
Informix Product Family
Data Server Driver for JDBC and SQLJ
Version 9.7

IBM Data Server Driver for JDBC and
SQLJ for Informix

SC27-3850-00

���

Informix Product Family
Data Server Driver for JDBC and SQLJ
Version 9.7

IBM Data Server Driver for JDBC and
SQLJ for Informix

SC27-3850-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page B-1.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2007, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . ix
In This Introduction. ix
About This Publication. ix

Types of Users . ix
Assumptions About Your Locale . ix

What's New for IBM Data Server Driver for JDBC and SQLJ for IBM Informix ix
Example code conventions . xviii
Additional documentation . xix
Compliance with industry standards. xix
Syntax diagrams . xix

How to read a command-line syntax diagram . xx
Keywords and punctuation . xxi
Identifiers and names . xxi

How to provide documentation feedback . xxii

Chapter 1. Java application development for IBM data servers 1-1

Chapter 2. Supported drivers for JDBC and SQLJ 2-1

Chapter 3. IBM Data Server Driver for JDBC and SQLJ restrictions for IBM Informix 3-1

Chapter 4. Installing the IBM Data Server Driver for JDBC and SQLJ. 4-1
Customization of IBM Data Server Driver for JDBC and SQLJ configuration properties 4-2

Chapter 5. JDBC application programming . 5-1
Example of a simple JDBC application . 5-1
How JDBC applications connect to a data source . 5-3

Connecting to a data source using the DriverManager interface with the IBM Data Server Driver for JDBC and
SQLJ . 5-4
Connecting to a data source using the DataSource interface 5-7
JDBC connection objects . 5-9
Creating and deploying DataSource objects . 5-9

Java packages for JDBC support . 5-10
Learning about a data source using DatabaseMetaData methods 5-11

DatabaseMetaData methods for identifying the type of data source 5-12
Variables in JDBC applications . 5-13
JDBC interfaces for executing SQL . 5-13

Creating and modifying database objects using the Statement.executeUpdate method 5-14
Updating data in tables using the PreparedStatement.executeUpdate method 5-15
Making batch updates in JDBC applications . 5-16
Learning about parameters in a PreparedStatement using ParameterMetaData methods 5-19
Data retrieval in JDBC applications . 5-20
Calling stored procedures in JDBC applications . 5-30
LOBs in JDBC applications with the IBM Data Server Driver for JDBC and SQLJ 5-32
ROWIDs in JDBC with the IBM Data Server Driver for JDBC and SQLJ. 5-37
Savepoints in JDBC applications . 5-39
Retrieval of automatically generated keys in JDBC applications 5-40
Using named parameter markers in JDBC applications 5-43
Providing extended client information to the data source with client info properties 5-46

Transaction control in JDBC applications . 5-50
IBM Data Server Driver for JDBC and SQLJ isolation levels. 5-50
Committing or rolling back JDBC transactions . 5-50
Default JDBC autocommit modes . 5-51

Exceptions and warnings under the IBM Data Server Driver for JDBC and SQLJ 5-51

© Copyright IBM Corp. 2007, 2011 iii

||

Handling an SQLException under the IBM Data Server Driver for JDBC and SQLJ 5-53
Handling an SQLWarning under the IBM Data Server Driver for JDBC and SQLJ 5-57
Retrieving information from a BatchUpdateException. 5-58

Disconnecting from data sources in JDBC applications . 5-60

Chapter 6. SQLJ application programming . 6-1
Example of a simple SQLJ application . 6-1
Connecting to a data source using SQLJ . 6-3

SQLJ connection technique 1: JDBC DriverManager interface 6-3
SQLJ connection technique 2: JDBC DriverManager interface 6-5
SQLJ connection technique 3: JDBC DataSource interface 6-6
SQLJ connection technique 4: JDBC DataSource interface 6-7
SQLJ connection technique 5: Use a previously created connection context 6-8

Java packages for SQLJ support . 6-9
Variables in SQLJ applications . 6-9
Indicator variables in SQLJ applications . 6-11
Comments in an SQLJ application . 6-15
SQL statement execution in SQLJ applications . 6-15

Creating and modifying database objects in an SQLJ application 6-15
Performing positioned UPDATE and DELETE operations in an SQLJ application 6-16
Data retrieval in SQLJ applications . 6-24
Calling stored procedures in SQLJ applications . 6-33
LOBs in SQLJ applications with the IBM Data Server Driver for JDBC and SQLJ. 6-33
SQLJ and JDBC in the same application . 6-35
Controlling the execution of SQL statements in SQLJ . 6-38
ROWIDs in SQLJ with the IBM Data Server Driver for JDBC and SQLJ 6-39
Savepoints in SQLJ applications . 6-41

SQLJ utilization of SDK for Java Version 5 function . 6-41
Transaction control in SQLJ applications . 6-44

Setting the isolation level for an SQLJ transaction . 6-44
Committing or rolling back SQLJ transactions . 6-45

Handling SQL errors and warnings in SQLJ applications 6-45
Handling SQL errors in an SQLJ application . 6-45
Handling SQL warnings in an SQLJ application . 6-46

Closing the connection to a data source in an SQLJ application 6-46

Chapter 7. Preparing and running JDBC and SQLJ programs 7-1
Program preparation for JDBC programs . 7-1
Program preparation for SQLJ programs . 7-1
Running JDBC and SQLJ programs . 7-1

Chapter 8. Security under the IBM Data Server Driver for JDBC and SQLJ 8-1
User ID and password security under the IBM Data Server Driver for JDBC and SQLJ 8-2
User ID-only security under the IBM Data Server Driver for JDBC and SQLJ 8-4
Encrypted password, user ID, or user ID and password security under the IBM Data Server Driver for JDBC and
SQLJ . 8-5
IBM Data Server Driver for JDBC and SQLJ trusted context support 8-6
IBM Data Server Driver for JDBC and SQLJ support for SSL 8-8

Configuring connections under the IBM Data Server Driver for JDBC and SQLJ to use SSL 8-8
Configuring the Java Runtime Environment to use SSL 8-9

Chapter 9. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ . . 9-1
DB2Jcc - IBM Data Server Driver for JDBC and SQLJ diagnostic utility 9-2
Examples of using configuration properties to start a JDBC trace 9-4
Example of a trace program under the IBM Data Server Driver for JDBC and SQLJ 9-5
Techniques for monitoring IBM Data Server Driver for JDBC and SQLJ Sysplex support 9-8

Chapter 10. System monitoring for the IBM Data Server Driver for JDBC and SQLJ 10-1
IBM Data Server Driver for JDBC and SQLJ remote trace controller 10-3

Enabling the remote trace controller . 10-3

iv IBM Data Server Driver for JDBC and SQLJ for Informix

Accessing the remote trace controller . 10-4

Chapter 11. Java client support for high availability on IBM data servers 11-1
Java client support for high availability for connections to DB2 Database for Linux, UNIX, and Windows servers 11-2

Configuration of DB2 Database for Linux, UNIX, and Windows automatic client reroute support for Java
clients . 11-3
Example of enabling DB2 Database for Linux, UNIX, and Windows automatic client reroute support in Java
applications. 11-5
Configuration of DB2 Database for Linux, UNIX, and Windows workload balancing support for Java clients 11-6
Example of enabling DB2 Database for Linux, UNIX, and Windows workload balancing support in Java
applications. 11-8
Operation of automatic client reroute for connections to DB2 Database for Linux, UNIX, and Windows from
Java clients . 11-9
Operation of workload balancing for connections to DB2 Database for Linux, UNIX, and Windows 11-13
Application programming requirements for high availability for connections to DB2 Database for Linux,
UNIX, and Windows servers. 11-14
Client affinities for DB2 Database for Linux, UNIX, and Windows 11-15

Java client support for high availability for connections to IBM Informix servers 11-18
Configuration of IBM Informix high-availability support for Java clients 11-19
Example of enabling IBM Informix high availability support in Java applications 11-22
Operation of automatic client reroute for connections to IBM Informix from Java clients 11-23
Operation of workload balancing for connections to IBM Informix from Java clients 11-27
Application programming requirements for high availability for connections from Java clients to IBM
Informix servers . 11-28
Client affinities for connections to IBM Informix from Java clients 11-28

Java client direct connect support for high availability for connections to DB2 for z/OS servers 11-32
Configuration of Sysplex workload balancing at a Java client 11-34
Example of enabling DB2 for z/OS Sysplex workload balancing in Java applications 11-36
Operation of Sysplex workload balancing for connections from Java clients to DB2 for z/OS servers . . . 11-38
Operation of automatic client reroute for connections from Java clients to DB2 for z/OS. 11-39
Application programming requirements for high availability for connections from Java clients to DB2 for
z/OS servers . 11-40

Chapter 12. Java 2 Platform, Enterprise Edition 12-1
Application components of Java 2 Platform, Enterprise Edition support. 12-1
Java 2 Platform, Enterprise Edition containers . 12-2
Java 2 Platform, Enterprise Edition Server . 12-2
Java 2 Platform, Enterprise Edition database requirements 12-2
Java Naming and Directory Interface (JNDI) . 12-3
Java transaction management . 12-3

Example of a distributed transaction that uses JTA methods 12-4
Enterprise Java Beans . 12-8

Chapter 13. JDBC and SQLJ connection pooling support 13-1

Chapter 14. JDBC and SQLJ reference information 14-1
Data types that map to database data types in Java applications 14-1

Retrieval of special values from DECFLOAT columns in Java applications 14-6
Properties for the IBM Data Server Driver for JDBC and SQLJ 14-7

Common IBM Data Server Driver for JDBC and SQLJ properties for all supported database products . . . 14-8
Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 servers 14-28
Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS and IBM Informix . . . 14-38
Common IBM Data Server Driver for JDBC and SQLJ properties for IBM Informix and DB2 Database for
Linux, UNIX, and Windows . 14-40
IBM Data Server Driver for JDBC and SQLJ properties for DB2 Database for Linux, UNIX, and Windows 14-40
IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS 14-42
IBM Data Server Driver for JDBC and SQLJ properties for IBM Informix 14-47

IBM Data Server Driver for JDBC and SQLJ configuration properties 14-52
Driver support for JDBC APIs . 14-68
IBM Data Server Driver for JDBC and SQLJ support for SQL escape syntax 14-95

Contents v

SQLJ statement reference information. 14-96
SQLJ clause . 14-96
SQLJ host-expression . 14-96
SQLJ implements-clause . 14-97
SQLJ with-clause . 14-97
SQLJ connection-declaration-clause . 14-99
SQLJ iterator-declaration-clause. 14-99
SQLJ executable-clause . 14-101
SQLJ context-clause . 14-101
SQLJ statement-clause . 14-102
SQLJ SET-TRANSACTION-clause . 14-104
SQLJ assignment-clause . 14-105
SQLJ iterator-conversion-clause . 14-106

Interfaces and classes in the sqlj.runtime package . 14-106
sqlj.runtime.ConnectionContext interface . 14-107
sqlj.runtime.ForUpdate interface . 14-112
sqlj.runtime.NamedIterator interface . 14-112
sqlj.runtime.PositionedIterator interface. 14-112
sqlj.runtime.ResultSetIterator interface . 14-113
sqlj.runtime.Scrollable interface . 14-115
sqlj.runtime.AsciiStream class . 14-118
sqlj.runtime.BinaryStream class . 14-118
sqlj.runtime.CharacterStream class . 14-119
sqlj.runtime.ExecutionContext class . 14-120
sqlj.runtime.SQLNullException class . 14-128
sqlj.runtime.StreamWrapper class . 14-128
sqlj.runtime.UnicodeStream class . 14-129

IBM Data Server Driver for JDBC and SQLJ extensions to JDBC 14-130
DBBatchUpdateException interface . 14-132
DB2BaseDataSource class . 14-132
DB2ClientRerouteServerList class . 14-138
DB2Connection interface . 14-139
DB2ConnectionPoolDataSource class . 14-151
DB2DatabaseMetaData interface . 14-153
DB2Diagnosable interface . 14-154
DB2ExceptionFormatter class . 14-155
DB2JCCPlugin class . 14-155
DB2ParameterMetaData interface . 14-156
DB2PooledConnection class . 14-157
DB2PoolMonitor class . 14-159
DB2PreparedStatement interface . 14-162
DB2ResultSet interface . 14-174
DB2ResultSetMetaData interface . 14-175
DB2RowID interface . 14-176
DB2SimpleDataSource class . 14-176
DB2Sqlca class . 14-177
DB2Statement interface . 14-178
DB2SystemMonitor interface . 14-180
DB2TraceManager class . 14-183
DB2TraceManagerMXBean interface . 14-186
DB2Types class . 14-189
DB2XADataSource class . 14-190
DBTimestamp class . 14-192

JDBC differences between versions of the IBM Data Server Driver for JDBC and SQLJ 14-194
Examples of ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnLabel values 14-197
Differences between the IBM Data Server Driver for JDBC and SQLJ and the IBM Informix JDBC Driver 14-199
Error codes issued by the IBM Data Server Driver for JDBC and SQLJ 14-206
SQLSTATEs issued by the IBM Data Server Driver for JDBC and SQLJ 14-213
How to find IBM Data Server Driver for JDBC and SQLJ version and environment information 14-214
Commands for SQLJ program preparation. 14-215

sqlj - SQLJ translator . 14-215

vi IBM Data Server Driver for JDBC and SQLJ for Informix

||

Appendix. Accessibility . A-1
Accessibility features for IBM Informix products . A-1

Accessibility features . A-1
Keyboard navigation . A-1
Related accessibility information . A-1
IBM and accessibility. A-1

Dotted decimal syntax diagrams . A-1

Notices . B-1
Trademarks . B-3

Index . X-1

Contents vii

viii IBM Data Server Driver for JDBC and SQLJ for Informix

Introduction

In This Introduction
This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About This Publication
This publication is a guide for using the IBM® Data Server Driver for JDBC and
SQLJ to connect to IBM Informix® data servers.

Types of Users
This guide is for Java programmers who use the JDBC API to connect to Informix
databases using the IBM Data Server Driver for JDBC and SQLJ. To use this guide,
you should know how to program in Java and, in particular, understand the
classes and methods of the JDBC API.

Assumptions About Your Locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation, and representation of numeric
data, currency, date, and time is brought together in a single environment, called a
Global Language Support (GLS) locale.

This publication assumes that your database uses the default locale. This default is
en_us.8859-1 (ISO 8859-1) on UNIX platforms or en_us.1252 (Microsoft 1252) in
Windows environments. This locale supports U.S. English format conventions for
displaying and entering date, time, number, and currency values. It also supports
the ISO 8859-1 (on UNIX and Linux) or Microsoft 1252 (on Windows) code set,
which includes the ASCII code set plus many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or in SQL identifiers, or if
you plan to use other collation rules for sorting character data, you need to specify
the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, and for additional syntax
and other considerations related to GLS locales, see the IBM Informix GLS User's
Guide.

What's New for IBM Data Server Driver for JDBC and SQLJ for IBM
Informix

This topic lists the new features in the IBM Data Server Driver for JDBC and SQLJ
for IBM Informix.

What's New in version 3.62

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,
Version 3.62.

© Copyright IBM Corp. 2007, 2011 ix

|

|
|

Table 1. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.62

Overview Reference

Diagnosis and trace enhancements

The following diagnosis and trace enhancements
are added:

v The DB2Jcc utility tests a connection to a data
server, using IBM Data Server Driver for JDBC
and SQLJ type 4 connectivity.

v When the tracePolling configuration property is
set to enable the trace while an application is
running, information about all
PreparedStatement objects in the application
that were prepared before the trace was
enabled are written to the trace destination.

Chapter 9, “Problem diagnosis with the
IBM Data Server Driver for JDBC and
SQLJ,” on page 9-1

New properties

The following Connection and DataSource
property is added:

queryTimeoutProcessingMode
Specifies whether the IBM Data Server Driver
for JDBC and SQLJ cancels the SQL statement
or closes the underlying connection when the
query timeout interval for a Statement object
expires.

“Common IBM Data Server Driver for
JDBC and SQLJ properties for all
supported database products” on page
14-8

What's New in version 3.61

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,
Version 3.61.

Table 2. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.61

Overview Reference

New properties

The following Connection and DataSource
properties are added:

stripTrailingZerosForDecimalNumbers
Specifies whether the IBM Data Server Driver
for JDBC and SQLJ removes trailing zeroes
when it retrieves data from a DECFLOAT,
DECIMAL, or NUMERIC column.

“Common IBM Data Server Driver for
JDBC and SQLJ properties for all
supported database products” on page
14-8

DB2PreparedStatement enhancements

Two new DB2PreparedStatement methods are
added.

getEstimateCost
Returns the estimated cost of an SQL
statement after the statement is
dynamically prepared.

getEstimateRowCount
Returns the estimated number of rows
that can be returned by an SQL
statement after the statement is
dynamically prepared.

“DB2PreparedStatement interface” on
page 14-162

x IBM Data Server Driver for JDBC and SQLJ for Informix

||

||

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|
|
|

|
|
|
|

|

|

|
|

||

||

|

|
|

|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|

|
|
|
|
|

|
|

Table 2. What's New in IBM Data Server Driver for JDBC and SQLJ, Version
3.61 (continued)

Overview Reference

Trusted context support

Trusted context support is available for Informix
data servers. Trusted connections are supported
for IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity to Informix V11.70 and later.

“IBM Data Server Driver for JDBC and
SQLJ trusted context support” on page
8-6

Informix Unified Debugger support

An existing method is extended to support the
Informix Unified Debugger. Method
DB2Connection.setDB2ClientDebugInfo can be
called to notify the Informix data server that
stored procedures and user-defined functions that
are using the connection are running in debug
mode.

“DB2Connection interface” on page
14-139

System monitoring support

System monitoring support is extended to
Informix data servers. You can collect core driver
time, network I/O time, server time, and
application time for connections to Informix
servers.

Chapter 10, “System monitoring for the
IBM Data Server Driver for JDBC and
SQLJ,” on page 10-1

What's New in version 3.59

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,
Version 3.59.

Table 3. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.59

Overview Reference

New properties

The following Connection and DataSource
properties are added:

allowNullResultSetForExecuteQuery
Specifies whether the IBM Data Server Driver
for JDBC and SQLJ returns null when
Statement.executeQuery,
PreparedStatement.executeQuery, or
CallableStatement.executeQuery is used to
execute a CALL statement for a stored
procedure that does not return any result
sets.

connectionCloseWithInFlightTransaction
Specifies whether the IBM Data Server Driver
for JDBC and SQLJ throws an SQLException
or rolls back a transaction without throwing
an SQLException when a connection is closed
in the middle of the transaction.

interruptProcessingMode
Specifies the behavior of the IBM Data Server
Driver for JDBC and SQLJ when an
application calls the Statement.cancel method.

“Common IBM Data Server Driver for
JDBC and SQLJ properties for all
supported database products” on page
14-8

Introduction xi

|
|

||

|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|
|
|

|

|

|
|

||

||

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

What's New in version 3.58

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,
Version 3.58.

Table 4. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.58

Overview Reference

Diagnostic information enhancements

Diagnostic information is traced to the Java
standard error output stream when an exception
is thrown with an SQL error code of -805. In Java
database applications, -805 often indicates that all
available IBM Data Server Driver for JDBC and
SQLJ packages have been used because there are
too many concurrently open statements. The
diagnostic information contains a list of SQL
strings that contributed to the exception.

Not applicable

What's New in version 3.57

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,
Version 3.57.

xii IBM Data Server Driver for JDBC and SQLJ for Informix

|

|

|
|

||

||

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

Table 5. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.57

Overview Reference

Parameter names in JDBC and SQLJ stored
procedure calls

In previous versions of the IBM Data Server
Driver for JDBC and SQLJ, only forms of
CallableStatement.RegisterOutParameter,
CallableStatement.setXXX, and
CallableStatement.getXXX methods that used
parameterIndex were supported. With versions 3.57
of the driver, parameterName is also supported in
those methods. parameterName is a name that is
specified for a parameter in the stored procedure
definition.

Alternatively, for JDBC applications, new syntax
allows the application to map parameter markers
in the CALL statement to the parameter names in
the stored procedure definition. For example, in a
JDBC application, CALL MYPROC (A=>?) maps a
parameter marker to stored procedure parameter
A.

For SQLJ applications, new syntax allows the
application to map host variable names in the
CALL statement to the parameter names in the
stored procedure definition. For example, in an
SQLJ application, CALL MYPROC (A=>:INOUT x)
maps host variable x to stored procedure
parameter A.

With the new syntax, you do not need to specify
all parameters in the CALL statement.
Unspecified parameters take the default values
that are specified in the stored procedure
definition.

Not applicable

Savepoints

The IBM Data Server Driver for JDBC and SQLJ
supports setting of savepoints for connections to
IBM Informix data servers.

“Savepoints in JDBC applications” on
page 5-39

“Savepoints in SQLJ applications” on
page 6-41

Batch insert operations

The IBM Data Server Driver for JDBC and SQLJ
adds the atomicMultiRowInsert Connection or
DataSource property for connections to IBM
Informix V11.10 and later data servers. The
atomicMultiRowInsert property lets you specify
whether batch insert operations that use the
PreparedStatement interface have atomic or
non-atomic behavior. Atomic behavior means that
a batch operation succeeds only if all insert
operations in the batch succeed. Non-atomic
behavior, which is the default, means that insert
operations succeed or fail individually.

“Common IBM Data Server Driver for
JDBC and SQLJ properties for all
supported database products” on page
14-8

Introduction xiii

||

||

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

Table 5. What's New in IBM Data Server Driver for JDBC and SQLJ, Version
3.57 (continued)

Overview Reference

Diagnostics for binding of SQLJ applications
enhancements

When an SQLJ application is bound, and an SQL
error or warning occurs, the following new
diagnostic information is returned:

v The SQL statement

v The line number in the program of the SQL
statement

v The error or warning code and the SQLSTATE
value

v The error message

Not applicable

Client reroute enhancements

Client reroute support is enhanced in the
following ways:

v Seamless failover is added to client reroute
operation.

During client reroute, if a connection is in a
clean state, you can use the
enableSeamlessFailover property to suppress
the SQLException with error code -4498 that
the IBM Data Server Driver for JDBC and SQLJ
issues to indicate that a failed connection was
re-established.

v Client affinities are added to cascaded failover
support.

For cascaded failover, you can use the
enableClientAffinitiesList property to control
the order in which primary and alternate server
reconnections are attempted after a connection
failure.

“Common IBM Data Server Driver for
JDBC and SQLJ properties for all
supported database products” on page
14-8

Connections to IBM Informix enhancements

For connections to IBM Informix servers, the
following enhancement is added:

v Support for new IBM Informix data types is
added.

As of IBM Informix 11.50, IBM Informix
supports the BIGINT and BIGSERIAL data
types. The IBM Data Server Driver for JDBC
and SQLJ lets you access columns with those
data types.

For retrieving automatically generated keys
from a BIGSERIAL column, the IBM Data
Server Driver for JDBC and SQLJadds the
DB2Statement.getIDSBigSerial method.

“Data types that map to database data
types in Java applications” on page 14-1

xiv IBM Data Server Driver for JDBC and SQLJ for Informix

|
|

||

|
|

|
|
|

|

|
|

|
|

|

|

|

|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

Table 5. What's New in IBM Data Server Driver for JDBC and SQLJ, Version
3.57 (continued)

Overview Reference

Automatically generated keys enhancements

Batched INSERT statements can return
automatically generated keys.

If batch execution of a PreparedStatement object
returns automatically generated keys, you can call
the DB2PreparedStatement.getDBGeneratedKeys
method to retrieve an array of ResultSet objects
that contains the automatically generated keys. If
a failure occurs during execution of a statement
in a batch, you can use the
DBBatchUpdateException.getDBGeneratedKeys
method to retrieve any automatically generated
keys that were returned.

“Making batch updates in JDBC
applications” on page 5-16

“DBBatchUpdateException interface” on
page 14-132

“DB2PreparedStatement interface” on
page 14-162

What's New in version 3.53

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,
Version 3.53.

Table 6. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.53

Overview Reference

Support for new IBM Informix data types is
added.

As of IBM Informix 11.50, IBM Informix
supports the BIGINT and BIGSERIAL data
types. With the IBM Data Server Driver for
JDBC and SQLJ you can access columns with
those data types.

For retrieving automatically generated keys
from a BIGSERIAL column, the
DB2Statement.getIDSBigSerial method is
added to the IBM Data Server Driver for
JDBC and SQLJ.

“DB2Statement interface” on page 14-178

“Data types that map to database data types
in Java applications” on page 14-1

The fetchSize default is configurable.

The following property is added:

fetchSize
Specifies the default fetch size for newly
created Statement objects. This value is
overridden by the Statement.setFetchSize
method.

“Common IBM Data Server Driver for JDBC
and SQLJ properties for all supported
database products” on page 14-8

“DB2BaseDataSource class” on page 14-132

Introduction xv

|
|

||

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|

|

Table 6. What's New in IBM Data Server Driver for JDBC and SQLJ, Version
3.53 (continued)

Overview Reference

Two new SSL properties are available to
provide the location and password of
truststore for SSL connection.

The following properties are added:

sslTrustStoreLocation
Specifies the name of the Java truststore
on the client that contains the server
certificate for an SSL connection.

sslTrustStorePassword
Specifies the password for the Java
truststore on the client that contains the
server certificate for an SSL connection.

“Common IBM Data Server Driver for JDBC
and SQLJ properties for all supported
database products” on page 14-8

“DB2BaseDataSource class” on page 14-132

“Configuring connections under the IBM
Data Server Driver for JDBC and SQLJ to use
SSL” on page 8-8

“Configuring the Java Runtime Environment
to use SSL” on page 8-9

Timestamp formatting is improved for
compatibility with all supported servers.

The following property is added:

timestampPrecisionReporting
Specifies whether trailing zeroes in a
timestamp value that is retrieved from a
data source are truncated.

“Common IBM Data Server Driver for JDBC
and SQLJ properties for all supported
database products” on page 14-8

What's New in version 3.52

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,
Version 3.52.

Table 7. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.52

Overview Reference

The IBM Data Server Driver for JDBC and
SQLJ now supports automatic client reroute
when connecting to IBM Informix.

For connections to IBM Informix 11.50 and
later, automatic client reroute with
Connection Manager can be enabled. This
enhancement allows the driver to establish a
connection to an alternate member of the
IBM Informix cluster if the primary member
fails.

“Java client support for high availability for
connections to IBM Informix servers” on
page 11-18

The IBM Data Server Driver for JDBC and
SQLJ now supports workload balancing
when connecting to IBM Informix.

For connections to IBM Informix 11.50 and
later, workload balancing and the IBM Data
Server Driver for JDBC and SQLJ balance the
load among different high-availability servers
in a cluster. The Connection Manager ensures
that work is distributed efficiently among
servers in the cluster and that work is
transferred to another server if one server
has a failure.

“Operation of workload balancing for
connections to IBM Informix from Java
clients” on page 11-27

xvi IBM Data Server Driver for JDBC and SQLJ for Informix

Table 7. What's New in IBM Data Server Driver for JDBC and SQLJ, Version
3.52 (continued)

Overview Reference

With the IBM Data Server Driver for JDBC
and SQLJ Version 3.52 or later, preparing an
SQL statement for retrieval of automatically
generated keys is supported.

“DB2PreparedStatement interface” on page
14-162

What's New in version 3.51

The following are enhancements for IBM Data Server Driver for JDBC and SQLJ,
Version 3.51.

Table 8. What's New in IBM Data Server Driver for JDBC and SQLJ, Version 3.51

Overview Reference

JDBC 4.0 support has been added to the
driver for connections to IBM Informix 11.50.

You can now use the db2jcc4.jar file for
JDBC 4.0 functions as well as JDBC 3.0 and
earlier functions. To use JDBC 4.0, you need
an SDK for Java, Version 6.

Chapter 4, “Installing the IBM Data Server
Driver for JDBC and SQLJ,” on page 4-1

Support for SQLJ has been added to the
driver for connections to IBM Informix 11.50.

You can now use the sqlj.zip if you plan to
prepare SQLJ applications that include only
JDBC 3.0 and earlier functions. Use the
sqlj4.zip file to prepare SQLJ applications
that include JDBC 4.0 functions as well as
JDBC 3.0 and earlier functions.

For connections to IBM Informix, SQL
statements in SQLJ applications run
dynamically; SQL statements cannot be run
statically.

Chapter 4, “Installing the IBM Data Server
Driver for JDBC and SQLJ,” on page 4-1

“Program preparation for SQLJ programs” on
page 7-1

Chapter 6, “SQLJ application programming,”
on page 6-1

Longer database names are supported.

Previously, IBM Informix DRDA®

connections limited database names to 18
bytes. For connections using IBM Data Server
Driver for JDBC and SQLJ, Version 3.51 and
later, database names can be up to 128 bytes.

Not applicable

IBM Informix ISAM error reporting is
enabled.

For connections to IBM Informix 11.10 and
later, ISAM errors are reported as
SQLException objects. You can now use
SQLException methods to obtain the error
code and the message description. The
SQLException.printStackTrace method
displays the cause of the ISAM errors.

“Handling an SQLException under the IBM
Data Server Driver for JDBC and SQLJ” on
page 5-53

Introduction xvii

Table 8. What's New in IBM Data Server Driver for JDBC and SQLJ, Version
3.51 (continued)

Overview Reference

The IBM Data Server Driver for JDBC and
SQLJ, Version 3.51 can access these new
features of IBM Informix 11.50:

v Progressive streaming for LOB data

v Multi-row insert batched update capability

v Secure Socket Layer (SSL)

v Setting and retrieving client information
properties

“Progressive streaming with the IBM Data
Server Driver for JDBC and SQLJ” on page
5-32

“Making batch updates in JDBC
applications” on page 5-16

“IBM Data Server Driver for JDBC and SQLJ
support for SSL” on page 8-8

“Client info properties support by the IBM
Data Server Driver for JDBC and SQLJ” on
page 5-47

Global trace settings can be changed without
shutting down the driver.

You can set the db2.jcc.tracePolling property
before you start the driver so that you can
change global configuration trace properties
while the driver is running.

Chapter 9, “Problem diagnosis with the IBM
Data Server Driver for JDBC and SQLJ,” on
page 9-1

“IBM Data Server Driver for JDBC and SQLJ
configuration properties” on page 14-52

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

xviii IBM Data Server Driver for JDBC and SQLJ for Informix

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access or install the product documentation from the Quick Start CD that
is shipped with Informix products. To get the most current information, see the
Informix information centers at ibm.com®. You can access the information centers
and other Informix technical information such as technotes, white papers, and IBM
Redbooks® publications online at http://www.ibm.com/software/data/sw-
library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade® Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

Syntax diagrams
Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 9. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next
line.

>----------------------- Statement continues from
previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---
’------LOCAL------’

Optional item.

---+-----ALL-------+---
+--DISTINCT-----+
’---UNIQUE------’

Required item with choice.
Only one item must be
present.

Introduction xix

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

Table 9. Syntax Diagram Components (continued)

Component represented in PDF Component represented in HTML Meaning

---+------------------+---
+--FOR UPDATE-----+
’--FOR READ ONLY--’

Optional items with choice
are shown below the main
line, one of which you might
specify.

.---NEXT---------.
----+----------------+---

+---PRIOR--------+
’---PREVIOUS-----’

The values below the main
line are optional, one of
which you might specify. If
you do not specify an item,
the value above the line is
used by default.

.-------,-----------.
V |
---+-----------------+---

+---index_name---+
’---table_name---’

Optional items. Several items
are allowed; a comma must
precede each repetition.

>>-| Table Reference |->< Reference to a syntax
segment.

Table Reference

|--+-----view--------+--|
+------table------+
’----synonym------’

Syntax segment.

How to read a command-line syntax diagram
Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a no-conversion job

�� onpladm create job job
-p project

-n -d device -D database �

� -t table �

� �
(1)

Setting the Run Mode
-S server -T target

��

Notes:

1 See page Z-1

This diagram has a segment named “Setting the Run Mode,” which according to
the diagram footnote is on page Z-1. If this was an actual cross-reference, you

xx IBM Data Server Driver for JDBC and SQLJ for Informix

would find this segment on the first page of Appendix Z. Instead, this segment is
shown in the following segment diagram. Notice that the diagram uses segment
start and end components.

Setting the run mode:

-f
d
p
a

l
c

u n N

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type onpladm create job and then the name of the job.
2. Optionally, type -p and then the name of the project.
3. Type the following required elements:

v -n

v -d and the name of the device
v -D and the name of the database
v -t and the name of the table

4. Optionally, you can choose one or more of the following elements and repeat
them an arbitrary number of times:
v -S and the server name
v -T and the target server name
v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then optionally
type l or u.

5. Follow the diagram to the terminator.

Keywords and punctuation
Keywords are words reserved for statements and all commands except
system-level commands.

When a keyword appears in a syntax diagram, it is shown in uppercase letters.
When you use a keyword in a command, you can write it in uppercase or
lowercase letters, but you must spell the keyword exactly as it appears in the
syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and names
Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

Introduction xxi

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in additional syntax diagrams. When a variable appears in a syntax
diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v In the Informix information center, which is available online at

http://www.ibm.com/software/data/sw-library/, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, fill out the
form, and submit your feedback.

v Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

xxii IBM Data Server Driver for JDBC and SQLJ for Informix

mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

Chapter 1. Java application development for IBM data servers

The DB2® and IBM Informix database systems provide driver support for client
applications and applets that are written in Java.

You can access data in DB2 and IBM Informix database systems using JDBC, SQL,
or pureQuery.

JDBC

JDBC is an application programming interface (API) that Java applications use to
access relational databases. IBM data server support for JDBC lets you write Java
applications that access local DB2 or IBM Informix data or remote relational data
on a server that supports DRDA.

SQLJ

SQLJ provides support for embedded static SQL in Java applications. SQLJ was
initially developed by IBM, Oracle, and Tandem to complement the dynamic SQL
JDBC model with a static SQL model.

For connections to DB2, in general, Java applications use JDBC for dynamic SQL
and SQLJ for static SQL.

For connections to IBM Informix, SQL statements in JDBC or SQLJ applications run
dynamically.

Because SQLJ can inter-operate with JDBC, an application program can use JDBC
and SQLJ within the same unit of work.

pureQuery

pureQuery is a high-performance data access platform that makes it easier to
develop, optimize, secure, and manage data access. It consists of:
v Application programming interfaces that are built for ease of use and for

simplifying the use of best practices
v Development tools, which are delivered in IBM Optim™ Development Studio, for

Java and SQL development
v A runtime, which is delivered in IBM Optim pureQuery Runtime, for optimizing

and securing database access and simplifying management tasks

With pureQuery, you can write Java applications that treat relational data as
objects, whether that data is in databases or JDBC DataSource objects. Your
applications can also treat objects that are stored in in-memory Java collections as
though those objects are relational data. To query or update your relational data or
Java objects, you use SQL.

For more information on pureQuery, see the Integrated Data Management
Information Center.

© Copyright IBM Corp. 2007, 2011 1-1

1-2 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 2. Supported drivers for JDBC and SQLJ

The IDS product includes support for one type of JDBC driver architecture.

According to the JDBC specification, there are four types of JDBC driver
architectures:

Type 1
Drivers that implement the JDBC API as a mapping to another data access API,
such as Open Database Connectivity (ODBC). Drivers of this type are generally
dependent on a native library, which limits their portability. The IDS database
system does not provide a type 1 driver.

Type 2
Drivers that are written partly in the Java programming language and partly in
native code. The drivers use a native client library specific to the data source to
which they connect. Because of the native code, their portability is limited.

Type 3
Drivers that use a pure Java client and communicate with a data server using a
data-server-independent protocol. The data server then communicates the
client's requests to the data source. The IDS database system does not provide
a type 3 driver.

Type 4
Drivers that are pure Java and implement the network protocol for a specific
data source. The client connects directly to the data source.

IBM Informix supports the following drivers:

Driver name Driver type

IBM Informix JDBC Driver Type 4

IBM Data Server Driver for JDBC and SQLJ Type 21 and Type 4

Note:

1. Although the IBM Data Server Driver for JDBC and SQLJ supports type 2 and type 4
connections, only type 4 connections can be used to connect to IBM Informix servers.

IBM Data Server Driver for JDBC and SQLJ (type 4)

The IBM Data Server Driver for JDBC and SQLJ is a single driver that includes
JDBC type 2 and JDBC type 4 behavior. For connections to IBM Informix data
servers, only type 4 behavior is supported. IBM Data Server Driver for JDBC and
SQLJ type 4 driver behavior is referred to as IBM Data Server Driver for JDBC and
SQLJ type 4 connectivity.

Two versions of the IBM Data Server Driver for JDBC and SQLJ are available. IBM
Data Server Driver for JDBC and SQLJ version 3.50 is JDBC 3.0-compliant. IBM
Data Server Driver for JDBC and SQLJ version 4.0 is JDBC 3.0-compliant and
supports some JDBC 4.0 functions.

The IBM Data Server Driver for JDBC and SQLJ supports these JDBC functions:
v All of the methods that are described in the JDBC 3.0 specifications. See "Driver

support for JDBC APIs".

© Copyright IBM Corp. 2007, 2011 2-1

v SQLJ application programming interfaces, as defined by the SQLJ standards, for
simplified data access from Java applications.

v Some methods that are described in the JDBC 4.0 specifications, if you install
IBM Data Server Driver for JDBC and SQLJ version 4.0.

v Connections that are enabled for connection pooling. WebSphere® Application
Server or another application server does the connection pooling.

v Support for distributed transaction management. This support implements the
Java 2 Platform, Enterprise Edition (J2EE) Java Transaction Service (JTS) and Java
Transaction API (JTA) specifications, which conform to the X/Open standard for
distributed transactions (Distributed Transaction Processing: The XA Specification,
available from http://www.opengroup.org).

IBM Informix JDBC Driver (type 4)

IBM Informix JDBC Driver is a native-protocol, pure-Java driver.

For more information about the IBM Informix JDBC Driver, refer to the IBM
Informix JDBC Driver Programmer's Guide.

2-2 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 3. IBM Data Server Driver for JDBC and SQLJ
restrictions for IBM Informix

Before you install the IBM Data Server Driver for JDBC and SQLJ and use it with
IBM Informix databases, make sure your environment conforms to these
restrictions.
v Connections are DRDA-based; the Informix proprietary protocol is not

supported.
v The IBM Data Server Driver for JDBC and SQLJ requires IBM Informix, Version

11.10, or later. However, to use features introduced with IBM Data Server Driver
for JDBC and SQLJ, Version 3.51 and later, you must have IBM Informix, Version
11.50. New features are described in “What's New for IBM Data Server Driver
for JDBC and SQLJ for IBM Informix” on page ix

v Type 1, 2, and 3 connections are not supported. Only type 4 connections are
supported.

v Certain Informix data types are not supported. For example, INTERVAL, opaque
data types, user-defined data types, and collection data types.

The IBM Data Server Driver for JDBC and SQLJ differs from the IBM Informix
JDBC driver. For more information, see “Differences between the IBM Data Server
Driver for JDBC and SQLJ and the IBM Informix JDBC Driver” on page 14-199.

© Copyright IBM Corp. 2007, 2011 3-1

3-2 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 4. Installing the IBM Data Server Driver for JDBC and
SQLJ

After you install the IBM Data Server Driver for JDBC and SQLJ, you can compile
and run JDBC applications.

SDK Requirement: Before you install the IBM Data Server Driver for JDBC and
SQLJ, you must have an SDK for Java installed on your computer. For JDBC 3.0
functions, you need Java SDK 1.4.2 or later. If you want to use JDBC 4.0 functions,
you need an SDK for Java, 6 or later.

Follow these steps to install the IBM Data Server Driver for JDBC and SQLJ:
1. Download the zip file for the latest version of the IBM Data Server Driver for

JDBC and SQLJ.
a. Go to http://www.ibm.com/software/data/support/data-server-clients/

download.html.
b. Under Downloads and fixes, select View IBM Data Server Client Packages...
c. In the Refine my fix list window, select Show me more options.
d. On the Fix Central page, select Information Management in the Product

Group field, IBM Data Server Client Packages in the Product field, the latest
version in the Installed Version field, and All in the Platform field.

e. On the Identify fixes page, type "Data Server Driver for JDBC" in the Text
field.

f. On the Select fixes page, select the latest version of the IBM Data Server
Driver for JDBC and SQLJ.

g. On the Download options page, select the options that are appropriate for
you.

2. Extract the zip file into an empty directory.
The zip file contains the following files:
v db2jcc.jar

v db2jcc4.jar

v sqlj.zip

v sqlj4.zip

3. Modify the CLASSPATH environment variable to include the appropriate files:

For JDBC
Include db2jcc.jar in the CLASSPATH if you plan to use the version of
the IBM Data Server Driver for JDBC and SQLJ that includes only
JDBC 3.0 and earlier functions.

Include db2jcc4.jar in the CLASSPATH if you plan to use the version of
the IBM Data Server Driver for JDBC and SQLJ that includes JDBC 4.0
and earlier functions.

Important: Include db2jcc.jar or db2jcc4.jar in the CLASSPATH. Do not
include both files.

For SQLJ
Include sqlj.zip in the CLASSPATH if you plan to prepare SQLJ
applications that include only JDBC 3.0 and earlier functions.

© Copyright IBM Corp. 2007, 2011 4-1

http://www.ibm.com/software/data/support/data-server-clients/download.html
http://www.ibm.com/software/data/support/data-server-clients/download.html

Include sqlj4.zip in the CLASSPATH if you plan to prepare SQLJ
applications that include JDBC 4.0 and earlier functions.

Important: Include sqlj.zip or sqlj4.zip in the CLASSPATH. Do not include
both files.
v On Windows, to set the CLASSPATH for a session for the db2jcc4.jar file,

from the command prompt enter:
java -classpath <dir>\db2jcc4.jar

To set the CLASSPATH for a session for the db2jcc4.jar file and for the
sqlj4.zip file, separate the directory and filename combinations with a
semicolon (;). For example:
java -classpath <dir>\db2jcc4.jar;<dir>\sqlj4.zip

Where <dir> is the location of the db2jcc.jar file.
To permanently set the CLASSPATH environment variable use the System
utility in the Control Panel.

v On UNIX, to set the CLASSPATH for a session for the db2jcc4.jar file, from
the command prompt enter:
java -classpath <dir>/db2jcc4.jar

To set the CLASSPATH for a session for the db2jcc4.jar file and for the
sqlj4.zip file, separate the directory and filename combinations with a colon
(:). For example:
java -classpath <dir>/db2jcc4.jar:<dir>/sqlj4.zip

Where <dir> is the location of the db2jcc4.jar file.
To permanently set the CLASSPATH environment variable, ask your UNIX
System Administrator to update your profile.

4. Configure a new server alias in the SQLHOSTS file or Windows registry that
uses either the drtlitcp or the drsoctcp connection protocol. For more
information, see the topic about Configuring Informix for Connections to IBM
Data Server Clients in the IBM Informix Administrator's Guide.

5. Customize the driver-wide configuration properties, if any of the default
settings are inappropriate. For details, see the following topics:
v “Customization of IBM Data Server Driver for JDBC and SQLJ configuration

properties”
v “IBM Data Server Driver for JDBC and SQLJ configuration properties” on

page 14-52

Customization of IBM Data Server Driver for JDBC and SQLJ
configuration properties

The IBM Data Server Driver for JDBC and SQLJ configuration properties let you
set property values that have driver-wide scope. Those settings apply across
applications and DataSource instances. You can change the settings without having
to change application source code or DataSource characteristics.

Each IBM Data Server Driver for JDBC and SQLJ configuration property setting is
of this form:
property=value

You can set configuration properties in the following ways:

4-2 IBM Data Server Driver for JDBC and SQLJ for Informix

v Set the configuration properties as Java system properties. Configuration
property values that are set as Java system properties override configuration
property values that are set in any other ways.
For stand-alone Java applications, you can set the configuration properties as
Java system properties by specifying -Dproperty=value for each configuration
property when you execute the java command.

v Set the configuration properties in a resource whose name you specify in the
db2.jcc.propertiesFile Java system property. For example, you can specify an
absolute path name for the db2.jcc.propertiesFile value.
For stand-alone Java applications, you can set the configuration properties by
specifying the -Ddb2.jcc.propertiesFile=path option when you execute the java
command.

v Set the configuration properties in a resource named
DB2JccConfiguration.properties. A standard Java resource search is used to find
DB2JccConfiguration.properties. The IBM Data Server Driver for JDBC and SQLJ
searches for this resource only if you have not set the db2.jcc.propertiesFile Java
system property.
DB2JccConfiguration.properties can be a stand-alone file, or it can be included in
a JAR file.
If DB2JccConfiguration.properties is in a JAR file, the JAR file must be in the
CLASSPATH concatenation.

Chapter 4. Installing the IBM Data Server Driver for JDBC and SQLJ 4-3

4-4 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 5. JDBC application programming

Writing a JDBC application has much in common with writing an SQL application
in any other language.

In general, you need to do the following things:
v Access the Java packages that contain JDBC methods.
v Declare variables for sending data to or retrieving data from IDS tables.
v Connect to a data source.
v Execute SQL statements.
v Handle SQL errors and warnings.
v Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other
languages, the way that you execute those tasks is somewhat different.

Example of a simple JDBC application
A simple JDBC application demonstrates the basic elements that JDBC applications
need to include.

import java.sql.*; �1�

public class EzJava
{

public static void main(String[] args)
{

String urlPrefix = "jdbc:ids:";
String url;
String user;
String password;
String empNo; �2�
Connection con;
Statement stmt;
ResultSet rs;

System.out.println ("**** Enter class EzJava");

// Check the that first argument has the correct form for the portion
// of the URL that follows jdbc:ids:,
// as described
// in the Connecting to a data source using the DriverManager
// interface with the IBM Data Server Driver for JDBC and SQLJ topic.

// For example, for IBM Data Server Driver for
// JDBC and SQLJ type 4 connectivity, args[0] might
// be //myhost:9999/idsdb.
if (args.length!=3)
{

System.err.println ("Invalid value. First argument appended to "+
"jdbc:ids: must specify a valid URL.");
System.err.println ("Second argument must be a valid user ID.");
System.err.println ("Third argument must be the password for the user ID.");
System.exit(1);

}

Figure 5-1. Simple JDBC application

© Copyright IBM Corp. 2007, 2011 5-1

url = urlPrefix + args[0];
user = args[1];
password = args[2];
try
{

// Load the driver
Class.forName("com.ibm.db2.jcc.DB2Driver"); �3a�
System.out.println("**** Loaded the JDBC driver");

// Create the connection using the IBM Data Server Driver for JDBC and SQLJ
con = DriverManager.getConnection (url, user, password); �3b�
// Commit changes manually
con.setAutoCommit(false);
System.out.println("**** Created a JDBC connection to the data source");

// Create the Statement
stmt = con.createStatement(); �4a�
System.out.println("**** Created JDBC Statement object");

// Execute a query and generate a ResultSet instance
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); �4b�
System.out.println("**** Created JDBC ResultSet object");

// Print all of the employee numbers to standard output device
while (rs.next()) {

empNo = rs.getString(1);
System.out.println("Employee number = " + empNo);

}
System.out.println("**** Fetched all rows from JDBC ResultSet");
// Close the ResultSet
rs.close();
System.out.println("**** Closed JDBC ResultSet");

// Close the Statement
stmt.close();
System.out.println("**** Closed JDBC Statement");

// Connection must be on a unit-of-work boundary to allow close
con.commit();
System.out.println ("**** Transaction committed");

// Close the connection
con.close(); �6�
System.out.println("**** Disconnected from data source");

System.out.println("**** JDBC Exit from class EzJava - no errors");

}

catch (ClassNotFoundException e)
{

System.err.println("Could not load JDBC driver");
System.out.println("Exception: " + e);
e.printStackTrace();

}

catch(SQLException ex) �5�
{

System.err.println("SQLException information");
while(ex!=null) {

System.err.println ("Error msg: " + ex.getMessage());
System.err.println ("SQLSTATE: " + ex.getSQLState());
System.err.println ("Error code: " + ex.getErrorCode());
ex.printStackTrace();
ex = ex.getNextException(); // For drivers that support chained exceptions

5-2 IBM Data Server Driver for JDBC and SQLJ for Informix

}
}

} // End main
} // End EzJava

Notes to Figure 5-1 on page 5-1:

Note Description
1 This statement imports the java.sql package, which contains the JDBC core API.

For information on other Java packages that you might need to access, see "Java
packages for JDBC support".

2 String variable empNo performs the function of a host variable. That is, it is
used to hold data retrieved from an SQL query. See "Variables in JDBC
applications" for more information.

3a and 3b These two sets of statements demonstrate how to connect to a data source using
one of two available interfaces. See "How JDBC applications connect to a data
source" for more details.

Step 3a (loading the JDBC driver) is not necessary if you use JDBC 4.0.
4a and 4b These two sets of statements demonstrate how to perform a SELECT in JDBC.

For information on how to perform other SQL operations, see "JDBC interfaces
for executing SQL".

5 This try/catch block demonstrates the use of the SQLException class for SQL
error handling. For more information on handling SQL errors, see "Handling an
SQLException under the IBM Data Server Driver for JDBC and SQLJ". For
information on handling SQL warnings, see "Handling an SQLWarning under
the IBM Data Server Driver for JDBC and SQLJ".

6 This statement disconnects the application from the data source. See
"Disconnecting from data sources in JDBC applications".

How JDBC applications connect to a data source
Before you can execute SQL statements in any SQL program, you must be
connected to a data source.

The IBM Data Server Driver for JDBC and SQLJ supports type 2 and type 4
connectivity. Connections to DB2 databases can use type 2 or type 4 connectivity.
Connections to IBM Informix databases can use type 4 connectivity.

The following figure shows how a Java application connects to a data source using
IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

Chapter 5. JDBC application programming 5-3

Connecting to a data source using the DriverManager
interface with the IBM Data Server Driver for JDBC and SQLJ

A JDBC application can establish a connection to a data source using the JDBC
DriverManager interface, which is part of the java.sql package.

The steps for establishing a connection are:
1. Load the JDBC driver by invoking the Class.forName method.

If you are using JDBC 4.0, you do not need to explicitly load the JDBC driver.
For the IBM Data Server Driver for JDBC and SQLJ, you load the driver by
invoking the Class.forName method with the following argument:
com.ibm.db2.jcc.DB2Driver

The following code demonstrates loading the IBM Data Server Driver for JDBC
and SQLJ:
try {

// Load the IBM Data Server Driver for JDBC and SQLJ with DriverManager
Class.forName("com.ibm.db2.jcc.DB2Driver");

} catch (ClassNotFoundException e) {
e.printStackTrace();

}

The catch block is used to print an error if the driver is not found.
2. Connect to a data source by invoking the DriverManager.getConnection

method.
You can use one of the following forms of getConnection:
getConnection(String url);
getConnection(String url, user, password);
getConnection(String url, java.util.Properties info);

Java application

DriverManager
or

DataSource

JDBC driver*

Database
server

*Java byte code executed under JVM

DRDA

Figure 5-2. Java application flow for IBM Data Server Driver for JDBC and SQLJ type 4
connectivity

5-4 IBM Data Server Driver for JDBC and SQLJ for Informix

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity, the
getConnection method must specify a user ID and password, through
parameters or through property values.
The url argument represents a data source, and indicates what type of JDBC
connectivity you are using.
The info argument is an object of type java.util.Properties that contains a set of
driver properties for the connection. Specifying the info argument is an
alternative to specifying property=value; strings in the URL. See "Properties for
the IBM Data Server Driver for JDBC and SQLJ" for the properties that you can
specify.
There are several ways to specify a user ID and password for a connection:
v Use the form of the getConnection method that specifies url with

property=value; clauses, and include the user and password properties in the
URL.

v Use the form of the getConnection method that specifies user and password.
v Use the form of the getConnection method that specifies info, after setting the

user and password properties in a java.util.Properties object.

Example: Establishing a connection and setting the user ID and password in a URL:
String url = "jdbc:ids://myhost:5021/mydb:" +

"user=dbadm;password=dbadm;";

// Set URL for data source
Connection con = DriverManager.getConnection(url);

// Create connection

Example: Establishing a connection and setting the user ID and password in user and
password parameters:
String url = "jdbc:ids://myhost:5021/mydb";

// Set URL for data source
String user = "dbadm";
String password = "dbadm";
Connection con = DriverManager.getConnection(url, user, password);

// Create connection

Example: Establishing a connection and setting the user ID and password in a
java.util.Properties object:
Properties properties = new Properties(); // Create Properties object
properties.put("user", "dbadm"); // Set user ID for connection
properties.put("password", "dbadm"); // Set password for connection
String url = "jdbc:ids://myhost:5021/mydb";

// Set URL for data source
Connection con = DriverManager.getConnection(url, properties);

// Create connection

URL format for IBM Data Server Driver for JDBC and SQLJ type
4 connectivity
If you are using type 4 connectivity in your JDBC application, and you are making
a connection using the DriverManager interface, you need to specify a URL in the
DriverManager.getConnection call that indicates type 4 connectivity.

Chapter 5. JDBC application programming 5-5

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity URL
syntax

�� jdbc:db2: // server
jdbc:db2j:net:
jdbc:ids:

: port
/ database

�: property = value ;

��

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity URL
option descriptions

The parts of the URL have the following meanings:

jdbc:db2: or jdbc:db2j:net:
The meanings of the initial portion of the URL are:

jdbc:db2:
Indicates that the connection is to a DB2 for z/OS®, DB2 Database for
Linux, UNIX, and Windows.

jdbc:db2: can also be used for a connection to an IBM Informix
database, for application portability.

jdbc:db2j:net:
Indicates that the connection is to a remote IBM Cloudscape server.

jdbc:ids:
Indicates that the connection is to an IBM Informix data source.
jdbc:informix-sqli: also indicates that the connection is to an IBM
Informix data source, but jdbc:ids: should be used.

server
The domain name or IP address of the data source.

port
The TCP/IP server port number that is assigned to the data source. This is an
integer between 0 and 65535. You must specify a value for port.

database
A name for the data source.
v If the connection is to a DB2 for z/OS server, database is the DB2 location

name that is defined during installation. All characters in the DB2 location
name must be uppercase characters. The IBM Data Server Driver for JDBC
and SQLJ does not convert lowercase characters in the database value to
uppercase for IBM Data Server Driver for JDBC and SQLJ type 4
connectivity.
You can determine the location name by executing the following SQL
statement on the server:
SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

v If the connection is to a DB2 for z/OS server or a DB2 for i server, all
characters in database must be uppercase characters.

v If the connection is to a DB2 Database for Linux, UNIX, and Windows
server, database is the database name that is defined during installation.

v If the connection is to an IBM Informix server, database is the database name.
The name is case-insensitive. The server converts the name to lowercase.

5-6 IBM Data Server Driver for JDBC and SQLJ for Informix

v If the connection is to an IBM Cloudscape server, the database is the
fully-qualified name of the file that contains the database. This name must
be enclosed in double quotation marks ("). For example:
"c:/databases/testdb"

property=value;
A property and its value for the JDBC connection. You can specify one or more
property and value pairs. Each property and value pair, including the last one,
must end with a semicolon (;). Do not include spaces or other white space
characters anywhere within the list of property and value strings.

Some properties with an int data type have predefined constant field values.
You must resolve constant field values to their integer values before you can
use those values in the url parameter. For example, you cannot use
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL in a url parameter. However,
you can build a URL string that includes
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL, and assign the URL string
to a String variable. Then you can use the String variable in the url parameter:

String url =
"jdbc:ids://sysmvs1.stl.ibm.com:5021/STLEC1" +
":user=dbadm;password=dbadm;" +
"traceLevel=" +
(com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";";
Connection con =

java.sql.DriverManager.getConnection(url);

Connecting to a data source using the DataSource interface
If your applications need to be portable among data sources, you should use the
DataSource interface.

Using DriverManager to connect to a data source reduces portability because the
application must identify a specific JDBC driver class name and driver URL. The
driver class name and driver URL are specific to a JDBC vendor, driver
implementation, and data source.

When you connect to a data source using the DataSource interface, you use a
DataSource object.

The simplest way to use a DataSource object is to create and use the object in the
same application, as you do with the DriverManager interface. However, this
method does not provide portability.

The best way to use a DataSource object is for your system administrator to create
and manage it separately, using WebSphere Application Server or some other tool.
The program that creates and manages a DataSource object also uses the Java
Naming and Directory Interface (JNDI) to assign a logical name to the DataSource
object. The JDBC application that uses the DataSource object can then refer to the
object by its logical name, and does not need any information about the underlying
data source. In addition, your system administrator can modify the data source
attributes, and you do not need to change your application program.

To learn more about using WebSphere to deploy DataSource objects, go to this
URL on the web:
http://www.ibm.com/software/webservers/appserv/

To learn about deploying DataSource objects yourself, see "Creating and deploying
DataSource objects".

Chapter 5. JDBC application programming 5-7

You can use the DataSource interface and the DriverManager interface in the same
application, but for maximum portability, it is recommended that you use only the
DataSource interface to obtain connections.

To obtain a connection using a DataSource object that the system administrator has
already created and assigned a logical name to, follow these steps:
1. From your system administrator, obtain the logical name of the data source to

which you need to connect.
2. Create a Context object to use in the next step. The Context interface is part of

the Java Naming and Directory Interface (JNDI), not JDBC.
3. In your application program, use JNDI to get the DataSource object that is

associated with the logical data source name.
4. Use the DataSource.getConnection method to obtain the connection.

You can use one of the following forms of the getConnection method:
getConnection();
getConnection(String user, String password);

Use the second form if you need to specify a user ID and password for the
connection that are different from the ones that were specified when the
DataSource was deployed.

Example of obtaining a connection using a DataSource object that was created by the
system administrator: In this example, the logical name of the data source that you
need to connect to is jdbc/sampledb. The numbers to the right of selected
statements correspond to the previously-described steps.

Example of creating and using a DataSource object in the same application:

import java.sql.*; // JDBC base
import javax.sql.*; // Addtional methods for JDBC
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC and SQLJ �1�

// interfaces
DB2SimpleDataSource dbds=new DB2SimpleDataSource(); �2�
dbds.setDatabaseName("dbloc1"); �3�

// Assign the location name
dbds.setDescription("Our Sample Database");

// Description for documentation
dbds.setUser("john");

// Assign the user ID
dbds.setPassword("dbadm");

// Assign the password
Connection con=dbds.getConnection(); �4�

// Create a Connection object

Note Description
1 Import the package that contains the implementation of the DataSource interface.

import java.sql.*;
import javax.naming.*;
import javax.sql.*;
...
Context ctx=new InitialContext(); �2�
DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb"); �3�
Connection con=ds.getConnection(); �4�

Figure 5-3. Obtaining a connection using a DataSource object

Figure 5-4. Creating and using a DataSource object in the same application

5-8 IBM Data Server Driver for JDBC and SQLJ for Informix

Note Description
2 Creates a DB2SimpleDataSource object. DB2SimpleDataSource is one of the IBM

Data Server Driver for JDBC and SQLJ implementations of the DataSource
interface. See "Creating and deploying DataSource objects" for information on
DB2's DataSource implementations.

3 The setDatabaseName, setDescription, setUser, and setPassword methods assign
attributes to the DB2SimpleDataSource object. See "Properties for the IBM Data
Server Driver for JDBC and SQLJ" for information about the attributes that you
can set for a DB2SimpleDataSource object under the IBM Data Server Driver for
JDBC and SQLJ.

4 Establishes a connection to the data source that DB2SimpleDataSource object dbds
represents.

JDBC connection objects
When you connect to a data source by either connection method, you create a
Connection object, which represents the connection to the data source.

You use this Connection object to do the following things:
v Create Statement, PreparedStatement, and CallableStatement objects for

executing SQL statements. These are discussed in "Executing SQL statements in
JDBC applications".

v Gather information about the data source to which you are connected. This
process is discussed in "Learning about a data source using DatabaseMetaData
methods".

v Commit or roll back transactions. You can commit transactions manually or
automatically. These operations are discussed in "Commit or roll back a JDBC
transaction".

v Close the connection to the data source. This operation is discussed in
"Disconnecting from data sources in JDBC applications".

Creating and deploying DataSource objects
JDBC versions starting with version 2.0 provide the DataSource interface for
connecting to a data source. Using the DataSource interface is the preferred way to
connect to a data source.

Using the DataSource interface involves two parts:
v Creating and deploying DataSource objects. This is usually done by a system

administrator, using a tool such as WebSphere Application Server.
v Using the DataSource objects to create a connection. This is done in the

application program.

This topic contains information that you need if you create and deploy the
DataSource objects yourself.

The IBM Data Server Driver for JDBC and SQLJ provides the following DataSource
implementations:
v com.ibm.db2.jcc.DB2SimpleDataSource, which does not support connection

pooling.
v com.ibm.db2.jcc.DB2ConnectionPoolDataSource, which supports connection

pooling.
v com.ibm.db2.jcc.DB2XADataSource, which supports connection pooling and

distributed transactions. The connection pooling is provided by WebSphere
Application Server or another application server.

Chapter 5. JDBC application programming 5-9

When you create and deploy a DataSource object, you need to perform these tasks:
1. Create an instance of the appropriate DataSource implementation.
2. Set the properties of the DataSource object.
3. Register the object with the Java Naming and Directory Interface (JNDI)

naming service.

The following example shows how to perform these tasks.

Note Description
1 Creates an instance of the DB2SimpleDataSource class.
2 This statement and the next three statements set values for properties of this

DB2SimpleDataSource object.
3 Creates a context for use by JNDI.
4 Associates DBSimple2DataSource object dbds with the logical name

jdbc/sampledb. An application that uses this object can refer to it by the name
jdbc/sampledb.

Java packages for JDBC support
Before you can invoke JDBC methods, you need to be able to access all or parts of
various Java packages that contain those methods.

You can do that either by importing the packages or specific classes, or by using
the fully-qualified class names. You might need the following packages or classes
for your JDBC program:

java.sql
Contains the core JDBC API.

javax.naming
Contains classes and interfaces for Java Naming and Directory Interface
(JNDI), which is often used for implementing a DataSource.

javax.sql
Contains methods for producing server-side applications using Java

com.ibm.db2.jcc
Contains the implementation of JDBC for the IBM Data Server Driver for
JDBC and SQLJ.

import java.sql.*; // JDBC base
import javax.naming.*; // JNDI Naming Services
import javax.sql.*; // Additional methods for JDBC
import com.ibm.db2.jcc.*; // IBM Data Server Driver for

// JDBC and SQLJ
// implementation of JDBC
// standard extension APIs

DB2SimpleDataSource dbds = new com.ibm.db2.jcc.DB2SimpleDataSource(); �1�

dbds.setDatabaseName("db2loc1"); �2�
dbds.setDescription("Our Sample Database");
dbds.setUser("john");
dbds.setPassword("mypw");
...
Context ctx=new InitialContext(); �3�
Ctx.bind("jdbc/sampledb",dbds); �4�

Figure 5-5. Example of creating and deploying a DataSource object

5-10 IBM Data Server Driver for JDBC and SQLJ for Informix

Learning about a data source using DatabaseMetaData methods
The DatabaseMetaData interface contains methods that retrieve information about
a data source. These methods are useful when you write generic applications that
can access various data sources.

In generic applications that can access various data sources, you need to test
whether a data source can handle various database operations before you execute
them. For example, you need to determine whether the driver at a data source is at
the JDBC 3.0 level before you invoke JDBC 3.0 methods against that driver.

DatabaseMetaData methods provide the following types of information:
v Features that the data source supports, such as the ANSI SQL level
v Specific information about the JDBC driver, such as the driver level
v Limits, such as the maximum number of columns that an index can have
v Whether the data source supports data definition statements (CREATE, ALTER,

DROP, GRANT, REVOKE)
v Lists of objects at the data source, such as tables, indexes, or procedures
v Whether the data source supports various JDBC functions, such as batch updates

or scrollable ResultSets
v A list of scalar functions that the driver supports

For IBM Informix systems, you might also need to obtain the following
information:
v Whether the database is ANSI compliant
v Whether the database supports logging

To obtain that information, you need to use IBM Data Server Driver for JDBC and
SQLJ-only methods DB2DatabaseMetaData.isIDSDatabaseAnsiCompliant and
DB2DatabaseMetaData.isIDSDatabaseLogging.

To invoke DatabaseMetaData methods, you need to perform these basic steps:
1. Create a DatabaseMetaData object by invoking the getMetaData method on the

connection.
2. Invoke DatabaseMetaData methods to get information about the data source.
3. If the method returns a ResultSet:

a. In a loop, position the cursor using the next method, and retrieve data from
each column of the current row of the ResultSet object using getXXX
methods.

b. Invoke the close method to close the ResultSet object.

Example: The following code demonstrates how to use DatabaseMetaData methods
to determine the driver version, to get a list of the stored procedures that are
available at the data source, and to get a list of datetime functions that the driver
supports. The numbers to the right of selected statements correspond to the
previously-described steps.

Connection con;
DatabaseMetaData dbmtadta;
ResultSet rs;
int mtadtaint;
String procSchema;
String procName;
String dtfnList;

Figure 5-6. Using DatabaseMetaData methods to get information about a data source

Chapter 5. JDBC application programming 5-11

...
dbmtadta = con.getMetaData(); // Create the DatabaseMetaData object �1�
mtadtaint = dmtadta.getDriverVersion(); �2�

// Check the driver version
System.out.println("Driver version: " + mtadtaint);
rs = dbmtadta.getProcedures(null, null, "%");

// Get information for all procedures
while (rs.next()) { // Position the cursor �3a�
procSchema = rs.getString("PROCEDURE_SCHEM");

// Get procedure schema
procName = rs.getString("PROCEDURE_NAME");

// Get procedure name
System.out.println(procSchema + "." + procName);

// Print the qualified procedure name
}
dtfnList = dbmtadta.getTimeDateFunctions();

// Get list of supported datetime functions
System.out.println("Supported datetime functions:");
System.out.println(dtfnList); // Print the list of datetime functions
rs.close(); // Close the ResultSet �3b�

Example: The following code demonstrates how to use DB2DatabaseMetaData
methods to determine whether an IBM Informix database is ANSI compliant and
supports logging.
com.ibm.db2.jcc.DB2Connection db2c =
(com.ibm.db2.jcc.DB2Connection) c; // c is existing java.sql.Connection object

// that needs to be cast to a DB2Connection
// object so DB2DatabaseMetaData methods
// can be used on it.

com.ibm.db2.jcc.DB2DatabaseMetaData dbmd =
(com.ibm.db2.jcc.DB2DatabaseMetaData) db2c.getMetaData();

// Retrieve the DB2DatabaseMetaData object.
if (dbmd.isIDSDatabaseLogging ()) // Check whether the database supports

// logging. If so, you can perform a
// commit operation.

c.createStatement.executeUpdate("commit");
if (dbmd.isIDSDatabaseAnsiCompliant()) // Check whether the database is ANSI

// compliant.
System.out.println("Current Informix database is ANSI compliant...");

DatabaseMetaData methods for identifying the type of data
source

You can use the DatabaseMetaData.getDatabaseProductName and
DatabaseMetaData.getProductVersion methods to identify the type and level of the
database manager to which you are connected, and the operating system on which
the database manager is running.

DatabaseMetaData.getDatabaseProductName returns a string that identifies the
database manager and the operating system. The string has one of the following
formats:
database-product
database-product/operating-system

The following table shows examples of values that are returned by
DatabaseMetaData.getDatabaseProductName.

Table 5-1. Examples of DatabaseMetaData.getDatabaseProductName values

getDatabaseProductName value Database product

DB2 DB2 for z/OS

5-12 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 5-1. Examples of DatabaseMetaData.getDatabaseProductName values (continued)

getDatabaseProductName value Database product

DB2/LINUXX8664 DB2 Database for Linux, UNIX, and Windows on Linux
on x86

IBM Informix/UNIX64 IBM Informix on UNIX

DatabaseMetaData.getDatabaseVersionName returns a string that contains the
database product indicator and the version number, release number, and
maintenance level of the data source.

The following table shows examples of values that are returned by
DatabaseMetaData.getDatabaseProductVersion.

Table 5-2. Examples of DatabaseMetaData.getDatabaseProductVersion values

getDatabaseProductVersion value Database product version

DSN09015 DB2 for z/OS Version 9.1 in new-function mode

SQL09010 DB2 Database for Linux, UNIX, and Windows Version 9.1

IFX11100 IBM Informix Version 11.10

Variables in JDBC applications
As in any other Java application, when you write JDBC applications, you declare
variables. In Java applications, those variables are known as Java identifiers.

Some of those identifiers have the same function as host variables in other
languages: they hold data that you pass to or retrieve from database tables.
Identifier empNo in the following code holds data that you retrieve from the
EMPNO table column, which has the CHAR data type.
String empNo;
// Execute a query and generate a ResultSet instance
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE");
while (rs.next()) {
String empNo = rs.getString(1);
System.out.println("Employee number = " + empNo);
}

Your choice of Java data types can affect performance because IDS picks better
access paths when the data types of your Java variables map closely to the IDS
data types.

JDBC interfaces for executing SQL
You execute SQL statements in a traditional SQL program to update data in tables,
retrieve data from the tables, or call stored procedures. To perform the same
functions in a JDBC program, you invoke methods.

Those methods are defined in the following interfaces:
v The Statement interface supports all SQL statement execution. The following

interfaces inherit methods from the Statement interface:

Chapter 5. JDBC application programming 5-13

– The PreparedStatement interface supports any SQL statement containing
input parameter markers. Parameter markers represent input variables. The
PreparedStatement interface can also be used for SQL statements with no
parameter markers.
With the IBM Data Server Driver for JDBC and SQLJ, the PreparedStatement
interface can be used to call stored procedures that have input parameters
and no output parameters, and that return no result sets. However, the
preferred interface is CallableStatement.

– The CallableStatement interface supports the invocation of a stored procedure.
The CallableStatement interface can be used to call stored procedures with
input parameters, output parameters, or input and output parameters, or no
parameters. With the IBM Data Server Driver for JDBC and SQLJ, you can
also use the Statement interface to call stored procedures, but those stored
procedures must have no parameters.

v The ResultSet interface provides access to the results that a query generates. The
ResultSet interface has the same purpose as the cursor that is used in SQL
applications in other languages.

Creating and modifying database objects using the
Statement.executeUpdate method

The Statement.executeUpdate is one of the JDBC methods that you can use to
update tables and call stored procedures.

You can use the Statement.executeUpdate method to do the following things:
v Execute data definition statements, such as CREATE, ALTER, DROP, GRANT,

REVOKE
v Execute INSERT, UPDATE, DELETE, and MERGE statements that do not contain

parameter markers.
v With the IBM Data Server Driver for JDBC and SQLJ, execute the CALL

statement to call stored procedures that have no parameters and that return no
result sets.

To execute these SQL statements, you need to perform these steps:
1. Invoke the Connection.createStatement method to create a Statement object.
2. Invoke the Statement.executeUpdate method to perform the SQL operation.
3. Invoke the Statement.close method to close the Statement object.

Suppose that you want to execute this SQL statement:
UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’

The following code creates Statement object stmt, executes the UPDATE statement,
and returns the number of rows that were updated in numUpd. The numbers to the
right of selected statements correspond to the previously-described steps.

5-14 IBM Data Server Driver for JDBC and SQLJ for Informix

Updating data in tables using the
PreparedStatement.executeUpdate method

The Statement.executeUpdate method works if you update IDS tables with
constant values. However, updates often need to involve passing values in
variables to IDS tables. To do that, you use the PreparedStatement.executeUpdate
method.

With the IBM Data Server Driver for JDBC and SQLJ, you can also use
PreparedStatement.executeUpdate to call stored procedures that have input
parameters and no output parameters, and that return no result sets.

For calls to stored procedures that are on IBM Informix data sources, the
PreparedStatement object can be a CALL statement or an EXECUTE PROCEDURE
statement.

When you execute an SQL statement many times, you can get better performance
by creating the SQL statement as a PreparedStatement.

For example, the following UPDATE statement lets you update the employee table
for only one phone number and one employee number:
UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’

Suppose that you want to generalize the operation to update the employee table
for any set of phone numbers and employee numbers. You need to replace the
constant phone number and employee number with variables:
UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?

Variables of this form are called parameter markers. To execute an SQL statement
with parameter markers, you need to perform these steps:
1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.
2. Invoke the PreparedStatement.setXXX methods to pass values to the input

variables.
This step assumes that you use standard parameter markers. Alternatively, if
you use named parameter markers, you useIBM Data Server Driver for JDBC
and SQLJ-only methods to pass values to the input parameters.

3. Invoke the PreparedStatement.executeUpdate method to update the table with
the variable values.

4. Invoke the PreparedStatement.close method to close the PreparedStatement
object when you have finished using that object.

Connection con;
Statement stmt;
int numUpd;
...
stmt = con.createStatement(); // Create a Statement object �1�
numUpd = stmt.executeUpdate(

"UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’"); �2�
// Perform the update

stmt.close(); // Close Statement object �3�

Figure 5-7. Using Statement.executeUpdate

Chapter 5. JDBC application programming 5-15

|
|
|

The following code performs the previous steps to update the phone number to
'4657' for the employee with employee number '000010'. The numbers to the right
of selected statements correspond to the previously-described steps.

You can also use the PreparedStatement.executeUpdate method for statements that
have no parameter markers. The steps for executing a PreparedStatement object
with no parameter markers are similar to executing a PreparedStatement object
with parameter markers, except you skip step 2 on page 5-15. The following
example demonstrates these steps.

Making batch updates in JDBC applications
With batch updates, instead of updating rows of a table one at a time, you can
direct JDBC to execute a group of updates at the same time. Statements that can be
included in the same batch of updates are known as batchable statements.

If a statement has input parameters or host expressions, you can include that
statement only in a batch that has other instances of the same statement. This type
of batch is known as a homogeneous batch. If a statement has no input parameters,
you can include that statement in a batch only if the other statements in the batch
have no input parameters or host expressions. This type of batch is known as a
heterogeneous batch. Two statements that can be included in the same batch are
known as batch compatible.

Use the following Statement methods for creating, executing, and removing a batch
of SQL updates:
v addBatch
v executeBatch
v clearBatch

Connection con;
PreparedStatement pstmt;
int numUpd;
...
pstmt = con.prepareStatement(

"UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");
// Create a PreparedStatement object �1�

pstmt.setString(1,"4657"); // Assign first value to first parameter �2�
pstmt.setString(2,"000010"); // Assign first value to second parameter
numUpd = pstmt.executeUpdate(); // Perform first update �3�
pstmt.setString(1,"4658"); // Assign second value to first parameter
pstmt.setString(2,"000020"); // Assign second value to second parameter
numUpd = pstmt.executeUpdate(); // Perform second update
pstmt.close(); // Close the PreparedStatement object �4�

Figure 5-8. Using PreparedStatement.executeUpdate for an SQL statement with parameter
markers

Connection con;
PreparedStatement pstmt;
int numUpd;
...
pstmt = con.prepareStatement(

"UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’");
// Create a PreparedStatement object �1�

numUpd = pstmt.executeUpdate(); // Perform the update �3�
pstmt.close(); // Close the PreparedStatement object �4�

Figure 5-9. Using PreparedStatement.executeUpdate for an SQL statement without
parameter markers

5-16 IBM Data Server Driver for JDBC and SQLJ for Informix

Use the following PreparedStatement and CallableStatement method for creating a
batch of parameters so that a single statement can be executed multiple times in a
batch, with a different set of parameters for each execution.
v addBatch

Restrictions on executing statements in a batch:

v If you try to execute a SELECT statement in a batch, a BatchUpdateException is
thrown.

v A CallableStatement object that you execute in a batch can contain output
parameters. However, you cannot retrieve the values of the output parameters. If
you try to do so, a BatchUpdateException is thrown.

v You cannot retrieve ResultSet objects from a CallableStatement object that you
execute in a batch. A BatchUpdateException is not thrown, but the getResultSet
method invocation returns a null value.

To make batch updates using several statements with no input parameters, follow
these basic steps:
1. For each SQL statement that you want to execute in the batch, invoke the

addBatch method.
2. Invoke the executeBatch method to execute the batch of statements.
3. Check for errors. If no errors occurred:

a. Get the number of rows that were affect by each SQL statement from the
array that the executeBatch invocation returns. This number does not
include rows that were affected by triggers or by referential integrity
enforcement.

b. If AutoCommit is disabled for the Connection object, invoke the commit
method to commit the changes.
If AutoCommit is enabled for the Connection object, the IBM Data Server
Driver for JDBC and SQLJ adds a commit method at the end of the batch.

To make batch updates using a single statement with several sets of input
parameters, follow these basic steps:
1. Invoke the prepareStatement method to create a PreparedStatement object.
2. For each set of input parameter values:

a. Execute setXXX methods to assign values to the input parameters.
b. Invoke the addBatch method to add the set of input parameters to the

batch.
3. Invoke the executeBatch method to execute the statements with all sets of

parameters.
4. If no errors occurred:

a. Get the number of rows that were updated by each execution of the SQL
statement from the array that the executeBatch invocation returns. The
number of affected rows does not include rows that were affected by
triggers or by referential integrity enforcement.
If the following conditions are true, the IBM Data Server Driver for JDBC
and SQLJ returns Statement.SUCCESS_NO_INFO (-2), instead of the number of
rows that were affected by each SQL statement:
v The application is connected to a subsystem that is in DB2 for z/OS

Version 8 new-function mode, or later.
v The application is using Version 3.1 or later of the IBM Data Server

Driver for JDBC and SQLJ.

Chapter 5. JDBC application programming 5-17

v The IBM Data Server Driver for JDBC and SQLJ uses multi-row INSERT
operations to execute batch updates.

This occurs because with multi-row INSERT, the database server executes
the entire batch as a single operation, so it does not return results for
individual SQL statements.

b. If AutoCommit is disabled for the Connection object, invoke the commit
method to commit the changes.
If AutoCommit is enabled for the Connection object, the IBM Data Server
Driver for JDBC and SQLJ adds a commit method at the end of the batch.

c. If the PreparedStatement object returns automatically generated keys, call
DB2PreparedStatement.getDBGeneratedKeys to retrieve an array of
ResultSet objects that contains the automatically generated keys.
Check the length of the returned array. If the length of the returned array is
0, an error occurred during retrieval of the automatically generated keys.

5. If errors occurred, process the BatchUpdateException.

In the following code fragment, two sets of parameters are batched. An UPDATE
statement that takes two input parameters is then executed twice, once with each
set of parameters. The numbers to the right of selected statements correspond to
the previously-described steps.
try {
...

PreparedStatement preps = conn.prepareStatement(
"UPDATE DEPT SET MGRNO=? WHERE DEPTNO=?"); �1�

ps.setString(1,mgrnum1); �2a�
ps.setString(2,deptnum1);
ps.addBatch(); �2b�

ps.setString(1,mgrnum2);
ps.setString(2,deptnum2);
ps.addBatch();
int [] numUpdates=ps.executeBatch(); �3�
for (int i=0; i < numUpdates.length; i++) { �4a�

if (numUpdates[i] == SUCCESS_NO_INFO)
System.out.println("Execution " + i +

": unknown number of rows updated");
else

System.out.println("Execution " + i +
"successful: " numUpdates[i] + " rows updated");

}
conn.commit(); �4b�

} catch(BatchUpdateException b) { �5�
// process BatchUpdateException

}

In the following code fragment, a batched INSERT statement returns automatically
generated keys.
import java.sql.*;
import com.ibm.db2.jcc.*;
...
Connection conn;
...
try {
...

PreparedStatement ps = conn.prepareStatement(�1�
"INSERT INTO DEPT (DEPTNO, DEPTNAME, ADMRDEPT) " +
"VALUES (?,?,?)",
Statement.RETURN_GENERATED_KEYS);

ps.setString(1,"X01"); �2a�
ps.setString(2,"Finance");

5-18 IBM Data Server Driver for JDBC and SQLJ for Informix

ps.setString(3,"A00");
ps.addBatch(); �2b�
ps.setString(1,"Y01");
ps.setString(2,"Accounting");
ps.setString(3,"A00");
ps.addBatch();

int [] numUpdates=preps.executeBatch(); �3�

for (int i=0; i < numUpdates.length; i++) { �4a�
if (numUpdates[i] == SUCCESS_NO_INFO)

System.out.println("Execution " + i +
": unknown number of rows updated");

else
System.out.println("Execution " + i +

"successful: " numUpdates[i] + " rows updated");
}
conn.commit(); �4b�
ResultSet[] resultList =

((DB2PreparedStatement)ps).getDBGeneratedKeys(); �4c�
if (resultList.length != 0) {

for (i = 0; i < resultList.length; i++) {
while (resultList[i].next()) {

java.math.BigDecimal idColVar = rs.getBigDecimal(1);
// Get automatically generated key
// value

System.out.println("Automatically generated key value = "
+ idColVar);

}
}

}
else {

System.out.println("Error retrieving automatically generated keys");
}

} catch(BatchUpdateException b) { �5�
// process BatchUpdateException

}

Learning about parameters in a PreparedStatement using
ParameterMetaData methods

The IBM Data Server Driver for JDBC and SQLJ includes support for the
ParameterMetaData interface. The ParameterMetaData interface contains methods
that retrieve information about the parameter markers in a PreparedStatement
object.

ParameterMetaData methods provide the following types of information:
v The data types of parameters, including the precision and scale of decimal

parameters.
v The parameters' database-specific type names. For parameters that correspond to

table columns that are defined with distinct types, these names are the distinct
type names.

v Whether parameters are nullable.
v Whether parameters are input or output parameters.
v Whether the values of a numeric parameter can be signed.
v The fully-qualified Java class name that PreparedStatement.setObject uses when

it sets a parameter value.

To invoke ParameterMetaData methods, you need to perform these basic steps:
1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.

Chapter 5. JDBC application programming 5-19

2. Invoke the PreparedStatement.getParameterMetaData method to retrieve a
ParameterMetaData object.

3. Invoke ParameterMetaData.getParameterCount to determine the number of
parameters in the PreparedStatement.

4. Invoke ParameterMetaData methods on individual parameters.

The following code demonstrates how to use ParameterMetaData methods to
determine the number and data types of parameters in an SQL UPDATE statement.
The numbers to the right of selected statements correspond to the
previously-described steps.

Data retrieval in JDBC applications
In JDBC applications, you retrieve data using ResultSet objects. A ResultSet
represents the result set of a query.

Retrieving data from tables using the Statement.executeQuery
method
To retrieve data from a table using a SELECT statement with no parameter
markers, you can use the Statement.executeQuery method.

This method returns a result table in a ResultSet object. After you obtain the result
table, you need to use ResultSet methods to move through the result table and
obtain the individual column values from each row.

With the IBM Data Server Driver for JDBC and SQLJ, you can also use the
Statement.executeQuery method to retrieve a result set from a stored procedure
call, if that stored procedure returns only one result set. If the stored procedure
returns multiple result sets, you need to use the Statement.execute method.

This topic discusses the simplest kind of ResultSet, which is a read-only ResultSet
in which you can only move forward, one row at a time. The IBM Data Server
Driver for JDBC and SQLJ also supports updatable and scrollable ResultSets.

To retrieve rows from a table using a SELECT statement with no parameter
markers, you need to perform these steps:

Connection con;
ParameterMetaData pmtadta;
int mtadtacnt;
String sqlType;
...
pstmt = con.prepareStatement(

"UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");
// Create a PreparedStatement object �1�

pmtadta = pstmt.getParameterMetaData(); �2�
// Create a ParameterMetaData object

mtadtacnt = pmtadta.getParameterCount(); �3�
// Determine the number of parameters

System.out.println("Number of statement parameters: " + mtadtacnt);
for (int i = 1; i <= mtadtacnt; i++) {

sqlType = pmtadta.getParameterTypeName(i); �4�
// Get SQL type for each parameter

System.out.println("SQL type of parameter " + i " is " + sqlType);
}
...
pstmt.close(); // Close the PreparedStatement

Figure 5-10. Using ParameterMetaData methods to get information about a
PreparedStatement

5-20 IBM Data Server Driver for JDBC and SQLJ for Informix

1. Invoke the Connection.createStatement method to create a Statement object.
2. Invoke the Statement.executeQuery method to obtain the result table from the

SELECT statement in a ResultSet object.
3. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX methods.
XXX represents a data type.

4. Invoke the ResultSet.close method to close the ResultSet object.
5. Invoke the Statement.close method to close the Statement object when you have

finished using that object.

The following code demonstrates how to retrieve all rows from the employee table.
The numbers to the right of selected statements correspond to the
previously-described steps.

Retrieving data from tables using the
PreparedStatement.executeQuery method
To retrieve data from a table using a SELECT statement with parameter markers,
you use the PreparedStatement.executeQuery method.

This method returns a result table in a ResultSet object. After you obtain the result
table, you need to use ResultSet methods to move through the result table and
obtain the individual column values from each row.

With the IBM Data Server Driver for JDBC and SQLJ, you can also use the
PreparedStatement.executeQuery method to retrieve a result set from a stored
procedure call, if that stored procedure returns only one result set and has only
input parameters. If the stored procedure returns multiple result sets, you need to
use the PreparedStatement.execute method.

You can also use the PreparedStatement.executeQuery method for statements that
have no parameter markers. When you execute a query many times, you can get
better performance by creating the SQL statement as a PreparedStatement.

To retrieve rows from a table using a SELECT statement with parameter markers,
you need to perform these steps:
1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.
2. Invoke PreparedStatement.setXXX methods to pass values to the input

parameters.

String empNo;
Connection con;
Statement stmt;
ResultSet rs;
...
stmt = con.createStatement(); // Create a Statement object �1�
rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); �2�

// Get the result table from the query
while (rs.next()) { // Position the cursor �3�
empNo = rs.getString(1); // Retrieve only the first column value
System.out.println("Employee number = " + empNo);

// Print the column value
}
rs.close(); // Close the ResultSet �4�
stmt.close(); // Close the Statement �5�

Figure 5-11. Using Statement.executeQuery

Chapter 5. JDBC application programming 5-21

3. Invoke the PreparedStatement.executeQuery method to obtain the result table
from the SELECT statement in a ResultSet object.

4. In a loop, position the cursor using the ResultSet.next method, and retrieve
data from each column of the current row of the ResultSet object using getXXX
methods.

5. Invoke the ResultSet.close method to close the ResultSet object.
6. Invoke the PreparedStatement.close method to close the PreparedStatement

object when you have finished using that object.

The following code demonstrates how to retrieve rows from the employee table for
a specific employee. The numbers to the right of selected statements correspond to
the previously-described steps.

Learning about a ResultSet using ResultSetMetaData methods
You cannot always know the number of columns and data types of the columns in
a table or result set. This is true especially when you are retrieving data from a
remote data source.

When you write programs that retrieve unknown ResultSets, you need to use
ResultSetMetaData methods to determine the characteristics of the ResultSets
before you can retrieve data from them.

ResultSetMetaData methods provide the following types of information:
v The number of columns in a ResultSet
v The qualifier for the underlying table of the ResultSet
v Information about a column, such as the data type, length, precision, scale, and

nullability
v Whether a column is read-only

After you invoke the executeQuery method to generate a ResultSet for a query on
a table, follow these basic steps to determine the contents of the ResultSet:
1. Invoke the getMetaData method on the ResultSet object to create a

ResultSetMetaData object.
2. Invoke the getColumnCount method to determine how many columns are in

the ResultSet.

String empnum, phonenum;
Connection con;
PreparedStatement pstmt;
ResultSet rs;
...
pstmt = con.prepareStatement(

"SELECT EMPNO, PHONENO FROM EMPLOYEE WHERE EMPNO=?");
// Create a PreparedStatement object �1�

pstmt.setString(1,"000010"); // Assign value to input parameter �2�

rs = pstmt.executeQuery(); // Get the result table from the query �3�
while (rs.next()) { // Position the cursor �4�
empnum = rs.getString(1); // Retrieve the first column value
phonenum = rs.getString(2); // Retrieve the first column value
System.out.println("Employee number = " + empnum +

"Phone number = " + phonenum);
// Print the column values

}
rs.close(); // Close the ResultSet �5�
pstmt.close(); // Close the PreparedStatement �6�

Figure 5-12. Example of using PreparedStatement.executeQuery

5-22 IBM Data Server Driver for JDBC and SQLJ for Informix

3. For each column in the ResultSet, execute ResultSetMetaData methods to
determine column characteristics.
The results of ResultSetMetaData.getColumnName call reflects the column
name information that is stored in the IDS catalog for that data source.

The following code demonstrates how to determine the data types of all the
columns in the employee table. The numbers to the right of selected statements
correspond to the previously-described steps.

Characteristics of a JDBC ResultSet under the IBM Data Server
Driver for JDBC and SQLJ
The IBM Data Server Driver for JDBC and SQLJ provides support for scrollable,
updatable, and holdable cursors.

In addition to moving forward, one row at a time, through a ResultSet, you might
want to do the following things:
v Move backward or go directly to a specific row
v Update, delete, or insert rows in a ResultSet
v Leave the ResultSet open after a COMMIT

The following terms describe characteristics of a ResultSet:

scrollability
Whether the cursor for the ResultSet can move forward only, or forward one or
more rows, backward one or more rows, or to a specific row.

If a cursor for a ResultSet is scrollable, it also has a sensitivity attribute, which
describes whether the cursor is sensitive to changes to the underlying table.

updatability
Whether the cursor can be used to update or delete rows. This characteristic
does not apply to a ResultSet that is returned from a stored procedure, because
a stored procedure ResultSet cannot be updated.

String s;
Connection con;
Statement stmt;
ResultSet rs;
ResultSetMetaData rsmtadta;
int colCount
int mtadtaint;
int i;
String colName;
String colType;
...
stmt = con.createStatement(); // Create a Statement object
rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");

// Get the ResultSet from the query
rsmtadta = rs.getMetaData(); // Create a ResultSetMetaData object �1�
colCount = rsmtadta.getColumnCount(); �2�

// Find number of columns in EMP
for (i=1; i<= colCount; i++) { �3�
colName = rsmtadta.getColumnName(); // Get column name
colType = rsmtadta.getColumnTypeName();

// Get column data type
System.out.println("Column = " + colName +
" is data type " + colType);

// Print the column value
}

Figure 5-13. Using ResultSetMetaData methods to get information about a ResultSet

Chapter 5. JDBC application programming 5-23

holdability
Whether the cursor stays open after a COMMIT.

You set the updatability, scrollability, and holdability characteristics of a ResultSet
through parameters in the Connection.prepareStatement or
Connection.createStatement methods. The ResultSet settings map to attributes of a
cursor in the database. The following table lists the JDBC scrollability, updatability,
and holdability settings, and the corresponding cursor attributes.

Table 5-3. JDBC ResultSet characteristics and SQL cursor attributes

JDBC setting DB2 cursor setting IBM Informix cursor setting

CONCUR_READ_ONLY FOR READ ONLY FOR READ ONLY

CONCUR_UPDATABLE FOR UPDATE FOR UPDATE

HOLD_CURSORS_OVER_COMMIT WITH HOLD WITH HOLD

TYPE_FORWARD_ONLY SCROLL not specified SCROLL not specified

TYPE_SCROLL_INSENSITIVE INSENSITIVE SCROLL SCROLL

TYPE_SCROLL_SENSITIVE SENSITIVE STATIC, SENSITIVE
DYNAMIC, or ASENSITIVE,
depending on the cursorSensitvity
Connection and DataSource property

Not supported

If a JDBC ResultSet is static, the size of the result table and the order of the rows in
the result table do not change after the cursor is opened. This means that if you
insert rows into the underlying table, the result table for a static ResultSet does not
change. If you delete a row of a result table, a delete hole occurs. You cannot
update or delete a delete hole.

Specifying updatability, scrollability, and holdability for ResultSets in JDBC
applications:

You use special parameters in the Connection.prepareStatement or
Connection.createStatement methods to specify the updatability, scrollability, and
holdability of a ResultSet.

By default, ResultSet objects are not scrollable and not updatable. The default
holdability depends on the data source, and can be determined from the
DatabaseMetaData.getResultSetHoldability method. To change the scrollability,
updatability, and holdability attributes for a ResultSet, follow these steps:
1. If the SELECT statement that defines the ResultSet has no input parameters,

invoke the createStatement method to create a Statement object. Otherwise,
invoke the prepareStatement method to create a PreparedStatement object. You
need to specify forms of the createStatement or prepareStatement methods that
include the resultSetType, resultSetConcurrency, or resultSetHoldability parameters.
The form of the createStatement method that supports scrollability and
updatability is:
createStatement(int resultSetType, int resultSetConcurrency);

The form of the createStatement method that supports scrollability, updatability,
and holdability is:
createStatement(int resultSetType, int resultSetConcurrency,
int resultSetHoldability);

5-24 IBM Data Server Driver for JDBC and SQLJ for Informix

The form of the prepareStatement method that supports scrollability and
updatability is:
prepareStatement(String sql, int resultSetType,
int resultSetConcurrency);

The form of the prepareStatement method that supports scrollability,
updatability, and holdability is:
prepareStatement(String sql, int resultSetType,
int resultSetConcurrency, int resultSetHoldability);

The following table contains a list of valid values for resultSetType and
resultSetConcurrency.

Table 5-4. Valid combinations of resultSetType and resultSetConcurrency for ResultSets

resultSetType value resultSetConcurrency value

TYPE_FORWARD_ONLY CONCUR_READ_ONLY

TYPE_FORWARD_ONLY CONCUR_UPDATABLE

TYPE_SCROLL_INSENSITIVE CONCUR_READ_ONLY

TYPE_SCROLL_SENSITIVE1 CONCUR_READ_ONLY

TYPE_SCROLL_SENSITIVE1 CONCUR_UPDATABLE

Note:

1. This value does not apply to connections to IBM Informix.

resultSetHoldability has two possible values: HOLD_CURSORS_OVER_COMMIT and
CLOSE_CURSORS_AT_COMMIT. Either of these values can be specified with any
valid combination of resultSetConcurrency and resultSetHoldability. The value that
you set overrides the default holdability for the connection.
Restriction: If the ResultSet is scrollable, and the ResultSet is used to select
columns from a table on a DB2 Database for Linux, UNIX, and Windows
server, the SELECT list of the SELECT statement that defines the ResultSet
cannot include columns with the following data types:
v LONG VARCHAR
v LONG VARGRAPHIC
v BLOB
v CLOB
v XML
v A distinct type that is based on any of the previous data types in this list
v A structured type

2. If the SELECT statement has input parameters, invoke setXXX methods to pass
values to the input parameters.

3. Invoke the executeQuery method to obtain the result table from the SELECT
statement in a ResultSet object.

4. For each row that you want to access:
a. Position the cursor using one of the methods that are listed in the following

table.

Table 5-5. ResultSet methods for positioning a scrollable cursor

Method Positions the cursor

first1 On the first row of the ResultSet

last1 On the last row of the ResultSet

next2 On the next row of the ResultSet

previous1,3 On the previous row of the ResultSet

Chapter 5. JDBC application programming 5-25

Table 5-5. ResultSet methods for positioning a scrollable cursor (continued)

Method Positions the cursor

absolute(int n)1,4 If n>0, on row n of the ResultSet. If n<0, and m is the
number of rows in the ResultSet, on row m+n+1 of
the ResultSet.

relative(int n)1,5,6, If n>0, on the row that is n rows after the current row.
If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

afterLast1 After the last row in the ResultSet

beforeFirst1 Before the first row in the ResultSet

Notes:

1. This method does not apply to connections to IBM Informix.

2. If the cursor is before the first row of the ResultSet, this method positions the cursor on
the first row.

3. If the cursor is after the last row of the ResultSet, this method positions the cursor on the
last row.

4. If the absolute value of n is greater than the number of rows in the result set, this
method positions the cursor after the last row if n is positive, or before the first row if n
is negative.

5. The cursor must be on a valid row of the ResultSet before you can use this method. If
the cursor is before the first row or after the last row, the method throws an
SQLException.

6. Suppose that m is the number of rows in the ResultSet and x is the current row number
in the ResultSet. If n>0 and x+n>m, the driver positions the cursor after the last row. If
n<0 and x+n<1, the driver positions the cursor before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,
isLast, isBeforeFirst, or isAfterLast method to obtain this information.

c. If you specified a resultSetType value of TYPE_SCROLL_SENSITIVE in step 1 on
page 5-24, and you need to see the latest values of the current row, invoke
the refreshRow method.
Recommendation: Because refreshing the rows of a ResultSet can have a
detrimental effect on the performance of your applications, you should
invoke refreshRow only when you need to see the latest data.

d. Perform one or more of the following operations:
v To retrieve data from each column of the current row of the ResultSet

object, use getXXX methods.
v To update the current row from the underlying table, use updateXXX

methods to assign column values to the current row of the ResultSet.
Then use updateRow to update the corresponding row of the underlying
table. If you decide that you do not want to update the underlying table,
invoke the cancelRowUpdates method instead of the updateRow method.
The resultSetConcurrency value for the ResultSet must be
CONCUR_UPDATABLE for you to use these methods.

v To delete the current row from the underlying table, use the deleteRow
method. Invoking deleteRow causes the driver to replace the current row
of the ResultSet with a hole.
The resultSetConcurrency value for the ResultSet must be
CONCUR_UPDATABLE for you to use this method.

5. Invoke the close method to close the ResultSet object.
6. Invoke the close method to close the Statement or PreparedStatement object.

5-26 IBM Data Server Driver for JDBC and SQLJ for Informix

The following code demonstrates how to retrieve all employee numbers from the
employee table. The numbers to the right of selected statements correspond to the
previously-described steps.

Multi-row SQL operations in JDBC applications:

The IBM Data Server Driver for JDBC and SQLJ supports multi-row INSERT,
UPDATE, and FETCH for connections to data sources that support these
operations.

Multi-row INSERT

In JDBC applications, when you execute INSERT or MERGE statements that use
parameter markers in a batch, if the data server supports multi-row INSERT, the
IBM Data Server Driver for JDBC and SQLJ can transform the batch INSERT or
MERGE operations into multi-row INSERT statements. Multi-row INSERT
operations can provide better performance in the following ways:
v For local applications, multi-row INSERTs result in fewer accesses of the data

server.
v For distributed applications, multi-row INSERTs result in fewer network

operations.

You cannot execute a multi-row INSERT operation by including a multi-row
INSERT statement in a statement string in your JDBC application.

Multi-row INSERT is used by default. You can use the Connection or DataSource
property enableMultiRowInsertSupport to control whether multi-row INSERT is
used. Multi-row INSERT cannot be used for INSERT FROM SELECT statements
that are executed in a batch.

Multi-row FETCH

Multi-row FETCH can provide better performance than retrieving one row with
each FETCH statement. For IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS, multi-row FETCH can be used for forward-only

String s;
Connection con;
Statement stmt;
ResultSet rs;
...
stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE); �1�
// Create a Statement object
// for a scrollable, updatable
// ResultSet

rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE");
// Create the ResultSet �3�

while (rs.next()) { // Position the cursor
s = rs.getString("EMPNO"); // Retrieve the employee number �4d�

// (column 1 in the result
// table)

System.out.println("Employee number = " + s);
// Print the column value

}
rs.close(); // Close the ResultSet �5�
stmt.close(); // Close the Statement �6�

Figure 5-14. Using a scrollable cursor

Chapter 5. JDBC application programming 5-27

cursors and scrollable cursors. For IBM Data Server Driver for JDBC and SQLJ type
4 connectivity, multi-row FETCH can be used only for scrollable cursors.

When you retrieve data in your applications, the IBM Data Server Driver for JDBC
and SQLJ determines whether to use multi-row FETCH, depending on several
factors:
v The settings of the enableRowsetSupport and useRowsetCursor properties
v The type of IBM Data Server Driver for JDBC and SQLJ connectivity that is

being used
v The version of the IBM Data Server Driver for JDBC and SQLJ

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for
z/OS, one of the following sets of conditions must be true for multi-row FETCH to
be used.
v First set of conditions:

– The IBM Data Server Driver for JDBC and SQLJ version is 3.51 or later.
– The enableRowsetSupport property value is

com.ibm.db2.jcc.DB2BaseDataSource.YES (1), or the enableRowsetSupport
property value is com.ibm.db2.jcc.DB2BaseDataSource.NOT_SET (0) and the
useRowsetCursor property value is com.ibm.db2.jcc.DB2BaseDataSource.YES
(1).

– The FETCH operation uses a scrollable cursor.
For forward-only cursors, fetching of multiple rows might occur through
DRDA block FETCH. However, this behavior does not utilize the data
source's multi-row FETCH capability.

v Second set of conditions:
– The IBM Data Server Driver for JDBC and SQLJ version is 3.1.
– The useRowsetCursor property value is

com.ibm.db2.jcc.DB2BaseDataSource.YES (1).
– The FETCH operation uses a scrollable cursor.

For forward-only cursors, fetching of multiple rows might occur through
DRDA block FETCH. However, this behavior does not utilize the data
source's multi-row FETCH capability.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/OS the following conditions must be true for multi-row FETCH to be used.
v The IBM Data Server Driver for JDBC and SQLJ version is 3.51 or later.
v The enableRowsetSupport property value is

com.ibm.db2.jcc.DB2BaseDataSource.YES (1).
v The FETCH operation uses a scrollable cursor or a forward-only cursor.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS, you can control the maximum size of a rowset for each statement by setting
the maxRowsetSize property.

Multi-row positioned UPDATE or DELETE

The IBM Data Server Driver for JDBC and SQLJ supports a technique for
performing positioned update or delete operations that follows the JDBC 1
standard. That technique involves using the ResultSet.getCursorName method to
obtain the name of the cursor for the ResultSet, and defining a positioned UPDATE
or positioned DELETE statement of the following form:

5-28 IBM Data Server Driver for JDBC and SQLJ for Informix

UPDATE table SET col1=value1,...coln=valueN WHERE CURRENT OF cursorname
DELETE FROM table WHERE CURRENT OF cursorname

Multi-row UPDATE or DELETE when useRowsetCursor is set to true: If you use the
JDBC 1 technique to update or delete data on a database server that supports
multi-row FETCH, and multi-row FETCH is enabled through the useRowsetCursor
property, the positioned UPDATE or DELETE statement might update or delete
multiple rows, when you expect it to update or delete a single row. To avoid
unexpected updates or deletes, you can take one of the following actions:
v Use an updatable ResultSet to retrieve and update one row at a time, as shown

in the previous example.
v Set useRowsetCursor to false.

Multi-row UPDATE or DELETE when enableRowsetSupport is set to
com.ibm.db2.jcc.DB2BaseDataSource.YES (1): The JDBC 1 technique for updating or
deleting data is incompatible with multi-row FETCH that is enabled through the
enableRowsetSupport property.

Recommendation: If your applications use the JDBC 1 technique, update them to
use the JDBC 2.0 ResultSet.updateRow or ResultSet.deleteRow methods for
positioned update or delete activity.

Inserting a row into a ResultSet in a JDBC application:

If a ResultSet has a resultSetConcurrency attribute of CONCUR_UPDATABLE, you
can insert rows into the ResultSet.

To insert a row into a ResultSet, follow these steps:
1. Perform the following steps for each row that you want to insert.

a. Call the ResultSet.moveToInsertRow method to create the row that you
want to insert. The row is created in a buffer outside the ResultSet.
If an insert buffer already exists, all old values are cleared from the buffer.

b. Call ResultSet.updateXXX methods to assign values to the row that you
want to insert.
You need to assign a value to at least one column in the ResultSet. If you do
not do so, an SQLException is thrown when the row is inserted into the
ResultSet.
If you do not assign a value to a column of the ResultSet, when the
underlying table is updated, the data source inserts the default value for the
associated table column.
If you assign a null value to a column that is defined as NOT NULL, the
JDBC driver throws and SQLException.

c. Call ResultSet.insertRow to insert the row into the ResultSet.
After you call ResultSet.insertRow, all values are always cleared from the
insert buffer, even if ResultSet.insertRow fails.

2. Reposition the cursor within the ResultSet.
To move the cursor from the insert row to the ResultSet, you can invoke any of
the methods that position the cursor at a specific row, such as ResultSet.first,
ResultSet.absolute, or ResultSet.relative. Alternatively, you can call
ResultSet.moveToCurrentRow to move the cursor to the row in the ResultSet
that was the current row before the insert operation occurred.
After you call ResultSet.moveToCurrentRow, all values are cleared from the
insert buffer.

Chapter 5. JDBC application programming 5-29

Example: The following code illustrates inserting a row into a ResultSet that
consists of all rows in the sample DEPARTMENT table. After the row is inserted,
the code places the cursor where it was located in the ResultSet before the insert
operation. The numbers to the right of selected statements correspond to the
previously-described steps.
stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);
ResultSet rs = stmt.executeQuery("SELECT * FROM DEPARTMENT");
rs.moveToInsertRow(); �1a�
rs.updateString("DEPT_NO", "M13"); �1b�
rs.updateString("DEPTNAME", "TECHNICAL SUPPORT");
rs.updateString("MGRNO", "000010");
rs.updateString("ADMRDEPT", "A00");
rs.insertRow(); �1c�
rs.moveToCurrentRow(); �2�

Testing whether the current row was inserted into a ResultSet in a JDBC
application:

If a ResultSet is dynamic, you can insert rows into it. After you insert rows into a
ResultSet you might need to know which rows were inserted.

To test whether the current row in a ResultSet was inserted, follow these steps:
1. Call the DatabaseMetaData.ownInsertsAreVisible and

DatabaseMetaData.othersInsertsAreVisible methods to determine whether
inserts can be visible to the given type of ResultSet.

2. If inserts can be visible to the ResultSet, call the
DatabaseMetaData.insertsAreDetected method to determine whether the given
type of ResultSet can detect inserts.

3. If the ResultSet can detect inserts, call the ResultSet.rowInserted method to
determine whether the current row was inserted.

Calling stored procedures in JDBC applications
To call stored procedures, you invoke methods in the CallableStatement class.

The basic steps for calling a stored procedures using standard CallableStatement
methods are:
1. Invoke the Connection.prepareCall method with the CALL statement as its

argument to create a CallableStatement object.
You can represent parameters with standard parameter markers (?) or named
parameter markers. You cannot mix named parameter markers with standard
parameter markers in the same CALL statement.

2. Invoke the CallableStatement.setXXX methods to pass values to the input
parameters (parameters that are defined as IN or INOUT in the CREATE
PROCEDURE statement).
This step assumes that you use standard parameter markers or named
parameters. Alternatively, if you use named parameter markers, you use IBM
Data Server Driver for JDBC and SQLJ-only methods to pass values to the
input parameters.

Restriction: If the data source does not support dynamic execution of the
CALL statement, you must specify the data types for CALL statement input
parameters exactly as they are specified in the stored procedure definition.

5-30 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|

|
|
|

|
|
|
|

3. Invoke the CallableStatement.registerOutParameter method to register
parameters that are defined as OUT in the CREATE PROCEDURE statement
with specific data types.
This step assumes that you use standard parameter markers. Alternatively, if
you use named parameter markers, you use IBM Data Server Driver for JDBC
and SQLJ-only methods to register OUT parameters with specific data types.

Restriction: If the data source does not support dynamic execution of the
CALL statement, you must specify the data types for CALL statement OUT, IN,
or INOUT parameters exactly as they are specified in the stored procedure
definition.

4. Invoke one of the following methods to call the stored procedure:

CallableStatement.executeUpdate
Invoke this method if the stored procedure does not return result sets.

CallableStatement.executeQuery
Invoke this method if the stored procedure returns one result set.

You can invoke CallableStatement.executeQuery for a stored procedure that
returns no result sets if you set property
allowNullResultSetForExecuteQuery to DB2BaseDataSource.YES (1). In that
case, CallableStatement.executeQuery returns null. This behavior does not
conform to the JDBC standard.

CallableStatement.execute
Invoke this method if the stored procedure returns multiple result sets, or
an unknown number of result sets.

Restriction: IBM Informix data sources do not support multiple result sets.
5. If the stored procedure returns multiple result sets, retrieve the result sets.

Restriction: IBM Informix data sources do not support multiple result sets.
6. Invoke the CallableStatement.getXXX methods to retrieve values from the OUT

parameters or INOUT parameters.
7. Invoke the CallableStatement.close method to close the CallableStatement object

when you have finished using that object.

Example: The following code illustrates calling a stored procedure that has one
input parameter, four output parameters, and no returned ResultSets. The numbers
to the right of selected statements correspond to the previously-described steps.
int ifcaret;
int ifcareas;
int xsbytes;
String errbuff;
Connection con;
CallableStatement cstmt;
ResultSet rs;
...
cstmt = con.prepareCall("CALL DSN8.DSN8ED2(?,?,?,?,?)"); �1�

// Create a CallableStatement object
cstmt.setString (1, "DISPLAY THREAD(*)"); �2�

// Set input parameter (DB2 command)
cstmt.registerOutParameter (2, Types.INTEGER); �3�

// Register output parameters
cstmt.registerOutParameter (3, Types.INTEGER);
cstmt.registerOutParameter (4, Types.INTEGER);
cstmt.registerOutParameter (5, Types.VARCHAR);
cstmt.executeUpdate(); // Call the stored procedure �4�
ifcaret = cstmt.getInt(2); // Get the output parameter values �6�

Chapter 5. JDBC application programming 5-31

|
|
|

ifcareas = cstmt.getInt(3);
xsbytes = cstmt.getInt(4);
errbuff = cstmt.getString(5);
cstmt.close(); �7�

LOBs in JDBC applications with the IBM Data Server Driver
for JDBC and SQLJ

The IBM Data Server Driver for JDBC and SQLJ supports methods for updating
and retrieving data from BLOB, CLOB, and DBCLOB columns in a table, and for
calling stored procedures or user-defined functions with BLOB or CLOB
parameters.

Progressive streaming with the IBM Data Server Driver for JDBC
and SQLJ
If the data source supports progressive streaming, also known as dynamic data
format, the IBM Data Server Driver for JDBC and SQLJ can use progressive
streaming to retrieve data in LOB or XML columns.

DB2 for z/OS Version 9.1 and later supports progressive streaming for LOBs and
XML objects. DB2 Database for Linux, UNIX, and Windows Version 9.5 and later,
IBM Informix Version 11.50 and later, and DB2 for i V6R1 and later support
progressive streaming for LOBs.

With progressive streaming, the data source dynamically determines the most
efficient mode in which to return LOB or XML data, based on the size of the LOBs
or XML objects.

Progressive streaming is the default behavior in the following environments:

MinimumIBM Data Server
Driver for JDBC and SQLJ
version

Minimum data server
version Types of objects

3.53 DB2 for i V6R1 LOB, XML

3.50 DB2 Database for Linux,
UNIX, and Windows Version
9.5

LOB

3.50 IBM Informix Version 11.50 LOB

3.2 DB2 for z/OS Version 9 LOB, XML

You set the progressive streaming behavior on new connections using the IBM
Data Server Driver for JDBC and SQLJ progressiveStreaming property.

When progressive streaming is enabled, you can control when the JDBC driver
materializes LOBs with the streamBufferSize property. If a LOB or XML object is
less than or equal to the streamBufferSize value, the object is materialized.

Important: With progressive streaming, when you retrieve a LOB or XML value
from a ResultSet into an application variable, you can manipulate the contents of
that application variable until you move the cursor or close the cursor on the
ResultSet. After that, the contents of the application variable are no longer
available to you. If you perform any actions on the LOB in the application variable,
you receive an SQLException. For example, suppose that progressive streaming is
enabled, and you execute statements like this:

5-32 IBM Data Server Driver for JDBC and SQLJ for Informix

...
ResultSet rs = stmt.executeQuery("SELECT CLOBCOL FROM MY_TABLE");
rs.next(); // Retrieve the first row of the ResultSet
Clob clobFromRow1 = rs.getClob(1);

// Put the CLOB from the first column of
// the first row in an application variable

String substr1Clob = clobFromRow1.getSubString(1,50);
// Retrieve the first 50 bytes of the CLOB

rs.next(); // Move the cursor to the next row.
// clobFromRow1 is no longer available.

// String substr2Clob = clobFromRow1.getSubString(51,100);
// This statement would yield an SQLException

Clob clobFromRow2 = rs.getClob(1);
// Put the CLOB from the first column of
// the second row in an application variable

rs.close(); // Close the ResultSet.
// clobFromRow2 is also no longer available.

After you execute rs.next() to position the cursor at the second row of the
ResultSet, the CLOB value in clobFromRow1 is no longer available to you.
Similarly, after you execute rs.close() to close the ResultSet, the values in
clobFromRow1 and clobFromRow2 are no longer available.

If you disable progressive streaming, the way in which the IBM Data Server Driver
for JDBC and SQLJ handles LOBs depends on the value of the
fullyMaterializeLobData property.

Use of progressive streaming is the preferred method of LOB or XML data
retrieval.

LOB locators with the IBM Data Server Driver for JDBC and
SQLJ
The IBM Data Server Driver for JDBC and SQLJ can use LOB locators to retrieve
data in LOB columns.

To cause JDBC to use LOB locators to retrieve data from LOB columns, you need
to set the fullyMaterializeLobData property to false and set the
progressiveStreaming property to NO (DB2BaseDataSource.NO in an application
program).

The effect of fullyMaterializeLobData depends on whether the data source
supports progressive streaming and the value of the progressiveStreaming
property:
v If the data source does not support progressive locators:

If the value of fullyMaterializeLobData is true, LOB data is fully materialized
within the JDBC driver when a row is fetched. If the value is false, LOB data is
streamed. The driver uses locators internally to retrieve LOB data in chunks on
an as-needed basis It is highly recommended that you set this value to false
when you retrieve LOBs that contain large amounts of data. The default is true.

v If the data source supports progressive streaming, also known as dynamic data
format:
The JDBC driver ignores the value of fullyMaterializeLobData if the
progressiveStreaming property is set to YES (DB2BaseDataSource.YES in an
application program) or is not set.

fullyMaterializeLobData has no effect on stored procedure parameters.

Chapter 5. JDBC application programming 5-33

As in any other language, a LOB locator in a Java application is associated with
only one data source. You cannot use a single LOB locator to move data between
two different data sources. To move LOB data between two data sources, you need
to materialize the LOB data when you retrieve it from a table in the first data
source and then insert that data into the table in the second data source.

LOB operations with the IBM Data Server Driver for JDBC and
SQLJ
The IBM Data Server Driver for JDBC and SQLJ supports methods for updating
and retrieving data from BLOB, CLOB, and DBCLOB columns in a table, and for
calling stored procedures or user-defined functions with BLOB or CLOB
parameters.

Among the operations that you can perform on LOB data under the IBM Data
Server Driver for JDBC and SQLJ are:
v Specify a BLOB or column as an argument of the following ResultSet methods to

retrieve data from a BLOB or CLOB column:
For BLOB columns:
– getBinaryStream
– getBlob
– getBytes
For CLOB columns:
– getAsciiStream
– getCharacterStream
– getClob
– getString

v Call the following ResultSet methods to update a BLOB or CLOB column in an
updatable ResultSet:
For BLOB columns:
– updateBinaryStream
– updateBlob
For CLOB columns:
– updateAsciiStream
– updateCharacterStream
– updateClob
If you specify -1 for the length parameter in any of the previously listed
methods, the IBM Data Server Driver for JDBC and SQLJ reads the input data
until it is exhausted.

v Use the following PreparedStatement methods to set the values for parameters
that correspond to BLOB or CLOB columns:
For BLOB columns:
– setBytes
– setBlob
– setBinaryStream
– setObject, where the Object parameter value is an InputStream.
For CLOB columns:
– setString
– setAsciiStream
– setClob
– setCharacterStream
– setObject, where the Object parameter value is a Reader.
If you specify -1 for length, the IBM Data Server Driver for JDBC and SQLJ reads
the input data until it is exhausted.

5-34 IBM Data Server Driver for JDBC and SQLJ for Informix

v Retrieve the value of a JDBC CLOB parameter using the
CallableStatement.getString method.

Restriction: With IBM Data Server Driver for JDBC and SQLJ type 2 connectivity,
you cannot call a stored procedure that has DBCLOB OUT or INOUT parameters.

If you are using the IBM Data Server Driver for JDBC and SQLJ version 4.0 or
later, you can perform the following additional operations:
v Use ResultSet.updateXXX or PreparedStatement.setXXX methods to update a

BLOB or CLOB with a length value of up to 2GB for a BLOB or CLOB. For
example, these methods are defined for BLOBs:
ResultSet.updateBlob(int columnIndex, InputStream x, long length)
ResultSet.updateBlob(String columnLabel, InputStream x, long length)
ResultSet.updateBinaryStream(int columnIndex, InputStream x, long length)
ResultSet.updateBinaryStream(String columnLabel, InputStream x, long length)
PreparedStatement.setBlob(int columnIndex, InputStream x, long length)
PreparedStatement.setBlob(String columnLabel, InputStream x, long length)
PreparedStatement.setBinaryStream(int columnIndex, InputStream x, long length)
PreparedStatement.setBinaryStream(String columnLabel, InputStream x, long length)

v Use ResultSet.updateXXX or PreparedStatement.setXXX methods without the
length parameter when you update a BLOB or CLOB, to cause the IBM Data
Server Driver for JDBC and SQLJ to read the input data until it is exhausted. For
example:
ResultSet.updateBlob(int columnIndex, InputStream x)
ResultSet.updateBlob(String columnLabel, InputStream x)
ResultSet.updateBinaryStream(int columnIndex, InputStream x)
ResultSet.updateBinaryStream(String columnLabel, InputStream x)
PreparedStatement.setBlob(int columnIndex, InputStream x)
PreparedStatement.setBlob(String columnLabel, InputStream x)
PreparedStatement.setBinaryStream(int columnIndex, InputStream x)
PreparedStatement.setBinaryStream(String columnLabel, InputStream x)

v Create a Blob or Clob object that contains no data, using the
Connection.createBlob or Connection.createClob method.

v Materialize a Blob or Clob object on the client, when progressive streaming or
locators are in use, using the Blob.getBinaryStream or Clob.getCharacterStream
method.

v Free the resources that a Blob or Clob object holds, using the Blob.free or
Clob.free method.

Java data types for retrieving or updating LOB column data in
JDBC applications
When the JDBC driver cannot immediately determine the data type of a parameter
that is used with a LOB column, you need to choose a parameter data type that is
compatible with the LOB data type.

When the deferPrepares property is set to true, and the IBM Data Server Driver for
JDBC and SQLJ processes a PreparedStatement.setXXX call, the driver might need
to do extra processing to determine data types. This extra processing can impact
performance.

Input parameters for BLOB columns

For IN parameters for BLOB columns, or INOUT parameters that are used for
input to BLOB columns, you can use one of the following techniques:
v Use a java.sql.Blob input variable, which is an exact match for a BLOB column:

cstmt.setBlob(parmIndex, blobData);

Chapter 5. JDBC application programming 5-35

v Use a CallableStatement.setObject call that specifies that the target data type is
BLOB:
byte[] byteData = {(byte)0x1a, (byte)0x2b, (byte)0x3c};
cstmt.setObject(parmInd, byteData, java.sql.Types.BLOB);

v Use an input parameter of type of java.io.ByteArrayInputStream with a
CallableStatement.setBinaryStream call. A java.io.ByteArrayInputStream object is
compatible with a BLOB data type. For this call, you need to specify the exact
length of the input data:
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(byteData);
int numBytes = byteData.length;
cstmt.setBinaryStream(parmIndex, byteStream, numBytes);

Output parameters for BLOB columns

For OUT parameters for BLOB columns, or INOUT parameters that are used for
output from BLOB columns, you can use the following technique:
v Use the CallableStatement.registerOutParameter call to specify that an output

parameter is of type BLOB. Then you can retrieve the parameter value into any
variable that has a data type that is compatible with a BLOB data type. For
example, the following code lets you retrieve a BLOB value into a byte[]
variable:
cstmt.registerOutParameter(parmIndex, java.sql.Types.BLOB);
cstmt.execute();
byte[] byteData = cstmt.getBytes(parmIndex);

Input parameters for CLOB columns

For IN parameters for CLOB columns, or INOUT parameters that are used for
input to CLOB columns, you can use one of the following techniques:
v Use a java.sql.Clob input variable, which is an exact match for a CLOB column:

cstmt.setClob(parmIndex, clobData);

v Use a CallableStatement.setObject call that specifies that the target data type is
CLOB:
String charData = "CharacterString";
cstmt.setObject(parmInd, charData, java.sql.Types.CLOB);

v Use one of the following types of stream input parameters:
– A java.io.StringReader input parameter with a cstmt.setCharacterStream call:

java.io.StringReader reader = new java.io.StringReader(charData);
cstmt.setCharacterStream(parmIndex, reader, charData.length);

– A java.io.ByteArrayInputStream parameter with a cstmt.setAsciiStream call,
for ASCII data:
byte[] charDataBytes = charData.getBytes("US-ASCII");
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream (charDataBytes);
cstmt.setAsciiStream(parmIndex, byteStream, charDataBytes.length);

For these calls, you need to specify the exact length of the input data.
v Use a String input parameter with a cstmt.setString call:

cstmt.setString(parmIndex, charData);

If the length of the data is greater than 32KB, and the JDBC driver has no
DESCRIBE information about the parameter data type, the JDBC driver assigns
the CLOB data type to the input data.

5-36 IBM Data Server Driver for JDBC and SQLJ for Informix

v Use a String input parameter with a cstmt.setObject call, and specify the target
data type as VARCHAR or LONGVARCHAR:
cstmt.setObject(parmIndex, charData, java.sql.Types.VARCHAR);

If the length of the data is greater than 32KB, and the JDBC driver has no
DESCRIBE information about the parameter data type, the JDBC driver assigns
the CLOB data type to the input data.

Output parameters for CLOB columns

For OUT parameters for CLOB columns, or INOUT parameters that are used for
output from CLOB columns, you can use one of the following techniques:
v Use the CallableStatement.registerOutParameter call to specify that an output

parameter is of type CLOB. Then you can retrieve the parameter value into a
Clob variable. For example:
cstmt.registerOutParameter(parmIndex, java.sql.Types.CLOB);
cstmt.execute();
Clob clobData = cstmt.getClob(parmIndex);

v Use the CallableStatement.registerOutParameter call to specify that an output
parameter is of type VARCHAR or LONGVARCHAR:
cstmt.registerOutParameter(parmIndex, java.sql.Types.VARCHAR);
cstmt.execute();
String charData = cstmt.getString(parmIndex);

This technique should be used only if you know that the length of the retrieved
data is less than or equal to 32KB. Otherwise, the data is truncated.

ROWIDs in JDBC with the IBM Data Server Driver for JDBC
and SQLJ

DB2 for z/OS and DB2 for i support the ROWID data type for a column in a
database table. A ROWID is a value that uniquely identifies a row in a table.

Although IBM Informix also supports rowids, those rowids have the INTEGER
data type. You can select an IBM Informix rowid column into a variable with a
four-byte integer data type.

You can use the following ResultSet methods to retrieve data from a ROWID
column:
v getRowId (JDBC 4.0 and later)
v getBytes
v getObject

You can use the following ResultSet method to update a ROWID column of an
updatable ResultSet:
v updateRowId (JDBC 4.0 and later)

updateRowId is valid only if the target database system supports updating of
ROWID columns.

If you are using JDBC 3.0, for getObject, the IBM Data Server Driver for JDBC and
SQLJ returns an instance of the IBM Data Server Driver for JDBC and SQLJ-only
class com.ibm.db2.jcc.DB2RowID.

If you are using JDBC 4.0, for getObject, the IBM Data Server Driver for JDBC and
SQLJ returns an instance of the class java.sql.RowId.

Chapter 5. JDBC application programming 5-37

You can use the following PreparedStatement methods to set a value for a
parameter that is associated with a ROWID column:
v setRowId (JDBC 4.0 and later)
v setBytes
v setObject

If you are using JDBC 3.0, for setObject, use the IBM Data Server Driver for JDBC
and SQLJ-only type com.ibm.db2.jcc.Types.ROWID or an instance of the
com.ibm.db2.jcc.DB2RowID class as the target type for the parameter.

If you are using JDBC 4.0, for setObject, use the type java.sql.Types.ROWID or an
instance of the java.sql.RowId class as the target type for the parameter.

You can use the following CallableStatement methods to retrieve a ROWID column
as an output parameter from a stored procedure call:
v getRowId (JDBC 4.0 and later)
v getObject

To call a stored procedure that is defined with a ROWID output parameter, register
that parameter to be of the java.sql.Types.ROWID type.

ROWID values are valid for different periods of time, depending on the data
source on which those ROWID values are defined. Use the
DatabaseMetaData.getRowIdLifetime method to determine the time period for
which a ROWID value is valid. The values that are returned for the data sources
are listed in the following table.

Table 5-6. DatabaseMetaData.getRowIdLifetime values for supported data sources

Database server DatabaseMetaData.getRowIdLifetime

DB2 for z/OS ROWID_VALID_TRANSACTION

DB2 Database for Linux, UNIX, and Windows ROWID_UNSUPPORTED

DB2 for i ROWID_VALID_FOREVER

IBM Informix ROWID_VALID_FOREVER

Example: Using PreparedStatement.setRowId with a java.sql.RowId target type: Suppose
that rwid is a RowId object. To set parameter 1, use this form of the setRowId
method:
ps.setRowId(1, rid);

Example: Using ResultSet.getRowId to retrieve a ROWID value from a data source: To
retrieve a ROWID value from the first column of a result set into RowId object
rwid, use this form of the ResultSet.getRowId method:
java.sql.RowId rwid = rs.getRowId(1);

Example: Using CallableStatement.registerOutParameter with a java.sql.Types.ROWID
parameter type: To register parameter 1 of a CALL statement as a
java.sql.Types.ROWID data type, use this form of the registerOutParameter
method:
cs.registerOutParameter(1, java.sql.Types.ROWID)

5-38 IBM Data Server Driver for JDBC and SQLJ for Informix

Savepoints in JDBC applications
An SQL savepoint represents the state of data and schemas at a particular point in
time within a unit of work. You can use SQL statements to set a savepoint, release
a savepoint, and restore data and schemas to the state that the savepoint
represents.

The IBM Data Server Driver for JDBC and SQLJ supports the following methods
for using savepoints:

Connection.setSavepoint() or Connection.setSavepoint(String name)
Sets a savepoint. These methods return a Savepoint object that is used in later
releaseSavepoint or rollback operations.

When you execute either of these methods, IDS executes the form of the
SAVEPOINT statement that includes ON ROLLBACK RETAIN CURSORS.

Connection.releaseSavepoint(Savepoint savepoint)
Releases the specified savepoint, and all subsequently established savepoints.

Connection.rollback(Savepoint savepoint)
Rolls back work to the specified savepoint.

DatabaseMetaData.supportsSavepoints()
Indicates whether a data source supports savepoints.

You can indicate whether savepoints are unique by calling the method
DB2Connection.setSavePointUniqueOption. If you call this method with a value of
true, the application cannot set more than one savepoint with the same name
within the same unit of recovery. If you call this method with a value of false (the
default), multiple savepoints with the same name can be created within the same
unit of recovery, but creation of a savepoint destroys a previously created
savepoint with the same name.

The following example demonstrates how to set a savepoint, roll back to the
savepoint, and release the savepoint.

Chapter 5. JDBC application programming 5-39

|
|
|
|
|
|
|

Retrieval of automatically generated keys in JDBC
applications

With the IBM Data Server Driver for JDBC and SQLJ, you can retrieve
automatically generated keys (also called auto-generated keys) from a table using
JDBC 3.0 methods. Alternatively, you can use IBM Data Server Driver for JDBC
and SQLJ-only methods to retrieve the automatically generated keys.

An automatically generated key is any value that is generated by the data server,
instead of being specified by the user. One type of automatically generated key is
the contents of a SERIAL, SERIAL8, or BIGSERIAL column. A table column of one
of those types provides a way for the data source to automatically generate a
numeric value for each row. A table cannot have more than one column of each
type, but it can have a one column of each type.

For connections to IBM Informix, the IBM Data Server Driver for JDBC and SQLJ
supports the return of automatically generated keys for INSERT statements.

Restriction: If the Connection or DataSource property atomicMultiRowInsert is set
to DB2BaseDataSource.YES (1), you cannot prepare an SQL statement for retrieval of
automatically generated keys and use the PreparedStatement object for batch
updates. The IBM Data Server Driver for JDBC and SQLJ version 3.50 or later
throws an SQLException when you call the addBatch or executeBatch method on a
PreparedStatement object that is prepared to return automatically generated keys.

Retrieving auto-generated keys for an INSERT statement
With the IBM Data Server Driver for JDBC and SQLJ, you can use JDBC 3.0
methods to retrieve the keys that are automatically generated when you execute an
INSERT statement.

Connection con;
Statement stmt;
ResultSet rs;
String empNumVar;
int shoeSizeVar;
...
con.setAutoCommit(false); // set autocommit OFF
stmt = con.createStatement(); // Create a Statement object
... // Perform some SQL
con.commit(); // Commit the transaction
stmt.executeUpdate("INSERT INTO EMP_SHOE " +

"VALUES (’000010’, 6)"); // Insert a row
((com.ibm.db2.jcc.DB2Connection)con).setSavePointUniqueOption(true);

// Indicate that savepoints
// are unique within a unit
// of recovery

Savepoint savept = con.setSavepoint("savepoint1");
// Create a savepoint

...
stmt.executeUpdate("INSERT INTO EMP_SHOE " +

"VALUES (’000020’, 10)"); // Insert another row
conn.rollback(savept); // Roll back work to the point

// after the first insert
...
con.releaseSavepoint(savept); // Release the savepoint
stmt.close(); // Close the Statement
conn.commit(); // Commit the transaction

Figure 5-15. Setting, rolling back to, and releasing a savepoint in a JDBC application

5-40 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

To retrieve automatically generated keys that are generated by an INSERT
statement, you need to perform these steps.
1. Use one of the following methods to indicate that you want to return

automatically generated keys:
v If you plan to use the PreparedStatement.executeUpdate method to insert

rows, invoke one of these forms of the Connection.prepareStatement method
to create a PreparedStatement object:
Connection.prepareStatement(sql-statement,

Statement.RETURN_GENERATED_KEYS);
Connection.prepareStatement(sql-statement, String [] columnNames);
Connection.prepareStatement(sql-statement, int [] columnIndexes);

With the first form, you specify whether all automatically generated keys
should be returned. With the second form, you specify the names of the
columns for which you want automatically generated keys. With the third
form, you specify the positions in the table of the columns for which you
want automatically generated keys.

v If you use the Statement.executeUpdate method to insert rows, invoke one of
these forms of the Statement.executeUpdate method:
Statement.executeUpdate(sql-statement,

Statement.RETURN_GENERATED_KEYS);
Statement.executeUpdate(sql-statement, String [] columnNames);
Statement.executeUpdate(sql-statement, int [] columnIndexes);

With the first form, you specify whether all automatically generated keys
should be returned. With the second form, you specify the names of the
columns for which you want automatically generated keys. With the third
form, you specify the positions in the table of the columns for which you
want automatically generated keys.

2. Invoke the PreparedStatement.getGeneratedKeys method or the
Statement.getGeneratedKeys method to retrieve a ResultSet object that contains
the automatically generated key values.
If the column data type is SERIAL, the automatically generated keys in the
ResultSet have a data type of INT. Use ResultSet.getInt to retrieve the values. If
the column data type is SERIAL8, the automatically generated keys in the
ResultSet have a data type of BIGINT. Use ResultSet.getLong to retrieve the
values.

The following code creates a table with a SERIAL column, inserts a row into the
table, and retrieves the automatically generated key value for the SERIAL column.
The numbers to the right of selected statements correspond to the previously
described steps.
import java.sql.*;
import java.math.*;
import com.ibm.db2.jcc.*;

Connection con;
Statement stmt;
ResultSet rs;
java.math.BigDecimal serColVar;
...
stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(
"CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +

"SERIALCOL SERIAL)");
// Create table with identity column

stmt.executeUpdate("INSERT INTO EMP_PHONE (EMPNO, PHONENO) " + �1�
"VALUES (’000010’, ’5555’)", // Insert a row
Statement.RETURN_GENERATED_KEYS); // Indicate you want automatically

Chapter 5. JDBC application programming 5-41

// generated keys
rs = stmt.getGeneratedKeys(); // Retrieve the automatically �2�

// generated key value in a ResultSet.
// Create ResultSet for query

while (rs.next()) {
java.math.BigDecimal serColVar = rs.getBigDecimal(1);

// Get automatically generated key
// value

System.out.println("Automatically generated key value = " + serColVar);
}
rs.close(); // Close ResultSet
stmt.close(); // Close Statement

Retrieving automatically generated keys using IBM Data Server
Driver for JDBC and SQLJ-only methods
The IBM Data Server Driver for JDBC and SQLJ provides a set of methods that
you can use to retrieve automatically generated keys (auto-generated keys) from
IBM Informix databases. Use of these methods is an alternative to using JDBC 3.0
methods.

Follow these steps to use IBM Data Server Driver for JDBC and SQLJ-only
methods to retrieve automatically generated keys from IBM Informix data sources.
1. Execute an INSERT statement on a table that contains SERIAL, SERIAL8, or

BIGSERIAL columns.
2. Execute the DB2Statement.getIDSSerial or DB2Statement.getIDSSerial8 method

to retrieve the automatically generated keys for the inserted row.
The returned value for DB2Statement.getIDSSerial has the int data type. The
returned value for DB2Statement.getIDSSerial8 has the long data type.

The following code creates a table with a SERIAL column, inserts a row into the
table, and retrieves the automatically generated key value for the identity column.
The numbers to the right of selected statements correspond to the previously
described steps.

import java.sql.*;
import java.math.*;
import com.ibm.db2.jcc.*;

Connection con;
Statement stmt;
ResultSet rs;
...
stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(
"CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +

"SERIALCOL SERIAL)");
// Create table with identity column

stmt.executeUpdate("INSERT INTO EMP_PHONE (EMPNO, PHONENO) " + �1�
"VALUES (’000010’, ’5555’)"); // Insert a row

int serColVar = ((com.ibm.db2.jcc.DB2Statement)stmt).getIDSSerial(); �2�
// Retrieve the automatically
// generated key value

System.out.println("Automatically generated key value = " + serColVar);
rs.close(); // Close ResultSet
stmt.close(); // Close Statement

Figure 5-16. Example of retrieving automatically generated keys from an IBM Informix table
using IBM Data Server Driver for JDBC and SQLJ-only methods

5-42 IBM Data Server Driver for JDBC and SQLJ for Informix

Retrieving automatically generated keys using IBM Data Server
Driver for JDBC and SQLJ-only methods
The IBM Data Server Driver for JDBC and SQLJ provides a set of methods that
you can use to retrieve automatically generated keys (auto-generated keys) from
IBM Informix databases. Use of these methods is an alternative to using JDBC 3.0
methods.

Follow these steps to use IBM Data Server Driver for JDBC and SQLJ-only
methods to retrieve automatically generated keys from IBM Informix data sources.
1. Execute an INSERT statement on a table that contains SERIAL, SERIAL8, or

BIGSERIAL columns.
2. Execute the DB2Statement.getIDSSerial or DB2Statement.getIDSSerial8 method

to retrieve the automatically generated keys for the inserted row.
The returned value for DB2Statement.getIDSSerial has the int data type. The
returned value for DB2Statement.getIDSSerial8 has the long data type.

The following code creates a table with a SERIAL column, inserts a row into the
table, and retrieves the automatically generated key value for the identity column.
The numbers to the right of selected statements correspond to the previously
described steps.

import java.sql.*;
import java.math.*;
import com.ibm.db2.jcc.*;

Connection con;
Statement stmt;
ResultSet rs;
...
stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(
"CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +

"SERIALCOL SERIAL)");
// Create table with identity column

stmt.executeUpdate("INSERT INTO EMP_PHONE (EMPNO, PHONENO) " + �1�
"VALUES (’000010’, ’5555’)"); // Insert a row

int serColVar = ((com.ibm.db2.jcc.DB2Statement)stmt).getIDSSerial(); �2�
// Retrieve the automatically
// generated key value

System.out.println("Automatically generated key value = " + serColVar);
rs.close(); // Close ResultSet
stmt.close(); // Close Statement

Using named parameter markers in JDBC applications
You can use named parameter markers instead of standard parameter markers in
PreparedStatement and CallableStatement objects to assign values to the input
parameter markers. You can also use named parameter markers instead of
standard parameter markers in CallableStatement objects to register OUT
parameters that have named parameter markers.

SQL strings that contain the following SQL elements can include named parameter
markers:
v CALL
v DELETE

Figure 5-17. Example of retrieving automatically generated keys from an IBM Informix table
using IBM Data Server Driver for JDBC and SQLJ-only methods

Chapter 5. JDBC application programming 5-43

|

|
|
|
|
|

|
|
|
|

v INSERT
v MERGE
v PL/SQL block
v SELECT
v SET
v UPDATE

Named parameter markers make your JDBC applications more readable. If you
have named parameter markers in an application, set the IBM Data Server Driver
for JDBC and SQLJ Connection or DataSource property
enableNamedParameterMarkers to DB2BaseDataSource.YES (1) to direct the driver
to accept named parameter markers and send them to the data source as standard
parameter markers.

Using named parameter markers with PreparedStatement objects
You can use named parameter markers instead of standard parameter markers in
PreparedStatement objects to assign values to the parameter markers.

To ensure that applications with named parameters work correctly, regardless of
the data server type and version, before you use named parameter markers in your
applications, set the Connection or DataSource property
enableNamedParameterMarkers to DB2BaseDataSource.YES.

To use named parameter markers with PreparedStatement objects, follow these
steps.
1. Execute the Connection.prepareStatement method on an SQL statement string

that contains named parameter markers. The named parameter markers must
follow the rules for SQL host variable names.
You cannot mix named parameter markers and standard parameter markers in
the same SQL statement string.
Named parameter markers are case-insensitive.

2. For each named parameter marker, use a
DB2PreparedStatement.setJccXXXAtName method to assign a value to each
named input parameter.
If you use the same named parameter marker more than once in the same SQL
statement string, you need to call a setJccXXXAtName method for that
parameter marker only once.

Recommendation: Do not use the same named parameter marker more than
once in the same SQL statement string if the input to that parameter marker is
a stream. Doing so can cause unexpected results.

Restriction: You cannot use standard JDBC PreparedStatement.setXXX methods
with named parameter markers. Doing so causes an exception to be thrown.

3. Execute the PreparedStatement.

The following code uses named parameter markers to update the phone number to
'4657' for the employee with employee number '000010'. The numbers to the right
of selected statements correspond to the previously described steps.
Connection con;
PreparedStatement pstmt;
int numUpd;
...
pstmt = con.prepareStatement(

"UPDATE EMPLOYEE SET PHONENO=:phonenum WHERE EMPNO=:empnum");

5-44 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|

|

|
|
|

|
|
|

|
|
|

|
|

|

|
|
|

|
|
|
|
|
|

// Create a PreparedStatement object �1�
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName

("phonenum", "4567");
// Assign a value to phonenum parameter �2�

((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName
("empnum", "000010");

// Assign a value to empnum parameter
numUpd = pstmt.executeUpdate(); // Perform the update �3�
pstmt.close(); // Close the PreparedStatement object

The following code uses named parameter markers to update values in a PL/SQL
block. The numbers to the right of selected statements correspond to the previously
described steps.
Connection con;
PreparedStatement pstmt;
int numUpd;
...
String sql =

"BEGIN " +
" UPDATE EMPLOYEE SET PHONENO = :phonenum WHERE EMPNO = :empnum; " +
"END;";

pstmt = con.prepareStatement(sql); // Create a PreparedStatement object �1�
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName

("phonenum", "4567");
// Assign a value to phonenum parameter �2�

((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName
("empnum", "000010");

// Assign a value to empnum parameter
numUpd = pstmt.executeUpdate(); // Perform the update �3�
pstmt.close(); // Close the PreparedStatement object

Using named parameter markers with CallableStatement objects
You can use named parameter markers instead of standard parameter markers in
CallableStatement objects to assign values to IN or INOUT parameters and to
register OUT parameters.

To ensure that applications with named parameters work correctly, regardless of
the data server type and version, before you use named parameter markers in your
applications, set the Connection or DataSource property
enableNamedParameterMarkers to DB2BaseDataSource.YES.

To use named parameter markers with CallableStatement objects, follow these
steps.
1. Execute the Connection.prepareCall method on an SQL statement string that

contains named parameter markers.
The named parameter markers must follow the rules for SQL host variable
names.
You cannot mix named parameter markers and standard parameter markers in
the same SQL statement string.
Named parameter markers are case-insensitive.

2. If you do not know the names of the named parameter markers in the CALL
statement, or the mode of the parameters (IN, OUT, or INOUT):
a. Call the CallableStatement.getParameterMetaData method to obtain a

ParameterMetaData object with information about the parameters.
b. Call the ParameterMetaData.getParameterMode method to retrieve the

parameter mode.
c. Cast the ParameterMetaData object to a DB2ParameterMetaData object.

Chapter 5. JDBC application programming 5-45

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|

|

d. Call the DB2ParameterMetaData.getParameterMarkerNames method to
retrieve the parameter names.

3. For each named parameter marker that represents an OUT parameter, use a
DB2CallableStatement.registerJccOutParameterAtName method to register the
OUT parameter with a data type.
If you use the same named parameter marker more than once in the same SQL
statement string, you need to call a registerJccOutParameterAtName method for
that parameter marker only once. All parameters with the same name are
registered as the same data type.

Restriction: You cannot use standard JDBC
CallableStatement.registerOutParameter methods with named parameter
markers. Doing so causes an exception to be thrown.

4. For each named parameter marker for an input parameter, use a
DB2CallableStatement.setJccXXXAtName method to assign a value to each
named input parameter.
setJccXXXAtName methods are inherited from DB2PreparedStatement.
If you use the same named parameter marker more than once in the same SQL
statement string, you need to call a setJccXXXAtName method for that
parameter marker only once.

Recommendation: Do not use the same named parameter marker more than
once in the same SQL statement string if the input to that parameter marker is
a stream. Doing so can cause unexpected results.

5. Execute the CallableStatement.
6. Call CallableStatement.getXXX methods or

DB2CallableStatement.getJccXXXAtName methods to retrieve output parameter
values.

The following code illustrates calling a stored procedure that has one input
VARCHAR parameter and one output INTEGER parameter, which are represented
by named parameter markers. The numbers to the right of selected statements
correspond to the previously described steps.
...
CallableStatement cstmt =

con.prepareCall("CALL MYSP(:inparm,:outparm)");
// Create a CallableStatement object �1�

((com.ibm.db2.jcc.DB2CallableStatement)cstmt).
registerJccOutParameterAtName("outparm", java.sql.Types.INTEGER);

// Register OUT parameter data type �3�
((com.ibm.db2.jcc.DB2CallableStatement)cstmt).setJccStringAtName("inparm", "4567");

// Assign a value to inparm parameter �4�

cstmt.executeUpdate(); // Call the stored procedure �5�
int outssid = cstmt.getInt(2); // Get the output parameter value �6�
cstmt.close();

Providing extended client information to the data source with
client info properties

The IBM Data Server Driver for JDBC and SQLJ version 4.0 supports JDBC 4.0
client info properties, which you can use to provide extra information about the
client to the server. This information can be used for accounting, workload
management, or debugging.

5-46 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|
|

|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

Extended client information is sent to the database server when the application
performs an action that accesses the server, such as executing SQL.

The application can also use the Connection.getClientInfo method to retrieve client
information from the database server, or execute the
DatabaseMetaData.getClientInfoProperties method to determine which client
information the driver supports.

The JDBC 4.0 client info properties should be used instead IBM Data Server Driver
for JDBC and SQLJ-only methods, which are deprecated.

To set client info properties, follow these steps:
1. Create a Connection.
2. Call the java.sql.Connection.setClientInfo method to set any of the client info

properties that the database server supports.
3. Execute an SQL statement to cause the information to be sent to the database

server.

The following code performs the previous steps to pass a client's user name and
host name to theIDS server. The numbers to the right of selected statements
correspond to the previously-described steps.

Client info properties support by the IBM Data Server Driver for
JDBC and SQLJ
JDBC 4.0 includes client info properties, which contain information about a
connection to a data source. The DatabaseMetaData.getClientInfoProperties method
returns a list of client info properties that the IBM Data Server Driver for JDBC
and SQLJ supports.

When you call DatabaseMetaData.getClientInfoProperties, a result set is returned
that contains the following columns:
v NAME
v MAX_LEN
v DEFAULT_VALUE
v DESCRIPTION

public class ClientInfoTest {
public static void main(String[] args) {
String url = "jdbc:ids://sysmvs1.stl.ibm.com:5021/san_jose";
try {

Class.forName("com.ibm.db2.jcc.DB2Driver");
String user = "db2adm";
String password = "db2adm";
Connection conn = DriverManager.getConnection(url, �1�

user, password);
conn.setClientInfo("ClientUser", "Michael L Thompson"); �2�
conn.setClientInfo("ClientHostname, "sjwkstn1");
// Execute SQL to force extended client information to be sent
// to the server
conn.prepareStatement("SELECT * FROM SYSIBM.SYSDUMMY1"

+ "WHERE 0 = 1").executeQuery(); �3�
} catch (Throwable e) {

e.printStackTrace();
}

}
}

Figure 5-18. Example of passing extended client information to aIDS server

Chapter 5. JDBC application programming 5-47

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQLJ returns for DB2 Database for Linux, UNIX, and
Windows and for DB2 for i.

Table 5-7. Client info property values for DB2 Database for Linux, UNIX, and Windows and for DB2 for i

NAME
MAX_LEN
(bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 255 Empty string The name of the application
that is currently using the
connection. This value is stored
in DB2 special register
CURRENT
CLIENT_APPLNAME.

ClientAccountingInformation 255 Empty string The value of the accounting
string from the client
information that is specified for
the connection. This value is
stored in DB2 special register
CURRENT CLIENT_ACCTNG.

ClientHostname 255 The value that is set by
DB2Connection.setDB2ClientWorkstation. If
the value is not set, the default is the host
name of the local host.

The host name of the computer
on which the application that is
using the connection is running.
This value is stored in DB2
special register CURRENT
CLIENT_WRKSTNNAME.

ClientUser 255 Empty string The name of the user on whose
behalf the application that is
using the connection is running.
This value is stored in DB2
special register CURRENT
CLIENT_USERID.

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQLJ returns for DB2 for z/OS when the connection uses
type 4 connectivity.

Table 5-8. Client info property values for type 4 connectivity to DB2 for z/OS

NAME
MAX_LEN
(bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 32 clientProgramName property value, if set.
"db2jcc_application" otherwise.

The name of the application that is
currently using the connection. This
value is stored in DB2 special
register CURRENT
CLIENT_APPLNAME.

ClientAccountingInformation 200 A string that is the concatenation of the
following values:
v "JCCnnnnn", where nnnnn is the driver

level, such as 04000.
v The value that is set by

DB2Connection.setDB2ClientWorkstation.
If the value is not set, the default is the
host name of the local host.

v applicationName property value, if set. 20
blanks otherwise.

v clientUser property value, if set. Eight
blanks otherwise.

The value of the accounting string
from the client information that is
specified for the connection. This
value is stored in DB2 special
register CURRENT
CLIENT_ACCTNG.

ClientHostname 18 The value that is set by
DB2Connection.setDB2ClientWorkstation. If
the value is not set, the default is the host
name of the local host.

The host name of the computer on
which the application that is using
the connection is running. This
value is stored in DB2 special
register CURRENT
CLIENT_WRKSTNNAME.

5-48 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 5-8. Client info property values for type 4 connectivity to DB2 for z/OS (continued)

NAME
MAX_LEN
(bytes) DEFAULT_VALUE DESCRIPTION

ClientUser 16 The value that is set by
DB2Connection.setDB2ClientUser. If the
value is not set, the default is the current
user ID that is used to connect to the
database.

The name of the user on whose
behalf the application that is using
the connection is running. This
value is stored in DB2 special
register CURRENT
CLIENT_USERID.

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQLJ returns for DB2 for z/OS when the connection uses
type 2 connectivity.

Table 5-9. Client info property values for type 2 connectivity to DB2 for z/OS

NAME
MAX_LEN
(bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 32 Empty string The name of the application that is currently
using the connection. This value is stored in
DB2 special register CURRENT
CLIENT_APPLNAME.

ClientAccountingInformation 200 Empty string The value of the accounting string from the
client information that is specified for the
connection. This value is stored in DB2
special register CURRENT
CLIENT_ACCTNG.

ClientHostname 18 Empty string The host name of the computer on which
the application that is using the connection
is running. This value is stored in DB2
special register CURRENT
CLIENT_WRKSTNNAME.

ClientUser 16 Empty string The name of the user on whose behalf the
application that is using the connection is
running. This value is stored in DB2 special
register CURRENT CLIENT_USERID.

The following table lists the client info property values that the IBM Data Server
Driver for JDBC and SQLJ returns for IBM Informix

Table 5-10. Client info property values for IBM Informix

NAME
MAX_LEN
(bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 20 Empty string The name of the application
that is currently using the
connection.

ClientAccountingInformation 199 Empty string The value of the accounting
string from the client
information that is specified for
the connection.

ClientHostname 20 The value that is set by
DB2Connection.setDB2ClientWorkstation. If
the value is not set, the default is the host
name of the local host.

The host name of the computer
on which the application that is
using the connection is
running.

ClientUser 1024 Empty string The name of the user on whose
behalf the application that is
using the connection is
running.

Chapter 5. JDBC application programming 5-49

Transaction control in JDBC applications
In JDBC applications, as in other types of SQL applications, transaction control
involves explicitly or implicitly committing and rolling back transactions, and
setting the isolation level for transactions.

IBM Data Server Driver for JDBC and SQLJ isolation levels
The IBM Data Server Driver for JDBC and SQLJ supports a number of isolation
levels, which correspond to database server isolation levels.

JDBC isolation levels can be set for a unit of work within a JDBC program, using
the Connection.setTransactionIsolation method. The default isolation level can be
set with the defaultIsolationLevel property.

The following table shows the values of level that you can specify in the
Connection.setTransactionIsolation method and their DB2 database server
equivalents.

Table 5-11. Equivalent JDBC and DB2 isolation levels

JDBC value DB2 isolation level

java.sql.Connection.TRANSACTION_SERIALIZABLE Repeatable read

java.sql.Connection.TRANSACTION_REPEATABLE_READ Read stability

java.sql.Connection.TRANSACTION_READ_COMMITTED Cursor stability

java.sql.Connection.TRANSACTION_READ_UNCOMMITTED Uncommitted read

The following table shows the values of level that you can specify in the
Connection.setTransactionIsolation method and their IBM Informix equivalents.

Table 5-12. Equivalent JDBC and IBM Informix isolation levels

JDBC value IBM Informix isolation level

java.sql.Connection.TRANSACTION_SERIALIZABLE Repeatable read

java.sql.Connection.TRANSACTION_REPEATABLE_READ Repeatable read

java.sql.Connection.TRANSACTION_READ_COMMITTED Committed read

java.sql.Connection.TRANSACTION_READ_UNCOMMITTED Dirty read

com.ibm.db2.jcc.DB2Connection.TRANSACTION_IDS_CURSOR_STABILITY IBM Informix cursor stability

com.ibm.db2.jcc.DB2Connection.TRANSACTION_IDS_LAST_COMMITTED Committed read, last committed

Committing or rolling back JDBC transactions
In JDBC, to commit or roll back transactions explicitly, use the commit or rollback
methods.

For example:
Connection con;
...
con.commit();

If autocommit mode is on, the database manager performs a commit operation
after every SQL statement completes. To set autocommit mode on, invoke the
Connection.setAutoCommit(true) method. To set autocommit mode off, invoke the

5-50 IBM Data Server Driver for JDBC and SQLJ for Informix

Connection.setAutoCommit(false) method. To determine whether autocommit
mode is on, invoke the Connection.getAutoCommit method.

Connections that participate in distributed transactions cannot invoke the
setAutoCommit(true) method.

When you change the autocommit state, the database manager executes a commit
operation, if the application is not already on a transaction boundary.

While a connection is participating in a distributed transaction, the associated
application cannot issue the commit or rollback methods.

Default JDBC autocommit modes
The default autocommit mode depends on the data source to which the JDBC
application connects.

Autocommit default for DB2 data sources

For connections to DB2 data sources, the default autocommit mode is true.

Autocommit default for IBM Informix data sources

For connections to IBM Informix data sources, the default autocommit mode
depends on the type of data source. The following table shows the defaults.

Table 5-13. Default autocommit modes for IBM Informix data sources

Type of data source
Default autocommit mode for local
transactions

Default autocommit mode for global
transactions

ANSI-compliant database true false

Non-ANSI-compliant database
without logging

false not applicable

Non-ANSI-compliant database with
logging

true false

Exceptions and warnings under the IBM Data Server Driver for JDBC
and SQLJ

In JDBC applications, SQL errors throw exceptions, which you handle using
try/catch blocks. SQL warnings do not throw exceptions, so you need to invoke
methods to check whether warnings occurred after you execute SQL statements.

The IBM Data Server Driver for JDBC and SQLJ provides the following classes and
interfaces, which provide information about errors and warnings.

SQLException

The SQLException class for handling errors. All JDBC methods throw an instance
of SQLException when an error occurs during their execution. According to the
JDBC specification, an SQLException object contains the following information:
v An int value that contains an error code. SQLException.getErrorCode retrieves

this value.
v A String object that contains the SQLSTATE, or null. SQLException.getSQLState

retrieves this value.

Chapter 5. JDBC application programming 5-51

v A String object that contains a description of the error, or null.
SQLException.getMessage retrieves this value.

v A pointer to the next SQLException, or null. SQLException.getNextException
retrieves this value.

When a JDBC method throws a single SQLException, that SQLException might be
caused by an underlying Java exception that occurred when the IBM Data Server
Driver for JDBC and SQLJ processed the method. In this case, the SQLException
wraps the underlying exception, and you can use the SQLException.getCause
method to retrieve information about the error.

DB2Diagnosable

The IBM Data Server Driver for JDBC and SQLJ-only interface
com.ibm.db2.jcc.DB2Diagnosable extends the SQLException class. The
DB2Diagnosable interface gives you more information about errors that occur
when the data source is accessed. If the JDBC driver detects an error,
DB2Diagnosable gives you the same information as the standard SQLException
class. However, if the database server detects the error, DB2Diagnosable adds the
following methods, which give you additional information about the error:

getSqlca
Returns an DB2Sqlca object with the following information:
v An SQL error code
v The SQLERRMC values
v The SQLERRP value
v The SQLERRD values
v The SQLWARN values
v The SQLSTATE

getThrowable
Returns a java.lang.Throwable object that caused the SQLException, or null, if
no such object exists.

printTrace
Prints diagnostic information.

SQLException subclasses

If you are using JDBC 4.0 or later, you can obtain more specific information than
an SQLException provides by catching the following exception classes:
v SQLNonTransientException

An SQLNonTransientException is thrown when an SQL operation that failed
previously cannot succeed when the operation is retried, unless some corrective
action is taken. The SQLNonTransientException class has these subclasses:
– SQLFeatureNotSupportedException
– SQLNonTransientConnectionException
– SQLDataException
– SQLIntegrityConstraintViolationException
– SQLInvalidAuthorizationSpecException
– SQLSyntaxException

v SQLTransientException
An SQLTransientException is thrown when an SQL operation that failed
previously might succeed when the operation is retried, without intervention
from the application. A connection is still valid after an SQLTransientException is
thrown. The SQLTransientException class has these subclasses:

5-52 IBM Data Server Driver for JDBC and SQLJ for Informix

– SQLTransientConnectionException
– SQLTransientRollbackException
– SQLTimeoutException

v SQLRecoverableException
An SQLRecoverableException is thrown when an operation that failed
previously might succeed if the application performs some recovery steps, and
retries the transaction. A connection is no longer valid after an
SQLRecoverableException is thrown.

v SQLClientInfoException
A SQLClientInfoException is thrown by the Connection.setClientInfo method
when one or more client properties cannot be set. The SQLClientInfoException
indicates which properties cannot be set.

SQLWarning

The IBM Data Server Driver for JDBC and SQLJ accumulates warnings when SQL
statements return positive SQLCODEs, and when SQL statements return 0
SQLCODEs with non-zero SQLSTATEs.

Calling getWarnings retrieves an SQLWarning object.

Important: When a call to Statement.executeUpdate or
PreparedStatement.executeUpdate affects no rows, the IBM Data Server Driver for
JDBC and SQLJ generates an SQLWarning with error code +100.

When a call to ResultSet.next returns no rows, the IBM Data Server Driver for
JDBC and SQLJ does not generate an SQLWarning.

A generic SQLWarning object contains the following information:
v A String object that contains a description of the warning, or null
v A String object that contains the SQLSTATE, or null
v An int value that contains an error code
v A pointer to the next SQLWarning, or null

Under the IBM Data Server Driver for JDBC and SQLJ, like an SQLException
object, an SQLWarning object can also contain IDS-specific information. The
IDS-specific information for an SQLWarning object is the same as the IDS-specific
information for an SQLException object.

Handling an SQLException under the IBM Data Server Driver
for JDBC and SQLJ

As in all Java programs, error handling for JDBC applications is done using
try/catch blocks. Methods throw exceptions when an error occurs, and the code in
the catch block handles those exceptions.

The basic steps for handling an SQLException in a JDBC program that runs under
the IBM Data Server Driver for JDBC and SQLJ are:
1. Give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface and

the com.ibm.db2.jcc.DB2Sqlca class. You can fully qualify all references to them,
or you can import them:
import com.ibm.db2.jcc.DB2Diagnosable;
import com.ibm.db2.jcc.DB2Sqlca;

Chapter 5. JDBC application programming 5-53

2. Optional: During a connection to a data server, set the
retrieveMessagesFromServerOnGetMessage property to true if you want full
message text from an SQLException.getMessage call.

3. Optional: During a IBM Data Server Driver for JDBC and SQLJ type 2
connectivity connection to a DB2 for z/OS data source, set the
extendedDiagnosticLevel property to EXTENDED_DIAG_MESSAGE_TEXT (241) if you
want extended diagnostic information similar to the information that is
provided by the SQL GET DIAGNOSTICS statement from an
SQLException.getMessage call.

4. Put code that can generate an SQLException in a try block.
5. In the catch block, perform the following steps in a loop:

a. Test whether you have retrieved the last SQLException. If not, continue to
the next step.

b. Optional: For an SQL statement that executes on an IBM Informix data
source, execute the
com.ibm.db2.jcc.DB2Statement.getIDSSQLStatementOffSet method to
determine which columns have syntax errors.
DB2Statement.getIDSSQLStatementOffSet returns the offset into the SQL
statement of the first syntax error.

c. Optional: For an SQL statement that executes on an IBM Informix data
source, execute the SQLException.getCause method to retrieve any ISAM
error messages.
1) If the Throwable that is returned by SQLException.getCause is not null,

perform one of the following sets of steps:
v Issue SQLException.printStackTrace to print an error message that

includes the ISAM error message text. The ISAM error message text is
preceded by the string "Caused by:".

v Retrieve the error code and message text for the ISAM message:
a) Test whether the Throwable is an instance of an SQLException. If

so, retrieve the SQL error code from that SQLException.
b) Execute the Throwable.getMessage method to retrieve the text of

the ISAM message.
d. Check whether any IBM Data Server Driver for JDBC and SQLJ-only

information exists by testing whether the SQLException is an instance of
DB2Diagnosable. If so:
1) Cast the object to a DB2Diagnosable object.
2) Optional: Invoke the DB2Diagnosable.printTrace method to write all

SQLException information to a java.io.PrintWriter object.
3) Invoke the DB2Diagnosable.getThrowable method to determine

whether an underlying java.lang.Throwable caused the SQLException.
4) Invoke the DB2Diagnosable.getSqlca method to retrieve the DB2Sqlca

object.
5) Invoke the DB2Sqlca.getSqlCode method to retrieve an SQL error code

value.
6) Invoke the DB2Sqlca.getSqlErrmc method to retrieve a string that

contains all SQLERRMC values, or invoke the
DB2Sqlca.getSqlErrmcTokens method to retrieve the SQLERRMC
values in an array.

7) Invoke the DB2Sqlca.getSqlErrp method to retrieve the SQLERRP
value.

5-54 IBM Data Server Driver for JDBC and SQLJ for Informix

8) Invoke the DB2Sqlca.getSqlErrd method to retrieve the SQLERRD
values in an array.

9) Invoke the DB2Sqlca.getSqlWarn method to retrieve the SQLWARN
values in an array.

10) Invoke the DB2Sqlca.getSqlState method to retrieve the SQLSTATE
value.

11) Invoke the DB2Sqlca.getMessage method to retrieve error message text
from the data source.

e. Invoke the SQLException.getNextException method to retrieve the next
SQLException.

The following code demonstrates how to obtain IBM Data Server Driver for JDBC
and SQLJ-specific information from an SQLException that is provided with the
IBM Data Server Driver for JDBC and SQLJ. The numbers to the right of selected
statements correspond to the previously-described steps.

import java.sql.*; // Import JDBC API package
import com.ibm.db2.jcc.DB2Diagnosable; // Import packages for DB2 �1�
import com.ibm.db2.jcc.DB2Sqlca; // SQLException support
java.io.PrintWriter printWriter; // For dumping all SQLException

// information
String url = "jdbc:ids://myhost:9999/myDB:" + �2�

"retrieveMessagesFromServerOnGetMessage=true;";
// Set properties to retrieve full message
// text

String user = "db2adm";
String password = "db2adm";
java.sql.Connection con =

java.sql.DriverManager.getConnection (url, user, password)
// Connect to a DB2 for z/OS data source

...
try { �4�

// Code that could generate SQLExceptions
...
} catch(SQLException sqle) {

while(sqle != null) { // Check whether there are more �5a�
// SQLExceptions to process

//=====> Optional IBM Data Server Driver for JDBC and SQLJ-only
// error processing

if (sqle instanceof DB2Diagnosable) { �5d�
// Check if IBM Data Server Driver for JDBC and SQLJ-only
// information exists

com.ibm.db2.jcc.DB2Diagnosable diagnosable =
(com.ibm.db2.jcc.DB2Diagnosable)sqle; �5d1�

diagnosable.printTrace (printWriter, ""); �5d2�
java.lang.Throwable throwable =

diagnosable.getThrowable(); �5d3�
if (throwable != null) {

// Extract java.lang.Throwable information
// such as message or stack trace.
...

}
DB2Sqlca sqlca = diagnosable.getSqlca(); �5d4�

// Get DB2Sqlca object
if (sqlca != null) { // Check that DB2Sqlca is not null

int sqlCode = sqlca.getSqlCode(); // Get the SQL error code �5d5�
String sqlErrmc = sqlca.getSqlErrmc(); �5d6�

Figure 5-19. Processing an SQLException under the IBM Data Server Driver for JDBC and
SQLJ

Chapter 5. JDBC application programming 5-55

// Get the entire SQLERRMC
String[] sqlErrmcTokens = sqlca.getSqlErrmcTokens();

// You can also retrieve the
// individual SQLERRMC tokens

String sqlErrp = sqlca.getSqlErrp(); �5d7�
// Get the SQLERRP

int[] sqlErrd = sqlca.getSqlErrd(); �5d8�
// Get SQLERRD fields

char[] sqlWarn = sqlca.getSqlWarn(); �5d9�
// Get SQLWARN fields

String sqlState = sqlca.getSqlState(); �5d10�
// Get SQLSTATE

String errMessage = sqlca.getMessage(); �5d11�
// Get error message

System.err.println ("Server error message: " + errMessage);

System.err.println ("--------------- SQLCA ---------------");
System.err.println ("Error code: " + sqlCode);
System.err.println ("SQLERRMC: " + sqlErrmc);
If (sqlErrmcTokens != null) {

for (int i=0; i< sqlErrmcTokens.length; i++) {
System.err.println (" token " + i + ": " + sqlErrmcTokens[i]);

}
}
System.err.println ("SQLERRP: " + sqlErrp);
System.err.println (

"SQLERRD(1): " + sqlErrd[0] + "\n" +
"SQLERRD(2): " + sqlErrd[1] + "\n" +
"SQLERRD(3): " + sqlErrd[2] + "\n" +
"SQLERRD(4): " + sqlErrd[3] + "\n" +
"SQLERRD(5): " + sqlErrd[4] + "\n" +
"SQLERRD(6): " + sqlErrd[5]);

System.err.println (
"SQLWARN1: " + sqlWarn[0] + "\n" +
"SQLWARN2: " + sqlWarn[1] + "\n" +
"SQLWARN3: " + sqlWarn[2] + "\n" +
"SQLWARN4: " + sqlWarn[3] + "\n" +
"SQLWARN5: " + sqlWarn[4] + "\n" +
"SQLWARN6: " + sqlWarn[5] + "\n" +
"SQLWARN7: " + sqlWarn[6] + "\n" +
"SQLWARN8: " + sqlWarn[7] + "\n" +
"SQLWARN9: " + sqlWarn[8] + "\n" +
"SQLWARNA: " + sqlWarn[9]);

System.err.println ("SQLSTATE: " + sqlState);
// portion of SQLException

}
sqle=sqle.getNextException(); // Retrieve next SQLException �5e�

}
}

The following code demonstrates how to obtain the location of a syntax error in an
SQL statement from an SQLException.
...
Statement stmt=null;
try {
stmt = con.createStatement();
stmt.execute("select * fro tab1");

// This statement has a syntax error
// at offset 10

}
catch(SQLException e)
{

5-56 IBM Data Server Driver for JDBC and SQLJ for Informix

System.out.println ("Error offset :"+
((DB2Statement) stmt).getIDSSQLStatementOffSet());

// This code prints Error offset : 10
}

The following code demonstrates how to obtain the ISAM error text from an
SQLException.
...
try
{
// Execute an SQL statement
}
catch (SQLException e)
{

SQLException eNext = e;
while (eNext != null) {

System.out.println("SQLCODE: "
+ eNext.getErrorCode()
+ " " + eNext.getMessage()); // Get the error code and message

// text from the SQLException
Throwable cause = eNext.getCause(); // Get Throwable with ISAM text
if (cause != null) {

if (cause instanceof SQLException)
System.out.print("SQLCODE: "
+ ((SQLException) cause).getErrorCode() + " ");

// If the Throwable is an SQLException,
// get the error code

System.out.println(cause.getMessage());
// Get the ISAM message text

}
}
eNext = eNext.getNextException();

}

Handling an SQLWarning under the IBM Data Server Driver for
JDBC and SQLJ

Unlike SQL errors, SQL warnings do not cause JDBC methods to throw exceptions.
Instead, the Connection, Statement, PreparedStatement, CallableStatement, and
ResultSet classes contain getWarnings methods, which you need to invoke after
you execute SQL statements to determine whether any SQL warnings were
generated.

The basic steps for retrieving SQL warning information are:
1. Optional: During connection to the database server, set properties that affect

SQLWarning objects.
If you want full message text from a data server when you execute
SQLWarning.getMessage calls, set the
retrieveMessagesFromServerOnGetMessage property to true.
If you are using IBM Data Server Driver for JDBC and SQLJ type 2 connectivity
to a DB2 for z/OS data source, and you want extended diagnostic information
that is similar to the information that is provided by the SQL GET
DIAGNOSTICS statement when you execute SQLWarning.getMessage calls, set
the extendedDiagnosticLevel property to EXTENDED_DIAG_MESSAGE_TEXT (241).

2. Immediately after invoking a method that connects to a database server or
executes an SQL statement, invoke the getWarnings method to retrieve an
SQLWarning object.

3. Perform the following steps in a loop:
a. Test whether the SQLWarning object is null. If not, continue to the next step.

Chapter 5. JDBC application programming 5-57

b. Invoke the SQLWarning.getMessage method to retrieve the warning
description.

c. Invoke the SQLWarning.getSQLState method to retrieve the SQLSTATE
value.

d. Invoke the SQLWarning.getErrorCode method to retrieve the error code
value.

e. If you want IDS-specific warning information, perform the same steps that
you perform to get IDS-specific information for an SQLException.

f. Invoke the SQLWarning.getNextWarning method to retrieve the next
SQLWarning.

The following code illustrates how to obtain generic SQLWarning information. The
numbers to the right of selected statements correspond to the previously-described
steps.

Retrieving information from a BatchUpdateException
When an error occurs during execution of a statement in a batch, processing
continues. However, executeBatch throws a BatchUpdateException.

To retrieve information from the BatchUpdateException, follow these steps:
1. Use the BatchUpdateException.getUpdateCounts method to determine the

number of rows that each SQL statement in the batch updated before the
exception was thrown.
getUpdateCount returns an array with an element for each statement in the
batch. An element has one of the following values:

n The number of rows that the statement updated.

String url = "jdbc:ids://myhost:9999/informixdb:" + �1�
"retrieveMessagesFromServerOnGetMessage=true;";

// Set properties to retrieve full message
// text

String user = "idsadm";
String password = "idsadm";
java.sql.Connection con =

java.sql.DriverManager.getConnection (url, user, password)
// Connect to an Informix data source

SQLWarning warn = con.getWarnings();
while (warn != null) {

System.out.println(" SQLMESSAGE : " + warn.getMessage ());
warn = warn.getNextWarning();

Statement stmt;
ResultSet rs;
SQLWarning sqlwarn;
...
stmt = con.createStatement(); // Create a Statement object
rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");

// Get the result table from the query
sqlwarn = stmt.getWarnings(); // Get any warnings generated �2�
while (sqlwarn != null) { // While there are warnings, get and �3a�

// print warning information
System.out.println ("Warning description: " + sqlwarn.getMessage()); �3b�
System.out.println ("SQLSTATE: " + sqlwarn.getSQLState()); �3c�
System.out.println ("Error code: " + sqlwarn.getErrorCode()); �3d�
sqlwarn=sqlwarn.getNextWarning(); // Get next SQLWarning �3f�

}

Figure 5-20. Example of processing an SQLWarning

5-58 IBM Data Server Driver for JDBC and SQLJ for Informix

Statement.SUCCESS_NO_INFO
This value is returned if the number of updated rows cannot be
determined. The number of updated rows cannot be determined if the
following conditions are true:
v The application is connected to a subsystem that is in DB2 for z/OS

Version 8 new-function mode, or later.
v The application is using Version 3.1 or later of the IBM Data Server

Driver for JDBC and SQLJ.
v The IBM Data Server Driver for JDBC and SQLJ uses multi-row

INSERT operations to execute batch updates.

Statement.EXECUTE_FAILED
This value is returned if the statement did not execute successfully.

2. If the batched statement can return automatically generated keys:
a. Cast the BatchUpdateException to a

com.ibm.db2.jcc.DBBatchUpdateException.
b. Call the DBBatchUpdateException.getDBGeneratedKeys method to retrieve

an array of ResultSet objects that contains the automatically generated keys
for each execution of the batched SQL statement.

c. Test whether each ResultSet in the array is null.
Each ResultSet contains:
v If the ResultSet is not null, it contains the automatically generated keys

for an execution of the batched SQL statement.
v If the ResultSet is null, execution of the batched statement failed.

3. Use SQLException methods getMessage, getSQLState, and getErrorCode to
retrieve the description of the error, the SQLSTATE, and the error code for the
first error.

4. Use the BatchUpdateException.getNextException method to get a chained
SQLException.

5. In a loop, execute the getMessage, getSQLState, getErrorCode, and
getNextException method calls to obtain information about an SQLException
and get the next SQLException.

The following code fragment demonstrates how to obtain the fields of a
BatchUpdateException and the chained SQLException objects for a batched
statement that returns automatically generated keys. The example assumes that
there is only one column in the automatically generated key, and that there is
always exactly one key value, whose data type is numeric. The numbers to the
right of selected statements correspond to the previously-described steps.
try {

// Batch updates
} catch(BatchUpdateException buex) {

System.err.println("Contents of BatchUpdateException:");
System.err.println(" Update counts: ");
int [] updateCounts = buex.getUpdateCounts(); �1�
for (int i = 0; i < updateCounts.length; i++) {

System.err.println(" Statement " + i + ":" + updateCounts[i]);
}
ResultSet[] resultList =

((DBBatchUpdateException)buex).getDBGeneratedKeys(); �2�
for (i = 0; i < resultList.length; i++)
{

if (resultList[i] == null)
continue; // Skip the ResultSet for which there was a failure

else {
rs.next();

Chapter 5. JDBC application programming 5-59

java.math.BigDecimal idColVar = rs.getBigDecimal(1);
// Get automatically generated key
// value

System.out.println("Automatically generated key value = " + idColVar);
}

}
System.err.println(" Message: " + buex.getMessage()); �3�
System.err.println(" SQLSTATE: " + buex.getSQLState());
System.err.println(" Error code: " + buex.getErrorCode());
SQLException ex = buex.getNextException(); �4�
while (ex != null) { �5�

System.err.println("SQL exception:");
System.err.println(" Message: " + ex.getMessage());
System.err.println(" SQLSTATE: " + ex.getSQLState());
System.err.println(" Error code: " + ex.getErrorCode());
ex = ex.getNextException();

}
}

Disconnecting from data sources in JDBC applications
When you have finished with a connection to a data source, it is essential that you
close the connection to the data source. Doing this releases the Connection object's
database and JDBC resources immediately.

To close the connection to the data source, use the close method. For example:
Connection con;
...
con.close();

For a connection to a DB2 data source, if autocommit mode is not on, the
connection needs to be on a unit-of-work boundary before you close the
connection.

For a connection to an IBM Informix database, if the database supports logging,
and autocommit mode is not on, the connection needs to be on a unit-of-work
boundary before you close the connection.

5-60 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 6. SQLJ application programming

Writing an SQLJ application has much in common with writing an SQL application
in any other language.

In general, you need to do the following things:
v Import the Java packages that contain SQLJ and JDBC methods.
v Declare variables for sending data to or retrieving data from IDS tables.
v Connect to a data source.
v Execute SQL statements.
v Handle SQL errors and warnings.
v Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other
languages, the way that you execute those tasks, and the order in which you
execute those tasks, is somewhat different.

Example of a simple SQLJ application
A simple SQLJ application demonstrates the basic elements that JDBC applications
need to include.

import sqlj.runtime.*; �1�
import java.sql.*;

#sql context EzSqljCtx; �3a�
#sql iterator EzSqljNameIter (String LASTNAME); �4a�

public class EzSqlj {
public static void main(String args[])

throws SQLException
{

EzSqljCtx ctx = null;
String URLprefix = "jdbc:ids:";
String url;
url = new String(URLprefix + args[0]);

// Location name is an input parameter
String hvmgr="000010"; �2�
String hvdeptno="A00";
try { �3b�

Class.forName("com.ibm.db2.jcc.DB2Driver");
} catch (Exception e)
{

throw new SQLException("Error in EzSqlj: Could not load the driver");
}
try
{

System.out.println("About to connect using url: " + url);
Connection con0 = DriverManager.getConnection(url); �3c�

// Create a JDBC Connection
con0.setAutoCommit(false); // set autocommit OFF
ctx = new EzSqljCtx(con0); �3d�

try
{

Figure 6-1. Simple SQLJ application

© Copyright IBM Corp. 2007, 2011 6-1

EzSqljNameIter iter;
int count=0;

#sql [ctx] iter =
{SELECT LASTNAME FROM EMPLOYEE}; �4b�

// Create result table of the SELECT
while (iter.next()) { �4c�

System.out.println(iter.LASTNAME());
// Retrieve rows from result table

count++;
}
System.out.println("Retrieved " + count + " rows of data");
iter.close(); // Close the iterator

}
catch(SQLException e) �5�
{

System.out.println ("**** SELECT SQLException...");
while(e!=null) {

System.out.println ("Error msg: " + e.getMessage());
System.out.println ("SQLSTATE: " + e.getSQLState());
System.out.println ("Error code: " + e.getErrorCode());
e = e.getNextException(); // Check for chained exceptions

}
}
catch(Exception e)
{

System.out.println("**** NON-SQL exception = " + e);
e.printStackTrace();

}
try
{

#sql [ctx] �4d�
{UPDATE DEPARTMENT SET MGRNO=:hvmgr

WHERE DEPTNO=:hvdeptno}; // Update data for one department
�6�

#sql [ctx] {COMMIT}; // Commit the update
}
catch(SQLException e)
{

System.out.println ("**** UPDATE SQLException...");
System.out.println ("Error msg: " + e.getMessage() + ". SQLSTATE=" +

e.getSQLState() + " Error code=" + e.getErrorCode());
e.printStackTrace();

}
catch(Exception e)
{

System.out.println("**** NON-SQL exception = " + e);
e.printStackTrace();

}
ctx.close(); �7�

}
catch(SQLException e)
{

System.out.println ("**** SQLException ...");
System.out.println ("Error msg: " + e.getMessage() + ". SQLSTATE=" +

e.getSQLState() + " Error code=" + e.getErrorCode());
e.printStackTrace();

}
catch(Exception e)
{

System.out.println ("**** NON-SQL exception = " + e);
e.printStackTrace();

}

}

Notes to Figure 6-1 on page 6-1:

6-2 IBM Data Server Driver for JDBC and SQLJ for Informix

Note Description
1 These statements import the java.sql package, which contains the JDBC core

API, and the sqlj.runtime package, which contains the SQLJ API. For
information on other packages or classes that you might need to access, see
"Java packages for SQLJ support".

2 String variables hvmgr and hvdeptno are host identifiers, which are equivalent
to IDS host variables. See "Variables in SQLJ applications" for more information.

3a, 3b, 3c,
and 3d

These statements demonstrate how to connect to a data source using one of the
three available techniques. See "Connecting to a data source using SQLJ" for
more details.

Step 3b (loading the JDBC driver) is not necessary if you use JDBC 4.0.
4a , 4b, 4c,
and 4d

These statements demonstrate how to execute SQL statements in SQLJ.
Statement 4a demonstrates the SQLJ equivalent of declaring an SQL cursor.
Statements 4b and 4c show one way of doing the SQLJ equivalent of executing
an SQL OPEN CURSOR and SQL FETCHes. Statement 4d shows how to do the
SQLJ equivalent of performing an SQL UPDATE. For more information, see
"SQL statements in an SQLJ application".

5 This try/catch block demonstrates the use of the SQLException class for SQL
error handling. For more information on handling SQL errors, see "Handling
SQL errors in an SQLJ application". For more information on handling SQL
warnings, see "Handling SQL warnings in an SQLJ application".

6 This is an example of a comment. For rules on including comments in SQLJ
programs, see "Comments in an SQLJ application".

7 This statement closes the connection to the data source. See "Closing the
connection to the data source in an SQLJ application".

Connecting to a data source using SQLJ
In an SQLJ application, as in any other IDS application, you must be connected to
a data source before you can execute SQL statements.

You can use one five techniques to connect to a data source in an SQLJ program.
Two use the JDBC DriverManager interface, two use the JDBC DataSource
interface, and one uses a previously created connection context. Connections to
IBM Informix must use IBM Data Server Driver for JDBC and SQLJ type 4
connectivity.

SQLJ connection technique 1: JDBC DriverManager interface
SQLJ connection technique 1 uses the JDBC DriverManager interface as the
underlying means for creating the connection.

To use SQLJ connection technique 1, follow these steps:
1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the
connection declaration clause is:
#sql context context-class-name;

The name of the generated connection context class is context-class-name.
2. Load a JDBC driver by invoking the Class.forName method.

v Class.forName this way:
Class.forName("com.ibm.db2.jcc.DB2Driver");

This step is unnecessary if you use the JDBC 4.0 driver.

Chapter 6. SQLJ application programming 6-3

3. Invoke the constructor for the connection context class that you created in step
1 on page 6-3.
Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in one of the following forms:
connection-context-class connection-context-object=

new connection-context-class(String url, boolean autocommit);

connection-context-class connection-context-object=
new connection-context-class(String url, String user,
String password, boolean autocommit);

connection-context-class connection-context-object=
new connection-context-class(String url, Properties info,

boolean autocommit);

The meanings of the parameters are:

url
A string that specifies the location name that is associated with the data
source. That argument has one of the forms that are specified in "Connect
to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ". The form depends on which JDBC
driver you are using.

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

info
Specifies an object of type java.util.Properties that contains a set of driver
properties for the connection. For the IBM Data Server Driver for JDBC and
SQLJ, you can specify any of the properties listed in "Properties for the IBM
Data Server Driver for JDBC and SQLJ".

autocommit
Specifies whether you want the database manager to issue a COMMIT after
every statement. Possible values are true or false. If you specify false,
you need to do explicit commit operations.

The following code uses connection technique 1 to create a connection to location
NEWYORK. The connection requires a user ID and password, and does not require
autocommit. The numbers to the right of selected statements correspond to the
previously-described steps.

6-4 IBM Data Server Driver for JDBC and SQLJ for Informix

SQLJ connection technique 2: JDBC DriverManager interface
SQLJ connection technique 2 uses the JDBC DriverManager interface as the
underlying means for creating the connection.

To use SQLJ connection technique 2, follow these steps:
1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the
connection declaration clause is:
#sql context context-class-name;

The name of the generated connection context class is context-class-name.
2. Load a JDBC driver by invoking the Class.forName method.

v Class.forName this way:
Class.forName("com.ibm.db2.jcc.DB2Driver");

This step is unnecessary if you use the JDBC 4.0 driver.
3. Invoke the JDBC DriverManager.getConnection method.

Doing this creates a JDBC connection object for the connection to the data
source. You can use any of the forms of getConnection that are specified in
"Connect to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ".
The meanings of the url, user, and password parameters are:

url
A string that specifies the location name that is associated with the data
source. That argument has one of the forms that are specified in "Connect
to a data source using the DriverManager interface with the IBM Data
Server Driver for JDBC and SQLJ". The form depends on which JDBC
driver you are using.

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

4. Invoke the constructor for the connection context class that you created in step
1

#sql context Ctx; // Create connection context class Ctx �1�
String userid="dbadm"; // Declare variables for user ID and password
String password="dbadm";
String empname; // Declare a host variable
...
try { // Load the JDBC driver

Class.forName("com.ibm.db2.jcc.DB2Driver"); �2�
}
catch (ClassNotFoundException e) {

e.printStackTrace();
}
Ctx myConnCtx= �3�

new Ctx("jdbc:ids://sysmvs1.stl.ibm.com:5021/NEWYORK",
userid,password,false); // Create connection context object myConnCtx

// for the connection to NEWYORK
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

WHERE EMPNO=’000010’};
// Use myConnCtx for executing an SQL statement

Figure 6-2. Using connection technique 1 to connect to a data source

Chapter 6. SQLJ application programming 6-5

Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in the following form:
connection-context-class connection-context-object=

new connection-context-class(Connection JDBC-connection-object);

The JDBC-connection-object parameter is the Connection object that you created
in step 3 on page 6-5.

The following code uses connection technique 2 to create a connection to location
NEWYORK. The connection requires a user ID and password, and does not require
autocommit. The numbers to the right of selected statements correspond to the
previously-described steps.

SQLJ connection technique 3: JDBC DataSource interface
SQLJ connection technique 3 uses the JDBC DataSource as the underlying means
for creating the connection.

To use SQLJ connection technique 3, follow these steps:
1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the
connection declaration clause is:
#sql context context-class-name;

The name of the generated connection context class is context-class-name.
2. If your system administrator created a DataSource object in a different

program, follow these steps. Otherwise, create a DataSource object and assign
properties to it.
a. Obtain the logical name of the data source to which you need to connect.
b. Create a context to use in the next step.
c. In your application program, use the Java Naming and Directory Interface

(JNDI) to get the DataSource object that is associated with the logical data
source name.

#sql context Ctx; // Create connection context class Ctx �1�
String userid="dbadm"; // Declare variables for user ID and password
String password="dbadm";
String empname; // Declare a host variable
...
try { // Load the JDBC driver

Class.forName("com.ibm.db2.jcc.DB2Driver"); �2�
}
catch (ClassNotFoundException e) {

e.printStackTrace();
}
Connection jdbccon= �3�

DriverManager.getConnection("jdbc:ids://sysmvs1.stl.ibm.com:5021/NEWYORK",
userid,password);

// Create JDBC connection object jdbccon
jdbccon.setAutoCommit(false); // Do not autocommit
Ctx myConnCtx=new Ctx(jdbccon); �4�

// Create connection context object myConnCtx
// for the connection to NEWYORK

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO=’000010’};

// Use myConnCtx for executing an SQL statement

Figure 6-3. Using connection technique 2 to connect to a data source

6-6 IBM Data Server Driver for JDBC and SQLJ for Informix

3. Invoke the JDBC DataSource.getConnection method.
Doing this creates a JDBC connection object for the connection to the data
source. You can use one of the following forms of getConnection:
getConnection();
getConnection(user, password);

The meanings of the user and password parameters are:

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

4. If the default autocommit mode is not appropriate, invoke the JDBC
Connection.setAutoCommit method.
Doing this indicates whether you want the database manager to issue a
COMMIT after every statement. The form of this method is:
setAutoCommit(boolean autocommit);

5. Invoke the constructor for the connection context class that you created in step
1 on page 6-6.
Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in the following form:
connection-context-class connection-context-object=

new connection-context-class(Connection JDBC-connection-object);

The JDBC-connection-object parameter is the Connection object that you created
in step 3.

The following code uses connection technique 3 to create a connection to a location
with logical name jdbc/sampledb. This example assumes that the system
administrator created and deployed a DataSource object that is available through
JNDI lookup. The numbers to the right of selected statements correspond to the
previously-described steps.

SQLJ connection technique 4: JDBC DataSource interface
SQLJ connection technique 4 uses the JDBC DataSource as the underlying means
for creating the connection. This technique requires that the DataSource is
registered with JNDI.

To use SQLJ connection technique 4, follow these steps:

import java.sql.*;
import javax.naming.*;
import javax.sql.*;
...
#sql context CtxSqlj; // Create connection context class CtxSqlj �1�
Context ctx=new InitialContext(); �2b�
DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb"); �2c�
Connection con=ds.getConnection(); �3�
String empname; // Declare a host variable
...
con.setAutoCommit(false); // Do not autocommit �4�
CtxSqlj myConnCtx=new CtxSqlj(con); �5�

// Create connection context object myConnCtx
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

WHERE EMPNO=’000010’};
// Use myConnCtx for executing an SQL statement

Figure 6-4. Using connection technique 3 to connect to a data source

Chapter 6. SQLJ application programming 6-7

1. From your system administrator, obtain the logical name of the data source to
which you need to connect.

2. Execute an SQLJ connection declaration clause.
For this type of connection, the connection declaration clause needs to be of
this form:
#sql public static context context-class-name
with (dataSource="logical-name");

The connection context must be declared as public and static. logical-name is the
data source name that you obtained in step 1.

3. Invoke the constructor for the connection context class that you created in step
2.
Doing this creates a connection context object that you specify in each SQL
statement that you execute at the associated data source. The constructor
invocation statement needs to be in one of the following forms:
connection-context-class connection-context-object=

new connection-context-class();

connection-context-class connection-context-object=
new connection-context-class (String user,

String password);

The meanings of the user and password parameters are:

user and password
Specify a user ID and password for connection to the data source, if the
data source to which you are connecting requires them.

The following code uses connection technique 4 to create a connection to a location
with logical name jdbc/sampledb. The connection requires a user ID and password.

SQLJ connection technique 5: Use a previously created
connection context

SQLJ connection technique 5 uses a previously created connection context to
connect to the data source.

In general, one program declares a connection context class, creates connection
contexts, and passes them as parameters to other programs. A program that uses
the connection context invokes a constructor with the passed connection context
object as its argument.

Program CtxGen.sqlj declares connection context Ctx and creates instance oldCtx:

#sql public static context Ctx
with (dataSource="jdbc/sampledb"); �2�

// Create connection context class Ctx
String userid="dbadm"; // Declare variables for user ID and password
String password="dbadm";

String empname; // Declare a host variable
...
Ctx myConnCtx=new Ctx(userid, password); �3�

// Create connection context object myConnCtx
// for the connection to jdbc/sampledb

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE
WHERE EMPNO=’000010’};

// Use myConnCtx for executing an SQL statement

Figure 6-5. Using connection technique 4 to connect to a data source

6-8 IBM Data Server Driver for JDBC and SQLJ for Informix

#sql context Ctx;
...
// Create connection context object oldCtx

Program test.sqlj receives oldCtx as a parameter and uses oldCtx as the argument
of its connection context constructor:
void useContext(sqlj.runtime.ConnectionContext oldCtx)

// oldCtx was created in CtxGen.sqlj
{

Ctx myConnCtx=
new Ctx(oldCtx); // Create connection context object myConnCtx

// from oldCtx
#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

WHERE EMPNO=’000010’};
// Use myConnCtx for executing an SQL statement

...
}

Java packages for SQLJ support
Before you can execute SQLJ statements or invoke JDBC methods in your SQLJ
program, you need to be able to access all or parts of various Java packages that
contain support for those statements.

You can do that either by importing the packages or specific classes, or by using
fully-qualified class names. You might need the following packages or classes for
your SQLJ program:

sqlj.runtime
Contains the SQLJ run-time API.

java.sql
Contains the core JDBC API.

com.ibm.db2.jcc
Contains the driver-specific implementation of JDBC and SQLJ.

javax.naming
Contains methods for performing Java Naming and Directory Interface
(JNDI) lookup.

javax.sql
Contains methods for creating DataSource objects.

Variables in SQLJ applications
In IDS programs in other languages, you use host variables to pass data between
the application program and IDS. In SQLJ programs, In SQLJ programs, you can
use host variables or host expressions.

A host expression begins with a colon (:). The colon is followed by an optional
parameter mode identifier (IN, OUT, or INOUT), which is followed by a
parenthesized expression clause.

Host variables and host expressions are case sensitive.

A complex expression is an array element or Java expression that evaluates to a
single value. A complex expression in an SQLJ clause must be surrounded by
parentheses.

Chapter 6. SQLJ application programming 6-9

The following examples demonstrate how to use host expressions.

Example: Declaring a Java identifier and using it in a SELECT statement:

In this example, the statement that begins with #sql has the same function as a
SELECT statement in other languages. This statement assigns the last name of the
employee with employee number 000010 to Java identifier empname.
String empname;
...
#sql [ctxt]

{SELECT LASTNAME INTO :empname FROM EMPLOYEE WHERE EMPNO=’000010’};

Example: Declaring a Java identifier and using it in a stored procedure call:

In this example, the statement that begins with #sql has the same function as an
SQL CALL statement in other languages. This statement uses Java identifier empno
as an input parameter to stored procedure A. The keyword IN, which precedes
empno, specifies that empno is an input parameter. For a parameter in a CALL
statement, IN is the default. The explicit or default qualifier that indicates how the
parameter is used (IN, OUT, or INOUT) must match the corresponding value in
the parameter definition that you specified in the CREATE PROCEDURE statement
for the stored procedure.
String empno = "0000010";
...
#sql [ctxt] {CALL A (:IN empno)};

Example: Using a complex expression as a host identifier:

This example uses complex expression (((int)yearsEmployed++/5)*500) as a host
expression.
#sql [ctxt] {UPDATE EMPLOYEE

SET BONUS=:(((int)yearsEmployed++/5)*500) WHERE EMPNO=:empID};

SQLJ performs the following actions when it processes a complex host expression:
v Evaluates each of the host expressions in the statement, from left to right, before

assigning their respective values to the database.
v Evaluates side effects, such as operations with postfix operators, according to

normal Java rules. All host expressions are fully evaluated before any of their
values are passed to IDS.

v Uses Java rules for rounding and truncation.

Therefore, if the value of yearsEmployed is 6 before the UPDATE statement is
executed, the value that is assigned to column BONUS by the UPDATE statement
is ((int)6/5)*500, or 500. After 500 is assigned to BONUS, the value of
yearsEmployed is incremented.

Restrictions on variable names: Two strings have special meanings in SQLJ
programs. Observe the following restrictions when you use these strings in your
SQLJ programs:
v The string __sJT_ is a reserved prefix for variable names that are generated by

SQLJ. Do not begin the following types of names with __sJT_:
– Host expression names
– Java variable names that are declared in blocks that include executable SQL

statements
– Names of parameters for methods that contain executable SQL statements

6-10 IBM Data Server Driver for JDBC and SQLJ for Informix

– Names of fields in classes that contain executable SQL statements, or in
classes with subclasses or enclosed classes that contain executable SQL
statements

v The string _SJ is a reserved suffix for resource files and classes that are
generated by SQLJ. Avoid using the string _SJ in class names and input source
file names.

Indicator variables in SQLJ applications
In SQLJ programs, you can use indicator variables to pass the NULL value to or
from a data server, to pass the default value for a column to the data server, or to
indicate that a host variable value is unassigned.

A host variable or host expression can be followed by an indicator variable. An
indicator variable begins with a colon (:) and has the data type short. For input, an
indicator variable indicates whether the corresponding host variable or host
expression has the default value, a non-null value, the null value, or is unassigned.
An unassigned variable in an SQL statement yields the same results as if the
variable and its target column were not in the SQL statement. For output, the
indicator variable indicates where the corresponding host variable or host
expression has a non-null value or a null value.

In SQLJ programs, indicator variables that indicate a null value perform the same
function as assigning the Java null value to a table column. However, you need to
use an indicator variable to retrieve the SQL NULL value from a table into a host
variable.

You can use indicator variables that assign the default value or the unassigned
value to columns to simplify the coding in your applications. For example, if a
table has four columns, and you might need to update any combination of those
columns, without the use of default indicator variables or unassigned indicator
variables, you need 15 UPDATE statements to perform all possible combinations of
updates. With default indicator variables and unassigned indicator variables, you
can use one UPDATE statement with all four columns in the SET statement to
perform all possible updates. You use the indicator variables to indicate which
columns you want to set to their default values, and which columns you do not
want to update.

For input, SQLJ supports the use of indicator variables for INSERT, UPDATE, or
MERGE statements.

If you customize your SQLJ application, you can assign one of the following values
to an indicator variable in an SQLJ application to specify the type of the
corresponding input host variable.

Indicator value Equivalent constant Meaning of value

-1 sqlj.runtime.ExecutionContext.DBNull Null

-2, -3, -4, -6

-5 sqlj.runtime.ExecutionContext.DBDefault Default

-7 sqlj.runtime.ExecutionContext.DBUnassigned Unassigned

short-value >=0 sqlj.runtime.ExecutionContext.DBNonNull Non-null

Chapter 6. SQLJ application programming 6-11

If you do not customize the application, you can assign one of the following values
to an indicator variable to specify the type of the corresponding input host
variable.

Indicator value Equivalent constant Meaning of value

-1 sqlj.runtime.ExecutionContext.DBNull Null

-7 <= short-value < -1

0 sqlj.runtime.ExecutionContext.DBNonNull Non-null

short-value >0

For output, SQLJ supports the use of indicator variables for the following
statements:
v CALL with OUT or INOUT parameters
v FETCH iterator INTO host-variable

v SELECT ... INTO host-variable-1,...host-variable-n

SQLJ assigns one of the following values to an indicator variable to indicate
whether an SQL NULL value was retrieved into the corresponding host variable.

Indicator value Equivalent constant Meaning of value

-1 sqlj.runtime.ExecutionContext.DBNull Retrieved value is SQL NULL

0 Retrieved value is not SQL NULL

You cannot use indicator variables to update result sets. To assign null values or
default values to result sets, or to indicate that columns are unassigned, call
ResultSet.updateObject on the underlying JDBC ResultSet objects of the SQLJ
iterators.

The following examples demonstrate how to use indicator variables.

All examples require that the data server supports extended indicators.

Example of using indicators to assign the default value to columns during an INSERT:

In this example, the MGRNO and LOCATION columns need to be set to their
default values. To do this, the code performs these steps:
1. Assigns the value ExecutionContext.DBNonNull to the indicator variables

(deptInd, dNameInd, rptDeptInd) for the input host variables (dept, dName,
rptDept) that send non-default values to the target columns.

2. Assigns the value ExecutionContext.DBDefault to the indicator variables
(mgrInd, locnInd) for the input host variables (mgr, locn) that send default
values to the target columns.

3. Executes an INSERT statement with the host variable and indicator variable
pairs as input.

The numbers to the right of selected statements correspond to the previously
described steps.
import sqlj.runtime.*;
...
String dept = "F01";
String dName = "SHIPPING";
String rptDept = "A00";

6-12 IBM Data Server Driver for JDBC and SQLJ for Informix

String mgr, locn = null;
short deptInd, dNameInd, mgrInd, rptDeptInd, locnInd;
// Set indicator variables for dept, dName, rptDept to non-null
deptInd = dNameInd = rptDeptInd = ExecutionContext.DBNonNull; �1�
mgrInd = ExecutionContext.DBDefault; �2�
locnInd = ExecutionContext.DBDefault;
#sql [ctxt] �3�

{INSERT INTO DEPARTMENT
(DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION)
VALUES (:dept :deptInd, :dName :dNameInd,:mgr :mgrInd,
:rptDept :rptDeptInd, :locn :locnInd)};

Example of using indicators to assign the default value to leave column values unassigned
during an UPDATE:

In this example, in rows for department F01, the MGRNO column needs to be set
to its default value, the DEPTNAME column value needs to be changed to
RECEIVING, and the DEPTNO, DEPTNAME, ADMRDEPT, and LOCATION
columns need to remain unchanged. To do this, the code performs these steps:
1. Assigns the new value for the DEPTNAME column to the dName input host

variable.
2. Assigns the value ExecutionContext.DBDefault to the indicator variable

(mgrInd) for the input host variable (mgr) that sends the default value to the
target column.

3. Assigns the value ExecutionContext.DBUnassigned to the indicator variables
(deptInd, dNameInd, rptDeptInd, and locnInd) for the input host variables
(dept, dName, rptDept, and locn) that need to remain unchanged by the
UPDATE operation.

4. Executes an UPDATE statement with the host variable and indicator variable
pairs as input.

The numbers to the right of selected statements correspond to the previously
described steps.
import sqlj.runtime.*;
...
String dept = null;
String dName = "RECEIVING"; �1�
String rptDept = null;
String mgr, locn = null;
short deptInd, dNameInd, mgrInd, rptDeptInd, locnInd;
dNameInd = ExecutionContext.DBNonNull;
mgrInd = ExecutionContext.DBDefault; �2�
deptInd = rptDeptInd = locnInd = ExecutionContext.DBUnassigned; �3�
#sql [ctxt] �4�

{UPDATE DEPARTMENT
SET DEPTNO = :dept :deptInd,

DEPTNAME = :dName :dNameInd,
MGRNO = :mgr :mgrInd,
ADMRDEPT = :rptDept :rptDeptInd,
LOCATION = :locn :locnInd

WHERE DEPTNO = "F01"
};

Example of using indicators to retrieve NULL values from columns:

In this example, the HIREDATE column can return the NULL value. To handle this
case, the code performs these steps:
1. Defines an indicator variable to indicate when the NULL value is returned from

HIREDATE.

Chapter 6. SQLJ application programming 6-13

2. Executes FETCH statements with the host variable and indicator variable pairs
as output.

3. Checks the indicator variable to determine whether a NULL value was
returned.

The numbers to the right of selected statements correspond to the previously
described steps.
import sqlj.runtime.*;
...
#sql iterator ByPos(String, Date); // Declare positioned iterator ByPos
{

...
ByPos positer; // Declare object of ByPos class
String name = null; // Declare host variables
Date hrdate = null;
short indhrdate = null; // Declare indicator variable �1�
#sql [ctxt] positer =

{SELECT LASTNAME, HIREDATE FROM EMPLOYEE};
// Assign the result table of the SELECT
// to iterator object positer

#sql {FETCH :positer INTO :name, :hrdate :indhrdate }; �2�
// Retrieve the first row

while (!positer.endFetch()) // Check whether the FETCH returned a row
{ if(indhrdate == ExecutionContext.DBNonNull { �3�

System.out.println(name + " was hired in " +
hrdate); }

else {
System.out.println(name + " has no hire date "); }
#sql {FETCH :positer INTO :name, :hrdate };

// Fetch the next row
}
positer.close(); // Close the iterator �5�

}

Example of assigning default values to result set columns:

In this example, the HIREDATE column in a result set needs to be set to its default
value. To do this, the code performs these steps:
1. Retrieves the underlying ResultSet from the iterator that holds the retrieved

data.
2. Executes the ResultSet.updateObject method with the

DB2PreparedStatement.DB_PARAMETER_DEFAULT constant to assign the
default value to the result set column.

The numbers to the right of selected statements correspond to the previously
described steps.
#sql public iterator sensitiveUpdateIter
implements sqlj.runtime.Scrollable, sqlj.runtime.ForUpdate
with (sensitivity=sqlj.runtime.ResultSetIterator.SENSITIVE,
updateColumns="LASTNAME, HIREDATE") (String, Date);

String name; // Declare host variables
Date hrdate;

sensitiveUpdateIter iter = null;
#sql [ctx] iter = { SELECT LASTNAME, HIREDATE FROM EMPLOYEE};

iter.next();

java.sql.ResultSet rs = iter.getResultSet(); �1�
rs.updateString("LASTNAME", "FORREST");

6-14 IBM Data Server Driver for JDBC and SQLJ for Informix

rs.updateObject
(2, com.ibm.db2.jcc.DB2PreparedStatement.DB_PARAMETER_DEFAULT);); �2,3�
rs.updateRow();
iter.close();

Comments in an SQLJ application
To document your SQLJ program, you need to include comments. To do that, use
Java comments. Java comments are denoted by /* */ or //.

You can include Java comments outside SQLJ clauses, wherever the Java language
permits them. Within an SQLJ clause, you can use Java comments in the following
places:
v Within a host expression (/* */ or //).
v Within an SQL statement in an executable clause, if the data source supports a

comment within the SQL statement (/* */ or --).
/* and */ pairs in an SQL statement can be nested.

SQL statement execution in SQLJ applications
You execute SQL statements in a traditional SQL program to create tables, update
data in tables, retrieve data from the tables, call stored procedures, or commit or
roll back transactions. In an SQLJ program, you also execute these statements,
within SQLJ executable clauses.

An executable clause can have one of the following general forms:
#sql [connection-context] {sql-statement};
#sql [connection-context,execution-context] {sql-statement};
#sql [execution-context] {sql-statement};

execution-context specification
In an executable clause, you should always specify an explicit connection
context, with one exception: you do not specify an explicit connection context
for a FETCH statement. You include an execution context only for specific
cases. See "Control the execution of SQL statements in SQLJ" for information
about when you need an execution context.

connection-context specification
In an executable clause, if you do not explicitly specify a connection context,
the executable clause uses the default connection context.

Creating and modifying database objects in an SQLJ
application

Use SQLJ executable clauses to execute data definition statements (CREATE,
ALTER, DROP, GRANT, REVOKE) or to execute INSERT, searched or positioned
UPDATE, and searched or positioned DELETE statements.

The following executable statements demonstrate an INSERT, a searched UPDATE,
and a searched DELETE:
#sql [myConnCtx] {INSERT INTO DEPARTMENT VALUES

("X00","Operations 2","000030","E01",NULL)};
#sql [myConnCtx] {UPDATE DEPARTMENT

SET MGRNO="000090" WHERE MGRNO="000030"};
#sql [myConnCtx] {DELETE FROM DEPARTMENT

WHERE DEPTNO="X00"};

Chapter 6. SQLJ application programming 6-15

Performing positioned UPDATE and DELETE operations in an
SQLJ application

As in IDS applications in other languages, performing positioned UPDATEs and
DELETEs with SQLJ is an extension of retrieving rows from a result table.

The basic steps are:
1. Declare the iterator.

The iterator can be positioned or named. For positioned UPDATE or DELETE
operations, declare the iterator as updatable, using one or both of the following
clauses:

implements sqlj.runtime.ForUpdate
This clause causes the generated iterator class to include methods for
using updatable iterators. This clause is required for programs with
positioned UPDATE or DELETE operations.

with (updateColumns="column-list")
This clause specifies a comma-separated list of the columns of the result
table that the iterator will update. This clause is optional.

You need to declare the iterator as public, so you need to follow the rules for
declaring and using public iterators in the same file or different files.
If you declare the iterator in a file by itself, any SQLJ source file that has
addressability to the iterator and imports the generated class can retrieve data
and execute positioned UPDATE or DELETE statements using the iterator.

2. Disable autocommit mode for the connection.
If autocommit mode is enabled, a COMMIT operation occurs every time the
positioned UPDATE statement executes, which causes the iterator to be
destroyed unless the iterator has the with (holdability=true) attribute.
Therefore, you need to turn autocommit off to prevent COMMIT operations
until you have finished using the iterator. If you want a COMMIT to occur
after every update operation, an alternative way to keep the iterator from being
destroyed after each COMMIT operation is to declare the iterator with
(holdability=true).

3. Create an instance of the iterator class.
This is the same step as for a non-updatable iterator.

4. Assign the result table of a SELECT to an instance of the iterator.
This is the same step as for a non-updatable iterator. The SELECT statement
must not include a FOR UPDATE clause.

5. Retrieve and update rows.
For a positioned iterator, do this by performing the following actions in a loop:
a. Execute a FETCH statement in an executable clause to obtain the current

row.
b. Test whether the iterator is pointing to a row of the result table by invoking

the PositionedIterator.endFetch method.
c. If the iterator is pointing to a row of the result table, execute an SQL

UPDATE... WHERE CURRENT OF :iterator-object statement in an executable
clause to update the columns in the current row. Execute an SQL DELETE...
WHERE CURRENT OF :iterator-object statement in an executable clause to
delete the current row.

For a named iterator, do this by performing the following actions in a loop:
a. Invoke the next method to move the iterator forward.

6-16 IBM Data Server Driver for JDBC and SQLJ for Informix

b. Test whether the iterator is pointing to a row of the result table by checking
whether next returns true.

c. Execute an SQL UPDATE... WHERE CURRENT OF iterator-object statement
in an executable clause to update the columns in the current row. Execute
an SQL DELETE... WHERE CURRENT OF iterator-object statement in an
executable clause to delete the current row.

6. Close the iterator.
Use the close method to do this.

The following code shows how to declare a positioned iterator and use it for
positioned UPDATEs. The numbers to the right of selected statements correspond
to the previously described steps.

First, in one file, declare positioned iterator UpdByPos, specifying that you want to
use the iterator to update column SALARY:

Then, in another file, use UpdByPos for a positioned UPDATE, as shown in the
following code fragment:

import java.math.*; // Import this class for BigDecimal data type
#sql public iterator UpdByPos implements sqlj.runtime.ForUpdate �1�

with(updateColumns="SALARY") (String, BigDecimal);

Figure 6-6. Example of declaring a positioned iterator for a positioned UPDATE

Chapter 6. SQLJ application programming 6-17

The following code shows how to declare a named iterator and use it for
positioned UPDATEs. The numbers to the right of selected statements correspond
to the previously described steps.

First, in one file, declare named iterator UpdByName, specifying that you want to use
the iterator to update column SALARY:

import sqlj.runtime.*; // Import files for SQLJ and JDBC APIs
import java.sql.*;
import java.math.*; // Import this class for BigDecimal data type
import UpdByPos; // Import the generated iterator class that

// was created by the iterator declaration clause
// for UpdByName in another file

#sql context HSCtx; // Create a connnection context class HSCtx
public static void main (String args[])
{

try {
Class.forName("com.ibm.db2.jcc.DB2Driver");

}
catch (ClassNotFoundException e) {

e.printStackTrace();
}

Connection HSjdbccon=
DriverManager.getConnection("jdbc:ids:SANJOSE");

// Create a JDBC connection object
HSjdbccon.setAutoCommit(false);

// Set autocommit off so automatic commits �2�
// do not destroy the cursor between updates

HSCtx myConnCtx=new HSCtx(HSjdbccon);
// Create a connection context object

UpdByPos upditer; // Declare iterator object of UpdByPos class �3�
String empnum; // Declares host variable to receive EMPNO
BigDecimal sal; // and SALARY column values
#sql [myConnCtx]

upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE �4�
WHERE WORKDEPT=’D11’};

// Assign result table to iterator object
#sql {FETCH :upditer INTO :empnum,:sal}; �5a�

// Move cursor to next row
while (!upditer.endFetch()) �5b�

// Check if on a row
{

#sql [myConnCtx] {UPDATE EMPLOYEE SET SALARY=SALARY*1.05
WHERE CURRENT OF :upditer}; �5c�

// Perform positioned update
System.out.println("Updating row for " + empnum);
#sql {FETCH :upditer INTO :empnum,:sal};

// Move cursor to next row
}
upditer.close(); // Close the iterator �6�
#sql [myConnCtx] {COMMIT};

// Commit the changes
myConnCtx.close(); // Close the connection context

}

Figure 6-7. Example of performing a positioned UPDATE with a positioned iterator

import java.math.*; // Import this class for BigDecimal data type
#sql public iterator UpdByName implements sqlj.runtime.ForUpdate �1�

with(updateColumns="SALARY") (String EmpNo, BigDecimal Salary);

Figure 6-8. Example of declaring a named iterator for a positioned UPDATE

6-18 IBM Data Server Driver for JDBC and SQLJ for Informix

Then, in another file, use UpdByName for a positioned UPDATE, as shown in the
following code fragment:

Making batch updates in SQLJ applications
The IBM Data Server Driver for JDBC and SQLJ supports batch updates in SQLJ.
With batch updates, instead of updating rows of a table one at a time, you can
direct SQLJ to execute a group of updates at the same time.

You can include the following types of statements in a batch update:
v Searched INSERT, UPDATE, or DELETE, or MERGE statements
v CREATE, ALTER, DROP, GRANT, or REVOKE statements
v CALL statements with input parameters only

import sqlj.runtime.*; // Import files for SQLJ and JDBC APIs
import java.sql.*;
import java.math.*; // Import this class for BigDecimal data type
import UpdByName; // Import the generated iterator class that

// was created by the iterator declaration clause
// for UpdByName in another file

#sql context HSCtx; // Create a connnection context class HSCtx
public static void main (String args[])
{

try {
Class.forName("com.ibm.db2.jcc.DB2Driver");

}
catch (ClassNotFoundException e) {

e.printStackTrace();
}

Connection HSjdbccon=
DriverManager.getConnection("jdbc:ids:SANJOSE");

// Create a JDBC connection object
HSjdbccon.setAutoCommit(false);

// Set autocommit off so automatic commits �2�
// do not destroy the cursor between updates

HSCtx myConnCtx=new HSCtx(HSjdbccon);
// Create a connection context object

UpdByName upditer; �3�
// Declare iterator object of UpdByName class

String empnum; // Declare host variable to receive EmpNo
// column values

#sql [myConnCtx]
upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE �4�

WHERE WORKDEPT=’D11’};
// Assign result table to iterator object

while (upditer.next()) �5a,5b�
// Move cursor to next row and
// check ifon a row

{
empnum = upditer.EmpNo(); // Get employee number from current row
#sql [myConnCtx]

{UPDATE EMPLOYEE SET SALARY=SALARY*1.05
WHERE CURRENT OF :upditer}; �5c�

// Perform positioned update
System.out.println("Updating row for " + empnum);

}
upditer.close(); // Close the iterator �6�
#sql [myConnCtx] {COMMIT};

// Commit the changes
myConnCtx.close(); // Close the connection context

}

Figure 6-9. Example of performing a positioned UPDATE with a named iterator

Chapter 6. SQLJ application programming 6-19

Unlike JDBC, SQLJ allows heterogeneous batches that contain statements with
input parameters or host expressions. You can therefore combine any of the
following items in an SQLJ batch:
v Instances of the same statement
v Different statements
v Statements with different numbers of input parameters or host expressions
v Statements with different data types for input parameters or host expressions
v Statements with no input parameters or host expressions

For all cases except homogeneous batches of INSERT statements, when an error
occurs during execution of a statement in a batch, the remaining statements are
executed, and a BatchUpdateException is thrown after all the statements in the
batch have executed.

For homogeneous batches of INSERT statements, the behavior is as follows:
v If you set atomicMultiRowInsert to DB2BaseDataSource.YES (1) when you run

db2sqljcustomize, and the target data server is DB2 for z/OS, when an error
occurs during execution of an INSERT statement in a batch, the remaining
statements are not executed, and a BatchUpdateException is thrown.

v If you do not set atomicMultiRowInsert to DB2BaseDataSource.YES (1) when
you run db2sqljcustomize, or the target data server is not DB2 for z/OS, when
an error occurs during execution of an INSERT statement in a batch, the
remaining statements are executed, and a BatchUpdateException is thrown after
all the statements in the batch have executed.

To obtain information about warnings, use the ExecutionContext.getWarnings
method on the ExecutionContext that you used to submit statements to be batched.
You can then retrieve an error description, SQLSTATE, and error code for each
SQLWarning object.

When a batch is executed implicitly because the program contains a statement that
cannot be added to the batch, the batch is executed before the new statement is
processed. If an error occurs during execution of the batch, the statement that
caused the batch to execute does not execute.

The basic steps for creating, executing, and deleting a batch of statements are:
1. Disable AutoCommit for the connection.

Do this so that you can control whether to commit changes to already-executed
statements when an error occurs during batch execution.

2. Acquire an execution context.
All statements that execute in a batch must use this execution context.

3. Invoke the ExecutionContext.setBatching(true) method to create a batch.
Subsequent batchable statements that are associated with the execution context
that you created in step 2 are added to the batch for later execution.
If you want to batch sets of statements that are not batch compatible in parallel,
you need to create an execution context for each set of batch compatible
statements.

4. Include SQLJ executable clauses for SQL statements that you want to batch.
These clauses must include the execution context that you created in step 2.
If an SQLJ executable clause has input parameters or host expressions, you can
include the statement in the batch multiple times with different values for the
input parameters or host expressions.

6-20 IBM Data Server Driver for JDBC and SQLJ for Informix

To determine whether a statement was added to an existing batch, was the first
statement in a new batch, or was executed inside or outside a batch, invoke the
ExecutionContext.getUpdateCount method. This method returns one of the
following values:

ExecutionContext.ADD_BATCH_COUNT
This is a constant that is returned if the statement was added to an existing
batch.

ExecutionContext.NEW_BATCH_COUNT
This is a constant that is returned if the statement was the first statement in
a new batch.

ExecutionContext.EXEC_BATCH_COUNT
This is a constant that is returned if the statement was part of a batch, and
the batch was executed.

Other integer
This value is the number of rows that were updated by the statement. This
value is returned if the statement was executed rather than added to a
batch.

5. Execute the batch explicitly or implicitly.
v Invoke the ExecutionContext.executeBatch method to execute the batch

explicitly.
executeBatch returns an integer array that contains the number of rows that
were updated by each statement in the batch. The order of the elements in
the array corresponds to the order in which you added statements to the
batch.

v Alternatively, a batch executes implicitly under the following circumstances:
– You include a batchable statement in your program that is not compatible

with statements that are already in the batch. In this case, SQLJ executes
the statements that are already in the batch and creates a new batch that
includes the incompatible statement.

– You include a statement in your program that is not batchable. In this
case, SQLJ executes the statements that are already in the batch. SQLJ also
executes the statement that is not batchable.

– After you invoke the ExecutionContext.setBatchLimit(n) method, you
add a statement to the batch that brings the number of statements in the
batch to n or greater. n can have one of the following values:

ExecutionContext.UNLIMITED_BATCH
This constant indicates that implicit execution occurs only when SQLJ
encounters a statement that is batchable but incompatible, or not
batchable. Setting this value is the same as not invoking setBatchLimit.

ExecutionContext.AUTO_BATCH
This constant indicates that implicit execution occurs when the
number of statements in the batch reaches a number that is set by
SQLJ.

Positive integer
When this number of statements have been added to the batch, SQLJ
executes the batch implicitly. However, the batch might be executed
before this many statements have been added if SQLJ encounters a
statement that is batchable but incompatible, or not batchable.

To determine the number of rows that were updated by a batch that was
executed implicitly, invoke the ExecutionContext.getBatchUpdateCounts

Chapter 6. SQLJ application programming 6-21

method. getBatchUpdateCounts returns an integer array that contains the
number of rows that were updated by each statement in the batch. The order
of the elements in the array corresponds to the order in which you added
statements to the batch. Each array element can be one of the following
values:

-2 This value indicates that the SQL statement executed successfully, but the
number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer
This value is the number of rows that were updated by the statement.

6. Optionally, when all statements have been added to the batch, disable batching.
Do this by invoking the ExecutionContext.setBatching(false) method. When you
disable batching, you can still execute the batch implicitly or explicitly, but no
more statements are added to the batch. Disabling batching is useful when a
batch already exists, and you want to execute a batch compatible statement,
rather than adding it to the batch.
If you want to clear a batch without executing it, invoke the
ExecutionContext.cancel method.

7. If batch execution was implicit, perform a final, explicit executeBatch to ensure
that all statements have been executed.

Example

The following example demonstrates batching of UPDATE statements. The
numbers to the right of selected statements correspond to the previously described
steps.
#sql iterator GetMgr(String); // Declare positioned iterator
...
{

GetMgr deptiter; // Declare object of GetMgr class
String mgrnum = null; // Declare host variable for manager number
int raise = 400; // Declare raise amount
int currentSalary; // Declare current salary
String url, username, password; // Declare url, user ID, password
...
TestContext c1 = new TestContext (url, username, password, false); �1�
ExecutionContext ec = new ExecutionContext(); �2�
ec.setBatching(true); �3�

#sql [c1] deptiter =
{SELECT MGRNO FROM DEPARTMENT};

// Assign the result table of the SELECT
// to iterator object deptiter

#sql {FETCH :deptiter INTO :mgrnum};
// Retrieve the first manager number

while (!deptiter.endFetch()) { // Check whether the FETCH returned a row
#sql [c1]

{SELECT SALARY INTO :currentSalary FROM EMPLOYEE
WHERE EMPNO=:mgrnum};

#sql [c1, ec] �4�
{UPDATE EMPLOYEE SET SALARY=:(currentSalary+raise)

WHERE EMPNO=:mgrnum};
#sql {FETCH :deptiter INTO :mgrnum };

// Fetch the next row
}
ec.executeBatch(); �5�
ec.setBatching(false); �6�

6-22 IBM Data Server Driver for JDBC and SQLJ for Informix

#sql [c1] {COMMIT};
deptiter.close(); // Close the iterator
c1.close(); // Close the connection

}

The following example demonstrates batching of INSERT statements. Suppose that
ATOMICTBL is defined like this:
CREATE TABLE ATOMICTBL(
INTCOL INTEGER NOT NULL UNIQUE,
CHARCOL VARCHAR(10))

Also suppose that the table already has a row with the values 2 and "val2".
Because of the uniqueness constraint on INTCOL, when the following code is
executed, the second INSERT statement in the batch fails.

If the target data server is DB2 for z/OS, and this application is customized
without atomicMultiRowInsert set to DB2BaseDataSource.YES, the batch INSERT is
non-atomic, so the first set of values is inserted in the table. However, if the
application is customized with atomicMultiRowInsert set to
DB2BaseDataSource.YES, the batch INSERT is atomic, so the first set of values is
not inserted.

The numbers to the right of selected statements correspond to the previously
described steps.
...
TestContext ctx = new TestContext (url, username, password, false); �1�
ctx.getExecutionContext().setBatching(true); �2,3�
try {

for (int i = 1; i<= 2; ++i) {
if (i == 1) {
intVar = 3;
strVar = "val1";
{
if (i == 2) {
intVar = 1;
strVar = "val2";
}
#sql [ctx] {INSERT INTO ATOMICTBL values(:intVar, :strVar)}; �4�

}
int[] counts = ctx.getExecutionContext().executeBatch(); �5�
for (int i = 0; i<counts.length; ++i) {

System.out.println(" count[" + i + "]:" + counts[i]);
}

}
catch (SQLException e) {

System.out.println(" Exception Caught: " + e.getMessage());
SQLException excp = null;
if (e instanceof SQLException)
{

System.out.println(" SQLCode: " + ((SQLException)e).getErrorCode() + "
Message: " + e.getMessage());

excp = ((SQLException)e).getNextException();
while (excp != null) {

System.out.println(" SQLCode: " + ((SQLException)excp).getErrorCode() +
" Message: " + excp.getMessage());

excp = excp.getNextException();
}

}
}

Chapter 6. SQLJ application programming 6-23

Data retrieval in SQLJ applications
SQLJ applications use a result set iterator to retrieve result sets. Like a cursor, a
result set iterator can be non-scrollable or scrollable.

Just as in IDS applications in other languages, if you want to retrieve a single row
from a table in an SQLJ application, you can write a SELECT INTO statement with
a WHERE clause that defines a result table that contains only that row:
#sql [myConnCtx] {SELECT DEPTNO INTO :hvdeptno

FROM DEPARTMENT WHERE DEPTNAME="OPERATIONS"};

However, most SELECT statements that you use create result tables that contain
many rows. In IDS applications in other languages, you use a cursor to select the
individual rows from the result table. That cursor can be non-scrollable, which
means that when you use it to fetch rows, you move the cursor serially, from the
beginning of the result table to the end. Alternatively, the cursor can be scrollable,
which means that when you use it to fetch rows, you can move the cursor
forward, backward, or to any row in the result table.

This topic discusses how to use non-scrollable iterators. For information on using
scrollable iterators, see "Use scrollable iterators in an SQLJ application".

A result set iterator is a Java object that you use to retrieve rows from a result
table. Unlike a cursor, a result set iterator can be passed as a parameter to a
method.

The basic steps in using a result set iterator are:
1. Declare the iterator, which results in an iterator class
2. Define an instance of the iterator class.
3. Assign the result table of a SELECT to an instance of the iterator.
4. Retrieve rows.
5. Close the iterator.

There are two types of iterators: positioned iterators and named iterators. Postitioned
iterators extend the interface sqlj.runtime.PositionedIterator. Positioned iterators
identify the columns of a result table by their position in the result table. Named
iterators extend the interface sqlj.runtime.NamedIterator. Named iterators identify
the columns of the result table by result table column names.

Using a named iterator in an SQLJ application
Use a named iterator to refer to each of the columns in a result table by name.

The steps in using a named iterator are:
1. Declare the iterator.

You declare any result set iterator using an iterator declaration clause. This causes
an iterator class to be created that has the same name as the iterator. For a
named iterator, the iterator declaration clause specifies the following
information:
v The name of the iterator
v A list of column names and Java data types
v Information for a Java class declaration, such as whether the iterator is

public or static

v A set of attributes, such as whether the iterator is holdable, or whether its
columns can be updated

6-24 IBM Data Server Driver for JDBC and SQLJ for Informix

When you declare a named iterator for a query, you specify names for each of
the iterator columns. Those names must match the names of columns in the
result table for the query. An iterator column name and a result table column
name that differ only in case are considered to be matching names. The named
iterator class that results from the iterator declaration clause contains accessor
methods. There is one accessor method for each column of the iterator. Each
accessor method name is the same as the corresponding iterator column name.
You use the accessor methods to retrieve data from columns of the result table.
You need to specify Java data types in the iterators that closely match the
corresponding IDS column data types. See "Java, JDBC, and SQL data types" for
a list of the best mappings between Java data types and IDS data types.
You can declare an iterator in a number of ways. However, because a Java class
underlies each iterator, you need to ensure that when you declare an iterator,
the underlying class obeys Java rules. For example, iterators that contain a
with-clause must be declared as public. Therefore, if an iterator needs to be
public, it can be declared only where a public class is allowed. The following
list describes some alternative methods of declaring an iterator:
v As public, in a source file by itself

This method lets you use the iterator declaration in other code modules, and
provides an iterator that works for all SQLJ applications. In addition, there
are no concerns about having other top-level classes or public classes in the
same source file.

v As a top-level class in a source file that contains other top-level class
definitions
Java allows only one public, top-level class in a code module. Therefore, if
you need to declare the iterator as public, such as when the iterator includes
a with-clause, no other classes in the code module can be declared as public.

v As a nested static class within another class
Using this alternative lets you combine the iterator declaration with other
class declarations in the same source file, declare the iterator and other
classes as public, and make the iterator class visible to other code modules or
packages. However, when you reference the iterator from outside the nesting
class, you must fully-qualify the iterator name with the name of the nesting
class.

v As an inner class within another class
When you declare an iterator in this way, you can instantiate it only within
an instance of the nesting class. However, you can declare the iterator and
other classes in the file as public.
You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as
an inner class. This restriction does not apply to an iterator that is declared
as a static nested class. See "Use SQLJ and JDBC in the same application" for
more information on casting a ResultSet to a iterator.

2. Create an instance of the iterator class.
You declare an object of the named iterator class to retrieve rows from a result
table.

3. Assign the result table of a SELECT to an instance of the iterator.
To assign the result table of a SELECT to an iterator, you use an SQLJ
assignment clause. The format of the assignment clause for a named iterator is:
#sql context-clause iterator-object={select-statement};

See "SQLJ assignment-clause" and "SQLJ context-clause" for more information.
4. Retrieve rows.

Chapter 6. SQLJ application programming 6-25

Do this by invoking accessor methods in a loop. Accessor methods have the
same names as the corresponding columns in the iterator, and have no
parameters. An accessor method returns the value from the corresponding
column of the current row in the result table. Use the NamedIterator.next()
method to move the cursor forward through the result table.
To test whether you have retrieved all rows, check the value that is returned
when you invoke the next method. next returns a boolean with a value of
false if there is no next row.

5. Close the iterator.
Use the NamedIterator.close method to do this.

The following code demonstrates how to declare and use a named iterator. The
numbers to the right of selected statements correspond to the previously-described
steps.

Using a positioned iterator in an SQLJ application
Use a positioned iterator to refer to columns in a result table by their position in
the result set.

The steps in using a positioned iterator are:
1. Declare the iterator.

You declare any result set iterator using an iterator declaration clause. This causes
an iterator class to be created that has the same name and attributes as the
iterator. For a positioned iterator, the iterator declaration clause specifies the
following information:
v The name of the iterator
v A list of Java data types
v Information for a Java class declaration, such as whether the iterator is

public or static

v A set of attributes, such as whether the iterator is holdable, or whether its
columns can be updated

The data type declarations represent columns in the result table and are
referred to as columns of the result set iterator. The columns of the result set
iterator correspond to the columns of the result table, in left-to-right order. For
example, if an iterator declaration clause has two data type declarations, the

#sql iterator ByName(String LastName, Date HireDate); �1�
// Declare named iterator ByName

{
...
ByName nameiter; // Declare object of ByName class �2�
#sql [ctxt]
nameiter={SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �3�

// Assign the result table of the SELECT
// to iterator object nameiter

while (nameiter.next()) // Move the iterator through the result �4�
// table and test whether all rows retrieved

{
System.out.println(nameiter.LastName() + " was hired on "

+ nameiter.HireDate()); // Use accessor methods LastName and
// HireDate to retrieve column values

}
nameiter.close(); // Close the iterator �5�

}

Figure 6-10. Example of using a named iterator

6-26 IBM Data Server Driver for JDBC and SQLJ for Informix

first data type declaration corresponds to the first column in the result table,
and the second data type declaration corresponds to the second column in the
result table.
You need to specify Java data types in the iterators that closely match the
corresponding IDS column data types. See "Java, JDBC, and SQL data types" for
a list of the best mappings between Java data types and IDS data types.
You can declare an iterator in a number of ways. However, because a Java class
underlies each iterator, you need to ensure that when you declare an iterator,
the underlying class obeys Java rules. For example, iterators that contain a
with-clause must be declared as public. Therefore, if an iterator needs to be
public, it can be declared only where a public class is allowed. The following
list describes some alternative methods of declaring an iterator:
v As public, in a source file by itself

This is the most versatile method of declaring an iterator. This method lets
you use the iterator declaration in other code modules, and provides an
iterator that works for all SQLJ applications. In addition, there are no
concerns about having other top-level classes or public classes in the same
source file.

v As a top-level class in a source file that contains other top-level class
definitions
Java allows only one public, top-level class in a code module. Therefore, if
you need to declare the iterator as public, such as when the iterator includes
a with-clause, no other classes in the code module can be declared as public.

v As a nested static class within another class
Using this alternative lets you combine the iterator declaration with other
class declarations in the same source file, declare the iterator and other
classes as public, and make the iterator class visible from other code modules
or packages. However, when you reference the iterator from outside the
nesting class, you must fully-qualify the iterator name with the name of the
nesting class.

v As an inner class within another class
When you declare an iterator in this way, you can instantiate it only within
an instance of the nesting class. However, you can declare the iterator and
other classes in the file as public.
You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as
an inner class. This restriction does not apply to an iterator that is declared
as a static nested class. See "Use SQLJ and JDBC in the same application" for
more information on casting a ResultSet to a iterator.

2. Create an instance of the iterator class.
You declare an object of the positioned iterator class to retrieve rows from a
result table.

3. Assign the result table of a SELECT to an instance of the iterator.
To assign the result table of a SELECT to an iterator, you use an SQLJ
assignment clause. The format of the assignment clause for a positioned iterator
is:
#sql context-clause iterator-object={select-statement};

4. Retrieve rows.
Do this by executing FETCH statements in executable clauses in a loop. The
FETCH statements looks the same as a FETCH statements in other languages.

Chapter 6. SQLJ application programming 6-27

To test whether you have retrieved all rows, invoke the
PositionedIterator.endFetch method after each FETCH. endFetch returns a
boolean with the value true if the FETCH failed because there are no rows to
retrieve.

5. Close the iterator.
Use the PositionedIterator.close method to do this.

The following code demonstrates how to declare and use a positioned iterator. The
numbers to the right of selected statements correspond to the previously-described
steps.

Multiple open iterators for the same SQL statement in an SQLJ
application
With the IBM Data Server Driver for JDBC and SQLJ, your application can have
multiple concurrently open iterators for a single SQL statement in an SQLJ
application. With this capability, you can perform one operation on a table using
one iterator while you perform a different operation on the same table using
another iterator.

When you use concurrently open iterators in an application, you should close
iterators when you no longer need them to prevent excessive storage consumption
in the Java heap.

The following examples demonstrate how to perform the same operations on a
table without concurrently open iterators on a single SQL statement and with
concurrently open iterators on a single SQL statement. These examples use the
following iterator declaration:
import java.math.*;
#sql public iterator MultiIter(String EmpNo, BigDecimal Salary);

Without the capability for multiple, concurrently open iterators for a single SQL
statement, if you want to select employee and salary values for a specific employee
number, you need to define a different SQL statement for each employee number,
as shown in Figure 6-12 on page 6-29.

#sql iterator ByPos(String,Date); // Declare positioned iterator ByPos �1�
{

...
ByPos positer; // Declare object of ByPos class �2�
String name = null; // Declare host variables
Date hrdate;
#sql [ctxt] positer =

{SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �3�
// Assign the result table of the SELECT
// to iterator object positer

#sql {FETCH :positer INTO :name, :hrdate }; �4�
// Retrieve the first row

while (!positer.endFetch()) // Check whether the FETCH returned a row
{ System.out.println(name + " was hired in " +

hrdate);
#sql {FETCH :positer INTO :name, :hrdate };

// Fetch the next row
}
positer.close(); // Close the iterator �5�

}

Figure 6-11. Example of using a positioned iterator

6-28 IBM Data Server Driver for JDBC and SQLJ for Informix

Figure 6-13 demonstrates how you can perform the same operations when you
have the capability for multiple, concurrently open iterators for a single SQL
statement.

Multiple open instances of an iterator in an SQLJ application
Multiple instances of an iterator can be open concurrently in a single SQLJ
application. One application for this ability is to open several instances of an
iterator that uses host expressions. Each instance can use a different set of host
expression values.

The following example shows an application with two concurrently open instances
of an iterator.

MultiIter iter1 = null; // Iterator instance for retrieving
// data for first employee

String EmpNo1 = "000100"; // Employee number for first employee
#sql [ctx] iter1 =

{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo1};
// Assign result table to first iterator

MultiIter iter2 = null; // Iterator instance for retrieving
// data for second employee

String EmpNo2 = "000200"; // Employee number for second employee
#sql [ctx] iter2 =

{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo2};
// Assign result table to second iterator

// Process with iter1
// Process with iter2
iter1.close(); // Close the iterators
iter2.close();

Figure 6-12. Example of concurrent table operations using iterators with different SQL
statements

...
MultiIter iter1 = openIter("000100"); // Invoke openIter to assign the result table

// (for employee 100) to the first iterator
MultiIter iter2 = openIter("000200"); // Invoke openIter to assign the result

// table to the second iterator
// iter1 stays open when iter2 is opened

// Process with iter1
// Process with iter2
...
iter1.close(); // Close the iterators
iter2.close();
...
public MultiIter openIter(String EmpNo)

// Method to assign a result table
// to an iterator instance

{
MultiIter iter;
#sql [ctxt] iter =

{SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo};
return iter; // Method returns an iterator instance

}

Figure 6-13. Example of concurrent table operations using iterators with the same SQL
statement

Chapter 6. SQLJ application programming 6-29

As with any other iterator, you need to remember to close this iterator after the last
time you use it to prevent excessive storage consumption.

Using scrollable iterators in an SQLJ application
In addition to moving forward, one row at a time, through a result table, you
might want to move backward or go directly to a specific row. The IBM Data
Server Driver for JDBC and SQLJ provides this capability.

An iterator in which you can move forward, backward, or to a specific row is
called a scrollable iterator. A scrollable iterator in SQLJ is equivalent to the result
table of a database cursor that is declared as SCROLL.

Like a scrollable cursor, a scrollable iterator for a connection to IBM Informix is
insensitive. Insensitive means that changes to the underlying table after the iterator
is opened are not visible to the iterator. Insensitive iterators are read-only.

Important:

To create and use a scrollable iterator, you need to follow these steps:
1. Specify an iterator declaration clause that includes the following clauses:

v implements sqlj.runtime.Scrollable

This indicates that the iterator is scrollable.
v with (sensitivity=INSENSITIVE)

The iterator can be a named or positioned iterator.
Example: The following iterator declaration clause declares a positioned,
insensitive, scrollable iterator:
#sql public iterator ByPos

implements sqlj.runtime.Scrollable
with (sensitivity=INSENSITIVE) (String);

Example: The following iterator declaration clause declares a named,
insensitive, scrollable iterator:
#sql public iterator ByName

implements sqlj.runtime.Scrollable
with (sensitivity=INSENSITIVE) (String EmpNo);

Restriction: You cannot use a scrollable iterator to select columns with the
following data types from a table on a DB2 Database for Linux, UNIX, and
Windows server:
v LONG VARCHAR
v LONG VARGRAPHIC

...
ResultSet myFunc(String empid) // Method to open an iterator and get a resultSet
{

MyIter iter;
#sql iter = {SELECT * FROM EMPLOYEE WHERE EMPNO = :empid};
return iter.getResultSet();

}

// An application can call this method to get a resultSet for each
// employee ID. The application can process each resultSet separately.
...
ResultSet rs1 = myFunc("000100"); // Get employee record for employee ID 000100
...
ResultSet rs2 = myFunc("000200"); // Get employee record for employee ID 000200

Figure 6-14. Example of opening more than one instance of an iterator in a single application

6-30 IBM Data Server Driver for JDBC and SQLJ for Informix

v BLOB
v CLOB
v XML
v A distinct type that is based on any of the previous data types in this list
v A structured type

2. Create an iterator object, which is an instance of your iterator class.
3. For each row that you want to access:

For a named iterator, perform the following steps:
a. Position the cursor using one of the methods listed in the following table.

Table 6-1. sqlj.runtime.Scrollable methods for positioning a scrollable cursor

Method Positions the cursor

first1 On the first row of the result table

last1 On the last row of the result table

previous1,2 On the previous row of the result table

next On the next row of the result table

absolute(int n)1,3 If n>0, on row n of the result table. If n<0, and m is
the number of rows in the result table, on row m+n+1
of the result table.

relative(int n)1,4 If n>0, on the row that is n rows after the current row.
If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

afterLast1 After the last row in the result table

beforeFirst1 Before the first row in the result table

Notes:

1. This method does not apply to connections to IBM Informix.

2. If the cursor is after the last row of the result table, this method positions the cursor on
the last row.

3. If the absolute value of n is greater than the number of rows in the result table, this
method positions the cursor after the last row if n is positive, or before the first row if n
is negative.

4. Suppose that m is the number of rows in the result table and x is the current row
number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.
If n<0 and x+n<1, the iterator is positioned before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,
isLast, isBeforeFirst, or isAfterLast method to obtain this information.
If you need to know the current fetch direction, invoke the
getFetchDirection method.

c. Use accessor methods to retrieve the current row of the result table.
d. If update or delete operations by the iterator or by other means are visible

in the result table, invoke the getWarnings method to check whether the
current row is a hole.

For a positioned iterator, perform the following steps:
a. Use a FETCH statement with a fetch orientation clause to position the

iterator and retrieve the current row of the result table. Table 6-2 on page
6-32 lists the clauses that you can use to position the cursor.

Chapter 6. SQLJ application programming 6-31

Table 6-2. FETCH clauses for positioning a scrollable cursor

Method Positions the cursor

FIRST1 On the first row of the result table

LAST1 On the last row of the result table

PRIOR1,2 On the previous row of the result table

NEXT On the next row of the result table

ABSOLUTE(n)1,3 If n>0, on row n of the result table. If n<0, and m is
the number of rows in the result table, on row m+n+1
of the result table.

RELATIVE(n)1,4 If n>0, on the row that is n rows after the current row.
If n<0, on the row that is n rows before the current
row. If n=0, on the current row.

AFTER1,5 After the last row in the result table

BEFORE1,5 Before the first row in the result table

Notes:

1. This value is not supported for connections to IBM Informix

2. If the cursor is after the last row of the result table, this method positions the cursor on
the last row.

3. If the absolute value of n is greater than the number of rows in the result table, this
method positions the cursor after the last row if n is positive, or before the first row if n
is negative.

4. Suppose that m is the number of rows in the result table and x is the current row
number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.
If n<0 and x+n<1, the iterator is positioned before the first row.

5. Values are not assigned to host expressions.

b. If update or delete operations by the iterator or by other means are visible
in the result table, invoke the getWarnings method to check whether the
current row is a hole.

4. Invoke the close method to close the iterator.

The following code demonstrates how to use a named iterator to retrieve the
employee number and last name from all rows from the employee table. The
numbers to the right of selected statements correspond to the previously-described
steps.
#sql context Ctx; // Create connection context class Ctx
#sql iterator ScrollIter implements sqlj.runtime.Scrollable �1�

(String EmpNo, String LastName);
{

...
Ctx ctxt =
new Ctx("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",
userid,password,false); // Create connection context object ctxt

// for the connection to NEWYORK
ScrollIter scrliter; �2�
#sql [ctxt]
scrliter={SELECT EMPNO, LASTNAME FROM EMPLOYEE};
while (scrliter.next()) �4a�
{

System.out.println(scrliter.EmpNo() + " " �4c�
+ scrliter.LastName());

}
scrliter.close(); �5�

}

6-32 IBM Data Server Driver for JDBC and SQLJ for Informix

Calling stored procedures in SQLJ applications
To call a stored procedure, you use an executable clause that contains an SQL
CALL statement.

You can execute the CALL statement with host identifier parameters. You can
execute the CALL statement with literal parameters only if the IDS server on
which the CALL statement runs supports execution of the CALL statement
dynamically.

The basic steps in calling a stored procedure are:
1. Assign values to input (IN or INOUT) parameters.
2. Call the stored procedure.
3. Process output (OUT or INOUT) parameters.
4. If the stored procedure returns multiple result sets, retrieve those result sets.

The following code illustrates calling a stored procedure that has three input
parameters and three output parameters. The numbers to the right of selected
statements correspond to the previously-described steps.

LOBs in SQLJ applications with the IBM Data Server Driver for
JDBC and SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, you can retrieve LOB data
into Clob or Blob host expressions or update CLOB, BLOB, or DBCLOB columns
from Clob or Blob host expressions. You can also declare iterators with Clob or
Blob data types to retrieve data from CLOB, BLOB, or DBCLOB columns.

Retrieving or updating LOB data: To retrieve data from a BLOB column, declare
an iterator that includes a data type of Blob or byte[]. To retrieve data from a
CLOB or DBCLOB column, declare an iterator in which the corresponding column
has a Clob data type.

To update data in a BLOB column, use a host expression with data type Blob. To
update data in a CLOB or DBCLOB column, use a host expression with data type
Clob.

String FirstName="TOM"; // Input parameters �1�
String LastName="NARISINST";
String Address="IBM";
int CustNo; // Output parameters
String Mark;
String MarkErrorText;
...
#sql [myConnCtx] {CALL ADD_CUSTOMER(:IN FirstName, �2�

:IN LastName,
:IN Address,
:OUT CustNo,
:OUT Mark,
:OUT MarkErrorText)};

// Call the stored procedure
System.out.println("Output parameters from ADD_CUSTOMER call: ");
System.out.println("Customer number for " + LastName + ": " + CustNo); �3�
System.out.println(Mark);
If (MarkErrorText != null)

System.out.println(" Error messages:" + MarkErrorText);

Figure 6-15. Example of calling a stored procedure in an SQLJ application

Chapter 6. SQLJ application programming 6-33

Progressive streaming or LOB locators: In SQLJ applications, you can use
progressive streaming, also known as dynamic data format, or LOB locators in the
same way that you use them in JDBC applications.

Java data types for retrieving or updating LOB column data in
SQLJ applications
When the deferPrepares property is set to true, and the IBM Data Server Driver for
JDBC and SQLJ processes an SQLJ statement that includes host expressions, the
driver might need to do extra processing to determine data types. This extra
processing can impact performance.

When the JDBC driver cannot immediately determine the data type of a parameter
that is used with a LOB column, you need to choose a parameter data type that is
compatible with the LOB data type.

Input parameters for BLOB columns

For input parameters for BLOB columns, you can use either of the following
techniques:
v Use a java.sql.Blob input variable, which is an exact match for a BLOB column:

java.sql.Blob blobData;
#sql {CALL STORPROC(:IN blobData)};

Before you can use a java.sql.Blob input variable, you need to create a
java.sql.Blob object, and then populate that object.

v Use an input parameter of type of sqlj.runtime.BinaryStream. A
sqlj.runtime.BinaryStream object is compatible with a BLOB data type. For
example:
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(byteData);
int numBytes = byteData.length;
sqlj.runtime.BinaryStream binStream =

new sqlj.runtime.BinaryStream(byteStream, numBytes);
#sql {CALL STORPROC(:IN binStream)};

You cannot use this technique for INOUT parameters.

Output parameters for BLOB columns

For output or INOUT parameters for BLOB columns, you can use the following
technique:
v Declare the output parameter or INOUT variable with a java.sql.Blob data type:

java.sql.Blob blobData = null;
#sql CALL STORPROC (:OUT blobData)};

java.sql.Blob blobData = null;
#sql CALL STORPROC (:INOUT blobData)};

Input parameters for CLOB columns

For input parameters for CLOB columns, you can use one of the following
techniques:
v Use a java.sql.Clob input variable, which is an exact match for a CLOB column:

#sql CALL STORPROC(:IN clobData)};

Before you can use a java.sql.Clob input variable, you need to create a
java.sql.Clob object, and then populate that object.

6-34 IBM Data Server Driver for JDBC and SQLJ for Informix

v Use one of the following types of stream IN parameters:
– A sqlj.runtime.CharacterStream input parameter:

java.lang.String charData;
java.io.StringReader reader = new java.io.StringReader(charData);
sqlj.runtime.CharacterStream charStream =

new sqlj.runtime.CharacterStream (reader, charData.length);
#sql {CALL STORPROC(:IN charStream)};

– A sqlj.runtime.UnicodeStream parameter, for Unicode UTF-16 data:
byte[] charDataBytes = charData.getBytes("UnicodeBigUnmarked");
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream(charDataBytes);
sqlj.runtime.UnicodeStream uniStream =

new sqlj.runtime.UnicodeStream(byteStream, charDataBytes.length);
#sql {CALL STORPROC(:IN uniStream)};

– A sqlj.runtime.AsciiStream parameter, for ASCII data:
byte[] charDataBytes = charData.getBytes("US-ASCII");
java.io.ByteArrayInputStream byteStream =

new java.io.ByteArrayInputStream (charDataBytes);
sqlj.runtime.AsciiStream asciiStream =

new sqlj.runtime.AsciiStream (byteStream, charDataBytes.length);
#sql {CALL STORPROC(:IN asciiStream)};

For these calls, you need to specify the exact length of the input data. You
cannot use this technique for INOUT parameters.

v Use a java.lang.String input parameter:
java.lang.String charData;
#sql {CALL STORPROC(:IN charData)};

Output parameters for CLOB columns

For output or INOUT parameters for CLOB columns, you can use one of the
following techniques:
v Use a java.sql.Clob output variable, which is an exact match for a CLOB column:

java.sql.Clob clobData = null;
#sql CALL STORPROC(:OUT clobData)};

v Use a java.lang.String output variable:
java.lang.String charData = null;
#sql CALL STORPROC(:OUT charData)};

This technique should be used only if you know that the length of the retrieved
data is less than or equal to 32KB. Otherwise, the data is truncated.

Output parameters for DBCLOB columns

DBCLOB output or INOUT parameters for stored procedures are not supported.

SQLJ and JDBC in the same application
You can combine SQLJ clauses and JDBC calls in a single program.

To do this effectively, you need to be able to do the following things:
v Use a JDBC Connection to build an SQLJ ConnectionContext, or obtain a JDBC

Connection from an SQLJ ConnectionContext.
v Use an SQLJ iterator to retrieve data from a JDBC ResultSet or generate a JDBC

ResultSet from an SQLJ iterator.

Building an SQLJ ConnectionContext from a JDBC Connection: To do that:

Chapter 6. SQLJ application programming 6-35

1. Execute an SQLJ connection declaration clause to create a ConnectionContext
class.

2. Load the driver or obtain a DataSource instance.
3. Invoke the SQLJ DriverManager.getConnection or DataSource.getConnection

method to obtain a JDBC Connection.
4. Invoke the ConnectionContext constructor with the Connection as its argument

to create the ConnectionContext object.

Obtaining a JDBC Connection from an SQLJ ConnectionContext: To do this,
1. Execute an SQLJ connection declaration clause to create a ConnectionContext

class.
2. Load the driver or obtain a DataSource instance.
3. Invoke the ConnectionContext constructor with the URL of the driver and any

other necessary parameters as its arguments to create the ConnectionContext
object.

4. Invoke the JDBC ConnectionContext.getConnection method to create the JDBC
Connection object.

See "Connect to a data source using SQLJ" for more information on SQLJ
connections.

Retrieving JDBC result sets using SQLJ iterators: Use the iterator conversion
statement to manipulate a JDBC result set as an SQLJ iterator. The general form of
an iterator conversion statement is:
#sql iterator={CAST :result-set};

Before you can successfully cast a result set to an iterator, the iterator must
conform to the following rules:
v The iterator must be declared as public.
v If the iterator is a positioned iterator, the number of columns in the result set

must match the number of columns in the iterator. In addition, the data type of
each column in the result set must match the data type of the corresponding
column in the iterator.

v If the iterator is a named iterator, the name of each accessor method must match
the name of a column in the result set. In addition, the data type of the object
that an accessor method returns must match the data type of the corresponding
column in the result set.

The code in Figure 6-16 on page 6-37 builds and executes a query using a JDBC
call, executes an iterator conversion statement to convert the JDBC result set to an
SQLJ iterator, and retrieves rows from the result table using the iterator.

6-36 IBM Data Server Driver for JDBC and SQLJ for Informix

Notes to Figure 6-16:

Note Description
�1� This SQLJ clause creates the named iterator class ByName, which has accessor

methods LastName() and HireDate() that return the data from result table columns
LASTNAME and HIREDATE.

�2� This statement and the following two statements build and prepare a query for
dynamic execution using JDBC.

�3� This JDBC statement executes the SELECT statement and assigns the result table
to result set rs.

�4� This iterator conversion clause converts the JDBC ResultSet rs to SQLJ iterator
nameiter, and the following statements use nameiter to retrieve values from the
result table.

�5� The nameiter.close() method closes the SQLJ iterator and JDBC ResultSet rs.

Generating JDBC ResultSets from SQLJ iterators: Use the getResultSet method to
generate a JDBC ResultSet from an SQLJ iterator. Every SQLJ iterator has a
getResultSet method. After you access the ResultSet that underlies an iterator, you
need to fetch rows using only the ResultSet.

The code in Figure 6-17 generates a positioned iterator for a query, converts the
iterator to a result set, and uses JDBC methods to fetch rows from the table.

#sql public iterator ByName(String LastName, Date HireDate); �1�
public void HireDates(ConnectionContext connCtx, String whereClause)
{

ByName nameiter; // Declare object of ByName class
Connection conn=connCtx.getConnection();

// Create JDBC connection
Statement stmt = conn.createStatement(); �2�
String query = "SELECT LASTNAME, HIREDATE FROM EMPLOYEE";
query+=whereClause; // Build the query
ResultSet rs = stmt.executeQuery(query); �3�
#sql [connCtx] nameiter = {CAST :rs}; �4�
while (nameiter.next())
{

System.out.println(nameiter.LastName() + " was hired on "
+ nameiter.HireDate());

}
nameiter.close(); �5�
stmt.close();

}

Figure 6-16. Converting a JDBC result set to an SQLJ iterator

#sql iterator EmpIter(String, java.sql.Date);
{
...

EmpIter iter=null;
#sql [connCtx] iter=

{SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �1�
ResultSet rs=iter.getResultSet(); �2�
while (rs.next()) �3�
{ System.out.println(rs.getString(1) + " was hired in " +

rs.getDate(2));
}
rs.close(); �4�

}

Figure 6-17. Converting an SQLJ iterator to a JDBC ResultSet

Chapter 6. SQLJ application programming 6-37

Notes to Figure 6-17 on page 6-37:

Note Description
�1� This SQLJ clause executes the SELECT statement, constructs an iterator object that

contains the result table for the SELECT statement, and assigns the iterator object
to variable iter.

�2� The getResultSet() method accesses the ResultSet that underlies iterator iter.
�3� The JDBC getString() and getDate() methods retrieve values from the ResultSet.

The next() method moves the cursor to the next row in the ResultSet.
�4� The rs.close() method closes the SQLJ iterator as well as the ResultSet.

Rules and restrictions for using JDBC ResultSets in SQLJ applications: When you
write SQLJ applications that include JDBC result sets, observe the following rules
and restrictions:
v You cannot cast a ResultSet to an SQLJ iterator if the ResultSet and the iterator

have different holdability attributes.
A JDBC ResultSet or an SQLJ iterator can remain open after a COMMIT
operation. For a JDBC ResultSet, this characteristic is controlled by the IBM Data
Server Driver for JDBC and SQLJ property resultSetHoldability. For an SQLJ
iterator, this characteristic is controlled by the with holdability parameter of
the iterator declaration. Casting a ResultSet that has holdability to an SQLJ
iterator that does not, or casting a ResultSet that does not have holdability to an
SQLJ iterator that does, is not supported.

v Close the iterator or the underlying ResultSet object as soon as the program no
longer uses the iterator or ResultSet, and before the end of the program.
Closing the iterator also closes the ResultSet object. Closing the ResultSet object
also closes the iterator object. In general, it is best to close the object that is used
last.

v For the IBM Data Server Driver for JDBC and SQLJ, which supports scrollable
iterators and scrollable and updatable ResultSet objects, the following restrictions
apply:
– Scrollable iterators have the same restrictions as their underlying JDBC

ResultSet objects.
– You cannot cast a JDBC ResultSet that is not updatable to an SQLJ iterator

that is updatable.

Controlling the execution of SQL statements in SQLJ
You can use selected methods of the SQLJ ExecutionContext class to control or
monitor the execution of SQL statements.

To use ExecutionContext methods, follow these steps:
1. Acquire the default execution context from the connection context.

There are two ways to acquire an execution context:
v Acquire the default execution context from the connection context. For

example:
ExecutionContext execCtx = connCtx.getExecutionContext();

v Create a new execution context by invoking the constructor for
ExecutionContext. For example:
ExecutionContext execCtx=new ExecutionContext();

2. Associate the execution context with an SQL statement.
To do that, specify an execution context after the connection context in the
execution clause that contains the SQL statement.

6-38 IBM Data Server Driver for JDBC and SQLJ for Informix

3. Invoke ExecutionContext methods.
Some ExecutionContext methods are applicable before the associated SQL
statement is executed, and some are applicable only after their associated SQL
statement is executed.
For example, you can use method getUpdateCount to count the number of
rows that are deleted by a DELETE statement after you execute the DELETE
statement.

The following code demonstrates how to acquire an execution context, and then
use the getUpdateCount method on that execution context to determine the
number of rows that were deleted by a DELETE statement. The numbers to the
right of selected statements correspond to the previously-described steps.
ExecutionContext execCtx=new ExecutionContext(); �1�
#sql [connCtx, execCtx] {DELETE FROM EMPLOYEE WHERE SALARY > 10000}; �2�
System.out.println("Deleted " + execCtx.getUpdateCount() + " rows"); �3�

ROWIDs in SQLJ with the IBM Data Server Driver for JDBC
and SQLJ

DB2 for z/OS and DB2 for i support the ROWID data type for a column in a table.
A ROWID is a value that uniquely identifies a row in a table.

Although IBM Informix also supports rowids, those rowids have the INTEGER
data type. You can select an IBM Informix rowid column into a variable with a
four-byte integer data type.

If you use columns with the ROWID data type in SQLJ programs, you need to
customize those programs.

JDBC 4.0 includes interface java.sql.RowId that you can use in iterators and in
CALL statement parameters. If you do not have JDBC 4.0, you can use the IBM
Data Server Driver for JDBC and SQLJ-only class com.ibm.db2.jcc.DB2RowID. For
an iterator, you can also use the byte[] object type to retrieve ROWID values.

The following code shows an example of an iterator that is used to select values
from a ROWID column:

Chapter 6. SQLJ application programming 6-39

The following code shows an example of calling a stored procedure that takes
three ROWID parameters: an IN parameter, an OUT parameter, and an INOUT
parameter.

#sql iterator PosIter(int,String,java.sql.RowId);
// Declare positioned iterator
// for retrieving ITEM_ID (INTEGER),
// ITEM_FORMAT (VARCHAR), and ITEM_ROWID (ROWID)
// values from table ROWIDTAB

{
PosIter positrowid; // Declare object of PosIter class
java.sql.RowId rowid = null;
int id = 0;
String i_fmt = null;

// Declare host expressions
#sql [ctxt] positrowid =

{SELECT ITEM_ID, ITEM_FORMAT, ITEM_ROWID FROM ROWIDTAB
WHERE ITEM_ID=3};

// Assign the result table of the SELECT
// to iterator object positrowid

#sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};
// Retrieve the first row

while (!positrowid.endFetch())
// Check whether the FETCH returned a row

{System.out.println("Item ID " + id + " Item format " +
i_fmt + " Item ROWID ");
MyUtilities.printBytes(rowid.getBytes());

// Use the getBytes method to
// convert the value to bytes for printing.
// Call a user-defined method called
// printBytes (not shown) to print
// the value.

#sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};
// Retrieve the next row

}
positrowid.close(); // Close the iterator

}

Figure 6-18. Example of using an iterator to retrieve ROWID values

java.sql.RowId in_rowid = rowid;
java.sqlRowId out_rowid = null;
java.sql.RowId inout_rowid = rowid;

// Declare an IN, OUT, and
// INOUT ROWID parameter

...
#sql [myConnCtx] {CALL SP_ROWID(:IN in_rowid,

:OUT out_rowid,
:INOUT inout_rowid)};

// Call the stored procedure
System.out.println("Parameter values from SP_ROWID call: ");
System.out.println("OUT parameter value ");
MyUtilities.printBytes(out_rowid.getBytes());

// Use the getBytes method to
// convert the value to bytes for printing
// Call a user-defined method called
// printBytes (not shown) to print
// the value.

System.out.println("INOUT parameter value ");
MyUtilities.printBytes(inout_rowid.getBytes());

Figure 6-19. Example of calling a stored procedure with a ROWID parameter

6-40 IBM Data Server Driver for JDBC and SQLJ for Informix

Savepoints in SQLJ applications
Under the IBM Data Server Driver for JDBC and SQLJ, you can include any form
of the SQL SAVEPOINT statement in your SQLJ program.

An SQL savepoint represents the state of data and schemas at a particular point in
time within a unit of work. SQL statements exist to set a savepoint, release a
savepoint, and restore data and schemas to the state that the savepoint represents.

The following example demonstrates how to set a savepoint, roll back to the
savepoint, and release the savepoint.

#sql context Ctx; // Create connection context class Ctx
String empNumVar;
int shoeSizeVar;
...
try { // Load the JDBC driver

Class.forName("com.ibm.db2.jcc.DB2Driver");
}
catch (ClassNotFoundException e) {

e.printStackTrace();
}
Connection jdbccon=

DriverManager.getConnection("jdbc:ids://sysmvs1.stl.ibm.com:5021/NEWYORK",
userid,password);

// Create JDBC connection object jdbccon
jdbccon.setAutoCommit(false); // Do not autocommit
Ctx ctxt=new Ctx(jdbccon);

// Create connection context object myConnCtx
// for the connection to NEWYORK

... // Perform some SQL
#sql [ctxt] {COMMIT}; // Commit the transaction

// Commit the create
#sql [ctxt]

{INSERT INTO EMP_SHOE VALUES (’000010’, 6)};
// Insert a row

#sql [ctxt]
{SAVEPOINT SVPT1 ON ROLLBACK RETAIN CURSORS};

// Create a savepoint
...
#sql [ctxt]

{INSERT INTO EMP_SHOE VALUES (’000020’, 10)};
// Insert another row

#sql [ctxt] {ROLLBACK TO SAVEPOINT SVPT1};
// Roll back work to the point
// after the first insert

...
#sql [ctxt] {RELEASE SAVEPOINT SVPT1};

// Release the savepoint
ctx.close(); // Close the connection context

SQLJ utilization of SDK for Java Version 5 function
Your SQLJ applications can use a number of functions that were introduced with
the SDK for Java Version 5.

Figure 6-20. Setting, rolling back to, and releasing a savepoint in an SQLJ application

Chapter 6. SQLJ application programming 6-41

Static import

The static import construct lets you access static members without qualifying those
members with the name of the class to which they belong. For SQLJ applications,
this means that you can use static members in host expressions without qualifying
them.

Example: Suppose that you want to declare a host expression of this form:
double r = cos(PI * E);

cos, PI, and E are members of the java.lang.Math class. To declare r without
explicitly qualifying cos, PI, and E, include the following static import statement in
your program:
import static java.lang.Math.*;

Annotations

Java annotations are a means for adding metadata to Java programs that can also
affect the way that those programs are treated by tools and libraries. Annotations
are declared with annotation type declarations, which are similar to interface
declarations. Java annotations can appear in the following types of classes or
interfaces:
v Class declaration
v Interface declaration
v Nested class declaration
v Nested interface declaration

You cannot include Java annotations directly in SQLJ programs, but you can
include annotations in Java source code, and then include that source code in your
SQLJ programs.

Example: Suppose that you declare the following marker annotation in a program
called MyAnnot.java:
public @interface MyAnot { }

You also declare the following marker annotation in a program called
MyAnnot2.java:
public @interface MyAnot2 { }

You can then use those annotations in an SQLJ program:
// Class annotations
@MyAnot2 public @MyAnot class TestAnnotation
{

// Field annotation
@MyAnot
private static final int field1 = 0;
// Constructor annotation
@MyAnot2 public @MyAnot TestAnnotation () { }
// Method annotation
@MyAnot
public static void main (String a[])
{

TestAnnotation TestAnnotation_o = new TestAnnotation();
TestAnnotation_o.runThis();

}
// Inner class annotation

6-42 IBM Data Server Driver for JDBC and SQLJ for Informix

public static @MyAnot class TestAnotherInnerClass { }
// Inner interface annotation
public static @MyAnot interface TestAnotInnerInterface { }

}

Enumerated types

An enumerated type is a data type that consists of a set of ordered values. The
SDK for Java version 5 introduces the enum type for enumerated types.

You can include enums in the following places:
v In Java source files (.java files) that you include in an SQLJ program
v In SQLJ class declarations

Example: The TestEnum.sqlj class declaration includes an enum type:
public class TestEnum2
{

public enum Color {
RED,ORANGE,YELLOW,GREEN,BLUE,INDIGO,VIOLET}
Color color;
... // Get the value of color
switch (color) {
case RED:

System.out.println("Red is at one end of the spectrum.");
#sql[ctx] { INSERT INTO MYTABLE VALUES (:color) };
break;

case VIOLET:
System.out.println("Violet is on the other end of the spectrum.");
break;

case ORANGE:
case YELLOW:
case GREEN:
case BLUE:
case INDIGO:

System.out.println("Everything else is in the middle.");
break;

}

Generics

You can use generics in your Java programs to assign a type to a Java collection.
The SQLJ translator tolerates Java generic syntax. Examples of generics that you
can use in SQLJ programs are:
v A List of List objects:

List <List<String>> strList2 = new ArrayList<List<String>>();

v A HashMap in which the key/value pair has the String type:
Map <String,String> map = new HashMap<String,String>();

v A method that takes a List with elements of any type:
public void mthd(List <?> obj) {
...
}

Although you can use generics in SQLJ host variables, the value of doing so is
limited because the SQLJ translator cannot determine the types of those host
variables.

Chapter 6. SQLJ application programming 6-43

Enhanced for loop

The enhanced for lets you specify that a set of operations is performed on each
member of a collection or array. You can use the iterator in the enhanced for loop
in host expressions.

Example: INSERT each of the items in array names into table TAB.
String[] names = {"ABC","DEF","GHI"};
for (String n : names)
{

#sql {INSERT INTO TAB (VARCHARCOL) VALUES(:n) };
}

Varargs

Varargs make it easier to pass an arbitrary number of values to a method. A Vararg
in the last argument position of a method declaration indicates that the last
arguments are an array or a sequence of arguments. An SQLJ program can use the
passed arguments in host expressions.

Example: Pass an arbitrary number of parameters of type Object, to a method that
inserts each parameter value into table TAB.
public void runThis(Object... objects) throws SQLException
{

for (Object obj : objects)
{

#sql { INSERT INTO TAB (VARCHARCOL) VALUES(:obj) };
}

}

Transaction control in SQLJ applications
In SQLJ applications, as in other types of SQL applications, transaction control
involves explicitly or implicitly committing and rolling back transactions, and
setting the isolation level for transactions.

Setting the isolation level for an SQLJ transaction
To set the isolation level for a unit of work within an SQLJ program, use the SET
TRANSACTION ISOLATION LEVEL clause.

The following table shows the values that you can specify in the SET
TRANSACTION ISOLATION LEVEL clause and their IDS equivalents.

Table 6-3. Equivalent SQLJ and IDS isolation levels

SET TRANSACTION value IDS isolation level

SERIALIZABLE Repeatable read

REPEATABLE READ Read stability

READ COMMITTED Cursor stability

READ UNCOMMITTED Uncommitted read

The isolation level affects the underlying JDBC connection as well as the SQLJ
connection.

6-44 IBM Data Server Driver for JDBC and SQLJ for Informix

Committing or rolling back SQLJ transactions
If you disable autocommit for an SQLJ connection, you need to perform explicit
commit or rollback operations.

You do this using execution clauses that contain the SQL COMMIT or ROLLBACK
statements.

To commit a transaction in an SQLJ program, use a statement like this:
#sql [myConnCtx] {COMMIT};

To roll back a transaction in an SQLJ program, use a statement like this:
#sql [myConnCtx] {ROLLBACK};

Handling SQL errors and warnings in SQLJ applications
SQLJ clauses throw SQLExceptions when SQL errors occur, but not when most
SQL warnings occur.

SQLJ generates an SQLException under the following circumstances:
v When any SQL statement returns a negative SQL error code
v When a SELECT INTO SQL statement returns a +100 SQL error code

You need to explicitly check for other SQL warnings.
v For SQL error handling, include try/catch blocks around SQLJ statements.
v For SQL warning handling, invoke the getWarnings method after every SQLJ

statement.

Handling SQL errors in an SQLJ application
SQLJ clauses use the JDBC class java.sql.SQLException for error handling.

To handle SQL errors in SQLJ applications, following these steps:
1. Import the java.sql.SQLException class.
2. Use the Java error handling try/catch blocks to modify program flow when an

SQL error occurs.
3. Obtain error information from the SQLException.

You can use the getErrorCode method to retrieve SQL error codes and the
getSQLState method to retrieve SQLSTATEs.
If you are using the IBM Data Server Driver for JDBC and SQLJ, obtain
additional information from the SQLException by casting it to a
DB2Diagnosable object, in the same way that you obtain this information in a
JDBC application.

The following code prints out the SQL error that occurred if a SELECT statement
fails.
try {

#sql [ctxt] {SELECT LASTNAME INTO :empname
FROM EMPLOYEE WHERE EMPNO=’000010’};

}
catch(SQLException e) {

System.out.println("Error code returned: " + e.getErrorCode());
}

Chapter 6. SQLJ application programming 6-45

Handling SQL warnings in an SQLJ application
Other than a +100 SQL error code on a SELECT INTO statement, warnings from
the data server do not throw SQLExceptions. To handle warnings from the data
server, you need to give the program access to the java.sql.SQLWarning class.

If you want to retrieve data-server-specific information about a warning, you also
need to give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface
and the com.ibm.db2.jcc.DB2Sqlca class. Then follow these steps:
1. Set up an execution context for that SQL clause. See "Control the execution of

SQL statements in SQLJ" for information on how to set up an execution context.
2. To check for a warning from the data server, invoke the getWarnings method

after you execute an SQLJ clause.
getWarnings returns the first SQLWarning object that an SQL statement
generates. Subsequent SQLWarning objects are chained to the first one.

3. To retrieve data-server-specific information from the SQLWarning object with
the IBM Data Server Driver for JDBC and SQLJ, follow the instructions in
"Handle an SQLException under the IBM Data Server Driver for JDBC and
SQLJ".

The following example demonstrates how to retrieve an SQLWarning object for an
SQL clause with execution context execCtx. The numbers to the right of selected
statements correspond to the previously-described steps.
ExecutionContext execCtx=myConnCtx.getExecutionContext(); �1�

// Get default execution context from
// connection context

SQLWarning sqlWarn;
...
#sql [myConnCtx,execCtx] {SELECT LASTNAME INTO :empname

FROM EMPLOYEE WHERE EMPNO=’000010’};
if ((sqlWarn = execCtx.getWarnings()) != null) �2�
System.out.println("SQLWarning " + sqlWarn);

Closing the connection to a data source in an SQLJ application
When you have finished with a connection to a data source, you need to close the
connection to the data source. Doing so releases the connection context object's IDS
and SQLJ resources immediately.

To close the connection to the data source, use one of the ConnectionContext.close
methods.
v If you execute ConnectionContext.close() or

ConnectionContext.close(ConnectionContext.CLOSE_CONNECTION), the
connection context, as well as the connection to the data source, are closed.

v If you execute
ConnectionContext.close(ConnectionContext.KEEP_CONNECTION) the
connection context is closed, but the connection to the data source is not.

The following code closes the connection context, but does not close the connection
to the data source.
...
ctx = new EzSqljctx(con0); // Create a connection context object

// from JDBC connection con0
... // Perform various SQL operations
EzSqljctx.close(ConnectionContext.KEEP_CONNECTION);

// Close the connection context but keep
// the connection to the data source open

6-46 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 7. Preparing and running JDBC and SQLJ programs

The following topics contain information about preparing and running Java and
SQLJ programs with the IBM Data Server Driver for JDBC and SQLJ.

Program preparation for JDBC programs
Preparing a Java program that contains only JDBC methods is the same as
preparing any other Java program. You compile the program using the javac
command. No precompile steps are required.

To prepare a program named sample.java, execute this command from the
directory that contains the source file:
javac sample.java

Program preparation for SQLJ programs
Program preparation for SQLJ programs involves translating and compiling.

SQLJ on IBM Informix does not support static SQL; You must use dynamic SQL
with the IBM Data Server Driver for JDBC and SQLJ on IBM Informix.

To prepare an SQLJ program, run the sqlj command from the command line to
translate and compile the source code. For complete syntax for the sqlj command,
see “sqlj - SQLJ translator” on page 14-215.

The SQLJ command generates a Java source program, optionally compiles the Java
source program, and produces zero or more serialized profiles. You can compile
the Java program separately, but the default behavior of the sqlj command is to
compile the program. The SQLJ command runs without connecting to the database
server.

Running JDBC and SQLJ programs
You run a JDBC or SQLJ program using the java command. Before you run the
program, you need to ensure that the JVM can find all of the files that it needs.

To run a JDBC or SQLJ program, follow these steps:
1. Ensure that the program files can be found.

v For an SQLJ program, put the serialized profiles for the program in the same
directory as the class files for the program.

v Include directories for the class files that are used by the program in the
CLASSPATH.

2. Run the java command from the command line, with the top-level file name in
the program as the argument.
To run a program that is in the EzJava class, add the directory that contains
EzJava to the CLASSPATH. Then run this command:
java EzJava

© Copyright IBM Corp. 2007, 2011 7-1

7-2 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 8. Security under the IBM Data Server Driver for
JDBC and SQLJ

When you use the IBM Data Server Driver for JDBC and SQLJ, you choose a
security mechanism by specifying a value for the securityMechanism property.

You can set this property in one of the following ways:
v If you use the DriverManager interface, set securityMechanism in a

java.util.Properties object before you invoke the form of the getConnection
method that includes the java.util.Properties parameter.

v If you use the DataSource interface, and you are creating and deploying your
own DataSource objects, invoke the DataSource.setSecurityMechanism method
after you create a DataSource object.

You can determine the security mechanism that is in effect for a connection by
calling the DB2Connection.getDB2SecurityMechanism method.

The following table lists the security mechanisms that the IBM Data Server Driver
for JDBC and SQLJ supports, and the data sources that support those security
mechanisms.

Table 8-1. Database server support for IBM Data Server Driver for JDBC and SQLJ security mechanisms

Security mechanism Supported by

DB2 Database for
Linux, UNIX, and
Windows

DB2 for z/OS IBM Informix DB2 for i

User ID and password Yes Yes Yes Yes

User ID only Yes Yes Yes Yes

User ID and encrypted
password

Yes Yes Yes Yes2

Encrypted user ID Yes Yes No No

Encrypted user ID and
encrypted password

Yes Yes Yes Yes2

Encrypted user ID and
encrypted security-sensitive
data

No Yes No No

Encrypted user ID,
encrypted password, and
encrypted security-sensitive
data

Yes Yes No No

Kerberos1 Yes Yes No Yes

Plugin1 Yes No No No

Note:

1. Available for IBM Data Server Driver for JDBC and SQLJ type 4 connectivity only.

2. The version of the data source must be DB2 for i V6R1 or later.

© Copyright IBM Corp. 2007, 2011 8-1

The following table lists the security mechanisms that the IBM Data Server Driver
for JDBC and SQLJ supports, and the value that you need to specify for the
securityMechanism property to specify each security mechanism.

The default security mechanism is CLEAR_TEXT_PASSWORD_SECURITY. If the
server does not support CLEAR_TEXT_PASSWORD_SECURITY but supports
ENCRYPTED_USER_AND_PASSWORD_SECURITY, the IBM Data Server Driver
for JDBC and SQLJ driver updates the security mechanism to
ENCRYPTED_USER_AND_PASSWORD_SECURITY and attempts to connect to the
server. Any other mismatch in security mechanism support between the requester
and the server results in an error.

Table 8-2. Security mechanisms supported by the IBM Data Server Driver for JDBC and SQLJ

Security mechanism securityMechanism property value

User ID and password DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY

User ID only DB2BaseDataSource.USER_ONLY_SECURITY

User ID and encrypted password DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY

Encrypted user ID DB2BaseDataSource.ENCRYPTED_USER_ONLY_SECURITY

Encrypted user ID and encrypted
password

DB2BaseDataSource.ENCRYPTED_USER_AND_PASSWORD_SECURITY

Encrypted user ID and encrypted
security-sensitive data

DB2BaseDataSource.ENCRYPTED_USER_AND_DATA_SECURITY

Encrypted user ID, encrypted
password, and encrypted
security-sensitive data

DB2BaseDataSource.ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

Kerberos DB2BaseDataSource.KERBEROS_SECURITY

Plugin DB2BaseDataSource.PLUGIN_SECURITY

User ID and password security under the IBM Data Server Driver for
JDBC and SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, one of the available security
methods is user ID and password security.

To specify user ID and password security for a JDBC connection, use one of the
following techniques.

For the DriverManager interface: You can specify the user ID and password
directly in the DriverManager.getConnection invocation. For example:
import java.sql.*; // JDBC base
...
String id = "dbadm"; // Set user ID
String pw = "dbadm"; // Set password
String url = "jdbc:ids://mvs1.sj.ibm.com:5021/san_jose";

// Set URL for the data source

Connection con = DriverManager.getConnection(url, id, pw);
// Create connection

Another method is to set the user ID and password directly in the URL string. For
example:

8-2 IBM Data Server Driver for JDBC and SQLJ for Informix

import java.sql.*; // JDBC base
...
String url =

"jdbc:ids://mvs1.sj.ibm.com:5021/san_jose:user=dbadm;password=dbadm;";

// Set URL for the data source
Connection con = DriverManager.getConnection(url);

// Create connection

Alternatively, you can set the user ID and password by setting the user and
password properties in a Properties object, and then invoking the form of the
getConnection method that includes the Properties object as a parameter.
Optionally, you can set the securityMechanism property to indicate that you are
using user ID and password security. For example:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
Properties properties = new java.util.Properties();

// Create Properties object
properties.put("user", "dbadm"); // Set user ID for the connection
properties.put("password", "dbadm"); // Set password for the connection
properties.put("securityMechanism",

new String("" + com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY +
""));

// Set security mechanism to
// user ID and password

String url = "jdbc:ids://mvs1.sj.ibm.com:5021/san_jose";
// Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);
// Create connection

For the DataSource interface: you can specify the user ID and password directly in
the DataSource.getConnection invocation. For example:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
Context ctx=new InitialContext(); // Create context for JNDI
DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

// Get DataSource object
String id = "dbadm"; // Set user ID
String pw = "dbadm"; // Set password
Connection con = ds.getConnection(id, pw);

// Create connection

Alternatively, if you create and deploy the DataSource object, you can set the user
ID and password by invoking the DataSource.setUser and DataSource.setPassword
methods after you create the DataSource object. Optionally, you can invoke the
DataSource.setSecurityMechanism method property to indicate that you are using
user ID and password security. For example:
...
com.ibm.db2.jcc.DB2SimpleDataSource ds = // Create DB2SimpleDataSource object

new com.ibm.db2.jcc.DB2SimpleDataSource();
ds.setDriverType(4); // Set driver type
ds.setDatabaseName("san_jose"); // Set location
ds.setServerName("mvs1.sj.ibm.com"); // Set server name
ds.setPortNumber(5021); // Set port number
ds.setUser("dbadm"); // Set user ID
ds.setPassword("dbadm"); // Set password
ds.setSecurityMechanism(

Chapter 8. Security under the IBM Data Server Driver for JDBC and SQLJ 8-3

com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY);
// Set security mechanism to
// user ID and password

User ID-only security under the IBM Data Server Driver for JDBC and
SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, one of the available security
methods is user-ID only security.

To specify user ID security for a JDBC connection, use one of the following
techniques.

For the DriverManager interface: Set the user ID and security mechanism by
setting the user and securityMechanism properties in a Properties object, and then
invoking the form of the getConnection method that includes the Properties object
as a parameter. For example:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver

// for JDBC and SQLJ
// implementation of JDBC

...
Properties properties = new Properties();

// Create a Properties object
properties.put("user", "db2adm"); // Set user ID for the connection
properties.put("securityMechanism",

new String("" + com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY + ""));
// Set security mechanism to
// user ID only

String url = "jdbc:ids://mvs1.sj.ibm.com:5021/san_jose";
// Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);
// Create the connection

For the DataSource interface: If you create and deploy the DataSource object, you
can set the user ID and security mechanism by invoking the DataSource.setUser
and DataSource.setSecurityMechanism methods after you create the DataSource
object. For example:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver

// for JDBC and SQLJ
// implementation of JDBC

...
com.ibm.db2.jcc.DB2SimpleDataSource db2ds =

new com.ibm.db2.jcc.DB2SimpleDataSource();
// Create DB2SimpleDataSource object

db2ds.setDriverType(4); // Set the driver type
db2ds.setDatabaseName("san_jose"); // Set the location
db2ds.setServerName("mvs1.sj.ibm.com");

// Set the server name
db2ds.setPortNumber(5021); // Set the port number
db2ds.setUser("db2adm"); // Set the user ID
db2ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY);
// Set security mechanism to
// user ID only

8-4 IBM Data Server Driver for JDBC and SQLJ for Informix

Encrypted password, user ID, or user ID and password security under
the IBM Data Server Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ supports encrypted password security,
encrypted user ID security, or encrypted user ID and encrypted password security
for accessing data sources.

Connections to IBM Informix servers can use encrypted password security or
encrypted user ID and encrypted password security. For encrypted password
security or encrypted user ID and encrypted password security, the IBM Java
Cryptography Extension (ibmjceprovidere.jar) must be installed on your client. The
IBM JCE is part of the IBM SDK for Java, Version 1.4.2 or later.

Restriction: Because the IBM SDK for Java is not available on Mac OS X, IBM
Data Server Driver for JDBC and SQLJ encrypted password security or encrypted
user ID and encrypted password security is not available for Mac OS X clients.

Connections to DB2 for i V6R1 or later servers can use encrypted password
security or encrypted user ID and encrypted password security. For encrypted
password security or encrypted user ID and encrypted password security, the IBM
Java Cryptography Extension (ibmjceprovidere.jar) must be installed on your client.
The IBM JCE is part of the IBM SDK for Java, Version 1.4.2 or later.

To specify encrypted user ID or encrypted password security for a JDBC
connection, use one of the following techniques.

For the DriverManager interface: Set the user ID, password, and security
mechanism by setting the user, password, and securityMechanism properties in a
Properties object, and then invoking the form of the getConnection method that
includes the Properties object as a parameter. For example, use code like this to set
the user ID and encrypted password security mechanism, with AES encryption:
import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
Properties properties = new Properties(); // Create a Properties object
properties.put("user", "dbadm"); // Set user ID for the connection
properties.put("password", "dbadm"); // Set password for the connection
properties.put("securityMechanism", "2");

new String("" + com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY +
""));

// Set security mechanism to
// user ID and encrypted password

properties.put("encryptionAlgorithm", "2");
// Request AES security

String url = "jdbc:ids://mvs1.sj.ibm.com:5021/san_jose";
// Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);
// Create the connection

For the DataSource interface: If you create and deploy the DataSource object, you
can set the user ID, password, and security mechanism by invoking the
DataSource.setUser, DataSource.setPassword, and
DataSource.setSecurityMechanism methods after you create the DataSource object.
For example, use code like this to set the encrypted user ID and encrypted
password security mechanism, with AES encryption:

Chapter 8. Security under the IBM Data Server Driver for JDBC and SQLJ 8-5

import java.sql.*; // JDBC base
import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

// and SQLJ implementation of JDBC
...
com.ibm.db2.jcc.DB2SimpleDataSource ds =

new com.ibm.db2.jcc.DB2SimpleDataSource();
// Create the DataSource object

ds.setDriverType(4); // Set the driver type
ds.setDatabaseName("san_jose"); // Set the location
ds.setServerName("mvs1.sj.ibm.com");

// Set the server name
ds.setPortNumber(5021); // Set the port number
ds.setUser("db2adm"); // Set the user ID
ds.setPassword("db2adm"); // Set the password
ds.setSecurityMechanism(

com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY);
// Set security mechanism to
// User ID and encrypted password

ds.setEncryptionAlgorithm(2); // Request AES encryption

IBM Data Server Driver for JDBC and SQLJ trusted context support
The IBM Data Server Driver for JDBC and SQLJ provides methods that allow you
to establish and use trusted connections in Java programs.

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 Database for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS
Version 9.1 or later

A three-tiered application model consists of a database server, a middleware server
such as WebSphere Application Server, and end users. With this model, the
middleware server is responsible for accessing the database server on behalf of end
users. Trusted context support ensures that an end user's database identity and
database privileges are used when the middleware server performs any database
requests on behalf of that end user.

A trusted context is an object that the database administrator defines that contains
a system authorization ID and a set of trust attributes. Currently, for IDS database
servers, a database connection is the only type of context that is supported. The
trust attributes identify a set of characteristics of a connection that are required for
the connection to be considered a trusted connection. The relationship between a
database connection and a trusted context is established when the connection to
the database server is first created, and that relationship remains for the life of the
database connection.

After a trusted context is defined, and an initial trusted connection to the data
server is made, the middleware server can use that database connection under a
different user without reauthenticating the new user at the database server.

To avoid vulnerability to security breaches, an application server that uses these
trusted methods should not use untrusted connection methods.

The DB2ConnectionPoolDataSource class provides several versions of the
getDB2TrustedPooledConnection method, and the DB2XADataSource class

8-6 IBM Data Server Driver for JDBC and SQLJ for Informix

provides several versions of the getDB2TrustedXAConnection method, which allow
an application server to establish the initial trusted connection. You choose a
method based on the types of connection properties that you pass and whether
you use Kerberos security. When an application server calls one of these methods,
the IBM Data Server Driver for JDBC and SQLJ returns an Object[] array with two
elements:
v The first element contains a connection instance for the initial connection.
v The second element contains a unique cookie for the connection instance. The

cookie is generated by the JDBC driver and is used for authentication during
subsequent connection reuse.

The DB2PooledConnection class provides several versions of the getDB2Connection
method, and the DB2Connection class provides several versions of the
reuseDB2Connection method, which allow an application server to reuse an
existing trusted connection on behalf of a new user. The application server uses the
method to pass the following items to the new user:
v The cookie from the initial connection
v New connection properties for the reused connection

The JDBC driver checks that the supplied cookie matches the cookie of the
underlying trusted physical connection, to ensure that the connection request
originates from the application server that established the trusted physical
connection. If the cookies match, the connection becomes available for immediate
use by this new user, with the new properties.

Example: Obtain the initial trusted connection:
// Create a DB2ConnectionPoolDataSource instance
com.ibm.db2.jcc.DB2ConnectionPoolDataSource dataSource =

new com.ibm.db2.jcc.DB2ConnectionPoolDataSource();
// Set properties for this instance
dataSource.setDatabaseName ("STLEC1");
dataSource.setServerName ("v7ec167.svl.ibm.com");
dataSource.setDriverType (4);
dataSource.setPortNumber(446);
java.util.Properties properties = new java.util.Properties();
// Set other properties using
// properties.put("property", "value");
// Supply the user ID and password for the connection
String user = "user";
String password = "password";
// Call getDB2TrustedPooledConnection to get the trusted connection
// instance and the cookie for the connection
Object[] objects = dataSource.getDB2TrustedPooledConnection(

user,password, properties);

Example: Reuse an existing trusted connection:
// The first item that was obtained from the previous getDB2TrustedPooledConnection
// call is a connection object. Cast it to a PooledConnection object.
javax.sql.PooledConnection pooledCon =

(javax.sql.PooledConnection)objects[0];
properties = new java.util.Properties();
// Set new properties for the reused object using
// properties.put("property", "value");
// The second item that was obtained from the previous getDB2TrustedPooledConnection
// call is the cookie for the connection. Cast it as a byte array.
byte[] cookie = ((byte[])(objects[1]);
// Supply the user ID for the new connection.
String newuser = "newuser";
// Supply the name of a mapping service that maps a workstation user
// ID to a z/OS RACF ID

Chapter 8. Security under the IBM Data Server Driver for JDBC and SQLJ 8-7

String userRegistry = "registry";
// Do not supply any security token data to be traced.
byte[] userSecTkn = null;
// Do not supply a previous user ID.
String originalUser = null;
// Call getDB2Connection to get the connection object for the new
// user.
java.sql.Connection con =

((com.ibm.db2.jcc.DB2PooledConnection)pooledCon).getDB2Connection(
cookie,newuser,password,userRegistry,userSecTkn,originalUser,properties);

IBM Data Server Driver for JDBC and SQLJ support for SSL
The IBM Data Server Driver for JDBC and SQLJ provides support for the Secure
Sockets Layer (SSL) through the Java Secure Socket Extension (JSSE).

You can use SSL support in your Java applications if you use IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity to DB2 for z/OS Version 9 or later,
to DB2 Database for Linux, UNIX, and Windows Version 9.1, Fix Pack 2 or later, or
to IBM Informix Version 11.50 or later.

If you use SSL support for a connection to a DB2 for z/OS data server, and the
z/OS version is V1.8, V1.9, or V1.10, the appropriate PTF for APAR PK72201 must
be applied to Communication Server for z/OS IP Services.

To use SSL connections, you need to:
v Configure connections to the data server to use SSL.
v Configure your Java Runtime Environment to use SSL.

Configuring connections under the IBM Data Server Driver for
JDBC and SQLJ to use SSL

To configure database connections under the IBM Data Server Driver for JDBC and
SQLJ to use SSL, you need to set the DB2BaseDataSource.sslConnection property to
true.

Before a connection to a data source can use SSL, the port to which the application
connects must be configured in the database server as the SSL listener port.
1. Set DB2BaseDataSource.sslConnection on a Connection or DataSource instance.
2. Optional: Set DB2BaseDataSource.sslTrustStoreLocation on a Connection or

DataSource instance to identify the location of the truststore. Setting the
sslTrustStoreLocation property is an alternative to setting the Java
javax.net.ssl.trustStore property. If you set
DB2BaseDataSource.sslTrustStoreLocation, javax.net.ssl.trustStore is not used.

3. Optional: Set DB2BaseDataSource.sslTrustStorePassword on a Connection or
DataSource instance to identify the truststore password. Setting the
sslTrustStorePassword property is an alternative to setting the Java
javax.net.ssl.trustStorePassword property. If you set
DB2BaseDataSource.sslTrustStorePassword, javax.net.ssl.trustStorePassword is
not used.

The following example demonstrates how to set the sslConnection property on a
Connection instance:
java.util.Properties properties = new java.util.Properties();
properties.put("user", "xxxx");
properties.put("password", "yyyy");

8-8 IBM Data Server Driver for JDBC and SQLJ for Informix

properties.put("sslConnection", "true");
java.sql.Connection con =

java.sql.DriverManager.getConnection(url, properties);

Configuring the Java Runtime Environment to use SSL
Before you can use Secure Sockets Layer (SSL) connections in your JDBC and SQLJ
applications, you need to configure the Java Runtime Environment to use SSL.

Before you can configure your Java Runtime Environment for SSL, you need to
satisfy the following prerequisites:
v The Java Runtime Environment must include a Java security provider. The IBM

JSSE provider or the SunJSSE provider must be installed. The IBM JSSE provider
is automatically installed with the IBM SDK for Java.

Restriction: You can only use the SunJSSE provider only with an Oracle Java
Runtime Environment. The SunJSSE provider does not work with an IBM Java
Runtime Environment.

v SSL support must be configured on the database server.

To configure your Java Runtime Environment to use SSL, follow these steps.
1. Import a certificate from the database server to a Java truststore on the client.

Use the Java keytool utility to import the certificate into the truststore.
For example, suppose that the server certificate is stored in a file named
jcc.cacert. Issue the following keytool utility statement to read the certificate
from file jcc.cacert, and store it in a truststore named cacerts.
keytool -import -file jcc.cacert -keystore cacerts

2. Configure the Java Runtime Environment for the Java security providers by
adding entries to the java.security file.
The format of a security provider entry is:
security.provider.n=provider-package-name

A provider with a lower value of n takes precedence over a provider with a
higher value of n.
The Java security provider entries that you add depend on whether you use the
IBM JSSE provider or the SunJSSE provider.
v If you use the SunJSSE provider, add entries for the Oracle security providers

to your java.security file.
v If you use the IBM JSSE provider, use one of the following methods:

– Use the IBMJSSE2 provider (supported for the IBM SDK for Java 1.4.2
and later):

Recommendation: Use the IBMJSSE2 provider, and use it in FIPS mode.
- If you do not need to operate in FIPS-compliant mode:

v For the IBM SDK for Java 1.4.2, add an entry for the
IBMJSSE2Provider to the java.security file. Ensure that an entry for
the IBMJCE provider is in the java.security file. The java.security file
that is shipped with the IBM SDK for Java contains an entry for
entries for IBMJCE.

v For later versions of the IBM SDK for Java, ensure that entries for the
IBMJSSE2Provider and the IBMJCE provider are in the java.security
file. The java.security file that is shipped with the IBM SDK for Java
contains entries for those providers.

- If you need to operate in FIPS-compliant mode:

Chapter 8. Security under the IBM Data Server Driver for JDBC and SQLJ 8-9

v Add an entry for the IBMJCEFIPS provider to your java.security file
before the entry for the IBMJCE provider. Do not remove the entry
for the IBMJCE provider.

v Enable FIPS mode in the IBMJSSE2 provider. See step 3.
– Use the IBMJSSE provider (supported for the IBM SDK for Java 1.4.2

only):

- If you do not need to operate in FIPS-compliant mode, ensure that
entries for the IBMJSSEProvider and the IBMJCE provider are in the
java.security file. The java.security file that is shipped with the IBM
SDK for Java contains entries for those providers.

- If you need to operate in FIPS-compliant mode, add entries for the
FIPS-approved provider IBMJSSEFIPSProvider and the IBMJCEFIPS
provider to your java.security file, before the entry for the IBMJCE
provider.

Restriction: If you use the IBMJSSE provider on the Solaris operating
system, you need to include an entry for the SunJSSE provider before entries
for the IBMJCE, IBMJCEFIPS, IBMJSSE, or IBMJSSE2 providers.

Example: Use a java.security file similar to this one if you need to run in
FIPS-compliant mode, and you enable FIPS mode in the IBMJSSE2 provider:
Set the Java security providers
security.provider.1=com.ibm.jsse2.IBMJSSEProvider2
security.provider.2=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.3=com.ibm.crypto.provider.IBMJCE
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sasl.IBMSASL

Example: Use a java.security file similar to this one if you need to run in
FIPS-compliant mode, and you use the IBMJSSE provider:
Set the Java security providers
security.provider.1=com.ibm.fips.jsse.IBMJSSEFIPSProvider
security.provider.2=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.3=com.ibm.crypto.provider.IBMJCE
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sasl.IBMSASL

Example: Use a java.security file similar to this one if you use the SunJSSE
provider:
Set the Java security providers
security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.rsajca.Provider
security.provider.3=com.sun.crypto.provider.SunJCE
security.provider.4=com.sun.net.ssl.internal.ssl.Provider

3. If you plan to use the IBM Data Server Driver for JDBC and SQLJ in
FIPS-compliant mode, you need to set the com.ibm.jsse2.JSSEFIPS Java system
property:
com.ibm.jsse2.JSSEFIPS=true

Restriction: Non-FIPS-mode JSSE applications cannot run in a JVM that is in
FIPS mode.

Restriction: When the IBMJSSE2 provider runs in FIPS mode, it cannot use
hardware cryptography.

4. Configure the Java Runtime Environment for the SSL socket factory providers
by adding entries to the java.security file.

8-10 IBM Data Server Driver for JDBC and SQLJ for Informix

The format of SSL socket factory provider entries are:
ssl.SocketFactory.provider=provider-package-name
ssl.ServerSocketFactory.provider=provider-package-name

Specify the SSL socket factory provider for the Java security provider that you
are using.
Example: Include SSL socket factory provider entries like these in the
java.security file when you enable FIPS mode in the IBMJSSE2 provider:
Set the SSL socket factory provider
ssl.SocketFactory.provider=com.ibm.jsse2.SSLSocketFactoryImpl
ssl.ServerSocketFactory.provider=com.ibm.jsse2.SSLServerSocketFactoryImpl

Example: Include SSL socket factory provider entries like these in the
java.security file when you enable FIPS mode in the IBMJSSE provider:
Set the SSL socket factory provider
ssl.SocketFactory.provider=com.ibm.fips.jsse.JSSESocketFactory
ssl.ServerSocketFactory.provider=com.ibm.fips.jsse.JSSEServerSocketFactory

Example: Include SSL socket factory provider entries like these when you use
the SunJSSE provider:
Set the SSL socket factory provider
ssl.SocketFactory.provider=com.sun.net.ssl.internal.ssl.SSLSocketFactoryImpl
ssl.ServerSocketFactory.provider=com.sun.net.ssl.internal.ssl.SSLServerSocketFactoryImpl

5. Configure Java system properties to use the truststore.
To do that, set the following Java system properties:

javax.net.ssl.trustStore
Specifies the name of the truststore that you specified with the
-keystore parameter in the keytool utility in step 1 on page 8-9.

If the IBM Data Server Driver for JDBC and SQLJ property
DB2BaseDataSource.sslTrustStoreLocation is set, its value overrides the
javax.net.ssl.trustStore property value.

javax.net.ssl.trustStorePassword (optional)
Specifies the password for the truststore. You do not need to set a
truststore password. However, if you do not set the password, you
cannot protect the integrity of the truststore.

If the IBM Data Server Driver for JDBC and SQLJ property
DB2BaseDataSource.sslTrustStorePassword is set, its value overrides the
javax.net.ssl.trustStorePassword property value.

Example: One way that you can set Java system properties is to specify them as
the arguments of the -D option when you run a Java application. Suppose that
you want to run a Java application named MySSL.java, which accesses a data
source using an SSL connection. You have defined a truststore named cacerts.
The following command sets the truststore name when you run the application.
java -Djavax.net.ssl.trustStore=cacerts MySSL

Chapter 8. Security under the IBM Data Server Driver for JDBC and SQLJ 8-11

8-12 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 9. Problem diagnosis with the IBM Data Server Driver
for JDBC and SQLJ

The IBM Data Server Driver for JDBC and SQLJ includes diagnostic tools and
traces for diagnosing problems during connection and SQL statement execution.

Testing a data server connection

Run the DB2Jcc utility to test a connection to a data server. You provide DB2Jcc
with the URL for the data server, for IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity or IBM Data Server Driver for JDBC and SQLJ type 2
connectivity. DB2Jcc attempts to connect to the data server, and to execute an SQL
statement and a DatabaseMetaData method. If the connection or statement
execution fails, DB2Jcc provides diagnostic information about the failure.

Collecting JDBC trace data

Use one of the following procedures to start the trace:

Procedure 1: For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity, the
recommended method is to start the trace by setting the db2.jcc.override.traceFile
property or the db2.jcc.override.traceDirectory property in the IBM Data Server
Driver for JDBC and SQLJ configuration properties file. You can set the
db2.jcc.tracePolling and db2.jcc.tracePollingInterval properties before you start the
driver to allow you to change global configuration trace properties while the driver
is running.

Procedure 2: If you use the DataSource interface to connect to a data source, follow
this method to start the trace:
1. Invoke the DB2BaseDataSource.setTraceLevel method to set the type of tracing

that you need. The default trace level is TRACE_ALL. See "Properties for the IBM
Data Server Driver for JDBC and SQLJ" for information on how to specify more
than one type of tracing.

2. Invoke the DB2BaseDataSource.setJccLogWriter method to specify the trace
destination and turn the trace on.

Procedure 3:

If you use the DataSource interface to connect to a data source, invoke the
javax.sql.DataSource.setLogWriter method to turn the trace on. With this method,
TRACE_ALL is the only available trace level.

If you use the DriverManager interface to connect to a data source, follow this
procedure to start the trace.
1. Invoke the DriverManager.getConnection method with the traceLevel property

set in the info parameter or url parameter for the type of tracing that you need.
The default trace level is TRACE_ALL. See "Properties for the IBM Data Server
Driver for JDBC and SQLJ" for information on how to specify more than one
type of tracing.

2. Invoke the DriverManager.setLogWriter method to specify the trace destination
and turn the trace on.

© Copyright IBM Corp. 2007, 2011 9-1

After a connection is established, you can turn the trace off or back on, change the
trace destination, or change the trace level with the DB2Connection.setJccLogWriter
method. To turn the trace off, set the logWriter value to null.

The logWriter property is an object of type java.io.PrintWriter. If your application
cannot handle java.io.PrintWriter objects, you can use the traceFile property to
specify the destination of the trace output. To use the traceFile property, set the
logWriter property to null, and set the traceFile property to the name of the file
to which the driver writes the trace data. This file and the directory in which it
resides must be writable. If the file already exists, the driver overwrites it.

Procedure 4: If you are using the DriverManager interface, specify the traceFile
and traceLevel properties as part of the URL when you load the driver. For
example:
String url = "jdbc:ids://sysmvs1.stl.ibm.com:5021/san_jose" +
":traceFile=/u/db2p/jcctrace;" +
"traceLevel=" + com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS + ";";

Procedure 5: Use DB2TraceManager methods. The DB2TraceManager class provides
the ability to suspend and resume tracing of any type of log writer.

Example of starting a trace using configuration properties: For a complete example of
using configuration parameters to collect trace data, see "Example of using
configuration properties to start a JDBC trace".

Trace example program: For a complete example of a program for tracing under the
IBM Data Server Driver for JDBC and SQLJ, see "Example of a trace program
under the IBM Data Server Driver for JDBC and SQLJ".

DB2Jcc - IBM Data Server Driver for JDBC and SQLJ diagnostic utility
DB2Jcc verifies that a data server is configured for database access.

To verify the connection, DB2Jcc connects to the specified data server, executes an
SQL statement, and executes a java.sql.DatabaseMetadata method.

Authorization

The user ID under which DB2Jcc runs must have the authority to connect to the
specified data server and to execute the specified SQL statement.

DB2Jcc Syntax

�� java com.ibm.db2.jcc.DB2Jcc
-version -configuration -help

�

�
url-spec

-user user-ID -password password sql-spec -tracing

��

url-spec:

��
-url jdbc:db2://server /database

: port
jdbc:db2:database

��

9-2 IBM Data Server Driver for JDBC and SQLJ for Informix

sql-spec:

��
-sql ' SELECT * FROM SYSIBM.SYSDUMMY1 '

-sql ' sql-statement '
��

DB2Jcc parameters

-help
Specifies that DB2Jcc describes each of the options that it supports. If any other
options are specified with -help, they are ignored.

-version
Specifies that DB2Jcc displays the driver name and version.

-configuration
Specifies that DB2Jcc displays driver configuration information.

-url
Specifies the URL for the data server for which the connection is being tested.
The URL can be a URL for IBM Data Server Driver for JDBC and SQLJ type 2
connectivity or IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.
The variable parts of the -url value are:

server
The domain name or IP address of the operating system on which the
database server resides. server is used only for type 4 connectivity.

port
The TCP/IP server port number that is assigned to the data server. The
default is 446. port is used only for type 4 connectivity.

database
A name for the database server for which the profile is to be customized.

If the connection is to a DB2 for z/OS server, database is the DB2 location
name that is defined during installation. All characters in this value must
be uppercase characters. You can determine the location name by executing
the following SQL statement on the server:
SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

If the connection is to a DB2 Database for Linux, UNIX, and Windows
server, database is the database name that is defined during installation.

If the connection is to an IBM Informix data server, database is the database
name. The name is case-insensitive. The server converts the name to
lowercase.

If the connection is to an IBM Cloudscape server, the database is the
fully-qualified name of the file that contains the database. This name must
be enclosed in double quotation marks ("). For example:
"c:/databases/testdb"

-user user-ID
Specifies the user ID that is to be used to test the connection to the data
server.

-password password
Specifies the password for the user ID that is to be used to test the
connection to the data server.

Chapter 9. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 9-3

-sql 'sql-statement'
Specifies the SQL statement that is sent to the data server to verify the
connection. If the -sql parameter is not specified, this SQL statement is sent
to the data server:
SELECT * FROM SYSIBM.SYSDUMMY1

-tracing
Specifies that tracing is enabled. The trace destination is System.out.

If you omit the -tracing parameter, tracing is disabled.

Examples

Example: Test the connection to a data server using IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity. Use the default SQL statement to test the
connection. Enable tracing for the test.
java com.ibm.db2.jcc.DB2Jcc
-url jdbc:db2://mysys.myloc.svl.ibm.com:446/MYDB
-user db2user -password db2pass -tracing

Example: Test the connection to a data server using IBM Data Server Driver for
JDBC and SQLJ type 2 connectivity. Use the following SQL statement to test the
connection:
SELECT COUNT(*) FROM EMPLOYEE

Disable tracing for the test.
java com.ibm.db2.jcc.DB2Jcc
-url jdbc:db2:MYDB
-user db2user -password db2pass
-sql ’SELECT COUNT(*) FROM EMPLOYEE’

Examples of using configuration properties to start a JDBC trace
You can control tracing of JDBC applications without modifying those applications.

Example of writing trace data to one trace file for each
connection

Suppose that you want to collect trace data for a program named Test.java, which
uses IBM Data Server Driver for JDBC and SQLJ type 4 connectivity. Test.java does
no tracing, and you do not want to modify the program, so you enable tracing
using configuration properties. You want your trace output to have the following
characteristics:
v Trace information for each connection on the same DataSource is written to a

separate trace file. Output goes into a directory named /Trace.
v Each trace file name begins with jccTrace1.
v If trace files with the same names already exist, the trace data is appended to

them.

Although Test.java does not contain any code to do tracing, you want to set the
configuration properties so that if the application is modified in the future to do
tracing, the settings within the program will take precedence over the settings in
the configuration properties. To do that, use the set of configuration properties that
begin with db2.jcc, not db2.jcc.override.

The configuration property settings look like this:

9-4 IBM Data Server Driver for JDBC and SQLJ for Informix

v db2.jcc.traceDirectory=/Trace
v db2.jcc.traceFile=jccTrace1
v db2.jcc.traceFileAppend=true

You want the trace settings to apply only to your stand-alone program Test.java, so
you create a file with these settings, and then refer to the file when you invoke the
Java program by specifying the -Ddb2.jcc.propertiesFile option. Suppose that the
file that contains the settings is /Test/jcc.properties. To enable tracing when you
run Test.java, you issue a command like this:
java -Ddb2.jcc.propertiesFile=/Test/jcc.properties Test

Suppose that Test.java creates two connections for one DataSource. The program
does not define a logWriter object, so the driver creates a global logWriter object
for the trace output. When the program completes, the following files contain the
trace data:
v /Trace/jccTrace1_global_0
v /Trace/jccTrace1_global_1

Example of a trace program under the IBM Data Server Driver for
JDBC and SQLJ

You might want to write a single class that includes methods for tracing under the
DriverManager interface, as well as the DataSource interface.

The following example shows such a class. The example uses IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity.

public class TraceExample
{

public static void main(String[] args)
{

sampleConnectUsingSimpleDataSource();
sampleConnectWithURLUsingDriverManager();

}

private static void sampleConnectUsingSimpleDataSource()
{

java.sql.Connection c = null;
java.io.PrintWriter printWriter =
new java.io.PrintWriter(System.out, true);

// Prints to console, true means
// auto-flush so you don’t lose trace

try {
javax.sql.DataSource ds =
new com.ibm.db2.jcc.DB2SimpleDataSource();
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setServerName("sysmvs1.stl.ibm.com");
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setPortNumber(5021);
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setDatabaseName("san_jose");
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setDriverType(4);

ds.setLogWriter(printWriter); // This turns on tracing

// Refine the level of tracing detail
((com.ibm.db2.jcc.DB2BaseDataSource) ds).
setTraceLevel(com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_CONNECTS |
com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_DRDA_FLOWS);

Figure 9-1. Example of tracing under the IBM Data Server Driver for JDBC and SQLJ

Chapter 9. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 9-5

// This connection request is traced using trace level
// TRACE_CONNECTS | TRACE_DRDA_FLOWS
c = ds.getConnection("myname", "mypass");

// Change the trace level to TRACE_ALL
// for all subsequent requests on the connection
((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(printWriter,
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);
// The following INSERT is traced using trace level TRACE_ALL
java.sql.Statement s1 = c.createStatement();
s1.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");
s1.close();

// This code disables all tracing on the connection
((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(null);

// The following INSERT statement is not traced
java.sql.Statement s2 = c.createStatement();
s2.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");
s2.close();

c.close();
}
catch(java.sql.SQLException e) {
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,
printWriter, "[TraceExample]");

}
finally {

cleanup(c, printWriter);
printWriter.flush();

}
}

// If the code ran successfully, the connection should
// already be closed. Check whether the connection is closed.
// If so, just return.
// If a failure occurred, try to roll back and close the connection.

private static void cleanup(java.sql.Connection c,
java.io.PrintWriter printWriter)
{

if(c == null) return;

try {
if(c.isClosed()) {

printWriter.println("[TraceExample] " +
"The connection was successfully closed");
return;

}

// If we get to here, something has gone wrong.
// Roll back and close the connection.
printWriter.println("[TraceExample] Rolling back the connection");
try {

c.rollback();
}
catch(java.sql.SQLException e) {

printWriter.println("[TraceExample] " +
"Trapped the following java.sql.SQLException while trying to roll back:");
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");
printWriter.println("[TraceExample] " +
"Unable to roll back the connection");

}
catch(java.lang.Throwable e) {

printWriter.println("[TraceExample] Trapped the " +
"following java.lang.Throwable while trying to roll back:");

9-6 IBM Data Server Driver for JDBC and SQLJ for Informix

com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,
printWriter, "[TraceExample]");
printWriter.println("[TraceExample] Unable to " +
"roll back the connection");

}

// Close the connection
printWriter.println("[TraceExample] Closing the connection");
try {

c.close();
}
catch(java.sql.SQLException e) {

printWriter.println("[TraceExample] Exception while " +
"trying to close the connection");
printWriter.println("[TraceExample] Deadlocks could " +
"occur if the connection is not closed.");
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");

}
catch(java.lang.Throwable e) {

printWriter.println("[TraceExample] Throwable caught " +
"while trying to close the connection");
printWriter.println("[TraceExample] Deadlocks could " +
"occur if the connection is not closed.");
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");

}
}
catch(java.lang.Throwable e) {

printWriter.println("[TraceExample] Unable to " +
"force the connection to close");
printWriter.println("[TraceExample] Deadlocks " +
"could occur if the connection is not closed.");
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");

}
}
private static void sampleConnectWithURLUsingDriverManager()
{

java.sql.Connection c = null;

// This time, send the printWriter to a file.
java.io.PrintWriter printWriter = null;
try {

printWriter =
new java.io.PrintWriter(

new java.io.BufferedOutputStream(
new java.io.FileOutputStream("/temp/driverLog.txt"), 4096), true);

}
catch(java.io.FileNotFoundException e) {

java.lang.System.err.println("Unable to establish a print writer for trace");
java.lang.System.err.flush();
return;

}

try {
Class.forName("com.ibm.db2.jcc.DB2Driver");

}
catch(ClassNotFoundException e) {

printWriter.println("[TraceExample] " +
"IBM Data Server Driver for JDBC and SQLJ type 4 connectivity " +
"is not in the application classpath. Unable to load driver.");
printWriter.flush();
return;

}

// This URL describes the target data source for Type 4 connectivity.

Chapter 9. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 9-7

// The traceLevel property is established through the URL syntax,
// and driver tracing is directed to file "/temp/driverLog.txt"
// The traceLevel property has type int. The constants
// com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS and
// com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS represent
// int values. Those constants cannot be used directly in the
// first getConnection parameter. Resolve the constants to their
// int values by assigning them to a variable. Then use the
// variable as the first parameter of the getConnection method.
String databaseURL =
"jdbc:ids://sysmvs1.stl.ibm.com:5021" +
"/sample:traceFile=/temp/driverLog.txt;traceLevel=" +
(com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS |
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS) + ";";

// Set other properties
java.util.Properties properties = new java.util.Properties();
properties.setProperty("user", "myname");
properties.setProperty("password", "mypass");

try {
// This connection request is traced using trace level
// TRACE_CONNECTS | TRACE_DRDA_FLOWS
c = java.sql.DriverManager.getConnection(databaseURL, properties);

// Change the trace level for all subsequent requests
// on the connection to TRACE_ALL
((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(printWriter,
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

// The following INSERT is traced using trace level TRACE_ALL
java.sql.Statement s1 = c.createStatement();
s1.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");
s1.close();

// Disable all tracing on the connection
((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(null);

// The following SQL insert code is not traced
java.sql.Statement s2 = c.createStatement();
s2.executeUpdate("insert into sampleTable(sampleColumn) values(1)");
s2.close();

c.close();
}
catch(java.sql.SQLException e) {
com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,
"[TraceExample]");

}
finally {

cleanup(c, printWriter);
printWriter.flush();

}
}

}

Techniques for monitoring IBM Data Server Driver for JDBC and SQLJ
Sysplex support

To monitor IBM Data Server Driver for JDBC and SQLJ Sysplex support, you need
to monitor the global transport objects pool.

You can monitor the global transport objects pool in either of the following ways:

9-8 IBM Data Server Driver for JDBC and SQLJ for Informix

v Using traces that you start by setting IBM Data Server Driver for JDBC and
SQLJ configuration properties

v Using an application programming interface

Configuration properties for monitoring the global transport
objects pool

The db2.jcc.dumpPool, db2.jcc.dumpPoolStatisticsOnSchedule, and
db2.jcc.dumpPoolStatisticsOnScheduleFile configuration properties control tracing
of the global transport objects pool.

For example, the following set of configuration property settings cause error
messages and dump pool error messages to be written every 60 seconds to a file
named /home/WAS/logs/srv1/poolstats:
db2.jcc.dumpPool=DUMP_SYSPLEX_MSG|DUMP_POOL_ERROR
db2.jcc.dumpPoolStatisticsOnSchedule=60
db2.jcc.dumpPoolStatisticsOnScheduleFile=/home/WAS/logs/srv1/poolstats

An entry in the pool statistics file looks like this:
time Scheduled PoolStatistics npr:2575 nsr:2575 lwroc:439 hwroc:1764 coc:372
aooc:362 rmoc:362 nbr:2872 tbt:857520 tpo:10

The meanings of the fields are:

npr
The total number of requests that the IBM Data Server Driver for JDBC and
SQLJ has made to the pool since the pool was created.

nsr
The number of successful requests that the IBM Data Server Driver for JDBC
and SQLJ has made to the pool since the pool was created. A successful
request means that the pool returned an object.

lwroc
The number of objects that were reused but were not in the pool. This can
happen if a Connection object releases a transport object at a transaction
boundary. If the Connection object needs a transport object later, and the
original transport object has not been used by any other Connection object, the
Connection object can use that transport object.

hwroc
The number of objects that were reused from the pool.

coc
The number of objects that the IBM Data Server Driver for JDBC and SQLJ
created since the pool was created.

aooc
The number of objects that exceeded the idle time that was specified by
db2.jcc.maxTransportObjectIdleTime and were deleted from the pool.

rmoc
The number of objects that have been deleted from the pool since the pool was
created.

nbr
The number of requests that the IBM Data Server Driver for JDBC and SQLJ
made to the pool that the pool blocked because the pool reached its maximum

Chapter 9. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 9-9

capacity. A blocked request might be successful if an object is returned to the
pool before the db2.jcc.maxTransportObjectWaitTime is exceeded and an
exception is thrown.

tbt
The total time in milliseconds for requests that were blocked by the pool. This
time can be much larger than the elapsed execution time of the application if
the application uses multiple threads.

sbt
The shortest time in milliseconds that a thread waited to get a transport object
from the pool. If the time is under one millisecond, the value in this field is
zero.

lbt
The longest time in milliseconds that a thread waited to get a transport object
from the pool.

abt
The average amount of time in milliseconds that threads waited to get a
transport object from the pool. This value is tbt/nbr.

tpo
The number of objects that are currently in the pool.

Application programming interfaces for monitoring the global
transport objects pool

You can write applications to gather statistics on the global transport objects pool.
Those applications create objects in the DB2PoolMonitor class and invoke methods
to retrieve information about the pool.

For example, the following code creates an object for monitoring the global
transport objects pool:
import com.ibm.db2.jcc.DB2PoolMonitor;
DB2PoolMonitor transportObjectPoolMonitor =

DB2PoolMonitor.getPoolMonitor (DB2PoolMonitor.TRANSPORT_OBJECT);

After you create the DB2PoolMonitor object, you can use methods in the
DB2PoolMonitor class to monitor the pool.

9-10 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 10. System monitoring for the IBM Data Server Driver
for JDBC and SQLJ

To assist you in monitoring the performance of your applications with the IBM
Data Server Driver for JDBC and SQLJ, the driver provides two methods to collect
information for a connection.

That information is:

Core driver time
The sum of elapsed monitored API times that were collected while system
monitoring was enabled, in microseconds. In general, only APIs that might
result in network I/O or database server interaction are monitored.

Network I/O time
The sum of elapsed network I/O times that were collected while system
monitoring was enabled, in microseconds.

Server time
The sum of all reported database server elapsed times that were collected
while system monitoring was enabled, in microseconds.

Application time
The sum of the application, JDBC driver, network I/O, and database server
elapsed times, in milliseconds.

The two methods are:
v The DB2SystemMonitor interface
v The TRACE_SYSTEM_MONITOR trace level

To collect system monitoring data using the DB2SystemMonitor interface: Perform these
basic steps:
1. Invoke the DB2Connection.getDB2SystemMonitor method to create a

DB2SystemMonitor object.
2. Invoke the DB2SystemMonitor.enable method to enable the DB2SystemMonitor

object for the connection.
3. Invoke the DB2SystemMonitor.start method to start system monitoring.
4. When the activity that is to be monitored is complete, invoke

DB2SystemMonitor.stop to stop system monitoring.
5. Invoke the DB2SystemMonitor.getCoreDriverTimeMicros,

DB2SystemMonitor.getNetworkIOTimeMicros,
DB2SystemMonitor.getServerTimeMicros, or
DB2SystemMonitor.getApplicationTimeMillis methods to retrieve the elapsed
time data.
The server time that is returned by DB2SystemMonitor.getServerTimeMicros
does not include commit or rollback time.

For example, the following code demonstrates how to collect each type of elapsed
time data. The numbers to the right of selected statements correspond to the
previously described steps.

© Copyright IBM Corp. 2007, 2011 10-1

To collect system monitoring information using the trace method: Start a JDBC trace,
using configuration properties or Connection or DataSource properties. Include
TRACE_SYSTEM_MONITOR when you set the traceLevel property. For example:
String url = "jdbc:ids://sysmvs1.stl.ibm.com:5021/san_jose" +
":traceFile=/u/db2p/jcctrace;" +
"traceLevel=" + com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR + ";";

The trace records with system monitor information look similar to this:

import java.sql.*;
import com.ibm.db2.jcc.*;
public class TestSystemMonitor
{

public static void main(String[] args)
{

String url = "jdbc:ids://sysmvs1.svl.ibm.com:5021/san_jose";
String user="db2adm";
String password="db2adm";
try
{

// Load the IBM Data Server Driver for JDBC and SQLJ
Class.forName("com.ibm.db2.jcc.DB2Driver");
System.out.println("**** Loaded the JDBC driver");

// Create the connection using the IBM Data Server Driver for JDBC and SQLJ
Connection conn = DriverManager.getConnection (url,user,password);
// Commit changes manually
conn.setAutoCommit(false);
System.out.println("**** Created a JDBC connection to the data source");
DB2SystemMonitor systemMonitor = �1�

((DB2Connection)conn).getDB2SystemMonitor();
systemMonitor.enable(true); �2�
systemMonitor.start(DB2SystemMonitor.RESET_TIMES); �3�
Statement stmt = conn.createStatement();
int numUpd = stmt.executeUpdate(

"UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’");
systemMonitor.stop(); �4�
System.out.println("Server elapsed time (microseconds)="

+ systemMonitor.getServerTimeMicros()); �5�
System.out.println("Network I/O elapsed time (microseconds)="

+ systemMonitor.getNetworkIOTimeMicros());
System.out.println("Core driver elapsed time (microseconds)="

+ systemMonitor.getCoreDriverTimeMicros());
System.out.println("Application elapsed time (milliseconds)="

+ systemMonitor.getApplicationTimeMillis());
conn.rollback();
stmt.close();
conn.close();

}
// Handle errors
catch(ClassNotFoundException e)
{

System.err.println("Unable to load the driver, " + e);
}
catch(SQLException e)
{

System.out.println("SQLException: " + e);
e.printStackTrace();

}
}

}

Figure 10-1. Example of using DB2SystemMonitor methods to collect system monitoring data

10-2 IBM Data Server Driver for JDBC and SQLJ for Informix

[jcc][SystemMonitor:start]
...
[jcc][SystemMonitor:stop] core: 565.67ms | network: 211.695ms | server: 207.771ms

IBM Data Server Driver for JDBC and SQLJ remote trace controller
The IBM Data Server Driver for JDBC and SQLJ provides a facility for controlling
IBM Data Server Driver for JDBC and SQLJ traces dynamically.

This remote trace controller lets you perform operations like these for multiple
driver instances:
v Start, stop, or resume a trace
v Change the output trace file or directory location
v Change the trace level

The remote trace controller uses the Java Management Extensions (JMX)
architecture, which is part of the Java Standard Edition, Version 6, or later. The
JMX consists of:
v A set of built-in management utilities, which let you do monitoring from a

management console such as the Java Monitoring and Management Console
(JConsole).

v A set of APIs that let you write applications to perform the same functions.

Enabling the remote trace controller
Enabling the remote trace controller involves enabling Java Management
Extensions (JMX) in the IBM Data Server Driver for JDBC and SQLJ, and making
the JMX agent available to clients.

The remote trace controller requires Java Standard Edition, Version 6 or later.

The steps for enabling the remote trace controller are:
1. Enable JMX to the IBM Data Server Driver for JDBC and SQLJ by setting the

db2.jcc.jmxEnabled global configuration property to true or yes.
For example, include this string in DB2JccConfiguration.properties:
db2.jcc.jmxEnabled=true

2. Make the JMX agent (the platform MBean server) available to local or remote
clients.
v For local clients:

Monitoring and management capabilities are automatically made available
when the JVM is started. After your application is started, you can use a JMX
client such as JConsole to connect locally to your Java process.

v For remote clients, use one of the following methods:
– Use the out-of-the-box JMX agent.

Out-of-the-box management uses JMX built-in management utilities. To
enable out-of-the-box management, you need to set a number of Java
system properties. You must at least set the following property:
com.sun.management.jmxremote.port=portNum

In addition, you should ensure that authentication and SSL are properly
configured.
Full information on enabling out-of-the-box management is at the
following URL:

http://download.oracle.com/javase/6/docs/technotes/guides/management/agent.html

Chapter 10. System monitoring for the IBM Data Server Driver for JDBC and SQLJ 10-3

http://download.oracle.com/javase/6/docs/technotes/guides/management/agent.html

– Write a JMX agent. This technique is also discussed at:
http://download.oracle.com/javase/6/docs/technotes/guides/management/agent.html

In the following example, an RMI connector server is created for the
PlatformMBeanServer using the MyCustomJMXAuthenticator object. The
MyCustomJMXAuthenticator class defines how remote credentials are
converted into a JAAS Subject by implementing the JMXAuthenticator
interface:
...
HashMap<String> env = new HashMap<String>();
env.put(JMXConnectorServer.AUTHENTICATOR, new MyCustomJMXAuthenticator());
env.put("jmx.remote.x.access.file", "my.access.file");

MBeanServer mbs =
java.lang.management.ManagementFactory.getPlatformMBeanServer();

JMXServiceURL url =
new JMXServiceURL("service:jmx:rmi:///jndi/rmi://:9999/jmxrmi");

JMXConnectorServer cs =
JMXConnectorServerFactory.newJMXConnectorServer(url, env, mbs);

cs.start();
...
public class MyCustomJMXAuthenticator implements JMXAuthenticator {

public Subject authenticate(Object credentials) {
// the hash contains username, password, etc...
Hashtable <String> credentialsHash

= (Hashtable <String>) credentials;

...
// Authenticate using the provided credentials
...
if (authentication-successful) {

return new Subject(true,
Collections.singleton

(new JMXPrincipal(credentialsHash.get("username"))),
Collections.EMPTY_SET,
Collections.EMPTY_SET);

}
throw new SecurityException("Invalid credentials");

}
}

Accessing the remote trace controller
You can access the remote trace controller through out-of-the-box management
tools, or through an application.

You use out-of-the-box management through a JMX-compliant management client,
such as JConsole, which is part of Java Standard Edition, Version 6. Information on
using JConsole for out-of-the-box management is at the following URL:
http://download.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html

In an application that accesses the remote trace controller, the remote trace
controller is a managed bean (MBean). JMX manages resources through JMX
agents. A JMX agent is an MBean server. Each MBean represents a resource. Every
MBean has a name, which you define through an object of class
javax.management.ObjectName. You use the ObjectName object to register and
retrieve MBeans in the MBeanServer.

10-4 IBM Data Server Driver for JDBC and SQLJ for Informix

http://download.oracle.com/javase/6/docs/technotes/guides/management/agent.html
http://download.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html

The MBean name has two parts: the domain and the key properties. For the
ObjectName for the IBM Data Server Driver for JDBC and SQLJ remote trace
controller, the domain is com.ibm.db2.jcc, and the key properties are
name=DB2TraceManager.

An application that accesses the remote trace controller must include these steps:
1. Establish a Remote Method Invocation (RMI) connection to an MBean server.
2. Perform a lookup on the remote trace controller in the MBean server.
3. Invoke trace operations on the MBean.

You can operate on the MBean in the following ways:
v Using an MBean proxy
v Without a proxy, through an MBeanServerConnection.

Example: accessing the remote trace controller without proxies: This example
demonstrates accessing MBeans directly from an MBeanServerConnection. This
method is the most generic because it does not require matching interface
definitions on the JMX client application.
Hashtable<String> env = new Hashtable<String>();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");

try {
System.out.println ("");
System.out.println ("---");
System.out.println ("Establish an RMI connection to an MBeanServer");
System.out.println ("---");
JMXServiceURL url =

new JMXServiceURL ("service:jmx:rmi:///jndi/rmi://localhost:9999/jmxrmi");
JMXConnector jmxc = JMXConnectorFactory.connect (url, env);
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

System.out.println ("");
System.out.println ("---");
System.out.println ("Processing MBean");
System.out.println ("---");
String objectNameString = "com.ibm.db2.jcc:name=DB2TraceManager";
ObjectName name = new ObjectName(objectNameString);
System.out.println ("ObjectName="+objectNameString);

System.out.println ("");
System.out.println ("---");
System.out.println ("Print all attributes of the MBean");
System.out.println ("---");

System.out.println(
"TraceDirectory = "+mbsc.getAttribute (name, "TraceDirectory"));

System.out.println(
"TraceFile = "+mbsc.getAttribute (name, "TraceFile"));

System.out.println(
"TraceFileAppend = "+mbsc.getAttribute (name, "TraceFileAppend"));

System.out.println(
"TraceLevel = "+mbsc.getAttribute (name, "TraceLevel"));

System.out.println ("");
System.out.println ("---");
System.out.println ("Invoke some operations on the MBean");
System.out.println ("---");
System.out.print ("Invoking suspendTrace()...");
mbsc.invoke (name, "suspendTrace", null , null);
System.out.println ("success");

System.out.print ("Invoking resumeTrace()...");

Chapter 10. System monitoring for the IBM Data Server Driver for JDBC and SQLJ 10-5

mbsc.invoke (name, "resumeTrace", null , null);
System.out.println ("success");

}
catch (Exception e) {

System.out.println ("failure");
e.printStackTrace ();

}

Example: accessing the remote trace controller with proxies: This example
demonstrates the creation of a proxy to an MBean. The proxy implements the
com.ibm.db2.jcc.mx.DB2TraceManagerMXBean interface. The application makes
calls directly on the proxy, and the underlying proxy implementation invokes the
MBean operation on the remote MBean server.
Hashtable<String> env = new Hashtable<String>();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");

try {
System.out.println ("");
System.out.println ("---");
System.out.println ("Establish an RMI connection to an MBeanServer");
System.out.println ("---");
JMXServiceURL url =

new JMXServiceURL ("service:jmx:rmi:///jndi/rmi://localhost:9999/jmxrmi");
JMXConnector jmxc = JMXConnectorFactory.connect (url, env);
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

System.out.println ("");
System.out.println ("---");
System.out.println ("Processing MBean");
System.out.println ("---");
String objectNameString = "com.ibm.db2.jcc:name=DB2TraceManager";
ObjectName name = new ObjectName(objectNameString);
System.out.println ("ObjectName="+objectNameString);

System.out.println ("");
System.out.println ("---");
System.out.println ("Print all attributes of the MBean");
System.out.println ("---");
com.ibm.db2.jcc.mx.DB2TraceManagerMXBean mbeanProxy =

JMX.newMBeanProxy(mbsc, name,
com.ibm.db2.jcc.mx.DB2TraceManagerMXBean.class, true);

System.out.println ("TraceDirectory = "+mbeanProxy.getTraceDirectory ());
System.out.println ("TraceFile = "+mbeanProxy.getTraceFile ());
System.out.println ("TraceFileAppend = "+mbeanProxy.getTraceFileAppend ());
System.out.println ("TraceLevel = "+mbeanProxy.getTraceLevel ());
System.out.println ("");
System.out.println ("---");
System.out.println ("Invoke some operations on the MBean");
System.out.println ("---");
System.out.print ("Invoking suspendTrace()...");
mbeanProxy.suspendTrace();
System.out.println ("success");
System.out.print ("Invoking resumeTrace()...");
mbeanProxy.resumeTrace();
System.out.println ("success");

}
catch (Exception e) {

System.out.println ("failure");
e.printStackTrace ();

}

10-6 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 11. Java client support for high availability on IBM
data servers

Client applications that connect to DB2 Database for Linux, UNIX, and Windows,
DB2 for z/OS, or IBM Informix can easily take advantage of the high availability
features of those data servers.

Client applications can use the following high availability features:
v Automatic client reroute

Automatic client reroute capability is available on all IBM data servers.
Automatic client reroute uses information that is provided by the data servers to
redirect client applications from a server that experiences an outage to an
alternate server. Automatic client reroute enables applications to continue their
work with minimal interruption. Redirection of work to an alternate server is
called failover.
For connections to DB2 for z/OS data servers, automatic client reroute is part of
the workload balancing feature. In general, for DB2 for z/OS, automatic client
reroute should not be enabled without workload balancing.

v Client affinities
Client affinities is a failover solution that is controlled completely by the client. It
is intended for situations in which you need to connect to a particular primary
server. If an outage occurs during the connection to the primary server, you use
client affinities to enforce a specific order for failover to alternate servers.
Client affinities is not applicable to a DB2 for z/OS data sharing environment,
because all members of a data sharing group can access data concurrently. Data
sharing is the recommended solution for high availability for DB2 for z/OS.

v Workload balancing
Workload balancing is available on all IBM data servers. Workload balancing
ensures that work is distributed efficiently among servers in an IBM Informix
high-availability cluster, DB2 for z/OS data sharing group, or DB2 Database for
Linux, UNIX, and Windows DB2 pureScale® instance.

The following table provides links to server-side information about these features.

Table 11-1. Server-side information on high availability

Data server Related topics

DB2 Database for Linux, UNIX, and Windows v DB2 pureScale: Road map to DB2 pureScale Feature
documentation

v Automatic client reroute: Automatic client reroute
roadmap

IBM Informix Manage Cluster Connections with the Connection
Manager

DB2 for z/OS Communicating with data sharing groups

Important: For connections to DB2 for z/OS, this information discusses direct
connections to DB2 for z/OS. For information about high availability for
connections through DB2 Connect™ Server, see the DB2 Connect documentation.

© Copyright IBM Corp. 2007, 2011 11-1

http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/topic/com.ibm.db2.luw.sd.doc/doc/c0056030.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/topic/com.ibm.db2.luw.sd.doc/doc/c0056030.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.ha.doc/doc/r0023392.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.ha.doc/doc/r0023392.html
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1210.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1210.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/db2z_communicatedsgroups.htm

Java client support for high availability for connections to DB2
Database for Linux, UNIX, and Windows servers

DB2 Database for Linux, UNIX, and Windows servers provide high availability for
client applications, through workload balancing and automatic client reroute. This
support is available for applications that use Java clients (JDBC, SQLJ, or
pureQuery), as well as non-Java clients (ODBC, CLI, .NET, OLE DB, PHP, Ruby, or
embedded SQL).

For Java clients, you need to use IBM Data Server Driver for JDBC and SQLJ type
4 connectivity to take advantage of DB2 Database for Linux, UNIX, and Windows
high-availability support. You need IBM Data Server Driver for JDBC and SQLJ
version 3.58 or 4.8, or later.

High availability support for connections to DB2 Database for Linux, UNIX, and
Windows servers includes:

Automatic client reroute
This support enables a client to recover from a failure by attempting to
reconnect to the database through an alternate server. Reconnection to another
server is called failover. For Java clients, automatic client reroute support is
always enabled.

Servers can provide automatic client reroute capability in any of the following
ways:
v Several servers are configured in a DB2 pureScale instance. A connection to a

database is a connection to a member of that DB2 pureScale instance.
Failover involves reconnection to another member of the DB2 pureScale
instance. This environment requires that clients use TCP/IP to connect to the
DB2 pureScale instance.

v A DB2 pureScale instance and an alternate server are defined for a database.
Failover first involves reconnection to another member of the DB2 pureScale
instance. Failover to the alternate server is attempted only if no member of
the DB2 pureScale instance is available.

v A DB2 pureScale instance is defined for the primary server, and another DB2
pureScale instance is defined for the alternate server. Failover first involves
reconnection to another member of the primary DB2 pureScale instance.
Failover to the alternate DB2 pureScale instance is attempted only if no
member of the primary DB2 pureScale instance is available.

v A database is defined on a single server. The configuration for that database
includes specification of an alternate server. Failover involves reconnection
to the alternate server.

For Java, client applications, failover for automatic client reroute can be
seamless or non-seamless. With non-seamless failover, when the client application
reconnects to another server, an error is always returned to the application, to
indicate that failover (connection to the alternate server) occurred. With
seamless failover, the driver does not return an error if a connection failure and
successful reconnection to an alternate server occur during execution of the
first SQL statement in a transaction.

In a DB2 pureScale instance, automatic client reroute support can be used
without workload balancing or with workload balancing.

Workload balancing
Workload balancing can improve availability of a DB2 pureScale instance.

11-2 IBM Data Server Driver for JDBC and SQLJ for Informix

With workload balancing, a DB2 pureScale instance ensures that work is
distributed efficiently among members.

Java clients on any operating system support workload balancing. The
connection from the client to the DB2 pureScale instance must use TCP/IP.

When workload balancing is enabled, the client gets frequent status
information about the members of the DB2 pureScale instance through a server
list. The client caches the server list and uses the information in it to determine
the member to which the next transaction should be routed.

For Java applications, when JNDI is used, the cached server list can be shared
by multiple JVMs for the first connection. However workload balancing is
always performed within the context of a single JVM.

DB2 Database for Linux, UNIX, and Windows supports two types of workload
balancing:

Connection-level workload balancing
Connection-level workload balancing is performed at connection
boundaries. It is not supported for Java clients.

Transaction-level workload balancing
Transaction-level workload balancing is performed at transaction
boundaries. Client support for transaction-level workload balancing is
disabled by default for clients that connect to DB2 Database for Linux,
UNIX, and Windows.

Client affinities
Client affinities is an automatic client reroute solution that is controlled
completely by the client. It is intended for situations in which you need to
connect to a particular primary server. If an outage occurs during the
connection to the primary server, you use client affinities to enforce a specific
order for failover to alternate servers.

Configuration of DB2 Database for Linux, UNIX, and Windows
automatic client reroute support for Java clients

For connections to DB2 Database for Linux, UNIX, and Windows databases, the
process for configuration of automatic client reroute support on Java clients is the
same for connections to a non-DB2 pureScale environment and a DB2 pureScale
environment.

Automatic client reroute support for Java client applications that connect to DB2
Database for Linux, UNIX, and Windows works for connections that are obtained
using the javax.sql.DataSource, javax.sql.ConnectionPoolDataSource,
javax.sql.XADataSource, or java.sql.DriverManager interface.

To configure automatic client reroute on a IBM Data Server Driver for JDBC and
SQLJ client:
1. Set the appropriate properties to specify the primary and alternate server

addresses to use if the first connection fails.
v If your application is using the DriverManager interface for connections:

a. Specify the server name and port number of the primary server that you
want to use in the connection URL.

b. Set the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties to the server name and port
number of the alternate server that you want to use.

Chapter 11. Java client support for high availability on IBM data servers 11-3

Restriction: Automatic client reroute support for connections that are made
with the DriverManager interface has the following restrictions:
– Alternate server information is shared between DriverManager

connections only if you create the connections with the same URL and
properties.

– You cannot set the clientRerouteServerListJNDIName property or the
clientRerouteServerListJNDIContext properties for a DriverManager
connection.

– Automatic client reroute is not enabled for default connections
(jdbc:default:connection).

v If your application is using the DataSource interface for connections, use one
or both of the following techniques:
– Set the server names and port numbers in DataSource properties:

a. Set the serverName and portNumber properties to the server name
and port number of the primary server that you want to use.

b. Set the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties to the server name and
port number of the alternate server that you want to use.

– Configure JNDI for automatic client reroute by using a
DB2ClientRerouteServerList instance to identify the primary server and
alternate server.
a. Create an instance of DB2ClientRerouteServerList.

DB2ClientRerouteServerList is a serializable Java bean with the
following properties:

Property name Data type

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName String[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber int[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryServerName String[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryPortNumber int[]

getXXX and setXXX methods are defined for each property.
b. Set the

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryServerName and
com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryPortNumber
properties to the server name and port number of the primary server
that you want to use.

c. Set the
com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName and
com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber
properties to the server names and port numbers of the alternate
server that you want to use.

d. To make the DB2ClientRerouteServerList persistent:
1) Bind the DB2ClientRerouteServerList instance to the JNDI registry.
2) Assign the JNDI name of the DB2ClientRerouteServerList object to

the IBM Data Server Driver for JDBC and SQLJ
clientRerouteServerListJNDIName property.

3) Assign the name of the JNDI context that is used for binding and
lookup of the DB2ClientRerouteServerList instance to the
clientRerouteServerListJNDIContext property.

11-4 IBM Data Server Driver for JDBC and SQLJ for Informix

When a DataSource is configured to use JNDI for storing automatic client
reroute alternate information, the standard server and port properties of
the DataSource are not used for a getConnection request. Instead, the
primary server address is obtained from the transient
clientRerouteServerList information. If the JNDI store is not available due
to a JNDI bind or lookup failure, the IBM Data Server Driver for JDBC
and SQLJ attempts to make a connection using the standard server and
port properties of the DataSource. Warnings are accumulated to indicate
that a JNDI bind or lookup failure occurred.
After a failover:
- The IBM Data Server Driver for JDBC and SQLJ attempts to propagate

the updated server information to the JNDI store.
- primaryServerName and primaryPortNumber values that are specified

in DB2ClientRerouteServerList are used for the connection. If
primaryServerName is not specified, the serverName and portNumber
values for the DataSource instance are used.

If you configure DataSource properties as well as configuring JNDI for
automatic client reroute, the DataSource properties have precedence over the
JNDI configuration.

2. Set properties to control the number of retries, time between retries, and the
frequency with which the server list is refreshed.
The following properties control retry behavior for automatic client reroute.

maxRetriesForClientReroute
The maximum number of connection retries for automatic client reroute.

When client affinities support is not configured, if
maxRetriesForClientReroute or retryIntervalForClientReroute is not set, the
default behavior is that the connection is retried for 10 minutes, with a wait
time between retries that increases as the length of time from the first retry
increases.

When client affinities is configured, the default for
maxRetriesForClientReroute is 3.

retryIntervalForClientReroute
The number of seconds between consecutive connection retries.

When client affinities support is not configured, if
retryIntervalForClientReroute or maxRetriesForClientReroute is not set, the
default behavior is that the connection is retried for 10 minutes, with a wait
time between retries that increases as the length of time from the first retry
increases.

When client affinities is configured, the default for
retryIntervalForClientReroute is 0 (no wait).

Example of enabling DB2 Database for Linux, UNIX, and
Windows automatic client reroute support in Java applications

Java client setup for DB2 Database for Linux, UNIX, and Windows automatic client
reroute support includes setting several IBM Data Server Driver for JDBC and
SQLJ properties.

The following example demonstrates setting up Java client applications for DB2
Database for Linux, UNIX, and Windows automatic client reroute support.

Chapter 11. Java client support for high availability on IBM data servers 11-5

Suppose that your installation has a primary server and an alternate server with
the following server names and port numbers:

Server name Port number

srv1.sj.ibm.com 50000

srv3.sj.ibm.com 50002

The following code sets up DataSource properties in an application so that the
application connects to srv1.sj.ibm.com as the primary server, and srv3.sj.ibm.com
as the alternative server. That is, if srv1.sj.ibm.com is down during the initial
connection, the driver should connect to srv3.sj.ibm.com.
ds.setDriverType(4);
ds.setServerName("srv1.sj.ibm.com");
ds.setPortNumber("50000");
ds.setClientRerouteAlternateServerName("srv3.sj.ibm.com");
ds.setClientRerouteAlternatePortNumber("50002");

The following code configures JNDI for automatic client reroute. It creates an
instance of DB2ClientRerouteServerList, binds that instance to the JNDI registry,
and assigns the JNDI name of the DB2ClientRerouteServerList object to the
clientRerouteServerListJNDIName property.
// Create a starting context for naming operations
InitialContext registry = new InitialContext();
// Create a DB2ClientRerouteServerList object
DB2ClientRerouteServerList address = new DB2ClientRerouteServerList();

// Set the port number and server name for the primary server
address.setPrimaryPortNumber(50000);
address.setPrimaryServerName("srv1.sj.ibm.com");

// Set the port number and server name for the alternate server
int[] port = {50002};
String[] server = {"srv3.sj.ibm.com"};
address.setAlternatePortNumber(port);
address.setAlternateServerName(server);

registry.rebind("serverList", address);
// Assign the JNDI name of the DB2ClientRerouteServerList object to the
// clientRerouteServerListJNDIName property
datasource.setClientRerouteServerListJNDIName("serverList");

Configuration of DB2 Database for Linux, UNIX, and Windows
workload balancing support for Java clients

To configure a IBM Data Server Driver for JDBC and SQLJ client application that
connects to a DB2 Database for Linux, UNIX, and Windows DB2 pureScale
instance for workload balancing, you need to connect to a member of the DB2
pureScale instance, and set the properties that enable workload balancing and the
maximum number of connections.

Java client applications support transaction-level workload balancing. They do not
support connection-level workload balancing. Workload balancing is supported
only for connections to a DB2 pureScale instance.

Workload balancing support for Java client applications that connect to DB2
Database for Linux, UNIX, and Windows works for connections that are obtained
using the javax.sql.DataSource, javax.sql.ConnectionPoolDataSource,
javax.sql.XADataSource, or java.sql.DriverManager interface.

11-6 IBM Data Server Driver for JDBC and SQLJ for Informix

Restriction: Workload balancing support for connections that are made with the
DriverManager interface has the following restrictions:
v Alternate server information is shared between DriverManager connections only

if you create the connections with the same URL and properties.
v You cannot set the clientRerouteServerListJNDIName property or the

clientRerouteServerListJNDIContext properties for a DriverManager connection.
v Workload balancing is not enabled for default connections

(jdbc:default:connection).

The following table describes the basic property settings for enabling DB2 Database
for Linux, UNIX, and Windows workload balancing for Java applications.

Table 11-2. Basic settings to enable workload support in Java applications

IBM Data Server Driver for JDBC and SQLJ
setting Value

enableSysplexWLB property true

maxTransportObjects property The maximum number of connections that
the requester can make to the DB2 pureScale
instance

Connection address:

server The IP address of a member of a DB2
pureScale instance1

port The SQL port number for the DB2 pureScale
instance1

database The database name

Note:

1. Alternatively, you can use a distributor, such as Websphere Application Server Network
Deployment, or multihomed DNS to establish the initial connection to the database.

v For a distributor, you specify the IP address and port number of the distributor. The
distributor analyzes the current workload distribution, and uses that information to
forward the connection request to one of the members of the DB2 pureScale instance.

v For multihomed DNS, you specify an IP address and port number that can resolve to
the IP address and port number of any member of the DB2 pureScale instance.
Multihomed DNS processing selects a member based on some criterion, such as
simple round-robin selection or member workload distribution.

If you want to fine-tune DB2 Database for Linux, UNIX, and Windows workload
balancing support, global configuration properties are available. The properties for
the IBM Data Server Driver for JDBC and SQLJ are listed in the following table.

Table 11-3. Configuration properties for fine-tuning DB2 Database for Linux, UNIX, and Windows workload balancing
support for connections from the IBM Data Server Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ
configuration property Description

db2.jcc.maxRefreshInterval Specifies the maximum amount of time in seconds between
refreshes of the client copy of the server list that is used for
workload balancing. The default is 30. The minimum valid
value is 1.

db2.jcc.maxTransportObjectIdleTime Specifies the maximum elapsed time in number of seconds
before an idle transport is dropped. The default is 60. The
minimum supported value is 0.

Chapter 11. Java client support for high availability on IBM data servers 11-7

Table 11-3. Configuration properties for fine-tuning DB2 Database for Linux, UNIX, and Windows workload balancing
support for connections from the IBM Data Server Driver for JDBC and SQLJ (continued)

IBM Data Server Driver for JDBC and SQLJ
configuration property Description

db2.jcc.maxTransportObjectWaitTime Specifies the number of seconds that the client will wait for a
transport to become available. The default is -1 (unlimited).
The minimum supported value is 0.

db2.jcc.minTransportObjects Specifies the lower limit for the number of transport objects in
a global transport object pool. The default value is 0. Any
value that is less than or equal to 0 means that the global
transport object pool can become empty.

Example of enabling DB2 Database for Linux, UNIX, and
Windows workload balancing support in Java applications

Java client setup for DB2 Database for Linux, UNIX, and Windows workload
balancing support includes setting several IBM Data Server Driver for JDBC and
SQLJ properties.

The following example demonstrates setting up Java client applications for DB2
Database for Linux, UNIX, and Windows workload balancing support.

Before you can set up the client, the servers to which the client connects must be
configured in a DB2 pureScale instance.

Follow these steps to set up the client:
1. Verify that the IBM Data Server Driver for JDBC and SQLJ is at the correct level

to support workload balancing by following these steps:
a. Issue the following command in a command line window:

java com.ibm.db2.jcc.DB2Jcc -version

b. Find a line in the output like this, and check that nnn is 3.58 or later.
c.

[jcc] Driver: IBM Data Server Driver for JDBC and SQLJ Architecture nnn xxx

2. Set IBM Data Server Driver for JDBC and SQLJ properties to enable the
connection concentrator or workload balancing:
a. Set these Connection or DataSource properties:

v enableSysplexWLB
v maxTransportObjects

b. Set the db2.jcc.maxRefreshInterval global configuration property in a
DB2JccConfiguration.properties file to set the maximum refresh interval for
all DataSource or Connection instances that are created under the driver.

Start with settings similar to these:

Table 11-4. Example of property settings for workload balancing for DB2 Database for Linux,
UNIX, and Windows

Property Setting

enableSysplexWLB true

maxTransportObjects 80

db2.jcc.maxRefreshInterval 30

The values that are specified are not intended to be recommended values. You
need to determine values based on factors such as the number of physical

11-8 IBM Data Server Driver for JDBC and SQLJ for Informix

connections that are available. The number of transport objects must be equal
to or greater than the number of connection objects.

3. To fine-tune workload balancing for all DataSource or Connection instances
that are created under the driver, set the db2.jcc.maxTransportObjects
configuration property in a DB2JccConfiguration.properties file.
Start with a setting similar to this one:
db2.jcc.maxTransportObjects=500

Operation of automatic client reroute for connections to DB2
Database for Linux, UNIX, and Windows from Java clients

When IBM Data Server Driver for JDBC and SQLJ client reroute support is
enabled, a Java application that is connected to a DB2 Database for Linux, UNIX,
and Windows database can continue to run when the primary server has a failure.

Automatic client reroute for a Java application that is connected to a DB2 Database
for Linux, UNIX, and Windows database operates in the following way when
support for client affinities is disabled:
1. During each connection to the data source, the IBM Data Server Driver for

JDBC and SQLJ obtains primary and alternate server information.
v For the first connection to a DB2 Database for Linux, UNIX, and Windows

database:
a. If the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties are set, the IBM Data
Server Driver for JDBC and SQLJ loads those values into memory as the
alternate server values, along with the primary server values serverName
and portNumber.

b. If the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties are not set, and a JNDI
store is configured by setting the property
clientRerouteServerListJNDIName on the DB2BaseDataSource, the IBM
Data Server Driver for JDBC and SQLJ loads the primary and alternate
server information from the JNDI store into memory.

c. If no DataSource properties are set for the alternate servers, and JNDI is
not configured, the IBM Data Server Driver for JDBC and SQLJ checks
DNS tables for primary and alternate server information. If DNS
information exists, the IBM Data Server Driver for JDBC and SQLJ loads
those values into memory.
In a DB2 pureScale environment, regardless of the outcome of the DNS
lookup:
1) If configuration property db2.jcc.outputDirectory is set, the IBM Data

Server Driver for JDBC and SQLJ searches the directory that is
specified by db2.jcc.outputDirectory for a file named
jccServerListCache.bin.

2) If db2.jcc.outputDirectory is not set, and the java.io.tmpdir system
property is set, the IBM Data Server Driver for JDBC and SQLJ
searches the directory that is specified by java.io.tmpdir for a file
named jccServerListCache.bin.

3) If jccServerListCache.bin can be accessed, the IBM Data Server Driver
for JDBC and SQLJ loads the cache into memory, and obtains the
alternate server information from jccServerListCache.bin for the
serverName value that is defined for the DataSource object.

Chapter 11. Java client support for high availability on IBM data servers 11-9

d. If no primary or alternate server information is available, a connection
cannot be established, and the IBM Data Server Driver for JDBC and
SQLJ throws an exception.

v For subsequent connections, the IBM Data Server Driver for JDBC and SQLJ
obtains primary and alternate server values from driver memory.

2. The IBM Data Server Driver for JDBC and SQLJ attempts to connect to the data
source using the primary server name and port number.
In a non-DB2 pureScale environment, the primary server is a stand-alone
server. In a DB2 pureScale environment, the primary server is a member of a
DB2 pureScale instance.
If the connection is through the DriverManager interface, the IBM Data Server
Driver for JDBC and SQLJ creates an internal DataSource object for automatic
client reroute processing.

3. If the connection to the primary server fails:
a. If this is the first connection, the IBM Data Server Driver for JDBC and

SQLJ attempts to reconnect to a server using information that is provided
by driver properties such as clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber.

b. If this is not the first connection, the IBM Data Server Driver for JDBC and
SQLJ attempts to make a connection using the information from the latest
server list that is returned from the server.

Connection to an alternate server is called failover.
The IBM Data Server Driver for JDBC and SQLJ uses the
maxRetriesForClientReroute and retryIntervalForClientReroute properties to
determine how many times to retry the connection and how long to wait
between retries. An attempt to connect to the primary server and alternate
servers counts as one retry.

4. If the connection is not established, maxRetriesForClientReroute and
retryIntervalForClientReroute are not set, and the original serverName and
portNumber values that are defined on the DataSource are different from the
serverName and portNumber values that were used for the current connection,
the connection is retried with the serverName and portNumber values that are
defined on the DataSource.

5. If failover is successful during the initial connection, the driver generates an
SQLWarning. If a successful failover occurs after the initial connection:
v If seamless failover is enabled, and the following conditions are satisfied, the

driver retries the transaction on the new server, without notifying the
application.
– The enableSeamlessFailover property is set to DB2BaseDataSource.YES (1).
– The connection is not in a transaction. That is, the failure occurs when the

first SQL statement in the transaction is executed.
– There are no global temporary tables in use on the server.
– There are no open, held cursors.

v If seamless failover is not in effect, the driver throws an SQLException to the
application with error code -4498, to indicate to the application that the
connection was automatically reestablished and the transaction was implicitly
rolled back. The application can then retry its transaction without doing an
explicit rollback first.
A reason code that is returned with error code -4498 indicates whether any
database server special registers that were modified during the original
connection are reestablished in the failover connection.

11-10 IBM Data Server Driver for JDBC and SQLJ for Informix

You can determine whether alternate server information was used in
establishing the initial connection by calling the
DB2Connection.alternateWasUsedOnConnect method.

6. After failover, driver memory is updated with new primary and alternate
server information that is returned from the new primary server.

Examples

Example: Automatic client reroute to a DB2 Database for Linux, UNIX, and Windows
server when maxRetriesForClientReroute and retryIntervalForClientReroute are not set:
Suppose that the following properties are set for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.NO (2)

serverName host1

portNumber port1

clientRerouteAlternateServerName host2

clientRerouteAlternatePortNumber port2

The following steps demonstrate an automatic client reroute scenario for a
connection to a DB2 Database for Linux, UNIX, and Windows server:
1. The IBM Data Server Driver for JDBC and SQLJ loads host1:port1 into its

memory as the primary server address, and host2:port2 into its memory as the
alternate server address.

2. On the initial connection, the driver tries to connect to host1:port1.
3. The connection to host1:port1 fails, so the driver tries another connection to

host1:port1.
4. The reconnection to host1:port1 fails, so the driver tries to connect to

host2:port2.
5. The connection to host2:port2 succeeds.
6. The driver retrieves alternate server information that was received from server

host2:port2, and updates its memory with that information.
Assume that the driver receives a server list that contains host2:port2,
host2a:port2a. host2:port2 is stored as the new primary server, and
host2a:port2a is stored as the new alternate server. If another communication
failure is detected on this same connection, or on another connection that is
created from the same DataSource, the driver tries to connect to host2:port2 as
the new primary server. If that connection fails, the driver tries to connect to
the new alternate server host2a:port2a.

7. A communication failure occurs during the connection to host2:port2.
8. The driver tries to connect to host2a:port2a.
9. The connection to host2a:port2a is successful.

10. The driver retrieves alternate server information that was received from server
host2a:port2a, and updates its memory with that information.

Example: Automatic client reroute to a DB2 Database for Linux, UNIX, and Windows
server in a DB2 pureScale environment, when maxRetriesForClientReroute and
retryIntervalForClientReroute are not set, and configuration property
db2.jcc.outputDirectory is set: Suppose that the following properties are set for a
connection that is established from DataSource A:

Chapter 11. Java client support for high availability on IBM data servers 11-11

Property Value

enableClientAffinitiesList DB2BaseDataSource.NO (2)

serverName host1

portNumber port1

db2.jcc.outputDirectory
(configuration property)

/home/tmp

The following steps demonstrate an automatic client reroute scenario for a
connection to a DB2 Database for Linux, UNIX, and Windows server:
1. Using the information in DataSource A, the IBM Data Server Driver for JDBC

and SQLJ loads host1:port1 into its memory as the primary server address.
The driver searches for cache file jccServerListCache.bin in /home/tmp, but
the cache file does not exist.

2. The connection to host1:port1 succeeds. Suppose that the server returns a
server list that contains host1:port1 and host2:port2.

3. The driver creates a cache in memory, with an entry that specifies host2:port2
as the alternate server list for host1:port1. The driver then creates the cache
file /home/tmp/jccServerListCache.bin, and writes the cache from memory to
this file.

4. The connection of Application A to host1:port1 fails, so the driver tries to
connect to host2:port2.

5. The connection of Application A to host2:port2 succeeds. Suppose that the
server returns a server list that contains host2:port2 and host2a:port2a.
host2:port2 is the new primary server, and host2a:port2a is the new alternate
server.

6. The driver looks for alternate server information for host2:port2 in the
in-memory cache, but does not find any. It creates a new entry in the
in-memory cache for host2:port2, with host2a:port2a as the alternate server
list. The driver updates cache file /home/tmp/jccServerListCache.bin with the
new entry that was added to the in-memory cache.

7. Application A completes, and the JVM exits.
8. Application B, which also uses DataSource A, starts.
9. The driver loads the server list from cache file /home/tmp/

jccServerListCache.bin into memory, and finds the entry for host1:port1, which
specifies host2:port2 as the alternate server list. The driver sets host2:port2 as
the alternate server list for host1:port1.

10. A communication failure occurs when Application B tries to connect to
host1:port1.

11. Application B attempts to connect to alternate server host2:port2.
12. The connection to host2:port2 succeeds. Application B continues.

Example: Automatic client reroute to a DB2 Database for Linux, UNIX, and Windows
server when maxRetriesForClientReroute and retryIntervalForClientReroute are set for
multiple retries: Suppose that the following properties are set for a connection to a
database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.NO (2)

serverName host1

11-12 IBM Data Server Driver for JDBC and SQLJ for Informix

Property Value

portNumber port1

clientRerouteAlternateServerName host2

clientRerouteAlternatePortNumber port2

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

The following steps demonstrate an automatic client reroute scenario for a
connection to a DB2 Database for Linux, UNIX, and Windows server:
1. The IBM Data Server Driver for JDBC and SQLJ loads host1:port1 into its

memory as the primary server address, and host2:port2 into its memory as the
alternate server address.

2. On the initial connection, the driver tries to connect to host1:port1.
3. The connection to host1:port1 fails, so the driver tries another connection to

host1:port1.
4. The connection to host1:port1 fails again, so the driver tries to connect to

host2:port2.
5. The connection to host2:port2 fails.
6. The driver waits two seconds.
7. The driver tries to connect to host1:port1 and fails.
8. The driver tries to connect to host2:port2 and fails.
9. The driver waits two seconds.

10. The driver tries to connect to host1:port1 and fails.
11. The driver tries to connect to host2:port2 and fails.
12. The driver waits two seconds.
13. The driver throws an SQLException with error code -4499.

Operation of workload balancing for connections to DB2
Database for Linux, UNIX, and Windows

Workload balancing (also called transaction-level workload balancing) for
connections to DB2 Database for Linux, UNIX, and Windows contributes to high
availability by balancing work among servers in a DB2 pureScale instance at the
start of a transaction.

The following overview describes the steps that occur when a client connects to a
DB2 Database for Linux, UNIX, and Windows DB2 pureScale instance, and
transaction-level workload balancing is enabled:
1. When the client first establishes a connection to the DB2 pureScale instance, the

member to which the client connects returns a server list with the connection
details (IP address, port, and weight) for the members of the DB2 pureScale
instance.
The server list is cached by the client. The default lifespan of the cached server
list is 30 seconds.

2. At the start of a new transaction, the client reads the cached server list to
identify a server that has unused capacity, and looks in the transport pool for
an idle transport that is tied to the under-utilized server. (An idle transport is a
transport that has no associated connection object.)

Chapter 11. Java client support for high availability on IBM data servers 11-13

v If an idle transport is available, the client associates the connection object
with the transport.

v If, after a user-configurable timeout period
(db2.jcc.maxTransportObjectWaitTime for a Java client or
maxTransportWaitTime for a non-Java client), no idle transport is available in
the transport pool and no new transport can be allocated because the
transport pool has reached its limit, an error is returned to the application.

3. When the transaction runs, it accesses the server that is tied to the transport.
4. When the transaction ends, the client verifies with the server that transport

reuse is still allowed for the connection object.
5. If transport reuse is allowed, the server returns a list of SET statements for

special registers that apply to the execution environment for the connection
object.
The client caches these statements, which it replays in order to reconstruct the
execution environment when the connection object is associated with a new
transport.

6. The connection object is then dissociated from the transport, if the client
determines that it needs to do so.

7. The client copy of the server list is refreshed when a new connection is made,
or every 30 seconds, or the user-configured interval.

8. When transaction-level workload balancing is required for a new transaction,
the client uses the previously described process to associate the connection
object with a transport.

Application programming requirements for high availability for
connections to DB2 Database for Linux, UNIX, and Windows
servers

Failover for automatic client reroute can be seamless or non-seamless. If failover
for connections to DB2 Database for Linux, UNIX, and Windows is not seamless,
you need to add code to account for the errors that are returned when failover
occurs.

If failover is non-seamless, and a connection is reestablished with the server,
SQLCODE -4498 (for Java clients) or SQL30108N (for non-Java clients) is returned
to the application. All work that occurred within the current transaction is rolled
back. In the application, you need to:
v Check the reason code that is returned with the error. Determine whether special

register settings on the failing data sharing member are carried over to the new
(failover) data sharing member. Reset any special register values that are not
current.

v Execute all SQL operations that occurred during the previous transaction.

The following conditions must be satisfied for failover for connections to DB2
Database for Linux, UNIX, and Windows to be seamless:
v The application programming language is Java, CLI, or .NET.
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v If transaction-level load balancing is enabled, the data server allows transport

reuse at the end of the previous transaction.
v All global session data is closed or dropped.
v There are no open, held cursors.

11-14 IBM Data Server Driver for JDBC and SQLJ for Informix

v If the application uses CLI, the application cannot perform actions that require
the driver to maintain a history of previously called APIs in order to replay the
SQL statement. Examples of such actions are specifying data at execution time,
performing compound SQL, or using array input.

v The application is not a stored procedure.
v Autocommit is not enabled. Seamless failover can occur when autocommit is

enabled. However, the following situation can cause problems: Suppose that
SQL work is successfully executed and committed at the data server, but the
connection or server goes down before acknowledgment of the commit
operation is sent back to the client. When the client re-establishes the connection,
it replays the previously committed SQL statement. The result is that the SQL
statement is executed twice. To avoid this situation, turn autocommit off when
you enable seamless failover.

Client affinities for DB2 Database for Linux, UNIX, and
Windows

Client affinities is a client-only method for providing automatic client reroute
capability.

Client affinities is available for applications that use CLI, .NET, or Java (IBM Data
Server Driver for JDBC and SQLJ type 4 connectivity). All rerouting is controlled
by the driver.

Client affinities is intended for situations in which you need to connect to a
particular primary server. If an outage occurs during the connection to the primary
server, you need to enforce a specific order for failover to alternate servers. You
should use client affinities for automatic client reroute only if automatic client
reroute that uses server failover capabilities does not work in your environment.

As part of configuration of client affinities, you specify a list of alternate servers,
and the order in which connections to the alternate servers are tried. When client
affinities is in use, connections are established based on the list of alternate servers
instead of the host name and port number that are specified by the application. For
example, if an application specifies that a connection is made to server1, but the
configuration process specifies that servers should be tried in the order (server2,
server3, server1), the initial connection is made to server2 instead of server1.

Failover with client affinities is seamless, if the following conditions are true:
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v There are no global temporary tables in use on the server.
v There are no open, held cursors.

When you use client affinities, you can specify that if the primary server returns to
operation after an outage, connections return from an alternate server to the
primary server on a transaction boundary. This activity is known as failback.

Configuration of client affinities for Java clients for DB2
Database for Linux, UNIX, and Windows connections
To enable support for client affinities in Java applications, you set properties to
indicate that you want to use client affinities, and to specify the primary and
alternate servers.

Chapter 11. Java client support for high availability on IBM data servers 11-15

The following table describes the property settings for enabling client affinities for
Java applications.

Table 11-5. Property settings to enable client affinities for Java applications

IBM Data Server Driver for JDBC and SQLJ
setting Value

enableClientAffinitiesList DB2BaseDataSource.YES (1)

clientRerouteAlternateServerName A comma-separated list of the primary server
and alternate servers

clientRerouteAlternatePortNumber A comma-separated list of the port numbers
for the primary server and alternate servers

enableSeamlessFailover DB2BaseDataSource.YES (1) for seamless
failover; DB2BaseDataSource.NO (2) or
enableSeamlessFailover not specified for no
seamless failover

maxRetriesForClientReroute The number of times to retry the connection
to each server, including the primary server,
after a connection to the primary server fails.
The default is 3.

retryIntervalForClientReroute The number of seconds to wait between
retries. The default is no wait.

affinityFailbackInterval The number of seconds to wait after the first
transaction boundary to fail back to the
primary server. Set this value if you want to
fail back to the primary server.

Example of enabling client affinities in Java clients for DB2
Database for Linux, UNIX, and Windows connections
Before you can use client affinities for automatic client reroute in Java applications,
you need to set properties to indicate that you want to use client affinities, and to
identify the primary alternate servers.

The following example shows how to enable client affinities for failover without
failback.

Suppose that you set the following properties for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.YES (1)

clientRerouteAlternateServername host1,host2,host3

clientRerouteAlternatePortNumber port1,port2,port3

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

Suppose that a communication failure occurs during a connection to the server that
is identified by host1:port1. The following steps demonstrate automatic client
reroute with client affinities.
1. The driver tries to connect to host1:port1.
2. The connection to host1:port1 fails.
3. The driver waits two seconds.
4. The driver tries to connect to host1:port1.

11-16 IBM Data Server Driver for JDBC and SQLJ for Informix

5. The connection to host1:port1 fails.
6. The driver waits two seconds.
7. The driver tries to connect to host1:port1.
8. The connection to host1:port1 fails.
9. The driver waits two seconds.

10. The driver tries to connect to host2:port2.
11. The connection to host2:port2 fails.
12. The driver waits two seconds.
13. The driver tries to connect to host2:port2.
14. The connection to host2:port2 fails.
15. The driver waits two seconds.
16. The driver tries to connect to host2:port2.
17. The connection to host2:port2 fails.
18. The driver waits two seconds.
19. The driver tries to connect to host3:port3.
20. The connection to host3:port3 fails.
21. The driver waits two seconds.
22. The driver tries to connect to host3:port3.
23. The connection to host3:port3 fails.
24. The driver waits two seconds.
25. The driver tries to connect to host3:port3.
26. The connection to host3:port3 fails.
27. The driver waits two seconds.
28. The driver throws an SQLException with error code -4499.

The following example shows how to enable client affinities for failover with
failback.

Suppose that you set the following properties for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.YES (1)

clientRerouteAlternateServername host1,host2,host3

clientRerouteAlternatePortNumber port1,port2,port3

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

affinityFailbackInterval 300

Suppose that the database administrator takes the server that is identified by
host1:port1 down for maintenance after a connection is made to host1:port1. The
following steps demonstrate failover to an alternate server and failback to the
primary server after maintenance is complete.
1. The driver successfully connects to host1:port1 on behalf of an application.
2. The database administrator brings down host1:port1.
3. The application tries to do work on the connection.
4. The driver successfully fails over to host2:port2.

Chapter 11. Java client support for high availability on IBM data servers 11-17

5. After a total of 200 seconds have elapsed, the work is committed.
6. After a total of 300 seconds have elapsed, the failback interval has elasped.

The driver checks whether the primary server is up. It is not up, so no
failback occurs.

7. After a total of 350 seconds have elapsed, host1:port1 is brought back online.
8. The application continues to do work on host2:port2, because the latest

failback interval has not elapsed.
9. After a total of 600 seconds have elapsed, the failback interval has elapsed

again. The driver checks whether the primary server is up. It is now up.
10. After a total of 650 seconds have elapsed, the work is committed.
11. After a total of 651 seconds have elapsed, the application tries to start a new

transaction on host2:port2. Failback to host1:port1 occurs, so the new
transaction starts on host1:port1.

Java client support for high availability for connections to IBM
Informix servers

High-availability cluster support on IBM Informix servers provides high
availability for client applications, through workload balancing and automatic
client reroute. This support is available for applications that use Java clients (JDBC,
SQLJ, or pureQuery), or non-Java clients (ODBC, CLI, .NET, OLE DB, PHP, Ruby,
or embedded SQL).

For Java clients, you need to use IBM Data Server Driver for JDBC and SQLJ type
4 connectivity to take advantage of IBM Informix high-availability cluster support.

For non-Java clients, you need to use one of the following clients or client
packages to take advantage of high-availability cluster support:
v IBM Data Server Client
v IBM Data Server Runtime Client
v IBM Data Server Driver Package
v IBM Data Server Driver for ODBC and CLI

Cluster support for high availability for connections to IBM Informix servers
includes:

Automatic client reroute
This support enables a client to recover from a failure by attempting to
reconnect to the database through any available server in a high-availability
cluster. Reconnection to another server is called failover. You enable automatic
client reroute on the client by enabling workload balancing on the client.

In an IBM Informix environment, primary and standby servers correspond to
members of a high-availability cluster that is controlled by a Connection
Manager. If multiple Connection Managers exist, the client can use them to
determine primary and alternate server information. The client uses alternate
Connection Managers only for the initial connection.

Failover for automatic client reroute can be seamless or non-seamless. With
non-seamless failover, when the client application reconnects to an alternate
server, the server always returns an error to the application, to indicate that
failover (connection to the alternate server) occurred.

11-18 IBM Data Server Driver for JDBC and SQLJ for Informix

For Java, CLI, or .NET client applications, failover for automatic client reroute
can be seamless or non-seamless. Seamless failover means that when the
application successfully reconnects to an alternate server, the server does not
return an error to the application.

Workload balancing
Workload balancing can improve availability of an IBM Informix
high-availability cluster. When workload balancing is enabled, the client gets
frequent status information about the members of a high-availability cluster.
The client uses this information to determine the server to which the next
transaction should be routed. With workload balancing, IBM Informix
Connection Managers ensure that work is distributed efficiently among servers
and that work is transferred to another server if a server has a failure.

Connection concentrator
This support is available for Java applications that connect to IBM Informix.
The connection concentrator reduces the resources that are required on IBM
Informix database servers to support large numbers of workstation and web
users. With the connection concentrator, only a few concurrent, active physical
connections are needed to support many applications that concurrently access
the database server. When you enable workload balancing on a Java client, you
automatically enable the connection concentrator.

Client affinities
Client affinities is an automatic client reroute solution that is controlled
completely by the client. It is intended for situations in which you need to
connect to a particular primary server. If an outage occurs during the
connection to the primary server, you use client affinities to enforce a specific
order for failover to alternate servers.

Configuration of IBM Informix high-availability support for
Java clients

To configure a IBM Data Server Driver for JDBC and SQLJ client application that
connects to an IBM Informix high-availability cluster, you need to connect to an
address that represents a Connection Manager, and set the properties that enable
workload balancing and the maximum number of connections.

High availability support for Java clients that connect to IBM Informix works for
connections that are obtained using the javax.sql.DataSource,
javax.sql.ConnectionPoolDataSource, javax.sql.XADataSource, or
java.sql.DriverManager interface.

Restriction: High availability support for connections that are made with the
DriverManager interface has the following restrictions:
v Alternate server information is shared between DriverManager connections only

if you create the connections with the same URL and properties.
v You cannot set the clientRerouteServerListJNDIName property or the

clientRerouteServerListJNDIContext properties for a DriverManager connection.
v High availability support is not enabled for default connections

(jdbc:default:connection).

Before you can enable IBM Data Server Driver for JDBC and SQLJ for high
availability for connections to IBM Informix, your installation must have one or
more Connection Managers, a primary server, and one or more alternate servers.

Chapter 11. Java client support for high availability on IBM data servers 11-19

The following table describes the basic property settings for enabling workload
balancing for Java applications.

Table 11-6. Basic settings to enable IBM Informix high availability support in Java applications

IBM Data Server Driver for JDBC and SQLJ
setting Value

enableSysplexWLB property true

maxTransportObjects property The maximum number of connections that
the requester can make to the
high-availability cluster

Connection address:

server The IP address of a Connection Manager. See
“Setting server and port properties for
connecting to a Connection Manager” on
page 11-21.

port The SQL port number for the Connection
Manager. See “Setting server and port
properties for connecting to a Connection
Manager” on page 11-21.

database The database name

If you want to enable the connection concentrator, but you do not want to enable
workload balancing, you can use these properties.

Table 11-7. Settings to enable the IBM Informix connection concentrator without workload
balancing in Java applications

IBM Data Server Driver for JDBC and SQLJ
setting Value

enableSysplexWLB property false

enableConnectionConcentrator property true

If you want to fine-tune IBM Informix high-availability support, additional
properties are available. The properties for the IBM Data Server Driver for JDBC
and SQLJ are listed in the following table. Those properties are configuration
properties, and not Connection or DataSource properties.

Table 11-8. Properties for fine-tuning IBM Informix high-availability support for connections from the IBM Data Server
Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ
configuration property Description

db2.jcc.maxTransportObjectIdleTime Specifies the maximum elapsed time in number of seconds
before an idle transport is dropped. The default is 60. The
minimum supported value is 0.

db2.jcc.maxTransportObjectWaitTime Specifies the number of seconds that the client will wait for a
transport to become available. The default is -1 (unlimited).
The minimum supported value is 0.

db2.jcc.minTransportObjects Specifies the lower limit for the number of transport objects in
a global transport object pool. The default value is 0. Any
value that is less than or equal to 0 means that the global
transport object pool can become empty.

11-20 IBM Data Server Driver for JDBC and SQLJ for Informix

Setting server and port properties for connecting to a
Connection Manager

To set the server and port number for connecting to a Connection Manager, follow
this process:
v If your high-availability cluster is using a single Connection Manager, and your

application is using the DataSource interface for connections, set the serverName
and portNumber properties to the server name and port number of the
Connection Manager.

v If your high-availability cluster is using a single Connection Manager, and your
application is using the DriverManager interface for connections, specify the
server name and port number of the Connection manager in the connection
URL.

v If your high-availability cluster is using more than one Connection manager, and
your application is using the DriverManager interface for connections:
1. Specify the server name and port number of the main Connection Manager

that you want to use in the connection URL.
2. Set the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties to the server names and port
numbers of the alternative Connection Managers that you want to use.

v If your high-availability cluster is using more than one Connection Manager, and
your application is using the DataSource interface for connections, use one of the
following techniques:
– Set the server names and port numbers in DataSource properties:

1. Set the serverName and portNumber properties to the server name and
port number of the main Connection Manager that you want to use.

2. Set the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties to the server names and
port numbers of the alternative Connection Managers that you want to
use.

– Configure JNDI for high availability by using a DB2ClientRerouteServerList
instance to identify the main Connection Manager and alternative Connection
Managers.
1. Create an instance of DB2ClientRerouteServerList.

DB2ClientRerouteServerList is a serializable Java bean with the following
properties:

Property name Data type

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName String[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber int[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryServerName String[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryPortNumber int[]

getXXX and setXXX methods are defined for each property.
2. Set the com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryServerName

and com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryPortNumber
properties to the server name and port number of the main Connection
Manager that you want to use.

3. Set the com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName
and com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber

Chapter 11. Java client support for high availability on IBM data servers 11-21

properties to the server names and port numbers of the alternative
Connection Managers that you want to use.

4. To make the DB2ClientRerouteServerList persistent:
a. Bind the DB2ClientRerouteServerList instance to the JNDI registry.
b. Assign the JNDI name of the DB2ClientRerouteServerList object to the

IBM Data Server Driver for JDBC and SQLJ
clientRerouteServerListJNDIName property.

c. Assign the name of the JNDI context that is used for binding and
lookup of the DB2ClientRerouteServerList instance to the
clientRerouteServerListJNDIContext property.

When a DataSource is configured to use JNDI for storing automatic client
reroute alternate information, the standard server and port properties of the
DataSource are not used for a getConnection request. Instead, the primary
server address is obtained from the transient clientRerouteServerList
information. If the JNDI store is not available due to a JNDI bind or lookup
failure, the IBM Data Server Driver for JDBC and SQLJ attempts to make a
connection using the standard server and port properties of the DataSource.
Warnings are accumulated to indicate that a JNDI bind or lookup failure
occurred.
After a failover:
- The IBM Data Server Driver for JDBC and SQLJ attempts to propagate the

updated server information to the JNDI store.
- primaryServerName and primaryPortNumber values that are specified in

DB2ClientRerouteServerList are used for the connection. If
primaryServerName is not specified, the serverName value for the
DataSource instance is used.

Example of enabling IBM Informix high availability support in
Java applications

Java client setup for IBM Informix high availability support includes setting several
IBM Data Server Driver for JDBC and SQLJ properties.

The following example demonstrates setting up Java client applications for IBM
Informix high availability support.

Before you can set up the client, you need to configure one or more high
availability clusters that are controlled by Connection Managers.

Follow these steps to set up the client:
1. Verify that the IBM Data Server Driver for JDBC and SQLJ is at the correct level

to support workload balancing by following these steps:
a. Issue the following command in a command line window:

java com.ibm.db2.jcc.DB2Jcc -version

b. Find a line in the output like this, and check that nnn is 3.52 or later.
c.

[jcc] Driver: IBM Data Server Driver for JDBC and SQLJ Architecture nnn xxx

2. Set IBM Data Server Driver for JDBC and SQLJ Connection or DataSource
properties to enable workload balancing:
v enableSysplexWLB
v maxTransportObjects
v maxRefreshInterval
Start with settings similar to these:

11-22 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 11-9. Example of Connection or DataSource property settings for workload balancing
for IBM Informix

Property Setting

enableSysplexWLB true

maxTransportObjects 80

maxRefreshInterval 30

Enabling workload balancing enables the connection concentrator by default.
The values that are specified are not intended to be recommended values. You
need to determine values based on factors such as the number of transport
objects that are available. The number of transport objects must be equal to or
greater than the number of connection objects.

3. Set IBM Data Server Driver for JDBC and SQLJ configuration properties to
fine-tune the workload balancing for all DataSource or Connection instances
that are created under the driver. Set the configuration properties in a
DB2JccConfiguration.properties file by following these steps:
a. Create a DB2JccConfiguration.properties file or edit the existing

DB2JccConfiguration.properties file.
b. Set the following configuration property:

v db2.jcc.maxTransportObjects
Start with a setting similar to this one:
db2.jcc.maxTransportObjects=500

c. Include the directory that contains DB2JccConfiguration.properties in the
CLASSPATH concatenation.

Operation of automatic client reroute for connections to IBM
Informix from Java clients

When IBM Data Server Driver for JDBC and SQLJ client reroute support is
enabled, a Java application that is connected to an IBM Informix high-availability
cluster can continue to run when the primary server has a failure.

Automatic client reroute for a Java application that is connected to an IBM
Informix server operates in the following way when automatic client reroute is
enaabled:
1. During each connection to the data source, the IBM Data Server Driver for

JDBC and SQLJ obtains primary and alternate server information.
v For the first connection to IBM Informix:

a. The application specifies a server and port for the initial connection.
Those values identify a Connection Manager.

b. The IBM Data Server Driver for JDBC and SQLJ uses the information
from the Connection Manager to obtain information about the primary
and alternate servers. IBM Data Server Driver for JDBC and SQLJ loads
those values into memory.

c. If the initial connection to the Connection Manager fails:
– If the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties are set, the IBM Data
Server Driver for JDBC and SQLJ connects to the Connection Manager
that is identified by clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber, and obtains information about
primary and alternate servers from that Connection Manager. The IBM

Chapter 11. Java client support for high availability on IBM data servers 11-23

Data Server Driver for JDBC and SQLJ loads those values into memory
as the primary and alternate server values.

– If the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties are not set, and a JNDI
store is configured by setting the property
clientRerouteServerListJNDIName on the DB2BaseDataSource, the IBM
Data Server Driver for JDBC and SQLJ connects to the Connection
Manager that is identified by
DB2ClientRerouteServerList.alternateServerName and
DB2ClientRerouteServerList.alternatePortNumber, and obtains
information about primary and alternate servers from that Connection
Manager. IBM Data Server Driver for JDBC and SQLJ loads the
primary and alternate server information from the Connection
Manager into memory.

d. If clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber are not set, and JNDI is not
configured, the IBM Data Server Driver for JDBC and SQLJ checks DNS
tables for Connection Manager server and port information. If DNS
information exists, the IBM Data Server Driver for JDBC and SQLJ
connects to the Connection Manager, obtains information about primary
and alternate servers, and loads those values into memory.

e. If no primary or alternate server information is available, a connection
cannot be established, and the IBM Data Server Driver for JDBC and
SQLJ throws an exception.

v For subsequent connections, the IBM Data Server Driver for JDBC and SQLJ
obtains primary and alternate server values from driver memory.

2. The IBM Data Server Driver for JDBC and SQLJ attempts to connect to the data
source using the primary server name and port number.
If the connection is through the DriverManager interface, the IBM Data Server
Driver for JDBC and SQLJ creates an internal DataSource object for automatic
client reroute processing.

3. If the connection to the primary server fails:
a. If this is the first connection, the IBM Data Server Driver for JDBC and

SQLJ attempts to reconnect to the original primary server.
b. If this is not the first connection, the IBM Data Server Driver for JDBC and

SQLJ attempts to reconnect to the new primary server, whose server name
and port number were provided by the server.

c. If reconnection to the primary server fails, the IBM Data Server Driver for
JDBC and SQLJ attempts to connect to the alternate servers.
If this is not the first connection, the latest alternate server list is used to
find the next alternate server.

Connection to an alternate server is called failover.
The IBM Data Server Driver for JDBC and SQLJ uses the
maxRetriesForClientReroute and retryIntervalForClientReroute properties to
determine how many times to retry the connection and how long to wait
between retries. An attempt to connect to the primary server and alternate
servers counts as one retry.

4. If the connection is not established, maxRetriesForClientReroute and
retryIntervalForClientReroute are not set, and the original serverName and
portNumber values that are defined on the DataSource are different from the

11-24 IBM Data Server Driver for JDBC and SQLJ for Informix

serverName and portNumber values that were used for the original connection,
retry the connection with the serverName and portNumber values that are
defined on the DataSource.

5. If failover is successful during the initial connection, the driver generates an
SQLWarning. If a successful failover occurs after the initial connection:
v If seamless failover is enabled, the driver retries the transaction on the new

server, without notifying the application.
The following conditions must be satisfied for seamless failover to occur:
– The enableSeamlessFailover property is set to DB2BaseDataSource.YES (1).

If Sysplex workload balancing is in effect (the value of the
enableSysplexWLB is true), seamless failover is attempted, regardless of
the enableSeamlessFailover setting.

– The connection is not in a transaction. That is, the failure occurs when the
first SQL statement in the transaction is executed.

– There are no global temporary tables in use on the server.
– There are no open, held cursors.

v If seamless failover is not in effect, the driver throws an SQLException to the
application with error code -4498, to indicate to the application that the
connection was automatically reestablished and the transaction was implicitly
rolled back. The application can then retry its transaction without doing an
explicit rollback first.
A reason code that is returned with error code -4498 indicates whether any
database server special registers that were modified during the original
connection are reestablished in the failover connection.

You can determine whether alternate server information was used in
establishing the initial connection by calling the
DB2Connection.alternateWasUsedOnConnect method.

6. After failover, driver memory is updated with new primary and alternate
server information from the new primary server.

Examples

Example: Automatic client reroute to an IBM Informix server when
maxRetriesForClientReroute and retryIntervalForClientReroute are not set: Suppose that
the following properties are set for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.NO (2)

serverName host1

portNumber port1

clientRerouteAlternateServerName host2

clientRerouteAlternatePortNumber port2

The following steps demonstrate an automatic client reroute scenario for a
connection to IBM Informix:
1. The IBM Data Server Driver for JDBC and SQLJ tries to connect to the

Connection Manager that is identified by host1:port1.
2. The connection to host1:port1 fails, so the driver tries to connect to the

Connection Manager that is identified by host2:port2.
3. The connection to host2:port2 succeeds.

Chapter 11. Java client support for high availability on IBM data servers 11-25

4. The driver retrieves alternate server information that was received from server
host2:port2, and updates its memory with that information.
Assume that the driver receives a server list that contains host2:port2,
host2a:port2a. host2:port2 is stored as the new primary server, and
host2a:port2a is stored as the new alternate server. If another communication
failure is detected on this same connection, or on another connection that is
created from the same DataSource, the driver tries to connect to host2:port2 as
the new primary server. If that connection fails, the driver tries to connect to
the new alternate server host2a:port2a.

5. The driver connects to host1a:port1a.
6. A failure occurs during the connection to host1a:port1a.
7. The driver tries to connect to host2a:port2a.
8. The connection to host2a:port2a is successful.
9. The driver retrieves alternate server information that was received from server

host2a:port2a, and updates its memory with that information.

Example: Automatic client reroute to an IBM Informix server when
maxRetriesForClientReroute and retryIntervalForClientReroute are set for multiple retries:
Suppose that the following properties are set for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.NO (2)

serverName host1

portNumber port1

clientRerouteAlternateServerName host2

clientRerouteAlternatePortNumber port2

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

The following steps demonstrate an automatic client reroute scenario for a
connection to IBM Informix:
1. The IBM Data Server Driver for JDBC and SQLJ tries to connect to the

Connection Manager that is identified by host1:port1.
2. The connection to host1:port1 fails, so the driver tries to connect to the

Connection Manager that is identified by host2:port2.
3. The connection to host2:port2 succeeds.
4. The driver retrieves alternate server information from the connection manager

that is identified by host2:port2, and updates its memory with that
information. Assume that the Connection Manager identifies host1a:port1a as
the new primary server, and host2a:port2a as the new alternate server.

5. The driver tries to connect to host1a:port1a.
6. The connection to host1a:port1a fails.
7. The driver tries to connect to host2a:port2a.
8. The connection to host2a:port2a fails.
9. The driver waits two seconds.

10. The driver tries to connect to host1a:port1a.
11. The connection to host1a:port1a fails.
12. The driver tries to connect to host2a:port2a.

11-26 IBM Data Server Driver for JDBC and SQLJ for Informix

13. The connection to host2a:port2a fails.
14. The driver waits two seconds.
15. The driver tries to connect to host1a:port1a.
16. The connection to host1a:port1a fails.
17. The driver tries to connect to host2a:port2a.
18. The connection to host2a:port2a fails.
19. The driver waits two seconds.
20. The driver throws an SQLException with error code -4499.

Operation of workload balancing for connections to IBM
Informix from Java clients

Workload balancing (also called transaction-level workload balancing) for
connections to IBM Informix contributes to high availability by balancing work
among servers in a high-availability cluster at the start of a transaction.

The following overview describes the steps that occur when a client connects to an
IBM Informix Connection Manager, and workload balancing is enabled:
1. When the client first establishes a connection using the IP address of the

Connection Manager, the Connection Manager returns the server list and the
connection details (IP address, port, and weight) for the servers in the cluster.
The server list is cached by the client. The default lifespan of the cached server
list is 30 seconds.

2. At the start of a new transaction, the client reads the cached server list to
identify a server that has untapped capacity, and looks in the transport pool for
an idle transport that is tied to the under-utilized server. (An idle transport is a
transport that has no associated connection object.)
v If an idle transport is available, the client associates the connection object

with the transport.
v If, after a user-configurable timeout, no idle transport is available in the

transport pool and no new transport can be allocated because the transport
pool has reached its limit, an error is returned to the application.

3. When the transaction runs, it accesses the server that is tied to the transport.
4. When the transaction ends, the client verifies with the server that transport

reuse is still allowed for the connection object.
5. If transport reuse is allowed, the server returns a list of SET statements for

special registers that apply to the execution environment for the connection
object.
The client caches these statements, which it replays in order to reconstruct the
execution environment when the connection object is associated with a new
transport.

6. The connection object is then dissociated from the transport, if the client
determines that it needs to do so.

7. The client copy of the server list is refreshed when a new connection is made,
or every 30 seconds, or at the user-configured interval.

8. When workload balancing is required for a new transaction, the client uses the
previously described process to associate the connection object with a transport.

Chapter 11. Java client support for high availability on IBM data servers 11-27

Application programming requirements for high availability for
connections from Java clients to IBM Informix servers

Failover for automatic client reroute can be seamless or non-seamless. If failover
for connections to IBM Informix is not seamless, you need to add code to account
for the errors that are returned when failover occurs.

If failover is non-seamless, and a connection is reestablished with the server,
SQLCODE -4498 (for Java clients) or SQL30108N (for non-Java clients) is returned
to the application. All work that occurred within the current transaction is rolled
back. In the application, you need to:
v Check the reason code that is returned with the error. Determine whether special

register settings on the failing data sharing member are carried over to the new
(failover) data sharing member. Reset any special register values that are not
current.

v Execute all SQL operations that occurred during the previous transaction.

The following conditions must be satisfied for seamless failover to occur during
connections to IBM Informix databases:
v The application programming language is Java, CLI, or .NET.
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v The data server must allow transport reuse at the end of the previous

transaction.
v All global session data is closed or dropped.
v There are no open held cursors.
v If the application uses CLI, the application cannot perform actions that require

the driver to maintain a history of previously called APIs in order to replay the
SQL statement. Examples of such actions are specifying data at execution time,
performing compound SQL, or using array input.

v The application is not a stored procedure.
v Autocommit is not enabled. Seamless failover can occur when autocommit is

enabled. However, the following situation can cause problems: Suppose that
SQL work is successfully executed and committed at the data server, but the
connection or server goes down before acknowledgment of the commit
operation is sent back to the client. When the client re-establishes the connection,
it replays the previously committed SQL statement. The result is that the SQL
statement is executed twice. To avoid this situation, turn autocommit off when
you enable seamless failover.

In addition, seamless automatic client reroute might not be successful if the
application has autocommit enabled. With autocommit enabled, a statement might
be executed and committed multiple times.

Client affinities for connections to IBM Informix from Java
clients

Client affinities is a client-only method for providing automatic client reroute
capability.

Client affinities is available for applications that use CLI, .NET, or Java (IBM Data
Server Driver for JDBC and SQLJ type 4 connectivity). All rerouting is controlled
by the driver.

11-28 IBM Data Server Driver for JDBC and SQLJ for Informix

Client affinities is intended for situations in which you need to connect to a
particular primary server. If an outage occurs during the connection to the primary
server, you need to enforce a specific order for failover to alternate servers. You
should use client affinities for automatic client reroute only if automatic client
reroute that uses server failover capabilities does not work in your environment.

As part of configuration of client affinities, you specify a list of alternate servers,
and the order in which connections to the alternate servers are tried. When client
affinities is in use, connections are established based on the list of alternate servers
instead of the host name and port number that are specified by the application. For
example, if an application specifies that a connection is made to server1, but the
configuration process specifies that servers should be tried in the order (server2,
server3, server1), the initial connection is made to server2 instead of server1.

Failover with client affinities is seamless, if the following conditions are true:
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v There are no global temporary tables in use on the server.
v There are no open, held cursors.

When you use client affinities, you can specify that if the primary server returns to
operation after an outage, connections return from an alternate server to the
primary server on a transaction boundary. This activity is known as failback.

Configuration of client affinities for Java clients for IBM Informix
connections
To enable support for client affinities in Java applications, you set properties to
indicate that you want to use client affinities, and to specify the primary and
alternate servers.

The following table describes the property settings for enabling client affinities for
Java applications.

Table 11-10. Property settings to enable client affinities for Java applications

IBM Data Server Driver for JDBC and SQLJ
setting Value

enableClientAffinitiesList DB2BaseDataSource.YES (1)

clientRerouteAlternateServerName A comma-separated list of the primary server
and alternate servers

clientRerouteAlternatePortNumber A comma-separated list of the port numbers
for the primary server and alternate servers

enableSeamlessFailover DB2BaseDataSource.YES (1) for seamless
failover; DB2BaseDataSource.NO (2) or
enableSeamlessFailover not specified for no
seamless failover

maxRetriesForClientReroute The number of times to retry the connection
to each server, including the primary server,
after a connection to the primary server fails.
The default is 3.

retryIntervalForClientReroute The number of seconds to wait between
retries. The default is no wait.

Chapter 11. Java client support for high availability on IBM data servers 11-29

Table 11-10. Property settings to enable client affinities for Java applications (continued)

IBM Data Server Driver for JDBC and SQLJ
setting Value

affinityFailbackInterval The number of seconds to wait after the first
transaction boundary to fail back to the
primary server. Set this value if you want to
fail back to the primary server.

Example of enabling client affinities in Java clients for IBM
Informix connections
Before you can use client affinities for automatic client reroute in Java applications,
you need to set properties to indicate that you want to use client affinities, and to
identify the primary alternate servers.

The following example shows how to enable client affinities for failover without
failback.

Suppose that you set the following properties for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.YES (1)

clientRerouteAlternateServername host1,host2,host3

clientRerouteAlternatePortNumber port1,port2,port3

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

Suppose that a communication failure occurs during a connection to the server that
is identified by host1:port1. The following steps demonstrate automatic client
reroute with client affinities.
1. The driver tries to connect to host1:port1.
2. The connection to host1:port1 fails.
3. The driver waits two seconds.
4. The driver tries to connect to host1:port1.
5. The connection to host1:port1 fails.
6. The driver waits two seconds.
7. The driver tries to connect to host1:port1.
8. The connection to host1:port1 fails.
9. The driver waits two seconds.

10. The driver tries to connect to host2:port2.
11. The connection to host2:port2 fails.
12. The driver waits two seconds.
13. The driver tries to connect to host2:port2.
14. The connection to host2:port2 fails.
15. The driver waits two seconds.
16. The driver tries to connect to host2:port2.
17. The connection to host2:port2 fails.
18. The driver waits two seconds.
19. The driver tries to connect to host3:port3.

11-30 IBM Data Server Driver for JDBC and SQLJ for Informix

20. The connection to host3:port3 fails.
21. The driver waits two seconds.
22. The driver tries to connect to host3:port3.
23. The connection to host3:port3 fails.
24. The driver waits two seconds.
25. The driver tries to connect to host3:port3.
26. The connection to host3:port3 fails.
27. The driver waits two seconds.
28. The driver throws an SQLException with error code -4499.

The following example shows how to enable client affinities for failover with
failback.

Suppose that you set the following properties for a connection to a database:

Property Value

enableClientAffinitiesList DB2BaseDataSource.YES (1)

clientRerouteAlternateServername host1,host2,host3

clientRerouteAlternatePortNumber port1,port2,port3

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

affinityFailbackInterval 300

Suppose that the database administrator takes the server that is identified by
host1:port1 down for maintenance after a connection is made to host1:port1. The
following steps demonstrate failover to an alternate server and failback to the
primary server after maintenance is complete.
1. The driver successfully connects to host1:port1 on behalf of an application.
2. The database administrator brings down host1:port1.
3. The application tries to do work on the connection.
4. The driver successfully fails over to host2:port2.
5. After a total of 200 seconds have elapsed, the work is committed.
6. After a total of 300 seconds have elapsed, the failback interval has elasped.

The driver checks whether the primary server is up. It is not up, so no
failback occurs.

7. After a total of 350 seconds have elapsed, host1:port1 is brought back online.
8. The application continues to do work on host2:port2, because the latest

failback interval has not elapsed.
9. After a total of 600 seconds have elapsed, the failback interval has elapsed

again. The driver checks whether the primary server is up. It is now up.
10. After a total of 650 seconds have elapsed, the work is committed.
11. After a total of 651 seconds have elapsed, the application tries to start a new

transaction on host2:port2. Failback to host1:port1 occurs, so the new
transaction starts on host1:port1.

Chapter 11. Java client support for high availability on IBM data servers 11-31

Java client direct connect support for high availability for connections
to DB2 for z/OS servers

Sysplex workload balancing functionality on DB2 for z/OS servers provides high
availability for client applications that connect directly to a data sharing group.
Sysplex workload balancing functionality provides workload balancing and
automatic client reroute capability. This support is available for applications that
use Java clients (JDBC, SQLJ, or pureQuery) that use IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity, or non-Java clients (ODBC, CLI, .NET, OLE
DB, PHP, Ruby, or embedded SQL). Workload balancing is transparent to
applications.

A Sysplex is a set of z/OS systems that communicate and cooperate with each
other through certain multisystem hardware components and software services to
process customer workloads. DB2 for z/OS subsystems on the z/OS systems in a
Sysplex can be configured to form a data sharing group. With data sharing,
applications that run on more than one DB2 for z/OS subsystem can read from
and write to the same set of data concurrently. One or more coupling facilities
provide high-speed caching and lock processing for the data sharing group. The
Sysplex, together with the Workload Manager (WLM), dynamic virtual IP address
(DVIPA), and the Sysplex Distributor, allow a client to access a DB2 for z/OS
database over TCP/IP with network resilience, and distribute transactions for an
application in a balanced manner across members within the data sharing group.

Central to these capabilities is a server list that the data sharing group returns on
connection boundaries and optionally on transaction boundaries. This list contains
the IP address and WLM weight for each data sharing group member. With this
information, a client can distribute transactions in a balanced manner, or identify
the member to use when there is a communication failure.

The server list is returned on the first successful connection to the DB2 for z/OS
data server. After the client has received the server list, the client directly accesses
a data sharing group member based on information in the server list.

DB2 for z/OS provides several methods for clients to access a data sharing group.
The access method that is set up for communication with the data sharing group
determines whether Sysplex workload balancing is possible. The following table
lists the access methods and indicates whether Sysplex workload balancing is
possible.

11-32 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 11-11. Data sharing access methods and Sysplex workload balancing

Data sharing access
method1 Description

Sysplex
workload
balancing
possible?

Group access A requester uses the group's dynamic virtual IP
address (DVIPA) to make an initial connection
to the DB2 for z/OS location. A connection to
the data sharing group that uses the group IP
address and SQL port is always successful if at
least one member is started. The server list that
is returned by the data sharing group contains:

v A list of members that are currently active
and can perform work

v The WLM weight for each member

The group IP address is configured using the
z/OS Sysplex distributor. To clients that are
outside the Sysplex, the Sysplex distributor
provides a single IP address that represents a
DB2 location. In addition to providing fault
tolerance, the Sysplex distributor can be
configured to provide connection load
balancing.

Yes

Member-specific access A requester uses a location alias to make an
initial connection to one of the members that is
represented by the alias. A connection to the
data sharing group that uses the group IP
address and alias SQL port is always successful
if at least one member is started. The server list
that is returned by the data sharing group
contains:

v A list of members that are currently active,
can perform work, and have been configured
as an alias

v The WLM weight for each member

The requester uses this information to connect to
the member or members with the most capacity
that are also associated with the location alias.
Member-specific access is used when requesters
need to take advantage of Sysplex workload
balancing among a subset of members of a data
sharing group.

Yes

Single-member access Single-member access is used when requesters
need to access only one member of a data
sharing group. For single-member access, the
connection uses the member-specific IP address.

No

Note:

1. For more information on data sharing access methods, see http://
publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/
db2z_tcpipaccessmethods.htm.

Sysplex workload balancing includes automatic client reroute: Automatic client reroute
support enables a client to recover from a failure by attempting to reconnect to the
database through any available member of a Sysplex. Reconnection to another
member is called failover.

Chapter 11. Java client support for high availability on IBM data servers 11-33

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/db2z_tcpipaccessmethods.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/db2z_tcpipaccessmethods.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/db2z_tcpipaccessmethods.htm

Sysplex workload balancing during migration of a data sharing group to DB2 9.1 for z/OS
or DB2 10 for z/OS: In general, if you use IBM Data Server Driver for JDBC and
SQLJ Version 3.61 or 4.11, migration of a data sharing group from DB2 for z/OS
Version 8 or Version 9.1 to Version 10, or DB2 for z/OS Version 8 to Version 9.1
does not cause an outage for Java applications that connect to the data sharing
group using IBM Data Server Driver for JDBC and SQLJ type 4 connectivity. You
do not need to restart all members of the data sharing group or JVMs to maintain
balanced connections. In addition, if you use IBM Data Server Driver for JDBC and
SQLJ Version 3.62 or 4.12 or later, in any mode during the migration from DB2 for
z/OS Version 8 or Version 9.1 new-function mode to Version 10 new-function
mode, or from DB2 for z/OS Version 8 new-function mode to Version 9.1
new-function mode, new applications that use features that require a higher DRDA
level can coexist with old applications that use a lower DRDA level, if they use the
same DataSource. This coexistence includes reversion from a mode to a previous
mode, such as reversion from Version 10 ENFM9 to CM9*. For coexistence of
DRDA levels, you need to have APAR PM24292 installed on the DB2 for z/OS
Version 9.1 and DB2 for z/OS Version 10 data servers.

Sysplex workload balancing during migration of a data sharing group to DB2 9.1 for z/OS:
When you migrate a data sharing group to DB2 9.1 for z/OS new-function mode,
you need to take these steps:
1. Restart all members of the data group.
2. Restart the JVMs under which applications that connect to the data sharing

group using IBM Data Server Driver for JDBC and SQLJ type 4 connectivity
run.

Stopping and starting all members prevents applications that use Sysplex workload
balancing from having unbalanced connections.

For Java, CLI, or .NET client applications, failover for automatic client reroute can
be seamless or non-seamless. Seamless failover means that when the application
successfully reconnects to an alternate server, the server does not return an error to
the application.

Client direct connect support for high availability with a DB2 Connect server: Client
direct connect support for high availability requires a DB2 Connect license, but
does not need a DB2 Connect server. The client connects directly to DB2 for z/OS.
If you use a DB2 Connect server, but set up your environment for client high
availability, you cannot take advantage of some of the features that a direct
connection to DB2 for z/OS provides, such as transaction-level workload balancing
or automatic client reroute capability that is provided by the Sysplex.

Do not use client affinities: Client affinities should not be used as a high availability
solution for direct connections to DB2 for z/OS. Client affinities is not applicable to
a DB2 for z/OS data sharing environment, because all members of a data sharing
group can access data concurrently. A major disadvantage of client affinities in a
data sharing environment is that if failover occurs because a data sharing group
member fails, the member that fails might have retained locks that can severely
affect transactions on the member to which failover occurs.

Configuration of Sysplex workload balancing at a Java client
To configure a IBM Data Server Driver for JDBC and SQLJ client application that
connects directly to DB2 for z/OS to use Sysplex workload balancing, you need to
use IBM Data Server Driver for JDBC and SQLJ type 4 connectivity. You also need
to connect to an address that represents the data sharing group (for group access)

11-34 IBM Data Server Driver for JDBC and SQLJ for Informix

or a subset of the data sharing group (for member-specific access), and set the
properties that enable workload balancing and the maximum number of
connections.

The following table describes the basic property settings for Java applications.

Table 11-12. Basic settings to enable Sysplex high availability support in Java applications

Data sharing
access
method

IBM Data Server Driver for JDBC
and SQLJ setting Value

Group access enableSysplexWLB property true

Connection address:

server The group IP address or domain
name of the data sharing group

port The SQL port number for the DB2
location

database The DB2 location name that is
defined during installation

Member-
specific access

enableSysplexWLB property true

Connection address:

server The group IP address or domain
name of the data sharing group

port The port number for the DB2
location alias

database The name of the DB2 location alias
that represents a subset of the
members of the data sharing group

If you want to fine-tune Sysplex workload balancing, additional properties are
available.

The following IBM Data Server Driver for JDBC and SQLJ Connection or
DataSource properties control Sysplex workload balancing.

Table 11-13. Connection or DataSource properties for fine-tuning Sysplex workload balancing for direct connections
from the IBM Data Server Driver for JDBC and SQLJ to DB2 for z/OS

IBM Data Server Driver for JDBC and SQLJ
property Description

blockingReadConnectionTimeout Specifies the amount of time in seconds before a connection
socket read times out. This property affects all requests that
are sent to the data source after a connection is successfully
established. The default is 0, which means that there is no
timeout. Set this property to a value greater by a few seconds
than the time that is required to execute the longest query in
the application.

loginTimeout Specifies the maximum time in seconds to wait for a new
connection to a data source. After the number of seconds that
are specified by loginTimeout have elapsed, the driver closes
the connection to the data source. The default is 0, which
means that the timeout value is the default system timeout
value. The recommended value is five seconds.

Chapter 11. Java client support for high availability on IBM data servers 11-35

Table 11-13. Connection or DataSource properties for fine-tuning Sysplex workload balancing for direct connections
from the IBM Data Server Driver for JDBC and SQLJ to DB2 for z/OS (continued)

IBM Data Server Driver for JDBC and SQLJ
property Description

maxRefreshInterval Specifies the maximum amount of time in seconds between
refreshes of the client copy of the server list. The default is 30.
The minimum valid value is 1.

maxTransportObjects Specifies the maximum number of connections that the
requester can make to the data sharing group. The default is
-1, which means an unlimited number.

The following IBM Data Server Driver for JDBC and SQLJ configuration properties
also control Sysplex workload balancing.

Table 11-14. Configuration properties for fine-tuning Sysplex workload balancing for direct connections from the IBM
Data Server Driver for JDBC and SQLJ to DB2 for z/OS

IBM Data Server Driver for JDBC and SQLJ
configuration property Description

db2.jcc.maxTransportObjectIdleTime Specifies the maximum elapsed time in number of seconds
before an idle transport is dropped. The default is 60. The
minimum supported value is 0.

db2.jcc.maxTransportObjectWaitTime Specifies the number of seconds that the client will wait for a
transport to become available. The default is -1 (unlimited).
The minimum supported value is 0.

db2.jcc.minTransportObjects Specifies the lower limit for the number of transport objects in
a global transport object pool. The default value is 0. Any
value that is less than or equal to 0 means that the global
transport object pool can become empty.

Example of enabling DB2 for z/OS Sysplex workload
balancing in Java applications

Java client setup for Sysplex workload balancing includes setting several IBM Data
Server Driver for JDBC and SQLJ properties.

The following examples demonstrate setting up Java client applications for Sysplex
workload balancing for high availability.

Before you can set up the client, you need to configure the following server
software:
v WLM for z/OS

For workload balancing to work efficiently, DB2 work needs to be classified.
Classification applies to the first non-SET SQL statement in each transaction.
Among the areas by which you need to classify the work are:
– Authorization ID
– Client info properties
– Stored procedure name

The stored procedure name is used for classification only if the first statement
that is issued by the client in the transaction is an SQL CALL statement.

For a complete list of classification attributes, see the information on
classification attributes at the following URL:
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/-
com.ibm.db29.doc.perf/db2z_classificationattributes.htm

11-36 IBM Data Server Driver for JDBC and SQLJ for Informix

v DB2 for z/OS, set up for data sharing

Example of setup with WebSphere Application Server

This example assumes that you are using WebSphere Application Server. The
minimum level of WebSphere Application Server is Version 5.1.

Follow these steps to set up the client:
1. Verify that the IBM Data Server Driver for JDBC and SQLJ is at the correct level

to support the Sysplex workload balancing by following these steps:
a. Issue the following command

java com.ibm.db2.jcc.DB2Jcc -version

b. Find a line in the output like this, and check that nnn is 3.50 or later.
[jcc] Driver: IBM Data Server Driver for JDBC and SQLJ Architecture nnn xxx

2. Set the IBM Data Server Driver for JDBC and SQLJ data source property
enableSysplexWLB to enable the Sysplex workload balancing.
In the WebSphere Application Server administrative console, set the following
properties for the DataSource that your application uses to connect to the data
source. Start with settings similar to these:

Table 11-15. Example of data source property settings for IBM Data Server Driver for JDBC
and SQLJ Sysplex workload balancing for DB2 for z/OS

Property Setting

enableSysplexWLB true

maxRefreshInterval 30

maxTransportObjects 80

Use property maxTransportObjects to limit the total number of connections to
the DB2 for z/OS data sharing group.

Recommendation: Set maxTransportObjects to a value that is larger than the
MaxConnections value for the WebSphere Application Server connection pool.
Doing so allows workload balancing to occur between data sharing members
without the need to open and close connections to DB2.

3. Set IBM Data Server Driver for JDBC and SQLJ configuration properties to
fine-tune workload balancing for all DataSource or Connection instances that
are created under the driver. Set the configuration properties in a
DB2JccConfiguration.properties file by following these steps:
a. Create a DB2JccConfiguration.properties file or edit the existing

DB2JccConfiguration.properties file.
b. Set the db2.jcc.maxTransportObjects configuration property only if multiple

DataSource objects are defined that point to the same data sharing group,
and the number of connections across the different DataSource objects needs
to be limited.
Start with a setting similar to this one:
db2.jcc.maxTransportObjects=500

c. Add the directory path for DB2JccConfiguration.properties to the
WebSphere Application Server IBM Data Server Driver for JDBC and SQLJ
classpath.

d. Restart WebSphere Application Server.

Chapter 11. Java client support for high availability on IBM data servers 11-37

Example of setup for DriverManager connections

This example assumes that you are using the DriverManager interface to establish
a connection.

Follow these steps to set up the client:
1. Verify that the IBM Data Server Driver for JDBC and SQLJ is at the correct level

to support the Sysplex workload balancing by following these steps:
a. Issue the following command

java com.ibm.db2.jcc.DB2Jcc -version

b. Find a line in the output like this, and check that nnn is 3.50 or later. A
minimum driver level of 3.50 is required for using Sysplex workload
balancing for DriverManager connections.

c.
[jcc] Driver: IBM Data Server Driver for JDBC and SQLJ Architecture nnn xxx

2. Set the IBM Data Server Driver for JDBC and SQLJ Connection property
enableSysplexWLB to enable workload balancing. You can also use property
maxTransportObjects to limit the total number of connections to the DB2 for
z/OS data sharing group, and maxRefreshInterval to specify the maximum
amount of time between refreshes of the client copy of the server list. A
minimum driver level of 3.58 is required for using maxRefreshInterval.
java.util.Properties properties = new java.util.Properties();
properties.put("user", "xxxx");
properties.put("password", "yyyy");
properties.put("enableSysplexWLB", "true");
properties.put("maxTransportObjects", "80");
properties.put("maxRefreshInterval", "30");
java.sql.Connection con =

java.sql.DriverManager.getConnection(url, properties);

3. Set IBM Data Server Driver for JDBC and SQLJ configuration properties to
fine-tune workload balancing for all DataSource or Connection instances that
are created under the driver. Set the configuration properties in a
DB2JccConfiguration.properties file by following these steps:
a. Create a DB2JccConfiguration.properties file or edit the existing

DB2JccConfiguration.properties file.
b. Set the db2.jcc.maxTransportObjects configuration property only if multiple

DataSource objects are defined that point to the same data sharing group,
and the number of connections across the different DataSource objects needs
to be limited.
Start with a setting similar to this one:
db2.jcc.maxTransportObjects=500

c. Include the directory that contains DB2JccConfiguration.properties in the
CLASSPATH concatenation.

Operation of Sysplex workload balancing for connections
from Java clients to DB2 for z/OS servers

Sysplex workload balancing (also called transaction-level workload balancing) for
connections to DB2 for z/OS contributes to high availability by balancing work
among members of a data sharing group at the start of a transaction.

The following overview describes the steps that occur when a client connects to a
DB2 for z/OS Sysplex, and Sysplex workload balancing is enabled:

11-38 IBM Data Server Driver for JDBC and SQLJ for Informix

1. When the client first establishes a connection using the sysplex-wide IP address
called the group IP address, or when a connection is reused by another
connection object, the server returns member workload distribution
information.
The default lifespan of the cached server list is 30 seconds.

2. At the start of a new transaction, the client reads the cached server list to
identify a member that has untapped capacity, and looks in the transport pool
for an idle transport that is tied to the under-utilized member. (An idle
transport is a transport that has no associated connection object.)
v If an idle transport is available, the client associates the connection object

with the transport.
v If, after a user-configurable timeout, no idle transport is available in the

transport pool and no new transport can be allocated because the transport
pool has reached its limit, an error is returned to the application.

3. When the transaction runs, it accesses the member that is tied to the transport.
4. When the transaction ends, the client verifies with the server that transport

reuse is still allowed for the connection object.
5. If transport reuse is allowed, the server returns a list of SET statements for

special registers that apply to the execution environment for the connection
object.
The client caches these statements, which it replays in order to reconstruct the
execution environment when the connection object is associated with a new
transport.

6. The connection object is then disassociated from the transport.
7. The client copy of the server list is refreshed when a new connection is made,

or every 30 seconds.
8. When workload balancing is required for a new transaction, the client uses the

same process to associate the connection object with a transport.

Operation of automatic client reroute for connections from
Java clients to DB2 for z/OS

Automatic client reroute support provides failover support when an IBM data
server client loses connectivity to a member of a DB2 for z/OS Sysplex. Automatic
client reroute enables the client to recover from a failure by attempting to
reconnect to the database through any available member of the Sysplex.

Automatic client reroute is enabled by default when Sysplex workload balancing is
enabled.

Client support for automatic client reroute is available in IBM data server clients
that have a DB2 Connect license. The DB2 Connect server is not required to
perform automatic client reroute.

Automatic client reroute for connections to DB2 for z/OS operates in the following
way:
1. As part of the response to a COMMIT request from the client, the data server

returns:
v An indicator that specifies whether transports can be reused. Transports can

be reused if there are no resources remaining, such as held cursors.
v SET statements that the client can use to replay the connection state during

transport reuse.

Chapter 11. Java client support for high availability on IBM data servers 11-39

|

2. If the first SQL statement in a transaction fails, and transports can be reused:
v No error is reported to the application.
v The failing SQL statement is executed again.
v The SET statements that are associated with the logical connection are

replayed to restore the connection state.
3. If an SQL statement that is not the first SQL statement in a transaction fails,

and transports can be reused:
v The transaction is rolled back.
v The application is reconnected to the data server.
v The SET statements that are associated with the logical connection are

replayed to restore the connection state.
v SQL error -30108 (for Java) or SQL30108N (for non-Java clients) is returned to

the application to notify it of the rollback and successful reconnection. The
application needs to include code to retry the failed transaction.

4. If an SQL statement that is not the first SQL statement in a transaction fails,
and transports cannot be reused:
v The logical connection is returned to its initial, default state.
v SQL error -30081 (for Java) or SQL30081N (for non-Java clients) is returned to

the application to notify it that reconnection was unsuccessful. The
application needs to reconnect to the data server, reestablish the connection
state, and retry the failed transaction.

5. If connections to all members of the data sharing member list have been tried,
and none have succeeded, a connection is tried using the URL that is associated
with the data sharing group, to determine whether any members are now
available.

Application programming requirements for high availability for
connections from Java clients to DB2 for z/OS servers

Failover for automatic client reroute can be seamless or non-seamless. If failover
for connections to DB2 for z/OS is not seamless, you need to add code to account
for the errors that are returned when failover occurs.

If failover is not seamless, and a connection is reestablished with the server,
SQLCODE -30108 (SQL30108N) is returned to the application. All work that
occurred within the current transaction is rolled back. In the application, you need
to:
v Check the reason code that is returned with the -30108 error to determine

whether special register settings on the failing data sharing member are carried
over to the new (failover) data sharing member. Reset any special register values
that are not current.

v Execute all SQL operations that occurred since the previous commit operation.

The following conditions must be satisfied for seamless failover to occur for direct
connections to DB2 for z/OS:
v The application language is Java, CLI, or .NET.
v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.
v The data server allows transport reuse at the end of the previous transaction. An

exception to this condition is if transport reuse is not granted because the
application was bound with KEEPDYNAMIC(YES).

v All global session data is closed or dropped.

11-40 IBM Data Server Driver for JDBC and SQLJ for Informix

v There are no open, held cursors.
v If the application uses CLI, the application cannot perform actions that require

the driver to maintain a history of previously called APIs in order to replay the
SQL statement. Examples of such actions are specifying data at execution time,
performing compound SQL, or using array input.

v The application is not a stored procedure.
v The application is not running in a Federated environment.
v Two-phase commit is used, if transactions are dependent on the success of

previous transactions. When a failure occurs during a commit operation, the
client has no information about whether work was committed or rolled back at
the server. If each transaction is dependent on the success of the previous
transaction, use two-phase commit. Two-phase commit requires the use of XA
support.

Chapter 11. Java client support for high availability on IBM data servers 11-41

11-42 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 12. Java 2 Platform, Enterprise Edition

The Java 2 Platform, Enterprise Edition (J2EE), reduces the cost and complexity of
developing multi-tier services.

In today's global business environment, organizations need to extend their reach,
lower their costs, and lower their response times by providing services that are
easily accessible to their customers, employees, suppliers, and other business
partners. These services need to have the following characteristics:
v Highly available, to meet the requirements of global business environment
v Secure, to protect the privacy of the users and the integrity of the enterprise
v Reliable and scalable, so that business transactions are accurately and promptly

processed

In most cases, these services are provided with the help of multi-tier applications
with each tier serving a specific purpose.

J2EE achieves these benefits by defining a standard architecture that is delivered as
the following elements:
v J2EE Application Model, a standard application model for developing multi-tier,

thin-client services
v J2EE Platform, a standard platform for hosting J2EE applications
v J2EE Compatibility Test Suite for verifying that a J2EE platform product

complies with the J2EE platform standard
v J2EE Reference Implementation for demonstrating the capabilities of J2EE, and

for providing an operational definition of the J2EE platform

Application components of Java 2 Platform, Enterprise Edition support
The Java 2 Platform, Enterprise Edition (J2EE) provides the runtime environment
for hosting J2EE applications.

The runtime environment defines four application component types that a J2EE
product must support:
v Application clients are Java programming language programs that are typically

GUI programs that execute on a desktop computer. Application clients have
access to all of the facilities of the J2EE middle tier.

v Applets are GUI components that typically execute in a web browser, but can
execute in a variety of other applications or devices that support the applet
programming model.

v Servlets, JavaServer Pages (JSPs), filters, and web event listeners typically
execute in a web server and might respond to HTTP requests from web clients.
Servlets, JSPs, and filters can be used to generate HTML pages that are an
application's user interface. They can also be used to generate XML or other
format data that is consumed by other application components. Servlets, pages
created with the JSP technology, web filters, and web event listeners are referred
to collectively in this specification as web components. Web applications are
composed of web components and other data such as HTML pages.

© Copyright IBM Corp. 2007, 2011 12-1

v Enterprise JavaBeans (EJB) components execute in a managed environment that
supports transactions. Enterprise beans typically contain the business logic for a
J2EE application.

The application components listed above can divided into three categories, based
on how they can be deployed and managed:
v Components that are deployed, managed, and executed on a J2EE server.
v Components that are deployed, managed on a J2EE server, but are loaded to and

executed on a client machine.
v Components whose deployment and management are not completely defined by

this specification. Application clients can be under this category.

The runtime support for these components is provided by containers.

Java 2 Platform, Enterprise Edition containers
A container provides a federated view of the underlying Java 2 Platform,
Enterprise Edition (J2EE) APIs to the application components.

A typical J2EE product will provide a container for each application component
type; application client container, applet container, web container, and enterprise
bean container. The container tools also understand the file formats for packaging
the application components for deployment.

The specification requires that these containers provide a Java-compatible runtime
environment. This specification defines a set of standard services that each J2EE
product must support. These standard services are:
v HTTP service
v HTTPS service
v Java transaction API
v Remote invocation method
v Java IDL
v JDBC API
v Java message service
v Java naming and directory interface
v JavaMail
v JavaBeans activation framework
v Java API for XML parsing
v Connector architecture
v Java authentication and authorization service

Java 2 Platform, Enterprise Edition Server
One part of a Java 2 Platform, Enterprise Edition (J2EE) container is a server.

A J2EE Product Provider typically implements the J2EE server-side functionality.
The J2EE client functionality is typically built on J2SE technology.

The IBM WebSphere Application Server is a J2EE-compliant server.

Java 2 Platform, Enterprise Edition database requirements
Java 2 Platform, Enterprise Edition requires a data server to store business data.
The data server must be accessible through the JDBC API.

12-2 IBM Data Server Driver for JDBC and SQLJ for Informix

The database is accessible from web components, enterprise beans, and application
client components. The database need not be accessible from applets.

Java Naming and Directory Interface (JNDI)
JNDI enables Java platform-based applications to access multiple naming and
directory services.

It is a part of the Java Enterprise application programming interface (API) set.
JNDI makes it possible for developers to create portable applications that are
enabled for a number of different naming and directory services, including: file
systems; directory services such as Lightweight Directory Access Protocol (LDAP)
and Novell Directory Services, and distributed object systems such as the Common
Object Request Broker Architecture (CORBA), Java Remote Method Invocation
(RMI), and Enterprise JavaBeans (EJB).

The JNDI API has two parts: an application-level interface used by the application
components to access naming and directory services and a service provider
interface to attach a provider of a naming and directory service.

Java transaction management
Java 2 Platform, Enterprise Edition (J2EE) simplifies application programming for
distributed transaction management.

J2EE includes support for distributed transactions through two specifications, Java
Transaction API (JTA) and Java Transaction Service (JTS). JTA is a high-level,
implementation-independent, protocol-independent API that allows applications
and application servers to access transactions. In addition, the JTA is always
enabled.

The IBM Data Server Driver for JDBC and SQLJ and the DB2 JDBC Type 2 Driver
for Linux, UNIX and Windows implement the JTA and JTS specifications.

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity distributed
transactions are supported to DB2 Database for Linux, UNIX, and Windows, DB2
for z/OS, and DB2 for i servers.

JTA specifies standard Java interfaces between a transaction manager and the
parties involved in a distributed transaction system: the resource manager, the
application server, and the transactional applications.

JTS specifies the implementation of a Transaction Manager which supports JTA and
implements the Java mapping of the OMG Object Transaction Service (OTS) 1.1
specification at the level below the API. JTS propagates transactions using IIOP.

JTA and JTS allow application J2EE servers to take the burden of transaction
management off of the component developer. Developers can define the
transactional properties of EJB technology based components during design or
deployment using declarative statements in the deployment descriptor. The
application server takes over the transaction management responsibilities.

In the IDS and WebSphere Application Server environment, WebSphere Application
Server assumes the role of transaction manager, and IDS acts as a resource
manager. WebSphere Application Server implements JTS and part of JTA, and the

Chapter 12. Java 2 Platform, Enterprise Edition 12-3

JDBC drivers also implement part of JTA so that WebSphere Application Server
and IDS can provide coordinated distributed transactions.

It is not necessary to configure IDS to be JTA-enabled in the WebSphere
Application Server environment because the JDBC drivers automatically detect this
environment.

The IBM Data Server Driver for JDBC and SQLJ provides these two DataSource
classes:
v com.ibm.db2.jcc.DB2ConnectionPoolDataSource
v com.ibm.db2.jcc.DB2XADataSource

WebSphere Application Server provides pooled connections to databases. If the
application will be involved in a distributed transaction, the
com.ibm.db2.jdbc.DB2XADataSource class should be used when defining IDS data
sources within the WebSphere Application Server.

For the detail information about how to configure the WebSphere Application
Server with IDS, refer to WebSphere Application Server InfoCenter at:
http://www.ibm.com/software/webservers/appserv/library.html

Example of a distributed transaction that uses JTA methods
Distributed transactions typically involve multiple connections to the same data
source or different data sources, which can include data sources from different
manufacturers.

The best way to demonstrate distributed transactions is to contrast them with local
transactions. With local transactions, a JDBC application makes changes to a
database permanent and indicates the end of a unit of work in one of the
following ways:
v By calling the Connection.commit or Connection.rollback methods after

executing one or more SQL statements
v By calling the Connection.setAutoCommit(true) method at the beginning of the

application to commit changes after every SQL statement

Figure 12-1 outlines code that executes local transactions.

In contrast, applications that participate in distributed transactions cannot call the
Connection.commit, Connection.rollback, or Connection.setAutoCommit(true)
methods within the distributed transaction. With distributed transactions, the
Connection.commit or Connection.rollback methods do not indicate transaction
boundaries. Instead, your applications let the application server manage
transaction boundaries.

con1.setAutoCommit(false); // Set autocommit off
// execute some SQL
...
con1.commit(); // Commit the transaction
// execute some more SQL
...
con1.rollback(); // Roll back the transaction
con1.setAutoCommit(true); // Enable commit after every SQL statement
...
// Execute some more SQL, which is automatically committed after
// every SQL statement.

Figure 12-1. Example of a local transaction

12-4 IBM Data Server Driver for JDBC and SQLJ for Informix

Figure 12-2 demonstrates an application that uses distributed transactions. While
the code in the example is running, the application server is also executing other
EJBs that are part of this same distributed transaction. When all EJBs have called
utx.commit(), the entire distributed transaction is committed by the application
server. If any of the EJBs are unsuccessful, the application server rolls back all the
work done by all EJBs that are associated with the distributed transaction.

Figure 12-3 illustrates a program that uses JTA methods to execute a distributed
transaction. This program acts as the transaction manager and a transactional
application. Two connections to two different data sources do SQL work under a
single distributed transaction.

class XASample
{

javax.sql.XADataSource xaDS1;
javax.sql.XADataSource xaDS2;
javax.sql.XAConnection xaconn1;
javax.sql.XAConnection xaconn2;
javax.transaction.xa.XAResource xares1;
javax.transaction.xa.XAResource xares2;
java.sql.Connection conn1;
java.sql.Connection conn2;

public static void main (String args []) throws java.sql.SQLException
{

XASample xat = new XASample();
xat.runThis(args);

}
// As the transaction manager, this program supplies the global
// transaction ID and the branch qualifier. The global
// transaction ID and the branch qualifier must not be
// equal to each other, and the combination must be unique for
// this transaction manager.
public void runThis(String[] args)
{

byte[] gtrid = new byte[] { 0x44, 0x11, 0x55, 0x66 };
byte[] bqual = new byte[] { 0x00, 0x22, 0x00 };
int rc1 = 0;
int rc2 = 0;

try
{

javax.naming.InitialContext context = new javax.naming.InitialContext();

javax.transaction.UserTransaction utx;
// Use the begin method on a UserTransaction object to indicate
// the beginning of a distributed transaction.
utx.begin();
...
// Execute some SQL with one Connection object.
// Do not call Connection methods commit or rollback.
...
// Use the commit method on the UserTransaction object to
// drive all transaction branches to commit and indicate
// the end of the distributed transaction.

utx.commit();
...

Figure 12-2. Example of a distributed transaction under an application server

Figure 12-3. Example of a distributed transaction that uses the JTA

Chapter 12. Java 2 Platform, Enterprise Edition 12-5

/*
* Note that javax.sql.XADataSource is used instead of a specific
* driver implementation such as com.ibm.db2.jcc.DB2XADataSource.
*/

xaDS1 = (javax.sql.XADataSource)context.lookup("checkingAccounts");
xaDS2 = (javax.sql.XADataSource)context.lookup("savingsAccounts");

// The XADatasource contains the user ID and password.
// Get the XAConnection object from each XADataSource
xaconn1 = xaDS1.getXAConnection();
xaconn2 = xaDS2.getXAConnection();

// Get the java.sql.Connection object from each XAConnection
conn1 = xaconn1.getConnection();
conn2 = xaconn2.getConnection();

// Get the XAResource object from each XAConnection
xares1 = xaconn1.getXAResource();
xares2 = xaconn2.getXAResource();
// Create the Xid object for this distributed transaction.
// This example uses the com.ibm.db2.jcc.DB2Xid implementation
// of the Xid interface. This Xid can be used with any JDBC driver
// that supports JTA.
javax.transaction.xa.Xid xid1 =

new com.ibm.db2.jcc.DB2Xid(100, gtrid, bqual);

// Start the distributed transaction on the two connections.
// The two connections do NOT need to be started and ended together.
// They might be done in different threads, along with their SQL operations.
xares1.start(xid1, javax.transaction.xa.XAResource.TMNOFLAGS);
xares2.start(xid1, javax.transaction.xa.XAResource.TMNOFLAGS);

...
// Do the SQL operations on connection 1.
// Do the SQL operations on connection 2.

...
// Now end the distributed transaction on the two connections.
xares1.end(xid1, javax.transaction.xa.XAResource.TMSUCCESS);
xares2.end(xid1, javax.transaction.xa.XAResource.TMSUCCESS);

// If connection 2 work had been done in another thread,
// a thread.join() call would be needed here to wait until the
// connection 2 work is done.

try
{ // Now prepare both branches of the distributed transaction.

// Both branches must prepare successfully before changes
// can be committed.
// If the distributed transaction fails, an XAException is thrown.
rc1 = xares1.prepare(xid1);
if(rc1 == javax.transaction.xa.XAResource.XA_OK)
{ // Prepare was successful. Prepare the second connection.

rc2 = xares2.prepare(xid1);
if(rc2 == javax.transaction.xa.XAResource.XA_OK)
{ // Both connections prepared successfully and neither was read-only.

xares1.commit(xid1, false);
xares2.commit(xid1, false);

}
else if(rc2 == javax.transaction.xa.XAException.XA_RDONLY)
{ // The second connection is read-only, so just commit the

// first connection.
xares1.commit(xid1, false);

}
}
else if(rc1 == javax.transaction.xa.XAException.XA_RDONLY)
{ // SQL for the first connection is read-only (such as a SELECT).

// The prepare committed it. Prepare the second connection.
rc2 = xares2.prepare(xid1);

12-6 IBM Data Server Driver for JDBC and SQLJ for Informix

if(rc2 == javax.transaction.xa.XAResource.XA_OK)
{ // The first connection is read-only but the second is not.

// Commit the second connection.
xares2.commit(xid1, false);

}
else if(rc2 == javax.transaction.xa.XAException.XA_RDONLY)
{ // Both connections are read-only, and both already committed,

// so there is nothing more to do.
}

}
} catch (javax.transaction.xa.XAException xae)
{ // Distributed transaction failed, so roll it back.

// Report XAException on prepare/commit.
System.out.println("Distributed transaction prepare/commit failed. " +

"Rolling it back.");
System.out.println("XAException error code = " + xae.errorCode);
System.out.println("XAException message = " + xae.getMessage());
xae.printStackTrace();
try
{

xares1.rollback(xid1);
}
catch (javax.transaction.xa.XAException xae1)
{ // Report failure of rollback.

System.out.println("distributed Transaction rollback xares1 failed");
System.out.println("XAException error code = " + xae1.errorCode);
System.out.println("XAException message = " + xae1.getMessage());

}
try
{

xares2.rollback(xid1);
}
catch (javax.transaction.xa.XAException xae2)
{ // Report failure of rollback.

System.out.println("distributed Transaction rollback xares2 failed");
System.out.println("XAException error code = " + xae2.errorCode);
System.out.println("XAException message = " + xae2.getMessage());

}
}

try
{

conn1.close();
xaconn1.close();

}
catch (Exception e)
{

System.out.println("Failed to close connection 1: " + e.toString());
e.printStackTrace();

}
try
{

conn2.close();
xaconn2.close();

}
catch (Exception e)
{

System.out.println("Failed to close connection 2: " + e.toString());
e.printStackTrace();

}
}
catch (java.sql.SQLException sqe)
{

System.out.println("SQLException caught: " + sqe.getMessage());
sqe.printStackTrace();

}
catch (javax.transaction.xa.XAException xae)

Chapter 12. Java 2 Platform, Enterprise Edition 12-7

{
System.out.println("XA error is " + xae.getMessage());
xae.printStackTrace();

}
catch (javax.naming.NamingException nme)
{

System.out.println(" Naming Exception: " + nme.getMessage());
}

}
}

Recommendation: For better performance, complete a distributed transaction
before you start another distributed or local transaction.

Enterprise Java Beans
The Enterprise Java beans architecture is a component architecture for the
development and deployment of component-based distributed business
applications.

Applications that are written using the Enterprise Java beans architecture can be
written once, and then deployed on any server platform that supports the
Enterprise Java beans specification. Java 2 Platform, Enterprise Edition (J2EE)
applications implement server-side business components using Enterprise Java
beans (EJBs) that include session beans and entity beans.

Session beans represent business services and are not shared between users. Entity
beans are multi-user, distributed transactional objects that represent persistent data.
The transactional boundaries of a EJB application can be set by specifying either
container-managed or bean-managed transactions.

The sample program AccessEmployee.ear uses Enterprise Java beans to implement
a J2EE application to access a data source. You can find this sample in the
SQLLIB/samples/websphere directory.

The EJB sample application provides two business services. One service allows the
user to access information about an employee (which is stored in the EMPLOYEE
table of the sample database) through that employee's employee number. The
other service allows the user to retrieve a list of the employee numbers, so that the
user can obtain an employee number to use for querying employee data.

The following sample uses EJBs to implement a J2EE application to access a data
source. The sample utilizes the Model-View-Controller (MVC) architecture, which
is a commonly-used GUI architecture. The JSP is used to implement the view (the
presentation component). A servlet acts as the controller in the sample. It controls
the workflow and delegates the user's request to the model, which is implemented
using EJBs. The model component of the sample consists of two EJBs, one session
bean and one entity bean. The container-managed persistence (CMP) bean,
Employee, represents the distributed transactional objects that represent the
persistent data in the EMPLOYEE table of the sample database. The term
container-managed persistence means that the EJB container handles all database
access required by the entity bean. The bean's code contains no database access
(SQL) calls. As a result, the bean's code is not tied to a specific persistent storage
mechanism (database). The session bean, AccessEmployee, acts as the Façade of the
entity bean and provides provide a uniform client access strategy. This Façade
design reduces the network traffic between the EJB client and the entity bean and
is more efficient in distributed transactions than if the EJB client accesses the entity

12-8 IBM Data Server Driver for JDBC and SQLJ for Informix

bean directly. Access to the database server can be provided from the session bean
or entity bean. The two services of the sample application demonstrate both
approaches to accessing the database server. In the first service, the entity bean is
used:
//==
// This method returns an employee’s information by
// interacting with the entity bean located by the
// provided employee number
public EmployeeInfo getEmployeeInfo(String empNo)
throws java.rmi.RemoteException
}
Employee employee = null;
try
}
employee = employeeHome.findByPrimaryKey(new EmployeeKey(empNo));
EmployeeInfo empInfo = new EmployeeInfo(empNo);
//set the employee’s information to the dependent value object
empInfo.setEmpno(employee.getEmpno());
empInfo.setFirstName (employee.getFirstName());
empInfo.setMidInit(employee.getMidInit());
empInfo.setLastName(employee.getLastName());
empInfo.setWorkDept(employee.getWorkDept());
empInfo.setPhoneNo(employee.getPhoneNo());
empInfo.setHireDate(employee.getHireDate());
empInfo.setJob(employee.getJob());
empInfo.setEdLevel(employee.getEdLevel());
empInfo.setSex(employee.getSex());
empInfo.setBirthDate(employee.getBirthDate());
empInfo.setSalary(employee.getSalary());
empInfo.setBonus(employee.getBonus());
empInfo.setComm(employee.getComm());
return empInfo;
}
catch (java.rmi.RemoteException rex)
{
......

In the second service, which displays employee numbers, the session bean,
AccessEmployee, directly accesses the database table.
/===
* Get the employee number list.
* @return Collection
*/
public Collection getEmpNoList()
{
ResultSet rs = null;
PreparedStatement ps = null;
Vector list = new Vector();
DataSource ds = null;
Connection con = null;
try
{
ds = getDataSource();
con = ds.getConnection();
String schema = getEnvProps(DBschema);
String query = "Select EMPNO from " + schema + ".EMPLOYEE";
ps = con.prepareStatement(query);
ps.executeQuery();
rs = ps.getResultSet();
EmployeeKey pk;
while (rs.next())
{
pk = new EmployeeKey();
pk.employeeId = rs.getString(1);

Chapter 12. Java 2 Platform, Enterprise Edition 12-9

list.addElement(pk.employeeId);
}
rs.close();
return list;

12-10 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 13. JDBC and SQLJ connection pooling support

Connection pooling is part of JDBC DataSource support, and is supported by the
IBM Data Server Driver for JDBC and SQLJ.

The IBM Data Server Driver for JDBC and SQLJ provides a factory of pooled
connections that are used by WebSphere Application Server or other application
servers. The application server actually does the pooling. Connection pooling is
completely transparent to a JDBC or SQLJ application.

Connection pooling is a framework for caching physical data source connections,
which are equivalent to IBM Informix sessions. With connection pooling, session
connections are reused. When JDBC reuses data source connections, the expensive
operations that are required for the creation and subsequent closing of
java.sql.Connection objects are minimized.

Without connection pooling, each java.sql.Connection object represents a single,
session-level connection to the data source, which is not reused. When the
application establishes a connection to a data source, IBM Informix creates a new
physical connection to the data source. When the application calls the
java.sql.Connection.close method, IBM Informix terminates the connection to the
data source.

Connection pooling can be homogeneous or heterogeneous.

With homogeneous pooling, all Connection objects that come from a connection
pool should have the same properties. The first logical Connection that is created
with the DataSource has the properties that were defined for the DataSource.
However, an application can change those properties. When a Connection is
returned to the connection pool, an application server or a pooling module should
reset the properties to their original values. However, an application server or
pooling module might not reset the changed properties. The JDBC driver does not
modify the properties. Therefore, depending on the application server or pool
module design, a reused logical Connection might have the same properties as
those that are defined for the DataSource or different properties.

With heterogeneous pooling, Connection objects with different properties can share
the same connection pool.

© Copyright IBM Corp. 2007, 2011 13-1

13-2 IBM Data Server Driver for JDBC and SQLJ for Informix

Chapter 14. JDBC and SQLJ reference information

The IBM implementations of JDBC and SQLJ provide a number of application
programming interfaces, properties, and commands for developing JDBC and SQLJ
applications.

Data types that map to database data types in Java applications
To write efficient JDBC and SQLJ programs, you need to use the best mappings
between Java data types and table column data types.

The following tables summarize the mappings of Java data types to JDBC and
database data types for a DB2 Database for Linux, UNIX, and Windows, DB2 for
z/OS, or IBM Informix system.

Data types for updating table columns

The following table summarizes the mappings of Java data types to database data
types for PreparedStatement.setXXX or ResultSet.updateXXX methods in JDBC
programs. When more than one Java data type is listed, the first data type is the
recommended data type.

Table 14-1. Mappings of Java data types to database server data types for updating database tables

Java data type Database data type

short, java.lang.Short SMALLINT

short, java.lang.Short BOOLEAN

boolean, java.lang.Boolean BOOLEAN

int, java.lang.Integer INTEGER

int, java.lang.Integer SERIAL

long, java.lang.Long INT8

long, java.lang.Long BIGINT

long, java.lang.Long SERIAL8

long, java.lang.Long BIGSERIAL

float, java.lang.Float SMALLFLOAT

double, java.lang.Double FLOAT

java.math.BigDecimal DECIMAL(p,s)1

java.math.BigDecimal DECIMAL(p)2

java.math.BigDecimal DECIMAL3

java.math.BigDecimal MONEY(p,s)1

java.lang.String CHAR(n)4

java.lang.String NCHAR(n)4

java.lang.String VARCHAR(m,r)5

java.lang.String LVARCHAR(m,r)6

java.lang.String NVARCHAR(m,r)6

java.lang.String INTERVAL

© Copyright IBM Corp. 2007, 2011 14-1

Table 14-1. Mappings of Java data types to database server data types for updating database tables (continued)

Java data type Database data type

java.lang.String CLOB7

byte[] BYTE

byte[] BLOB7

java.sql.Blob BLOB

java.sql.Clob CLOB

java.lang.Clob TEXT

java.sql.Date DATE

java.sql.Time DATETIME HOUR TO SECOND

java.sql.Timestamp DATETIME YEAR TO FRACTION(5)

java.io.ByteArrayInputStream BLOB

java.io.StringReader CLOB

java.io.ByteArrayInputStream CLOB

Notes:

1. p is the decimal precision and s is the scale of the table column.

2. For an ANSI-compliant database, p is the precision, and the scale is 0. For a database that is not ANSI-compliant,
if you specify only p, the data type is DECIMAL floating point.

3. For an ANSI-compliant database, if you specify no parameters, the precision is 16 and the scale is 0. For a
database that is not ANSI-compliant, if you specify no parameters, the data type is DECIMAL floating point.

4. n<=32767.

5. 0<=r<=m<=255.

6. 0<=r<=m<=32739.

7. This mapping is valid only if the database server can determine the data type of the column.

Data types for retrieval from table columns

The following table summarizes the mappings of DB2 or IBM Informix data types
to Java data types for ResultSet.getXXX methods in JDBC programs, and for
iterators in SQLJ programs. This table does not list Java numeric wrapper object
types, which are retrieved using ResultSet.getObject.

Table 14-2. Mappings of database server data types to Java data types for retrieving data from database server tables

SQL data type
Recommended Java data type or
Java object type Other supported Java data types

SMALLINT short byte, int, long, float, double,
java.math.BigDecimal, boolean,
java.lang.String

BOOLEAN boolean short

INTEGER int short, byte, long, float, double,
java.math.BigDecimal, boolean,
java.lang.String

SERIAL int short, byte, long, float, double,
java.math.BigDecimal, boolean,
java.lang.String

INT8 long int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.lang.String

14-2 IBM Data Server Driver for JDBC and SQLJ for Informix

||

Table 14-2. Mappings of database server data types to Java data types for retrieving data from database server
tables (continued)

SQL data type
Recommended Java data type or
Java object type Other supported Java data types

BIGINT long int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.lang.String

SERIAL8 long int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.lang.String

BIGSERIAL long int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.lang.String

DECIMAL(p,s) java.math.BigDecimal long, int, short, byte, float, double,
boolean, java.lang.String

DECIMAL(p) java.math.BigDecimal long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.lang.String

MONEY(p,s) java.math.BigDecimal long, int, short, byte, float, double,
boolean, java.lang.String

SMALLFLOAT float long, int, short, byte, double,
java.math.BigDecimal, boolean,
java.lang.String

FLOAT double long, int, short, byte, float,
java.math.BigDecimal, boolean,
java.lang.String

CHAR(n) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

NCHAR(n) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

VARCHAR(m,r) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

LVARCHAR(m,r) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

NVARCHAR(n) java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

Chapter 14. JDBC and SQLJ reference information 14-3

Table 14-2. Mappings of database server data types to Java data types for retrieving data from database server
tables (continued)

SQL data type
Recommended Java data type or
Java object type Other supported Java data types

INTERVAL java.lang.String long, int, short, byte, float, double,
java.math.BigDecimal, boolean,
java.sql.Date, java.sql.Time,
java.sql.Timestamp,
java.io.InputStream, java.io.Reader

BYTE byte[] None

CLOB(n) java.sql.Clob java.lang.String

TEXT java.sql.Clob java.lang.String

BLOB(n) java.sql.Blob byte[]1

DATE java.sql.Date java.sql.String, java.sql.Timestamp

DATETIME HOUR TO SECOND java.sql.Time java.sql.String, java.sql.Timestamp

DATETIME YEAR TO FRACTION(5) java.sql.Timestamp java.sql.String, java.sql.Date,
java.sql.Time, java.sql.Timestamp

Notes:

1. This mapping is valid only if the database server can determine the data type of the column.

Data types for calling stored procedures and user-defined
functions

The following table summarizes mappings of Java data types to JDBC data types
and DB2 or IBM Informix data types for calling user-defined function and stored
procedure parameters. The mappings of Java data types to JDBC data types are for
CallableStatement.registerOutParameter methods in JDBC programs. The mappings
of Java data types to database server data types are for parameters in stored
procedure or user-defined function invocations.

If more than one Java data type is listed in the following table, the first data type
is the recommended data type.

Table 14-3. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined functions

Java data type JDBC data type SQL data type

boolean, java.lang.Boolean BIT BOOLEAN

boolean, java.lang.Boolean BOOLEAN BOOLEAN

byte1, java.lang.Byte TINYINT SMALLINT

short, java.lang.Short SMALLINT SMALLINT

int, java.lang.Integer INTEGER INTEGER

int, java.lang.Integer INTEGER SERIAL

long, java.lang.Long BIGINT INT8

long, java.lang.Long BIGINT BIGINT

long, java.lang.Long BIGINT SERIAL8

long, java.lang.Long BIGINT BIGSERIAL

float, java.lang.Float REAL SMALLFLOAT

float, java.lang.Float FLOAT SMALLFLOAT

14-4 IBM Data Server Driver for JDBC and SQLJ for Informix

|||
|

Table 14-3. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined
functions (continued)

Java data type JDBC data type SQL data type

double, java.lang.Double DOUBLE FLOAT

java.math.BigDecimal NUMERIC DECIMAL

java.math.BigDecimal DECIMAL DECIMAL

java.math.BigDecimal NUMERIC MONEY

java.lang.String CHAR CHAR

java.lang.String CHAR INTERVAL

java.lang.String CHAR NCHAR

java.lang.String VARCHAR VARCHAR

java.lang.String VARCHAR NVARCHAR

java.lang.String LONGVARCHAR VARCHAR

java.lang.String LONGVARCHAR LVARCHAR

java.lang.String VARCHAR CLOB

java.lang.String LONGVARCHAR CLOB

java.lang.String CLOB CLOB

java.lang.String CLOB TEXT

byte[] BINARY BYTE

byte[] VARBINARY BYTE

byte[] VARBINARY BYTE

byte[] LONGVARBINARY BYTE

byte[] LONGVARBINARY BLOB2

java.sql.Date DATE DATE

java.sql.Time TIME DATETIME HOUR TO
SECOND

java.sql.Timestamp TIMESTAMP DATETIME YEAR TO
FRACTION(5)

java.sql.Blob BLOB BLOB

java.sql.Clob CLOB CLOB

java.io.ByteArrayInputStream None BLOB

java.io.StringReader None CLOB

java.io.ByteArrayInputStream None CLOB

Notes:

1. A stored procedure or user-defined function that is defined with a SMALLINT parameter can be invoked with a
boolean or byte parameter. However, this is not recommended.

2. This mapping is valid only if the database server can determine the data type of the column.

IBM Informix SQL types with limited support

The SET, MULTISET, LIST, ROW, and UDT data types have limited support. You
cannot retrieve data from columns with those data types, but you can use
DatabaseMetaData methods to retrieve the column data types and type names. The
following table lists the data types and type names that are returned from
DatabaseMetaData.getColumns and DatabaseMetaData.getTypeInfo.

Chapter 14. JDBC and SQLJ reference information 14-5

Table 14-4. Data types returned for DatabaseMetaData calls against SET, MULTISET, LIST,
ROW, and UDT columns

Column data type JDBC data type Type name

SET java.sql.Types.OTHER set

MULTISET java.sql.Types.OTHER multiset

LIST java.sql.Types.OTHER list

ROW java.sql.Types.STRUCTURE row

UDT java.sql.Types.JAVA_OBJECT The fully qualified type name
that was specified when the
UDT was created.

Retrieval of special values from DECFLOAT columns in Java
applications

Special handling is necessary if you retrieve values from DECFLOAT columns into
java.math.BigDecimal variables, and the DECFLOAT columns contain the values
NaN, Infinity, or -Infinity.

The recommended Java data type for retrieval of DECFLOAT column values is
java.math.BigDecimal. However, if you receive SQL error code -4231 if you
perform either of these operations:
v Retrieve the value NaN, Infinity, or -Infinity from a DECFLOAT column using

the JDBC java.sql.ResultSet.getBigDecimal or java.sql.ResultSet.getObject method
v Retrieve the value NaN, Infinity, or -Infinity from a DECFLOAT column into a

java.math.BigDecimal variable in an SQLJ clause of an SQLJ program

You can circumvent this restriction by testing for the -4231 error, and retrieving the
special value using the java.sql.ResultSet.getDouble method.

Suppose that the following SQL statements were used to create and populate a
table.
CREATE TABLE TEST.DECFLOAT_TEST
(
INT_VAL INT,
DECFLOAT_VAL DECFLOAT
);
INSERT INTO TEST.DECFLOAT_TEST (INT_VAL, DECFLOAT_VAL) VALUES (1, 123.456),
INSERT INTO TEST.DECFLOAT_TEST (INT_VAL, DECFLOAT_VAL) VALUES (2, INFINITY),
INSERT INTO TEST.DECFLOAT_TEST (INT_VAL, DECFLOAT_VAL) VALUES (3, -123.456),
INSERT INTO TEST.DECFLOAT_TEST (INT_VAL, DECFLOAT_VAL) VALUES (4, -INFINITY),
INSERT INTO TEST.DECFLOAT_TEST (INT_VAL, DECFLOAT_VAL) VALUES (5, NaN);

The following code retrieves the contents of the DECFLOAT column using the
java.sql.ResultSet.getBigDecimal method. If retrieval fails because the column value
is NaN, INFINITY, or -INFINITY, the program retrieves the value using the
java.sql.ResultSet.getBigDouble method.
final static int DECFLOAT_SPECIALVALUE_ENCOUNTERED = -4231;
java.sql.Connection con =

java.sql.DriverManager.getConnection("jdbc:db2://localhost:50000/sample"
, "userid", "password");

java.sql.Statement stmt = con.createStatement();
java.sql.ResultSet rs = stmt.executeQuery(
"SELECT INT_VAL, DECFLOAT_VAL FROM TEST.DECFLOAT_TEST ORDER BY INT_VAL");
int i = 0;
while (rs.next()) {

14-6 IBM Data Server Driver for JDBC and SQLJ for Informix

try {
System.out.println("\nRow ” + ++i);
System.out.println("INT_VAL = " + rs.getInt(1));
System.out.println("DECFLOAT_VAL = " + rs.getBigDecimal(2));

}
catch (java.sql.SQLException e) {
System.out.println("Catched SQLException" + e.getMessage());
if (e.getErrorCode() == DECFLOAT_SPECIALVALUE_ENCOUNTERED) {
// getBigDecimal failed because the retrieved value is NaN,
// INFINITY, or -INFINITY, so retry with getDouble.

double d = rs.getDouble(2);
if (d == Double.POSITIVE_INFINITY) {

System.out.println("DECFLOAT_VAL = +INFINITY");
} else if (d == Double.NEGATIVE_INFINITY) {

System.out.println("DECFLOAT_VAL = -INFINITY");
} else if (d == Double.NaN) {

System.out.println("DECFLOAT_VAL = NaN");
} else {

System.out.println("DECFLOAT_VAL = " + d);
}

} else {
e.printStackTrace();

}

Properties for the IBM Data Server Driver for JDBC and SQLJ
IBM Data Server Driver for JDBC and SQLJ properties define how the connection
to a particular data source should be made. Most properties can be set for a
DataSource object or for a Connection object.

Methods for setting the properties

Properties can be set in one of the following ways:
v Using setXXX methods, where XXX is the unqualified property name, with the

first character capitalized.
Properties are applicable to the following IBM Data Server Driver for JDBC and
SQLJ-specific implementations that inherit from
com.ibm.db2.jcc.DB2BaseDataSource:
– com.ibm.db2.jcc.DB2SimpleDataSource
– com.ibm.db2.jcc.DB2ConnectionPoolDataSource
– com.ibm.db2.jcc.DB2XADataSource

v In a java.util.Properties value in the info parameter of a
DriverManager.getConnection call.

v In a java.lang.String value in the url parameter of a
DriverManager.getConnection call.
Some properties with an int data type have predefined constant field values. You
must resolve constant field values to their integer values before you can use
those values in the url parameter. For example, you cannot use
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL in a url parameter. However,
you can build a URL string that includes
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL, and assign the URL string to
a String variable. Then you can use the String variable in the url parameter:

String url =
"jdbc:ids://sysmvs1.stl.ibm.com:5021" +
"user=dbadm;password=dbadm;" +
"traceLevel=" +
(com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";";

Chapter 14. JDBC and SQLJ reference information 14-7

Connection con =
java.sql.DriverManager.getConnection(url);

Common IBM Data Server Driver for JDBC and SQLJ
properties for all supported database products

Most of the IBM Data Server Driver for JDBC and SQLJ properties apply to all
database products that the driver supports.

Unless otherwise noted, all properties are in com.ibm.db2.jcc.DB2BaseDataSource.

Those properties are:

affinityFailbackInterval
Specifies the length of the interval, in seconds, that the IBM Data Server Driver
for JDBC and SQLJ waits between attempts to fail back an existing connection
to the primary server. A value that is less than or equal to 0 means that the
connection does not fail back. The default is DB2BaseDataSource.NOT_SET (0).

Attempts to fail back connections to the primary server are made at transaction
boundaries, after the specified interval elapses.

affinityFailbackInterval is used only if the values of properties
enableSeamlessFailover and enableClientAffinitiesList are
DB2BaseDataSource.YES (1).

affinityFailbackInterval applies only to IBM Data Server Driver for JDBC and
SQLJ type 4 connectivity.

allowNextOnExhaustedResultSet
Specifies how the IBM Data Server Driver for JDBC and SQLJ handles a
ResultSet.next() call for a forward-only cursor that is positioned after the last
row of the ResultSet. The data type of this property is int.

Possible values are:

DB2BaseDataSource.YES (1)
For a ResultSet that is defined as TYPE_FORWARD_ONLY,
ResultSet.next() returns false if the cursor was previously positioned
after the last row of the ResultSet. false is returned, regardless of
whether the cursor is open or closed.

DB2BaseDataSource.NO (2)
For a ResultSet that is defined as TYPE_FORWARD_ONLY, when
ResultSet.next() is called, and the cursor was previously positioned
after the last row of the ResultSet, the driver throws a
java.sql.SQLException with error text "Invalid operation: result set is
closed." This is the default.

allowNullResultSetForExecuteQuery
Specifies whether the IBM Data Server Driver for JDBC and SQLJ returns null
when Statement.executeQuery, PreparedStatement.executeQuery, or
CallableStatement.executeQuery is used to execute a CALL statement for a
stored procedure that does not return any result sets.

Possible values are:

DB2BaseDataSource.NOT_SET (0)
The behavior is the same as for DB2BaseDataSource.NO.

DB2BaseDataSource.YES (1)
The IBM Data Server Driver for JDBC and SQLJ returns null when

14-8 IBM Data Server Driver for JDBC and SQLJ for Informix

Statement.executeQuery, PreparedStatement.executeQuery, or
CallableStatement.executeQuery is used to execute a CALL statement
for a stored procedure that does not return any result sets. This
behavior does not conform to the JDBC standard.

DB2BaseDataSource.NO (2)
The IBM Data Server Driver for JDBC and SQLJ throws an
SQLException when Statement.executeQuery,
PreparedStatement.executeQuery, or CallableStatement.executeQuery is
used to execute a CALL statement for a stored procedure that does not
return any result sets. This behavior conforms to the JDBC standard.

atomicMultiRowInsert
Specifies whether batch operations that use PreparedStatement methods to
modify a table are atomic or non-atomic. The data type of this property is int.

For connections to DB2 for z/OS, this property applies only to batch INSERT
operations.

For connections to DB2 Database for Linux, UNIX, and Windows or IBM
Informix, this property applies to batch INSERT, MERGE, UPDATE or DELETE
operations.

Possible values are:

DB2BaseDataSource.YES (1)
Batch operations are atomic. Insertion of all rows in the batch is
considered to be a single operation. If insertion of a single row fails,
the entire operation fails with a BatchUpdateException. Use of a batch
statement that returns auto-generated keys fails with a
BatchUpdateException.

If atomicMultiRowInsert is set to DB2BaseDataSource.YES (1):
v Execution of statements in a heterogeneous batch is not allowed.
v If the target data source is DB2 for z/OS the following operations

are not allowed:
– Insertion of more than 32767 rows in a batch results in a

BatchUpdateException.
– Calling more than one of the following methods against the same

parameter in different rows results in a BatchUpdateException:
- PreparedStatement.setAsciiStream
- PreparedStatement.setCharacterStream
- PreparedStatement.setUnicodeStream

DB2BaseDataSource.NO (2)
Batch inserts are non-atomic. Insertion of each row is considered to be
a separate execution. Information on the success of each insert
operation is provided by the int[] array that is returned by
Statement.executeBatch.

DB2BaseDataSource.NOT_SET (0)
Batch inserts are non-atomic. Insertion of each row is considered to be
a separate execution. Information on the success of each insert
operation is provided by the int[] array that is returned by
Statement.executeBatch. This is the default.

blockingReadConnectionTimeout
The amount of time in seconds before a connection socket read times out. This
property applies only to IBM Data Server Driver for JDBC and SQLJ type 4

Chapter 14. JDBC and SQLJ reference information 14-9

|
|
|

|
|

|
|
|

|

|
|
|
|
|
|

|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

connectivity, and affects all requests that are sent to the data source after a
connection is successfully established. The default is 0. A value of 0 means that
there is no timeout.

clientDebugInfo
Specifies a value for the CLIENT DEBUGINFO connection attribute, to notify
the data server that stored procedures and user-defined functions that are
using the connection are running in debug mode. CLIENT DEBUGINFO is
used by the DB2 Unified Debugger. The data type of this property is String.
The maximum length is 254 bytes.

This property applies only to IBM Data Server Driver for JDBC and SQLJ type
4 connectivity.

clientRerouteAlternateServerName
Specifies one or more server names for client reroute. The data type of this
property is String.

When enableClientAffinitiesList=DB2BaseDataSource.YES (1),
clientRerouteAlternateServerName must contain the name of the primary
server as well as alternate server names. The server that is identified by
serverName and portNumber is the primary server. That server name must
appear at the beginning of the clientRerouteAlternateServerName list.

If more than one server name is specified, delimit the server names with
commas (,) or spaces. The number of values that is specified for
clientRerouteAlternateServerName must match the number of values that is
specified for clientRerouteAlternatePortNumber.

clientRerouteAlternateServerName applies to IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity to DB2 Database for Linux, UNIX, and Windows
and IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

clientRerouteAlternatePortNumber
Specifies one or more port numbers for client reroute. The data type of this
property is String.

When enableClientAffinitiesList=DB2BaseDataSource.YES (1),
clientRerouteAlternatePortNumber must contain the port number for the
primary server as well as port numbers for alternate servers. The server that is
identified by serverName and portNumber is the primary server. That port
number must appear at the beginning of the
clientRerouteAlternatePortNumber list.

If more than one port number is specified, delimit the port numbers with
commas (,) or spaces. The number of values that is specified for
clientRerouteAlternatePortNumber must match the number of values that is
specified for clientRerouteAlternateServerName.

clientRerouteAlternatePortNumber applies to IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity to DB2 Database for Linux, UNIX, and Windows
and IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

clientRerouteServerListJNDIName
Identifies a JNDI reference to a DB2ClientRerouteServerList instance in a JNDI
repository of reroute server information. clientRerouteServerListJNDIName
applies only to IBM Data Server Driver for JDBC and SQLJ type 4 connectivity,
and to connections that are established through the DataSource interface.

If the value of clientRerouteServerListJNDIName is not null,
clientRerouteServerListJNDIName provides the following functions:
v Allows information about reroute servers to persist across JVMs

14-10 IBM Data Server Driver for JDBC and SQLJ for Informix

v Provides an alternate server location if the first connection to the data source
fails

clientRerouteServerListJNDIContext
Specifies the JNDI context that is used for binding and lookup of the
DB2ClientRerouteServerList instance. clientRerouteServerListJNDIContext
applies only to IBM Data Server Driver for JDBC and SQLJ type 4 connectivity,
and to connections that are established through the DataSource interface.

If clientRerouteServerListJNDIContext is not set, the IBM Data Server Driver
for JDBC and SQLJ creates an initial context using system properties or the
jndi.properties file.

clientRerouteServerListJNDIContext can be set only by using the following
method:
public void setClientRerouteServerListJNDIContext(javax.naming.Context registry)

connectionCloseWithInFlightTransaction
Specifies whether the IBM Data Server Driver for JDBC and SQLJ throws an
SQLException or rolls back a transaction without throwing an SQLException
when a connection is closed in the middle of the transaction. Possible values
are:

DB2BaseDataSource.NOT_SET (0)
The behavior is the same as for
DB2BaseDataSource.CONNECTION_CLOSE_WITH_EXCEPTION.

DB2BaseDataSource.CONNECTION_CLOSE_WITH_EXCEPTION (1)
When a connection is closed in the middle of a transaction, an
SQLException with error -4471 is thrown.

DB2BaseDataSource.CONNECTION_CLOSE_WITH_ROLLBACK (2)
When a connection is closed in the middle of a transaction, the
transaction is rolled back, and no SQLException is thrown.

databaseName
Specifies the name for the data source. This name is used as the database
portion of the connection URL. The name depends on whether IBM Data
Server Driver for JDBC and SQLJ type 4 connectivity or IBM Data Server
Driver for JDBC and SQLJ type 2 connectivity is used.

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity:
v If the connection is to a DB2 for z/OS server, the databaseName value is the

DB2 location name that is defined during installation. All characters in this
value must be uppercase characters. You can determine the location name by
executing the following SQL statement on the server:
SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

v If the connection is to a DB2 Database for Linux, UNIX, and Windows
server, the databaseName value is the database name that is defined during
installation.

v If the connection is to an IBM Informix server, database is the database name.
The name is case-insensitive. The server converts the name to lowercase.

v If the connection is to an IBM Cloudscape server, the databaseName value is
the fully-qualified name of the file that contains the database. This name
must be enclosed in double quotation marks ("). For example:
"c:/databases/testdb"

If this property is not set, connections are made to the local site.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity:

Chapter 14. JDBC and SQLJ reference information 14-11

decimalSeparator
Specifies the decimal separator for input and output, for decimal, floating
point, or decimal floating-point data values. The data type of this property is
int.

If the value of the sendDataAsIs property is true, decimalSeparator affects only
output values.

Possible values are:

DB2BaseDataSource.DECIMAL_SEPARATOR_NOT_SET (0)
A period is used as the decimal separator. This is the default.

DB2BaseDataSource.DECIMAL_SEPARATOR_PERIOD (1)
A period is used as the decimal separator.

DB2BaseDataSource.DECIMAL_SEPARATOR_COMMA (2)
A comma is used as the decimal separator.

When DECIMAL_SEPARATOR_COMMA is set, the result of
ResultSet.getString on a decimal, floating point, or decimal
floating-point value has a comma as a separator. However, if the
toString method is executed on a value that is retrieved with a
ResultSet.getXXX method that returns a decimal, floating point, or
decimal floating-point value, the result has a decimal point as the
decimal separator.

decimalStringFormat
Specifies the string format for data that is retrieved from a DECIMAL or
DECFLOAT column when the SDK for Java is Version 1.5 or later. The data
type of this property is int. Possible values are:

DB2BaseDataSource.DECIMAL_STRING_FORMAT_NOT_SET (0)
The IBM Data Server Driver for JDBC and SQLJ returns decimal values
in the format that the java.math.BigDecimal.toString method returns
them. This is the default.

For example, the value 0.0000000004 is returned as 4E-10.

DB2BaseDataSource.DECIMAL_STRING_FORMAT_TO_STRING (1)
The IBM Data Server Driver for JDBC and SQLJ returns decimal values
in the format that the java.math.BigDecimal.toString method returns
them.

For example, the value 0.0000000004 is returned as 4E-10.

DB2BaseDataSource.DECIMAL_STRING_FORMAT_TO_PLAIN_STRING (2)
The IBM Data Server Driver for JDBC and SQLJ returns decimal values
in the format that the java.math.BigDecimal.toPlainString method
returns them.

For example, the value 0.0000000004 is returned as 0.0000000004.

This property has no effect for earlier versions of the SDK for Java. For those
versions, the IBM Data Server Driver for JDBC and SQLJ returns decimal
values in the format that the java.math.BigDecimal.toString method returns
them.

defaultIsolationLevel
Specifies the default transaction isolation level for new connections. The data
type of this property is int. When defaultIsolationLevel is set on a DataSource,
all connections that are created from that DataSource have the default isolation
level that is specified by defaultIsolationLevel.

14-12 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|
|
|

|
|
|
|

|

|
|
|
|

|

|
|
|
|

|

|
|
|
|

For DB2 data sources, the default is
java.sql.Connection.TRANSACTION_READ_COMMITTED.

For IBM Informix databases, the default depends on the type of data source.
The following table shows the defaults.

Table 14-5. Default isolation levels for IBM Informix databases

Type of data source Default isolation level

ANSI-compliant database with logging java.sql.Connection.TRANSACTION_SERIALIZABLE

Database without logging java.sql.Connection.TRANSACTION_READ_UNCOMMITTED

Non-ANSI-compliant database with
logging

java.sql.Connection.TRANSACTION_READ_COMMITTED

deferPrepares
Specifies whether invocation of the Connection.prepareStatement method
results in immediate preparation of an SQL statement on the data source, or
whether statement preparation is deferred until the PreparedStatement.execute
method is executed. The data type of this property is boolean.

deferPrepares is supported for IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity to DB2 Database for Linux, UNIX, and Windows, and for
IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

Possible values are:

true Statement preparation on the data source does not occur until the
PreparedStatement.execute method is executed. This is the default.

false Statement preparation on the data source occurs when the
Connection.prepareStatement method is executed.

Deferring prepare operations can reduce network delays. However, if you defer
prepare operations, you need to ensure that input data types match table
column types.

description
A description of the data source. The data type of this property is String.

downgradeHoldCursorsUnderXa
Specifies whether cursors that are defined WITH HOLD can be opened under
XA connections.

downgradeHoldCursorsUnderXa applies to:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for

z/OS servers.
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity or IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity to DB2 Database for
Linux, UNIX, and Windows servers.

The default is false, which means that a cursor that is defined WITH HOLD
cannot be opened under an XA connection. An exception is thrown when an
attempt is made to open that cursor.

If downgradeHoldCursorsUnderXa is set to true, a cursor that is defined
WITH HOLD can be opened under an XA connection. However, the cursor has
the following restrictions:
v When the cursor is opened under an XA connection, the cursor does not

have WITH HOLD behavior. The cursor is closed at XA End.

Chapter 14. JDBC and SQLJ reference information 14-13

v A cursor that is open before XA Start on a local transaction is closed at XA
Start.

driverType
For the DataSource interface, determines which driver to use for connections.
The data type of this property is int. Valid values are 2 or 4. 2 is the default.

enableClientAffinitiesList
Specifies whether the IBM Data Server Driver for JDBC and SQLJ enables
client affinities for cascaded failover support. The data type of this property is
int. Possible values are:

DB2BaseDataSource.YES (1)
The IBM Data Server Driver for JDBC and SQLJ enables client affinities
for cascaded failover support. This means that only servers that are
specified in the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber properties are retried. The driver
does not attempt to reconnect to any other servers.

For example, suppose that clientRerouteAlternateServerName contains
the following string:
host1,host2,host3

Also suppose that clientRerouteAlternatePortNumber contains the
following string:
port1,port2,port3

When client affinities are enabled, the retry order is:
1. host1:port1
2. host2:port2
3. host3:port3

DB2BaseDataSource.NO (2)
The IBM Data Server Driver for JDBC and SQLJ does not enable client
affinities for cascaded failover support.

DB2BaseDataSource.NOT_SET (0)
The IBM Data Server Driver for JDBC and SQLJ does not enable client
affinities for cascaded failover support. This is the default.

The effect of the maxRetriesForClientReroute and retryIntervalForClientReroute
properties differs depending on whether enableClientAffinitiesList is enabled.

This property applies only to IBM Data Server Driver for JDBC and SQLJ type
4 connectivity.

enableNamedParameterMarkers
Specifies whether support for named parameter markers is enabled in the IBM
Data Server Driver for JDBC and SQLJ. The data type of this property is int.
Possible values are:

DB2BaseDataSource.YES (1)
Named parameter marker support is enabled in the IBM Data Server
Driver for JDBC and SQLJ.

DB2BaseDataSource.NO (2)
Named parameter marker support is not enabled in the IBM Data
Server Driver for JDBC and SQLJ.

14-14 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|
|
|

|
|
|

|
|
|

The driver sends an SQL statement with named parameter markers to
the target data source without modification. The success or failure of
the statement depends on a number of factors, including the following
ones:
v Whether the target data source supports named parameter markers
v Whether the deferPrepares property value is true of false
v Whether the sendDataAsIs property value is true of false

Recommendation: To avoid unexpected behavior in an application
that uses named parameter markers, set
enableNamedParameterMarkers to YES.

DB2BaseDataSource.NOT_SET (0)
The behavior is the same as the behavior for DB2BaseDataSource.NO (2).
This is the default.

enableSeamlessFailover
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses
seamless failover for client reroute. The data type of this property is int.

For connections to DB2 for z/OS, if enableSysplexWLB is set to true,
enableSeamlessFailover has no effect. The IBM Data Server Driver for JDBC
and SQLJ uses seamless failover regardless of the enableSeamlessFailover
setting.

Possible values of enableSeamlessFailover are:

DB2BaseDataSource.YES (1)
The IBM Data Server Driver for JDBC and SQLJ uses seamless failover.
This means that the driver does not throw an SQLException with error
code -4498 after a failed connection has been successfully re-established
if the following conditions are true:
v The connection was not being used for a transaction at the time the

failure occurred.
v There are no outstanding global resources, such as global temporary

tables or open, held cursors, or connection states that prevent a
seamless failover to another server.

When seamless failover occurs, after the connection to a new data
source has been established, the driver re-issues the SQL statement that
was being processed when the original connection failed.

Recommendation: Set the queryCloseImplicit property to
DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_NO (2) when you set
enableSeamlessFailover to DB2BaseDataSource.YES, if the application
uses held cursors.

DB2BaseDataSource.NO (2)
The IBM Data Server Driver for JDBC and SQLJ does not use seamless
failover.

When this setting is in effect, if a server goes down, the driver tries to
fail back or fail over to an alternate server. If failover or failback is
successful, the driver throws an SQLException with error code -4498,
which indicates that a connection failed but was successfully
reestablished. An SQLException with error code -4498 informs the
application that it should retry the transaction during which the
connection failure occurred. If the driver cannot reestablish a
connection, it throws an SQLException with error code -4499.

Chapter 14. JDBC and SQLJ reference information 14-15

|
|
|
|

|

|

|

|
|
|

|
|
|

DB2BaseDataSource.NOT_SET (0)
The IBM Data Server Driver for JDBC and SQLJ does not use seamless
failover. This is the default.

enableSysplexWLB
Indicates whether the Sysplex workload balancing function of the IBM Data
Server Driver for JDBC and SQLJ is enabled. The data type of
enableSysplexWLB is boolean. The default is false.

enablSysplexWLB applies only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

fetchSize
Specifies the default fetch size for ResultSet objects that are generated from
Statement objects. The data type of this property is int.

The fetchSize default can be overridden by the Statement.setFetchSize method.
The fetchSize property does not affect Statement objects that already exist
when fetchSize is set.

Possible values of fetchSize are:

0 or positive-integer
The default fetchSize value for newly created Statement objects. If the
fetchSize property value is invalid, the IBM Data Server Driver for
JDBC and SQLJ sets the default fetchSize value to 0.

DB2BaseDataSource.FETCHSIZE_NOT_SET (-1)
Indicates that the default fetchSize value for Statement objects is 0. This
is the property default.

The fetchSize property differs from the queryDataSize property. fetchSize
affects the number of rows that are returned, and queryDataSize affects the
number of bytes that are returned.

floatingPointStringFormat
Specifies the format for data that is retrieved from a DOUBLE, FLOAT, or
REAL column with the ResultSet.getString method. The data type of this
property is int. Possible values are:

DB2BaseDataSource.NOT_SET (0)
The IBM Data Server Driver for JDBC and SQLJ returns
double-precision floating point values in the string format that the
java.lang.String.valueOf(double) method returns them. The IBM Data
Server Driver for JDBC and SQLJ returns single-precision floating point
values in the string format that the java.lang.String.valueOf(float)
method returns them. This is the default.

For example, suppose that the value 71256.789 is retrieved from a
DOUBLE column. If floatingPointStringFormat is not set, the string
format of the retrieved value is 71256.789. If the value 71256.789 is
retrieved from a REAL column, the string format of the retrieved value
is 71256.79.

DB2BaseDataSource.JCC_DRIVER_FLOATING_POINT_STRING_FORMAT (1)
The IBM Data Server Driver for JDBC and SQLJ returns
double-precision floating point values in the string format that the
java.lang.String.valueOf(double) method returns them. The IBM Data
Server Driver for JDBC and SQLJ returns single-precision floating point
values in the string format that the java.lang.String.valueOf(float)
method returns them. This is the default.

14-16 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|

For example, suppose that the value 71256.789 is retrieved from a
DOUBLE column. If floatingPointStringFormat is
DB2BaseDataSource.JCC_DRIVER_FLOATING_POINT_STRING_FORMAT, the
string format of the retrieved value is 71256.789. If the value 71256.789
is retrieved from a REAL column, the string format of the retrieved
value is 71256.79.

DB2BaseDataSource.LUW_TYPE2_DRIVER_FLOATING_POINT_STRING_FORMAT (2)
The IBM Data Server Driver for JDBC and SQLJ returns DOUBLE,
FLOAT, or REAL values in the same format that the DB2 JDBC Type 2
Driver for Linux, UNIX, and Windows returns them.

For example, suppose that the value 71256.789 is retrieved from a
DOUBLE column. If floatingPointStringFormat is
DB2BaseDataSource.LUW_TYPE2_DRIVER_FLOATING_POINT_STRING_FORMAT,
the string format of the retrieved value is 7.12567890000000E+004. If
the value 71256.789 is retrieved from a REAL column, the string format
of the retrieved value is 7.125679E+04.

fullyMaterializeLobData
Indicates whether the driver retrieves LOB locators for FETCH operations. The
data type of this property is boolean.

The effect of fullyMaterializeLobData depends on whether the data source
supports progressive streaming, which is also known as dynamic data format:
v If the data source does not support progressive streaming:

If the value of fullyMaterializeLobData is true, LOB data is fully
materialized within the JDBC driver when a row is fetched. If the value is
false, LOB data is streamed. The driver uses locators internally to retrieve
LOB data in chunks on an as-needed basis It is highly recommended that
you set this value to false when you retrieve LOBs that contain large
amounts of data. The default is true.

v If the data source supports progressive streaming:
The JDBC driver ignores the value of fullyMaterializeLobData if the
progressiveStreaming property is set to DB2BaseDataSource.YES or
DB2BaseDataSource.NOT_SET.

This property has no effect on stored procedure parameters or on LOBs that
are fetched using scrollable cursors. LOB stored procedure parameters are
always fully materialized. LOBs that are fetched using scrollable cursors use
LOB locators if progressive streaming is not in effect.

interruptProcessingMode
Specifies the behavior of the IBM Data Server Driver for JDBC and SQLJ when
an application executes the Statement.cancel method. Possible values are:

DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_DISABLED (0)
Interrupt processing is disabled. When an application executes
Statement.cancel, the IBM Data Server Driver for JDBC and SQLJ does
nothing.

DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL (1)
When an application executes Statement.cancel, the IBM Data Server
Driver for JDBC and SQLJ cancels the currently executing statement, if
the data server supports interrupt processing. If the data server does
not support interrupt processing, the IBM Data Server Driver for JDBC
and SQLJ throws an SQLException that indicates that the feature is not

Chapter 14. JDBC and SQLJ reference information 14-17

supported.
INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL is the
default.

For DB2 Database for Linux, UNIX, and Windows clients, when
interruptProcessingMode is set to
INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL, the DB2
Connect setting for INTERRUPT_ENABLED and the DB2 registry
variable setting for DB2CONNECT_DISCONNECT_ON_INTERRUPT
override this value.

DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET (2)
When an application executes Statement.cancel, the IBM Data Server
Driver for JDBC and SQLJ performs one of the following actions:
v If automatic client reroute or client affinities is not enabled, the IBM

Data Server Driver for JDBC and SQLJ drops the underlying socket,
closes the connection, and throws an SQLException that indicates
that the application is being disconnected from the data server. Any
subsequent operations that are invoked on any Statement objects
that are created from the same connection receive an SQLException
that indicates that the connection is closed.

v If automatic client reroute or client affinities is enabled, the IBM
Data Server Driver for JDBC and SQLJ drops the underlying socket,
closes the connection, and then attempts to re-establish the
connection. If re-connection is successful, the driver throws an
SQLException that indicates that the connection was re-established.
the driver does not re-execute any SQL statements, even if the
enableSeamlessFailover property is set to DB2BaseDataSource.YES.

loginTimeout
The maximum time in seconds to wait for a connection to a data source. After
the number of seconds that are specified by loginTimeout have elapsed, the
driver closes the connection to the data source. The data type of this property
is int. The default is 0. A value of 0 means that the timeout value is the default
system timeout value. This property is not supported for IBM Data Server
Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

logWriter
The character output stream to which all logging and trace messages for the
DataSource object are printed. The data type of this property is
java.io.PrinterWriter. The default value is null, which means that no logging or
tracing for the DataSource is output.

maxRetriesForClientReroute
During automatic client reroute, limit the number of retries if the primary
connection to the data source fails.

The data type of this property is int.

The IBM Data Server Driver for JDBC and SQLJ uses the
maxRetriesForClientReroute property only if the retryIntervalForClientReroute
property is also set.

If the enableClientAffinitiesList is set to DB2BaseDataSource.NO (2), an attempt
to connect to the primary server and alternate servers counts as one retry. If
enableClientAffinitiesList is set to DB2BaseDataSource.YES (1), each server that
is specified by the clientRerouteAlternateServerName and
clientRerouteAlternatePortNumber values is retried the number of times that is
specified by maxRetriesForClientReroute.

14-18 IBM Data Server Driver for JDBC and SQLJ for Informix

The default value for maxRetriesForClientReroute is 0 if
enableClientAffinitiesList is DB2BaseDataSource.NO (2), or 3 if
enableClientAffinitiesList is DB2BaseDataSource.YES (1).

If the value of maxRetriesForClientReroute is 0, client reroute processing does
not occur.

password
The password to use for establishing connections. The data type of this
property is String. When you use the DataSource interface to establish a
connection, you can override this property value by invoking this form of the
DataSource.getConnection method:
getConnection(user, password);

portNumber
The port number where the DRDA server is listening for requests. The data
type of this property is int.

progressiveStreaming
Specifies whether the JDBC driver uses progressive streaming when
progressive streaming is supported on the data source.

DB2 for z/OS Version 9.1 and later supports progressive streaming for LOBs
and XML objects. DB2 Database for Linux, UNIX, and Windows Version 9.5
and later, and IBM Informix Version 11.50 and later support progressive
streaming for LOBs.

With progressive streaming, also known as dynamic data format, the data
source dynamically determines the most efficient mode in which to return LOB
or XML data, based on the size of the LOBs or XML objects. The value of the
streamBufferSize parameter determines whether the data is materialized when
it is returned.

The data type of progressiveStreaming is int. Valid values are
DB2BaseDataSource.YES (1) and DB2BaseDataSource.NO (2). If the
progressiveStreaming property is not specified, the progressiveStreaming value
is DB2BaseDataSource.NOT_SET (0).

If the connection is to a data source that supports progressive streaming, and
the value of progressiveStreaming is DB2BaseDataSource.YES or
DB2BaseDataSource.NOT_SET, the JDBC driver uses progressive streaming to
return LOBs and XML data.

If the value of progressiveStreaming is DB2BaseDataSource.NO, or the data
source does not support progressive streaming, the way in which the JDBC
driver returns LOB or XML data depends on the value of the
fullyMaterializeLobData property.

queryCloseImplicit
Specifies whether cursors are closed immediately after all rows are fetched.
queryCloseImplicit applies only to connections to IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity to DB2 for z/OS Version 8 or later, and
IBM Data Server Driver for JDBC and SQLJ type 4 connectivity or IBM Data
Server Driver for JDBC and SQLJ type 2 connectivityDB2 Database for Linux,
UNIX, and Windows Version 9.7 or later. Possible values are:

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES (1)
Close cursors immediately after all rows are fetched.

A value of DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES can provide
better performance because this setting results in less network traffic.

Chapter 14. JDBC and SQLJ reference information 14-19

|
|
|
|
|
|
|

|
|

|
|

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_NO (2)
Do not close cursors immediately after all rows are fetched.

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_COMMIT (3)
Perform these actions:
v Implicitly close the cursor after all rows are fetched.
v If the application is in autocommit mode, implicitly send a commit

request to the data source for the current unit of work.

Important: When this value is set, there might be impacts on other
resources, just as an explicit commit operation might impact other
resources. For example, other non-held cursors are closed, LOB locators
go out of scope, progressive references are reset, and scrollable cursors
lose their position.

Restriction: The following restrictions apply to
QUERY_CLOSE_IMPLICIT_COMMIT behavior:
v This behavior applies only to SELECT statements that are issued by

the application. It does not apply to SELECT statements that are
generated by the IBM Data Server Driver for JDBC and SQLJ.

v If QUERY_CLOSE_IMPLICIT_COMMIT is set, and the application is
not in autocommit mode, the driver uses the default behavior
(QUERY_CLOSE_IMPLICIT_NOT_SET behavior). If
QUERY_CLOSE_IMPLICIT_COMMIT is the default behavior, the
driver uses QUERY_CLOSE_IMPLICIT_YES behavior.

v If QUERY_CLOSE_IMPLICIT_COMMIT is set, and the data source
does not support QUERY_CLOSE_IMPLICIT_COMMIT behavior, the
driver uses QUERY_CLOSE_IMPLICIT_YES behavior.

v This behavior is not supported for batched statements.
v This behavior is supported on an XA Connection only when the

connection is in a local transaction.

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_NOT_SET (0)
This is the default. The following table describes the behavior for a
connection to each type of data source.

Data source Version Data sharing environment Behavior

DB2 for z/OS Version 10 Data sharing or non-data sharing QUERY_CLOSE_IMPLICIT_COMMIT

DB2 for z/OS Version 9 with
APAR PK68746

Non-data sharing, or in a data
sharing group but not in
coexistence mode with Version 8
members

QUERY_CLOSE_IMPLICIT_COMMIT

DB2 for z/OS Version 9
without APAR
PK68746

Non-data sharing, or in a data
sharing group but not in
coexistence mode with Version 8
members

QUERY_CLOSE_IMPLICIT_YES

DB2 for z/OS Version 9 with
APAR PK68746

In a data sharing group in
coexistence mode with Version 8
members

QUERY_CLOSE_IMPLICIT_COMMIT

DB2 for z/OS Version 9
without APAR
PK68746

In a data sharing group in
coexistence mode with Version 8
members

QUERY_CLOSE_IMPLICIT_YES

14-20 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|

|
|

|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|

|
|

|
|
|

|||||

||||

||
|
|
|
|
|

|

||
|
|

|
|
|
|

|

||
|
|
|
|

|

||
|
|

|
|
|

|

Data source Version Data sharing environment Behavior

DB2 for z/OS Version 8 with
or without
APAR PK68746

QUERY_CLOSE_IMPLICIT_YES

DB2 Database for
Linux, UNIX, and
Windows

Version 9.7 QUERY_CLOSE_IMPLICIT_YES

queryDataSize
Specifies a hint that is used to control the amount of query data, in bytes, that
is returned from the data source on each fetch operation. This value can be
used to optimize the application by controlling the number of trips to the data
source that are required to retrieve data.

Use of a larger value for queryDataSize can result in less network traffic,
which can result in better performance. For example, if the result set size is 50
KB, and the value of queryDataSize is 32767 (32KB), two trips to the database
server are required to retrieve the result set. However, if queryDataSize is set
to 65535 (64 KB), only one trip to the data source is required to retrieve the
result set.

The following table lists minimum, maximum, and default values of
queryDataSize for each data source.

Table 14-6. Default, minimum, and maximum values of queryDataSize

Data source
Product
Version Default Minimum Maximum Valid values

DB2 Database for
Linux, UNIX, and
Windows

All 32767 4096 262143 4096-32767, 98303, 131071, 163839, 196607,
229375, 2621431

IBM Informix All 32767 4096 10485760 4096-10485760

DB2 for i V5R4 32767 4096 65535 4096-65535

V6R1 32767 4096 262143 4096-65535, 98303, 131071, 163839, 196607,
229375, 2621431

DB2 for z/OS Version 8 (IBM
Data Server
Driver for
JDBC and
SQLJ type 4
connectivity)

32767 32767 32767 32767

Version 9 (IBM
Data Server
Driver for
JDBC and
SQLJ type 4
connectivity)

32767 32767 65535 32767, 65535

Version 10
(IBM Data
Server Driver
for JDBC and
SQLJ type 4
connectivity)

32767 32767 262143 32767, 65535, 98303, 131071, 163839, 196607,
229375, 2621431

Chapter 14. JDBC and SQLJ reference information 14-21

||||

||
|
|

||

|
|
|

|||

|

|

Table 14-6. Default, minimum, and maximum values of queryDataSize (continued)

Data source
Product
Version Default Minimum Maximum Valid values

Version 10
(IBM Data
Server Driver
for JDBC and
SQLJ type 2
connectivity)

32767 32767 1048575 32767, 65535, 98303, 131071, 163839, 196607,
229375, 262143, 294911, 327679, 360447,
393215, 425983, 458751, 491519, 524287,
557055, 589823, 622591, 655359, 688127,
720895, 753663, 786431, 819199, 851967,
884735, 917503, 950271, 983039, 1015807,
10485751

Note:

1. If you specify a value between the minimum and maximum value that is not a valid value, the IBM Data Server
Driver for JDBC and SQLJ sets queryDataSize to the nearest valid value.

queryTimeoutProcessingMode
Specifies what happens when the query timeout interval for a Statement object
expires. Valid values are:

DB2BaseDataSource.-
INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL (1)

Specifies that when the query timeout interval for a Statement object
expires, the IBM Data Server Driver for JDBC and SQLJ cancels the
currently executing SQL statement, if the data server supports
interruption of SQL statements. If the data server does not support
interruption of SQL statements, the driver throws an Exception that
indicates that the feature is not supported.

DB2BaseDataSource.-
INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL is the
default.

DB2BaseDataSource.INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET
(2) Specifies that the underlying socket is dropped and the connection is

closed when the query timeout interval for a Statement object expires.

When the Statement object times out, and automatic client reroute or
client affinities is not configured, a DisconnectException with error
code -4499 is thrown. Any subsequent operations on the Statement
object, or on any other Statement objects that were created from the
same connection receive an Exception that indicates that the connection
is closed. After a Statement object times out, the application must
establish a new connection before it can execute a new transaction.

If automatic client reroute or client affinities is configured, the IBM
Data Server Driver for JDBC and SQLJ tries to re-establish a connection
according to the reroute mechanism in effect. If a new connection is
successfully re-established, the driver returns an error code of -4498 or
-30108, instead of -4499. However, the driver does not execute the
timed-out SQL statements again, even if enableSeamlessFailover is set
to DB2BaseDataSource.YES (1).

resultSetHoldability
Specifies whether cursors remain open after a commit operation. The data type
of this property is int. Valid values are:

DB2BaseDataSource.HOLD_CURSORS_OVER_COMMIT (1)
Leave cursors open after a commit operation.

14-22 IBM Data Server Driver for JDBC and SQLJ for Informix

This setting is not valid for a connection that is part of a distributed
(XA) transaction.

DB2BaseDataSource.CLOSE_CURSORS_AT_COMMIT (2)
Close cursors after a commit operation.

DB2BaseDataSource.NOT_SET (0)
This is the default value. The behavior is:
v For connections that are part of distributed (XA) transactions,

cursors are closed after a commit operation.
v For connections that are not part of a distributed transaction:

– For connections to all versions of DB2 for z/OS, DB2 Database for
Linux, UNIX, and Windows, or DB2 for i servers, or to
Cloudscape Version 8.1 or later servers, cursors remain open after
a commit operation.

– For connections to all versions of IBM Informix, or to Cloudscape
versions earlier than Version 8.1, cursors are closed after a commit
operation.

retrieveMessagesFromServerOnGetMessage
Specifies whether JDBC SQLException.getMessage or SQLWarning.getMessage
calls cause the IBM Data Server Driver for JDBC and SQLJ to invoke a DB2 for
z/OS stored procedure that retrieves the message text for the error. The data
type of this property is boolean. The default is false, which means that the full
message text is not returned to the client.

For example, if retrieveMessagesFromServerOnGetMessage is set to true, a
message similar to this one is returned by SQLException.getMessage after an
attempt to perform an SQL operation on nonexistent table
ADMF001.NO_TABLE:
ADMF001.NO_TABLE IS AN UNDEFINED NAME. SQLCODE=-204,
SQLSTATE=42704, DRIVER=3.50.54

If retrieveMessagesFromServerOnGetMessage is set to false, a message similar
to this one is returned:
DB2 SQL Error: SQLCODE=-204, SQLSTATE=42704, DRIVER=3.50.54

An alternative to setting this property to true is to use the IBM Data Server
Driver for JDBC and SQLJ-only DB2Sqlca.getMessage method in applications.
Both techniques result in a stored procedure call, which starts a unit of work.

retryIntervalForClientReroute
For automatic client reroute, specifies the amount of time in seconds between
connection retries.

The data type of this property is int.

The IBM Data Server Driver for JDBC and SQLJ uses the
retryIntervalForClientReroute property only if the maxRetriesForClientReroute
property is also set.

If maxRetriesForClientReroute or retryIntervalForClientReroute is not set, the
IBM Data Server Driver for JDBC and SQLJ performs retries for 10 minutes.

If the enableClientAffinitiesList is set to DB2BaseDataSource.NO (2), an attempt
to connect to the primary server and alternate servers counts as one retry. The
driver waits the number of seconds that is specified by
retryIntervalForClientReroute before retrying the connection. If
enableClientAffinitiesList is set to DB2BaseDataSource.YES (1), each server that
is specified by the clientRerouteAlternateServerName and

Chapter 14. JDBC and SQLJ reference information 14-23

clientRerouteAlternatePortNumber values is retried after the number of
seconds that is specified by retryIntervalForClientReroute.

The default value for retryIntervalForClientReroute is
DB2BaseDataSource.NOT_SET (-1). The default behavior is that there is no wait
between retries.

securityMechanism
Specifies the DRDA security mechanism. The data type of this property is int.
Possible values are:

CLEAR_TEXT_PASSWORD_SECURITY (3)
User ID and password

USER_ONLY_SECURITY (4)
User ID only

ENCRYPTED_PASSWORD_SECURITY (7)
User ID, encrypted password

ENCRYPTED_USER_AND_PASSWORD_SECURITY (9)
Encrypted user ID and password

KERBEROS_SECURITY (11)
Kerberos. This value does not apply to connections to IBM Informix.

ENCRYPTED_USER_AND_DATA_SECURITY (12)
Encrypted user ID and encrypted security-sensitive data. This value
applies to connections to DB2 for z/OS only.

ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY (13)
Encrypted user ID and password, and encrypted security-sensitive
data. This value does not apply to connections to IBM Informix.

PLUGIN_SECURITY (15)
Plug-in security. This value applies to connections to DB2 Database for
Linux, UNIX, and Windows only.

ENCRYPTED_USER_ONLY_SECURITY (16)
Encrypted user ID. This value does not apply to connections to IBM
Informix.

If this property is specified, the specified security mechanism is the only
mechanism that is used. If the security mechanism is not supported by the
connection, an exception is thrown.

The default value for securityMechanism is
CLEAR_TEXT_PASSWORD_SECURITY. If the server does not support
CLEAR_TEXT_PASSWORD_SECURITY but supports
ENCRYPTED_USER_AND_PASSWORD_SECURITY, the IBM Data Server
Driver for JDBC and SQLJ driver updates the security mechanism to
ENCRYPTED_USER_AND_PASSWORD_SECURITY and attempts to connect to
the server. Any other mismatch in security mechanism support between the
requester and the server results in an error.

sendDataAsIs
Specifies that the IBM Data Server Driver for JDBC and SQLJ does not convert
input parameter values to the target column data types. The data type of this
property is boolean. The default is false.

You should use this property only for applications that always ensure that the
data types in the application match the data types in the corresponding
database tables.

14-24 IBM Data Server Driver for JDBC and SQLJ for Informix

serverName
The host name or the TCP/IP address of the data source. The data type of this
property is String.

sslConnection
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses an SSL
socket to connect to the data source. If sslConnection is set to true, the
connection uses an SSL socket. If sslConnection is set to false, the connection
uses a plain socket.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

sslTrustStoreLocation
Specifies the name of the Java truststore on the client that contains the server
certificate for an SSL connection.

The IBM Data Server Driver for JDBC and SQLJ uses this option only if the
sslConnection property is set to true.

If sslTrustStore is set, and sslConnection is set to true, the IBM Data Server
Driver for JDBC and SQLJ uses the sslTrustStoreLocation value instead of the
value in the javax.net.ssl.trustStore Java property.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

sslTrustStorePassword
Specifies the password for the Java truststore on the client that contains the
server certificate for an SSL connection.

The IBM Data Server Driver for JDBC and SQLJ uses this option only if the
sslConnection property is set to true.

If sslTrustStorePassword is set, and sslConnection is set to true, the IBM Data
Server Driver for JDBC and SQLJ uses the sslTrustStorePassword value instead
of the value in the javax.net.ssl.trustStorePassword Java property.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

stripTrailingZerosForDecimalNumbers
Specifies whether the IBM Data Server Driver for JDBC and SQLJ removes
trailing zeroes when it retrieves data from a DECFLOAT, DECIMAL, or
NUMERIC column. This property is meaningful only if the SDK for Java is
Version 1.5 or later. The data type of this property is int. Possible values are:

DB2BaseDataSource.NOT_SET (0)
The IBM Data Server Driver for JDBC and SQLJ does not remove
trailing zeroes from the retrieved value. This is the default.

DB2BaseDataSource.YES (1)
The IBM Data Server Driver for JDBC and SQLJ removes trailing
zeroes when it retrieves a value from a DECFLOAT, DECIMAL, or
NUMERIC column as a java.math.BigDecimal object.

For example, when the driver retrieves the value 234.04000, it returns
the value 234.04 to the application.

DB2BaseDataSource.NO (2)
The IBM Data Server Driver for JDBC and SQLJ does not remove
trailing zeroes from the retrieved value.

Chapter 14. JDBC and SQLJ reference information 14-25

timestampFormat
Specifies the format in which the result of the ResultSet.getString or
CallableStatement.getString method against a TIMESTAMP column is
returned. The data type of timestampFormat is int.

Possible values of timestampFormat are:

Constant
Integer
value Format

com.ibm.db2.jcc.DB2BaseDataSource.ISO 1 yyyy-mm-dd-
hh.mm.ss.nnnnnn

com.ibm.db2.jcc.DB2BaseDataSource.JDBC 5 yyyy-mm-dd
hh:mm:ss.nnnnnn

Note:

The default is com.ibm.db2.jcc.DB2BaseDataSource.JDBC.

timestampFormat affects the format of output only.

timestampPrecisionReporting
Specifies whether trailing zeroes are truncated in the result of a
Resultset.getString call for a TIMESTAMP value. The data type of this property
is int. Possible values are:

TIMESTAMP_JDBC_STANDARD (1)
Trailing zeroes are truncated in the result of a Resultset.getString call
for a TIMESTAMP value. This is the default.

For example:
v A TIMESTAMP value of 2009-07-19-10.12.00.000000 is truncated to

2009-07-19-10.12.00.0 after retrieval.
v A TIMESTAMP value of 2009-12-01-11.30.00.100000 is truncated to

2009-12-01-11.30.00.1 after retrieval.

TIMESTAMP_ZERO_PADDING (2)
Trailing zeroes are not truncated in the result of a Resultset.getString
call for a TIMESTAMP value.

traceDirectory
Specifies a directory into which trace information is written. The data type of
this property is String. When traceDirectory is specified, trace information for
multiple connections on the same DataSource is written to multiple files.

When traceDirectory is specified, a connection is traced to a file named
traceFile_origin_n.

n is the nth connection for a DataSource.

origin indicates the origin of the log writer that is in use. Possible values of
origin are:

cpds The log writer for a DB2ConnectionPoolDataSource object.

driver The log writer for a DB2Driver object.

global The log writer for a DB2TraceManager object.

sds The log writer for a DB2SimpleDataSource object.

xads The log writer for a DB2XADataSource object.

If the traceFile property is also specified, the traceDirectory value is not used.

14-26 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|
|
|

|

|
|
|
||

|||
|

|||
|

|
|
|

|

|
|
|
|

|
|
|

|

|
|

|
|

|
|
|

traceFile
Specifies the name of a file into which the IBM Data Server Driver for JDBC
and SQLJ writes trace information. The data type of this property is String.
The traceFile property is an alternative to the logWriter property for directing
the output trace stream to a file.

traceFileAppend
Specifies whether to append to or overwrite the file that is specified by the
traceFile property. The data type of this property is boolean. The default is
false, which means that the file that is specified by the traceFile property is
overwritten.

traceLevel
Specifies what to trace. The data type of this property is int.

You can specify one or more of the following traces with the traceLevel
property:
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X'00')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X'01')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X'02')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X'04')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION (X'10')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X'20')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X'40')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA (X'80')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA (X'100')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X'200')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X'400')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_META_CALLS (X'2000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DATASOURCE_CALLS (X'4000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_LARGE_OBJECT_CALLS (X'8000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR (X'20000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_TRACEPOINTS (X'40000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X'FFFFFFFF')

To specify more than one trace, use one of these techniques:
v Use bitwise OR (|) operators with two or more trace values. For example, to

trace DRDA flows and connection calls, specify this value for traceLevel:
TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (~) operator with a trace value to specify all
except a certain trace. For example, to trace everything except DRDA flows,
specify this value for traceLevel:
~TRACE_DRDA_FLOWS

user
The user ID to use for establishing connections. The data type of this property
is String. When you use the DataSource interface to establish a connection, you
can override this property value by invoking this form of the
DataSource.getConnection method:
getConnection(user, password);

xaNetworkOptimization
Specifies whether XA network optimization is enabled for IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity. You might need to disable XA
network optimization in an environment in which an XA Start and XA End are
issued from one Java process, and an XA Prepare and an XA Commit are
issued from another Java process. With XA network optimization, the XA

Chapter 14. JDBC and SQLJ reference information 14-27

Prepare can reach the data source before the XA End, which results in an
XAER_PROTO error. To prevent the XAER_PROTO error, disable XA network
optimization.

The default is true, which means that XA network optimization is enabled. If
xaNetworkOptimization is false, which means that XA network optimization
is disabled, the driver closes any open cursors at XA End time.

xaNetworkOptimization can be set on a DataSource object, or in the url
parameter in a getConnection call. The value of xaNetworkOptimization
cannot be changed after a connection is obtained.

com.ibm.db2.jcc.DB2ConnectionPoolDataSource.maxStatements
Controls an internal statement cache that is associated with a
PooledConnection. The data type of this property is int. Possible values are:

positive integer
Enables the internal statement cache for a PooledConnection, and
specifies the number of statements that the IBM Data Server Driver for
JDBC and SQLJ keeps open in the cache.

0 or negative integer
Disables internal statement caching for the PooledConnection. 0 is the
default.

com.ibm.db2.jcc.DB2ConnectionPoolDataSource.maxStatements controls the
internal statement cache that is associated with a PooledConnection only when
the PooledConnection object is created.
com.ibm.db2.jcc.DB2ConnectionPoolDataSource.maxStatements has no effect on
caching in an already existing PooledConnection object.

com.ibm.db2.jcc.DB2ConnectionPoolDataSource.maxStatements applies only to
IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

Common IBM Data Server Driver for JDBC and SQLJ
properties for DB2 servers

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply to DB2
for z/OS and DB2 Database for Linux, UNIX, and Windows only.

Unless otherwise noted, all properties are in com.ibm.db2.jcc.DB2BaseDataSource.

Those properties are:

clientAccountingInformation
Specifies accounting information for the current client for the connection. This
information is for client accounting purposes. This value can change during a
connection. The data type of this property is String. The maximum length is
255 bytes. A Java empty string ("") is valid for this value, but a Java null value
is not valid.

clientApplicationInformation
Specifies the application or transaction name of the end user's application. You
can use this property to provide the identity of the client end user for
accounting and monitoring purposes. This value can change during a
connection. The data type of this property is String. For a DB2 for z/OS server,
the maximum length is 32 bytes. For a DB2 Database for Linux, UNIX, and
Windows server, the maximum length is 255 bytes. A Java empty string ("") is
valid for this value, but a Java null value is not valid.

14-28 IBM Data Server Driver for JDBC and SQLJ for Informix

clientProgramId
Specifies a value for the client program ID that can be used to identify the end
user. The data type of this property is String, and the length is 80 bytes. If the
program ID value is less than 80 bytes, the value must be padded with blanks.

clientProgramName
Specifies an application ID that is fixed for the duration of a physical
connection for a client. The value of this property becomes the correlation ID
on a DB2 for z/OS server. Database administrators can use this property to
correlate work on a DB2 for z/OS server to client applications. The data type
of this property is String. The maximum length is 12 bytes. If this value is
null, the IBM Data Server Driver for JDBC and SQLJ supplies a value of
db2jccthread-name.

This property applies only to IBM Data Server Driver for JDBC and SQLJ type
4 connectivity.

concurrentAccessResolution
Specifies whether the IBM Data Server Driver for JDBC and SQLJ requests that
a read transaction can access a committed and consistent image of rows that
are incompatibly locked by write transactions, if the data source supports
accessing currently committed data, and the application isolation level is cursor
stability (CS) or read stability (RS). This option has the same effect as the DB2
CONCURRENTACCESSRESOLUTION bind option. Possible values are:

DB2BaseDataSource.-
CONCURRENTACCESS_USE_CURRENTLY_COMMITTED (1)

The IBM Data Server Driver for JDBC and SQLJ requests that:
v Read transactions access the currently committed data when the data

is being updated or deleted.
v Read transactions skip rows that are being inserted.

DB2BaseDataSource.CONCURRENTACCESS_WAIT_FOR_OUTCOME (2)
The IBM Data Server Driver for JDBC and SQLJ requests that:
v Read transactions wait for a commit or rollback operation when they

encounter data that is being updated or deleted.
v Read transactions do not skip rows that are being inserted.

DB2BaseDataSource.CONCURRENTACCESS_NOT_SET (0)
Enables the data server's default behavior for read transactions when
lock contention occurs. This is the default value.

currentDegree
Specifies the degree of parallelism for the execution of queries that are
dynamically prepared. The type of this property is String. The currentDegree
value is used to set the CURRENT DEGREE special register on the data source.
If currentDegree is not set, no value is passed to the data source.

currentExplainMode
Specifies the value for the CURRENT EXPLAIN MODE special register. The
CURRENT EXPLAIN MODE special register enables and disables the Explain
facility. The data type of this property is String. The maximum length is 254
bytes. This property applies only to connections to data sources that support
the CURRENT EXPLAIN MODE special register.

currentFunctionPath
Specifies the SQL path that is used to resolve unqualified data type names and
function names in SQL statements that are in JDBC programs. The data type of
this property is String. For a DB2 Database for Linux, UNIX, and Windows

Chapter 14. JDBC and SQLJ reference information 14-29

|
|
|
|
|
|
|

|
|
|

|
|

|

|
|

|
|

|

|
|
|

server, the maximum length is 254 bytes. For a DB2 for z/OS server, the
maximum length is 2048 bytes. The value is a comma-separated list of schema
names. Those names can be ordinary or delimited identifiers.

currentMaintainedTableTypesForOptimization
Specifies a value that identifies the types of objects that can be considered
when the data source optimizes the processing of dynamic SQL queries. This
register contains a keyword representing table types. The data type of this
property is String.

Possible values of currentMaintainedTableTypesForOptimization are:

ALL
Indicates that all materialized query tables will be considered.

NONE
Indicates that no materialized query tables will be considered.

SYSTEM
Indicates that only system-maintained materialized query tables that are
refresh deferred will be considered.

USER
Indicates that only user-maintained materialized query tables that are
refresh deferred will be considered.

currentPackagePath
Specifies a comma-separated list of collections on the server. The database
server searches these collections for JDBC and SQLJ packages.

The precedence rules for the currentPackagePath and currentPackageSet
properties follow the precedence rules for the CURRENT PACKAGESET and
CURRENT PACKAGE PATH special registers.

currentPackageSet
Specifies the collection ID to search for JDBC and SQLJ packages. The data
type of this property is String. If currentPackageSet is set, its value overrides
the value of jdbcCollection.

Multiple instances of the IBM Data Server Driver for JDBC and SQLJ can be
installed at a database server by running the DB2Binder utility multiple times.
The DB2binder utility includes a -collection option that lets the installer specify
the collection ID for each IBM Data Server Driver for JDBC and SQLJ instance.
To choose an instance of the IBM Data Server Driver for JDBC and SQLJ for a
connection, you specify a currentPackageSet value that matches the collection
ID for one of the IBM Data Server Driver for JDBC and SQLJ instances.

The precedence rules for the currentPackagePath and currentPackageSet
properties follow the precedence rules for the CURRENT PACKAGESET and
CURRENT PACKAGE PATH special registers.

currentRefreshAge
Specifies a timestamp duration value that is the maximum duration since a
REFRESH TABLE statement was processed on a system-maintained REFRESH
DEFERRED materialized query table such that the materialized query table can
be used to optimize the processing of a query. This property affects dynamic
statement cache matching. The data type of this property is long.

currentSchema
Specifies the default schema name that is used to qualify unqualified database
objects in dynamically prepared SQL statements. The value of this property

14-30 IBM Data Server Driver for JDBC and SQLJ for Informix

sets the value in the CURRENT SCHEMA special register on the database
server. The schema name is case-sensitive, and must be specified in uppercase
characters.

cursorSensitivity
Specifies whether the java.sql.ResultSet.TYPE_SCROLL_SENSITIVE value for a
JDBC ResultSet maps to the SENSITIVE DYNAMIC attribute, the SENSITIVE
STATIC attribute, or the ASENSITIVE attribute for the underlying database
cursor. The data type of this property is int. Possible values are
TYPE_SCROLL_SENSITIVE_STATIC (0), TYPE_SCROLL_SENSITIVE_DYNAMIC (1), or
TYPE_SCROLL_ASENSITIVE (2). The default is TYPE_SCROLL_SENSITIVE_STATIC.

If the data source does not support sensitive dynamic scrollable cursors, and
TYPE_SCROLL_SENSITIVE_DYNAMIC is requested, the JDBC driver accumulates a
warning and maps the sensitivity to SENSITIVE STATIC. For DB2 for i
database servers, which do not support sensitive static cursors,
java.sql.ResultSet.TYPE_SCROLL_SENSITIVE always maps to SENSITIVE
DYNAMIC.

dateFormat
Specifies:
v The format in which the String argument of the PreparedStatement.setString

method against a DATE column must be specified.
v The format in which the result of the ResultSet.getString or

CallableStatement.getString method against a DATE column is returned.

The data type of dateFormat is int.

Possible values of dateFormat are:

Constant
Integer
value Format

com.ibm.db2.jcc.DB2BaseDataSource.ISO 1 yyyy-mm-dd

com.ibm.db2.jcc.DB2BaseDataSource.USA 2 mm/dd/yyyy

com.ibm.db2.jcc.DB2BaseDataSource.EUR 3 dd.mm.yyyy

com.ibm.db2.jcc.DB2BaseDataSource.JIS 4 yyyy-mm-dd

The default is com.ibm.db2.jcc.DB2BaseDataSource.ISO.

decimalRoundingMode
Specifies the rounding mode for assignment to decimal floating-point variables
or DECFLOAT columns on DB2 for z/OS or DB2 Database for Linux, UNIX,
and Windows data servers.

Possible values are:

DB2BaseDataSource.ROUND_DOWN (1)
Rounds the value towards 0 (truncation). The discarded digits are
ignored.

DB2BaseDataSource.ROUND_CEILING (2)
Rounds the value towards positive infinity. If all of the discarded digits
are zero or if the sign is negative the result is unchanged other than
the removal of the discarded digits. Otherwise, the result coefficient is
incremented by 1.

DB2BaseDataSource.ROUND_HALF_EVEN (3)
Rounds the value to the nearest value; if the values are equidistant,
rounds the value so that the final digit is even. If the discarded digits
represents greater than half (0.5) of the value of one in the next left

Chapter 14. JDBC and SQLJ reference information 14-31

position then the result coefficient is incremented by 1. If they
represent less than half, then the result coefficient is not adjusted (that
is, the discarded digits are ignored). Otherwise the result coefficient is
unaltered if its rightmost digit is even, or is incremented by 1 if its
rightmost digit is odd (to make an even digit).

DB2BaseDataSource.ROUND_HALF_UP (4)
Rounds the value to the nearest value; if the values are equidistant,
rounds the value away from zero. If the discarded digits represent
greater than or equal to half (0.5) of the value of one in the next left
position then the result coefficient is incremented by 1. Otherwise the
discarded digits are ignored.

DB2BaseDataSource.ROUND_FLOOR (6)
Rounds the value towards negative infinity. If all of the discarded
digits are zero or if the sign is positive the result is unchanged other
than the removal of discarded digits. Otherwise, the sign is negative
and the result coefficient is incremented by 1.

DB2BaseDataSource.ROUND_UNSET (-2147483647)
No rounding mode was explicitly set. The IBM Data Server Driver for
JDBC and SQLJ does not use the decimalRoundingMode to set the
rounding mode on the data server. The rounding mode is
ROUND_HALF_EVEN.

If you explicitly set the decimalRoundingMode value, that value updates the
CURRENT DECFLOAT ROUNDING MODE special register value on a DB2
for z/OS data server.

If you explicitly set the decimalRoundingMode value, that value does not
update the CURRENT DECFLOAT ROUNDING MODE special register value
on a DB2 Database for Linux, UNIX, and Windows data server. If the value to
which you set decimalRoundingMode is not the same as the value of the
CURRENT DECFLOAT ROUNDING MODE special register, an Exception is
thrown. To change the data server value, you need to set that value with the
decflt_rounding database configuration parameter.

decimalRoundingMode does not affect decimal value assignments. The IBM
Data Server Driver for JDBC and SQLJ always rounds decimal values down.

enableExtendedIndicators
Specifies whether support for extended indicators is enabled in the IBM Data
Server Driver for JDBC and SQLJ. Possible values are:

DB2BaseDataSource.YES (1)
Support for extended indicators is enabled in the IBM Data Server
Driver for JDBC and SQLJ.

DB2BaseDataSource.NO (2)
Support for extended indicators is disabled in the IBM Data Server
Driver for JDBC and SQLJ.

DB2BaseDataSource.NOT_SET (0)
Support for extended indicators is enabled in the IBM Data Server
Driver for JDBC and SQLJ. This is the default value.

enableRowsetSupport
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses
multiple-row FETCH for forward-only cursors or scrollable cursors, if the data
source supports multiple-row FETCH. The data type of this property is int.

14-32 IBM Data Server Driver for JDBC and SQLJ for Informix

When enableRowsetSupport is set, its value overrides the useRowsetCursor
property value.

Possible values are:

DB2BaseDataSource.YES (1)
Specifies that:
v For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity

to DB2 for z/OS, multiple-row FETCH is used for scrollable cursors
and forward-only cursors, if the data source supports multiple-row
FETCH.

v For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity,
or IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to
DB2 Database for Linux, UNIX, and Windows, multiple-row fetch is
used for scrollable cursors, if the data source supports multiple-row
FETCH.

DB2BaseDataSource.NO (2)
Specifies that multiple-row fetch is not used.

DB2BaseDataSource.NOT_SET (0)
Specifies that if the enableRowsetSupport property is not set:
v For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity

to DB2 for z/OS, multiple-row fetch is not used.
v For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity,

or IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to
DB2 Database for Linux, UNIX, and Windows, the useRowsetCursor
property determines whether multiple-row fetch is used for
scrollable cursors.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/OS, multiple-row fetch is not compatible with progressive streaming.
Therefore, if progressive streaming is used for a FETCH operation,
multiple-row FETCH is not used.

encryptionAlgorithm
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses 56-bit
DES (weak) encryption or 256-bit AES (strong) encryption. The data type of
this property is int. Possible values are:

1 The driver uses 56-bit DES encryption.

2 The driver uses 256-bit AES encryption, if the database server supports
it. 256-bit AES encryption is available for IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity only.

encryptionAlgorithm can be specified only if the securityMechanism value is
ENCRYPTED_PASSWORD_SECURITY (7) or ENCRYPTED_USER_AND_PASSWORD_SECURITY
(9).

fullyMaterializeInputStreams
Indicates whether streams are fully materialized before they are sent from the
client to a data source. The data type of this property is boolean. The default is
false.

If the value of fullyMaterializeInputStreams is true, the JDBC driver fully
materialized the streams before sending them to the server.

gssCredential
For a data source that uses Kerberos security, specifies a delegated credential
that is passed from another principal. The data type of this property is

Chapter 14. JDBC and SQLJ reference information 14-33

org.ietf.jgss.GSSCredential. Delegated credentials are used in multi-tier
environments, such as when a client connects to WebSphere Application Server,
which, in turn, connects to the data source. You obtain a value for this
property from the client, by invoking the GSSContext.getDelegCred method.
GSSContext is part of the IBM Java Generic Security Service (GSS) API. If you
set this property, you also need to set the Mechanism and
KerberosServerPrincipal properties.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

For more information on using Kerberos security with the IBM Data Server
Driver for JDBC and SQLJ, see "Using Kerberos security under the IBM Data
Server Driver for JDBC and SQLJ".

kerberosServerPrincipal
For a data source that uses Kerberos security, specifies the name that is used
for the data source when it is registered with the Kerberos Key Distribution
Center (KDC). The data type of this property is String.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity.

pdqProperties
Specifies properties that control the interaction between the IBM Data Server
Driver for JDBC and SQLJ and the client optimization feature of pureQuery.

The data type of this property is String.

Set the pdqProperties property only if you are using the client optimization
feature of pureQuery. See the Integrated Data Management Information Center
for information about valid values for pdqProperties.

readOnly
Specifies whether the connection is read-only. The data type of this property is
boolean. The default is false.

resultSetHoldabilityForCatalogQueries
Specifies whether cursors for queries that are executed on behalf of
DatabaseMetaData methods remain open after a commit operation. The data
type of this property is int.

When an application executes DatabaseMetaData methods, the IBM Data
Server Driver for JDBC and SQLJ executes queries against the catalog of the
target data source. By default, the holdability of those cursors is the same as
the holdability of application cursors. To use different holdability for catalog
queries, use the resultSetHoldabilityForCatalogQueries property. Possible
values are:

DB2BaseDataSource.HOLD_CURSORS_OVER_COMMIT (1)
Leave cursors for catalog queries open after a commit operation,
regardless of the resultSetHoldability setting.

DB2BaseDataSource.CLOSE_CURSORS_AT_COMMIT (2)
Close cursors for catalog queries after a commit operation, regardless
of the resultSetHoldability setting.

DB2BaseDataSource.NOT_SET (0)
Use the resultSetHoldability setting for catalog queries. This is the
default value.

returnAlias
Specifies whether the JDBC driver returns rows for table aliases and synonyms

14-34 IBM Data Server Driver for JDBC and SQLJ for Informix

for DatabaseMetaData methods that return table information, such as
getTables. The data type of returnAlias is int. Possible values are:

0 Do not return rows for aliases or synonyms of tables in output from
DatabaseMetaData methods that return table information.

1 For tables that have aliases or synonyms, return rows for aliases and
synonyms of those tables, as well as rows for the tables, in output from
DatabaseMetaData methods that return table information. This is the
default.

statementConcentrator
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses the data
source's statement concentrator functionality. The statement concentrator is the
ability to bypass preparation of a statement when it is the same as a statement
in the dynamic statement cache, except for literal values. Statement
concentrator functionality applies only to SQL statements that have literals but
no parameter markers. Possible values are:

DB2BaseDataSource.STATEMENT_CONCENTRATOR_OFF (1)
The IBM Data Server Driver for JDBC and SQLJ does not use the data
source's statement concentrator functionality.

DB2BaseDataSource.STATEMENT_CONCENTRATOR_WITH_LITERALS (2)
The IBM Data Server Driver for JDBC and SQLJ uses the data source's
statement concentrator functionality.

DB2BaseDataSource.STATEMENT_CONCENTRATOR_NOT_SET (0)
Enables the data server's default behavior for statement concentrator
functionality. This is the default value.

For DB2 Database for Linux, UNIX, and Windows data sources that
support statement concentrator functionality, the functionality is used if
the STMT_CONC configuration parameter is set to ON at the data
source. Otherwise, statement concentrator functionality is not used.

For DB2 for z/OS data sources that support statement concentrator
functionality, the functionality is not used if statementConcentrator is
not set.

streamBufferSize
Specifies the size, in bytes, of the JDBC driver buffers for chunking LOB or
XML data. The JDBC driver uses the streamBufferSize value whether or not it
uses progressive streaming. The data type of streamBufferSize is int. The
default is 1048576.

If the JDBC driver uses progressive streaming, LOB or XML data is
materialized if it fits in the buffers, and the driver does not use the
fullyMaterializeLobData property.

DB2 for z/OS Version 9.1 and later supports progressive streaming for LOBs
and XML objects. DB2 Database for Linux, UNIX, and Windows Version 9.5
and later, and IBM Informix Version 11.50 and later support progressive
streaming for LOBs.

supportsAsynchronousXARollback
Specifies whether the IBM Data Server Driver for JDBC and SQLJ supports
asynchronous XA rollback operations. The data type of this property is int. The
default is DB2BaseDataSource.NO (2). If the application runs against a BEA
WebLogic Server application server, set supportsAsynchronousXARollback to
DB2BaseDataSource.YES (1).

Chapter 14. JDBC and SQLJ reference information 14-35

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

sysSchema
Specifies the schema of the shadow catalog tables or views that are searched
when an application invokes a DatabaseMetaData method. The sysSchema
property was formerly called cliSchema.

timeFormat
Specifies:
v The format in which the String argument of the PreparedStatement.setString

method against a TIME column must be specified.
v The format in which the result of the ResultSet.getString or

CallableStatement.getString method against a TIME column is returned.

The data type of timeFormat is int.

Possible values of timeFormat are:

Constant
Integer
value Format

com.ibm.db2.jcc.DB2BaseDataSource.ISO 1 hh:mm:ss

com.ibm.db2.jcc.DB2BaseDataSource.USA 2 hh:mm am or hh:mm
pm

com.ibm.db2.jcc.DB2BaseDataSource.EUR 3 hh.mm.ss

com.ibm.db2.jcc.DB2BaseDataSource.JIS 4 hh:mm:ss

The default is com.ibm.db2.jcc.DB2BaseDataSource.ISO.

timestampOutputType
Specifies whether the IBM Data Server Driver for JDBC and SQLJ returns a
java.sql.Timestamp object or a com.ibm.db2.jcc.DBTimestamp when the
standard JDBC interfaces ResultSet.getTimestamp,
CallableStatement.getTimestamp, ResultSet.getObject, or
CallableStatement.getObject are called to return timestamp information.

Possible values are:

DB2BaseDataSource.JDBC_TIMESTAMP (1)
The IBM Data Server Driver for JDBC and SQLJ returns
java.sql.Timestamp objects from ResultSet.getTimestamp,
CallableStatement.getTimestamp, ResultSet.getObject, or
CallableStatement.getObject calls.

DB2BaseDataSource.JCC_DBTIMESTAMP (2)
The IBM Data Server Driver for JDBC and SQLJ returns
com.ibm.db2.jcc.DBTimestamp objects from ResultSet.getTimestamp,
CallableStatement.getTimestamp, ResultSet.getObject, or
CallableStatement.getObject calls.

DB2BaseDataSource.NOT_SET (0)
This is the default behavior.

The behavior is the same as the behavior for
DB2BaseDataSource.JDBC_TIMESTAMP.

useCachedCursor
Specifies whether the underlying cursor for PreparedStatement objects is
cached and reused on subsequent executions of the PreparedStatement. The
data type of useCachedCursor is boolean.

If useCachedCursor is set to true, the cursor for PreparedStatement objects is
cached, which can improve performance. true is the default.

14-36 IBM Data Server Driver for JDBC and SQLJ for Informix

Set useCachedCursor to false if PreparedStatement objects access tables whose
column types or lengths change between executions of those
PreparedStatement objects.

useJDBC4ColumnNameAndLabelSemantics
Specifies how the IBM Data Server Driver for JDBC and SQLJ handles column
labels in ResultSetMetaData.getColumnName,
ResultSetMetaData.getColumnLabel, and ResultSet.findColumn method calls.

Possible values are:

DB2BaseDataSource.YES (1)
The IBM Data Server Driver for JDBC and SQLJ uses the following
rules, which conform to the JDBC 4.0 specification, to determine the
value that ResultSetMetaData.getColumnName,
ResultSetMetaData.getColumnLabel, and ResultSet.findColumn return:
v The column name that is returned by

ResultSetMetaData.getColumnName is its name from the database.
v The column label that is returned by

ResultSetMetaData.getColumnLabel is the label that is specified with
the SQL AS clause. If the SQL AS clause is not specified, the label is
the name of the column.

v ResultSet.findColumn takes the label for the column, as specified
with the SQL AS clause, as input. If the SQL AS clause was not
specified, the label is the column name.

v The IBM Data Server Driver for JDBC and SQLJ does not use a
column label that is assigned by the SQL LABEL ON statement.

These rules apply to IBM Data Server Driver for JDBC and SQLJ
version 3.50 and later, for connections to the following database
systems:
v DB2 for z/OS Version 8 or later
v DB2 Database for Linux, UNIX, and Windows Version 8.1 or later
v DB2 UDB for iSeries® V5R3 or later

For earlier versions of the driver or the database systems, the rules for
a useJDBC4ColumnNameAndLabelSemantics value of
DB2BaseDataSource.NO apply, even if
useJDBC4ColumnNameAndLabelSemantics is set to
DB2BaseDataSource.YES.

DB2BaseDataSource.NO (2)
The IBM Data Server Driver for JDBC and SQLJ uses the following
rules to determine the values that ResultSetMetaData.getColumnName,
ResultSetMetaData.getColumnLabel, and ResultSet.findColumn return:

If the data source does not support the LABEL ON statement, or the
source column is not defined with the LABEL ON statement:
v The value that is returned by ResultSetMetaData.getColumnName is

its name from the database, if no SQL AS clause is specified. If the
SQL AS clause is specified, the value that is returned is the column
label.

v The value that is returned by ResultSetMetaData.getColumnLabel is
the label that is specified with the SQL AS clause. If the SQL AS
clause is not specified, the value that is returned is the name of the
column.

v ResultSet.findColumn takes the column name as input.

Chapter 14. JDBC and SQLJ reference information 14-37

If the source column is defined with the LABEL ON statement:
v The value that is returned by ResultSetMetaData.getColumnName is

the column name from the database, if no SQL AS clause is
specified. If the SQL AS clause is specified, the value that is returned
is the column label that is specified in the AS clause.

v The value that is returned by ResultSetMetaData.getColumnLabel is
the label that is specified in the LABEL ON statement.

v ResultSet.findColumn takes the column name as input.

These rules conform to the behavior of the IBM Data Server Driver for
JDBC and SQLJ before Version 3.50.

DB2BaseDataSource.NOT_SET (0)
This is the default behavior.

For the IBM Data Server Driver for JDBC and SQLJ version 3.50 and
earlier, the default behavior for
useJDBC4ColumnNameAndLabelSemantics is the same as the behavior
for DB2BaseDataSource.NO.

For the IBM Data Server Driver for JDBC and SQLJ version 4.0 and
later:
v The default behavior for useJDBC4ColumnNameAndLabelSemantics

is the same as the behavior for DB2BaseDataSource.YES, for
connections to the following database systems:
– DB2 for z/OS Version 8 or later
– DB2 Database for Linux, UNIX, and Windows Version 8.1 or later
– DB2 UDB for iSeries V5R3 or later

v For connections to earlier versions of these database systems, the
default behavior for useJDBC4ColumnNameAndLabelSemantics is
DB2BaseDataSource.NO.

com.ibm.db2.jcc.DB2ConnectionPoolDataSource.maxStatements
Controls an internal statement cache that is associated with a
PooledConnection. The data type of this property is int. Possible values are:

positive integer
Enables the internal statement cache for a PooledConnection, and
specifies the number of statements that the IBM Data Server Driver for
JDBC and SQLJ keeps open in the cache.

0 or negative integer
Disables internal statement caching for the PooledConnection. 0 is the
default.

maxStatements controls the internal statement cache that is associated with a
PooledConnection only when the PooledConnection object is created.
maxStatements has no effect on caching in an already existing
PooledConnection object.

maxStatements applies only to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS, and toIBM Data Server Driver for JDBC
and SQLJ type 4 connectivity.

Common IBM Data Server Driver for JDBC and SQLJ
properties for DB2 for z/OS and IBM Informix

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply to IBM
Informix and DB2 for z/OS database servers.

14-38 IBM Data Server Driver for JDBC and SQLJ for Informix

Properties that apply to IBM Informix and DB2 for z/OS are:

enableConnectionConcentrator
Indicates whether the connection concentrator function of the IBM Data Server
Driver for JDBC and SQLJ is enabled.

The data type of enableConnectionConcentrator is boolean. The default is
false. However, if enableSysplexWLB is set to true, the default is true.

enablConnectionConcentrator applies only to IBM Data Server Driver for JDBC
and SQLJ type 4 connectivity.

keepDynamic
Specifies whether the data source keeps already prepared dynamic SQL
statements in the dynamic statement cache after commit points so that those
prepared statements can be reused. The data type of this property is int. Valid
values are DB2BaseDataSource.YES (1) and DB2BaseDataSource.NO (2).

If the keepDynamic property is not specified, the keepDynamic value is
DB2BaseDataSource.NOT_SET (0). If the connection is to a DB2 for z/OS server,
caching of dynamic statements for a connection is not done if the property is
not set. If the connection is to an IBM Informix data source, caching of
dynamic statements for a connection is done if the property is not set.

keepDynamic is used with the DB2Binder -keepdynamic option. The
keepDynamic property value that is specified must match the -keepdynamic
value that was specified when DB2Binder was run.

For a DB2 for z/OS database server, dynamic statement caching can be done
only if the EDM dynamic statement cache is enabled on the data source. The
CACHEDYN subsystem parameter must be set to DB2BaseDataSource.YES to
enable the dynamic statement cache.

maxTransportObjects
Specifies the maximum number of transport objects that can be used for all
connections with the associated DataSource object. The IBM Data Server Driver
for JDBC and SQLJ uses transport objects and a global transport objects pool to
support the connection concentrator and Sysplex workload balancing. There is
one transport object for each physical connection to the data source.

The data type of this property is int.

The maxTransportObjects value is ignored if the enableConnectionConcentrator
or enableSysplexWLB properties are not set to enable the use of the connection
concentrator or Sysplex workload balancing.

If the maxTransportObjects value has not been reached, and a transport object
is not available in the global transport objects pool, the pool creates a new
transport object. If the maxTransportObjects value has been reached, the
application waits for the amount of time that is specified by the
db2.jcc.maxTransportObjectWaitTime configuration property. After that amount
of time has elapsed, if there is still no available transport object in the pool, the
pool throws an SQLException.

maxTransportObjects does not override the db2.jcc.maxTransportObjects
configuration property. maxTransportObjects has no effect on connections from
other DataSource objects. If the maxTransportObjects value is larger than the
db2.jcc.maxTransportObjects value, maxTransportObjects does not increase the
db2.jcc.maxTransportObjects value.

Chapter 14. JDBC and SQLJ reference information 14-39

The default value for maxTransportObjects is -1, which means that the number
of transport objects for the DataSource is limited only by the
db2.jcc.maxTransportObjects value for the driver.

Common IBM Data Server Driver for JDBC and SQLJ
properties for IBM Informix and DB2 Database for Linux, UNIX,
and Windows

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply to IBM
Informix and DB2 Database for Linux, UNIX, and Windows database servers.

Properties that apply to IBM Informix and DB2 Database for Linux, UNIX, and
Windows are:

currentLockTimeout
Specifies whether DB2 Database for Linux, UNIX, and Windows servers wait
for a lock when the lock cannot be obtained immediately. The data type of this
property is int. Possible values are:

integer Wait for integer seconds. integer is between -1 and 32767, inclusive.

LOCK_TIMEOUT_NO_WAIT
Do not wait for a lock. This is the default.

LOCK_TIMEOUT_WAIT_INDEFINITELY
Wait indefinitely for a lock.

LOCK_TIMEOUT_NOT_SET
Use the default for the data source.

IBM Data Server Driver for JDBC and SQLJ properties for DB2
Database for Linux, UNIX, and Windows

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply only to
DB2 Database for Linux, UNIX, and Windows servers.

Those properties are:

connectNode
Specifies the target database partition server that an application connects to.
The data type of this property is int. The value can be between 0 and 999. The
default is database partition server that is defined with port 0. connectNode
applies to IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to
DB2 Database for Linux, UNIX, and Windows servers only.

currentExplainSnapshot
Specifies the value for the CURRENT EXPLAIN SNAPSHOT special register.
The CURRENT EXPLAIN SNAPSHOT special register enables and disables the
Explain snapshot facility. The data type of this property is String. The
maximum length is eight bytes. This property applies only to connections to
data sources that support the CURRENT EXPLAIN SNAPSHOT special
register, such as DB2 Database for Linux, UNIX, and Windows.

currentQueryOptimization
Specifies a value that controls the class of query optimization that is performed
by the database manager when it binds dynamic SQL statements. The data
type of this property is int. The possible values of currentQueryOptimization
are:

14-40 IBM Data Server Driver for JDBC and SQLJ for Informix

0 Specifies that a minimal amount of optimization is performed to
generate an access plan. This class is most suitable for simple dynamic
SQL access to well-indexed tables.

1 Specifies that optimization roughly comparable to DB2 Database for
Linux, UNIX, and Windows Version 1 is performed to generate an
access plan.

2 Specifies a level of optimization higher than that of DB2 Database for
Linux, UNIX, and Windows Version 1, but at significantly less
optimization cost than levels 3 and above, especially for very complex
queries.

3 Specifies that a moderate amount of optimization is performed to
generate an access plan.

5 Specifies a significant amount of optimization is performed to generate
an access plan. For complex dynamic SQL queries, heuristic rules are
used to limit the amount of time spent selecting an access plan. Where
possible, queries will use materialized query tables instead of the
underlying base tables.

7 Specifies a significant amount of optimization is performed to generate
an access plan. This value is similar to 5 but without the heuristic
rules.

9 Specifies the maximum amount of optimization is performed to
generate an access plan. This can greatly expand the number of
possible access plans that are evaluated. This class should be used to
determine if a better access plan can be generated for very complex
and very long-running queries using large tables. Explain and
performance measurements can be used to verify that a better plan has
been generated.

optimizationProfile
Specifies an optimization profile that is used during SQL optimization. The
data type of this property is String. The optimizationProfile value is used to set
the OPTIMIZATION PROFILE special register. The default is null.

optimizationProfile applies to DB2 Database for Linux, UNIX, and Windows
servers only.

optimizationProfileToFlush
Specifies the name of an optimization profile that is to be removed from the
optimization profile cache. The data type of this property is String. The default
is null.

plugin
The name of a client-side JDBC security plug-in. This property has the Object
type and contains a new instance of the JDBC security plug-in method.

pluginName
The name of a server-side security plug-in module.

retryWithAlternativeSecurityMechanism
Specifies whether the IBM Data Server Driver for JDBC and SQLJ retries a
connection with an alternative security mechanism if the security mechanism
that is specified by property securityMechanism is not supported by the data
source. The data type of this property is int. Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.YES (1)
Retry the connection using an alternative security mechanism. The IBM

Chapter 14. JDBC and SQLJ reference information 14-41

Data Server Driver for JDBC and SQLJ issues warning code +4222 and
retries the connection with the most secure available security
mechanism.

com.ibm.db2.jcc.DB2BaseDataSource.NO (2) or
com.ibm.db2.jcc.DB2BaseDataSource.NOT_SET (0)

Do not retry the connection using an alternative security mechanism.

retryWithAlternativeSecurityMechanism applies to IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity connections to DB2 Database for Linux,
UNIX, and Windows only.

useTransactionRedirect
Specifies whether the DB2 system directs SQL statements to different database
partitions for better performance. The data type of this property is boolean.
The default is false.

This property is applicable only under the following conditions:
v The connection is to a DB2 Database for Linux, UNIX, and Windows server

that uses the Database Partitioning Feature (DPF).
v The partitioning key remains constant throughout a transaction.

If useTransactionRedirect is true, the IBM Data Server Driver for JDBC and
SQLJ sends connection requests to the DPF node that contains the target data
of the first directable statement in the transaction. DB2 Database for Linux,
UNIX, and Windows then directs the SQL statement to different partitions as
needed.

IBM Data Server Driver for JDBC and SQLJ properties for DB2
for z/OS

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply only to
DB2 for z/OS servers.

Those properties are:

accountingInterval
Specifies whether DB2 accounting records are produced at commit points or on
termination of the physical connection to the data source. The data type of this
property is String.

If the value of accountingInterval is "COMMIT", and there are no open, held
cursors, DB2 writes an accounting record each time that the application
commits work. If the value of accountingInterval is "COMMIT", and the
application performs a commit operation while a held cursor is open, the
accounting interval spans that commit point and ends at the next valid
accounting interval end point. If the value of accountingInterval is not
"COMMIT", accounting records are produced on termination of the physical
connection to the data source.

The accountingInterval property sets the accounting-interval parameter for an
underlying RRSAF signon call. If the value of subsystem parameter
ACCUMACC is not NO, the ACCUMACC value overrides the
accountingInterval setting.

accountingInterval applies only to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS. accountingInterval is not applicable to
connections under CICS® or IMS™, or for Java stored procedures.

The accountingInterval property overrides the db2.jcc.accountingInterval
configuration property.

14-42 IBM Data Server Driver for JDBC and SQLJ for Informix

charOutputSize
Specifies the maximum number of bytes to use for INOUT or OUT stored
procedure parameters that are registered as Types.CHAR charOutputSize applies
only to IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2
for z/OS database servers.

Because DESCRIBE information for stored procedure INOUT and OUT
parameters is not available at run time, by default, the IBM Data Server Driver
for JDBC and SQLJ sets the maximum length of each character INOUT or OUT
parameter to 32767. For stored procedures with many Types.CHAR parameters,
this maximum setting can result in allocation of much more storage than is
necessary.

To use storage more efficiently, set charOutputSize to the largest expected
length for any Types.CHAR INOUT or OUT parameter.

charOutputSize has no effect on INOUT or OUT parameters that are registered
as Types.VARCHAR or Types.LONGVARCHAR. The driver uses the default length of
32767 for Types.VARCHAR and Types.LONGVARCHAR parameters.

The value that you choose for charOutputSize needs to take into account the
possibility of expansion during character conversion. Because the IBM Data
Server Driver for JDBC and SQLJ has no information about the server-side
CCSID that is used for output parameter values, the driver requests the stored
procedure output data in UTF-8 Unicode. The charOutputSize value needs to
be the maximum number of bytes that are needed after the parameter value is
converted to UTF-8 Unicode. UTF-8 Unicode characters can require up to three
bytes. (The euro symbol is an example of a three-byte UTF-8 character.) To
ensure that the value of charOutputSize is large enough, if you have no
information about the output data, set charOutputSize to three times the
defined length of the largest CHAR parameter.

clientUser
Specifies the current client user name for the connection. This information is
for client accounting purposes. Unlike the JDBC connection user name, this
value can change during a connection. For a DB2 for z/OS server, the
maximum length is 16 bytes.

This property applies only to IBM Data Server Driver for JDBC and SQLJ type
2 connectivity on DB2 for z/OS.

clientWorkstation
Specifies the workstation name for the current client for the connection. This
information is for client accounting purposes. This value can change during a
connection. The data type of this property is String. For a DB2 for z/OS server,
the maximum length is 18 bytes. A Java empty string ("") is valid for this
value, but a Java null value is not valid.

This property applies only to IBM Data Server Driver for JDBC and SQLJ type
2 connectivity on DB2 for z/OS.

currentSQLID
Specifies:
v The authorization ID that is used for authorization checking on dynamically

prepared CREATE, GRANT, and REVOKE SQL statements.
v The owner of a table space, database, storage group, or synonym that is

created by a dynamically issued CREATE statement.
v The implicit qualifier of all table, view, alias, and index names specified in

dynamic SQL statements.

Chapter 14. JDBC and SQLJ reference information 14-43

currentSQLID sets the value in the CURRENT SQLID special register on a DB2
for z/OS server. If the currentSQLID property is not set, the default schema
name is the value in the CURRENT SQLID special register.

enableMultiRowInsertSupport
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses
multi-row INSERT for batched INSERT or MERGE operations, when the target
data server is a DB2 for z/OS server that supports multi-row INSERT. The
batch operations must be PreparedStatement calls with parameter markers. The
data type of this property is boolean. The default is true.

The enableMultiRowInsertSupport value cannot be changed for the duration of
a connection. enableMultiRowInsertSupport must be set to false if INSERT
FROM SELECT statements are executed in a batch. Otherwise, the driver
throws a BatchUpdateException.

jdbcCollection
Specifies the collection ID for the packages that are used by an instance of the
IBM Data Server Driver for JDBC and SQLJ at run time. The data type of
jdbcCollection is String. The default is NULLID.

This property is used with the DB2Binder -collection option. The DB2Binder
utility must have previously bound IBM Data Server Driver for JDBC and
SQLJ packages at the server using a -collection value that matches the
jdbcCollection value.

The jdbcCollection setting does not determine the collection that is used for
SQLJ applications. For SQLJ, the collection is determined by the -collection
option of the SQLJ customizer.

jdbcCollection does not apply to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS.

maxRowsetSize
Specifies the maximum number of bytes that are used for rowset buffering for
each statement, when the IBM Data Server Driver for JDBC and SQLJ uses
multiple-row FETCH for cursors. The data type of this property is int. The
default is 32767.

maxRowsetSize applies only to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS.

reportLongTypes
Specifies whether DatabaseMetaData methods report LONG VARCHAR and
LONG VARGRAPHIC column data types as long data types. The data type of
this property is short. Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.NO (2) or
com.ibm.db2.jcc.DB2BaseDataSource.NOT_SET (0)

Specifies that DatabaseMetaData methods that return information
about a LONG VARCHAR or LONG VARGRAPHIC column return
java.sql.Types.VARCHAR in the DATA_TYPE column and VARCHAR
or VARGRAPHIC in the TYPE_NAME column of the result set. This is
the default for DB2 for z/OS Version 9 or later.

com.ibm.db2.jcc.DB2BaseDataSource.YES (1)
Specifies that DatabaseMetaData methods that return information
about a LONG VARCHAR or LONG VARGRAPHIC column return
java.sql.Types.LONGVARCHAR in the DATA_TYPE column and
LONG VARCHAR or LONG VARGRAPHIC in the TYPE_NAME
column of the result set.

14-44 IBM Data Server Driver for JDBC and SQLJ for Informix

sendCharInputsUTF8
Specifies whether the IBM Data Server Driver for JDBC and SQLJ converts
character input data to the CCSID of the DB2 for z/OS database server, or
sends the data in UTF-8 encoding for conversion by the database server.
sendCharInputsUTF8 applies to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity to DB2 for z/OS database servers only. The data type of
this property is int. If this property is also set at the driver level
(db2.jcc.sendCharInputsUTF8), this value overrides the driver-level value.

Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.NO (2)
Specifies that the IBM Data Server Driver for JDBC and SQLJ converts
character input data to the target encoding before the data is sent to
the DB2 for z/OS database server.
com.ibm.db2.jcc.DB2BaseDataSource.NO is the default.

com.ibm.db2.jcc.DB2BaseDataSource.YES (1)
Specifies that the IBM Data Server Driver for JDBC and SQLJ sends
character input data to the DB2 for z/OS database server in UTF-8
encoding. The database server converts the data from UTF-8 encoding
to the target CCSID.

Specify com.ibm.db2.jcc.DB2BaseDataSource.YES only if conversion to
the target CCSID by the SDK for Java causes character conversion
problems. The most common problem occurs when you use IBM Data
Server Driver for JDBC and SQLJ type 2 connectivity to insert a
Unicode line feed character (U+000A) into a table column that has
CCSID 37, and then retrieve that data from a non-z/OS client. If the
SDK for Java does the conversion during insertion of the character into
the column, the line feed character is converted to the EBCDIC new
line character X'15'. However, during retrieval, some SDKs for Java on
operating systems other than z/OS convert the X'15' character to the
Unicode next line character (U+0085) instead of the line feed character
(U+000A). The next line character causes unexpected behavior for some
XML parsers. If you set sendCharInputsUTF8 to
com.ibm.db2.jcc.DB2BaseDataSource.YES, the DB2 for z/OS database
server converts the U+000A character to the EBCDIC line feed
character X'25' during insertion into the column, so the character is
always retrieved as a line feed character.

Conversion of data to the target CCSID on the database server might
cause the IBM Data Server Driver for JDBC and SQLJ to use more
memory than conversion by the driver. The driver allocates memory
for conversion of character data from the source encoding to the
encoding of the data that it sends to the database server. The amount
of space that the driver allocates for character data that is sent to a
table column is based on the maximum possible length of the data.
UTF-8 data can require up to three bytes for each character. Therefore,
if the driver sends UTF-8 data to the database server, the driver needs
to allocate three times the maximum number of characters in the input
data. If the driver does the conversion, and the target CCSID is a
single-byte CCSID, the driver needs to allocate only the maximum
number of characters in the input data.

sessionTimeZone
Specifies the setting for the CURRENT SESSION TIME ZONE special register.
The data type of this property is String.

Chapter 14. JDBC and SQLJ reference information 14-45

The sessionTimeZone value is a time zone value that is in the format of sth:tm.
s is the sign, th is the time zone hour, and tm is time zone minutes. The range
of valid values is -12:59 to +14:00.

sqljEnableClassLoaderSpecificProfiles
Specifies whether the IBM Data Server Driver for JDBC and SQLJ allows using
and loading of SQLJ profiles with the same Java name in multiple J2EE
application (.ear) files. The data type of this property is boolean. The default is
false. sqljEnableClassLoaderSpecificProfiles is a DataSource property. This
property is primarily intended for use with WebSphere Application Server.

ssid
Specifies the name of the local DB2 for z/OS subsystem to which a connection
is established using IBM Data Server Driver for JDBC and SQLJ type 2
connectivity on DB2 for z/OS. The data type of this property is String.

The ssid property overrides the db2.jcc.ssid configuration property.

ssid can be the subsystem name for a local subsystem or a group attachment
name or subgroup attachment name.

Specification of a single local subsystem name allows more than one subsystem
on a single LPAR to be accessed as a local subsystem for connections that use
IBM Data Server Driver for JDBC and SQLJ type 2 connectivity.

Specification of a group attachment name or subgroup attachment name allows
failover processing to occur if a data sharing group member fails. If the DB2
subsystem to which an application is connected fails, the connection
terminates. However, when new connections use that group attachment name
or subgroup attachment name, DB2 for z/OS uses group or subgroup
attachment processing to find an active DB2 subsystem to which to connect.

ssid applies only to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS.

useIdentityValLocalForAutoGeneratedKeys
Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses only the
SQL built-in function IDENTITY_VAL_LOCAL to determine automatically
generated key values. The data type of this property is boolean. Possible values
are:

true Specifies that the IBM Data Server Driver for JDBC and SQLJ always
uses the SQL built-in function IDENTITY_VAL_LOCAL to determine
automatically generated key values. The driver uses
IDENTITY_VAL_LOCAL even if it is possible to use SELECT FROM
INSERT.

Specify true if the target data server supports SELECT FROM INSERT,
but the target objects do not. For example, SELECT FROM INSERT is
not valid for a table on which a trigger is defined.

false Specifies that the IBM Data Server Driver for JDBC and SQLJ
determines whether to use SELECT FROM INSERT or
IDENTITY_VAL_LOCAL to determine automatically generated keys.
false is the default.

useRowsetCursor
Specifies whether the IBM Data Server Driver for JDBC and SQLJ always uses
multiple-row FETCH for scrollable cursors if the data source supports
multiple-row fetch. The data type of this property is boolean.

14-46 IBM Data Server Driver for JDBC and SQLJ for Informix

This property applies only to IBM Data Server Driver for JDBC and SQLJ type
4 connectivity, or to IBM Data Server Driver for JDBC and SQLJ type 2
connectivity to DB2 for z/OS. If the enableRowsetSupport property is not set,
the default for useRowsetCursor is true. If the enableRowsetSupport property
is set, the useRowsetCursor property is not used.

Applications that use the JDBC 1 technique for performing positioned update
or delete operations should set useRowSetCursor to false. Those applications
do not operate properly if the IBM Data Server Driver for JDBC and SQLJ uses
multiple-row FETCH.

xmlFormat
Specifies the format that is used to send XML data to the data server or
retrieve XML data from the data server. The XML format cannot be modified
after a connection is established. Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.XML_FORMAT_NOT_SET
(-Integer.MAX_VALUE)

Specifies that binary XML format (Extensible Dynamic Binary XML
DB2 Client/Server Binary XML Format) is used if the data server
supports it. If the data server does not support binary XML format,
textual XML format is used. This is the default.

com.ibm.db2.jcc.DB2BaseDataSource.XML_FORMAT_TEXTUAL (0)
Specifies that the XML textual format is used.

com.ibm.db2.jcc.DB2BaseDataSource.XML_FORMAT_BINARY (1)
Specifies that the binary XML format is used.

When binary XML is used, the XML data that is passed to the IBM
Data Server Driver for JDBC and SQLJ cannot refer to external entities,
internal entities, or internal DTDs. External DTDs are supported only if
those DTDs were previously registered in the data source.

IBM Data Server Driver for JDBC and SQLJ properties for IBM
Informix

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply only to
IBM Informix databases. Those properties correspond to IBM Informix
environment variables.

Properties that are shown in uppercase characters in the following information
must be specified in uppercase. For those properties, getXXX and setXXX methods
are formed by prepending the uppercase property name with get or set. For
example:
boolean dbDate = DB2BaseDateSource.getDBDATE();

The IBM Informix-specific properties are:

DBANSIWARN
Specifies whether the IBM Data Server Driver for JDBC and SQLJ instructs the
IBM Informix database to return an SQLWarning to the application if an SQL
statement does not use ANSI-standard syntax. The data type of this property is
boolean. Possible values are:

false or 0
Do not send a value to the IBM Informix database that instructs the
database to return an SQLWarning to the application if an SQL
statement does not use ANSI-standard syntax. This is the default.

Chapter 14. JDBC and SQLJ reference information 14-47

true or 1
Send a value to the IBM Informix database that instructs the database
to return an SQLWarning to the application if an SQL statement does
not use ANSI-standard syntax.

You can use the DBANSIWARN IBM Data Server Driver for JDBC and SQLJ
property to set the DBANSIWARN IBM Informix property, but you cannot use
the DBANSIWARN IBM Data Server Driver for JDBC and SQLJ property to
reset the DBANSIWARN IBM Informix property.

DBDATE
Specifies the end-user format of DATE values. The data type of this property is
String. Possible values are in the description of the DBDATE environment
variable in IBM Informix Guide to SQL: Reference.

The default value is "Y4MD-".

DBPATH
Specifies a colon-separated list of values that identify the database servers that
contain databases. The date type of this property is String. Each value can be:
v A full path name
v A relative path name
v The server name of an IBM Informix database server
v A server name and full path name

The default ".".

DBSPACETEMP
Specifies a comma-separated or colon-separated list of existing dbspaces in
which temporary tables are placed. The data type of this property is String.

If this property is not set, no value is sent to the server. The value for the
DBSPACETEMP environment variable is used.

DBTEMP
Specifies the full path name of an existing directory in which temporary files
and temporary tables are placed. The data type of this property is String. The
default is "/tmp".

DBUPSPACE
Specifies the maximum amount of system disk space and maximum amount of
memory, in kilobytes, that the UPDATE STATISTICS statement can use when it
constructs multiple column distributions simultaneously. The data type of this
property is String.

The format of DBUPSPACE is "maximum-disk-space:maximum-memory".

If this property is not set, no value is sent to the server. The value for the
DBUPSPACE environment variable is used.

DB_LOCALE
Specifies the database locale, which the database server uses to process
locale-sensitive data. The data type of this property is String. Valid values are
the same as valid values for the DB_LOCALE environment variable. The
default value is null.

DELIMIDENT
Specifies whether delimited SQL identifiers can be used in an application. The
data type of this property is boolean. Possible values are:

false The application cannot contain delimited SQL identifiers. Double
quotation marks (") or single quotation marks (') delimit literal strings.
This is the default.

14-48 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|
|
|
|

true The application can contain delimited SQL identifiers. Delimited SQL
identifiers must be enclosed in double quotation marks ("). Single
quotation marks (') delimit literal strings.

IFX_DIRECTIVES
Specifies whether the optimizer allows query optimization directives from
within a query. The data type of this property is String. Possible values are:

"1" or "ON"
Optimization directives are accepted.

"0" or "OFF"
Optimization directives are not accepted.

If this property is not set, no value is sent to the server. The value for the
IFX_DIRECTIVES environment variable is used.

IFX_EXTDIRECTIVES
Specifies whether the optimizer allows external query optimization directives
from the sysdirectives system catalog table to be applied to queries in existing
applications. Possible values are:

"1" or "ON"
External query optimization directives are accepted.

"0" or "OFF"
External query optimization are not accepted.

If this property is not set, no value is sent to the server. The value for the
IFX_EXTDIRECTIVES environment variable is used.

IFX_UPDDESC
Specifies whether a DESCRIBE of an UPDATE statement is permitted. The data
type of this property is String.

Any non-null value indicates that a DESCRIBE of an UPDATE statement is
permitted. The default is "1".

IFX_XASTDCOMPLIANCE_XAEND
Specifies whether global transactions are freed only after an explicit rollback, or
after any rollback. The data type of this property is String. Possible values are:

"0" Global transactions are freed only after an explicit rollback. This
behavior conforms to the X/Open XA standard.

"1" Global transactions are freed after any rollback.

If this property is not set, no value is sent to the server. The value for the
IFX_XASTDCOMPLIANCE_XAEND environment variable is used.

INFORMIXOPCACHE
Specifies the size of the memory cache, in kilobytes, for the staging-area
blobspace of the client application. The data type of this property is String. A
value of "0" indicates that the cache is not used.

If this property is not set, no value is sent to the server. The value for the
INFORMIXOPCACHE environment variable is used.

INFORMIXSTACKSIZE
Specifies the stack size, in kilobytes, that the database server uses for the
primary thread of a client session. The data type of this property is String.

If this property is not set, no value is sent to the server. The value for the
INFORMIXSTACKSIZE environment variable is used.

Chapter 14. JDBC and SQLJ reference information 14-49

NODEFDAC
Specifies whether the database server prevents default table privileges
(SELECT, INSERT, UPDATE, and DELETE) from being granted to PUBLIC
when a new table is created during the current session, in a database that is
not ANSI compliant. The data type of this property is String. Possible values
are:

"yes" The database server prevents default table privileges from being
granted to PUBLIC when a new table is created during the current
session, in a database that is not ANSI compliant.

"no" The database server does not prevent default table privileges from
being granted to PUBLIC when a new table is created during the
current session, in a database that is not ANSI compliant. This is the
default.

OPTCOMPIND
Specifies the preferred method for performing a join operation on an ordered
pair of tables. The data type of this property is String. Possible values are:

"0" The optimizer chooses a nested-loop join, where possible, over a
sort-merge join or a hash join.

"1" When the isolation level is repeatable read, the optimizer chooses a
nested-loop join, where possible, over a sort-merge join or a hash join.
When the isolation level is not repeatable read, the optimizer chooses a
join method based on costs.

"2" The optimizer chooses a join method based on costs, regardless of the
transaction isolation mode.

If this property is not set, no value is sent to the server. The value for the
OPTCOMPIND environment variable is used.

OPTOFC
Specifies whether to enable optimize-OPEN-FETCH-CLOSE functionality. The
data type of this property is String. Possible values are:

"0" Disable optimize-OPEN-FETCH-CLOSE functionality for all threads of
applications.

"1" Enable optimize-OPEN-FETCH-CLOSE functionality for all cursors in
all threads of applications.

If this property is not set, no value is sent to the server. The value for the
OPTOFCD environment variable is used.

PDQPRIORITY
Specifies the degree of parallelism that the database server uses. The
PDQPRIORITY value affects how the database server allocates resources,
including memory, processors, and disk reads. The data type of this property is
String. Possible values are:

"HIGH"
When the database server allocates resources among all users, it gives
as many resources as possible to queries.

"LOW" or "1"
The database server fetches values from fragmented tables in parallel.

"OFF" or "0"
Parallel processing is disabled.

14-50 IBM Data Server Driver for JDBC and SQLJ for Informix

If this property is not set, no value is sent to the server. The value for the
PDQPRIORITY environment variable is used.

PSORT_DBTEMP
Specifies the full path name of a directory in which the database server writes
temporary files that are used for a sort operation. The data type of this
property is String.

If this property is not set, no value is sent to the server. The value for the
PSORT_DBTEMP environment variable is used.

PSORT_NPROCS
Specifies the maximum number of threads that the database server can use to
sort a query. The data type of this property is String. The maximum value of
PSORT_NPROCS is "10".

If this property is not set, no value is sent to the server. The value for the
PSORT_NPROCS environment variable is used.

STMT_CACHE
Specifies whether the shared-statement cache is enabled. The data type of this
property is String. Possible values are:

"0" The shared-statement cache is disabled.

"1" A 512 KB shared-statement cache is enabled.

If this property is not set, no value is sent to the server. The value for the
STMT_CACHE environment variable is used.

dumpPool
Specifies the types of statistics on global transport pool events that are written,
in addition to summary statistics. The global transport pool is used for the
connection concentrator and Sysplex workload balancing.

The data type of dumpPool is int. dumpPoolStatisticsOnSchedule and
dumpPoolStatisticsOnScheduleFile must also be set for writing statistics before
any statistics are written.

You can specify one or more of the following types of statistics with the
db2.jcc.dumpPool property:
v DUMP_REMOVE_OBJECT (hexadecimal: X'01', decimal: 1)
v DUMP_GET_OBJECT (hexadecimal: X'02', decimal: 2)
v DUMP_WAIT_OBJECT (hexadecimal: X'04', decimal: 4)
v DUMP_SET_AVAILABLE_OBJECT (hexadecimal: X'08', decimal: 8)
v DUMP_CREATE_OBJECT (hexadecimal: X'10', decimal: 16)
v DUMP_SYSPLEX_MSG (hexadecimal: X'20', decimal: 32)
v DUMP_POOL_ERROR (hexadecimal: X'80', decimal: 128)

To trace more than one type of event, add the values for the types of events
that you want to trace. For example, suppose that you want to trace
DUMP_GET_OBJECT and DUMP_CREATE_OBJECT events. The numeric
equivalents of these values are 2 and 16, so you specify 18 for the dumpPool
value.

The default is 0, which means that only summary statistics for the global
transport pool are written.

This property does not have a setXXX or a getXXX method.

dumpPoolStatisticsOnSchedule
Specifies how often, in seconds, global transport pool statistics are written to

Chapter 14. JDBC and SQLJ reference information 14-51

the file that is specified by dumpPoolStatisticsOnScheduleFile. The global
transport object pool is used for the connection concentrator and Sysplex
workload balancing.

The default is -1. -1 means that global transport pool statistics are not written.

This property does not have a setXXX or a getXXX method.

dumpPoolStatisticsOnScheduleFile
Specifies the name of the file to which global transport pool statistics are
written. The global transport pool is used for the connection concentrator and
Sysplex workload balancing.

If dumpPoolStatisticsOnScheduleFile is not specified, global transport pool
statistics are not written.

This property does not have a setXXX or a getXXX method.

maxTransportObjectIdleTime
Specifies the amount of time in seconds that an unused transport object stays
in a global transport object pool before it can be deleted from the pool.
Transport objects are used for the connection concentrator and Sysplex
workload balancing.

The default value for maxTransportObjectIdleTime is 60. Setting
maxTransportObjectIdleTime to a value less than 0 causes unused transport
objects to be deleted from the pool immediately. Doing this is not
recommended because it can cause severe performance degradation.

This property does not have a setXXX or a getXXX method.

maxTransportObjectWaitTime
Specifies the maximum amount of time in seconds that an application waits for
a transport object if the maxTransportObjects value has been reached. Transport
objects are used for the connection concentrator and Sysplex workload
balancing. When an application waits for longer than the
maxTransportObjectWaitTime value, the global transport object pool throws an
SQLException.

The default value for maxTransportObjectWaitTime is -1. Any negative value
means that applications wait forever.

This property does not have a setXXX or a getXXX method.

minTransportObjects
Specifies the lower limit for the number of transport objects in a global
transport object pool for the connection concentrator and Sysplex workload
balancing. When a JVM is created, there are no transport objects in the pool.
Transport objects are added to the pool as they are needed. After the
minTransportObjects value is reached, the number of transport objects in the
global transport object pool never goes below the minTransportObjects value
for the lifetime of that JVM.

The default value for minTransportObjects is 0. Any value that is less than or
equal to 0 means that the global transport object pool can become empty.

This property does not have a setXXX or a getXXX method.

IBM Data Server Driver for JDBC and SQLJ configuration properties
The IBM Data Server Driver for JDBC and SQLJ configuration properties have
driver-wide scope.

14-52 IBM Data Server Driver for JDBC and SQLJ for Informix

The following table summarizes the configuration properties and corresponding
Connection or DataSource properties, if they exist.

Table 14-7. Summary of Configuration properties and corresponding Connection and DataSource properties

Configuration property name
Connection or DataSource property name:
com.ibm.db2.jcc.DB2BaseDataSource. ... Notes

db2.jcc.accountingInterval accountingInterval 1 on page 14-54, 4 on page
14-54

db2.jcc.allowSqljDuplicateStaticQueries 4 on page 14-54

db2.jcc.charOutputSize charOutputSize 1 on page 14-54, 4 on page
14-54

db2.jcc.currentSchema currentSchema 1 on page 14-54, 4 on page
14-54, 6 on page 14-54

db2.jcc.override.currentSchema currentSchema 2 on page 14-54, 4 on page
14-54, 6 on page 14-54

db2.jcc.currentSQLID currentSQLID 1 on page 14-54, 4 on page
14-54

db2.jcc.override.currentSQLID currentSQLID 2 on page 14-54, 4 on page
14-54

db2.jcc.defaultSQLState 4 on page 14-54

db2.jcc.disableSQLJProfileCaching 4 on page 14-54

db2.jcc.dumpPool dumpPool 1 on page 14-54, 3 on page
14-54, 4 on page 14-54, 5 on
page 14-54

db2.jcc.dumpPoolStatisticsOnSchedule dumpPoolStatisticsOnSchedule 1 on page 14-54, 3 on page
14-54, 4 on page 14-54, 5 on
page 14-54

db2.jcc.dumpPoolStatisticsOnScheduleFile dumpPoolStatisticsOnScheduleFile 1 on page 14-54, 3 on page
14-54, 4 on page 14-54, 5 on
page 14-54

db2.jcc.jmxEnabled 4 on page 14-54, 5 on page
14-54, 6 on page 14-54

db2.jcc.lobOutputSize 4 on page 14-54

db2.jcc.maxRefreshInterval 4 on page 14-54, 5 on page
14-54, 6 on page 14-54

db2.jcc.maxTransportObjectIdleTime maxTransportObjectIdleTime 1 on page 14-54, 4 on page
14-54, 5 on page 14-54

db2.jcc.maxTransportObjectWaitTime maxTransportObjectWaitTime 1 on page 14-54, 4 on page
14-54, 5 on page 14-54

db2.jcc.maxTransportObjects maxTransportObjects 1 on page 14-54, 4 on page
14-54, 5 on page 14-54

db2.jcc.minTransportObjects minTransportObjects 1 on page 14-54, 4 on page
14-54, 5 on page 14-54

db2.jcc.outputDirectory 6 on page 14-54

db2.jcc.pkList pkList 1 on page 14-54, 4 on page
14-54

db2.jcc.planName planName 1 on page 14-54, 4 on page
14-54

db2.jcc.progressiveStreaming progressiveStreaming 1 on page 14-54, 4 on page
14-54, 5 on page 14-54, 6 on
page 14-54

db2.jcc.override.progressiveStreaming progressiveStreaming 2 on page 14-54, 4 on page
14-54, 5 on page 14-54, 6 on
page 14-54

db2.jcc.rollbackOnShutdown 4 on page 14-54

db2.jcc.sendCharInputsUTF8 sendCharInputsUTF8 4 on page 14-54

Chapter 14. JDBC and SQLJ reference information 14-53

Table 14-7. Summary of Configuration properties and corresponding Connection and DataSource
properties (continued)

Configuration property name
Connection or DataSource property name:
com.ibm.db2.jcc.DB2BaseDataSource. ... Notes

db2.jcc.sqljToolsExitJVMOnCompletion 4, 6

db2.jcc.sqljUncustomizedWarningOrException 4, 6

db2.jcc.ssid ssid 1, 4

db2.jcc.traceDirectory traceDirectory 1, 4, 5, 6

db2.jcc.override.traceDirectory traceDirectory 2, 4, 5, 6

db2.jcc.traceFile traceFile 1, 4, 5, 6

db2.jcc.override.traceFile traceFile 2, 4, 5, 6

db2.jcc.traceFileAppend traceFileAppend 1, 4, 5, 6

db2.jcc.override.traceFileAppend traceFileAppend 2, 4, 5, 6

db2.jcc.traceLevel traceLevel 1, 4, 5, 6

db2.jcc.override.traceLevel traceLevel 2, 4, 5, 6

db2.jcc.tracePolling 4, 5, 6

db2.jcc.tracePollingInterval 4, 5, 6

db2.jcc.t2zosTraceFile 4

db2.jcc.t2zosTraceBufferSize 4

db2.jcc.t2zosTraceWrap 4

db2.jcc.useCcsid420ShapedConverter 4

Note:

1. The Connection or DataSource property setting overrides the configuration property setting. The configuration property provides
a default value for the Connection or DataSource property.

2. The configuration property setting overrides the Connection or DataSource property.

3. The corresponding Connection or DataSource property is defined only for IBM Informix.

4. The configuration property applies to DB2 for z/OS.

5. The configuration property applies to IBM Informix.

6. The configuration property applies to DB2 Database for Linux, UNIX, and Windows.

The meanings of the configuration properties are:

db2.jcc.accountingInterval
Specifies whether IDS accounting records are produced at commit points or on
termination of the physical connection to the data source. If the value of
db2.jcc.accountingInterval is COMMIT, IDS accounting records are produced at
commit points. For example:
db2.jcc.accountingInterval=COMMIT

Otherwise, accounting records are produced on termination of the physical
connection to the data source.

db2.jcc.accountingInterval applies only to IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity on DB2 for z/OS. db2.jcc.accountingInterval is
not applicable to connections under CICS or IMS, or for Java stored
procedures.

You can override db2.jcc.accountingInterval by setting the accountingInterval
property for a Connection or DataSource object.

This configuration property applies only to DB2 for z/OS.

14-54 IBM Data Server Driver for JDBC and SQLJ for Informix

db2.jcc.allowSqljDuplicateStaticQueries
Specifies whether multiple open iterators on a single SELECT statement in an
SQLJ application are allowed under IBM Data Server Driver for JDBC and
SQLJ type 2 connectivity.

To enable this support, set db2.jcc.allowSqljDuplicateStaticQueries to YES or
true.

db2.jcc.charOutputSize
Specifies the maximum number of bytes to use for INOUT or OUT stored
procedure parameters that are registered as Types.CHAR.

Because DESCRIBE information for stored procedure INOUT and OUT
parameters is not available at run time, by default, the IBM Data Server Driver
for JDBC and SQLJ sets the maximum length of each character INOUT or OUT
parameter to 32767. For stored procedures with many Types.CHAR parameters,
this maximum setting can result in allocation of much more storage than is
necessary.

To use storage more efficiently, set db2.jcc.charOutputSize to the largest
expected length for any Types.CHAR INOUT or OUT parameter.

db2.jcc.charOutputSize has no effect on INOUT or OUT parameters that are
registered as Types.VARCHAR or Types.LONGVARCHAR. The driver uses the default
length of 32767 for Types.VARCHAR and Types.LONGVARCHAR parameters.

The value that you choose for db2.jcc.charOutputSize needs to take into
account the possibility of expansion during character conversion. Because the
IBM Data Server Driver for JDBC and SQLJ has no information about the
server-side CCSID that is used for output parameter values, the driver requests
the stored procedure output data in UTF-8 Unicode. The
db2.jcc.charOutputSize value needs to be the maximum number of bytes that
are needed after the parameter value is converted to UTF-8 Unicode. UTF-8
Unicode characters can require up to three bytes. (The euro symbol is an
example of a three-byte UTF-8 character.) To ensure that the value of
db2.jcc.charOutputSize is large enough, if you have no information about the
output data, set db2.jcc.charOutputSize to three times the defined length of the
largest CHAR parameter.

This configuration property applies only to DB2 for z/OS.

db2.jcc.currentSchema or db2.jcc.override.currentSchema
Specifies the default schema name that is used to qualify unqualified database
objects in dynamically prepared SQL statements. This value of this property
sets the value in the CURRENT SCHEMA special register on the database
server. The schema name is case-sensitive, and must be specified in uppercase
characters.

This configuration property applies only to DB2 for z/OS or DB2 Database for
Linux, UNIX, and Windows.

db2.jcc.currentSQLID or db2.jcc.override.currentSQLID
Specifies:
v The authorization ID that is used for authorization checking on dynamically

prepared CREATE, GRANT, and REVOKE SQL statements.
v The owner of a table space, database, storage group, or synonym that is

created by a dynamically issued CREATE statement.
v The implicit qualifier of all table, view, alias, and index names specified in

dynamic SQL statements.

Chapter 14. JDBC and SQLJ reference information 14-55

currentSQLID sets the value in the CURRENT SQLID special register on a DB2
for z/OS server. If the currentSQLID property is not set, the default schema
name is the value in the CURRENT SQLID special register.

This configuration property applies only to DB2 for z/OS.

db2.jcc.decimalRoundingMode or db2.jcc.override.decimalRoundingMode
Specifies the rounding mode for assignment to decimal floating-point variables
or DECFLOAT columns on DB2 for z/OS or DB2 Database for Linux, UNIX,
and Windows data servers.

Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_DOWN (1)
Rounds the value towards 0 (truncation). The discarded digits are
ignored.

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_CEILING (2)
Rounds the value towards positive infinity. If all of the discarded digits
are zero or if the sign is negative the result is unchanged other than
the removal of the discarded digits. Otherwise, the result coefficient is
incremented by 1.

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_HALF_EVEN (3)
Rounds the value to the nearest value; if the values are equidistant,
rounds the value so that the final digit is even. If the discarded digits
represents greater than half (0.5) of the value of one in the next left
position then the result coefficient is incremented by 1. If they
represent less than half, then the result coefficient is not adjusted (that
is, the discarded digits are ignored). Otherwise the result coefficient is
unaltered if its rightmost digit is even, or is incremented by 1 if its
rightmost digit is odd (to make an even digit).

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_HALF_UP (4)
Rounds the value to the nearest value; if the values are equidistant,
rounds the value away from zero. If the discarded digits represent
greater than or equal to half (0.5) of the value of one in the next left
position then the result coefficient is incremented by 1. Otherwise the
discarded digits are ignored.

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_FLOOR (6)
Rounds the value towards negative infinity. If all of the discarded
digits are zero or if the sign is positive the result is unchanged other
than the removal of discarded digits. Otherwise, the sign is negative
and the result coefficient is incremented by 1.

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_UNSET (-2147483647)
No rounding mode was explicitly set. The IBM Data Server Driver for
JDBC and SQLJ does not use the decimalRoundingMode to set the
rounding mode on the database server. The rounding mode is
ROUND_HALF_EVEN.

If you explicitly set the db2.jcc.decimalRoundingMode or
db2.jcc.override.decimalRoundingMode value, that value updates the
CURRENT DECFLOAT ROUNDING MODE special register value on a DB2
for z/OS data server.

If you explicitly set the db2.jcc.decimalRoundingMode or
db2.jcc.override.decimalRoundingMode value, that value does not update the
CURRENT DECFLOAT ROUNDING MODE special register value on a DB2
Database for Linux, UNIX, and Windows data server. If the value to which you

14-56 IBM Data Server Driver for JDBC and SQLJ for Informix

set db2.jcc.decimalRoundingMode or db2.jcc.override.decimalRoundingMode is
not the same as the value of the CURRENT DECFLOAT ROUNDING MODE
special register, an Exception is thrown. To change the data server value, you
need to set that value with the decflt_rounding database configuration
parameter.

decimalRoundingMode does not affect decimal value assignments. The IBM
Data Server Driver for JDBC and SQLJ always rounds decimal values down.

db2.jcc.defaultSQLState
Specifies the SQLSTATE value that the IBM Data Server Driver for JDBC and
SQLJ returns to the client for SQLException or SQLWarning objects that have
null SQLSTATE values. This configuration property can be specified in the
following ways:

db2.jcc.defaultSQLState
If db2.jcc.defaultSQLState is specified with no value, the IBM Data
Server Driver for JDBC and SQLJ returns 'FFFFF'.

db2.jcc.defaultSQLState=xxxxx
xxxxx is the value that the IBM Data Server Driver for JDBC and SQLJ
returns when the SQLSTATE value is null. If xxxxx is longer than five
bytes, the driver truncates the value to five bytes. If xxxxx is shorter
than five bytes, the driver pads xxxxx on the right with blanks.

If db2.jcc.defaultSQLState is not specified, the IBM Data Server Driver for
JDBC and SQLJ returns a null SQLSTATE value.

This configuration property applies only to DB2 for z/OS.

db2.jcc.disableSQLJProfileCaching
Specifies whether serialized profiles are cached when the JVM under which
their application is running is reset. db2.jcc.disableSQLJProfileCaching applies
only to applications that run in a resettable JVM (applications that run in the
CICS, IMS, or Java stored procedure environment), and use IBM Data Server
Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS. Possible
values are:

YES SQLJ serialized profiles are not cached every time the JVM is reset, so
that new versions of the serialized profiles are loaded when the JVM is
reset. Use this option when an application is under development, and
new versions of the application and its serialized profiles are produced
frequently.

NO SQLJ serialized profiles are cached when the JVM is reset. NO is the
default.

This configuration property applies only to DB2 for z/OS.

db2.jcc.dumpPool
Specifies the types of statistics on global transport pool events that are written,
in addition to summary statistics. The global transport pool is used for the
connection concentrator and Sysplex workload balancing.

db2.jcc.dumpPoolStatisticsOnSchedule and
db2.jcc.dumpPoolStatisticsOnScheduleFile must also be set for writing statistics
before any statistics are written.

You can specify one or more of the following types of statistics with the
db2.jcc.dumpPool property:
v DUMP_REMOVE_OBJECT (hexadecimal: X'01', decimal: 1)
v DUMP_GET_OBJECT (hexadecimal: X'02', decimal: 2)

Chapter 14. JDBC and SQLJ reference information 14-57

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|

v DUMP_WAIT_OBJECT (hexadecimal: X'04', decimal: 4)
v DUMP_SET_AVAILABLE_OBJECT (hexadecimal: X'08', decimal: 8)
v DUMP_CREATE_OBJECT (hexadecimal: X'10', decimal: 16)
v DUMP_SYSPLEX_MSG (hexadecimal: X'20', decimal: 32)
v DUMP_POOL_ERROR (hexadecimal: X'80', decimal: 128)

To trace more than one type of event, add the values for the types of events
that you want to trace. For example, suppose that you want to trace
DUMP_GET_OBJECT and DUMP_CREATE_OBJECT events. The numeric
equivalents of these values are 2 and 16, so you specify 18 for the
db2.jcc.dumpPool value.

The default is 0, which means that only summary statistics for the global
transport pool are written.

This configuration property applies only to DB2 for z/OS or IBM Informix.

db2.jcc.dumpPoolStatisticsOnSchedule
Specifies how often, in seconds, global transport pool statistics are written to
the file that is specified by db2.jcc.dumpPoolStatisticsOnScheduleFile. The
global transport object pool is used for the connection concentrator and
Sysplex workload balancing.

The default is -1. -1 means that global transport pool statistics are not written.

This configuration property applies only to DB2 for z/OS or IBM Informix.

db2.jcc.dumpPoolStatisticsOnScheduleFile
Specifies the name of the file to which global transport pool statistics are
written. The global transport pool is used for the connection concentrator and
Sysplex workload balancing.

If db2.jcc.dumpPoolStatisticsOnScheduleFile is not specified, global transport
pool statistics are not written.

This configuration property applies only to DB2 for z/OS or IBM Informix.

db2.jcc.jmxEnabled
Specifies whether the Java Management Extensions (JMX) is enabled for the
IBM Data Server Driver for JDBC and SQLJ instance. JMX must be enabled
before applications can use the remote trace controller.

Possible values are:

true or yes
Indicates that JMX is enabled.

Any other value
Indicates that JMX is disabled. This is the default.

db2.jcc.lobOutputSize
Specifies the number of bytes of storage that the IBM Data Server Driver for
JDBC and SQLJ needs to allocate for output LOB values when the driver
cannot determine the size of those LOBs. This situation occurs for LOB stored
procedure output parameters. db2.jcc.lobOutputSize applies only to IBM Data
Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

The default value for db2.jcc.lobOutputSize is 1048576. For systems with
storage limitations and smaller LOBs, set the db2.jcc.lobOutputSize value to a
lower number.

For example, if you know that the output LOB size is at most 64000, set
db2.jcc.lobOutputSize to 64000.

14-58 IBM Data Server Driver for JDBC and SQLJ for Informix

This configuration property applies only to DB2 for z/OS.

db2.jcc.maxRefreshInterval
For workload balancing, specifies the maximum amount of time in seconds
between refreshes of the client copy of the server list. The default is 30. The
minimum valid value is 1.

db2.jcc.maxTransportObjectIdleTime
Specifies the amount of time in seconds that an unused transport object stays
in a global transport object pool before it can be deleted from the pool.
Transport objects are used for the connection concentrator and Sysplex
workload balancing.

The default value for db2.jcc.maxTransportObjectIdleTime is 60. Setting
db2.jcc.maxTransportObjectIdleTime to a value less than 0 causes unused
transport objects to be deleted from the pool immediately. Doing this is not
recommended because it can cause severe performance degradation.

This configuration property applies only to DB2 for z/OS or IBM Informix.

db2.jcc.maxTransportObjects
Specifies the upper limit for the number of transport objects in a global
transport object pool for the connection concentrator and Sysplex workload
balancing. When the number of transport objects in the pool reaches the
db2.jcc.maxTransportObjects value, transport objects that have not been used
for longer than the db2.jcc.maxTransportObjectIdleTime value are deleted from
the pool.

The default value for db2.jcc.maxTransportObjects is -1. Any value that is less
than or equal to 0 means that there is no limit to the number of transport
objects in the global transport object pool.

This configuration property applies only to DB2 for z/OS or IBM Informix.

db2.jcc.maxTransportObjectWaitTime
Specifies the maximum amount of time in seconds that an application waits for
a transport object if the db2.jcc.maxTransportObjects value has been reached.
Transport objects are used for the connection concentrator and Sysplex
workload balancing. When an application waits for longer than the
db2.jcc.maxTransportObjectWaitTime value, the global transport object pool
throws an SQLException.

The default value for db2.jcc.maxTransportObjectWaitTime is -1. Any negative
value means that applications wait forever.

This configuration property applies only to DB2 for z/OS or IBM Informix.

db2.jcc.minTransportObjects
Specifies the lower limit for the number of transport objects in a global
transport object pool for the connection concentrator and Sysplex workload
balancing. When a JVM is created, there are no transport objects in the pool.
Transport objects are added to the pool as they are needed. After the
db2.jcc.minTransportObjects value is reached, the number of transport objects
in the global transport object pool never goes below the
db2.jcc.minTransportObjects value for the lifetime of that JVM.

The default value for db2.jcc.minTransportObjects is 0. Any value that is less
than or equal to 0 means that the global transport object pool can become
empty.

This configuration property applies only to DB2 for z/OS or IBM Informix.

Chapter 14. JDBC and SQLJ reference information 14-59

db2.jcc.outputDirectory
Specifies where the IBM Data Server Driver for JDBC and SQLJ stores
temporary log or cache files.

If this property is set, the IBM Data Server Driver for JDBC and SQLJ stores
the following files in the specified directory:

jccServerListCache.bin
Contains a copy of the primary and alternate server information for
automatic client reroute in a DB2 pureScale environment.

This file applies only to IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity to DB2 Database for Linux, UNIX, and Windows.

If db2.jcc.outputDirectory is not specified, the IBM Data Server Driver
for JDBC and SQLJ searches for a directory that is specified by the
java.io.tmpdir system property. If the java.io.tmpdir system property is
also not specified, the driver uses only the in-memory cache for the
primary and alternate server information. If a directory is specified, but
jccServerListCache.bin cannot be accessed, the driver uses only the
in-memory cache for the server list.

jccdiag.log
Contains diagnostic information that is written by the IBM Data Server
Driver for JDBC and SQLJ.

If db2.jcc.outputDirectory is not specified, the IBM Data Server Driver
for JDBC and SQLJ searches for a directory that is specified by the
java.io.tmpdir system property. If the java.io.tmpdir system property is
also not specified, the driver does not write diagnostic information to
jccdiag.log. If a directory is specified, but jccdiag.log cannot be
accessed, the driver does not write diagnostic information to
jccdiag.log.

connlicj.bin
Contains information about IBM Data Server Driver for JDBC and
SQLJ license verification, for direct connections to DB2 for z/OS. The
IBM Data Server Driver for JDBC and SQLJ writes this file when server
license verification is performed successfully for a data server. When a
copy of the license verification information is stored at the client,
performance of license verification on subsequent connections can be
improved.

If db2.jcc.outputDirectory is not specified, the IBM Data Server Driver
for JDBC and SQLJ searches for a directory that is specified by the
java.io.tmpdir system property. If the java.io.tmpdir system property is
also not specified, the driver does not store a copy of server license
verification information at the client. If a directory is specified, but
connlicj.bin cannot be accessed, the driver does not store a copy of
server license verification information at the client.

The IBM Data Server Driver for JDBC and SQLJ does not create the directory.
You must create the directory and assign the required file permissions.

db2.jcc.outputDirectory can specify an absolute path or a relative path.
However, an absolute path is recommended.

db2.jcc.pkList
Specifies a package list that is used for the underlying RRSAF CREATE
THREAD call when a JDBC or SQLJ connection to a data source is established.

14-60 IBM Data Server Driver for JDBC and SQLJ for Informix

Specify this property if you do not bind plans for your SQLJ programs or for
the JDBC driver. If you specify this property, do not specify db2.jcc.planName.

db2.jcc.pkList applies only to IBM Data Server Driver for JDBC and SQLJ type
2 connectivity on DB2 for z/OS. db2.jcc.pkList does not apply to applications
that run under CICS or IMS, or to Java stored procedures. The JDBC driver
ignores the db2.jcc.pkList setting in those cases.

Recommendation: Use db2.jcc.pkList instead of db2.jcc.planName.

The format of the package list is:

�� �

,

collection-ID.* ��

The default value of db2.jcc.pkList is NULLID.*.

If you specify the -collection parameter when you run
com.ibm.db2.jcc.DB2Binder, the collection ID that you specify for IBM Data
Server Driver for JDBC and SQLJ packages when you run
com.ibm.db2.jcc.DB2Binder must also be in the package list for the
db2.jcc.pkList property.

You can override db2.jcc.pkList by setting the pkList property for a Connection
or DataSource object.

The following example specifies a package list for a IBM Data Server Driver
for JDBC and SQLJ instance whose packages are in collection JDBCCID. SQLJ
applications that are prepared under this driver instance are bound into
collections SQLJCID1, SQLJCID2, or SQLJCID3.
db2.jcc.pkList=JDBCCID.*,SQLJCID1.*,SQLJCID2.*,SQLJCID3.*

This configuration property applies only to DB2 for z/OS.

db2.jcc.planName
Specifies a DB2 for z/OS plan name that is used for the underlying RRSAF
CREATE THREAD call when a JDBC or SQLJ connection to a data source is
established. Specify this property if you bind plans for your SQLJ programs
and for the JDBC driver packages. If you specify this property, do not specify
db2.jcc.pkList.

db2.jcc.planName applies only to IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS. db2.jcc.planName does not apply to
applications that run under CICS or IMS, or to Java stored procedures. The
JDBC driver ignores the db2.jcc.planName setting in those cases.

If you do not specify this property or the db2.jcc.pkList property, the IBM Data
Server Driver for JDBC and SQLJ uses the db2.jcc.pkList default value of
NULLID.*.

If you specify db2.jcc.planName, you need to bind the packages that you
produce when you run com.ibm.db2.jcc.DB2Binder into a plan whose name is
the value of this property. You also need to bind all SQLJ packages into a plan
whose name is the value of this property.

You can override db2.jcc.planName by setting the planName property for a
Connection or DataSource object.

The following example specifies a plan name of MYPLAN for the IBM Data
Server Driver for JDBC and SQLJ JDBC packages and SQLJ packages.

Chapter 14. JDBC and SQLJ reference information 14-61

db2.jcc.planName=MYPLAN

This configuration property applies only to DB2 for z/OS.

db2.jcc.progressiveStreaming or db2.jcc.override.progressiveStreaming
Specifies whether the JDBC driver uses progressive streaming when
progressive streaming is supported on the data source.

With progressive streaming, also known as dynamic data format, the data
source dynamically determines the most efficient mode in which to return LOB
or XML data, based on the size of the LOBs or XML objects.

Valid values are:

1 Use progressive streaming, if the data source supports it.

2 Do not use progressive streaming.

db2.jcc.rollbackOnShutdown
Specifies whether DB2 for z/OS forces a rollback operation and disables
further operations on JDBC connections that are in a unit of work during
processing of JVM shutdown hooks.

db2.jcc.rollbackOnShutdown applies to IBM Data Server Driver for JDBC and
SQLJ type 2 connectivity only.

db2.jcc.rollbackOnShutdown does not apply to the CICS, IMS, stored
procedure, or WebSphere Application Server environments.

Possible values are:

yes or true
The IBM Data Server Driver for JDBC and SQLJ directs DB2 for z/OS
to force a rollback operation and disables further operations on JDBC
connections that are in a unit of work during processing of JVM
shutdown hooks.

Any other value
The IBM Data Server Driver for JDBC and SQLJ takes no action with
respect to rollback processing during processing of JVM shutdown
hooks. This is the default.

This configuration property applies only to DB2 for z/OS.

db2.jcc.sendCharInputsUTF8
Specifies whether the IBM Data Server Driver for JDBC and SQLJ converts
character input data to the CCSID of the DB2 for z/OS database server, or
sends the data in UTF-8 encoding for conversion by the database server.
db2.jcc.sendCharInputsUTF8 applies to IBM Data Server Driver for JDBC and
SQLJ type 2 connectivity to DB2 for z/OS database servers only. If this
property is also set at the connection level, the connection-level setting
overrides this value.

Possible values are:

no, false, or 2
Specifies that the IBM Data Server Driver for JDBC and SQLJ converts
character input data to the target encoding before the data is sent to
the DB2 for z/OS database server. This is the default.

yes, true, or 1
Specifies that the IBM Data Server Driver for JDBC and SQLJ sends

14-62 IBM Data Server Driver for JDBC and SQLJ for Informix

character input data to the DB2 for z/OS database server in UTF-8
encoding. The data source converts the data from UTF-8 encoding to
the target CCSID.

Specify yes, true, or 1 only if conversion to the target CCSID by the
SDK for Java causes character conversion problems. The most common
problem occurs when you use IBM Data Server Driver for JDBC and
SQLJ type 2 connectivity to insert a Unicode line feed character
(U+000A) into a table column that has CCSID 37, and then retrieve that
data from a non-z/OS client. If the SDK for Java does the conversion
during insertion of the character into the column, the line feed
character is converted to the EBCDIC new line character X'15'.
However, during retrieval, some SDKs for Java on operating systems
other than z/OS convert the X'15' character to the Unicode next line
character (U+0085) instead of the line feed character (U+000A). The
next line character causes unexpected behavior for some XML parsers.
If you set db2.jcc.sendCharInputsUTF8 to yes, the DB2 for z/OS
database server converts the U+000A character to the EBCDIC line feed
character X'25' during insertion into the column, so the character is
always retrieved as a line feed character.

Conversion of data to the target CCSID on the data source might cause
the IBM Data Server Driver for JDBC and SQLJ to use more memory
than conversion by the driver. The driver allocates memory for
conversion of character data from the source encoding to the encoding
of the data that it sends to the data source. The amount of space that
the driver allocates for character data that is sent to a table column is
based on the maximum possible length of the data. UTF-8 data can
require up to three bytes for each character. Therefore, if the driver
sends UTF-8 data to the data source, the driver needs to allocate three
times the maximum number of characters in the input data. If the
driver does the conversion, and the target CCSID is a single-byte
CCSID, the driver needs to allocate only the maximum number of
characters in the input data.

For example, any of the following settings for db2.jcc.sendCharInputsUTF8
causes the IBM Data Server Driver for JDBC and SQLJ to convert input
character strings to UTF-8, rather than the target encoding, before sending the
data to the data source:
db2.jcc.sendCharInputsUTF8=yes
db2.jcc.sendCharInputsUTF8=true
db2.jcc.sendCharInputsUTF8=1

This configuration property applies only to DB2 for z/OS.

db2.jcc.sqljToolsExitJVMOnCompletion
Specifies whether the Java programs that underlie SQLJ tools such as
db2sqljcustomize and db2sqljbind issue the System.exit call on return to the
calling programs.

Possible values are:

true Specifies that the Java programs that underlie SQLJ tools issue the
System.exit call upon completion. true is the default.

false Specifies that the Java programs that underlie SQLJ tools do not issue
the System.exit call.

db2.jcc.sqljUncustomizedWarningOrException
Specifies the action that the IBM Data Server Driver for JDBC and SQLJ takes

Chapter 14. JDBC and SQLJ reference information 14-63

when an uncustomized SQLJ application runs.
db2.jcc.sqljUncustomizedWarningOrException can have the following values:

0 The IBM Data Server Driver for JDBC and SQLJ does not throw a
Warning or Exception when an uncustomized SQLJ application is run.
This is the default.

1 The IBM Data Server Driver for JDBC and SQLJ throws a Warning
when an uncustomized SQLJ application is run.

2 The IBM Data Server Driver for JDBC and SQLJ throws an Exception
when an uncustomized SQLJ application is run.

This configuration property applies only to DB2 for z/OS or DB2 Database for
Linux, UNIX, and Windows.

db2.jcc.traceDirectory or db2.jcc.override.traceDirectory
Enables the IBM Data Server Driver for JDBC and SQLJ trace for Java driver
code, and specifies a directory into which trace information is written. When
db2.jcc.override.traceDirectory is specified, trace information for multiple
connections on the same DataSource is written to multiple files.

When db2.jcc.override.traceDirectory is specified, a connection is traced to a
file named file-name_origin_n.
v n is the nth connection for a DataSource.
v If neither db2.jcc.traceFileName nor db2.jcc.override.traceFileName is

specified, file-name is traceFile. If db2.jcc.traceFileName or
db2.jcc.override.traceFileName is also specified, file-name is the value of
db2.jcc.traceFileName or db2.jcc.override.traceFileName.

v origin indicates the origin of the log writer that is in use. Possible values of
origin are:

cpds The log writer for a DB2ConnectionPoolDataSource object.

driver The log writer for a DB2Driver object.

global The log writer for a DB2TraceManager object.

sds The log writer for a DB2SimpleDataSource object.

xads The log writer for a DB2XADataSource object.

The db2.jcc.override.traceDirectory property overrides the traceDirectory
property for a Connection or DataSource object.

For example, specifying the following setting for db2.jcc.override.traceDirectory
enables tracing of the IBM Data Server Driver for JDBC and SQLJ Java code to
files in a directory named /SYSTEM/tmp:
db2.jcc.override.traceDirectory=/SYSTEM/tmp

You should set the trace properties under the direction of IBM Software
Support.

db2.jcc.traceLevel or db2.jcc.override.traceLevel
Specifies what to trace.

The db2.jcc.override.traceLevel property overrides the traceLevel property for
a Connection or DataSource object.

You specify one or more trace levels by specifying a decimal value. The trace
levels are the same as the trace levels that are defined for the traceLevel
property on a Connection or DataSource object.

14-64 IBM Data Server Driver for JDBC and SQLJ for Informix

To specify more than one trace level, do an OR (|) operation on the values,
and specify the result in decimal in the db2.jcc.traceLevel or
db2.jcc.override.traceLevel specification.

For example, suppose that you want to specify TRACE_DRDA_FLOWS and
TRACE_CONNECTIONS for db2.jcc.override.traceLevel.
TRACE_DRDA_FLOWS has a hexadecimal value of X'40'.
TRACE_CONNECTION_CALLS has a hexadecimal value of X'01'. To specify
both traces, do a bitwise OR operation on the two values, which results in
X'41'. The decimal equivalent is 65, so you specify:
db2.jcc.override.traceLevel=65

db2.jcc.ssid
Specifies the DB2 for z/OS subsystem to which applications make connections
with IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2
for z/OS.

The db2.jcc.ssid value can be the name of the local DB2 subsystem or a group
attachment name or subgroup attachment name.

For example:
db2.jcc.ssid=DB2A

The ssid Connection and DataSource property overrides db2.jcc.ssid.

If you specify a group attachment name or subgroup attachment name, and the
DB2 subsystem to which an application is connected fails, the connection
terminates. However, when new connections use that group attachment name
or subgroup attachment name, DB2 for z/OS uses group attachment or
subgroup attachment processing to find an active DB2 subsystem to which to
connect.

If you do not specify the db2.jcc.ssid property, the IBM Data Server Driver for
JDBC and SQLJ uses the SSID value from the application defaults load module.
When you install DB2 for z/OS, an application defaults load module is created
in the prefix.SDSNEXIT data set and the prefix.SDSNLOAD data set. Other
application defaults load modules might be created in other data sets for
selected applications.

The IBM Data Server Driver for JDBC and SQLJ must load an application
defaults load module before it can read the SSID value. z/OS searches data
sets in the following places, and in the following order, for the application
defaults load module:
1. Job pack area (JPA)
2. TASKLIB
3. STEPLIB or JOBLIB
4. LPA
5. Libraries in the link list

You need to ensure that if your system has more than one copy of the
application defaults load module, z/OS finds the data set that contains the
correct copy for the IBM Data Server Driver for JDBC and SQLJ first.

This configuration property applies only to DB2 for z/OS.

db2.jcc.traceFile or db2.jcc.override.traceFile
Enables the IBM Data Server Driver for JDBC and SQLJ trace for Java driver
code, and specifies the name on which the trace file names are based.

Specify a fully qualified z/OS UNIX System Services file name for the
db2.jcc.override.traceFile property value.

Chapter 14. JDBC and SQLJ reference information 14-65

The db2.jcc.override.traceFile property overrides the traceFile property for a
Connection or DataSource object.

For example, specifying the following setting for db2.jcc.override.traceFile
enables tracing of the IBM Data Server Driver for JDBC and SQLJ Java code to
a file named /SYSTEM/tmp/jdbctrace:
db2.jcc.override.traceFile=/SYSTEM/tmp/jdbctrace

You should set the trace properties under the direction of IBM Software
Support.

db2.jcc.traceFileAppend or db2.jcc.override.traceFileAppend
Specifies whether to append to or overwrite the file that is specified by the
db2.jcc.override.traceFile property. Valid values are true or false. The default
is false, which means that the file that is specified by the traceFile property is
overwritten.

The db2.jcc.override.traceFileAppend property overrides the traceFileAppend
property for a Connection or DataSource object.

For example, specifying the following setting for
db2.jcc.override.traceFileAppend causes trace data to be added to the existing
trace file:
db2.jcc.override.traceFileAppend=true

You should set the trace properties under the direction of IBM Software
Support.

db2.jcc.tracePolling
Indicates whether the IBM Data Server Driver for JDBC and SQLJ polls the
global configuration file for changes in trace directives and modifies the trace
behavior to match the new trace directives. Possible values are true or false.
False is the default.

The IBM Data Server Driver for JDBC and SQLJ modifies the trace behavior at
the beginning of the next polling interval after the configuration properties file
is changed. If db2.jcc.tracePolling is set to true while an application is running,
the trace is enabled, and information about all the PreparedStatement objects
that were created by the application before the trace was enabled are dumped
to the trace destination.

db2.jcc.tracePolling polls the following global configuration properties:
v db2.jcc.override.traceLevel
v db2.jcc.override.traceFile
v db2.jcc.override.traceDirectory
v db2.jcc.override.traceFileAppend

db2.jcc.tracePollingInterval
Specifies the interval, in seconds, for polling the IBM Data Server Driver for
JDBC and SQLJ global configuration file for changes in trace directives. The
property value is a positive integer. The default is 60. For the specified trace
polling interval to be used, the db2.jcc.tracePollingInterval property must be
set before the driver is loaded and initialized. Changes to
db2.jcc.tracePollingInterval after the driver is loaded and initialized have no
effect.

db2.jcc.t2zosTraceFile
Enables the IBM Data Server Driver for JDBC and SQLJ trace for C/C++ native
driver code for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity,
and specifies the name on which the trace file names are based. This property
is required for collecting trace data for C/C++ native driver code.

14-66 IBM Data Server Driver for JDBC and SQLJ for Informix

Specify a fully qualified z/OS UNIX System Services file name for the
db2.jcct.t2zosTraceFile property value.

For example, specifying the following setting for db2.jcct.t2zosTraceFile enables
tracing of the IBM Data Server Driver for JDBC and SQLJ C/C++ native code
to a file named /SYSTEM/tmp/jdbctraceNative:
db2.jcc.t2zosTraceFile=/SYSTEM/tmp/jdbctraceNative

You should set the trace properties under the direction of IBM Software
Support.

This configuration property applies only to DB2 for z/OS.

db2.jcc.t2zosTraceBufferSize
Specifies the size, in kilobytes, of a trace buffer in virtual storage that is used
for tracing the processing that is done by the C/C++ native driver code. This
value is also the maximum amount of C/C++ native driver trace information
that can be collected.

Specify an integer between 64 (64 KB) and 4096 (4096 KB). The default is 256
(256 KB).

The JDBC driver determines the trace buffer size as shown in the following
table:

Specified value (n) Trace buffer size (KB)

<64 64

64<=n<128 64

128<=n<256 128

256<=n<512 256

512<=n<1024 512

1024<=n<2048 1024

2048<=n<4096 2048

n>=4096 4096

db2.jcc.t2zosTraceBufferSize is used only if the db2.jcc.t2zosTraceFile property
is set.

Recommendation: To avoid a performance impact, specify a value of 1024 or
less.

For example, to set a trace buffer size of 1024 KB, use this setting:
db2.jcc.t2zosTraceBufferSize=1024

You should set the trace properties under the direction of IBM Software
Support.

This configuration property applies only to DB2 for z/OS.

db2.jcc.t2zosTraceWrap
Enables or disables wrapping of the SQLJ trace. db2.jcc.t2zosTraceWrap can
have one of the following values:

1 Wrap the trace

0 Do not wrap the trace

The default is 1. This parameter is optional. For example:
DB2SQLJ_TRACE_WRAP=0

Chapter 14. JDBC and SQLJ reference information 14-67

You should set db2.jcc.t2zosTraceWrap only under the direction of IBM
Software Support.

This configuration property applies only to DB2 for z/OS.

db2.jcc.useCcsid420ShapedConverter
Specifies whether Arabic character data that is in EBCDIC CCSID 420 maps to
Cp420S encoding.

db2.jcc.useCcsid420ShapedConverter applies only to connections to DB2 for
z/OS database servers.

If the value of db2.jcc.useCcsid420ShapedConverter is true, CCSID 420 maps
to Cp420S encoding. If the value of db2.jcc.useCcsid420ShapedConverter is
false, CCSID 420 maps to Cp420 encoding. false is the default.

This configuration property applies only to DB2 for z/OS.

Driver support for JDBC APIs
The JDBC drivers that are supported by DB2 and IBM Informix database systems
have different levels of support for JDBC methods.

The following tables list the JDBC interfaces and indicate which drivers supports
them. The drivers and their supported platforms are:

Table 14-8. JDBC drivers for DB2 and IBM Informix database systems

JDBC driver name Associated data source

IBM Data Server Driver for JDBC and SQLJ DB2 Database for Linux, UNIX, and
Windows, DB2 for z/OS, or IBM Informix

IBM Informix JDBC Driver (IBM Informix
JDBC Driver)

IBM Informix

If a method has JDBC 2.0 and JDBC 3.0 forms, the IBM Data Server Driver for
JDBC and SQLJ supports all forms. The DB2 JDBC Type 2 Driver for Linux, UNIX
and Windows supports only the JDBC 2.0 forms.

Table 14-9. Support for Array methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ1 support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

free2 Yes No No

getArray Yes No Yes

getBaseType Yes No Yes

getBaseTypeName Yes No Yes

getResultSet Yes No Yes

Notes:

1. Under the IBM Data Server Driver for JDBC and SQLJ, Array methods are supported for connections to DB2
Database for Linux, UNIX, and Windows data sources only.

2. This is a JDBC 4.0 method.

14-68 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-10. Support for BatchUpdateException methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes Yes Yes

getUpdateCounts Yes Yes Yes

Table 14-11. Support for Blob methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

free1 Yes No No

getBinaryStream Yes2 Yes Yes

getBytes Yes Yes Yes

length Yes Yes Yes

position Yes Yes Yes

setBinaryStream3 Yes No No

setBytes3 Yes No No

truncate3 Yes No No

Notes:

1. This is a JDBC 4.0 method.

2. Supported forms of this method include the following JDBC 4.0 form:

getBinaryStream(long pos, long length)

3. For versions of the IBM Data Server Driver for JDBC and SQLJ before version 3.50, these methods cannot be used
if a Blob is passed to a stored procedure as an IN or INOUT parameter, and the methods are used on the Blob in
the stored procedure.

Table 14-12. Support for CallableStatement methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.sql.Statement

Yes Yes Yes

Methods inherited from
java.sql.PreparedStatement

Yes1 Yes Yes

getArray No No No

getBigDecimal Yes3 Yes Yes

getBlob Yes3 Yes Yes

getBoolean Yes3 Yes Yes

getByte Yes3 Yes Yes

getBytes Yes3 Yes Yes

getClob Yes3 Yes Yes

getDate Yes3,4 Yes4 Yes

getDouble Yes3 Yes Yes

getFloat Yes3 Yes Yes

Chapter 14. JDBC and SQLJ reference information 14-69

Table 14-12. Support for CallableStatement methods (continued)

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

getInt Yes3 Yes Yes

getLong Yes3 Yes Yes

getObject Yes3,5 Yes5 Yes

getRef No No No

getRowId2 Yes No No

getShort Yes3 Yes Yes

getString Yes3 Yes Yes

getTime Yes3,4 Yes4 Yes

getTimestamp Yes3,4 Yes4 Yes

getURL Yes No No

registerOutParameter Yes6 Yes6 Yes6

setAsciiStream Yes7 No Yes

setBigDecimal Yes7 No Yes

setBinaryStream Yes7 No Yes

setBoolean Yes7 No Yes

setByte Yes7 No Yes

setBytes Yes7 No Yes

setCharacterStream Yes7 No Yes

setDate Yes7 No Yes

setDouble Yes7 No Yes

setFloat Yes7 No Yes

setInt Yes7 No Yes

setLong Yes7 No Yes

setNull Yes7,,8 No Yes

setObject Yes7, No Yes

setShort Yes7 No Yes

setString Yes7 No Yes

setTime Yes7 No Yes

setTimestamp Yes7 No Yes

setURL Yes No No

wasNull Yes Yes Yes

14-70 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-12. Support for CallableStatement methods (continued)

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Notes:

1. The inherited getParameterMetaData method is not supported if the data source is DB2 for z/OS.

2. This is a JDBC 4.0 method.

3. The following forms of CallableStatement.getXXX methods are not supported if the data source is DB2 for z/OS:

getXXX(String parameterName)

4. The database server does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the
local timezone after retrieving the value from the server if you specify a form of the getDate, getTime, or
getTimestamp method that includes a java.util.Calendar parameter.

5. The following form of the getObject method is not supported:

getObject(int parameterIndex, java.util.Map map)

6. The following form of the registerOutParameter method is not supported:

registerOutParameter(int parameterIndex, int jdbcType, String typeName)

7. The following forms of CallableStatement.setXXX methods are not supported if the data source is DB2 for z/OS:

setXXX(String parameterName,...)

8. The following form of setNull is not supported:

setNull(int parameterIndex, int jdbcType, String typeName)

Table 14-13. Support for Clob methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

free1 Yes No No

getAsciiStream Yes Yes Yes

getCharacterStream Yes2 Yes Yes

getSubString Yes Yes Yes

length Yes Yes Yes

position Yes Yes Yes

setAsciiStream
3

Yes No Yes

setCharacterStream3 Yes No Yes

setString3 Yes No Yes

truncate3 Yes No Yes

Notes:

1. This is a JDBC 4.0 method.

2. Supported forms of this method include the following JDBC 4.0 form:

getCharacterStream(long pos, long length)

3. For versions of the IBM Data Server Driver for JDBC and SQLJ before version 3.50, these methods cannot be used
if a Clob is passed to a stored procedure as an IN or INOUT parameter, and the methods are used on the Clob in
the stored procedure.

Chapter 14. JDBC and SQLJ reference information 14-71

Table 14-14. Support for Connection methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

clearWarnings Yes Yes Yes

close Yes Yes Yes

commit Yes Yes Yes

createBlob1 Yes No No

createClob1 Yes No No

createStatement Yes Yes2 Yes

getAutoCommit Yes Yes Yes

getCatalog Yes Yes Yes

getClientInfo1 Yes No No

getHoldability Yes No No

getMetaData Yes Yes Yes

getTransactionIsolation Yes Yes Yes

getTypeMap No No Yes

getWarnings Yes Yes Yes

isClosed Yes Yes Yes

isReadOnly Yes Yes Yes

isValid1,3 Yes No No

nativeSQL Yes Yes Yes

prepareCall Yes4 Yes Yes

prepareStatement Yes Yes2 Yes

releaseSavepoint Yes No No

rollback Yes Yes2 Yes

setAutoCommit Yes Yes Yes

setCatalog Yes Yes No

setClientInfo1 Yes No No

setReadOnly Yes5 Yes No

setSavepoint Yes No No

setTransactionIsolation Yes Yes Yes

setTypeMap No No Yes

Notes:

1. This is a JDBC 4.0 method.

2. The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows does not support the JDBC 3.0 forms of this method.

3. Under IBM Data Server Driver for JDBC and SQLJ type 4 connectivity, an SQLException is thrown if the timeout
parameter value is less than 0. Under IBM Data Server Driver for JDBC and SQLJ type 2 connectivity, an
SQLException is thrown if the if the timeout parameter value is not 0.

4. If the stored procedure in the CALL statement is on DB2 for z/OS, the parameters of the CALL statement cannot
be expressions.

5. The driver does not use the setting. For the IBM Data Server Driver for JDBC and SQLJ, a connection can be set
as read-only through the readOnly property for a Connection or DataSource object.

14-72 IBM Data Server Driver for JDBC and SQLJ for Informix

||||

||||

Table 14-15. Support for ConnectionEvent methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.util.EventObject

Yes Yes Yes

getSQLException Yes Yes Yes

Table 14-16. Support for ConnectionEventListener methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

connectionClosed Yes Yes Yes

connectionErrorOccurred Yes Yes Yes

Table 14-17. Support for ConnectionPoolDataSource methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

getLoginTimeout Yes Yes Yes

getLogWriter Yes Yes Yes

getPooledConnection Yes Yes Yes

setLoginTimeout Yes1 Yes Yes

setLogWriter Yes Yes Yes

Note:

1. This method is not supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS.

Table 14-18. Support for DatabaseMetaData methods

JDBC method

IBM Data
Server Driver
for JDBC and
SQLJ support

DB2 JDBC
Type 2 Driver
for Linux,
UNIX and
Windows
support

IBM Informix
JDBC Driver
support

allProceduresAreCallable Yes Yes Yes

allTablesAreSelectable Yes1 Yes Yes1

dataDefinitionCausesTransactionCommit Yes Yes Yes

dataDefinitionIgnoredInTransactions Yes Yes Yes

deletesAreDetected Yes Yes Yes

doesMaxRowSizeIncludeBlobs Yes Yes Yes

getAttributes Yes2 No No

getBestRowIdentifier Yes Yes Yes

getCatalogs Yes Yes Yes

getCatalogSeparator Yes Yes Yes

getCatalogTerm Yes Yes Yes

getClientInfoProperties6 Yes No No

Chapter 14. JDBC and SQLJ reference information 14-73

Table 14-18. Support for DatabaseMetaData methods (continued)

JDBC method

IBM Data
Server Driver
for JDBC and
SQLJ support

DB2 JDBC
Type 2 Driver
for Linux,
UNIX and
Windows
support

IBM Informix
JDBC Driver
support

getColumnPrivileges Yes Yes Yes

getColumns Yes7 Yes10 Yes10

getConnection Yes Yes Yes

getCrossReference Yes Yes Yes

getDatabaseMajorVersion Yes No No

getDatabaseMinorVersion Yes No No

getDatabaseProductName Yes Yes Yes

getDatabaseProductVersion Yes Yes Yes

getDefaultTransactionIsolation Yes Yes Yes

getDriverMajorVersion Yes Yes Yes

getDriverMinorVersion Yes Yes Yes

getDriverName Yes8 Yes Yes

getDriverVersion Yes Yes Yes

getExportedKeys Yes Yes Yes

getFunctionColumns6 Yes No No

getFunctions6 Yes No No

getExtraNameCharacters Yes Yes Yes

getIdentifierQuoteString Yes Yes Yes

getImportedKeys Yes Yes Yes

getIndexInfo Yes Yes Yes

getJDBCMajorVersion Yes No No

getJDBCMinorVersion Yes No No

getMaxBinaryLiteralLength Yes Yes Yes

getMaxCatalogNameLength Yes Yes Yes

getMaxCharLiteralLength Yes Yes Yes

getMaxColumnNameLength Yes Yes Yes

getMaxColumnsInGroupBy Yes Yes Yes

getMaxColumnsInIndex Yes Yes Yes

getMaxColumnsInOrderBy Yes Yes Yes

getMaxColumnsInSelect Yes Yes Yes

getMaxColumnsInTable Yes Yes Yes

getMaxConnections Yes Yes Yes

getMaxCursorNameLength Yes Yes Yes

getMaxIndexLength Yes Yes Yes

getMaxProcedureNameLength Yes Yes Yes

getMaxRowSize Yes Yes Yes

14-74 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-18. Support for DatabaseMetaData methods (continued)

JDBC method

IBM Data
Server Driver
for JDBC and
SQLJ support

DB2 JDBC
Type 2 Driver
for Linux,
UNIX and
Windows
support

IBM Informix
JDBC Driver
support

getMaxSchemaNameLength Yes Yes Yes

getMaxStatementLength Yes Yes Yes

getMaxStatements Yes Yes Yes

getMaxTableNameLength Yes Yes Yes

getMaxTablesInSelect Yes Yes Yes

getMaxUserNameLength Yes Yes Yes

getNumericFunctions Yes Yes Yes

getPrimaryKeys Yes Yes Yes

getProcedureColumns Yes7 on page
14-78

Yes Yes

getProcedures Yes7 on page
14-78

Yes Yes

getProcedureTerm Yes Yes Yes

getResultSetHoldability Yes No No

getRowIdLifetime6 Yes No No

getSchemas Yes9 on page
14-78

Yes10 Yes10

getSchemaTerm Yes Yes Yes

getSearchStringEscape Yes Yes Yes

getSQLKeywords Yes Yes Yes

getSQLStateType Yes No No

getStringFunctions Yes Yes Yes

getSuperTables Yes2 No No

getSuperTypes Yes2 No No

getSystemFunctions Yes Yes Yes

getTablePrivileges Yes Yes Yes

getTables Yes Yes10 Yes10

getTableTypes Yes Yes Yes

getTimeDateFunctions Yes Yes Yes

getTypeInfo Yes Yes Yes

getUDTs No Yes11 Yes11

getURL Yes Yes Yes

getUserName Yes Yes Yes

getVersionColumns Yes Yes Yes

insertsAreDetected Yes Yes Yes

isCatalogAtStart Yes Yes Yes

isReadOnly Yes Yes Yes

Chapter 14. JDBC and SQLJ reference information 14-75

Table 14-18. Support for DatabaseMetaData methods (continued)

JDBC method

IBM Data
Server Driver
for JDBC and
SQLJ support

DB2 JDBC
Type 2 Driver
for Linux,
UNIX and
Windows
support

IBM Informix
JDBC Driver
support

locatorsUpdateCopy Yes3 Yes Yes3

nullPlusNonNullIsNull Yes Yes Yes

nullsAreSortedAtEnd Yes4 Yes Yes4

nullsAreSortedAtStart Yes Yes Yes

nullsAreSortedHigh Yes5 Yes Yes5

nullsAreSortedLow Yes1 Yes Yes1

othersDeletesAreVisible Yes Yes Yes

othersInsertsAreVisible Yes Yes Yes

othersUpdatesAreVisible Yes Yes Yes

ownDeletesAreVisible Yes Yes Yes

ownInsertsAreVisible Yes Yes Yes

ownUpdatesAreVisible Yes Yes Yes

storesLowerCaseIdentifiers Yes1 Yes Yes1

storesLowerCaseQuotedIdentifiers Yes4 Yes Yes4

storesMixedCaseIdentifiers Yes Yes Yes

storesMixedCaseQuotedIdentifiers Yes Yes Yes

storesUpperCaseIdentifiers Yes5 Yes Yes5

storesUpperCaseQuotedIdentifiers Yes Yes Yes

supportsAlterTableWithAddColumn Yes Yes Yes

supportsAlterTableWithDropColumn Yes1 Yes Yes1

supportsANSI92EntryLevelSQL Yes Yes Yes

supportsANSI92FullSQL Yes Yes Yes

supportsANSI92IntermediateSQL Yes Yes Yes

supportsBatchUpdates Yes Yes Yes

supportsCatalogsInDataManipulation Yes1 Yes Yes1

supportsCatalogsInIndexDefinitions Yes Yes Yes

supportsCatalogsInPrivilegeDefinitions Yes Yes Yes

supportsCatalogsInProcedureCalls Yes1 Yes Yes1

supportsCatalogsInTableDefinitions Yes Yes Yes

SupportsColumnAliasing Yes Yes Yes

supportsConvert Yes Yes Yes

supportsCoreSQLGrammar Yes Yes Yes

supportsCorrelatedSubqueries Yes Yes Yes

supportsDataDefinitionAndDataManipulationTransactions Yes Yes Yes

supportsDataManipulationTransactionsOnly Yes Yes Yes

supportsDifferentTableCorrelationNames Yes4 Yes Yes4

14-76 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-18. Support for DatabaseMetaData methods (continued)

JDBC method

IBM Data
Server Driver
for JDBC and
SQLJ support

DB2 JDBC
Type 2 Driver
for Linux,
UNIX and
Windows
support

IBM Informix
JDBC Driver
support

supportsExpressionsInOrderBy Yes Yes Yes

supportsExtendedSQLGrammar Yes Yes Yes

supportsFullOuterJoins Yes3 Yes Yes3

supportsGetGeneratedKeys Yes No No

supportsGroupBy Yes Yes Yes

supportsGroupByBeyondSelect Yes Yes Yes

supportsGroupByUnrelated Yes Yes Yes

supportsIntegrityEnhancementFacility Yes Yes Yes

supportsLikeEscapeClause Yes Yes Yes

supportsLimitedOuterJoins Yes Yes Yes

supportsMinimumSQLGrammar Yes Yes Yes

supportsMixedCaseIdentifiers Yes Yes Yes

supportsMixedCaseQuotedIdentifiers Yes3 Yes Yes3

supportsMultipleOpenResults Yes5 No Yes5

supportsMultipleResultSets Yes5 Yes Yes5

supportsMultipleTransactions Yes Yes Yes

supportsNamedParameters Yes No No

supportsNonNullableColumns Yes Yes Yes

supportsOpenCursorsAcrossCommit Yes3 Yes Yes3

supportsOpenCursorsAcrossRollback Yes Yes Yes

supportsOpenStatementsAcrossCommit Yes3 Yes Yes3

supportsOpenStatementsAcrossRollback Yes3 Yes Yes3

supportsOrderByUnrelated Yes Yes Yes

supportsOuterJoins Yes Yes Yes

supportsPositionedDelete Yes Yes Yes

supportsPositionedUpdate Yes Yes Yes

supportsResultSetConcurrency Yes Yes Yes

supportsResultSetHoldability Yes No No

supportsResultSetType Yes Yes Yes

supportsSavepoints Yes No Yes

supportsSchemasInDataManipulation Yes Yes Yes

supportsSchemasInIndexDefinitions Yes Yes Yes

supportsSchemasInPrivilegeDefinitions Yes Yes Yes

supportsSchemasInProcedureCalls Yes Yes Yes

supportsSchemasInTableDefinitions Yes Yes Yes

supportsSelectForUpdate Yes Yes Yes

Chapter 14. JDBC and SQLJ reference information 14-77

||||

Table 14-18. Support for DatabaseMetaData methods (continued)

JDBC method

IBM Data
Server Driver
for JDBC and
SQLJ support

DB2 JDBC
Type 2 Driver
for Linux,
UNIX and
Windows
support

IBM Informix
JDBC Driver
support

supportsStoredProcedures Yes Yes Yes

supportsSubqueriesInComparisons Yes Yes Yes

supportsSubqueriesInExists Yes Yes Yes

supportsSubqueriesInIns Yes Yes Yes

supportsSubqueriesInQuantifieds Yes Yes Yes

supportsSuperTables Yes No No

supportsSuperTypes Yes No No

supportsTableCorrelationNames Yes Yes Yes

supportsTransactionIsolationLevel Yes Yes Yes

supportsTransactions Yes Yes Yes

supportsUnion Yes Yes Yes

supportsUnionAll Yes Yes Yes

updatesAreDetected Yes Yes Yes

usesLocalFilePerTable Yes Yes Yes

usesLocalFiles Yes Yes Yes

Notes:

1. DB2 data sources return false for this method. IBM Informix data sources return true.

2. This method is supported for connections to DB2 Database for Linux, UNIX, and Windows and IBM Informix
only.

3. Under the IBM Data Server Driver for JDBC and SQLJ, DB2 data sources and IBM Informix data sources return
true for this method. Under the IBM Informix JDBC Driver, IBM Informix data sources return false.

4. Under the IBM Data Server Driver for JDBC and SQLJ, DB2 data sources and IBM Informix data sources return
false for this method. Under the IBM Informix JDBC Driver, IBM Informix data sources return true.

5. DB2 data sources return true for this method. IBM Informix data sources return false.

6. This is a JDBC 4.0 method.

7. This method returns the additional column that is described by the JDBC 4.0 specification.

8. JDBC 3.0 and earlier implementations of the IBM Data Server Driver for JDBC and SQLJ return "IBM DB2 JDBC
Universal Driver Architecture."

The JDBC 4.0 implementation of the IBM Data Server Driver for JDBC and SQLJ returns "IBM Data Server
Driver for JDBC and SQLJ."

9. The JDBC 4.0 form and previous forms of this method are supported.

10. The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows does not support the JDBC 3.0 form of this
method.

11. The method can be executed, but it returns an empty ResultSet.

Table 14-19. Support for DataSource methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

getConnection Yes Yes Yes

getLoginTimeout Yes Yes1 Yes

14-78 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-19. Support for DataSource methods (continued)

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

getLogWriter Yes Yes Yes

setLoginTimeout Yes2 Yes1 Yes

setLogWriter Yes Yes Yes

Notes:

1. The DB2 JDBC Type 2 Driver does not use this setting.

2. This method is not supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS.

Table 14-20. Support for DataTruncation methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Throwable

Yes Yes Yes

Methods inherited from
java.sql.SQLException

Yes Yes Yes

Methods inherited from
java.sql.SQLWarning

Yes Yes Yes

getDataSize Yes Yes Yes

getIndex Yes Yes Yes

getParameter Yes Yes Yes

getRead Yes Yes Yes

getTransferSize Yes Yes Yes

Table 14-21. Support for Driver methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

acceptsURL Yes Yes Yes

connect Yes Yes Yes

getMajorVersion Yes Yes Yes

getMinorVersion Yes Yes Yes

getPropertyInfo Yes Yes Yes

jdbcCompliant Yes Yes Yes

Table 14-22. Support for DriverManager methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

deregisterDriver Yes Yes Yes

getConnection Yes Yes Yes

getDriver Yes Yes Yes

Chapter 14. JDBC and SQLJ reference information 14-79

Table 14-22. Support for DriverManager methods (continued)

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

getDrivers Yes Yes Yes

getLoginTimeout Yes Yes1 Yes

getLogStream Yes Yes Yes

getLogWriter Yes Yes Yes

println Yes Yes Yes

registerDriver Yes Yes Yes

setLoginTimeout Yes2 Yes1 Yes

setLogStream Yes Yes Yes

setLogWriter Yes Yes Yes

Notes:

1. The DB2 JDBC Type 2 Driver does not use this setting.

2. This method is not supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS.

Table 14-23. Support for ParameterMetaData methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

getParameterClassName No No No

getParameterCount Yes No No

getParameterMode Yes No No

getParameterType Yes No No

getParameterTypeName Yes No No

getPrecision Yes No No

getScale Yes No No

isNullable Yes No No

isSigned Yes No No

Table 14-24. Support for PooledConnection methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

addConnectionEventListener Yes Yes Yes

addStatementEventListener1 Yes No No

close Yes Yes Yes

getConnection Yes Yes Yes

removeConnectionEventListener Yes Yes Yes

removeStatementEventListener1 Yes No No

Notes:

1. This is a JDBC 4.0 method.

14-80 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-25. Support for PreparedStatement methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.sql.Statement

Yes Yes Yes

addBatch Yes Yes Yes

clearParameters Yes Yes Yes

execute Yes Yes Yes

executeQuery Yes Yes Yes

executeUpdate Yes Yes Yes

getMetaData Yes Yes Yes

getParameterMetaData Yes Yes Yes

setArray No No No

setAsciiStream Yes1,2 Yes Yes

setBigDecimal Yes Yes Yes

setBinaryStream Yes1,3 Yes Yes

setBlob Yes4 Yes Yes

setBoolean Yes Yes Yes

setByte Yes Yes Yes

setBytes Yes Yes Yes

setCharacterStream Yes1,5 Yes Yes

setClob Yes6 Yes Yes

setDate Yes8 Yes8 Yes8

setDouble Yes Yes Yes

setFloat Yes Yes Yes

setInt Yes Yes Yes

setLong Yes Yes Yes

setNull Yes9 Yes9 Yes9

setObject Yes Yes Yes

setRef No No No

setRowId7 Yes No No

setShort Yes Yes Yes

setString Yes10 Yes10 Yes10

setTime Yes8 Yes8 Yes8

setTimestamp Yes8 Yes8 Yes8

setUnicodeStream Yes Yes Yes

setURL Yes Yes Yes

Chapter 14. JDBC and SQLJ reference information 14-81

Table 14-25. Support for PreparedStatement methods (continued)

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Notes:

1. If the value of the length parameter is -1, all of the data from the InputStream or Reader is read and sent to the
data source.

2. Supported forms of this method include the following JDBC 4.0 forms:

setAsciiStream(int parameterIndex, InputStream x, long length)
setAsciiStream(int parameterIndex, InputStream x)

3. Supported forms of this method include the following JDBC 4.0 forms:

setBinaryStream(int parameterIndex, InputStream x, long length)
setBinaryStream(int parameterIndex, InputStream x)

4. Supported forms of this method include the following JDBC 4.0 form:

setBlob(int parameterIndex, InputStream inputStream, long length)

5. Supported forms of this method include the following JDBC 4.0 forms:

setCharacterStream(int parameterIndex, Reader reader, long length)
setCharacterStream(int parameterIndex, Reader reader)

6. Supported forms of this method include the following JDBC 4.0 form:

setClob(int parameterIndex, Reader reader, long length)

7. This is a JDBC 4.0 method.

8. The database server does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the
local timezone before sending the value to the server if you specify a form of the setDate, setTime, or
setTimestamp method that includes a java.util.Calendar parameter.

9. The following form of setNull is not supported:

setNull(int parameterIndex, int jdbcType, String typeName)

10. setString is not supported if the column has the FOR BIT DATA attribute or the data type is BLOB.

Table 14-26. Support for Ref methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

get BaseTypeName No No No

Table 14-27. Support for ResultSet methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

absolute Yes Yes Yes

afterLast Yes Yes Yes

beforeFirst Yes Yes Yes

cancelRowUpdates Yes No No

clearWarnings Yes Yes Yes

close Yes Yes Yes

deleteRow Yes No No

findColumn Yes Yes Yes

first Yes Yes Yes

getArray No No No

14-82 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-27. Support for ResultSet methods (continued)

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

getAsciiStream Yes Yes Yes

getBigDecimal Yes Yes Yes

getBinaryStream Yes1 Yes Yes

getBlob Yes Yes Yes

getBoolean Yes Yes Yes

getByte Yes Yes Yes

getBytes Yes Yes Yes

getCharacterStream Yes Yes Yes

getClob Yes Yes Yes

getConcurrency Yes Yes Yes

getCursorName Yes Yes Yes

getDate Yes3 Yes3 Yes3

getDouble Yes Yes Yes

getFetchDirection Yes Yes Yes

getFetchSize Yes Yes Yes

getFloat Yes Yes Yes

getInt Yes Yes Yes

getLong Yes Yes Yes

getMetaData Yes Yes Yes

getObject Yes4 Yes4 Yes4

getRef No No No

getRow Yes Yes Yes

getRowId10 Yes No No

getShort Yes Yes Yes

getStatement Yes Yes Yes

getString Yes Yes Yes

getTime Yes3 Yes3 Yes3

getTimestamp Yes3 Yes3 Yes3

getType Yes Yes Yes

getUnicodeStream Yes Yes Yes

getURL Yes Yes Yes

getWarnings Yes Yes Yes

insertRow Yes No No

isAfterLast Yes Yes Yes

isBeforeFirst Yes Yes Yes

isFirst Yes Yes Yes

isLast Yes Yes Yes

last Yes Yes Yes

Chapter 14. JDBC and SQLJ reference information 14-83

Table 14-27. Support for ResultSet methods (continued)

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

moveToCurrentRow Yes No No

moveToInsertRow Yes No No

next Yes Yes Yes

previous Yes Yes Yes

refreshRow Yes No No

relative Yes Yes Yes

rowDeleted Yes No No

rowInserted Yes No No

rowUpdated Yes No No

setFetchDirection Yes Yes Yes

setFetchSize Yes Yes Yes

updateArray No No No

updateAsciiStream Yes5 No No

updateBigDecimal Yes No No

updateBinaryStream Yes6 No No

updateBlob Yes7 No No

updateBoolean Yes No No

updateByte Yes No No

updateBytes Yes No No

updateCharacterStream Yes8 No No

updateClob Yes9 No No

updateDate Yes No No

updateDouble Yes No No

updateFloat Yes No No

updateInt Yes No No

updateLong Yes No No

updateNull Yes No No

updateObject Yes No No

updateRef No No No

updateRow Yes No No

updateRowId10 Yes No No

updateShort Yes No No

updateString Yes No No

updateTime Yes No No

updateTimestamp Yes No No

wasNull Yes Yes Yes

14-84 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-27. Support for ResultSet methods (continued)

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Notes:

1. getBinaryStream is not supported for CLOB columns.

2. getMetaData pads the schema name, if the returned schema name is less than 8 characters, to fill 8 characters.

3. The database server does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the
local timezone after retrieving the value from the server if you specify a form of the getDate, getTime, or
getTimestamp method that includes a java.util.Calendar parameter.

4. The following form of the getObject method is not supported:

getObject(int parameterIndex, java.util.Map map)

5. Supported forms of this method include the following JDBC 4.0 forms:

updateAsciiStream(int columnIndex, InputStream x)
updateAsciiStream(String columnLabel, InputStream x)
updateAsciiStream(int columnIndex, InputStream x, long length)
updateAsciiStream(String columnLabel, InputStream x, long length)

6. Supported forms of this method include the following JDBC 4.0 forms:

updateBinaryStream(int columnIndex, InputStream x)
updateBinaryStream(String columnLabel, InputStream x)
updateBinaryStream(int columnIndex, InputStream x, long length)
updateBinaryStream(String columnLabel, InputStream x, long length)

7. Supported forms of this method include the following JDBC 4.0 forms:

updateBlob(int columnIndex, InputStream x)
updateBlob(String columnLabel, InputStream x)
updateBlob(int columnIndex, InputStream x, long length)
updateBlob(String columnLabel, InputStream x, long length)

8. Supported forms of this method include the following JDBC 4.0 forms:

updateCharacterStream(int columnIndex, Reader reader)
updateCharacterStream(String columnLabel, Reader reader)
updateCharacterStream(int columnIndex, Reader reader, long length)
updateCharacterStream(String columnLabel, Reader reader, long length)

9. Supported forms of this method include the following JDBC 4.0 forms:

updateClob(int columnIndex, Reader reader)
updateClob(String columnLabel, Reader reader)
updateClob(int columnIndex, Reader reader, long length)
updateClob(String columnLabel, Reader reader, long length)

10. This is a JDBC 4.0 method.

Table 14-28. Support for ResultSetMetaData methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

getCatalogName Yes Yes Yes

getColumnClassName No Yes Yes

getColumnCount Yes Yes Yes

getColumnDisplaySize Yes Yes Yes

getColumnLabel Yes Yes Yes

getColumnName Yes Yes Yes

getColumnType Yes Yes Yes

getColumnTypeName Yes Yes Yes

Chapter 14. JDBC and SQLJ reference information 14-85

Table 14-28. Support for ResultSetMetaData methods (continued)

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

getPrecision Yes Yes Yes

getScale Yes Yes Yes

getSchemaName Yes Yes Yes

getTableName Yes1 Yes Yes

isAutoIncrement Yes Yes Yes

isCaseSensitive Yes Yes Yes

isCurrency Yes Yes Yes

isDefinitelyWritable Yes Yes Yes

isNullable Yes Yes Yes

isReadOnly Yes Yes Yes

isSearchable Yes Yes Yes

isSigned Yes Yes Yes

isWritable Yes Yes Yes

Notes:

1. For IBM Informix data sources, getTableName does not return a value.

2. getSchemaName pads the schema name, if the returned schema name is less than 8 characters, to fill 8 characters.

Table 14-29. Support for RowId methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support2

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

equals Yes No No

getBytes Yes No No

hashCode No No No

toString Yes No No

Notes:

1. These methods are JDBC 4.0 methods.

2. These methods are supported for connections to DB2 for z/OS, DB2 for i, and IBM Informix data sources.

Table 14-30. Support for SQLClientInfoException methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

getFailedProperties Yes No No

Note:

1. This is a JDBC 4.0 class.

14-86 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-31. Support for SQLData methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

getSQLTypeName No No No

readSQL No No No

writeSQL No No No

Table 14-32. Support for SQLDataException methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

Table 14-33. Support for SQLDataException methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

Table 14-34. Support for SQLException methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes Yes Yes

getSQLState Yes Yes Yes

getErrorCode Yes Yes Yes

getNextException Yes Yes Yes

setNextException Yes Yes Yes

Chapter 14. JDBC and SQLJ reference information 14-87

Table 14-35. Support for SQLFeatureNotSupported methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

Table 14-36. Support for SQLInput methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

readArray No No No

readAsciiStream No No No

readBigDecimal No No No

readBinaryStream No No No

readBlob No No No

readBoolean No No No

readByte No No No

readBytes No No No

readCharacterStream No No No

readClob No No No

readDate No No No

readDouble No No No

readFloat No No No

readInt No No No

readLong No No No

readObject No No No

readRef No No No

readShort No No No

readString No No No

readTime No No No

readTimestamp No No No

wasNull No No No

14-88 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-37. Support for SQLIntegrityConstraintViolationException methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

Table 14-38. Support for SQLInvalidAuthorizationSpecException methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

Table 14-39. Support for SQLNonTransientConnectionException methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

Table 14-40. Support for SQLNonTransientException methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

Chapter 14. JDBC and SQLJ reference information 14-89

Table 14-40. Support for SQLNonTransientException methods1 (continued)

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Note:

1. This is a JDBC 4.0 class.

Table 14-41. Support for SQLOutput methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

writeArray No No No

writeAsciiStream No No No

writeBigDecimal No No No

writeBinaryStream No No No

writeBlob No No No

writeBoolean No No No

writeByte No No No

writeBytes No No No

writeCharacterStream No No No

writeClob No No No

writeDate No No No

writeDouble No No No

writeFloat No No No

writeInt No No No

writeLong No No No

writeObject No No No

writeRef No No No

writeShort No No No

writeString No No No

writeStruct No No No

writeTime No No No

writeTimestamp No No No

Table 14-42. Support for SQLRecoverableException methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

14-90 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-42. Support for SQLRecoverableException methods1 (continued)

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Note:

1. This is a JDBC 4.0 class.

Table 14-43. Support for SQLSyntaxErrorException methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

Table 14-44. Support for SQLTimeoutException methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

Table 14-45. Support for SQLTransientConnectionException methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

Chapter 14. JDBC and SQLJ reference information 14-91

Table 14-46. Support for SQLTransientException methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

Table 14-47. Support for SQLTransientRollbackException methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
java.lang.Exception

Yes No No

Methods inherited from
java.lang.Throwable

Yes No No

Methods inherited from
java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

Table 14-48. Support for SQLXML methods1

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

free Yes No No

getBinaryStream Yes No No

getCharacterStream Yes No No

getSource Yes No No

getString Yes No No

setBinaryStream Yes No No

setCharacterStream Yes No No

setResult Yes No No

setString Yes No No

Notes:

1. These are JDBC 4.0 methods. These methods are not supported for connections to IBM Informix servers.

Table 14-49. Support for Statement methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

addBatch Yes Yes Yes

14-92 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-49. Support for Statement methods (continued)

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

cancel Yes1 Yes2 Yes

clearBatch Yes Yes Yes

clearWarnings Yes Yes Yes

close Yes Yes Yes

execute Yes Yes3 Yes

executeBatch Yes Yes Yes

executeQuery Yes Yes Yes

executeUpdate Yes Yes3 Yes

getConnection Yes Yes Yes

getFetchDirection Yes Yes Yes

getFetchSize Yes Yes Yes

getGeneratedKeys Yes No No

getMaxFieldSize Yes Yes Yes

getMaxRows Yes Yes Yes

getMoreResults Yes Yes3 Yes

getQueryTimeout Yes7,6 Yes Yes

getResultSet Yes Yes Yes

getResultSetConcurrency Yes Yes Yes

getResultSetHoldability Yes No No

getResultSetType Yes Yes Yes

getUpdateCount4 Yes Yes Yes

getWarnings Yes Yes Yes

isClosed8 Yes No No

isPoolable8 Yes No No

setCursorName Yes Yes Yes

setEscapeProcessing Yes Yes Yes

setFetchDirection Yes Yes Yes

setFetchSize Yes Yes Yes

setMaxFieldSize Yes Yes Yes

setMaxRows Yes Yes Yes

setPoolable8 Yes No No

setQueryTimeout Yes5,7,6 Yes Yes

Chapter 14. JDBC and SQLJ reference information 14-93

Table 14-49. Support for Statement methods (continued)

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Notes:

1. For the IBM Data Server Driver for JDBC and SQLJ, Statement.cancel is supported only in the following
environments:

v Type 2 and type 4 connectivity from a Linux, UNIX, or Windows client to a DB2 Database for Linux, UNIX,
and Windows server, Version 8 or later

v Type 2 and type 4 connectivity from a Linux, UNIX, or Windows client to a DB2 for z/OS server, Version 9 or
later

v Type 4 connectivity from a z/OS client to a DB2 Database for Linux, UNIX, and Windows server, Version 8 or
later

v Type 4 connectivity from a z/OS client to a DB2 for z/OS server, Version 8 or later

The action that the IBM Data Server Driver for JDBC and SQLJ takes when the application executes
Statement.cancel is also dependent on the setting of the DB2BaseDataSource.interruptProcessingMode property.

2. For the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows, Statement.cancel is supported only in the
following environments:

v Connections to a DB2 Database for Linux, UNIX, and Windows server, Version 8 or later

v Connections to a DB2 for z/OS server, Version 9 or later

3. The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows does not support the JDBC 3.0 form of this method.

4. Not supported for stored procedure ResultSets.

5. For DB2 for i, this method is supported only for a seconds value of 0.

6. For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS, Statement.setQueryTimeout
is supported only if Connection or DataSource property queryTimeoutInterruptProcessingMode is set to
INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET.

7. For the IBM Data Server Driver for JDBC and SQLJ Version 4.0 and later, Statement.setQueryTimeout is supported
for the following methods:
v Statement.execute
v Statement.executeUpdate
v Statement.executeQuery

Statement.setQueryTimeout is not supported for the Statement.executeBatch method.

8. This is a JDBC 4.0 method.

Table 14-50. Support for Struct methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

getSQLTypeName No No No

getAttributes No No No

Table 14-51. Support for Wrapper methods

JDBC method1

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

isWrapperFor Yes No No

unWrap Yes No No

Notes:

1. These are JDBC 4.0 methods.

14-94 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-52. Support for javax.sql.XAConnection methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support1

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

Methods inherited from
javax.sql.PooledConnection

Yes Yes Yes

getXAResource Yes Yes Yes

Notes:

1. These methods are supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to a DB2
Database for Linux, UNIX, and Windows server or IBM Data Server Driver for JDBC and SQLJ type 4
connectivity.

Table 14-53. Support for XADataSource methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

getLoginTimeout Yes Yes Yes

getLogWriter Yes Yes Yes

getXAConnection Yes Yes Yes

setLoginTimeout Yes Yes Yes

setLogWriter Yes Yes Yes

Table 14-54. Support for javax.transaction.xa.XAResource methods

JDBC method

IBM Data Server
Driver for JDBC and
SQLJ support

DB2 JDBC Type 2
Driver for Linux, UNIX
and Windows support

IBM Informix JDBC
Driver support

commit Yes1 Yes Yes

end Yes1 Yes Yes

forget Yes1 Yes Yes

getTransactionTimeout Yes2 Yes Yes

isSameRM Yes1 Yes Yes

prepare Yes1 Yes Yes

recover Yes1 Yes Yes

rollback Yes1 Yes Yes

setTransactionTimeout Yes2 Yes Yes

start Yes1 Yes Yes

Notes:

1. This method is supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to a DB2 Database
for Linux, UNIX, and Windows server or IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

2. This method is supported for IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 Database for
Linux, UNIX, and Windows Version 9.1 or later.

IBM Data Server Driver for JDBC and SQLJ support for SQL escape
syntax

The IBM Data Server Driver for JDBC and SQLJ supports SQL escape syntax, as
described in the JDBC 1.0 specification.

Chapter 14. JDBC and SQLJ reference information 14-95

This is the same syntax that is used in vendor escape clauses in ODBC and CLI
applications.

SQL escape syntax is supported in JDBC and SQLJ applications.

SQLJ statement reference information
SQLJ statements are used for transaction control and SQL statement execution.

SQLJ clause
The SQL statements in an SQLJ program are in SQLJ clauses.

Syntax

�� #sql connection-declaration-clause
iterator-declaration-clause
executable-clause

; ��

Usage notes

Keywords in an SQLJ clause are case sensitive, unless those keywords are part of
an SQL statement in an executable clause.

SQLJ host-expression
A host expression is a Java variable or expression that is referenced by SQLJ
clauses in an SQLJ application program.

Syntax

�� : simple-variable
IN (complex-expression)
OUT
INOUT

��

Description

: Indicates that the variable or expression that follows is a host expression. The
colon must immediately precede the variable or expression.

IN|OUT|INOUT
For a host expression that is used as a parameter in a stored procedure call,
identifies whether the parameter provides data to the stored procedure (IN),
retrieves data from the stored procedure (OUT), or does both (INOUT). The
default is IN.

simple-variable
Specifies a Java unqualified identifier.

complex-expression
Specifies a Java expression that results in a single value.

Usage notes
v A complex expression must be enclosed in parentheses.
v ANSI/ISO rules govern where a host expression can appear in a static SQL

statement.

14-96 IBM Data Server Driver for JDBC and SQLJ for Informix

v , ... variable-n

SQLJ implements-clause
The implements clause derives one or more classes from a Java interface.

Syntax

�� implements �

,

interface-element ��

interface-element:

�� sqlj.runtime.ForUpdate
sqlj.runtime.Scrollable
user-specified-interface-class

��

Description

interface-element
Specifies a user-defined Java interface, the SQLJ interface
sqlj.runtime.ForUpdate or the SQLJ interface sqlj.runtime.Scrollable.

You need to implement sqlj.runtime.ForUpdate when you declare an iterator
for a positioned UPDATE or positioned DELETE operation. See "Perform
positioned UPDATE and DELETE operations in an SQLJ application" for
information on performing a positioned UPDATE or positioned DELETE
operation in SQLJ.

You need to implement sqlj.runtime.Scrollable when you declare a scrollable
iterator. See "Use scrollable iterators in an SQLJ application" for information on
scrollable iterators.

SQLJ with-clause
The with clause specifies a set of one or more attributes for an iterator or a
connection context.

Syntax

�� with �

,

(with-element) ��

with-element:

Chapter 14. JDBC and SQLJ reference information 14-97

��

�

holdability=true
holdability=false
sensitivity=ASENSITIVE
sensitivity=INSENSITIVE
sensitivity=SENSITIVE

dynamic=false
, dynamic=true

,

updateColumns= " column-name "
Java-ID=Java-constant-expression
dataSource= " logical-datasource-name "

��

Description

holdability
For an iterator, specifies whether an iterator keeps its position in a table after a
COMMIT is executed. The value for holdability must be true or false.

sensitivity
For an iterator, specifies whether changes that are made to the underlying table
can be visible to the iterator after it is opened. The value must be
INSENSITIVE, SENSITIVE, or ASENSITIVE. The default is ASENSITIVE.

For connections to IBM Informix, only INSENSITIVE is supported.

dynamic
For an iterator that is defined with sensitivity=SENSITIVE, specifies whether
the following cases are true:
v When the application executes positioned UPDATE and DELETE statements

with the iterator, those changes are visible to the iterator.
v When the application executes INSERT, UPDATE, and DELETE statements

within the application but outside the iterator, those changes are visible to
the iterator.

The value for dynamic must be true or false. The default is false.

DB2 Database for Linux, UNIX, and Windows servers do not support dynamic
scrollable cursors. Specify true only if your application accesses data on DB2
for z/OS servers, at Version 9 or later.

For connections to IBM Informix, only false is supported. IBM Informix does
not support dynamic cursors.

updateColumns
For an iterator, specifies the columns that are to be modified when the iterator
is used for a positioned UPDATE statement. The value for updateColumns
must be a literal string that contains the column names, separated by commas.

column-name
For an iterator, specifies a column of the result table that is to be updated
using the iterator.

Java-ID
For an iterator or connection context, specifies a Java variable that identifies a
user-defined attribute of the iterator or connection context. The value of
Java-constant-expression is also user-defined.

dataSource
For a connection context, specifies the logical name of a separately-created

14-98 IBM Data Server Driver for JDBC and SQLJ for Informix

DataSource object that represents the data source to which the application will
connect. This option is available only for the IBM Data Server Driver for JDBC
and SQLJ.

Usage notes
v The value on the left side of a with element must be unique within its with

clause.
v If you specify updateColumns in a with element of an iterator declaration

clause, the iterator declaration clause must also contain an implements clause
that specifies the sqlj.runtime.ForUpdate interface.

v If you do not customize your SQLJ program, the JDBC driver ignores the value
of holdability that is in the with clause. Instead, the driver uses the JDBC driver
setting for holdability.

SQLJ connection-declaration-clause
The connection declaration clause declares a connection to a data source in an
SQLJ application program.

Syntax

��
Java-modifiers

context Java-class-name
implements-clause with-clause

��

Description

Java-modifiers
Specifies modifiers that are valid for Java class declarations, such as static,
public, private, or protected.

Java-class-name
Specifies a valid Java identifier. During the program preparation process, SQLJ
generates a connection context class whose name is this identifier.

implements-clause
See "SQLJ implements-clause" for a description of this clause. In a connection
declaration clause, the interface class to which the implements clause refers
must be a user-defined interface class.

with-clause
See "SQLJ with-clause" for a description of this clause.

Usage notes
v SQLJ generates a connection class declaration for each connection declaration

clause you specify. SQLJ data source connections are objects of those generated
connection classes.

v You can specify a connection declaration clause anywhere that a Java class
definition can appear in a Java program.

SQLJ iterator-declaration-clause
An iterator declaration clause declares a positioned iterator class or a named
iterator class in an SQLJ application program.

An iterator contains the result table from a query. SQLJ generates an iterator class
for each iterator declaration clause you specify. An iterator is an object of an
iterator class.

Chapter 14. JDBC and SQLJ reference information 14-99

An iterator declaration clause has a form for a positioned iterator and a form for a
named iterator. The two kinds of iterators are distinct and incompatible Java types
that are implemented with different interfaces.

Syntax

��
Java-modifiers

iterator Java-class-name
implements-clause with-clause

�

� (positioned-iterator-column-declarations)
named-iterator-column-declarations

��

positioned-iterator-column declarations:

�� �

,

Java-data-type ��

named-iterator-column-declarations:

�� �

,

Java-data-type Java-ID ��

Description

Java-modifiers
Any modifiers that are valid for Java class declarations, such as static, public,
private, or protected.

Java-class-name
Any valid Java identifier. During the program preparation process, SQLJ
generates an iterator class whose name is this identifier.

implements-clause
See "SQLJ implements-clause" for a description of this clause. For an iterator
declaration clause that declares an iterator for a positioned UPDATE or
positioned DELETE operation, the implements clause must specify interface
sqlj.runtime.ForUpdate. For an iterator declaration clause that declares a
scrollable iterator, the implements clause must specify interface
sqlj.runtime.Scrollable.

with-clause
See "SQLJ with-clause" for a description of this clause.

positioned-iterator-column-declarations
Specifies a list of Java data types, which are the data types of the columns in
the positioned iterator. The data types in the list must be separated by
commas. The order of the data types in the positioned iterator declaration is
the same as the order of the columns in the result table. For online checking
during serialized profile customization to succeed, the data types of the
columns in the iterator must be compatible with the data types of the columns
in the result table. See "Java, JDBC, and SQL data types" for a list of compatible
data types.

14-100 IBM Data Server Driver for JDBC and SQLJ for Informix

named-iterator-column-declarations
Specifies a list of Java data types and Java identifiers, which are the data types
and names of the columns in the named iterator. Pairs of data types and names
must be separated by commas. The name of a column in the iterator must
match, except for case, the name of a column in the result table. For online
checking during serialized profile customization to succeed, the data types of
the columns in the iterator must be compatible with the data types of the
columns in the result table. See "Java, JDBC, and SQL data types" for a list of
compatible data types.

Usage notes
v An iterator declaration clause can appear anywhere in a Java program that a

Java class declaration can appear.
v When a named iterator declaration contains more than one pair of Java data

types and Java IDs, all Java IDs within the list must be unique. Two Java IDs are
not unique if they differ only in case.

SQLJ executable-clause
An executable clause contains an SQL statement or an assignment statement. An
assignment statement assigns the result of an SQL operation to a Java variable.

This topic describes the general form of an executable clause.

Syntax

��
context-clause

statement-clause
assignment-clause

��

Usage notes
v An executable clause can appear anywhere in a Java program that a Java

statement can appear.
v SQLJ reports negative SQL codes from executable clauses through class

java.sql.SQLException.
If SQLJ raises a run-time exception during the execution of an executable clause,
the value of any host expression of type OUT or INOUT is undefined.

SQLJ context-clause
A context clause specifies a connection context, an execution context, or both. You
use a connection context to connect to a data source. You use an execution context
to monitor and modify SQL statement execution.

Syntax

�� [connection-context]
execution-context
connection-context , execution context

��

Description

connection-context
Specifies a valid Java identifier that is declared earlier in the SQLJ program.

Chapter 14. JDBC and SQLJ reference information 14-101

That identifier must be declared as an instance of the connection context class
that SQLJ generates for a connection declaration clause.

execution-context
Specifies a valid Java identifier that is declared earlier in the SQLJ program.
That identifier must be declared as an instance of class
sqlj.runtime.ExecutionContext.

Usage notes
v If you do not specify a connection context in an executable clause, SQLJ uses the

default connection context.
v If you do not specify an execution context, SQLJ obtains the execution context

from the connection context of the statement.

SQLJ statement-clause
A statement clause contains an SQL statement or a SET TRANSACTION clause.

Syntax

�� { SQL-statement }
SET-TRANSACTION-clause

��

Description

SQL-statement
You can include SQL statements in Table 14-55 in a statement clause.

SET-TRANSACTION-clause
Sets the isolation level for SQL statements in the program and the access mode
for the connection. The SET TRANSACTION clause is equivalent to the SET
TRANSACTION statement, which is described in the ANSI/ISO SQL standard
of 1992 and is supported in some implementations of SQL.

Table 14-55. Valid SQL statements in an SQLJ statement clause

Statement Applicable data sources

ALTER DATABASE 1 on page 14-104, 2 on page 14-104

ALTER FUNCTION 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

ALTER INDEX 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

ALTER PROCEDURE 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

ALTER STOGROUP 1 on page 14-104, 2 on page 14-104

ALTER TABLE 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

ALTER TABLESPACE 1 on page 14-104, 2 on page 14-104

CALL 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

COMMENT ON 1 on page 14-104, 2 on page 14-104

COMMIT 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

Compound SQL (BEGIN ATOMIC...END) 2 on page 14-104

CREATE ALIAS 1 on page 14-104, 2 on page 14-104

CREATE DATABASE 1 on page 14-104, 2 on page 14-104, 3a on page 14-104

CREATE DISTINCT TYPE 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

CREATE FUNCTION 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

14-102 IBM Data Server Driver for JDBC and SQLJ for Informix

||

Table 14-55. Valid SQL statements in an SQLJ statement clause (continued)

Statement Applicable data sources

CREATE GLOBAL TEMPORARY TABLE 1 on page 14-104, 2 on page 14-104

CREATE TEMP TABLE 3 on page 14-104

CREATE INDEX 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

CREATE PROCEDURE 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

CREATE STOGROUP 1 on page 14-104, 2 on page 14-104

CREATE SYNONYM 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

CREATE TABLE 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

CREATE TABLESPACE 1 on page 14-104, 2 on page 14-104

CREATE TYPE (cursor) 2 on page 14-104

CREATE TRIGGER 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

CREATE VIEW 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

DECLARE GLOBAL TEMPORARY TABLE 1 on page 14-104, 2 on page 14-104

DELETE 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

DROP ALIAS 1 on page 14-104, 2 on page 14-104

DROP DATABASE 1 on page 14-104, 2 on page 14-104, 3a on page 14-104

DROP DISTINCT TYPE 1 on page 14-104, 2 on page 14-104

DROP TYPE 3 on page 14-104

DROP FUNCTION 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

DROP INDEX 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

DROP PACKAGE 1 on page 14-104, 2 on page 14-104

DROP PROCEDURE 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

DROP STOGROUP 1 on page 14-104, 2 on page 14-104

DROP SYNONYM 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

DROP TABLE 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

DROP TABLESPACE 1 on page 14-104, 2 on page 14-104

DROP TRIGGER 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

DROP VIEW 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

FETCH 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

GRANT 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

INSERT 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

LOCK TABLE 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

MERGE 1 on page 14-104, 2 on page 14-104

REVOKE 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

ROLLBACK 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

SAVEPOINT 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

SELECT INTO 1 on page 14-104, 2 on page 14-104, 3 on page 14-104

SET CURRENT APPLICATION ENCODING SCHEME 1 on page 14-104

SET CURRENT DEBUG MODE 1 on page 14-104

SET CURRENT DEFAULT TRANSFORM GROUP 2 on page 14-104

SET CURRENT DEGREE 1 on page 14-104, 2 on page 14-104

Chapter 14. JDBC and SQLJ reference information 14-103

||

Table 14-55. Valid SQL statements in an SQLJ statement clause (continued)

Statement Applicable data sources

SET CURRENT EXPLAIN MODE 2

SET CURRENT EXPLAIN SNAPSHOT 2

SET CURRENT ISOLATION 1, 2

SET CURRENT LOCALE LC_CTYPE 1

SET CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION

1, 2

SET CURRENT OPTIMIZATION HINT 1, 2

SET CURRENT PACKAGE PATH 1

SET CURRENT PACKAGESET (USER is not supported) 1, 2

SET CURRENT PRECISION 1, 2

SET CURRENT QUERY OPTIMIZATION 2

SET CURRENT REFRESH AGE 1, 2

SET CURRENT ROUTINE VERSION 1

SET CURRENT RULES 1

SET CURRENT SCHEMA 2

SET CURRENT SQLID 1

SET PATH 1, 2

TRUNCATE 1

UPDATE 1, 2, 3

Note: The SQL statement applies to connections to the following data sources:

1. DB2 for z/OS

2. DB2 Database for Linux, UNIX, and Windows

3. IBM Informix

a. IBM Informix, for the SYSMASTER database only.

Usage notes
v SQLJ supports both positioned and searched DELETE and UPDATE operations.
v For a FETCH statement, a positioned DELETE statement, or a positioned

UPDATE statement, you must use an iterator to refer to rows in a result table.

SQLJ SET-TRANSACTION-clause
The SET TRANSACTION clause sets the isolation level for the current unit of
work.

Syntax

�� SET TRANSACTION ISOLATION LEVEL READ COMMITTED
READ UNCOMMITTED
REPEATABLE READ
SERIALIZABLE

��

14-104 IBM Data Server Driver for JDBC and SQLJ for Informix

Description

ISOLATION LEVEL
Specifies one of the following isolation levels:

READ COMMITTED
Specifies that the current IDS isolation level is cursor stability.

READ UNCOMMITTED
Specifies that the current IDS isolation level is uncommitted read.

REPEATABLE READ
Specifies that the current IDS isolation level is read stability.

SERIALIZABLE
Specifies that the current IDS isolation level is repeatable read.

Usage notes

You can execute SET TRANSACTION only at the beginning of a transaction.

SQLJ assignment-clause
The assignment clause assigns the result of an SQL operation to a Java variable.

Syntax

�� Java-ID = { fullselect }
order-by-clause optimize-for-clause

isolation-clause
queryno-clause
fetch-first-clause

iterator-conversion-clause

��

Description

Java-ID
Identifies an iterator that was declared previously as an instance of an iterator
class.

fullselect
Generates a result table.

iterator-conversion-clause
See "SQLJ iterator-conversion-clause" for a description of this clause.

Usage notes
v If the object that is identified by Java-ID is a positioned iterator, the number of

columns in the result set must match the number of columns in the iterator. In
addition, the data type of each column in the result set must be compatible with
the data type of the corresponding column in the iterator. See "Java, JDBC, and
SQL data types" for a list of compatible Java and SQL data types.

v If the object that is identified by Java-ID is a named iterator, the name of each
accessor method must match, except for case, the name of a column in the result
set. In addition, the data type of the object that an accessor method returns must
be compatible with the data type of the corresponding column in the result set.

v You can put an assignment clause anywhere in a Java program that a Java
assignment statement can appear. However, you cannot put an assignment

Chapter 14. JDBC and SQLJ reference information 14-105

clause where a Java assignment expression can appear. For example, you cannot
specify an assignment clause in the control list of a for statement.

SQLJ iterator-conversion-clause
The iterator conversion clause converts a JDBC ResultSet to an iterator.

Syntax

�� CAST host-expression ��

Description

host-expression
Identifies the JDBC ResultSet that is to be converted to an SQLJ iterator.

Usage notes
v If the iterator to which the JDBC ResultSet is to be converted is a positioned

iterator, the number of columns in the ResultSet must match the number of
columns in the iterator. In addition, the data type of each column in the
ResultSet must be compatible with the data type of the corresponding column in
the iterator.

v If the iterator is a named iterator, the name of each accessor method must match,
except for case, the name of a column in the ResultSet. In addition, the data type
of the object that an accessor method returns must be compatible with the data
type of the corresponding column in the ResultSet.

v When an iterator that is generated through the iterator conversion clause is
closed, the ResultSet from which the iterator is generated is also closed.

Interfaces and classes in the sqlj.runtime package
The sqlj.runtime package defines the run-time classes and interfaces that are used
directly or indirectly by the SQLJ programmer.

Classes such as AsciiStream are used directly by the SQLJ programmer. Interfaces
such as ResultSetIterator are implemented as part of generated class declarations.

sqlj.runtime interfaces

The following table summarizes the interfaces in sqlj.runtime.

Table 14-56. Summary of sqlj.runtime interfaces

Interface name Purpose

ConnectionContext Manages the SQL operations that are performed during a connection to a data
source.

ForUpdate Implemented by iterators that are used in a positioned UPDATE or DELETE
statement.

NamedIterator Implemented by iterators that are declared as named iterators.

PositionedIterator Implemented by iterators that are declared as positioned iterators.

ResultSetIterator Implemented by all iterators to allow query results to be processed using a JDBC
ResultSet.

Scrollable Provides a set of methods for manipulating scrollable iterators.

14-106 IBM Data Server Driver for JDBC and SQLJ for Informix

sqlj.runtime classes

The following table summarizes the classes in sqlj.runtime.

Table 14-57. Summary of sqlj.runtime classes

Class name Purpose

AsciiStream A class for handling an input stream whose bytes should be interpreted as ASCII.

BinaryStream A class for handling an input stream whose bytes should be interpreted as binary.

CharacterStream A class for handling an input stream whose bytes should be interpreted as
Character.

DefaultRuntime Implemented by SQLJ to satisfy the expected runtime behavior of SQLJ for most
JVM environments. This class is for internal use only and is not described in this
documentation.

ExecutionContext Implemented when an SQLJ execution context is declared, to control the execution
of SQL operations.

RuntimeContext Defines system-specific services that are provided by the runtime environment. This
class is for internal use only and is not described in this documentation.

SQLNullException Derived from the java.sql.SQLException class. An sqlj.runtime.SQLNullException is
thrown when an SQL NULL value is fetched into a host identifier with a Java
primitive type.

StreamWrapper Wraps a java.io.InputStream instance.

UnicodeStream A class for handling an input stream whose bytes should be interpreted as Unicode.

sqlj.runtime.ConnectionContext interface
The sqlj.runtime.ConnectionContext interface provides a set of methods that
manage SQL operations that are performed during a session with a specific data
source.

Translation of an SQLJ connection declaration clause causes SQLJ to create a
connection context class. A connection context object maintains a JDBC Connection
object on which dynamic SQL operations can be performed. A connection context
object also maintains a default ExecutionContext object.

Variables

CLOSE_CONNECTION
Format:
public static final boolean CLOSE_CONNECTION=true;

A constant that can be passed to the close method. It indicates that the
underlying JDBC Connection object should be closed.

KEEP_CONNECTION
Format:
public static final boolean KEEP_CONNECTION=false;

A constant that can be passed to the close method. It indicates that the
underlying JDBC Connection object should not be closed.

Methods

close()
Format:

Chapter 14. JDBC and SQLJ reference information 14-107

public abstract void close() throws SQLException

Performs the following functions:
v Releases all resources that are used by the given connection context object
v Closes any open ConnectedProfile objects
v Closes the underlying JDBC Connection object

close() is equivalent to close(CLOSE_CONNECTION).

close(boolean)
Format:
public abstract void close (boolean close-connection)
throws SQLException

Performs the following functions:
v Releases all resources that are used by the given connection context object
v Closes any open ConnectedProfile objects
v Closes the underlying JDBC Connection object, depending on the value of

the close-connection parameter

Parameters:

close-connection
Specifies whether the underlying JDBC Connection object is closed when a
connection context object is closed:

CLOSE_CONNECTION
Closes the underlying JDBC Connection object.

KEEP_CONNECTION
Does not close the underlying JDBC Connection object.

getConnectedProfile
Format:
public abstract ConnectedProfile getConnectedProfile(Object profileKey)
throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

getConnection
Format:
public abstract Connection getConnection()

Returns the underlying JDBC Connection object for the given connection
context object.

getExecutionContext
Format:
public abstract ExecutionContext getExecutionContect()

Returns the default ExecutionContext object that is associated with the given
connection context object.

isClosed
Format:
public abstract boolean isClosed()

Returns true if the given connection context object has been closed. Returns
false if the connection context object has not been closed.

14-108 IBM Data Server Driver for JDBC and SQLJ for Informix

Constructors

The following constructors are defined in a concrete implementation of the
ConnectionContext interface that results from translation of the statement #sql
context Ctx;:

Ctx(String, boolean)
Format:
public Ctx(String url, boolean autocommit)
throws SQLException

Parameters:

url
The representation of a data source, as specified in the JDBC getConnection
method.

autocommit
Whether autocommit is enabled for the connection. A value of true means
that autocommit is enabled. A value of false means that autocommit is
disabled.

Ctx(String, String, String, boolean)
Format:
public Ctx(String url, String user, String password,
boolean autocommit)
throws SQLException

Parameters:

url
The representation of a data source, as specified in the JDBC getConnection
method.

user
The user ID under which the connection to the data source is made.

password
The password for the user ID under which the connection to the data
source is made.

autocommit
Whether autocommit is enabled for the connection. A value of true means
that autocommit is enabled. A value of false means that autocommit is
disabled.

Ctx(String, Properties, boolean)
Format:
public Ctx(String url, Properties info, boolean autocommit)
throws SQLException

Parameters:

url
The representation of a data source, as specified in the JDBC getConnection
method.

info
An object that contains a set of driver properties for the connection. Any of
the IBM Data Server Driver for JDBC and SQLJ properties can be specified.

Chapter 14. JDBC and SQLJ reference information 14-109

autocommit
Whether autocommit is enabled for the connection. A value of true means
that autocommit is enabled. A value of false means that autocommit is
disabled.

Ctx(Connection)
Format:
public Ctx(java.sql.Connection JDBC-connection-object)
throws SQLException

Parameters:

JDBC-connection-object
A previously created JDBC Connection object.

If the constructor call throws an SQLException, the JDBC Connection object
remains open.

Ctx(ConnectionContext)
Format:
public Ctx(sqlj.runtime.ConnectionContext SQLJ-connection-context-object)
throws SQLException

Parameters:

SQLJ-connection-context-object
A previously created SQLJ ConnectionContext object.

The following constructors are defined in a concrete implementation of the
ConnectionContext interface that results from translation of the statement #sql
context Ctx with (dataSource ="jdbc/TestDS");:

Ctx()
Format:
public Ctx()
throws SQLException

Ctx(String, String)
Format:
public Ctx(String user, String password,
)
throws SQLException

Parameters:

user
The user ID under which the connection to the data source is made.

password
The password for the user ID under which the connection to the data
source is made.

Ctx(Connection)
Format:
public Ctx(java.sql.Connection JDBC-connection-object)
throws SQLException

Parameters:

JDBC-connection-object
A previously created JDBC Connection object.

14-110 IBM Data Server Driver for JDBC and SQLJ for Informix

If the constructor call throws an SQLException, the JDBC Connection object
remains open.

Ctx(ConnectionContext)
Format:
public Ctx(sqlj.runtime.ConnectionContext SQLJ-connection-context-object)
throws SQLException

Parameters:

SQLJ-connection-context-object
A previously created SQLJ ConnectionContext object.

Methods

The following additional methods are generated in a concrete implementation of
the ConnectionContext interface that results from translation of the statement #sql
context Ctx;:

getDefaultContext
Format:
public static Ctx getDefaultContext()

Returns the default connection context object for the Ctx class.

getProfileKey
Format:
public static Object getProfileKey(sqlj.runtime.profile.Loader loader,
String profileName) throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

getProfile
Format:
public static sqlj.runtime.profile.Profile getProfile(Object key)

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

getTypeMap
Format:
public static java.util.Map getTypeMap()

Returns an instance of a class that implements java.util.Map, which is the
user-defined type map that is associated with the ConnectionContext. If there
is no associated type map, Java null is returned.

This method is used by code that is generated by the SQLJ translator for
executable clauses and iterator declaration clauses, but it can also be invoked
in an SQLJ application for direct use in JDBC statements.

SetDefaultContext
Format:
public static void Ctx setDefaultContext(Ctx default-context)

Sets the default connection context object for the Ctx class.

Recommendation: Do not use this method for multithreaded applications.
Instead, use explicit contexts.

Chapter 14. JDBC and SQLJ reference information 14-111

sqlj.runtime.ForUpdate interface
SQLJ implements the sqlj.runtime.ForUpdate interface in SQLJ programs that
contain an iterator declaration clause with implements sqlj.runtime.ForUpdate.

An SQLJ program that does positioned UPDATE or DELETE operations
(UPDATE...WHERE CURRENT OF or DELETE...WHERE CURRENT OF) must
include an iterator declaration clause with implements sqlj.runtime.ForUpdate.

Methods

getCursorName
Format:
public abstract String getCursorName() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

sqlj.runtime.NamedIterator interface
The sqlj.runtime.NamedIterator interface is implemented when an SQLJ application
executes an iterator declaration clause for a named iterator.

A named iterator includes result table column names, and the order of the columns
in the iterator is not important.

An implementation of the sqlj.runtime.NamedIterator interface includes an
accessor method for each column in the result table. An accessor method returns
the data from its column of the result table. The name of an accessor method
matches the name of the corresponding column in the named iterator.

Methods (inherited from the ResultSetIterator interface)

close
Format:
public abstract void close() throws SQLException

Releases database resources that the iterator uses.

isClosed
Format:
public abstract boolean isClosed() throws SQLException

Returns a value of true if the close method has been invoked. Returns false if
the close method has not been invoked.

next
Format:
public abstract boolean next() throws SQLException

Advances the iterator to the next row. Before an instance of the next method is
invoked for the first time, the iterator is positioned before the first row of the
result table. next returns a value of true when a next row is available and
false when all rows have been retrieved.

sqlj.runtime.PositionedIterator interface
The sqlj.runtime.PositionedIterator interface is implemented when an SQLJ
application executes an iterator declaration clause for a positioned iterator.

14-112 IBM Data Server Driver for JDBC and SQLJ for Informix

The order of columns in a positioned iterator must be the same as the order of
columns in the result table, and a positioned iterator does not include result table
column names.

Methods

sqlj.runtime.PositionedIterator inherits all ResultSetIterator methods, and includes
the following additional method:

endFetch
Format:
public abstract boolean endFetch() throws SQLException

Returns a value of true if the iterator is not positioned on a row. Returns a
value of false if the iterator is positioned on a row.

sqlj.runtime.ResultSetIterator interface
The sqlj.runtime.ResultSetIterator interface is implemented by SQLJ for all iterator
declaration clauses.

An untyped iterator can be generated by declaring an instance of the
sqlj.runtime.ResultSetIterator interface directly. In general, use of untyped iterators
is not recommended.

Variables

ASENSITIVE
Format:
public static final int ASENSITIVE

A constant that can be returned by the getSensitivity method. It indicates that
the iterator is defined as ASENSITIVE.

This value is not returned by IBM Informix.

FETCH_FORWARD
Format:
public static final int FETCH_FORWARD

A constant that can be used by the following methods:
v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection
v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in the forward
direction, from first to last.

FETCH_REVERSE
Format:
public static final int FETCH_REVERSE

A constant that can be used by the following methods:
v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection
v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in the backward
direction, from last to first.

Chapter 14. JDBC and SQLJ reference information 14-113

This value is not returned by IBM Informix.

FETCH_UNKNOWN
Format:
public static final int FETCH_UNKNOWN

A constant that can be used by the following methods:
v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection
v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in an unknown order.

This value is not returned by IBM Informix.

INSENSITIVE
Format:
public static final int INSENSITIVE

A constant that can be returned by the getSensitivity method. It indicates that
the iterator is defined as INSENSITIVE.

SENSITIVE
Format:
public static final int SENSITIVE

A constant that can be returned by the getSensitivity method. It indicates that
the iterator is defined as SENSITIVE.

This value is not returned by IBM Informix.

Methods

clearWarnings
Format:
public abstract void clearWarnings() throws SQLException

After clearWarnings is called, getWarnings returns null until a new warning is
reported for the iterator.

close
Format:
public abstract void close() throws SQLException

Closes the iterator and releases underlying database resources.

getFetchSize
Format:
synchronized public int getFetchSize() throws SQLException

Returns the number of rows that should be fetched by SQLJ when more rows
are needed. The returned value is the value that was set by the setFetchSize
method, or 0 if no value was set by setFetchSize.

getResultSet
Format:
public abstract ResultSet getResultSet() throws SQLException

Returns the JDBC ResultSet object that is associated with the iterator.

14-114 IBM Data Server Driver for JDBC and SQLJ for Informix

getRow
Format:
synchronized public int getRow() throws SQLException

Returns the current row number. The first row is number 1, the second is
number 2, and so on. If the iterator is not positioned on a row, 0 is returned.

getSensitivity
Format:
synchronized public int getSensitivity() throws SQLException

Returns the sensitivity of the iterator. The sensitivity is determined by the
sensitivity value that was specified or defaulted in the with clause of the
iterator declaration clause.

getWarnings
Format:
public abstract SQLWarning getWarnings() throws SQLException

Returns the first warning that is reported by calls on the iterator. Subsequent
iterator warnings are be chained to this SQLWarning. The warning chain is
automatically cleared each time the iterator moves to a new row.

isClosed
Format:
public abstract boolean isClosed() throws SQLException

Returns a value of true if the iterator is closed. Returns false otherwise.

next
Format:
public abstract boolean next() throws SQLException

Advances the iterator to the next row. Before next is invoked for the first time,
the iterator is positioned before the first row of the result table. next returns a
value of true when a next row is available and false when all rows have been
retrieved.

setFetchSize
Format:
synchronized public void setFetchSize(int number-of-rows) throws SQLException

Gives SQLJ a hint as to the number of rows that should be fetched when more
rows are needed.

Parameters:

number-of-rows
The expected number of rows that SQLJ should fetch for the iterator that is
associated with the given execution context.

If number-of-rows is less than 0 or greater than the maximum number of rows
that can be fetched, an SQLException is thrown.

sqlj.runtime.Scrollable interface
sqlj.runtime.Scrollable provides methods to move around in the result table and to
check the position in the result table.

Chapter 14. JDBC and SQLJ reference information 14-115

sqlj.runtime.Scrollable is implemented when a scrollable iterator is declared.

Methods

absolute(int)
Format:
public abstract boolean absolute (int n) throws SQLException

Moves the iterator to a specified row.

If n>0, positions the iterator on row n of the result table. If n<0, and m is the
number of rows in the result table, positions the iterator on row m+n+1 of the
result table.

If the absolute value of n is greater than the number of rows in the result table,
positions the cursor after the last row if n is positive, or before the first row if
n is negative.

absolute(0) is the same as beforeFirst(). absolute(1) is the same as first().
absolute(-1) is the same as last().

Returns true if the iterator is on a row. Otherwise, returns false.

afterLast()
Format:
public abstract void afterLast() throws SQLException

Moves the iterator after the last row of the result table.

beforeFirst()
Format:
public abstract void beforeFirst() throws SQLException

Moves the iterator before the first row of the result table.

first()
Format:
public abstract boolean first() throws SQLException

Moves the iterator to the first row of the result table.

Returns true if the iterator is on a row. Otherwise, returns false.

getFetchDirection()
Format:
public abstract int getFetchDirection() throws SQLException

Returns the fetch direction of the iterator. Possible values are:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD
Rows are processed in a forward direction, from first to last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE
Rows are processed in a backward direction, from last to first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN
The order of processing is not known.

isAfterLast()
Format:
public abstract boolean isAfterLast() throws SQLException

14-116 IBM Data Server Driver for JDBC and SQLJ for Informix

Returns true if the iterator is positioned after the last row of the result table.
Otherwise, returns false.

isBeforeFirst()
Format:
public abstract boolean isBeforeFirst() throws SQLException

Returns true if the iterator is positioned before the first row of the result table.
Otherwise, returns false.

isFirst()
Format:
public abstract boolean isFirst() throws SQLException

Returns true if the iterator is positioned on the first row of the result table.
Otherwise, returns false.

isLast()
Format:
public abstract boolean isLast() throws SQLException

Returns true if the iterator is positioned on the last row of the result table.
Otherwise, returns false.

last()
Format:
public abstract boolean last() throws SQLException

Moves the iterator to the last row of the result table.

Returns true if the iterator is on a row. Otherwise, returns false.

previous()
Format:
public abstract boolean previous() throws SQLException

Moves the iterator to the previous row of the result table.

Returns true if the iterator is on a row. Otherwise, returns false.

relative(int)
Format:
public abstract boolean relative(int n) throws SQLException

If n>0, positions the iterator on the row that is n rows after the current row. If
n<0, positions the iterator on the row that is n rows before the current row. If
n=0, positions the iterator on the current row.

The cursor must be on a valid row of the result table before you can use this
method. If the cursor is before the first row or after the last throw, the method
throws an SQLException.

Suppose that m is the number of rows in the result table and x is the current
row number in the result table. If n>0 and x+n>m, the iterator is positioned
after the last row. If n<0 and x+n<1, the iterator is positioned before the first
row.

Returns true if the iterator is on a row. Otherwise, returns false.

setFetchDirection(int)
Format:

Chapter 14. JDBC and SQLJ reference information 14-117

public abstract void setFetchDirection (int) throws SQLException

Gives the SQLJ runtime environment a hint as to the direction in which rows
of this iterator object are processed. Possible values are:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD
Rows are processed in a forward direction, from first to last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE
Rows are processed in a backward direction, from last to first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN
The order of processing is not known.

sqlj.runtime.AsciiStream class
The sqlj.runtime.AsciiStream class is for an input stream of ASCII data with a
specified length.

The sqlj.runtime.AsciiStream class is derived from the java.io.InputStream class,
and extends the sqlj.runtime.StreamWrapper class. SQLJ interprets the bytes in an
sqlj.runtime.AsciiStream object as ASCII characters. An InputStream object with
ASCII characters needs to be passed as a sqlj.runtime.AsciiStream object.

Constructors

AsciiStream(InputStream)
Format:
public AsciiStream(java.io.InputStream input-stream)

Creates an ASCII java.io.InputStream object with an unspecified length.

Parameters:

input-stream
The InputStream object that SQLJ interprets as an AsciiStream object.

AsciiStream(InputStream, int)
Format:
public AsciiStream(java.io.InputStream input-stream, int length)

Creates an ASCII java.io.InputStream object with a specified length.

Parameters:

input-stream
The InputStream object that SQLJ interprets as an AsciiStream object.

length
The length of the InputStream object that SQLJ interprets as an AsciiStream
object.

sqlj.runtime.BinaryStream class
The sqlj.runtime.BinaryStream class is for an input stream of binary data with a
specified length.

The sqlj.runtime.BinaryStream class is derived from the java.io.InputStream class,
and extends the sqlj.runtime.StreamWrapper class. SQLJ interprets the bytes in an
sqlj.runtime.BinaryStream object are interpreted as Binary characters. An
InputStream object with Binary characters needs to be passed as a
sqlj.runtime.BinaryStream object.

14-118 IBM Data Server Driver for JDBC and SQLJ for Informix

Constructors

BinaryStream(InputStream)
Format:
public BinaryStream(java.io.InputStream input-stream)

Creates an Binary java.io.InputStream object with an unspecified length.

Parameters:

input-stream
The InputStream object that SQLJ interprets as an BinaryStream object.

BinaryStream(InputStream, int)
Format:
public BinaryStream(java.io.InputStream input-stream, int length)

Creates an Binary java.io.InputStream object with a specified length.

Parameters:

input-stream
The InputStream object that SQLJ interprets as an BinaryStream object.

length
The length of the InputStream object that SQLJ interprets as an
BinaryStream object.

sqlj.runtime.CharacterStream class
The sqlj.runtime.CharacterStream class is for an input stream of character data with
a specified length.

The sqlj.runtime.CharacterStream class is derived from the java.io.Reader class, and
extends the java.io.FilterReader class. SQLJ interprets the bytes in an
sqlj.runtime.CharacterStream object are interpreted as Unicode data. A Reader
object with Unicode data needs to be passed as a sqlj.runtime.CharacterStream
object.

Constructors

CharacterStream(InputStream)
Format:
public CharacterStream(java.io.Reader input-stream)

Creates a character java.io.Reader object with an unspecified length.

Parameters:

input-stream
The Reader object that SQLJ interprets as an CharacterStream object.

CharacterStream(InputStream, int)
Format:
public CharacterStream(java.io.Reader input-stream, int length)

Creates a character java.io.Reader object with a specified length.

Parameters:

input-stream
The Reader object that SQLJ interprets as an CharacterStream object.

Chapter 14. JDBC and SQLJ reference information 14-119

length
The length of the Reader object that SQLJ interprets as an CharacterStream
object.

Methods

getReader
Format:
public Reader getReader()

Returns the underlying Reader object that is wrapped by the CharacterStream
object.

getLength
Format:
public void getLength()

Returns the length in characters of the wrapped Reader object, as specified by
the constructor or in the last call to setLength.

setLength
Format:
public void setLength (int length)

Sets the number of characters that are read from the Reader object when the
object is passed as an input argument to an SQL operation.

Parameters:

length
The number of characters that are read from the Reader object.

sqlj.runtime.ExecutionContext class
The sqlj.runtime.ExecutionContext class is defined for execution contexts. An
execution context is used to control the execution of SQL statements.

Variables

ADD_BATCH_COUNT
Format:
public static final int ADD_BATCH_COUNT

A constant that can be returned by the getUpdateCount method. It indicates
that the previous statement was not executed but was added to the existing
statement batch.

AUTO_BATCH
Format:
public static final int AUTO_BATCH

A constant that can be passed to the setBatchLimit method. It indicates that
implicit batch execution should be performed, and that SQLJ should determine
the batch size.

DBDefault
Format:
public static final short DBDefault=-5;

14-120 IBM Data Server Driver for JDBC and SQLJ for Informix

A constant that can be assigned to an indicator variable. It specifies that the
corresponding host variable value that is passed to the data server is the
default value.

DBNonNull
Format:
public static final short DBNonNull=0;

A constant that can be assigned to an indicator variable. It specifies that the
corresponding host variable value that is passed to the data server is a
non-null value.

DBNull
Format:
public static final short DBNull=-1;

A constant that can be assigned to an indicator variable. It specifies that the
corresponding host variable value that is passed to the data server is the SQL
NULL value.

DBUnassigned
Format:
public static final short DBUnassigned=-7;

A constant that can be assigned to an indicator variable. It specifies that no
value for the corresponding host variable is passed to the data server.

EXEC_BATCH_COUNT
Format:
public static final int EXEC_BATCH_COUNT

A constant that can be returned from the getUpdateCount method. It indicates
that a statement batch was just executed.

EXCEPTION_COUNT
Format:
public static final int EXCEPTION_COUNT

A constant that can be returned from the getUpdateCount method. It indicates
that an exception was thrown before the previous execution completed, or that
no operation has been performed on the execution context object.

NEW_BATCH_COUNT
Format:
public static final int NEW_BATCH_COUNT

A constant that can be returned from the getUpdateCount method. It indicates
that the previous statement was not executed, but was added to a new
statement batch.

QUERY_COUNT
Format:
public static final int QUERY_COUNT

A constant that can be passed to the setBatchLimit method. It indicates that the
previous execution produced a result set.

UNLIMITED_BATCH
Format:

Chapter 14. JDBC and SQLJ reference information 14-121

public static final int UNLIMITED_BATCH

A constant that can be returned from the getUpdateCount method. It indicates
that statements should continue to be added to a statement batch, regardless of
the batch size.

Constructors:

ExecutionContext
Format:
public ExecutionContext()

Creates an ExecutionContext instance.

Methods

cancel
Format:
public void cancel() throws SQLException

Cancels an SQL operation that is currently being executed by a thread that
uses the execution context object. If there is a pending statement batch on the
execution context object, the statement batch is canceled and cleared.

The cancel method throws an SQLException if the statement cannot be
canceled.

execute
Format:
public boolean execute () throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

executeBatch
Format:
public synchronized int[] executeBatch() throws SQLException

Executes the pending statement batch and returns an array of update counts. If
no pending statement batch exists, null is returned. When this method is
called, the statement batch is cleared, even if the call results in an exception.

Each element in the returned array can be one of the following values:

-2 This value indicates that the SQL statement executed successfully, but the
number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer
This value is the number of rows that were updated by the statement.

The executeBatch method throws an SQLException if a database error occurs
while the statement batch executes.

executeQuery
Format:
public RTResultSet executeQuery () throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

14-122 IBM Data Server Driver for JDBC and SQLJ for Informix

executeUpdate
Format:
public int executeUpdate() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

getBatchLimit
Format:
synchronized public int getBatchLimit()

Returns the number of statements that are added to a batch before the batch is
implicitly executed.

The returned value is one of the following values:

UNLIMITED_BATCH
This value indicates that the batch size is unlimited.

AUTO_BATCH
This value indicates that the batch size is finite but unknown.

Other integer
The current batch limit.

getBatchUpdateCounts
Format:
public synchronized int[] getBatchUpdateCounts()

Returns an array that contains the number of rows that were updated by each
statement that successfully executed in a batch. The order of elements in the
array corresponds to the order in which statements were inserted into the
batch. Returns null if no statements in the batch completed successfully.

Each element in the returned array can be one of the following values:

-2 This value indicates that the SQL statement executed successfully, but the
number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer
This value is the number of rows that were updated by the statement.

getFetchDirection
Format:
synchronized public int getFetchDirection() throws SQLException

Returns the current fetch direction for scrollable iterator objects that were
generated from the given execution context. If a fetch direction was not set for
the execution context, sqlj.runtime.ResultSetIterator.FETCH_FORWARD is
returned.

getFetchSize
Format:
synchronized public int getFetchSize() throws SQLException

Returns the number of rows that should be fetched by SQLJ when more rows
are needed. This value applies only to iterator objects that were generated from
the given execution context. The returned value is the value that was set by the
setFetchSize method, or 0 if no value was set by setFetchSize.

Chapter 14. JDBC and SQLJ reference information 14-123

getMaxFieldSize
Format:
public synchronized int getMaxFieldSize()

Returns the maximum number of bytes that are returned for any string
(character, graphic, or varying-length binary) column in queries that use the
given execution context. If this limit is exceeded, SQLJ discards the remaining
bytes. A value of 0 means that the maximum number of bytes is unlimited.

getMaxRows
Format:
public synchronized int getMaxRows()

Returns the maximum number of rows that are returned for any query that
uses the given execution context. If this limit is exceeded, SQLJ discards the
remaining rows. A value of 0 means that the maximum number of rows is
unlimited.

getNextResultSet()
Format:
public ResultSet getNextResultSet() throws SQLException

After a stored procedure call, returns a result set from the stored procedure.

A null value is returned if any of the following conditions are true:
v There are no more result sets to be returned.
v The stored procedure call did not produce any result sets.
v A stored procedure call has not been executed under the execution context.

When you invoke getNextResultSet(), SQLJ closes the currently-open result set
and advances to the next result set.

If an error occurs during a call to getNextResultSet, resources for the current
JDBC ResultSet object are released, and an SQLException is thrown.
Subsequent calls to getNextResultSet return null.

getNextResultSet(int)
Formats:
public ResultSet getNextResultSet(int current)

After a stored procedure call, returns a result set from the stored procedure.

A null value is returned if any of the following conditions are true:
v There are no more result sets to be returned.
v The stored procedure call did not produce any result sets.
v A stored procedure call has not been executed under the execution context.

If an error occurs during a call to getNextResultSet, resources for the current
JDBC ResultSet object are released, and an SQLException is thrown.
Subsequent calls to getNextResultSet return null.

Parameters:

current
Indicates what SQLJ does with the currently open result set before it
advances to the next result set:

14-124 IBM Data Server Driver for JDBC and SQLJ for Informix

java.sql.Statement.CLOSE_CURRENT_RESULT
Specifies that the current ResultSet object is closed when the next
ResultSet object is returned.

java.sql.Statement.KEEP_CURRENT_RESULT
Specifies that the current ResultSet object stays open when the next
ResultSet object is returned.

java.sql.Statement.CLOSE_ALL_RESULTS
Specifies that all open ResultSet objects are closed when the next
ResultSet object is returned.

getQueryTimeout
Format:
public synchronized int getQueryTimeout()

Returns the maximum number of seconds that SQL operations that use the
given execution context object can execute. If an SQL operation exceeds the
limit, an SQLException is thrown. The returned value is the value that was set
by the setQueryTimeout method, or 0 if no value was set by setQueryTimeout.
0 means that execution time is unlimited.

getUpdateCount
Format:
public abstract int getUpdateCount() throws SQLException

Returns:

ExecutionContext.ADD_BATCH_COUNT
If the statement was added to an existing batch.

ExecutionContext.NEW_BATCH_COUNT
If the statement was the first statement in a new batch.

ExecutionContext.EXCEPTION_COUNT
If the previous statement generated an SQLException, or no previous
statement was executed.

ExecutionContext.EXEC_BATCH_COUNT
If the statement was part of a batch, and the batch was executed.

ExecutionContext.QUERY_COUNT
If the previous statement created an iterator object or JDBC ResultSet.

Other integer
If the statement was executed rather than added to a batch. This value is
the number of rows that were updated by the statement.

getWarnings
Format:
public synchronized SQLWarning getWarnings()

Returns the first warning that was reported by the last SQL operation that was
executed using the given execution context. Subsequent warnings are chained
to the first warning. If no warnings occurred, null is returned.

getWarnings is used to retrieve positive SQLCODEs.

isBatching
Format:
public synchronized boolean isBatching()

Chapter 14. JDBC and SQLJ reference information 14-125

Returns true if batching is enabled for the execution context. Returns false if
batching is disabled.

registerStatement
Format:
public RTStatement registerStatement(ConnectionContext connCtx,
Object profileKey, int stmtNdx)
throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

releaseStatement
Format:
public void releaseStatement() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not
intended for direct use by application programs.

setBatching
Format:
public synchronized void setBatching(boolean batching)

Parameters:

batching
Indicates whether batchable statements that are registered with the given
execution context can be added to a statement batch:

true
Statements can be added to a statement batch.

false
Statements are executed individually.

setBatching affects only statements that occur in the program after setBatching
is called. It does not affect previous statements or an existing statement batch.

setBatchLimit
Format:
public synchronized void setBatchLimit(int batch-size)

Sets the maximum number of statements that are added to a batch before the
batch is implicitly executed.

Parameters:

batch-size
One of the following values:

ExecutionContext.UNLIMITED_BATCH
Indicates that implicit execution occurs only when SQLJ encounters a
statement that is batchable but incompatible, or not batchable. Setting
this value is the same as not invoking setBatchLimit.

ExecutionContext.AUTO_BATCH
Indicates that implicit execution occurs when the number of statements
in the batch reaches a number that is set by SQLJ.

Positive integer
The number of statements that are added to the batch before SQLJ
executes the batch implicitly. The batch might be executed before this

14-126 IBM Data Server Driver for JDBC and SQLJ for Informix

many statements have been added if SQLJ encounters a statement that
is batchable but incompatible, or not batchable.

setBatchLimit affects only statements that occur in the program after
setBatchLimit is called. It does not affect an existing statement batch.

setFetchDirection
Format:
public synchronized void setFetchDirection(int direction) throws SQLException

Gives SQLJ a hint as to the current fetch direction for scrollable iterator objects
that were generated from the given execution context.

Parameters:

direction
One of the following values:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD
Rows are fetched in a forward direction. This is the default.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE
Rows are fetched in a backward direction.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN
The order of fetching is unknown.

Any other input value results in an SQLException.

setFetchSize
Format:
synchronized public void setFetchSize(int number-of-rows) throws SQLException

Gives SQLJ a hint as to the number of rows that should be fetched when more
rows are needed.

Parameters:

number-of-rows
The expected number of rows that SQLJ should fetch for the iterator that is
associated with the given execution context.

If number-of-rows is less than 0 or greater than the maximum number of rows
that can be fetched, an SQLException is thrown.

setMaxFieldSize
Format:
public void setMaxFieldSize(int max-bytes)

Specifies the maximum number of bytes that are returned for any string
(character, graphic, or varying-length binary) column in queries that use the
given execution context. If this limit is exceeded, SQLJ discards the remaining
bytes.

Parameters:

max-bytes
The maximum number of bytes that SQLJ should return from a BINARY,
VARBINARY, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC column. A
value of 0 means that the number of bytes is unlimited. 0 is the default.

Chapter 14. JDBC and SQLJ reference information 14-127

setMaxRows
Format:
public synchronized void setMaxRows(int max-rows)

Specifies the maximum number of rows that are returned for any query that
uses the given execution context. If this limit is exceeded, SQLJ discards the
remaining rows.

Parameters:

max-rows
The maximum number of rows that SQLJ should return for a query that
uses the given execution context. A value of 0 means that the number of
rows is unlimited. 0 is the default.

setQueryTimeout
Format:
public synchronized void setQueryTimeout(int timeout-value)

Specifies the maximum number of seconds that SQL operations that use the
given execution context object can execute. If an SQL operation exceeds the
limit, an SQLException is thrown.

Parameters:

timeout-value
The maximum number of seconds that SQL operations that use the given
execution context object can execute. 0 means that execution time is
unlimited. 0 is the default.

sqlj.runtime.SQLNullException class
The sqlj.runtime.SQLNullException class is derived from the java.sql.SQLException
class.

An sqlj.runtime.SQLNullException is thrown when an SQL NULL value is fetched
into a host identifier with a Java primitive type. The SQLSTATE value for an
instance of SQLNullException is '22002'.

sqlj.runtime.StreamWrapper class
The sqlj.runtime.StreamWrapper class wraps a java.io.InputStream instance and
extends the java.io.InputStream class.

The sqlj.runtime.AsciiStream, sqlj.runtime.BinaryStream, and
sqlj.runtime.UnicodeStream classes extend sqlj.runtime.StreamWrapper.
sqlj.runtime.StreamWrapper supports methods for specifying the length of
sqlj.runtime.AsciiStream, sqlj.runtime.BinaryStream, and
sqlj.runtime.UnicodeStream objects.

Constructors

StreamWrapper(InputStream)
Format:
protected StreamWrapper(InputStream input-stream)

Creates an sqlj.runtime.StreamWrapper object with an unspecified length.

Parameters:

14-128 IBM Data Server Driver for JDBC and SQLJ for Informix

input-stream
The InputStream object that the sqlj.runtime.StreamWrapper object wraps.

StreamWrapper(InputStream, int)
Format:
protected StreamWrapper(java.io.InputStream input-stream, int length)

Creates an sqlj.runtime.StreamWrapper object with a specified length.

Parameters:

input-stream
The InputStream object that the sqlj.runtime.StreamWrapper object wraps.

length
The length of the InputStream object in bytes.

Methods

getInputStream
Format:
public InputStream getInputStream()

Returns the underlying InputStream object that is wrapped by the
StreamWrapper object.

getLength
Format:
public void getLength()

Returns the length in bytes of the wrapped InputStream object, as specified by
the constructor or in the last call to setLength.

setLength
Format:
public void setLength (int length)

Sets the number of bytes that are read from the wrapped InputStream object
when the object is passed as an input argument to an SQL operation.

Parameters:

length
The number of bytes that are read from the wrapped InputStream object.

sqlj.runtime.UnicodeStream class
The sqlj.runtime.UnicodeStream class is for an input stream of Unicode data with a
specified length.

The sqlj.runtime.UnicodeStream class is derived from the java.io.InputStream class,
and extends the sqlj.runtime.StreamWrapper class. SQLJ interprets the bytes in an
sqlj.runtime.UnicodeStream object as Unicode characters. An InputStream object
with Unicode characters needs to be passed as a sqlj.runtime.UnicodeStream object.

Constructors

UnicodeStream(InputStream)
Format:
public UnicodeStream(java.io.InputStream input-stream)

Chapter 14. JDBC and SQLJ reference information 14-129

Creates a Unicode java.io.InputStream object with an unspecified length.

Parameters:

input-stream
The InputStream object that SQLJ interprets as an UnicodeStream object.

UnicodeStream(InputStream, int)
Format:
public UnicodeStream(java.io.InputStream input-stream, int length)

Creates a Unicode java.io.InputStream object with a specified length.

Parameters:

input-stream
The InputStream object that SQLJ interprets as an UnicodeStream object.

length
The length of the InputStream object that SQLJ interprets as an
UnicodeStream object.

IBM Data Server Driver for JDBC and SQLJ extensions to JDBC
The IBM Data Server Driver for JDBC and SQLJ provides a set of extensions to the
support that is provided by the JDBC specification.

To use IBM Data Server Driver for JDBC and SQLJ-only methods in classes that
have corresponding, standard classes, cast an instance of the related, standard
JDBC class to an instance of the IBM Data Server Driver for JDBC and SQLJ-only
class. For example:
javax.sql.DataSource ds =
new com.ibm.db2.jcc.DB2SimpleDataSource();
((com.ibm.db2.jcc.DB2BaseDataSource) ds).setServerName("sysmvs1.stl.ibm.com");

Table 14-58 summarizes the IBM Data Server Driver for JDBC and SQLJ-only
interfaces.

Table 14-58. Summary of IBM Data Server Driver for JDBC and SQLJ-only interfaces provided by the IBM Data
Server Driver for JDBC and SQLJ

Interface name Applicable data sources Purpose

DB2CallableStatement 1 on page 14-131, 2 on page
14-131

Extends the java.sql.CallableStatement and the
com.ibm.db2.jcc.DB2PreparedStatement interfaces.

DB2Connection 1 on page 14-131, 2 on page
14-131, 3 on page 14-131

Extends the java.sql.Connection interface.

DB2DatabaseMetaData 1 on page 14-131, 2 on page
14-131, 3 on page 14-131

Extends the java.sql.DatabaseMetaData interface.

DB2Diagnosable 1 on page 14-131, 2 on page
14-131, 3 on page 14-131

Provides a mechanism for getting DB2
diagnostics from a DB2 SQLException.

DB2ParameterMetaData 2 on page 14-131 Extends the java.sql.ParameterMetaData interface.

DB2PreparedStatement 1 on page 14-131, 2 on page
14-131, 3 on page 14-131

Extends the com.ibm.db2.jcc.DB2Statement and
java.sql.PreparedStatement interfaces.

DB2ResultSet 1 on page 14-131, 2 on page
14-131, 3 on page 14-131

Extends the java.sql.ResultSet interface.

DB2RowID 1 on page 14-131, 2 on page
14-131

Used for declaring Java objects for use with the
ROWID data type.

14-130 IBM Data Server Driver for JDBC and SQLJ for Informix

||
|
|
|

Table 14-58. Summary of IBM Data Server Driver for JDBC and SQLJ-only interfaces provided by the IBM Data
Server Driver for JDBC and SQLJ (continued)

Interface name Applicable data sources Purpose

DB2Statement 1, 2, 3 Extends the java.sql.Statement interface.

DB2Struct 2 Provides methods for working with
java.sql.Struct objects.

DB2SystemMonitor 1, 2, 3 Used for collecting system monitoring data for a
connection.

DB2TraceManagerMXBean 1, 2, 3 Provides the MBean interface for the remote trace
controller.

DB2Xml 1, 2 Used for updating data in XML columns and
retrieving data from XML columns.

DBBatchUpdateException 1, 2, 3 Used for retrieving error information about batch
execution of statements that return automatically
generated keys.

Note: The interface applies to connections to the following data sources:

1. DB2 for z/OS

2. DB2 Database for Linux, UNIX, and Windows

3. IBM Informix

Table 14-59 summarizes the IBM Data Server Driver for JDBC and SQLJ-only
classes.

Table 14-59. Summary of IBM Data Server Driver for JDBC and SQLJ-only classes provided by the IBM Data Server
Driver for JDBC and SQLJ

Class name Applicable data sources Purpose

DB2Administrator (DB2 Database
for Linux, UNIX, and Windows
only)

2 on page 14-132 Instances of the DB2Administrator class are used
to retrieve DB2CataloguedDatabase objects.

DB2BaseDataSource 1 on page 14-132, 2 on page
14-132, 3 on page 14-132

The abstract data source parent class for all IBM
Data Server Driver for JDBC and SQLJ-specific
implementations of javax.sql.DataSource,
javax.sql.ConnectionPoolDataSource, and
javax.sql.XADataSource.

DB2CataloguedDatabase 2 on page 14-132 Contains methods that retrieve information about
a local DB2 Database for Linux, UNIX, and
Windows database.

DB2ClientRerouteServerList 1 on page 14-132, 2 on page
14-132

Implements the java.io.Serializable and
javax.naming.Referenceable interfaces.

DB2ConnectionPoolDataSource 1 on page 14-132, 2 on page
14-132, 3 on page 14-132

A factory for PooledConnection objects.

DB2ExceptionFormatter 1 on page 14-132, 2 on page
14-132, 3 on page 14-132

Contains methods for printing diagnostic
information to a stream.

DB2JCCPlugin 2 on page 14-132 The abstract class for implementation of JDBC
security plug-ins.

DB2PooledConnection 1 on page 14-132, 2 on page
14-132, 3 on page 14-132

Provides methods that an application server can
use to switch users on a preexisting trusted
connection.

Chapter 14. JDBC and SQLJ reference information 14-131

Table 14-59. Summary of IBM Data Server Driver for JDBC and SQLJ-only classes provided by the IBM Data Server
Driver for JDBC and SQLJ (continued)

Class name Applicable data sources Purpose

DB2PoolMonitor 1, 2 Provides methods for monitoring the global
transport objects pool for the connection
concentrator and Sysplex workload balancing.

DB2SimpleDataSource 1, 2, 3 Extends the DataBaseDataSource class. Does not
support connection pooling or distributed
transactions.

DB2Sqlca 1, 2, 3 An encapsulation of the DB2 SQLCA.

DB2TraceManager 1, 2, 3 Controls the global log writer.

DB2Types 1 on page 14-131 Defines data type constants.

DB2XADataSource 1, 2, 3 A factory for XADataSource objects. An object
that implements this interface is registered with a
naming service that is based on the Java Naming
and Directory Interface (JNDI).

DBTimestamp 1, 2, 3 A subclass of Timestamp that handles timestamp
values with extra precision or time zone
information.

Note: The class applies to connections to the following data sources:

1. DB2 for z/OS

2. DB2 Database for Linux, UNIX, and Windows

3. IBM Informix

DBBatchUpdateException interface
The com.ibm.db2.jcc.DBBatchUpdateException interface is used for retrieving error
information about batch execution of statements that return automatically
generated keys.

DBBatchUpdateException methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getDBGeneratedKeys
Format:
public java.sql.ResultSet[] getDBGeneratedKeys()

throws java.sql.SQLException

Retrieves automatically generated keys that were created when INSERT
statements were executed in a batch. Each ResultSet object that is returned
contains the automatically generated keys for a single statement in the batch.
ResultSet objects that are null correspond to failed statements.

DB2BaseDataSource class
The com.ibm.db2.jcc.DB2BaseDataSource class is the abstract data source parent
class for all IBM Data Server Driver for JDBC and SQLJ-specific implementations
of javax.sql.DataSource, javax.sql.ConnectionPoolDataSource, and
javax.sql.XADataSource.

DB2BaseDataSource implements the java.sql.Wrapper interface.

14-132 IBM Data Server Driver for JDBC and SQLJ for Informix

DB2BaseDataSource properties

The following properties are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

You can set all properties on a DataSource or in the url parameter in a
DriverManager.getConnection call.

All properties except the following properties have a setXXX method to set the
value of the property and a getXXX method to retrieve the value:
v dumpPool
v dumpPoolStatisticsOnSchedule
v dumpPoolStatisticsOnScheduleFile
v maxRefreshInterval
v maxTransportObjectIdleTime
v maxTransportObjectWaitTime
v minTransportObjects

A setXXX method has this form:
void setProperty-name(data-type property-value)

A getXXX method has this form:
data-type getProperty-name()

Property-name is the unqualified property name. For properties that are not specific
to IBM Informix, the first character of the property name is capitalized. For
properties that are used only by IBM Informix, all characters of the property name
are capitalized.

The following table lists the IBM Data Server Driver for JDBC and SQLJ properties
and their data types.

Table 14-60. DB2BaseDataSource properties and their data types

Property name
Applicable data
sources Data type

com.ibm.db2.jcc.DB2BaseDataSource.accountingInterval 1 String

com.ibm.db2.jcc.DB2BaseDataSource.affinityFailbackInterval 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.allowNextOnExhaustedResultSet 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.allowNullResultSetForExecuteQuery 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.atomicMultiRowInsert 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.blockingReadConnectionTimeout 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.charOutputSize 1 short

com.ibm.db2.jcc.DB2BaseDataSource.clientAccountingInformation 1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.clientApplicationInformation 1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.clientDebugInfo (IBM Data Server Driver for JDBC
and SQLJ type 4 connectivity)

1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.clientProgramId 1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.clientProgramName (IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity)

1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteAlternateServerName 1, 2, 3 String

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteAlternatePortNumber 1, 2, 3 String

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteServerListJNDIContext 1, 2, 3 javax.naming.Context

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteServerListJNDIName 1, 2, 3 String

Chapter 14. JDBC and SQLJ reference information 14-133

|||

Table 14-60. DB2BaseDataSource properties and their data types (continued)

Property name
Applicable data
sources Data type

com.ibm.db2.jcc.DB2BaseDataSource.clientUser (IBM Data Server Driver for JDBC and
SQLJ type 2 connectivity on DB2 for z/OS only)

1 String

com.ibm.db2.jcc.DB2BaseDataSource.clientWorkstation (IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity on DB2 for z/OS only)

1 String

com.ibm.db2.jcc.DB2BaseDataSource.connectionCloseWithInFlightTransaction 1, 2, 3 String

com.ibm.db2.jcc.DB2BaseDataSource.concurrentAccessResolution 1, 2 int

com.ibm.db2.jcc.DB2BaseDataSource.connectNode 2 int

com.ibm.db2.jcc.DB2BaseDataSource.currentDegree 1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.currentExplainMode 1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.currentExplainSnapshot 2 String

com.ibm.db2.jcc.DB2BaseDataSource.currentFunctionPath 1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.currentLockTimeout 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.currentMaintainedTableTypesForOptimization 1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.currentPackagePath 1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.currentPackageSet 1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.currentQueryOptimization 2 int

com.ibm.db2.jcc.DB2BaseDataSource.currentRefreshAge 1, 2 long

com.ibm.db2.jcc.DB2BaseDataSource.currentSchema 1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.cursorSensitivity 1, 2 int

com.ibm.db2.jcc.DB2BaseDataSource.currentSQLID 1 String

com.ibm.db2.jcc.DB2BaseDataSource.databaseName 1, 2, 3 String

com.ibm.db2.jcc.DB2BaseDataSource.dateFormat 1, 2 int

com.ibm.db2.jcc.DB2BaseDataSource.decimalSeparator 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.decimalStringFormat 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.defaultIsolationLevel 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.deferPrepares 1, 2, 3 boolean

com.ibm.db2.jcc.DB2BaseDataSource.description 1, 2, 3 String

com.ibm.db2.jcc.DB2BaseDataSource.downgradeHoldCursorsUnderXa 1, 2,3 boolean

com.ibm.db2.jcc.DB2BaseDataSource.driverType 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.dumpPool 3 int

com.ibm.db2.jcc.DB2BaseDataSource.dumpPoolStatisticsOnSchedule 3 int

com.ibm.db2.jcc.DB2BaseDataSource.dumpPoolStatisticsOnScheduleFile 3 String

com.ibm.db2.jcc.DB2BaseDataSource.enableClientAffinitiesList 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.enableExtendedIndicators 1, 2 int

com.ibm.db2.jcc.DB2BaseDataSource.enableNamedParameterMarkers 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.enableConnectionConcentrator (IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity)

1, 3 boolean

com.ibm.db2.jcc.DB2BaseDataSource.enableMultiRowInsertSupport 1 boolean

com.ibm.db2.jcc.DB2BaseDataSource.enableRowsetSupport 1, 2 int

com.ibm.db2.jcc.DB2BaseDataSource.enableSeamlessFailover 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.enableSysplexWLB (IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity)

1, 2, 3 boolean

com.ibm.db2.jcc.DB2BaseDataSource.encryptionAlgorithm 1, 2 int

com.ibm.db2.jcc.DB2BaseDataSource.fetchSize 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.floatingPointStringFormat 1, 2, 3 int

14-134 IBM Data Server Driver for JDBC and SQLJ for Informix

|||

|||

|||

|||

Table 14-60. DB2BaseDataSource properties and their data types (continued)

Property name
Applicable data
sources Data type

com.ibm.db2.jcc.DB2BaseDataSource.fullyMaterializeInputStreams 1, 2 boolean

com.ibm.db2.jcc.DB2BaseDataSource.fullyMaterializeLobData 1, 2, 3 boolean

com.ibm.db2.jcc.DB2BaseDataSource.gssCredential 1, 2 Object

com.ibm.db2.jcc.DB2BaseDataSource.interruptProcessingMode (IBM Data Server Driver
for JDBC and SQLJ type 4 connectivity)

1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.jdbcCollection 1 String

com.ibm.db2.jcc.DB2BaseDataSource.keepDynamic 1, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.kerberosServerPrincipal 1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.loginTimeout (not supported for IBM Data Server
Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS)

1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.logWriter 1, 2, 3 PrintWriter

com.ibm.db2.jcc.DB2BaseDataSource.maxRetriesForClientReroute 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.maxRowsetSize (IBM Data Server Driver for JDBC
and SQLJ type 2 connectivity on DB2 for z/OS only)

1 int

com.ibm.db2.jcc.DB2BaseDataSource.maxTransportObjectIdleTime 3 int

com.ibm.db2.jcc.DB2BaseDataSource.maxTransportObjectWaitTime 3 int

com.ibm.db2.jcc.DB2BaseDataSource.maxTransportObjects 1, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.minTransportObjects 3 int

com.ibm.db2.jcc.DB2BaseDataSource.optimizationProfile 2 String

com.ibm.db2.jcc.DB2BaseDataSource.optimizationProfileToFlush 2 String

com.ibm.db2.jcc.DB2BaseDataSource.password 1, 2, 3 String

com.ibm.db2.jcc.DB2BaseDataSource.pdqProperties 1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.pkList (IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity only)

1 String

com.ibm.db2.jcc.DB2BaseDataSource.planName (IBM Data Server Driver for JDBC and
SQLJ type 2 connectivity only)

1 String

com.ibm.db2.jcc.DB2BaseDataSource.plugin 2 Object

com.ibm.db2.jcc.DB2BaseDataSource.pluginName 2 String

com.ibm.db2.jcc.DB2BaseDataSource.portNumber 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.progressiveStreaming 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.queryCloseImplicit 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.queryDataSize 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.queryTimeoutProcessingMode 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.readOnly 1, 2 boolean

com.ibm.db2.jcc.DB2BaseDataSource.reportLongTypes 1 short

com.ibm.db2.jcc.DB2BaseDataSource.resultSetHoldability 1, 2,3 int

com.ibm.db2.jcc.DB2BaseDataSource.resultSetHoldabilityForCatalogQueries 1, 2 int

com.ibm.db2.jcc.DB2BaseDataSource.retrieveMessagesFromServerOnGetMessage 1, 2, 3 boolean

com.ibm.db2.jcc.DB2BaseDataSource.retryIntervalForClientReroute 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.retryWithAlternativeSecurityMechanism (IBM Data
Server Driver for JDBC and SQLJ type 4 connectivity)

2 int

com.ibm.db2.jcc.DB2BaseDataSource.returnAlias 1, 2 short

com.ibm.db2.jcc.DB2BaseDataSource.securityMechanism 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.sendCharInputsUTF8 1 int

com.ibm.db2.jcc.DB2BaseDataSource.sendDataAsIs 1, 2, 3 boolean

com.ibm.db2.jcc.DB2BaseDataSource.serverName 1, 2, 3 String

Chapter 14. JDBC and SQLJ reference information 14-135

Table 14-60. DB2BaseDataSource properties and their data types (continued)

Property name
Applicable data
sources Data type

com.ibm.db2.jcc.DB2BaseDataSource.sessionTimeZone 1 String

com.ibm.db2.jcc.DB2BaseDataSource.sqljEnableClassLoaderSpecificProfiles 1 boolean

com.ibm.db2.jcc.DB2BaseDataSource.ssid (IBM Data Server Driver for JDBC and SQLJ
type 2 connectivity on DB2 for z/OS only)

1 String

com.ibm.db2.jcc.DB2BaseDataSource.sslConnection (IBM Data Server Driver for JDBC
and SQLJ type 4 connectivity)

1, 2, 3 boolean

com.ibm.db2.jcc.DB2BaseDataSource.sslTrustStoreLocation (IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity)

1, 2, 3 String

com.ibm.db2.jcc.DB2BaseDataSource.sslTrustStorePassword (IBM Data Server Driver for
JDBC and SQLJ type 4 connectivity)

1, 2, 3 String

com.ibm.db2.jcc.DB2BaseDataSource.statementConcentrator 1, 2 int

com.ibm.db2.jcc.DB2BaseDataSource.streamBufferSize 1, 2 int

com.ibm.db2.jcc.DB2BaseDataSource.stripTrailingZerosForDecimalNumbers 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.supportsAsynchronousXARollback 1, 2 int

com.ibm.db2.jcc.DB2BaseDataSource.sysSchema 1, 2 String

com.ibm.db2.jcc.DB2BaseDataSource.timeFormat 1, 2 int

com.ibm.db2.jcc.DB2BaseDataSource.timestampFormat 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.timestampPrecisionReporting 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.traceDirectory 1, 2, 3 String

com.ibm.db2.jcc.DB2BaseDataSource.traceFile 1, 2, 3 String

com.ibm.db2.jcc.DB2BaseDataSource.traceFileAppend 1, 2, 3 boolean

com.ibm.db2.jcc.DB2BaseDataSource.traceLevel 1, 2, 3 int

com.ibm.db2.jcc.DB2BaseDataSource.useCachedCursor 1, 2 boolean

com.ibm.db2.jcc.DB2BaseDataSource.useJDBC4ColumnNameAndLabelSemantics 1, 2 int

com.ibm.db2.jcc.DB2BaseDataSource.user 1, 2, 3 String

com.ibm.db2.jcc.DB2BaseDataSource.useIdentityValLocalForAutoGeneratedKeys 1 boolean

com.ibm.db2.jcc.DB2BaseDataSource.useRowsetCursor 1 boolean

com.ibm.db2.jcc.DB2BaseDataSource.useTransactionRedirect 2 boolean

com.ibm.db2.jcc.DB2BaseDataSource.xaNetworkOptimization 1, 2, 3 boolean

com.ibm.db2.jcc.DB2BaseDataSource.xmlFormat 1 int

com.ibm.db2.jcc.DB2BaseDataSource.DBANSIWARN 3 boolean

com.ibm.db2.jcc.DB2BaseDataSource.DBDATE 3 String

com.ibm.db2.jcc.DB2BaseDataSource.DBPATH 3 String

com.ibm.db2.jcc.DB2BaseDataSource.DBSPACETEMP 3 String

com.ibm.db2.jcc.DB2BaseDataSource.DBTEMP 3 String

com.ibm.db2.jcc.DB2BaseDataSource.DBUPSPACE 3 String

com.ibm.db2.jcc.DB2BaseDataSource.DELIMIDENT 3 boolean

com.ibm.db2.jcc.DB2BaseDataSource.IFX_DIRECTIVES 3 String

com.ibm.db2.jcc.DB2BaseDataSource.IFX_EXTDIRECTIVES 3 String

com.ibm.db2.jcc.DB2BaseDataSource.IFX_UPDDESC 3 String

com.ibm.db2.jcc.DB2BaseDataSource.IFX_XASTDCOMPLIANCE_XAEND 3 String

com.ibm.db2.jcc.DB2BaseDataSource.INFORMIXOPCACHE 3 String

com.ibm.db2.jcc.DB2BaseDataSource.INFORMIXSTACKSIZE 3 String

com.ibm.db2.jcc.DB2BaseDataSource.NODEFDAC 3 String

com.ibm.db2.jcc.DB2BaseDataSource.OPTCOMPIND 3 String

14-136 IBM Data Server Driver for JDBC and SQLJ for Informix

|||

Table 14-60. DB2BaseDataSource properties and their data types (continued)

Property name
Applicable data
sources Data type

com.ibm.db2.jcc.DB2BaseDataSource.OPTOFC 3 String

com.ibm.db2.jcc.DB2BaseDataSource.PDQPRIORITY 3 String

com.ibm.db2.jcc.DB2BaseDataSource.PSORT_DBTEMP 3 String

com.ibm.db2.jcc.DB2BaseDataSource.PSORT_NPROCS 3 String

com.ibm.db2.jcc.DB2BaseDataSource.STMT_CACHE 3 String

Note: The property applies to connections to the following data sources:

1. DB2 for z/OS

2. DB2 Database for Linux, UNIX, and Windows

3. IBM Informix

DB2BaseDataSource fields

The following constants are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

public final static int INTERRUPT_PROCESSING_MODE_DISABLED = 0
A constant for the interruptProcessingMode property. This value indicates that
interrupt processing is disabled.

public final static int INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL = 1
A constant for the interruptProcessingMode property. This value indicates that
the IBM Data Server Driver for JDBC and SQLJ cancels the currently executing
statement when an application executes Statement.cancel, if the data server
supports interrupt processing.

public final static int INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET = 2
A constant for the interruptProcessingMode property. This value indicates that
the IBM Data Server Driver for JDBC and SQLJ drops the underlying socket
and closes the connection when an application executes Statement.cancel.

public final static int NO = 2
The NO value for properties.

public final static int NOT_SET = 0
The default value for properties.

public final static int YES = 1
The YES value for properties.

DB2BaseDataSource methods

In addition to the getXXX and setXXX methods for the DB2BaseDataSource
properties, the following methods are defined only for the IBM Data Server Driver
for JDBC and SQLJ.

getReference
Format:
public javax.naming.Reference getReference()

throws javax.naming.NamingException

Retrieves the Reference of a DataSource object. For an explanation of a
Reference, see the description of javax.naming.Referenceable in the Java
Platform Standard Edition documentation.

Chapter 14. JDBC and SQLJ reference information 14-137

DB2ClientRerouteServerList class
The com.ibm.db2.jcc.DB2ClientRerouteServerList class implements the
java.io.Serializable and javax.naming.Referenceable interfaces.

DB2ClientRerouteServerList methods

getAlternatePortNumber
Format:
public int[] getAlternatePortNumber()

Retrieves the port numbers that are associated with the alternate servers.

getAlternateServerName
Format:
public String[] getAlternateServerName()

Retrieves an array that contains the names of the alternate servers. These
values are IP addresses or DNS server names.

getPrimaryPortNumber
Format:
public int getPrimaryPortNumber()

Retrieves the port number that is associated with the primary server.

getPrimaryServerName
Format:
public String[] getPrimaryServerName()

Retrieves the name of the primary server. This value is an IP address or a DNS
server name.

setAlternatePortNumber
Format:
public void setAlternatePortNumber(int[] alternatePortNumberList)

Sets the port numbers that are associated with the alternate servers.

setAlternateServerName
Format:
public void setAlternateServerName(String[] alternateServer)

Sets the alternate server names for servers. These values are IP addresses or
DNS server names.

setPrimaryPortNumber
Format:
public void setPrimaryPortNumber(int primaryPortNumber)

Sets the port number that is associated with the primary server.

setPrimaryServerName
Format:
public void setPrimaryServerName(String primaryServer)

Sets the primary server name for a server. This value is an IP address or a
DNS server name.

14-138 IBM Data Server Driver for JDBC and SQLJ for Informix

DB2Connection interface
The com.ibm.db2.jcc.DB2Connection interface extends the java.sql.Connection
interface.

DB2Connection implements the java.sql.Wrapper interface.

DB2Connection fields

The following fields are defined only for the IBM Data Server Driver for JDBC and
SQLJ, and apply only to connections to IBM Informix databases.

public int TRANSACTION_IDS_CURSOR_STABILITY (-1)
Specifies a level of transaction isolation for a connection. With this level of
transaction isolation, an application acquires a shared lock on a fetched row.
That lock is released when the application fetches another row or closes the
cursor. Other applications can take a shared lock on the same row, but no
process can acquire an exclusive lock to modify data in the row.

Use TRANSACTION_IDS_CURSOR_STABILITY for programs that fetch a row
from a table and update another table with the contents of that row.

TRANSACTION_IDS_CURSOR_STABILITY has the same behavior as
java.sql.Connection.TRANSACTION_READ_COMMITTED when an
application is not performing database updates.

public int TRANSACTION_IDS_LAST_COMMITTED (-2)
Specifies a level of transaction isolation for a connection. With this level of
transaction isolation, when an application attempts to read a row of a table,
and another application has an exclusive lock on the table, the data source
returns the most recently committed version of the row to the first application.

Use TRANSACTION_IDS_LAST_COMMITTED in programs for which
currency of the data is less important than avoidance of deadlocks or timeouts.

DB2Connection methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

alternateWasUsedOnConnect
Format:
public boolean alternateWasUsedOnConnect()

throws java.sql.SQLException

Returns true if the driver used alternate server information to obtain the
connection. The alternate server information is available in the transient
clientRerouteServerList information on the DB2BaseDataSource, which the
database server updates as primary and alternate servers change.

changeDB2Password
Format:
public abstract void changeDB2Password(String oldPassword,

String newPassword)
throws java.sql.SQLException

Changes the password for accessing the data source, for the user of the
Connection object.

Parameter descriptions:

Chapter 14. JDBC and SQLJ reference information 14-139

oldPassword
The original password for the Connection.

newPassword
The new password for the Connection.

createArrayOf
Format:
Array createArrayOf(String typeName,

Object[] elements)
throws SQLException;

Creates a java.sql.Array object.

Parameter descriptions:

typeName
The SQL data type of the elements of the array map to. typeName can be a
built-in data type or a distinct type.

elements
The elements that populate the Array object.

getDB2ClientAccountingInformation
Format:
public String getDB2ClientAccountingInformation()

throws SQLException

Returns accounting information for the current client.

Important: getDB2ClientAccountingInformation is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.getClientInfo instead.

getDB2ClientApplicationInformation
Format:
public String getDB2ClientApplicationInformation()

throws java.sql.SQLException

Returns application information for the current client.

Important: getDB2ClientApplicationInformation is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.getClientInfo instead.

getDB2ClientProgramId
Format:
public String getDB2ClientProgramId()

throws java.sql.SQLException

Returns the user-defined program identifier for the client. The program
identifier can be used to identify the application at the data source.

getDB2ClientProgramId does not apply to DB2 Database for Linux, UNIX, and
Windows data servers.

getDB2ClientUser
Format:
public String getDB2ClientUser()

throws java.sql.SQLException

14-140 IBM Data Server Driver for JDBC and SQLJ for Informix

Returns the current client user name for the connection. This name is not the
user value for the JDBC connection.

Important: getDB2ClientUser is deprecated in the JDBC 4.0 implementation of
the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.getClientInfo instead.

getDB2ClientWorkstation
Format:
public String getDB2ClientWorkstation()

throws java.sql.SQLException

Returns current client workstation name for the current client.

Important: getDB2ClientWorkstation is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.getClientInfo instead.

getDB2Correlator
Format:
String getDB2Correlator()

throws java.sql.SQLException

Returns the value of the crrtkn (correlation token) instance variable that DRDA
sends with the ACCRDB command. The correlation token uniquely identifies a
logical connection to a server.

getDB2CurrentPackagePath
Format:
public String getDB2CurrentPackagePath()

throws java.sql.SQLException

Returns the list of DB2 package collections that are searched for JDBC and
SQLJ packages.

The getDB2CurrentPackagePath method applies only to connections to DB2
database systems.

getDB2CurrentPackageSet
Format:
public String getDB2CurrentPackageSet()

throws java.sql.SQLException

Returns the collection ID for the connection.

The getDB2CurrentPackageSet method applies only to connections to DB2
database systems.

getDB2SecurityMechanism
Format:
public int getDB2SecurityMechanism()

throws java.sql.SQLException

Returns the security mechanism that is in effect for the connection:

3 Clear text password security

4 User ID-only security

7 Encrypted password security

9 Encrypted user ID and password security

Chapter 14. JDBC and SQLJ reference information 14-141

11 Kerberos security

12 Encrypted user ID and data security

13 Encrypted user ID, password, and data security

15 Plugin security

16 Encrypted user ID-only security

getDB2SystemMonitor
Format:
public abstract DB2SystemMonitor getDB2SystemMonitor()

throws java.sql.SQLException

Returns the system monitor object for the connection. Each IBM Data Server
Driver for JDBC and SQLJ connection can have a single system monitor.

getDBConcurrentAccessResolution
Format:
public int getDBConcurrentAccessResolution()

throws java.sql.SQLException

Returns the concurrent access setting for the connection. The concurrent access
setting is set by the setDBConcurrentAccessResolution method or by the
concurrentAccessResolution property.

getDBConcurrentAccessResolution applies only to connections to DB2 for z/OS
and DB2 Database for Linux, UNIX, and Windows.

getDBStatementConcentrator
Format:
public int getDBStatementConcentrator()

throws java.sql.SQLException

Returns the statement concentrator use setting for the connection. The
statement concentrator use setting is set by the setDBStatementConcentrator
method or by the statementConcentrator property.

getJccLogWriter
Format:
public PrintWriter getJccLogWriter()

throws java.sql.SQLException

Returns the current trace destination for the IBM Data Server Driver for JDBC
and SQLJ trace.

getJccSpecialRegisterProperties
Format:
public java.util.Properties getJccSpecialRegisterProperties()

throws java.sql.SQLException

Returns a java.util.Properties object, in which the keys are the special registers
that are supported at the target data source, and the key values are the current
values of those special registers.

This method does not apply to connections to IBM Informix data sources.

getSavePointUniqueOption
Format:
public boolean getSavePointUniqueOption()

throws java.sql.SQLException

14-142 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|

|
|

|
|

Returns true if setSavePointUniqueOption was most recently called with a
value of true. Returns false otherwise.

isDB2Alive
Format:
public boolean DB2Connection.isDB2Alive()

throws java.sql.SQLException

Returns true if the socket for a connection to the data source is still active.

Important: isDB2Alive is deprecated in the JDBC 4.0 implementation of the
IBM Data Server Driver for JDBC and SQLJ. Use Connection.isDBValid instead.

reconfigureDB2Connection
Format:
public void reconfigureDB2Connection(java.util.Properties properties)

throws SQLException

Reconfigures a connection with new settings. The connection does not need to
be returned to a connection pool before it is reconfigured. This method can be
called while a transaction is in progress, and can be used for trusted or
untrusted connections.

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 Database for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS Version 9.1 or later

Parameter descriptions:

properties
New properties for the connection. These properties override any
properties that are already defined on the DB2Connection instance.

setDBConcurrentAccessResolution
Format:
public void setDBConcurrentAccessResolution(int concurrentAccessResolution)

throws java.sql.SQLException

Specifies whether the IBM Data Server Driver for JDBC and SQLJ requests that
a read transaction can access a committed and consistent image of rows that
are incompatibly locked by write transactions, if the data source supports
accessing currently committed data, and the application isolation level is cursor
stability (CS) or read stability (RS). This option has the same effect as the DB2
CONCURRENTACCESSRESOLUTION bind option.
setDBConcurrentAccessResolution affects only statements that are created after
setDBConcurrentAccessResolution is executed.

setDBConcurrentAccessResolution applies only to connections to DB2 for z/OS
and DB2 Database for Linux, UNIX, and Windows.

Parameter descriptions:

concurrentAccessResolution
One of the following integer values:

Chapter 14. JDBC and SQLJ reference information 14-143

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

|

|
|

DB2BaseDataSource.-
CONCURRENTACCESS_USE_CURRENTLY_COMMITTED (1)

The IBM Data Server Driver for JDBC and SQLJ requests that:
v Read transactions access the currently committed data when the

data is being updated or deleted.
v Read transactions skip rows that are being inserted.

DB2BaseDataSource.CONCURRENTACCESS_WAIT_FOR_OUTCOME
(2) The IBM Data Server Driver for JDBC and SQLJ requests that:

v Read transactions wait for a commit or rollback operation when
they encounter data that is being updated or deleted.

v Read transactions do not skip rows that are being inserted.

DB2BaseDataSource.CONCURRENTACCESS_NOT_SET (0)
Enables the data server's default behavior for read transactions
when lock contention occurs. This is the default value.

setDBStatementConcentrator
Format:
public void setDBStatementConcentrator(int statementConcentratorUse)

throws java.sql.SQLException

Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses the data
source's statement concentrator functionality. The statement concentrator is the
ability to bypass preparation of a statement when it is the same as a statement
in the dynamic statement cache, except for literal values. Statement
concentrator functionality applies only to SQL statements that have literals but
no parameter markers. setDBStatementConcentrator overrides the setting of the
statementConcentrator Connection or DataSource property.
setDBStatementConcentrator affects only statements that are created after
setDBStatementConcentrator is executed.

Parameter descriptions:

statementConcentratorUse
One of the following integer values:

DB2BaseDataSource.STATEMENT_CONCENTRATOR_OFF (1)
The IBM Data Server Driver for JDBC and SQLJ does not use the
data source's statement concentrator functionality.

DB2BaseDataSource.STATEMENT_CONCENTRATOR_WITH_LITERALS
(2) The IBM Data Server Driver for JDBC and SQLJ uses the data

source's statement concentrator functionality.

DB2BaseDataSource.STATEMENT_CONCENTRATOR_NOT_SET (0)
Enables the data server's default behavior for statement
concentrator functionality. This is the default value.

For DB2 Database for Linux, UNIX, and Windows data sources
that support statement concentrator functionality, the functionality
is used if the STMT_CONC configuration parameter is set to ON at
the data source. Otherwise, statement concentrator functionality is
not used.

For DB2 for z/OS data sources that support statement concentrator
functionality, the functionality is not used if statementConcentrator
is not set.

14-144 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|
|

|
|

|

|
||

|
|

|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

|
||
|

|
|
|

|
|
|
|
|

|
|
|

reuseDB2Connection (trusted connection reuse)
Formats:
public void reuseDB2Connection(byte[] cookie,

String user,
String password,
String usernameRegistry,
byte[] userSecToken,
String originalUser,
java.util.Properties properties)
throws java.sql.SQLException

public void reuseDB2Connection(byte[] cookie,
org.ietf.GSSCredential gssCredential,
String usernameRegistry,
byte[] userSecToken,
String originalUser,
java.util.Properties properties)
throws java.sql.SQLException

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 Database for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS Version 9.1 or later

The second of these forms of reuseDB2Connection does not apply to IBM Data
Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

These forms of reuseDB2Connection are used by a trusted application server to
reuse a preexisting trusted connection on behalf of a new user. Properties that
can be reset are passed, including the new user ID. The database server resets
the associated physical connection. If reuseDB2Connection executes
successfully, the connection becomes available for immediate use, with
different properties, by the new user.

Parameter descriptions:

cookie
A unique cookie that the JDBC driver generates for the Connection
instance. The cookie is known only to the application server and the
underlying JDBC driver that established the initial trusted connection. The
application server passes the cookie that was created by the driver when
the pooled connection instance was created. The JDBC driver checks that
the supplied cookie matches the cookie of the underlying trusted physical
connection to ensure that the request originated from the application server
that established the trusted physical connection. If the cookies match, the
connection becomes available for immediate use, with different properties,
by the new user .

user
The client ID that the database system uses to establish the database
authorization ID. If the user was not authenticated by the application
server, the application server needs to pass a client ID that represents an
unauthenticated user.

password
The password for user.

Chapter 14. JDBC and SQLJ reference information 14-145

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

userNameRegistry
A name that identifies a mapping service that maps a workstation user ID
to a z/OS RACF® ID. An example of a mapping service is the Integrated
Security Services Enterprise Identity Mapping (EIM). The mapping service
is defined by a plugin. Valid values for userNameRegistry are defined by the
plugin providers. If userNameRegistry is null, no mapping of user is done.

userSecToken
The client's security tokens. This value is traced as part of DB2 for z/OS
accounting data. The content of userSecToken is described by the application
server and is referred to by the database system as an application server
security token.

originalUser
The original user ID that was used by the application server.

properties
Properties for the reused connection.

reuseDB2Connection (untrusted reuse with reauthentication)
Formats:
public void reuseDB2Connection(String user,

String password,
java.util.Properties properties)
throws java.sql.SQLException

public void reuseDB2Connection(
org.ietf.jgss.GSSCredential gssCredential,
java.util.Properties properties)
throws java.sql.SQLException

The first of these forms of reuseDB2Connection is not supported for IBM Data
Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

The second of these forms of reuseDB2Connection does not apply to IBM Data
Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

In a heterogeneous pooling environment, these forms of reuseDB2Connection
reuse an existing Connection instance after reauthentication.

Parameter description:

user
The authorization ID that is used to establish the connection.

password
The password for the authorization ID that is used to establish the
connection.

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

properties
Properties for the reused connection. These properties override any
properties that are already defined on the DB2Connection instance.

reuseDB2Connection (untrusted or trusted reuse without reauthentication)
Formats:

14-146 IBM Data Server Driver for JDBC and SQLJ for Informix

public void reuseDB2Connection(java.util.Properties properties)
throws java.sql.SQLException

Reuses an existing Connection instance without reauthentication. This method
is intended for reuse of a Connection instance when the properties do not
change.

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 Database for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS Version 9.1 or later

This method is for dirty reuse of a connection. This means that the connection
state is not reset when the object is reused from the pool. Special register
settings and property settings remain in effect unless they are overridden by
passed properties. Global temporary tables are not deleted. Properties that are
not specified are not re-initialized. All JDBC standard transient properties, such
as the isolation level, autocommit mode, and read-only mode are reset to their
JDBC defaults. Certain properties, such as user, password, databaseName,
serverName, portNumber, planName, and pkList remain unchanged.

Parameter description:

properties
Properties for the reused connection. These properties override any
properties that are already defined on the DB2Connection instance.

setDB2ClientAccountingInformation
Format:
public void setDB2ClientAccountingInformation(String info)

throws java.sql.SQLException

Specifies accounting information for the connection. This information is for
client accounting purposes. This value can change during a connection.

Parameter description:

info
User-specified accounting information. The maximum length depends on
the server. For a DB2 Database for Linux, UNIX, and Windows server, the
maximum length is 255 bytes. For a DB2 for z/OS server, the maximum
length is 22 bytes. A Java empty string ("") is valid for this parameter
value, but a Java null value is not valid.

Important: setDB2ClientAccountingInformation is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.setClientInfo instead.

setDB2ClientApplicationInformation
Format:
public String setDB2ClientApplicationInformation(String info)

throws java.sql.SQLException

Specifies application information for the current client.

Chapter 14. JDBC and SQLJ reference information 14-147

Important: setDB2ClientApplicationInformation is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.setClientInfo instead.

Parameter description:

info
User-specified application information. The maximum length depends on
the server. For a DB2 Database for Linux, UNIX, and Windows server, the
maximum length is 255 bytes. For a DB2 for z/OS server, the maximum
length is 32 bytes. A Java empty string ("") is valid for this parameter
value, but a Java null value is not valid.

setDB2ClientDebugInfo
Formats:
public void setDB2ClientDebugInfo(String debugInfo)
throws java.sql.SQLException

public void setDB2ClientDebugInfo(String mgrInfo,
String traceInfo)
throws java.sql.SQLException

Sets a value for the CLIENT DEBUGINFO connection attribute, to notify the
database system that stored procedures and user-defined functions that are
using the connection are running in debug mode. CLIENT DEBUGINFO is
used by the DB2 Unified Debugger. Use the first form to set the entire CLIENT
DEBUGINFO string. Use the second form to modify only the session manager
and trace information in the CLIENT DEBUGINFO string.

Setting the CLIENT DEBUGINFO attribute to a string of length greater than
zero requires one of the following privileges:
v The DEBUGSESSION privilege
v SYSADM authority

Parameter description:

debugInfo
A string of up to 254 bytes, in the following form:
Mip:port,Iip,Ppid,Ttid,Cid,Llvl

The parts of the string are:

Mip:port
Session manager IP address and port number

Iip Client IP address

Ppid Client process ID

Ttid Client thread ID (optional)

Cid Data connection generated ID

Llvl Debug library diagnostic trace level

For example:
M9.72.133.89:8355,I9.72.133.89,P4552,T123,C1,L0

See the description of SET CLIENT DEBUGINFO for a detailed description
of this string.

mgrInfo
A string of the following form, which specifies the IP address and port
number for the Unified Debugger session manager.

14-148 IBM Data Server Driver for JDBC and SQLJ for Informix

Mip:port

For example:
M9.72.133.89:8355

See the description of SET CLIENT DEBUGINFO for a detailed description
of this string.

trcInfo
A string of the following form, which specifies the debug library
diagnostics trace level.
Llvl

For example:
L0

See the description of SET CLIENT DEBUGINFO for a detailed description
of this string.

setDB2ClientProgramId
Format:
public abstract void setDB2ClientProgramId(String program-ID)
throws java.sql.SQLException

Sets a user-defined program identifier for the connection, on DB2 for z/OS
servers. That program identifier is an 80-byte string that is used to identify the
caller.

setDB2ClientProgramId does not apply to DB2 Database for Linux, UNIX, and
Windows or IBM Informix data servers.

The DB2 for z/OS server places the string in IFCID 316 trace records along
with other statistics, so that you can identify which program is associated with
a particular SQL statement.

setDB2ClientUser
Format:
public void setDB2ClientUser(String user)

throws java.sql.SQLException

Specifies the current client user name for the connection. This name is for
client accounting purposes, and is not the user value for the JDBC connection.
Unlike the user for the JDBC connection, the current client user name can
change during a connection.

Parameter description:

user
The user ID for the current client. The maximum length depends on the
server. For a DB2 Database for Linux, UNIX, and Windows server, the
maximum length is 255 bytes. For a DB2 for z/OS server, the maximum
length is 16 bytes. A Java empty string ("") is valid for this parameter
value, but a Java null value is not valid.

Important: setDB2ClientUser is deprecated in the JDBC 4.0 implementation of
the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.setClientInfo instead.

setDB2ClientWorkstation
Format:

Chapter 14. JDBC and SQLJ reference information 14-149

public void setDB2ClientWorkstation(String name)
throws java.sql.SQLException

Specifies the current client workstation name for the connection. This name is
for client accounting purposes. The current client workstation name can change
during a connection.

Parameter description:

name
The workstation name for the current client. The maximum length depends
on the server. For a DB2 Database for Linux, UNIX, and Windows server,
the maximum length is 255 bytes. For a DB2 for z/OS server, the
maximum length is 18 bytes. A Java empty string ("") is valid for this
parameter value, but a Java null value is not valid.

Important: getDB2ClientWorkstation is deprecated in the JDBC 4.0
implementation of the IBM Data Server Driver for JDBC and SQLJ. Use
java.sql.Connection.getClientInfo instead.

setDB2CurrentPackagePath
Format:
public void setDB2CurrentPackagePath(String packagePath)

throws java.sql.SQLException

Specifies a list of collection IDs that the database system searches for JDBC and
SQLJ packages.

The setDB2CurrentPackagePath method applies only to connections to DB2
database systems.

Parameter description:

packagePath
A comma-separated list of collection IDs.

setDB2CurrentPackageSet
Format:
public void setDB2CurrentPackageSet(String packageSet)

throws java.sql.SQLException

Specifies the collection ID for the connection. When you set this value, you
also set the collection ID of the IBM Data Server Driver for JDBC and SQLJ
instance that is used for the connection.

The setDB2CurrentPackageSet method applies only to connections to DB2
database systems.

Parameter description:

packageSet
The collection ID for the connection. The maximum length for the
packageSet value is 18 bytes. You can invoke this method as an alternative
to executing the SQL SET CURRENT PACKAGESET statement in your
program.

setJccLogWriter
Formats:
public void setJccLogWriter(PrintWriter logWriter)

throws java.sql.SQLException

public void setJccLogWriter(PrintWriter logWriter, int traceLevel)
throws java.sql.SQLException

14-150 IBM Data Server Driver for JDBC and SQLJ for Informix

Enables or disables the IBM Data Server Driver for JDBC and SQLJ trace, or
changes the trace destination during an active connection.

Parameter descriptions:

logWriter
An object of type java.io.PrintWriter to which the IBM Data Server Driver
for JDBC and SQLJ writes trace output. To turn off the trace, set the value
of logWriter to null.

traceLevel
Specifies the types of traces to collect. See the description of the traceLevel
property in "Properties for the IBM Data Server Driver for JDBC and SQLJ"
for valid values.

setSavePointUniqueOption
Format:
public void setSavePointUniqueOption(boolean flag)

throws java.sql.SQLException

Specifies whether an application can reuse a savepoint name within a unit of
recovery. Possible values are:

true A Connection.setSavepoint(savepoint-name) method cannot specify the
same value for savepoint-name more than once within the same unit of
recovery.

false A Connection.setSavepoint(savepoint-name) method can specify the
same value for savepoint-name more than once within the same unit of
recovery.

When false is specified, if the Connection.setSavepoint(savepoint-
name) method is executed, and a savepoint with the name
savepoint-name already exists within the unit of recovery, the database
manager destroys the existing savepoint, and creates a new savepoint
with the name savepoint-name.

Reuse of a savepoint is not the same as executing
Connection.releaseSavepoint(savepoint-name).
Connection.releaseSavepoint(savepoint-name) releases savepoint-name,
and any savepoints that were subsequently set.

DB2ConnectionPoolDataSource class
DB2ConnectionPoolDataSource is a factory for PooledConnection objects. An object
that implements this interface is registered with a naming service that is based on
the Java Naming and Directory Interface (JNDI).

The com.ibm.db2.jcc.DB2ConnectionPoolDataSource class extends the
com.ibm.db2.jcc.DB2BaseDataSource class, and implements the
javax.sql.ConnectionPoolDataSource, java.io.Serializable, and
javax.naming.Referenceable interfaces.

DB2ConnectionPoolDataSource properties

These properties are defined only for the IBM Data Server Driver for JDBC and
SQLJ. "Properties for the IBM Data Server Driver for JDBC and SQLJ" for
explanations of these properties.

Chapter 14. JDBC and SQLJ reference information 14-151

|
|

|
|

|
|

||
|
|

||
|
|

|
|
|
|
|

|
|
|
|

These properties have a setXXX method to set the value of the property and a
getXXX method to retrieve the value. A setXXX method has this form:
void setProperty-name(data-type property-value)

A getXXX method has this form:
data-type getProperty-name()

Property-name is the unqualified property name, with the first character capitalized.

The following table lists the IBM Data Server Driver for JDBC and SQLJ properties
and their data types.

Table 14-61. DB2ConnectionPoolDataSource properties and their data types

Property name Data type

com.ibm.db2.jcc.DB2ConnectionPoolDataSource.maxStatements int

DB2ConnectionPoolDataSource methods

getDB2PooledConnection
Formats:
public DB2PooledConnection getDB2PooledConnection(String user,

String password,
java.util.Properties properties)
throws java.sql.SQLException

public DB2PooledConnection getDB2PooledConnection(
org.ietf.jgss.GSSCredential gssCredential,
java.util.Properties properties)
throws java.sql.SQLException

Establishes the initial untrusted connection in a heterogeneous pooling
environment.

The first form getDB2PooledConnection provides a user ID and password. The
second form of getDB2PooledConnection is for connections that use Kerberos
security.

Parameter descriptions:

user
The authorization ID that is used to establish the connection.

password
The password for the authorization ID that is used to establish the
connection.

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

properties
Properties for the connection.

getDB2TrustedPooledConnection
Formats:
public Object[] getDB2TrustedPooledConnection(String user,

String password,
java.util.Properties properties)
throws java.sql.SQLException

public Object[] getDB2TrustedPooledConnection(
java.util.Properties properties)

14-152 IBM Data Server Driver for JDBC and SQLJ for Informix

throws java.sql.SQLException
public Object[] getDB2TrustedPooledConnection(

org.ietf.jgss.GSSCredential gssCredential,
java.util.Properties properties)
throws java.sql.SQLException

An application server using a system authorization ID uses this method to
establish a trusted connection.

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 Database for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS Version 9.1 or later

The following elements are returned in Object[]:
v The first element is a trusted DB2PooledConnection instance.
v The second element is a unique cookie for the generated pooled connection

instance.

The first form getDB2TrustedPooledConnection provides a user ID and
password, while the second form of getDB2TrustedPooledConnection uses the
user ID and password of the DB2ConnectionPoolDataSource object. The third
form of getDB2TrustedPooledConnection is for connections that use Kerberos
security.

Parameter descriptions:

user
The IDS authorization ID that is used to establish the trusted connection to
the database server.

password
The password for the authorization ID that is used to establish the trusted
connection.

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

properties
Properties for the connection.

DB2DatabaseMetaData interface
The com.ibm.db2.jcc.DB2DatabaseMetaData interface extends the
java.sql.DatabaseMetaData interface.

DB2DatabaseMetaData methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

isIDSDatabaseAnsiCompliant
Format:
public boolean isIDSDatabaseAnsiCompliant();

Chapter 14. JDBC and SQLJ reference information 14-153

Returns true if the current active IBM Informix database is ANSI-compliant.
Returns false otherwise.

An ANSI-compliant database is a database that was created with the WITH
LOG MODE ANSI option.

This method applies to connections to IBM Informix data sources only. An
SQLException is thrown if the data source is not an IBM Informix data source.

isIDSDatabaseLogging
Format:
public boolean isIDSDatabaseLogging();

Returns true if the current active IBM Informix database supports logging.
Returns false otherwise.

An IBM Informix database that supports logging is a database that was created
with the WITH LOG MODE ANSI option, the WITH BUFFERED LOG, or the
WITH LOG option.

This method applies to connections to IBM Informix data sources only. An
SQLException is thrown if the data source is not an IBM Informix data source.

isResetRequiredForDB2eWLM
Format:
public boolean isResetRequiredForDB2eWLM();

Returns true if the target database server requires clean reuse to support
eWLM. Returns false otherwise.

supportsDB2ProgressiveStreaming
Format:
public boolean supportsDB2ProgressiveStreaming();

Returns true if the target data source supports progressive streaming. Returns
false otherwise.

DB2Diagnosable interface
The com.ibm.db2.jcc.DB2Diagnosable interface provides a mechanism for getting
IDS diagnostics from an SQLException.

DB2Diagnosable methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getSqlca
Format:
public DB2Sqlca getSqlca();

Returns a DB2Sqlca object from a java.sql.Exception that is produced under a
IBM Data Server Driver for JDBC and SQLJ.

getThrowable
Format:
public Throwable getThrowable();

Returns a java.lang.Throwable object from a java.sql.Exception that is produced
under a IBM Data Server Driver for JDBC and SQLJ.

14-154 IBM Data Server Driver for JDBC and SQLJ for Informix

printTrace
Format:
static public void printTrace(java.io.PrintWriter printWriter,

String header);

Prints diagnostic information after a java.sql.Exception is thrown under a IBM
Data Server Driver for JDBC and SQLJ.

Parameter descriptions:

printWriter
The destination for the diagnostic information.

header
User-defined information that is printed at the beginning of the output.

DB2ExceptionFormatter class
The com.ibm.db2.jcc.DB2ExceptionFormatter class contains methods for printing
diagnostic information to a stream.

DB2ExceptionFormatter methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

printTrace
Formats:
static public void printTrace(java.sql.SQLException sqlException,

java.io.PrintWriter printWriter, String header)

static public void printTrace(DB2Sqlca sqlca,
java.io.PrintWriter printWriter, String header)

static public void printTrace(java.lang.Throwable throwable,
java.io.PrintWriter printWriter, String header)

Prints diagnostic information after an exception is thrown.

Parameter descriptions:

sqlException|sqlca|throwable
The exception that was thrown during a previous JDBC or Java operation.

printWriter
The destination for the diagnostic information.

header
User-defined information that is printed at the beginning of the output.

DB2JCCPlugin class
The com.ibm.db2.jcc.DB2JCCPlugin class is an abstract class that defines methods
that can be implemented to provide DB2 Database for Linux, UNIX, and Windows
plug-in support. This class applies only to DB2 Database for Linux, UNIX, and
Windows.

DB2JCCPlugin methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

Chapter 14. JDBC and SQLJ reference information 14-155

getTicket
Format:
public abstract byte[] getTicket(String user,

String password,
byte[] returnedToken)
throws org.ietf.jgss.GSSException

Retrieves a Kerberos ticket for a user.

Parameter descriptions:

user
The user ID for which the Kerberos ticket is to be retrieved.

password
The password for user.

returnedToken

DB2ParameterMetaData interface
The com.ibm.db2.jcc.DB2ParameterMetaData interface extends the
java.sql.ParameterMetaData interface.

DB2ParameterMetaData methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getParameterMarkerNames
Format:
public String[] getParameterMarkerNames()

throws java.sql.SQLException

Returns a list of the parameter marker names that are used in an SQL
statement.

This method returns null if the enableNamedParameterMarkers property is set
DB2BaseDataSource.NOT_SET or DB2BaseDataSource.NO, or if there are no
named parameter markers in the SQL statement.

getProcedureParameterName
Format:
public String getProcedureParameterName(int param)

throws java.sql.SQLException

Returns the name in the CREATE PROCEDURE statement of a parameter in an
SQL CALL statement. If the parameter has no name in the CREATE
PROCEDURE statement, the ordinal position of the parameter in the CREATE
PROCEDURE statement is returned.

Parameter descriptions:

param
The ordinal position of the parameter in the CALL statement.

This method applies to connections to DB2 Database for Linux, UNIX, and
Windows 9.7 or later data servers only.

14-156 IBM Data Server Driver for JDBC and SQLJ for Informix

DB2PooledConnection class
The com.ibm.db2.jcc.DB2PooledConnection class provides methods that an
application server can use to switch users on a preexisting trusted connection.

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 Database for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS
Version 9.1 or later

DB2PooledConnection methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getConnection (untrusted or trusted reuse without reauthentication)
Format:
public DB2Connection getConnection()

throws java.sql.SQLException

This method is for dirty reuse of a connection. This means that the connection
state is not reset when the object is reused from the pool. Special register
settings and property settings remain in effect unless they are overridden by
passed properties. Global temporary tables are not deleted. Properties that are
not specified are not re-initialized. All JDBC standard transient properties, such
as the isolation level, autocommit mode, and read-only mode are reset to their
JDBC defaults. Certain properties, such as user, password, databaseName,
serverName, portNumber, planName, and pkList remain unchanged.

getDB2Connection (trusted reuse)
Formats:
public DB2Connection getDB2Connection(byte[] cookie,

String user,
String password,
String userRegistry,
byte[] userSecToken,
String originalUser,
java.util.Properties properties)
throws java.sql.SQLException

public Connection getDB2Connection(byte[] cookie,
org.ietf.GSSCredential gssCredential,
String usernameRegistry,
byte[] userSecToken,
String originalUser,
java.util.Properties properties)
throws java.sql.SQLException

Switches the user that is associated with a trusted connection without
authentication.

The second form of getDB2Connection is supported only for IBM Data Server
Driver for JDBC and SQLJ type 4 connectivity.

Parameter descriptions:

cookie
A unique cookie that the JDBC driver generates for the Connection

Chapter 14. JDBC and SQLJ reference information 14-157

instance. The cookie is known only to the application server and the
underlying JDBC driver that established the initial trusted connection. The
application server passes the cookie that was created by the driver when
the pooled connection instance was created. The JDBC driver checks that
the supplied cookie matches the cookie of the underlying trusted physical
connection to ensure that the request originated from the application server
that established the trusted physical connection. If the cookies match, the
connection can become available, with different properties, for immediate
use by a new user .

user
The client identity that is used by the data source to establish the
authorization ID for the database server. If the user was not authenticated
by the application server, the application server must pass a user identity
that represents an unauthenticated user.

password
The password for user.

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

userNameRegistry
A name that identifies a mapping service that maps a workstation user ID
to a z/OS RACF ID. An example of a mapping service is the Integrated
Security Services Enterprise Identity Mapping (EIM). The mapping service
is defined by a plugin. Valid values for userNameRegistry are defined by the
plugin providers. If userNameRegistry is null, the connection does not use a
mapping service.

userSecToken
The client's security tokens. This value is traced as part of DB2 for z/OS
accounting data. The content of userSecToken is described by the application
server and is referred to by the data source as an application server
security token.

originalUser
The client identity that sends the original request to the application server.
originalUser is included in DB2 for z/OS accounting data as the original
user ID that was used by the application server.

properties
Properties for the reused connection. These properties override any
properties that are already defined on the DB2PooledConnection instance.

getDB2Connection (untrusted reuse with reauthentication)
Formats:
public DB2Connection getDB2Connection(

String user,
String password,
java.util.Properties properties)
throws java.sql.SQLException

public DB2Connection getDB2Connection(org.ietf.jgss.GSSCredential gssCredential,
java.util.Properties properties)
throws java.sql.SQLException

Switches the user that is associated with a untrusted connection, with
authentication.

14-158 IBM Data Server Driver for JDBC and SQLJ for Informix

The first form getDB2Connection provides a user ID and password. The
second form of getDB2Connection is for connections that use Kerberos security.

Parameter descriptions:

user
The user ID that is used by the data source to establish the authorization
ID for the database server.

password
The password for user.

properties
Properties for the reused connection. These properties override any
properties that are already defined on the DB2PooledConnection instance.

getDB2Connection (untrusted or trusted reuse without reauthentication)
Formats:
public java.sql.Connection getDB2Connection(

java.util.Properties properties)
throws java.sql.SQLException

Reuses an untrusted connection, without reauthentication.

This method is for dirty reuse of a connection. This means that the connection
state is not reset when the object is reused from the pool. Special register
settings and property settings remain in effect unless they are overridden by
passed properties. Global temporary tables are not deleted. Properties that are
not specified are not re-initialized. All JDBC standard transient properties, such
as the isolation level, autocommit mode, and read-only mode are reset to their
JDBC defaults. Certain properties, such as user, password, databaseName,
serverName, portNumber, planName, and pkList remain unchanged.

Parameter descriptions:

properties
Properties for the reused connection. These properties override any
properties that are already defined on the DB2PooledConnection instance.

DB2PoolMonitor class
The com.ibm.db2.jcc.DB2PoolMonitor class provides methods for monitoring the
global transport objects pool that is used for the connection concentrator and
Sysplex workload balancing.

DB2PoolMonitor fields

The following fields are defined only for the IBM Data Server Driver for JDBC and
SQLJ.

public static final int TRANSPORT_OBJECT = 1
This value is a parameter for the DB2PoolMonitor.getPoolMonitor method.

DB2PoolMonitor methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

agedOutObjectCount
Format:
public abstract int agedOutObjectCount()

Chapter 14. JDBC and SQLJ reference information 14-159

Retrieves the number of objects that exceeded the idle time that was specified
by db2.jcc.maxTransportObjectIdleTime and were deleted from the pool.

createdObjectCount
Format:
public abstract int createdObjectCount()

Retrieves the number of objects that the IBM Data Server Driver for JDBC and
SQLJ created since the pool was created.

getMonitorVersion
Format:
public int getMonitorVersion()

Retrieves the version of the DB2PoolMonitor class that is shipped with the IBM
Data Server Driver for JDBC and SQLJ.

getPoolMonitor
Format:
public static DB2PoolMonitor getPoolMonitor(int monitorType)

Retrieves an instance of the DB2PoolMonitor class.

Parameter descriptions:

monitorType
The monitor type. This value must be
DB2PoolMonitor.TRANSPORT_OBJECT.

heavyWeightReusedObjectCount
Format:
public abstract int heavyWeightReusedObjectCount()

Retrieves the number of objects that were reused from the pool.

lightWeightReusedObjectCount
Format:
public abstract int lightWeightReusedObjectCount()

Retrieves the number of objects that were reused but were not in the pool. This
can happen if a Connection object releases a transport object at a transaction
boundary. If the Connection object needs a transport object later, and the
original transport object has not been used by any other Connection object, the
Connection object can use that transport object.

longestBlockedRequestTime
Format:
public abstract long longestBlockedRequestTime()

Retrieves the longest amount of time that a request was blocked, in
milliseconds.

numberOfConnectionReleaseRefused
Format:
public abstract int numberOfConnectionReleaseRefused()

Retrieves the number of times that the release of a connection was refused.

numberOfRequestsBlocked
Format:

14-160 IBM Data Server Driver for JDBC and SQLJ for Informix

public abstract int numberOfRequestsBlocked()

Retrieves the number of requests that the IBM Data Server Driver for JDBC
and SQLJ made to the pool that the pool blocked because the pool reached its
maximum capacity. A blocked request might be successful if an object is
returned to the pool before the db2.jcc.maxTransportObjectWaitTime is
exceeded and an exception is thrown.

numberOfRequestsBlockedDataSourceMax
Format:
public abstract int numberOfRequestsBlockedDataSourceMax()

Retrieves the number of requests that the IBM Data Server Driver for JDBC
and SQLJ made to the pool that the pool blocked because the pool reached the
maximum for the DataSource object.

numberOfRequestsBlockedPoolMax
Format:
public abstract int numberOfRequestsBlockedPoolMax()

Retrieves the number of requests that the IBM Data Server Driver for JDBC
and SQLJ made to the pool that the pool blocked because the maximum
number for the pool was reached.

removedObjectCount
Format:
public abstract int removedObjectCount()

Retrieves the number of objects that have been deleted from the pool since the
pool was created.

shortestBlockedRequestTime
Format:
public abstract long shortestBlockedRequestTime()

Retrieves the shortest amount of time that a request was blocked, in
milliseconds.

successfullRequestsFromPool
Format:
public abstract int successfullRequestsFromPool()

Retrieves the number of successful requests that the IBM Data Server Driver
for JDBC and SQLJ has made to the pool since the pool was created. A
successful request means that the pool returned an object.

totalPoolObjects
Format:
public abstract int totalPoolObjects()

Retrieves the number of objects that are currently in the pool.

totalRequestsToPool
Format:
public abstract int totalRequestsToPool()

Retrieves the total number of requests that the IBM Data Server Driver for
JDBC and SQLJ has made to the pool since the pool was created.

Chapter 14. JDBC and SQLJ reference information 14-161

totalTimeBlocked
Format:
public abstract long totalTimeBlocked()

Retrieves the total time in milliseconds for requests that were blocked by the
pool. This time can be much larger than the elapsed execution time of the
application if the application uses multiple threads.

DB2PreparedStatement interface
The com.ibm.db2.jcc.DB2PreparedStatement interface extends the
com.ibm.db2.jcc.DB2Statement and java.sql.PreparedStatement interfaces.

DB2PreparedStatement fields

The following constants are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

public static DBIndicatorDefault DB_PARAMETER_DEFAULT
This constant can be used with standard interfaces, such as
PreparedStatement.setObject or ResultSet.updateObject to indicate that the
default value is assigned to the associated parameter.

public static DBIndicatorUnassigned DB_PARAMETER_UNASSIGNED
This constant can be used with standard interfaces, such as
PreparedStatement.setObject or ResultSet.updateObject to indicate that the
associated parameter is unaassigned.

DB2PreparedStatement methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

executeDB2QueryBatch
Format:
public void executeDB2QueryBatch()

throws java.sql.SQLException

Executes a statement batch that contains queries with parameters.

This method is not supported for connections to IBM Informix data sources.

getDBGeneratedKeys
Format:
public java.sql.ResultSet[] getDBGeneratedKeys()

throws java.sql.SQLException

Retrieves automatically generated keys that were created when INSERT
statements were executed in a batch. Each ResultSet object that is returned
contains the automatically generated keys for a single statement in the batch.

getDBGeneratedKeys returns an array of length 0 under the following
conditions:
v getDBGeneratedKeys is called out of sequence. For example, if

getDBGeneratedKeys is called before executeBatch, an array of length 0 is
returned.

v The PreparedStatement that is executed in a batch was not created using one
of the following methods:

14-162 IBM Data Server Driver for JDBC and SQLJ for Informix

Connection.prepareStatement(String sql, int[] autoGeneratedKeys)
Connection.prepareStatement(String sql, String[] autoGeneratedColumnNames)
Connection.prepareStatement(String sql, Statement.RETURN_GENERATED_KEYS)

If getDBGeneratedKeys is called against a PreparedStatement that was created
using one of the previously listed methods, and the PreparedStatement is not
in a batch, a single ResultSet is returned.

getEstimateCost
Format:
public int getEstimateCost()

throws java.sql.SQLException

Returns the estimated cost of an SQL statement from the data server after the
data server dynamically prepares the statement successfully. This value is the
same as the fourth element in the sqlerrd array of the SQLCA.

If the deferPrepares property is set to true, calling getEstimateCost causes the
data server to execute a dynamic prepare operation.

If the SQL statement cannot be prepared, or the data server does not return
estimated cost information at prepare time, getEstimateCost returns -1.

getEstimateRowCount
Format:
public int getEstimateRowCount()

throws java.sql.SQLException

Returns the estimated row count for an SQL statement from the data server
after the data server dynamically prepares the statement successfully. This
value is the same as the third element in the sqlerrd array of the SQLCA.

If the deferPrepares property is set to true, calling getEstimateRowCount
causes the data server to execute a dynamic prepare operation.

If the SQL statement cannot be prepared, or the data server does not return
estimated row count information at prepare time, getEstimateRowCount
returns -1.

setDBTimestamp
Format:
public void setDBTimestamp(int parameterIndex,

DBTimestamp timestamp)
throws java.sql.SQLException

Assigns a DBTimestamp value to a parameter.

Parameters:

parameterIndex
The index of the parameter marker to which a DBTimestamp variable
value is assigned.

timestamp
The DBTimestamp value that is assigned to the parameter marker.

This method is not supported for connections to IBM Informix data sources.

setJccArrayAtName
Format:
public void setJccArrayAtName(String parameterMarkerName,

java.sql.Array x)
throws java.sql.SQLException

Chapter 14. JDBC and SQLJ reference information 14-163

|
|

|
|
|

Assigns a java.sql.Array value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The java.sql.Array value that is assigned to the named parameter marker.

setJccAsciiStreamAtName
Formats:

Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and
later:
public void setJccAsciiStreamAtName(String parameterMarkerName,

java.io.InputStream x, int length)
throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and
later:
public void setJccAsciiStreamAtName(String parameterMarkerName,

java.io.InputStream x)
throws java.sql.SQLException

public void setJccAsciiStreamAtName(String parameterMarkerName,
java.io.InputStream x, long length)
throws java.sql.SQLException

Assigns an ASCII value in a java.io.InputStream to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The ASCII java.io.InputStream value that is assigned to the parameter
marker.

length
The length in bytes of the java.io.InputStream value that is assigned to the
named parameter marker.

setJccBigDecimalAtName
Format:
public void setJccBigDecimalAtName(String parameterMarkerName,

java.math.BigDecimal x)
throws java.sql.SQLException

Assigns a java.math.BigDecimal value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The java.math.BigDecimal value that is assigned to the named parameter
marker.

14-164 IBM Data Server Driver for JDBC and SQLJ for Informix

|

|
|

|

|
|

||

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|

|
|

|

|
|

||
|

|
|
|

|
|

|
|
|

|

|
|

|

|
|

||
|

setJccBinaryStreamAtName
Formats:

Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and
later:
public void setJccBinaryStreamAtName(String parameterMarkerName,

java.io.InputStream x, int length)
throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and
later:
public void setJccBinaryStreamAtName(String parameterMarkerName,

java.io.InputStream x)
throws java.sql.SQLException

public void setJccBinaryStreamAtName(String parameterMarkerName,
java.io.InputStream x, long length)
throws java.sql.SQLException

Assigns a binary value in a java.io.InputStream to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The binary java.io.InputStream value that is assigned to the parameter
marker.

length
The number of bytes of the java.io.InputStream value that are assigned to
the named parameter marker.

setJccBlobAtName
Formats:

Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and
later:
public void setJccBlobAtName(String parameterMarkerName,

java.sql.Blob x)
throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and
later:
public void setJccBlobAtName(String parameterMarkerName,

java.io.InputStream x)
throws java.sql.SQLException

public void setJccBlobAtName(String parameterMarkerName,
java.io.InputStream x, long length)
throws java.sql.SQLException

Assigns a BLOB value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

Chapter 14. JDBC and SQLJ reference information 14-165

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|

|
|

|

|
|

||
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|

|
|

|

|
|

x The java.sql.Blob value or java.io.InputStream value that is assigned to the
parameter marker.

length
The number of bytes of the java.io.InputStream value that are assigned to
the named parameter marker.

setJccBooleanAtName
Format:
public void setJccBooleanAtName(String parameterMarkerName,

boolean x)
throws java.sql.SQLException

Assigns a boolean value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The boolean value that is assigned to the named parameter marker.

setJccByteAtName
Format:
public void setJccByteAtName(String parameterMarkerName,

byte x)
throws java.sql.SQLException

Assigns a byte value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The byte value that is assigned to the named parameter marker.

setJccBytesAtName
Format:
public void setJccBytesAtName(String parameterMarkerName,

byte[] x)
throws java.sql.SQLException

Assigns an array of byte values to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The byte array that is assigned to the named parameter marker.

setJccCharacterStreamAtName
Formats:

14-166 IBM Data Server Driver for JDBC and SQLJ for Informix

||
|

|
|
|

|
|

|
|
|

|

|
|

|

|
|

||

|
|

|
|
|

|

|
|

|

|
|

||

|
|

|
|
|

|

|
|

|

|
|

||

|
|

Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and
later:
public void setJccCharacterStreamAtName(String parameterMarkerName,

java.io.Reader x, int length)
throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and
later:
public void setJccCharacterStreamAtName(String parameterMarkerName,

java.io.Reader x)
throws java.sql.SQLException

public void setJccCharacterStreamAtName(String parameterMarkerName,
java.io.Reader x, long length)
throws java.sql.SQLException

Assigns a Unicode value in a java.io.Reader to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The Unicode java.io.Reader value that is assigned to the named parameter
marker.

length
The number of characters of the java.io.InputStream value that are assigned
to the named parameter marker.

setJccClobAtName
Formats:

Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and
later:
public void setJccClobAtName(String parameterMarkerName,

java.sql.Clob x)
throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and
later:
public void setJccClobAtName(String parameterMarkerName,

java.io.Reader x)
throws java.sql.SQLException

public void setJccClobAtName(String parameterMarkerName,
java.io.Reader x, long length)
throws java.sql.SQLException

Assigns a CLOB value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The java.sql.Clob value or java.io.Reader value that is assigned to the
named parameter marker.

Chapter 14. JDBC and SQLJ reference information 14-167

|
|

|
|
|

|
|

|
|
|
|
|
|

|

|
|

|

|
|

||
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|

|
|

|

|
|

||
|

length
The number of bytes of the java.io.InputStream value that are assigned to
the named parameter marker.

setJccDateAtName
Formats:
public void setJccDateAtName(String parameterMarkerName,

java.sql.Date x)
throws java.sql.SQLException

public void setJccDateAtName(String parameterMarkerName,
java.sql.Date x,
java.util.Calendar cal)
throws java.sql.SQLException

Assigns a java.sql.Date value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The java.sql.Date value that is assigned to the named parameter marker.

cal
The java.util.Calendar object that the IBM Data Server Driver for JDBC and
SQLJ uses to construct the date.

setJccDBTimestampAtName
Format:
public void setJccDBTimestampAtName(String parameterMarkerName,

DBTimestamp timestamp)
throws java.sql.SQLException

Assigns a DBTimestamp value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a DBTimestamp variable
value is assigned.

timestamp
The DBTimestamp value that is assigned to the named parameter marker.

This method is not supported for connections to IBM Informix data sources.

setJccDBDefaultAtName
Formats:
public void setJccDBDefaultAtName(String parameterMarkerName)

throws SQLException

Assigns the default value to a named parameter marker. Execution of
setJccDBDefaultAtName produces the same results as using the literal
DEFAULT in the SQL string, instead of the parameter marker name.

Parameters:

14-168 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|
|

|
|

|
|
|
|
|
|
|

|

|
|

|

|
|

||

|
|
|

parameterMarkerName
The name of the parameter marker to which a value is assigned.

This method is not supported for connections to IBM Informix data sources.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

setJccDBUnassignedAtName
Formats:
public void setJccDBUnassignedAtName(String parameterMarkerName)

throws SQLException

Does not assign a value to the specified named parameter. Execution of
setJccDBUnassignedAtName produces the same result as if the specified
parameter marker name had not appeared in the SQL string.

Parameters:

parameterMarkerName
The name of the parameter marker whose value is to be unassigned.

This method is not supported for connections to IBM Informix data sources.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

setJccDoubleAtName
Format:
public void setJccDoubleAtName(String parameterMarkerName,

double x)
throws java.sql.SQLException

Assigns a value of type double to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type double that is assigned to the parameter marker.

setJccFloatAtName
Format:
public void setJccFloatAtName(String parameterMarkerName,

float x)
throws java.sql.SQLException

Assigns a value of type float to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type float that is assigned to the parameter marker.

setJccIntAtName
Format:

Chapter 14. JDBC and SQLJ reference information 14-169

|
|

|
|
|

|

|
|

|

|
|

||

|
|

|
|
|

|

|
|

|

|
|

||

|
|

public void setJccIntAtName(String parameterMarkerName,
int x)
throws java.sql.SQLException

Assigns a value of type int to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type int that is assigned to the parameter marker.

setJccLongAtName
Format:
public void setJccLongAtName(String parameterMarkerName,

long x)
throws java.sql.SQLException

Assigns a value of type long to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type long that is assigned to the parameter marker.

setJccNullAtName
Format:
public void setJccNullAtName(String parameterMarkerName,

int jdbcType)
throws java.sql.SQLException

public void setJccNullAtName(String parameterMarkerName,
int jdbcType,
String typeName)
throws java.sql.SQLException

Assigns the SQL NULL value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

jdbcType
The JDBC type code of the NULL value that is assigned to the parameter
marker, as defined in java.sql.Types.

typeName
If jdbcType is java.sql.Types.DISTINCT or java.sql.Types.REF, the
fully-qualified name of the SQL user-defined type of the NULL value that
is assigned to the parameter marker.

setJccObjectAtName
Formats:

14-170 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|
|

|

|
|

|

|
|

||

|
|

|
|
|

|

|
|

|

|
|

||

|
|

|
|
|
|
|
|
|

|

|
|

|

|
|

|
|
|

|
|
|
|

|
|

public void setJccObjectAtName(String parameterMarkerName,
java.sql.Object x)
throws java.sql.SQLException

public void setJccObjectAtName(String parameterMarkerName,
java.sql.Object x,
int targetJdbcType)
throws java.sql.SQLException

public void setJccObjectAtName(String parameterMarkerName,
java.sql.Object x,
int targetJdbcType,
int scale)
throws java.sql.SQLException

Assigns a value with type java.lang.Object to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value with type Object that is assigned to the parameter marker.

targetJdbcType
The data type, as defined in java.sql.Types, that is assigned to the input
value when it is sent to the data source.

scale
The scale of the value that is assigned to the parameter marker. This
parameter applies only to these cases:
v If targetJdbcType is java.sql.Types.DECIMAL or java.sql.Types.NUMERIC,

scale is the number of digits to the right of the decimal point.
v If x has type java.io.InputStream or java.io.Reader, scale is the this is the

length of the data in the Stream or Reader object.

setJccShortAtName
Format:
public void setJccShortAtName(String parameterMarkerName,

short x)
throws java.sql.SQLException

Assigns a value of type short to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type short that is assigned to the parameter marker.

setJccSQLXMLAtName
Format:
public void setJccSQLXMLAtName(String parameterMarkerName,

java.sql.SQLXML x)
throws java.sql.SQLException

Assigns a value of type java.sql.SQLXML to a named parameter marker.

Chapter 14. JDBC and SQLJ reference information 14-171

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

||

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|

|
|

|

|
|

||

|
|

|
|
|

|

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

This method is supported only for connections to DB2 Database for Linux,
UNIX, and Windows Version 9.1 or later or DB2 for z/OS Version 9 or later.

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type java.sql.SQLXML that is assigned to the parameter
marker.

setJccStringAtName
Format:
public void setJccStringAtName(String parameterMarkerName,

String x)
throws java.sql.SQLException

Assigns a value of type String to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The value of type String that is assigned to the parameter marker.

setJccTimeAtName
Formats:
public void setJccTimeAtName(String parameterMarkerName,

java.sql.Time x)
throws java.sql.SQLException

public void setJccTimeAtName(String parameterMarkerName,
java.sql.Time x,
java.util.Calendar cal)
throws java.sql.SQLException

Assigns a java.sql.Time value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The java.sql.Time value that is assigned to the parameter marker.

cal
The java.util.Calendar object that the IBM Data Server Driver for JDBC and
SQLJ uses to construct the time.

setJccTimestampAtName
Formats:
public void setJccTimestampAtName(String parameterMarkerName,

java.sql.Timestamp x)
throws java.sql.SQLException

14-172 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|

|
|

|

|
|

||
|

|
|

|
|
|

|

|
|

|

|
|

||

|
|

|
|
|
|
|
|
|

|

|
|

|

|
|

||

|
|
|

|
|

|
|
|

public void setJccTimestampAtName(String parameterMarkerName,
java.sql.Timestamp x,
java.util.Calendar cal)
throws java.sql.SQLException

Assigns a java.sql.Timestamp value to a named parameter marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The java.sql.Timestamp value that is assigned to the parameter marker.

cal
The java.util.Calendar object that the IBM Data Server Driver for JDBC and
SQLJ uses to construct the timestamp.

setJccUnicodeStreamAtName
Format:
public void setJccUnicodeStreamAtName(String parameterMarkerName,

java.io.InputStream x, int length)
throws java.sql.SQLException

Assigns a Unicode value in a java.io.InputStream to a named parameter
marker.

This method can be called only if the enableNamedParameterMarkers property
is set to DB2BaseDataSource.YES (1).

Parameters:

parameterMarkerName
The name of the parameter marker to which a value is assigned.

x The Unicode java.io.InputStream value that is assigned to the parameter
marker.

length
The number of bytes of the java.io.InputStream value that are assigned to
the parameter marker.

setDBDefault
Formats:
public void setDBDefault(int parameterIndex)

throws SQLException

Assigns the default value to the specified parameter. Execution of setDBDefault
produces the same results as using the literal DEFAULT in the SQL string,
instead of the parameter.

Parameters:

parameterIndex
The number of the parameter whose value is being updated.

This method is not supported for connections to IBM Informix data sources.

setDBUnassigned
Formats:
public void setDBUnassigned(int parameterIndex)

throws SQLException

Chapter 14. JDBC and SQLJ reference information 14-173

|
|
|
|

|

|
|

|

|
|

||

|
|
|

|
|

|
|
|

|
|

|
|

|

|
|

||
|

|
|
|

Does not assign a value to the specified parameter. Execution of
setDBUnassigned produces the same result as if the specified parameter had
not appeared in the SQL string.

Parameters:

parameterIndex
The number of the parameter whose value is to be unassigned.

This method is not supported for connections to IBM Informix data sources.

DB2ResultSet interface
The com.ibm.db2.jcc.DB2ResultSet interface is used to create objects from which
IBM Data Server Driver for JDBC and SQLJ-only query information can be
obtained.

DB2ResultSet implements the java.sql.Wrapper interface.

DB2ResultSet methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getDB2RowChangeToken
Format:
public long DB2ResultSet.getDB2RowChangeToken()

throws java.sql.SQLException

Returns the row change token for the current row, if it is available. Returns 0 if
optimistic locking columns were not requested or are not available.

This method applies only to connections to DB2 Database for Linux, UNIX,
and Windows.

getDB2RID
Format:
public Object DB2ResultSet.getDB2RID()

throws java.sql.SQLException

Returns the RID for the current row, if it is available. The RID is available if
optimistic locking columns were requested and are available. Returns null if
optimistic locking columns were not requested or are not available.

This method applies only to connections to DB2 Database for Linux, UNIX,
and Windows.

getDB2RIDType
Format:
public int DB2ResultSet.getDB2RIDType()

throws java.sql.SQLException

Returns the data type of the RID column in a DB2ResultSet. The returned
value maps to a java.sql.Types constant. If the DB2ResultSet does not contain
a RID column, java.sql.Types.NULL is returned.

This method applies only to connections to DB2 Database for Linux, UNIX,
and Windows.

getDBTimestamp
Formats:

14-174 IBM Data Server Driver for JDBC and SQLJ for Informix

public DBTimestamp getDBTimestamp(int parameterIndex)
throws SQLException

public DBTimestamp getDBTimestamp(String parameterName)
throws SQLException

Returns the value in the current row of a TIMESTAMP or TIMESTAMP WITH
TIME ZONE column that is in a DB2ResultSet object as a DBTimestamp object.
For a TIMESTAMP column, the returned value has the local time zone. If the
value of the DB2ResultSet column is NULL, the returned value is null.

Parameters:

parameterIndex
The number of the column in the DB2ResultSet whose value is being
retrieved.

parameterName
The name of the column in the DB2ResultSet whose value is being
retrieved.

updateDBDefault
Formats:
public void updateDBDefault(int parameterIndex)

throws SQLException
public void updateDBDefault(String columnName)
throws SQLException

Assigns the default value to the specified column in a DB2ResultSet object.
This method does not update the underlying table.

Parameters:

parameterIndex
The number of the column in the DB2ResultSet whose value is being
updated.

columnName
The name of the column in the DB2ResultSet whose value is being
updated.

This method is not supported for connections to IBM Informix data sources.

DB2ResultSetMetaData interface
The com.ibm.db2.jcc.DB2ResultSetMetaData interface provides methods that
provide information about a ResultSet object.

Before a com.ibm.db2.jcc.DB2ResultSetMetaData method can be used, a
java.sql.ResultSetMetaData object that is returned from a
java.sql.ResultSet.getMetaData call needs to be cast to
com.ibm.db2.jcc.DB2ResultSetMetaData.

DB2ResultSetMetaData methods:

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

isDB2ColumnNameDerived
Format:
public boolean isDB2ColumnNameDerived (int column)

throws java.sql.SQLException

Chapter 14. JDBC and SQLJ reference information 14-175

Returns true if the name of a ResultSet column is in the SQL SELECT list that
generated the ResultSet.

For example, suppose that a ResultSet is generated from the SQL statement
SELECT EMPNAME, SUM(SALARY) FROM EMP. Column name EMPNAME
is derived from the SQL SELECT list, but the name of the column in the
ResultSet that corresponds to SUM(SALARY) is not derived from the SELECT
list.

Parameter descriptions:

column
The ordinal position of a column in the ResultSet.

DB2RowID interface
The com.ibm.db2.jcc.DB2RowID interface is used for declaring Java objects for use
with the SQL ROWID data type.

The com.ibm.db2.jcc.DB2RowID interface does not apply to connection to IBM
Informix.

DB2RowID methods

The following method is defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getBytes
Format:
public byte[] getBytes()

Converts a com.ibm.jcc.DB2RowID object to bytes.

DB2SimpleDataSource class
The com.ibm.db2.jcc.DB2SimpleDataSource class extends the DB2BaseDataSource
class.

A DB2BaseDataSource object does not support connection pooling or distributed
transactions. It contains all of the properties and methods that the
DB2BaseDataSource class contains. In addition, DB2SimpleDataSource contains the
following IBM Data Server Driver for JDBC and SQLJ-only properties.

DB2SimpleDataSource implements the java.sql.Wrapper interface.

DB2SimpleDataSource properties

The following properties are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

String com.ibm.db2.jcc.DB2SimpleDataSource.password

DB2SimpleDataSource methods

The following method is defined only for the IBM Data Server Driver for JDBC
and SQLJ.

setPassword
Format:
public synchronized void setPassword(String password)

14-176 IBM Data Server Driver for JDBC and SQLJ for Informix

Sets the password for the DB2SimpleDataSource object. There is no
corresponding getPassword method. Therefore, the password cannot be
encrypted because there is no way to retrieve the password so that you can
decrypt it.

DB2Sqlca class
The com.ibm.db2.jcc.DB2Sqlca class is an encapsulation of the SQLCA.

DB2Sqlca methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getMessage
Format:
public abstract String getMessage()

Returns error message text.

getSqlCode
Format:
public abstract int getSqlCode()

Returns an SQL error code value.

getSqlErrd
Format:
public abstract int[] getSqlErrd()

Returns an array, each element of which contains an SQLCA SQLERRD.

getSqlErrmc
Format:
public abstract String getSqlErrmc()

Returns a string that contains the SQLCA SQLERRMC values, delimited with
spaces.

getSqlErrmcTokens
Format:
public abstract String[] getSqlErrmcTokens()

Returns an array, each element of which contains an SQLCA SQLERRMC
token.

getSqlErrp
Format:
public abstract String getSqlErrp()

Returns the SQLCA SQLERRP value.

getSqlState
Format:
public abstract String getSqlState()

Returns the SQLCA SQLSTATE value.

Chapter 14. JDBC and SQLJ reference information 14-177

getSqlWarn
Format:
public abstract char[] getSqlWarn()

Returns an array, each element of which contains an SQLCA SQLWARN value.

DB2Statement interface
The com.ibm.db2.jcc.DB2Statement interface extends the java.sql.Statement
interface.

DB2Statement implements the java.sql.Wrapper interface.

DB2Statement methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

getDB2ClientProgramId
Format:
public String getDB2ClientProgramId()

throws java.sql.SQLException

Returns the user-defined client program identifier for the connection, which is
stored on the data source.

getDB2ClientProgramId does not apply to DB2 Database for Linux, UNIX, and
Windows data servers.

setDB2ClientProgramId
Format:
public abstract void setDB2ClientProgramId(String program-ID)
throws java.sql.SQLException

Sets a user-defined program identifier for the connection on a data server. That
program identifier is an 80-byte string that is used to identify the caller.

setDB2ClientProgramId does not apply to DB2 Database for Linux, UNIX, and
Windows data servers.

The DB2 for z/OS server places the string in IFCID 316 trace records along
with other statistics, so that you can identify which program is associated with
a particular SQL statement.

getIDSBigSerial
Format:
public int getIDSBigSerial()

throws java.sql.SQLException

Retrieves an automatically generated key from a BIGSERIAL column after the
automatically generated key was inserted by a previously executed INSERT
statement.

The following conditions must be true for getIDSBigSerial to execute
successfully:
v The INSERT statement is the last SQL statement that is executed before this

method is called.
v The table into which the row is inserted contains a BIGSERIAL column.

14-178 IBM Data Server Driver for JDBC and SQLJ for Informix

|
|

|
|

|
|
|

|
|

|
|

|

v The form of the JDBC Connection.prepareStatement method or
Statement.executeUpdate method that prepares or executes the INSERT
statement does not have parameters that request automatically generated
keys.

This method applies only to connections to IBM Informix databases.

getIDSSerial
Format:
public int getIDSSerial()

throws java.sql.SQLException

Retrieves an automatically generated key from a SERIAL column after the
automatically generated key was inserted by a previously executed INSERT
statement.

The following conditions must be true for getIDSSerial to execute successfully:
v The INSERT statement is the last SQL statement that is executed before this

method is called.
v The table into which the row is inserted contains a SERIAL column.
v The form of the JDBC Connection.prepareStatement method or

Statement.executeUpdate method that prepares or executes the INSERT
statement does not have parameters that request automatically generated
keys.

This method applies only to connections to IBM Informix databases.

getIDSSerial8
Format:
public long getIDSSerial8()

throws java.sql.SQLException

Retrieves an automatically generated key from a SERIAL8 column after the
automatically generated key was inserted by a previously executed INSERT
statement.

The following conditions must be true for getIDSSerial8 to execute successfully:
v The INSERT statement is the last SQL statement that is executed before this

method is called.
v The table into which the row is inserted contains a SERIAL8 column.
v The form of the JDBC Connection.prepareStatement method or

Statement.executeUpdate method that prepares or executes the INSERT
statement does not have parameters that request automatically generated
keys.

This method applies only to connections to IBM Informix data sources.

getIDSSQLStatementOffSet
Format:
public int getIDSSQLStatementOffSet()

throws java.sql.SQLException

After an SQL statement executes on an IBM Informix data source, if the
statement has a syntax error, getIDSSQLStatementOffSet returns the offset into
the statement text of the syntax error.

getIDSSQLStatementOffSet returns:
v 0, if the statement does not have a syntax error.

Chapter 14. JDBC and SQLJ reference information 14-179

|
|
|
|

|

v -1, if the data source is not IBM Informix.

This method applies only to connections to IBM Informix data sources.

DB2SystemMonitor interface
The com.ibm.db2.jcc.DB2SystemMonitor interface is used for collecting system
monitoring data for a connection. Each connection can have one
DB2SystemMonitor instance.

DB2SystemMonitor fields

The following fields are defined only for the IBM Data Server Driver for JDBC and
SQLJ.

public final static int RESET_TIMES
public final static int ACCUMULATE_TIMES

These values are arguments for the DB2SystemMonitor.start method.
RESET_TIMES sets time counters to zero before monitoring starts.
ACCUMULATE_TIMES does not set time counters to zero.

DB2SystemMonitor methods

The following methods are defined only for the IBM Data Server Driver for JDBC
and SQLJ.

enable
Format:
public void enable(boolean on)
throws java.sql.SQLException

Enables the system monitor that is associated with a connection. This method
cannot be called during monitoring. All times are reset when enable is
invoked.

getApplicationTimeMillis
Format:
public long getApplicationTimeMillis()

throws java.sql.SQLException

Returns the sum of the application, JDBC driver, network I/O, and database
server elapsed times. The time is in milliseconds.

A monitored elapsed time interval is the difference, in milliseconds, between
these points in the JDBC driver processing:

Interval beginning
When start is called.

Interval end
When stop is called.

getApplicationTimeMillis returns 0 if system monitoring is disabled. Calling
this method without first calling the stop method results in an SQLException.

getCoreDriverTimeMicros
Format:
public long getCoreDriverTimeMicros()

throws java.sql.SQLException

14-180 IBM Data Server Driver for JDBC and SQLJ for Informix

Returns the sum of elapsed monitored API times that were collected while
system monitoring was enabled. The time is in microseconds.

A monitored API is a JDBC driver method for which processing time is
collected. In general, elapsed times are monitored only for APIs that might
result in network I/O or database server interaction. For example,
PreparedStatement.setXXX methods and ResultSet.getXXX methods are not
monitored.

Monitored API elapsed time includes the total time that is spent in the driver
for a method call. This time includes any network I/O time and database
server elapsed time.

A monitored API elapsed time interval is the difference, in microseconds,
between these points in the JDBC driver processing:

Interval beginning
When a monitored API is called by the application.

Interval end
Immediately before the monitored API returns control to the application.

getCoreDriverTimeMicros returns 0 if system monitoring is disabled. Calling
this method without first calling the stop method, or calling this method when
the underlying JVM does not support reporting times in microseconds results
in an SQLException.

getNetworkIOTimeMicros
Format:
public long getNetworkIOTimeMicros()

throws java.sql.SQLException

Returns the sum of elapsed network I/O times that were collected while
system monitoring was enabled. The time is in microseconds.

Elapsed network I/O time includes the time to write and read DRDA data
from network I/O streams. A network I/O elapsed time interval is the time
interval to perform the following operations in the JDBC driver:
v Issue a TCP/IP command to send a DRDA message to the database server.

This time interval is the difference, in microseconds, between points
immediately before and after a write and flush to the network I/O stream is
performed.

v Issue a TCP/IP command to receive DRDA reply messages from the
database server. This time interval is the difference, in microseconds,
between points immediately before and after a read on the network I/O
stream is performed.

Network I/O time intervals are captured for all send and receive operations,
including the sending of messages for commits and rollbacks.

The time spent waiting for network I/O might be impacted by delays in CPU
dispatching at the database server for low-priority SQL requests.

getNetworkIOTimeMicros returns 0 if system monitoring is disabled. Calling
this method without first calling the stop method, or calling this method when
the underlying JVM does not support reporting times in microseconds results
in an SQLException.

getServerTimeMicros
Format:

Chapter 14. JDBC and SQLJ reference information 14-181

public long getServerTimeMicros()
throws java.sql.SQLException

Returns the sum of all reported database server elapsed times that were
collected while system monitoring was enabled. The time is in microseconds.

The database server reports elapsed times under these conditions:
v The database server supports returning elapsed time data to the client.

DB2 Database for Linux, UNIX, and Windows Version 9.5 and later and DB2
for z/OS support this function.

v The database server performs operations that can be monitored. For
example, database server elapsed time is not returned for commits or
rollbacks.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2
Database for Linux, UNIX, and Windows, and IBM Data Server Driver for JDBC and
SQLJ type 4 connectivity: The database server elapsed time is defined as the
elapsed time to parse the request data stream, process the command, and
generate the reply data stream at the database server. Network time to receive
or send the data stream is not included. The database server elapsed time
interval is the difference, in microseconds, between these points in the database
server processing:

Interval beginning
When the operating system dispatches the database server to process a
TCP/IP message that is received from the JDBC driver.

Interval end
When the database server is ready to issue the TCP/IP command to return
the reply message to the client.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for
z/OS: The database server elapsed time interval is the difference, in
microseconds, between these points in the JDBC driver native processing:

Interval beginning
The z/OS Store Clock (STCK) value when a JDBC driver native method
calls the RRS attachment facility to process an SQL request.

Interval end
The z/OS Store Clock (STCK) value when control returns to the JDBC
driver native method following an RRS attachment facility call to process
an SQL request.

getServerTimeMicros returns 0 if system monitoring is disabled. Calling this
method without first calling the stop method results in an SQLException.

start
Format:
public void start (int lapMode)

throws java.sql.SQLException

If the system monitor is enabled, start begins the collection of system
monitoring data for a connection. Valid values for lapMode are RESET_TIMES
or ACCUMULATE_TIMES.

Calling this method with system monitoring disabled does nothing. Calling
this method more than once without an intervening stop call results in an
SQLException.

14-182 IBM Data Server Driver for JDBC and SQLJ for Informix

stop
Format:
public void stop()

throws java.sql.SQLException

If the system monitor is enabled, stop ends the collection of system monitoring
data for a connection. After monitoring is stopped, monitored times can be
obtained with the getXXX methods of DB2SystemMonitor.

Calling this method with system monitoring disabled does nothing. Calling
this method without first calling start, or calling this method more than once
without an intervening start call results in an SQLException.

DB2TraceManager class
The com.ibm.db2.jcc.DB2TraceManager class controls the global log writer.

The global log writer is driver-wide, and applies to all connections. The global log
writer overrides any other JDBC log writers. In addition to starting the global log
writer, the DB2TraceManager class provides the ability to suspend and resume
tracing of any type of log writer. That is, the suspend and resume methods of the
DB2TraceManager class apply to all current and future DriverManager log writers,
DataSource log writers, or IBM Data Server Driver for JDBC and SQLJ-only
connection-level log writers.

DB2TraceManager methods

getTraceManager
Format:
static public DB2TraceManager getTraceManager()

throws java.sql.SQLException

Gets an instance of the global log writer.

setLogWriter
Formats:
public abstract void setLogWriter(String traceDirectory,

String baseTraceFileName, int traceLevel)
throws java.sql.SQLException

public abstract void setLogWriter(String traceFile,
boolean fileAppend, int traceLevel)
throws java.sql.SQLException

public abstract void setLogWriter(java.io.PrintWriter logWriter,
int traceLevel)
throws java.sql.SQLException

Enables a global trace. After setLogWriter is called, all calls for DataSource or
Connection traces are discarded until DB2TraceManager.unsetLogWriter is
called.

When setLogWriter is called, all future Connection or DataSource traces are
redirected to a trace file or PrintWriter, depending on the form of setLogWriter
that you use. If the global trace is suspended when setLogWriter is called, the
specified settings take effect when the trace is resumed.

Parameter descriptions:

traceDirectory
Specifies a directory into which global trace information is written. This
setting overrides the settings of the traceDirectory and logWriter properties
for a DataSource or DriverManager connection.

Chapter 14. JDBC and SQLJ reference information 14-183

When the form of setLogWriter with the traceDirectory parameter is used,
the JDBC driver sets the traceFileAppend property to false when
setLogWriter is called, which means that the existing log files are
overwritten. Each JDBC driver connection is traced to a different file in the
specified directory. The naming convention for the files in that directory
depends on whether a non-null value is specified for baseTraceFileName:
v If a null value is specified for baseTraceFileName, a connection is traced

to a file named traceFile_global_n.
n is the nth JDBC driver connection.

v If a non-null value is specified for baseTraceFileName, a connection is
traced to a file named baseTraceFileName_global_n.
baseTraceFileName is the value of the baseTraceFileName parameter.
n is the nth JDBC driver connection.

baseTraceFileName
Specifies the stem for the names of the files into which global trace
information is written. The combination of baseTraceFileName and
traceDirectory determines the full path name for the global trace log files.

traceFileName
Specifies the file into which global trace information is written. This setting
overrides the settings of the traceFile and logWriter properties for a
DataSource or DriverManager connection.

When the form of setLogWriter with the traceFileName parameter is used,
only one log file is written.

traceFileName can include a directory path.

logWriter
Specifies a character output stream to which all global log records are
written.

This value overrides the logWriter property on a DataSource or
DriverManager connection.

traceLevel
Specifies what to trace.

You can specify one or more of the following traces with the traceLevel
parameter:
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X'00')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X'01')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X'02')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X'04')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION (X'10')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X'20')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X'40')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA (X'80')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA (X'100')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X'200')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X'400')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_XA_CALLS (IBM Data Server

Driver for JDBC and SQLJ type 2 connectivity for DB2 Database for
Linux, UNIX, and Windows only) (X'800')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_META_CALLS (X'2000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DATASOURCE_CALLS (X'4000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_LARGE_OBJECT_CALLS (X'8000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR (X'20000')

14-184 IBM Data Server Driver for JDBC and SQLJ for Informix

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_TRACEPOINTS () (X'40000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X'FFFFFFFF')

To specify more than one trace, use one of these techniques:
v Use bitwise OR (|) operators with two or more trace values. For

example, to trace DRDA flows and connection calls, specify this value
for traceLevel:
TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (tilde (~)) operator with a trace value to
specify all except a certain trace. For example, to trace everything except
DRDA flows, specify this value for traceLevel:
~TRACE_DRDA_FLOWS

fileAppend
Specifies whether to append to or overwrite the file that is specified by the
traceFile parameter. true means that the existing file is not overwritten.

unsetLogWriter
Format:
public abstract void unsetLogWriter()

throws java.sql.SQLException

Disables the global log writer override for future connections.

suspendTrace
Format:
public void suspendTrace()

throws java.sql.SQLException

Suspends all global, Connection-level, or DataSource-level traces for current
and future connections. suspendTrace can be called when the global log writer
is enabled or disabled.

resumeTrace
Format:
public void resumeTrace()

throws java.sql.SQLException

Resumes all global, Connection-level, or DataSource-level traces for current and
future connections. resumeTrace can be called when the global log writer is
enabled or disabled. If the global log writer is disabled, resumeTrace resumes
Connection-level or DataSource-level traces. If the global log writer is enabled,
resumeTrace resumes the global trace.

getLogWriter
Format:
public abstract java.io.PrintWriter getLogWriter()

throws java.sql.SQLException

Returns the PrintWriter for the global log writer, if it is set. Otherwise,
getLogWriter returns null.

getTraceFile
Format:
public abstract String getTraceFile()

throws java.sql.SQLException

Returns the name of the destination file for the global log writer, if it is set.
Otherwise, getTraceFile returns null.

Chapter 14. JDBC and SQLJ reference information 14-185

getTraceDirectory
Format:
public abstract String getTraceDirectory()

throws java.sql.SQLException

Returns the name of the destination directory for global log writer files, if it is
set. Otherwise, getTraceDirectory returns null.

getTraceLevel
Format:
public abstract int getTraceLevel()

throws java.sql.SQLException

Returns the trace level for the global trace, if it is set. Otherwise, getTraceLevel
returns -1 (TRACE_ALL).

getTraceFileAppend
Format:
public abstract boolean getTraceFileAppend()

throws java.sql.SQLException

Returns true if the global trace records are appended to the trace file.
Otherwise, getTraceFileAppend returns false.

DB2TraceManagerMXBean interface
The com.ibm.db2.jcc.mx.DB2TraceManagerMXBean interface is the means by which
an application makes DB2TraceManager available as an MXBean for the remote
trace controller.

DB2TraceManagerMXBean methods

setTraceFile
Format:
public void setTraceFile(String traceFile,

boolean fileAppend, int traceLevel)
throws java.sql.SQLException

Specifies the name of the file into which the remote trace manager writes trace
information, and the type of information that is to be traced.

Parameter descriptions:

traceFileName
Specifies the file into which global trace information is written. This setting
overrides the settings of the traceFile and logWriter properties for a
DataSource or DriverManager connection.

When the form of setLogWriter with the traceFileName parameter is used,
only one log file is written.

traceFileName can include a directory path.

fileAppend
Specifies whether to append to or overwrite the file that is specified by the
traceFile parameter. true means that the existing file is not overwritten.

traceLevel
Specifies what to trace.

You can specify one or more of the following traces with the traceLevel
parameter:

14-186 IBM Data Server Driver for JDBC and SQLJ for Informix

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X'00')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X'01')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X'02')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X'04')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION (X'10')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X'20')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X'40')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA (X'80')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA (X'100')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X'200')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X'400')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_META_CALLS (X'2000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DATASOURCE_CALLS (X'4000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_LARGE_OBJECT_CALLS (X'8000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR (X'20000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_TRACEPOINTS () (X'40000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X'FFFFFFFF')

To specify more than one trace, use one of these techniques:
v Use bitwise OR (|) operators with two or more trace values. For

example, to trace DRDA flows and connection calls, specify this value
for traceLevel:
TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (tilde (~)) operator with a trace value to
specify all except a certain trace. For example, to trace everything except
DRDA flows, specify this value for traceLevel:
~TRACE_DRDA_FLOWS

getTraceFile
Format:
public void getTraceFile()

throws java.sql.SQLException

Returns the name of the destination file for the remote trace controller, if it is
set. Otherwise, getTraceFile returns null.

setTraceDirectory
Format:
public void setTraceDirectory(String traceDirectory,

String baseTraceFileName,
int traceLevel) throws java.sql.SQLException

Specifies the name of the directory into which the remote trace controller
writes trace information, and the type of information that is to be traced.

Parameter descriptions:

traceDirectory
Specifies a directory into which trace information is written. This setting
overrides the settings of the traceDirectory and logWriter properties for a
DataSource or DriverManager connection.

Each JDBC driver connection is traced to a different file in the specified
directory. The naming convention for the files in that directory depends on
whether a non-null value is specified for baseTraceFileName:
v If a null value is specified for baseTraceFileName, a connection is traced

to a file named traceFile_global_n.
n is the nth JDBC driver connection.

Chapter 14. JDBC and SQLJ reference information 14-187

v If a non-null value is specified for baseTraceFileName, a connection is
traced to a file named baseTraceFileName_global_n.
baseTraceFileName is the value of the baseTraceFileName parameter.
n is the nth JDBC driver connection.

baseTraceFileName
Specifies the stem for the names of the files into which global trace
information is written. The combination of baseTraceFileName and
traceDirectory determines the full path name for the global trace log files.

traceLevel
Specifies what to trace.

You can specify one or more of the following traces with the traceLevel
parameter:
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X'00')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X'01')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X'02')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X'04')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION (X'10')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X'20')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X'40')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA (X'80')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA (X'100')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X'200')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X'400')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_META_CALLS (X'2000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DATASOURCE_CALLS (X'4000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_LARGE_OBJECT_CALLS (X'8000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR (X'20000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_TRACEPOINTS () (X'40000')
v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X'FFFFFFFF')

To specify more than one trace, use one of these techniques:
v Use bitwise OR (|) operators with two or more trace values. For

example, to trace DRDA flows and connection calls, specify this value
for traceLevel:
TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (tilde (~)) operator with a trace value to
specify all except a certain trace. For example, to trace everything except
DRDA flows, specify this value for traceLevel:
~TRACE_DRDA_FLOWS

getTraceFileAppend
Format:
public abstract boolean getTraceFileAppend()

throws java.sql.SQLException

Returns true if trace records that are generated by the trace controller are
appended to the trace file. Otherwise, getTraceFileAppend returns false.

getTraceDirectory
Format:
public void getTraceDirectory()

throws java.sql.SQLException

14-188 IBM Data Server Driver for JDBC and SQLJ for Informix

Returns the name of the destination directory for trace records that are
generated by the trace controller, if it is set. Otherwise, getTraceDirectory
returns null.

getTraceLevel
Format:
public void getTraceLevel()

throws java.sql.SQLException

Returns the trace level for the trace records that are generated by the trace
controller, if it is set. Otherwise, getTraceLevel returns -1 (TRACE_ALL).

unsetLogWriter
Format:
public abstract void unsetLogWriter()

throws java.sql.SQLException

Disables the global log writer override for future connections.

suspendTrace
Format:
public void suspendTrace()

throws java.sql.SQLException

Suspends all global, Connection-level, or DataSource-level traces for current
and future connections. suspendTrace can be called when the global log writer
is enabled or disabled.

resumeTrace
Format:
public void resumeTrace()

throws java.sql.SQLException

Resumes all global, Connection-level, or DataSource-level traces for current and
future connections. resumeTrace can be called when the global log writer is
enabled or disabled. If the global log writer is disabled, resumeTrace resumes
Connection-level or DataSource-level traces. If the global log writer is enabled,
resumeTrace resumes the global trace.

DB2Types class
The com.ibm.db2.jcc.DB2Types class provides fields that define IBM Data Server
Driver for JDBC and SQLJ-only data types.

DB2Types fields

The following constants define types codes only for the IBM Data Server Driver for
JDBC and SQLJ.
v public final static int BLOB_FILE = -100002
v public final static int CLOB_FILE = -100003
v public final static int CURSOR = -100008
v public final static int DECFLOAT = -100001
v public final static int XML_AS_BLOB_FILE = -100004
v public final static int XML_AS_CLOB_FILE = -100005
v public final static int TIMESTAMPTZ =-100010

Chapter 14. JDBC and SQLJ reference information 14-189

|

|
|

|

|
|

|

|

|

|

|

|

|

DB2XADataSource class
DB2XADataSource is a factory for XADataSource objects. An object that
implements this interface is registered with a naming service that is based on the
Java Naming and Directory Interface (JNDI).

The com.ibm.db2.jcc.DB2XADataSource class extends the
com.ibm.db2.jcc.DB2BaseDataSource class, and implements the
javax.sql.XADataSource, java.io.Serializable, and javax.naming.Referenceable
interfaces.

DB2XADataSource methods

getDB2TrustedXAConnection
Formats:
public Object[] getDB2TrustedXAConnection(String user,

String password,
java.util.Properties properties)
throws java.sql.SQLException

public Object[] getDB2TrustedXAConnection(
java.util.Properties properties)
throws java.sql.SQLException

public Object[] getDB2TrustedXAConnection(
org.ietf.jgss.GSSCredential gssCredential,
java.util.Properties properties)
throws java.sql.SQLException

An application server using a system authorization ID uses this method to
establish a trusted connection.

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 Database for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS Version 9.1 or later

The following elements are returned in Object[]:
v The first element is a DB2TrustedXAConnection instance.
v The second element is a unique cookie for the generated XA connection

instance.

The first form getDB2TrustedXAConnection provides a user ID and password.
The second form of getDB2TrustedXAConnection uses the user ID and
password of the DB2XADataSource object. The third form of
getDB2TrustedXAConnection is for connections that use Kerberos security.

Parameter descriptions:

user
The authorization ID that is used to establish the trusted connection.

password
The password for the authorization ID that is used to establish the trusted
connection.

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

14-190 IBM Data Server Driver for JDBC and SQLJ for Informix

|

properties
Properties for the connection.

getDB2TrustedPooledConnection
Format:
public Object[] getDB2TrustedPooledConnection(java.util.Properties properties)

throws java.sql.SQLException

An application server using a system authorization ID uses this method to
establish a trusted connection, using the user ID and password for the
DB2XADataSource object.

Trusted connections are supported for:
v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to:

– DB2 Database for Linux, UNIX, and Windows Version 9.5 or later
– DB2 for z/OS Version 9.1 or later
– IBM Informix Version 11.70 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for
z/OS Version 9.1 or later

The following elements are returned in Object[]:
v The first element is a trusted DB2TrustedPooledConnection instance.
v The second element is a unique cookie for the generated pooled connection

instance.

Parameter descriptions:

properties
Properties for the connection.

getDB2XAConnection
Formats:
public DB2XAConnection getDB2XAConnection(String user,

String password,
java.util.Properties properties)
throws java.sql.SQLException

public DB2XAConnection getDB2XAConnection(
org.ietf.jgss.GSSCredential gssCredential,
java.util.Properties properties)
throws java.sql.SQLException

Establishes the initial untrusted connection in a heterogeneous pooling
environment.

The first form getDB2PooledConnection provides a user ID and password. The
second form of getDB2XAConnection is for connections that use Kerberos
security.

Parameter descriptions:

user
The authorization ID that is used to establish the connection.

password
The password for the authorization ID that is used to establish the
connection.

gssCredential
If the data source uses Kerberos security, specifies a delegated credential
that is passed from another principal.

Chapter 14. JDBC and SQLJ reference information 14-191

properties
Properties for the connection.

DBTimestamp class
The com.ibm.db2.jcc.DBTimestamp class can be used to create timestamp objects
with a precision of up to picoseconds and time zone information. This class is
primarily for support of the SQL TIMESTAMP WITH TIME ZONE data type,
which is supported only by DB2 for z/OS.

The com.ibm.db2.jcc.DBTimestamp class is a subclass of the java.sql.Timestamp
class. Therefore, a com.ibm.db2.jcc.DBTimestamp object can be used with any
methods that normally operate on a java.sql.Timestamp object, or take a
java.sql.Timestamp object as an argument.

The IBM Data Server Driver for JDBC and SQLJ returns a DBTimestamp object for
all JDBC methods that return timestamp information, such as
ResultSet.getTimestamp or CallableStatement.getTimestamp.

DBTimestamp constructor

The following constructor is defined only for the IBM Data Server Driver for JDBC
and SQLJ.

DBTimestamp
Formats:
public DBTimestamp(long time,

java.util.Calendar calendar)
throws java.sql.SQLException

public DBTimestamp(long time,)
throws java.sql.SQLException

public DBTimestamp(java.sql.Timestamp timestamp)
throws java.sql.SQLException

public DBTimestamp(java.sql.Timestamp timestamp,
java.util.Calendar calendar)
throws java.sql.SQLException

Constructs a DBTimestamp object.

Parameter descriptions:

time
The number of milliseconds since January 1, 1970.

timestamp
A Timestamp value with a precision of up to picoseconds.

calendar
The Calendar value that provides the time zone.

DBTimestamp methods

getPicos
Formats:
public long getPicos()

Returns the fractional seconds component of a DBTimestamp value.

getTimeZone
Formats:
public java.util.TimeZone getTimeZone()

14-192 IBM Data Server Driver for JDBC and SQLJ for Informix

Returns the time zone component of a DBTimestamp value.

setPicos
Format:
public void setPicos(long p)

throws SQLException

Assigns the given value to the fractional seconds component of a
DBTimestamp value.

Parameter descriptions:

p A value between 0 and 999999999999, inclusive, which is the fractional
sections component of a DBTimestamp value.

setTimeZone
Format:
public void setTimeZone(java.util.TimeZone timeZone)

throws SQLException

Assigns the given value to the time zone component of a DBTimestamp value.

Parameter descriptions:

timeZone
The time zone component of a DBTimestamp value.

valueOfDBString
Format:
public static DBTimestamp valueOfDBString(String s)

throws java.lang.IllegalArgumentException

Constructs a DBTimestamp value from the string representation of a timestamp
value.

Parameter descriptions:

s The string representation of a timestamp value. The value must be in one
of the following formats:
yyyy-mm-dd.hh.mm.ss[.ffffffffffff]-th:tm
yyyy-mm-dd hh:mm:ss[.ffffffffffff]-th:tm
yyyy-mm-dd.hh.mm.ss[.ffffffffffff]
yyyy-mm-dd hh:mm:ss[.ffffffffffff]
v yyyy is a year.
v mm is a month.
v dd is a day.
v hh is hours.
v mm is minutes.
v ss is seconds.
v [.ffffffffffff] is one to 12 optional fractions of seconds.
v th is the hours component of a time zone.
v tm is the minutes component of a time zone.

toDBString
Format:
public String toDBString(boolean includeTimeZone)

Returns the string representation of a DBTimestamp object.

The returned value has one of the following formats:
yyyy-mm-dd.hh.mm.ss[.ffffffffffff]-th:tm
yyyy-mm-dd.hh.mm.ss[.ffffffffffff]

Chapter 14. JDBC and SQLJ reference information 14-193

Parameter description:

includeTimeZone
Specifies whether to include the time zone (-th:tm) in the returned string.

JDBC differences between versions of the IBM Data Server Driver for
JDBC and SQLJ

Before you can upgrade your JDBC applications from older to newer versions of
the IBM Data Server Driver for JDBC and SQLJ, you need to understand the
differences between those drivers.

Supported methods

For a list of methods that the IBM Data Server Driver for JDBC and SQLJ supports,
see "Driver support for JDBC APIs".

Use of progressive streaming by the JDBC drivers

For IBM Data Server Driver for JDBC and SQLJ, Version 3.50 and later, progressive
streaming, which is also known as dynamic data format, behavior is the default for
LOB retrieval, for connections to DB2 Database for Linux, UNIX, and Windows
Version 9.5 and later.

Progressive streaming is supported in the IBM Data Server Driver for JDBC and
SQLJ Version 3.1 and later, but for IBM Data Server Driver for JDBC and SQLJ
version 3.2 and later, progressive streaming behavior is the default for LOB and
XML retrieval, for connections to DB2 for z/OS Version 9.1 and later.

Previous versions of the IBM Data Server Driver for JDBC and SQLJ did not
support progressive streaming.

Important: With progressive streaming, when you retrieve a LOB or XML value
from a ResultSet into an application variable, you can manipulate the contents of
that application variable until you move the cursor or close the cursor on the
ResultSet. After that, the contents of the application variable are no longer
available to you. If you perform any actions on the LOB in the application variable,
you receive an SQLException. For example, suppose that progressive streaming is
enabled, and you execute statements like this:
...
ResultSet rs = stmt.executeQuery("SELECT CLOBCOL FROM MY_TABLE");
rs.next(); // Retrieve the first row of the ResultSet
Clob clobFromRow1 = rs.getClob(1);

// Put the CLOB from the first column of
// the first row in an application variable

String substr1Clob = clobFromRow1.getSubString(1,50);
// Retrieve the first 50 bytes of the CLOB

rs.next(); // Move the cursor to the next row.
// clobFromRow1 is no longer available.

// String substr2Clob = clobFromRow1.getSubString(51,100);
// This statement would yield an SQLException

Clob clobFromRow2 = rs.getClob(1);
// Put the CLOB from the first column of
// the second row in an application variable

rs.close(); // Close the ResultSet.
// clobFromRow2 is also no longer available.

14-194 IBM Data Server Driver for JDBC and SQLJ for Informix

After you execute rs.next() to position the cursor at the second row of the
ResultSet, the CLOB value in clobFromRow1 is no longer available to you.
Similarly, after you execute rs.close() to close the ResultSet, the values in
clobFromRow1 and clobFromRow2 are no longer available.

To avoid errors that are due to this changed behavior, you need to take one of the
following actions:
v Modify your applications.

Applications that retrieve LOB data into application variables can manipulate
the data in those application variables only until the cursors that were used to
retrieve the data are moved or closed.

v Disable progressive streaming by setting the progressiveStreaming property to
DB2BaseDataSource.NO (2).

ResultSetMetaData values for IBM Data Server Driver for JDBC
and SQLJ version 4.0 and later

For the IBM Data Server Driver for JDBC and SQLJ version 4.0 and later, the
default behavior of ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnLabel differs from the default behavior for earlier
JDBC drivers.

If you need to use IBM Data Server Driver for JDBC and SQLJ version 4.0 or later,
but your applications need to return the ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnLabel values that were returned with older JDBC
drivers, you can set the useJDBC4ColumnNameAndLabelSemantics Connection
and DataSource property to DB2BaseDataSource.NO (2).

Batch updates with automatically generated keys have different
results in different driver versions

With the IBM Data Server Driver for JDBC and SQLJ version 3.52 or later,
preparing an SQL statement for retrieval of automatically generated keys is
supported.

With the IBM Data Server Driver for JDBC and SQLJ version 3.50 or version 3.51,
preparing an SQL statement for retrieval of automatically generated keys and
using the PreparedStatement object for batch updates causes an SQLException.

Versions of the IBM Data Server Driver for JDBC and SQLJ before Version 3.50 do
not throw an SQLException when an application calls the addBatch or
executeBatch method on a PreparedStatement object that is prepared to return
automatically generated keys. However, the PreparedStatement object does not
return automatically generated keys.

Batch updates of data on DB2 for z/OS servers have different
results in different driver versions

After you successfully invoke an executeBatch statement, the IBM Data Server
Driver for JDBC and SQLJ returns an array. The purpose of the array is to indicate
the number of rows that are affected by each SQL statement that is executed in the
batch.

If the following conditions are true, the IBM Data Server Driver for JDBC and SQLJ
returns Statement.SUCCESS_NO_INFO (-2) in the array elements:

Chapter 14. JDBC and SQLJ reference information 14-195

v The application is connected to a subsystem that is in DB2 for z/OS Version 8
new-function mode, or later.

v The application is using Version 3.1 or later of the IBM Data Server Driver for
JDBC and SQLJ.

v The IBM Data Server Driver for JDBC and SQLJ uses multi-row INSERT
operations to execute batch updates.

This occurs because with multi-row INSERT, the database server executes the
entire batch as a single operation, so it does not return results for individual SQL
statements.

If you are using an earlier version of the IBM Data Server Driver for JDBC and
SQLJ, or you are connected to a data source other than DB2 for z/OS Version 8 or
later, the array elements contain the number of rows that are affected by each SQL
statement.

Batch updates and deletes of data on DB2 for z/OS servers have
different size limitations in different driver versions

Before IBM Data Server Driver for JDBC and SQLJ version 3.59 or 4.9, a
DisconnectException with error code -4499 was thrown for IBM Data Server Driver
for JDBC and SQLJ type 4 connectivity to DB2 for z/OS if the size of an update or
delete batch was greater than 32KB. Starting with version 3.59 or 4.9, this
restriction no longer exists, and the exception is no longer thrown.

Initial value of the CURRENT CLIENT_ACCTNG special register

For a JDBC or SQLJ application that runs under the IBM Data Server Driver for
JDBC and SQLJ version 2.6 or later, using type 4 connectivity, the initial value for
the DB2 for z/OS CURRENT CLIENT_ACCTNG special register is the
concatenation of the DB2 for z/OS version and the value of the clientWorkStation
property. For any other JDBC driver, version, and connectivity, the initial value is
not set.

Properties that control the use of multi-row FETCH

Before version 3.7 and version 3.51 of the IBM Data Server Driver for JDBC and
SQLJ, multi-row FETCH support was enabled and disabled through the
useRowsetCursor property, and was available only for scrollable cursors, and for
IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for z/OS.
Starting with version 3.7 and 3.51:
v For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for

z/OS, the IBM Data Server Driver for JDBC and SQLJ uses only the
enableRowsetSupport property to determine whether to use multi-row FETCH
for scrollable or forward-only cursors.

v For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for
z/OS or DB2 Database for Linux, UNIX, and Windows, or IBM Data Server
Driver for JDBC and SQLJ type 2 connectivity on DB2 Database for Linux,
UNIX, and Windows, the IBM Data Server Driver for JDBC and SQLJ uses the
enableRowsetSupport property to determine whether to use multi-row FETCH
for scrollable cursors, if enableRowsetSupport is set. If enableRowsetSupport is
not set, the driver uses the useRowsetCursor property to determine whether to
use multi-row FETCH.

14-196 IBM Data Server Driver for JDBC and SQLJ for Informix

JDBC 1 positioned updates and deletes and multi-row FETCH

Before version 3.7 and version 3.51 of the IBM Data Server Driver for JDBC and
SQLJ, multi-row FETCH from DB2 for z/OS tables was controlled by the
useRowsetCursor property. If an application contained JDBC 1 positioned update
or delete operations, and multi-row FETCH support was enabled, the IBM Data
Server Driver for JDBC and SQLJ permitted the update or delete operations, but
unexpected updates or deletes might occur.

Starting with version 3.7 and 3.51 of the IBM Data Server Driver for JDBC and
SQLJ, the enableRowsetSupport property enables or disables multi-row FETCH
from DB2 for z/OS tables or DB2 Database for Linux, UNIX, and Windows tables.
The enableRowsetSupport property overrides the useRowsetCursor property. If
multi-row FETCH is enabled through the enableRowsetSupport property, and an
application contains a JDBC 1 positioned update or delete operation, the IBM Data
Server Driver for JDBC and SQLJ throws an SQLException.

Valid forms of prepareStatement for retrieval of automatically
generated keys from a DB2 for z/OS view

Starting with version 3.57 or version 4.7 of the IBM Data Server Driver for JDBC
and SQLJ, if you are inserting data into a view on a DB2 for z/OS data server, and
you want to retrieve automatically generated keys, you need to use one of the
following methods to prepare the SQL statement that inserts rows into the view:
Connection.prepareStatement(sql-statement, String [] columnNames);
Connection.prepareStatement(sql-statement, int [] columnIndexes);
Statement.executeUpdate(sql-statement, String [] columnNames);
Statement.executeUpdate(sql-statement, int [] columnIndexes);

Examples of ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnLabel values

For the IBM Data Server Driver for JDBC and SQLJ version 4.0 and later, the
default behavior of ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnLabel differs from the default behavior for earlier
JDBC drivers. You can use the useJDBC4ColumnNameAndLabelSemantics property
to change this behavior.

The following examples show the values that are returned for IBM Data Server
Driver for JDBC and SQLJ Version 4.0, and for previous JDBC drivers, when the
useJDBC4ColumnNameAndLabelSemantics property is not set.

All queries use a table that is defined like this:
CREATE TABLE MYTABLE(INTCOL INT)

Example: The following query contains an AS CLAUSE, which defines a label for a
column in the result set:
SELECT MYCOL AS MYLABEL FROM MYTABLE

The following table lists the ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnName values that are returned for the query:

Chapter 14. JDBC and SQLJ reference information 14-197

Table 14-62. ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnName before and after IBM Data
Server Driver for JDBC and SQLJ Version 4.0 for a query with an AS CLAUSE

Target data source

Behavior before IBM Data Server Driver for
JDBC and SQLJ Version 4.0

Behavior for IBM Data Server Driver for
JDBC and SQLJ Version 4.0 and later

getColumnName
value

getColumnLabel
value

getColumnName
value

getColumnLabel
value

DB2 Database for
Linux, UNIX, and
Windows

MYLABEL MYLABEL MYCOL MYLABEL

IBM Informix MYLABEL MYLABEL MYCOL MYLABEL

DB2 for z/OS Version
8 or later, and DB2
UDB for iSeries V5R3
and later

MYLABEL MYLABEL MYCOL MYLABEL

DB2 for z/OS Version
7, and DB2 UDB for
iSeries V5R2

MYLABEL MYLABEL MYLABEL MYLABEL

Example: The following query contains no AS clause:
SELECT MYCOL FROM MYTABLE

The ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnLabel
methods on the query return MYCOL, regardless of the target data source.

Example: On a DB2 for z/OS or DB2 for i data source, a LABEL ON statement is
used to define a label for a column:
LABEL ON COLUMN MYTABLE.MYCOL IS ’LABELONCOL’

The following query contains an AS CLAUSE, which defines a label for a column
in the ResultSet:
SELECT MYCOL AS MYLABEL FROM MYTABLE

The following table lists the ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnName values that are returned for the query.

Table 14-63. ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnName before and after IBM Data
Server Driver for JDBC and SQLJ Version 4.0 for a table column with a LABEL ON statement in a query with an AS
CLAUSE

Target data source

Behavior before IBM Data Server Driver for
JDBC and SQLJ Version 4.0

Behavior for IBM Data Server Driver for
JDBC and SQLJ Version 4.0 and later

getColumnName
value

getColumnLabel
value

getColumnName
value

getColumnLabel
value

DB2 for z/OS Version
8 or later, and DB2
UDB for iSeries V5R3
and later

MYLABEL LABELONCOL MYCOL MYLABEL

DB2 for z/OS Version
7, and DB2 UDB for
iSeries V5R2

MYLABEL LABELONCOL MYCOL LABELONCOL

Example: On a DB2 for z/OS or DB2 for i data source, a LABEL ON statement is
used to define a label for a column:

14-198 IBM Data Server Driver for JDBC and SQLJ for Informix

LABEL ON COLUMN MYTABLE.MYCOL IS ’LABELONCOL’

The following query contains no AS CLAUSE:
SELECT MYCOL FROM MYTABLE

The following table lists the ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnName values that are returned for the query.

Table 14-64. ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnName before and after IBM Data
Server Driver for JDBC and SQLJ Version 4.0 for a table column with a LABEL ON statement in a query with no AS
CLAUSE

Target data source

Behavior before IBM Data Server Driver for
JDBC and SQLJ Version 4.0

Behavior for IBM Data Server Driver for
JDBC and SQLJ Version 4.0

getColumnName
value

getColumnLabel
value

getColumnName
value

getColumnLabel
value

DB2 for z/OS Version
8 or later, and DB2
UDB for i5/OS® V5R3
and later

MYCOL LABELONCOL MYCOL MYCOL

DB2 for z/OS Version
7, and DB2 UDB for
i5/OS V5R2

MYCOL LABELONCOL MYLABEL LABELONCOL

Differences between the IBM Data Server Driver for JDBC and SQLJ
and the IBM Informix JDBC Driver

Before you can migrate your JDBC applications from older drivers to the IBM Data
Server Driver for JDBC and SQLJ, you need to understand the differences between
those drivers.

The differences in support for JDBC methods are described in topic “Driver
support for JDBC APIs” on page 14-68.

The following sections describe differences between the IBM Data Server Driver for
JDBC and SQLJ and the Informix JDBC Driver:
v “IBM Informix environment variables not supported” on page 14-200
v “SQL commands” on page 14-200
v “Closing connections with active transactions” on page 14-200
v “Environment variable mapping between Informix JDBC driver and IBM Data

Server Driver for JDBC and SQLJ” on page 14-201
v “Security mechanisms” on page 14-201
v “Namespaces” on page 14-201
v “Cursors” on page 14-202
v “Data types” on page 14-203
v “Large object behavior” on page 14-204
v “Data conversions” on page 14-204
v “Prepared statements” on page 14-204
v “Behavior of getIDSSerial() and getIDSSerial8()” on page 14-205
v “Behavior of afterLast() followed by getRow()” on page 14-205
v “Parameter order” on page 14-205

Chapter 14. JDBC and SQLJ reference information 14-199

v “Error codes” on page 14-206

IBM Informix environment variables not supported

The following IBM Informix environment variables that were supported for the
Informix JDBC driver are not supported for the IBM Data Server Driver for JDBC
and SQLJ.

v ALLOWREGISTEROUTFORINPARAM

v BIG_FET_BUF_SIZE

v CSM

v ENABLE_HDRSWITCH

v IFX_BATCHUPDATE_PER_SPEC

v IFX_CODESETLOB

v IFX_SET_FLOAT_AS_SMFLOAT

v IFX_TRIMTRAILINGSPACES

v JDBCTEMP

v LDAP_IFXBASE

v LDAP_PASSWD

v LDAP_URL

v LDAP_USER

v LOBCACHE

v NEWCODESET

v NEWLOCALE

v IFXHOST_SECONDARY

v IFXHOST INFORMIXCONRETRY

v IFXPORTNO_SECONDARY

v INFORMIXCONTIME

v INFORMIXOPCACHE

v INFORMIXSERVER_SECONDARY

v INFORMIXSTACKSIZE

v NEWNLSMAP

v PROXY

v SECURITY

v SQLH_FILE

v SQLH_LOC

v SQLH_TYPE

v SQLIDEBUG

SQL commands

The following SQL commands are not supported when changing frequently used
connection attributes:
v CREATE DATABASE
v DROP DATABASE
v DATABASE
v SET ISOLATION LEVEL
v SET TRANSACTION LEVEL

Closing connections with active transactions

When closing a connection during an active transaction, IBM Data Server Driver
for JDBC and SQLJ prevents the connection from closing and throws the following
exception:
[ibm][db2][jcc][t4][10251] [10308][driver version] “java.sql.Connection.close()
requested while a transaction is in progress on the connection.
The transaction remains active, and the connection cannot be
closed. ERRORCODE=-4471, SQLSTATE=sqlstate”

Whereas, the Informix JDBC driver closes the connection and automatically rolls
back the active transaction.

14-200 IBM Data Server Driver for JDBC and SQLJ for Informix

Environment variable mapping between Informix JDBC driver
and IBM Data Server Driver for JDBC and SQLJ

This section describes the variables for IBM Data Server Driver for JDBC and SQLJ
that replace those from Informix JDBC driver that are not supported.

Table 14-65. Replacement IBM Data Server Driver for JDBC and SQLJ environment variables

Environment variables used by the Informix JDBC
driver

Equivalent environment variables for IBM Data Server
Driver for JDBC and SQLJ

TRACEFILE, PROTOCOLTRACEFILE traceFile

TRACE, PROTOCOLTRACE traceLevel

FET_BUF_SIZE queryBlockSize

IFX_AUTOFREE queryCloseImplicit

INFORMIXCONTIME loginTimeout, blockingReadConnectionTimeout

IFX_LOCK_MODE_WAIT currentLockTimeout

Security mechanisms

This section describes differences in security mechanisms between Informix JDBC
Driver and IBM Data Server Driver for JDBC and SQLJ.

Table 14-66. Security mechanisms differences

Functionality Informix JDBC Driver IBM Data Server Driver for JDBC and SQLJ

Requirement
for a user ID
and password

A user ID and password are not required to
establish a connection.

At least a user ID must be supplied before a
connection can be established. The user ID or
password requirement depends on the value of the
securityMechanism Connection and DataSource
property.

Types of user
ID and
password
security

Password encryption is supported, using
environment variable SECURITY=PASSWORD.

Userid encryption not supported.

Multiple types of user ID and password security
are supported:

v User ID only security

v Encrypted user ID and password security

v Clear text password security

v Encrypted password security

Data
encryption

Uses the communication support
module (CSM), environment
variable:
csm=(classname=com.informix.jdbc.Crypto,
config=test.cfg)

Not supported.

Authentication Pluggable authentication modules; applications
use com.informix.jdbc.IfmxPAM for
Challenge-Response.

Not supported.

Namespaces

This section describes differences in namespace functionality between Informix
JDBC Driver and IBM Data Server Driver for JDBC and SQLJ.

Chapter 14. JDBC and SQLJ reference information 14-201

Table 14-67. Namespace differences

Functionality Informix JDBC driver IBM Data Server Driver for JDBC and SQLJ

Initial Class
Loader

("com.informix.jdbc.IfxDriver") ("com.ibm.db2.jcc.DB2Driver")

Change the initial class name. For example:
Class.forName(“com.ibm.db2.jcc.DB2Driver”)

Package
namespace

com.informix.xxx com.ibm.db2.jcc.xxx

DataSource
namespace

com.informix.jdbcx.IfxDataSource
com.informix.jdbcx.IfxXA DataSource

com.ibm.db2.jcc.DB2SimpleDataSource
com.ibm.db2.jcc.DB2XADataSource

DataSource
method names

Environment variables are prepended
with “getIfx” or “"setIfx”.

For example:
setIfxINFORMIXSTACKSIZE

Environment variables are prepended with “get” or
“set”.

For example: setINFORMIXSTACKSIZE

Cursors

This section describes differences in cursor functionality between Informix JDBC
Driver and IBM Data Server Driver for JDBC and SQLJ.

Table 14-68. Cursor differences

Functionality Informix JDBC Driver
IBM Data Server Driver for JDBC
and SQLJ

Forward-only ResultSet The Forward-only ResultSet stays
open after the last row is accessed; it
remains open until an explicit call to
ResultSet.close();

The Forward-only ResultSet
automatically closes after the last row
is accessed. Throws an error if an
application attempts to retrieve
ResultSetMetaData after reading all
rows. *

ResultSet.wasNull(): ResultSet has no
data

v wasNull() returns FALSE if query
returns no data (ResultSet not
empty but does not contain data).

v wasNull() returns FALSE if
resultset is moved beyond
ResetSet.last().

Throws an SQLException (client side)
with client-specific error numbers.

Product name and version strings
have semantic changes

dmd.getDatabaseProduct
Version()="11.50.UC1"

dmd.getDatabaseProductVersion()=
"IFX11500"

dmd.getDatabaseProductName()
="Informix Dynamic Server"

dmd.getDatabaseProductName()=
"IBM Informix Dynamic
Server/UNIX32"

ResultSet.relative(): For illegal
operations

Throws SQLException -79739 error
"No current row".

Throws SQLException -4476 error
"Cursor is not on a valid row."

ResultSet.next(): IFX does not have
any data

Returns FALSE. Throws an SQLException with
following SELECT failed error:
com.ibm.db2.jcc.am.SqlException:
[ibm][db2][jcc][10120][10898] Invalid
operation: result set is closed.

ResultSet.next(): if getByte() and
getShort() on DECIMAL column result
in overflow

Returns -1 for both methods to
indicate an error.

Throws SQLException
[ibm][db2][jcc][10177][11611] Invalid
data conversion: Requested
conversion would result in a loss of
precision of nnnnnn.

14-202 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-68. Cursor differences (continued)

Functionality Informix JDBC Driver
IBM Data Server Driver for JDBC
and SQLJ

ResultSet.updateTime() ResultSet.updateTime() can be called
on the DATETIME YEAR TO
FRACTION column.

Not supported; use
updateTimestamp().

Statement.setCursorName(""): Setting
cursor name to an empty string

Checks for this condition and throws
an illegal cursor name SQLException.

Passes the empty string to the server
without returning an error.

Updatable Scroll cursors Supported for files on the server. Use Forward-Only, Updatable cursor

* For SELECT statements, the statement is complete when the associated result set
is closed. The result set is closed as soon as one of the following conditions occurs:
v All of the rows have been retrieved.
v The associated Statement object is re-executed.
v Another Statement object is executed on the same connection.

Data types

This section describes differences in data type functionality between Informix JDBC
Driver and IBM Data Server Driver for JDBC and SQLJ.

Table 14-69. Data type differences

Data Type Informix JDBC Driver
IBM Data Server Driver for JDBC
and SQLJ

BYTE, BLOB, TEXT, and CLOB need
casting to resolve ambiguity when
passed as parameters to functions or
procedures

JDBC identifies BYTE as BINARY and
smart large objects as BLOB.

Not supported.

DECIMAL Maximum precision 32 digits. Maximum precision 31 digits.

Floating point conversion to
integer/byte

JDBC returns incorrect value. Throws an SQLException if
conversion is not possible.

getString() on BYTE column
semantics

JDBC converts BYTE to STRING Not supported.

Informix BOOLEAN is identified as
SMALLINT

JDBC driver identifies BOOLEAN as
BOOLEAN.

Does not differentiate BOOLEAN
from SMALLINT.

Informix collection types: LIST, SET,
MULTISET, and ROW

Supported. Not supported.

Informix JDBC extensions classes for
smart large objects (BLOB and CLOB)
and simple large objects (BYTE and
TEXT) and Statement type

Extension classes as supported by the
Informix JDBC driver:

v IfxBblob

v IfxCblob

v IfxSmartBlob

v IfxStatementTypes

v IfxTypes

v IfxLoStat IfxLobDescriptor

Not Supported.

INTERVAL data type Supported. Not supported.

MONEY Maximum precision 32 digits. Maximum precision 31 digits.

Semantics of BLOB updates on client
side being automatically reflected on
the server

Changes to BLOB data on client side
can be reflected on the server.

Does not automatically update BLOB
unless the user issues an update.

Chapter 14. JDBC and SQLJ reference information 14-203

Table 14-69. Data type differences (continued)

Data Type Informix JDBC Driver
IBM Data Server Driver for JDBC
and SQLJ

Smart large object functions like
filetoblob, filetoclob, lotofile and
locopy support

Supported. Not supported.

Large object behavior

This section describes differences in large object behavior between Informix JDBC
Driver and IBM Data Server Driver for JDBC and SQLJ.

Table 14-70. Large object behavior differences

Functionality Informix JDBC Driver
IBM Data Server Driver for JDBC
and SQLJ

getString on a BYTE column Supported. Returns a HEX representation of the
inserted data inserted.

getBlob on a CLOB column Supported. Not supported.

Inserting LOB data using filetoblob or
filetoclob

Supported. Not supported.

BLOB and CLOB object updates with
setBinaryStream() or
setCharacterStream()

Objects updated automatically. Objects not automatically updated.
After calling setXXXStream(), you
must issue an SQL UPDATE.

Data conversions

This section describes differences in data conversions between Informix JDBC
Driver and IBM Data Server Driver for JDBC and SQLJ.

Table 14-71. Data conversion differences

Functionality Informix JDBC Driver
IBM Data Server Driver for JDBC
and SQLJ

Data Conversion from DECIMAL to
SHORT/BYTE with out-of-range results

v getByte conversion: (-1)

v getShort conversion: (-1)

v getInt conversion: (-323855360)

v getByte conversion: (0)

v getShort conversion: (23552)

v getInt conversion: (-323855360)

DECIMAL PRECISION with
PreparedStatement.setDouble()

A packed decimal can be up to 32. A packed decimal can be up to 31.

REAL to DECIMAL conversion Returns a REAL to DECIMAL
conversion. For example: 12345.67871
is returned as 12345.67871.

Limits the scale to give consistent
results for DECIMAL irrespective of
the precision and scale. For example:
12345.67871 is returned as
12345.67800.

DECIMAL to BYTE/SHORT conversion Not supported. Throws an SQLException.

Prepared statements

This section describes differences in the prepared statement functionality between
Informix JDBC Driver and IBM Data Server Driver for JDBC and SQLJ.

14-204 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-72. Prepared statement differences

Functionality Informix JDBC Driver IBM Data Server Driver for JDBC and SQLJ

PreparedStatement.executeBatch()
error handling

Throws an SQLException, only
if there is an error in the batch
execution.

Throws the SQLException:com.ibm.
db2.jcc.am.BatchUpdateException';
applications that do not handle the
exception fail at runtime.

PreparedStatement.setCharacter
Stream(): characters in reader given
do not match the length

Reads n characters as given in
length from the start;
characters exceeding the
length are ignored.

Throws an SQLException.

Behavior of getIDSSerial() and getIDSSerial8()

This section describes differences for getIDSSerial() and getIDSSerial8() between
Informix JDBC Driver and IBM Data Server Driver for JDBC and SQLJ.

Table 14-73. Differences for getIDSSerial() and getIDSSerial8()

Functionality Informix JDBC Driver
IBM Data Server Driver for JDBC
and SQLJ

When called after a rollback Supported. Not supported; returns 0.

Use with JDBC API
getGeneratedKeys() method

Supported. Not supported; returns 0.

Behavior of afterLast() followed by getRow()

When afterLast() is followed by getRow(), the IBM Data Server Driver for JDBC
and SQLJ returns “0”, resetting the cursor to the beginning. Following afterLast(),
there are no valid rows.

The Informix JDBC driver returns the row number last+1 if you call getRow()
immediately after afterLast() call.

Parameter order

There are some differences in parameter order between Informix JDBC Driver and
IBM Data Server Driver for JDBC and SQLJ.

According to the JDBC specifications, when the stored procedure returns a result
parameter, a form of OUT parameter, it is treated just like any other OUT
parameter. Its data type must be registered with the method registerOutParameter,
and its value is retrieved with the appropriate getXXX method. Because a result
parameter comes first in a call to a stored procedure, its ordinal position is always
1.

When the stored procedure returns the result parameter, it returns a result set and
its value is retrieved with the appropriate result set getXXX method.

For IBM Data Server Driver for JDBC and SQLJ, the result of a stored procedure is
treated as an OUT parameter. Its data type must be registered (like other OUT
parameters) with the method registeroutparameter and its value is retrieved with
the appropriate callable statement getXXX method.

Chapter 14. JDBC and SQLJ reference information 14-205

To migrate your applications, remove the question mark (?) = from the {? = call
(.......} statement.

Error codes

This section describes differences in error codes between Informix JDBC Driver and
IBM Data Server Driver for JDBC and SQLJ.

Table 14-74. Error code differences

Functionality Informix JDBC Driver
IBM Data Server Driver for JDBC
and SQLJ

SQLException.getNextException and
getErrorCode

Return an ISAM code and detailed
message on
SQLException.getNextException and
getErrorCode.

Some IBM Informix errors have an
SQL error code and an RSAM error
code. The driver does not support
RSAM error codes returned as
nextException or as
SQLException.getCause().

Client error messages Uses -79xxx. Some messages come from the server
and have a different format and
description. Client error messages are
in the format: -4nnn.

Access to ISAM error codes Gives ISAM error codes to
applications.

Applications need to use diagnostics
extensions to get ISAM error code.
Applications can get detailed error
message for ISAM error codes.

Case conversion of literal arguments in methods that return
metadata

The Informix JDBC Driver converts arguments that represent database objects in
DatabaseMetaData, ParameterMetaData, and ResultSetMetaData method calls to
lowercase. The IBM Data Server Driver for JDBC and SQLJ does no case
conversion.

For example, suppose that you want to retrieve information about the columns in a
table named mytable. With the Informix JDBC Driver, calls of both of these forms
return the information:
dbms.getColumns(null, null, "mytable", null);
dbms.getColumns(null, null, "MyTable", null);

With the IBM Data Server Driver for JDBC and SQLJ, only a call of the following
form returns the information. The case of the table name in the getColumns call
must be the same as the case of the table as it is defined in the database.
dbms.getColumns(null, null, "mytable", null);

Error codes issued by the IBM Data Server Driver for JDBC and SQLJ
Error codes in the ranges +4200 to +4299, +4450 to +4499, -4200 to -4299, and -4450
to -4499 are reserved for the IBM Data Server Driver for JDBC and SQLJ.

When you call the SQLException.getMessage method after a IBM Data Server
Driver for JDBC and SQLJ error occurs, a string is returned that includes:
v Whether the connection is a type 2 or type 4 connection
v Diagnostic information for IBM Software Support
v The level of the driver

14-206 IBM Data Server Driver for JDBC and SQLJ for Informix

v An explanatory message
v The error code
v The SQLSTATE

For example:
[jcc][t4][20128][12071][3.50.54] Invalid queryBlockSize specified: 1,048,576,012.
Using default query block size of 32,767. ERRORCODE=0, SQLSTATE=

Currently, the IBM Data Server Driver for JDBC and SQLJ issues the following
error codes:

Table 14-75. Error codes issued by the IBM Data Server Driver for JDBC and SQLJ

Error
Code Message text and explanation SQLSTATE

+4204 Errors were encountered and tolerated as specified by the
RETURN DATA UNTIL clause.

Explanation: Tolerated errors include federated connection,
authentication, and authorization errors. This warning applies
only to connections to DB2 Database for Linux, UNIX, and
Windows servers. It is issued only when a cursor operation,
such as a ResultSet.next or ResultSet.previous call, returns
false.

02506

+4222 text-from-getMessage

Explanation: A warning condition occurred during
connection to the data source.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

+4223 text-from-getMessage

Explanation: A warning condition occurred during
initialization.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

+4225 text-from-getMessage

Explanation: A warning condition occurred when data was
sent to a server or received from a server.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

+4226 text-from-getMessage

Explanation: A warning condition occurred during
customization or bind.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

+4228 text-from-getMessage

Explanation: An warning condition occurred that does not fit
in another category.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

+4450 Feature not supported: feature-name

Chapter 14. JDBC and SQLJ reference information 14-207

Table 14-75. Error codes issued by the IBM Data Server Driver for JDBC and
SQLJ (continued)

Error
Code Message text and explanation SQLSTATE

+4460 text-from-getMessage

Explanation: The specified value is not a valid option.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

+4461 text-from-getMessage

Explanation: The specified value is invalid or out of range.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

+4462 text-from-getMessage

Explanation: A required value is missing.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

+4470 text-from-getMessage

Explanation: The requested operation cannot be performed
because the target resource is closed.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

+4471 text-from-getMessage

Explanation: The requested operation cannot be performed
because the target resource is in use.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

+4472 text-from-getMessage

Explanation: The requested operation cannot be performed
because the target resource is because the target resource is
unavailable.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

+4474 text-from-getMessage

Explanation: The requested operation cannot be performed
because the target resource cannot be changed.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4200 Invalid operation: An invalid COMMIT or ROLLBACK has
been called in an XA environment during a Global
Transaction.

Explanation: An application that was in a global transaction
in an XA environment issued a commit or rollback. A commit
or rollback operation in a global transaction is invalid.

2D521

14-208 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-75. Error codes issued by the IBM Data Server Driver for JDBC and
SQLJ (continued)

Error
Code Message text and explanation SQLSTATE

-4201 Invalid operation: setAutoCommit(true) is not allowed during
Global Transaction.

Explanation: An application that was in a global transaction
in an XA environment executed the setAutoCommit(true)
statement. Issuing setAutoCommit(true) in a global
transaction is invalid.

2D521

-4203 Error executing function. Server returned rc.

: An error occurred on an XA connection during execution of
an SQL statement.

For network optimization, the IBM Data Server Driver for
JDBC and SQLJ delays some XA flows until the next SQL
statement is executed. If an error occurs in a delayed XA
flow, that error is reported as part of the SQLException that
is thrown by the current SQL statement.

-4210 Timeout getting a transport object from pool. 57033

-4211 Timeout getting an object from pool. 57033

-4212 Sysplex member unavailable.

-4213 Timeout. 57033

-4214 text-from-getMessage

Explanation: Authorization failed.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

28000

-4220 text-from-getMessage

Explanation: An error occurred during character conversion.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4221 text-from-getMessage

Explanation: An error occurred during encryption or
decryption.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4222 text-from-getMessage

Explanation: An error occurred during connection to the data
source.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4223 text-from-getMessage

Explanation: An error occurred during initialization.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

Chapter 14. JDBC and SQLJ reference information 14-209

Table 14-75. Error codes issued by the IBM Data Server Driver for JDBC and
SQLJ (continued)

Error
Code Message text and explanation SQLSTATE

-4224 text-from-getMessage

Explanation: An error occurred during resource cleanup.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4225 text-from-getMessage

Explanation: An error occurred when data was sent to a
server or received from a server.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4226 text-from-getMessage

Explanation: An error occurred during customization or
bind.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4227 text-from-getMessage

Explanation: An error occurred during reset.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4228 text-from-getMessage

Explanation: An error occurred that does not fit in another
category.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4229 text-from-getMessage

Explanation: An error occurred during a batch execution.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4231 An error occurred during the conversion of column
column-number of type sql-data-type with value value to a value
of type java.math.BigDecimal.

-4450 Feature not supported: feature-name 0A504

-4460 text-from-getMessage

Explanation: The specified value is not a valid option.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

14-210 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-75. Error codes issued by the IBM Data Server Driver for JDBC and
SQLJ (continued)

Error
Code Message text and explanation SQLSTATE

-4461 text-from-getMessage

Explanation: The specified value is invalid or out of range.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

42815

-4462 text-from-getMessage

Explanation: A required value is missing.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4463 text-from-getMessage

Explanation: The specified value has a syntax error.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

42601

-4470 text-from-getMessage

Explanation: The requested operation cannot be performed
because the target resource is closed.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4471 text-from-getMessage

Explanation: The requested operation cannot be performed
because the target resource is in use.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4472 text-from-getMessage

Explanation: The requested operation cannot be performed
because the target resource is unavailable.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4473 text-from-getMessage

Explanation: The requested operation cannot be performed
because the target resource is no longer available.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4474 text-from-getMessage

Explanation: The requested operation cannot be performed
because the target resource cannot be changed.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

Chapter 14. JDBC and SQLJ reference information 14-211

Table 14-75. Error codes issued by the IBM Data Server Driver for JDBC and
SQLJ (continued)

Error
Code Message text and explanation SQLSTATE

-4475 text-from-getMessage

Explanation: The requested operation cannot be performed
because access to the target resource is restricted.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4476 text-from-getMessage

Explanation: The requested operation cannot be performed
because the operation is not allowed on the target resource.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

-4496 An SQL OPEN for a held cursor was issued on an XA
connection. The JDBC driver does not allow a held cursor to
be opened on the database server for an XA connection.

-4497 The application must issue a rollback. The unit of work has
already been rolled back in the DB2 server, but other resource
managers involved in the unit of work might not have rolled
back their changes. To ensure integrity of the application, all
SQL requests are rejected until the application issues a
rollback.

-4498 A connection failed but has been reestablished. Host name or
IP address: host-name, service name or port number: port,
special register modification indicator: rc.

Explanation: host-name and port indicate the data source at
which the connection is reestablished. rc indicates whether
SQL statements that set special register values were executed
again:

1 SQL statements that set special register values were
executed again.

2 SQL statements that set special register values might
not have been executed again.

For client reroute against DB2 for z/OS servers, special
register values that were set after the last commit point are
not re-established.

The application is rolled back to the previous commit point.
The connection state and global resources such as global
temporary tables and open held cursors might not be
maintained.

-4499 text-from-getMessage

Explanation: A fatal error occurred that resulted in a
disconnect from the data source. The existing connection has
become unusable.

User response: Call SQLException.getMessage to retrieve
specific information about the problem.

08001 or 58009

-30108 Client reroute exception for the Sysplex. 08506

14-212 IBM Data Server Driver for JDBC and SQLJ for Informix

Table 14-75. Error codes issued by the IBM Data Server Driver for JDBC and
SQLJ (continued)

Error
Code Message text and explanation SQLSTATE

-99999 The IBM Data Server Driver for JDBC and SQLJ issued an
error that does not yet have an error code.

SQLSTATEs issued by the IBM Data Server Driver for JDBC and SQLJ
SQLSTATEs in the range 46600 to 466ZZ are reserved for the IBM Data Server
Driver for JDBC and SQLJ.

The following table lists the SQLSTATEs that are generated or used by the IBM
Data Server Driver for JDBC and SQLJ.

Table 14-76. SQLSTATEs returned by the IBM Data Server Driver for JDBC and SQLJ

SQLSTATE
class SQLSTATE Description

01xxx Warning

02xxx No data

02501 The cursor position is not valid for a FETCH of the current
row.

02506 Tolerable error

08xxx Connection exception

08001 The application requester is unable to establish the
connection.

08003 A connection does not exist

08004 The application server rejected establishment of the
connection

08506 Client reroute exception

0Axxx Feature not supported

0A502 The action or operation is not enabled for this database
instance

0A504 The feature is not supported by the driver

22xxx Data exception

22007 The string representation of a datetime value is invalid

22021 A character is not in the coded character set

23xxx Constraint violation

23502 A value that is inserted into a column or updates a column is
null, but the column cannot contain null values.

24xxx Invalid cursor state

24501 The identified cursor is not open

28xxx Authorization exception

28000 Authorization name is invalid.

2Dxxx Invalid transaction termination

2D521 SQL COMMIT or ROLLBACK are invalid in the current
operating environment.

Chapter 14. JDBC and SQLJ reference information 14-213

Table 14-76. SQLSTATEs returned by the IBM Data Server Driver for JDBC and
SQLJ (continued)

SQLSTATE
class SQLSTATE Description

34xxx Invalid cursor name

34000 Cursor name is invalid.

3Bxxx Invalid savepoint

3B503 A SAVEPOINT, RELEASE SAVEPOINT, or ROLLBACK TO
SAVEPOINT statement is not allowed in a trigger or global
transaction.

40xxx Transaction rollback

42xxx Syntax error or access rule violation

42601 A character, token, or clause is invalid or missing

42734 A duplicate parameter name, SQL variable name, cursor
name, condition name, or label was detected.

42807 The INSERT, UPDATE, or DELETE is not permitted on this
object

42808 A column identified in the insert or update operation is not
updateable

42815 The data type, length, scale, value, or CCSID is invalid

42820 A numeric constant is too long, or it has a value that is not
within the range of its data type

42968 The connection failed because there is no current software
license.

57xxx Resource not available or operator intervention

57033 A deadlock or timeout occurred without automatic rollback

58xxx System error

58008 Execution failed due to a distribution protocol error that will
not affect the successful execution of subsequent DDM
commands or SQL statements

58009 Execution failed due to a distribution protocol error that
caused deallocation of the conversation

58012 The bind process with the specified package name and
consistency token is not active

58014 The DDM command is not supported

58015 The DDM object is not supported

58016 The DDM parameter is not supported

58017 The DDM parameter value is not supported

How to find IBM Data Server Driver for JDBC and SQLJ version and
environment information

To determine the version of the IBM Data Server Driver for JDBC and SQLJ, as
well as information about the environment in which the driver is running, run the
DB2Jcc utility on the command line.

14-214 IBM Data Server Driver for JDBC and SQLJ for Informix

DB2Jcc syntax

�� java com.ibm.db2.jcc.DB2Jcc
-version -configuration -help

��

DB2Jcc option descriptions

-version
Specifies that the IBM Data Server Driver for JDBC and SQLJ displays its name
and version.

-configuration
Specifies that the IBM Data Server Driver for JDBC and SQLJ displays its name
and version, and information about its environment, such as information about
the Java runtime environment, operating system, path information, and license
restrictions.

-help
Specifies that the DB2Jcc utility describes each of the options that it supports. If
any other options are specified with -help, they are ignored.

Commands for SQLJ program preparation
To prepare SQLJ programs for execution, you use commands to translate SQLJ
source code into Java source code and compile the Java source code.

sqlj - SQLJ translator
The sqlj command translates an SQLJ source file into a Java source file and zero or
more SQLJ serialized profiles. By default, the sqlj command also compiles the Java
source file.

Authorization

None

Command syntax

�� sqlj
-help -dir=directory -d=directory -props=properties-file

�

�
-compile=true

-compile=false

-linemap=NO

-linemap=YES

-smap=NO

-smap=YES -encoding=encoding -db2optimize
�

�
-ser2class -status -version -C-help

� -Ccompiler-option

�

Chapter 14. JDBC and SQLJ reference information 14-215

�

� -JJVM-option � SQLJ-source-file-name

��

Command parameters

-help
Specifies that the SQLJ translator describes each of the options that the
translator supports. If any other options are specified with -help, they are
ignored.

-dir=directory
Specifies the name of the directory into which SQLJ puts .java files that are
generated by the translator and .class files that are generated by the compiler.
The default is the directory that contains the SQLJ source files.

The translator uses the directory structure of the SQLJ source files when it puts
the generated files in directories. For example, suppose that you want the
translator to process two files:
v file1.sqlj, which is not in a Java package
v file2.sqlj, which is in Java package sqlj.test

Also suppose that you specify the parameter -dir=/src when you invoke the
translator. The translator puts the Java source file for file1.sqlj in directory /src
and puts the Java source file for file2.sqlj in directory /src/sqlj/test.

-d=directory
Specifies the name of the directory into which SQLJ puts the binary files that
are generated by the translator and compiler. These files include the .ser files,
the name_SJProfileKeys.class files, and the .class files that are generated by the
compiler.

The default is the directory that contains the SQLJ source files.

The translator uses the directory structure of the SQLJ source files when it puts
the generated files in directories. For example, suppose that you want the
translator to process two files:
v file1.sqlj, which is not in a Java package
v file2.sqlj, which is in Java package sqlj.test

Also suppose that you specify the parameter -d=/src when you invoke the
translator. The translator puts the serialized profiles for file1.sqlj in directory
/src and puts the serialized profiles for file2.sqlj in directory /src/sqlj/test.

-compile=true|false
Specifies whether the SQLJ translator compiles the generated Java source into
bytecodes.

true
The translator compiles the generated Java source code. This is the default.

false
The translator does not compile the generated Java source code.

-linemap=no|yes
Specifies whether line numbers in Java exceptions match line numbers in the
SQLJ source file (the .sqlj file), or line numbers in the Java source file that is
generated by the SQLJ translator (the .java file).

14-216 IBM Data Server Driver for JDBC and SQLJ for Informix

no Line numbers in Java exceptions match line numbers in the Java source
file. This is the default.

yes
Line numbers in Java exceptions match line numbers in the SQLJ source
file.

-smap=no|yes
Specifies whether the SQLJ translator generates a source map (SMAP) file for
each SQLJ source file. An SMAP file is used by some Java language debug
tools. This file maps lines in the SQLJ source file to lines in the Java source file
that is generated by the SQLJ translator. The file is in the Unicode UTF-8
encoding scheme. Its format is described by Original Java Specification Request
(JSR) 45, which is available from this web site:
http://www.jcp.org

no Do not generated SMAP files. This is the default.

yes
Generate SMAP files. An SMAP file name is SQLJ-source-file-
name.java.smap. The SQLJ translator places the SMAP file in the same
directory as the generated Java source file.

-encoding=encoding-name
Specifies the encoding of the source file. Examples are JIS or EUC. If this
option is not specified, the default converter for the operating system is used.

-db2optimize
Specifies that the SQLJ translator generates code for a connection context class
that is optimized for IDS. -db2optimize optimizes the code for the user-defined
context but not the default context.

When you run the SQLJ translator with the -db2optimize option, if your
applications use JDBC 3.0 or earlier functions, the IBM Data Server Driver for
JDBC and SQLJ file db2jcc.jar must be in the CLASSPATH for compiling the
generated Java application. If your applications use JDBC 4.0 or earlier
functions, the IBM Data Server Driver for JDBC and SQLJ file db2jcc4.jar must
be in the CLASSPATH for compiling the generated Java application.

-ser2class
Specifies that the SQLJ translator converts .ser files to .class files.

-status
Specifies that the SQLJ translator displays status messages as it runs.

-version
Specifies that the SQLJ translator displays the version of the IBM Data Server
Driver for JDBC and SQLJ. The information is in this form:
IBM SQLJ xxxx.xxxx.xx

-C-help
Specifies that the SQLJ translator displays help information for the Java
compiler.

-Ccompiler-option
Specifies a valid Java compiler option that begins with a dash (-). Do not
include spaces between -C and the compiler option. If you need to specify
multiple compiler options, precede each compiler option with -C. For example:
-C-g -C-verbose

Chapter 14. JDBC and SQLJ reference information 14-217

All options are passed to the Java compiler and are not used by the SQLJ
translator, except for the following options:

-classpath
Specifies the user class path that is to be used by the SQLJ translator
and the Java compiler. This value overrides the CLASSPATH
environment variable.

-sourcepath
Specifies the source code path that the SQLJ translator and the Java
compiler search for class or interface definitions. The SQLJ translator
searches for .sqlj and .java files only in directories, not in JAR or zip
files.

-JJVM-option
Specifies an option that is to be passed to the Java virtual machine (JVM) in
which the sqlj command runs. The option must be a valid JVM option that
begins with a dash (-). Do not include spaces between -J and the JVM option.
If you need to specify multiple JVM options, precede each compiler option
with -J. For example:
-J-Xmx128m -J-Xmine2M

SQLJ-source-file-name
Specifies a list of SQLJ source files to be translated. This is a required
parameter. All SQLJ source file names must have the extension .sqlj.

Output

For each source file, program-name.sqlj, the SQLJ translator produces the following
files:
v The generated source program

The generated source file is named program-name.java.
v A serialized profile file for each connection context class that is used in an SQLJ

executable clause
A serialized profile name is of the following form:
program-name_SJProfileIDNumber.ser

v If the SQLJ translator invokes the Java compiler, the class files that the compiler
generates.

Examples
sqlj -encoding=UTF8 -C-O MyApp.sqlj

14-218 IBM Data Server Driver for JDBC and SQLJ for Informix

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Tip: The information center and its related publications are accessibility-enabled
for the IBM Home Page Reader. You can operate all features by using the keyboard
instead of the mouse.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

You can view the publications in Adobe Portable Document Format (PDF) by using
the Adobe Acrobat Reader.

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the IBM commitment to accessibility.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive

© Copyright IBM Corp. 2007, 2011 A-1

http://www.ibm.com/able

alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.

A-2 IBM Data Server Driver for JDBC and SQLJ for Informix

However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be
repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Data Server Driver for JDBC and SQLJ for Informix

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2007, 2011 B-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

B-2 IBM Data Server Driver for JDBC and SQLJ for Informix

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices B-3

http://www.ibm.com/legal/copytrade.shtml

B-4 IBM Data Server Driver for JDBC and SQLJ for Informix

Index

Special characters
-Infinity

retrieving in Java applications 14-6
-only methods

retrieving automatically generated keys 5-42, 5-43

A
Accessibility A-1

dotted decimal format of syntax diagrams A-1
keyboard A-1
shortcut keys A-1
syntax diagrams, reading in a screen reader A-1

application development
high availability

connections to IBM Informix 11-28
direct connections to DB2 for z/OS servers 11-40

JDBC
application programming 5-1

SQLJ 6-1
application programming for high availability

connections to DB2 Database for Linux, UNIX, and
Windows 11-14

applications
Java 2 Platform, Enterprise Edition 12-1

assignment-clause
SQLJ 14-105

auto-generated keys
retrieving for INSERT, JDBC application 5-41
retrieving in JDBC application 5-40
retrieving with -only methods 5-42, 5-43

autocommit modes
default JDBC 5-51

automatic client reroute
client applications 11-1
DB2 for z/OS 11-39
IBM Informix servers 11-23

automatic client reroute support, client operation 11-9
automatically generated keys

retrieving
-only methods 5-42, 5-43
INSERT statement, JDBC application 5-41
JDBC applications 5-40

B
batch updates

JDBC 5-16
SQLJ 6-19

BatchUpdateException exception
retrieving information 5-58

C
CallableStatement class 5-30
client affinities

.NET 11-15, 11-28
CLI 11-15, 11-28

client affinities (continued)
IBM Data Server Driver for JDBC and SQLJ 11-15, 11-16,

11-28, 11-29
client affinities, example of enabling

Java clients 11-16, 11-30
client application

automatic client reroute 11-1
high availability 11-1
transaction-level load balancing 11-1

client configuration, automatic client reroute support
DB2 Database for Linux, UNIX, and Windows 11-3

client configuration, high-availability support
IBM Informix 11-19

client configuration, Sysplex workload balancing
DB2 for z/OS 11-35

client configuration, workload balancing support
DB2 Database for Linux, UNIX, and Windows 11-6

client info properties
IBM Data Server Driver for JDBC and SQLJ 5-47

clients
automatic client reroute

connections to DB2 for z/OS 11-39
connections to IBM Informix 11-23

commands
sqlj 14-215
SQLJ 14-215

comments
SQLJ applications 6-15

commits
SQLJ transactions 6-45
transactions

JDBC 5-50
compliance with standards xix
configuration

JDBC 4-2
SQLJ 4-2

configuration properties
customizing 4-2
details 14-53
parameters 4-2

connection context
class 6-3
closing 6-46
default 6-3
object 6-3

connection declaration clause
SQLJ 14-99

connection pooling
overview 13-1

connections
closing

importance 5-60, 6-46
data sources using SQLJ 6-3
DataSource interface 5-7
existing 6-8

containers
Java 2 Platform, Enterprise Edition 12-2

context clause
SQLJ 14-101, 14-102

© Copyright IBM Corp. 2007, 2011 X-1

D
data

retrieving
JDBC 5-20

data server connection
testing with DB2Jcc 9-1

data sources
connecting to

DriverManager 5-4
JDBC 5-3
JDBC DataSource 5-7

data type mappings
Java types to other types 14-1
JDBC driver differences 14-199

DatabaseMetaData methods 5-11
DataSource interface

SQLJ
connection technique 3 6-6
connection technique 4 6-7

DataSource objects
creating 5-9
deploying 5-9

DB2 Database for Linux, UNIX, and Windows
client configuration, automatic client reroute support 11-3
client configuration, workload balancing support 11-6
high-availability support 11-2
workload balancing, operation 11-13

DB2 Database for Linux, UNIX, and Windows high availability
support, example of enabling

IBM Data Server Driver for JDBC and SQLJ 11-5
DB2 Database for Linux, UNIX, and Windows workload

balancing support, example of enabling
IBM Data Server Driver for JDBC and SQLJ 11-8

DB2 Database for Linux, UNIX, and Windows, connections
application programming for high availability 11-14

DB2 for z/OS
client configuration, Sysplex workload balancing 11-35
direct connections 11-38, 11-40
Sysplex support

overview 11-32
DB2BaseDataSource class 14-132
DB2ClientRerouteServerList class 14-138
DB2Connection interface 14-139
DB2ConnectionPoolDataSource class 14-151
DB2DatabaseMetaData interface 14-153
DB2Diagnosable class

retrieving the SQLCA 6-45
DB2Diagnosable interface 14-154
DB2ExceptionFormatter class 14-155
DB2Jcc utility

details 9-2
testing a data server connection 9-1

DB2JCCPlugin interface 14-155
DB2ParameterMetaData interface 14-156
DB2PooledConnection interface 14-157
DB2PoolMonitor class 14-159
DB2PreparedStatement interface 14-162
DB2ResultSet interface 14-174
DB2ResultSetMetaData interface 14-175
DB2RowID interface 14-176
DB2SimpleDataSource class

definition 5-9
details 14-176

DB2Sqlca class 14-177
db2sqljprint command

formatting information about SQLJ customized profile 9-1
DB2Statement interface 14-178

DB2SystemMonitor interface 14-180
DB2TraceManager class 14-183
DB2TraceManagerMXBean interface 14-186
DB2Types class 14-189
DB2XADataSource class 14-190
DBBatchUpdateException interface 14-132
DBTimestamp class 14-192
Disabilities, visual

reading syntax diagrams A-1
Disability A-1
distributed transactions

example 12-4
Dotted decimal format of syntax diagrams A-1
DriverManager interface

SQLJ
SQLJ connection technique 1 6-3
SQLJ connection technique 2 6-5

drivers
determining IBM Data Server Driver for JDBC and SQLJ

version 14-215
dynamic data format 6-33

E
encryption

IBM Data Server Driver for JDBC and SQLJ 8-5
Enterprise Java Beans

overview 12-8
environment variables

JDBC 4-2, 14-199
SQLJ 4-2

errors
code differences between JDBC drivers 14-199
SQLJ 6-45

escape syntax
IBM Data Server Driver for JDBC and SQLJ 14-96

exceptions
IBM Data Server Driver for JDBC and SQLJ 5-51

executable clause 14-101

G
getCause method 5-51
getDatabaseProductName method 5-12
getDatabaseProductVersion method 5-12

H
high availability

client application 11-1
IBM Informix 11-18

high-availability support
DB2 Database for Linux, UNIX, and Windows 11-2

host expressions
SQLJ 6-9, 6-11, 14-96

I
IBM data server clients

automatic client reroute
DB2 for z/OS 11-39
IBM Informix 11-23

IBM Data Server Driver for JDBC and SQLJ
client info properties 5-47
connecting to data sources 5-4

X-2 IBM Data Server Driver for JDBC and SQLJ for Informix

IBM Data Server Driver for JDBC and SQLJ (continued)
connection concentrator monitoring 9-8
diagnostic utility 9-2
errors 14-206
example of enabling DB2 Database for Linux, UNIX, and

Windows high availability support 11-5
example of enabling DB2 Database for Linux, UNIX, and

Windows workload balancing support 11-8
example of enabling IBM Informix high availability

support 11-22
example of enabling Sysplex workload balancing 11-36
exceptions 5-51
installing 4-1
JDBC extensions 14-130
LOB support

JDBC 5-32, 5-34
SQLJ 6-33

properties 14-7
restrictions on IBM Informix 3-1
security

details 8-1
encrypted password 8-5
encrypted user ID 8-5
user ID and password 8-2
user ID-only 8-4

SQL escape syntax 14-96
SQLExceptions 5-53
SQLSTATEs 14-213
trace program example 9-5
tracing with configuration parameters example 9-4
trusted context support 8-6
version determination 14-215
warnings 5-51

IBM Data Server Driver for JDBC and SQLJ-only fields
DB2Types class 14-189

IBM Data Server Driver for JDBC and SQLJ-only methods
DB2BaseDataSource class 14-132
DB2ClientRerouteServerList class 14-138
DB2Connection interface 14-139
DB2ConnectionPoolDataSource class 14-151
DB2DatabaseMetaData interface 14-153
DB2Diagnosable interface 14-154
DB2ExceptionFormatter class 14-155
DB2JCCPlugin interface 14-155
DB2ParameterMetaData interface 14-156
DB2PooledConnection interface 14-157
DB2PoolMonitor class 14-159
DB2PreparedStatement interface 14-162
DB2ResultSet interface 14-174
DB2ResultSetMetaData interface 14-175
DB2RowID interface 14-176
DB2SimpleDataSource class 14-176
DB2sqlca class 14-177
DB2Statement interface 14-178
DB2SystemMonitor interface 14-180
DB2TraceManager class 14-183
DB2TraceManagerMXBean interface 14-186
DB2XADataSource class 14-190
DBBatchUpdateException interface 14-132
DBTimestamp class 14-192

IBM Data Server Driver for JDBC and SQLJ-only properties
DB2BaseDataSource class 14-132
DB2ClientRerouteServerList class 14-138
DB2ConnectionPoolDataSource class 14-151
DB2SimpleDataSource class 14-176

IBM data server drivers
automatic client reroute

DB2 for z/OS 11-39
IBM Informix 11-23

IBM Informix
client configuration, high-availability support 11-19
high availability

application programming 11-28
cluster support 11-18

workload balancing 11-27
IBM Informix high availability support, example of enabling

IBM Data Server Driver for JDBC and SQLJ 11-22
implements clause

SQLJ 14-97
industry standards xix
Infinity

retrieving in Java applications 14-6
installing

IBM Data Server Driver for JDBC and SQLJ 4-1
isolation levels

JDBC 5-50
SQLJ 6-44

iterator conversion clause
SQLJ 14-106

iterator declaration clause
SQLJ 14-99

iterators
obtaining JDBC result sets from 6-35
positioned DELETE 6-16
positioned UPDATE 6-16

J
Java

applications
overview 1-1

Enterprise Java Beans 12-8
environment

customization 4-2
Java 2 Platform, Enterprise Edition

application support 12-1
containers 12-2
database requirements 12-3
Enterprise Java Beans 12-8
overview 12-1
requirements 12-3
server 12-2
transaction management 12-3

Java Naming and Directory Interface (JNDI)
details 12-3

Java Transaction API (JTA) 12-3
Java Transaction Service (JTS) 12-3
JDBC

4.0
getColumnLabel change 14-197
getColumnName change 14-197

accessing packages 5-10
APIs 14-68
applications

data retrieval 5-20
example 5-1
programming overview 5-1
transaction control 5-50
variables 5-13

batch errors 5-58
batch updates 5-16
configuring 4-2

Index X-3

JDBC (continued)
connections 5-9
data type mappings 14-1
drivers

details 2-1
differences 14-194, 14-199

environment variables 4-2
executing SQL 5-13
extensions 14-130
isolation levels 5-50
named parameter markers 5-43, 5-44, 5-45
objects

creating 5-14
modifying 5-14

problem diagnosis 9-1
ResultSet holdability 5-24
ResultSets

holdability 5-23
inserting row 5-29, 5-30

scrollable ResultSet 5-23, 5-24
SQLWarning 5-57
transactions

committing 5-50
default autocommit modes 5-51
rolling back 5-50

updatable ResultSet 5-23, 5-24
JDBC (Java database connectivity)

IBM Data Server Driver for JDBC and SQLJ
installing 4-1

JNDI (Java Naming and Directory Interface)
details 12-3

JTA (Java Transaction API) 12-3
JTS (Java Transaction Service) 12-3

L
large objects (LOBs)

compatible Java data types
JDBC applications 5-35
SQLJ applications 6-34

IBM Data Server Driver for JDBC and SQLJ 5-32, 5-34,
6-33

locators
IBM Data Server Driver for JDBC and SQLJ 5-33, 5-34
SQLJ 6-33

M
methods

JDBC driver differences 14-199
monitoring

system
IBM Data Server Driver for JDBC and SQLJ 10-1

multi-row operations 5-27

N
named iterators

result set iterator 6-24
named parameter markers

CallableStatement objects 5-45
JDBC 5-43
PreparedStatement objects 5-44

namespaces
JDBC driver differences 14-199

NaN
retrieving in Java applications 14-6

P
packages

JDBC 5-10
SQLJ 6-9

ParameterMetaData methods 5-19
positioned deletes

SQLJ 6-16
positioned iterators

result set iterators 6-26
positioned updates

SQLJ 6-16
PreparedStatement methods

JDBC driver differences 14-199
SQL statements with no parameter markers 5-15
SQL statements with parameter markers 5-15, 5-21

problem determination
JDBC 9-1
SQLJ 9-1

progressive streaming
IBM Data Server Driver for JDBC and SQLJ 5-32, 5-34
JDBC 6-33

properties
IBM Data Server Driver for JDBC and SQLJ

customizing 4-2
for all database products 14-8
for DB2 Database for Linux, UNIX, and

Windows 14-39, 14-40
for DB2 for z/OS 14-42
for DB2 servers 14-28
for IBM Informix 14-39, 14-40, 14-47
overview 14-7

R
reference information

Java 14-1
remote trace controller

accessing 10-4
enabling 10-3
overview 10-3

resources
releasing

closing connections 5-60, 6-46
restrictions

SQLJ variable names 6-9, 6-11
restrictions for IBM Data Server Driver for JDBC and SQLJ

on IBM Informix 3-1
result set iterator

public declaration in separate file 6-36
result set iterators

details 6-24
generating JDBC ResultSets from SQLJ iterators 6-35
named 6-24
positioned 6-26
retrieving data from JDBC result sets using SQLJ

iterators 6-35
ResultSet

holdability 5-23
inserting row 5-29
testing for inserted row 5-30

ResultSet holdability
JDBC 5-24

X-4 IBM Data Server Driver for JDBC and SQLJ for Informix

ResultSetMetaData methods
ResultSetMetaData.getColumnLabel change in

value 14-197
ResultSetMetaData.getColumnName change in

value 14-197
retrieving result set information 5-22

retrieving data
JDBC

data source information 5-11
PreparedStatement.executeQuery method 5-21
result set information 5-22
tables 5-20

SQLJ 6-24, 6-28, 6-29
retrieving parameter information

JDBC 5-19
retrieving SQLCA

DB2Diagnosable class 6-45
return codes

IBM Data Server Driver for JDBC and SQLJ errors 14-206
rollbacks

JDBC transactions 5-50
SQLJ transactions 6-45

ROWID 6-39

S
savepoints

JDBC applications 5-39
SQLJ applications 6-41

Screen reader
reading syntax diagrams A-1

scrollable iterators
SQLJ 6-30

scrollable ResultSet
JDBC 5-24

scrollable ResultSets
JDBC 5-23

SDKs
version 1.5 6-42

security
IBM Data Server Driver for JDBC and SQLJ

encrypted security-sensitive data 8-5
encrypted user ID or encrypted password 8-5
security mechanisms 8-1
user ID and password 8-2
user ID only 8-4

SET TRANSACTION clause 14-104
Shortcut keys

keyboard A-1
SQL

JDBC driver differences 14-199
SQL statements

error handling
SQLJ applications 6-45

executing
JDBC interfaces 5-13
SQLJ applications 6-15, 6-38

SQLException
IBM Data Server Driver for JDBC and SQLJ 5-53

SQLJ
accessing packages for 6-9
applications

examples 6-1
programming 6-1
transaction control 6-44

assignment clause 14-105
batch updates 6-19

SQLJ (continued)
calling stored procedures 6-33
clauses 14-96
comments 6-15
connecting to data source 6-3
connection declaration clause 14-99
context clause 14-101, 14-102
DataSource interface 6-6, 6-7
DB2 tables

creating 6-15
modifying 6-15

DriverManager interface 6-3, 6-5
drivers 2-1
environment variables 4-2
error handling 6-45
executable clauses 14-101
executing SQL 6-15
execution context 6-38
execution control 6-38
existing connections 6-8
host expressions 6-9, 6-11, 14-96
implements clause 14-97
installing runtime environment 4-2
isolation levels 6-44
iterator conversion clause 14-106
iterator declaration clause 14-99
multiple instances of iterator 6-29
multiple iterators on table 6-28
problem diagnosis 9-1
program preparation 14-215
result set iterator 6-24
retrieving SQLCA 6-45
scrollable iterators 6-30
SDK for Java Version 5 functions 6-42
SET TRANSACTION clause 14-104
SQLWarning 6-46
statement reference 14-96
transactions 6-45
translator command 14-215
variable names 6-9, 6-11
with-clause 14-97

sqlj command 14-215
SQLJ variable names

restrictions 6-9, 6-11
sqlj.runtime package 14-106
sqlj.runtime.AsciiStream 14-118, 14-128
sqlj.runtime.BinaryStream 14-118
sqlj.runtime.CharacterStream 14-119
sqlj.runtime.ConnectionContext 14-107
sqlj.runtime.ExecutionContext 14-120
sqlj.runtime.ForUpdate 14-112
sqlj.runtime.NamedIterator 14-112
sqlj.runtime.PositionedIterator 14-113
sqlj.runtime.ResultSetIterator 14-113
sqlj.runtime.Scrollable 14-116
sqlj.runtime.SQLNullException 14-128
sqlj.runtime.UnicodeStream 14-129
SQLSTATE

IBM Data Server Driver for JDBC and SQLJ errors 14-213
SQLWarning

IBM Data Server Driver for JDBC and SQLJ 5-57
SQLJ applications 6-46

SSID
IBM Data Server Driver for JDBC and SQLJ 14-53

SSL
configuring

Java Runtime Environment 8-9

Index X-5

SSL (continued)
IBM Data Server Driver for JDBC and SQLJ 8-8
sslConnection property 8-8

sslConnection property 8-8
standards xix
Statement.executeQuery 5-20
stored procedures

calling
CallableStatement class 5-30
SQLJ applications 6-33

DB2 for z/OS 5-30
Syntax diagrams

reading in a screen reader A-1
Sysplex

direct connections to DB2 for z/OS 11-38
support 11-32

Sysplex support, example of enabling
IBM Data Server Driver for JDBC and SQLJ 11-36

T
trace controller 10-3
traces

IBM Data Server Driver for JDBC and SQLJ 9-1, 9-4, 9-5
transaction control

JDBC 5-50
SQLJ 6-44

transaction-level load balancing
client application 11-1

trusted contexts
JDBC support 8-6

U
updatable ResultSet

inserting row 5-29
JDBC 5-23, 5-24
testing for inserted row 5-30

updates
data

PreparedStatement.executeUpdate method 5-15
upgrades

applications
JDBC 14-199

URL format
DB2BaseDataSource class 5-6

user ID and password security
IBM Data Server Driver for JDBC and SQLJ 8-2

user ID-only security
IBM Data Server Driver for JDBC and SQLJ 8-4

V
Visual disabilities

reading syntax diagrams A-1

W
warnings

IBM Data Server Driver for JDBC and SQLJ 5-51
with clause

SQLJ 14-97
workload balancing

IBM Informix
operation 11-27

workload balancing, operation
connections to DB2 Database for Linux, UNIX, and

Windows 11-13

X-6 IBM Data Server Driver for JDBC and SQLJ for Informix

����

Printed in USA

SC27-3850-00

Sp
in
e
in
fo
rm
at
io
n:

In
fo

rm
ix

Pr
od

uc
tF

am
ily

Da
ta

Se
rv

er
Dr

iv
er

fo
rJ

DB
C

an
d

SQ
LJ

Ve
rs

io
n

9.
7

IB
M

Da
ta

Se
rv

er
Dr

iv
er

fo
rJ

DB
C

an
d

SQ
LJ

fo
rI

nf
or

m
ix

�
�

�

	Contents
	Introduction
	In This Introduction
	About This Publication
	Types of Users
	Assumptions About Your Locale

	What's New for IBM Data Server Driver for JDBC and SQLJ for IBM Informix
	Example code conventions
	Additional documentation
	Compliance with industry standards
	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback

	Chapter 1. Java application development for IBM data servers
	Chapter 2. Supported drivers for JDBC and SQLJ
	Chapter 3. IBM Data Server Driver for JDBC and SQLJ restrictions for IBM Informix
	Chapter 4. Installing the IBM Data Server Driver for JDBC and SQLJ
	Customization of IBM Data Server Driver for JDBC and SQLJ configuration properties

	Chapter 5. JDBC application programming
	Example of a simple JDBC application
	How JDBC applications connect to a data source
	Connecting to a data source using the DriverManager interface with the IBM Data Server Driver for JDBC and SQLJ
	URL format for IBM Data Server Driver for JDBC and SQLJ type 4 connectivity

	Connecting to a data source using the DataSource interface
	JDBC connection objects
	Creating and deploying DataSource objects

	Java packages for JDBC support
	Learning about a data source using DatabaseMetaData methods
	DatabaseMetaData methods for identifying the type of data source

	Variables in JDBC applications
	JDBC interfaces for executing SQL
	Creating and modifying database objects using the Statement.executeUpdate method
	Updating data in tables using the PreparedStatement.executeUpdate method
	Making batch updates in JDBC applications
	Learning about parameters in a PreparedStatement using ParameterMetaData methods
	Data retrieval in JDBC applications
	Retrieving data from tables using the Statement.executeQuery method
	Retrieving data from tables using the PreparedStatement.executeQuery method
	Learning about a ResultSet using ResultSetMetaData methods
	Characteristics of a JDBC ResultSet under the IBM Data Server Driver for JDBC and SQLJ

	Calling stored procedures in JDBC applications
	LOBs in JDBC applications with the IBM Data Server Driver for JDBC and SQLJ
	Progressive streaming with the IBM Data Server Driver for JDBC and SQLJ
	LOB locators with the IBM Data Server Driver for JDBC and SQLJ
	LOB operations with the IBM Data Server Driver for JDBC and SQLJ
	Java data types for retrieving or updating LOB column data in JDBC applications

	ROWIDs in JDBC with the IBM Data Server Driver for JDBC and SQLJ
	Savepoints in JDBC applications
	Retrieval of automatically generated keys in JDBC applications
	Retrieving auto-generated keys for an INSERT statement
	Retrieving automatically generated keys using IBM Data Server Driver for JDBC and SQLJ-only methods
	Retrieving automatically generated keys using IBM Data Server Driver for JDBC and SQLJ-only methods

	Using named parameter markers in JDBC applications
	Using named parameter markers with PreparedStatement objects
	Using named parameter markers with CallableStatement objects

	Providing extended client information to the data source with client info properties
	Client info properties support by the IBM Data Server Driver for JDBC and SQLJ

	Transaction control in JDBC applications
	IBM Data Server Driver for JDBC and SQLJ isolation levels
	Committing or rolling back JDBC transactions
	Default JDBC autocommit modes

	Exceptions and warnings under the IBM Data Server Driver for JDBC and SQLJ
	Handling an SQLException under the IBM Data Server Driver for JDBC and SQLJ
	Handling an SQLWarning under the IBM Data Server Driver for JDBC and SQLJ
	Retrieving information from a BatchUpdateException

	Disconnecting from data sources in JDBC applications

	Chapter 6. SQLJ application programming
	Example of a simple SQLJ application
	Connecting to a data source using SQLJ
	SQLJ connection technique 1: JDBC DriverManager interface
	SQLJ connection technique 2: JDBC DriverManager interface
	SQLJ connection technique 3: JDBC DataSource interface
	SQLJ connection technique 4: JDBC DataSource interface
	SQLJ connection technique 5: Use a previously created connection context

	Java packages for SQLJ support
	Variables in SQLJ applications
	Indicator variables in SQLJ applications
	Comments in an SQLJ application
	SQL statement execution in SQLJ applications
	Creating and modifying database objects in an SQLJ application
	Performing positioned UPDATE and DELETE operations in an SQLJ application
	Making batch updates in SQLJ applications

	Data retrieval in SQLJ applications
	Using a named iterator in an SQLJ application
	Using a positioned iterator in an SQLJ application
	Multiple open iterators for the same SQL statement in an SQLJ application
	Multiple open instances of an iterator in an SQLJ application
	Using scrollable iterators in an SQLJ application

	Calling stored procedures in SQLJ applications
	LOBs in SQLJ applications with the IBM Data Server Driver for JDBC and SQLJ
	Java data types for retrieving or updating LOB column data in SQLJ applications

	SQLJ and JDBC in the same application
	Controlling the execution of SQL statements in SQLJ
	ROWIDs in SQLJ with the IBM Data Server Driver for JDBC and SQLJ
	Savepoints in SQLJ applications

	SQLJ utilization of SDK for Java Version 5 function
	Transaction control in SQLJ applications
	Setting the isolation level for an SQLJ transaction
	Committing or rolling back SQLJ transactions

	Handling SQL errors and warnings in SQLJ applications
	Handling SQL errors in an SQLJ application
	Handling SQL warnings in an SQLJ application

	Closing the connection to a data source in an SQLJ application

	Chapter 7. Preparing and running JDBC and SQLJ programs
	Program preparation for JDBC programs
	Program preparation for SQLJ programs
	Running JDBC and SQLJ programs

	Chapter 8. Security under the IBM Data Server Driver for JDBC and SQLJ
	User ID and password security under the IBM Data Server Driver for JDBC and SQLJ
	User ID-only security under the IBM Data Server Driver for JDBC and SQLJ
	Encrypted password, user ID, or user ID and password security under the IBM Data Server Driver for JDBC and SQLJ
	IBM Data Server Driver for JDBC and SQLJ trusted context support
	IBM Data Server Driver for JDBC and SQLJ support for SSL
	Configuring connections under the IBM Data Server Driver for JDBC and SQLJ to use SSL
	Configuring the Java Runtime Environment to use SSL

	Chapter 9. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ
	DB2Jcc - IBM Data Server Driver for JDBC and SQLJ diagnostic utility
	Examples of using configuration properties to start a JDBC trace
	Example of a trace program under the IBM Data Server Driver for JDBC and SQLJ
	Techniques for monitoring IBM Data Server Driver for JDBC and SQLJ Sysplex support

	Chapter 10. System monitoring for the IBM Data Server Driver for JDBC and SQLJ
	IBM Data Server Driver for JDBC and SQLJ remote trace controller
	Enabling the remote trace controller
	Accessing the remote trace controller

	Chapter 11. Java client support for high availability on IBM data servers
	Java client support for high availability for connections to DB2 Database for Linux, UNIX, and Windows servers
	Configuration of DB2 Database for Linux, UNIX, and Windows automatic client reroute support for Java clients
	Example of enabling DB2 Database for Linux, UNIX, and Windows automatic client reroute support in Java applications
	Configuration of DB2 Database for Linux, UNIX, and Windows workload balancing support for Java clients
	Example of enabling DB2 Database for Linux, UNIX, and Windows workload balancing support in Java applications
	Operation of automatic client reroute for connections to DB2 Database for Linux, UNIX, and Windows from Java clients
	Operation of workload balancing for connections to DB2 Database for Linux, UNIX, and Windows
	Application programming requirements for high availability for connections to DB2 Database for Linux, UNIX, and Windows serve
	Client affinities for DB2 Database for Linux, UNIX, and Windows
	Configuration of client affinities for Java clients for DB2 Database for Linux, UNIX, and Windows connections
	Example of enabling client affinities in Java clients for DB2 Database for Linux, UNIX, and Windows connections

	Java client support for high availability for connections to IBM Informix servers
	Configuration of IBM Informix high-availability support for Java clients
	Example of enabling IBM Informix high availability support in Java applications
	Operation of automatic client reroute for connections to IBM Informix from Java clients
	Operation of workload balancing for connections to IBM Informix from Java clients
	Application programming requirements for high availability for connections from Java clients to IBM Informix servers
	Client affinities for connections to IBM Informix from Java clients
	Configuration of client affinities for Java clients for IBM Informix connections
	Example of enabling client affinities in Java clients for IBM Informix connections

	Java client direct connect support for high availability for connections to DB2 for z/OS servers
	Configuration of Sysplex workload balancing at a Java client
	Example of enabling DB2 for z/OS Sysplex workload balancing in Java applications
	Operation of Sysplex workload balancing for connections from Java clients to DB2 for z/OS servers
	Operation of automatic client reroute for connections from Java clients to DB2 for z/OS
	Application programming requirements for high availability for connections from Java clients to DB2 for z/OS servers

	Chapter 12. Java 2 Platform, Enterprise Edition
	Application components of Java 2 Platform, Enterprise Edition support
	Java 2 Platform, Enterprise Edition containers
	Java 2 Platform, Enterprise Edition Server
	Java 2 Platform, Enterprise Edition database requirements
	Java Naming and Directory Interface (JNDI)
	Java transaction management
	Example of a distributed transaction that uses JTA methods

	Enterprise Java Beans

	Chapter 13. JDBC and SQLJ connection pooling support
	Chapter 14. JDBC and SQLJ reference information
	Data types that map to database data types in Java applications
	Retrieval of special values from DECFLOAT columns in Java applications

	Properties for the IBM Data Server Driver for JDBC and SQLJ
	Common IBM Data Server Driver for JDBC and SQLJ properties for all supported database products
	Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 servers
	Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS and IBM Informix
	Common IBM Data Server Driver for JDBC and SQLJ properties for IBM Informix and DB2 Database for Linux, UNIX, and Windows
	IBM Data Server Driver for JDBC and SQLJ properties for DB2 Database for Linux, UNIX, and Windows
	IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS
	IBM Data Server Driver for JDBC and SQLJ properties for IBM Informix

	IBM Data Server Driver for JDBC and SQLJ configuration properties
	Driver support for JDBC APIs
	IBM Data Server Driver for JDBC and SQLJ support for SQL escape syntax
	SQLJ statement reference information
	SQLJ clause
	SQLJ host-expression
	SQLJ implements-clause
	SQLJ with-clause
	SQLJ connection-declaration-clause
	SQLJ iterator-declaration-clause
	SQLJ executable-clause
	SQLJ context-clause
	SQLJ statement-clause
	SQLJ SET-TRANSACTION-clause
	SQLJ assignment-clause
	SQLJ iterator-conversion-clause

	Interfaces and classes in the sqlj.runtime package
	sqlj.runtime.ConnectionContext interface
	sqlj.runtime.ForUpdate interface
	sqlj.runtime.NamedIterator interface
	sqlj.runtime.PositionedIterator interface
	sqlj.runtime.ResultSetIterator interface
	sqlj.runtime.Scrollable interface
	sqlj.runtime.AsciiStream class
	sqlj.runtime.BinaryStream class
	sqlj.runtime.CharacterStream class
	sqlj.runtime.ExecutionContext class
	sqlj.runtime.SQLNullException class
	sqlj.runtime.StreamWrapper class
	sqlj.runtime.UnicodeStream class

	IBM Data Server Driver for JDBC and SQLJ extensions to JDBC
	DBBatchUpdateException interface
	DB2BaseDataSource class
	DB2ClientRerouteServerList class
	DB2Connection interface
	DB2ConnectionPoolDataSource class
	DB2DatabaseMetaData interface
	DB2Diagnosable interface
	DB2ExceptionFormatter class
	DB2JCCPlugin class
	DB2ParameterMetaData interface
	DB2PooledConnection class
	DB2PoolMonitor class
	DB2PreparedStatement interface
	DB2ResultSet interface
	DB2ResultSetMetaData interface
	DB2RowID interface
	DB2SimpleDataSource class
	DB2Sqlca class
	DB2Statement interface
	DB2SystemMonitor interface
	DB2TraceManager class
	DB2TraceManagerMXBean interface
	DB2Types class
	DB2XADataSource class
	DBTimestamp class

	JDBC differences between versions of the IBM Data Server Driver for JDBC and SQLJ
	Examples of ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnLabel values
	Differences between the IBM Data Server Driver for JDBC and SQLJ and the IBM Informix JDBC Driver
	Error codes issued by the IBM Data Server Driver for JDBC and SQLJ
	SQLSTATEs issued by the IBM Data Server Driver for JDBC and SQLJ
	How to find IBM Data Server Driver for JDBC and SQLJ version and environment information
	Commands for SQLJ program preparation
	sqlj - SQLJ translator

	Appendix. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	G
	H
	I
	J
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W

