updating statistics 2-3, 2-9, 4-2

User-defined data types, designing for R-tree indexes 3-3, 3-7

Utilities
oncheck 4-7, 4-12

onlog 4-9

V
Video Foundation DataBlade module 1-13

Virtual-Index Interface (VII) 1-3

W
Within strategy function 3-21, 3-27

Index X-3

X-4 IBM Informix R-Tree Index User’s Guide

����

Printed in USA

SC23-9436-00

	Contents
	Introduction
	In This Introduction
	About This Publication
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform Markup
	Example Code Conventions

	Additional Documentation
	Compliance with Industry Standards
	How to Provide Documentation Feedback

	Chapter 1. R-Tree Secondary Access Method Concepts
	In This Chapter
	About Access Methods
	The R-Tree Secondary Access Method
	R-Tree Index Structure
	Bounding Boxes
	Bounding-Box-Only R-Tree Indexes
	Hierarchical Index Structure

	Searching with an R-Tree Index
	Nearest-Neighbor Searching
	Inserting into an R-Tree Index
	R-Link Trees and Concurrency

	About Operator Classes
	R-Tree Functionality That IBM Provides
	R-Tree Functionality in IBM Informix Dynamic Server
	R-Tree Secondary Access Method DataBlade Module
	Contents of the DataBlade Module
	DataBlade Module Registration

	IBM Informix DataBlade Modules That Use the R-Tree Access Method

	Chapter 2. Using the R-Tree Secondary Access Method
	In This Chapter
	Before You Begin
	Creating R-Tree Indexes
	Syntax
	R-Tree Index Parameters
	Bottom-Up Building of R-Tree Indexes
	Using the NO_SORT Index Parameter
	R-Tree Index Options
	Using the FRAGMENT Clause
	Using the IN Clause

	Examples of Creating R-Tree Indexes

	When Does the Query Optimizer Use an R-Tree Index?
	Complex Qualifications

	R-Tree Indexes and Null Values
	How an R-Tree Index Internally Handles Null Values
	How Strategy Functions Handle Null Values

	Performing Nearest-Neighbor Searches
	Limitations
	Example

	Database Isolation Levels and R-Tree Indexes
	Functional R-Tree Indexes

	Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method
	In This Chapter
	Overview of DataBlade Module Development
	Deciding Whether to Use the R-Tree Access Method
	Designing a User-Defined Data Type
	Data Objects and Bounding Boxes
	Operations on Data Objects
	Operations on Bounding Boxes
	Internal C Structure for the User-Defined Data Type

	Data Type Hierarchies
	Example Data Type Hierarchy
	Strategy Functions in a Data Type Hierarchy
	Union Support Function in a Data Type Hierarchy

	Maximum Size of the User-Defined Data Type
	Loose Bounding Box Calculations
	Other User-Defined Data Type Design Considerations

	Creating a New Operator Class
	Support Functions
	Internal Uses of the Support Functions
	The Union Function
	The Size Function
	The Inter Function
	The RtreeInfo Function
	The SFCbits Function
	The ObjectLength Function
	The SFCvalue Function
	The SetUnion Function
	Implicit Casts
	Example of Creating a Support Function

	Strategy Functions
	Internal Uses of the Strategy Functions
	The Overlap Function
	The Equal Function
	The Contains Function
	The Within Function
	Other Strategy Functions
	Example of Creating a Strategy Function

	Selectivity and Cost Functions
	Syntax for Creating a New Operator Class

	Setting Up Nearest-Neighbor Searching
	Setting Up a Strategy Function for Nearest-Neighbor Searching
	The Distance-Measuring Function
	Distance Function: Using Bounding Boxes
	Setting RtreeInfo to Indicate Nearest-Neighbor Functions

	Creating Registration Scripts for Dependent DataBlade Modules
	Importing the ifxrltree Interface Object

	Repairing R-tree Indexes After Migrating to a Different Version of a DataBlade Module

	Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method
	In This Chapter
	Performance Tips
	Updating Statistics
	Deletions
	Effectiveness of Bounding Box Representation
	Clustering Spatial Data on the Disk

	Returning the Coordinates of the Root Bounding Box
	Syntax

	Estimating the Size of an R-Tree Index
	Calculating Index Size Based on Number of Rows
	Using the oncheck Utility to Calculate Index Size

	R-Tree Index and Logging
	Description of the R-Tree-Specific Logical-Log Records
	Logical-Log Records of Insertions of Items into a Leaf Page
	Logical-Log Records of Deletions of Items from a Leaf Page

	Using the onlog Utility to View R-Tree Logical-Log Records

	Cannot Rename Databases that Use the Secondary Access Method
	Drop R-Tree Indexes Before Truncating a Table
	System Catalogs
	sysams
	sysopclasses
	sysindices

	Checking R-Tree Indexes with the oncheck Utility
	Checking Pages with the -ci and -cI Options
	Checking Pages with the -pT Option
	Checking Pages with the -pk and -pK Options
	Checking Pages with the -pl and -pL Options
	Other Options with -u

	Appendix A. Shapes3 Sample DataBlade Module
	Appendix B. Accessibility
	Accessibility features for IBM Informix Dynamic Server
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	Notices
	Trademarks

	Index

