Informix Product Family
Data Server Driver for JDBC and SQLJ
Version 9.7

IBM Data Server Driver for JOBC and
SQLJ for Informix

<||I

Informix Product Family
Data Server Driver for JDBC and SQLJ
Version 9.7

IBM Data Server Driver for JOBC and
SQLJ for Informix

..ll

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page B-1)

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2007, 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction.
In This Introduction.
About This Publication.
Types of Users
Assumptions About Your Locale . .
What's New for IBM Data Server Driver for]DBC and SQL] for IBM Informlx .
Example code conventions
Additional documentation .
Compliance with industry standards
Syntax diagrams . .
How to read a command lme syntax dlagram
Keywords and punctuation .
Identifiers and names. .
How to provide documentation feedback

Chapter 1. Java application development for IBM data servers

Chapter 2. Supported drivers for JDBC and SQLJ .

Chapter 3. IBM Data Server Driver for JDBC and SQLJ restrictions for IBM Informix

Chapter 4. Installing the IBM Data Server Driver for JDBC and SQLJ.

Customization of IBM Data Server Driver for JDBC and SQL]J configuration properties .

Chapter 5. JDBC application programmlng
Example of a simple JDBC application .
How JDBC applications connect to a data source

Connecting to a data source using the DriverManager mterface w1th the IBM Data Server Dr1ver for]DBC and

SQLJ .
Connecting to a data source usmg the DataSource 1nterface .
JDBC connection objects .
Creating and deploying DataSource ob]ects
Java packages for JDBC support . . .
Learning about a data source using DatabaseMetaData methods .
DatabaseMetaData methods for 1dent1fy1ng the type of data source .
Variables in JDBC applications .o .
JDBC interfaces for executing SQL . .
Creating and modifying database objects using the Statement executeUpdate method
Updating data in tables using the PreparedStatement. executeUpdate method .
Making batch updates in JDBC applications .

Learning about parameters in a PreparedStatement usmg ParameterMetaData methods

Data retrieval in JDBC applications .

Calling stored procedures in JDBC apphcatlons

LOBs in JDBC applications with the IBM Data Server Drrver for]DBC and SQL]

ROWIDs in JDBC with the IBM Data Server Driver for JDBC and SQL]

Savepoints in JDBC applications .

Retrieval of automatically generated keys in]DBC apphcatlons

Using named parameter markers in JDBC applications .

Providing extended client information to the data source with chent 1nfo propertles
Transaction control in JDBC applications .

IBM Data Server Driver for JDBC and SQLJ 1solat10n levels

Committing or rolling back JDBC transactions .

Default JDBC autocommit modes
Exceptions and warnings under the IBM Data Server Drlver for]DBC and SQL]

© Copyright IBM Corp. 2007, 2011

. ix
. ix
. ix
. ix
. Ix

. XVviii
. XiX
. XiX
. Xix

. XX

. xxi
. xxi
. Xxii

. 141

. 2-1

. 54

. 5-10
. 5-11
. 5-12
. 5-13
. 5-13
. 5-14
. 5-15
. 5-16
. 5-19
. 5-20
. 5-30
. 5-32
. 5-37
. 5-39
. 5-40
. 543
. 5-46
. 5-50
. 5-50
. 5-50
. 5-51
. 5-51

iii

Handling an SQLException under the IBM Data Server Driver for JDBC and SQLJ .
Handling an SQLWarning under the IBM Data Server Driver for JDBC and SQL]J
Retrieving information from a BatchUpdateException.

Disconnecting from data sources in JDBC applications

Chapter 6. SQLJ application programmmg
Example of a simple SQL]J application .
Connecting to a data source using SQLJ .
SQLJ connection technique 1: JDBC DriverManager 1nterface
SQLJ connection technique 2: JDBC DriverManager interface
SQLJ connection technique 3: JDBC DataSource interface .
SQLJ connection technique 4: JDBC DataSource interface . .
SQLJ connection technique 5: Use a previously created connection context .
Java packages for SQL]J support
Variables in SQL]J applications .
Indicator variables in SQL]J appl1cat10ns
Comments in an SQL]J application . .
SQL statement execution in SQL]J apphcatlons . .
Creating and modifying database objects in an SQL] apphcatlon . .
Performing positioned UPDATE and DELETE operat1ons in an SQLJ apphcat10n
Data retrieval in SQL]J applications . . o
Calling stored procedures in SQL]J apphcatlons .
LOBs in SQL]J applications with the IBM Data Server Drlver for]DBC and SQL].
SQLJ and JDBC in the same application . . .
Controlling the execution of SQL statements in SQL] .
ROWIDs in SQLJ with the IBM Data Server Driver for]DBC and SQL]
Savepoints in SQL]J applications
SQLJ utilization of SDK for Java Version 5 funct1on
Transaction control in SQLJ applications . . .
Setting the isolation level for an SQLJ transactlon .
Committing or rolling back SQL] transactions
Handling SQL errors and warnings in SQLJ apphcatlons
Handling SQL errors in an SQL]J application.
Handling SQL warnings in an SQL] application
Closing the connection to a data source in an SQLJ apphcatlon

Chapter 7. Preparing and running JDBC and SQLJ programs
Program preparation for JDBC programs

Program preparation for SQL] programs
Running JDBC and SQLJ programs .

Chapter 8. Security under the IBM Data Server Driver for JDBC and SQLJ
User ID and password security under the IBM Data Server Driver for JDBC and SQLJ .
User ID-only security under the IBM Data Server Driver for JDBC and SQLJ .

. 5-53
. 5-57
. 5-58
. 5-60

. 6-1

. 6-3
. 6-3

. 6-6
. 6-7
. 6-8
. 69
. 6-9

. 6-11
. 6-15
. 6-15
. 6-15
. 6-16
. 6-24
. 6-33
. 6-33
. 6-35
. 6-38
. 6-39
. 6-41
. 6-41
. 6-44
. 6-44
. 6-45
. 6-45
. 6-45
. 6-46
. 6-46

. 71

. 7-1
. 7-1
. 7-1

. 8-1

. 82
. 84

Encrypted password, user ID, or user ID and password security under the IBM Data Server Drlver for]DBC and

SQL]

IBM Data Server Dnver for]DBC and SQL] trusted context support .

IBM Data Server Driver for JDBC and SQLJ support for SSL.
Configuring connections under the IBM Data Server Driver for JDBC and SQL] to use SSL
Configuring the Java Runtime Environment to use SSL - Lo

Chapter 9. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ
DB2Jcc - IBM Data Server Driver for JDBC and SQLJ diagnostic utility

Examples of using configuration properties to start a JDBC trace

Example of a trace program under the IBM Data Server Driver for]DBC and SQL]

Techniques for monitoring IBM Data Server Driver for JDBC and SQL]J Sysplex support

Chapter 10. System monitoring for the IBM Data Server Driver for JDBC and SQLJ
IBM Data Server Driver for JDBC and SQLJ remote trace controller .
Enabling the remote trace controller

iV IBM Data Server Driver for JDBC and SQLJ for Informix

. 85
. 8-6

. 8-8
. 89

. 94

10-1

. 10-3
. 10-3

Accessing the remote trace controller . . 10-4
Chapter 11. Java client support for high availability on IBM data servers . 111
Java client support for high availability for connections to DB2 Database for Linux, UNIX, and Windows servers 11-2

Configuration of DB2 Database for Linux, UNIX, and Windows automatic client reroute support for Java

clients . . 11-3

Example of enabhng DB2 Database for Llnux UNIX and Wrndows autornatlc chent reroute support in]ava

applications. . 11-5

Configuration of DB2 Database for Llnux UNIX and Wlndows workload balancmg support for]ava chents 11-6

Example of enabling DB2 Database for Linux, UNIX, and Windows workload balancing support in Java

applications. . 11-8

Operation of automatlc chent reroute for connectrons to DB2 Database for L1nux UNIX and Wlndows from

Java clients 119

Operation of workload balancmg for connectlons to DB2 Database for Llnux UNIX and Wlndows . . 11-13

Application programming requirements for high availability for connections to DB2 Database for Linux,

UNIX, and Windows servers. . . 11-14

Client affinities for DB2 Database for Llnux UNIX and Wlndows . . . 11-15
Java client support for high availability for connections to IBM Informix servers . 11-18

Configuration of IBM Informix high-availability support for Java clients . . . 11-19

Example of enabling IBM Informix high availability support in Java applications . . 11-22

Operation of automatic client reroute for connections to IBM Informix from Java clients. . 11-23

Operation of workload balancing for connections to IBM Informix from Java clients . . 11-27

Application programming requirements for high availability for connections from Java chents to IBM

Informix servers . . . 11-28

Client affinities for connectlons to IBM Informlx from]ava chents . . 11-28
Java client direct connect support for high availability for connections to DB2 for z / OS servers . 11-32

Configuration of Sysplex workload balancing at a Java client . . 11-34

Example of enabling DB2 for z/OS Sysplex workload balancing in]ava apphcatlons . 11-36

Operation of Sysplex workload balancing for connections from Java clients to DB2 for z/OS servers . 11-38

Operation of automatic client reroute for connections from Java clients to DB2 for z/OS. . . 11-39

Application programming requirements for high availability for connections from Java clients to DB2 for

z/0S servers . . 11-40
Chapter 12. Java 2 Platform, Enterprise Edition . 121
Application components of Java 2 Platform, Enterprise Edition support. L 12-1
Java 2 Platform, Enterprise Edition containers L1222
Java 2 Platform, Enterprise Edition Server . . 122
Java 2 Platform, Enterprise Edition database requlrements . . 122
Java Naming and Directory Interface (JNDI). . 12-3
Java transaction management. . 12-3

Example of a distributed transactlon that uses]TA methods . 12-4
Enterprise Java Beans . 12-8
Chapter 13. JDBC and SQLJ connection pooling support . . 13-1
Chapter 14. JDBC and SQLJ reference information. . 1441
Data types that map to database data types in Java applications . . . 14-1

Retrieval of special values from DECFLOAT columns in Java apphcatlons . 14-6
Properties for the IBM Data Server Driver for JDBC and SQLJ . . . 14-7

Common IBM Data Server Driver for JDBC and SQL]J properties for all supported database products . 14-8

Common IBM Data Server Driver for JDBC and SQL]J properties for DB2 servers . . . 14-28

Common IBM Data Server Driver for JDBC and SQL]J properties for DB2 for z/OS and IBM Informlx . . 14-38

Common IBM Data Server Driver for JDBC and SQL]J properties for IBM Informix and DB2 Database for

Linux, UNIX, and Windows . . 14-40

IBM Data Server Driver for JDBC and SQL] propertles for DB2 Database for Llnux UNIX and W1ndows 14-40

IBM Data Server Driver for JDBC and SQL]J properties for DB2 for z/OS. . . 14-42

IBM Data Server Driver for JDBC and SQLJ properties for IBM Informix . . 14-47
IBM Data Server Driver for JDBC and SQLJ configuration properties . . 14-52
Driver support for JDBC APIs . . 14-68
IBM Data Server Driver for JDBC and SQL] support for SQL escape syntax . 14-95

Contents V

SQL]J statement reference information.
SQLJ clause .
SQLJ host-expression .
SQLJ implements-clause .
SQL]J with-clause
SQLJ connectlon-declaratlon—clause
SQLJ iterator-declaration-clause.
SQLJ executable-clause .
SQLJ context-clause
SQLJ statement-clause
SQL]J SET- TRANSACTION—clause
SQLJ assignment-clause .
SQLJ iterator-conversion-clause
Interfaces and classes in the sqlj.runtime package
sqlj.runtime.ConnectionContext interface .
sqlj.runtime.ForUpdate interface .
sqlj.runtime.Namedlterator interface.
sqlj.runtime.PositionedIterator interface.
sqlj.runtime.ResultSetIterator interface .
sqlj.runtime.Scrollable interface
sqlj.runtime.AsciiStream class .
sqlj.runtime.BinaryStream class
sqlj.runtime.CharacterStream class
sqlj.runtime.ExecutionContext class .
sqlj.runtime.SQLNullException class.
sqlj.runtime.StreamWrapper class.
sqlj.runtime.UnicodeStream class .

IBM Data Server Driver for JDBC and SQLJ extensmns to]DBC

DBBatchUpdateException interface .
DB2BaseDataSource class
DB2ClientRerouteServerList class.
DB2Connection interface .
DB2ConnectionPoolDataSource Class
DB2DatabaseMetaData interface .
DB2Diagnosable interface
DB2ExceptionFormatter class .
DB2JCCPlugin class .
DB2ParameterMetaData 1nterface
DB2PooledConnection class
DB2PoolMonitor class .o
DB2PreparedStatement interface .
DB2ResultSet interface .o
DB2ResultSetMetaData interface .
DB2RowlID interface .
DB2SimpleDataSource class
DB2Sqlca class . .
DB2Statement interface .
DB2SystemMonitor interface
DB2TraceManager class .
DB2TraceManagerMXBean 1nterface
DB2Types class . e
DB2XADataSource class .
DBTimestamp class

JDBC differences between versions of the IBM Data Server Drlver for]DBC and SQL] .
Examples of ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnLabel values .
Differences between the IBM Data Server Driver for JDBC and SQLJ and the IBM Informix JDBC Driver
Error codes issued by the IBM Data Server Driver for JDBC and SQLJ

SQLSTATE:s issued by the IBM Data Server Driver for JDBC and SQLJ . . .

How to find IBM Data Server Driver for JDBC and SQLJ version and environment mformatlon

Commands for SQLJ program preparation.
sqlj - SQLJ translator .

Vi IBM Data Server Driver for JDBC and SQLJ for Informix

. 1496
. 1496
. 1496
. 14-97
. 1497
. 1499
.. 14-99
. 14-101
. 14-101
. 14-102
. 14-104
. 14-105
. 14-106
. 14-106
. 14-107
. 14-112
. 14-112
. 14-112
. 14-113
. 14-115
. 14-118
. 14-118
. 14-119
. 14-120
. 14-128
. 14-128
. 14-129
. 14-130
. 14-132
. 14-132
. 14-138
. 14-139
. 14-151
. 14-153
. 14-154
. 14-155
. 14-155
. 14-156
. 14-157
. 14-159
. 14-162
. 14-174
. 14-175
. 14-176
. 14-176
. 14-177
. 14-178
. 14-180
. 14-183
. 14-186
. 14-189
. 14-190
. 14-192
. 14-194
. 14-197

14-199

. 14-206
. 14-213
. 14-214
. 14-215
. 14-215

Appendix. Accessibility . ..
Accessibility features for IBM Informix products
Accessibility features .
Keyboard navigation . .o
Related accessibility information .
IBM and accessibility.
Dotted decimal syntax diagrams .

Notices .
Trademarks .

Index .

Contents

. A1

vii

viili IBM Data Server Driver for JDBC and SQLJ for Informix

Introduction

In This Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About This Publication

This publication is a guide for using the IBM® Data Server Driver for JDBC and
SQLJ to connect to IBM Informix® data servers.

Types of Users

This guide is for Java programmers who use the JDBC API to connect to Informix
databases using the IBM Data Server Driver for JDBC and SQLJ. To use this guide,
you should know how to program in Java and, in particular, understand the
classes and methods of the JDBC APIL

Assumptions About Your Locale

IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation, and representation of numeric
data, currency, date, and time is brought together in a single environment, called a
Global Language Support (GLS) locale.

This publication assumes that your database uses the default locale. This default is
en_us.8859-1 (ISO 8859-1) on UNIX platforms or en_us.1252 (Microsoft 1252) in
Windows environments. This locale supports U.S. English format conventions for
displaying and entering date, time, number, and currency values. It also supports
the ISO 8859-1 (on UNIX and Linux) or Microsoft 1252 (on Windows) code set,
which includes the ASCII code set plus many 8-bit characters such as é, ¢, and fi.

If you plan to use nondefault characters in your data or in SQL identifiers, or if
you plan to use other collation rules for sorting character data, you need to specify
the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, and for additional syntax
and other considerations related to GLS locales, see the IBM Informix GLS User's
Guide.

What's New for IBM Data Server Driver for JDBC and SQLJ for IBM
Informix

This topic lists the new features in the IBM Data Server Driver for JDBC and SQL]J
for IBM Informix.

What's New in version 3.62

The following are enhancements for IBM Data Server Driver for JDBC and SQL]J,
Version 3.62.

© Copyright IBM Corp. 2007, 2011 ix

Table 1. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.62

Overview

Reference

Diagnosis and trace enhancements

The following diagnosis and trace enhancements
are added:

* The DB2Jcc utility tests a connection to a data
server, using IBM Data Server Driver for JDBC
and SQLJ type 4 connectivity.

¢ When the tracePolling configuration property is
set to enable the trace while an application is
running, information about all
PreparedStatement objects in the application
that were prepared before the trace was
enabled are written to the trace destination.

Chapter 9, “Problem diagnosis with the]

IBM Data Server Driver for JDBC and|

SQLJ,” on page 9-1|

New properties

The following Connection and DataSource
property is added:

queryTimeoutProcessingMode
Specifies whether the IBM Data Server Driver
for JDBC and SQLJ cancels the SQL statement
or closes the underlying connection when the
query timeout interval for a Statement object
expires.

“Common IBM Data Server Driver fo1

DBC and SQLJ properties for alll

supported database products” on pagel

149

What's New in version 3.61

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,

Version 3.61.

Table 2. What's New in IBM Data Server Driver for JODBC and SQLJ, Version 3.61

Overview

Reference

New properties

The following Connection and DataSource
properties are added:

stripTrailingZerosForDecimalNumbers
Specifies whether the IBM Data Server Driver
for JDBC and SQLJ removes trailing zeroes
when it retrieves data from a DECFLOAT,
DECIMAL, or NUMERIC column.

“Common IBM Data Server Driver for

DBC and SQL] properties for alll

supported database products” on page

|

DB2PreparedStatement enhancements

Two new DB2PreparedStatement methods are
added.

getEstimateCost
Returns the estimated cost of an SQL
statement after the statement is
dynamically prepared.

getEstimateRowCount
Returns the estimated number of rows
that can be returned by an SQL
statement after the statement is
dynamically prepared.

“DB2PreparedStatement interface” on|

page 14—162|

IBM Data Server Driver for JDBC and SQL]J for Informix

Table 2. What's New in IBM Data Server Driver for JODBC and SQLJ, Version

3.61 (continued)

Overview

Reference

Trusted context support

Trusted context support is available for Informix
data servers. Trusted connections are supported
for IBM Data Server Driver for JDBC and SQL]J

type 4 connectivity to Informix V11.70 and later.

“IBM Data Server Driver for JDBC and|

SQLJ trusted context support” on page

8-6

Informix Unified Debugger support

An existing method is extended to support the
Informix Unified Debugger. Method
DB2Connection.setDB2ClientDebugInfo can be
called to notify the Informix data server that
stored procedures and user-defined functions that
are using the connection are running in debug
mode.

“DB2Connection interface” on page]

14—132|

System monitoring support

System monitoring support is extended to
Informix data servers. You can collect core driver
time, network I/0 time, server time, and
application time for connections to Informix
servers.

Chapter 10, “System monitoring for the]

IBM Data Server Driver for JDBC and|

SQLJ,” on page 10-1|

What's New in version 3.59

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,

Version 3.59.

Table 3. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.59

Overview

Reference

New properties

The following Connection and DataSource
properties are added:

allowNullResultSetForExecuteQuery
Specifies whether the IBM Data Server Driver
for JDBC and SQL]J returns null when
Statement.executeQuery,
PreparedStatement.executeQuery, or
CallableStatement.executeQuery is used to
execute a CALL statement for a stored
procedure that does not return any result
sets.

connectionCloseWithInFlightTransaction
Specifies whether the IBM Data Server Driver
for JDBC and SQLJ throws an SQLException
or rolls back a transaction without throwing
an SQLException when a connection is closed
in the middle of the transaction.

interruptProcessingMode
Specifies the behavior of the IBM Data Server
Driver for JDBC and SQLJ when an
application calls the Statement.cancel method.

“Common IBM Data Server Driver fo1

DBC and SQLJ properties for alll

supported database products” on pagel

149

Introduction X1

What's New in version 3.58

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,
Version 3.58.

Table 4. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.58

Overview Reference

Diagnostic information enhancements Not applicable

Diagnostic information is traced to the Java
standard error output stream when an exception
is thrown with an SQL error code of -805. In Java
database applications, -805 often indicates that all
available IBM Data Server Driver for JDBC and
SQL]J packages have been used because there are
too many concurrently open statements. The
diagnostic information contains a list of SQL
strings that contributed to the exception.

What's New in version 3.57

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,
Version 3.57.

Xii IBM Data Server Driver for JDBC and SQLJ for Informix

Table 5. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.57

Overview

Reference

Parameter names in JDBC and SQL]J stored
procedure calls

In previous versions of the IBM Data Server
Driver for JDBC and SQLJ, only forms of
CallableStatement.RegisterOutParameter,
CallableStatement.setXXX, and
CallableStatement.getXXX methods that used
parameterIndex were supported. With versions 3.57
of the driver, parameterName is also supported in
those methods. parameterName is a name that is
specified for a parameter in the stored procedure
definition.

Alternatively, for JDBC applications, new syntax
allows the application to map parameter markers
in the CALL statement to the parameter names in
the stored procedure definition. For example, in a
JDBC application, CALL MYPROC (A=>?) maps a
parameter marker to stored procedure parameter
A.

For SQLJ applications, new syntax allows the
application to map host variable names in the
CALL statement to the parameter names in the
stored procedure definition. For example, in an
SQLJ application, CALL MYPROC (A=>:INOUT x)
maps host variable x to stored procedure
parameter A.

With the new syntax, you do not need to specify
all parameters in the CALL statement.
Unspecified parameters take the default values
that are specified in the stored procedure
definition.

Not applicable

Savepoints

The IBM Data Server Driver for JDBC and SQLJ
supports setting of savepoints for connections to
IBM Informix data servers.

“Savepoints in JDBC applications” on|

page 5—39|

“Savepoints in SQLJ applications” on|

page 6-41|

Batch insert operations

The IBM Data Server Driver for JDBC and SQLJ
adds the atomicMultiRowInsert Connection or
DataSource property for connections to IBM
Informix V11.10 and later data servers. The
atomicMultiRowInsert property lets you specify
whether batch insert operations that use the
PreparedStatement interface have atomic or
non-atomic behavior. Atomic behavior means that
a batch operation succeeds only if all insert
operations in the batch succeed. Non-atomic
behavior, which is the default, means that insert
operations succeed or fail individually.

“Common IBM Data Server Driver fo1

JDBC and SQL]J properties for alll

supported database products” on page|

14-§

Introduction Xiii

xiv

Table 5. What's New in IBM Data Server Driver for JODBC and SQLJ, Version

3.57 (continued)

Overview

Reference

Diagnostics for binding of SQL]J applications
enhancements

When an SQLJ application is bound, and an SQL

error or warning occurs, the following new

diagnostic information is returned:

* The SQL statement

* The line number in the program of the SQL
statement

* The error or warning code and the SQLSTATE
value

¢ The error message

Not

applicable

Client reroute enhancements

Client reroute support is enhanced in the
following ways:

* Seamless failover is added to client reroute
operation.

During client reroute, if a connection is in a
clean state, you can use the
enableSeamlessFailover property to suppress
the SQLException with error code -4498 that
the IBM Data Server Driver for JDBC and SQL]J
issues to indicate that a failed connection was
re-established.

* (Client affinities are added to cascaded failover
support.

For cascaded failover, you can use the
enableClientAffinitiesList property to control
the order in which primary and alternate server
reconnections are attempted after a connection
failure.

“Common IBM Data Server Driver fo1

DBC and SQLJ properties for alll

sup

ported database products” on pagel

14-§

Connections to IBM Informix enhancements

For connections to IBM Informix servers, the
following enhancement is added:

* Support for new IBM Informix data types is
added.

As of IBM Informix 11.50, IBM Informix
supports the BIGINT and BIGSERIAL data
types. The IBM Data Server Driver for JDBC
and SQLJ lets you access columns with those
data types.

For retrieving automatically generated keys
from a BIGSERIAL column, the IBM Data
Server Driver for JDBC and SQLJadds the
DB2Statement.getIDSBigSerial method.

//Da

ta types that map to database datal

types in Java applications” on page 14-1|

IBM Data Server Driver for JDBC and SQLJ for Informix

Table 5. What's New in IBM Data Server Driver for JODBC and SQLJ, Version

3.57 (continued)

Overview

Reference

Automatically generated keys enhancements

Batched INSERT statements can return
automatically generated keys.

If batch execution of a PreparedStatement object
returns automatically generated keys, you can call
the DB2PreparedStatement.getDBGeneratedKeys
method to retrieve an array of ResultSet objects
that contains the automatically generated keys. If
a failure occurs during execution of a statement
in a batch, you can use the
DBBatchUpdateException.getDBGeneratedKeys
method to retrieve any automatically generated
keys that were returned.

“Making batch updates in JDB(J

applications” on page 5-16|

“DBBatchUpdateException interface” on|

page 14—132|

“DB2PreparedStatement interface” on|

page 14—162|

What's New in version 3.53

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,

Version 3.53.

Table 6. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.53

Overview Reference

Support for new IBM Informix data types is |[“DB2Statement interface” on page 14-178|

added.

“Data types that map to database data types|

As of IBM Informix 11.50, IBM Informix in Java applications” on page 14-1|

supports the BIGINT and BIGSERIAL data
types. With the IBM Data Server Driver for
JDBC and SQLJ you can access columns with
those data types.

For retrieving automatically generated keys
from a BIGSERIAL column, the
DB2Statement.getIDSBigSerial method is
added to the IBM Data Server Driver for
JDBC and SQLJ.

The fetchSize default is configurable.

“Common IBM Data Server Driver for JDB(

and SQLJ properties for all supported|

The following property is added:

database products” on page 14-8|

fetchSize

[“DB2BaseDataSource class” on page 14-132|

Specifies the default fetch size for newly
created Statement objects. This value is
overridden by the Statement.setFetchSize
method.

Introduction XV

xvi

Table 6. What's New in IBM Data Server Driver for JOBC and SQLJ, Version

3.53 (continued)

Overview

Reference

Two new SSL properties are available to
provide the location and password of
truststore for SSL connection.

The following properties are added:

ss1TrustStoreLocation
Specifies the name of the Java truststore
on the client that contains the server
certificate for an SSL connection.

ss1TrustStorePassword
Specifies the password for the Java
truststore on the client that contains the
server certificate for an SSL connection.

“Common IBM Data Server Driver for JDBJ
and SQL] properties for all supported|
database products” on page 14-8|

|“DB2BaseDataSource class” on page 14-132|

“Configuring connections under the IBM|
Data Server Driver for JDBC and SQLJ to use
SSL” on page 8-§|

“Configuring the Java Runtime Environment]
to use SSL.” on page 8-9|

Timestamp formatting is improved for
compatibility with all supported servers.

The following property is added:

timestampPrecisionReporting
Specifies whether trailing zeroes in a
timestamp value that is retrieved from a
data source are truncated.

“Common IBM Data Server Driver for JDB{
and SQLJ properties for all supported|
database products” on page 14-8]

What's New in version 3.52

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,

Version 3.52.

Table 7. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.52

Overview

Reference

The IBM Data Server Driver for JDBC and
SQLJ now supports automatic client reroute
when connecting to IBM Informix.

For connections to IBM Informix 11.50 and
later, automatic client reroute with
Connection Manager can be enabled. This
enhancement allows the driver to establish a
connection to an alternate member of the
IBM Informix cluster if the primary member
fails.

“Tava client support for hich availability for
connections to IBM Informix servers” on]
[page 11-18|

The IBM Data Server Driver for JDBC and
SQLJ now supports workload balancing
when connecting to IBM Informix.

For connections to IBM Informix 11.50 and
later, workload balancing and the IBM Data
Server Driver for JDBC and SQLJ balance the
load among different high-availability servers
in a cluster. The Connection Manager ensures
that work is distributed efficiently among
servers in the cluster and that work is
transferred to another server if one server
has a failure.

“Operation of workload balancing for
connections to IBM Informix from Javal
clients” on page 11-27|

IBM Data Server Driver for JDBC and SQLJ for Informix

Table 7. What's New in IBM Data Server Driver for JODBC and SQLJ, Version

3.52 (continued)

Overview

Reference

With the IBM Data Server Driver for JDBC
and SQLJ Version 3.52 or later, preparing an
SQL statement for retrieval of automatically
generated keys is supported.

“DB2PreparedStatement interface” on page|

14—162|

What's New in version 3.51

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,

Version 3.51.

Table 8. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.51

Overview

Reference

JDBC 4.0 support has been added to the
driver for connections to IBM Informix 11.50.

You can now use the db2jcc4.jar file for
JDBC 4.0 functions as well as JDBC 3.0 and
earlier functions. To use JDBC 4.0, you need
an SDK for Java, Version 6.

Chapter 4, “Installing the IBM Data Server|

Driver for JDBC and SQLJ,” on page 4-1|

Support for SQLJ has been added to the
driver for connections to IBM Informix 11.50.

You can now use the sqlj.zip if you plan to
prepare SQLJ applications that include only
JDBC 3.0 and earlier functions. Use the
sqlj4.zip file to prepare SQLJ applications
that include JDBC 4.0 functions as well as
JDBC 3.0 and earlier functions.

For connections to IBM Informix, SQL
statements in SQL]J applications run
dynamically; SQL statements cannot be run
statically.

Chapter 4, “Installing the IBM Data Server|

Driver for JDBC and SQLJ,” on page 4-1]

“Program preparation for SQLJ programs” on|

[page 7-1|

Chapter 6, “SQL]J application programming,”|

on page 6—1|

Longer database names are supported.

Previously, IBM Informix DRDA®
connections limited database names to 18
bytes. For connections using IBM Data Server
Driver for JDBC and SQLJ, Version 3.51 and
later, database names can be up to 128 bytes.

Not applicable

IBM Informix ISAM error reporting is
enabled.

For connections to IBM Informix 11.10 and
later, ISAM errors are reported as
SQLException objects. You can now use
SQLException methods to obtain the error
code and the message description. The
SQLException.printStackTrace method
displays the cause of the ISAM errors.

“Handling an SQLException under the IBM|

Data Server Driver for JDBC and SQLJ]” on|

[page 5-53|

Introduction XVii

Table 8. What's New in IBM Data Server Driver for JODBC and SQLJ, Version

3.51 (continued)

Overview

Reference

The IBM Data Server Driver for JDBC and
SQLJ, Version 3.51 can access these new
features of IBM Informix 11.50:

* Progressive streaming for LOB data
e Multi-row insert batched update capability
* Secure Socket Layer (SSL)

* Setting and retrieving client information
properties

“Progressive streaming with the IBM Data|

Server Driver for JDBC and SQLJ” on page]

5-32

“Making batch updates in JDB(

applications” on page 5-16|

“IBM Data Server Driver for JDBC and SQLJ|

support for SSL” on page 8-§]

“Client info properties support by the IBM|

Data Server Driver for JDBC and SQL]” on|

page 5-47]

Global trace settings can be changed without
shutting down the driver.

You can set the db2.jcc.tracePolling property
before you start the driver so that you can
change global configuration trace properties
while the driver is running.

Chapter 9, “Problem diagnosis with the IBM|

Data Server Driver for JDBC and SQLJ,” on|

page 9-1]

“IBM Data Server Driver for JDBC and SQLJ]

configuration properties” on page 14-52|

Example code conventions

xviii

Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB-Access, you must delimit multiple

statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being

discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

IBM Data Server Driver for JDBC and SQLJ for Informix

Additional documentation

Documentation about this release of IBM Informix products is available in various

formats.

You can access or install the product documentation from the Quick Start CD that
is shipped with Informix products. To get the most current information, see the
Informix information centers at ibm.com®. You can access the information centers
and other Informix technical information such as technotes, white papers, and IBM
Redbooks® publications online at |ttp:/ /www.ibm.com /software /data/sw-|

Compliance with industry standards

IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade® Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata

Standard).

Syntax diagrams

Syntax diagrams use special components to describe the syntax for statements and

commands.

Table 9. Syntax Diagram Components

Component represented in PDF

Component represented in HTML

Meaning

>
>

Statement begins.

v

Statement continues on next
line.

A\ 4

Statement continues from
previous line.

Y
'y

Statement ends.

SELECT—— | oooooo-- SELECTmmmmmmmmmm Required item.
o mmmmmmmmmmmeem omm Optional item.
LOCAL [LOCAL------ !
ALL et SRR ALL------- +o-- Required item with choice.
DISTINCT +--DISTINCT----- + Only one item must be
—] '_——UNIQUE------ ' present.
—— UNIQUE ——

Introduction ~ XiX

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

Table 9. Syntax Diagram Components (continued)

Component represented in PDF

Component represented in HTML

Meaning

ij FOR UPDATE ﬂ
FOR READ ONLY

——mmt e, ————————— [Spp——
+--FOR UPDATE----- +
'--FOR READ ONLY--'

Optional items with choice
are shown below the main
line, one of which you might
specify.

NEXT o NEXTmmommemee The values below the main
et e Fomm line are optional, one of
+---PRIOR-------- + which you might specify. If
— PRIOR '---PREVIOUS----- ' you do not specify an item,
— PREVIOUS—— the value above the line is
used by default.
, [S Optional items. Several items
l | v are allowed; a comma must
ii et S precede each repetition.
index_name +---index_name---+
table_name '---table_name---'

»—iTabIe Reference H

>>-| Table Reference |-><

Reference to a syntax
segment.

Table Reference

I view |
table

synonym ———

Table Reference

S m— 4o
EEEEEEE table------ +
'----synonym------ '

Syntax segment.

How to read a command-line syntax diagram

Command-line syntax diagrams use similar elements to those of other syntax

diagrams.

Some of the elements are listed in the table in|Syntax Diagrams|

Creating a no-conversion job

»»—onpladm create job—job

»— -t—table

I— -p—pr'oject—|

-n— -d—device— -D—database——>

Yy

>«

(1)

C -S—serverJ C -T—targetJ I Setting the Run Mode —

Notes:

1 See page Z-1

This diagram has a segment named “Setting the Run Mode,” which according to
the diagram footnote is on page Z-1. If this was an actual cross-reference, you

XX IBM Data Server Driver for JDBC and SQL]J for Informix

would find this segment on the first page of Appendix Z. Instead, this segment is
shown in the following segment diagram. Notice that the diagram uses segment
start and end components.

Setting the run mode:

[T
R S I [J L |

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type onpladm create job and then the name of the job.
2. Optionally, type -p and then the name of the project.
3. Type the following required elements:
* -n
* -d and the name of the device
* -D and the name of the database
* -t and the name of the table

4. Optionally, you can choose one or more of the following elements and repeat
them an arbitrary number of times:

* -S and the server name
* -T and the target server name

¢ The run mode. To set the run mode, follow the Setting the Run Mode
segment diagram to type -f, optionally type d, p, or a, and then optionally
type 1 or u.

5. Follow the diagram to the terminator.

Keywords and punctuation

Keywords are words reserved for statements and all commands except
system-level commands.

When a keyword appears in a syntax diagram, it is shown in uppercase letters.
When you use a keyword in a command, you can write it in uppercase or
lowercase letters, but you must spell the keyword exactly as it appears in the
syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and names

Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

Introduction XXi

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that

are expanded in additional syntax diagrams. When a variable appears in a syntax
diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

»>—SELECT—column_name—FROM—table_name ><

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback

xxii

You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
* Send email to|docinf@us.ibm.com|
¢ In the Informix information center, which is available online at
[http:/ /www.ibm.com/software/data/sw-library /|, open the topic that you want

to comment on. Click the feedback link at the bottom of the page, fill out the
form, and submit your feedback.

e Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at [http: / /www.ibm.com/planetwide /|

We appreciate your suggestions.

IBM Data Server Driver for JDBC and SQLJ for Informix

mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

Chapter 1. Java application development for IBM data servers

The DB2® and IBM Informix database systems provide driver support for client
applications and applets that are written in Java.

You can access data in DB2 and IBM Informix database systems using JDBC, SQL,
or pureQuery.

JDBC

JDBC is an application programming interface (API) that Java applications use to
access relational databases. IBM data server support for JDBC lets you write Java
applications that access local DB2 or IBM Informix data or remote relational data
on a server that supports DRDA.

SQLJ

SQL]J provides support for embedded static SQL in Java applications. SQL] was
initially developed by IBM, Oracle, and Tandem to complement the dynamic SQL
JDBC model with a static SQL model.

For connections to DB2, in general, Java applications use JDBC for dynamic SQL
and SQLJ for static SQL.

For connections to IBM Informix, SQL statements in JDBC or SQL] applications run
dynamically.

Because SQLJ can inter-operate with JDBC, an application program can use JDBC
and SQL]J within the same unit of work.

pureQuery

pureQuery is a high-performance data access platform that makes it easier to
develop, optimize, secure, and manage data access. It consists of:

* Application programming interfaces that are built for ease of use and for
simplifying the use of best practices

* Development tools, which are delivered in IBM Optim™ Development Studio, for
Java and SQL development

* A runtime, which is delivered in IBM Optim pureQuery Runtime, for optimizing
and securing database access and simplifying management tasks

With pureQuery, you can write Java applications that treat relational data as
objects, whether that data is in databases or JDBC DataSource objects. Your
applications can also treat objects that are stored in in-memory Java collections as
though those objects are relational data. To query or update your relational data or
Java objects, you use SQL.

For more information on pureQuery, see the Integrated Data Management
Information Center.

© Copyright IBM Corp. 2007, 2011 1-1

1-2 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 2. Supported drivers for JDBC and SQLJ

The IDS product includes support for one type of JDBC driver architecture.

According to the JDBC specification, there are four types of JDBC driver
architectures:

Type 1
Drivers that implement the JDBC API as a mapping to another data access AP],
such as Open Database Connectivity (ODBC). Drivers of this type are generally
dependent on a native library, which limits their portability. The IDS database
system does not provide a type 1 driver.

Type 2
Drivers that are written partly in the Java programming language and partly in
native code. The drivers use a native client library specific to the data source to
which they connect. Because of the native code, their portability is limited.

Type 3
Drivers that use a pure Java client and communicate with a data server using a
data-server-independent protocol. The data server then communicates the
client's requests to the data source. The IDS database system does not provide
a type 3 driver.

Type 4
Drivers that are pure Java and implement the network protocol for a specific
data source. The client connects directly to the data source.

IBM Informix supports the following drivers:

Driver name Driver type

IBM Informix JDBC Driver Type 4

IBM Data Server Driver for JDBC and SQL] Type 2Hand Type 4
Note:

1. Although the IBM Data Server Driver for JDBC and SQLJ supports type 2 and type 4
connections, only type 4 connections can be used to connect to IBM Informix servers.

IBM Data Server Driver for JDBC and SQLJ (type 4)

The IBM Data Server Driver for JDBC and SQL]J is a single driver that includes
JDBC type 2 and JDBC type 4 behavior. For connections to IBM Informix data
servers, only type 4 behavior is supported. IBM Data Server Driver for JDBC and
SQL]J type 4 driver behavior is referred to as IBM Data Server Driver for JDBC and
SQL]J type 4 connectivity.

Two versions of the IBM Data Server Driver for JDBC and SQLJ are available. IBM
Data Server Driver for JDBC and SQL]J version 3.50 is JDBC 3.0-compliant. IBM
Data Server Driver for JDBC and SQL] version 4.0 is JDBC 3.0-compliant and
supports some JDBC 4.0 functions.

The IBM Data Server Driver for JDBC and SQLJ supports these JDBC functions:

¢ All of the methods that are described in the JDBC 3.0 specifications. See "Driver
support for JDBC APIs".

© Copyright IBM Corp. 2007, 2011 2-1

2-2

* SQLJ application programming interfaces, as defined by the SQL]J standards, for
simplified data access from Java applications.

* Some methods that are described in the JDBC 4.0 specifications, if you install
IBM Data Server Driver for JDBC and SQLJ version 4.0.

+ Connections that are enabled for connection pooling. WebSphere® Application
Server or another application server does the connection pooling.

* Support for distributed transaction management. This support implements the
Java 2 Platform, Enterprise Edition (J2EE) Java Transaction Service (JTS) and Java
Transaction API (JTA) specifications, which conform to the X/Open standard for
distributed transactions (Distributed Transaction Processing: The XA Specification,
available from http:/ /www.opengroup.org).

IBM Informix JDBC Driver (type 4)
IBM Informix JDBC Driver is a native-protocol, pure-Java driver.

For more information about the IBM Informix JDBC Driver, refer to the IBM
Informix |[DBC Driver Programmer’s Guide.

IBM Data Server Driver for JDBC and SQL]J for Informix

Chapter 3. IBM Data Server Driver for JDBC and SQLJ
restrictions for IBM Informix

Before you install the IBM Data Server Driver for JDBC and SQLJ and use it with
IBM Informix databases, make sure your environment conforms to these
restrictions.

* Connections are DRDA-based; the Informix proprietary protocol is not
supported.

e The IBM Data Server Driver for JDBC and SQL]J requires IBM Informix, Version
11.10, or later. However, to use features introduced with IBM Data Server Driver
for JDBC and SQLJ, Version 3.51 and later, you must have IBM Informix, Version
11.50. New features are described in[“What's New for IBM Data Server Driver|
[for JDBC and SQLJ for IBM Informix” on page ix|

e Type 1, 2, and 3 connections are not supported. Only type 4 connections are
supported.

¢ Certain Informix data types are not supported. For example, INTERVAL, opaque
data types, user-defined data types, and collection data types.

The IBM Data Server Driver for JDBC and SQL]J differs from the IBM Informix
JDBC driver. For more information, see|“Differences between the IBM Data Server|
[Driver for JDBC and SQLJ and the IBM Informix JDBC Driver” on page 14-199

© Copyright IBM Corp. 2007, 2011 3-1

3-2 IBM Data Server Driver for JDBC and SQL]J for Informix

Chapter 4. Installing the IBM Data Server Driver for JDBC and
SQLJ

After you install the IBM Data Server Driver for JDBC and SQLJ, you can compile
and run JDBC applications.

SDK Requirement: Before you install the IBM Data Server Driver for JDBC and
SQLJ, you must have an SDK for Java installed on your computer. For JDBC 3.0
functions, you need Java SDK 1.4.2 or later. If you want to use JDBC 4.0 functions,
you need an SDK for Java, 6 or later.

Follow these steps to install the IBM Data Server Driver for JDBC and SQLJ:

1. Download the zip file for the latest version of the IBM Data Server Driver for
JDBC and SQLJ.
a. Go to http:/ /www.ibm.com /software /data/support/data-server-clients /|
download.html|

b. Under Downloads and fixes, select View IBM Data Server Client Packages...
c. In the Refine my fix list window, select Show me more options.

d. On the Fix Central page, select Information Management in the Product
Group field, IBM Data Server Client Packages in the Product field, the latest
version in the Installed Version field, and All in the Platform field.

e. On the Identify fixes page, type "Data Server Driver for JDBC" in the Text
field.

f. On the Select fixes page, select the latest version of the IBM Data Server
Driver for JDBC and SQL]J.

g. On the Download options page, select the options that are appropriate for
you.

2. Extract the zip file into an empty directory.
The zip file contains the following files:
e db2jcc.jar
* db2jccd.jar
* sqlj.zip
> sqlj4.zip
3. Modify the CLASSPATH environment variable to include the appropriate files:
For JDBC
Include db2jcc.jar in the CLASSPATH if you plan to use the version of

the IBM Data Server Driver for JDBC and SQLJ that includes only
JDBC 3.0 and earlier functions.

Include db2jcc4.jar in the CLASSPATH if you plan to use the version of
the IBM Data Server Driver for JDBC and SQLJ that includes JDBC 4.0
and earlier functions.

Important: Include db2jcc.jar or db2jcc4.jar in the CLASSPATH. Do not
include both files.

For SQL]J
Include sqlj.zip in the CLASSPATH if you plan to prepare SQLJ
applications that include only JDBC 3.0 and earlier functions.

© Copyright IBM Corp. 2007, 2011 4-1

http://www.ibm.com/software/data/support/data-server-clients/download.html
http://www.ibm.com/software/data/support/data-server-clients/download.html

Include sqlj4.zip in the CLASSPATH if you plan to prepare SQLJ
applications that include JDBC 4.0 and earlier functions.

Important: Include sqlj.zip or sqlj4.zip in the CLASSPATH. Do not include
both files.

On Windows, to set the CLASSPATH for a session for the db2jcc4.jar file,
from the command prompt enter:

java -classpath <dir>\db2jcc4.jar
To set the CLASSPATH for a session for the db2jcc4.jar file and for the

sqlj4.zip file, separate the directory and filename combinations with a
semicolon (;). For example:

java -classpath <dir>\db2jcc4.jar;<dir>\sqlj4.zip
Where <dir> is the location of the db2jcc.jar file.

To permanently set the CLASSPATH environment variable use the System
utility in the Control Panel.

On UNIX, to set the CLASSPATH for a session for the db2jcc4.jar file, from
the command prompt enter:

java -classpath <dir>/db2jcc4.jar
To set the CLASSPATH for a session for the db2jcc4.jar file and for the

sqlj4.zip file, separate the directory and filename combinations with a colon
(:). For example:

java -classpath <dir>/db2jcc4.jar:<dir>/sqlj4.zip
Where <dir> is the location of the db2jcc4.jar file.

To permanently set the CLASSPATH environment variable, ask your UNIX
System Administrator to update your profile.

. Configure a new server alias in the SQLHOSTS file or Windows registry that

uses either the drtlitcp or the drsoctcp connection protocol. For more
information, see the topic about Configuring Informix for Connections to IBM
Data Server Clients in the IBM Informix Administrator’s Guide.

. Customize the driver-wide configuration properties, if any of the default

settings are inappropriate. For details, see the following topics:

“Customization of IBM Data Server Driver for JDBC and SQL]J configuration|

Erogerties’]

“IBM Data Server Driver for JDBC and SQLJ configuration properties” on|

[page 14—52]

Customization of IBM Data Server Driver for JDBC and SQLJ
configuration properties

4-2

The IBM Data Server Driver for JDBC and SQLJ configuration properties let you

set property values that have driver-wide scope. Those settings apply across

applications and DataSource instances. You can change the settings without having

to change application source code or DataSource characteristics.

Each IBM Data Server Driver for JDBC and SQL]J configuration property setting is

of this form:

property=value

You can set configuration properties in the following ways:

IBM Data Server Driver for JDBC and SQL]J for Informix

* Set the configuration properties as Java system properties. Configuration
property values that are set as Java system properties override configuration
property values that are set in any other ways.

For stand-alone Java applications, you can set the configuration properties as
Java system properties by specifying -Dproperty=value for each configuration
property when you execute the java command.

* Set the configuration properties in a resource whose name you specify in the
db2.jcc.propertiesFile Java system property. For example, you can specify an
absolute path name for the db2.jcc.propertiesFile value.

For stand-alone Java applications, you can set the configuration properties by
specifying the -Ddb2.jcc.propertiesFile=path option when you execute the java
command.

* Set the configuration properties in a resource named
DB2JccConfiguration.properties. A standard Java resource search is used to find
DB2JccConfiguration.properties. The IBM Data Server Driver for JDBC and SQL]
searches for this resource only if you have not set the db2.jcc.propertiesFile Java
system property.

DB2]JccConfiguration.properties can be a stand-alone file, or it can be included in
a JAR file.

If DB2JccConfiguration.properties is in a JAR file, the JAR file must be in the
CLASSPATH concatenation.

Chapter 4. Installing the IBM Data Server Driver for JDBC and SQLJ 4-3

4-4 1BM Data Server Driver for JDBC and SQL]J for Informix

Chapter 5. JDBC application programming

Writing a JDBC application has much in common with writing an SQL application
in any other language.

In general, you need to do the following things:

* Access the Java packages that contain JDBC methods.

¢ Declare variables for sending data to or retrieving data from IDS tables.
¢ Connect to a data source.

e Execute SQL statements.

¢ Handle SQL errors and warnings.

 Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other
languages, the way that you execute those tasks is somewhat different.

Example of a simple JDBC application

A simple JDBC application demonstrates the basic elements that JDBC applications
need to include.

Figure 5-1. Simple JDBC application
import java.sql.*; 1]

public class EzJava
{
public static void main(String[] args)
{
String urlPrefix = "jdbc:ids:";
String url;
String user;
String password;
String empNo; 2
Connection con;
Statement stmt;
ResultSet rs;

System.out.printin ("#%** Enter class EzJava");

// Check the that first argument has the correct form for the portion
// of the URL that follows jdbc:ids:,

// as described

// in the Connecting to a data source using the DriverManager

// interface with the IBM Data Server Driver for JDBC and SQLJ topic.

// For example, for IBM Data Server Driver for
// JDBC and SQLJ type 4 connectivity, args[0] might
// be //myhost:9999/idsdb.
if (args.length!=3)
{
System.err.printin ("Invalid value. First argument appended to "+
"jdbc:ids: must specify a valid URL.");
System.err.printin ("Second argument must be a valid user ID.");
System.err.printin ("Third argument must be the password for the user ID.");
System.exit(1);

© Copyright IBM Corp. 2007, 2011 5-1

url = urlPrefix + args[0];
user = args[1];
password = args[2];

try
{
// Load the driver
Class.forName("com.ibm.db2.jcc.DB2Driver");

System.out.printin("**+* Loaded the JDBC driver");

// Create the connection using the IBM Data Server Driver for JDBC and SQLJ
con = DriverManager.getConnection (url, user, password);
// Commit changes manually

con.setAutoCommit(false);

System.out.printin("**+* Created a JDBC connection to the data source");

// Create the Statement
stmt = con.createStatement(); [4a |
System.out.printIn("#**x Created JDBC Statement object");

// Execute a query and generate a ResultSet instance
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); [4b |
System.out.printin("**x* Created JDBC ResultSet object");

// Print all of the employee numbers to standard output device
while (rs.next()) {
empNo = rs.getString(1);
System.out.printIn("Employee number = " + empNo);
}
System.out.printIn("*x+* Fetched all rows from JDBC ResultSet");
// Close the ResultSet
rs.close();
System.out.printIn("#*xx Closed JDBC ResultSet");

// Close the Statement
stmt.close();
System.out.printIn("*x+* Closed JDBC Statement");

// Connection must be on a unit-of-work boundary to allow close
con.commit();
System.out.printin ("#%%* Transaction committed");

// Close the connection

con.close(); 6|

System.out.printIn("#**x Disconnected from data source");
System.out.printIn("**+% JDBC Exit from class EzJava - no errors");

}

catch (ClassNotFoundException e)

{
System.err.printin("Could not load JDBC driver");
System.out.printIn("Exception: " + e);
e.printStackTrace();

}
catch(SQLException ex) B
{

System.err.printIn("SQLException information");
while(ex!=null) {
System.err.printin ("Error msg: " + ex.getMessage());
System.err.printin ("SQLSTATE: " + ex.getSQLState());
System.err.printin ("Error code: " + ex.getErrorCode());
ex.printStackTrace();
ex = ex.getNextException(); // For drivers that support chained exceptions

5-2 IBM Data Server Driver for JDBC and SQLJ for Informix

}

}
} // End main
} // End EzJava

Notes to |Figure 5-1 on page 5—1t

Note Description

1 This statement imports the java.sql package, which contains the JDBC core APL
For information on other Java packages that you might need to access, see "Java
packages for JDBC support".

2 String variable empNo performs the function of a host variable. That is, it is
used to hold data retrieved from an SQL query. See "Variables in JDBC
applications" for more information.

3a and 3b These two sets of statements demonstrate how to connect to a data source using
one of two available interfaces. See "How JDBC applications connect to a data
source” for more details.

Step 3a (loading the JDBC driver) is not necessary if you use JDBC 4.0.

4a and 4b These two sets of statements demonstrate how to perform a SELECT in JDBC.
For information on how to perform other SQL operations, see "JDBC interfaces
for executing SQL".

5 This try/catch block demonstrates the use of the SQLException class for SQL
error handling. For more information on handling SQL errors, see "Handling an
SQLException under the IBM Data Server Driver for JDBC and SQLJ". For
information on handling SQL warnings, see "Handling an SQLWarning under
the IBM Data Server Driver for JDBC and SQLJ".

6 This statement disconnects the application from the data source. See
"Disconnecting from data sources in JDBC applications".

How JDBC applications connect to a data source

Before you can execute SQL statements in any SQL program, you must be
connected to a data source.

The IBM Data Server Driver for JDBC and SQLJ supports type 2 and type 4
connectivity. Connections to DB2 databases can use type 2 or type 4 connectivity.

Connections to IBM Informix databases can use type 4 connectivity.

The following figure shows how a Java application connects to a data source using
IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

Chapter 5. JDBC application programming ~ 5-3

5-4

Java application

DriverManager
or
DataSource

JDBC driver*

DRDA

Database
server

*Java byte code executed under JVM

Figure 5-2. Java application flow for IBM Data Server Driver for JDBC and SQLJ type 4
connectivity

Connecting to a data source using the DriverManager
interface with the IBM Data Server Driver for JDBC and SQLJ

A JDBC application can establish a connection to a data source using the JDBC
DriverManager interface, which is part of the java.sql package.

The steps for establishing a connection are:

1. Load the JDBC driver by invoking the Class.forName method.
If you are using JDBC 4.0, you do not need to explicitly load the JDBC driver.
For the IBM Data Server Driver for JDBC and SQLJ, you load the driver by
invoking the Class.forName method with the following argument:
com.ibm.db2.jcc.DB2Driver
The following code demonstrates loading the IBM Data Server Driver for JDBC
and SQLJ:

try {
// Load the IBM Data Server Driver for JDBC and SQLJ with DriverManager
Class.forName("com.ibm.db2.jcc.DB2Driver");
} catch (ClassNotFoundException e) {
e.printStackTrace();
1

The catch block is used to print an error if the driver is not found.

2. Connect to a data source by invoking the DriverManager.getConnection
method.

You can use one of the following forms of getConnection:

getConnection(String url);
getConnection(String url, user, password);
getConnection(String url, java.util.Properties info);

IBM Data Server Driver for JDBC and SQL]J for Informix

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity, the
getConnection method must specify a user ID and password, through
parameters or through property values.

The url argument represents a data source, and indicates what type of JDBC
connectivity you are using.

The info argument is an object of type java.util.Properties that contains a set of
driver properties for the connection. Specifying the info argument is an
alternative to specifying property=value; strings in the URL. See "Properties for
the IBM Data Server Driver for JDBC and SQLJ" for the properties that you can
specify.

There are several ways to specify a user ID and password for a connection:

* Use the form of the getConnection method that specifies url with
property=value; clauses, and include the user and password properties in the
URL.

¢ Use the form of the getConnection method that specifies user and password.

* Use the form of the getConnection method that specifies info, after setting the
user and password properties in a java.util. Properties object.

Example: Establishing a connection and setting the user ID and password in a URL:

String url = "jdbc:ids://myhost:5021/mydb:" +
"user=dbadm;password=dbadm;";

// Set URL for data source
Connection con = DriverManager.getConnection(url);
// Create connection

Example: Establishing a connection and setting the user ID and password in user and
password parameters:
String url = "jdbc:ids://myhost:5021/mydb";
// Set URL for data source
String user = "dbadm";
String password = "dbadm";
Connection con = DriverManager.getConnection(url, user, password);
// Create connection

Example: Establishing a connection and setting the user ID and password in a
java.util.Properties object:
Properties properties = new Properties(); // Create Properties object
properties.put("user", "dbadm"); // Set user ID for connection
properties.put("password", "dbadm"); // Set password for connection
String url = "jdbc:ids://myhost:5021/mydb";

// Set URL for data source
Connection con = DriverManager.getConnection(url, properties);

// Create connection

URL format for IBM Data Server Driver for JDBC and SQLJ type
4 connectivity

If you are using type 4 connectivity in your JDBC application, and you are making
a connection using the DriverManager interface, you need to specify a URL in the
DriverManager.getConnection call that indicates type 4 connectivity.

Chapter 5. JDBC application programming ~ 5-5

jdbc:db2:
Ejdbc:dej:net:—
jdbc:ids:

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity URL
syntax

—//—server—l_—_|—/—database
:—port \\
property—=—value—;

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity URL
option descriptions

The parts of the URL have the following meanings:

jdbc:db2: or jdbc:db2j:net:
The meanings of the initial portion of the URL are:

jdbc:db2:
Indicates that the connection is to a DB2 for z/OS®, DB2 Database for
Linux, UNIX, and Windows.

jdbc:db2: can also be used for a connection to an IBM Informix
database, for application portability.

jdbc:db2j:net:
Indicates that the connection is to a remote IBM Cloudscape server.

jdbc:ids:
Indicates that the connection is to an IBM Informix data source.
jdbc:informix-sqli: also indicates that the connection is to an IBM
Informix data source, but jdbc:ids: should be used.

server
The domain name or IP address of the data source.

port
The TCP/IP server port number that is assigned to the data source. This is an
integer between 0 and 65535. You must specify a value for port.

database
A name for the data source.

e If the connection is to a DB2 for z/OS server, database is the DB2 location
name that is defined during installation. All characters in the DB2 location
name must be uppercase characters. The IBM Data Server Driver for JDBC
and SQLJ does not convert lowercase characters in the database value to
uppercase for IBM Data Server Driver for JDBC and SQLJ type 4
connectivity.

You can determine the location name by executing the following SQL
statement on the server:
SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

e If the connection is to a DB2 for z/OS server or a DB2 for i server, all
characters in database must be uppercase characters.

e If the connection is to a DB2 Database for Linux, UNIX, and Windows
server, database is the database name that is defined during installation.

e If the connection is to an IBM Informix server, database is the database name.
The name is case-insensitive. The server converts the name to lowercase.

5-6 IBM Data Server Driver for JDBC and SQLJ for Informix

¢ If the connection is to an IBM Cloudscape server, the database is the
fully-qualified name of the file that contains the database. This name must
be enclosed in double quotation marks ("). For example:

"c:/databases/testdb"

property=values;
A property and its value for the JDBC connection. You can specify one or more
property and value pairs. Each property and value pair, including the last one,
must end with a semicolon (;). Do not include spaces or other white space
characters anywhere within the list of property and value strings.

Some properties with an int data type have predefined constant field values.
You must resolve constant field values to their integer values before you can
use those values in the url parameter. For example, you cannot use
com.ibm.db2.jec. DB2BaseDataSource. TRACE_ALL in a url parameter. However,
you can build a URL string that includes
com.ibm.db2.jcc. DB2BaseDataSource. TRACE_ALL, and assign the URL string
to a String variable. Then you can use the String variable in the url parameter:
String url =

"jdbc:ids://sysmvsl.st1.ibm.com:5021/STLEC1" +

":user=dbadm;password=dbadm;" +

“tracelLevel=" +

(com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";";

Connection con =

java.sql.DriverManager.getConnection(url);

Connecting to a data source using the DataSource interface

If your applications need to be portable among data sources, you should use the
DataSource interface.

Using DriverManager to connect to a data source reduces portability because the
application must identify a specific JDBC driver class name and driver URL. The
driver class name and driver URL are specific to a JDBC vendor, driver
implementation, and data source.

When you connect to a data source using the DataSource interface, you use a
DataSource object.

The simplest way to use a DataSource object is to create and use the object in the
same application, as you do with the DriverManager interface. However, this
method does not provide portability.

The best way to use a DataSource object is for your system administrator to create
and manage it separately, using WebSphere Application Server or some other tool.
The program that creates and manages a DataSource object also uses the Java
Naming and Directory Interface (JNDI) to assign a logical name to the DataSource
object. The JDBC application that uses the DataSource object can then refer to the
object by its logical name, and does not need any information about the underlying
data source. In addition, your system administrator can modify the data source
attributes, and you do not need to change your application program.

To learn more about using WebSphere to deploy DataSource objects, go to this
URL on the web:

http://www.ibm.com/software/webservers/appserv/

To learn about deploying DataSource objects yourself, see "Creating and deploying
DataSource objects".

Chapter 5. JDBC application programming 5-7

5-8

You can use the DataSource interface and the DriverManager interface in the same
application, but for maximum portability, it is recommended that you use only the
DataSource interface to obtain connections.

To obtain a connection using a DataSource object that the system administrator has
already created and assigned a logical name to, follow these steps:

1. From your system administrator, obtain the logical name of the data source to
which you need to connect.

2. Create a Context object to use in the next step. The Context interface is part of
the Java Naming and Directory Interface (JNDI), not JDBC.

3. In your application program, use JNDI to get the DataSource object that is
associated with the logical data source name.

4. Use the DataSource.getConnection method to obtain the connection.
You can use one of the following forms of the getConnection method:

getConnection();
getConnection(String user, String password);

Use the second form if you need to specify a user ID and password for the
connection that are different from the ones that were specified when the
DataSource was deployed.

Example of obtaining a connection using a DataSource object that was created by the
system administrator: In this example, the logical name of the data source that you
need to connect to is jdbc/sampledb. The numbers to the right of selected
statements correspond to the previously-described steps.

import java.sql.=*;
import javax.naming.=;
import javax.sql.*;

Context ctx=new InitialContext();
DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");
Connection con=ds.getConnection();

Figure 5-3. Obtaining a connection using a DataSource object

Example of creating and using a DataSource object in the same application:

Figure 5-4. Creating and using a DataSource object in the same application

import java.sql.=; // JDBC base
import javax.sql.=; // Addtional methods for JDBC
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC and SQLJ |H
// interfaces
DB2SimpleDataSource dbds=new DB2SimpleDataSource();
dbds.setDatabaseName("dblocl"); K]
// Assign the Tocation name
dbds.setDescription("Our Sample Database");
// Description for documentation
dbds.setUser("john");
// Assign the user ID
dbds.setPassword("dbadm");
// Assign the password
Connection con=dbds.getConnection(); 4]
// Create a Connection object

Note Description
1 Import the package that contains the implementation of the DataSource interface.

IBM Data Server Driver for JDBC and SQL]J for Informix

Note Description

2 Creates a DB2SimpleDataSource object. DB2SimpleDataSource is one of the IBM
Data Server Driver for JDBC and SQLJ implementations of the DataSource
interface. See "Creating and deploying DataSource objects" for information on
DB2's DataSource implementations.

3 The setDatabaseName, setDescription, setUser, and setPassword methods assign
attributes to the DB2SimpleDataSource object. See "Properties for the IBM Data
Server Driver for JDBC and SQLJ" for information about the attributes that you
can set for a DB2SimpleDataSource object under the IBM Data Server Driver for
JDBC and SQLJ.

4 Establishes a connection to the data source that DB2SimpleDataSource object dbds
represents.

JDBC connection objects

When you connect to a data source by either connection method, you create a
Connection object, which represents the connection to the data source.

You use this Connection object to do the following things:

* Create Statement, PreparedStatement, and CallableStatement objects for
executing SQL statements. These are discussed in "Executing SQL statements in
JDBC applications".

¢ Gather information about the data source to which you are connected. This
process is discussed in "Learning about a data source using DatabaseMetaData
methods".

* Commit or roll back transactions. You can commit transactions manually or
automatically. These operations are discussed in "Commit or roll back a JDBC
transaction".

* Close the connection to the data source. This operation is discussed in
"Disconnecting from data sources in JDBC applications".

Creating and deploying DataSource objects

JDBC versions starting with version 2.0 provide the DataSource interface for
connecting to a data source. Using the DataSource interface is the preferred way to
connect to a data source.

Using the DataSource interface involves two parts:

¢ Creating and deploying DataSource objects. This is usually done by a system
administrator, using a tool such as WebSphere Application Server.

* Using the DataSource objects to create a connection. This is done in the
application program.

This topic contains information that you need if you create and deploy the
DataSource objects yourself.

The IBM Data Server Driver for JDBC and SQLJ provides the following DataSource

implementations:

* com.ibm.db2 jcc.DB2SimpleDataSource, which does not support connection
pooling.

* com.ibm.db2.jcc. DB2ConnectionPoolDataSource, which supports connection
pooling.

* com.ibm.db2 jcc. DB2XADataSource, which supports connection pooling and
distributed transactions. The connection pooling is provided by WebSphere
Application Server or another application server.

Chapter 5. JDBC application programming ~ 5-9

When you create and deploy a DataSource object, you need to perform these tasks:
1. Create an instance of the appropriate DataSource implementation.
2. Set the properties of the DataSource object.

3. Register the object with the Java Naming and Directory Interface (JNDI)
naming service.

The following example shows how to perform these tasks.

import java.sql.=; // JDBC base
import javax.naming.x; // JINDI Naming Services
import javax.sql.x*; // Additional methods for JDBC

import com.ibm.db2.jcc.*; // IBM Data Server Driver for
// JDBC and SQLJ
// implementation of JDBC
// standard extension APIs

DB2SimpleDataSource dbds = new com.ibm.db2.jcc.DB2SimpleDataSource();
dbds.setDatabaseName ("db21oc1"); 2|
dbds.setDescription("Our Sample Database");

dbds.setUser("john");

dbds.setPassword("mypw") ;

Context ctx=new InitialContext(); 3
Ctx.bind("jdbc/sampledb",dbds); 4

Figure 5-5. Example of creating and deploying a DataSource object

Note Description

1 Creates an instance of the DB2SimpleDataSource class.

2 This statement and the next three statements set values for properties of this
DB2SimpleDataSource object.

3 Creates a context for use by JNDIL

4 Associates DBSimple2DataSource object dbds with the logical name
jdbc/sampledb. An application that uses this object can refer to it by the name
jdbe/sampledb.

Java packages for JDBC support

5-10

Before you can invoke JDBC methods, you need to be able to access all or parts of
various Java packages that contain those methods.

You can do that either by importing the packages or specific classes, or by using
the fully-qualified class names. You might need the following packages or classes
for your JDBC program:

java.sql
Contains the core JDBC APIL.

javax.naming
Contains classes and interfaces for Java Naming and Directory Interface
(JNDI), which is often used for implementing a DataSource.

javax.sql
Contains methods for producing server-side applications using Java

com.ibm.db2.jcc
Contains the implementation of JDBC for the IBM Data Server Driver for
JDBC and SQLJ.

IBM Data Server Driver for JDBC and SQL]J for Informix

Learning about a data source using DatabaseMetaData methods

The DatabaseMetaData interface contains methods that retrieve information about
a data source. These methods are useful when you write generic applications that
can access various data sources.

In generic applications that can access various data sources, you need to test
whether a data source can handle various database operations before you execute
them. For example, you need to determine whether the driver at a data source is at
the JDBC 3.0 level before you invoke JDBC 3.0 methods against that driver.

DatabaseMetaData methods provide the following types of information:

* Features that the data source supports, such as the ANSI SQL level

* Specific information about the JDBC driver, such as the driver level

e Limits, such as the maximum number of columns that an index can have

* Whether the data source supports data definition statements (CREATE, ALTER,
DROP, GRANT, REVOKE)

* Lists of objects at the data source, such as tables, indexes, or procedures

* Whether the data source supports various JDBC functions, such as batch updates
or scrollable ResultSets

A list of scalar functions that the driver supports

For IBM Informix systems, you might also need to obtain the following
information:

* Whether the database is ANSI compliant

* Whether the database supports logging

To obtain that information, you need to use IBM Data Server Driver for JDBC and
SQLJ-only methods DB2DatabaseMetaData.isiIDSDatabaseAnsiCompliant and
DB2DatabaseMetaData.isIDSDatabaseLogging.

To invoke DatabaseMetaData methods, you need to perform these basic steps:

1. Create a DatabaseMetaData object by invoking the getMetaData method on the
connection.

2. Invoke DatabaseMetaData methods to get information about the data source.
3. If the method returns a ResultSet:

a. In a loop, position the cursor using the next method, and retrieve data from
each column of the current row of the ResultSet object using getXXX
methods.

b. Invoke the close method to close the ResultSet object.

Example: The following code demonstrates how to use DatabaseMetaData methods
to determine the driver version, to get a list of the stored procedures that are
available at the data source, and to get a list of datetime functions that the driver
supports. The numbers to the right of selected statements correspond to the
previously-described steps.

Figure 5-6. Using DatabaseMetaData methods to get information about a data source

Connection con;
DatabaseMetaData dbmtadta;
ResultSet rs;

int mtadtaint;

String procSchema;

String procName;

String dtfnList;

Chapter 5. JDBC application programming 5-11

dbmtadta = con.getMetaData(); // Create the DatabaseMetaData object
mtadtaint = dmtadta.getDriverVersion(); 2

// Check the driver version
System.out.printIn("Driver version: " + mtadtaint);
rs = dbmtadta.getProcedures(null, null, "%");

// Get information for all procedures
while (rs.next()) { // Position the cursor
procSchema = rs.getString("PROCEDURE_SCHEM");

// Get procedure schema
procName = rs.getString("PROCEDURE_NAME");

// Get procedure name
System.out.printin(procSchema + "." + procName);

// Print the qualified procedure name
1

dtfnList = dbmtadta.getTimeDateFunctions();

// Get list of supported datetime functions
System.out.printIn("Supported datetime functions:");
System.out.printin(dtfnList); // Print the Tist of datetime functions
rs.close(); // Close the ResultSet

Example: The following code demonstrates how to use DB2DatabaseMetaData
methods to determine whether an IBM Informix database is ANSI compliant and
supports logging.
com.ibm.db2.jcc.DB2Connection db2c =
(com.ibm.db2.jcc.DB2Connection) c; // c is existing java.sql.Connection object
// that needs to be cast to a DB2Connection
// object so DB2DatabaseMetaData methods
// can be used on it.
com.ibm.db2.jcc.DB2DatabaseMetaData dbmd =
(com.ibm.db2.jcc.DB2DatabaseMetaData) db2c.getMetaData();
// Retrieve the DB2DatabaseMetaData object.
if (dbmd.isIDSDatabaselLogging ()) // Check whether the database supports
// logging. If so, you can perform a
// commit operation.
c.createStatement.executeUpdate("commit");
if (dbmd.isIDSDatabaseAnsiCompliant()) // Check whether the database is ANSI
// compliant.
System.out.printIn("Current Informix database is ANSI compliant...");

DatabaseMetaData methods for identifying the type of data

source

You can use the DatabaseMetaData.getDatabaseProductName and
DatabaseMetaData.getProductVersion methods to identify the type and level of the
database manager to which you are connected, and the operating system on which
the database manager is running.

DatabaseMetaData.getDatabaseProductName returns a string that identifies the
database manager and the operating system. The string has one of the following
formats:

database-product
database-product/operating-system

The following table shows examples of values that are returned by
DatabaseMetaData.getDatabaseProductName.

Table 5-1. Examples of DatabaseMetaData.getDatabaseProductName values

getDatabaseProductName value Database product

DB2 DB2 for z/0S

5-12 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 5-1. Examples of DatabaseMetaData.getDatabaseProductName values (continued)

getDatabaseProductName value Database product

DB2/LINUXX8664

DB2 Database for Linux, UNIX, and Windows on Linux
on x86

IBM Informix/UNIX64

IBM Informix on UNIX

DatabaseMetaData.getDatabaseVersionName returns a string that contains the
database product indicator and the version number, release number, and
maintenance level of the data source.

The following table shows examples of values that are returned by
DatabaseMetaData.getDatabaseProductVersion.

Table 5-2. Examples of DatabaseMetaData.getDatabaseProductVersion values

getDatabaseProductVersion value Database product version

DSN09015 DB2 for z/0OS Version 9.1 in new-function mode
SQL09010 DB2 Database for Linux, UNIX, and Windows Version 9.1
IFX11100 IBM Informix Version 11.10

Variables in JDBC applications

As in any other Java application, when you write JDBC applications, you declare
variables. In Java applications, those variables are known as Java identifiers.

Some of those identifiers have the same function as host variables in other
languages: they hold data that you pass to or retrieve from database tables.
Identifier empNo in the following code holds data that you retrieve from the
EMPNO table column, which has the CHAR data type.
String empNo;
// Execute a query and generate a ResultSet instance
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE");
while (rs.next()) {

String empNo = rs.getString(1);

System.out.printIn("Employee number = " + empNo);

}

Your choice of Java data types can affect performance because IDS picks better
access paths when the data types of your Java variables map closely to the IDS
data types.

JDBC interfaces for executing SQL

You execute SQL statements in a traditional SQL program to update data in tables,
retrieve data from the tables, or call stored procedures. To perform the same
functions in a JDBC program, you invoke methods.

Those methods are defined in the following interfaces:

¢ The Statement interface supports all SQL statement execution. The following
interfaces inherit methods from the Statement interface:

Chapter 5. JDBC application programming 5-13

5-14

— The PreparedStatement interface supports any SQL statement containing
input parameter markers. Parameter markers represent input variables. The
PreparedStatement interface can also be used for SQL statements with no
parameter markers.

With the IBM Data Server Driver for JDBC and SQLJ, the PreparedStatement
interface can be used to call stored procedures that have input parameters
and no output parameters, and that return no result sets. However, the
preferred interface is CallableStatement.

— The CallableStatement interface supports the invocation of a stored procedure.

The CallableStatement interface can be used to call stored procedures with
input parameters, output parameters, or input and output parameters, or no
parameters. With the IBM Data Server Driver for JDBC and SQLJ, you can
also use the Statement interface to call stored procedures, but those stored
procedures must have no parameters.

* The ResultSet interface provides access to the results that a query generates. The
ResultSet interface has the same purpose as the cursor that is used in SQL
applications in other languages.

Creating and modifying database objects using the
Statement.executeUpdate method

The Statement.executeUpdate is one of the JDBC methods that you can use to
update tables and call stored procedures.

You can use the Statement.executeUpdate method to do the following things:

e Execute data definition statements, such as CREATE, ALTER, DROP, GRANT,
REVOKE

¢ Execute INSERT, UPDATE, DELETE, and MERGE statements that do not contain
parameter markers.

* With the IBM Data Server Driver for JDBC and SQLJ, execute the CALL
statement to call stored procedures that have no parameters and that return no
result sets.

To execute these SQL statements, you need to perform these steps:

1. Invoke the Connection.createStatement method to create a Statement object.
2. Invoke the Statement.executeUpdate method to perform the SQL operation.
3. Invoke the Statement.close method to close the Statement object.

Suppose that you want to execute this SQL statement:
UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010'

The following code creates Statement object stmt, executes the UPDATE statement,
and returns the number of rows that were updated in numUpd. The numbers to the
right of selected statements correspond to the previously-described steps.

IBM Data Server Driver for JDBC and SQL]J for Informix

Connection con;
Statement stmt;

int numUpd;
stmt = con.createStatement(); // Create a Statement object
numUpd = stmt.executeUpdate(
"UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010'"); ﬂ
// Perform the update
stmt.close(); // Close Statement object

Figure 5-7. Using Statement.executeUpdate

Updating data in tables using the
PreparedStatement.executeUpdate method

The Statement.executeUpdate method works if you update IDS tables with
constant values. However, updates often need to involve passing values in
variables to IDS tables. To do that, you use the PreparedStatement.executeUpdate
method.

With the IBM Data Server Driver for JDBC and SQLJ, you can also use
PreparedStatement.executeUpdate to call stored procedures that have input
parameters and no output parameters, and that return no result sets.

For calls to stored procedures that are on IBM Informix data sources, the
PreparedStatement object can be a CALL statement or an EXECUTE PROCEDURE
statement.

When you execute an SQL statement many times, you can get better performance
by creating the SQL statement as a PreparedStatement.

For example, the following UPDATE statement lets you update the employee table
for only one phone number and one employee number:

UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010"

Suppose that you want to generalize the operation to update the employee table
for any set of phone numbers and employee numbers. You need to replace the
constant phone number and employee number with variables:

UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?

Variables of this form are called parameter markers. To execute an SQL statement
with parameter markers, you need to perform these steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement
object.

2. Invoke the PreparedStatement.setXXX methods to pass values to the input
variables.

This step assumes that you use standard parameter markers. Alternatively, if
you use named parameter markers, you uselBM Data Server Driver for JDBC
and SQLJ-only methods to pass values to the input parameters.

3. Invoke the PreparedStatement.executeUpdate method to update the table with
the variable values.

4. Invoke the PreparedStatement.close method to close the PreparedStatement
object when you have finished using that object.

Chapter 5. JDBC application programming 5-15

5-16

The following code performs the previous steps to update the phone number to
'4657" for the employee with employee number '000010'. The numbers to the right
of selected statements correspond to the previously-described steps.

Connection con;
PreparedStatement pstmt;
int numUpd;

pstmt = con.prepareStatement (
"UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");

// Create a PreparedStatement object
pstmt.setString(1,"4657"); // Assign first value to first parameter 2
pstmt.setString(2,"000010"); // Assign first value to second parameter
numUpd = pstmt.executeUpdate(); // Perform first update
pstmt.setString(1,"4658"); // Assign second value to first parameter
pstmt.setString(2,"000020"); // Assign second value to second parameter
numUpd = pstmt.executeUpdate(); // Perform second update
pstmt.close(); // Close the PreparedStatement object 4]

Figure 5-8. Using PreparedStatement.executeUpdate for an SQL statement with parameter
markers

You can also use the PreparedStatement.executeUpdate method for statements that
have no parameter markers. The steps for executing a PreparedStatement object
with no parameter markers are similar to executing a PreparedStatement object
with parameter markers, except you skip step . The following
example demonstrates these steps.

Connection con;
PreparedStatement pstmt;
int numUpd;

pstmt = con.prepareStatement (
"UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010'");
// Create a PreparedStatement object [k
numUpd = pstmt.executeUpdate(); // Perform the update 3
pstmt.close(); // Close the PreparedStatement object i

Figure 5-9. Using PreparedStatement.executeUpdate for an SQL statement without
parameter markers

Making batch updates in JDBC applications

With batch updates, instead of updating rows of a table one at a time, you can
direct JDBC to execute a group of updates at the same time. Statements that can be
included in the same batch of updates are known as batchable statements.

If a statement has input parameters or host expressions, you can include that
statement only in a batch that has other instances of the same statement. This type
of batch is known as a homogeneous batch. If a statement has no input parameters,
you can include that statement in a batch only if the other statements in the batch
have no input parameters or host expressions. This type of batch is known as a
heterogeneous batch. Two statements that can be included in the same batch are
known as batch compatible.

Use the following Statement methods for creating, executing, and removing a batch
of SQL updates:

* addBatch

* executeBatch

* clearBatch

IBM Data Server Driver for JDBC and SQL]J for Informix

Use the following PreparedStatement and CallableStatement method for creating a
batch of parameters so that a single statement can be executed multiple times in a
batch, with a different set of parameters for each execution.

* addBatch

Restrictions on executing statements in a batch:

* If you try to execute a SELECT statement in a batch, a BatchUpdateException is
thrown.

* A CallableStatement object that you execute in a batch can contain output
parameters. However, you cannot retrieve the values of the output parameters. If
you try to do so, a BatchUpdateException is thrown.

* You cannot retrieve ResultSet objects from a CallableStatement object that you
execute in a batch. A BatchUpdateException is not thrown, but the getResultSet
method invocation returns a null value.

To make batch updates using several statements with no input parameters, follow

these basic steps:

1. For each SQL statement that you want to execute in the batch, invoke the
addBatch method.

2. Invoke the executeBatch method to execute the batch of statements.

3. Check for errors. If no errors occurred:

a. Get the number of rows that were affect by each SQL statement from the
array that the executeBatch invocation returns. This number does not
include rows that were affected by triggers or by referential integrity
enforcement.

b. If AutoCommit is disabled for the Connection object, invoke the commit
method to commit the changes.

If AutoCommit is enabled for the Connection object, the IBM Data Server
Driver for JDBC and SQLJ adds a commit method at the end of the batch.

To make batch updates using a single statement with several sets of input
parameters, follow these basic steps:

1. Invoke the prepareStatement method to create a PreparedStatement object.
2. For each set of input parameter values:
a. Execute setXXX methods to assign values to the input parameters.

b. Invoke the addBatch method to add the set of input parameters to the
batch.

3. Invoke the executeBatch method to execute the statements with all sets of
parameters.

4. If no errors occurred:
a. Get the number of rows that were updated by each execution of the SQL
statement from the array that the executeBatch invocation returns. The

number of affected rows does not include rows that were affected by
triggers or by referential integrity enforcement.

If the following conditions are true, the IBM Data Server Driver for JDBC
and SQLJ returns Statement.SUCCESS NO_INFO (-2), instead of the number of
rows that were affected by each SQL statement:

* The application is connected to a subsystem that is in DB2 for z/OS
Version 8 new-function mode, or later.

* The application is using Version 3.1 or later of the IBM Data Server
Driver for JDBC and SQL]J.

Chapter 5. JDBC application programming 5-17

* The IBM Data Server Driver for JDBC and SQL] uses multi-row INSERT
operations to execute batch updates.

This occurs because with multi-row INSERT, the database server executes
the entire batch as a single operation, so it does not return results for
individual SQL statements.

b. If AutoCommit is disabled for the Connection object, invoke the commit
method to commit the changes.

If AutoCommit is enabled for the Connection object, the IBM Data Server
Driver for JDBC and SQLJ adds a commit method at the end of the batch.

c. If the PreparedStatement object returns automatically generated keys, call
DB2PreparedStatement.getDBGeneratedKeys to retrieve an array of
ResultSet objects that contains the automatically generated keys.

Check the length of the returned array. If the length of the returned array is
0, an error occurred during retrieval of the automatically generated keys.

5. If errors occurred, process the BatchUpdateException.

In the following code fragment, two sets of parameters are batched. An UPDATE
statement that takes two input parameters is then executed twice, once with each
set of parameters. The numbers to the right of selected statements correspond to
the previously-described steps.

try {

PreparedStatement preps = conn.prepareStatement (
"UPDATE DEPT SET MGRNO=? WHERE DEPTNO=?");
ps.setString(1,mgrnuml);
ps.setString(2,deptnuml);
ps.addBatch(); [2b |

ps.setString(1,mgrnum2);
ps.setString(2,deptnum2);
ps.addBatch();
int [] numUpdates=ps.executeBatch(); &
for (int i=0; i < numUpdates.length; i++) {
if (numUpdates[i] == SUCCESS_NO_INFQ)
System.out.printin("Execution " + i +
": unknown number of rows updated");

else
System.out.printIn("Execution " + i +
"successful: " numUpdates[i] + " rows updated");
}
conn.commit();
} catch(BatchUpdateException b) {

// process BatchUpdateException
}

In the following code fragment, a batched INSERT statement returns automatically
generated keys.

import java.sql.*;
import com.ibm.db2.jcc.*;

Connection conn;
try {

PreparedStatement ps = conn.prepareStatement (
"INSERT INTO DEPT (DEPTNO, DEPTNAME, ADMRDEPT) " +
"VALUES (?7,?7,7)",

Statement.RETURN_GENERATED_KEYS);

ps.setString(1,"X01"); 2a]
ps.setString(2,"Finance");

5-18 IBM Data Server Driver for JDBC and SQLJ for Informix

}
}

ps.setString(3,"A00");

ps.addBatch(); [2b |
ps.setString(1,"Y01");

ps.setString(2,"Accounting");

ps.setString(3,"A00");

ps.addBatch();

int [] numUpdates=preps.executeBatch();

for (int i=0; i < numUpdates.length; i++) { [4a |
if (numUpdates[i] == SUCCESS_NO_INFO)
System.out.printIn("Execution " + i +
": unknown number of rows updated");

else
System.out.printIn("Execution " + i +
"successful: " numUpdates[i] + " rows updated");
}
conn.commit(); [4b |

ResultSet[] resultList =
((DB2PreparedStatement)ps).getDBGeneratedKeys(); [4c |
if (resultList.length != Q) {
for (i = 0; i < resultList.length; i++) {
while (resultList[i].next()) {
java.math.BigDecimal idColVar = rs.getBigDecimal(1);
// Get automatically generated key
// value
System.out.printIn("Automatically generated key value = "
+ idColVar);

}
}
else {
System.out.printin("Error retrieving automatically generated keys");

}
catch(BatchUpdateException b) { B
// process BatchUpdateException

Learning about parameters in a PreparedStatement using
ParameterMetaData methods

The IBM Data Server Driver for JDBC and SQLJ includes support for the
ParameterMetaData interface. The ParameterMetaData interface contains methods
that retrieve information about the parameter markers in a PreparedStatement
object.

ParameterMetaData methods provide the following types of information:

The data types of parameters, including the precision and scale of decimal
parameters.

The parameters' database-specific type names. For parameters that correspond to
table columns that are defined with distinct types, these names are the distinct
type names.

Whether parameters are nullable.

Whether parameters are input or output parameters.

Whether the values of a numeric parameter can be signed.

The fully-qualified Java class name that PreparedStatement.setObject uses when
it sets a parameter value.

To invoke ParameterMetaData methods, you need to perform these basic steps:

1.

Invoke the Connection.prepareStatement method to create a PreparedStatement
object.

Chapter 5. JDBC application programming 5-19

5-20

2. Invoke the PreparedStatement.getParameterMetaData method to retrieve a
ParameterMetaData object.

3. Invoke ParameterMetaData.getParameterCount to determine the number of
parameters in the PreparedStatement.

4. Invoke ParameterMetaData methods on individual parameters.

The following code demonstrates how to use ParameterMetaData methods to
determine the number and data types of parameters in an SQL UPDATE statement.
The numbers to the right of selected statements correspond to the
previously-described steps.

Connection con;
ParameterMetaData pmtadta;
int mtadtacnt;
String sqlType;

pstmt = con.prepareStatement (
"UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=2");
// Create a PreparedStatement object [l

pmtadta = pstmt.getParameterMetaData(); 2
// Create a ParameterMetaData object
mtadtacnt = pmtadta.getParameterCount();

// Determine the number of parameters
System.out.printin("Number of statement parameters: " + mtadtacnt);
for (int i = 1; 1 <= mtadtacnt; i++) {
sq1Type = pmtadta.getParameterTypeName(i); 4]
// Get SQL type for each parameter
System.out.printIn("SQL type of parameter " + i " is " + sqlType);
1

pstmt.close(); // Close the PreparedStatement

Figure 5-10. Using ParameterMetaData methods to get information about a
PreparedStatement

Data retrieval in JDBC applications

In JDBC applications, you retrieve data using ResultSet objects. A ResultSet
represents the result set of a query.

Retrieving data from tables using the Statement.executeQuery
method

To retrieve data from a table using a SELECT statement with no parameter
markers, you can use the Statement.executeQuery method.

This method returns a result table in a ResultSet object. After you obtain the result
table, you need to use ResultSet methods to move through the result table and
obtain the individual column values from each row.

With the IBM Data Server Driver for JDBC and SQLJ, you can also use the
Statement.executeQuery method to retrieve a result set from a stored procedure
call, if that stored procedure returns only one result set. If the stored procedure
returns multiple result sets, you need to use the Statement.execute method.

This topic discusses the simplest kind of ResultSet, which is a read-only ResultSet
in which you can only move forward, one row at a time. The IBM Data Server
Driver for JDBC and SQL]J also supports updatable and scrollable ResultSets.

To retrieve rows from a table using a SELECT statement with no parameter
markers, you need to perform these steps:

IBM Data Server Driver for JDBC and SQL]J for Informix

1. Invoke the Connection.createStatement method to create a Statement object.

2. Invoke the Statement.executeQuery method to obtain the result table from the
SELECT statement in a ResultSet object.

3. In a loop, position the cursor using the next method, and retrieve data from
each column of the current row of the ResultSet object using getXXX methods.
XXX represents a data type.

4. Invoke the ResultSet.close method to close the ResultSet object.

5. Invoke the Statement.close method to close the Statement object when you have
finished using that object.

The following code demonstrates how to retrieve all rows from the employee table.
The numbers to the right of selected statements correspond to the
previously-described steps.

String empNo;
Connection con;
Statement stmt;
ResultSet rs;

stmt = con.createStatement(); // Create a Statement object 1
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); 2
// Get the result table from the query

while (rs.next()) { // Position the cursor
empNo = rs.getString(1); // Retrieve only the first column value
System.out.printIn("Employee number = " + empNo);

// Print the column value
}
rs.close(); // Close the ResultSet E
stmt.close(); // Close the Statement

Figure 5-11. Using Statement.executeQuery

Retrieving data from tables using the
PreparedStatement.executeQuery method

To retrieve data from a table using a SELECT statement with parameter markers,
you use the PreparedStatement.executeQuery method.

This method returns a result table in a ResultSet object. After you obtain the result
table, you need to use ResultSet methods to move through the result table and
obtain the individual column values from each row.

With the IBM Data Server Driver for JDBC and SQLJ, you can also use the
PreparedStatement.executeQuery method to retrieve a result set from a stored
procedure call, if that stored procedure returns only one result set and has only
input parameters. If the stored procedure returns multiple result sets, you need to
use the PreparedStatement.execute method.

You can also use the PreparedStatement.executeQuery method for statements that
have no parameter markers. When you execute a query many times, you can get
better performance by creating the SQL statement as a PreparedStatement.

To retrieve rows from a table using a SELECT statement with parameter markers,
you need to perform these steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement
object.

2. Invoke PreparedStatement.setXXX methods to pass values to the input
parameters.

Chapter 5. JDBC application programming 5-21

3. Invoke the PreparedStatement.executeQuery method to obtain the result table
from the SELECT statement in a ResultSet object.

4. In a loop, position the cursor using the ResultSet.next method, and retrieve
data from each column of the current row of the ResultSet object using getXXX
methods.

5. Invoke the ResultSet.close method to close the ResultSet object.

6. Invoke the PreparedStatement.close method to close the PreparedStatement
object when you have finished using that object.

The following code demonstrates how to retrieve rows from the employee table for
a specific employee. The numbers to the right of selected statements correspond to
the previously-described steps.

String empnum, phonenum;
Connection con;
PreparedStatement pstmt;
ResultSet rs;

pstmt = con.prepareStatement (
"SELECT EMPNO, PHONENO FROM EMPLOYEE WHERE EMPNO=?");
// Create a PreparedStatement object
2

pstmt.setString(1,"000010"); // Assign value to input parameter
rs = pstmt.executeQuery(); // Get the result table from the query B
while (rs.next()) { // Position the cursor 4
empnum = rs.getString(1); // Retrieve the first column value
phonenum = rs.getString(2); // Retrieve the first column value
System.out.printin("Employee number = " + empnum +

"Phone number = " + phonenum)

// Print the column values

}
rs.close(); // Close the ResultSet
pstmt.close(); // Close the PreparedStatement

Figure 5-12. Example of using PreparedStatement.executeQuery

Learning about a ResultSet using ResultSetMetaData methods
You cannot always know the number of columns and data types of the columns in
a table or result set. This is true especially when you are retrieving data from a
remote data source.

When you write programs that retrieve unknown ResultSets, you need to use
ResultSetMetaData methods to determine the characteristics of the ResultSets
before you can retrieve data from them.

ResultSetMetaData methods provide the following types of information:

* The number of columns in a ResultSet

* The qualifier for the underlying table of the ResultSet

* Information about a column, such as the data type, length, precision, scale, and
nullability

* Whether a column is read-only

After you invoke the executeQuery method to generate a ResultSet for a query on
a table, follow these basic steps to determine the contents of the ResultSet:

1. Invoke the getMetaData method on the ResultSet object to create a
ResultSetMetaData object.

2. Invoke the getColumnCount method to determine how many columns are in
the ResultSet.

5-22 IBM Data Server Driver for JDBC and SQLJ for Informix

3. For each column in the ResultSet, execute ResultSetMetaData methods to
determine column characteristics.

The results of ResultSetMetaData.getColumnName call reflects the column
name information that is stored in the IDS catalog for that data source.

The following code demonstrates how to determine the data types of all the
columns in the employee table. The numbers to the right of selected statements
correspond to the previously-described steps.

String s;

Connection con;

Statement stmt;

ResultSet rs;
ResultSetMetaData rsmtadta;
int colCount

int mtadtaint;

int i;

String colName;

String colType;

stmt = con.createStatement(); // Create a Statement object
rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");

// Get the ResultSet from the query
rsmtadta = rs.getMetaData(); // Create a ResultSetMetaData object
colCount = rsmtadta.getColumnCount();

// Find number of columns in EMP
for (i=1; i<= colCount; i++) {

colName = rsmtadta.getColumnName(); // Get column name
colType = rsmtadta.getColumnTypeName();
// Get column data type
System.out.printIn("Column = " + colName +
" is data type " + colType);

}

Figure 5-13. Using ResultSetMetaData methods to get information about a ResultSet

// Print the column value

Characteristics of a JDBC ResultSet under the IBM Data Server
Driver for JDBC and SQLJ

The IBM Data Server Driver for JDBC and SQLJ provides support for scrollable,
updatable, and holdable cursors.

In addition to moving forward, one row at a time, through a ResultSet, you might
want to do the following things:

* Move backward or go directly to a specific row
* Update, delete, or insert rows in a ResultSet
¢ Leave the ResultSet open after a COMMIT

The following terms describe characteristics of a ResultSet:

scrollability
Whether the cursor for the ResultSet can move forward only, or forward one or
more rows, backward one or more rows, or to a specific row.

If a cursor for a ResultSet is scrollable, it also has a sensitivity attribute, which
describes whether the cursor is sensitive to changes to the underlying table.

updatability
Whether the cursor can be used to update or delete rows. This characteristic
does not apply to a ResultSet that is returned from a stored procedure, because
a stored procedure ResultSet cannot be updated.

Chapter 5. JDBC application programming 5-23

holdability
Whether the cursor stays open after a COMMIT.

You set the updatability, scrollability, and holdability characteristics of a ResultSet
through parameters in the Connection.prepareStatement or
Connection.createStatement methods. The ResultSet settings map to attributes of a
cursor in the database. The following table lists the JDBC scrollability, updatability,
and holdability settings, and the corresponding cursor attributes.

Table 5-3. JDBC ResultSet characteristics and SQL cursor attributes

JDBC setting DB2 cursor setting IBM Informix cursor setting
CONCUR_READ_ONLY FOR READ ONLY FOR READ ONLY
CONCUR_UPDATABLE FOR UPDATE FOR UPDATE
HOLD_CURSORS_OVER_COMMIT WITH HOLD WITH HOLD
TYPE_FORWARD_ONLY SCROLL not specified SCROLL not specified
TYPE_SCROLL_INSENSITIVE INSENSITIVE SCROLL SCROLL
TYPE_SCROLL_SENSITIVE SENSITIVE STATIC, SENSITIVE Not supported

DYNAMIC, or ASENSITIVE,
depending on the cursorSensitvity
Connection and DataSource property

If a JDBC ResultSet is static, the size of the result table and the order of the rows in
the result table do not change after the cursor is opened. This means that if you
insert rows into the underlying table, the result table for a static ResultSet does not
change. If you delete a row of a result table, a delete hole occurs. You cannot
update or delete a delete hole.

Specifying updatability, scrollability, and holdability for ResultSets in JDBC
applications:

You use special parameters in the Connection.prepareStatement or
Connection.createStatement methods to specify the updatability, scrollability, and
holdability of a ResultSet.

By default, ResultSet objects are not scrollable and not updatable. The default
holdability depends on the data source, and can be determined from the
DatabaseMetaData.getResultSetHoldability method. To change the scrollability,
updatability, and holdability attributes for a ResultSet, follow these steps:

1. If the SELECT statement that defines the ResultSet has no input parameters,
invoke the createStatement method to create a Statement object. Otherwise,
invoke the prepareStatement method to create a PreparedStatement object. You
need to specify forms of the createStatement or prepareStatement methods that
include the resultSetType, resultSetConcurrency, or resultSetHoldability parameters.

The form of the createStatement method that supports scrollability and
updatability is:
createStatement(int resultSetType, int resultSetConcurrency);

The form of the createStatement method that supports scrollability, updatability,
and holdability is:

createStatement (int resultSetType, int resultSetConcurrency,
int resultSetHoldability);

5-24 IBM Data Server Driver for JDBC and SQLJ for Informix

The form of the prepareStatement method that supports scrollability and
updatability is:

prepareStatement (String sql, int resultSetType,
int resultSetConcurrency);

The form of the prepareStatement method that supports scrollability,
updatability, and holdability is:

prepareStatement (String sql, int resultSetType,
int resultSetConcurrency, int resultSetHoldability);

The following table contains a list of valid values for resultSetType and
resultSetConcurrency.

Table 5-4. Valid combinations of resultSetType and resultSetConcurrency for ResultSets

resultSetType value resultSetConcurrency value
TYPE_FORWARD_ONLY CONCUR_READ_ONLY
TYPE_FORWARD_ONLY CONCUR_UPDATABLE
TYPE_SCROLL_INSENSITIVE CONCUR_READ_ONLY
TYPE_SCROLL_SENSITIV CONCUR_READ_ONLY
TYPE_SCROLL_SENSITIVED CONCUR_UPDATABLE

Note:

1. This value does not apply to connections to IBM Informix.

resultSetHoldability has two possible values: HOLD_CURSORS_OVER_COMMIT and
CLOSE_CURSORS_AT_COMMIT. Either of these values can be specified with any
valid combination of resultSetConcurrency and resultSetHoldability. The value that
you set overrides the default holdability for the connection.

Restriction: If the ResultSet is scrollable, and the ResultSet is used to select
columns from a table on a DB2 Database for Linux, UNIX, and Windows
server, the SELECT list of the SELECT statement that defines the ResultSet
cannot include columns with the following data types:

* LONG VARCHAR

* LONG VARGRAPHIC

* BLOB

 CLOB

« XML

* A distinct type that is based on any of the previous data types in this list
* A structured type

2. If the SELECT statement has input parameters, invoke setXXX methods to pass
values to the input parameters.

3. Invoke the executeQuery method to obtain the result table from the SELECT
statement in a ResultSet object.

4. For each row that you want to access:
a. Position the cursor using one of the methods that are listed in the following
table.

Table 5-5. ResultSet methods for positioning a scrollable cursor

Method Positions the cursor

firs@ On the first row of the ResultSet
lastl On the last row of the ResultSet
next® On the next row of the ResultSet
previousEE On the previous row of the ResultSet

Chapter 5. JDBC application programming 5-25

Table 5-5. ResultSet methods for positioning a scrollable cursor (continued)

Method Positions the cursor

absolute(int n)IE If n>0, on row n of the ResultSet. If n<0, and m is the

number of rows in the ResultSet, on row m+n+1 of
the ResultSet.

relative(int n) If n>0, on the row that is 1 rows after the current row.

If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

afterLastl After the last row in the ResultSet

beforeFirst] Before the first row in the ResultSet

Notes:

1. This method does not apply to connections to IBM Informix.

2. If the cursor is before the first row of the ResultSet, this method positions the cursor on
the first row.

3. If the cursor is after the last row of the ResultSet, this method positions the cursor on the
last row.

4. If the absolute value of n is greater than the number of rows in the result set, this
method positions the cursor after the last row if 1 is positive, or before the first row if n
is negative.

5. The cursor must be on a valid row of the ResultSet before you can use this method. If
the cursor is before the first row or after the last row, the method throws an
SQLException.

6. Suppose that m is the number of rows in the ResultSet and x is the current row number
in the ResultSet. If n>0 and x+n>m, the driver positions the cursor after the last row. If
n<0 and x+n<1, the driver positions the cursor before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,
isLast, isBeforeFirst, or isAfterLast method to obtain this information.

c. If you specified a resultSetType value of TYPE_SCROLL_SENSITIVE in step
page 5-24{ and you need to see the latest values of the current row, invoke
the refreshRow method.

Recommendation: Because refreshing the rows of a ResultSet can have a

detrimental effect on the performance of your applications, you should

invoke refreshRow only when you need to see the latest data.

d. Perform one or more of the following operations:

* To retrieve data from each column of the current row of the ResultSet
object, use getXXX methods.

* To update the current row from the underlying table, use updateXXX
methods to assign column values to the current row of the ResultSet.
Then use updateRow to update the corresponding row of the underlying
table. If you decide that you do not want to update the underlying table,
invoke the cancelRowUpdates method instead of the updateRow method.
The resultSetConcurrency value for the ResultSet must be
CONCUR_UPDATABLE for you to use these methods.

* To delete the current row from the underlying table, use the deleteRow
method. Invoking deleteRow causes the driver to replace the current row
of the ResultSet with a hole.

The resultSetConcurrency value for the ResultSet must be
CONCUR_UPDATABLE for you to use this method.

5. Invoke the close method to close the ResultSet object.

6. Invoke the close method to close the Statement or PreparedStatement object.

5-26 IBM Data Server Driver for JDBC and SQLJ for Informix

The following code demonstrates how to retrieve all employee numbers from the
employee table. The numbers to the right of selected statements correspond to the
previously-described steps.

String s;
Connection con;
Statement stmt;
ResultSet rs;

stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE) ;
// Create a Statement object
// for a scrollable, updatable
// ResultSet
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE");

// Create the ResultSet H
while (rs.next()) { // Position the cursor
s = rs.getString("EMPNO"); // Retrieve the employee number [X]
// (column 1 in the result
// table)
System.out.printIn("Employee number = " + s);
// Print the column value
1
rs.close(); // Close the ResultSet E
stmt.close(); // Close the Statement

Figure 5-14. Using a scrollable cursor

Multi-row SQL operations in JDBC applications:

The IBM Data Server Driver for JDBC and SQLJ supports multi-row INSERT,
UPDATE, and FETCH for connections to data sources that support these
operations.

Multi-row INSERT

In JDBC applications, when you execute INSERT or MERGE statements that use
parameter markers in a batch, if the data server supports multi-row INSERT, the
IBM Data Server Driver for JDBC and SQLJ can transform the batch INSERT or
MERGE operations into multi-row INSERT statements. Multi-row INSERT
operations can provide better performance in the following ways:

* For local applications, multi-row INSERTs result in fewer accesses of the data
server.

* For distributed applications, multi-row INSERTs result in fewer network
operations.

You cannot execute a multi-row INSERT operation by including a multi-row
INSERT statement in a statement string in your JDBC application.

Multi-row INSERT is used by default. You can use the Connection or DataSource
property enableMultiRowInsertSupport to control whether multi-row INSERT is
used. Multi-row INSERT cannot be used for INSERT FROM SELECT statements
that are executed in a batch.

Multi-row FETCH
Multi-row FETCH can provide better performance than retrieving one row with

each FETCH statement. For IBM Data Server Driver for JDBC and SQL]J type 2
connectivity on DB2 for z/OS, multi-row FETCH can be used for forward-only

Chapter 5. JDBC application programming 5-27

5-28

cursors and scrollable cursors. For IBM Data Server Driver for JDBC and SQLJ type
4 connectivity, multi-row FETCH can be used only for scrollable cursors.

When you retrieve data in your applications, the IBM Data Server Driver for JDBC

and SQLJ determines whether to use multi-row FETCH, depending on several

factors:

* The settings of the enableRowsetSupport and useRowsetCursor properties

* The type of IBM Data Server Driver for JDBC and SQL]J connectivity that is
being used

* The version of the IBM Data Server Driver for JDBC and SQL]J

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for
z/0S, one of the following sets of conditions must be true for multi-row FETCH to
be used.

* First set of conditions:

— The IBM Data Server Driver for JDBC and SQLJ version is 3.51 or later.

— The enableRowsetSupport property value is
com.ibm.db2.jec.DB2BaseDataSource.YES (1), or the enableRowsetSupport
property value is com.ibm.db2.jcc.DB2BaseDataSource. NOT_SET (0) and the
useRowsetCursor property value is com.ibm.db2.jcc. DB2BaseDataSource.YES

@).
— The FETCH operation uses a scrollable cursor.

For forward-only cursors, fetching of multiple rows might occur through
DRDA block FETCH. However, this behavior does not utilize the data
source's multi-row FETCH capability.
* Second set of conditions:

— The IBM Data Server Driver for JDBC and SQLJ version is 3.1.

— The useRowsetCursor property value is
com.ibm.db2.jec.DB2BaseDataSource.YES (1).

— The FETCH operation uses a scrollable cursor.

For forward-only cursors, fetching of multiple rows might occur through
DRDA block FETCH. However, this behavior does not utilize the data
source's multi-row FETCH capability.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/0S the following conditions must be true for multi-row FETCH to be used.

* The IBM Data Server Driver for JDBC and SQL]J version is 3.51 or later.

* The enableRowsetSupport property value is
com.ibm.db2.jec. DB2BaseDataSource. YES (1).

* The FETCH operation uses a scrollable cursor or a forward-only cursor.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/0S, you can control the maximum size of a rowset for each statement by setting
the maxRowsetSize property.

Multi-row positioned UPDATE or DELETE

The IBM Data Server Driver for JDBC and SQLJ supports a technique for
performing positioned update or delete operations that follows the JDBC 1
standard. That technique involves using the ResultSet.getCursorName method to
obtain the name of the cursor for the ResultSet, and defining a positioned UPDATE
or positioned DELETE statement of the following form:

IBM Data Server Driver for JDBC and SQL]J for Informix

UPDATE table SET coll=valuel,...coln=valueN WHERE CURRENT OF cursorname
DELETE FROM table WHERE CURRENT OF cursorname

Multi-row UPDATE or DELETE when useRowsetCursor is set to true: If you use the
JDBC 1 technique to update or delete data on a database server that supports
multi-row FETCH, and multi-row FETCH is enabled through the useRowsetCursor
property, the positioned UPDATE or DELETE statement might update or delete
multiple rows, when you expect it to update or delete a single row. To avoid
unexpected updates or deletes, you can take one of the following actions:
* Use an updatable ResultSet to retrieve and update one row at a time, as shown
in the previous example.

¢ Set useRowsetCursor to false.

Multi-row UPDATE or DELETE when enableRowsetSupport is set to

com.ibm.db2.jcc. DB2BaseDataSource.YES (1): The JDBC 1 technique for updating or
deleting data is incompatible with multi-row FETCH that is enabled through the
enableRowsetSupport property.

Recommendation: If your applications use the JDBC 1 technique, update them to
use the JDBC 2.0 ResultSet.updateRow or ResultSet.deleteRow methods for
positioned update or delete activity.

Inserting a row into a ResultSet in a JDBC application:

If a ResultSet has a resultSetConcurrency attribute of CONCUR_UPDATABLE, you
can insert rows into the ResultSet.

To insert a row into a ResultSet, follow these steps:
1. Perform the following steps for each row that you want to insert.

a. Call the ResultSet.moveTolnsertRow method to create the row that you
want to insert. The row is created in a buffer outside the ResultSet.

If an insert buffer already exists, all old values are cleared from the buffer.

b. Call ResultSet.updateXXX methods to assign values to the row that you
want to insert.
You need to assign a value to at least one column in the ResultSet. If you do
not do so, an SQLException is thrown when the row is inserted into the
ResultSet.
If you do not assign a value to a column of the ResultSet, when the
underlying table is updated, the data source inserts the default value for the
associated table column.
If you assign a null value to a column that is defined as NOT NULL, the
JDBC driver throws and SQLException.

c. Call ResultSet.insertRow to insert the row into the ResultSet.
After you call ResultSet.insertRow, all values are always cleared from the
insert buffer, even if ResultSet.insertRow fails.

2. Reposition the cursor within the ResultSet.

To move the cursor from the insert row to the ResultSet, you can invoke any of
the methods that position the cursor at a specific row, such as ResultSet.first,
ResultSet.absolute, or ResultSet.relative. Alternatively, you can call
ResultSet.moveToCurrentRow to move the cursor to the row in the ResultSet
that was the current row before the insert operation occurred.

After you call ResultSet.moveToCurrentRow, all values are cleared from the
insert buffer.

Chapter 5. JDBC application programming 5-29

5-30

Example: The following code illustrates inserting a row into a ResultSet that

consists of all rows in the sample DEPARTMENT table. After the row is inserted,

the code places the cursor where it was located in the ResultSet before the insert

operation. The numbers to the right of selected statements correspond to the

previously-described steps.

stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("SELECT * FROM DEPARTMENT");

rs.moveToInsertRow(); la

rs.updateString("DEPT_NO", "M13"); 1b

rs.updateString ("DEPTNAME", "TECHNICAL SUPPORT");

rs.updateString("MGRNO", "000010");

rs.updateString ("ADMRDEPT", "A0O");

rs.insertRow();
rs.moveToCurrentRow() ;

Testing whether the current row was inserted into a ResultSet in a JDBC
application:

If a ResultSet is dynamic, you can insert rows into it. After you insert rows into a
ResultSet you might need to know which rows were inserted.

To test whether the current row in a ResultSet was inserted, follow these steps:

1. Call the DatabaseMetaData.ownlInsertsAreVisible and
DatabaseMetaData.othersInsertsAreVisible methods to determine whether
inserts can be visible to the given type of ResultSet.

2. If inserts can be visible to the ResultSet, call the
DatabaseMetaData.insertsAreDetected method to determine whether the given
type of ResultSet can detect inserts.

3. If the ResultSet can detect inserts, call the ResultSet.rowInserted method to
determine whether the current row was inserted.

Calling stored procedures in JDBC applications

To call stored procedures, you invoke methods in the CallableStatement class.

The basic steps for calling a stored procedures using standard CallableStatement
methods are:

1. Invoke the Connection.prepareCall method with the CALL statement as its
argument to create a CallableStatement object.

You can represent parameters with standard parameter markers (?) or named
parameter markers. You cannot mix named parameter markers with standard
parameter markers in the same CALL statement.

2. Invoke the CallableStatement.setXXX methods to pass values to the input
parameters (parameters that are defined as IN or INOUT in the CREATE
PROCEDURE statement).

This step assumes that you use standard parameter markers or named
parameters. Alternatively, if you use named parameter markers, you use IBM
Data Server Driver for JDBC and SQLJ-only methods to pass values to the
input parameters.

Restriction: If the data source does not support dynamic execution of the
CALL statement, you must specify the data types for CALL statement input
parameters exactly as they are specified in the stored procedure definition.

IBM Data Server Driver for JDBC and SQL]J for Informix

Invoke the CallableStatement.registerOutParameter method to register
parameters that are defined as OUT in the CREATE PROCEDURE statement
with specific data types.

This step assumes that you use standard parameter markers. Alternatively, if
you use named parameter markers, you use IBM Data Server Driver for JDBC
and SQLJ-only methods to register OUT parameters with specific data types.

Restriction: If the data source does not support dynamic execution of the
CALL statement, you must specify the data types for CALL statement OUT, IN,
or INOUT parameters exactly as they are specified in the stored procedure
definition.

Invoke one of the following methods to call the stored procedure:

CallableStatement.executeUpdate
Invoke this method if the stored procedure does not return result sets.

CallableStatement.executeQuery
Invoke this method if the stored procedure returns one result set.

You can invoke CallableStatement.executeQuery for a stored procedure that
returns no result sets if you set property
allowNullResultSetForExecuteQuery to DB2BaseDataSource.YES (1). In that
case, CallableStatement.executeQuery returns null. This behavior does not

conform to the JDBC standard.

CallableStatement.execute
Invoke this method if the stored procedure returns multiple result sets, or
an unknown number of result sets.

Restriction: IBM Informix data sources do not support multiple result sets.
5. If the stored procedure returns multiple result sets, retrieve the result sets.

Restriction: IBM Informix data sources do not support multiple result sets.

6. Invoke the CallableStatement.getXXX methods to retrieve values from the OUT
parameters or INOUT parameters.

7. Invoke the CallableStatement.close method to close the CallableStatement object

when you have finished using that object.

Example: The following code illustrates calling a stored procedure that has one

input parameter, four output parameters, and no returned ResultSets. The numbers

to the right of selected statements correspond to the previously-described steps.

int ifcaret;

int ifcareas;

int xsbytes;

String errbuff;
Connection con;
CallableStatement cstmt;
ResultSet rs;

cstmt = con.prepareCall("CALL DSN8.DSN8ED2(?,7,7,2,7)");
// Create a CallableStatement object
cstmt.setString (1, "DISPLAY THREAD(*)");
// Set input parameter (DB2 command)
cstmt.registerQutParameter (2, Types.INTEGER);
// Register output parameters
cstmt.registerQutParameter (3, Types.INTEGER);
cstmt.registerQutParameter (4, Types.INTEGER);
cstmt.registerQutParameter (5, Types.VARCHAR);
cstmt.executeUpdate(); // Call the stored procedure E
ifcaret = cstmt.getInt(2); // Get the output parameter values

Chapter 5. JDBC application programming 5-31

5-32

ifcareas = cstmt.getInt(3);

xsbytes = cstmt.getInt(4);

errbuff = cstmt.getString(5);

cstmt.close();

LOBs in JDBC applications with the IBM Data Server Driver
for JDBC and SQLJ

The IBM Data Server Driver for JDBC and SQLJ supports methods for updating
and retrieving data from BLOB, CLOB, and DBCLOB columns in a table, and for
calling stored procedures or user-defined functions with BLOB or CLOB
parameters.

Progressive streaming with the IBM Data Server Driver for JDBC
and SQLJ

If the data source supports progressive streaming, also known as dynamic data
format, the IBM Data Server Driver for JDBC and SQLJ can use progressive
streaming to retrieve data in LOB or XML columns.

DB2 for z/OS Version 9.1 and later supports progressive streaming for LOBs and
XML objects. DB2 Database for Linux, UNIX, and Windows Version 9.5 and later,
IBM Informix Version 11.50 and later, and DB2 for i V6R1 and later support
progressive streaming for LOBs.

With progressive streaming, the data source dynamically determines the most
efficient mode in which to return LOB or XML data, based on the size of the LOBs
or XML objects.

Progressive streaming is the default behavior in the following environments:

MinimumIBM Data Server
Driver for JDBC and SQL] Minimum data server

version version Types of objects
3.53 DB2 for i V6R1 LOB, XML
3.50 DB2 Database for Linux, LOB
UNIX, and Windows Version
9.5
3.50 IBM Informix Version 11.50 LOB
3.2 DB2 for z/OS Version 9 LOB, XML

You set the progressive streaming behavior on new connections using the IBM
Data Server Driver for JDBC and SQL]J progressiveStreaming property.

When progressive streaming is enabled, you can control when the JDBC driver
materializes LOBs with the streamBufferSize property. If a LOB or XML object is
less than or equal to the streamBufferSize value, the object is materialized.

Important: With progressive streaming, when you retrieve a LOB or XML value
from a ResultSet into an application variable, you can manipulate the contents of
that application variable until you move the cursor or close the cursor on the
ResultSet. After that, the contents of the application variable are no longer
available to you. If you perform any actions on the LOB in the application variable,
you receive an SQLException. For example, suppose that progressive streaming is
enabled, and you execute statements like this:

IBM Data Server Driver for JDBC and SQL]J for Informix

ResultSet rs = stmt.executeQuery("SELECT CLOBCOL FROM MY _TABLE");
rs.next(); // Retrieve the first row of the ResultSet
Clob clobFromRowl = rs.getClob(1);
// Put the CLOB from the first column of
// the first row in an application variable
clobFromRowl.getSubString(1,50);
// Retrieve the first 50 bytes of the CLOB
rs.next(); // Move the cursor to the next row.
// clobFromRowl is no longer available.
// String substr2Clob = clobFromRowl.getSubString(51,100);
// This statement would yield an SQLException
Clob clobFromRow2 = rs.getClob(1);
// Put the CLOB from the first column of
// the second row in an application variable
rs.close(); // Close the ResultSet.
// clobFromRow2 is also no Tonger available.

String substrlClob

After you execute rs.next() to position the cursor at the second row of the
ResultSet, the CLOB value in clobFromRow1 is no longer available to you.
Similarly, after you execute rs.close() to close the ResultSet, the values in
clobFromRow1 and clobFromRow?2 are no longer available.

If you disable progressive streaming, the way in which the IBM Data Server Driver
for JDBC and SQL]J handles LOBs depends on the value of the
fullyMaterializelobData property.

Use of progressive streaming is the preferred method of LOB or XML data
retrieval.

LOB locators with the IBM Data Server Driver for JDBC and
SQLJ

The IBM Data Server Driver for JDBC and SQL] can use LOB locators to retrieve
data in LOB columns.

To cause JDBC to use LOB locators to retrieve data from LOB columns, you need
to set the fullyMaterializelobData property to false and set the
progressiveStreaming property to NO (DB2BaseDataSource.NO in an application
program).

The effect of fullyMaterializeLobData depends on whether the data source
supports progressive streaming and the value of the progressiveStreaming
property:
* If the data source does not support progressive locators:
If the value of fullyMaterializeLobData is true, LOB data is fully materialized
within the JDBC driver when a row is fetched. If the value is false, LOB data is
streamed. The driver uses locators internally to retrieve LOB data in chunks on
an as-needed basis It is highly recommended that you set this value to false
when you retrieve LOBs that contain large amounts of data. The default is true.
* If the data source supports progressive streaming, also known as dynamic data
format:
The JDBC driver ignores the value of fullyMaterializeLobData if the
progressiveStreaming property is set to YES (DB2BaseDataSource.YES in an
application program) or is not set.

fullyMaterializelLobData has no effect on stored procedure parameters.

Chapter 5. JDBC application programming ~ 5-33

5-34

As in any other language, a LOB locator in a Java application is associated with
only one data source. You cannot use a single LOB locator to move data between
two different data sources. To move LOB data between two data sources, you need
to materialize the LOB data when you retrieve it from a table in the first data
source and then insert that data into the table in the second data source.

LOB operations with the IBM Data Server Driver for JDBC and
SQLJ

The IBM Data Server Driver for JDBC and SQL]J supports methods for updating
and retrieving data from BLOB, CLOB, and DBCLOB columns in a table, and for
calling stored procedures or user-defined functions with BLOB or CLOB
parameters.

Among the operations that you can perform on LOB data under the IBM Data
Server Driver for JDBC and SQLJ are:

* Specify a BLOB or column as an argument of the following ResultSet methods to
retrieve data from a BLOB or CLOB column:

For BLOB columns:
- getBinaryStream
— getBlob
— getBytes
For CLOB columns:
— getAsciiStream
getCharacterStream
getClob
getString
* Call the following ResultSet methods to update a BLOB or CLOB column in an
updatable ResultSet:
For BLOB columns:
— updateBinaryStream
— updateBlob
For CLOB columns:
— updateAsciiStream
— updateCharacterStream
— updateClob
If you specify -1 for the length parameter in any of the previously listed
methods, the IBM Data Server Driver for JDBC and SQLJ reads the input data
until it is exhausted.

* Use the following PreparedStatement methods to set the values for parameters
that correspond to BLOB or CLOB columns:

For BLOB columns:

— setBytes

— setBlob

— setBinaryStream

— setObject, where the Object parameter value is an InputStream.

For CLOB columns:

— setString

— setAsciiStream

— setClob

— setCharacterStream

— setObject, where the Object parameter value is a Reader.

If you specify -1 for length, the IBM Data Server Driver for JDBC and SQLJ reads
the input data until it is exhausted.

IBM Data Server Driver for JDBC and SQL]J for Informix

* Retrieve the value of a JDBC CLOB parameter using the
CallableStatement.getString method.

Restriction: With IBM Data Server Driver for JDBC and SQL]J type 2 connectivity,
you cannot call a stored procedure that has DBCLOB OUT or INOUT parameters.

If you are using the IBM Data Server Driver for JDBC and SQL] version 4.0 or
later, you can perform the following additional operations:

¢ Use ResultSet.updateXXX or PreparedStatement.setXXX methods to update a
BLOB or CLOB with a length value of up to 2GB for a BLOB or CLOB. For
example, these methods are defined for BLOBs:

ResultSet.updateBlob(int columnIndex, InputStream x, long length)
ResultSet.updateBlob(String columnLabel, InputStream x, long length)
ResultSet.updateBinaryStream(int columnIndex, InputStream x, long length)
ResultSet.updateBinaryStream(String columnLabel, InputStream x, long length)
PreparedStatement.setBlob(int columnIndex, InputStream x, long length)
PreparedStatement.setBlob(String columnLabel, InputStream x, long length)
PreparedStatement.setBinaryStream(int columnIndex, InputStream x, long length)
PreparedStatement.setBinaryStream(String columnLabel, InputStream x, long length)
¢ Use ResultSet.updateXXX or PreparedStatement.setXXX methods without the
length parameter when you update a BLOB or CLOB, to cause the IBM Data
Server Driver for JDBC and SQLJ to read the input data until it is exhausted. For
example:
ResultSet.updateBlob(int columnIndex, InputStream x)
ResultSet.updateBlob(String columnLabel, InputStream x)
ResultSet.updateBinaryStream(int columnIndex, InputStream x)
ResultSet.updateBinaryStream(String columnLabel, InputStream x)
PreparedStatement.setBlob(int columnIndex, InputStream x)
PreparedStatement.setBlob(String columnLabel, InputStream x)
PreparedStatement.setBinaryStream(int columnIndex, InputStream x)
PreparedStatement.setBinaryStream(String columnLabel, InputStream x)

* Create a Blob or Clob object that contains no data, using the
Connection.createBlob or Connection.createClob method.

* Materialize a Blob or Clob object on the client, when progressive streaming or
locators are in use, using the Blob.getBinaryStream or Clob.getCharacterStream
method.

* Free the resources that a Blob or Clob object holds, using the Blob.free or
Clob.free method.

Java data types for retrieving or updating LOB column data in
JDBC applications

When the JDBC driver cannot immediately determine the data type of a parameter
that is used with a LOB column, you need to choose a parameter data type that is
compatible with the LOB data type.

When the deferPrepares property is set to true, and the IBM Data Server Driver for
JDBC and SQL]J processes a PreparedStatement.setXXX call, the driver might need
to do extra processing to determine data types. This extra processing can impact
performance.

Input parameters for BLOB columns

For IN parameters for BLOB columns, or INOUT parameters that are used for
input to BLOB columns, you can use one of the following techniques:

* Use a java.sql.Blob input variable, which is an exact match for a BLOB column:
cstmt.setBlob(parmIndex, blobData);

Chapter 5. JDBC application programming ~ 5-35

5-36

* Use a CallableStatement.setObject call that specifies that the target data type is
BLOB:

byte[] byteData = {(byte)Oxla, (byte)0x2b, (byte)Ox3c};
cstmt.setObject (parmInd, byteData, java.sql.Types.BLOB);

* Use an input parameter of type of java.io.ByteArraylnputStream with a
CallableStatement.setBinaryStream call. A java.io.ByteArraylnputStream object is
compatible with a BLOB data type. For this call, you need to specify the exact
length of the input data:

java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(byteData);
int numBytes = byteData.length;
cstmt.setBinaryStream(parmIndex, byteStream, numBytes);

Output parameters for BLOB columns

For OUT parameters for BLOB columns, or INOUT parameters that are used for
output from BLOB columns, you can use the following technique:

* Use the CallableStatement.registerOutParameter call to specify that an output
parameter is of type BLOB. Then you can retrieve the parameter value into any
variable that has a data type that is compatible with a BLOB data type. For
example, the following code lets you retrieve a BLOB value into a byte][]
variable:

cstmt.registerQutParameter(parmIindex, java.sql.Types.BLOB);
cstmt.execute();
byte[] byteData = cstmt.getBytes(parmIndex);

Input parameters for CLOB columns

For IN parameters for CLOB columns, or INOUT parameters that are used for
input to CLOB columns, you can use one of the following techniques:

* Use a java.sql.Clob input variable, which is an exact match for a CLOB column:
cstmt.setClob(parmIndex, clobData);

* Use a CallableStatement.setObject call that specifies that the target data type is
CLOB:

String charData = "CharacterString";
cstmt.setObject(parmInd, charData, java.sql.Types.CLOB);

* Use one of the following types of stream input parameters:
— Ajava.o.StringReader input parameter with a cstmt.setCharacterStream call:

java.io.StringReader reader = new java.io.StringReader(charData);
cstmt.setCharacterStream(parmIindex, reader, charData.length);

- Ajava.io.ByteArrayInputStream parameter with a cstmt.setAsciiStream call,
for ASCII data:

byte[] charDataBytes = charData.getBytes("US-ASCII");
java.io.ByteArrayInputStream byteStream =
new java.io.ByteArrayInputStream (charDataBytes);
cstmt.setAsciiStream(parmIndex, byteStream, charDataBytes.length);
For these calls, you need to specify the exact length of the input data.
* Use a String input parameter with a cstmt.setString call:

cstmt.setString(parmIndex, charData);
If the length of the data is greater than 32KB, and the JDBC driver has no

DESCRIBE information about the parameter data type, the JDBC driver assigns
the CLOB data type to the input data.

IBM Data Server Driver for JDBC and SQL]J for Informix

* Use a String input parameter with a cstmt.setObject call, and specify the target
data type as VARCHAR or LONGVARCHAR:

cstmt.setObject(parmIndex, charData, java.sql.Types.VARCHAR);

If the length of the data is greater than 32KB, and the JDBC driver has no
DESCRIBE information about the parameter data type, the JDBC driver assigns
the CLOB data type to the input data.

Output parameters for CLOB columns

For OUT parameters for CLOB columns, or INOUT parameters that are used for
output from CLOB columns, you can use one of the following techniques:

* Use the CallableStatement.registerOutParameter call to specify that an output
parameter is of type CLOB. Then you can retrieve the parameter value into a
Clob variable. For example:
cstmt.registerQutParameter(parmIndex, java.sql.Types.CLOB);
cstmt.execute();

Clob clobData = cstmt.getClob(parmIndex);

* Use the CallableStatement.registerOutParameter call to specify that an output
parameter is of type VARCHAR or LONGVARCHAR:
cstmt.registerQutParameter(parmIndex, java.sql.Types.VARCHAR);

cstmt.execute();
String charData = cstmt.getString(parmIndex);

This technique should be used only if you know that the length of the retrieved
data is less than or equal to 32KB. Otherwise, the data is truncated.

ROWIDs in JDBC with the IBM Data Server Driver for JDBC
and SQLJ

DB2 for z/OS and DB2 for i support the ROWID data type for a column in a
database table. A ROWID is a value that uniquely identifies a row in a table.

Although IBM Informix also supports rowids, those rowids have the INTEGER
data type. You can select an IBM Informix rowid column into a variable with a
four-byte integer data type.

You can use the following ResultSet methods to retrieve data from a ROWID
column:

* getRowld (JDBC 4.0 and later)

* getBytes

* getObject

You can use the following ResultSet method to update a ROWID column of an
updatable ResultSet:
* updateRowld (JDBC 4.0 and later)
updateRowld is valid only if the target database system supports updating of
ROWID columns.

If you are using JDBC 3.0, for getObject, the IBM Data Server Driver for JDBC and
SQLJ returns an instance of the IBM Data Server Driver for JDBC and SQLJ-only
class com.ibm.db2.jcc. DB2RowlID.

If you are using JDBC 4.0, for getObject, the IBM Data Server Driver for JDBC and
SQL]J returns an instance of the class java.sql.Rowld.

Chapter 5. JDBC application programming 5-37

5-38

You can use the following PreparedStatement methods to set a value for a
parameter that is associated with a ROWID column:

* setRowld (JDBC 4.0 and later)

* setBytes

* setObject

If you are using JDBC 3.0, for setObject, use the IBM Data Server Driver for JDBC
and SQLJ-only type com.ibm.db2.jcc.Types.ROWID or an instance of the
com.ibm.db2.jcc.DB2RowID class as the target type for the parameter.

If you are using JDBC 4.0, for setObject, use the type java.sql.Types.ROWID or an
instance of the java.sql.Rowld class as the target type for the parameter.

You can use the following CallableStatement methods to retrieve a ROWID column
as an output parameter from a stored procedure call:

* getRowld (JDBC 4.0 and later)

* getObject

To call a stored procedure that is defined with a ROWID output parameter, register
that parameter to be of the java.sql.Types.ROWID type.

ROWID values are valid for different periods of time, depending on the data
source on which those ROWID values are defined. Use the
DatabaseMetaData.getRowldLifetime method to determine the time period for
which a ROWID value is valid. The values that are returned for the data sources
are listed in the following table.

Table 5-6. DatabaseMetaData.getRowldLifetime values for supported data sources

Database server DatabaseMetaData.getRowlIdLifetime
DB2 for z/0S ROWID_VALID_TRANSACTION
DB2 Database for Linux, UNIX, and Windows | ROWID_UNSUPPORTED

DB2 for i ROWID_VALID_FOREVER

IBM Informix ROWID_VALID_FOREVER

Example: Using PreparedStatement.setRowld with a java.sql.Rowld target type: Suppose
that rwid is a Rowld object. To set parameter 1, use this form of the setRowld
method:

ps.setRowId(1l, rid);

Example: Using ResultSet.getRowld to retrieve a ROWID wvalue from a data source: To
retrieve a ROWID value from the first column of a result set into Rowld object
rwid, use this form of the ResultSet.getRowld method:

java.sql.Rowld rwid = rs.getRowId(1);

Example: Using CallableStatement.registerOutParameter with a java.sql.Types. ROWID
parameter type: To register parameter 1 of a CALL statement as a
java.sql.Types.ROWID data type, use this form of the registerOutParameter
method:

cs.registerQutParameter(1, java.sql.Types.ROWID)

IBM Data Server Driver for JDBC and SQL]J for Informix

Savepoints in JDBC applications

An SQL savepoint represents the state of data and schemas at a particular point in
time within a unit of work. You can use SQL statements to set a savepoint, release
a savepoint, and restore data and schemas to the state that the savepoint
represents.

The IBM Data Server Driver for JDBC and SQL] supports the following methods
for using savepoints:

Connection.setSavepoint() or Connection.setSavepoint(String name)
Sets a savepoint. These methods return a Savepoint object that is used in later
releaseSavepoint or rollback operations.

When you execute either of these methods, IDS executes the form of the
SAVEPOINT statement that includes ON ROLLBACK RETAIN CURSORS.

Connection.releaseSavepoint(Savepoint savepoint)
Releases the specified savepoint, and all subsequently established savepoints.

Connection.rollback(Savepoint savepoint)
Rolls back work to the specified savepoint.

DatabaseMetaData.supportsSavepoints()
Indicates whether a data source supports savepoints.

You can indicate whether savepoints are unique by calling the method
DB2Connection.setSavePointUniqueOption. If you call this method with a value of
true, the application cannot set more than one savepoint with the same name
within the same unit of recovery. If you call this method with a value of false (the
default), multiple savepoints with the same name can be created within the same
unit of recovery, but creation of a savepoint destroys a previously created
savepoint with the same name.

The following example demonstrates how to set a savepoint, roll back to the
savepoint, and release the savepoint.

Chapter 5. JDBC application programming ~ 5-39

5-40

Connection con;
Statement stmt;
ResultSet rs;
String empNumVar;
int shoeSizeVar;

con.setAutoCommit(false); // set autocommit OFF
stmt = con.createStatement(); // Create a Statement object
// Perform some SQL
con.commit(); // Commit the transaction
stmt.executeUpdate("INSERT INTO EMP_SHOE " +

"VALUES ('000010', 6)"); // Insert a row

((com.ibm.db2.jcc.DB2Connection)con).setSavePointUniqueOption(true);
// Indicate that savepoints
// are unique within a unit
// of recovery

Savepoint savept = con.setSavepoint("savepointl");
// Create a savepoint

stmt.executeUpdate ("INSERT INTO EMP_SHOE " +

"VALUES ('000020', 10)"); // Insert another row
conn.rollback(savept); // Rol1 back work to the point
// after the first insert
con.releaseSavepoint (savept); // Release the savepoint
stmt.close(); // Close the Statement
conn.commit(); // Commit the transaction

Figure 5-15. Setting, rolling back to, and releasing a savepoint in a JDBC application

Retrieval of automatically generated keys in JDBC
applications

With the IBM Data Server Driver for JDBC and SQLJ, you can retrieve
automatically generated keys (also called auto-generated keys) from a table using
JDBC 3.0 methods. Alternatively, you can use IBM Data Server Driver for JDBC
and SQLJ-only methods to retrieve the automatically generated keys.

An automatically generated key is any value that is generated by the data server,
instead of being specified by the user. One type of automatically generated key is
the contents of a SERIAL, SERIALS, or BIGSERIAL column. A table column of one
of those types provides a way for the data source to automatically generate a
numeric value for each row. A table cannot have more than one column of each
type, but it can have a one column of each type.

For connections to IBM Informix, the IBM Data Server Driver for JDBC and SQLJ
supports the return of automatically generated keys for INSERT statements.

Restriction: If the Connection or DataSource property atomicMultiRowInsert is set
to DB2BaseDataSource.YES (1), you cannot prepare an SQL statement for retrieval of
automatically generated keys and use the PreparedStatement object for batch
updates. The IBM Data Server Driver for JDBC and SQLJ version 3.50 or later
throws an SQLException when you call the addBatch or executeBatch method on a
PreparedStatement object that is prepared to return automatically generated keys.

Retrieving auto-generated keys for an INSERT statement
With the IBM Data Server Driver for JDBC and SQLJ, you can use JDBC 3.0

methods to retrieve the keys that are automatically generated when you execute an
INSERT statement.

IBM Data Server Driver for JDBC and SQL]J for Informix

To retrieve automatically generated keys that are generated by an INSERT
statement, you need to perform these steps.

1. Use one of the following methods to indicate that you want to return
automatically generated keys:

* If you plan to use the PreparedStatement.executeUpdate method to insert
rows, invoke one of these forms of the Connection.prepareStatement method
to create a PreparedStatement object:

Connection.prepareStatement (sql-statement,
Statement.RETURN_GENERATED_KEYS);

Connection.prepareStatement (sql-statement, String [] columnNames);

Connection.prepareStatement (sql-statement, int [] columnIndexes);

With the first form, you specify whether all automatically generated keys

should be returned. With the second form, you specify the names of the

columns for which you want automatically generated keys. With the third

form, you specify the positions in the table of the columns for which you

want automatically generated keys.

* If you use the Statement.executeUpdate method to insert rows, invoke one of
these forms of the Statement.executeUpdate method:
Statement.executeUpdate(sql-statement,

Statement.RETURN_GENERATED_KEYS);
Statement.executeUpdate(sql-statement, String [] columnNames);
Statement.executeUpdate(sql-statement, int [] columnIndexes);
With the first form, you specify whether all automatically generated keys
should be returned. With the second form, you specify the names of the
columns for which you want automatically generated keys. With the third
form, you specify the positions in the table of the columns for which you
want automatically generated keys.

2. Invoke the PreparedStatement.getGeneratedKeys method or the
Statement.getGeneratedKeys method to retrieve a ResultSet object that contains
the automatically generated key values.

If the column data type is SERIAL, the automatically generated keys in the
ResultSet have a data type of INT. Use ResultSet.getInt to retrieve the values. If
the column data type is SERIALS, the automatically generated keys in the
ResultSet have a data type of BIGINT. Use ResultSet.getLong to retrieve the
values.

The following code creates a table with a SERIAL column, inserts a row into the
table, and retrieves the automatically generated key value for the SERIAL column.
The numbers to the right of selected statements correspond to the previously
described steps.

import java.sql.*;
import java.math.x;
import com.ibm.db2.jcc.*;

Connection con;

Statement stmt;

ResultSet rs;
java.math.BigDecimal serColVar;

stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(
"CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +
"SERIALCOL SERIAL)");
// Create table with identity column
stmt.executeUpdate("INSERT INTO EMP_PHONE (EMPNO, PHONENO) " +
"VALUES ('000010', '5555')", // Insert a row
Statement.RETURN_GENERATED KEYS); // Indicate you want automatically

Chapter 5. JDBC application programming 5-41

// generated keys
rs = stmt.getGeneratedKeys(); // Retrieve the automatically ﬂ
// generated key value in a ResultSet.
// Create ResultSet for query
while (rs.next()) {
java.math.BigDecimal serColVar = rs.getBigDecimal(1);
// Get automatically generated key

// value
System.out.printIn("Automatically generated key value = " + serColVar);
1
rs.close(); // Close ResultSet
stmt.close(); // Close Statement

Retrieving automatically generated keys using IBM Data Server
Driver for JDBC and SQLJ-only methods

The IBM Data Server Driver for JDBC and SQLJ provides a set of methods that
you can use to retrieve automatically generated keys (auto-generated keys) from
IBM Informix databases. Use of these methods is an alternative to using JDBC 3.0
methods.

Follow these steps to use IBM Data Server Driver for JDBC and SQLJ-only
methods to retrieve automatically generated keys from IBM Informix data sources.

1. Execute an INSERT statement on a table that contains SERIAL, SERIALS, or
BIGSERIAL columns.

2. Execute the DB2Statement.getIDSSerial or DB2Statement.getIDSSerial8 method
to retrieve the automatically generated keys for the inserted row.

The returned value for DB2Statement.getIDSSerial has the int data type. The
returned value for DB2Statement.getIDSSerial8 has the long data type.

The following code creates a table with a SERIAL column, inserts a row into the
table, and retrieves the automatically generated key value for the identity column.
The numbers to the right of selected statements correspond to the previously
described steps.

Figure 5-16. Example of retrieving automatically generated keys from an IBM Informix table
using IBM Data Server Driver for JDBC and SQLJ-only methods

import java.sql.*;
import java.math.x;
import com.ibm.db2.jcc.*;

Connection con;
Statement stmt;
ResultSet rs;

stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(
"CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +
"SERIALCOL SERIAL)");
// Create table with identity column

stmt.executeUpdate("INSERT INTO EMP_PHONE (EMPNO, PHONENO) " +
"VALUES ('000010', '5555')"); // Insert a row
int serColVar = ((com.ibm.db2.jcc.DB2Statement)stmt).getIDSSerial(); 2]

// Retrieve the automatically
// generated key value

System.out.printIn("Automatically generated key value = " + serColVar);
rs.close(); // Close ResultSet
stmt.close(); // Close Statement

5-42 IBM Data Server Driver for JDBC and SQLJ for Informix

Retrieving automatically generated keys using IBM Data Server
Driver for JDBC and SQLJ-only methods

The IBM Data Server Driver for JDBC and SQL] provides a set of methods that
you can use to retrieve automatically generated keys (auto-generated keys) from
IBM Informix databases. Use of these methods is an alternative to using JDBC 3.0
methods.

Follow these steps to use IBM Data Server Driver for JDBC and SQLJ-only
methods to retrieve automatically generated keys from IBM Informix data sources.

1. Execute an INSERT statement on a table that contains SERIAL, SERIALS, or
BIGSERIAL columns.

2. Execute the DB2Statement.get]DSSerial or DB2Statement.getIDSSerial8 method
to retrieve the automatically generated keys for the inserted row.

The returned value for DB2Statement.getIDSSerial has the int data type. The
returned value for DB2Statement.getIDSSerial8 has the long data type.

The following code creates a table with a SERIAL column, inserts a row into the
table, and retrieves the automatically generated key value for the identity column.
The numbers to the right of selected statements correspond to the previously
described steps.

Figure 5-17. Example of retrieving automatically generated keys from an IBM Informix table
using IBM Data Server Driver for JDBC and SQLJ-only methods

import java.sql.=;
import java.math.=*;
import com.ibm.db2.jcc.*;

Connection con;
Statement stmt;
ResultSet rs;

stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(
"CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +
"SERIALCOL SERIAL)");
// Create table with identity column

stmt.executeUpdate("INSERT INTO EMP_PHONE (EMPNO, PHONENQO) " +
"VALUES ('000010', '5555')"); // Insert a row
int serColVar = ((com.ibm.db2.jcc.DB2Statement)stmt).getIDSSerial(); ﬂ

// Retrieve the automatically
// generated key value

System.out.printIn("Automatically generated key value = " + serColVar);
rs.close(); // Close ResultSet
stmt.close(); // Close Statement

Using named parameter markers in JDBC applications

You can use named parameter markers instead of standard parameter markers in
PreparedStatement and CallableStatement objects to assign values to the input
parameter markers. You can also use named parameter markers instead of
standard parameter markers in CallableStatement objects to register OUT
parameters that have named parameter markers.

SQL strings that contain the following SQL elements can include named parameter
markers:

+ CALL

* DELETE

Chapter 5. JDBC application programming 5-43

5-44

* INSERT

* MERGE

* PL/SQL block
e SELECT

e SET
 UPDATE

Named parameter markers make your JDBC applications more readable. If you
have named parameter markers in an application, set the IBM Data Server Driver
for JDBC and SQLJ Connection or DataSource property
enableNamedParameterMarkers to DB2BaseDataSource.YES (1) to direct the driver
to accept named parameter markers and send them to the data source as standard
parameter markers.

Using named parameter markers with PreparedStatement objects
You can use named parameter markers instead of standard parameter markers in
PreparedStatement objects to assign values to the parameter markers.

To ensure that applications with named parameters work correctly, regardless of
the data server type and version, before you use named parameter markers in your
applications, set the Connection or DataSource property
enableNamedParameterMarkers to DB2BaseDataSource.YES.

To use named parameter markers with PreparedStatement objects, follow these
steps.

1. Execute the Connection.prepareStatement method on an SQL statement string
that contains named parameter markers. The named parameter markers must
follow the rules for SQL host variable names.

You cannot mix named parameter markers and standard parameter markers in
the same SQL statement string.

Named parameter markers are case-insensitive.

2. For each named parameter marker, use a
DB2PreparedStatement.setJccXXXAtName method to assign a value to each
named input parameter.

If you use the same named parameter marker more than once in the same SQL
statement string, you need to call a setJccXXXAtName method for that
parameter marker only once.

Recommendation: Do not use the same named parameter marker more than
once in the same SQL statement string if the input to that parameter marker is
a stream. Doing so can cause unexpected results.

Restriction: You cannot use standard JDBC PreparedStatement.setXXX methods
with named parameter markers. Doing so causes an exception to be thrown.

3. Execute the PreparedStatement.

The following code uses named parameter markers to update the phone number to
'4657" for the employee with employee number '000010". The numbers to the right
of selected statements correspond to the previously described steps.

Connection con;

PreparedStatement pstmt;
int numUpd;

pstmt = con.prepareStatement (
"UPDATE EMPLOYEE SET PHONENO=:phonenum WHERE EMPNO=:empnum");

IBM Data Server Driver for JDBC and SQL]J for Informix

// Create a PreparedStatement object
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName
("phonenum", "4567");
// Assign a value to phonenum parameter E
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName
("empnum", "000010");
// Assign a value to empnum parameter
numUpd = pstmt.executeUpdate(); // Perform the update
pstmt.close(); // Close the PreparedStatement object

The following code uses named parameter markers to update values in a PL/SQL
block. The numbers to the right of selected statements correspond to the previously
described steps.

Connection con;

PreparedStatement pstmt;
int numUpd;

String sql =
"BEGIN " +
" UPDATE EMPLOYEE SET PHONENO = :phonenum WHERE EMPNO = :empnum; " +
"END;";
pstmt = con.prepareStatement(sql); // Create a PreparedStatement object
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName
("phonenum", "4567");
// Assign a value to phonenum parameter H
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName
("empnum", "000010");
// Assign a value to empnum parameter
numUpd = pstmt.executeUpdate(); // Perform the update
pstmt.close(); // Close the PreparedStatement object

Using named parameter markers with CallableStatement objects
You can use named parameter markers instead of standard parameter markers in
CallableStatement objects to assign values to IN or INOUT parameters and to
register OUT parameters.

To ensure that applications with named parameters work correctly, regardless of
the data server type and version, before you use named parameter markers in your
applications, set the Connection or DataSource property
enableNamedParameterMarkers to DB2BaseDataSource. YES.

To use named parameter markers with CallableStatement objects, follow these
steps.

1. Execute the Connection.prepareCall method on an SQL statement string that
contains named parameter markers.

The named parameter markers must follow the rules for SQL host variable
names.

You cannot mix named parameter markers and standard parameter markers in
the same SQL statement string.

Named parameter markers are case-insensitive.

2. If you do not know the names of the named parameter markers in the CALL
statement, or the mode of the parameters (IN, OUT, or INOUT):

a. Call the CallableStatement.getParameterMetaData method to obtain a
ParameterMetaData object with information about the parameters.

b. Call the ParameterMetaData.getParameterMode method to retrieve the
parameter mode.

c. Cast the ParameterMetaData object to a DB2ParameterMetaData object.

Chapter 5. JDBC application programming 5-45

5-46

d. Call the DB2ParameterMetaData.getParameterMarkerNames method to
retrieve the parameter names.

3. For each named parameter marker that represents an OUT parameter, use a
DB2CallableStatement.registerJccOutParameter AtName method to register the
OUT parameter with a data type.

If you use the same named parameter marker more than once in the same SQL
statement string, you need to call a registerJccOutParameter AtName method for
that parameter marker only once. All parameters with the same name are
registered as the same data type.

Restriction: You cannot use standard JDBC
CallableStatement.registerOutParameter methods with named parameter
markers. Doing so causes an exception to be thrown.

4. For each named parameter marker for an input parameter, use a
DB2CallableStatement.setfJccXXXAtName method to assign a value to each
named input parameter.

setJccXXXAtName methods are inherited from DB2PreparedStatement.

If you use the same named parameter marker more than once in the same SQL
statement string, you need to call a setJccXXXAtName method for that
parameter marker only once.

Recommendation: Do not use the same named parameter marker more than
once in the same SQL statement string if the input to that parameter marker is
a stream. Doing so can cause unexpected results.

5. Execute the CallableStatement.

6. Call CallableStatement.getXXX methods or
DB2CallableStatement.getJccXXXAtName methods to retrieve output parameter
values.

The following code illustrates calling a stored procedure that has one input
VARCHAR parameter and one output INTEGER parameter, which are represented
by named parameter markers. The numbers to the right of selected statements
correspond to the previously described steps.

CallableStatement cstmt =
con.prepareCall("CALL MYSP(:inparm,:outparm)");
// Create a CallableStatement object [HJ
((com.ibm.db2.jcc.DB2CallableStatement)cstmt).
registerdccOutParameterAtName ("outparm", java.sql.Types.INTEGER);
// Register OUT parameter data type
((com.ibm.db2.jcc.DB2CallableStatement)cstmt).setdccStringAtName("inparm", "4567");
// Assign a value to inparm parameter

cstmt.executeUpdate(); // Call the stored procedure
int outssid = cstmt.getInt(2); // Get the output parameter value
cstmt.close();

Providing extended client information to the data source with
client info properties

The IBM Data Server Driver for JDBC and SQLJ version 4.0 supports JDBC 4.0
client info properties, which you can use to provide extra information about the
client to the server. This information can be used for accounting, workload
management, or debugging.

IBM Data Server Driver for JDBC and SQL]J for Informix

Extended client information is sent to the database server when the application
performs an action that accesses the server, such as executing SQL.

The application can also use the Connection.getClientInfo method to retrieve client
information from the database server, or execute the
DatabaseMetaData.getClientInfoProperties method to determine which client
information the driver supports.

The JDBC 4.0 client info properties should be used instead IBM Data Server Driver
for JDBC and SQLJ-only methods, which are deprecated.

To set client info properties, follow these steps:
1. Create a Connection.

2. Call the java.sql.Connection.setClientInfo method to set any of the client info
properties that the database server supports.

3. Execute an SQL statement to cause the information to be sent to the database
server.

The following code performs the previous steps to pass a client's user name and
host name to thelDS server. The numbers to the right of selected statements
correspond to the previously-described steps.

public class ClientInfoTest {
public static void main(String[] args) {
String url = "jdbc:ids://sysmvsl.st1.ibm.com:5021/san_jose";
try {
Class.forName("com.ibm.db2.jcc.DB2Driver");
String user = "db2adm";
String password = "db2adm";
Connection conn = DriverManager.getConnection(url,
user, password);
conn.setClientInfo("ClientUser", "Michael L Thompson"); H
conn.setClientInfo("ClientHostname, "sjwkstnl");
// Execute SQL to force extended client information to be sent
// to the server
conn.prepareStatement ("SELECT * FROM SYSIBM.SYSDUMMY1"
+ "WHERE 0 = 1").executeQuery();
} catch (Throwable e) {
e.printStackTrace();
1
}
1

Figure 5-18. Example of passing extended client information to alDS server

Client info properties support by the IBM Data Server Driver for
JDBC and SQLJ

JDBC 4.0 includes client info properties, which contain information about a
connection to a data source. The DatabaseMetaData.getClientInfoProperties method
returns a list of client info properties that the IBM Data Server Driver for JDBC
and SQL]J supports.

When you call DatabaseMetaData.getClientInfoProperties, a result set is returned
that contains the following columns:

* NAME

+ MAX_LEN

* DEFAULT_VALUE

* DESCRIPTION

Chapter 5. JDBC application programming 5-47

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQLJ returns for DB2 Database for Linux, UNIX, and

Windows and for DB2 for i.

Table 5-7. Client info property values for DB2 Database for Linux, UNIX, and Windows and for DB2 for i

MAX_LEN
NAME (bytes) DEFAULT_VALUE

DESCRIPTION

ApplicationName 255 Empty string

The name of the application
that is currently using the
connection. This value is stored
in DB2 special register
CURRENT
CLIENT_APPLNAME.

ClientAccountingInformation 255 Empty string

The value of the accounting
string from the client
information that is specified for
the connection. This value is
stored in DB2 special register
CURRENT CLIENT_ACCTNG.

ClientHostname 255 The value that is set by

The host name of the computer

DB2Connection.setDB2ClientWorkstation. If ~ on which the application that is

the value is not set, the default is the host

name of the local host.

using the connection is running.
This value is stored in DB2
special register CURRENT
CLIENT_WRKSTNNAME.

ClientUser 255 Empty string

The name of the user on whose
behalf the application that is
using the connection is running.
This value is stored in DB2
special register CURRENT
CLIENT_USERID.

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQL]J returns for DB2 for z/OS when the connection uses

type 4 connectivity.
Table 5-8. Client info property values for type 4 connectivity to DB2 for z/OS

MAX_LEN
NAME (bytes) DEFAULT_VALUE DESCRIPTION
ApplicationName 32 clientProgramName property value, if set. The name of the application that is
"db2jcc_application” otherwise. currently using the connection. This
value is stored in DB2 special
register CURRENT
CLIENT_APPLNAME.
ClientAccountingInformation 200 A string that is the concatenation of the The value of the accounting string
following values: from the client information that is
e "JCCnnnnn", where nnnnn is the driver specified for the connection. This
level, such as 04000. value is stored in DB2 special
* The value that is set by register CURRENT
DB2Connection.setDB2ClientWorkstation. CLIENT_ACCTNG.
If the value is not set, the default is the
host name of the local host.
* applicationName property value, if set. 20
blanks otherwise.
* clientUser property value, if set. Eight
blanks otherwise.
ClientHostname 18 The value that is set by The host name of the computer on

DB2Connection.setDB2ClientWorkstation. If
the value is not set, the default is the host
name of the local host.

which the application that is using
the connection is running. This
value is stored in DB2 special
register CURRENT
CLIENT_WRKSTNNAME.

5-48 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 5-8. Client info property values for type 4 connectivity to DB2 for z/OS (continued)

MAX_LEN
NAME (bytes) DEFAULT_VALUE DESCRIPTION
ClientUser 16 The value that is set by The name of the user on whose

DB2Connection.setDB2ClientUser. If the
value is not set, the default is the current
user ID that is used to connect to the

database.

behalf the application that is using
the connection is running. This
value is stored in DB2 special
register CURRENT
CLIENT_USERID.

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQLJ returns for DB2 for z/OS when the connection uses
type 2 connectivity.

Table 5-9. Client info property values for type 2 connectivity to DB2 for z/OS

NAME

MAX_LEN
(bytes) DEFAULT_VALUE

DESCRIPTION

ApplicationName

32 Empty string

The name of the application that is currently
using the connection. This value is stored in
DB?2 special register CURRENT
CLIENT_APPLNAME.

ClientAccountingInformation

200 Empty string

The value of the accounting string from the
client information that is specified for the
connection. This value is stored in DB2
special register CURRENT
CLIENT_ACCTNG.

ClientHostname

18 Empty string

The host name of the computer on which
the application that is using the connection
is running. This value is stored in DB2
special register CURRENT
CLIENT_WRKSTNNAME.

ClientUser

16 Empty string

The name of the user on whose behalf the
application that is using the connection is
running. This value is stored in DB2 special
register CURRENT CLIENT_USERID.

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQLJ returns for IBM Informix

Table 5-10. Client info property values for IBM Informix

MAX_LEN
NAME (bytes) DEFAULT_VALUE DESCRIPTION
ApplicationName 20 Empty string The name of the application
that is currently using the
connection.
ClientAccountingInformation 199 Empty string The value of the accounting
string from the client
information that is specified for
the connection.
ClientHostname 20 The value that is set by The host name of the computer
DB2Connection.setDB2ClientWorkstation. If ~ on which the application that is
the value is not set, the default is the host using the connection is
name of the local host. running.
ClientUser 1024 Empty string The name of the user on whose

behalf the application that is
using the connection is
running.

Chapter 5. JDBC application programming 5-49

Transaction control in JDBC applications

In JDBC applications, as in other types of SQL applications, transaction control
involves explicitly or implicitly committing and rolling back transactions, and
setting the isolation level for transactions.

IBM Data Server Driver for JDBC and SQLJ isolation levels

The IBM Data Server Driver for JDBC and SQL] supports a number of isolation
levels, which correspond to database server isolation levels.

JDBC isolation levels can be set for a unit of work within a JDBC program, using
the Connection.setTransactionlsolation method. The default isolation level can be
set with the defaultlsolationLevel property.

The following table shows the values of level that you can specify in the
Connection.setTransactionIsolation method and their DB2 database server
equivalents.

Table 5-11. Equivalent JDBC and DB2 isolation levels

JDBC value DB2 isolation level
java.sql.Connection. TRANSACTION_SERIALIZABLE Repeatable read
java.sql.Connection. TRANSACTION_REPEATABLE_READ Read stability
java.sql.Connection. TRANSACTION_READ_COMMITTED Cursor stability
java.sql.Connection. TRANSACTION_READ_UNCOMMITTED Uncommitted read

The following table shows the values of level that you can specify in the
Connection.setTransactionIsolation method and their IBM Informix equivalents.

Table 5-12. Equivalent JDBC and IBM Informix isolation levels

JDBC value IBM Informix isolation level
java.sql.Connection. TRANSACTION_SERIALIZABLE Repeatable read
java.sql.Connection. TRANSACTION_REPEATABLE_READ Repeatable read
java.sql.Connection. TRANSACTION_READ_COMMITTED Committed read
java.sql.Connection. TRANSACTION_READ_UNCOMMITTED Dirty read

com.ibm.db2.jcc. DB2Connection. TRANSACTION_IDS_CURSOR_STABILITY IBM Informix cursor stability
com.ibm.db2.jec. DB2Connection. TRANSACTION_IDS_LAST_COMMITTED Committed read, last committed

Committing or rolling back JDBC transactions

In JDBC, to commit or roll back transactions explicitly, use the commit or rollback
methods.

For example:

Connection con;
con.commit();

If autocommit mode is on, the database manager performs a commit operation
after every SQL statement completes. To set autocommit mode on, invoke the
Connection.setAutoCommit(true) method. To set autocommit mode off, invoke the

5-50 IBM Data Server Driver for JDBC and SQLJ for Informix

Connection.setAutoCommit(false) method. To determine whether autocommit
mode is on, invoke the Connection.getAutoCommit method.

Connections that participate in distributed transactions cannot invoke the
setAutoCommit(true) method.

When you change the autocommit state, the database manager executes a commit
operation, if the application is not already on a transaction boundary.

While a connection is participating in a distributed transaction, the associated
application cannot issue the commit or rollback methods.

Default JDBC autocommit modes

The default autocommit mode depends on the data source to which the JDBC
application connects.

Autocommit default for DB2 data sources
For connections to DB2 data sources, the default autocommit mode is true.
Autocommit default for IBM Informix data sources

For connections to IBM Informix data sources, the default autocommit mode
depends on the type of data source. The following table shows the defaults.

Table 5-13. Default autocommit modes for IBM Informix data sources

Default autocommit mode for local ~ Default autocommit mode for global

Type of data source transactions transactions
ANSI-compliant database true false
Non-ANSI-compliant database false not applicable
without logging

Non-ANSI-compliant database with ~ true false

logging

Exceptions and warnings under the IBM Data Server Driver for JDBC

and SQLJ

In JDBC applications, SQL errors throw exceptions, which you handle using
try/catch blocks. SQL warnings do not throw exceptions, so you need to invoke
methods to check whether warnings occurred after you execute SQL statements.

The IBM Data Server Driver for JDBC and SQL]J provides the following classes and
interfaces, which provide information about errors and warnings.

SQLEXxception

The SQLException class for handling errors. All JDBC methods throw an instance
of SQLException when an error occurs during their execution. According to the
JDBC specification, an SQLException object contains the following information:

* An int value that contains an error code. SQLException.getErrorCode retrieves
this value.

* A String object that contains the SQLSTATE, or null. SQLException.getSQLState
retrieves this value.

Chapter 5. JDBC application programming 5-51

5-52

* A String object that contains a description of the error, or null.
SQLException.getMessage retrieves this value.

* A pointer to the next SQLException, or null. SQLException.getNextException
retrieves this value.

When a JDBC method throws a single SQLException, that SQLException might be
caused by an underlying Java exception that occurred when the IBM Data Server
Driver for JDBC and SQL]J processed the method. In this case, the SQLException
wraps the underlying exception, and you can use the SQLException.getCause
method to retrieve information about the error.

DB2Diagnosable

The IBM Data Server Driver for JDBC and SQLJ-only interface
com.ibm.db2.jec.DB2Diagnosable extends the SQLException class. The
DB2Diagnosable interface gives you more information about errors that occur
when the data source is accessed. If the JDBC driver detects an error,
DB2Diagnosable gives you the same information as the standard SQLException
class. However, if the database server detects the error, DB2Diagnosable adds the
following methods, which give you additional information about the error:

getSqlca
Returns an DB2Sqlca object with the following information:
* An SQL error code
* The SQLERRMC values
* The SQLERRP value
* The SQLERRD values
* The SQLWARN values
* The SQLSTATE

getThrowable
Returns a java.lang.Throwable object that caused the SQLException, or null, if
no such object exists.

printTrace
Prints diagnostic information.

SQLException subclasses

If you are using JDBC 4.0 or later, you can obtain more specific information than
an SQLException provides by catching the following exception classes:

* SQLNonTransientException

An SQLNonTransientException is thrown when an SQL operation that failed
previously cannot succeed when the operation is retried, unless some corrective
action is taken. The SQLNonTransientException class has these subclasses:

— SQLFeatureNotSupportedException

— SQLNonTransientConnectionException

— SQLDataException

- SQLIntegrityConstraintViolationException

— SQLInvalidAuthorizationSpecException

— SQLSyntaxException

* SQLTransientException
An SQLTransientException is thrown when an SQL operation that failed
previously might succeed when the operation is retried, without intervention
from the application. A connection is still valid after an SQLTransientException is
thrown. The SQLTransientException class has these subclasses:

IBM Data Server Driver for JDBC and SQL]J for Informix

— SQLTransientConnectionException
— SQLTransientRollbackException
- SQLTimeoutException

* SQLRecoverableException
An SQLRecoverableException is thrown when an operation that failed
previously might succeed if the application performs some recovery steps, and
retries the transaction. A connection is no longer valid after an
SQLRecoverableException is thrown.

* SQLClientInfoException
A SQLClientInfoException is thrown by the Connection.setClientInfo method

when one or more client properties cannot be set. The SQLClientInfoException
indicates which properties cannot be set.

SQLWarning

The IBM Data Server Driver for JDBC and SQL] accumulates warnings when SQL
statements return positive SQLCODEs, and when SQL statements return 0
SQLCODESs with non-zero SQLSTATEs.

Calling getWarnings retrieves an SQLWarning object.

Important: When a call to Statement.executeUpdate or
PreparedStatement.executeUpdate affects no rows, the IBM Data Server Driver for
JDBC and SQL] generates an SQLWarning with error code +100.

When a call to ResultSet.next returns no rows, the IBM Data Server Driver for
JDBC and SQLJ does not generate an SQLWarning.

A generic SQLWarning object contains the following information:

* A String object that contains a description of the warning, or null
* A String object that contains the SQLSTATE, or null

* An int value that contains an error code

* A pointer to the next SQLWarning, or null

Under the IBM Data Server Driver for JDBC and SQL]J, like an SQLException
object, an SQLWarning object can also contain IDS-specific information. The
IDS-specific information for an SQLWarning object is the same as the IDS-specific
information for an SQLException object.

Handling an SQLException under the IBM Data Server Driver
for JDBC and SQLJ

As in all Java programs, error handling for JDBC applications is done using
try/catch blocks. Methods throw exceptions when an error occurs, and the code in
the catch block handles those exceptions.

The basic steps for handling an SQLException in a JDBC program that runs under

the IBM Data Server Driver for JDBC and SQL]J are:

1. Give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface and
the com.ibm.db2.jcc.DB25Sqlca class. You can fully qualify all references to them,
or you can import them:

import com.ibm.db2.jcc.DB2Diagnosable;
import com.ibm.db2.jcc.DB2Sqlca;

Chapter 5. JDBC application programming ~ 5-53

2. Optional: During a connection to a data server, set the
retrieveMessagesFromServerOnGetMessage property to true if you want full
message text from an SQLException.getMessage call.

3. Optional: During a IBM Data Server Driver for JDBC and SQL]J type 2
connectivity connection to a DB2 for z/OS data source, set the
extendedDiagnosticLevel property to EXTENDED_DIAG_MESSAGE_TEXT (241) if you
want extended diagnostic information similar to the information that is
provided by the SQL GET DIAGNOSTICS statement from an
SQLException.getMessage call.

4. Put code that can generate an SQLException in a try block.
5. In the catch block, perform the following steps in a loop:

a. Test whether you have retrieved the last SQLException. If not, continue to
the next step.

b. Optional: For an SQL statement that executes on an IBM Informix data
source, execute the
com.ibm.db2 jec. DB2Statement.getIDSSQLStatementOffSet method to
determine which columns have syntax errors.

DB2Statement.getIDSSQLStatementOffSet returns the offset into the SQL
statement of the first syntax error.

c. Optional: For an SQL statement that executes on an IBM Informix data
source, execute the SQLException.getCause method to retrieve any ISAM
erTor messages.

1) If the Throwable that is returned by SQLException.getCause is not null,
perform one of the following sets of steps:

* Issue SQLException.printStackTrace to print an error message that
includes the ISAM error message text. The ISAM error message text is
preceded by the string "Caused by:".

* Retrieve the error code and message text for the ISAM message:

a) Test whether the Throwable is an instance of an SQLException. If
so, retrieve the SQL error code from that SQLException.

b) Execute the Throwable.getMessage method to retrieve the text of
the ISAM message.

d. Check whether any IBM Data Server Driver for JDBC and SQLJ-only
information exists by testing whether the SQLException is an instance of
DB2Diagnosable. If so:

1) Cast the object to a DB2Diagnosable object.

2) Optional: Invoke the DB2Diagnosable.printTrace method to write all
SQLException information to a java.io.PrintWriter object.

3) Invoke the DB2Diagnosable.getThrowable method to determine
whether an underlying java.lang.Throwable caused the SQLException.

4) Invoke the DB2Diagnosable.getSqlca method to retrieve the DB2Sqlca
object.

5) Invoke the DB25qlca.getSqlCode method to retrieve an SQL error code
value.

6) Invoke the DB2Sqlca.getSqlErrmc method to retrieve a string that
contains all SQLERRMC values, or invoke the
DB2Sqlca.getSqlErrmcTokens method to retrieve the SQLERRMC
values in an array.

7) Invoke the DB25qlca.getSqlErrp method to retrieve the SQLERRP
value.

5-54 IBM Data Server Driver for JDBC and SQLJ for Informix

e.

8) Invoke the DB2Sqlca.getSqlErrd method to retrieve the SQLERRD
values in an array.

9) Invoke the DB2Sqlca.getSqlWarn method to retrieve the SQLWARN
values in an array.
10) Invoke the DB2Sqlca.getSqlState method to retrieve the SQLSTATE
value.
11) Invoke the DB2Sqlca.getMessage method to retrieve error message text
from the data source.

Invoke the SQLException.getNextException method to retrieve the next
SQLException.

The following code demonstrates how to obtain IBM Data Server Driver for JDBC
and SQLJ-specific information from an SQLException that is provided with the
IBM Data Server Driver for JDBC and SQLJ. The numbers to the right of selected
statements correspond to the previously-described steps.

Figure 5-19. Processing an SQLException under the IBM Data Server Driver for JDBC and

SQLJ
import java.sql.=; // Import JDBC API package
import com.ibm.db2.jcc.DB2Diagnosable; // Import packages for DB2
import com.ibm.db2.jcc.DB2Sqlca; // SQLException support
java.io.PrintWriter printWriter; // For dumping all SQLException

// information
String url = "jdbc:ids://myhost:9999/myDB:" + 2

"retrieveMessagesFromServerOnGetMessage=true;";

// Set properties to retrieve full message
/] text

String user = "db2adm";

String password = "db2adm";

java.sql.Connection con =
java.sql.DriverManager.getConnection (url, user, password)

try {

// Connect to a DB2 for z/0S data source

// Code that could generate SQLExceptions

} catch(SQLException sqle) {
while(sqle != null) { // Check whether there are more [HY

// SQLExceptions to process
==> Optional IBM Data Server Driver for JDBC and SQLJ-only

// error processing

if (sqle instanceof DB2Diagnosable) { Hl
// Check if IBM Data Server Driver for JDBC and SQLJ-only
// information exists

com.ibm.db2.jcc.DB2Diagnosable diagnosable =

(com.ibm.db2.jcc.DB2Diagnosable)sqle; 5d1
diagnosable.printTrace (printWriter, ""); 5d2
java.lang.Throwable throwable =

diagnosable.getThrowable(); 5d3

if (throwable != null) {
// Extract java.lang.Throwable information
// such as message or stack trace.

.

DB2Sqlca sqlca = diagnosable.getSqlca(); [5d4 |
// Get DB2Sqlca object
if (sqlca != null) { // Check that DB2Sqlca is not null

int sqlCode = sqlca.getSqlCode(); // Get the SQL error code
String sqlErrmc = sqlca.getSqlErrmc();

Chapter 5. JDBC application programming ~ 5-55

// Get the entire SQLERRMC
String[] sqlErrmcTokens = sqlca.getSqlErrmcTokens();

// You can also retrieve the

// individual SQLERRMC tokens
String sqlErrp = sqlca.getSqlErrp(); 5d7

// Get the SQLERRP
int[] sqlErrd = sqlca.getSqlErrd();

// Get SQLERRD fields
char[] sqlWarn = sqlca.getSqlWarn();

// Get SQLWARN fields
String sqlState = sqlca.getSqlState();

// Get SQLSTATE
String errMessage = sqlca.getMessage(); 5d11

// Get error message

o
o
=
o

System.err.printin ("Server error message: " + errMessage);

System.err.printin ("----c--ceeaau-- SQLCA —-mmmmmmmeeeee ")
System.err.printin ("Error code: " + sqlCode);
System.err.printin ("SQLERRMC: " + sqlErrmc);
If (sqlErrmcTokens != null) {
for (int i=0; i< sqlErrmcTokens.length; i++) {
System.err.printin (" token " + i + ": " + sqlErrmcTokens[i]);
1

}
System.err.printin ("SQLERRP: " + sqlErrp);
System.err.printin (

"SQLERRD(1): " + sqlErrd[0] + "\n" +
"SQLERRD(2): " + sqlErrd[1] + "\n" +
"SQLERRD(3): " + sqlErrd[2] + "\n" +
"SQLERRD(4): " + sqlErrd[3] + "\n" +
"SQLERRD(5): " + sqlErrd[4] + "\n" +
"SQLERRD(6): " + sqlErrd[5]);
System.err. pr1nt1n (

"SQLWARN1: " + sqlWarn[0] + "\n" +
"SQLWARN2: " + sqglWarn[1] + "\n" +
"SQLWARN3: " + sqglWarn[2] + "\n" +
"SQLWARN4: " + sqlWarn[3] + "\n" +
"SQLWARNS5: " + sqglWarn[4] + "\n" +
"SQLWARN6: " + sqlWarn[5] + "\n" +
"SQLWARN7: " + sqlWarn[6] + "\n" +
"SQLWARN8: " + sqglWarn[7] + "\n" +
"SQLWARN9: " + sqlWarn[8] + "\n" +

"SQLWARNA: " + sqlWarn[9]);
System.err.printin ("SQLSTATE: " + sqlState);
// portion of SQLException

}
sqle=sqle.getNextException(); // Retrieve next SQLException 5e |
1
}

The following code demonstrates how to obtain the location of a syntax error in an
SQL statement from an SQLException.

Statement stmt=null;

try {

stmt = con.createStatement();

stmt.execute("select * fro tabl");
// This statement has a syntax error
// at offset 10

}

catch(SQLException e)

{

5-56 IBM Data Server Driver for JDBC and SQLJ for Informix

}

System.out.printin ("Error offset :"+
((DB2Statement) stmt).getIDSSQLStatementOffSet());
// This code prints Error offset : 10

The following code demonstrates how to obtain the ISAM error text from an
SQLException.

try

{

// Execute an SQL statement

catch (SQLException e)

{

}

SQLException eNext = e;
while (eNext != null) {
System.out.printIn("SQLCODE: "
+ eNext.getErrorCode()
+ " " 4+ eNext.getMessage()); // Get the error code and message
// text from the SQLException
Throwable cause = eNext.getCause(); // Get Throwable with ISAM text
if (cause != null) {
if (cause instanceof SQLException)
System.out.print("SQLCODE: "
+ ((SQLException) cause).getErrorCode() + " ");
// If the Throwable is an SQLException,
// get the error code
System.out.printIn(cause.getMessage());
// Get the ISAM message text
}

}
eNext = eNext.getNextException();

Handling an SQLWarning under the IBM Data Server Driver for
JDBC and SQLJ

Unlike SQL errors, SQL warnings do not cause JDBC methods to throw exceptions.
Instead, the Connection, Statement, PreparedStatement, CallableStatement, and
ResultSet classes contain getWarnings methods, which you need to invoke after
you execute SQL statements to determine whether any SQL warnings were
generated.

The basic steps for retrieving SQL warning information are:

1.

Optional: During connection to the database server, set properties that affect
SQLWarning objects.

If you want full message text from a data server when you execute
SQLWarning.getMessage calls, set the
retrieveMessagesFromServerOnGetMessage property to true.

If you are using IBM Data Server Driver for JDBC and SQLJ type 2 connectivity
to a DB2 for z/OS data source, and you want extended diagnostic information
that is similar to the information that is provided by the SQL GET
DIAGNOSTICS statement when you execute SQLWarning.getMessage calls, set
the extendedDiagnosticLevel property to EXTENDED_DIAG_MESSAGE_TEXT (241).

Immediately after invoking a method that connects to a database server or
executes an SQL statement, invoke the getWarnings method to retrieve an
SQLWarning object.

3. Perform the following steps in a loop:

a. Test whether the SQLWarning object is null. If not, continue to the next step.

Chapter 5. JDBC application programming 5-57

5-58

b. Invoke the SQLWarning.getMessage method to retrieve the warning
description.

c. Invoke the SQLWarning.getSQLState method to retrieve the SQLSTATE
value.

d. Invoke the SQLWarning.getErrorCode method to retrieve the error code
value.

e. If you want IDS-specific warning information, perform the same steps that
you perform to get IDS-specific information for an SQLException.

f. Invoke the SQLWarning.getNextWarning method to retrieve the next
SQLWarning.

The following code illustrates how to obtain generic SQLWarning information. The
numbers to the right of selected statements correspond to the previously-described
steps.

String url = "jdbc:ids://myhost:9999/informixdb:" +
"retrieveMessagesFromServerOnGetMessage=true;";
// Set properties to retrieve full message
/] text
String user = "idsadm";
String password = "idsadm";
java.sql.Connection con =
java.sql.DriverManager.getConnection (url, user, password)
// Connect to an Informix data source
SQLWarning warn = con.getWarnings();
while (warn != null) {
System.out.printin(" SQLMESSAGE : " + warn.getMessage ());
warn = warn.getNextWarning();

Statement stmt;
ResultSet rs;
SQLWarning sqlwarn;

stmt = con.createStatement(); // Create a Statement object
rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");
// Get the result table from the query
sqlwarn = stmt.getWarnings(); // Get any warnings generated E
while (sqlwarn != null) { // While there are warnings, get and
// print warning information
System.out.printin ("Warning description: " + sqlwarn.getMessage()); 3b

System.out.printin ("SQLSTATE: " + sqlwarn.getSQLState()); 3c
System.out.printin ("Error code: " + sqlwarn.getErrorCode()); 3d
sqlwarn=sqlwarn.getNextWarning(); // Get next SQLWarning 3f

}
Figure 5-20. Example of processing an SQLWarning

Retrieving information from a BatchUpdateException

When an error occurs during execution of a statement in a batch, processing
continues. However, executeBatch throws a BatchUpdateException.

To retrieve information from the BatchUpdateException, follow these steps:

1. Use the BatchUpdateException.getUpdateCounts method to determine the
number of rows that each SQL statement in the batch updated before the
exception was thrown.

getUpdateCount returns an array with an element for each statement in the
batch. An element has one of the following values:

n The number of rows that the statement updated.

IBM Data Server Driver for JDBC and SQL]J for Informix

Statement.SUCCESS_NO_INFO
This value is returned if the number of updated rows cannot be
determined. The number of updated rows cannot be determined if the
following conditions are true:

* The application is connected to a subsystem that is in DB2 for z/OS
Version 8 new-function mode, or later.

* The application is using Version 3.1 or later of the IBM Data Server
Driver for JDBC and SQL]J.

* The IBM Data Server Driver for JDBC and SQLJ uses multi-row
INSERT operations to execute batch updates.

Statement. EXECUTE_FAILED
This value is returned if the statement did not execute successfully.

2. If the batched statement can return automatically generated keys:

a. Cast the BatchUpdateException to a
com.ibm.db2.jcc.DBBatchUpdateException.

b. Call the DBBatchUpdateException.getDBGeneratedKeys method to retrieve
an array of ResultSet objects that contains the automatically generated keys
for each execution of the batched SQL statement.

c. Test whether each ResultSet in the array is null.
Each ResultSet contains:

* If the ResultSet is not null, it contains the automatically generated keys
for an execution of the batched SQL statement.

e If the ResultSet is null, execution of the batched statement failed.

3. Use SQLException methods getMessage, getSQLState, and getErrorCode to
retrieve the description of the error, the SQLSTATE, and the error code for the
first error.

4. Use the BatchUpdateException.getNextException method to get a chained
SQLException.

5. In a loop, execute the getMessage, getSQLState, getErrorCode, and
getNextException method calls to obtain information about an SQLException
and get the next SQLException.

The following code fragment demonstrates how to obtain the fields of a
BatchUpdateException and the chained SQLException objects for a batched
statement that returns automatically generated keys. The example assumes that
there is only one column in the automatically generated key, and that there is
always exactly one key value, whose data type is numeric. The numbers to the
right of selected statements correspond to the previously-described steps.
try {
// Batch updates
} catch(BatchUpdateException buex) {
System.err.printin("Contents of BatchUpdateException:");
System.err.printin(" Update counts: ");

int [] updateCounts = buex.getUpdateCounts();
for (int i = 0; i < updateCounts.length; i++) {
System.err.printin(" Statement " + i + ":" + updateCounts[i]);

ResultSet[] resultlList =
((DBBatchUpdateException)buex).getDBGeneratedKeys () ; 2|
for (i = 0; i < resultList.length; i++)
{
if (resultList[i] == null)
continue; // Skip the ResultSet for which there was a failure
else {
rs.next();

Chapter 5. JDBC application programming ~ 5-59

java.math.BigDecimal idColVar = rs.getBigDecimal(1);
// Get automatically generated key
// value
System.out.printin("Automatically generated key value = " + idColVar);
}
1
System.err.printin(" Message: " + buex.getMessage());
System.err.printIn(" SQLSTATE: " + buex.getSQLState());
System.err.printin(" Error code: " + buex.getErrorCode());
SQLException ex = buex.getNextException();
while (ex != null) {
System.err.printin("SQL exception:");
System.err.printin(" Message: " + ex.getMessage());
System.err.printin(" SQLSTATE: " + ex.getSQLState());
System.err.printIn(" Error code: " + ex.getErrorCode());
ex = ex.getNextException();

Disconnecting from data sources in JDBC applications

When you have finished with a connection to a data source, it is essential that you
close the connection to the data source. Doing this releases the Connection object's
database and JDBC resources immediately.

To close the connection to the data source, use the close method. For example:

Connection con;
con.close();
For a connection to a DB2 data source, if autocommit mode is not on, the

connection needs to be on a unit-of-work boundary before you close the
connection.

For a connection to an IBM Informix database, if the database supports logging,

and autocommit mode is not on, the connection needs to be on a unit-of-work
boundary before you close the connection.

5-60 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 6. SQLJ application programming

Writing an SQLJ application has much in common with writing an SQL application

in any other language.

In general, you need to do the following things:

* Import the Java packages that contain SQLJ and JDBC methods.

¢ Declare variables for sending data to or retrieving data from IDS tables.

* Connect to a data source.

e Execute SQL statements.

¢ Handle SQL errors and warnings.
* Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other
languages, the way that you execute those tasks, and the order in which you

execute those tasks, is somewhat different.

Example of a simple SQLJ application

A simple SQLJ application demonstrates the basic elements that JDBC applications

need to include.

Figure 6-1. Simple SQLJ application

import sqlj.runtime.x*;
import java.sql.=;

#sql context EzSqljCtx;
#sql iterator EzSqljNamelter (String LASTNAME);

public class EzSqlj {

public static void main(String args[])
throws SQLException

{
EzSq1jCtx ctx = null;
String URLprefix = "jdbc:ids:";
String url;
url = new String(URLprefix + args[0]);

=

4a

// Location name is an input parameter

String hvmgr="000010";

String hvdeptno="A00";

try {
Class.forName("com.ibm.db2.jcc.DB2Driver");

} catch (Exception e)

{

throw new SQLException("Error in EzSqlj: Could not load the driver");

try
{

System.out.printin("About to connect using url: " + url);

Connection con® = DriverManager.getConnection(url);

// Create a JDBC Connection

con0.setAutoCommit(false); // set autocommit OFF

ctx = new EzSql1jCtx(con@);

try
{

© Copyright IBM Corp. 2007, 2011

6-1

EzSqljNamelter iter;
int count=0;

#sql [ctx] iter =
{SELECT LASTNAME FROM EMPLOYEE};
// Create result table of the SELECT
while (iter.next()) {
System.out.printIn(iter.LASTNAME());
// Retrieve rows from result table
count++;

}

System.out.printin("Retrieved " + count + " rows of data");

iter.close(); // Close the iterator
}
catch(SQLException e) B
{
System.out.printin ("*%%% SELECT SQLException...");
while(e!=null) {
System.out.printin ("Error msg: " + e.getMessage());
System.out.printin ("SQLSTATE: " + e.getSQLState());
System.out.printin ("Error code: " + e.getErrorCode());
e = e.getNextException(); // Check for chained exceptions
1
}
catch(Exception e)
{
System.out.printIn("*x++* NON-SQL exception =" + e);
e.printStackTrace();
1
try
{
#sql [ctx] 4d]|
{UPDATE DEPARTMENT SET MGRNO=:hvmgr
WHERE DEPTNO=:hvdeptno}; // Update data for one department
#sql [ctx] {COMMIT}; // Commit the update
catch(SQLException e)
{
System.out.printin ("x%%* UPDATE SQLException...");
System.out.printin ("Error msg: " + e.getMessage() + ". SQLSTATE=" +
e.getSQLState() + " Error code=" + e.getErrorCode());
e.printStackTrace();
1
catch(Exception e)
{
System.out.printIn("*xx* NON-SQL exception =" + e);
e.printStackTrace();
1
ctx.close();

}
catch(SQLException e)

{
System.out.printin ("##% SQLException ...");
System.out.printin ("Error msg: " + e.getMessage() + ". SQLSTATE=" +
e.getSQLState() + " Error code=" + e.getErrorCode());
e.printStackTrace();
}

catch(Exception e)

System.out.println ("xx*x NON-SQL exception = " + e);
e.printStackTrace();
}

}

Notes to [Figure 6-1 on page 6-1

6-2 IBM Data Server Driver for JDBC and SQLJ for Informix

Note

3a, 3b, 3¢,
and 3d

4a , 4b, 4c,
and 4d

Description

These statements import the java.sql package, which contains the JDBC core
API, and the sqlj.runtime package, which contains the SQL] APIL For
information on other packages or classes that you might need to access, see
"Java packages for SQL]J support".

String variables hvmgr and hvdeptno are host identifiers, which are equivalent
to IDS host variables. See "Variables in SQL]J applications" for more information.
These statements demonstrate how to connect to a data source using one of the
three available techniques. See "Connecting to a data source using SQLJ" for
more details.

Step 3b (loading the JDBC driver) is not necessary if you use JDBC 4.0.

These statements demonstrate how to execute SQL statements in SQLJ.
Statement 4a demonstrates the SQL] equivalent of declaring an SQL cursor.
Statements 4b and 4c show one way of doing the SQL]J equivalent of executing
an SQL OPEN CURSOR and SQL FETCHes. Statement 4d shows how to do the
SQLJ equivalent of performing an SQL UPDATE. For more information, see
"SQL statements in an SQLJ application”.

This try/catch block demonstrates the use of the SQLException class for SQL
error handling. For more information on handling SQL errors, see "Handling
SQL errors in an SQL]J application”. For more information on handling SQL
warnings, see "Handling SQL warnings in an SQL]J application”.

This is an example of a comment. For rules on including comments in SQL]J
programs, see "Comments in an SQL]J application".

This statement closes the connection to the data source. See "Closing the
connection to the data source in an SQL]J application".

Connecting to a data source using SQLJ

In an SQLJ application, as in any other IDS application, you must be connected to
a data source before you can execute SQL statements.

You can use one five techniques to connect to a data source in an SQLJ program.
Two use the JDBC DriverManager interface, two use the JDBC DataSource
interface, and one uses a previously created connection context. Connections to
IBM Informix must use IBM Data Server Driver for JDBC and SQLJ type 4
connectivity.

SQLJ connection technique 1: JDBC DriverManager interface

SQLJ connection technique 1 uses the JDBC DriverManager interface as the
underlying means for creating the connection.

To use SQLJ connection technique 1, follow these steps:

1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the
connection declaration clause is:

#sql context context-class-name;

The name of the generated connection context class is context-class-name.
2. Load a JDBC driver by invoking the Class.forName method.
* Class.forName this way:

Class.forName("com.ibm.db2.jcc.DB2Driver");

This step is unnecessary if you use the JDBC 4.0 driver.

Chapter 6. SQLJ application programming ~ 6-3

6-4

3. Invoke the constructor for the connection context class that you created in step

Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in one of the following forms:

connection-context-class connection-context-object=
new connection-context-class(String url, boolean autocommit);

connection-context-class connection-context-object=
new connection-context-class(String url, String user,
String password, boolean autocommit);
connection-context-class connection-context-object=
new connection-context-class(String url, Properties info,
boolean autocommit);

The meanings of the parameters are:

url
A string that specifies the location name that is associated with the data
source. That argument has one of the forms that are specified in "Connect
to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ". The form depends on which JDBC
driver you are using.

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

info
Specifies an object of type java.util.Properties that contains a set of driver
properties for the connection. For the IBM Data Server Driver for JDBC and
SQLJ, you can specify any of the properties listed in "Properties for the IBM
Data Server Driver for JDBC and SQL]J".

autocommit
Specifies whether you want the database manager to issue a COMMIT after
every statement. Possible values are true or false. If you specify false,
you need to do explicit commit operations.

The following code uses connection technique 1 to create a connection to location
NEWYORK. The connection requires a user ID and password, and does not require
autocommit. The numbers to the right of selected statements correspond to the
previously-described steps.

IBM Data Server Driver for JDBC and SQL]J for Informix

#sql context Ctx; // Create connection context class Ctx

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

try { // Load the JDBC driver
Class.forName("com.ibm.db2.jcc.DB2Driver"); 2]

1
catch (ClassNotFoundException e) {
e.printStackTrace();

}

Ctx myConnCtx=
new Ctx("jdbc:ids://sysmvsl.st1.ibm.com:5021/NEWYORK",
userid,password,false); // Create connection context object myConnCtx

// for the connection to NEWYORK
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO='000010"'};
// Use myConnCtx for executing an SQL statement

Figure 6-2. Using connection technique 1 to connect to a data source

SQLJ connection technique 2: JDBC DriverManager interface

SQLJ connection technique 2 uses the JDBC DriverManager interface as the
underlying means for creating the connection.

To use SQLJ connection technique 2, follow these steps:
1. Execute an SQL]J connection declaration clause.

Doing this generates a connection context class. The simplest form of the
connection declaration clause is:

#sql context context-class-name;

The name of the generated connection context class is context-class-name.
2. Load a JDBC driver by invoking the Class.forName method.
* Class.forName this way:
Class.forName("com.ibm.db2.jcc.DB2Driver");
This step is unnecessary if you use the JDBC 4.0 driver.
3. Invoke the JDBC DriverManager.getConnection method.
Doing this creates a JDBC connection object for the connection to the data
source. You can use any of the forms of getConnection that are specified in

"Connect to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQL]J".

The meanings of the url, user, and password parameters are:

url
A string that specifies the location name that is associated with the data
source. That argument has one of the forms that are specified in "Connect
to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ". The form depends on which JDBC
driver you are using.

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

4. Invoke the constructor for the connection context class that you created in step

Chapter 6. SQLJ application programming ~ 6-5

Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in the following form:
connection-context-class connection-context-object=

new connection-context-class(Connection JDBC-connection-object);
The JDBC-connection-object parameter is the Connection object that you created
in step

The following code uses connection technique 2 to create a connection to location
NEWYORK. The connection requires a user ID and password, and does not require
autocommit. The numbers to the right of selected statements correspond to the
previously-described steps.

#sql context Ctx; // Create connection context class Ctx

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

try { // Load the JDBC driver
Class.forName("com.ibm.db2.jcc.DB2Driver"); 2]

}

catch (ClassNotFoundException e) {
e.printStackTrace();

1

Connection jdbccon=
DriverManager.getConnection("jdbc:ids://sysmvsl.st1.ibm.com:5021/NEWYORK",
userid,password);
// Create JDBC connection object jdbccon
jdbccon.setAutoCommit(false); // Do not autocommit
Ctx myConnCtx=new Ctx(jdbccon);
// Create connection context object myConnCtx
// for the connection to NEWYORK
#sq1 [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO='000010"'};
// Use myConnCtx for executing an SQL statement

Figure 6-3. Using connection technique 2 to connect to a data source

SQLJ connection technique 3: JDBC DataSource interface

SQLJ connection technique 3 uses the JDBC DataSource as the underlying means
for creating the connection.

To use SQLJ connection technique 3, follow these steps:
1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the
connection declaration clause is:

#sql context context-class-name;

The name of the generated connection context class is context-class-name.

2. If your system administrator created a DataSource object in a different
program, follow these steps. Otherwise, create a DataSource object and assign
properties to it.

a. Obtain the logical name of the data source to which you need to connect.
b. Create a context to use in the next step.

c. In your application program, use the Java Naming and Directory Interface
(JNDI) to get the DataSource object that is associated with the logical data
source name.

6-6 IBM Data Server Driver for JDBC and SQLJ for Informix

3. Invoke the JDBC DataSource.getConnection method.

Doing this creates a JDBC connection object for the connection to the data
source. You can use one of the following forms of getConnection:

getConnection();
getConnection(user, password);

The meanings of the user and password parameters are:

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

4. If the default autocommit mode is not appropriate, invoke the JDBC
Connection.setAutoCommit method.

Doing this indicates whether you want the database manager to issue a
COMMIIT after every statement. The form of this method is:

setAutoCommit (boolean autocommit);
5. Invoke the constructor for the connection context class that you created in step

Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in the following form:
connection-context-class connection-context-object=

new connection-context-class(Connection JDBC-connection-object);
The JDBC-connection-object parameter is the Connection object that you created
in step

The following code uses connection technique 3 to create a connection to a location
with logical name jdbc/sampledb. This example assumes that the system
administrator created and deployed a DataSource object that is available through
JNDI lookup. The numbers to the right of selected statements correspond to the
previously-described steps.

import java.sql.*;
import javax.naming.*;
import javax.sql.*;

#sql context CtxSqlj; // Create connection context class CtxSqlj
Context ctx=new InitialContext();

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

Connection con=ds.getConnection();

String empname; // Declare a host variable
con.setAutoCommit(false); // Do not autocommit E
CtxSqlj myConnCtx=new CtxSqlj(con);

// Create connection context object myConnCtx
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO='000010"};
// Use myConnCtx for executing an SQL statement

Figure 6-4. Using connection technique 3 to connect to a data source

SQLJ connection technique 4: JDBC DataSource interface

SQLJ connection technique 4 uses the JDBC DataSource as the underlying means
for creating the connection. This technique requires that the DataSource is
registered with JNDIL

To use SQLJ connection technique 4, follow these steps:

Chapter 6. SQL] application programming 6-7

6-8

1. From your system administrator, obtain the logical name of the data source to
which you need to connect.

2. Execute an SQLJ connection declaration clause.

For this type of connection, the connection declaration clause needs to be of
this form:

#sql public static context context-class-name
with (dataSource="logical-name");

The connection context must be declared as public and static. logical-name is the
data source name that you obtained in step |1}

3. Invoke the constructor for the connection context class that you created in step

Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in one of the following forms:

connection-context-class connection-context-object=
new connection-context-class();

connection-context-class connection-context-object=
new connection-context-class (String user,
String password);

The meanings of the user and password parameters are:

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

The following code uses connection technique 4 to create a connection to a location
with logical name jdbc/sampledb. The connection requires a user ID and password.

#sql public static context Ctx
with (dataSource="jdbc/sampledb");
// Create connection context class Ctx
String userid="dbadm"; // Declare variables for user ID and password
String password="dbadm";

String empname; // Declare a host variable

Ctx myConnCtx=new Ctx(userid, password);
// Create connection context object myConnCtx
// for the connection to jdbc/sampledb
#sq1 [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO='000010"'};
// Use myConnCtx for executing an SQL statement

Figure 6-5. Using connection technique 4 to connect to a data source

SQLJ connection technique 5: Use a previously created
connection context

SQLJ connection technique 5 uses a previously created connection context to
connect to the data source.

In general, one program declares a connection context class, creates connection
contexts, and passes them as parameters to other programs. A program that uses
the connection context invokes a constructor with the passed connection context
object as its argument.

Program CtxGen.sqlj declares connection context Ctx and creates instance oldCtx:

IBM Data Server Driver for JDBC and SQL]J for Informix

#sql context Ctx;

// Create connection context object oldCtx

Program test.sqlj receives oldCtx as a parameter and uses oldCtx as the argument
of its connection context constructor:

void useContext(sqlj.runtime.ConnectionContext oldCtx)
// oldCtx was created in CtxGen.sqlj
{

Ctx myConnCtx=
new Ctx(o1dCtx); // Create connection context object myConnCtx
// from oldCtx
#sq1 [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO='000010'};
// Use myConnCtx for executing an SQL statement

Java packages for SQLJ support

Before you can execute SQLJ statements or invoke JDBC methods in your SQLJ
program, you need to be able to access all or parts of various Java packages that
contain support for those statements.

You can do that either by importing the packages or specific classes, or by using
fully-qualified class names. You might need the following packages or classes for
your SQLJ program:

sqlj.runtime
Contains the SQLJ run-time API.

java.sql
Contains the core JDBC APIL

com.ibm.db2.jcc
Contains the driver-specific implementation of JDBC and SQLJ.

javax.naming
Contains methods for performing Java Naming and Directory Interface
(JNDI) lookup.

javax.sql
Contains methods for creating DataSource objects.

Variables in SQLJ applications

In IDS programs in other languages, you use host variables to pass data between
the application program and IDS. In SQL]J programs, In SQL] programs, you can
use host variables or host expressions.

A host expression begins with a colon (:). The colon is followed by an optional
parameter mode identifier (IN, OUT, or INOUT), which is followed by a
parenthesized expression clause.

Host variables and host expressions are case sensitive.

A complex expression is an array element or Java expression that evaluates to a

single value. A complex expression in an SQL]J clause must be surrounded by
parentheses.

Chapter 6. SQLJ application programming ~ 6-9

6-10

The following examples demonstrate how to use host expressions.
Example: Declaring a Java identifier and using it in a SELECT statement:

In this example, the statement that begins with #sq1 has the same function as a
SELECT statement in other languages. This statement assigns the last name of the
employee with employee number 000010 to Java identifier empname.

String empname;

#sql [ctxt]
{SELECT LASTNAME INTO :empname FROM EMPLOYEE WHERE EMPNO='000010'};

Example: Declaring a Java identifier and using it in a stored procedure call:

In this example, the statement that begins with #sql has the same function as an
SQL CALL statement in other languages. This statement uses Java identifier empno
as an input parameter to stored procedure A. The keyword IN, which precedes
empno, specifies that empno is an input parameter. For a parameter in a CALL
statement, IN is the default. The explicit or default qualifier that indicates how the
parameter is used (IN, OUT, or INOUT) must match the corresponding value in
the parameter definition that you specified in the CREATE PROCEDURE statement
for the stored procedure.

String empno = "0000010";

#sq] [ctxt] {CALL A (:IN empno)};
Example: Using a complex expression as a host identifier:

This example uses complex expression (((int)yearsEmployed++/5)*500) as a host
expression.

#sq1 [ctxt] {UPDATE EMPLOYEE
SET BONUS=:(((int)yearsEmployed++/5)*500) WHERE EMPNO=:empID};

SQLJ performs the following actions when it processes a complex host expression:

* Evaluates each of the host expressions in the statement, from left to right, before
assigning their respective values to the database.

 Evaluates side effects, such as operations with postfix operators, according to
normal Java rules. All host expressions are fully evaluated before any of their
values are passed to IDS.

* Uses Java rules for rounding and truncation.
Therefore, if the value of yearsEmployed is 6 before the UPDATE statement is
executed, the value that is assigned to column BONUS by the UPDATE statement

is ((int)6/5)*500, or 500. After 500 is assigned to BONUS, the value of
yearsEmployed is incremented.

Restrictions on variable names: Two strings have special meanings in SQL]J

programs. Observe the following restrictions when you use these strings in your

SQLJ programs:

* The string __s]JT_ is a reserved prefix for variable names that are generated by
SQLJ. Do not begin the following types of names with __s]JT_:

— Host expression names

— Java variable names that are declared in blocks that include executable SQL
statements

— Names of parameters for methods that contain executable SQL statements

IBM Data Server Driver for JDBC and SQL]J for Informix

— Names of fields in classes that contain executable SQL statements, or in
classes with subclasses or enclosed classes that contain executable SQL
statements

* The string _SJ is a reserved suffix for resource files and classes that are
generated by SQLJ. Avoid using the string _SJ in class names and input source
file names.

Indicator variables in SQLJ applications

In SQL]J programs, you can use indicator variables to pass the NULL value to or
from a data server, to pass the default value for a column to the data server, or to
indicate that a host variable value is unassigned.

A host variable or host expression can be followed by an indicator variable. An
indicator variable begins with a colon (:) and has the data type short. For input, an
indicator variable indicates whether the corresponding host variable or host
expression has the default value, a non-null value, the null value, or is unassigned.
An unassigned variable in an SQL statement yields the same results as if the
variable and its target column were not in the SQL statement. For output, the
indicator variable indicates where the corresponding host variable or host
expression has a non-null value or a null value.

In SQLJ programs, indicator variables that indicate a null value perform the same
function as assigning the Java null value to a table column. However, you need to
use an indicator variable to retrieve the SQL NULL value from a table into a host
variable.

You can use indicator variables that assign the default value or the unassigned
value to columns to simplify the coding in your applications. For example, if a
table has four columns, and you might need to update any combination of those
columns, without the use of default indicator variables or unassigned indicator
variables, you need 15 UPDATE statements to perform all possible combinations of
updates. With default indicator variables and unassigned indicator variables, you
can use one UPDATE statement with all four columns in the SET statement to
perform all possible updates. You use the indicator variables to indicate which
columns you want to set to their default values, and which columns you do not
want to update.

For input, SQLJ supports the use of indicator variables for INSERT, UPDATE, or
MERGE statements.

If you customize your SQL]J application, you can assign one of the following values
to an indicator variable in an SQL]J application to specify the type of the
corresponding input host variable.

Indicator value Equivalent constant Meaning of value
-1 sqlj.runtime.ExecutionContext. DBNull Null

-2,-3,-4, -6

-5 sqlj.runtime.ExecutionContext. DBDefault Default

-7 sqlj.runtime.ExecutionContext. DBUnassigned =~ Unassigned

short-value >=0

sqlj.runtime.ExecutionContext. DBNonNull Non-null

Chapter 6. SQLJ application programming 6-11

If you do not customize the application, you can assign one of the following values
to an indicator variable to specify the type of the corresponding input host

variable.
Indicator value Equivalent constant Meaning of value
-1 sqlj.runtime.ExecutionContext. DBNull Null
-7 <= short-value < -1
0 sqlj.runtime.ExecutionContext. DBNonNull Non-null

short-value >0

For output, SQL]J supports the use of indicator variables for the following
statements:

e CALL with OUT or INOUT parameters
e FETCH iterator INTO host-variable
e SELECT ... INTO host-variable-1,...host-variable-n

SQLJ assigns one of the following values to an indicator variable to indicate
whether an SQL NULL value was retrieved into the corresponding host variable.

Indicator value Equivalent constant Meaning of value
-1 sqlj.runtime.ExecutionContext. DBNull Retrieved value is SQL NULL
0 Retrieved value is not SQL NULL

You cannot use indicator variables to update result sets. To assign null values or
default values to result sets, or to indicate that columns are unassigned, call
ResultSet.updateObject on the underlying JDBC ResultSet objects of the SQLJ
iterators.

The following examples demonstrate how to use indicator variables.
All examples require that the data server supports extended indicators.
Example of using indicators to assign the default value to columns during an INSERT:

In this example, the MGRNO and LOCATION columns need to be set to their
default values. To do this, the code performs these steps:

1. Assigns the value ExecutionContext. DBNonNull to the indicator variables
(deptInd, dNamelnd, rptDeptind) for the input host variables (dept, dName,
rptDept) that send non-default values to the target columns.

2. Assigns the value ExecutionContext.DBDefault to the indicator variables
(mgrind, locnInd) for the input host variables (mgr, locn) that send default
values to the target columns.

3. Executes an INSERT statement with the host variable and indicator variable
pairs as input.

The numbers to the right of selected statements correspond to the previously
described steps.

import sqlj.runtime.=;
String dept = "FO1";
String dName = "SHIPPING";
String rptDept = "AQO";

6-12 IBM Data Server Driver for JDBC and SQLJ for Informix

String mgr, locn = null;

short deptInd, dNameInd, mgrInd, rptDeptInd, TocnlInd;

// Set indicator variables for dept, dName, rptDept to non-null
deptInd = dNameInd = rptDeptInd = ExecutionContext.DBNonNull; B
mgrInd = ExecutionContext.DBDefault;

locnInd = ExecutionContext.DBDefault;

#sql [ctxt]
{INSERT INTO DEPARTMENT
(DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION)
VALUES (:dept :deptind, :dName :dNamelnd,:mgr :mgrind,
:rptDept :rptDeptInd, :Tocn :locnlInd)};

Example of using indicators to assign the default value to leave column values unassigned
during an UPDATE:

In this example, in rows for department FO1, the MGRNO column needs to be set
to its default value, the DEPTNAME column value needs to be changed to

RECEIVING, and the DEPTNO, DEPTNAME, ADMRDEPT, and LOCATION
columns need to remain unchanged. To do this, the code performs these steps:

1. Assigns the new value for the DEPTNAME column to the dName input host
variable.

2. Assigns the value ExecutionContext.DBDefault to the indicator variable
(mgrind) for the input host variable (mgr) that sends the default value to the
target column.

3. Assigns the value ExecutionContext.DBUnassigned to the indicator variables
(deptInd, dNamelnd, rptDeptInd, and locnInd) for the input host variables
(dept, dName, rptDept, and locn) that need to remain unchanged by the
UPDATE operation.

4. Executes an UPDATE statement with the host variable and indicator variable
pairs as input.

The numbers to the right of selected statements correspond to the previously
described steps.

import sqlj.runtime.=;

String dept = null;

String dName = "RECEIVING";
String rptDept = null;

String mgr, locn = null;

short deptInd, dNameInd, mgrInd, rptDeptInd, TocnInd;

dNameInd = ExecutionContext.DBNonNull;

mgrInd = ExecutionContext.DBDefault; p
deptInd = rptDeptInd = TocnInd = ExecutionContext.DBUnassigned; [
#sql [ctxt] 4

{UPDATE DEPARTMENT
SET DEPTNO = :dept :deptlInd,
DEPTNAME = :dName :dNamelnd,
MGRNO = :mgr :mgrlind,
ADMRDEPT = :rptDept :rptDeptInd,
LOCATION :Tocn :Tocnlnd
WHERE DEPTNO = "FO1"
}s

Example of using indicators to retrieve NULL values from columns:

In this example, the HIREDATE column can return the NULL value. To handle this
case, the code performs these steps:

1. Defines an indicator variable to indicate when the NULL value is returned from
HIREDATE.

Chapter 6. SQL]J application programming ~ 6-13

2. Executes FETCH statements with the host variable and indicator variable pairs
as output.

3. Checks the indicator variable to determine whether a NULL value was
returned.

The numbers to the right of selected statements correspond to the previously
described steps.

import sqlj.runtime.x*;

#sql iterator ByPos(String, Date); // Declare positioned iterator ByPos
{

ByPos positer; // Declare object of ByPos class
String name = null; // Declare host variables

Date hrdate = null;

short indhrdate = null; // Declare indicator variable

#sql [ctxt] positer =
{SELECT LASTNAME, HIREDATE FROM EMPLOYEE};
// Assign the result table of the SELECT
// to iterator object positer
#sql {FETCH :positer INTO :name, :hrdate :indhrdate };
// Retrieve the first row

while (!positer.endFetch()) // Check whether the FETCH returned a row
{ if(indhrdate == ExecutionContext.DBNonNull {
System.out.printin(name + " was hired in " +
hrdate); }
else {

System.out.printin(name + " has no hire date "); }
#sql {FETCH :positer INTO :name, :hrdate };
// Fetch the next row

}
positer.close(); // Close the iterator B
}

Example of assigning default values to result set columns:

In this example, the HIREDATE column in a result set needs to be set to its default

value. To do this, the code performs these steps:

1. Retrieves the underlying ResultSet from the iterator that holds the retrieved
data.

2. Executes the ResultSet.updateObject method with the
DB2PreparedStatement. DB_PARAMETER_DEFAULT constant to assign the
default value to the result set column.

The numbers to the right of selected statements correspond to the previously
described steps.

#sql public iterator sensitiveUpdatelter

implements sqlj.runtime.Scrollable, sqlj.runtime.ForUpdate
with (sensitivity=sqlj.runtime.ResultSetIterator.SENSITIVE,
updateColumns="LASTNAME, HIREDATE") (String, Date);

String name; // Declare host variables
Date hrdate;

sensitiveUpdatelter iter = null;
#sql [ctx] iter = { SELECT LASTNAME, HIREDATE FROM EMPLOYEE};

iter.next();

java.sql.ResultSet rs = iter.getResultSet(); 1]
rs.updateString("LASTNAME", "FORREST");

6-14 IBM Data Server Driver for JDBC and SQLJ for Informix

rs.updateObject

(2, com.ibm.db2.jcc.DB2PreparedStatement.DB_PARAMETER DEFAULT);); EH]
rs.updateRow() ;
iter.close();

Comments in an SQLJ application

To document your SQLJ program, you need to include comments. To do that, use
Java comments. Java comments are denoted by /* */ or //.

You can include Java comments outside SQL]J clauses, wherever the Java language
permits them. Within an SQLJ clause, you can use Java comments in the following
places:

* Within a host expression (/* */ or //).

* Within an SQL statement in an executable clause, if the data source supports a
comment within the SQL statement (/* */ or --).

/* and */ pairs in an SQL statement can be nested.

SQL statement execution in SQLJ applications

You execute SQL statements in a traditional SQL program to create tables, update
data in tables, retrieve data from the tables, call stored procedures, or commit or
roll back transactions. In an SQLJ program, you also execute these statements,
within SQL]J executable clauses.

An executable clause can have one of the following general forms:

#sql [connection-context] {sql-statement};
#sql [connection-context,execution-context] {sql-statement};
#sql [execution-context] {sql-statement};

execution-context specification
In an executable clause, you should always specify an explicit connection
context, with one exception: you do not specify an explicit connection context
for a FETCH statement. You include an execution context only for specific
cases. See "Control the execution of SQL statements in SQL]J" for information
about when you need an execution context.

connection-context specification
In an executable clause, if you do not explicitly specify a connection context,
the executable clause uses the default connection context.

Creating and modifying database objects in an SQLJ
application

Use SQLJ executable clauses to execute data definition statements (CREATE,
ALTER, DROP, GRANT, REVOKE) or to execute INSERT, searched or positioned
UPDATE, and searched or positioned DELETE statements.

The following executable statements demonstrate an INSERT, a searched UPDATE,
and a searched DELETE:

#sql [myConnCtx] {INSERT INTO DEPARTMENT VALUES

("X00","Operations 2","000030","EO1",NULL)};
#sq1 [myConnCtx] {UPDATE DEPARTMENT

SET MGRNO="000090" WHERE MGRNO="000030"};
#sql [myConnCtx] {DELETE FROM DEPARTMENT

WHERE DEPTNO="X00"};

Chapter 6. SQLJ application programming ~ 6-15

6-16

Performing positioned UPDATE and DELETE operations in an
SQLJ application

As in IDS applications in other languages, performing positioned UPDATEs and
DELETEs with SQLJ is an extension of retrieving rows from a result table.

The basic steps are:
1. Declare the iterator.
The iterator can be positioned or named. For positioned UPDATE or DELETE

operations, declare the iterator as updatable, using one or both of the following
clauses:

implements sqlj.runtime.ForUpdate
This clause causes the generated iterator class to include methods for
using updatable iterators. This clause is required for programs with
positioned UPDATE or DELETE operations.

with (updateColumns="column-list")
This clause specifies a comma-separated list of the columns of the result
table that the iterator will update. This clause is optional.

You need to declare the iterator as public, so you need to follow the rules for
declaring and using public iterators in the same file or different files.
If you declare the iterator in a file by itself, any SQL] source file that has
addressability to the iterator and imports the generated class can retrieve data
and execute positioned UPDATE or DELETE statements using the iterator.

2. Disable autocommit mode for the connection.
If autocommit mode is enabled, a COMMIT operation occurs every time the
positioned UPDATE statement executes, which causes the iterator to be
destroyed unless the iterator has the with (holdability=true) attribute.
Therefore, you need to turn autocommit off to prevent COMMIT operations
until you have finished using the iterator. If you want a COMMIT to occur
after every update operation, an alternative way to keep the iterator from being
destroyed after each COMMIT operation is to declare the iterator with
(holdability=true).

3. Create an instance of the iterator class.
This is the same step as for a non-updatable iterator.

4. Assign the result table of a SELECT to an instance of the iterator.

This is the same step as for a non-updatable iterator. The SELECT statement
must not include a FOR UPDATE clause.

5. Retrieve and update rows.
For a positioned iterator, do this by performing the following actions in a loop:

a. Execute a FETCH statement in an executable clause to obtain the current
TOW.

b. Test whether the iterator is pointing to a row of the result table by invoking
the PositionedIterator.endFetch method.

c. If the iterator is pointing to a row of the result table, execute an SQL
UPDATE... WHERE CURRENT OF :iterator-object statement in an executable
clause to update the columns in the current row. Execute an SQL DELETE...
WHERE CURRENT OF :iterator-object statement in an executable clause to
delete the current row.

For a named iterator, do this by performing the following actions in a loop:
a. Invoke the next method to move the iterator forward.

IBM Data Server Driver for JDBC and SQL]J for Informix

b. Test whether the iterator is pointing to a row of the result table by checking
whether next returns true.

c. Execute an SQL UPDATE... WHERE CURRENT OF iterator-object statement
in an executable clause to update the columns in the current row. Execute
an SQL DELETE... WHERE CURRENT OF iterator-object statement in an
executable clause to delete the current row.

6. Close the iterator.

Use the close method to do this.

The following code shows how to declare a positioned iterator and use it for
positioned UPDATEs. The numbers to the right of selected statements correspond
to the previously described steps.

First, in one file, declare positioned iterator UpdByPos, specifying that you want to
use the iterator to update column SALARY:

import java.math.x; // Import this class for BigDecimal data type
#sql public iterator UpdByPos implements sqlj.runtime.ForUpdate
with(updateColumns="SALARY") (String, BigDecimal);

Figure 6-6. Example of declaring a positioned iterator for a positioned UPDATE

Then, in another file, use UpdByPos for a positioned UPDATE, as shown in the
following code fragment:

Chapter 6. SQLJ application programming 6-17

import sqlj.runtime.x*; // Import files for SQLJ and JDBC APIs

import java.sql.=*;
import java.math.=*;
import UpdByPos;

#sql context HSCtx;

// Import this class for BigDecimal data type

// Import the generated iterator class that

// was created by the iterator declaration clause
// for UpdByName in another file

// Create a connnection context class HSCtx

public static void main (String args[])

{
try {

Class.forName("com.ibm.db2.jcc.DB2Driver");

catch (ClassNotFoundException e) {
e.printStackTrace();
}

Connection HSjdbccon=
DriverManager.getConnection("jdbc:ids:SANJOSE");

// Create a JDBC connection object

HSjdbccon.setAutoCommit (false);

// Set autocommit off so automatic commits 2]
// do not destroy the cursor between updates

HSCtx myConnCtx=new HSCtx(HSjdbccon);

UpdByPos upditer;
String empnum;
BigDecimal sal;
#sql [myConnCtx]

upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE

// Create a connection context object

// Declare iterator object of UpdByPos class EI
// Declares host variable to receive EMPNO

// and SALARY column values

WHERE WORKDEPT='D11'};
// Assign result table to iterator object
#sql {FETCH :upditer INTO :empnum,:sal};
// Move cursor to next row
while (lupditer.endFetch())
// Check if on a row

#sql [myConnCtx] {UPDATE EMPLOYEE SET SALARY=SALARY=*1.05
WHERE CURRENT OF :upditer}; [5¢ |
// Perform positioned update
System.out.printIn("Updating row for " + empnum);
#sql {FETCH :upditer INTO :empnum,:sal};
// Move cursor to next row

}
upditer.close(); // Close the iterator 6|
#sql [myConnCtx] {COMMIT};
// Commit the changes
myConnCtx.close(); // Close the connection context

}
Figure 6-7. Example of performing a positioned UPDATE with a positioned iterator

The following code shows how to declare a named iterator and use it for
positioned UPDATEs. The numbers to the right of selected statements correspond
to the previously described steps.

First, in one file, declare named iterator UpdByName, specifying that you want to use
the iterator to update column SALARY:

import java.math.x*; // Import this class for BigDecimal data type
#sql public iterator UpdByName implements sqlj.runtime.ForUpdate
with(updateColumns="SALARY") (String EmpNo, BigDecimal Salary);

Figure 6-8. Example of declaring a named iterator for a positioned UPDATE

6-18 IBM Data Server Driver for JDBC and SQLJ for Informix

Then, in another file, use UpdByName for a positioned UPDATE, as shown in the

following code fragment:

import sqlj.runtime.x*; // Import files for SQLJ and JDBC APIs

import java.sql.*;

import java.math.x; // Import this class for BigDecimal data type
import UpdByName; // Import the generated iterator class that

// was created by the iterator declaration clause

// for UpdByName in another file

#sql context HSCtx; // Create a connnection context class HSCtx

public static void main (String args[])
{
try {
Class.forName("com.ibm.db2.jcc.DB2Driver");
}
catch (ClassNotFoundException e) {
e.printStackTrace();
1
Connection HSjdbccon=
DriverManager.getConnection("jdbc:ids:SANJOSE");
// Create a JDBC connection object
HSjdbccon.setAutoCommit (false);
// Set autocommit off so automatic commits [H
// do not destroy the cursor between updates
HSCtx myConnCtx=new HSCtx(HSjdbccon);
// Create a connection context object
UpdByName upditer;
// Declare iterator object of UpdByName class

String empnum; // Declare host variable to receive EmpNo

// column values
#sq1 [myConnCtx]
upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE ﬂ
WHERE WORKDEPT='D11'};
// Assign result table to iterator object
while (upditer.next())
// Move cursor to next row and
// check ifon a row
{
empnum = upditer.EmpNo(); // Get employee number from current row
#sql [myConnCtx]
{UPDATE EMPLOYEE SET SALARY=SALARYx1.05
WHERE CURRENT OF :upditer}; [5¢]|
// Perform positioned update
System.out.printin("Updating row for " + empnum);
}
upditer.close(); // Close the iterator 6
#sq1 [myConnCtx] {COMMIT};
// Commit the changes
myConnCtx.close(); // Close the connection context

}

Figure 6-9. Example of performing a positioned UPDATE with a named iterator

Making batch updates in SQLJ applications

The IBM Data Server Driver for JDBC and SQL] supports batch updates in SQLJ.

With batch updates, instead of updating rows of a table one at a time, you can

direct SQL]J to execute a group of updates at the same time.

You can include the following types of statements in a batch update:
e Searched INSERT, UPDATE, or DELETE, or MERGE statements

e CREATE, ALTER, DROP, GRANT, or REVOKE statements

* CALL statements with input parameters only

Chapter 6. SQLJ application programming

6-19

6-20

Unlike JDBC, SQLJ allows heterogeneous batches that contain statements with
input parameters or host expressions. You can therefore combine any of the
following items in an SQL]J batch:

* Instances of the same statement

* Different statements

 Statements with different numbers of input parameters or host expressions
 Statements with different data types for input parameters or host expressions
 Statements with no input parameters or host expressions

For all cases except homogeneous batches of INSERT statements, when an error
occurs during execution of a statement in a batch, the remaining statements are
executed, and a BatchUpdateException is thrown after all the statements in the

batch have executed.

For homogeneous batches of INSERT statements, the behavior is as follows:

If you set atomicMultiRowInsert to DB2BaseDataSource.YES (1) when you run
db2sqljcustomize, and the target data server is DB2 for z/OS, when an error
occurs during execution of an INSERT statement in a batch, the remaining
statements are not executed, and a BatchUpdateException is thrown.

If you do not set atomicMultiRowInsert to DB2BaseDataSource.YES (1) when
you run db2sqljcustomize, or the target data server is not DB2 for z/OS, when
an error occurs during execution of an INSERT statement in a batch, the
remaining statements are executed, and a BatchUpdateException is thrown after
all the statements in the batch have executed.

To obtain information about warnings, use the ExecutionContext.getWarnings
method on the ExecutionContext that you used to submit statements to be batched.
You can then retrieve an error description, SQLSTATE, and error code for each
SQLWarning object.

When a batch is executed implicitly because the program contains a statement that
cannot be added to the batch, the batch is executed before the new statement is
processed. If an error occurs during execution of the batch, the statement that
caused the batch to execute does not execute.

The basic steps for creating, executing, and deleting a batch of statements are:

1.

Disable AutoCommit for the connection.

Do this so that you can control whether to commit changes to already-executed
statements when an error occurs during batch execution.

Acquire an execution context.
All statements that execute in a batch must use this execution context.
Invoke the ExecutionContext.setBatching(true) method to create a batch.

Subsequent batchable statements that are associated with the execution context
that you created in step are added to the batch for later execution.

If you want to batch sets of statements that are not batch compatible in parallel,
you need to create an execution context for each set of batch compatible
statements.

Include SQLJ executable clauses for SQL statements that you want to batch.
These clauses must include the execution context that you created in step El

If an SQLJ executable clause has input parameters or host expressions, you can
include the statement in the batch multiple times with different values for the
input parameters or host expressions.

IBM Data Server Driver for JDBC and SQL]J for Informix

To determine whether a statement was added to an existing batch, was the first
statement in a new batch, or was executed inside or outside a batch, invoke the
ExecutionContext.getUpdateCount method. This method returns one of the
following values:

ExecutionContext.ADD_BATCH_COUNT
This is a constant that is returned if the statement was added to an existing
batch.

ExecutionContext.NEW_BATCH_COUNT
This is a constant that is returned if the statement was the first statement in
a new batch.

ExecutionContext.EXEC_BATCH_COUNT
This is a constant that is returned if the statement was part of a batch, and
the batch was executed.

Other integer
This value is the number of rows that were updated by the statement. This
value is returned if the statement was executed rather than added to a
batch.

Execute the batch explicitly or implicitly.

* Invoke the ExecutionContext.executeBatch method to execute the batch
explicitly.
executeBatch returns an integer array that contains the number of rows that
were updated by each statement in the batch. The order of the elements in

the array corresponds to the order in which you added statements to the
batch.

 Alternatively, a batch executes implicitly under the following circumstances:

- You include a batchable statement in your program that is not compatible
with statements that are already in the batch. In this case, SQLJ executes
the statements that are already in the batch and creates a new batch that
includes the incompatible statement.

- You include a statement in your program that is not batchable. In this
case, SQLJ executes the statements that are already in the batch. SQL]J also
executes the statement that is not batchable.

— After you invoke the ExecutionContext.setBatchLimit(n) method, you
add a statement to the batch that brings the number of statements in the
batch to n or greater. n can have one of the following values:

ExecutionContext.UNLIMITED_BATCH
This constant indicates that implicit execution occurs only when SQLJ
encounters a statement that is batchable but incompatible, or not
batchable. Setting this value is the same as not invoking setBatchLimit.

ExecutionContext.AUTO_BATCH
This constant indicates that implicit execution occurs when the
number of statements in the batch reaches a number that is set by

SQLJ.

Positive integer
When this number of statements have been added to the batch, SQLJ
executes the batch implicitly. However, the batch might be executed
before this many statements have been added if SQLJ encounters a
statement that is batchable but incompatible, or not batchable.

To determine the number of rows that were updated by a batch that was
executed implicitly, invoke the ExecutionContext.getBatchUpdateCounts

Chapter 6. SQLJ application programming 6-21

method. getBatchUpdateCounts returns an integer array that contains the
number of rows that were updated by each statement in the batch. The order
of the elements in the array corresponds to the order in which you added
statements to the batch. Each array element can be one of the following
values:

-2 This value indicates that the SQL statement executed successfully, but the
number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.
Other integer
This value is the number of rows that were updated by the statement.
6. Optionally, when all statements have been added to the batch, disable batching.

Do this by invoking the ExecutionContext.setBatching(false) method. When you
disable batching, you can still execute the batch implicitly or explicitly, but no
more statements are added to the batch. Disabling batching is useful when a
batch already exists, and you want to execute a batch compatible statement,
rather than adding it to the batch.

If you want to clear a batch without executing it, invoke the
ExecutionContext.cancel method.

7. 1If batch execution was implicit, perform a final, explicit executeBatch to ensure
that all statements have been executed.

Example

The following example demonstrates batching of UPDATE statements. The
numbers to the right of selected statements correspond to the previously described

steps.
#sql iterator GetMgr(String); // Declare positioned iterator
{
GetMgr deptiter; // Declare object of GetMgr class
String mgrnum = null; // Declare host variable for manager number
int raise = 400; // Declare raise amount
int currentSalary; // Declare current salary

String url, username, password; // Declare url, user ID, password

TestContext cl = new TestContext (url, username, password, false); [l
ExecutionContext ec = new ExecutionContext(); 2
ec.setBatching(true); 3
#sql [cl] deptiter =
{SELECT MGRNO FROM DEPARTMENT};
// Assign the result table of the SELECT
// to iterator object deptiter
#sql {FETCH :deptiter INTO :mgrnum};
// Retrieve the first manager number
while (!deptiter.endFetch()) { // Check whether the FETCH returned a row
#sql [c1]
{SELECT SALARY INTO :currentSalary FROM EMPLOYEE
WHERE EMPNO=:mgrnum} ;
#sql [cl, ec] 4]
{UPDATE EMPLOYEE SET SALARY=:(currentSalary+raise)
WHERE EMPNO=:mgrnum};
#sql {FETCH :deptiter INTO :mgrnum };
// Fetch the next row
}

ec.executeBatch();
ec.setBatching(false);

6-22 IBM Data Server Driver for JDBC and SQLJ for Informix

#sql [c1] {COMMIT};
deptiter.close(); // Close the iterator
cl.close(); // Close the connection

}

The following example demonstrates batching of INSERT statements. Suppose that
ATOMICTBL is defined like this:
CREATE TABLE ATOMICTBL(

INTCOL INTEGER NOT NULL UNIQUE,
CHARCOL VARCHAR(10))

Also suppose that the table already has a row with the values 2 and "val2".
Because of the uniqueness constraint on INTCOL, when the following code is
executed, the second INSERT statement in the batch fails.

If the target data server is DB2 for z/OS, and this application is customized
without atomicMultiRowInsert set to DB2BaseDataSource.YES, the batch INSERT is
non-atomic, so the first set of values is inserted in the table. However, if the
application is customized with atomicMultiRowlInsert set to
DB2BaseDataSource.YES, the batch INSERT is atomic, so the first set of values is
not inserted.

The numbers to the right of selected statements correspond to the previously
described steps.

TestContext ctx = new TestContext (url, username, password, false); &
ctx.getExecutionContext().setBatching(true);
try {

for (int i =
if (3 == 1)
intVar = 3
strVar = "

1y i<= 2; ++1) |
{

"vall";

{
if (i == 2) {
intVar = 1;
strVar = "val2";
}
#sql [ctx] {INSERT INTO ATOMICTBL values(:intVar, :strVar)}; I]
}
int[] counts = ctx.getExecutionContext().executeBatch(); B
for (int i = 0; i<counts.length; ++i) {
System.out.printin(" count[" + i + "]:" + counts[i]);
}
}
catch (SQLException e) {
System.out.printin(" Exception Caught: " + e.getMessage());
SQLException excp = null;
if (e instanceof SQLException)
{
System.out.printIn(" SQLCode: " + ((SQLException)e).getErrorCode() + "
Message: " + e.getMessage());
excp = ((SQLException)e).getNextException();
while (excp !'= null) {
System.out.printin(" SQLCode: " + ((SQLException)excp).getErrorCode() +
" Message: " + excp.getMessage());
excp = excp.getNextException();
1
}

Chapter 6. SQLJ application programming ~ 6-23

Data retrieval in SQLJ applications

SQLJ applications use a result set iterator to retrieve result sets. Like a cursor, a
result set iterator can be non-scrollable or scrollable.

Just as in IDS applications in other languages, if you want to retrieve a single row
from a table in an SQLJ application, you can write a SELECT INTO statement with
a WHERE clause that defines a result table that contains only that row:

#sql [myConnCtx] {SELECT DEPTNO INTO :hvdeptno
FROM DEPARTMENT WHERE DEPTNAME="OPERATIONS"};

However, most SELECT statements that you use create result tables that contain
many rows. In IDS applications in other languages, you use a cursor to select the
individual rows from the result table. That cursor can be non-scrollable, which
means that when you use it to fetch rows, you move the cursor serially, from the
beginning of the result table to the end. Alternatively, the cursor can be scrollable,
which means that when you use it to fetch rows, you can move the cursor
forward, backward, or to any row in the result table.

This topic discusses how to use non-scrollable iterators. For information on using
scrollable iterators, see "Use scrollable iterators in an SQLJ application”.

A result set iterator is a Java object that you use to retrieve rows from a result
table. Unlike a cursor, a result set iterator can be passed as a parameter to a
method.

The basic steps in using a result set iterator are:

Declare the iterator, which results in an iterator class

Define an instance of the iterator class.

Assign the result table of a SELECT to an instance of the iterator.
Retrieve rows.

Close the iterator.

oo~

There are two types of iterators: positioned iterators and named iterators. Postitioned
iterators extend the interface sqlj.runtime.PositionedIterator. Positioned iterators
identify the columns of a result table by their position in the result table. Named
iterators extend the interface sqlj.runtime.NamedIterator. Named iterators identify
the columns of the result table by result table column names.

Using a named iterator in an SQLJ application
Use a named iterator to refer to each of the columns in a result table by name.

The steps in using a named iterator are:
1. Declare the iterator.

You declare any result set iterator using an iterator declaration clause. This causes
an iterator class to be created that has the same name as the iterator. For a
named iterator, the iterator declaration clause specifies the following
information:

¢ The name of the iterator
* A list of column names and Java data types

* Information for a Java class declaration, such as whether the iterator is
pubTic or static

e A set of attributes, such as whether the iterator is holdable, or whether its
columns can be updated

6-24 IBM Data Server Driver for JDBC and SQLJ for Informix

When you declare a named iterator for a query, you specify names for each of
the iterator columns. Those names must match the names of columns in the
result table for the query. An iterator column name and a result table column
name that differ only in case are considered to be matching names. The named
iterator class that results from the iterator declaration clause contains accessor
methods. There is one accessor method for each column of the iterator. Each
accessor method name is the same as the corresponding iterator column name.
You use the accessor methods to retrieve data from columns of the result table.

You need to specify Java data types in the iterators that closely match the
corresponding IDS column data types. See "Java, JDBC, and SQL data types" for
a list of the best mappings between Java data types and IDS data types.

You can declare an iterator in a number of ways. However, because a Java class
underlies each iterator, you need to ensure that when you declare an iterator,
the underlying class obeys Java rules. For example, iterators that contain a
with-clause must be declared as public. Therefore, if an iterator needs to be
public, it can be declared only where a public class is allowed. The following
list describes some alternative methods of declaring an iterator:
* As publigc, in a source file by itself
This method lets you use the iterator declaration in other code modules, and
provides an iterator that works for all SQLJ applications. In addition, there
are no concerns about having other top-level classes or public classes in the
same source file.
¢ As a top-level class in a source file that contains other top-level class
definitions
Java allows only one public, top-level class in a code module. Therefore, if
you need to declare the iterator as public, such as when the iterator includes
a with-clause, no other classes in the code module can be declared as public.
* As a nested static class within another class
Using this alternative lets you combine the iterator declaration with other
class declarations in the same source file, declare the iterator and other
classes as public, and make the iterator class visible to other code modules or
packages. However, when you reference the iterator from outside the nesting
class, you must fully-qualify the iterator name with the name of the nesting
class.
* As an inner class within another class
When you declare an iterator in this way, you can instantiate it only within
an instance of the nesting class. However, you can declare the iterator and
other classes in the file as public.
You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as
an inner class. This restriction does not apply to an iterator that is declared
as a static nested class. See "Use SQL]J and JDBC in the same application" for
more information on casting a ResultSet to a iterator.

2. Create an instance of the iterator class.

You declare an object of the named iterator class to retrieve rows from a result
table.

3. Assign the result table of a SELECT to an instance of the iterator.

To assign the result table of a SELECT to an iterator, you use an SQLJ
assignment clause. The format of the assignment clause for a named iterator is:

#sql context-clause iterator-object={select-statement};
See "SQLJ assignment-clause" and "SQL]J context-clause" for more information.
4. Retrieve rows.

Chapter 6. SQLJ application programming ~ 6-25

6-26

Do this by invoking accessor methods in a loop. Accessor methods have the
same names as the corresponding columns in the iterator, and have no
parameters. An accessor method returns the value from the corresponding
column of the current row in the result table. Use the NamedIterator.next()
method to move the cursor forward through the result table.

To test whether you have retrieved all rows, check the value that is returned
when you invoke the next method. next returns a boolean with a value of
false if there is no next row.

5. Close the iterator.

Use the NamedlIterator.close method to do this.

The following code demonstrates how to declare and use a named iterator. The
numbers to the right of selected statements correspond to the previously-described
steps.

#sql iterator ByName(String LastName, Date HireDate);
// Declare named iterator ByName
{

ByName nameiter; // Declare object of ByName class ﬂ
#sql [ctxt]
nameiter={SELECT LASTNAME, HIREDATE FROM EMPLOYEE};

// Assign the result table of the SELECT
// to iterator object nameiter
while (nameiter.next()) // Move the iterator through the result ﬂ
// table and test whether all rows retrieved
{

System.out.printin(nameiter.LastName() + " was hired on "
+ nameiter.HireDate()); // Use accessor methods LastName and
// HireDate to retrieve column values

nameiter.close(); // Close the iterator B

}

Figure 6-10. Example of using a named iterator

Using a positioned iterator in an SQLJ application
Use a positioned iterator to refer to columns in a result table by their position in
the result set.

The steps in using a positioned iterator are:

1. Declare the iterator.
You declare any result set iterator using an iterator declaration clause. This causes
an iterator class to be created that has the same name and attributes as the
iterator. For a positioned iterator, the iterator declaration clause specifies the
following information:

e The name of the iterator
* A list of Java data types

* Information for a Java class declaration, such as whether the iterator is
pubTic or static

e A set of attributes, such as whether the iterator is holdable, or whether its
columns can be updated

The data type declarations represent columns in the result table and are
referred to as columns of the result set iterator. The columns of the result set
iterator correspond to the columns of the result table, in left-to-right order. For
example, if an iterator declaration clause has two data type declarations, the

IBM Data Server Driver for JDBC and SQL]J for Informix

first data type declaration corresponds to the first column in the result table,
and the second data type declaration corresponds to the second column in the
result table.

You need to specify Java data types in the iterators that closely match the
corresponding IDS column data types. See "Java, JDBC, and SQL data types" for
a list of the best mappings between Java data types and IDS data types.

You can declare an iterator in a number of ways. However, because a Java class
underlies each iterator, you need to ensure that when you declare an iterator,
the underlying class obeys Java rules. For example, iterators that contain a
with-clause must be declared as public. Therefore, if an iterator needs to be
public, it can be declared only where a public class is allowed. The following
list describes some alternative methods of declaring an iterator:

¢ As publigc, in a source file by itself

This is the most versatile method of declaring an iterator. This method lets
you use the iterator declaration in other code modules, and provides an
iterator that works for all SQLJ applications. In addition, there are no
concerns about having other top-level classes or public classes in the same
source file.

* As a top-level class in a source file that contains other top-level class
definitions

Java allows only one public, top-level class in a code module. Therefore, if
you need to declare the iterator as public, such as when the iterator includes
a with-clause, no other classes in the code module can be declared as public.

* As a nested static class within another class
Using this alternative lets you combine the iterator declaration with other
class declarations in the same source file, declare the iterator and other
classes as public, and make the iterator class visible from other code modules
or packages. However, when you reference the iterator from outside the
nesting class, you must fully-qualify the iterator name with the name of the
nesting class.

* As an inner class within another class
When you declare an iterator in this way, you can instantiate it only within
an instance of the nesting class. However, you can declare the iterator and
other classes in the file as public.
You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as
an inner class. This restriction does not apply to an iterator that is declared
as a static nested class. See "Use SQL]J and JDBC in the same application" for
more information on casting a ResultSet to a iterator.

Create an instance of the iterator class.

You declare an object of the positioned iterator class to retrieve rows from a
result table.

Assign the result table of a SELECT to an instance of the iterator.

To assign the result table of a SELECT to an iterator, you use an SQLJ
assignment clause. The format of the assignment clause for a positioned iterator
is:

#sql context-clause iterator-object={select-statement};

Retrieve rows.

Do this by executing FETCH statements in executable clauses in a loop. The
FETCH statements looks the same as a FETCH statements in other languages.

Chapter 6. SQLJ application programming 6-27

6-28

To test whether you have retrieved all rows, invoke the
PositionedIterator.endFetch method after each FETCH. endFetch returns a
boolean with the value true if the FETCH failed because there are no rows to
retrieve.

5. Close the iterator.
Use the PositionedIterator.close method to do this.

The following code demonstrates how to declare and use a positioned iterator. The
numbers to the right of selected statements correspond to the previously-described
steps.

#sql iterator ByPos(String,Date); // Declare positioned iterator ByPos
{

ByPos positer; // Declare object of ByPos class !!
String name = null; // Declare host variables
Date hrdate;
#sql [ctxt] positer =
{SELECT LASTNAME, HIREDATE FROM EMPLOYEE};
// Assign the result table of the SELECT
// to iterator object positer

#sql {FETCH :positer INTO :name, :hrdate }; ﬂ
// Retrieve the first row
while (!positer.endFetch()) // Check whether the FETCH returned a row
{ System.out.printin(name + " was hired in " +
hrdate);

#sql {FETCH :positer INTO :name, :hrdate };
// Fetch the next row

}
positer.close(); // Close the iterator B
}

Figure 6-11. Example of using a positioned iterator

Multiple open iterators for the same SQL statement in an SQLJ
application

With the IBM Data Server Driver for JDBC and SQLJ, your application can have
multiple concurrently open iterators for a single SQL statement in an SQLJ
application. With this capability, you can perform one operation on a table using
one iterator while you perform a different operation on the same table using
another iterator.

When you use concurrently open iterators in an application, you should close
iterators when you no longer need them to prevent excessive storage consumption
in the Java heap.

The following examples demonstrate how to perform the same operations on a
table without concurrently open iterators on a single SQL statement and with
concurrently open iterators on a single SQL statement. These examples use the
following iterator declaration:

import java.math.=*;
#sql public iterator Multilter(String EmpNo, BigDecimal Salary);

Without the capability for multiple, concurrently open iterators for a single SQL
statement, if you want to select employee and salary values for a specific employee
number, you need to define a different SQL statement for each employee number,
as shown in [Figure 6-12 on page 6-29

IBM Data Server Driver for JDBC and SQL]J for Informix

Multilter iterl = null; // Iterator instance for retrieving
// data for first employee
String EmpNol = "000100"; // Employee number for first employee
#sql [ctx] iterl =
{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNol};
// Assign result table to first iterator

Multilter iter2 = null; // Tterator instance for retrieving
// data for second employee
String EmpNo2 = "000200"; // Employee number for second employee

#sql [ctx] iter2 =
{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo2};
// Assign result table to second iterator
// Process with iterl
// Process with iter2
iterl.close(); // Close the iterators
iter2.close();

Figure 6-12. Example of concurrent table operations using iterators with different SQL
statements

Figure 6-13| demonstrates how you can perform the same operations when you
have the capability for multiple, concurrently open iterators for a single SQL

statement.

Multilter iterl = openlter("000100"); // Invoke openlter to assign the result table
// (for employee 100) to the first iterator
openlter("000200"); // Invoke openlter to assign the result
// table to the second iterator
// iterl stays open when iter2 is opened

Multilter iter2

// Process with iterl
// Process with iter2

iterl.close(); // Close the iterators
iter2.close();

public Multilter openlter(String EmpNo)
// Method to assign a result table
// to an iterator instance

{
Multilter iter;
#sql [ctxt] iter =
{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo};
return iter; // Method returns an iterator instance

}

Figure 6-13. Example of concurrent table operations using iterators with the same SQL
statement

Multiple open instances of an iterator in an SQLJ application
Multiple instances of an iterator can be open concurrently in a single SQL]
application. One application for this ability is to open several instances of an
iterator that uses host expressions. Each instance can use a different set of host
expression values.

The following example shows an application with two concurrently open instances
of an iterator.

Chapter 6. SQL]J application programming ~ 6-29

ResultSet myFunc(String empid) // Method to open an iterator and get a resultSet
{

MylIter iter;

#sql iter = {SELECT * FROM EMPLOYEE WHERE EMPNO = :empid};

return iter.getResultSet();
}

// An application can call this method to get a resultSet for each
// employee ID. The application can process each resultSet separately.

ResultSet rsl = myFunc("000100"); // Get employee record for employee ID 000100

ResultSet rs2 = myFunc("000200"); // Get employee record for employee ID 000200

Figure 6-14. Example of opening more than one instance of an iterator in a single application

As with any other iterator, you need to remember to close this iterator after the last
time you use it to prevent excessive storage consumption.

Using scrollable iterators in an SQLJ application

In addition to moving forward, one row at a time, through a result table, you
might want to move backward or go directly to a specific row. The IBM Data
Server Driver for JDBC and SQLJ provides this capability.

An iterator in which you can move forward, backward, or to a specific row is
called a scrollable iterator. A scrollable iterator in SQLJ is equivalent to the result
table of a database cursor that is declared as SCROLL.

Like a scrollable cursor, a scrollable iterator for a connection to IBM Informix is
insensitive. Insensitive means that changes to the underlying table after the iterator
is opened are not visible to the iterator. Insensitive iterators are read-only.

Important:

To create and use a scrollable iterator, you need to follow these steps:
1. Specify an iterator declaration clause that includes the following clauses:
e implements sqlj.runtime.Scrollable
This indicates that the iterator is scrollable.
e with (sensitivity=INSENSITIVE)
The iterator can be a named or positioned iterator.
Example: The following iterator declaration clause declares a positioned,
insensitive, scrollable iterator:

#sql public iterator ByPos
implements sqlj.runtime.Scrollable
with (sensitivity=INSENSITIVE) (String);
Example: The following iterator declaration clause declares a named,
insensitive, scrollable iterator:
#sql public iterator ByName

implements sqlj.runtime.Scrollable
with (sensitivity=INSENSITIVE) (String EmpNo);

Restriction: You cannot use a scrollable iterator to select columns with the
following data types from a table on a DB2 Database for Linux, UNIX, and
Windows server:

* LONG VARCHAR

* LONG VARGRAPHIC

6-30 IBM Data Server Driver for JDBC and SQLJ for Informix

+ BLOB

+ CLOB

+ XML

A distinct type that is based on any of the previous data types in this list
* A structured type

Create an iterator object, which is an instance of your iterator class.
For each row that you want to access:
For a named iterator, perform the following steps:

a. Position the cursor using one of the methods listed in the following table.

Table 6-1. sqlj.runtime.Scrollable methods for positioning a scrollable cursor

Method Positions the cursor

first] On the first row of the result table

lasfl On the last row of the result table

previou@ On the previous row of the result table

next On the next row of the result table

absolute(int n) If n>0, on row 7 of the result table. If n<0, and m is

the number of rows in the result table, on row m+n+1
of the result table.

relative(int n)|IIZI If n>0, on the row that is n rows after the current row.

If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

afterLastll After the last row in the result table
beforeFirstl Before the first row in the result table
Notes:

1. This method does not apply to connections to IBM Informix.

2.

3.

If the cursor is after the last row of the result table, this method positions the cursor on
the last row.

If the absolute value of n is greater than the number of rows in the result table, this
method positions the cursor after the last row if n is positive, or before the first row if n
is negative.

Suppose that m is the number of rows in the result table and x is the current row
number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.
If n<0 and x+n<1, the iterator is positioned before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,
isLast, isBeforeFirst, or isAfterLast method to obtain this information.

If you need to know the current fetch direction, invoke the
getFetchDirection method.
c. Use accessor methods to retrieve the current row of the result table.

d. If update or delete operations by the iterator or by other means are visible
in the result table, invoke the getWarnings method to check whether the
current row is a hole.

For a positioned iterator, perform the following steps:

a. Use a FETCH statement with a fetch orientation clause to position the
iterator and retrieve the current row of the result table.|Table 6-2 on page]
lists the clauses that you can use to position the cursor.

Chapter 6. SQLJ application programming 6-31

6-32

Table 6-2. FETCH clauses for positioning a scrollable cursor

Method Positions the cursor

FIRSTE On the first row of the result table

LASTE On the last row of the result table

PRIORE On the previous row of the result table

NEXT On the next row of the result table
ABSOLUTE(n If n>0, on row n of the result table. If 1<0, and m is

the number of rows in the result table, on row m+n+1
of the result table.

RELATIVE(n If n>0, on the row that is n rows after the current row.
If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

AFTERHE After the last row in the result table
BEFORHE Before the first row in the result table
Notes:

1. This value is not supported for connections to IBM Informix

2. If the cursor is after the last row of the result table, this method positions the cursor on
the last row.

3. If the absolute value of n is greater than the number of rows in the result table, this
method positions the cursor after the last row if n is positive, or before the first row if n
is negative.

4. Suppose that m is the number of rows in the result table and x is the current row
number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.
If n<0 and x+n<1, the iterator is positioned before the first row.

5. Values are not assigned to host expressions.

b. If update or delete operations by the iterator or by other means are visible
in the result table, invoke the getWarnings method to check whether the
current row is a hole.

4. Invoke the close method to close the iterator.

The following code demonstrates how to use a named iterator to retrieve the
employee number and last name from all rows from the employee table. The
numbers to the right of selected statements correspond to the previously-described
steps.

#sql context Ctx; // Create connection context class Ctx
#sql iterator Scrolllter implements sqlj.runtime.Scrollable
(String EmpNo, String LastName);
{
Ctx ctxt =
new Ctx("jdbc:db2://sysmvsl.st1.ibm.com:5021/NEWYORK",
userid,password,false); // Create connection context object ctxt
// for the connection to NEWYORK
Scrolllter scrliter;
#sql [ctxt]
scrliter={SELECT EMPNO, LASTNAME FROM EMPLOYEE};
while (scrliter.next())

{

BEE B

System.out.printIn(scrliter.EmpNo() + " " 4
+ scrliter.LastName());

scrliter.close();

IBM Data Server Driver for JDBC and SQL]J for Informix

Calling stored procedures in SQLJ applications

To call a stored procedure, you use an executable clause that contains an SQL
CALL statement.

You can execute the CALL statement with host identifier parameters. You can
execute the CALL statement with literal parameters only if the IDS server on
which the CALL statement runs supports execution of the CALL statement
dynamically.

The basic steps in calling a stored procedure are:

1. Assign values to input (IN or INOUT) parameters.

2. Call the stored procedure.

3. Process output (OUT or INOUT) parameters.

4. If the stored procedure returns multiple result sets, retrieve those result sets.

The following code illustrates calling a stored procedure that has three input
parameters and three output parameters. The numbers to the right of selected
statements correspond to the previously-described steps.

String FirstName="TOM"; // Input parameters 1]
String LastName="NARISINST";

String Address="I1BM";

int CustNo; // Output parameters

String Mark;

String MarkErrorText;

#sq1 [myConnCtx] {CALL ADD_CUSTOMER(:IN FirstName, 2

:IN LastName,

:IN Address,

:0UT CustNo,

:0UT Mark,

:0UT MarkErrorText)};

// Call the stored procedure
System.out.printin("Output parameters from ADD_CUSTOMER call: ");
System.out.printIn("Customer number for " + LastName + ": " + CustNo);
System.out.printIn(Mark);
If (MarkErrorText != null)
System.out.printIn(" Error messages:" + MarkErrorText);

Figure 6-15. Example of calling a stored procedure in an SQLJ application

LOBs in SQLJ applications with the IBM Data Server Driver for
JDBC and SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, you can retrieve LOB data
into Clob or Blob host expressions or update CLOB, BLOB, or DBCLOB columns
from Clob or Blob host expressions. You can also declare iterators with Clob or
Blob data types to retrieve data from CLOB, BLOB, or DBCLOB columns.

Retrieving or updating LOB data: To retrieve data from a BLOB column, declare
an iterator that includes a data type of Blob or byte[]. To retrieve data from a
CLOB or DBCLOB column, declare an iterator in which the corresponding column
has a Clob data type.

To update data in a BLOB column, use a host expression with data type Blob. To

update data in a CLOB or DBCLOB column, use a host expression with data type
Clob.

Chapter 6. SQLJ application programming ~ 6-33

6-34

Progressive streaming or LOB locators: In SQL] applications, you can use
progressive streaming, also known as dynamic data format, or LOB locators in the
same way that you use them in JDBC applications.

Java data types for retrieving or updating LOB column data in
SQLJ applications

When the deferPrepares property is set to true, and the IBM Data Server Driver for
JDBC and SQL]J processes an SQLJ statement that includes host expressions, the
driver might need to do extra processing to determine data types. This extra
processing can impact performance.

When the JDBC driver cannot immediately determine the data type of a parameter
that is used with a LOB column, you need to choose a parameter data type that is
compatible with the LOB data type.

Input parameters for BLOB columns

For input parameters for BLOB columns, you can use either of the following
techniques:

* Use a java.sql.Blob input variable, which is an exact match for a BLOB column:

java.sql.Blob blobData;
#sq1 {CALL STORPROC(:IN blobData)};

Before you can use a java.sql.Blob input variable, you need to create a
java.sql.Blob object, and then populate that object.

* Use an input parameter of type of sqlj.runtime.BinaryStream. A
sqlj.runtime.BinaryStream object is compatible with a BLOB data type. For
example:

java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(byteData);
int numBytes = byteData.length;
sqlj.runtime.BinaryStream binStream =

new sqlj.runtime.BinaryStream(byteStream, numBytes);
#sq1 {CALL STORPROC(:IN binStream)};

You cannot use this technique for INOUT parameters.
Output parameters for BLOB columns

For output or INOUT parameters for BLOB columns, you can use the following
technique:

* Declare the output parameter or INOUT variable with a java.sql.Blob data type:

java.sql.Blob blobData = null;
#sql CALL STORPROC (:0UT blobData)};

java.sql.Blob blobData = null;
#sq1 CALL STORPROC (:INOUT blobData)};

Input parameters for CLOB columns

For input parameters for CLOB columns, you can use one of the following
techniques:

* Use a java.sql.Clob input variable, which is an exact match for a CLOB column:
#sq1 CALL STORPROC(:IN clobData)};

Before you can use a java.sql.Clob input variable, you need to create a
java.sql.Clob object, and then populate that object.

IBM Data Server Driver for JDBC and SQL]J for Informix

* Use one of the following types of stream IN parameters:
— A sqglj.runtime.CharacterStream input parameter:

java.lang.String charData;
java.io.StringReader reader = new java.io.StringReader(charData);
sqlj.runtime.CharacterStream charStream =

new sqlj.runtime.CharacterStream (reader, charData.length);
#sql {CALL STORPROC(:IN charStream)};

— A sqglj.runtime.UnicodeStream parameter, for Unicode UTF-16 data:

byte[] charDataBytes = charData.getBytes("UnicodeBigUnmarked");
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(charDataBytes);
sqlj.runtime.UnicodeStream uniStream =

new sqlj.runtime.UnicodeStream(byteStream, charDataBytes.length);
#sql {CALL STORPROC(:IN uniStream)};

— A sqlj.runtime.AsciiStream parameter, for ASCII data:

byte[] charDataBytes = charData.getBytes("US-ASCII");
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream (charDataBytes);
sqlj.runtime.AsciiStream asciiStream =

new sqlj.runtime.AsciiStream (byteStream, charDataBytes.length);
#sql {CALL STORPROC(:IN asciiStream)};

For these calls, you need to specify the exact length of the input data. You
cannot use this technique for INOUT parameters.
* Use a java.lang.String input parameter:

java.lang.String charData;
#sql {CALL STORPROC(:IN charData)};

Output parameters for CLOB columns

For output or INOUT parameters for CLOB columns, you can use one of the
following techniques:

* Use a java.sql.Clob output variable, which is an exact match for a CLOB column:

java.sql.Clob clobData = null;
#sql CALL STORPROC(:0UT clobData)};

* Use a java.lang.String output variable:

java.lang.String charData = null;
#sql CALL STORPROC(:0UT charData)};

This technique should be used only if you know that the length of the retrieved
data is less than or equal to 32KB. Otherwise, the data is truncated.

Output parameters for DBCLOB columns

DBCLOB output or INOUT parameters for stored procedures are not supported.

SQLJ and JDBC in the same application

You can combine SQLJ clauses and JDBC calls in a single program.

To do this effectively, you need to be able to do the following things:

* Use a JDBC Connection to build an SQL] ConnectionContext, or obtain a JDBC
Connection from an SQLJ ConnectionContext.

* Use an SQL] iterator to retrieve data from a JDBC ResultSet or generate a JDBC
ResultSet from an SQLJ iterator.

Building an SQLJ ConnectionContext from a J[DBC Connection: To do that:

Chapter 6. SQLJ application programming ~ 6-35

6-36

1. Execute an SQLJ connection declaration clause to create a ConnectionContext
class.

2. Load the driver or obtain a DataSource instance.

3. Invoke the SQLJ DriverManager.getConnection or DataSource.getConnection
method to obtain a JDBC Connection.

4. Invoke the ConnectionContext constructor with the Connection as its argument
to create the ConnectionContext object.

Obtaining a JDBC Connection from an SQL] ConnectionContext: To do this,

1. Execute an SQLJ connection declaration clause to create a ConnectionContext
class.

2. Load the driver or obtain a DataSource instance.

3. Invoke the ConnectionContext constructor with the URL of the driver and any
other necessary parameters as its arguments to create the ConnectionContext
object.

4. Invoke the JDBC ConnectionContext.getConnection method to create the JDBC
Connection object.

See "Connect to a data source using SQLJ" for more information on SQLJ
connections.

Retrieving JDBC result sets using SQL] iterators: Use the iterator conversion
statement to manipulate a JDBC result set as an SQL] iterator. The general form of
an iterator conversion statement is:

#sql iterator={CAST :result-set};

Before you can successfully cast a result set to an iterator, the iterator must
conform to the following rules:

* The iterator must be declared as public.

* If the iterator is a positioned iterator, the number of columns in the result set
must match the number of columns in the iterator. In addition, the data type of
each column in the result set must match the data type of the corresponding
column in the iterator.

e If the iterator is a named iterator, the name of each accessor method must match
the name of a column in the result set. In addition, the data type of the object
that an accessor method returns must match the data type of the corresponding
column in the result set.

The code in [Figure 6-16 on page 6-37|builds and executes a query using a JDBC
call, executes an iterator conversion statement to convert the JDBC result set to an
SQL]J iterator, and retrieves rows from the result table using the iterator.

IBM Data Server Driver for JDBC and SQL]J for Informix

#sql public iterator ByName(String LastName, Date HireDate);
public void HireDates(ConnectionContext connCtx, String whereClause)

{

ByName nameiter; // Declare object of ByName class
Connection conn=connCtx.getConnection();

// Create JDBC connection
Statement stmt = conn.createStatement();
String query = "SELECT LASTNAME, HIREDATE FROM EMPLOYEE";
query+=whereClause; // Build the query
ResultSet rs = stmt.executeQuery(query); E!
#sql [connCtx] nameiter = {CAST :rs};
while (nameiter.next())

{
System.out.printIn(nameiter.LastName() + " was hired on "
+ nameiter.HireDate());

}
nameiter.close(); 5
stmt.close();

}
Figure 6-16. Converting a JDBC result set to an SQLJ iterator

Notes to

Note Description

This SQL] clause creates the named iterator class ByName, which has accessor
methods LastName() and HireDate() that return the data from result table columns
LASTNAME and HIREDATE.

2] This statement and the following two statements build and prepare a query for

dynamic execution using JDBC.

This JDBC statement executes the SELECT statement and assigns the result table

to result set rs.

ﬂ This iterator conversion clause converts the JDBC ResultSet rs to SQLJ iterator
nameiter, and the following statements use nameiter to retrieve values from the
result table.

B The nameiter.close() method closes the SQLJ iterator and JDBC ResultSet rs.

Generating [DBC ResultSets from SQL] iterators: Use the getResultSet method to
generate a JDBC ResultSet from an SQL] iterator. Every SQLJ iterator has a
getResultSet method. After you access the ResultSet that underlies an iterator, you
need to fetch rows using only the ResultSet.

The code in generates a positioned iterator for a query, converts the
iterator to a result set, and uses JDBC methods to fetch rows from the table.

#sql iterator EmpIter(String, java.sql.Date);
{

EmpIter iter=null;

#sq1 [connCtx] iter=

{SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; 1
ResultSet rs=iter.getResultSet(); 2
while (rs.next()) 3

{ System.out.printin(rs.getString(1) + " was hired in " +
rs.getDate(2));
}

rs.close(); 4]
}

Figure 6-17. Converting an SQLJ iterator to a JDBC ResultSet

Chapter 6. SQLJ application programming 6-37

6-38

Notes to [Figure 6-17 on page 6-37

Note Description

This SQLJ clause executes the SELECT statement, constructs an iterator object that
contains the result table for the SELECT statement, and assigns the iterator object
to variable iter.

2| The getResultSet() method accesses the ResultSet that underlies iterator iter.

H The JDBC getString() and getDate() methods retrieve values from the ResultSet.
The next() method moves the cursor to the next row in the ResultSet.

4] The rs.close() method closes the SQLJ iterator as well as the ResultSet.

Rules and restrictions for using JDBC ResultSets in SQL] applications: When you
write SQLJ applications that include JDBC result sets, observe the following rules
and restrictions:

* You cannot cast a ResultSet to an SQL]J iterator if the ResultSet and the iterator
have different holdability attributes.

A JDBC ResultSet or an SQLJ iterator can remain open after a COMMIT
operation. For a JDBC ResultSet, this characteristic is controlled by the IBM Data
Server Driver for JDBC and SQL]J property resultSetHoldability. For an SQLJ
iterator, this characteristic is controlled by the with holdability parameter of
the iterator declaration. Casting a ResultSet that has holdability to an SQLJ
iterator that does not, or casting a ResultSet that does not have holdability to an
SQLJ iterator that does, is not supported.

* Close the iterator or the underlying ResultSet object as soon as the program no
longer uses the iterator or ResultSet, and before the end of the program.

Closing the iterator also closes the ResultSet object. Closing the ResultSet object
also closes the iterator object. In general, it is best to close the object that is used
last.

* For the IBM Data Server Driver for JDBC and SQL]J, which supports scrollable
iterators and scrollable and updatable ResultSet objects, the following restrictions

apply:
— Scrollable iterators have the same restrictions as their underlying JDBC
ResultSet objects.

— You cannot cast a JDBC ResultSet that is not updatable to an SQL]J iterator
that is updatable.

Controlling the execution of SQL statements in SQLJ

You can use selected methods of the SQL]J ExecutionContext class to control or
monitor the execution of SQL statements.

To use ExecutionContext methods, follow these steps:
1. Acquire the default execution context from the connection context.
There are two ways to acquire an execution context:

* Acquire the default execution context from the connection context. For
example:

ExecutionContext execCtx = connCtx.getExecutionContext();

* Create a new execution context by invoking the constructor for
ExecutionContext. For example:

ExecutionContext execCtx=new ExecutionContext();
2. Associate the execution context with an SQL statement.

To do that, specify an execution context after the connection context in the
execution clause that contains the SQL statement.

IBM Data Server Driver for JDBC and SQL]J for Informix

3. Invoke ExecutionContext methods.

Some ExecutionContext methods are applicable before the associated SQL
statement is executed, and some are applicable only after their associated SQL
statement is executed.

For example, you can use method getUpdateCount to count the number of
rows that are deleted by a DELETE statement after you execute the DELETE
statement.

The following code demonstrates how to acquire an execution context, and then
use the getUpdateCount method on that execution context to determine the
number of rows that were deleted by a DELETE statement. The numbers to the
right of selected statements correspond to the previously-described steps.

ExecutionContext execCtx=new ExecutionContext(); 1
#sql [connCtx, execCtx] {DELETE FROM EMPLOYEE WHERE SALARY > 10000} ; 2
System.out.printin("Deleted " + execCtx.getUpdateCount() + " rows"); [

ROWIDs in SQLJ with the IBM Data Server Driver for JDBC
and SQLJ

DB2 for z/OS and DB2 for i support the ROWID data type for a column in a table.
A ROWID is a value that uniquely identifies a row in a table.

Although IBM Informix also supports rowids, those rowids have the INTEGER
data type. You can select an IBM Informix rowid column into a variable with a
four-byte integer data type.

If you use columns with the ROWID data type in SQL] programs, you need to
customize those programs.

JDBC 4.0 includes interface java.sql.Rowld that you can use in iterators and in
CALL statement parameters. If you do not have JDBC 4.0, you can use the IBM
Data Server Driver for JDBC and SQLJ-only class com.ibm.db2.jcc. DB2RowID. For
an iterator, you can also use the byte[] object type to retrieve ROWID values.

The following code shows an example of an iterator that is used to select values
from a ROWID column:

Chapter 6. SQL]J application programming ~ 6-39

#sql iterator PosIter(int,String,java.sql.Rowld);
// Declare positioned iterator
// for retrieving ITEM_ID (INTEGER),
// ITEM_FORMAT (VARCHAR), and ITEM_ROWID (ROWID)
// values from table ROWIDTAB

PosIter positrowid; // Declare object of PosIter class
java.sql.RowId rowid = null;
int id = 0;
String i_fmt = null;
// Declare host expressions
#sql [ctxt] positrowid =
{SELECT ITEM_ID, ITEM_FORMAT, ITEM_ROWID FROM ROWIDTAB
WHERE ITEM_ID=3};
// Assign the result table of the SELECT
// to iterator object positrowid
#sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};
// Retrieve the first row
while (!positrowid.endFetch())
// Check whether the FETCH returned a row
{System.out.printin("Item ID " + id + " Item format " +
i_fmt + " Item ROWID ");
MyUtilities.printBytes(rowid.getBytes());
// Use the getBytes method to
// convert the value to bytes for printing.
// Call a user-defined method called
// printBytes (not shown) to print
// the value.
#sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};
// Retrieve the next row
}
positrowid.close(); // Close the iterator

}

Figure 6-18. Example of using an iterator to retrieve ROWID values

The following code shows an example of calling a stored procedure that takes
three ROWID parameters: an IN parameter, an OUT parameter, and an INOUT
parameter.

java.sql.RowId in_rowid = rowid;

java.sqlRowId out_rowid = null;

java.sql.Rowld inout_rowid = rowid;
// Declare an IN, OUT, and
// INOUT ROWID parameter

#sql [myConnCtx] {CALL SP_ROWID(:IN in_rowid,
:0UT out_rowid,
:INOUT inout_rowid)};
// Call the stored procedure
System.out.printin("Parameter values from SP_ROWID call: ");
System.out.printIn("OUT parameter value ");
MyUtilities.printBytes(out rowid.getBytes());
// Use the getBytes method to
// convert the value to bytes for printing
// Call a user-defined method called
// printBytes (not shown) to print
// the value.
System.out.printIn("INOUT parameter value ");
MyUtilities.printBytes(inout rowid.getBytes());

Figure 6-19. Example of calling a stored procedure with a ROWID parameter

6-40 IBM Data Server Driver for JDBC and SQLJ for Informix

Savepoints in SQLJ applications

Under the IBM Data Server Driver for JDBC and SQLJ, you can include any form
of the SQL SAVEPOINT statement in your SQLJ program.

An SQL savepoint represents the state of data and schemas at a particular point in
time within a unit of work. SQL statements exist to set a savepoint, release a
savepoint, and restore data and schemas to the state that the savepoint represents.

The following example demonstrates how to set a savepoint, roll back to the
savepoint, and release the savepoint.

Figure 6-20. Setting, rolling back to, and releasing a savepoint in an SQLJ application

#sql context Ctx; // Create connection context class Ctx
String empNumVar;
int shoeSizeVar;

try { // Load the JDBC driver
Class.forName("com.ibm.db2.jcc.DB2Driver");

catch (ClassNotFoundException e) {
e.printStackTrace();
1
Connection jdbccon=
DriverManager.getConnection("jdbc:ids://sysmvsl.st1.ibm.com:5021/NEWYORK",
userid,password);
// Create JDBC connection object jdbccon
jdbccon.setAutoCommit(false); // Do not autocommit
Ctx ctxt=new Ctx(jdbccon);
// Create connection context object myConnCtx
// for the connection to NEWYORK
- // Perform some SQL
#sql [ctxt] {COMMIT}; // Commit the transaction
// Commit the create
#sql [ctxt]
{INSERT INTO EMP_SHOE VALUES ('000010', 6)};
// Insert a row
#sql [ctxt]
{SAVEPOINT SVPT1 ON ROLLBACK RETAIN CURSORS};
// Create a savepoint

#sql [ctxt]
{INSERT INTO EMP_SHOE VALUES ('000020', 10)};
// Insert another row
#sql [ctxt] {ROLLBACK TO SAVEPOINT SVPT1};
// Roll back work to the point
// after the first insert

#sql [ctxt] {RELEASE SAVEPOINT SVPT1};
// Release the savepoint
ctx.close(); // Close the connection context

SQLJ utilization of SDK for Java Version 5 function

Your SQLJ applications can use a number of functions that were introduced with
the SDK for Java Version 5.

Chapter 6. SQLJ application programming 6-41

Static import

The static import construct lets you access static members without qualifying those
members with the name of the class to which they belong. For SQL]J applications,
this means that you can use static members in host expressions without qualifying
them.

Example: Suppose that you want to declare a host expression of this form:
double r = cos(PI = E);

cos, PI, and E are members of the java.lang.Math class. To declare r without
explicitly qualifying cos, PI, and E, include the following static import statement in
your program:

import static java.lang.Math.x*;

Annotations

Java annotations are a means for adding metadata to Java programs that can also
affect the way that those programs are treated by tools and libraries. Annotations
are declared with annotation type declarations, which are similar to interface
declarations. Java annotations can appear in the following types of classes or
interfaces:

¢ Class declaration

¢ Interface declaration

* Nested class declaration

* Nested interface declaration

You cannot include Java annotations directly in SQL] programs, but you can
include annotations in Java source code, and then include that source code in your
SQLJ programs.

Example: Suppose that you declare the following marker annotation in a program
called MyAnnot.java:

public @interface MyAnot { }

You also declare the following marker annotation in a program called
MyAnnot?2 java:

public @interface MyAnot2 { }

You can then use those annotations in an SQLJ program:

// Class annotations
@MyAnot2 public @MyAnot class TestAnnotation
{

// Field annotation
@MyAnot
private static final int fieldl = 0;
// Constructor annotation
@MyAnot2 public @MyAnot TestAnnotation () { }
// Method annotation
@MyAnot
public static void main (String a[])
{
TestAnnotation TestAnnotation o = new TestAnnotation();
TestAnnotation_o.runThis();

// Inner class annotation

6-42 IBM Data Server Driver for JDBC and SQLJ for Informix

public static @MyAnot class TestAnotherInnerClass { }
// Inner interface annotation
public static @MyAnot interface TestAnotInnerInterface { }

}
Enumerated types

An enumerated type is a data type that consists of a set of ordered values. The
SDK for Java version 5 introduces the enum type for enumerated types.

You can include enums in the following places:
* In Java source files (java files) that you include in an SQL] program

* In SQLJ class declarations

Example: The TestEnum.sqlj class declaration includes an enum type:
public class TestEnum2

{

public enum Color {
RED,ORANGE,YELLOW,GREEN,BLUE, INDIGO,VIOLET}
Color color;
. // Get the value of color
switch (color) {
case RED:
System.out.printin("Red is at one end of the spectrum.");
#sql[ctx] { INSERT INTO MYTABLE VALUES (:color) };
break;
case VIOLET:
System.out.printin("Violet is on the other end of the spectrum.");
break;
case ORANGE:
case YELLOW:
case GREEN:
case BLUE:
case INDIGO:
System.out.printin("Everything else is in the middle.");
break;

}
Generics

You can use generics in your Java programs to assign a type to a Java collection.
The SQL]J translator tolerates Java generic syntax. Examples of generics that you
can use in SQLJ programs are:

» A List of List objects:
List <List<String>> strList2 = new ArrayList<List<String>>();
* A HashMap in which the key/value pair has the String type:
Map <String,String> map = new HashMap<String,String>();
* A method that takes a List with elements of any type:
public void mthd(List <?> obj) {

=

Although you can use generics in SQL]J host variables, the value of doing so is
limited because the SQLJ translator cannot determine the types of those host
variables.

Chapter 6. SQLJ application programming ~ 6-43

Enhanced for loop

The enhanced for lets you specify that a set of operations is performed on each
member of a collection or array. You can use the iterator in the enhanced for loop
in host expressions.

Example: INSERT each of the items in array names into table TAB.

String[] names = {"ABC","DEF","GHI"};
for (String n : names)

#sq1 {INSERT INTO TAB (VARCHARCOL) VALUES(:n) };
}

Varargs

Varargs make it easier to pass an arbitrary number of values to a method. A Vararg
in the last argument position of a method declaration indicates that the last
arguments are an array or a sequence of arguments. An SQLJ program can use the
passed arguments in host expressions.

Example: Pass an arbitrary number of parameters of type Object, to a method that
inserts each parameter value into table TAB.

public void runThis(Object... objects) throws SQLException
for (Object obj : objects)

#sql { INSERT INTO TAB (VARCHARCOL) VALUES(:obj) };
}
}

Transaction control in SQLJ applications

6-44

In SQLJ applications, as in other types of SQL applications, transaction control
involves explicitly or implicitly committing and rolling back transactions, and
setting the isolation level for transactions.

Setting the isolation level for an SQLJ transaction

To set the isolation level for a unit of work within an SQLJ program, use the SET
TRANSACTION ISOLATION LEVEL clause.

The following table shows the values that you can specify in the SET
TRANSACTION ISOLATION LEVEL clause and their IDS equivalents.

Table 6-3. Equivalent SQLJ and IDS isolation levels

SET TRANSACTION value IDS isolation level
SERIALIZABLE Repeatable read
REPEATABLE READ Read stability
READ COMMITTED Cursor stability
READ UNCOMMITTED Uncommitted read

The isolation level affects the underlying JDBC connection as well as the SQLJ
connection.

IBM Data Server Driver for JDBC and SQL]J for Informix

Committing or rolling back SQLJ transactions

If you disable autocommit for an SQL]J connection, you need to perform explicit
commit or rollback operations.

You do this using execution clauses that contain the SQL COMMIT or ROLLBACK
statements.

To commit a transaction in an SQLJ program, use a statement like this:
#sql [myConnCtx] {COMMIT};

To roll back a transaction in an SQL] program, use a statement like this:
#sql [myConnCtx] {ROLLBACK};

Handling SQL errors and warnings in SQLJ applications

SQLJ clauses throw SQLExceptions when SQL errors occur, but not when most
SQL warnings occur.

SQLJ generates an SQLException under the following circumstances:
* When any SQL statement returns a negative SQL error code
* When a SELECT INTO SQL statement returns a +100 SQL error code

You need to explicitly check for other SQL warnings.
* For SQL error handling, include try/catch blocks around SQL]J statements.

¢ For SQL warning handling, invoke the getWarnings method after every SQLJ
statement.

Handling SQL errors in an SQLJ application
SQLJ clauses use the JDBC class java.sql.SQLException for error handling.

To handle SQL errors in SQL]J applications, following these steps:

1. Import the java.sql.SQLException class.

2. Use the Java error handling try/catch blocks to modify program flow when an
SQL error occurs.

3. Obtain error information from the SQLException.

You can use the getErrorCode method to retrieve SQL error codes and the
getSQLState method to retrieve SQLSTATEs.

If you are using the IBM Data Server Driver for JDBC and SQLJ, obtain
additional information from the SQLException by casting it to a
DB2Diagnosable object, in the same way that you obtain this information in a
JDBC application.

The following code prints out the SQL error that occurred if a SELECT statement
fails.
try {

#sql [ctxt] {SELECT LASTNAME INTO :empname
FROM EMPLOYEE WHERE EMPNO='000010'};

catch(SQLException e) {

System.out.printin("Error code returned: " + e.getErrorCode());

}

Chapter 6. SQLJ application programming ~ 6-45

Handling SQL warnings in an SQLJ application

Other than a +100 SQL error code on a SELECT INTO statement, warnings from
the data server do not throw SQLExceptions. To handle warnings from the data
server, you need to give the program access to the java.sql.SQLWarning class.

If you want to retrieve data-server-specific information about a warning, you also
need to give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface
and the com.ibm.db2.jcc.DB2Sqlca class. Then follow these steps:

1. Set up an execution context for that SQL clause. See "Control the execution of
SQL statements in SQLJ" for information on how to set up an execution context.

2. To check for a warning from the data server, invoke the getWarnings method
after you execute an SQLJ clause.

getWarnings returns the first SQLWarning object that an SQL statement
generates. Subsequent SQLWarning objects are chained to the first one.

3. To retrieve data-server-specific information from the SQLWarning object with
the IBM Data Server Driver for JDBC and SQLJ, follow the instructions in
"Handle an SQLException under the IBM Data Server Driver for JDBC and

SQLJ".

The following example demonstrates how to retrieve an SQLWarning object for an
SQL clause with execution context execCtx. The numbers to the right of selected
statements correspond to the previously-described steps.

ExecutionContext execCtx=myConnCtx.getExecutionContext(); 1]
// Get default execution context from
// connection context

SQLWarning sqlWarn;

#sq1 [myConnCtx,execCtx] {SELECT LASTNAME INTO :empname

FROM EMPLOYEE WHERE EMPNO='000010'};
if ((sqIWarn = execCtx.getWarnings()) != null) 2]
System.out.printIn("SQLWarning " + sqlWarn);

Closing the connection to a data source in an SQLJ application

6-46

When you have finished with a connection to a data source, you need to close the
connection to the data source. Doing so releases the connection context object's IDS
and SQL]J resources immediately.

To close the connection to the data source, use one of the ConnectionContext.close
methods.

* If you execute ConnectionContext.close() or
ConnectionContext.close(ConnectionContext. CLOSE_CONNECTION), the
connection context, as well as the connection to the data source, are closed.

 If you execute
ConnectionContext.close(ConnectionContext. KEEP_CONNECTION) the
connection context is closed, but the connection to the data source is not.

The following code closes the connection context, but does not close the connection
to the data source.

ctx = new EzSqljctx(con0); // Create a connection context object
// from JDBC connection con®
een // Perform various SQL operations
EzSqljctx.close(ConnectionContext.KEEP_CONNECTION);
// Close the connection context but keep
// the connection to the data source open

IBM Data Server Driver for JDBC and SQL]J for Informix

Chapter 7. Preparing and running JDBC and SQLJ programs

The following topics contain information about preparing and running Java and
SQLJ programs with the IBM Data Server Driver for JDBC and SQLJ.

Program preparation for JDBC programs

Preparing a Java program that contains only JDBC methods is the same as
preparing any other Java program. You compile the program using the javac
command. No precompile steps are required.

To prepare a program named sample.java, execute this command from the
directory that contains the source file:

javac sample.java

Program preparation for SQLJ programs

Program preparation for SQL] programs involves translating and compiling.

SQLJ on IBM Informix does not support static SQL; You must use dynamic SQL
with the IBM Data Server Driver for JDBC and SQLJ on IBM Informix.

To prepare an SQLJ program, run the sqlj command from the command line to
translate and compile the source code. For complete syntax for the sqlj command,
see [“sqlj - SQL]J translator” on page 14-215.|

The SQL] command generates a Java source program, optionally compiles the Java
source program, and produces zero or more serialized profiles. You can compile
the Java program separately, but the default behavior of the sqlj command is to
compile the program. The SQLJ command runs without connecting to the database
server.

Running JDBC and SQLJ programs

You run a JDBC or SQLJ program using the java command. Before you run the
program, you need to ensure that the JVM can find all of the files that it needs.

To run a JDBC or SQL]J program, follow these steps:
1. Ensure that the program files can be found.

* For an SQL]J program, put the serialized profiles for the program in the same
directory as the class files for the program.

* Include directories for the class files that are used by the program in the
CLASSPATH.

2. Run the java command from the command line, with the top-level file name in
the program as the argument.

To run a program that is in the EzJava class, add the directory that contains
EzJava to the CLASSPATH. Then run this command:

java EzJava

© Copyright IBM Corp. 2007, 2011 7-1

7-2 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 8. Security under the IBM Data Server Driver for
JDBC and SQLJ

When you use the IBM Data Server Driver for JDBC and SQLJ, you choose a
security mechanism by specifying a value for the securityMechanism property.

You can set this property in one of the following ways:

* If you use the DriverManager interface, set securityMechanismin a
java.util. Properties object before you invoke the form of the getConnection
method that includes the java.util.Properties parameter.

* If you use the DataSource interface, and you are creating and deploying your
own DataSource objects, invoke the DataSource.setSecurityMechanism method
after you create a DataSource object.

You can determine the security mechanism that is in effect for a connection by
calling the DB2Connection.getDB2SecurityMechanism method.

The following table lists the security mechanisms that the IBM Data Server Driver
for JDBC and SQLJ supports, and the data sources that support those security
mechanisms.

Table 8-1. Database server support for IBM Data Server Driver for JDBC and SQLJ security mechanisms

Security mechanism

Supported by

DB2 Database for DB2 for z/OS IBM Informix DB2 for i
Linux, UNIX, and
Windows
User ID and password Yes Yes Yes Yes
User ID only Yes Yes Yes Yes
User ID and encrypted Yes Yes Yes Yed2
password
Encrypted user ID Yes Yes No No
Encrypted user ID and Yes Yes Yes Yed2
encrypted password
Encrypted user ID and No Yes No No
encrypted security-sensitive
data
Encrypted user ID, Yes Yes No No
encrypted password, and
encrypted security-sensitive
data
Kerberodl Yes Yes No Yes
Plugirll Yes No No No
Note:

1. Available for IBM Data Server Driver for JDBC and SQL]J type 4 connectivity only.
2. The version of the data source must be DB2 for i V6R1 or later.

© Copyright IBM Corp. 2007, 2011

8-1

The following table lists the security mechanisms that the IBM Data Server Driver
for JDBC and SQLJ supports, and the value that you need to specify for the
securityMechanism property to specify each security mechanism.

The default security mechanism is CLEAR_TEXT_PASSWORD_SECURITY. If the
server does not support CLEAR_TEXT_PASSWORD_SECURITY but supports
ENCRYPTED_USER_AND_PASSWORD_SECURITY, the IBM Data Server Driver
for JDBC and SQLJ driver updates the security mechanism to
ENCRYPTED_USER_AND_PASSWORD_SECURITY and attempts to connect to the
server. Any other mismatch in security mechanism support between the requester
and the server results in an error.

Table 8-2. Security mechanisms supported by the IBM Data Server Driver for JDBC and SQLJ

Security mechanism securityMechanism property value

User ID and password DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY

User ID only DB2BaseDataSource.USER_ONLY_SECURITY

User ID and encrypted password DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY

Encrypted user ID DB2BaseDataSource.ENCRYPTED_USER_ONLY_SECURITY

Encrypted user ID and encrypted DB2BaseDataSource.ENCRYPTED_USER_AND_PASSWORD_SECURITY
password

Encrypted user ID and encrypted DB2BaseDataSource.ENCRYPTED_USER_AND_DATA_SECURITY
security-sensitive data

Encrypted user ID, encrypted DB2BaseDataSource.ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

password, and encrypted
security-sensitive data

Kerberos DB2BaseDataSource.KERBEROS_SECURITY

Plugin DB2BaseDataSource.PLUGIN_SECURITY

User ID and password security under the IBM Data Server Driver for
JDBC and SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, one of the available security
methods is user ID and password security.

To specify user ID and password security for a JDBC connection, use one of the
following techniques.

For the DriverManager interface: You can specify the user ID and password
directly in the DriverManager.getConnection invocation. For example:

import java.sql.*; // JDBC base
String id = "dbadm"; // Set user ID
String pw = "dbadm"; // Set password

String url = "jdbc:ids://mvsl.sj.ibm.com:5021/san_jose";
// Set URL for the data source

Connection con = DriverManager.getConnection(url, id, pw);
// Create connection

Another method is to set the user ID and password directly in the URL string. For
example:

8-2 IBM Data Server Driver for JDBC and SQLJ for Informix

import java.sql.x; // JDBC base

String url =
"jdbc:ids://mvsl.sj.ibm.com:5021/san_jose:user=dbadm;password=dbadm;";

// Set URL for the data source
Connection con = DriverManager.getConnection(url);
// Create connection

Alternatively, you can set the user ID and password by setting the user and
password properties in a Properties object, and then invoking the form of the
getConnection method that includes the Properties object as a parameter.
Optionally, you can set the securityMechanism property to indicate that you are
using user ID and password security. For example:

import java.sql.=*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC
// and SQLJ implementation of JDBC

Properties properties = new java.util.Properties();

// Create Properties object
properties.put("user", "dbadm"); // Set user ID for the connection
properties.put("password", "dbadm"); // Set password for the connection
properties.put("securityMechanism",

new String("" + com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY +
IIII));

// Set security mechanism to

// user ID and password
String url = "jdbc:ids://mvsl.sj.ibm.com:5021/san_jose";

// Set URL for the data source
Connection con = DriverManager.getConnection(url, properties);

// Create connection

For the DataSource interface: you can specify the user ID and password directly in
the DataSource.getConnection invocation. For example:

import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC
// and SQLJ implementation of JDBC

Context ctx=new InitialContext(); // Create context for JNDI
DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

// Get DataSource object
String id = "dbadm"; // Set user ID
String pw = "dbadm"; // Set password
Connection con = ds.getConnection(id, pw);

// Create connection

Alternatively, if you create and deploy the DataSource object, you can set the user
ID and password by invoking the DataSource.setUser and DataSource.setPassword
methods after you create the DataSource object. Optionally, you can invoke the
DataSource.setSecurityMechanism method property to indicate that you are using
user ID and password security. For example:

com.ibm.db2.jcc.DB2SimpleDataSource ds = // Create DB2SimpleDataSource object
new com.ibm.db2.jcc.DB2SimpleDataSource();

ds.setDriverType(4); // Set driver type
ds.setDatabaseName("san_jose"); // Set location
ds.setServerName("mvsl.sj.ibm.com"); // Set server name
ds.setPortNumber(5021); // Set port number
ds.setUser("dbadm"); // Set user ID
ds.setPassword("dbadm"); // Set password

ds.setSecurityMechanism(

Chapter 8. Security under the IBM Data Server Driver for JDBC and SQL]J 8-3

com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY);
// Set security mechanism to
// user ID and password

User ID-only security under the IBM Data Server Driver for JDBC and

SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, one of the available security
methods is user-ID only security.

To specify user ID security for a JDBC connection, use one of the following
techniques.

For the DriverManager interface: Set the user ID and security mechanism by
setting the user and securityMechanism properties in a Properties object, and then
invoking the form of the getConnection method that includes the Properties object
as a parameter. For example:

import java.sql.=; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver
// for JDBC and SQLJ
// implementation of JDBC

Properties properties = new Properties();

// Create a Properties object
properties.put("user", "db2adm"); // Set user ID for the connection
properties.put("securityMechanism",

new String("" + com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY + ""));

// Set security mechanism to

// user ID only
String url = "jdbc:ids://mvsl.sj.ibm.com:5021/san_jose";

// Set URL for the data source
Connection con = DriverManager.getConnection(url, properties);

// Create the connection

For the DataSource interface: If you create and deploy the DataSource object, you
can set the user ID and security mechanism by invoking the DataSource.setUser
and DataSource.setSecurityMechanism methods after you create the DataSource
object. For example:

import java.sql.x; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver
// for JDBC and SQLJ
// implementation of JDBC

com.ibm.db2.jcc.DB2SimpleDataSource dbh2ds =
new com.ibm.db2.jcc.DB2SimpleDataSource();

// Create DB2SimpleDataSource object
db2ds.setDriverType(4); // Set the driver type
db2ds.setDatabaseName("san_jose"); // Set the Tocation
db2ds.setServerName("mvsl.sj.ibm.com");

// Set the server name
db2ds.setPortNumber(5021); // Set the port number
db2ds.setUser("db2adm"); // Set the user ID
db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY);

// Set security mechanism to

// user ID only

8-4 IBM Data Server Driver for JDBC and SQLJ for Informix

Encrypted password, user ID, or user ID and password security under
the IBM Data Server Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ supports encrypted password security,
encrypted user ID security, or encrypted user ID and encrypted password security
for accessing data sources.

Connections to IBM Informix servers can use encrypted password security or
encrypted user ID and encrypted password security. For encrypted password
security or encrypted user ID and encrypted password security, the IBM Java
Cryptography Extension (ibmjceprovidere.jar) must be installed on your client. The
IBM JCE is part of the IBM SDK for Java, Version 1.4.2 or later.

Restriction: Because the IBM SDK for Java is not available on Mac OS X, IBM
Data Server Driver for JDBC and SQL]J encrypted password security or encrypted
user ID and encrypted password security is not available for Mac OS X clients.

Connections to DB2 for i V6R1 or later servers can use encrypted password
security or encrypted user ID and encrypted password security. For encrypted
password security or encrypted user ID and encrypted password security, the IBM
Java Cryptography Extension (ibmjceprovidere.jar) must be installed on your client.
The IBM JCE is part of the IBM SDK for Java, Version 1.4.2 or later.

To specify encrypted user ID or encrypted password security for a JDBC
connection, use one of the following techniques.

For the DriverManager interface: Set the user ID, password, and security
mechanism by setting the user, password, and securityMechanism properties in a
Properties object, and then invoking the form of the getConnection method that
includes the Properties object as a parameter. For example, use code like this to set
the user ID and encrypted password security mechanism, with AES encryption:
import java.sql.x; // JDBC base

import com.ibm.db2.jcc.*; // 1BM Data Server Driver for JDBC
// and SQLJ implementation of JDBC

Properties properties = new Properties(); // Create a Properties object
properties.put("user", "dbadm"); // Set user ID for the connection
properties.put("password", "dbadm"); // Set password for the connection
properties.put("securityMechanism", "2");
new String("" + com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY +
IIII));
// Set security mechanism to
// user ID and encrypted password
properties.put("encryptionAlgorithm", "2");
// Request AES security
String url = "jdbc:ids://mvsl.sj.ibm.com:5021/san_jose";
// Set URL for the data source
Connection con = DriverManager.getConnection(url, properties);
// Create the connection

For the DataSource interface: If you create and deploy the DataSource object, you
can set the user ID, password, and security mechanism by invoking the
DataSource.setUser, DataSource.setPassword, and
DataSource.setSecurityMechanism methods after you create the DataSource object.
For example, use code like this to set the encrypted user ID and encrypted
password security mechanism, with AES encryption:

Chapter 8. Security under the IBM Data Server Driver for JDBC and SQL]J 8-5

import java.sql.x; // JDBC base
import com.ibm.db2.jcc.*; // 1BM Data Server Driver for JDBC
// and SQLJ implementation of JDBC

com.ibm.db2.jcc.DB2SimpleDataSource ds =
new com.ibm.db2.jcc.DB2SimpleDataSource();

// Create the DataSource object
ds.setDriverType(4); // Set the driver type
ds.setDatabaseName("san_jose"); // Set the Tocation
ds.setServerName("mvsl.sj.ibm.com");

// Set the server name

ds.setPortNumber(5021); // Set the port number
ds.setUser("db2adm"); // Set the user ID
ds.setPassword("db2adm") ; // Set the password

ds.setSecurityMechanism(
com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED PASSWORD SECURITY);
// Set security mechanism to
// User ID and encrypted password
ds.setEncryptionAlgorithm(2); // Request AES encryption

IBM Data Server Driver for JDBC and SQLJ trusted context support

8-6

The IBM Data Server Driver for JDBC and SQLJ provides methods that allow you
to establish and use trusted connections in Java programs.

Trusted connections are supported for:

e IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:
— DB2 Database for Linux, UNIX, and Windows Version 9.5 or later
— DB2 for z/OS Version 9.1 or later
— IBM Informix Version 11.70 or later

* IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS
Version 9.1 or later

A three-tiered application model consists of a database server, a middleware server
such as WebSphere Application Server, and end users. With this model, the
middleware server is responsible for accessing the database server on behalf of end
users. Trusted context support ensures that an end user's database identity and
database privileges are used when the middleware server performs any database
requests on behalf of that end user.

A trusted context is an object that the database administrator defines that contains
a system authorization ID and a set of trust attributes. Currently, for IDS database
servers, a database connection is the only type of context that is supported. The
trust attributes identify a set of characteristics of a connection that are required for
the connection to be considered a trusted connection. The relationship between a
database connection and a trusted context is established when the connection to
the database server is first created, and that relationship remains for the life of the
database connection.

After a trusted context is defined, and an initial trusted connection to the data
server is made, the middleware server can use that database connection under a
different user without reauthenticating the new user at the database server.

To avoid vulnerability to security breaches, an application server that uses these
trusted methods should not use untrusted connection methods.

The DB2ConnectionPoolDataSource class provides several versions of the
getDB2TrustedPooledConnection method, and the DB2XADataSource class

IBM Data Server Driver for JDBC and SQL]J for Informix

provides several versions of the getDB2TrustedXAConnection method, which allow
an application server to establish the initial trusted connection. You choose a
method based on the types of connection properties that you pass and whether
you use Kerberos security. When an application server calls one of these methods,
the IBM Data Server Driver for JDBC and SQLJ returns an Object[] array with two
elements:

¢ The first element contains a connection instance for the initial connection.

¢ The second element contains a unique cookie for the connection instance. The
cookie is generated by the JDBC driver and is used for authentication during
subsequent connection reuse.

The DB2PooledConnection class provides several versions of the getDB2Connection
method, and the DB2Connection class provides several versions of the
reuseDB2Connection method, which allow an application server to reuse an
existing trusted connection on behalf of a new user. The application server uses the
method to pass the following items to the new user:

¢ The cookie from the initial connection

* New connection properties for the reused connection

The JDBC driver checks that the supplied cookie matches the cookie of the
underlying trusted physical connection, to ensure that the connection request
originates from the application server that established the trusted physical
connection. If the cookies match, the connection becomes available for immediate
use by this new user, with the new properties.

Example: Obtain the initial trusted connection:

// Create a DB2ConnectionPoolDataSource instance
com.ibm.db2.jcc.DB2ConnectionPoolDataSource dataSource =

new com.ibm.db2.jcc.DB2ConnectionPoolDataSource();
// Set properties for this instance
dataSource.setDatabaseName ("STLEC1");
dataSource.setServerName ("v7ecl67.sv1.ibm.com");
dataSource.setDriverType (4);
dataSource.setPortNumber(446);
java.util.Properties properties = new java.util.Properties();
// Set other properties using
// properties.put("property", "value");
// Supply the user ID and password for the connection
String user = "user";
String password = "password";
// Call getDB2TrustedPooledConnection to get the trusted connection
// instance and the cookie for the connection
Object[] objects = dataSource.getDB2TrustedPooledConnection(

user,password, properties);

Example: Reuse an existing trusted connection:

// The first item that was obtained from the previous getDB2TrustedPooledConnection
// call is a connection object. Cast it to a PooledConnection object.
javax.sql.PooledConnection pooledCon =
(javax.sql.PooledConnection)objects[0];
properties = new java.util.Properties();
// Set new properties for the reused object using
// properties.put("property", "value");
// The second item that was obtained from the previous getDB2TrustedPooledConnection
// call is the cookie for the connection. Cast it as a byte array.
byte[] cookie = ((byte[]) (objects[1]);
// Supply the user ID for the new connection.
String newuser = "newuser";
// Supply the name of a mapping service that maps a workstation user
// ID to a z/0S RACF ID

Chapter 8. Security under the IBM Data Server Driver for JDBC and SQL] ~ 8-7

String userRegistry = "registry";

// Do not supply any security token data to be traced.

byte[] userSecTkn = null;

// Do not supply a previous user ID.

String originalUser = null;

// Call getDB2Connection to get the connection object for the new

// user.

java.sql.Connection con =
((com.ibm.db2.jcc.DB2PooledConnection)pooledCon).getDB2Connection(

cookie,newuser,password,userRegistry,userSecTkn,originalUser,properties);

IBM Data Server Driver for JDBC and SQLJ support for SSL

8-8

The IBM Data Server Driver for JDBC and SQLJ provides support for the Secure
Sockets Layer (SSL) through the Java Secure Socket Extension (JSSE).

You can use SSL support in your Java applications if you use IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity to DB2 for z/OS Version 9 or later,
to DB2 Database for Linux, UNIX, and Windows Version 9.1, Fix Pack 2 or later, or
to IBM Informix Version 11.50 or later.

If you use SSL support for a connection to a DB2 for z/OS data server, and the
z/0S version is V1.8, V1.9, or V1.10, the appropriate PTF for APAR PK72201 must
be applied to Communication Server for z/OS IP Services.

To use SSL connections, you need to:
* Configure connections to the data server to use SSL.

* Configure your Java Runtime Environment to use SSL.

Configuring connections under the IBM Data Server Driver for
JDBC and SQLJ to use SSL

To configure database connections under the IBM Data Server Driver for JDBC and
SQL]J to use SSL, you need to set the DB2BaseDataSource.sslConnection property to
true.

Before a connection to a data source can use SSL, the port to which the application
connects must be configured in the database server as the SSL listener port.

1. Set DB2BaseDataSource.sslConnection on a Connection or DataSource instance.

2. Optional: Set DB2BaseDataSource.sslTrustStoreLocation on a Connection or
DataSource instance to identify the location of the truststore. Setting the
sslTrustStoreLocation property is an alternative to setting the Java
javax.net.ssl.trustStore property. If you set
DB2BaseDataSource.sslTrustStoreLocation, javax.net.ssl.trustStore is not used.

3. Optional: Set DB2BaseDataSource.sslTrustStorePassword on a Connection or
DataSource instance to identify the truststore password. Setting the
sslTrustStorePassword property is an alternative to setting the Java
javax.net.ssl.trustStorePassword property. If you set
DB2BaseDataSource.sslTrustStorePassword, javax.net.ssl.trustStorePassword is
not used.

The following example demonstrates how to set the sslConnection property on a
Connection instance:

java.util.Properties properties = new java.util.Properties();
properties.put("user", "xxxx");

properties.put("password", "yyyy");

IBM Data Server Driver for JDBC and SQL]J for Informix

properties.put("ss1Connection", "true");
java.sql.Connection con =

java.sql.DriverManager.getConnection(url, properties);

Configuring the Java Runtime Environment to use SSL

Before you can use Secure Sockets Layer (SSL) connections in your JDBC and SQLJ
applications, you need to configure the Java Runtime Environment to use SSL.

Before you can conﬁgure your Java Runtime Environment for SSL, you need to
satisfy the following prerequisites:

The Java Runtime Environment must include a Java security provider. The IBM
JSSE provider or the SunJSSE provider must be installed. The IBM JSSE provider
is automatically installed with the IBM SDK for Java.

Restriction: You can only use the SunJSSE provider only with an Oracle Java
Runtime Environment. The SunJSSE provider does not work with an IBM Java
Runtime Environment.

SSL support must be configured on the database server.

To configure your Java Runtime Environment to use SSL, follow these steps.

1.

Import a certificate from the database server to a Java truststore on the client.
Use the Java keytool utility to import the certificate into the truststore.

For example, suppose that the server certificate is stored in a file named
jec.cacert. Issue the following keytool utility statement to read the certificate
from file jec.cacert, and store it in a truststore named cacerts.

keytool -import -file jcc.cacert -keystore cacerts

Configure the Java Runtime Environment for the Java security providers by
adding entries to the java.security file.

The format of a security provider entry is:

security.provider.n=provider-package-name

A provider with a lower value of n takes precedence over a provider with a

higher value of n.

The Java security provider entries that you add depend on whether you use the

IBM JSSE provider or the SunJSSE provider.

* If you use the SunJSSE provider, add entries for the Oracle security providers
to your java.security file.

 If you use the IBM JSSE provider, use one of the following methods:

— Use the IBMJSSE2 provider (supported for the IBM SDK for Java 1.4.2
and later):

Recommendation: Use the IBMJSSE2 provider, and use it in FIPS mode.
- If you do not need to operate in FIPS-compliant mode:

 For the IBM SDK for Java 1.4.2, add an entry for the
IBMJSSE2Provider to the java.security file. Ensure that an entry for
the IBMJCE provider is in the java.security file. The java.security file
that is shipped with the IBM SDK for Java contains an entry for
entries for IBMJCE.

* For later versions of the IBM SDK for Java, ensure that entries for the
IBMJSSE2Provider and the IBMJCE provider are in the java.security
file. The java.security file that is shipped with the IBM SDK for Java
contains entries for those providers.

- If you need to operate in FIPS-compliant mode:

Chapter 8. Security under the IBM Data Server Driver for JDBC and SQL]J 8-9

8-10

* Add an entry for the IBMJCEFIPS provider to your java.security file
before the entry for the IBMJCE provider. Do not remove the entry
for the IBMJCE provider.

* Enable FIPS mode in the IBMJSSE2 provider. See step @

— Use the IBMJSSE provider (supported for the IBM SDK for Java 1.4.2
only):

- If you do not need to operate in FIPS-compliant mode, ensure that
entries for the IBMJSSEProvider and the IBMJCE provider are in the
java.security file. The java.security file that is shipped with the IBM
SDK for Java contains entries for those providers.

- If you need to operate in FIPS-compliant mode, add entries for the
FIPS-approved provider IBMJSSEFIPSProvider and the IBMJCEFIPS
provider to your java.security file, before the entry for the IBMJCE
provider.

Restriction: If you use the IBMJSSE provider on the Solaris operating
system, you need to include an entry for the SunJSSE provider before entries
for the IBMJCE, IBMJCEFIPS, IBMJSSE, or IBMJSSE2 providers.

Example: Use a java.security file similar to this one if you need to run in
FIPS-compliant mode, and you enable FIPS mode in the IBMJSSE2 provider:
Set the Java security providers
security.provider.l=com.ibm.jsse2.IBMISSEProvider2
security.provider.2=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.3=com.ibm.crypto.provider.IBMJICE
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sas].IBMSASL

Example: Use a java.security file similar to this one if you need to run in
FIPS-compliant mode, and you use the IBMJSSE provider:

Set the Java security providers
security.provider.l=com.ibm.fips.jsse.IBMISSEFIPSProvider
security.provider.2=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.3=com.ibm.crypto.provider.IBMJCE
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sas].IBMSASL

Example: Use a java.security file similar to this one if you use the SunJSSE
provider:

Set the Java security providers
security.provider.l=sun.security.provider.Sun
security.provider.2=com.sun.rsajca.Provider
security.provider.3=com.sun.crypto.provider.SunJCE
security.provider.4=com.sun.net.ssl.internal.ss1.Provider

If you plan to use the IBM Data Server Driver for JDBC and SQL]J in
FIPS-compliant mode, you need to set the com.ibm.jsse2.JSSEFIPS Java system
property:

com.ibm.jsse2.JSSEFIPS=true

Restriction: Non-FIPS-mode JSSE applications cannot run in a JVM that is in
FIPS mode.

Restriction: When the IBMJSSE2 provider runs in FIPS mode, it cannot use
hardware cryptography.

Configure the Java Runtime Environment for the SSL socket factory providers
by adding entries to the java.security file.

IBM Data Server Driver for JDBC and SQL]J for Informix

The format of SSL socket factory provider entries are:

ss1.SocketFactory.provider=provider-package-name
ss1.ServerSocketFactory.provider=provider-package-name

Specify the SSL socket factory provider for the Java security provider that you
are using.

Example: Include SSL socket factory provider entries like these in the
java.security file when you enable FIPS mode in the IBMJSSE2 provider:
Set the SSL socket factory provider
ss1.SocketFactory.provider=com.ibm.jsse2.SSLSocketFactoryImp]l
ss1.ServerSocketFactory.provider=com.ibm.jsse2.SSLServerSocketFactoryImpl
Example: Include SSL socket factory provider entries like these in the
java.security file when you enable FIPS mode in the IBMJSSE provider:

Set the SSL socket factory provider
ss1.SocketFactory.provider=com.ibm.fips.jsse.JSSESocketFactory
ss1.ServerSocketFactory.provider=com.ibm.fips.jsse.JSSEServerSocketFactory
Example: Include SSL socket factory provider entries like these when you use
the SunJSSE provider:

Set the SSL socket factory provider
ss1.SocketFactory.provider=com.sun.net.ss1.internal.ss1.SSLSocketFactoryImpl
ss1.ServerSocketFactory.provider=com.sun.net.ssl.internal.ss1.SSLServerSocketFactoryImpl

Configure Java system properties to use the truststore.
To do that, set the following Java system properties:

javax.net.ssl.trustStore
Specifies the name of the truststore that you specified with the
-keystore parameter in the keytool utility in step

If the IBM Data Server Driver for JDBC and SQLJ property
DB2BaseDataSource.sslTrustStoreLocation is set, its value overrides the
javax.net.ssl.trustStore property value.

javax.net.ssl.trustStorePassword (optional)
Specifies the password for the truststore. You do not need to set a
truststore password. However, if you do not set the password, you
cannot protect the integrity of the truststore.

If the IBM Data Server Driver for JDBC and SQLJ property
DB2BaseDataSource.sslTrustStorePassword is set, its value overrides the
javax.net.ssl.trustStorePassword property value.
Example: One way that you can set Java system properties is to specify them as
the arguments of the -D option when you run a Java application. Suppose that
you want to run a Java application named MySSL.java, which accesses a data
source using an SSL connection. You have defined a truststore named cacerts.
The following command sets the truststore name when you run the application.

java -Djavax.net.ssl.trustStore=cacerts MySSL

Chapter 8. Security under the IBM Data Server Driver for JDBC and SQL] 8-11

8-12 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 9. Problem diagnosis with the IBM Data Server Driver
for JDBC and SQLJ

The IBM Data Server Driver for JDBC and SQLJ includes diagnostic tools and
traces for diagnosing problems during connection and SQL statement execution.

Testing a data server connection

Run the DB2Jcc utility to test a connection to a data server. You provide DB2]cc
with the URL for the data server, for IBM Data Server Driver for JDBC and SQL]
type 4 connectivity or IBM Data Server Driver for JDBC and SQLJ type 2
connectivity. DB2Jcc attempts to connect to the data server, and to execute an SQL
statement and a DatabaseMetaData method. If the connection or statement
execution fails, DB2Jcc provides diagnostic information about the failure.

Collecting JDBC trace data

Use one of the following procedures to start the trace:

Procedure 1: For IBM Data Server Driver for JDBC and SQL]J type 4 connectivity, the
recommended method is to start the trace by setting the db2.jcc.override.traceFile
property or the db2.jcc.override.traceDirectory property in the IBM Data Server
Driver for JDBC and SQL]J configuration properties file. You can set the
db2.jcc.tracePolling and db2.jcc.tracePollingInterval properties before you start the
driver to allow you to change global configuration trace properties while the driver
is running.

Procedure 2: If you use the DataSource interface to connect to a data source, follow
this method to start the trace:

1. Invoke the DB2BaseDataSource.setTraceLevel method to set the type of tracing
that you need. The default trace level is TRACE_ALL. See "Properties for the IBM
Data Server Driver for JDBC and SQLJ" for information on how to specify more
than one type of tracing.

2. Invoke the DB2BaseDataSource.setJccLogWriter method to specify the trace
destination and turn the trace on.

Procedure 3:

If you use the DataSource interface to connect to a data source, invoke the
javax.sql.DataSource.setLogWriter method to turn the trace on. With this method,
TRACE_ALL is the only available trace level.

If you use the DriverManager interface to connect to a data source, follow this

procedure to start the trace.

1. Invoke the DriverManager.getConnection method with the tracelLevel property
set in the info parameter or url parameter for the type of tracing that you need.
The default trace level is TRACE_ALL. See "Properties for the IBM Data Server
Driver for JDBC and SQLJ" for information on how to specify more than one
type of tracing.

2. Invoke the DriverManager.setLogWriter method to specify the trace destination
and turn the trace on.

© Copyright IBM Corp. 2007, 2011 9-1

After a connection is established, you can turn the trace off or back on, change the
trace destination, or change the trace level with the DB2Connection.setJccLogWriter
method. To turn the trace off, set the logWriter value to null.

The logWriter property is an object of type java.io.PrintWriter. If your application
cannot handle java.io.PrintWriter objects, you can use the tracefile property to
specify the destination of the trace output. To use the traceFile property, set the
logWriter property to null, and set the traceFile property to the name of the file
to which the driver writes the trace data. This file and the directory in which it
resides must be writable. If the file already exists, the driver overwrites it.

Procedure 4: If you are using the DriverManager interface, specify the traceFile
and tracelevel properties as part of the URL when you load the driver. For
example:

String url = "jdbc:ids://sysmvsl.st1.ibm.com:5021/san_jose" +

":traceFile=/u/db2p/jcctrace;" +
"tracelLevel=" + com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS + ";";

Procedure 5: Use DB2TraceManager methods. The DB2TraceManager class provides
the ability to suspend and resume tracing of any type of log writer.

Example of starting a trace using configuration properties: For a complete example of
using configuration parameters to collect trace data, see "Example of using
configuration properties to start a JDBC trace".

Trace example program: For a complete example of a program for tracing under the
IBM Data Server Driver for JDBC and SQLJ, see "Example of a trace program
under the IBM Data Server Driver for JDBC and SQLJ".

DB2Jcc - IBM Data Server Driver for JDBC and SQLJ diagnostic utility

9-2

DB2Jcc verifies that a data server is configured for database access.

To verify the connection, DB2Jcc connects to the specified data server, executes an
SQL statement, and executes a java.sql.DatabaseMetadata method.

Authorization

The user ID under which DB2Jcc runs must have the authority to connect to the
specified data server and to execute the specified SQL statement.

DB2Jcc Syntax

»»—java—com.ibm.db2.jcc.DB2Jcc
|—-versionJ |——com‘igurationJ |——he]pJ

». >
I—ur‘l S |
-spec
L

-user—user- ID——password—password—I l—sql-spec—I I—-traci ng—I

url-spec:

|—-ur1 jdbc:de://server—l_—_l—/database—
:—port

jdbc:db2:database

IBM Data Server Driver for JDBC and SQL]J for Informix

sql-spec:

|—-sq1—'—SELECT * FROM SYSIBM.SYSDUMMY1—'—

[N
>p

l——sq]—'—sql—statement—'

DB2Jcc parameters

-help
Specifies that DB2Jcc describes each of the options that it supports. If any other
options are specified with -help, they are ignored.

-version
Specifies that DB2Jcc displays the driver name and version.

-configuration
Specifies that DB2Jcc displays driver configuration information.

-url
Specifies the URL for the data server for which the connection is being tested.
The URL can be a URL for IBM Data Server Driver for JDBC and SQLJ type 2
connectivity or IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.
The variable parts of the -url value are:

server
The domain name or IP address of the operating system on which the
database server resides. server is used only for type 4 connectivity.

port
The TCP/IP server port number that is assigned to the data server. The
default is 446. port is used only for type 4 connectivity.

database
A name for the database server for which the profile is to be customized.

If the connection is to a DB2 for z/OS server, database is the DB2 location
name that is defined during installation. All characters in this value must
be uppercase characters. You can determine the location name by executing
the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

If the connection is to a DB2 Database for Linux, UNIX, and Windows
server, database is the database name that is defined during installation.

If the connection is to an IBM Informix data server, database is the database
name. The name is case-insensitive. The server converts the name to
lowercase.

If the connection is to an IBM Cloudscape server, the database is the
fully-qualified name of the file that contains the database. This name must
be enclosed in double quotation marks ("). For example:

"c:/databases/testdb"
-user user-ID

Specifies the user ID that is to be used to test the connection to the data
server.

-password password
Specifies the password for the user ID that is to be used to test the
connection to the data server.

Chapter 9. Problem diagnosis with the IBM Data Server Driver for JDBC and SQL]J 9-3

-sql 'sql-statement'
Specifies the SQL statement that is sent to the data server to verify the
connection. If the -sql parameter is not specified, this SQL statement is sent
to the data server:

SELECT * FROM SYSIBM.SYSDUMMY1

-tracing
Specifies that tracing is enabled. The trace destination is System.out.

If you omit the -tracing parameter, tracing is disabled.
Examples

Example: Test the connection to a data server using IBM Data Server Driver for
JDBC and SQL]J type 4 connectivity. Use the default SQL statement to test the
connection. Enable tracing for the test.

java com.ibm.db2.jcc.DB2Jcc

-url jdbc:db2://mysys.myloc.sv1.ibm.com:446/MYDB
-user db2user -password db2pass -tracing

Example: Test the connection to a data server using IBM Data Server Driver for
JDBC and SQL]J type 2 connectivity. Use the following SQL statement to test the
connection:

SELECT COUNT(*) FROM EMPLOYEE

Disable tracing for the test.

java com.ibm.db2.jcc.DB2Jcc

-url jdbc:db2:MYDB

-user db2user -password db2pass

-sql 'SELECT COUNT(*) FROM EMPLOYEE'

Examples of using configuration properties to start a JDBC trace

9-4

You can control tracing of JDBC applications without modifying those applications.

Example of writing trace data to one trace file for each
connection

Suppose that you want to collect trace data for a program named Test.java, which
uses IBM Data Server Driver for JDBC and SQLJ type 4 connectivity. Testjava does
no tracing, and you do not want to modify the program, so you enable tracing
using configuration properties. You want your trace output to have the following
characteristics:

* Trace information for each connection on the same DataSource is written to a
separate trace file. Output goes into a directory named /Trace.
* Each trace file name begins with jccTracel.

e If trace files with the same names already exist, the trace data is appended to
them.

Although Test.java does not contain any code to do tracing, you want to set the
configuration properties so that if the application is modified in the future to do
tracing, the settings within the program will take precedence over the settings in
the configuration properties. To do that, use the set of configuration properties that
begin with db2.jcc, not db2.jcc.override.

The configuration property settings look like this:

IBM Data Server Driver for JDBC and SQL]J for Informix

 db2 jcc.traceDirectory=/Trace
* db2.jcc.traceFile=jccTracel
* db2jcc.traceFileAppend=true

You want the trace settings to apply only to your stand-alone program Test.java, so
you create a file with these settings, and then refer to the file when you invoke the
Java program by specifying the -Ddb2.jcc.propertiesFile option. Suppose that the
file that contains the settings is /Test/jcc.properties. To enable tracing when you
run Testjava, you issue a command like this:

java -Ddb2.jcc.propertiesFile=/Test/jcc.properties Test

Suppose that Test.java creates two connections for one DataSource. The program
does not define a logWriter object, so the driver creates a global logWriter object
for the trace output. When the program completes, the following files contain the
trace data:

* /Trace/jccTracel_global 0

* /Trace/jccTracel_global 1

Example of a trace program under the IBM Data Server Driver for
JDBC and SQLJ

You might want to write a single class that includes methods for tracing under the
DriverManager interface, as well as the DataSource interface.

The following example shows such a class. The example uses IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity.

Figure 9-1. Example of tracing under the IBM Data Server Driver for JDBC and SQLJ

public class TraceExample

{

public static void main(String[] args)

{
sampleConnectUsingSimpleDataSource();
sampleConnectWithURLUsingDriverManager();

}

private static void sampleConnectUsingSimpleDataSource()
{
java.sql.Connection ¢ = null;
java.io.PrintWriter printWriter =
new java.io.PrintWriter(System.out, true);
// Prints to console, true means
// auto-flush so you don't Tose trace
try {
javax.sql.DataSource ds =
new com.ibm.db2.jcc.DB2SimpleDataSource();
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setServerName("sysmvsl.stl.ibm.com");
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setPortNumber(5021);
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setDatabaseName("san_jose");
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setDriverType(4);

ds.setLogWriter(printhriter); // This turns on tracing
// Refine the level of tracing detail
((com.ibm.db2.jcc.DB2BaseDataSource) ds).

setTracelLevel (com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_CONNECTS |
com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_DRDA_FLOWS);

Chapter 9. Problem diagnosis with the IBM Data Server Driver for JDBC and SQL]J 9-5

// This connection request is traced using trace level
// TRACE_CONNECTS | TRACE_DRDA_FLOWS
c = ds.getConnection("myname", "mypass");

// Change the trace level to TRACE_ALL

// for all subsequent requests on the connection
((com.ibm.db2.jcc.DB2Connection) c).setdccLogWriter(printWriter,
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

// The following INSERT is traced using trace level TRACE_ALL
java.sql.Statement sl = c.createStatement();
sl.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");
sl.close();

// This code disables all tracing on the connection
((com.ibm.db2.jcc.DB2Connection) c).setdccLogWriter(null);

// The following INSERT statement is not traced

java.sql.Statement s2 = c.createStatement();
s2.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");
s2.close();

c.close();

1

catch(java.sql.SQLException e) {
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,
printWriter, "[TraceExample]");

1

finally {
cleanup(c, printWriter);
printWriter.flush();

}

}

// 1f the code ran successfully, the connection should

// already be closed. Check whether the connection is closed.

// If so, just return.

// 1f a failure occurred, try to roll back and close the connection.

private static void cleanup(java.sql.Connection c,
java.io.PrintWriter printWriter)

if(c == null) return;

try {
if(c.isClosed()) {
printWriter.printIn("[TraceExample] " +
"The connection was successfully closed");
return;

}

// 1f we get to here, something has gone wrong.
// Ro11 back and close the connection.
printWriter.printIn("[TraceExample] Rolling back the connection");
try {
c.rollback();
}
catch(java.sql.SQLException e) {
printWriter.printin("[TraceExample] " +
"Trapped the following java.sql.SQLException while trying to roll back:");
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");
printWriter.printin("[TraceExample] " +
"Unable to roll back the connection");
}

catch(java.lang.Throwable e) {

printWriter.printin("[TraceExample] Trapped the " +
"following java.lang.Throwable while trying to roll back:");

9-6 IBM Data Server Driver for JDBC and SQLJ for Informix

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace (e,
printWriter, "[TraceExample]");
printWriter.printin("[TraceExample] Unable to " +
"roll back the connection");
}

// Close the connection
printWriter.printin("[TraceExample] Closing the connection");
try {
c.close();
}
catch(java.sql.SQLException e) {
printWriter.printin("[TraceExample] Exception while " +
"trying to close the connection");
printWriter.printIn("[TraceExample] Deadlocks could " +
"occur if the connection is not closed.");
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");
}

catch(java.lang.Throwable e) {
printWriter.printin("[TraceExample] Throwable caught " +
"while trying to close the connection");
printWriter.printin("[TraceExample] Deadlocks could " +
"occur if the connection is not closed.");
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");
}

1
catch(java.lang.Throwable e) {
printWriter.printin("[TraceExample] Unable to " +
"force the connection to close");
printWriter.printin("[TraceExample] Deadlocks " +
"could occur if the connection is not closed.");
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");
1
}
private static void sampleConnectWithURLUsingDriverManager ()

{

java.sql.Connection ¢ = null;

// This time, send the printWriter to a file.
java.io.PrintWriter printWriter = null;
try {
printWriter =
new java.io.PrintWriter(
new java.io.BufferedOutputStream(
new java.io.FileOutputStream("/temp/driverLog.txt"), 4096), true);

catch(java.io.FileNotFoundException e) {
java.lang.System.err.printin("Unable to establish a print writer for trace");
java.lang.System.err.flush();
return;

}

try {
Class.forName("com.ibm.db2.jcc.DB2Driver");

1
catch(ClassNotFoundException e) {
printWriter.printin("[TraceExample] " +
"IBM Data Server Driver for JDBC and SQLJ type 4 connectivity " +
"is not in the application classpath. Unable to load driver.");
printWriter.flush();
return;

}

// This URL describes the target data source for Type 4 connectivity.

Chapter 9. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ ~ 9-7

// The tracelLevel property is established through the URL syntax,

// and driver tracing is directed to file "/temp/driverLog.txt"

// The tracelevel property has type int. The constants

// com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS and

// com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS represent

// int values. Those constants cannot be used directly in the

// first getConnection parameter. Resolve the constants to their

// int values by assigning them to a variable. Then use the

// variable as the first parameter of the getConnection method.

String databaseURL =
"jdbc:ids://sysmvsl.st1.ibm.com:5021" +
"/sample:traceFile=/temp/driverLog.txt;traceLevel=" +
(com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA FLOWS |
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS) + ";";

// Set other properties

java.util.Properties properties = new java.util.Properties();
properties.setProperty("user", "myname");
properties.setProperty("password", "mypass");

try {

// This connection request is traced using trace level

// TRACE_CONNECTS | TRACE_DRDA_ FLOWS

c = java.sql.DriverManager.getConnection(databaseURL, properties);

// Change the trace level for all subsequent requests

// on the connection to TRACE_ALL
((com.ibm.db2.jcc.DB2Connection) c).setdccLogWriter(printWriter,
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

// The following INSERT is traced using trace level TRACE ALL
java.sql.Statement sl = c.createStatement();
sl.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");
sl.close();

// Disable all tracing on the connection
((com.ibm.db2.jcc.DB2Connection) c).setdccLogWriter(null);

// The following SQL insert code is not traced

java.sql.Statement s2 = c.createStatement();
s2.executeUpdate("insert into sampleTable(sampleColumn) values(1)");
s2.close();

c.close();

}

catch(java.sql.SQLException e) {
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

"[TraceExample]");

1
finally {

cleanup(c, printWriter);

printWriter.flush();

1

}
1

Techniques for monitoring IBM Data Server Driver for JDBC and SQLJ
Sysplex support

To monitor IBM Data Server Driver for JDBC and SQLJ Sysplex support, you need
to monitor the global transport objects pool.

You can monitor the global transport objects pool in either of the following ways:

9-8 IBM Data Server Driver for JDBC and SQLJ for Informix

* Using traces that you start by setting IBM Data Server Driver for JDBC and
SQLJ configuration properties

* Using an application programming interface

Configuration properties for monitoring the global transport
objects pool

The db2.jcc.dumpPool, db2 jcc.dumpPoolStatisticsOnSchedule, and
db2.jcc.dumpPoolStatisticsOnScheduleFile configuration properties control tracing
of the global transport objects pool.

For example, the following set of configuration property settings cause error
messages and dump pool error messages to be written every 60 seconds to a file
named /home/WAS/logs/srv1/poolstats:

db2. jcc.dumpPool=DUMP_SYSPLEX MSG |DUMP_POOL_ERROR

db2.jcc.dumpPoolStatisticsOnSchedule=60
db2.jcc.dumpPoolStatisticsOnScheduleFile=/home/WAS/Togs/srvl/poolstats

An entry in the pool statistics file looks like this:

time Scheduled PoolStatistics npr:2575 nsr:2575 Twroc:439 hwroc:1764 coc:372
a00c:362 rmoc:362 nbr:2872 tbt:857520 tpo:10

The meanings of the fields are:

npr
The total number of requests that the IBM Data Server Driver for JDBC and
SQLJ has made to the pool since the pool was created.

nsr
The number of successful requests that the IBM Data Server Driver for JDBC
and SQLJ has made to the pool since the pool was created. A successful
request means that the pool returned an object.

Twroc
The number of objects that were reused but were not in the pool. This can
happen if a Connection object releases a transport object at a transaction
boundary. If the Connection object needs a transport object later, and the
original transport object has not been used by any other Connection object, the
Connection object can use that transport object.

hwroc
The number of objects that were reused from the pool.

coc
The number of objects that the IBM Data Server Driver for JDBC and SQLJ
created since the pool was created.

aooc
The number of objects that exceeded the idle time that was specified by
db2.jcc.maxTransportObjectldleTime and were deleted from the pool.

rmoc
The number of objects that have been deleted from the pool since the pool was
created.

nbr
The number of requests that the IBM Data Server Driver for JDBC and SQLJ
made to the pool that the pool blocked because the pool reached its maximum

Chapter 9. Problem diagnosis with the IBM Data Server Driver for JDBC and SQL]J 9-9

9-10

capacity. A blocked request might be successful if an object is returned to the
pool before the db2.jcc.maxTransportObjectWaitTime is exceeded and an
exception is thrown.

tht
The total time in milliseconds for requests that were blocked by the pool. This
time can be much larger than the elapsed execution time of the application if
the application uses multiple threads.

sht
The shortest time in milliseconds that a thread waited to get a transport object
from the pool. If the time is under one millisecond, the value in this field is
Zero.

1bt
The longest time in milliseconds that a thread waited to get a transport object
from the pool.

abt
The average amount of time in milliseconds that threads waited to get a
transport object from the pool. This value is tbt/nbr.

tpo
The number of objects that are currently in the pool.

Application programming interfaces for monitoring the global
transport objects pool

You can write applications to gather statistics on the global transport objects pool.
Those applications create objects in the DB2PoolMonitor class and invoke methods
to retrieve information about the pool.

For example, the following code creates an object for monitoring the global
transport objects pool:
import com.ibm.db2.jcc.DB2PoolMonitor;

DB2PoolMonitor transportObjectPoolMonitor =
DB2Poo1Monitor.getPoolMonitor (DB2PoolMonitor.TRANSPORT OBJECT);

After you create the DB2PoolMonitor object, you can use methods in the
DB2PoolMonitor class to monitor the pool.

IBM Data Server Driver for JDBC and SQL]J for Informix

Chapter 10. System monitoring for the IBM Data Server Driver
for JDBC and SQLJ

To assist you in monitoring the performance of your applications with the IBM
Data Server Driver for JDBC and SQLJ, the driver provides two methods to collect
information for a connection.

That information is:

Core driver time
The sum of elapsed monitored API times that were collected while system
monitoring was enabled, in microseconds. In general, only APIs that might
result in network I/O or database server interaction are monitored.

Network I/O time
The sum of elapsed network I/O times that were collected while system
monitoring was enabled, in microseconds.

Server time
The sum of all reported database server elapsed times that were collected
while system monitoring was enabled, in microseconds.

Application time
The sum of the application, JDBC driver, network I/0, and database server
elapsed times, in milliseconds.

The two methods are:
* The DB2SystemMonitor interface
* The TRACE_SYSTEM_MONITOR trace level

To collect system monitoring data using the DB2SystemMonitor interface: Perform these
basic steps:

1. Invoke the DB2Connection.getDB2SystemMonitor method to create a
DB2SystemMonitor object.

2. Invoke the DB2SystemMonitor.enable method to enable the DB2SystemMonitor
object for the connection.

3. Invoke the DB2SystemMonitor.start method to start system monitoring.

4. When the activity that is to be monitored is complete, invoke
DB2SystemMonitor.stop to stop system monitoring.

5. Invoke the DB2SystemMonitor.getCoreDriverTimeMicros,
DB2SystemMonitor.getNetworklOTimeMicros,
DB2SystemMonitor.getServerTimeMicros, or
DB2SystemMonitor.getApplicationTimeMillis methods to retrieve the elapsed
time data.

The server time that is returned by DB2SystemMonitor.getServerTimeMicros
does not include commit or rollback time.

For example, the following code demonstrates how to collect each type of elapsed

time data. The numbers to the right of selected statements correspond to the
previously described steps.

© Copyright IBM Corp. 2007, 2011 10-1

import java.sql.*;
import com.ibm.db2.jcc.*;
public class TestSystemMonitor
{
public static void main(String[] args)
{
String url = "jdbc:ids://sysmvsl.svl.ibm.com:5021/san_jose";
String user="db2adm";
String password="db2adm";
try
{
// Load the IBM Data Server Driver for JDBC and SQLJ
Class.forName("com.ibm.db2.jcc.DB2Driver");
System.out.printin("**** Loaded the JDBC driver");

// Create the connection using the IBM Data Server Driver for JDBC and SQLJ
Connection conn = DriverManager.getConnection (url,user,password);

// Commit changes manually

conn.setAutoCommit(false);

System.out.printIn("**+* Created a JDBC connection to the data source");
DB2SystemMonitor systemMonitor =

((DB2Connection)conn).getDB2SystemMonitor();
systemMonitor.enable(true); E
systemMonitor.start(DB2SystemMonitor.RESET TIMES);

Statement stmt = conn.createStatement();
int numUpd = stmt.executeUpdate(

"UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010'");
systemMonitor.stop(); 4]
System.out.printin("Server elapsed time (microseconds)="

+ systemMonitor.getServerTimeMicros()); B
System.out.printIn("Network I/0 elapsed time (microseconds)="

+ systemMonitor.getNetworkIOTimeMicros());
System.out.printin("Core driver elapsed time (microseconds)="

+ systemMonitor.getCoreDriverTimeMicros());
System.out.printin("Application elapsed time (milliseconds)="

+ systemMonitor.getApplicationTimeMillis());
conn.rollback();
stmt.close();
conn.close();

1

// Handle errors

catch(ClassNotFoundException e)

{
System.err.printin("Unable to load the driver, " + e);

1

catch(SQLException e)

{
System.out.printIn("SQLException: " + €);
e.printStackTrace();

1

}
1

Figure 10-1. Example of using DB2SystemMonitor methods to collect system monitoring data

To collect system monitoring information using the trace method: Start a JDBC trace,
using configuration properties or Connection or DataSource properties. Include
TRACE_SYSTEM_MONITOR when you set the traceLevel property. For example:

String url = "jdbc:ids://sysmvsl.stl.ibm.com:5021/san_jose" +
":traceFile=/u/db2p/jcctrace;" +
"tracelLevel=" + com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR + ";";

The trace records with system monitor information look similar to this:

10-2 IBM Data Server Driver for JDBC and SQLJ for Informix

[jcc] [SystemMonitor:start]

[jcc] [SystemMonitor:stop] core: 565.67ms | network: 211.695ms | server: 207.771ms

IBM Data Server Driver for JDBC and SQLJ remote trace controller

The IBM Data Server Driver for JDBC and SQL] provides a facility for controlling
IBM Data Server Driver for JDBC and SQL] traces dynamically.

This remote trace controller lets you perform operations like these for multiple
driver instances:

e Start, stop, or resume a trace
¢ Change the output trace file or directory location
* Change the trace level

The remote trace controller uses the Java Management Extensions (JMX)
architecture, which is part of the Java Standard Edition, Version 6, or later. The
JMX consists of:

* A set of built-in management utilities, which let you do monitoring from a
management console such as the Java Monitoring and Management Console
(JConsole).

* A set of APIs that let you write applications to perform the same functions.

Enabling the remote trace controller

Enabling the remote trace controller involves enabling Java Management
Extensions (JMX) in the IBM Data Server Driver for JDBC and SQL]J, and making
the JMX agent available to clients.

The remote trace controller requires Java Standard Edition, Version 6 or later.

The steps for enabling the remote trace controller are:

1. Enable JMX to the IBM Data Server Driver for JDBC and SQLJ by setting the
db2.jcc.jmxEnabled global configuration property to true or yes.

For example, include this string in DB2JccConfiguration.properties:
db2.jcc.jmxEnabled=true

2. Make the JMX agent (the platform MBean server) available to local or remote
clients.

e For local clients:

Monitoring and management capabilities are automatically made available
when the JVM is started. After your application is started, you can use a J]MX
client such as JConsole to connect locally to your Java process.

 For remote clients, use one of the following methods:
— Use the out-of-the-box JMX agent.

Out-of-the-box management uses JMX built-in management utilities. To
enable out-of-the-box management, you need to set a number of Java
system properties. You must at least set the following property:

com.sun.management. jmxremote.port=portNum

In addition, you should ensure that authentication and SSL are properly
configured.

Full information on enabling out-of-the-box management is at the
following URL:

[http://downToad.oracle.com/javase/6/docs/technotes/quides/management/agent . htmi|

Chapter 10. System monitoring for the IBM Data Server Driver for JDBC and SQL]J 10-3

http://download.oracle.com/javase/6/docs/technotes/guides/management/agent.html

— Write a JMX agent. This technique is also discussed at:

[http://download.oracle.com/javase/6/docs/technotes/guides/management/agent.html|

10-4

In the following example, an RMI connector server is created for the
PlatformMBeanServer using the MyCustomJMXAuthenticator object. The
MyCustomJMXAuthenticator class defines how remote credentials are
converted into a JAAS Subject by implementing the J]MXAuthenticator
interface:

HashMap<String> env = new HashMap<String>();
env.put (JMXConnectorServer.AUTHENTICATOR, new MyCustomJMXAuthenticator());
env.put("jmx.remote.x.access.file", "my.access.file");

MBeanServer mbs =

java.lang.management .ManagementFactory.getPlatformMBeanServer();
JMXServiceURL url =

new JMXServiceURL("service:jmx:rmi:///jndi/rmi://:9999/jmxrmi");

JMXConnectorServer cs =
JMXConnectorServerFactory.newJMXConnectorServer(url, env, mbs);
cs.start();

public class MyCustomJMXAuthenticator implements JMXAuthenticator {

public Subject authenticate(Object credentials) {
// the hash contains username, password, etc...
Hashtable <String> credentialsHash
= (Hashtable <String>) credentials;

// Authenticate using the provided credentials

if (authentication-successful) {
return new Subject(true,
Collections.singleton
(new JMXPrincipal(credentialsHash.get("username"))),

Collections.EMPTY_SET,
Collections.EMPTY_SET);

1

throw new SecurityException("Invalid credentials");

}
1

Accessing the remote trace controller

You can access the remote trace controller through out-of-the-box management
tools, or through an application.

You use out-of-the-box management through a JMX-compliant management client,
such as JConsole, which is part of Java Standard Edition, Version 6. Information on
using JConsole for out-of-the-box management is at the following URL:

[rttp://downToad.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html|

In an application that accesses the remote trace controller, the remote trace
controller is a managed bean (MBean). JMX manages resources through JMX
agents. A JMX agent is an MBean server. Each MBean represents a resource. Every
MBean has a name, which you define through an object of class
javax.management.ObjectName. You use the ObjectName object to register and
retrieve MBeans in the MBeanServer.

IBM Data Server Driver for JDBC and SQL]J for Informix

http://download.oracle.com/javase/6/docs/technotes/guides/management/agent.html
http://download.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html

The MBean name has two parts: the domain and the key properties. For the

ObjectName for the IBM Data Server Driver for JDBC and SQL]J remote trace

controller, the domain is com.ibm.db2.jcc, and the key properties are
name=DB2TraceManager.

An application that accesses the remote trace controller must include these steps:

1. Establish a Remote Method Invocation (RMI) connection to an MBean server.

2. Perform a lookup on the remote trace controller in the MBean server.
3. Invoke trace operations on the MBean.

You can operate on the MBean in the following ways:

¢ Using an MBean proxy

* Without a proxy, through an MBeanServerConnection.

Example: accessing the remote trace controller without proxies: This example
demonstrates accessing MBeans directly from an MBeanServerConnection. This

method is the most generic because it does not require matching interface
definitions on the JMX client application.
Hashtable<String> env = new Hashtable<String>();

env.put(Context.INITIAL CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");

try {
System.out.printin ("");
System.out.printIn (M -----mmmmmm o m oo ")s
System.out.printin ("Establish an RMI connection to an MBeanServer");
System.out.printIn (M -----mmmmm oo oo ")s

JMXServiceURL url =

new JMXServiceURL ("service:jmx:rmi:///jndi/rmi://Tocalhost:9999/jmxrmi");

JMXConnector jmxc = JMXConnectorFactory.connect (url, env);
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

System.out.printin ("");

System.out.printIn (M -----mmmmmmm oo ")s
System.out.printin ("Processing MBean");
System.out.printIn (M --=mmmmmm oo oo ")s

String objectNameString = "com.ibm.db2.jcc:name=DB2TraceManager";
ObjectName name = new ObjectName(objectNameString);
System.out.printin ("ObjectName="+objectNameString);

System.out.printin ("");

System.out.printIn (Me=--- oo oo e oo ")s
System.out.printin ("Print all attributes of the MBean");
System.out.printIn (Me----mm e e e o ")s

System.out.printin(

"TraceDirectory = "+mbsc.getAttribute (name, "TraceDirectory"));
System.out.printin(

"TraceFile = "+mbsc.getAttribute (name, "TraceFile"));
System.out.printin(

"TraceFileAppend = "+mbsc.getAttribute (name, "TraceFileAppend"));
System.out.printin(

"TraceLevel = "+mbsc.getAttribute (name, "TracelLevel"));

System.out.printin ("");

System.out.printIn (Me=--e o e oo ")s
System.out.printin ("Invoke some operations on the MBean");
System.out.printIn (Me---- oo e e ")s
System.out.print ("Invoking suspendTrace()...");

mbsc.invoke (name, "suspendTrace", null , null);
System.out.printin ("success");

System.out.print ("Invoking resumeTrace()...");

Chapter 10. System monitoring for the IBM Data Server Driver for JDBC and SQL]J

10-5

mbsc.invoke (name, "resumeTrace", null , null);
System.out.printin ("success");

}

catch (Exception e) {
System.out.printin ("failure");
e.printStackTrace ();

}

Example: accessing the remote trace controller with proxies: This example
demonstrates the creation of a proxy to an MBean. The proxy implements the
com.ibm.db2.jcc.mx.DB2TraceManagerMXBean interface. The application makes
calls directly on the proxy, and the underlying proxy implementation invokes the
MBean operation on the remote MBean server.

Hashtable<String> env = new Hashtable<String>();

env.put (Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");

try {
System.out.printin ("");
System.out.printIn (M =-mm oo e e e e e ")
System.out.printin ("Establish an RMI connection to an MBeanServer");
System.out.printIn (M=-mm e e e e e e e e "

JMXServiceURL url =

new JMXServiceURL ("service:jmx:rmi:///jndi/vrmi://Tocalhost:9999/jmxrmi");
JMXConnector jmxc = JMXConnectorFactory.connect (url, env);
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

System.out.printin ("");

System.out.printIn (M=-mmmmm e e e e e ")s
System.out.printin ("Processing MBean");
System.out.printIn (M=--m o e o e oo ")s

String objectNameString = "com.ibm.db2.jcc:name=DB2TraceManager";
ObjectName name = new ObjectName(objectNameString);
System.out.printin ("ObjectName="+objectNameString);

System.out.printin ("");

System.out.printIn (M -----mmmmm oo ")s
System.out.printin ("Print all attributes of the MBean");
System.out.printIn (M ---mmmmmm oo oo ")s

com.ibm.db2.jcc.mx.DB2TraceManagerMXBean mbeanProxy =
JMX.newMBeanProxy (mbsc, name,
com.ibm.db2.jcc.mx.DB2TraceManagerMXBean.class, true);

System.out.printin ("TraceDirectory = "+mbeanProxy.getTraceDirectory ());
System.out.printin ("TraceFile = "+mbeanProxy.getTraceFile ());
System.out.printin ("TraceFileAppend = "+mbeanProxy.getTraceFileAppend ());
System.out.printin ("Tracelevel = "+mbeanProxy.getTracelLevel ());
System.out.printin ("");

System.out.printIn (M=-mm e e e e e ")
System.out.printin ("Invoke some operations on the MBean");
System.out.printIn (M- -m o e oo o ")
System.out.print ("Invoking suspendTrace()...");

mbeanProxy.suspendTrace();
System.out.printin ("success");
System.out.print ("Invoking resumeTrace()...");
mbeanProxy.resumeTrace();
System.out.printin ("success");

1

catch (Exception e) {
System.out.printin ("failure");
e.printStackTrace ();

}

10-6 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 11. Java client support for high availability on IBM

data servers

Client applications that connect to DB2 Database for Linux, UNIX, and Windows,
DB2 for z/OS, or IBM Informix can easily take advantage of the high availability
features of those data servers.

Client applications can use the following high availability features:

e Automatic client reroute

Automatic client reroute capability is available on all IBM data servers.
Automatic client reroute uses information that is provided by the data servers to
redirect client applications from a server that experiences an outage to an
alternate server. Automatic client reroute enables applications to continue their
work with minimal interruption. Redirection of work to an alternate server is
called failover.

For connections to DB2 for z/OS data servers, automatic client reroute is part of
the workload balancing feature. In general, for DB2 for z/OS, automatic client
reroute should not be enabled without workload balancing.

Client affinities

Client affinities is a failover solution that is controlled completely by the client. It
is intended for situations in which you need to connect to a particular primary
server. If an outage occurs during the connection to the primary server, you use
client affinities to enforce a specific order for failover to alternate servers.

Client affinities is not applicable to a DB2 for z/OS data sharing environment,
because all members of a data sharing group can access data concurrently. Data
sharing is the recommended solution for high availability for DB2 for z/OS.

Workload balancing

Workload balancing is available on all IBM data servers. Workload balancing
ensures that work is distributed efficiently among servers in an IBM Informix
high-availability cluster, DB2 for z/OS data sharing group, or DB2 Database for
Linux, UNIX, and Windows DB2 pureScale® instance.

The following table provides links to server-side information about these features.

Table 11-1. Server-side information on high availability

Data server

Related topics

DB2 Database for Linux, UNIX, and Windows DB2 pureScale: [Road map to DB2 pureScale Feature]

|d0cumentatiog]

 Automatic client reroute: [Automatic client reroute]

IBM Informix

Manage Cluster Connections with the Connection|

Manager|

DB2 for z/OS

|Communicating with data sharing groups

Important: For connections to DB2 for z/OS, this information discusses direct
connections to DB2 for z/OS. For information about high availability for
connections through DB2 Connect” Server, see the DB2 Connect documentation.

© Copyright IBM Corp. 2007, 2011 11-1

http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/topic/com.ibm.db2.luw.sd.doc/doc/c0056030.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/topic/com.ibm.db2.luw.sd.doc/doc/c0056030.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.ha.doc/doc/r0023392.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.ha.doc/doc/r0023392.html
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1210.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1210.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/db2z_communicatedsgroups.htm

Java client support for high availability for connections to DB2
Database for Linux, UNIX, and Windows servers

DB2 Database for Linux, UNIX, and Windows servers provide high availability for
client applications, through workload balancing and automatic client reroute. This
support is available for applications that use Java clients (JDBC, SQL]J, or
pureQuery), as well as non-Java clients (ODBC, CLI, .NET, OLE DB, PHP, Ruby, or
embedded SQL).

For Java clients, you need to use IBM Data Server Driver for JDBC and SQL] type
4 connectivity to take advantage of DB2 Database for Linux, UNIX, and Windows
high-availability support. You need IBM Data Server Driver for JDBC and SQLJ
version 3.58 or 4.8, or later.

High availability support for connections to DB2 Database for Linux, UNIX, and
Windows servers includes:

Automatic client reroute
This support enables a client to recover from a failure by attempting to
reconnect to the database through an alternate server. Reconnection to another
server is called failover. For Java clients, automatic client reroute support is
always enabled.

Servers can provide automatic client reroute capability in any of the following

ways:

* Several servers are configured in a DB2 pureScale instance. A connection to a
database is a connection to a member of that DB2 pureScale instance.
Failover involves reconnection to another member of the DB2 pureScale
instance. This environment requires that clients use TCP/IP to connect to the
DB2 pureScale instance.

* A DB2 pureScale instance and an alternate server are defined for a database.
Failover first involves reconnection to another member of the DB2 pureScale
instance. Failover to the alternate server is attempted only if no member of
the DB2 pureScale instance is available.

* A DB2 pureScale instance is defined for the primary server, and another DB2
pureScale instance is defined for the alternate server. Failover first involves
reconnection to another member of the primary DB2 pureScale instance.
Failover to the alternate DB2 pureScale instance is attempted only if no
member of the primary DB2 pureScale instance is available.

* A database is defined on a single server. The configuration for that database
includes specification of an alternate server. Failover involves reconnection
to the alternate server.

For Java, client applications, failover for automatic client reroute can be
seamless or non-seamless. With non-seamless failover, when the client application
reconnects to another server, an error is always returned to the application, to
indicate that failover (connection to the alternate server) occurred. With
seamless failover, the driver does not return an error if a connection failure and
successful reconnection to an alternate server occur during execution of the
first SQL statement in a transaction.

In a DB2 pureScale instance, automatic client reroute support can be used
without workload balancing or with workload balancing.

Workload balancing
Workload balancing can improve availability of a DB2 pureScale instance.

11-2 IBM Data Server Driver for JDBC and SQLJ for Informix

With workload balancing, a DB2 pureScale instance ensures that work is
distributed efficiently among members.

Java clients on any operating system support workload balancing. The
connection from the client to the DB2 pureScale instance must use TCP/IP.

When workload balancing is enabled, the client gets frequent status
information about the members of the DB2 pureScale instance through a server
list. The client caches the server list and uses the information in it to determine
the member to which the next transaction should be routed.

For Java applications, when JNDI is used, the cached server list can be shared
by multiple JVMs for the first connection. However workload balancing is
always performed within the context of a single JVM.

DB2 Database for Linux, UNIX, and Windows supports two types of workload
balancing:

Connection-level workload balancing
Connection-level workload balancing is performed at connection
boundaries. It is not supported for Java clients.

Transaction-level workload balancing
Transaction-level workload balancing is performed at transaction
boundaries. Client support for transaction-level workload balancing is
disabled by default for clients that connect to DB2 Database for Linux,
UNIX, and Windows.

Client affinities

Client affinities is an automatic client reroute solution that is controlled
completely by the client. It is intended for situations in which you need to
connect to a particular primary server. If an outage occurs during the
connection to the primary server, you use client affinities to enforce a specific
order for failover to alternate servers.

Configuration of DB2 Database for Linux, UNIX, and Windows
automatic client reroute support for Java clients

For connections to DB2 Database for Linux, UNIX, and Windows databases, the
process for configuration of automatic client reroute support on Java clients is the
same for connections to a non-DB2 pureScale environment and a DB2 pureScale
environment.

Automatic client reroute support for Java client applications that connect to DB2
Database for Linux, UNIX, and Windows works for connections that are obtained
using the javax.sql.DataSource, javax.sql.ConnectionPoolDataSource,
Jjavax.sql.XADataSource, or java.sql.DriverManager interface.

To configure automatic client reroute on a IBM Data Server Driver for JDBC and
SQL]J client:

1.

Set the appropriate properties to specify the primary and alternate server
addresses to use if the first connection fails.

* If your application is using the DriverManager interface for connections:

a. Specify the server name and port number of the primary server that you
want to use in the connection URL.

b. Set the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties to the server name and port
number of the alternate server that you want to use.

Chapter 11. Java client support for high availability on IBM data servers ~11-3

11-4

Restriction: Automatic client reroute support for connections that are made
with the DriverManager interface has the following restrictions:

— Alternate server information is shared between DriverManager

connections only if you create the connections with the same URL and
properties.

You cannot set the clientRerouteServerListf NDIName property or the
clientRerouteServerListi NDIContext properties for a DriverManager
connection.

Automatic client reroute is not enabled for default connections
(jdbc:default:connection).

* If your application is using the DataSource interface for connections, use one
or both of the following techniques:

— Set the server names and port numbers in DataSource properties:

a. Set the serverName and portNumber properties to the server name
and port number of the primary server that you want to use.

b. Set the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties to the server name and
port number of the alternate server that you want to use.

— Configure JNDI for automatic client reroute by using a

DB2ClientRerouteServerList instance to identify the primary server and
alternate server.

a. Create an instance of DB2ClientRerouteServerList.

DB2ClientRerouteServerList is a serializable Java bean with the
following properties:

Property name Data type
com.ibm.db2 jec.DB2ClientRerouteServerList.alternateServerName String|[]
com.ibm.db2 jcc.DB2ClientRerouteServerList.alternatePortNumber int[]
com.ibm.db2 jec.DB2ClientRerouteServerList.primaryServerName String][]
com.ibm.db2 jec.DB2ClientRerouteServerList.primaryPortNumber int[]

getXXX and setXXX methods are defined for each property.

b. Set the
com.ibm.db2.jcc. DB2ClientRerouteServerList.primaryServerName and
com.ibm.db2.jcc. DB2ClientRerouteServerList.primaryPortNumber
properties to the server name and port number of the primary server
that you want to use.

C. Set the
com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName and
com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber
properties to the server names and port numbers of the alternate
server that you want to use.

d. To make the DB2ClientRerouteServerList persistent:

1) Bind the DB2ClientRerouteServerList instance to the JNDI registry.

2) Assign the JNDI name of the DB2ClientRerouteServerList object to
the IBM Data Server Driver for JDBC and SQL]J
clientRerouteServerListi NDIName property.

3) Assign the name of the JNDI context that is used for binding and
lookup of the DB2ClientRerouteServerList instance to the
clientRerouteServerList NDIContext property.

IBM Data Server Driver for JDBC and SQLJ for Informix

When a DataSource is configured to use JNDI for storing automatic client
reroute alternate information, the standard server and port properties of
the DataSource are not used for a getConnection request. Instead, the
primary server address is obtained from the transient
clientRerouteServerList information. If the JNDI store is not available due
to a JNDI bind or lookup failure, the IBM Data Server Driver for JDBC
and SQLJ attempts to make a connection using the standard server and
port properties of the DataSource. Warnings are accumulated to indicate
that a JNDI bind or lookup failure occurred.

After a failover:

- The IBM Data Server Driver for JDBC and SQL] attempts to propagate
the updated server information to the JNDI store.

- primaryServerName and primaryPortNumber values that are specified
in DB2ClientRerouteServerList are used for the connection. If
primaryServerName is not specified, the serverName and portNumber
values for the DataSource instance are used.

If you configure DataSource properties as well as configuring JNDI for
automatic client reroute, the DataSource properties have precedence over the
JNDI configuration.

2. Set properties to control the number of retries, time between retries, and the
frequency with which the server list is refreshed.

The following properties control retry behavior for automatic client reroute.

maxRetriesForClientReroute
The maximum number of connection retries for automatic client reroute.

When client affinities support is not configured, if
maxRetriesForClientReroute or retrylntervalForClientReroute is not set, the
default behavior is that the connection is retried for 10 minutes, with a wait
time between retries that increases as the length of time from the first retry
increases.

When client affinities is configured, the default for
maxRetriesForClientReroute is 3.

retryIntervalForClientReroute
The number of seconds between consecutive connection retries.

When client affinities support is not configured, if
retrylntervalForClientReroute or maxRetriesForClientReroute is not set, the
default behavior is that the connection is retried for 10 minutes, with a wait
time between retries that increases as the length of time from the first retry
increases.

When client affinities is configured, the default for
retryIntervalForClientReroute is 0 (no wait).

Example of enabling DB2 Database for Linux, UNIX, and
Windows automatic client reroute support in Java applications

Java client setup for DB2 Database for Linux, UNIX, and Windows automatic client
reroute support includes setting several IBM Data Server Driver for JDBC and
SQLJ properties.

The following example demonstrates setting up Java client applications for DB2
Database for Linux, UNIX, and Windows automatic client reroute support.

Chapter 11. Java client support for high availability on IBM data servers ~ 11-5

11-6

Suppose that your installation has a primary server and an alternate server with
the following server names and port numbers:

Server name Port number
srvl.sj.ibm.com 50000
srv3.sj.ibm.com 50002

The following code sets up DataSource properties in an application so that the
application connects to srvl.sj.ibm.com as the primary server, and srv3.sj.ibm.com
as the alternative server. That is, if srvl.sj.ibm.com is down during the initial
connection, the driver should connect to srv3.sj.ibm.com.

ds.setDriverType(4);

ds.setServerName("srvl.sj.ibm.com");
ds.setPortNumber("50000");
ds.setClientRerouteAlternateServerName("srv3.sj.ibm.com");
ds.setClientRerouteAlternatePortNumber("50002");

The following code configures JNDI for automatic client reroute. It creates an
instance of DB2ClientRerouteServerList, binds that instance to the JNDI registry,
and assigns the JNDI name of the DB2ClientRerouteServerList object to the
clientRerouteServerListf NDIName property.

// Create a starting context for naming operations

InitialContext registry = new InitialContext();

// Create a DB2ClientRerouteServerList object
DB2CTientRerouteServerList address = new DB2ClientRerouteServerList();

// Set the port number and server name for the primary server
address.setPrimaryPortNumber (50000) ;
address.setPrimaryServerName("srvl.sj.ibm.com");

// Set the port number and server name for the alternate server
int[] port = {50002};

String[] server = {"srv3.sj.ibm.com"};
address.setAlternatePortNumber(port);
address.setAlternateServerName(server);

registry.rebind("serverList", address);

// Assign the JNDI name of the DB2ClientRerouteServerlList object to the
// clientRerouteServerListJNDIName property
datasource.setClientRerouteServerListJNDIName("serverList");

Configuration of DB2 Database for Linux, UNIX, and Windows
workload balancing support for Java clients

To configure a IBM Data Server Driver for JDBC and SQLJ client application that
connects to a DB2 Database for Linux, UNIX, and Windows DB2 pureScale
instance for workload balancing, you need to connect to a member of the DB2
pureScale instance, and set the properties that enable workload balancing and the
maximum number of connections.

Java client applications support transaction-level workload balancing. They do not
support connection-level workload balancing. Workload balancing is supported
only for connections to a DB2 pureScale instance.

Workload balancing support for Java client applications that connect to DB2
Database for Linux, UNIX, and Windows works for connections that are obtained
using the javax.sql.DataSource, javax.sql.ConnectionPoolDataSource,
Jjavax.sql.XADataSource, or java.sql.DriverManager interface.

IBM Data Server Driver for JDBC and SQLJ for Informix

Restriction: Workload balancing support for connections that are made with the
DriverManager interface has the following restrictions:

* Alternate server information is shared between DriverManager connections only
if you create the connections with the same URL and properties.

* You cannot set the clientRerouteServerListiNDIName property or the
clientRerouteServerListNDIContext properties for a DriverManager connection.

* Workload balancing is not enabled for default connections
(jdbc:default:connection).

The following table describes the basic property settings for enabling DB2 Database
for Linux, UNIX, and Windows workload balancing for Java applications.

Table 11-2. Basic settings to enable workload support in Java applications
IBM Data Server Driver for JDBC and SQL]J

setting Value

enableSysplexWLB property true

maxTransportObjects property The maximum number of connections that
the requester can make to the DB2 pureScale
instance

Connection address:

server The IP address of a member of a DB2
pureScale instancdl

port The SQL port number for the DB2 pureScale
instanc

database The database name

Note:

1. Alternatively, you can use a distributor, such as Websphere Application Server Network
Deployment, or multihomed DNS to establish the initial connection to the database.

* For a distributor, you specify the IP address and port number of the distributor. The
distributor analyzes the current workload distribution, and uses that information to
forward the connection request to one of the members of the DB2 pureScale instance.

* For multihomed DNS, you specify an IP address and port number that can resolve to
the IP address and port number of any member of the DB2 pureScale instance.
Multihomed DNS processing selects a member based on some criterion, such as
simple round-robin selection or member workload distribution.

If you want to fine-tune DB2 Database for Linux, UNIX, and Windows workload
balancing support, global configuration properties are available. The properties for
the IBM Data Server Driver for JDBC and SQL]J are listed in the following table.

Table 11-3. Configuration properties for fine-tuning DB2 Database for Linux, UNIX, and Windows workload balancing
support for connections from the IBM Data Server Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQL]J

configuration property

Description

db2.jcc.maxRefreshInterval Specifies the maximum amount of time in seconds between

refreshes of the client copy of the server list that is used for
workload balancing. The default is 30. The minimum valid
value is 1.

db2.jcc.maxTransportObjectldleTime Specifies the maximum elapsed time in number of seconds

before an idle transport is dropped. The default is 60. The
minimum supported value is 0.

Chapter 11. Java client support for high availability on IBM data servers 11-7

Table 11-3. Configuration properties for fine-tuning DB2 Database for Linux, UNIX, and Windows workload balancing
support for connections from the IBM Data Server Driver for JOBC and SQLJ (continued)

IBM Data Server Driver for JDBC and SQL]J
configuration property Description

db2.jcc.maxTransportObjectWaitTime Specifies the number of seconds that the client will wait for a
transport to become available. The default is -1 (unlimited).
The minimum supported value is 0.

db2.jcc.minTransportObjects Specifies the lower limit for the number of transport objects in
a global transport object pool. The default value is 0. Any
value that is less than or equal to 0 means that the global
transport object pool can become empty.

Example of enabling DB2 Database f