
Informix Product Family
Informix
Version 11.70

IBM Informix Guide to SQL: Syntax

SC27-3532-06

���

Informix Product Family
Informix
Version 11.70

IBM Informix Guide to SQL: Syntax

SC27-3532-06

���

Note
Before using this information and the product it supports, read the information in “Notices” on page C-1.

This edition replaces SC27-3532-05.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . xxi
In This Introduction . xxi
About This Publication . xxi

Types of Users . xxi
Software Dependencies . xxi
Assumptions About Your Locale . xxi
Demonstration Databases . xxii

What's new in SQL Syntax for Informix, Version 11.70. xxii
Example code conventions . xxxiv
Additional documentation . xxxv
Compliance with industry standards . xxxv
Syntax diagrams . xxxv

How to read a command-line syntax diagram . xxxvi
Keywords and punctuation . xxxvii
Identifiers and names . xxxvii

How to provide documentation feedback . xxxviii

Chapter 1. Overview of SQL syntax . 1-1
How to Enter SQL Statements . 1-1

Using Syntax Diagrams and Syntax Tables . 1-2
Using Examples . 1-2
Using Related Information . 1-3

How to Enter SQL Comments . 1-3
Examples of SQL Comments . 1-4
Non-ASCII Characters in SQL Comments . 1-5

Categories of SQL Statements . 1-5
Data Definition Language Statements . 1-6
Data Manipulation Language Statements . 1-8
Data Integrity Statements . 1-8
Cursor Manipulation Statements . 1-8
Dynamic Management Statements . 1-9
Data Access Statements . 1-9
Optimization Statements . 1-9
Routine Definition Statements . 1-10
Auxiliary Statements. 1-10
Client/Server Connection Statements . 1-10
Optical Subsystem Statements . 1-10

ANSI/ISO Compliance and Extensions . 1-11
ANSI/ISO-Compliant Statements . 1-11
ANSI/ISO-Compliant Statements with Informix Extensions 1-11
Statements that are Extensions to the ANSI/ISO Standard 1-12

Chapter 2. SQL statements . 2-1
ALLOCATE COLLECTION statement . 2-1
ALLOCATE DESCRIPTOR statement . 2-2

WITH MAX Clause . 2-3
ALLOCATE ROW statement . 2-4
ALTER ACCESS_METHOD statement . 2-5
ALTER FRAGMENT statement . 2-6

Restrictions on the ALTER FRAGMENT Statement . 2-9
ALTER FRAGMENT and Transaction Logging . 2-9
Determining the Number of Rows in the Fragment . 2-9
The ONLINE keyword in ALTER FRAGMENT operations 2-10
ATTACH Clause . 2-11
DETACH Clause . 2-20

© Copyright IBM Corp. 1996, 2014 iii

INIT Clause . 2-23
ADD Clause . 2-30
DROP Clause . 2-32
MODIFY Clause . 2-34
Examples of ALTER FRAGMENT ON INDEX statements 2-55

ALTER FUNCTION statement . 2-57
Keywords That Introduce Modifications . 2-58

ALTER INDEX statement . 2-59
TO CLUSTER Option . 2-59
TO NOT CLUSTER Option . 2-60

ALTER PROCEDURE statement . 2-60
ALTER ROUTINE statement . 2-62

Restrictions . 2-63
Keywords That Introduce Modifications . 2-63
Example of Altering Routine Modifiers . 2-64

ALTER SECURITY LABEL COMPONENT statement . 2-64
The ADD ARRAY Clause . 2-66
The ADD SET Clause . 2-67
The ADD TREE Clause . 2-67

ALTER SEQUENCE statement . 2-68
INCREMENT BY Option . 2-71
RESTART WITH Option . 2-71
MAXVALUE or NOMAXVALUE Option . 2-71
MINVALUE or NOMINVALUE Option . 2-71
CYCLE or NOCYCLE Option . 2-71
CACHE or NOCACHE Option . 2-71
ORDER or NOORDER Option . 2-72

ALTER TABLE statement . 2-72
Logging TYPE Options . 2-75
Statistics options of the ALTER TABLE statement . 2-76
Restrictions on the table . 2-78
Enterprise Replication shadow columns . 2-79
Using the ADD ROWIDS Keywords . 2-80
Using the DROP ROWIDS Keywords . 2-80
Using the ADD VERCOLS Keywords . 2-80
Using the DROP VERCOLS Keywords. 2-81
ADD Column Clause . 2-81
ADD AUDIT Clause . 2-91
SECURITY POLICY Clause . 2-91
DROP Column Clause . 2-93
DROP AUDIT Clause . 2-95
MODIFY Clause . 2-95
Using the MODIFY Clause. 2-97
ADD CONSTRAINT Clause . 2-103
Multiple-Column Constraint Format . 2-104
DROP CONSTRAINT Clause . 2-113
MODIFY EXTENT SIZE . 2-114
MODIFY NEXT SIZE clause . 2-115
LOCK MODE Clause . 2-116
ADD TYPE Clause . 2-117
Options Valid on Typed Tables . 2-117

ALTER TRUSTED CONTEXT statement . 2-118
ALTER USER statement (UNIX, Linux) . 2-122
BEGIN WORK statement . 2-126

BEGIN WORK and ANSI-Compliant Databases . 2-127
BEGIN WORK WITHOUT REPLICATION (ESQL/C) 2-127
Example of BEGIN WORK . 2-127

CLOSE statement . 2-128
Closing a Select or Function Cursor . 2-130
Closing an Insert Cursor . 2-131
Closing a Collection Cursor . 2-131

iv IBM Informix Guide to SQL: Syntax

Using End of Transaction to Close a Cursor . 2-132
CLOSE DATABASE statement . 2-132
COMMIT WORK statement . 2-133

Issuing COMMIT WORK in a Database That Is Not ANSI Compliant 2-134
Issuing COMMIT WORK in an ANSI-Compliant Database. 2-135

CONNECT statement . 2-135
Privileges for Executing the CONNECT Statement . 2-136
Connection Context. 2-137
Database Environment. 2-137
Declaring a Connection Name . 2-139
USER Authentication Clause. 2-139
The DEFAULT Connection Specification . 2-140
WITH CONCURRENT TRANSACTION Option . 2-141
TRUSTED clause . 2-142

CREATE ACCESS_METHOD statement . 2-143
CREATE AGGREGATE statement . 2-144

Extending the Functionality of Aggregates . 2-146
Parallel Execution . 2-147

CREATE CAST statement. 2-147
Source and Target Data Types . 2-148
Explicit and Implicit Casts . 2-148
WITH Clause . 2-150

CREATE DATABASE statement. 2-150
Logging Options. 2-152
Specifying Buffered Logging. 2-152
ANSI-Compliant Databases . 2-152
Specifying NLSCASE case sensitivity . 2-153

CREATE DEFAULT USER statement (UNIX, Linux) . 2-156
CREATE DISTINCT TYPE statement . 2-157

Privileges on Distinct Types . 2-159
Support Functions and Casts . 2-159
Manipulating Distinct Types . 2-159

CREATE EXTERNAL TABLE Statement . 2-160
Column Definition . 2-161
DATAFILES Clause . 2-163
Table options . 2-164
Reject Files . 2-169
External Table Examples . 2-170
Restrictions on External Tables . 2-181

CREATE FUNCTION statement . 2-183
Privileges necessary for using CREATE FUNCTION . 2-186
DBA keyword and Execute privilege on the created function 2-186
The REFERENCING and FOR Clauses . 2-186
Overloading the Name of a Function . 2-188
DOCUMENT Clause . 2-190
WITH LISTING IN Clause . 2-190
SPL Functions . 2-191
External Procedures . 2-191

CREATE FUNCTION FROM statement . 2-193
CREATE INDEX statement . 2-194

Index-type options . 2-196
Index-key specification . 2-198
Restrictions on columns as index keys . 2-200
Using the return value of a function as an index key 2-200
Creating Composite Indexes . 2-201
Using the ASC and DESC Sort-Order Options . 2-202
Using an Operator Class . 2-204
USING access-method clause . 2-204
HASH ON clause . 2-206
FILLFACTOR Option . 2-208
Storage options . 2-209

Contents v

Extent Size Options. 2-209
IN Clause . 2-210
FRAGMENT BY Clause for Indexes . 2-212
Restrictions on fragmentation expressions . 2-213
Fragmentation of System Indexes . 2-213
Fragmentation of Unique Indexes . 2-213
Fragmentation of Indexes on Temporary Tables . 2-213
Index modes . 2-214
How the Database Server Treats Disabled Indexes . 2-216
The ONLINE keyword of CREATE INDEX . 2-216
Automatic Calculation of Distribution Statistics . 2-217

CREATE OPAQUE TYPE statement . 2-218
Declaring a Name for an Opaque Type . 2-219
INTERNALLENGTH Modifier . 2-219
Opaque-Type Modifier. 2-220
Defining an Opaque Type . 2-220

CREATE OPCLASS statement . 2-222
STRATEGIES Clause . 2-224
Strategy Specification . 2-224
Indexes on Side-Effect Data . 2-225
SUPPORT Clause . 2-225
Default Operator Classes . 2-226

CREATE PROCEDURE statement . 2-226
Using CREATE PROCEDURE Versus CREATE FUNCTION 2-229
Relationship Between Routines, Functions, and Procedures 2-229
Privileges Necessary for Using CREATE PROCEDURE 2-230
DBA Keyword and Privileges on the Procedure . 2-230
The REFERENCING and FOR Clauses . 2-230
Procedure names in Informix . 2-232
DOCUMENT Clause . 2-233
Using the WITH LISTING IN Option . 2-233
SPL Procedures . 2-234
External Procedures . 2-234

CREATE PROCEDURE FROM statement . 2-236
Default Directory That Holds the File. 2-237

CREATE ROLE statement. 2-237
CREATE ROUTINE FROM statement. 2-239
CREATE ROW TYPE statement. 2-241

Privileges on named ROW data types . 2-242
Inheritance and Named ROW Types . 2-243
Creating a Subtype . 2-243
Type Hierarchies. 2-243
Procedure for Creating a Subtype . 2-244
Field Definition . 2-244
Restrictions on Serial and Simple-Large-Object Data Types. 2-245

CREATE SCHEMA statement . 2-245
Creating Database Objects Within CREATE SCHEMA 2-247

CREATE SECURITY LABEL statement . 2-248
Components and Elements of a Security Label. 2-249

CREATE SECURITY LABEL COMPONENT statement . 2-250
Types and Elements of Security Label Components . 2-252
ARRAY Components . 2-252
SET Components . 2-253
TREE Components . 2-253

CREATE SECURITY POLICY statement . 2-254
Security Label Components of a Security Policy . 2-256
Rules Associated with a Security Policy . 2-256

CREATE SEQUENCE statement . 2-257
INCREMENT BY Option . 2-260
START WITH Option . 2-260
MAXVALUE or NOMAXVALUE Option. 2-260

vi IBM Informix Guide to SQL: Syntax

MINVALUE or NOMINVALUE Option . 2-260
CYCLE or NOCYCLE Option . 2-260
CACHE or NOCACHE Option . 2-261
ORDER or NOORDER Option . 2-261

CREATE SYNONYM statement. 2-261
Synonyms for objects outside the current database . 2-262
PUBLIC and PRIVATE Synonyms . 2-263
Synonyms with the Same Name . 2-263
Chaining Synonyms . 2-264

CREATE TABLE statement . 2-265
Logging Options. 2-269
Column definition . 2-270
DEFAULT Clause . 2-272
Single-Column Constraint Format . 2-274
REFERENCES Clause . 2-278
CHECK Clause . 2-281
Constraint Definition . 2-283
Multiple-Column Constraint Format . 2-285
Options clauses . 2-289
Storage options . 2-295
Deferred extent storage allocation . 2-316
USING Access-Method Clause . 2-316
LOCK MODE Options. 2-317
OF TYPE Clause. 2-318

CREATE TEMP TABLE statement . 2-321
Declaring a name for a temporary table . 2-323
Column definition . 2-323
Single-Column Constraint Format . 2-324
Multiple-Column Constraint Format . 2-325
Using the WITH NO LOG option . 2-326
Storage options for temporary tables . 2-326
Differences between temporary and permanent tables 2-328
Duration of temporary tables . 2-329

CREATE TRIGGER statement . 2-329
Defining a Trigger Event and Action . 2-331
Restrictions on Triggers . 2-333
Trigger Modes . 2-334
Trigger Inheritance in a Table Hierarchy . 2-334
Triggers and SPL Routines . 2-335
Trigger Events . 2-335
INSERT Events and DELETE Events . 2-337
UPDATE Event . 2-337
Defining Multiple Update Triggers . 2-338
SELECT Event . 2-339
Circumstances When a Select Trigger Is Activated . 2-340
Stand-alone SELECT Statements . 2-340
SELECT Statements Within UDRs in the Select List . 2-340
UDRs That EXECUTE PROCEDURE and EXECUTE FUNCTION Call 2-340
Subqueries in the Select List . 2-341
Subqueries in the FROM Clause of SELECT . 2-341
Subqueries in the WHERE Clause of DELETE or UPDATE 2-341
Select Triggers in Table Hierarchies . 2-341
Circumstances When a Select Trigger Is Not Activated 2-342
Action Clause . 2-343
Guaranteeing Row-Order Independence . 2-344
REFERENCING Clauses . 2-345
Correlated Table Action . 2-348
Triggered Action. 2-349
Using Correlation Names in Triggered Actions . 2-352
Re-Entrancy of Triggers . 2-353
Rules for SPL Routines . 2-356

Contents vii

Privileges to Execute Trigger Actions . 2-357
Cascading Triggers . 2-358
Tables in Remote Databases . 2-360
Logging and Recovery. 2-361
INSTEAD OF Triggers on Views . 2-362

CREATE TRUSTED CONTEXT statement . 2-366
CREATE USER statement (UNIX, Linux) . 2-368
CREATE VIEW statement. 2-373

Typed Views . 2-375
Subset of SELECT statements valid in view definitions 2-376
Union Views . 2-376
Naming View Columns . 2-376
Using a View in the SELECT Statement . 2-377
WITH CHECK OPTION Keywords . 2-377
Updating Through Views . 2-378

CREATE XADATASOURCE statement . 2-378
CREATE XADATASOURCE TYPE statement . 2-380
DATABASE statement . 2-381

SQLCA.SQLWARN Settings Immediately after DATABASE Executes (ESQL/C). 2-382
EXCLUSIVE keyword . 2-383

DEALLOCATE COLLECTION statement . 2-383
DEALLOCATE DESCRIPTOR statement . 2-384
DEALLOCATE ROW statement. 2-386
DECLARE statement . 2-386

Overview of Cursor Types . 2-390
Select Cursor or Function Cursor . 2-390
Cursor Characteristics . 2-395
Associating a Cursor with a Prepared Statement . 2-399
Using Cursors with Transactions . 2-402
Declaring a Dynamic Cursor in an SPL Routine . 2-403

DELETE statement . 2-404
Using the ONLY Keyword . 2-407
Considerations When Tables Have Cascading Deletes 2-407
Using the WHERE Keyword to Specify a Condition . 2-408
Subqueries in the WHERE Clause of DELETE . 2-408
Declaring an alias for the table . 2-409
Using the WHERE CURRENT OF Keywords (ESQL/C, SPL) 2-410
Deleting Rows That Contain Opaque Data Types . 2-410
Deleting Rows That Contain Collection Data Types . 2-410
Data Types in Distributed DELETE Operations . 2-411
SQLSTATE Values in an ANSI-Compliant Database . 2-412
SQLSTATE Values in a Database That Is Not ANSI-Compliant 2-412

DESCRIBE statement . 2-412
The OUTPUT Keyword . 2-413
Describing the Statement Type . 2-414
Checking for the Existence of a WHERE Clause . 2-414
Describing a Statement with Runtime Parameters. 2-414
Using the SQL DESCRIPTOR Keywords . 2-415
Using the INTO sqlda Pointer Clause. 2-416
Describing a Collection Variable . 2-416

DESCRIBE INPUT statement . 2-417
Describing the Statement Type . 2-418
Checking for Existence of a WHERE Clause . 2-419
Describing a Statement with Dynamic Runtime Parameters 2-419
Using the SQL DESCRIPTOR Keywords . 2-419
Using the INTO sqlda Pointer Clause. 2-420
Describing a Collection Variable . 2-420

DISCONNECT statement . 2-421
DEFAULT Option . 2-422
Specifying the CURRENT Keyword . 2-423
When a Transaction is Active . 2-423

viii IBM Informix Guide to SQL: Syntax

Disconnecting in a Thread-Safe Environment . 2-423
Specifying the ALL Option . 2-423

DROP ACCESS_METHOD statement . 2-424
DROP AGGREGATE statement . 2-425
DROP CAST statement . 2-425
DROP DATABASE statement . 2-427
DROP FUNCTION statement . 2-428

Dropping External Functions . 2-431
DROP INDEX statement . 2-431

The ONLINE keyword of DROP INDEX. 2-433
DROP OPCLASS statement . 2-434
DROP PROCEDURE statement . 2-434

Dropping an External Procedure . 2-436
DROP ROLE statement . 2-437
DROP ROUTINE statement . 2-438

Restrictions . 2-439
Dropping an External Routine . 2-440

DROP ROW TYPE statement . 2-440
The RESTRICT Keyword . 2-441

DROP SECURITY statement . 2-442
Dropping security objects in RESTRICT mode or in CASCADE mode 2-444

DROP SEQUENCE statement . 2-444
DROP SYNONYM statement . 2-445
DROP TABLE statement . 2-446

Effects of the DROP TABLE Statement . 2-447
Specifying CASCADE Mode . 2-448
Specifying RESTRICT Mode . 2-448
Dropping a Table That Contains Opaque Data Types 2-448
Tables That Cannot Be Dropped . 2-448

DROP TRIGGER statement . 2-449
DROP TRUSTED CONTEXT statement . 2-450
DROP TYPE statement . 2-450
DROP USER statement (UNIX, Linux) . 2-451
DROP VIEW statement . 2-452
DROP XADATASOURCE statement . 2-453
DROP XADATASOURCE TYPE statement . 2-454
EXECUTE statement . 2-455

Scope of Statement Identifiers . 2-456
Restrictions with the INTO Clause. 2-458
Replacing Placeholders with Parameters . 2-458
Saving Values In Host or Program Variables . 2-458
Saving Values in a System-Descriptor Area . 2-458
Saving Values in an sqlda Structure (ESQL/C). 2-459
The sqlca Record and EXECUTE . 2-460
Returned SQLCODE Values with EXECUTE . 2-460
Supplying Parameters Through Host or Program Variables 2-461
Supplying Parameters Through a System Descriptor . 2-462
Supplying Parameters Through an sqlda Structure (ESQL/C). 2-462

EXECUTE FUNCTION statement . 2-462
Negator Functions and Their Companions . 2-464
How the EXECUTE FUNCTION Statement Works . 2-464
Data Variables . 2-465
INTO Clause with Indicator Variables (ESQL/C) . 2-465
INTO Clause with Cursors . 2-466
Alternatives to PREPARE ... EXECUTE FUNCTION ... INTO 2-466
Dynamic Routine-Name Specification of SPL Functions 2-467

EXECUTE IMMEDIATE statement . 2-467
EXECUTE IMMEDIATE and Restricted Statements . 2-468
Restrictions on Valid Statements . 2-469
Handling Exceptions from EXECUTE IMMEDIATE Statements 2-470
Examples of the EXECUTE IMMEDIATE Statement . 2-470

Contents ix

EXECUTE PROCEDURE statement . 2-471
Causes of Errors . 2-472
Using the INTO Clause . 2-472
The WITH TRIGGER REFERENCES Keywords . 2-472
Dynamic Routine-Name Specification of SPL Procedures 2-474

FETCH statement . 2-474
FETCH with a Sequential Cursor . 2-476
FETCH with a Scroll Cursor . 2-476
How the Database Server Implements Scroll Cursors 2-477
Specifying Where Values Go in Memory. 2-478
Using the INTO Clause . 2-478
Using Indicator Variables . 2-478
When the INTO Clause of FETCH is Required. 2-479
Using a System-Descriptor Area (X/Open) . 2-479
Using sqlda Structures. 2-480
Fetching a Row for Update . 2-481
Fetching from a Collection Cursor . 2-481
Checking the Result of FETCH . 2-482

FLUSH statement . 2-484
Error Checking FLUSH Statements . 2-485

FREE statement . 2-486
GET DESCRIPTOR statement . 2-487

Using the COUNT Keyword. 2-490
Using the VALUE Clause . 2-490
Using LENGTH or ILENGTH . 2-492
Describing an Opaque-Type Column . 2-492
Describing a Distinct-Type Column . 2-492

GET DIAGNOSTICS statement . 2-493
Using the SQLSTATE Error Status Code . 2-493
Statement Clause . 2-497
EXCEPTION Clause . 2-498
The Contents of the SERVER_NAME Field . 2-500
The Contents of the CONNECTION_NAME Field . 2-501
Using GET DIAGNOSTICS for Error Checking . 2-501

GRANT statement . 2-502
Database-Level Privileges. 2-505
Table-Level Privileges . 2-507
Table Reference . 2-510
Type-Level Privileges . 2-511
Routine-Level Privileges . 2-513
Language-Level Privileges . 2-516
Sequence-Level Privileges . 2-517
Role Name . 2-518
WITH GRANT OPTION keywords . 2-522
AS grantor clause . 2-523
Security Administration Options . 2-524
Surrogate user properties (UNIX, Linux). 2-533

GRANT FRAGMENT statement . 2-538
Fragment-Level Privileges . 2-539
Granting Privileges to One User or a List of Users . 2-542
Granting One Privilege or a List of Privileges . 2-542
WITH GRANT OPTION Clause . 2-543
AS grantor Clause . 2-543

INFO statement . 2-543
INSERT statement . 2-545

Specifying Columns . 2-547
Using the AT Clause (ESQL/C, SPL) . 2-548
Inserting Rows Through a View . 2-548
Inserting Rows with a Cursor . 2-549
Inserting Rows into a Database Without Transactions 2-549
Inserting Rows into a Database with Transactions . 2-549

x IBM Informix Guide to SQL: Syntax

VALUES Clause . 2-550
Execute Routine Clause . 2-556

LOAD statement . 2-558
LOAD FROM File . 2-559
Loading Simple Large Objects . 2-561
Loading Smart Large Objects . 2-562
Loading Complex Data Types . 2-563
Loading Opaque-Type Columns . 2-563
DELIMITER Clause. 2-563
INSERT INTO Clause . 2-564

LOCK TABLE statement . 2-564
Concurrent Access to Tables with Shared Locks . 2-566
Concurrent Access to Tables with Exclusive Locks . 2-566
Databases with transaction logging . 2-567
Databases without transaction logging . 2-568
Locking Granularity . 2-568

MERGE statement . 2-568
Restrictions on Source and Target Tables. 2-574
Handling Duplicate Rows . 2-577
Examples of MERGE Statements . 2-578

OPEN statement. 2-581
Opening a Select Cursor . 2-582
Opening an Update Cursor Inside a Transaction . 2-583
Opening a Function Cursor . 2-583
Reopening a Select or Function Cursor . 2-583
Errors Associated with Select and Function Cursors . 2-584
Opening an Insert Cursor (ESQL/C) . 2-584
Opening a Collection Cursor (ESQL/C) . 2-585
USING Clause . 2-585
Specifying a System Descriptor Area (ESQL/C) . 2-586
Specifying a Pointer to an sqlda Structure (ESQL/C) 2-586
Using the WITH REOPTIMIZATION Option (ESQL/C) 2-587
Relationship Between OPEN and FREE . 2-587
DDL Operations on Tables Referenced by Cursors . 2-587

OUTPUT statement. 2-588
Sending Query Results to a File . 2-589
Displaying Query Results Without Column Headings 2-589
Sending Query Results to Another Program . 2-589

PREPARE statement . 2-589
Restrictions . 2-591
Declaring a Statement Identifier . 2-591
Releasing a Statement Identifier . 2-592
Statement Text . 2-592
Preparing and Executing User-Defined Routines . 2-594
Restricted Statements in Single-Statement Prepares . 2-594
Preparing Statements When Parameters Are Known . 2-595
Preparing Statements That Receive Parameters . 2-596
Preparing Statements with SQL Identifiers . 2-596
Preparing Multiple SQL Statements . 2-598
Using Prepared Statements for Efficiency . 2-600

PUT statement . 2-601
Supplying Inserted Values . 2-603
Using the USING Clause . 2-605
Inserting into a Collection Cursor . 2-605
Writing Buffered Rows . 2-607
Error Checking . 2-607

RELEASE SAVEPOINT statement . 2-608
RENAME COLUMN statement . 2-609

How Views and Check Constraints Are Affected . 2-610
How Triggers Are Affected . 2-610

RENAME DATABASE statement . 2-611

Contents xi

RENAME INDEX statement . 2-612
RENAME SECURITY statement . 2-613
RENAME SEQUENCE statement . 2-614
RENAME TABLE statement . 2-615
RENAME TRUSTED CONTEXT statement . 2-616
RENAME USER statement (UNIX, Linux) . 2-617
REVOKE statement . 2-618

Revoking database server access from mapped users (UNIX, Linux) 2-621
Database-level privileges . 2-621
Table-Level Privileges . 2-623
Effect of Uncommitted Transactions . 2-626
Type-Level Privileges . 2-626
Routine-Level Privileges . 2-627
Language-Level Privileges . 2-628
Sequence-Level Privileges . 2-629
User List . 2-630
Role Name . 2-631
Revoking privileges granted WITH GRANT OPTION 2-633
The AS Clause . 2-634
Controlling the Scope of REVOKE with the RESTRICT Option 2-634
Security Administration Options . 2-635

REVOKE FRAGMENT statement . 2-643
Specifying Fragments . 2-644
The FROM Clause . 2-644
Fragment-Level Privileges . 2-644
The AS Clause . 2-645
Examples of the REVOKE FRAGMENT Statement . 2-645

ROLLBACK WORK statement . 2-646
WORK Keyword . 2-647
TO SAVEPOINT Clause . 2-647

SAVE EXTERNAL DIRECTIVES statement . 2-649
External optimizer directives . 2-649
Enabling or disabling external directives for a session 2-650
The directive Specification . 2-650
The ACTIVE, INACTIVE, and TEST ONLY Keywords 2-651
The query Specification . 2-651

SAVEPOINT statement . 2-652
SELECT statement . 2-654

Projection Clause . 2-658
INTO Clause . 2-669
FROM Clause . 2-672
WHERE Clause of SELECT . 2-689
Hierarchical Clause . 2-696
GROUP BY Clause . 2-708
HAVING Clause. 2-710
ORDER BY Clause . 2-711
FOR UPDATE Clause . 2-717
FOR READ ONLY Clause . 2-719
INTO table clauses . 2-720
Set operators in combined queries . 2-724

SET AUTOFREE statement . 2-726
Globally Affecting Cursors with SET AUTOFREE. 2-727
Using the FOR Clause to Specify a Specific Cursor . 2-727
Associated and Detached Statements . 2-728
Closing Cursors Implicitly . 2-728

SET COLLATION statement . 2-728
Specifying a Collating Order with SET COLLATION 2-729
Restrictions on SET COLLATION . 2-730
Collation Performed by Database Objects . 2-730

SET CONNECTION statement . 2-731
Making a dormant connection as the current connection 2-732

xii IBM Informix Guide to SQL: Syntax

Making a current connection as the dormant connection 2-732
Dormant Connections in a Single-Threaded Environment 2-733
Dormant Connections in a Thread-Safe Environment 2-733
Identifying the Connection . 2-734
DEFAULT Option . 2-734
CURRENT Keyword . 2-734
When a Transaction is Active . 2-734

SET CONSTRAINTS statement . 2-735
SET Database Object Mode statement. 2-737

Privileges Required for Changing Database Object Modes 2-739
Object-List Format . 2-739
Table Format . 2-740
Modes for constraints and unique indexes . 2-741
Modes for Triggers and Duplicate Indexes . 2-744
Definitions of Database Object Modes . 2-744

SET DATASKIP statement . 2-748
Circumstances When a Dbspace Cannot Be Skipped . 2-749

SET DEBUG FILE statement . 2-750
Using the WITH APPEND Option . 2-751
Closing the Output File . 2-751
Redirecting Trace Output . 2-751
Location of the Output File . 2-751

SET DEFERRED_PREPARE statement . 2-751
Example of SET DEFERRED_PREPARE . 2-753
Using Deferred-Prepare with OPTOFC . 2-753

SET DESCRIPTOR statement . 2-753
Using the COUNT Clause . 2-755
Using the VALUE Clause . 2-755
Item Descriptor . 2-755
Modifying Values Set by the DESCRIBE Statement . 2-760

SET ENCRYPTION PASSWORD statement . 2-760
Storage Requirements for Encryption . 2-761
Specifying a Session Password and Hint . 2-762
Levels of Encryption . 2-762
Protecting Passwords . 2-763

SET ENVIRONMENT statement . 2-763
AUTO_READAHEAD environment option . 2-766
AUTO_STAT_MODE Environment Option . 2-766
BOUND_IMPL_PDQ environment option . 2-768
CLUSTER_TXN_SCOPE environment option . 2-769
DEFAULTESCCHAR Environment Option . 2-770
EXTDIRECTIVES Environment Option . 2-770
FORCE_DDL_EXEC Environment Option . 2-771
HDR_TXN_SCOPE environment option . 2-772
IFX_AUTO_REPREPARE Environment Option. 2-773
IFX_BATCHEDREAD_INDEX environment option . 2-774
IFX_BATCHEDREAD_TABLE environment option . 2-774
IMPLICIT_PDQ environment option . 2-774
INFORMIXCONRETRY environment option . 2-776
INFORMIXCONTIME environment option . 2-776
NOVALIDATE evironment option . 2-777
OPTCOMPIND Environment Option . 2-779
RETAINUPDATELOCKS Environment Option. 2-779
STATCHANGE Environment Option . 2-782
USELASTCOMMITTED Environment Option . 2-783
USTLOW_SAMPLE environment option . 2-785

SET EXPLAIN statement . 2-785
Using the AVOID_EXECUTE Option . 2-787
Using the FILE TO option . 2-787
Default name and location of the explain output file on UNIX 2-788
Default name and location of the output file on Windows 2-789

Contents xiii

SET EXPLAIN output . 2-789
SET INDEXES statement . 2-795
SET ISOLATION statement . 2-796

Complete-Connection Level Settings . 2-798
Informix Isolation Levels . 2-798
Effects of Isolation Levels. 2-803
Isolation Levels for Secondary Data Replication Servers 2-803

SET LOCK MODE statement . 2-804
WAIT Clause . 2-805

SET LOG statement. 2-806
SET OPTIMIZATION statement . 2-807

HIGH and LOW Options . 2-808
FIRST_ROWS and ALL_ROWS Options . 2-809
Optimizing SPL Routines . 2-809
ENVIRONMENT Options . 2-809

SET PDQPRIORITY statement . 2-811
Allocating Database Server Resources . 2-812

SET ROLE statement . 2-812
Setting the Default Role . 2-814

SET SESSION AUTHORIZATION statement . 2-814
SET SESSION AUTHORIZATION and Transactions . 2-817

SET STATEMENT CACHE statement . 2-817
Precedence and Default Behavior . 2-818
Turning the Cache ON. 2-818
Turning the Cache OFF . 2-819
SQL statement cache qualifying criteria . 2-819

SET TRANSACTION statement. 2-820
Comparing SET TRANSACTION with SET ISOLATION 2-821
Informix Isolation Levels . 2-822
Default Isolation Levels . 2-824
Access Modes . 2-824
Effects of Isolation Levels. 2-824

SET Transaction Mode statement . 2-825
Statement-Level Checking . 2-826
Transaction-Level Checking . 2-826
Duration of Transaction Modes . 2-826
Specifying All Constraints or a List of Constraints . 2-826
Specifying Remote Constraints . 2-826
Examples of Setting the Transaction Mode for Constraints 2-827

SET TRIGGERS statement . 2-827
SET USER PASSWORD statement (UNIX, Linux) . 2-828
START VIOLATIONS TABLE statement . 2-828

Relationship to the SET Database Object Mode statement 2-829
Effect on concurrent transactions . 2-830
Stopping the Violations and Diagnostics Tables . 2-830
USING Clause . 2-830
Using the MAX ROWS clause . 2-831
Specifying the maximum number of rows in the diagnostics table 2-831
Privileges required for starting violations or diagnostics tables 2-831
Structure of the violations table. 2-831
Examples of START VIOLATIONS TABLE Statements 2-832
Relationships Among the Target, Violations, and Diagnostics Tables 2-833
Initial Privileges on the Violations Table . 2-833
Example of Privileges on the Violations Table . 2-835
Using the Violations Table . 2-835
Example of a Violations Table . 2-836
Structure of the diagnostics table . 2-837
Initial privileges on the diagnostics table . 2-837
Using the Diagnostics Table . 2-839

STOP VIOLATIONS TABLE statement . 2-840
Example of Stopping the Violations and Diagnostics Tables 2-841

xiv IBM Informix Guide to SQL: Syntax

Example of Dropping the Violations and Diagnostics Tables 2-841
Privileges Required for Stopping a Violations Table . 2-841

TRUNCATE statement. 2-842
The TABLE Keyword . 2-843
The Table Specification . 2-843
The STORAGE specification . 2-844
The AM_TRUNCATE Purpose Function . 2-844
Performance Advantages of TRUNCATE . 2-845
Restrictions on the TRUNCATE statement . 2-846

UNLOAD statement . 2-846
UNLOAD TO File . 2-847
DELIMITER Clause. 2-851

UNLOCK TABLE statement . 2-851
UPDATE statement . 2-852

Using the ONLY Keyword . 2-854
Updating Rows Through a View . 2-855
Updating Rows in a Database Without Transactions . 2-855
Updating Rows in a Database with Transactions . 2-856
Locking Considerations . 2-856
Declaring an alias for the target table . 2-856
SET Clause . 2-857
Updating Values in Opaque-Type Columns . 2-862
Data Types in Distributed UPDATE Operations . 2-862
WHERE Clause of UPDATE . 2-863
Updating a Row Variable (ESQL/C) . 2-867

UPDATE STATISTICS statement . 2-868
Scope of UPDATE STATISTICS . 2-869
Updating Statistics for Tables . 2-870
Updating Statistics for Columns of User-Defined Types. 2-872
Using the FORCE and AUTO keywords . 2-873
Using the LOW mode option . 2-874
Using the MEDIUM mode option . 2-876
Using the HIGH mode option . 2-876
Resolution Clause . 2-877
Routine Statistics . 2-880
Updating Statistics When You Upgrade the Database Server 2-883
Performance considerations of UPDATE STATISTICS statements. 2-883

WHENEVER statement . 2-885
The Scope of WHENEVER . 2-887
SQLERROR Keyword . 2-887
ERROR Keyword . 2-888
SQLWARNING Keyword . 2-888
NOT FOUND Keywords . 2-888
CONTINUE Keyword . 2-888
STOP Keyword . 2-889
GOTO Keyword . 2-889
CALL Clause . 2-889

Chapter 3. SPL statements . 3-1
Debugging SPL routines . 3-1

Starting an SPL debugging session with Optim Development Studio 3-3
Debugging SPL procedures with IBM Database Add-Ins for Visual Studio 3-4

<< Label >> statement. 3-9
Examples of Labels . 3-11

CALL. 3-11
Specifying Arguments . 3-12
Receiving input from the called UDR . 3-13

CONTINUE . 3-13
DEFINE . 3-14

Referencing TEXT and BYTE Variables. 3-16
Redeclaration or Redefinition . 3-16

Contents xv

Declaring Global Variables . 3-16
Declaring Local Variables . 3-19

EXIT . 3-25
EXIT From FOREACH Statements . 3-25

FOR . 3-27
Using the TO Keyword to Define a Range . 3-28
Using an Expression List as the Range. 3-29
Mixing Range and Expression Lists in the Same FOR Statement 3-29
Specifying a Labelled FOR Loop . 3-30

FOREACH . 3-30
Using a SELECT ... INTO Statement . 3-33
Using the ORDER BY Clause of the SELECT Statement 3-33
Using Hold Cursors . 3-33
Updating or Deleting Rows Identified by Cursor Name 3-33
Using Collection Variables . 3-34
Using Select Cursors with FOREACH . 3-35
Calling a UDR in the FOREACH Loop . 3-35

GOTO . 3-36
IF . 3-37

ELIF Clause . 3-38
ELSE Clause . 3-38
Conditions in an IF Statement . 3-38
Subset of SPL Statements Allowed in the IF Statement List 3-39
SQL Statements Not Valid in an IF Statement . 3-39

LET . 3-40
Using a SELECT Statement in a LET Statement . 3-41
Calling a Function in a LET Statement . 3-42

LOOP . 3-42
Simple LOOP Statements . 3-44
FOR LOOP Statements . 3-44
WHILE LOOP Statements . 3-45
Labeled LOOP Statements . 3-45

ON EXCEPTION . 3-46
Placement of the ON EXCEPTION statement . 3-47
Using the IN Clause to Trap Specific Exceptions . 3-49
Receiving Error Information in the SET Clause . 3-49
Forcing Continuation of the Routine . 3-49

RAISE EXCEPTION . 3-50
Special Error Number -746. 3-51

RETURN . 3-51
WITH RESUME Keyword . 3-52

SYSTEM . 3-54
Executing the SYSTEM statement on UNIX . 3-54
Executing the SYSTEM statement on Windows . 3-55
Setting Environment Variables in SYSTEM Commands 3-56

TRACE . 3-56
TRACE ON. 3-57
TRACE OFF . 3-57
TRACE PROCEDURE . 3-57
Displaying Expressions . 3-57
Example Showing Different Forms of TRACE . 3-58
Looking at the Traced Output . 3-58

WHILE . 3-58
Example of WHILE Loops in an SPL Routine . 3-59
Labeled WHILE Loops . 3-59

Chapter 4. Data types and expressions . 4-1
Scope of Segment Descriptions. 4-1
Use of Segment Descriptions . 4-1
Data type and expression segments . 4-2
Collection Subquery . 4-3

xvi IBM Informix Guide to SQL: Syntax

Table expressions in the FROM clause . 4-5
Condition. 4-5

Comparison Conditions (Boolean Expressions) . 4-7
Column Name . 4-8
Quotation Marks in Conditions . 4-9
Relational-Operator Condition . 4-9
BETWEEN Condition . 4-10
IN Condition . 4-11
IS NULL and IS NOT NULL Conditions . 4-13
Trigger-Type Boolean Operator . 4-14
LIKE and MATCHES Condition . 4-15
Stand-Alone Condition . 4-18
Condition with Subquery . 4-18
NOT Operator . 4-22
Conditions with AND or OR . 4-22

Data Type . 4-23
Built-In Data Types . 4-24
User-Defined Data Type . 4-36
Complex Data Type . 4-38

DATETIME Field Qualifier. 4-42
Expression . 4-44

Syntax of SQL Expressions. 4-45
Usage. 4-46
List of Expressions . 4-46
Arithmetic Operators . 4-56
Bitwise Logical Functions . 4-57
Concatenation Operator . 4-61
Cast Expressions . 4-62
Column Expressions . 4-64
Conditional Expressions . 4-69
Constant Expressions . 4-76
Constructor Expressions . 4-87
NULL Keyword . 4-90
Function Expressions . 4-92
Statement-Local Variable Expressions . 4-192
Aggregate Expressions. 4-193

INTERVAL Field Qualifier . 4-206
Literal Collection . 4-208

Element Literal Value . 4-208
Nested Quotation Marks . 4-209

Literal DATETIME . 4-210
Precedence of DATE and DATETIME format specifications 4-212
Casting Numeric Date and Time Strings to DATE Data Types 4-213

Literal INTERVAL . 4-213
Literal Number . 4-215

Integer Literals . 4-216
Fixed-Point Decimal Literals . 4-216
Floating-Point Decimal Literals . 4-216
Literal Numbers and the MONEY Data Type . 4-216

Literal Row . 4-216
Literals of an Unnamed Row Type. 4-218
Literals of a Named Row Type . 4-219
Literals for Nested Rows . 4-219

Quoted String . 4-219
Restrictions on Specifying Characters in Quoted Strings 4-220
The DELIMIDENT Environment Variable . 4-221
Newline Characters in Quoted Strings . 4-221
Using Quotation Marks in Strings . 4-222
DATETIME and INTERVAL Values as Strings . 4-222
LIKE and MATCHES in a Condition . 4-223
Inserting Values as Quoted Strings . 4-223

Contents xvii

Numeric Operations on Character Columns . 4-223
Relational Operator. 4-224

Using Operator Functions in Place of Relational Operators 4-225
Collating Order for U.S. English Data. 4-226
Support for ASCII Characters in Nondefault Code Sets (GLS). 4-227
Literal Numbers as Operands . 4-227

Chapter 5. Other syntax segments . 5-1
Arguments . 5-1

Comparing Arguments to the Parameter List . 5-2
Subset of Expressions Valid as an Argument . 5-3
Arguments to UDRs in Remote Databases . 5-3

Collection-Derived Table . 5-4
Accessing a Collection Through a Virtual Table . 5-5
Table Expressions in the FROM Clause . 5-6
Restrictions with the Collection-Expression Format . 5-7
Row Type of the Resulting Collection-Derived Table . 5-7
Accessing a Collection Through a Collection Variable . 5-10
Using a Collection Variable to Manipulate Collection Elements 5-11
Accessing a Nested Collection . 5-14
Accessing a Row Variable . 5-14

Database Name . 5-15
Using Keywords as Table Names . 5-16

Database Object Name . 5-16
Specifying a Database Object in an External Database. 5-17
Routine Overloading and Routine Signatures . 5-19
Owners of Objects Created by UDRs . 5-19

External Routine Reference . 5-19
VARIANT or NOT VARIANT Option . 5-21
Example of a C User-Defined Function . 5-21

Identifier . 5-21
Use of Uppercase Characters . 5-23
Use of Keywords as Identifiers . 5-23
Support for Non-ASCII Characters in Identifiers . 5-23
Delimited Identifiers . 5-23
Enabling Delimited Identifiers . 5-25
Potential Ambiguities and Syntax Errors . 5-26
Using the Names of Built-In Functions as Column Names 5-26
Using Keywords as Column Names . 5-27
Using ALL, DISTINCT, or UNIQUE as a Column Name 5-27
Using INTERVAL or DATETIME as a Column Name . 5-28
Using rowid as a Column Name. 5-28
Using Keywords as Table Names . 5-28

Jar Name . 5-34
Optimizer Directives. 5-35

Optimizer Directives as Comments . 5-36
Restrictions on Optimizer Directives . 5-37
Access-Method Directives . 5-37
Join-Order Directive . 5-42
Join-Method Directives . 5-43
Star-Join Directives . 5-45
Optimization-Goal Directives . 5-47
Explain-Mode Directives . 5-47
External Directives . 5-49

Owner name . 5-49
Using Quotation Marks . 5-50
Referencing Tables Owned by User informix. 5-50
ANSI-Compliant Database Restrictions and Case Sensitivity 5-51
Setting ANSIOWNER for an ANSI-Compliant Database 5-52
Default Owner Names . 5-53
Summary of Lettercase Rules for Owner Names . 5-53

xviii IBM Informix Guide to SQL: Syntax

Purpose Options . 5-54
Purpose Options for Access Methods . 5-55
Purpose Functions, Flags, and Values . 5-55
Purpose Options for XA Data Source Types . 5-58

Return Clause . 5-58
Limits on Returned Values. 5-59
Subset of SQL Data Types . 5-59
Using the REFERENCES Clause to Point to a Simple Large Object 5-60
Returning a Value from Another Database . 5-61
Named Return Parameters. 5-63
Cursor and Noncursor Functions . 5-63

Routine modifier . 5-63
Adding or Modifying a Routine Modifier . 5-65
Modifier Descriptions . 5-66

Routine Parameter List . 5-71
Subset of SQL Data Types . 5-72
Using the LIKE Clause . 5-72
Using the REFERENCES Clause . 5-72
Using the DEFAULT Clause . 5-72
Specifying OUT Parameters for User-Defined Routines 5-73
Specifying INOUT Parameters for a User-Defined Routine 5-74

Shared-Object Filename . 5-74
C Shared-Object File . 5-75
Java Shared-Object File . 5-76

Specific Name . 5-77
Restrictions on the Owner Name . 5-78
Restrictions on the Specific Name . 5-78

Statement Block . 5-78
Subset of SPL Statements Valid in the Statement Block 5-79
SQL Statements Valid in SPL Statement Blocks . 5-80
Nested Statement Blocks . 5-81
Restrictions on SPL Routines in Data-Manipulation Statements 5-82
Transactions in SPL Routines . 5-83
Support for roles and user identity . 5-83

Chapter 6. Built-in routines. 6-1
Interval functions . 6-1

TO_DSINTERVAL() function . 6-1
TO_YMINTERVAL() function . 6-3

Session Configuration Procedures . 6-5
Using SYSDBOPEN and SYSDBCLOSE Procedures . 6-6
Configure session properties at connection or access time 6-8
Configuring session properties . 6-9

DataBlade Module Management Functions . 6-10
The SYSBldPrepare Function . 6-10
The SYSBldRelease Function . 6-14

The EXPLAIN_SQL Routine . 6-14
UDR Definition Routines . 6-15

IFX_REPLACE_MODULE Function . 6-15
IFX_UNLOAD_MODULE Function . 6-17

jvpcontrol Function . 6-18
Using the MEMORY Keyword . 6-18
Using the THREADS Keyword . 6-18

SQLJ Driver Built-In Procedures . 6-18
sqlj.install_jar . 6-19
sqlj.replace_jar . 6-20
sqlj.remove_jar. 6-21
sqlj.alter_java_path . 6-22
sqlj.setUDTextName . 6-23
sqlj.unsetUDTextName . 6-24

DRDA Support Functions . 6-25

Contents xix

Metadata Function . 6-25
sysibm.SQLCAMessage Function . 6-27

Appendix A. Keywords of SQL for IBM Informix A-1

Appendix B. Accessibility . B-1
Accessibility features for IBM Informix products. B-1

Accessibility features . B-1
Keyboard navigation . B-1
Related accessibility information . B-1
IBM and accessibility . B-1

Dotted decimal syntax diagrams . B-1

Notices . C-1
Privacy policy considerations . C-3
Trademarks . C-3

Index . X-1

xx IBM Informix Guide to SQL: Syntax

Introduction

In This Introduction
This introduction provides an overview of the information in this publication and
describes the documentation conventions that it uses.

About This Publication
This publication describes the syntax of the Structured Query Language (SQL) and
of the Stored Procedure Language (SPL) for Version 11.70 of IBM® Informix®.

This publication is a companion volume to the IBM Informix Guide to SQL:
Reference, the IBM Informix Guide to SQL: Tutorial, and the IBM Informix Database
Design and Implementation Guide. The IBM Informix Guide to SQL: Reference provides
reference information about the system catalog, the built-in SQL data types, and
environment variables that can affect SQL statements. The IBM Informix Guide to
SQL: Tutorial shows how to use basic and advanced SQL and SPL routines to
access and manipulate the data in your databases. The IBM Informix Database
Design and Implementation Guide shows how to use SQL to implement and manage
relational databases.

Types of Users
This publication is written for the following users:
v Database users
v Database administrators
v Database-application programmers

This publication assumes that you have the following background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational databases or exposure to database

concepts
v Some experience with computer programming

Software Dependencies
This publication assumes that you are using the IBM Informix, Version
11.70database server.

Assumptions About Your Locale
IBM Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment, called a
Global Language Support (GLS) locale.

This publication assumes that you use the U.S. 8859-1 English locale as the default
locale. The default is en_us.8859-1 (ISO 8859-1) on UNIX platforms or en_us.1252
(Microsoft 1252) for Windows environments. These locales support U.S. English
format conventions for dates, times, and currency, and also support the ISO 8859-1
or Microsoft 1252 code set, which includes the ASCII code set plus many 8-bit
characters such as è, é, and ñ.

© Copyright IBM Corp. 1996, 2014 xxi

If you plan to use non-ASCII characters in your data or in SQL identifiers, or if
you want to conform to localized collation rules for sorting character data, or to
localized display format conventions for date, number, or currency values, you
should specify an appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration Databases
The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema that
contains examples of extended data types, data-type inheritance and table
inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX platforms and in the
%INFORMIXDIR%\bin directory in Windows environments.

What's new in SQL Syntax for Informix, Version 11.70
This publication includes information about new features and changes in existing
functionality.

For a complete list of what's new in this release, see the release notes or the
information center at http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/
com.ibm.po.doc/new_features.htm.

Table 1. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC8

Overview Reference

Joins with lateral references

In queries that join result tables in the FROM clause, you can now use the LATERAL
keyword to reference previous table and column aliases in the FROM clause. The
LATERAL keyword must immediately precede any query in the FROM clause that
defines a derived table as its result set, if that query references any table or column
that appears earlier in the left-to-right order of FROM clause syntax elements. For
SELECT statements that join derived tables, lateral table and column references
comply with the ISO/ANSI standard for SQL syntax, and can improve performance.
Lateral references are also valid in DELETE, UPDATE, and CREATE VIEW
statements that include derived tables.

“Lateral derived tables” on
page 2-676

“Subset of SELECT statements
valid in view definitions” on
page 2-376

xxii IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.po.doc/new_features.htm
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.po.doc/new_features.htm

Table 1. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC8 (continued)

Overview Reference

Faster creation of foreign-key constraints

When you run the ALTER TABLE ADD CONSTRAINT statement, some foreign-key
constraints can be created faster if the table has a unique index or a primary-key
constraint that is already defined on the columns in the foreign-key constraint.

Foreign-key constraints are not created faster, however, if the constraint key or index
key includes columns of user-defined or opaque data types, including BOOLEAN
and LVARCHAR, or if other restrictions are true for the foreign-key constraint or for
the referenced table.

“Creating foreign-key
constraints when an index
exists on the referenced table”
on page 2-106

“Enabling foreign-key
constraints when an index
exists on the referenced table”
on page 2-743

Temporarily prevent constraint validation

You can significantly increase the speed of loading or migrating large tables by
temporarily preventing the database server from validating foreign-key referential
constraints. You can disable the validation of constraints when you create constraints
or change the mode of constraints to ENABLED or FILTERING.

v You include the NOVALIDATE keyword in an ALTER TABLE ADD
CONSTRAINT statement or in a SET CONSTRAINTS ENABLED or SET
CONSTRAINTS FILTERING statement.

v If you plan to run multiple ALTER TABLE ADD CONSTRAINT or SET
CONSTRAINTS statements, run the SET ENVIRONMENT NOVALIDATE ON
statement to disable the validation of foreign-key constraints during the current
session.

The NOVALIDATE keyword prevents the database server from checking every row
for referential integrity during ALTER TABLE ADD CONSTRAINT and SET
CONSTRAINTS operations on foreign-key constraints. When those statements finish
running, the database server automatically resumes referential-integrity enforcement
of those constraints in subsequent DML operations.

Use this feature only on tables whose enabled foreign-key constraints are free of
violations, or when the referential constraints can be validated after the tables are
loaded or migrated to the target database.

“Creating foreign-key
constraints in NOVALIDATE
modes” on page 2-110

“SET CONSTRAINTS
statement” on page 2-735

“Modes for constraints and
unique indexes” on page 2-741

“NOVALIDATE evironment
option” on page 2-777

Control the duration and frequency of connection attempts

Previously, you might set the INFORMIXCONTIME and INFORMIXCONRETRY environment
variables in the client environment before you started the database server. The values
specified the number of seconds that the client session spends trying to connect to
the database server, and the number of connection attempts. As of this fix pack, you
also can control the duration and frequency of connection attempts in the following
ways:

v Use the SET ENVIRONMENT statement to set the INFORMIXCONTIME and
INFORMIXCONRETRY environment variables for the current session. That statement
overrides the values that are set by the other methods.

v Update the default values of the new INFORMIXCONTIME and
INFORMIXCONRETRY configuration parameters in the database server
configuration (onconfig) file. You can update the values permanently by running
the onmode -wf command, or update them for the current session by running the
onmode -wm command.

“SET ENVIRONMENT
statement” on page 2-763

“INFORMIXCONTIME
environment option” on page
2-776

“INFORMIXCONRETRY
environment option” on page
2-776

Introduction xxiii

Table 1. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC8 (continued)

Overview Reference

Defining separators for fractional seconds in date-time values

Now you can control which separator to use in the character-string representation of
fractional seconds. To define a separator between seconds and fractional seconds,
you must include a literal character between the %S and %F directives when you set
the GL_DATETIME or DBTIME environment variable, or when you call the TO_CHAR
function. By default, a separator is not used between seconds and fractional seconds.
Previously, the ASCII 46 character, a period (.), was inserted before the fractional
seconds, regardless of whether the formatting string included an explicit separator
for the two fields.

“TO_CHAR Function” on
page 4-145

Table 2. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC6

Overview Reference

Coordinating transactions within a high-availability
cluster

To avoid problems caused by asynchronous log
processing across server sessions or a cluster, use the new
CLUSTER_TXN_SCOPE configuration parameter or the
new SET ENVIRONMENT CLUSTER_TXN_SCOPE
command. You can control whether a transaction commit
can be returned to a client application before the
transaction is applied in another server session or on
another cluster node.

“CLUSTER_TXN_SCOPE environment option” on page
2-769

Enhanced support for OUT and INOUT parameters in
SPL routines

SPL user-defined routines and C user-defined routines
with OUT or INOUT arguments can be invoked from
other SPL routines. The OUT and INOUT return values
can be processed as statement-local variables or as local
SPL variables of SQL data types. The SPL routines that
are invoked from SPL routines support all data types
except BYTE, TEXT, BIGSERIAL, SERIAL, and SERIAL8.
The C routines that are invoked from SPL routines
support all data types except BYTE, TEXT, BIGSERIAL,
SERIAL, SERIAL8, and ROW.

“Specifying INOUT Parameters for a User-Defined
Routine” on page 5-74

“CREATE FUNCTION statement” on page 2-183

Table 3. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC5

Overview Reference

IFX_BATCHEDREAD_INDEX environment option

Use the IFX_BATCHEDREAD_INDEX environment
option of the SET ENVIRONMENT statement of SQL to
control whether the optimizer automatically fetches a set
of keys from an index buffer for a session. The
environment option enables or disables the value of the
BATCHEDREAD_INDEX configuration parameter for a
session.

“IFX_BATCHEDREAD_INDEX environment option” on
page 2-774

xxiv IBM Informix Guide to SQL: Syntax

Table 3. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC5 (continued)

Overview Reference

Increased SQL statement length

The maximum length of SQL statements and SPL routines
is 4 GB. The only exception is the length of the CREATE
VIEW statement, which is restricted to 2 MB in length.
The extended length is valid when using Client SDK
3.70.xC5 and JDBC 3.70.xC5. Previously, SQL statements
were restricted to 64 KB in length.

Table 4. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC4

Overview Reference

Easier setup of faster consistency checking

When you increase the speed of consistency checking by
creating an index on the ifx_replcheck shadow column,
you no longer need to include the conflict resolution
shadow columns in the replicated table. In the CREATE
TABLE statement, the WITH REPLCHECK keywords do
not require the WITH CRCOLS keywords.

“Enterprise Replication shadow columns” on page 2-79

“Using the WITH REPLCHECK Keywords” on page
2-291

Data sampling for update statistics operations

If you have a large index with more than 100 000 leaf
pages, you can generate index statistics based on
sampling when you run UPDATE STATISTICS statements
in LOW mode. Gathering index statistics from sampled
data can increase the speed of the update statistics
operations. To enable sampling, set the
USTLOW_SAMPLE configuration parameter or the
USTLOW_SAMPLE option of the SET ENVIRONMENT
statement.

“SET ENVIRONMENT statement” on page 2-763

“USTLOW_SAMPLE environment option” on page 2-785

Table 5. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC3

Overview Reference

Automatic read-ahead operations

You can enable the database server to use read-ahead
operations automatically to improve performance. Most
queries can benefit from processing the query while
asynchronously retrieving the data required by the query.
The database server can automatically use asynchronous
operations for data or it can avoid them if the data for
the query is already cached. Use the
AUTO_READAHEAD configuration parameter to
configure automatic read-ahead operations for all queries,
and use the SET ENVIRONMENT AUTO_READAHEAD
statement to configure automatic read-ahead operations
for a particular session.

The RA_THRESHOLD configuration parameter is
deprecated with this release.

“SET ENVIRONMENT statement” on page 2-763

“AUTO_READAHEAD environment option” on page
2-766

Introduction xxv

Table 5. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC3 (continued)

Overview Reference

Built-in SQL compatibility functions for string
manipulation and trigonometric support

The Informix database server supports new built-in SQL
string manipulation functions. These functions return
either a character string derived from an argument to the
function, or an integer that describes a string argument:

v CHARINDEX()

v INSTR()

v LEFT()

v LEN()

v REVERSE()

v RIGHT()

v SPACE()

v SUBSTRING_INDEX()

This release also provides two built-in trigonometric
support functions. These functions convert the units of
angular measurement of a numeric expression argument
from radians into degrees, or from degrees into radians:

v DEGREES()

v RADIANS()

These built-in SQL functions can simplify the migration
to the Informix database server of applications developed
for other database servers.

“List of Expressions” on page 4-46

Table 6. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC2

Overview Reference

Table and column aliases in DML statements

The SQL parser supports new contexts for declaring
aliases in SELECT, DELETE, and UPDATE statements:

v SELECT statements and subqueries can declare an alias
in the Projection clause for columns in the select list,
and can use the aliases (as an alternative to the name
or the select number) to reference those columns in the
GROUP BY clause.

v DELETE statements can declare an alias for a local or
remote target table, and can use that alias elsewhere in
the same DELETE statement to reference that table.

v UPDATE statements can declare an alias for a local or
remote target table, and can use that alias elsewhere in
the same UPDATE statement to reference that table.

“Declaring an alias for the table” on page 2-409

“Declaring an alias for the target table” on page 2-856

“DELETE statement” on page 2-404

“GROUP BY Clause” on page 2-708

“UPDATE statement” on page 2-852

xxvi IBM Informix Guide to SQL: Syntax

Table 6. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC2 (continued)

Overview Reference

Case-insensitive queries on NCHAR and NVARCHAR
text strings

In previous IBM Informix releases, strings stored in all
Informix databases were treated as case-sensitive by
database operations. For example, a query for the string
"McDavid" returns "McDavid" but not "mcdavid",
"MCDAVID", or "Mcdavid". Operations designed to
disregard the case of text strings require a bts index or a
functional index for each query.

In this release a database is still created as case-sensitive
by default. However, you can use the NLSCASE
INSENSITIVE option with the CREATE DATABASE
statement to create a database that ignores the case of text
strings. For example, querying "McDavid" returns
"McDavid", "mcdavid", "MCDAVID", and "Mcdavid".

A case-insensitive database ignores letter case only on
NCHAR and NVARCHAR data types, but it treats the
other built-in character data types (CHAR, LVARCHAR,
and VARCHAR) as case-sensitive. You cannot include
both case-sensitive and case-insensitive databases in a
distributed query.

“Specifying NLSCASE case sensitivity” on page 2-153

“Index-type options” on page 2-196

“NCHAR and NVARCHAR expressions in
case-insensitive databases” on page 4-28

“Duplicate rows in NLSCASE INSENSITIVE databases”
on page 2-663

“Case-conversion functions in NLSCASE INSENSITIVE
databases” on page 4-172

Fewer users require administrator access (UNIX, Linux)

Informix software can be installed and administered
without root privileges on UNIX and Linux operating
systems. The user who performs the non-root installation
does not need to be a system administrator, and this user
becomes the database server administrator (DBSA), so
that the database server can run on the computer without
user informix and group informix. This feature is useful
for deploying the server in embedded software solutions
or for situations where running software that uses root
privileges raises security concerns. A non-root installation
does not support high-availability replication,
OpenAdmin Tool (OAT) for Informix, the ON-Bar utility,
nor role separation.

“ALTER USER statement (UNIX, Linux)” on page 2-122

“CREATE DEFAULT USER statement (UNIX, Linux)” on
page 2-156

“CREATE USER statement (UNIX, Linux)” on page 2-368

“DROP USER statement (UNIX, Linux)” on page 2-451

“RENAME USER statement (UNIX, Linux)” on page
2-617

“SET USER PASSWORD statement (UNIX, Linux)” on
page 2-828

Table 7. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC1

Overview Reference

New editions and product names

IBM Informix Dynamic Server editions were withdrawn
and new Informix editions are available. Some products
were also renamed. The publications in the Informix
library pertain to the following products:

v IBM Informix database server, formerly known as IBM
Informix Dynamic Server (IDS)

v IBM OpenAdmin Tool (OAT) for Informix, formerly
known as OpenAdmin Tool for Informix Dynamic
Server (IDS)

v IBM Informix SQL Warehousing Tool, formerly known
as Informix Warehouse Feature

For more information about the Informix product family,
go to http://www.ibm.com/software/data/informix/.

Introduction xxvii

http://www.ibm.com/software/data/informix/

Table 7. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC1 (continued)

Overview Reference

Partitioning table and index storage by an INTERVAL
strategy

You can define a storage distribution strategy for tables or
indexes that partitions data into a set of fragments that
are each based on an interval value of the fragment key,
which must be a column expression that references a
single column of a numeric, DATE, or DATETIME data
type. When rows are inserted that do not fit in the range
fragments, the database server automatically creates new
interval fragments without DBA intervention.

This kind of fragmentation strategy is useful when all
possible fragment key values in a growing table are not
known, and the DBA does not want to allocate fragments
for data that is not yet loaded.

“Fragmenting by RANGE INTERVAL” on page 2-305

“Interval Fragment clause” on page 2-308

Partitioning table and index storage by a LIST strategy

You can define a storage distribution strategy for tables or
indexes that partitions data into a set of fragments that
are each based on a list of discrete values of the fragment
key. Each value in the list must be unique among the lists
for fragments of the same object. Query performance can
improve through fragment elimination when the
fragment key for a table has a finite set of values, and
queries on the table specify equality predicates on the
fragment key.

“Fragmenting by LIST” on page 2-303

“FRAGMENT BY Clause for Tables” on page 2-25

“List fragment clause” on page 2-313

Fragment-level statistics

In previous releases, for fragmented tables data
distributions were calculated at table level to optimize
query plans. This release supports a finer granularity of
statistics for fragmented tables. The statistics are
calculated and stored at the individual fragment level. Set
the new STATLEVEL property of fragmented tables to
specify whether TABLE or FRAGMENT is the granularity
for data distributions, or set to AUTO to allow the
database server to automatically choose the granularity of
the distribution statistics for each fragmented table.

“Statistics options of the ALTER TABLE statement” on
page 2-76

“Statistics options of the CREATE TABLE statement” on
page 2-293

Automatic detection of stale statistics

You can enable Informix to automatically detect which
table or fragment and index statistics are stale, and only
refresh the stale statistics when the UPDATE STATISTICS
statement is run. By default, statistics will be refreshed
when 10% of the data is stale. You can use the
STATCHANGE property when a table is created or
altered to set the minimum percentage of change that is
required for the data to be considered stale. The database
server refreshes statistics only if the data has changed
beyond that threshold since the distribution statistics
were last calculated.

“AUTO_STAT_MODE Environment Option” on page
2-766

“Using the FORCE and AUTO keywords” on page
2-873“SET ENVIRONMENT statement” on page 2-763

“STATCHANGE Environment Option” on page 2-782

xxviii IBM Informix Guide to SQL: Syntax

Table 7. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC1 (continued)

Overview Reference

ALTER FRAGMENT support for list and range interval
fragments

You can now apply the ALTER FRAGMENT statement of
SQL to fragments of an existing database table or index
that uses a list or range interval fragmentation strategy.
Supported syntax includes ADD, ATTACH, DETACH,
DROP, INIT, and MODIFY options. This support provides
greater flexibility in data storage, and can improve the
performance of data warehouse operations on large tables
whose distribution strategy calls for fragments to be
periodically archived, dropped, and replaced with new
fragments.

“Examples of the MODIFY clause with interval
fragments” on page 2-44

“Examples of the MODIFY clause for list fragments” on
page 2-53

Dropping fragment-level statistics automatically after
ALTER FRAGMENT operations

After the ALTER FRAGMENT statement of SQL
redistributes data rows, the database server automatically
drops fragment distribution statistics for a table or index
from the system catalog. Supported syntax includes
ATTACH, DETACH, DROP, and INIT options. The next
UPDATE STATISTICS operation rebuilds all fragment
level distribution, so that the query optimizer will not
choose a query execution plan that is based on statistics
that the ALTER FRAGMENT operation has made stale.

“DROP Clause” on page 2-32

“ATTACH Clause” on page 2-11

“DETACH Clause” on page 2-20

Improved concurrency while redefining table storage
distributions

The new ONLINE option to the ALTER FRAGMENT ON
TABLE statement of SQL can change the storage
distribution of tables that use an interval fragmentation
scheme. Applying an intent exclusive lock to the
surviving table, rather than an exclusive lock, eliminates
downtime for the table during ALTER FRAGMENT
operations that attach or detach a fragment, or that
modify the interval transition value of the table. Other
users can run SELECT, UPDATE, DELETE, INSERT, and
MERGE statements in parallel to the ALTER FRAGMENT
ON TABLE ONLINE statement.

“The ONLINE keyword in ALTER FRAGMENT
operations” on page 2-10

“Using the ONLINE keyword in ATTACH operations” on
page 2-15

Debugging Informix SPL routines with Optim™

Development Studio

Previous versions of Informix support the TRACE
statement of the SPL language to identify logical errors in
SPL routines by examining the values of variables,
arguments, return values, and error codes at runtime
during execution of SPL routines. This release supports
significantly enhanced capabilities for analyzing and
correcting errors in SPL routines through line-by-line
debugging sessions, using the IBM Optim Development
Studio debugger for Informix SPL procedures and
functions, or the IBM Database Add-Ins for Visual Studio
debugger for Informix SPL Procedures.

“Debugging SPL routines” on page 3-1

“Starting an SPL debugging session with Optim
Development Studio” on page 3-3

“Debugging SPL procedures with IBM Database Add-Ins
for Visual Studio” on page 3-4

Introduction xxix

Table 7. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC1 (continued)

Overview Reference

Query optimizer support for star-schema and
snowflake-schema queries

This release provides enhanced query optimizer support
for operations on tables for which star-schema
dependencies exist between a fact table and a set of
dimension tables. (A primary key column in each
dimension table corresponds to a foreign key in the fact
table.) New STAR_JOIN, FACT, AVOID_STAR_JOIN, and
AVOID_FACT optimizer directives enable users to
influence the execution plans for such queries.

Similar query optimizer support is available for
operations on tables within a snowflake schema. Here the
data that could be organized as a single dimension table
of a star schema is instead normalized into multiple table
for separate levels of the dimension. In a data warehouse
environment, decomposing dimensions into snowflake
structures can sometimes achieve better performance than
star-join queries that join fact tables to very large
dimension tables.

You can use the new star-join optimizer directives to
enhance query performance in warehousing applications.
In addition, the SET OPTIMIZATION statement supports
new syntax to define a general optimization environment
for all SQL statements in the session.

“Star-Join Directives” on page 5-45

“ENVIRONMENT Options” on page 2-809

Query optimizer support for multi-index scans

Queries in earlier releases typically use no more than one
index to scan each table for qualifying rows. In this
release, you can specify new access-method optimizer
directives so that the query optimizer can combine one or
multiple B-tree indexes and the Boolean operations in the
WHERE clause to fetch qualifying data rows. Using these
directives can provide better performance than full-table
scans, both for OLTP queries and for data warehousing
applications that query large tables.

“Access-Method Directives” on page 5-37

xxx IBM Informix Guide to SQL: Syntax

Table 7. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC1 (continued)

Overview Reference

Session-level control of how much memory can be
allocated to a query

The SET ENVIRONMENT statement supports new
BOUND_IMPL_PDQ and IMPLICIT_PDQ session
environment options.

v When the BOUND_IMPL_PDQ session environment
option is set to ON (or to one), the database server
uses the explicit PDQPRIORITY setting as the upper
bound for memory that can be allocated to a query.

v When IMPLICIT_PDQ is set to ON, unless
BOUND_IMPL_PDQ is also set, the database server
ignores the current explicit setting of PDQPRIORITY,
and automatically determines an appropriate
PDQPRIORITY value for each query.

v When IMPLICIT_PDQ is set to OFF (or to zero), the
server does not override the current PDQPRIORITY
setting.

The sqexplain output file of the SET EXPLAIN statement
can display the settings of these variables, the calculated
memory limit, and the IMPLICIT_PDQ value that was
granted for the query. These session environment options
can improve query performance and database server
throughput in online transaction processing of large
tables, and in typical data warehousing applications.

“IMPLICIT_PDQ environment option” on page 2-774

“BOUND_IMPL_PDQ environment option” on page 2-768

Simplified administration of users without operating
system accounts (UNIX, Linux)

In previous releases, each user who needed to access the
database server also needed an operating system account
on the host computer. Now you can configure Informix
so that users who are authenticated by an external
authentication service (such as Kerberos or Microsoft
Active Directory) can connect to Informix. The new
USERMAPPING configuration parameter specifies
whether or not such users can access the database server,
and whether any of those users can have administrative
privileges. When Informix is configured to allow user
mapping, you can still control which externally
authenticated users are allowed to connect to Informix
and their privileges.

“Surrogate user properties (UNIX, Linux)” on page 2-533

“Revoking database server access from mapped users
(UNIX, Linux)” on page 2-621

Trusted connections improve security for multiple-tier
application environments

You can define trusted contexts, which can then be used
to establish trusted connections between an application
server and the Informix database server on a network.
Trusted connections let you set the identity of each
specific user accessing a database through the middle-tier
server, which facilitates discretionary access control and
auditing based on user identity. Without a trusted
connection in such an environment, each action on a
database is performed with the single user ID of the
middle-tier server, potentially lessening granular control
and oversight of database security.

“CREATE TRUSTED CONTEXT statement” on page 2-366

“DROP TRUSTED CONTEXT statement” on page 2-450

“ALTER TRUSTED CONTEXT statement” on page 2-118

Introduction xxxi

Table 7. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC1 (continued)

Overview Reference

Syntax support for DDL statements with IF [NOT]
EXISTS conditions

Now you can include the IF NOT EXISTS keywords in
SQL statements that create a database object (or a
database). You can also include the IF EXISTS keywords
in SQL statements that destroy a database object (or a
database). If the condition is false, the CREATE or DROP
operation has no effect, but no error is returned to the
application. Support for the IF EXISTS and IF NOT
EXISTS keywords in DDL statements simplifies the
migration to Informix of SQL applications that were
originally developed for other database servers that
support this syntax.

“CREATE DATABASE statement” on page 2-150

“DROP XADATASOURCE TYPE statement” on page
2-454

Simplified SQL syntax for defining database tables

Removing restrictions on the order in which column
attributes can be defined in Data Definition Language
(DDL) statements of the SQL language simplifies the
syntax rules for column definitions in the CREATE
TABLE and ALTER TABLE statements. The specifications
for default values can precede or follow any constraint
definitions. The NOT NULL constraint does not need to
be listed first if additional constraints are defined. The
constraints (on a single column or on a set of multiple
columns) can be defined in any order within the
constraint specifications, and that list of constraint
definitions can be followed (or preceded) by the default
value, if a default is defined on the column. In addition,
the list of constraints can include the NULL keyword to
indicate that the column can accept NULL values. The
NULL constraint cannot be specified with NOT NULL or
PRIMARY KEY in the constraint list.

This support by the Informix SQL parser for table
definitions written in other dialects of the SQL language
can simplify migration to this Informix release of data
management applications that were originally developed
for other database servers.

“Single-Column Constraint Format” on page 2-274

“Column definition” on page 2-323

xxxii IBM Informix Guide to SQL: Syntax

Table 7. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC1 (continued)

Overview Reference

Deferred extent sizing of tables created with default
storage specifications

In the CREATE TABLE statement of previous versions of
Informix, all permanent tables are created with storage
allocated for a first extent. If the statement does not
define a size for the extent, by default the first extent is
either 16 kilobytes or 4 pages (if 16 kilobytes is too small
to produce 4 pages for the table).

In this release, the default size of the first extent is the
same as in earlier releases. However, if the CREATE
TABLE statement does not include an IN dbspace, an
EXTENT specification, and a NEXT EXTENT
specification, storage for the table is allocated when the
first data row is inserted.

This behavior can conserve disk space in applications that
create hundreds or thousands of tables, but only a subset
of those tables are typically used to store data.

“Deferred extent storage allocation” on page 2-316

Specifying the extent size when user-defined indexes are
created

In earlier releases, when a user define an index with the
CREATE INDEX statement, the database server calculates
the extent sizes in the storage partition where the index
will reside.

In this release, the CREATE INDEX statement supports
new syntax to specify the first extent size and the next
extent size when the index is defined. The existing
CREATE INDEX statement has been extended to support
a new EXTENT SIZE clause, similar to the SQL syntax for
defining table extent sizes in the CREATE TABLE and
ALTER TABLE statements.

“CREATE INDEX statement” on page 2-194

“Extent Size Options” on page 2-209

Reduced overhead for foreign key constraints on very
large child tables

Foreign key constraints are associated with an index on
the child table that the constraint references. For child
tables with a very large number of rows, but only a few
distinct foreign key values, DML operations using the
index can impose substantial overhead on the server,
compared to sequentially scanning the child table.

For these cases, the ALTER TABLE ADD CONSTRAINT
FOREIGN KEY statement of SQL can now include the
optional INDEX DISABLED keywords. These keywords
disable the index when the foreign key constraint is
created, and can improve the efficiency of insert, delete,
and update operations on very large child tables. (In
CREATE TABLE statements that define foreign key
constraints, the existing syntax is unchanged.)

“Multiple-Column Constraint Format” on page 2-104

“Using the INDEX DISABLED keywords in a foreign key
definition” on page 2-107

Introduction xxxiii

Table 7. What's New in IBM Informix Guide to SQL: Syntax for Version 11.70.xC1 (continued)

Overview Reference

Less root node contention with forest of trees indexes

If you have many concurrent users who routinely
experience delays due to root node contention, you might
improve query performance if you convert your B-tree
index to a forest of trees index. A forest of trees index is
similar to a B-tree index, but has multiple root nodes and
potentially fewer levels. You create forest of trees indexes
with the new HASH ON clause of the CREATE INDEX
statement of SQL.

“CREATE INDEX statement” on page 2-194

“HASH ON clause” on page 2-206

“SET EXPLAIN output” on page 2-789

Forest of trees indexes (Performance Guide)

SQL expressions as arguments to the COUNT function

In earlier releases, queries can call the built-in COUNT
function to return the number of qualifying rows, or the
total number of non-NULL values (or of unique
non-NULL values) in a specified column. This release
extends the domain of COUNT arguments to SQL
expressions that other aggregates accept, including CASE
expressions. Current restrictions on the arguments to
other SQL aggregate functions also apply to COUNT.

“Aggregate Expressions” on page 4-193

“Arguments to the COUNT Functions” on page 4-198

Replicate tables without primary keys

If you do not want to have a primary key, or want to be
able to update the primary key, on tables replicated by
Enterprise Replication, you can use the ERKEY shadow
columns in place of a primary key.

“Using the WITH ERKEY Keywords” on page 2-290

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is
being discussed.

xxxiv IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_763.htm#ids_prf_763

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http://www.ibm.com/software/data/sw-library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

Syntax diagrams
Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 8. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next
line.

>----------------------- Statement continues from
previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---
’------LOCAL------’

Optional item.

---+-----ALL-------+---
+--DISTINCT-----+
’---UNIQUE------’

Required item with choice.
Only one item must be
present.

---+------------------+---
+--FOR UPDATE-----+
’--FOR READ ONLY--’

Optional items with choice
are shown below the main
line, one of which you might
specify.

Introduction xxxv

http://www.ibm.com/software/data/sw-library/

Table 8. Syntax Diagram Components (continued)

Component represented in PDF Component represented in HTML Meaning

.---NEXT---------.
----+----------------+---

+---PRIOR--------+
’---PREVIOUS-----’

The values below the main
line are optional, one of
which you might specify. If
you do not specify an item,
the value above the line is
used by default.

.-------,-----------.
V |
---+-----------------+---

+---index_name---+
’---table_name---’

Optional items. Several items
are allowed; a comma must
precede each repetition.

>>-| Table Reference |->< Reference to a syntax
segment.

Table Reference

|--+-----view--------+--|
+------table------+
’----synonym------’

Syntax segment.

How to read a command-line syntax diagram
Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a no-conversion job

�� onpladm create job job
-p project

-n -d device -D database �

� -t table �

� �
(1)

Setting the Run Mode
-S server -T target

��

Notes:

1 See page Z-1

This diagram has a segment that is named “Setting the Run Mode,” which
according to the diagram footnote is on page Z-1. If this was an actual
cross-reference, you would find this segment on the first page of Appendix Z.
Instead, this segment is shown in the following segment diagram. Notice that the
diagram uses segment start and end components.

xxxvi IBM Informix Guide to SQL: Syntax

Setting the run mode:

-f
d
p
a

l
c

u n N

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Include onpladm create job and then the name of the job.
2. Optionally, include -p and then the name of the project.
3. Include the following required elements:

v -n

v -d and the name of the device
v -D and the name of the database
v -t and the name of the table

4. Optionally, you can include one or more of the following elements and repeat
them an arbitrary number of times:
v -S and the server name
v -T and the target server name
v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to include -f, optionally include d, p, or a, and then
optionally include l or u.

5. Follow the diagram to the terminator.

Keywords and punctuation
Keywords are words that are reserved for statements and all commands except
system-level commands.

A keyword in a syntax diagram is shown in uppercase letters. When you use a
keyword in a command, you can write it in uppercase or lowercase letters, but you
must spell the keyword exactly as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and names
Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in other syntax diagrams. A variable in a syntax diagram, an
example, or text, is shown in lowercase italic.

Introduction xxxvii

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v In the Informix information center, which is available online at

http://www.ibm.com/software/data/sw-library/, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, complete the
form, and submit your feedback.

v Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

xxxviii IBM Informix Guide to SQL: Syntax

mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

Chapter 1. Overview of SQL syntax

These topics provide an overview about how to use the SQL statements, SPL
statements, and syntax segments.

The topics in this chapter are organized into the following sections.

Section Scope

“How to Enter SQL Statements” How to use syntax diagrams and descriptions to
enter SQL statements correctly

“How to Enter SQL Comments” on
page 1-3

How to enter comments in SQL statements

“Categories of SQL Statements” on
page 1-5

The SQL statements, listed by functional category

“ANSI/ISO Compliance and
Extensions” on page 1-11

The SQL statements, listed by degree of ANSI/ISO
compliance

How to Enter SQL Statements
SQL is a free-form language, like C or PASCAL, that generally ignores white-space
characters like TAB, LINEFEED, and extra blank spaces between statements or
statement elements. At least one blank character or other delimiter, however, must
separate keywords and identifiers from other syntax tokens.

SQL is lettercase insensitive, except within quoted strings; see also “Identifier” on
page 5-21. In an ANSI-compliant database, if you do not delimit the owner of an
object by double (") quotation marks, and the ANSIOWNER environment
variable was not set to 1 when the database server was initialized, the database
server stores the owner name in uppercase letters.

Statement descriptions are provided in this publication to help you to enter SQL
statements successfully. A statement description includes this information:
v A brief introduction that explains what the statement does
v A syntax diagram that shows how to enter the statement correctly
v A syntax table that explains each input parameter in the syntax diagram
v Rules of usage, typically with examples that illustrate these rules

For some statements, this information is provided for individual clauses.

Most statement descriptions conclude with references to related information in this
publication and in other publications.

Chapter 2, “SQL statements,” on page 2-1 provides descriptions of each SQL
statement, arranged in alphabetical order. Chapter 3, “SPL statements,” on page 3-1
describes each of the SPL statements, using the same format.

The major aids for entering SQL statements include:
v The combination of the syntax diagram and syntax table
v The examples of syntax that appear in the rules of usage

© Copyright IBM Corp. 1996, 2014 1-1

v The references to related information

Using Syntax Diagrams and Syntax Tables
Before you try to use the syntax diagrams in this chapter, it is helpful to read the
syntax diagram section of the Introduction. This section is the key to
understanding the syntax diagrams and explains the elements that can appear in a
syntax diagram and the paths that connect the elements to each other. This section
also includes an example that illustrates the elements of typical syntax diagrams.
The narrative that follows the example diagram shows how to read the diagram in
order to enter the statement successfully.

Notes to the diagram can reference other syntax segments or can specify various
restrictions. If you are using an application programming interface, such as
ESQL/C or 4GL, only the SQL syntax rules that both your client application and
the database server support are valid.

When a syntax diagram includes input specifications that are not keywords, syntax
segments, nor punctuation symbols, such as identifiers, expressions, filenames, or
host variables, the syntax diagram is followed by a table that describes how to
enter the term without generating errors. Each syntax table includes four columns:
v The Element column lists each variable term in the syntax diagram.
v The Description column briefly describes the term and identifies the default

value, if the term has one.
v The Restrictions column summarizes the restrictions on the term, such as

acceptable ranges of values. (For some diagrams, restrictions that cannot be
tersely summarized appear in the Usage notes, rather than in this column.)

v The Syntax column points to the SQL segment that gives the detailed syntax for
the term. For a few terms, such as the names of host variables, pathnames, or
literal characters, no page reference is provided.

The diagrams generally provide an intuitive notation for what is valid in a given
SQL statement, but for some statements, dependencies or restrictions among syntax
elements are identified only in the text of the Usage section.

Using Examples
To understand the main syntax diagram and subdiagrams for a statement, study
the examples of syntax that appear in the rules of usage for each statement. These
examples have two purposes:
v To show how to accomplish specific tasks with the statement or its clauses
v To show how to use syntax of the statement or its clauses in a concrete way

Tip: An efficient way to understand a syntax diagram is to find an example of the
syntax and compare it with the keywords and parameters in the syntax diagram.
By mapping the concrete elements of the example to the abstract elements of the
syntax diagram, you can understand the syntax diagram and use it more
effectively.

For an explanation of the conventions used in the examples in this publication, see
the syntax diagram section of the Introduction.

These code examples are program fragments to illustrate valid syntax, rather than
complete SQL programs. In some code examples, ellipsis (. . .) symbols indicate

1-2 IBM Informix Guide to SQL: Syntax

that additional code has been omitted. To save space, however, ellipses are not
shown at the beginning or end of the program fragments.

Using Related Information
For help in understanding concepts and terms in the SQL statement description,
check the “Related Information” section at the end of each statement.

This section points to related information in this publication and other publications
to help you understand the statement in question. The section provides some or all
of the following information:
v The names of related statements that might contain a fuller discussion of topics

in this statement
v The titles of other publications that provide extended discussions of topics in

this statement

Tip: If you do not have extensive knowledge and experience with SQL, the IBM
Informix Guide to SQL: Tutorial gives you the basic SQL knowledge that you need to
understand and use the statement descriptions in this document.

How to Enter SQL Comments
You can add comments to clarify the purpose or effect of particular SQL
statements. You can also use comment symbols during program development to
disable individual statements without deleting them from your source code.

Your comments can help you or others to understand the role of the statement
within a program, SPL routine, or command file. The code examples in this
document sometimes include comments that clarify the role of an SQL statement
within the code, but your own SQL programs will be easier to read and to
maintain if you document them with frequent comments.

The following table shows the SQL comment indicators that you can enter in your
code. Here a Y in a column signifies that you can use the symbol with the product
or with the type of database identified in the column heading. An N in a column
signifies that you cannot use the symbol with the indicated product or with a
database of the indicated ANSI-compliance status.

Comment
Symbol ESQL/C

SPL
Routine DB-Access

ANSI-
Compliant
Databases

Databases Not
ANSI

Compliant Description

double
hyphen (--)

Y Y Y Y Y The double hyphen
precedes a comment
within a single line. To
comment more than one
line, put double hyphen
symbols at the beginning
of each comment line.

braces ({ . . .
})

N Y Y Y Y Braces enclose the
comment. The { precedes
the comment, and the }
follows it. Braces can
delimit single- or
multiple-line comments,
but comments cannot be
nested.

Chapter 1. Overview of SQL syntax 1-3

Comment
Symbol ESQL/C

SPL
Routine DB-Access

ANSI-
Compliant
Databases

Databases Not
ANSI

Compliant Description

slash and
asterisk /* . .
. */

Y Y Y Y Y C-language style slash and
asterisk (/* */) paired
delimiters enclose the
comment. The /* precedes
the comment, and the */
follows it. These can
delimit single-line or
multiple-line comments,
but comments cannot be
nested.

Characters within the comment are ignored by the database server.

The section “Optimizer Directives” on page 5-35 describes a context where
information within comments can influence query plans of Informix.

If the product that you use supports all of these comment symbols, your choice of
a comment symbol depends on requirements for ANSI/ISO compliance:
v Double hyphen (--) complies with the ANSI/ISO standard for SQL.
v Braces ({ }) are an Informix extension to the ANSI/ISO standard.
v C-style slash-and-asterisk (/* . . . */) comply with the SQL-99 standard.

If ANSI/ISO compliance is not an issue, your choice of comment symbols is a
matter of personal preference.

In DB-Access, you can use any of these comment symbols when you enter SQL
statements with the SQL editor and when you create SQL command files with the
SQL editor or with a system editor.

An SQL command file is an operating-system file that contains one or more SQL
statements. Command files are also known as command scripts. For more
information about command files, see the discussion of command scripts in the
IBM Informix Guide to SQL: Tutorial. For information on how to create and modify
command files with the SQL editor or a system editor in DB-Access, see the IBM
Informix DB-Access User's Guide.

You can use any of these comment symbols in any line of an SPL routine. See the
discussion of how to comment and document an SPL routine in the IBM Informix
Guide to SQL: Tutorial.

In Informix ESQL/C, the double hyphen (--) can begin a comment that extends
to the end of the same line. For information on language-specific comment symbols
in Informix ESQL/C programs, see the IBM Informix ESQL/C Programmer's Manual.

Examples of SQL Comments
These examples illustrate different ways to use the SQL comment indicators.

The following examples use each style of comment indicator, including the double
hyphen (--), braces ({ }), and C-style (/* . . . */) comment delimiters to
include a comment after an SQL statement. The comment appears on the same line
as the statement.

1-4 IBM Informix Guide to SQL: Syntax

SELECT * FROM customer; -- Selects all columns and rows

SELECT * FROM customer; {Selects all columns and rows}

SELECT * FROM customer; /*Selects all columns and rows*/

The next three examples use the same SQL statement and the same comments as in
the preceding examples, but place the comment on a separate line:
SELECT * FROM customer;

-- Selects all columns and rows

SELECT * FROM customer;
{Selects all columns and rows}

SELECT * FROM customer;
/*Selects all columns and rows*/

In the following examples, the user enters the same SQL statement as in the
preceding example but now a multiple-line comment (or for the double-hyphen
indicator, two comments) follows each statement:
SELECT * FROM customer;

-- Selects all columns and rows
-- from the customer table

SELECT * FROM customer;
{Selects all columns and rows
from the customer table}

SELECT * FROM customer;
/*Selects all columns and rows
from the customer table*/

Comments in any of these styles can also appear within an SQL statement:
SELECT * -- Selects all columns and rows

FROM customer; -- from the customer table

SELECT * {Selects all columns and rows}
FROM customer; {from the customer table}

SELECT * /*Selects all columns and rows*/
FROM customer; /*from the customer table*/

If you use braces or C-style comments that are delimited by paired opening and
closing indicators, the closing comment indicator must be in the same style as the
opening comment indicator.

Non-ASCII Characters in SQL Comments
You can enter non-ASCII characters (including multibyte characters) in SQL
comments if the database locale supports the non-ASCII characters. For further
information on the GLS aspects of SQL comments, see the IBM Informix GLS User's
Guide.

Categories of SQL Statements
SQL statements are traditionally divided into the following logical categories:

Data definition statements
These data definition language (DDL) statements can declare, rename,
modify, or destroy objects in the local database.

Chapter 1. Overview of SQL syntax 1-5

Data manipulation statements
These data manipulation language (DML) statements can retrieve, insert,
delete, or modify data values.

Cursor manipulation statements
These statements can declare, open, and close cursors, which are data
structures for operations on multiple rows of data.

Dynamic management statements
These statements support memory management and allow users to specify
at runtime the details of DML operations.

Data access statements
These statements specify discretionary access privileges and support
concurrent access to the database by multiple users.

Data integrity statements
These implement transaction logging and support the referential integrity
of the database.

Optimization statements
These can be used to improve the performance of operations on the
database.

Routine definition statements
These can declare, define, modify, execute, or destroy user-defined routines
that the database stores.

Client/server connection statements
These can open or close a connection between a database and a client
application.

Auxiliary statements
These can provide information about the database. (This is also a residual
category for statements that are not closely related to the other statement
categories.)

Optical subsystem statements
These statements are separately documented in IBM Informix Optical
Subsystem Guide.

Data Definition Language Statements
v ALTER ACCESS_METHOD
v ALTER FRAGMENT
v ALTER FUNCTION
v ALTER INDEX
v ALTER PROCEDURE
v ALTER ROUTINE
v ALTER SEQUENCE
v ALTER SECURITY LABEL COMPONENT
v ALTER TABLE
v ALTER TRUSTED CONTEXT
v ALTER USER
v CLOSE DATABASE
v CREATE ACCESS_METHOD
v CREATE AGGREGATE

1-6 IBM Informix Guide to SQL: Syntax

v CREATE CAST
v CREATE DATABASE
v CREATE DISTINCT TYPE
v CREATE EXTERNAL TABLE
v CREATE FUNCTION
v CREATE FUNCTION FROM
v CREATE INDEX
v CREATE OPAQUE TYPE
v CREATE OPCLASS
v CREATE PROCEDURE
v CREATE PROCEDURE FROM
v CREATE ROLE
v CREATE ROUTINE FROM
v CREATE ROW TYPE
v CREATE SCHEMA
v CREATE SECURITY LABEL
v CREATE SECURITY LABEL COMPONENT
v CREATE SECURITY POLICY
v CREATE SEQUENCE
v CREATE SYNONYM
v CREATE TABLE
v CREATE TEMP TABLE
v CREATE TRIGGER
v CREATE TRUSTED CONTEXT
v CREATE USER
v CREATE VIEW
v CREATE XADATASOURCE
v CREATE XADATASOURCE TYPE
v DROP ACCESS_METHOD
v DROP AGGREGATE
v DROP CAST
v DROP DATABASE
v DROP FUNCTION
v DROP INDEX
v DROP OPCLASS
v DROP PROCEDURE
v DROP ROLE
v DROP ROUTINE
v DROP ROW TYPE
v DROP SECURITY
v DROP SEQUENCE
v DROP TRUSTED CONTEXT
v DROP SYNONYM
v DROP TABLE
v DROP TRIGGER

Chapter 1. Overview of SQL syntax 1-7

v DROP TYPE
v DROP USER
v DROP VIEW
v DROP XADATASOURCE
v DROP XADATASOURCE TYPE
v RENAME COLUMN
v RENAME DATABASE
v RENAME INDEX
v RENAME SECURITY
v RENAME SEQUENCE
v RENAME TABLE
v RENAME TRUSTED CONTEXT
v RENAME USER
v TRUNCATE
v UPDATE STATISTICS

Data Manipulation Language Statements
v DELETE
v INSERT
v LOAD
v MERGE
v SELECT
v UNLOAD
v UPDATE

Note: DELETE, INSERT, MERGE, SELECT, and UPDATE are DML statements in
the ANSI/ISO standard for SQL, where MERGE can emulate INSERT and DELETE
or UPDATE. Although LOAD and UNLOAD resemble DML in their functionality,
these DB-Access macros are out-of-scope for most references in this document to
“DML statements.”

Data Integrity Statements
v BEGIN WORK
v COMMIT WORK
v SAVEPOINT
v RELEASE SAVEPOINT
v ROLLBACK WORK
v SET Database Object Mode
v SET LOG
v SET Transaction Mode
v START VIOLATIONS TABLE
v STOP VIOLATIONS TABLE

Cursor Manipulation Statements
v CLOSE
v DECLARE

1-8 IBM Informix Guide to SQL: Syntax

v FETCH
v FLUSH
v FREE
v OPEN
v PUT
v SET AUTOFREE

Dynamic Management Statements
v ALLOCATE COLLECTION
v ALLOCATE DESCRIPTOR
v ALLOCATE ROW
v DEALLOCATE COLLECTION
v DEALLOCATE DESCRIPTOR
v DEALLOCATE ROW
v DESCRIBE
v DESCRIBE INPUT
v EXECUTE
v EXECUTE IMMEDIATE
v FREE
v GET DESCRIPTOR
v INFO
v PREPARE
v SET DEFERRED_PREPARE
v SET DESCRIPTOR

Data Access Statements
v GRANT
v GRANT FRAGMENT
v LOCK TABLE
v REVOKE
v REVOKE FRAGMENT
v SET ISOLATION
v SET LOCK MODE
v SET ROLE
v SET SESSION AUTHORIZATION
v SET TRANSACTION
v SET Transaction Mode
v UNLOCK TABLE

Optimization Statements
v SAVE EXTERNAL DIRECTIVES
v SET ENVIRONMENT
v SET EXPLAIN
v SET OPTIMIZATION
v SET PDQPRIORITY

Chapter 1. Overview of SQL syntax 1-9

v SET STATEMENT CACHE

Routine Definition Statements
v ALTER FUNCTION
v ALTER PROCEDURE
v ALTER ROUTINE
v CREATE FUNCTION
v CREATE FUNCTION FROM
v CREATE PROCEDURE
v CREATE PROCEDURE FROM
v CREATE ROUTINE FROM
v DROP FUNCTION
v DROP PROCEDURE
v DROP ROUTINE
v EXECUTE FUNCTION
v EXECUTE PROCEDURE
v SET DEBUG FILE TO

Auxiliary Statements
v GET DIAGNOSTICS
v INFO
v OUTPUT
v SET COLLATION
v SET DATASKIP
v SET ENCRYPTION PASSWORD
v SET USER PASSWORD
v WHENEVER

Client/Server Connection Statements
v CONNECT
v DATABASE
v DISCONNECT
v SET CONNECTION

Optical Subsystem Statements
v ALTER OPTICAL CLUSTER
v CREATE OPTICAL CLUSTER
v DROP OPTICAL CLUSTER
v RELEASE
v RESERVE
v SET MOUNTING TIMEOUT

Important: See the IBM Informix Optical Subsystem Guide for more information.

1-10 IBM Informix Guide to SQL: Syntax

ANSI/ISO Compliance and Extensions
Lists that follow show statements that match the ANSI SQL-92 standard at the
entry level, statements that are ANSI compliant but include Informix extensions,
and statements that are Informix extensions to the ANSI/ISO standard.

ANSI/ISO-Compliant Statements
v CLOSE
v COMMIT WORK
v RELEASE SAVEPOINT
v SET CONSTRAINTS (See “SET Transaction Mode statement” on page 2-825)
v SET SESSION AUTHORIZATION
v SET TRANSACTION

ANSI/ISO-Compliant Statements with Informix Extensions
v ALLOCATE DESCRIPTOR
v ALTER TABLE
v CONNECT
v CREATE FUNCTION
v CREATE PROCEDURE
v CREATE TRIGGER
v CREATE SCHEMA
v CREATE TABLE
v CREATE TEMP TABLE
v CREATE VIEW
v DEALLOCATE DESCRIPTOR
v DECLARE
v DELETE
v DESCRIBE
v DESCRIBE INPUT
v DISCONNECT
v EXECUTE
v EXECUTE IMMEDIATE
v FETCH
v GET DESCRIPTOR
v GET DIAGNOSTICS
v GRANT
v INSERT
v MERGE
v OPEN
v PREPARE
v REVOKE
v ROLLBACK WORK
v SAVEPOINT
v SELECT
v SET CONNECTION

Chapter 1. Overview of SQL syntax 1-11

v SET DESCRIPTOR
v UPDATE STATISTICS
v WHENEVER

Statements that are Extensions to the ANSI/ISO Standard
v ALLOCATE COLLECTION
v ALLOCATE ROW
v ALTER ACCESS_METHOD
v ALTER FRAGMENT
v ALTER FUNCTION
v ALTER INDEX
v ALTER PROCEDURE
v ALTER ROUTINE
v ALTER SECURITY LABEL COMPONENT
v ALTER SEQUENCE
v ALTER TRUSTED CONTEXT
v ALTER USER
v BEGIN WORK
v CLOSE DATABASE
v CREATE ACCESS_METHOD
v CREATE AGGREGATE
v CREATE CAST
v CREATE DATABASE
v CREATE DEFAULT USER
v CREATE DISTINCT TYPE
v CREATE EXTERNAL TABLE
v CREATE FUNCTION FROM
v CREATE INDEX
v CREATE OPAQUE TYPE
v CREATE OPCLASS
v CREATE PROCEDURE FROM
v CREATE ROLE
v CREATE ROUTINE FROM
v CREATE ROW TYPE
v CREATE SECURITY LABEL
v CREATE SECURITY LABEL COMPONENT
v CREATE SECURITY POLICY
v CREATE SEQUENCE
v CREATE SYNONYM
v CREATE TRUSTED CONTEXT
v CREATE USER
v CREATE XADATASOURCE
v CREATE XADATASOURCE TYPE
v DATABASE
v DEALLOCATE COLLECTION

1-12 IBM Informix Guide to SQL: Syntax

v DEALLOCATE ROW
v DROP ACCESS_METHOD
v DROP AGGREGATE
v DROP CAST
v DROP DATABASE
v DROP FUNCTION
v DROP INDEX
v DROP OPCLASS
v DROP PROCEDURE
v DROP ROLE
v DROP ROUTINE
v DROP ROW TYPE
v DROP SECURITY LABEL
v DROP SECURITY LABEL COMPONENT
v DROP SECURITY POLICY
v DROP SEQUENCE
v DROP SYNONYM
v DROP TABLE
v DROP TRIGGER
v DROP TRUSTED CONTEXT
v DROP TYPE
v DROP USER
v DROP VIEW
v DROP XADATASOURCE
v DROP XADATASOURCE TYPE
v EXECUTE FUNCTION
v EXECUTE PROCEDURE
v FLUSH
v FREE
v GRANT FRAGMENT
v LOAD
v LOCK TABLE
v OUTPUT
v PUT
v RELEASE SAVEPOINT
v RENAME COLUMN
v RENAME DATABASE
v RENAME INDEX
v RENAME SECURITY LABEL
v RENAME SECURITY LABEL COMPONENT
v RENAME SECURITY POLICY
v RENAME SEQUENCE
v RENAME TABLE
v RENAME TRUSTED CONTEXT
v RENAME USER

Chapter 1. Overview of SQL syntax 1-13

v REVOKE FRAGMENT
v SAVE EXTERNAL DIRECTIVES
v SET AUTOFREE
v SET COLLATION
v SET CONSTRAINTS (See “SET Database Object Mode statement” on page

2-737.)
v SET Database Object Mode
v SET DATASKIP
v SET DEBUG FILE TO
v SET DEFERRED_PREPARE
v SET ENCRYPTION PASSWORD
v SET ENVIRONMENT
v SET EXPLAIN
v SET INDEXES (See “SET Database Object Mode statement” on page 2-737.)
v SET ISOLATION
v SET LOCK MODE
v SET LOG
v SET OPTIMIZATION
v SET PDQPRIORITY
v SET ROLE
v SET STATEMENT CACHE
v SET TRIGGERS (See “SET Database Object Mode statement” on page 2-737.)
v SET USER PASSWORD
v START VIOLATIONS TABLE
v STOP VIOLATIONS TABLE
v TRUNCATE
v UNLOAD
v UNLOCK TABLE
v UPDATE STATISTICS

1-14 IBM Informix Guide to SQL: Syntax

Chapter 2. SQL statements

This chapter describes the syntax and semantics of SQL statements that are
recognized by Informix.

The SQL statement names that appear as the title to each statement description in
this chapter are listed in alphabetical order.

For some statements, important details of the semantics appear in other volumes of
this documentation set, as indicated by cross-references.

For many statements, the syntax diagram, or the table of terms immediately
following the diagram, or both, includes references to syntax segments in
Chapter 4, “Data types and expressions,” on page 4-1 or in Chapter 5, “Other
syntax segments,” on page 5-1.

When the name of an SQL statement includes lowercase characters, such as ”SET
Database Object Mode,” it means that the first mixed-lettercase string in the
statement name is not an SQL keyword, but that two or more different SQL
keywords can follow the preceding uppercase keyword.

For an explanation of the structure of statement descriptions, see Chapter 1,
“Overview of SQL syntax,” on page 1-1.

ALLOCATE COLLECTION statement
Use the ALLOCATE COLLECTION statement to allocate memory for a variable of
a collection data type (such as LIST, MULTISET, or SET) or for an untyped
collection variable.

Syntax

�� ALLOCATE COLLECTION variable ��

Element Description Restrictions Syntax

variable Name of the typed or untyped
collection variable to allocate

Must be an unallocated Informix ESQL/C
collection-type host variable

Language-specific
rules for names

Usage

This statement is an extension to the ANSI/ISO standard for SQL. Use this
statement with ESQL/C.

The ALLOCATE COLLECTION statement allocates memory for an ESQL/C
variable that can store the value of a collection data type.

To create a collection variable for an Informix ESQL/C program:
1. Declare the collection variable as a client collection variable in an Informix

ESQL/C program.
The collection variable can be a typed or untyped collection variable.

© Copyright IBM Corp. 1996, 2014 2-1

2. Allocate memory for the collection variable with the ALLOCATE
COLLECTION statement.

The ALLOCATE COLLECTION statement sets SQLCODE (that is, sqlca.sqlcode)
to zero (0) if the memory allocation was successful, or to a negative error code if
the allocation failed.

When you no longer need the collection variable, you must explicitly release the
memory that it occupies with the DEALLOCATE COLLECTION statement. After
the DEALLOCATE COLLECTION statement executes successfully, you can reuse
the collection variable.

Tip: The ALLOCATE COLLECTION statement allocates memory for an Informix
ESQL/C collection variable only. To allocate memory for an Informix ESQL/C row
variable, use the ALLOCATE ROW statement.

Examples

The following example shows how to allocate resources with the ALLOCATE
COLLECTION statement for the untyped collection variable, a_set:
EXEC SQL BEGIN DECLARE SECTION;

client collection a_set;
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate collection :a_set;

The following example uses ALLOCATE COLLECTION to allocate resources for a
typed collection variable, a_typed_set:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(integer not null) a_typed_set;
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate collection :a_typed_set;

Related concepts:
“Inserting into a Collection Cursor” on page 2-605

Access a collection (ESQL/C Guide)
Related reference:
“ALLOCATE ROW statement” on page 2-4
“DEALLOCATE COLLECTION statement” on page 2-383

ALLOCATE DESCRIPTOR statement
Use the ALLOCATE DESCRIPTOR statement to declare the name and allocate
memory for a system-descriptor area (SDA). Use this statement with ESQL/C.

Syntax

�� ALLOCATE DESCRIPTOR 'descriptor'
descriptor_var WITH MAX items

items_var

��

Element Description Restrictions Syntax

descriptor Name that you declare here for an
unallocated system-descriptor area

Enclose in single (') quotation marks.
Must be unique among SDA names

“Quoted String” on
page 4-219.

2-2 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0281.htm#ids_esqlc_0281

Element Description Restrictions Syntax

descriptor_var Host variable that stores the name of
a system-descriptor area

Must contain name of unallocated
system-descriptor area

Language specific

items Number of item descriptors in
descriptor. Default value is 100.

Must be an unsigned INTEGER
greater than zero

“Literal Number”
on page 4-215

items_var Host variable that contains the
number of items

Data type must be INTEGER or
SMALLINT

Language specific

Usage

The ALLOCATE DESCRIPTOR statement creates a new system-descriptor area,
which is a location in memory that holds information that the DESCRIBE
statement can display, or that holds information about the WHERE clause of a
query.

A system-descriptor area (SDA) contains one or more fields called item descriptors.
Each item descriptor holds a data value that the database server can receive or
send. The item descriptors also contain information about the data, such as data
type, length, scale, precision, and support for NULL values.

A system-descriptor area holds information that a DESCRIBE ... USING SQL
DESCRIPTOR statement obtains or that holds information about the WHERE
clause of a dynamically executed query.

If the name that ALLOCATE DESCRIPTOR declares for a system-descriptor area
matches the name of an existing system-descriptor area, the database server returns
an error. After you free the specified descriptor with the DEALLOCATE
DESCRIPTOR statement, however, the ALLOCATE DESCRIPTOR statement can
reuse the same descriptor name.
Related reference:
“GET DESCRIPTOR statement” on page 2-487
“SET DESCRIPTOR statement” on page 2-753
“DEALLOCATE DESCRIPTOR statement” on page 2-384
“DECLARE statement” on page 2-386
“DESCRIBE statement” on page 2-412
“EXECUTE statement” on page 2-455
“FETCH statement” on page 2-474
“OPEN statement” on page 2-581
“PREPARE statement” on page 2-589
“PUT statement” on page 2-601

A system-descriptor area (ESQL/C Guide)
“DESCRIBE INPUT statement” on page 2-417

WITH MAX Clause
You can use the WITH MAX clause to indicate the maximum number of item
descriptors you need. When you use this clause, the COUNT field is set to the
number of items that you specify. If you do not specify the WITH MAX clause, the
default value of the COUNT field is 100. You can change the value of the COUNT
field with the SET DESCRIPTOR statement.

Chapter 2. SQL statements 2-3

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0610.htm#ids_esqlc_0610

The following examples show valid ALLOCATE DESCRIPTOR statements that
include the WITH MAX clause. This example uses embedded variable names to
identify the system-descriptor area and to specify the desired number of item
descriptors:
EXEC SQL allocate descriptor :descname with max :occ;

The next example uses a quoted string to identify the system-descriptor area and
an unsigned integer to specify the desired number of item descriptors:
EXEC SQL allocate descriptor ’desc1’ with max 3;

ALLOCATE ROW statement
Use the ALLOCATE ROW statement to allocate memory for a row variable. This
statement is an extension to the ANSI/ISO standard for SQL. Use this statement
with ESQL/C.

Syntax

�� ALLOCATE ROW variable ��

Element Description Restrictions Syntax

variable Name of a typed or untyped row
variable to allocate

Must be an unallocated Informix ESQL/C
row-type host variable

Language
specific

Usage

The ALLOCATE ROW statement allocates memory for a host variable that stores
row-type data. To create a row variable, an ESQL/C program must do the
following:
1. Declare the row variable. The row variable can be a typed or untyped row

variable.
2. Allocate memory for the row variable with the ALLOCATE ROW statement.

The following example shows how to allocate resources with the ALLOCATE ROW
statement for the typed row variable, a_row:
EXEC SQL BEGIN DECLARE SECTION;

row (a int, b int) a_row;
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate row :a_row;

The ALLOCATE ROW statement sets SQLCODE (the contents of sqlca.sqlcode) to
zero (0) if the memory allocation operation was successful, or to a negative error
code if the allocation failed.

You must explicitly release memory with the DEALLOCATE ROW statement. Once
you free the row variable with the DEALLOCATE ROW statement, you can reuse
the row variable.

Tip: The ALLOCATE ROW statement allocates memory for an Informix ESQL/C
row variable only. To allocate memory for an Informix ESQL/C collection variable,
use the ALLOCATE COLLECTION statement.

2-4 IBM Informix Guide to SQL: Syntax

When you use the same row variable in multiple function calls without
deallocating it, a memory leak on the client computer results. Because there is no
way to determine if a pointer is valid when it is passed, Informix ESQL/C
assumes that the pointer is not valid and assigns it to a new memory location.
Related reference:
“ALLOCATE COLLECTION statement” on page 2-1
“DEALLOCATE ROW statement” on page 2-386

Complex data types (ESQL/C Guide)

ALTER ACCESS_METHOD statement
Use the ALTER ACCESS_METHOD statement to change one or more attributes of
a user-defined primary or secondary access method in the sysams system catalog
table.

Syntax

�� ALTER ACCESS_METHOD access_method
owner .

�

� �

,
(1)

MODIFY Purpose Option
ADD

DROP purpose_keyword

��

Notes:

1 See “Purpose Options” on page 5-54

Element Description Restrictions Syntax

access_method Name of the access
method to modify

Access method must be registered in the sysams
system catalog table by a previous CREATE
ACCESS_METHOD statement

“Identifier” on page 5-21

owner Name of the owner of
the access method

Must own the access method “Owner name” on page
5-49

purpose
_keyword

A keyword that
indicates which
attribute to change

Keyword must be associated with the access
method by a previous CREATE or ALTER
ACCESS_METHOD statement

“Purpose Functions, Flags,
and Values” on page 5-55

Usage

This statement is an extension to the ANSI/ISO standard for SQL. This statement
cannot modify a built-in access method.

Use ALTER ACCESS_METHOD to modify the definition of a user-defined access
method. You cannot modify a built-in access method.

You must own the access method or hold the DBA privilege to alter a user-defined
access method. In an ANSI-compliant database, the DBA must qualify the name of
the access method with the owner name if another user is the owner of the access
method.

Chapter 2. SQL statements 2-5

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0280.htm#ids_esqlc_0280

When you alter an access method, you change the purpose-option specifications
(purpose functions, purpose methods, purpose flags, or purpose values) that define
the access method. For example, you might alter an access method to declare a
new user-defined function or method name, or to provide a multiplier for the scan
cost on a table.

If a transaction is in progress, the database server waits to modify the access
method until after the transaction is committed or rolled back. No other users can
execute the access method until the transaction has completed.

Examples

The following statement alters the remote user-defined access method:
ALTER ACCESS_METHOD remote

ADD am_scancost = FS_scancost,
ADD am_rowids,
DROP am_getbyid,
MODIFY am_costfactor = 0.9;

The preceding example makes the following changes to the access method:
v Adds a user-defined function or method named FS_scancost(), which is

associated in the sysams table with the am_scancost keyword
v Sets (adds) the am_rowids flag
v Drops the user-defined function or method associated with the am_getbyid

keyword
v Modifies the am_costfactor value
Related concepts:

Secondary-access methods (UDR and Data Type Guide)

Grant privileges (Database Design Guide)
Related reference:
“DROP ACCESS_METHOD statement” on page 2-424
“CREATE ACCESS_METHOD statement” on page 2-143
“Purpose Options” on page 5-54

SYSAMS (SQL Reference)

Access methods (Virtual-Table Interface Guide)

Access methods (Virtual-Index Interface Guide)
“GRANT statement” on page 2-502

ALTER FRAGMENT statement
Use the ALTER FRAGMENT statement to change the distribution strategy or the
storage location of an existing table or index. This statement is an extension to the
ANSI/ISO standard for the SQL language.

Syntax

�� ALTER FRAGMENT
(1)

ONLINE

�

2-6 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_284.htm#ids_udr_284
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_105.htm#ids_ddi_105
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_016.htm#ids_sqr_016
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.vti.doc/ids_vti_005.htm#ids_vti_005
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.vii.doc/ids_vii_005.htm#ids_vii_005

�
(2)

ON TABLE surviving_table ATTACH Clause
(3)

DETACH Clause
(4)

INIT Clause
(5)

ADD Clause
(6)

DROP Clause
(7)

MODIFY Clause
(4)

ON INDEX surviving_index INIT Clause
(5)

ADD Clause
(6)

DROP Clause
(7)

MODIFY Clause

��

Notes:

1 Only with ATTACH, DETACH, or MODIFY on tables fragmented by interval

2 See “ATTACH Clause” on page 2-11

3 See “DETACH Clause” on page 2-20

4 See “INIT Clause” on page 2-23

5 See “ADD Clause” on page 2-30

6 See “DROP Clause” on page 2-32

7 See “MODIFY Clause” on page 2-34

Element Description Restrictions Syntax

surviving
_index

Index on which to modify the
distribution or storage

Must exist when the statement executes “Identifier” on
page 5-21

surviving
_table

Table on which to modify the
distribution or storage

Must exist. See “Restrictions on the ALTER
FRAGMENT Statement” on page 2-9.

“Identifier” on
page 5-21

Usage

The ALTER FRAGMENT statement applies only to table fragments or index
fragments that are located at the current site. No remote information is accessed or
updated.

You must have the Alter privilege or the DBA privilege to change the
fragmentation strategy of a table. You must have the Index privilege or the DBA
privilege to alter the fragmentation strategy of an index.

Attention: This statement can cause indexes to be dropped and rebuilt. Before
undertaking alter operations, check corresponding sections in your IBM Informix
Performance Guide to review effects and strategies.

Clauses of the ALTER FRAGMENT statement support the following tasks.

Clause Effect

Chapter 2. SQL statements 2-7

ATTACH
Combines two or more tables that have the same schema into a single
fragmented table

DETACH
Detaches one fragment from a fragmented table, and creates a new
nonfragmented table to store the rows in the fragment.

INIT Provides the following options:
v Defines and initializes a fragmentation strategy on a nonfragmented

table
v Changes the order of evaluation of fragment expressions
v Changes the fragmentation strategy of a fragmented table or index
v Changes the storage location of an existing table
v Moves data from an existing table fragment into a new nonfragmented

table
v Changes the storage location of fragments that the database generates

for a table or index
v Changes the fragmentation key or fragmentation expression for a table

or index

ADD Adds an additional fragment to an existing fragmentation list

DROP Drops an existing fragment from a fragmentation list

Remove one or more dbspaces from the list of dbspaces where interval
fragments are created.

MODIFY
Changes an existing interval, list, or expression-based fragmentation
expression

Moves an existing fragment to a different dbspace

Replaces with a new list the current list of dbspaces where interval
fragments are created.

Enables or disables automatic creation of interval fragments

Use the CREATE TABLE statement or the INIT clause of the ALTER FRAGMENT
statement to create fragmented tables.

After a dbspace has been renamed successfully by the onspaces utility, only the
new name can reference the renamed dbspace. The database server automatically
updates existing fragmentation strategies for tables or indexes in the system
catalog, however, to replace the old dbspace name with the new name. You do not
need to take any additional action to update a distribution strategy or storage
location that was defined using the old dbspace name, but you must use the new
name if you reference the dbspace in an ALTER FRAGMENT or ALTER TABLE
statement.

If you omit the optional ONLINE keyword, the ALTER FRAGMENT operation
requires exclusive access and exclusive locks on all of the tables involved in the
operation. If you enable the FORCE_DDL_EXEC session environment option, you
can force out other transactions that have opened a table involved in an ALTER
FRAGMENT ON TABLE operation, or that have placed locks on any of those
tables. If the server is unable to get exclusive access and exclusive locks on the
table, the server starts rolling back the transactions that are open or that have locks

2-8 IBM Informix Guide to SQL: Syntax

on the table, until the value specified with the FORCE_DDL_EXEC option is
reached. (For more information, see “FORCE_DDL_EXEC Environment Option” on
page 2-771.)
Related concepts:

Fragmentation guidelines (Performance Guide)

Improve the performance of operations that attach and detach fragments
(Performance Guide)
Related reference:
“CREATE TABLE statement” on page 2-265
“CREATE INDEX statement” on page 2-194
“ALTER TABLE statement” on page 2-72

Table fragmentation strategies (Database Design Guide)

Restrictions on the ALTER FRAGMENT Statement
You cannot use the ALTER FRAGMENT statement on a view, on a temporary
table, or on a table that is not registered in the current database.

If your table or index is not already fragmented, the only clauses available to you
are ATTACH and INIT.

You cannot use ALTER FRAGMENT on a typed table that is part of a table
hierarchy.

ALTER FRAGMENT and Transaction Logging
If your database supports transaction logging, ALTER FRAGMENT is executed
within a single transaction. If the fragmentation strategy uses large numbers of
records, you might run out of log space or disk space. (To alter a fragmentation
strategy, the database server requires extra disk space that it later frees.)

If you run out of log space or disk space, try one of the following procedures to
reduce your log-space or disk-space requirements:
v Turn off logging and turn it back on again at the end of the operation. This

procedure indirectly requires a backup of the root dbspace.
v Split the operations into multiple ALTER FRAGMENT statements, moving a

smaller portion of records each time.

For information about log-space requirements and disk-space requirements, see
your IBM Informix Administrator's Guide. That guide also contains detailed
instructions about how to turn off logging. For information about backups, refer to
your IBM Informix Backup and Restore Guide.
Related reference:

Overview of backup and restore (Backup and Restore Guide)
Related information:

Logging and log administration (Administrator's Guide)

Disk, memory, and process management (Administrator's Guide)

Determining the Number of Rows in the Fragment
You can place as many rows into a fragment as the available space in the dbspace
allows.

Chapter 2. SQL statements 2-9

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_448.htm#ids_prf_448
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_475.htm#ids_prf_475
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_475.htm#ids_prf_475
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_085.htm#ids_ddi_085
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.bar.doc/ids_bar_168.htm#ids_bar_168
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_1131.htm#ids_admin_1131
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_1161.htm#ids_admin_1161

To find out how many rows are in a fragment:
1. Run the UPDATE STATISTICS FORCED statement on the table. This step fills

the sysfragments system catalog table with the current table information.
2. Query the sysfragments system catalog table to examine the npused and

nrows values. The npused column shows the number of data pages used in the
fragment, and the nrows column shows the number of rows in the fragment.

The ONLINE keyword in ALTER FRAGMENT operations
The ONLINE keyword instructs the database server to modify the storage of the
table in the background, while other concurrent users can continue to access the
table.

The DBA can reduce the risk of nonexclusive access errors, and can increase the
availability of the fragmented table, by including the ONLINE keyword in the
ALTER FRAGMENT statement. This instructs the database server to commit the
work in ATTACH, DETACH, and MODIFY operations internally, if there are no
errors, and to apply an intent exclusive lock to the table, rather than an exclusive
lock.

In DETACH and MODIFY operations, the ONLINE keyword can reduce the risk of
-710 errors when either of the following is true:
v the AUTO_REPREPARE configuration parameter is set to 1,
v the IFX_ AUTO_REPREPARE session environment variable is set to 1.

The following restrictions apply to the ALTER FRAGMENT ONLINE FOR TABLE
statement:
v Only the ATTACH, DETACH, and MODIFY options to ALTER FRAGMENT

ONLINE are valid.
v The FOR TABLE clause must specify a table that is fragmented by a range

interval scheme.
v The table that is being altered cannot be locked explicitly by the LOCK TABLE

statement.
v The ALTER FRAGMENT ONLINE operation must be the first statement in the

transaction that modifies any database object or table.
v No other operation that modifies an object in the database can follow the ALTER

FRAGMENT ONLINE statement in the same transaction.

For additional information, see the following topics:
v “Using the ONLINE keyword in ATTACH operations” on page 2-15
v “Using the ONLINE keyword in DETACH operations” on page 2-21
v “Using the ONLINE keyword in MODIFY operations” on page 2-43

Automatic renaming of interval fragment identifiers
Some ALTER FRAGMENT operations can change the positional order of existing
interval fragments within the fragment list. In these cases, the database server
automatically updates the system-defined names of the affected interval fragments.

For tables partitioned by an interval fragmentation scheme, ALTER FRAGMENT
operations that add, drop, attach, or detach fragments, or that modify the
transition value of the table, can change the sysfragments.evalpos values for
existing interval fragments, or can change an interval fragment to a range
fragment. To avoid creating new interval fragments with the same
system-generated name as an interval fragment that the ALTER FRAGMENT

2-10 IBM Informix Guide to SQL: Syntax

statement has repositioned within the fragment list, the database server
automatically replaces the original system-defined names with new identifiers that
will not match the names of subsequently created interval fragments of the same
table.

The general rules used for system generated range and interval fragment names
are as follows:
v For interval fragments: sys_evalpos
v For range fragments: sys_evalposrg

Here evalpos is the numeric (ordinal) value of sysfragments.evalpos, where 0 is
the evalpos value for the first fragment in the fragment list.

During a fragment renaming operation, an exclusive lock is placed on the fragment
while the sysfragments system catalog is being updated with the new partition
names, and with new evalpos values for any fragments whose ordinal positions
within the fragment list changed during the ALTER FRAGMENT operation.

To avoid declaring non-unique fragment names when new interval fragments are
created, the database server renames only system-generated identifiers of interval
fragment that are repositioned during ALTER FRAGMENT operations. Automatic
renaming does not occur for user-defined identifiers of repositioned fragments.

If you wish to avoid having existing fragments automatically renamed during
ALTER FRAGMENT ONLINE ATTACH statements, or during other ALTER
FRAGMENT operations on tables that use interval partitioning, you can first use
the ALTER FRAGMENT MODIFY statement to rename with user-defined names
the interval fragments whose system-generated names might otherwise be changed
by the ALTER FRAGMENT operation. User-defined fragment names cannot begin
with the string sys_.

ATTACH Clause
Use the ATTACH clause of the ALTER FRAGMENT ON TABLE statement to
combine tables that have identical structures into a fragmentation strategy.

ATTACH Clause:

ATTACH �

,
(1)

surviving_table
consumed_table AS Clause

AS Clause:

AS
(2)

PARTITION new_frag

�

Chapter 2. SQL statements 2-11

� expr
List Expression AFTER

old_frag
BEFORE

Range Interval Expression
(1) (3)

REMAINDER

Range Interval Expression:

VALUES < range_expr
(1)

VALUES IS NULL

List Expression:

�

,

VALUES (const_expr)
(1)

NULL
IS

Notes:

1 Use path no more than once

2 Required if another surviving_table fragment has the same name as dbspace

3 Required for fragmentation by expression; optional for round-robin and list
fragmentation; not valid for range interval fragmentation

Element Description Restrictions Syntax

const_expr Constant expression that defines
the list of values for a fragment to
store

Must be a quoted string or a literal value.
Each value in the list must be unique among
the lists for fragments of the same object.

“Constant
Expressions” on
page 4-76

consumed
_table

Table that loses its identity, to be
merged with surviving_table

Schema must match that of surviving _table.
Cannot include serial columns, nor unique,
referential, or primary key constraints. See
also “General Restrictions for the ATTACH
Clause” on page 2-13.

“Identifier” on
page 5-21

expr Expression defining which rows
are stored in a fragment of a table
partitioned by expression

Can include only columns from the current
table and only data values from a single row.
See also “General Restrictions for the
ATTACH Clause” on page 2-13.

“Condition” on
page 4-5;
“Expression” on
page 4-44

new_frag Name declared here for a
consumed_table fragment. Default is
the dbspace name.

Must be unique among the names of
fragments of surviving_table

“Identifier” on
page 5-21

old_frag Fragment or dbspace name for a
surviving_table fragment

Must exist. Cannot be a range or interval
fragment.

“Identifier” on
page 5-21

range _expr Constant expression that defines
the upper bound for fragment key
values stored in the fragment

Must be a constant literal expression that
evaluates to a numeric, DATETIME, or DATE
data type compatible with the data type of
the fragment key expression

“Constant
Expressions” on
page 4-76

2-12 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

surviving
_table

Table on which to modify the
distribution or storage location

Must exist. Cannot have any constraints. See
also “Restrictions on the ALTER FRAGMENT
Statement” on page 2-9.

“Identifier” on
page 5-21

When a new expression fragment is attached to table that is fragmented by list or
by range interval, the data from the consumed table and the affected fragments in
the surviving table are scanned and moved into appropriate partitions, because
these strategies are not overlapping.

If the automatic mode for updating distribution statistics is enabled, and the table
being attached to has fragmented distribution statistics, the database server
calculates the distribution statistics of the new fragment. Stale distribution statistics
of existing fragments are also recalculated at this point. This recalculation of
fragment statistics runs in the background. After the database server has calculated
the fragment statistics, it merges them to form table distribution statistics, and
stores the results in the system catalog.

To use this clause, you must have the DBA privilege or else be the owner of the
specified tables. The ATTACH clause supports the following tasks:
v Creates a single fragmented table by combining two or more

identically-structured, nonfragmented tables
(See “Combining Nonfragmented Tables to Create a Fragmented Table” on page
2-14.)

v Attaches one or more tables to a fragmented table
(See “Attaching a Table to a Fragmented Table” on page 2-15.)

General Restrictions for the ATTACH Clause
This clause is not valid in ALTER FRAGMENT ON INDEX statements.

Any tables that you attach must have been created previously in separate
partitions. You cannot attach the same table more than once.

All consumed tables listed in the ATTACH clause must have the same structure as
the surviving table. The number, names, data types, and relative position of the
columns must be identical.

The expression cannot include aggregates, subqueries, or variant functions.

Additional Restrictions on the ATTACH Clause: User-defined routines and
references to fields of a ROW-type column are not valid. You cannot attach a
fragmented table to another fragmented table.

All of the dbspaces that store the fragments must have the same page size.

An ATTACH operation on two nonfragmented tables cannot produce a surviving
table that is fragmented by interval or by list. (If you want to attach two
nonfragmented tables, use the INIT option of ALTER FRAGMENT to define an
interval or list fragmentation scheme for one of the nonfragmented tables, and then
use the ATTACH option to attach the second table to it.)

For surviving tables that are fragmented by interval, the following restrictions
apply:

Chapter 2. SQL statements 2-13

v Because the database server determines the ordinal position of interval
fragments, BEFORE and AFTER specifications are not valid.

v You cannot attach a fragment whose expression matches an existing interval
fragment expression.

v While you attach fragments above the transition value, the upper limit of the
fragment being attached must align at an interval fragment boundary. That is,
the upper limit of the fragment must equal the transition value plus an integer
multiple of the interval value.

For fragmented tables that are protected by a security policy, attaching a fragment
to the table fails if any of the following conditions are not satisfied:
v The source table and the target table are both protected by the same security

policy;
v Both tables have the same protection granularity (either row-level, or

column-level, or both row-level and column-level);
v In both tables, the same set of protected columns is protected by the same

security labels. If there is more than one protected column, there can be more
than one security label in each table, but the same label must protect the same
column in both tables.

If the ATTACH operation fails because one or more of these conditions are not
satisfied, you can use the ALTER TABLE statement to make the schemas of the two
tables identical, and then repeat the ALTER FRAGMENT ATTACH statement on
the modified tables

Only a user who holds the DBSECADM role can reference a protected table in the
ALTER FRAGMENT statement.

Using the BEFORE, AFTER, and REMAINDER options
The BEFORE and AFTER options allow you to place a new fragment either before
or after an existing fragment. You cannot use the BEFORE and AFTER options
when the distribution scheme is round-robin or range interval..

When you attach a new list or expression fragment without specifying an explicit
BEFORE or AFTER keyword option, the database server places the added fragment
at the end of the fragment list, unless a remainder fragment exists. If a remainder
fragment exists, the new fragment, by default, is placed just before the remainder
fragment. You cannot attach a new fragment after the remainder fragment.

You cannot define a remainder fragment when the distribution scheme is
round-robin or range interval.

If you omit the AS PARTITION fragment specification, the default name of the
fragment is the name of the dbspace where it is stored. If another fragment of the
same table already has the same name as the dbspace, the database server issues
an exception, and the ALTER FRAGMENT ATTACH operation fails.

Combining Nonfragmented Tables to Create a Fragmented Table
When you transform tables with identical table structures into fragments into a
single table, you allow the database server to manage the fragmentation instead of
allowing the application to manage the fragmentation. The distribution scheme can
be round-robin or expression based.

2-14 IBM Informix Guide to SQL: Syntax

To make a single, fragmented table from two or more identically-structured,
nonfragmented tables, the ATTACH clause must include the surviving table in the
attach list. The attach list is the specified list of tables in the ATTACH clause.

To include a rowid column in the newly-created single, fragmented table, attach all
tables first and then add the rowid with the ALTER TABLE statement.

Attaching a Table to a Fragmented Table
To attach a nonfragmented table to an already fragmented table, the
nonfragmented table must have been created in a separate dbspace and must have
the same table structure as the fragmented table. In the following example, a
round-robin distribution scheme fragments the table cur_acct, and the table
old_acct is a nonfragmented table that resides in a separate dbspace. The following
example shows how to attach (as the consumed table) old_acct to cur_acct (as the
surviving table):
ALTER FRAGMENT ON TABLE cur_acct ATTACH old_acct;

When you attach one or more tables to a fragmented table, a consumed_table must
be nonfragmented.

Using the ONLINE keyword in ATTACH operations
The ONLINE keyword instructs the database server to commit the ALTER
FRAGMENT ATTACH work internally, if there are no errors, and to apply an
intent exclusive lock to the surviving table, rather than an exclusive lock. An
exclusive lock is applied to the consumed table, which must be a nonfragmented
table.

Requirements for ONLINE ATTACH operations

You can use the ATTACH option to the ALTER FRAGMENT ONLINE ON TABLE
statement only if the surviving table is fragmented by an interval fragmentation
scheme. The consumed table must be nonfragmented.

All indexes on the surviving table must have the same fragmentation scheme as
the table. (That is, any indexes must be attached.) For this reason, if there is a
primary key constraint or other referential constraints on the table, it is
recommended that you first create an attached index for the constraint, and then
use the ALTER TABLE statement to add the constraint. (By default, system-created
indexes for primary key constraints and for other referential constraints are
detached.)

For each index on the surviving table, there must be a matching index on the same
set of columns of the consumed table. The matching indexes on the consumed
table will be recycled as index fragments on the surviving table during the
ATTACH operation. Any additional indexes on the consumed table are dropped
during the ATTACH operation. The indexes on the consumed table that will be
recycled must each be detached in a single dbspace, and the dbspace that stores
the recycled index must be same dbspace that stores the consumed table.

If the index on the surviving table is unique, the corresponding matching index on
the consumed table must also be unique.

The consumed table must have a check constraint that satisfies the following two
conditions:
v It must exactly match the expression for the fragment that is being attached.

Chapter 2. SQL statements 2-15

v It must span a single interval only.

This last requirement, that rows in the consumed table span only a single interval
within the range interval fragmentation scheme of the surviving table, is necessary
to prevent data movement. Data movement is not allowed in ALTER FRAGMENT
ATTACH operations that include the ONLINE keyword.

Only one consumed table can be specified in the ONLINE ATTACH operation.

All other restrictions that apply to the ATTACH option also apply to ONLINE
ATTACH operations. For those restrictions, see “General Restrictions for the
ATTACH Clause” on page 2-13 and “Additional Restrictions on the ATTACH
Clause” on page 2-13.

Example of ALTER FRAGMENT ONLINE ATTACH

The following SQL statements define a fragmented employee table that uses a
range-interval storage distribution scheme, with a unique index employee_id_idx
on the column emp_id (that is also the fragmentation key) and another index
employee_dept_idx on the column dept_id.
CREATE TABLE employee

(emp_id INTEGER, name CHAR(32),
dept_id CHAR(2), mgr_id INTEGER, ssn CHAR(12))

FRAGMENT BY RANGE (emp_id)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3, dbs4)

PARTITION p0 VALUES < 200 IN dbs1,
PARTITION p1 VALUES < 400 IN dbs2;

CREATE UNIQUE INDEX employee_id_idx ON employee(emp_id);
CREATE INDEX employee_dept_idx ON employee(dept_id);

The last two statements insert rows with fragment key values above the upper
limit of the transition fragment, causing the database server to generate two new
interval fragments, so that the resulting fragment list consists of four fragments:
Fragments in surviving table before ALTER FRAGMENT ONLINE:
p0 VALUES < 200 - range fragment
p1 VALUES < 400 - range fragment (transition fragment)
sys_p2 VALUES >= 400 AND VALUES < 500 - interval fragment
sys_p4 VALUES >= 600 AND VALUES < 700 - interval fragment

The next SQL statements define a nonfragmented employee2 table with the same
column schema as the employee table, and with single-column indexes on the two
corresponding columns (emp_id and dept_id) that were indexed in the employee
table, but also defines a unique index employee2_ssn_idx on the column emp_ssn
and another index employee_dept_idx on the column name. All four of these
indexes are stored in the dbspace dbs4. The CREATE TABLE statement also
specifies a check constraint ((emp_id >=500 AND emp_id <600)) that exactly matches
the fragment expression for a consumed table that will be attached, and that
exactly spans a single interval of the range interval fragmentation scheme for the
employee table.
CREATE TABLE employee2

(emp_id INTEGER, name CHAR(32),
dept_id CHAR(2), mgr_id INTEGER, ssn CHAR(12),

CHECK (emp_id >=500 AND emp_id <600)) in dbs4;
CREATE UNIQUE INDEX employee2_id_idx ON employee2(emp_id) in dbs4;
CREATE INDEX employee2_dept_idx ON employee2(dept_id) in dbs4;
CREATE UNIQUE INDEX employee2_ssn_idx ON employee2(ssn) in dbs4;
CREATE INDEX employee2_name_idx ON employee2(name) in dbs4;

2-16 IBM Informix Guide to SQL: Syntax

The following statement returns an error because the fragment being attached is a
range fragment (a fragment that stores rows with fragmentation key values below
the transition value of 400 for the employee table). Only interval fragments can be
attached online.
ALTER FRAGMENT ONLINE ON TABLE employee

ATTACH employee2 AS PARTITION p3 VALUES < 300;

The following statement runs successfully, and creates a new p3 interval fragment:
ALTER FRAGMENT ONLINE ON TABLE employee

ATTACH employee2 AS PARTITION p3 VALUES < 600;

Fragments in surviving table after ALTER FRAGMENT ONLINE:
p0 VALUES < 200 - range fragment
p1 VALUES < 400 - range fragment
sys_p2 VALUES >= 400 AND VALUES < 500 - interval fragment
sys_p3 VALUES >= 500 AND VALUES < 600 - interval fragment
sys_p4 VALUES >= 600 AND VALUES < 700 - interval fragment

Note that the successful ALTER FRAGMENT ONLINE . . . ATTACH operation
above required multiple correspondences among specifications in the DDL
statements that defined the surviving and consumed tables, including their
columns, indexes, constraints, index storage location, and the interval
fragmentation strategy of the surviving table:
v The check constraint on the consumed table spans a single interval only. The

interval value is 100 for the surviving table, and the check constraint is >= 500
and < 600.

v The conditional expression being attached (< 600) is internally converted to the
interval fragment expression format (>= 500 and < 600) which matches the
check constraint.

v The indexes on the surviving table are attached (that is, they are fragmented by
the same fragmentation scheme as the table) because no fragmentation strategy
was specified explicitly in their CREATE INDEX statements.

v The indexes on the consumed table are detached in a single dbspace (dbs4),
which is the same dbspace that stored the consumed table.

v For each index on the surviving table, there is a matching index on the
consumed table.

v The extra indexes on the consumed table (employee2_ssn_idx and
employee2_name_idx) that do not correspond to indexes on the surviving
employee table are dropped during the ONLINE ATTACH operation.

Effect of the ATTACH Clause
After an ATTACH operation, all consumed tables no longer exist. Any CHECK
constraints or NOT NULL constraints on the consumed tables also no longer exist.
You must reference the records that were in the consumed tables through the
surviving table.

What Happens to Indexes?: A detached index on the surviving table retains its
same fragmentation strategy. That is, a detached index does not automatically
adjust to accommodate the new fragmentation of the surviving table. For more
information on what happens to indexes, see the discussion about altering table
fragments in your IBM Informix Performance Guide.

In a database that supports transaction logging, an ATTACH operation extends any
attached index on the surviving table according to the new fragmentation strategy
of the surviving table. All rows in the consumed table are subject to these
automatically adjusted indexes. For information on whether the database server

Chapter 2. SQL statements 2-17

completely rebuilds the index on the surviving table or reuses an index that was
on the consumed table, see your IBM Informix Performance Guide.

In a nonlogging database of Informix, an ATTACH operation does not extend
indexes on the surviving table according to the new fragmentation strategy of the
surviving table. To extend the fragmentation strategy of an attached index
according to the new fragmentation strategy of the surviving table, you must drop
the index and re-create it on the surviving table.

Some ALTER FRAGMENT ... ATTACH operations to attach a fragment can cause
the database server to update the index structure. When an index is rebuilt in
those cases, the associated column distribution is automatically recalculated, and is
available to the query optimizer when it designs query plans for the table on
which the fragment was attached.
v For an indexed column (or a set of columns) on which ALTER FRAGMENT ...

ATTACH automatically rebuilds a B-tree index, the recalculated column
distribution statistics are equivalent to distributions created by the UPDATE
STATISTICS statement in HIGH mode.

v If the rebuilt index is not a B-tree index, the automatically recalculated statistics
correspond to distributions created by the UPDATE STATISTICS statement in
LOW mode.

See also the section “Automatic Calculation of Distribution Statistics” on page
2-217 in the description of the CREATE INDEX statement for additional
information about statistical distributions that are produced automatically when an
index or constraint is created on an existing table.
Related concepts:

Improve the performance of operations that attach and detach fragments
(Performance Guide)

What Happens to BYTE and TEXT Columns?: When an ATTACH occurs, BYTE
and TEXT fragments of the consumed table become part of the surviving table and
continue to be associated with the same rows and data fragments as they were
before the ATTACH operation.

Each BYTE and TEXT column in every table that is specified in the ATTACH
clause must have the same storage type, either blobspace or tblspace. If the BYTE
or TEXT column is stored in a blobspace, the same column in all tables must be in
the same blobspace. If the BYTE or TEXT column is stored in a tblspace, the same
column must be stored in a tblspace in all tables.

What Happens to Triggers and Views?: When you attach tables, triggers on the
surviving table survive the ATTACH, but triggers on the consumed table are
automatically dropped. No triggers are activated by the ATTACH clause, but
subsequent data-manipulation operations on the new rows can activate triggers.

Views on the surviving table survive the ATTACH operation, but views on the
consumed table are automatically dropped.

What Happens with the Distribution Scheme?: You can attach a nonfragmented
table to a table with any type of supported distribution scheme. In general, the
resulting table has the same fragmentation strategy as the prior fragmentation
strategy of the surviving table.

2-18 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_475.htm#ids_prf_475
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_475.htm#ids_prf_475

When you attach two or more nonfragmented tables, however, the distribution
scheme can either be based on expression or round-robin.

Only the following distribution schemes can result from combining the distribution
schemes of the tables in the ATTACH clause.

Prior Distribution Scheme
of Surviving Table

Prior Distribution Scheme
of Consumed Table

Resulting Distribution
Scheme

None None Round-robin or expression

Round-robin None Round-robin

Expression None Expression

Round-Robin Distribution Scheme: The following example combines
nonfragmented tables pen_types and pen_makers into a single, fragmented table,
pen_types. Table pen_types resides in dbspace dbsp1, and table pen_makers
resides in dbspace dbsp2. Table structures are identical in each table.
ALTER FRAGMENT ON TABLE pen_types ATTACH pen_types, pen_makers;

After you execute the ATTACH clause, the database server fragments the table
pen_types using a round-robin scheme into two dbspaces: the dbspace that
contained pen_types and the dbspace that contained pen_makers. Table
pen_makers is consumed and no longer exists; all rows that were in table
pen_makers are now in table pen_types.

Expression Distribution Scheme: Consider the following example that combines
tables cur_acct and new_acct and uses an expression-based distribution scheme.
Table cur_acct was originally created as a fragmented table and has fragments in
dbspaces dbsp1 and dbsp2. The first statement of the example shows that table
cur_acct was created with an expression-based distribution scheme. The second
statement of the example creates table new_acct in dbsp3 without a fragmentation
strategy. The third statement combines the tables cur_acct and new_acct. Table
structures (columns) are identical in each table.
CREATE TABLE cur_acct (a int) FRAGMENT BY EXPRESSION

a < 5 in dbsp1, a >= 5 and a < 10 in dbsp2;
CREATE TABLE new_acct (a int) IN dbsp3;
ALTER FRAGMENT ON TABLE cur_acct ATTACH new_acct AS a>=10;

When you examine the sysfragments system catalog table after you alter the
fragment, you see that table cur_acct is fragmented by expression into three
dbspaces. For additional information about the sysfragments system catalog table,
see the IBM Informix Guide to SQL: Reference.

In addition to simple range rules, you can use the ATTACH clause to fragment by
expression with hash or arbitrary rules. For a discussion of all types of expressions
that you can use in an expression-based distribution scheme, see “Fragmenting by
EXPRESSION” on page 2-301.

Warning: When you specify a date value as the default value for a parameter,
make sure to specify 4 digits instead of 2 digits for the year. If you specify a 2-digit
year, the setting of the DBCENTURY environment variable can affect how the
database server interprets the date value. For more information, see the IBM
Informix Guide to SQL: Reference.
Related reference:

SYSFRAGMENTS (SQL Reference)

Chapter 2. SQL statements 2-19

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_040.htm#ids_sqr_040

DBCENTURY environment variable (SQL Reference)

DETACH Clause
Use the DETACH clause of the ALTER FRAGMENT ON TABLE statement to
detach a table fragment from a distribution scheme and place the contents into a
new nonfragmented table. This clause is not valid in ALTER FRAGMENT ON
INDEX statements.

For an explanation of distribution schemes, see “FRAGMENT BY clause” on page
2-300.

DETACH Clause:

DETACH fragment new_table
PARTITION

Element Description Restrictions Syntax

fragment Named fragment or dbspace that contains the table fragment to be
detached.

Must exist at
the time of
execution. For
list or range
interval
fragments, the
PARTITION
keyword must
precede
fragment.

“Identifier” on
page 5-21

new_table Name that you declare here for a nonfragmented table that results
after you execute the ALTER FRAGMENT statement.

Must not exist
before
execution

“Identifier” on
page 5-21

The new table that results from executing the DETACH clause does not inherit any
indexes nor constraints from the original table. Only data values remain.

Similarly, the new table does not inherit any privileges from the original table.
Instead, the new table has the default privileges of any new table. For further
information on default table-level privileges, see the GRANT statement on
“Table-Level Privileges” on page 2-507.

The DETACH clause cannot be applied to a table if that table is the parent of a
referential constraint, or if a rowid column is defined on the table.

In Informix, if you omit the PARTITION keyword, the name of the fragment must
be the name of the dbspace where the fragment is stored.

In the following example, a system-generated range interval fragment sys_pt1 is
detached from table T1 and placed in a new unfragmented table detacht1:
ALTER FRAGMENT ON TABLE T1 DETACH PARTITION sys_pt1 detacht1;

The next example detaches a list fragment part2 from table T2 and places its data
in a new unfragmented table detacht2:
ALTER FRAGMENT ON TABLE T2 DETACH PARTITION part2 detacht2;

2-20 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_209.htm#ids_sqr_209

Distribution statistics after DETACH operations

Some ALTER FRAGMENT . . . DETACH operations to attach a fragment can cause
the database server to update the index structure. When an index is rebuilt in
those cases, the database server also recalculates the associated column
distributions, and these statistics are available to the query optimizer when it
designs query plans for the table from which the fragment was detached:
v For an indexed column (or for a set of columns) on which ALTER FRAGMENT .

. . DETACH automatically rebuilds a B-tree index, the recalculated column
distribution statistics are equivalent to distributions created by the UPDATE
STATISTICS statement in HIGH mode.

v If the rebuilt index is not a B-tree index, the automatically recalculated statistics
correspond to distributions created by the UPDATE STATISTICS statement in
LOW mode.

If the automatic mode for updating distribution statistics is enabled, and the table
being detached from has fragmented distribution statistics, the database server
merges the detached fragment's statistics to form new table distribution. The
database server also merges the data distribution statistics of the remaining
fragments to form the surviving table distribution statistics, and stores the results
in the system catalog. This recalculation of fragment statistics runs in the
background.

See also the section “Automatic Calculation of Distribution Statistics” on page
2-217 in the description of the CREATE INDEX statement for additional
information about statistical distributions that are produced automatically when an
index or constraint is created on an existing table.

Using the ONLINE keyword in DETACH operations
The ONLINE keyword instructs the database server to commit the ALTER
FRAGMENT ... DETACH work internally, if there are no errors, and to apply an
intent exclusive lock to the table from which the fragment was detached, rather
than an exclusive lock. An exclusive lock is applied to the table that is created from
the detached fragment.

You can use the DETACH option to the ALTER FRAGMENT ONLINE ON TABLE
statement only for a table that uses a range interval fragmentation scheme.

A table that uses a range interval storage distribution scheme can have two types
of fragments:
v range fragments, which are defined by the user in the FRAGMENT BY or

PARTITION BY clause of the CREATE TABLE or ALTER TABLE statement, and
v interval fragments, which are generated automatically by the database server

during INSERT and UPDATE operations, if a row has a fragment key values
above the upper limit of the transition fragment (the last range fragment).

Only an interval fragment can be detached in an ONLINE DETACH operation.

If the detached interval fragment that is not the last fragment, the database server
modifies the fragment names for any system-generated interval fragments that
follow the detached fragment in the fragment list to match their new
sysfragments.evalpos values in the surviving table. During this fragment renaming
operation, an exclusive lock is placed on the fragments while the sysfragments
system catalog is being updated with the new partition names (and with new
evalpos values for any fragments whose ordinal positions within the fragment list
changed during the ALTER FRAGMENT DETACH operation).

Chapter 2. SQL statements 2-21

All indexes on the surviving table must have the same fragmentation scheme as
the table. (That is, any indexes must be attached.) For this reason, if there is a
primary key constraint or other referential constraints on the table, it is
recommended that you first create an attached index for the constraint, and then
use the ALTER TABLE statement to add the constraint. (By default, system-created
indexes for primary key constraint and for other referential constraints are
detached.)

If there are sessions accessing the same partition that is being detached, it is
recommended that you issue the SET LOCK MODE TO WAIT statement for
enough seconds to prevent nonexclusive access errors.

All other restrictions that apply to the DETACH option also apply to ONLINE
DETACH operations. For those restrictions, see “Restrictions on the ALTER
FRAGMENT Statement” on page 2-9 and “DROP Clause” on page 2-32.

Example of ALTER FRAGMENT ONLINE ... DETACH

The following SQL statements define a fragmented employee table that uses a
range-interval storage distribution scheme, with a unique index employee_id_idx
on the column emp_id (that is also the fragmentation key) and another index
employee_dept_idx on the column dept_id.
CREATE TABLE employee (emp_id INTEGER, name CHAR(32), dept_id CHAR(2),

mgr_id INTEGER, ssn CHAR(12))
FRAGMENT BY RANGE (emp_id)

INTERVAL (100) STORE IN (dbs1, dbs2, dbs3, dbs4)
PARTITION p0 VALUES < 200 IN dbs1,
PARTITION p1 VALUES < 400 IN dbs2;

CREATE UNIQUE INDEX employee_id_idx ON employee(emp_id);
CREATE INDEX employee_dept_idx ON employee(dept_id);

INSERT INTO employee VALUES (401, "Susan", "DV", 101, "123-45-6789");
INSERT INTO employee VALUES (601, "David", "QA", 104, "987-65-4321");

The last two statements insert rows with fragment key values above the upper
limit of the transition fragment, causing the database server to generate two new
interval fragments, so that the resulting fragment list consists of four fragments:
Fragments in surviving table before ALTER FRAGMENT ONLINE:
p0 VALUES < 200 - range fragment
p1 VALUES < 400 - range fragment (transition fragment)
sys_p2 VALUES >= 400 AND VALUES < 500 - interval fragment
sys_p4 VALUES >= 600 AND VALUES < 700 - interval fragment

The following statement returns an error, because the specified fragment to be
detached is a range fragment (a fragment that stores rows with fragmentation key
values below the transition value of 400). Only interval fragments can be detached
online.
ALTER FRAGMENT ONLINE ON TABLE employee

DETACH PARTITION p0 employee3;

The following statement runs successfully, and creates a new employee3 table to
store the data in the detached fragment.
ALTER FRAGMENT ONLINE ON TABLE employee

DETACH PARTITION sys_p2 employee3;

If there are concurrent sessions accessing sys_p2, set the lock mode to WAIT (for a
number of seconds sufficient for the ONLINE DETACH operation to be
committed) to prevent nonexclusive access errors:

2-22 IBM Informix Guide to SQL: Syntax

SET LOCK MODE TO WAIT 300;
ALTER FRAGMENT ONLINE ON TABLE employee DETACH PARTITION sys_p2 employee3;

Fragments in surviving table after ALTER FRAGMENT ONLINE:
p0 VALUES < 200 - range fragment
p1 VALUES < 400 - range fragment
sys_p4 VALUES >= 600 AND VALUES < 700 - interval fragment.

Detach with BYTE and TEXT Columns
If the DETACH clause specifies the first fragment of a table that includes simple
large objects of data type BYTE or TEXT, the database server applies locks on the
blobspaces of every fragment of the table. To detach any other fragment of the
table locks only the blobspaces of the specified fragment, rather than the
blobspaces of all fragments, so fewer locks are required if the fragment is not the
first.

Detach from a Protected Table
If a successfully executed DETACH clause specifies a table that is protected by a
security policy, the database server creates a new table that is protected by the
same security policy, and has the same IDSSECURITYLABEL column for row
security labels and the same set of protected columns as the original table. The
IDSSECURITYLABEL column has a NOT NULL constraint. Only a user who holds
the DBSECADM role can reference a protected table in the ALTER FRAGMENT
statement.

Detach That Results in a Nonfragmented Table
The following example uses the table cur_acct fragmented into two dbspaces,
dbsp1 and dbsp2:
ALTER FRAGMENT ON TABLE cur_acct DETACH dbsp2 accounts;

This example detaches dbsp2 from the distribution scheme for cur_acct and places
the rows in a new table, accounts. Table accounts now has the same structure
(column names, number of columns, data types, and so on) as table cur_acct, but
the table accounts does not contain any indexes or constraints from the table
cur_acct. Both tables are now nonfragmented. The following example shows a table
that contains three fragments:
ALTER FRAGMENT ON TABLE bus_acct DETACH dbsp3 cli_acct;

This statement detaches dbsp3 from the distribution scheme for bus_acct and
places the rows in a new table, cli_acct. Table cli_acct now has the same structure
(column names, number of columns, data types, and so on) as bus_acct, but the
table cli_acct does not contain any indexes or constraints from the table bus_acct.
Table cli_acct is a nonfragmented table, but table bus_acct remains fragmented.

INIT Clause
The INIT clause of the ALTER FRAGMENT statement can define or modify the
fragmentation strategy or the storage location of an existing table or an existing
index. The INIT clause has the following syntax.

Chapter 2. SQL statements 2-23

INIT Clause:

INIT
WITH ROWIDS

(1)
FRAGMENT BY Clause for Tables

IN dbspace
PARTITION fragment

(2)
FRAGMENT BY Clause for Indexes

Notes:

1 See “FRAGMENT BY Clause for Tables” on page 2-25

2 See “FRAGMENT BY clause for indexes” on page 2-27

Element Description Restrictions Syntax

dbspace Dbspace storing fragmented data Must exist at time of execution “Identifier” on page 5-21

fragment Name of fragment No more than 2048 for same table “Identifier” on page 5-21

The INIT clause can accomplish tasks that include the following:
v Move a nonfragmented table from one dbspace to a named fragment or to

another dbspace.
v Convert a fragmented table to a nonfragmented table.
v Fragment an existing non-fragmented table without redefining it.
v Convert a fragmentation strategy to another fragmentation strategy.
v Fragment an existing index that is not fragmented without redefining the index.
v Convert a fragmented index to a nonfragmented index.
v Add a new rowid column to the table definition.

When you use the INIT clause to modify a table, the tabid value in the system
catalog tables changes for the affected table. The constrid value of all unique and
referential constraints on the table also changes.

For more information about the storage spaces in which you can store a table, see
“Using the IN Clause” on page 2-296.

Attention: When you execute the ALTER FRAGMENT statement with this clause,
it results in data movement if the table contains any data. If data values move, the
potential exists for significant logging, for the transaction being aborted as a long
transaction, and for a relatively long exclusive lock being held on the affected
tables. Use this statement when it does not interfere with day-to-day operations.

WITH ROWIDS Option
Nonfragmented tables contain a hidden column called rowid. Its integer value
defines the physical location of a row.

To include a rowid column in a fragmented table, you must explicitly request it by
using the WITH ROWIDS clause in CREATE TABLE (or ADD ROWIDS in ALTER
TABLE, or WITH ROWIDS in ALTER FRAGMENT INIT). The rowid in a row of a
fragmented table does not identify a physical location for the row in the same way
that a rowid in a non-fragmented table does.

When you use the WITH ROWIDS option to add a new rowid column to a
fragmented table, the database server assigns a unique rowid number to each row

2-24 IBM Informix Guide to SQL: Syntax

and creates an index that it can use to find the physical location of the row.
Performance using this access method is comparable to using a SERIAL,
BIGSERIAL, or SERIAL8 column. The rowid value of a row cannot be updated,
but remains stable during the existence of the row. Each row requires an additional
four bytes to store the rowid column after you specify the WITH ROWIDS option.

Recommendation: When creating new applications, use primary keys as a method
of row identification instead of using rowid values.

Converting a Fragmented Table to a Nonfragmented Table
You might decide that you no longer want a table to be fragmented. You can use
the INIT clause to convert a fragmented table to a nonfragmented table. The
following example shows the original fragmentation definition, as well as how to
use the INIT clause of the ALTER FRAGMENT statement to convert the table to a
nonfragmented table:
CREATE TABLE checks (col1 INT, col2 INT)

FRAGMENT BY ROUND ROBIN IN dbsp1, dbsp2, dbsp3;

ALTER FRAGMENT ON TABLE checks INIT IN dbsp1;

You must use the IN dbspace clause to place the table in a dbspace explicitly.

When you use the INIT clause to change a fragmented table to a nonfragmented
table, all attached indexes become nonfragmented indexes. In addition, constraints
that do not use existing user-defined indexes (detached indexes) become
nonfragmented indexes. All newly nonfragmented indexes exist in the same
dbspace as the new nonfragmented table.

Using the INIT clause to change a fragmented table to a nonfragmented table has
no effect on the fragmentation strategy of detached indexes, nor of constraints that
use detached indexes.

FRAGMENT BY Clause for Tables
Use the FRAGMENT BY option of the INIT clause of the ALTER FRAGMENT
statement to fragment an existing nonfragmented table, or to convert one table
fragmentation strategy to another.

The PARTITION BY keywords are a synonym for the FRAGMENT BY keywords in
this context.

FRAGMENT BY Clause for Tables:

FRAGMENT BY
PARTITION BY

�

�

,

ROUND ROBIN IN dbspace
,

PARTITION part IN dbspace
EXPRESSION Fragment List

(1)
RANGE (fragment_key) Interval Fragment Clause

(2)
LIST (fragment_key) List Fragment Clause

Chapter 2. SQL statements 2-25

Fragment List:

�

,

(expr) IN dbspace
PARTITION part (3)

REMAINDER

Notes:

1 See “Interval Fragment clause” on page 2-308

2 See “List fragment clause” on page 2-313

3 If included, must be the last item in fragment list

Element Description Restrictions Syntax

column Column to which the strategy applies Must exist in the table “Identifier” on page 5-21

dbspace Dbspace that contains the table fragment Must specify at least 2 but no
more than 2,048 dbspaces

“Identifier” on page 5-21

expr Expression that defines a table fragment Must evaluate to a Boolean value
(t or f)

“Expression” on page
4-44

part Name of a fragment Required for any named
fragment in the same dbspace as
another named fragment of the
same table. Name must be
unique among fragments of the
same table.

“Identifier” on page 5-21

This supports the same syntax as the FRAGMENT BY (or PARTITION BY) clause
of the CREATE TABLE statement. For more information on the fragmentation
strategies available for tables, see the “FRAGMENT BY clause” on page 2-300 of
the CREATE TABLE statement.

Examples of range interval fragmentation

These examples define statement define range interval fragmentation strategies for
an existing table. The following ALTER FRAGMENT statement defines three
fragments of a range interval fragmentation strategy that includes no NULL
fragment, where numeric column c1 is the fragmentation key:
ALTER FRAGMENT ON TABLE T1 INIT

FRAGMENT BY RANGE(c1)
INTERVAL (100+100) STORE IN (dbs3, dbs4, dbs5, dbs6, dbs7, dbs8)

PARTITION part0 VALUES < 0 IN dbs0,
PARTITION part1 VALUES < 1000 IN dbs1,
PARTITION part2 VALUES < 2000 IN dbs2;

Here the interval value expression of (100+100 defines the interval fragment size as
200 within the range of column c1. No fragment is defined for fragmentation key
values of 2000 or greater. If this were still the storage distribution when a row with
c1 equal to or greater than 2000 is inserted, the database server automatically
creates a new fragment to store that row, which was outside the range of any
existing fragment. Interval partitions are stored in the dbspaces dbs2, dbs3, dbs4,
dbs5, dbs6, dbs7, and dbs8 in round-robin fashion.

2-26 IBM Informix Guide to SQL: Syntax

The following statement similarly defines three fragments of a range interval
fragmentation strategy that includes no NULL fragment, and where the DATE or
DATETIME column c2 is the fragmentation key:
ALTER FRAGMENT ON TABLE T1 INIT

FRAGMENT BY RANGE(c2)
INTERVAL (NUMTOYMINTERVAL(1,’MONTH’))

PARTITION part0 VALUES < DATE(’01/01/2009’) IN dbs0,
PARTITION part1 VALUES < DATE(’07/01/2009’) IN dbs1,
PARTITION part2 VALUES < DATE(’01/01/2010’) IN dbs2;

Here the interval value expression of NUMTOYMINTERVAL(1,’MONTH’) defines the
interval fragment size as a single month within the range of column c2. The
PARTITION list defines three fragments: part0 for December of 2008, part1 for June
of 2008, and part2 for December of 2009. If rows are inserted whose c2 value is not
in one of these months, the database server will create new fragments for those
rows. Because no STORE IN clause is specified, the database server will store these
new range interval fragments in a round-robin fashion in the dbspaces dbs0, dbs1,
and dbs2 that this example lists after the IN keywords of the three PARTITION
specifications.

Changing an Existing Fragmentation Strategy on a Table: You can redefine a
fragmentation strategy on a table if you decide that your initial strategy does not
fulfill your needs. When you alter a fragmentation strategy, the database server
discards the existing fragmentation strategy and moves records to fragments as
defined in the new fragmentation strategy.

The following example shows the statement that originally defined the
fragmentation strategy on the table account and then shows an ALTER
FRAGMENT statement that redefines the fragmentation strategy:
CREATE TABLE account (col1 INT, col2 INT)

FRAGMENT BY ROUND ROBIN IN dbsp1, dbsp2;
ALTER FRAGMENT ON TABLE account

INIT FRAGMENT BY EXPRESSION
col1 < 0 IN dbsp1,
col2 >= 0 IN dbsp2;

If an existing dbspace is full when you redefine a fragmentation strategy, you must
not use it in the new fragmentation strategy.

Defining a Fragmentation Strategy on a Nonfragmented Table: The INIT clause
can define a fragmentation strategy on a nonfragmented table, regardless of
whether the table was created with a storage option.
CREATE TABLE balances (col1 INT, col2 INT) IN dbsp1;
ALTER FRAGMENT ON TABLE balances INIT

FRAGMENT BY EXPRESSION col1 <= 500 IN dbsp1,
col1 > 500 AND col1 <=1000 IN dbsp2, REMAINDER IN dbsp3;

When you use the INIT clause to fragment an existing nonfragmented table, all
indexes on the table become fragmented in the same way as the table.

FRAGMENT BY clause for indexes
Use the FRAGMENT BY clause to redefine the storage distribution strategy of an
index without redefining the index. The keywords FRAGMENT BY and
PARTITION BY are synonyms in this context.

Chapter 2. SQL statements 2-27

FRAGMENT BY Clause for Indexes:

FRAGMENT
PARTITION

�

�
(1)

BY RANGE (fragment_key) Interval Fragment Clause
(2)

BY LIST (fragment_key) List Fragment Clause
BY EXPRESSION Expression Fragment Clause

Expression Fragment Clause:

�

,

(expr) IN dbspace
PARTITION part

�

�
, REMAINDER IN dbspace

PARTITION part (expr)

Notes:

1 See “Interval Fragment clause” on page 2-308

2 See “List fragment clause” on page 2-313

Element Description Restrictions Syntax

dbspace Dbspace that contains the fragmented
information

Must specify at least one (but no
more than 2,048) dbspaces of the
same page size

“Identifier” on page
5-21

expr Expression defining an index fragment Must be unique among
fragmentation expressions for the
same index, and must return a
Boolean value

“Condition” on page
4-5; “Expression” on
page 4-44

fragment
_key

Constant expression, based on a column
value. The index is fragmented on this
expression.

Any column must be in the
current table.

“Expression” on page
4-44

part Name that you declare here for the
fragment. Default is the dbspace name.

Required for fragments in the
same dbspace as another
fragment of the same index. Must
be unique among fragments of
the same index.

“Identifier” on page
5-21

The INIT FRAGMENT BY clause for indexes of the ALTER FRAGMENT statement
can accomplish any of the following operations on the storage distribution scheme
of an existing index, without redefining the index:
v Change an existing fragmented index to a nonfragmented index.
v Change the distribution scheme of an existing fragmented index to another

distribution scheme of the same expression, list, or range interval type, or to a
different type of distribution scheme.

2-28 IBM Informix Guide to SQL: Syntax

v Change the interval value or the interval fragment key (or both) of a range
interval distribution scheme for an existing index.

To change the interval value expression or the fragment key expression for an
existing index that is fragmented by a range interval strategy, you must use the
INIT FRAGMENT BY RANGE option (rather than the MODIFY clause) of the
ALTER FRAGMENT statement. When you change either or both of those
expressions, the Interval Fragment clause in the ALTER FRAGMENT ON INDEX
statement must also define at least one range fragment.

When you use the FRAGMENT BY or PARTITION BY clause to convert an existing
storage fragmentation strategy to another fragmentation strategy, Informix discards
the existing fragmentation strategy and moves the data records to fragments that
you define in the new fragmentation strategy. Data movement similarly occurs
when you convert a nonfragmented index to a fragmented index, and when you
convert a fragmented index to a nonfragmented index.

To convert an existing fragmented index to a nonfragmented index, you can use
the INIT clause to specify IN dbspace (or else PARTITION partition IN dbspace) as
the only storage specification for a previously fragmented index.

Just as for an expression-based index fragmentation scheme that the CREATE
INDEX statement defines, restrictions apply to each expression (expr) that you
specify in the ALTER FRAGMENT ON INDEX . . . INIT FRAGMENT BY
EXPRESSION statement, including these:
v Any column that the expression references must be from the current table.
v Those columns must be the indexed columns, or a subset of the indexed

columns.
v The expression cannot reference fields of a column of type ROW.
v Any data values in the expression must be from only a single row.
v No subqueries, aggregates, nor CURRVAL or NEXTVAL sequence object

expressions are allowed.
v The built-in CURRENT, DATE, DBINFO, DBSERVERNAME, ROWID,

SITENAME, SYSDATE, TODAY, CURRENT_USER, and USER expressions are
not valid in the expression.

The restrictions above also apply to fragment key expressions for list and for range
interval index fragmentation schemes, including fragmentation strategies that are
defined in the FRAGMENT BY clause of the CREATE INDEX statement.

Detaching an Index from a Table-Fragmentation Strategy: You can detach an
index from a table-fragmentation strategy with the INIT clause of the ALTER
FRAGMENT ON INDEX statement, so that an attached index becomes a detached
index. This breaks any dependency of the index on the table fragmentation
strategy. If the INIT clause specifies only IN dbspace or PARTITION fragment IN
dbspace for a previously fragmented index, or if it specifies an index fragmentation
strategy that differs from the storage option of the table, then the index becomes a
detached index.

Fragmenting Unique and System Indexes: You can fragment unique indexes on a
table that uses a round-robin or expression-based distribution scheme, but any
columns referenced in the fragment expression must be indexed columns. If your
index fragmentation strategy violates this restriction, the ALTER FRAGMENT INIT
statement fails, and work is rolled back.

Chapter 2. SQL statements 2-29

You might have an attached unique index on a table fragmented by Column A. If
you attempt to use ALTER FRAGMENT INIT to change the table fragmentation to
Column B, the statement fails because the unique index is defined on Column A.
To resolve this issue, use the INIT clause on the index to detach it from the table
fragmentation strategy and fragment it separately.

System indexes (such as those used in referential constraints and unique
constraints) use user-defined indexes if the indexes exist. If no user-defined indexes
can be used, system indexes remain nonfragmented and are moved to the dbspace
where the database was created. To fragment a system index, create the
fragmented index on the constraint columns and then use the ALTER TABLE
statement to add the constraint.

ADD Clause
Use the ADD clause to add another fragment to a list of fragments of an existing
table or index.

ADD Clause:

ADD

�

dbspace
REMAINDER IN PARTITION part IN

(1)
PARTITION part

ADD Expression IN dbspace
PARTITION part (1)

BEFORE fragment
AFTER

,
(2)

INTERVAL IN (new_dbspace)
STORE

ADD Expression:

�

(2)
VALUES < range_expr
(3)

VALUES IS NULL
expression

,
(4)

VALUES const_expr
(3)

NULL
IS

Notes:

1 List or expression fragmentation only

2 Range interval fragmentation only

3 Use path no more than once

4 List fragmentation only

2-30 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

dbspace Name of a dbspace to store the
new fragment

Must exist “Identifier” on page 5-21

expression Expression that defines the new
fragment that is to be added

Must return a Boolean value (t
or f)

“Condition” on page 4-5;
“Expression” on page 4-44

fragment Name of an existing fragment Must exist “Identifier” on page 5-21

new_dbspace Name of a dbspace being added to
store new interval fragments

Must exist “Identifier” on page 5-21

part Name that you declare here for
the new fragment. The default is
the name of the dbspace.

Required if another fragment
in the fragment list is stored in
the same dbspace. Must be
unique among names of
fragments of the index.

“Identifier” on page 5-21

The expression can contain column names only from the current table, and data
values only from a single row. No subqueries or aggregates are allowed. In
addition, the built-in CURRENT, DATE, DBINFO, SYSDATE, and TODAY
expressions are not valid in this context.

Adding a New Dbspace to a Round-Robin Distribution Scheme
You can add more dbspaces to a round-robin distribution scheme. The following
example shows the original round-robin definition:
CREATE TABLE book (col1 INT, col2 INT)

FRAGMENT BY ROUND ROBIN IN dbsp1, dbsp4;

To add another dbspace, use the ADD clause, as in this example:
ALTER FRAGMENT ON TABLE book ADD dbsp3;

Adding a New Named Fragment to a Round-Robin Distribution
Scheme
In Informix, you can add a named fragment to an existing round-robin distribution
scheme. The name must be unique within the distribution among fragments of the
same dbspace. The following example specifies the same original round-robin
fragmentation definition as in the previous section:
CREATE TABLE book (col1 INT, col2 INT)

FRAGMENT BY ROUND ROBIN IN dbsp1, dbsp4;

To add a new named fragment, you can use the ADD clause, as in the following
example:
ALTER FRAGMENT ON TABLE book

ADD PARTITION chapter3 IN dbsp1;

The new distribution uses dbsp1, dbsp4, and chapter3 as storage locations for a
3-part round-robin fragmentation scheme. The records in the fragment chapter3 are
stored in separately in the dbspace dbsp1 from the records in the first fragment,
which is identified only by the dbspace name: dbsp1.

Adding an expression-based fragment
Adding a fragment expression to the fragmentation list of an expression-based
distribution scheme can relocate records from existing fragments into the new
fragment. When you insert a new fragment into the fragmentation list, the
database server reevaluates all the data in the existing fragments that follow the

Chapter 2. SQL statements 2-31

new fragment. (The evalpos column value for any fragment in the sysfragments
system catalog table indicates the ordinal position of that fragment within the
fragmentation list.)

The next statement fragment shows the original expression definition:
FRAGMENT BY EXPRESSION

c1 < 100 IN dbsp1, c1 >= 100 AND c1 < 200 IN dbsp2,
REMAINDER IN dbsp3

To add another named fragment in dbspace dbsp2 to hold rows for column c1
values between 200 and 299, use the following ALTER FRAGMENT statement:
ALTER FRAGMENT ON TABLE news

ADD PARTITION century3 (c1 >= 200 AND c1 < 300) IN dbsp2;

Any rows that were formerly in the remainder fragment but that fit the criteria (c1
>= 200 AND c1 < 300) move to the new century3 fragment in dbspace dbsp2.

If the ALTER FRAGMENT ADD operation results in the redistribution of data
rows while the automatic mode for updating distribution statistics is enabled, the
database server drops the distribution statistics of the affected fragments, but the
table statistics are not dropped. The next query on the table will cause the database
server to recalculate the statistics for the same fragments.

Using the BEFORE and AFTER Options
The BEFORE and AFTER options can position the new fragment either before or
after an existing fragment within the fragmentation list. The name of a fragment is
the name of the dbspace or the name declared in the PARTITION clause. You
cannot use the BEFORE and AFTER options if the distribution scheme is
round-robin or range interval.

When you attach a new fragment without an explicit BEFORE or AFTER option,
the database server places the added fragment at the end of the fragmentation list,
unless a remainder fragment exists. If a remainder fragment exists, the new
fragment is placed immediately before the remainder fragment. You cannot
position a new fragment after the remainder fragment.

Using the REMAINDER Option
You cannot add a remainder fragment if one already exists. If you add a new
fragment when a remainder exists, the database server retrieves and reevaluates all
records in the remainder fragment; some records might move to the new fragment.
The remainder fragment is always the last item in the fragment list.

You cannot add a remainder fragment to the fragmentation list of a range interval
fragmentation scheme.

DROP Clause
Use the DROP clause to remove an existing fragment from the fragmentation list of
a table or index that is fragmented by round-robin. For a table or index that is
fragmented by range interval, you can use this clause to drop one or more
dbspaces from the list of dbspaces that store system-generated fragments.

DROP Clause:

2-32 IBM Informix Guide to SQL: Syntax

�

DROP fragment
PARTITION

,
(1)

INTERVAL IN (dbspace)
STORE

Notes:

1 Range interval fragmentation only

Element Description Restrictions Syntax

dbspace Dbspace that stores system generated
fragments

Must exist when you execute the
statement.

“Identifier” on page 5-21

fragment Name of the fragment Must exist when you execute the
statement. For list or range
interval fragments, the
PARTITION keyword must
precede this name.

“Identifier” on page 5-21

If the table is fragmented by expression, you cannot drop a fragment containing
data that cannot be moved to another fragment. If the distribution scheme has a
REMAINDER option, or if the expressions overlap, you can drop a fragment that
contains data. You cannot, however, drop a fragment if the table has only two
fragments.

When you want to make a fragmented table nonfragmented, you can use either the
INIT clause or the DETACH clause of the ALTER FRAGMENT statement, rather
than the DROP clause.

If the fragment was not given a name by the user who created the table or index or
added the fragment, then the name of the dbspace is also the name of the
fragment. If the fragment is a system-generated range interval fragment of a table
or of an index, its name is sys_pevalpos, where evalpos is the sysfragments.evalpos
entry for the fragment in the system catalog. If a table and its index use the same
range interval fragmentation strategy, each system-generated index fragment has
the same identifier as a system-generated fragment of the table.

When you drop a fragment, the database server attempts to move all records in the
dropped fragment to another fragment. In this case, the destination fragment might
not have enough space for the additional records. If this happens, follow one of the
procedures that “ALTER FRAGMENT and Transaction Logging” on page 2-9
describes to increase your available space, and retry the ALTER FRAGMENT
operation.

When the DROP clause specifies one or more dbspaces to remove from a range
interval fragmentation strategy, those dbspaces are not affected, but the database
server moves the data in any fragments of the table or index that are stored in
those dbspaces to other available dbspaces. (The range interval fragmentation
strategy is also affected, because it no longer includes the specified dbspaces
among its storage locations for new system-generated fragments.)

You cannot use the DROP clause to drop a range interval fragment that contains
data.

Chapter 2. SQL statements 2-33

You can use this clause to drop a list fragment that contains data only if a
remainder fragment exists to receive the data.

If the fragmented table has fragment level statistics, the ALTER FRAGMENT
DROP operation also drops any fragment-level statistic distribution for the
fragment been dropped. Table-level statistics, however, are not recalculated. The
next explicit or automatic UPDATE STATISTICS operation on the table will rebuild
stale fragment-level distributions and merge them to form table level distributions
and store the results in the system catalog.

Examples of the DROP clause of the ALTER FRAGMENT
statement

The following examples show how to drop a fragment from a round-robin
fragmentation list. The first line shows how to drop an index fragment, and the
second line shows how to drop a table fragment.
ALTER FRAGMENT ON INDEX cust_indx DROP dbsp2;

ALTER FRAGMENT ON TABLE customer DROP dbsp1;

The following examples each drop a fragment that was defined by list
fragmentation strategies. The first line shows how to drop a table fragment, and
the second line shows how to drop an index fragment.
ALTER FRAGMENT ON TABLE T2 DROP PARTITION part4;

ALTER FRAGMENT ON INDEX idx2 DROP PARTITION part4;

In both examples above, the PARTITION keyword is required, and the name of the
dropped fragment is part4. If the index idx2 is defined on table T2 and thus the
same storage distribution strategy as table T2, the second statement is not
necessary, because the database server automatically modifies the fragmentation
strategy of an attached index when the table fragmentation list is modified. If these
fragments are not empty, the database server moves their data to the remainder
fragments (or returns an error, if no remainder fragment exists).

The following examples each drop two dbspaces that store system-defined interval
range fragments, as defined by range interval fragmentation strategies. The first
statement drops dbspaces dbs7 and dbs8 from the storage spaces for table
fragments, and the second statement drops the same storage spaces for index
fragments:
ALTER FRAGMENT ON TABLE T1 DROP INTERVAL STORE IN (dbs7, dbs8);

ALTER FRAGMENT ON INDEX idx1 DROP INTERVAL STORE IN (dbs7, dbs8);

The PARTITION keyword is again required, and if idx1 is an attached index on
table T1, the second statement is not necessary: When the table fragmentation list
is modified, the database server automatically modifies the fragmentation strategy
of any attached index to match the modified strategy of its table. If these fragments
are not empty, the database server moves any fragments from the specified dbs7
and dbs8 dbspaces to other available dbspaces.

MODIFY Clause
Use the MODIFY clause to change the existing fragmentation list of a table or of an
index. You can use this clause to accomplish one or more of the following tasks:
v Move an existing fragment from one dbspace to a different dbspace

2-34 IBM Informix Guide to SQL: Syntax

v Change the expression associated with an existing list-based or expression-based
fragment

v Change the expression that defines the transition fragment in a range-interval
fragmentation list

v Rename one or more existing fragments
v Enable or disable the automatic creation of interval fragments
v Replace the list of dbspaces to store new interval fragments

The MODIFY clause of the ALTER FRAGMENT statement has the following
syntax:

MODIFY Clause:

�

�

,

MODIFY old TO PARTITION new
PARTITION Fragment Expression IN dbspace

,
(1)

INTERVAL IN (dbspace)
ENABLED STORE
DISABLED
ENABLED
DISABLED

TRANSITION TO const_expr

Fragment Expression:

�

expression
(1)

VALUES < range_expr
(2)

VALUES IS NULL
,

(3)
VALUES const_expr

(2)
NULL

IS
(2) (4)

REMAINDER

Notes:

1 Range interval fragmentation only

2 Use this path no more than once

3 List fragmentation only

4 Not valid for range interval fragmentation

Element Description Restrictions Syntax

const_expr Constant expression that defines
the list of values for a fragment to
store, or a new upper limit for the
range-interval transition fragment

Must be a quoted string or a literal value.
For fragmentation by list, each value must
be unique among the expression lists for
fragments of the same object.

“Constant
Expressions” on page
4-76

dbspace Dbspace that stores the new
fragment

Must exist at time of execution. All of the
dbspaces must have the same page size.

“Identifier” on page
5-21

Chapter 2. SQL statements 2-35

Element Description Restrictions Syntax

expression Modified expression Can specify columns in current table only
and data from only a single row

“Condition” on page
4-5; “Expression” on
page 4-44

new_dbspace Dbspace that stores
system-generated range interval
fragments

Must exist at time of execution. All of the
dbspaces must have the same page size.

“Identifier” on page
5-21

new Name that you declare here for
the modified fragment

Must be unique among fragment names
in the fragmentation list. If a table and its
index use the same range interval or list
fragmentation strategy, each index
fragment must have the same name as the
corresponding table fragment.

“Identifier” on page
5-21

old Name of an existing fragment Must exist in the fragmentation list. For
list or range interval fragments, the
PARTITION keyword must precede this
name.

“Identifier” on page
5-21

range _expr Range expression. This constant
expression defines the upper
bound for fragment key values
stored in the fragment

Must be a constant literal expression that
evaluates to a numeric, DATETIME, or
DATE data type compatible with the data
type of the fragment key expression. See
also “Restrictions on the MODIFY clause
for range interval fragments” on page
2-37.

“Constant
Expressions” on page
4-76

Usage

Here dbspace and old (or old and new) can be identical, if you are not changing the
storage location. For tables or indexes that are fragmented by range interval, the
specified list of dbspaces that follows the STORE IN keywords replaces the list of
dbspaces that was in effect before you issued the ALTER FRAGMENT . . .
MODIFY statement. Fragments in the former list of dbspaces are not relocated by
this option.

To use the MODIFY clause both to change the expression and to move its
corresponding fragment to a new storage location, you must change the expression
and you must also specify the name of a different dbspace or partition.

You must declare a new fragment name if more than one fragment of the same
table or index has the same identifier as the dbspace. The PARTITION keyword is
required immediately before the new fragment name for range interval fragments
and for list fragments, but it is optional for round-robin fragments and
expression-based fragments.

The expression must evaluate to a Boolean value (true or false).

No subqueries or aggregates are allowed in the expression. In addition, the built-in
CURRENT, DATE, DBINFO, SYSDATE, and TODAY expressions are not valid.

When you use the MODIFY clause to change an expression without changing the
storage location for the expression, you must use the same name for the old and
the new fragment. If the dbspace consists of only a single partition, however, you
can specify the same name for old and for dbspace, as in the following example:
ALTER FRAGMENT ON TABLE cust_acct

MODIFY dbsp1 TO acct_num < 65 IN dbsp1;

2-36 IBM Informix Guide to SQL: Syntax

For list fragmentation strategies, the ALTER FRAGMENT MODIFY statement fails
with an error if a new list expression overlaps any existing list expressions for
another fragment of the same table or index.

When you use the MODIFY clause to move a fragment from one dbspace to
another, old is the name of the dbspace where the fragment was previously located,
and dbspace is the new location for the fragment, as in the following example:
ALTER FRAGMENT ON TABLE cust_acct

MODIFY PARTITION part1 TO PARTITION part2 (acct_num < 35) IN dbsp2;

The ALTER FRAGMENT statement above modifies the distribution scheme for the
cust_acct table, so that the rows with values in column acct_num that are less than
35 (and that had previously been assigned to fragment part1 that was stored in the
dbspace dbsp1) will now be assigned to the fragment part2 that is stored in the
dbspace dbsp2.

When you use the MODIFY clause, the underlying dbspaces are not affected. Only
the data values within the fragments or dbspaces are affected.

Unless the fragmentation strategy is by range interval, if no remainder fragment
already exists, you can redefine a nonremainder fragment as a remainder fragment
for rows that do not match the fragment key values for any other fragment. You
cannot change a REMAINDER fragment into a nonremainder fragment, however, if
any rows already stored in the REMAINDER fragment do not satisfy the new
expression.

An attached index has the same storage distribution as its table. If all the indexes
on a table are attached indexes, and you use the MODIFY clause to modify the
table fragments, the database server automatically modifies the storage distribution
strategy for the index to match the new table fragmentation strategy.

The old specification cannot reference the transition fragment (the last range
fragment) of any table that is fragmented by a range-interval storage distribution
scheme. The only modification that is valid for that fragment is to use the
TRANSITION TO const_expr clause to increase the transition value. For any other
syntax that attempts to redefine the range expression of the transition fragment
directly, the database server returns an error. For more information, see the topic
“Using the MODIFY INTERVAL TRANSITION option” on page 2-39.

Restrictions on the MODIFY clause for range interval fragments

The MODIFY clause of the ALTER FRAGMENT statement cannot change the
interval value, nor the fragment key. To change either of these elements of the
range interval storage distribution scheme, you must use the INIT option of the
ALTER FRAGMENT statement.

The MODIFY clause cannot change the value of the range expression of a fragment
if any of the following are true:
v The fragment is the last fragment, and the new value is smaller than the current

value.
v The new value overlaps the boundary of an existing fragment.
v The fragment is a system-generated interval fragment.

You can modify the value of a user-defined range fragment, but the new value
cannot cross adjacent fragment boundaries, and the database server must be able
to accomplish any data movement that the new range expression implies.

Chapter 2. SQL statements 2-37

The MODIFY clause can change the list of storage spaces where an existing
fragment is stored, and it can also change the list of storage spaces where new
system-generated interval fragments will be stored, but the same MODIFY clause
cannot accomplish both tasks. To change both lists, you must issue two separate
ALTER FRAGMENT . . . MODIFY statements.

Similarly, a MODIFY clause that enables or disables the current range interval
distribution scheme cannot also move an existing range interval fragment to a
different dbspace, or create a new user-defined fragment. Separate ALTER
FRAGMENT . . . MODIFY statements are required for each of these tasks.

For range fragments of tables and indexes fragmented by interval, you can modify
the fragment expression for the first and for intermediate range fragments. Any
overlaps are resolved by moving data, so that fragment key values of the rows
stored in the redefined range fragments are non-overlapping. For the last range
fragment, however, you can modify the transition value in its fragment expression
only if the new range expression satisfies all of the following conditions:
v It does not partially or completely match any existing interval fragment

expression.
v It will not partially match any future interval fragment expressions that the

system can generate automatically.
v Any gap that the new transition value leaves between fragments must be an

integer multiple of the intvl_expr interval value.

You cannot define a remainder fragment for a table that is fragmented by range
interval.

If you use the MODIFY clause to rename an existing fragment, the new name
cannot begin with the characters sys_p.

Range, interval, and transition fragments

For objects that use a range interval storage distribution strategy, it is useful to
distinguish among three types of fragments:
v A range fragment is a fragment whose name, fragment-key expression, and

storage location are defined explicitly in the Interval Fragment clause within the
table or index definition. Range interval fragmentation requires that at least one
range fragment be defined.

v An interval fragment is a fragment whose name, fragment-key expression, and
storage location are defined automatically by the database server when an insert
or load operation attempts to store a row whose fragment-key value is false for
the fragment-key expression of every existing fragment.

v The range fragment whose upper limit in its VALUES clause is larger than for
the fragment-key expression for any other range fragment is called the transition
fragment. The upper limit specified in the VALUES clause of the transition
fragment is called the transition value for the table. If no interval fragments have
been created for the object, inserting a row whose fragment-key value exceeds
that transition value requires the database server to create a new interval
fragment.

Operations that the MODIFY clause of the ALTER FRAGMENT statement can
perform on transition fragments are more restricted than MODIFY operations on
other range and interval fragments.

2-38 IBM Informix Guide to SQL: Syntax

The ALTER FRAGMENT MODIFY statement cannot change the range expression
that defines a transition fragment unless you also include the MODIFY
TRANSITION keywords.

The database server cannot create interval fragments unless the Interval Fragment
clause within the table or index definition defined a range interval fragment key,
and the fragmentation scheme is not currently disabled by the ALTER FRAGMENT
. . . MODIFY INTERVAL DISABLE statement.

Using the MODIFY INTERVAL TRANSITION option
You can use this option to increase the transition value of the last range fragment
of a table that is fragmented by interval. The transition value cannot be decreased
by using this option to the ALTER FRAGMENT statement.

You cannot use the PARTITION partition VALUES syntax of the MODIFY option to
modify the range expression for the last range fragment (also called the transition
fragment) of a table that uses a range-interval storage distribution scheme. The
transition value, however, which is the upper limit in the range expression, can be
increased by using the MODIFY INTERVAL TRANSITION TO keywords to specify
the new upper limit. There is no data movement when the transition value is
changed.

To decrease the transition value (or the upper limit of the range of the transition
fragment) requires an ALTER FRAGMENT INIT operation to redefine the fragmentation
scheme of the table.

Automatic fragment renaming when the transition value increases

ALTER FRAGMENT statements that specify the MODIFY INTERVAL
TRANSITION option can cause existing fragments to be renamed:
v If there are no interval fragments between the new and old transition values, but

interval fragments already exist above the new transition value, the digit that
terminates the system-generated interval fragment name is reduced by the
number of interval fragment boundaries occupied by the difference between the
new and old transition values.
For example, if the interval value expression defining an interval size evaluates
to 20, and the difference between the old transition value and the new transition
value is 60, then an interval fragment whose name is sys_p7 is renamed to
sys_p4, because the quotient is (60/20) = 3.

v If interval fragments exist between the new and old transition values, the
characters rg are appended to their names to indicate that they have become
range fragments (because the upper limit of their fragment expression is no
longer greater than the transition value for the table.
For example, if the transition value of a table were increased to match the upper
VALUES limit of its interval fragment sys_p5, that fragment would be changed
to a range fragment, and renamed sys_p5rg. (It would also become the transition
fragment.) If another interval fragment called sys_p4 also had a smaller VALUES
upper limit in its fragment expression, that fragment would also become a range
fragment, and would be renamed sys_p4rg.

During a fragment renaming operation, an exclusive lock is placed on the fragment
while the sysfragments system catalog is being updated with the new partition
names (and with new evalpos values for any interval fragments whose ordinal
positions within the fragment list changed during the ALTER FRAGMENT
operation).

Chapter 2. SQL statements 2-39

In the cases listed above, some fragments are renamed to ensure that every
fragment name in the fragment list is unique, and to maintain the correlation
between system-generated names for interval fragments and the corresponding
sysfragments.evalpos value for those fragments in the system catalog. (See also the
section “Automatic renaming of interval fragment identifiers” on page 2-10.)

Several of the ALTER FRAGMENT examples that follow illustrate this
fragment-renaming behavior.

Example of ALTER FRAGMENT MODIFY INTERVAL TRANSITION

The following statements define a fragmented tabtrans table that uses a
range-interval storage distribution scheme, with the integer column i the fragment
key, and an interval value of 100. The transition fragment p2 has a transition value
of 300, meaning that the database server will define a new interval fragment
during any operation on the table to store a new row with a fragment key value of
300 or greater.
CREATE TABLE tabtrans (i INT, c CHAR(2))

FRAGMENT BY RANGE (i)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3)

PARTITION p0 VALUES < 100 IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1,
PARTITION p2 VALUES < 300 IN dbs0; -- last range fragment (also

-- called transition fragment)

Examples that follow are based on this tabtrans table.

The following modification attempt fails with an error, because the transition value
is decreased from 300 to 250:
ALTER FRAGMENT ON TABLE tabtrans

MODIFY INTERVAL TRANSITION TO 250;

If there are no interval fragments between the new and old transition values, the
database server updates the expression for the last range fragment to VALUES <
new, where new is the new transition value:
INSERT INTO tabtrans VALUES (601, "BB"); -- creates interval fragment sys_p6

-- with fragment expression >= 600 AND < 700

The fragment list and the fragment expressions for the tabtrans table become as
follows

p0 VALUES < 100 - range fragment
p1 VALUES < 200 - range fragment
p2 VALUES < 300 - last range (or transition) fragment
sys_p6 VALUES >= 600 AND VALUES < 700 - interval fragment

Here the system-generated name of the new interval fragment is sys_p6 because 6
is the sysfragments.evalpos value for the new fragment in the system catalog. The
evalpos values 7 and 5 are reserved for (not yet created) interval fragments to store
rows whose fragment key values match the fragment expressions VALUES >= 300
AND VALUES < 400 and VALUES >= 400 AND VALUES < 500, based on the current
transition value of the table and on the INTERVAL (100) specification in the
FRAGMENT BY clause that defined the fragmentation scheme of the table.

During a change of transition value, the fragments are modified to not cause any
data movement. The following statement successfully modifies the transition value
to 500.

2-40 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT ON TABLE tabtrans
MODIFY INTERVAL TRANSITION TO 500;

The old transition value is 300 and the new transition value is 500, with no interval
fragments in between. The first interval fragments starts at 600. This also means
that there is no data between 300 and 500. So the expression of the last range
fragment (the transition fragment) can be updated to VALUES < 500 without data
movement. Because there are interval fragments after the new transition value, the
new transition value must align at an interval fragment boundary. In the above
case, the new transition value 500 aligns at an interval fragment boundary
(whether or not the fragment currently exists). As result of modification, the
evalpos value in the system catalog for interval fragments changes, and the
interval fragments are renamed to adhere to the sys_pevalpos naming format.

The resulting modified table has the following fragments:
p0 VALUES < 100 -- range fragment
p1 VALUES < 200 -- range fragment
p2 VALUES < 500 -- last range fragment (= transition fragment

-- with its expression modified)
sys_p4 VALUES >= 600 AND VALUES < 700 - interval fragment (renamed

-- to sys_p4 as evalpos changes from 6 to 4
-- after the transition fragment change)

The following modification fails with an error, because there are interval fragments
beyond the new transition value, and the new transition value does not align at an
interval fragment boundary:

ALTER FRAGMENT ON TABLE tab MODIFY INTERVAL TRANSITION TO 550;

The possible interval fragments are 300 to 400, 400 to 500, 500 to 600, 600 to 700
and so on. The new transition value of 550 is not at an interval fragment boundary,
and therefore the error is issued.

If there are interval fragments between the new and old transition value, the new
transition value must align to the boundary of an interval fragment (and the
interval fragment need not exist), unless the new transition value is beyond the
range of the last interval fragment. All interval fragments between the new and the
old transition values are converted to range fragments, and their expressions are
modified to match the expression format of range fragments. The expression for
the last interval fragment that was converted to a range fragment is updated to
VALUES < new, where new is the new transition value.

Here is another example of INSERT operations that result in new interval
fragments:
CREATE TABLE tab (i INT, c CHAR(2))

FRAGMENT BY RANGE (i)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3)

PARTITION p0 VALUES < 100 IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1,
PARTITION p2 VALUES < 300 IN dbs0; -- last range fragment

-- or transition fragment

INSERT INTO tab
VALUES (301, "AA"); -- creates interval fragment sys_p3 with

-- fragment expression >= 300 AND < 400
INSERT INTO tab

VALUES (601, "BB"); -- creates interval fragment sys_p6
-- with fragment expression >= 600 AND < 700

The fragment list for the table now consists of these fragments:

Chapter 2. SQL statements 2-41

p0 VALUES < 100 -- range fragment
p1 VALUES < 200 -- range fragment
p2 VALUES < 300 -- range fragment
sys_p3 VALUES >= 300 AND VALUES < 400 -- interval fragment
sys_p6 VALUES >= 600 AND VALUES < 700 -- interval fragment

The ALTER FRAGMENT examples that follow are based on the above statements.

The following statement increases the transition value from 300 to 500:
ALTER FRAGMENT ON TABLE tab MODIFY INTERVAL TRANSITION TO 500;

Because there is an interval fragment (sys_p3) between the old and new transition
values, that fragment is converted to a range fragment (expression becomes < 400).
Because there is also an interval fragment (sys_p6) beyond the new transition
value, the new transition value must align at an interval fragment boundary, which
as an integer multiple of the INTERVAL(100) specification, it does. Here the possible
interval fragments are 300 to 400, 400 to 500, 500 to 600, 600 to 700 and so on. And
the new transition value of 500 is at an interval fragment boundary (whose
fragment need not exist). We also do not want to move data during the transition
fragment modification or create any fragments. This can be accomplished by
converting fragment sys_p3 to the new transition fragment, updating its expression
to < 500 (because it is now a range fragment), and renaming it.

The resulting fragment list for the table consists of these fragments:
p0 VALUES < 100 -- range fragment
p1 VALUES < 200 -- range fragment
p2 VALUES < 300 -- range fragment (was the old transition fragment)
sys_p3rg VALUES < 500 -- range fragment (was previously interval

-- fragment sys_p3. Its expression was modified to a
-- range expression. Its name was changed to a
-- system-generated name in format sys_p<evalpos>rq)
-- becomes the new transition fragment

sys_p5 VALUES >= 600 AND VALUES < 700
-- interval fragment (renamed to sys_5 brcause the
-- evalpos value changes from 6 to 5 after the
-- transition fragment change.)

The following attempted modification of the transition value returns an error:
ALTER FRAGMENT ON TABLE tab

MODIFY INTERVAL TRANSITION TO 550;

The statement above fails because there is an interval fragment sys_p6 beyond the
new transition value, and because the new transition value is not aligned at an
interval fragment boundary.

The next example increases the transition value from 500 to 700:
ALTER FRAGMENT ON TABLE tab

MODIFY INTERVAL TRANSITION TO 700;

The resulting fragment list for the table includes the following fragments:
p0 VALUES < 100 -- range fragment
p1 VALUES < 200 -- range fragment
p2 VALUES < 300 -- range fragment (was the old transition fragment)
sys_p3rg VALUES < 400 -- range fragment (was previously interval fragment

-- sys_p3, and its expression changed to a range
expression.

-- The fragment has been renamed to system-generated name
-- in the format sys_p<evalpos>rg).

sys_p6rg VALUES < 700 -- range fragment (was previously the interval
-- fragment sys_p6. Its expression was modified to a

2-42 IBM Informix Guide to SQL: Syntax

-- range expression and its name replaced by a system-
-- generated name in the format sys_p<evalpos>rg)
-- becomes the new transition fragment.

The following example increases the transition value from 700 to 750:
ALTER FRAGMENT ON TABLE tab MODIFY INTERVAL TRANSITION TO 750;

Because there are no interval fragments beyond the new transition value, it need
not align to an interval fragment boundary.

The resulting table includes the following fragments:
p0 VALUES < 100 -- range fragment
p1 VALUES < 200 -- range fragment
p2 VALUES < 300 -- range fragment (was the old transition fragment)
sys_p3rg VALUES < 400 -- range fragment (was previously interval

-- fragment sys_p3. expression modified to a
-- range expression. Fragment was renamed to a system
-- generated name in the format sys_p<evalpos>rg)

sys_p6rg VALUES < 750 -- range fragment (was previously the interval
-- fragment sys_p6. Its expression was modified to a
-- range expression, and the fragment was renamed to a
-- system-generated name in format sys_p<evalpos>rg)
-- becomes the new transition fragment

If you wish to avoid having existing fragments automatically renamed during
ALTER FRAGMENT MODIFY INTERVAL TRANSITION operations, you can first
use the ALTER FRAGMENT MODIFY statement to rename with user-defined
names the interval fragments whose system-generated names might otherwise be
changed by the ALTER FRAGMENT MODIFY INTERVAL TRANSITION statement.
The database server renames only system-generated interval fragment names (to
avoid non-unique fragment names resulting when new interval fragments are
created).

Using the ONLINE keyword in MODIFY operations
The ONLINE keyword instructs the database server to commit the ALTER
FRAGMENT . . . MODIFY work internally, if there are no errors, and to apply an
intent exclusive lock to the table, rather than an exclusive lock.

Requirements for ONLINE MODIFY operations

You can use the MODIFY option to the ALTER FRAGMENT ONLINE ON TABLE
statement only for a table that is fragmented by a range interval fragmentation
scheme.

Only the transition value (the starting value for interval fragments) can be
modified ONLINE. All other restrictions that apply to the MODIFY option also
apply to ONLINE MODIFY operations. For those restrictions, see “General
Restrictions for the ATTACH Clause” on page 2-13 and “Restrictions on the
MODIFY clause for range interval fragments” on page 2-37.

Example of ALTER FRAGMENT ONLINE . . . MODIFY

The following SQL statements define a fragmented employee table that uses a
range-interval storage distribution scheme, with a unique index employee_id_idx
on the column emp_id (that is also the fragmentation key) and another index
employee_dept_idx on the column dept_id.

Chapter 2. SQL statements 2-43

CREATE TABLE employee
(emp_id INTEGER, name CHAR(32),
dept_id CHAR(2), mgr_id INTEGER, ssn CHAR(12))

FRAGMENT BY RANGE (emp_id)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3, dbs4)

PARTITION p0 VALUES < 200 IN dbs1,
PARTITION p1 VALUES < 400 IN dbs2;

CREATE UNIQUE INDEX employee_id_idx ON employee(emp_id);
CREATE INDEX employee_dept_idx ON employee(dept_id);

INSERT INTO employee VALUES (401, "Susan", "DV", 101, "123-45-6789");
INSERT INTO employee VALUES (601, "David", "QA", 104, "987-65-4321");

The last two statements insert rows with fragment key values above the upper
limit of the transition fragment, causing the database server to generate two new
interval fragments, so that the fragment list consists of four fragments:
Fragments in surviving table before ALTER FRAGMENT ONLINE:
p0 VALUES < 200 - range fragment
p1 VALUES < 400 - range fragment (transition fragment)
sys_p2 VALUES >= 400 AND VALUES < 500 - interval fragment
sys_p4 VALUES >= 600 AND VALUES < 700 - interval fragment

The following statement returns an error because a transition value can only be
increased. This is also a restriction for offline ALTER FRAGMENT . . . MODIFY
operations.
ALTER FRAGMENT ONLINE ON TABLE employee

MODIFY INTERVAL TRANSITION TO 300;

The following statement runs successfully:
ALTER FRAGMENT ONLINE ON TABLE employee MODIFY INTERVAL TRANSITION TO 600;

Fragments in surviving table after ALTER FRAGMENT ONLINE:
p0 VALUES < 200 - range fragment
p1 VALUES < 400 - range fragment
sys_p2rg VALUES < 600 - range fragment (new transition fragment)
sys_p3 VALUES >= 600 AND VALUES < 700 - interval fragment

The following examples are also valid:
ALTER FRAGMENT ONLINE ON TABLE employee MODIFY INTERVAL TRANSITION TO 700;
ALTER FRAGMENT ONLINE ON TABLE employee MODIFY INTERVAL TRANSITION TO 900;

Examples of the MODIFY clause with interval fragments
Sections that follow illustrate syntax features of the MODIFY clause of the ALTER
FRAGMENT statement, and restrictions on what the MODIFY clause can change,
for tables that use range and interval fragments as their distribution strategy.

For similar examples of using the MODIFY clause with tables that are fragmented
by list, see “Examples of the MODIFY clause for list fragments” on page 2-53.

Enabling or disabling range interval fragmentation

This statement disables range interval fragment creation:
ALTER FRAGMENT ON TABLE tab MODIFY INTERVAL DISABLED;

The following statement restores range interval fragment creation, undoing the
effects of the previous example:
ALTER FRAGMENT ON TABLE tab MODIFY INTERVAL ENABLED;

2-44 IBM Informix Guide to SQL: Syntax

The following statement disables range interval fragment creation, and also
modifies the list of dbspaces in the STORE IN clause where new fragments will be
stored (if a subsequent ALTER FRAGMENT MODIFY statement enables range
interval fragment creation for table tab).
ALTER FRAGMENT ON TABLE tab MODIFY INTERVAL DISABLED

STORE IN (dbs4, dbs5);

Renaming fragments in range interval fragmentation

This statement renames two range interval fragments. No IN clause specifies new
storage locations, so the new names replace the existing names for the two
fragments:
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p1 TO PARTITION newp1,
PARTITION sys_p6 TO PARTITION newsys_p6;

The PARTITION keywords are required for range interval fragments. If you use
the MODIFY clause to rename an existing fragment, the new name that you
declare in the MODIFY clause cannot begin with the character string sys, which is
reserved for system-defined fragments, but the example above successfully
renames the system-defined fragment sys_p6.

Relocating a range or interval fragment

Suppose that the following table was created with range interval fragmentation
and received two rows from insert operations:
CREATE TABLE tab2 (i INT, c CHAR(2))

FRAGMENT BY RANGE (i)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3)

PARTITION p0 VALUES < 100 IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1;

INSERT INTO tab2 VALUES (201, "AA");
-- creates a system-generated interval fragment sys_p2
-- with fragment expression >= 200 AND < 300
-- assume that this fragment is created in dbs1

INSERT INTO tab2 VALUES (601, "BB");
-- creates a system-generated interval fragment sys_p6
-- with fragment expression >= 600 AND < 700
---assume that this fragment is created in dbs2

The following statement instructs the database server to move range fragment p1
from dbs1 to dbs2:
ALTER FRAGMENT ON TABLE tab2 MODIFY

PARTITION p1 TO PARTITION p1 IN dbs2;

The next example moves range fragment p1 from dbs1 to dbs2 and moves interval
fragment sys_p6 from dbs2 to dbs3:
ALTER FRAGMENT ON TABLE tab2 MODIFY

PARTITION p1 TO PARTITION p1 IN dbs2,
PARTITION sys_p6 TO PARTITION sys_p6 IN dbs3;

Replacing the list of dbspaces that store new interval fragments

The following CREATE TABLE statement defines a range interval fragmentation
strategy, in which
v column i is the fragmentation key,

Chapter 2. SQL statements 2-45

v 100 is the range interval size,
v new fragments will be stored in dbspaces dbs1, dbs2, and dbs3,
v the initial fragments p0 (in dbspace dbs0) and p1 (in dbspace dbs1) have

transition values of 100 and 200 respectively.
CREATE TABLE tab (i INT, c CHAR(2))

FRAGMENT BY RANGE (i)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3)

PARTITION p0 VALUES < 100 IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1;

The following ALTER FRAGMENT statement replaces the STORE IN list (dbs1,
dbs2, dbs3) with a new list (dbs4, dbs5).
ALTER FRAGMENT ON TABLE tab

MODIFY INTERVAL STORE IN (dbs4, dbs5);

In the example above, the MODIFY clause specifies that new fragments will be
created alternately in dbs4 and dbs5. Any system-defined fragments (and the
fragment p1) that were created in dbspaces of the original STORE IN list (dbs1,
dbs2, dbs3) remain in those dbspaces. Existing and subsequently inserted rows
whose fragmentation-key values are within the range intervals of those fragments
continue to be stored in those fragments, but new interval fragments will be
created, alternating in round-robin fashion, in the dbs4 and dbs5 dbspaces.

Consider that the following fragmented table:
CREATE TABLE mytab (col1 int)

FRAGMENT BY RANGE (c1) INTERVAL (100)
STORE IN (dbs1, dbs2, dbs3, dbs4, dbs5)

PARTITION p1 VALUES < 300 in dbs0;

This ALTER FRAGMENT statement replaces the list of dbspaces where new
interval fragments will be stored:
ALTER FRAGMENT ON TABLE mytab MODIFY

STORE IN (dbs1, dbs6, dbs3, dbs4, dbs8);

The new list replaces dbs2 with dbs6 and replaces dbs5 with dbs8. If you want any
of the dbspaces from the current STORE IN list to be available for new fragments,
the MODIFY clause must also include them in the new list, which replaces the old
list in the modified fragmentation scheme. In the example above, new range
interval fragments will be created in the five dbspaces listed after the STORE IN
keywords, but any existing fragments that were created in dbs2 and dbs5 continue
to store rows whose data values match the fragmentation key ranges for those
fragments.

You can modify the list of dbspaces in the STORE IN clause. The old list is
replaced by the new list that you specify. Existing fragments in the old dbspace are
not moved. Consider the following table:

You can move an existing fragment to another dbspace by changing the IN dbspace
specification for the fragment:
CREATE TABLE tab (i INT, c CHAR(2))

FRAGMENT BY RANGE (i)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3)

PARTITION p0 VALUES < 100 IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1;

INSERT INTO tab VALUES (201, "AA");
-- creates interval fragment sys_p2

2-46 IBM Informix Guide to SQL: Syntax

-- with fragment expression >= 200 AND < 300
-- (assume that this fragment is created in dbs1)

INSERT INTO tab VALUES (601, "BB");
-- creates interval fragment sys_p6
-- with fragment expression >= 600 AND < 700
-- (assume that this fragment is created in dbs2)

The next statement instructs the database server to moves fragment p1 from dbs1
to dbs2:
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p1 TO PARTITION p1 IN dbs2;

The next example moves range fragment p1 from dbs1 to dbs2, and moves
interval fragment sys_p6 from dbs2 to dbs3;
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p1 TO PARTITION p1 IN dbs2,
PARTITION sys_p6 TO PARTITION sys_p6 IN dbs3;

You cannot, however, modify an expression for an interval fragment after the
system has generated the fragment. Consider this table:
CREATE TABLE tab (i INT, c CHAR(2))

FRAGMENT BY RANGE (i)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3)

PARTITION p0 VALUES < 100 IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1;

INSERT INTO tab VALUES (201, "AA");
-- creates interval fragment sys_p2
-- with fragment expression >= 200 AND < 300

INSERT INTO tab VALUES (601, "BB");
-- creates interval fragment sys_p6
-- with fragment expression >= 600 AND < 700

Now you cannot modify the fragment expression for sys_p2 or sys_p6. An error is
returned if you try to do so.
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION sys_p6 TO PARTITION sys_p6
VALUES < 900 IN dbs2;

The above statement fails with an error.

Modifying the expression that defines a range fragment

Under some circumstances, you can use the MODIFY clause to change the
expression that defines a range fragment; examples that follow illustrate various
restrictions on changes that you can make to the expressions that define to range
fragments. You cannot, however, modify an expression for an interval fragment
after the system has generated that fragment. Consider this table:
CREATE TABLE tab (i INT, c CHAR(2))

FRAGMENT BY RANGE (i)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3)

PARTITION p0 VALUES < 100 IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1;

INSERT INTO tab VALUES (201, "AA");
-- creates interval fragment sys_p2
-- with fragment expression >= 200 AND < 300

INSERT INTO tab VALUES (601, "BB");
-- creates interval fragment sys_p6
-- with fragment expression >= 600 AND < 700

Chapter 2. SQL statements 2-47

Now you cannot modify the expressions for interval fragments sys_p2 or sys_p6.
The database server returns an error if you try to do so.
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION sys_p6 TO PARTITION sys_p6
VALUES < 900 IN dbs2;

The above statement fails with an error.

You can modify an expression for the first intermediate range fragment, but the
replacement expression cannot cross adjacent fragment boundaries. This operation
can result in data movement. Here is an example;
CREATE TABLE tab (i INT, c CHAR(2))

FRAGMENT BY RANGE (i)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3)
PARTITION p0 VALUES < 100 IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1,
PARTITION p2 VALUES < 300 IN dbs0;

INSERT INTO tab VALUES (301, "AA");
-- creates interval fragment sys_p3
-- with fragment expression >= 300 AND < 400

INSERT INTO tab VALUES (601, "BB");
-- creates interval fragment sys_p6
-- with fragment expression >= 600 AND < 700

All of the ALTER examples below are based on fragments of the table defined in
the CREATE statement above. The following ALTER FRAGMENT statement
modifies the expression for range fragment p0
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p0 TO PARTITION p0
VALUES < -50 IN dbs0;

The following modifies expression for fragment p0 and also moves the fragment
from dbs0 to dbs5

ALTER FRAGMENT ON TABLE tab MODIFY
PARTITION p0 TO PARTITION p0

VALUES < -50 IN dbs5;

The following statement successfully makes three changes to fragment p0:
v modifies the fragment expression for p0,
v modifies the fragment name to newp0,
v and also moves the renamed fragment from dbs0 to dbs5.
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p0 TO PARTITION newp0
VALUES < -50 IN dbs5;

The next example fails with an error, however, because the new expression for
fragment p0 crosses the boundary of the range of the next adjacent fragment p1
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p0 TO PARTITION p0
VALUES < 250 IN dbs0;

The following ALTER FRAGMENT example successfully modifies the expression
for range fragment p1:
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p1 TO PARTITION p1
VALUES < 150 IN dbs1;

2-48 IBM Informix Guide to SQL: Syntax

The following modification fails with an error, because the new expression for
fragment p1 crosses the boundary of the previous adjacent fragment p0:
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p0 TO PARTITION p0
VALUES < 50 IN dbs0;

If for any reason, as result of the ALTER FRAGMENT MODIFY operation, the
rows cannot be moved to the new fragments, an error is returned. This is an
example:
CREATE TABLE tab (i INT, c CHAR(2))

FRAGMENT BY RANGE (i)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3)
PARTITION p0 VALUES IS NULL IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1,
PARTITION p2 VALUES < 300 IN dbs0;

ALTER FRAGMENT ON TABLE tab MODIFY
PARTITION p0 TO PARTITION p0

VALUES < 100 IN dbs0;

As a result of the modification, the resultant table will have the following
fragments
PARTITION p0 VALUES < 100 IN dbs0,

PARTITION p1 VALUES < 200 IN dbs1,
PARTITION p2 VALUES < 300 IN dbs0

If the previous NULL fragment stored any rows (meaning rows in the table that
have NULL value for column i), then those rows would not fit in any of the
fragments in the new fragmentation scheme. The above ALTER FRAGMENT
operation would therefore fail while moving rows.

Also note that the NULL fragment is always the first fragment in the table. Even if
the user specifies the NULL fragment as the last fragment during CREATE TABLE
or ALTER TABLE operations, it is rearranged as the first fragment in the table,
with the smallest evalpos value in the fragment list. While modifying first and
intermediate range fragments, the database server imposes the restriction that the
new expression cannot cross adjacent fragment boundaries. So while modifying the
NULL fragment, whatever new expression you specify cannot cross the boundary
of the next range or interval fragment. Here is an example:
CREATE TABLE tab (i INT, c CHAR(2))

FRAGMENT BY RANGE (i)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3)

PARTITION p0 VALUES IS NULL IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1,
PARTITION p2 VALUES < 300 IN dbs0;

Suppose that the table does not have any rows in fragment p0. In this case, p0 can
be modified to a non-NULL fragment.
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p0 TO PARTITION p0
VALUES < 250 IN dbs0;

Because the new expression for p0 (VALUES < 250) crosses the boundary for p1
(VALUES < 200), however, the example above returns an error.

The following ALTER FRAGMENT statement is possible:
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p0 TO PARTITION p0 VALUES < 150 IN dbs0;

Chapter 2. SQL statements 2-49

You can modify expression for last range fragment (transition fragment) but you
can only increase the transition value. There is no data movement in this
operation.
CREATE TABLE tab (i INT, c CHAR(2))

FRAGMENT BY RANGE (i)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3)

PARTITION p0 VALUES < 100 IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1,
PARTITION p2 VALUES < 300 IN dbs0;

-- last range fragment or transition fragment

The following modification returns an error, because it attempts to decrease the
transition value (from 300 to 250):
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p2 TO PARTITION p2
VALUES < 250 IN dbs0;

The following statement modifies the fragment expression for p2 (the transition
fragment). Because there are not yet any system-generated interval fragments, the
new transition value need not align at the interval fragment boundary.
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p2 TO PARTITION p2
VALUES < 350 IN dbs0;

If there are no interval fragments between new and the old transition value, you
can update the expression for the last range fragment to VALUES < new transition
value. Here is an example:
CREATE TABLE tab (i INT, c CHAR(2))

FRAGMENT BY RANGE (i)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3)

PARTITION p0 VALUES < 100 IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1,
PARTITION p2 VALUES < 300 IN dbs0;

-- last range fragment is the "transition fragment"

INSERT INTO tab VALUES (601, "BB");
-- creates interval fragment sys_p6
-- with fragment expression >= 600 AND < 700
-- (assume that this fragment is created in dbs3)

The modified table now has these fragments:

Fragment
Expression and Fragment Type

p0 VALUES < 100 – range fragment

p1 VALUES < 200 – range fragment

p2 VALUES < 300 - last range fragment (or transition fragment)

sys_p6
VALUES >= 600 AND VALUES < 700 - interval fragment

During the change of transition value, the fragments are modified in a manner that
does not cause any data movement.

The following statement modifies the fragment expression for p2, the transition
fragment (or last range fragment).
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p2 TO PARTITION p2 VALUES < 500 IN dbs0;

2-50 IBM Informix Guide to SQL: Syntax

The old transition value was 300 and the new transition value is 500. There are no
system-generated interval fragments between these range fragments, and the first
interval fragments starts at 600. This also means that there is no data rows between
300 and 500, so the expression of the transition fragment (the last range fragment)
can be updated to VALUES < 500 without data movement. Because there are now
interval fragments after the new transition value, the new transition value must
align at an interval fragment boundary. In this case, the new transition value of 500
aligns with an interval fragment boundary. (The interval fragment need not exist.)

As a result of this modification, the evalpos value for subsequent interval
fragments changes, and interval fragments are renamed to adhere to the format for
system-generated fragment names. After this ALTER TABLE MODIFY operation,
the resulting table has these fragments:

Fragment
Expression and Fragment Type

p0 VALUES < 100 – range fragment

p1 VALUES < 200 – range fragment

p2 VALUES < 500 – modified expression for transition fragment

sys_p4
VALUES >= 600 AND VALUES <700 – interval fragment

Here the modified expression is for fragment p2. which is the last range fragment.
(This is also called the transition fragment, because any fragments to store larger
values in the range of the fragment key will be system-generated interval
fragments.) The system-generated interval fragment is renamed to sys_p4 because
the evalpos value changes from 6 to 4 after the expression for the transition
fragment changed.

The following modification fails with an error because there are interval fragments
beyond the new transition value, and the new transition value does not align at an
interval fragment boundary:
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p2 TO PARTITION p2 VALUES YY 550 IN dbs0;

The ranges of the possible interval fragments are 300 to 400, 400 to 500, 500 to 600,
600 to 700, and so on, but the new transition value of 550 is not at an interval
fragment boundary, and so the database server issues an error.

If there are interval fragments between the new and old transition value, then the
new transition value must align to the boundary of an interval fragment (but that
interval fragment need not exist), unless the new transition value is beyond the last
interval fragment. All interval fragments between the new and old transition
values are converted to range fragments, and their expressions are modified to
match the range fragment expressions. The expression for the last interval
fragment that was converted to a range fragment is updated to VALUES < new
transition value.

This behavior is illustrated by the following example
CREATE TABLE tab (i INT, c CHAR(2))

FRAGMENT BY RANGE (i)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3)

PARTITION p0 VALUES < 100 IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1,
PARTITION p2 VALUES < 300 IN dbs0;

Chapter 2. SQL statements 2-51

-- last range fragment or transition fragment

INSERT INTO tab VALUES (301, "AA");
-- creates interval fragment sys_p3
-- with fragment expression >= 300 AND < 400
-- (assume this fragment is created in dbs1)

INSERT INTO tab VALUES (601, "BB");
-- creates interval fragment sys_p6
-- with fragment expression >= 600 AND < 700
-- (assume this fragment is created in dbs3)

After the two INSERT operations, the table would have these range and interval
fragments:

Fragment
Expression and Fragment Type

p0 VALUES < 100 – range fragment

p1 VALUES < 200 – range fragment

p2 VALUES < 300 – range fragment

sys_p3
VALUES >= 300 AND VALUES <400 – interval fragment

sys_p4
VALUES >= 600 AND VALUES <700 – interval fragment

The ALTER FRAGMENT examples that follow are based on this table.

The following example modifies the expression for fragment p2 (the transition
fragment).
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p2 TO PARTITION p2 VALUES < 500 IN dbs0;

Because there is an interval fragment (sys_p3) between the old and new transition
value, that fragment is converted to range fragment (whose expression becomes
VALUES < 400).

And because there are interval fragments beyond the new transition value (for
fragment sys_p6), the new transition value must align at an interval fragment
boundary, which it does. The possible interval fragments must be an integer
multiple of the range interval size (including 400 to 500, 500 to 600, 700 to 800, and
so on. The new transition value is 500, which is at an interval fragment boundary.
It is also efficient to avoid move data during the transition fragment modification,
and to avoid creating any fragments. This can be made possible by converting
fragment sys_p3 to the new transition fragment, updating its expression to < 500,
and renaming it to the name of the old transition fragment.

The resulting table has the following fragments:

Fragment
Expression and Fragment Type

p0 VALUES < 100 – range fragment

p1 VALUES < 200 – range fragment

sys_p2rg
VALUES < 300 – range fragment (This was the old transition fragment,
now renamed sys_p2rg in the system generated format sys_pevalposrg.)

2-52 IBM Informix Guide to SQL: Syntax

p2 VALUES <500 - range fragment (This was previously interval fragment
sys_p3. Its expression, modified to a range expression. now defines the
new transition fragment)

sys_p5
VALUES >= 600 AND VALUES <700 – interval fragment (renamed to sys_5
as its evalpos value changes from 6 to 5 after the transition fragment
change)

The following modification of transition fragment p2 returns an error:
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p2 TO PARTITION p2 VALUES < 550 IN dbs0;

The error is issued because there is an interval fragment sys_p6 beyond the new
transition value, and the new transition value is not aligned at an interval
fragment boundary.

The next example modifies the expression for fragment p2, which is a transition
fragment:
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p2 TO PARTITION p2 VALUES < 750 IN dbs0;

Because there are no interval fragments beyond the new transition value, it need
not align to an interval fragment boundary.

The resulting table has the following fragments:

Fragment
Expression and Fragment Type

p0 VALUES < 100 – range fragment

p1 VALUES < 200 – range fragment

sys_p2rg
VALUES < 300 – range fragment (This was the old transition fragment,
now renamed sys_p2rg in the system generated format sys_pevalposrg.)

sys_p3rg
< 400 – range fragment (This was previously interval fragment sys_p3
before its expression was modified to a range expression.)

p2 VALUES <750 - range fragment (Previously interval fragment sys_p6 before
its expression was modified to a range expression. This becomes the new
transition fragment.)

Examples of the MODIFY clause for list fragments
You can use the MODIFY clause to change fragments of a table or index that is
fragmented by list, including these modifications:
v Change the names of existing list fragments
v Move the storage location of an existing list fragment to another dbspace
v Modify the expression list for one or more list fragments.

The following ALTER FRAGMENT ON TABLE statement modifies the name, the
list of fragment expressions, and the storage location for a fragment of a table that
is partitioned by list:
ALTER FRAGMENT ON TABLE T2 MODIFY

PARTITION part1 TO PARTITION part11
VALUES (’CA’, ’OR’, ’TX’) IN dbs1;

Chapter 2. SQL statements 2-53

This changes the partition name from part1 to part11, adds the value ’TX’ to the
list of expressions for that fragment, and moves the renamed partition into the
dbspace dbs1.

Examples that follow illustrate these and other uses of the MODIFY clause with list
fragmentation schemes, and also illustrate MODIFY operations that fail because of
logical restrictions on list fragmentation.

Suppose that this CREATE TABLE statement has defined table myTable with the
following schema and with a list fragmentation strategy:
CREATE TABLE myTable (i int, c char(2))

FRAGMENT BY LIST (c)
PARTITION p1 VALUES ("AB", "CD") IN dbs1,
PARTITION p2 VALUES ("PQ", "RS") IN dbs2,
PARTITION p3 REMAINDER IN dbs3;

The next ALTER FRAGMENT statement modifies the storage distribution strategy
for the p2 fragment:
ALTER FRAGMENT ON TABLE myTable MODIFY

PARTITION p2 TO PARTITION newp2
VALUES (NULL) IN dbs5;

The statement above has these effects on the definition of the fragment and its
storage distribution:
v redefines the fragment expression for fragment p2 to make it a NULL fragment,
v changes the fragment name to newp2,
v moves the storage location of that fragment from dbs2 to dbs5,
v and moves any existing data rows that had been stored in fragment p2 to the

remainder fragment p3, because the fragment key values ("PQ" and "RS") in
column c of those rows do not match the new NULL expression.

If the automatic mode for updating distribution statistics is enabled, an ALTER
FRAGMENT . . . MODIFY statement that results in data redistribution causes the
fragment-level statistics for the affected fragments to be dropped. Table-level
statistics, however, are not dropped. Because no fragment-level statistics exist for
the affected fragments, the next explicit or automatic UPDATE STATISTICS
operation on the table will rebuild the fragment-level distributions, and store the
results in the system catalog.

The ALTER FRAGMENT examples that follow specify modifications to fragments
of the tab table that this CREATE TABLE statement defines with a list
fragmentation scheme:
CREATE TABLE tab (i int, c char(2))

FRAGMENT BY LIST (c)
PARTITION p1 VALUES ("AB", "CD") IN dbs1,
PARTITION p2 VALUES ("PQ", "RS") IN dbs2,
PARTITION p3 VALUES (NULL) IN dbs3,
PARTITION p4 REMAINDER IN dbs4;

The following modifies fragment expression for fragment p1
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p1 TO PARTITION p1
VALUES ("AB", "CD", "EF") IN dbs1;

The following statement modifies the fragment expression for fragment p3:

2-54 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT ON TABLE tab MODIFY
PARTITION p3 TO PARTITION p3

VALUES ("XX", "YY", "ZZ") IN dbs3;

If for any reason, as result of the ALTER FRAGMENT ON TABLE MODIFY
operation, any rows cannot be moved to the new fragments, an error is returned,
as in the following example:
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p3 TO PARTITION p3
VALUES ("XX", "YY", "ZZ") IN dbs3;

As a result of the modification, the resulting storage distribution scheme for the
tab table will have the following fragments:

PARTITION p1 VALUES ("AB", "CD") IN dbs1,
PARTITION p2 VALUES ("PQ", "RS") IN dbs2,
PARTITION p3 VALUES ("XX", "YY", "ZZ") IN dbs2

If the previous remainder fragment p3 had a row with value "AA" in column c,
then that row does not fit in any of the fragments in the new fragmentation
scheme. The ALTER FRAGMENT statement above would therefore fail with an
error while attempting to move rows from the remainder fragment.

The next three examples illustrate modifications to the same table fragmentation
scheme that will fail because of overlaps.
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p2 TO PARTITION p2 VALUES (NULL) IN dbs2;

Because the ALTER FRAGMENT statement above attempts to change fragment p2
into a duplicate NULL fragment, the statement fails with an error, because the
NULL fragment p3 already exists.

The following modification of the same table attempts to modify fragment p2 into
a duplicate remainder fragment:
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p2 TO PARTITION p2 REMAINDER IN dbs2;

The statement above fails with an error, because the existing fragment p4 is
already defined as a remainder fragment.

The following modification creates a duplicate expression-list value "RS" in two of
the fragments:
ALTER FRAGMENT ON TABLE tab MODIFY

PARTITION p1 TO PARTITION p1
VALUES ("AB", "CD", "RS") IN dbs1;

Because list value "RS" is already defined in the expression list for fragment p2, the
statement above fails with an error.

For an example of using the MODIFY option to the ALTER FRAGMENT ON
INDEX statement, see “Examples of ALTER FRAGMENT ON INDEX statements.”

Examples of ALTER FRAGMENT ON INDEX statements
The following series of examples illustrate the use of ALTER FRAGMENT ON
INDEX with the INIT, ADD, DROP, and MODIFY options.

This first example creates an index stored in dbsp1:

Chapter 2. SQL statements 2-55

CREATE INDEX item_idx ON items (stock_num) IN dbsp1;

The following statement modifies the index to add fragmentation. Values up to 50
are stored in dbsp1, values between 51 and 80 in dbsp2, and the remainder in
dbsp3:
ALTER FRAGMENT ON INDEX item_idx INIT

FRAGMENT BY EXPRESSION
stock_num <= 50 IN dbsp1,
stock_num > 50 AND stock_num <= 80 IN dbsp2,
REMAINDER IN dbsp3;

The following statement adds a new fragment to the index:
ALTER FRAGMENT ON INDEX item_idx

ADD stock_num > 80 AND stock_num <= 120 IN dbsp4;

The following statement changes the first fragment of the index:
ALTER FRAGMENT ON INDEX item_idx

MODIFY dbsp1 TO stock_num <= 40 IN dbsp1;

The following statement drops the fragment in dbsp4 from the index:
ALTER FRAGMENT ON INDEX item_idx

DROP dbsp4;

The following statement defines an index that is fragmented by expression, with
the fragments stored in named partitions of the dbspaces dbsp1 and dbsp2:
ALTER FRAGMENT ON INDEX item_idx INIT

PARTITION BY EXPRESSION
PARTITION part1 stock_num <= 10 IN dbsp1,
PARTITION part2 stock_num > 20 AND stock_num <= 30 IN dbsp1,
PARTITION part3 REMAINDER IN dbsp2;

The following statement adds a new named fragment:
ALTER FRAGMENT ON INDEX item_idx ADD

PARTITION part4 stock_num > 30 AND stock_num <= 40 IN dbsp2
BEFORE part3;

The following statement defines a range interval storage distribution scheme on
the index idx1:
ALTER FRAGMENT ON INDEX idx2 INIT

FRAGMENT BY RANGE(c2)
INTERVAL (NUMTOYMINTERVAL(1,’MONTH’)

PARTITION part0 VALUES < DATE(’01/01/2007’) IN dbs0,
PARTITION part1 VALUES < DATE(’07/01/2007’) IN dbs1,
PARTITION part2 VALUES < DATE(’01/01/2008’) IN dbs2

In the example above,
v the fragmentation key is the value of column c2,
v the interval value is one month,
v because no STORE IN clause is included, new system-generated interval

partitions will be stored in dbs0, dbs1, and dbs2 in round-robin fashion;
v the interval partition transition value is 01/01/2008. (This is the smallest value

beyond the range of the last user-defined fragment.)

The following statement defines a list storage distribution scheme on the index
idx2:

2-56 IBM Informix Guide to SQL: Syntax

ALTER FRAGMENT ON INDEX idx2 INIT
FRAGMENT BY LIST(state)

PARTITION part0 VALUES (’KS’,’IL’) IN dbs0,
PARTITION part1 VALUES (’CA’,’OR’) IN dbs0,
PARTITION part2 VALUES (NULL) IN dbs1,
PARTITION part3 REMAINDER IN dbs2;

In the list fragmentation example above,
v the fragmentation key is the value of column state,
v the expression lists for the first two fragments are each the strings for postal

abbreviations of two states,
v and both a NULL fragment (part2) and a remainder fragment (part3) are defined

for rows with fragmentation key values that do not match the first two fragment
expression lists.

ALTER FUNCTION statement
Use the ALTER FUNCTION statement to change the routine modifiers or
pathname of a user-defined function. This statement is an extension to the
ANSI/ISO standard for SQL.

Syntax

�� ALTER �

,

FUNCTION function ()
parameter_type

(1)
SPECIFIC FUNCTION Specific Name

�

� �

,
(2)

WITH(ADD Routine Modifier)
MODIFY
DROP
(3) (4)

MODIFY EXTERNAL NAME = Shared-Object Filename

��

Notes:

1 See “Specific Name” on page 5-77

2 See “Routine modifier” on page 5-63

3 External routines only

4 See “Shared-Object Filename” on page 5-74

Element Description Restrictions Syntax

function User-defined
function to be
modified

Must be registered in the database. If the name does not
uniquely identify a function, you must enter one or more
appropriate values for parameter_type.

“Identifier” on
page 5-21

parameter_type Data type of a
parameter

Must be the same data types (and specified in the same
order) as in the definition of function.

“Data Type” on
page 4-23

Chapter 2. SQL statements 2-57

Usage

The ALTER FUNCTION statement can modify a user-defined function to tune its
performance by modifying characteristics that control how the function executes.
You can also add or replace related user-defined routines (UDRs) that provide
alternatives for the query optimizer, which can improve performance.

All modifications take effect on the next invocation of the function.

Only the UDR owner or the DBA can use the ALTER FUNCTION statement.
Related concepts:
“Overloading the Name of a Function” on page 2-188
Related reference:
“DROP FUNCTION statement” on page 2-428
“CREATE PROCEDURE statement” on page 2-226
“ALTER ROUTINE statement” on page 2-62
“Arguments” on page 5-1
“ALTER PROCEDURE statement” on page 2-60
“CREATE FUNCTION statement” on page 2-183

Create and use SPL routines (SQL Tutorial)

Create an external-language routine (UDR and Data Type Guide)

Develop a user-defined routine (DataBlade API Guide)

Keywords That Introduce Modifications
Use the following keywords to introduce what you modify in the UDR.

Keyword Effect on Specified Routine Modifier

ADD Add a new routine modifier to the UDR

MODIFY Change an attribute of the routine modifier

DROP Delete the routine modifier from the UDR

MODIFY EXTERNAL NAME (for
external functions only)

Replace the file specification of the executable file.
When the IFX_EXTEND_ROLE configuration
parameter = ON, this option is valid only for users to
whom the DBSA has granted the EXTEND role. With
IFX_EXTEND_ROLE = OFF (or not set), the UDR
owner or the DBA can use this option.

WITH Introduces all modifications

If the routine modifier is a BOOLEAN value, MODIFY sets the value to be t
(equivalent of using the keyword ADD to add the routine modifier). For example,
both of the following statements alter the func1 function so that it can be executed
in parallel in the context of a parallelizable data query:
ALTER FUNCTION func1 WITH (MODIFY PARALLELIZABLE);
ALTER FUNCTION func1 WITH (ADD PARALLELIZABLE);

See also “Example of Altering Routine Modifiers” on page 2-64.

2-58 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_412.htm#ids_sqt_412
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_118.htm#ids_udr_118
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dapip.doc/ids_dapip_0569.htm#ids_dapip_0569

ALTER INDEX statement
Use the ALTER INDEX statement to change the clustering attribute of an existing
index. This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� ALTER INDEX index TO CLUSTER
NOT

��

Element Description Restrictions Syntax

index Name of the index to be altered Must exist “Identifier” on page 5-21

Usage

ALTER INDEX is valid only for indexes that the CREATE INDEX statement
created explicitly. ALTER INDEX cannot modify an index on a temporary table,
nor an index that the database server created implicitly to support a constraint.

You cannot change the collating order of an existing index. If you use ALTER
INDEX to modify an index after the SET COLLATION statement of SQL has
specified a non-default collating order, the SET COLLATION statement has no
effect on the index.

The ALTER INDEX statement cannot reference a forest of trees index. For
information on forest of trees indexes, see “HASH ON clause” on page 2-206.
Related reference:
“RENAME INDEX statement” on page 2-612
“CREATE INDEX statement” on page 2-194

TO CLUSTER Option
The TO CLUSTER option causes the database server to reorder the rows of the
physical table according to the indexed order.

The next example shows how you can use the ALTER INDEX TO CLUSTER
statement to order the rows in the orders table physically. The CREATE INDEX
statement creates an index on the customer_num column of the table. Then the
ALTER INDEX statement causes the physical ordering of the rows.
CREATE INDEX ix_cust ON orders (customer_num);
ALTER INDEX ix_cust TO CLUSTER;

For an ascending index, TO CLUSTER puts rows in lowest-to-highest order. For a
descending index, the rows are reordered in highest-to-lowest order.

When you reorder, the entire file is rewritten. This process can take a long time,
and it requires sufficient disk space to maintain two copies of the table.

While a table is clustering, it is locked IN EXCLUSIVE MODE. When another
process is using the table to which the index name belongs, the database server
cannot execute the ALTER INDEX statement with the TO CLUSTER option; it
returns an error unless lock mode is set to WAIT. (When lock mode is set to WAIT,
the database server retries the ALTER INDEX statement.)

Chapter 2. SQL statements 2-59

Over time, if you modify the table, you can expect the benefit of an earlier cluster
to disappear because rows are added in space-available order, not sequentially. You
can recluster the table to regain performance by issuing another ALTER INDEX TO
CLUSTER statement on the clustered index. You do not need to drop a clustered
index before you issue another ALTER INDEX TO CLUSTER statement on a
currently clustered index.

TO NOT CLUSTER Option
The TO NOT CLUSTER option drops the cluster attribute on the index name
without affecting the physical table. Because no more than one clustered index can
exist on a given table, you must use the TO NOT CLUSTER option to release the
cluster attribute from one index before you assign it to another index on the same
table. The following statements illustrate how to remove clustering from one index
and how a second index physically reclusters the table:
CREATE UNIQUE INDEX ix_ord ON orders (order_num);

CREATE CLUSTER INDEX ix_cust ON orders (customer_num);
. . .
ALTER INDEX ix_cust TO NOT CLUSTER;

ALTER INDEX ix_ord TO CLUSTER;

The first two statements create indexes for the orders table and cluster the physical
table in ascending order on the customer_num column. The last two statements
recluster the physical table in ascending order on the order_num column.

ALTER PROCEDURE statement
Use the ALTER PROCEDURE statement to change the routine modifiers or
pathname of a previously defined external procedure. This statement is an
extension to the ANSI/ISO standard for SQL.

Syntax

�� ALTER �

,

PROCEDURE procedure ()
parameter_type

(1)
SPECIFIC PROCEDURE Specific Name

�

� �

,
(2)

WITH(ADD Routine Modifier)
MODIFY
DROP
(3) (4)

MODIFY EXTERNAL NAME = Shared-Object Filename

��

Notes:

1 See “Specific Name” on page 5-77

2 See “Routine modifier” on page 5-63

3 External routines only

4 See “Shared-Object Filename” on page 5-74

2-60 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

procedure User-defined
procedure to
modify

Must be registered in the database. If the name does not
uniquely identify a function, you must enter one or more
appropriate values for parameter_type.

“Identifier” on
page 5-21

parameter_type Data type of a
parameter

Must be the same data types (and specified in the same
order) as in the definition of procedure.

“Data Type” on
page 4-23

Usage

The ALTER PROCEDURE statement enables you to modify an external procedure
to tune its performance by modifying characteristics that control how it executes.
You can also add or replace related UDRs that provide alternatives for the
optimizer, which can improve performance. All modifications take effect on the
next invocation of the procedure.

Only the UDR owner or the DBA can use the ALTER PROCEDURE statement.

If the procedure name is not unique among routines registered in the database,
you must enter one or more appropriate values for parameter_type.

The following keywords introduce what you want to modify in procedure.

Keyword Effect

ADD Add a new routine modifier to the UDR

MODIFY Change an attribute of a routine modifier

DROP Delete a routine modifier from the UDR

MODIFY EXTERNAL NAME (for
external procedures only)

Replace the file specification of the executable file.
When the IFX_EXTEND_ROLE configuration
parameter = ON, this option is valid only for users to
whom the DBSA has granted the EXTEND role. With
IFX_EXTEND_ROLE = OFF (or not set), the UDR
owner or the DBA can use this option.

MODIFY EXTERNAL NAME (for
external procedures only)

Replace the file specification of the executable file.
(Valid only for users who have the EXTEND role)

WITH Introduces all modifications

If the routine modifier is a BOOLEAN value, MODIFY sets the value to be T
(equivalent to using the keyword ADD to add the routine modifier). For example,
both of the following statements alter the proc1 procedure so that it can be
executed in parallel in the context of a parallelizable data query:
ALTER PROCEDURE proc1 WITH (MODIFY PARALLELIZABLE);
ALTER PROCEDURE proc1 WITH (ADD PARALLELIZABLE);

See also “Example of Altering Routine Modifiers” on page 2-64.
Related reference:
“CREATE PROCEDURE statement” on page 2-226
“ALTER ROUTINE statement” on page 2-62
“Arguments” on page 5-1
“ALTER FUNCTION statement” on page 2-57
“DROP PROCEDURE statement” on page 2-434

Chapter 2. SQL statements 2-61

“DROP ROUTINE statement” on page 2-438

Create and use SPL routines (SQL Tutorial)

Create an external-language routine (UDR and Data Type Guide)

Develop a user-defined routine (DataBlade API Guide)

ALTER ROUTINE statement
Use the ALTER ROUTINE statement to change the routine modifiers or pathname
of a previously defined user-defined routine (UDR), This statement is an extension
to the ANSI/ISO standard for SQL.

Syntax

�� ALTER �

,

ROUTINE routine ()
parameter_type

(1)
SPECIFIC ROUTINE Specific Name

�

� �

,
(2)

WITH(ADD Routine Modifier)
MODIFY
DROP
(3) (4)

MODIFY EXTERNAL NAME = Shared-Object Filename

��

Notes:

1 See “Specific Name” on page 5-77

2 See “Routine modifier” on page 5-63

3 External routines only

4 See “Shared-Object Filename” on page 5-74

Element Description Restrictions Syntax

routine User-defined
routine to
modify

Must be registered in the database. If the name does not
uniquely identify a routine, you must enter one or more
appropriate values for parameter_type.

“Identifier” on
page 5-21

parameter_type Data type of a
parameter

Must be the same data types (and specified in the same
order) as in the definition of routine.

“Data Type” on
page 4-23

Usage

The ALTER ROUTINE statement allows you to modify a previously defined UDR
to tune its performance by modifying characteristics that control how the UDR
executes. You can also add or replace related UDRs that provide alternatives for
the optimizer, which can improve performance.

This statement is useful when you do not know whether a UDR is a user-defined
function or a user-defined procedure. When you use this statement, the database
server alters the appropriate user-defined procedure or user-defined function.

2-62 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_412.htm#ids_sqt_412
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_118.htm#ids_udr_118
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dapip.doc/ids_dapip_0569.htm#ids_dapip_0569

All modifications take effect on the next invocation of the UDR.

Only the UDR owner or the DBA can use the ALTER ROUTINE statement.
Related concepts:
“Overloading the Name of a Function” on page 2-188
Related reference:
“CREATE PROCEDURE statement” on page 2-226
“ALTER FUNCTION statement” on page 2-57
“ALTER PROCEDURE statement” on page 2-60
“CREATE FUNCTION statement” on page 2-183
“DROP FUNCTION statement” on page 2-428
“DROP PROCEDURE statement” on page 2-434
“DROP ROUTINE statement” on page 2-438

Create and use SPL routines (SQL Tutorial)

Create an external-language routine (UDR and Data Type Guide)

Creating UDR code (DataBlade API Guide)
“Arguments” on page 5-1

Restrictions
If the name does not uniquely identify a UDR, you must enter one or more
appropriate values for parameter_type.

When you use this statement, the type of UDR cannot be ambiguous. The UDR
that you specify must refer to either a user-defined function or a user-defined
procedure. If either of the following conditions exist, the database server returns an
error:
v The name (and parameters) that you specify applies to both a user-defined

procedure and a user-defined function.
v The specific name that you specify applies to both a user-defined function and a

user-defined procedure.

Keywords That Introduce Modifications
Use these keywords to introduce the items in the UDR that you want to modify:

Keyword Effect

ADD Add a routine modifier to the UDR

DROP Delete a routine modifier from the UDR

MODIFY Change an attribute of the routine modifier

MODIFY EXTERNAL NAME (for
external routines only)

Replace the file specification of the executable file.
When the IFX_EXTEND_ROLE configuration
parameter = ON, this option is valid only for users to
whom the DBSA has granted the EXTEND role. With
IFX_EXTEND_ROLE = OFF (or not set), the UDR
owner or the DBA can use this option.

WITH Introduces all modifications

If the routine modifier is a BOOLEAN value, MODIFY sets the value to be T
(equivalent to using the keyword ADD to add the routine modifier).

Chapter 2. SQL statements 2-63

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_412.htm#ids_sqt_412
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_118.htm#ids_udr_118
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dapip.doc/ids_dapip_0577.htm#ids_dapip_0577

For example, both of the following statements alter the func1 UDR so that it can
be executed in parallel in the context of a parallelizable data query statement:
ALTER ROUTINE func1 WITH (MODIFY PARALLELIZABLE);
ALTER ROUTINE func1 WITH (ADD PARALLELIZABLE);

Example of Altering Routine Modifiers
Suppose you have an external function func1 that is set to handle NULL values
and has a cost per invocation set to 40. The following ALTER ROUTINE statement
adjusts the settings of the function by dropping the ability to handle NULL values,
tunes the func1 by changing the cost per invocation to 20, and indicates that the
function can execute in parallel:
ALTER ROUTINE func1(CHAR, INT, BOOLEAN)

WITH (
DROP HANDLESNULLS,
MODIFY PERCALL_COST = 20,
ADD PARALLELIZABLE
);

Because the name func1 is not unique to the database, the data type parameters
are specified so that the routine signature is unique. If this function had a Specific
Name, for example, raise_sal, specified when it was created, you could identify the
function with the following first line:
ALTER SPECIFIC ROUTINE raise_sal;

ALTER SECURITY LABEL COMPONENT statement
Use the ALTER SECURITY LABEL COMPONENT statement to add one or more
new elements to an existing security label component in the current database. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� ALTER SECURITY LABEL COMPONENT component ADD �

� � �

�

�

,
,

ARRAY [element BEFORE old_element]
AFTER

,

SET { element }
,

TREE (element UNDER old_element)

��

Element Description Restrictions Syntax

component Component to
which element is
added

Must already exist in the database. “Identifier” on page
5-21

2-64 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

element New element of
component

Must be unique among elements of this component,
and no longer than 32 bytes. The left (() and right
()) parentheses, comma (,), and colon (:)
symbols are not valid characters.

“Quoted String” on
page 4-219

old_element Existing element of
component

Must be an element of component. “Quoted String” on
page 4-219

Usage

Only DBSECADM can issue the ALTER SECURITY LABEL COMPONENT
statement, which defines new elements of an existing security label component.
The new elements become part of any security policy defined in a CREATE
SECURITY POLICY statement that references the specified component.

A security label component consists of a set of no more than 64 elements that the
CREATE SECURITY LABEL COMPONENT statement defines as string constants.
Each string constant can have no more than 32 bytes, and each must be unique
among elements of this component. The declaration of each element, which is a
valid value that the component can have, defines a category of data sensitivity. By
adding new elements to an existing component, the ALTER SECURITY LABEL
COMPONENT statement expands the set of values that a component can have
within a security policy that includes the component, or within a security label that
supports the security policy.

When the ALTER SECURITY LABEL COMPONENT statement executes
successfully, Informix updates the following tables of the system catalog of the
current database:
v The sysseclabelcomponentelements table, to add new rows for each new

elements of the component,
v The sysseclabelcomponents table, to show the new cardinality of the security

elements that comprise the modified security component.

This statement can define new elements of a security label component, but it
cannot modify or drop an existing element. If the security design changes so that
different elements are required, DBSECADM can add the new elements, if the total
number of elements remains within the size and cardinality limits, and not use any
obsolete elements in defining labels that include the component.

Alternatively, DBSECADM can use the DROP SECURITY LABEL COMPONENT
statement to drop the component, and then use the CREATE SECURITY LABEL
COMPONENT statement to redefine a new component that has only the required
elements. You cannot, however, drop a security component if it is part of an
existing security policy. See “DROP SECURITY statement” on page 2-442 for
information about restrictions on dropping security label components and other
security objects of Informix.

The security label component to which new elements are added must be one of
three component types. The ARRAY, SET, or TREE keyword that immediately
follows the component name must specify the same component type that the
CREATE SECURITY LABEL COMPONENT statement specified when the
component was originally defined. The syntax for specifying the new list of
elements depends on whether the specified component is of type ARRAY, SET, or
TREE, which are the three types of security component that Informix supports.

Chapter 2. SQL statements 2-65

Related concepts:

Label-based access control (Security Guide)
Related reference:
“RENAME SECURITY statement” on page 2-613
“DROP SECURITY statement” on page 2-442
“CREATE SECURITY LABEL statement” on page 2-248
“CREATE SECURITY LABEL COMPONENT statement” on page 2-250
“ALTER TABLE statement” on page 2-72
“CREATE SECURITY POLICY statement” on page 2-254
“CREATE TABLE statement” on page 2-265
“EXEMPTION Clause” on page 2-526
“SECURITY LABEL Clause” on page 2-528
“EXEMPTION Clause” on page 2-637
“SECURITY LABEL Clause” on page 2-639

The ADD ARRAY Clause
A security label component of type ARRAY is an ordered set of no more than 64
elements. The order in which array elements are declared is significant, because it
defines a descending order of data sensitivity, with each successive element
ranking lower in data sensitivity than the preceding element. The set of label
elements of the array and their comma (,) separators must be enclosed between a
pair of bracket ([...]) symbols. The same new element cannot be declared more
than once in the same ADD ARRAY clause.

In the ADD ARRAY clause, the BEFORE or AFTER keyword must follow the new
element (or a comma-separated list of new elements) to specify the position of the
new element within the descending order of data sensitivity. Within restrictions on
the size and the number of elements, this syntax enables DBSECADM to insert a
new element anywhere in the array, including the highest or the lowest position, or
between consecutive existing elements. The ALTER SECURITY LABEL
COMPONENT statement fails with an error, however, if the BEFORE or AFTER
keyword of the ADD ARRAY clause specifies an array element that was not
previously defined, either when the array component was created, or else in a
previous ALTER SECURITY LABEL COMPONENT statement that modified the
same array component.

If multiple ALTER SECURITY LABEL COMPONENT operations are performed to
add elements to the same component of type ARRAY, DBSECADM might not be
able to reach the maximum of 64 array elements because of how array elements
are encoded. For information on how security elements are encoded, see the IBM
Informix Security Guide.

The following example defines a security label component of type ARRAY called
aquilae that is an ordered set of five elements, with imperator highest in data
sensitivity and asinus lowest. The subsequent ALTER SECURITY LABEL
COMPONENT statement adds two new elements:
v a new element called legatus that ranks between imperator and tribunus

v a new element called cunctator that ranks below asinus as the new low in data
sensitivity.

2-66 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_lb_002.htm#ids_lb_002

CREATE SECURITY LABEL COMPONENT aquilae
ARRAY ["imperator", "tribunus", "centurio", "miles", "asinus"];

ALTER SECURITY LABEL COMPONENT aquilae
ADD ARRAY ["legatus" BEFORE "tribunus","cunctator" AFTER "asinus"];

Successful execution of this ALTER SECURITY LABEL COMPONENT ... ADD
ARRAY statement modifies the aquilae security label component array, so that the
new descending order of component elements becomes this: imperator, legatus,
tribunus, centurio, miles, asinus, cunctator.

The ADD SET Clause
A security label component of type SET is an unordered set of no more than 64
elements. The order in which the elements of a SET component are declared is not
significant. The set of elements of the array and their comma separators must be
enclosed between a pair of braces ({ ... }) symbols. The same new element
cannot be declared more than once in the same ADD SET clause.

The following example defines a type SET security label component called
departments that is an unordered set of three elements, called Marketing, HR, and
Finance, which the ALTER SECURITY LABEL COMPONENT statement modifies
by adding three new elements called Training , QA, and Security:
CREATE SECURITY LABEL COMPONENT departments

SET { ’Marketing’, ’HR’, ’Finance’ };

ALTER SECURITY LABEL COMPONENT departments
ADD SET { ’Training’, ’QA’, ’Security’ };

Unlike ADD ARRAY or ADD TREE specifications, ADD SET operations of ALTER
SECURITY LABEL COMPONENT do not create "greater than" or "less than"
data-sensitivity relationships among the new and existing elements of the
redefined component, because the elements of a type SET component have no
implicit order of data sensitivity.

The ADD TREE Clause
A security label component of type TREE has the logical topology of a simple
graph with no loops. Each TREE component has a single root node and no more
than 63 additional nodes. Any new elements that the ALTER SECURITY LABEL
COMPONENT statement adds to this hierarchy must be inserted below the root
node. The string constant for each new node must be followed by the keyword
UNDER and by the string constant for some previously declared node. The set of
elements of the TREE component, including their UNDER keywords and comma
separators, must be enclosed between a pair of parenthesis ((...)) symbols.

The component element specified after the UNDER keyword is called the parent of
the new element that precedes the same UNDER keyword. The new element is
called the child of that parent element. The ALTER SECURITY LABEL
COMPONENT statement fails with an error, however, if the ADD TREE clause
specifies a parent element that is not already defined in the database for this
component. The UNDER keyword cannot be followed by an element that is added
to the component in the same ADD TREE clause.

The string constant that designates the root node of a TREE component has the
highest data sensitivity of all the nodes within the TREE hierarchy. In any subset of
successive parent nodes and child nodes in the tree, each non-root element has

Chapter 2. SQL statements 2-67

lower data sensitivity than its parent element or than any ancestor of its parent
element, but has higher data sensitivity than any of its child elements or than the
descendents of its child elements.

When a user who holds no exemptions attempts to access a data row that is
protected by a label that includes a TREE component, a read operation fails if the
security label of the user does not include an element that matches one of the
TREE elements for the same component of the data row label, or that matches an
ancestor of one of those elements. Unless the security policy of the label includes
the OVERRIDE clause, a write operation also fails in the same circumstances. If the
data row label has multiple TREE components, the user security label must include
a matching (or an ancestral) element value for every TREE component of the data
row security label.

In the following example, the ALTER SECURITY LABEL COMPONENT statement
modifies a tree component called Oakland by adding two new nodes to its tree
structure that was defined with six nodes by this CREATE SECURITY LABEL
COMPONENT statement:
CREATE SECURITY LABEL COMPONENT Oakland
TREE (’Port’ ROOT,

’Downtown’ UNDER ’Port’,
’Airport’ UNDER ’Port’,
’Estuary’ UNDER ’Airport’,
’Avenues’ UNDER ’Downtown’,
’Hills’ UNDER ’Avenues’);

ALTER SECURITY LABEL COMPONENT Oakland
ADD TREE (’Uptown’ UNDER ’Port’,

’Bay’ UNDER ’Estuary’);

Here new Uptown node is a child of Port, which has the highest data sensitivity
because it is the root node. The new Bay node is the child of Estuary, which is the
child of Airport, which is the child of Port, implying that Bay has a lower data
sensitivity than these three nodes of the hierarchy. In practice, it is unlikely that
any data would be labeled with Port, rather than classified at a lower level. The
Port value might be used for a label granted to a user who is allowed to access all
of the data about the Port.

If the ALTER SECURITY LABEL COMPONENT statement in this example
succeeds, and a subsequently defined data row label specifies Bay as its value for
the Oakland component, a user with no exemption for the security policy who
attempts to read the protected row in a query would need either Port, Airport,
Estuary, or Bay as a user label value to satisfy this component of the data row
label. Values of Uptown or Downtown for this component in the user label are
insufficient, because they do not match Bay and are not ancestors of Bay. For a
query to read the protected row, the security label of the user must also include
values that satisfy any other components of the row security label, and the user
must also hold Select access privilege on the table and at least Connect access
privilege on the database that contains the protected row.

The ADD TREE clause cannot interpose a new node between an existing child
node and its parent.

ALTER SEQUENCE statement
Use the ALTER SEQUENCE statement to modify the definition of a sequence
object. This statement is an extension to the ANSI/ISO standard for SQL.

2-68 IBM Informix Guide to SQL: Syntax

Syntax

�� ALTER SEQUENCE
owner.

sequence �

� �

(1) NOCYCLE
CYCLE

(1)
CACHE size
NOCACHE

(1) ORDER
NOORDER

(1) BY
INCREMENT step

(1) WITH
RESTART restart

(1) NOMAXVALUE
MAXVALUE max

(1) NOMINVALUE
MINVALUE min

��

Notes:

1 Use path no more than once

Element Description Restrictions Syntax

max New upper limit on values Must be integer > CURRVAL and restart “Literal Number” on page
4-215

min New lower limit on values Must be integer < CURRVAL and restart “Literal Number” on page
4-215

owner Owner of sequence Cannot be changed by this statement “Owner name” on page
5-49

restart New first value in sequence Must be integer in the INT8 range “Literal Number” on page
4-215

sequence Name of existing sequence Must exist. Cannot be a synonym. “Identifier” on page 5-21

size New number of values to
preallocate in memory

Integer > 2 but < cardinality of values in
one cycle (= |(max - min)/step|)

“Literal Number” on page
4-215

step New interval between
successive values

Must be a nonzero integer “Literal Number” on page
4-215

Usage

The ALTER SEQUENCE statement can update the definition of a specified
sequence object in the syssequences system catalog table.

ALTER SEQUENCE redefines an existing sequence object. It only affects
subsequently generated values (and any unused values in the sequence cache). You
cannot use the ALTER SEQUENCE statement to rename a sequence nor to change
the owner of a sequence.

Chapter 2. SQL statements 2-69

You must be the owner, or the DBA, or else have the Alter privilege on the
sequence to modify its definition. Only elements of the sequence definition that
you specify explicitly in the ALTER SEQUENCE statement are modified. An error
occurs if you make contradictory changes, such as specifying both MAXVALUE
and NOMAXVALUE, or both the CYCLE and NOCYCLE options.

Examples

The examples below are based on the following sequence object and table:
CREATE SEQUENCE seq_2

INCREMENT BY 1 START WITH 1
MAXVALUE 30 MINVALUE 0
NOCYCLE CACHE 10 ORDER;

CREATE TABLE tab1 (col1 int, col2 int);
INSERT INTO tab1 VALUES (0, 0);

INSERT INTO tab1 (col1, col2) VALUES (seq_2.NEXTVAL, seq_2.NEXTVAL)

SELECT * FROM tab1;

col1 col2

0 0
1 1

ALTER SEQUENCE seq_2
RESTART WITH 5
INCREMENT by 2
MAXVALUE 300;

INSERT INTO tab1 (col1, col2) VALUES (seq_2.NEXTVAL, seq_2.NEXTVAL)
INSERT INTO tab1 (col1, col2) VALUES (seq_2.NEXTVAL, seq_2.NEXTVAL)
SELECT * FROM tab1;

col1 col2

0 0
1 1
5 5
7 7

Related reference:
“DROP SEQUENCE statement” on page 2-444
“CREATE SEQUENCE statement” on page 2-257
“RENAME SEQUENCE statement” on page 2-614
“CREATE SYNONYM statement” on page 2-261
“DROP SYNONYM statement” on page 2-445
“GRANT statement” on page 2-502
“REVOKE statement” on page 2-618
“INSERT statement” on page 2-545
“SELECT statement” on page 2-654
“UPDATE statement” on page 2-852

SYSSEQUENCES (SQL Reference)
“NEXTVAL and CURRVAL Operators” on page 4-84

2-70 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_067.htm#ids_sqr_067

INCREMENT BY Option
Use the INCREMENT BY option to specify a new interval between successive
numbers in a sequence. The interval, or step value, can be a positive whole number
(for ascending sequences) or a negative whole number (for descending sequences)
in the INT8 range. The BY keyword is optional.

RESTART WITH Option
Use the RESTART WITH option to specify a new first number of the sequence. The
restart value must be an integer within the INT8 range that is greater than or equal
to the min value (for an ascending sequence) or that is less than or equal to the
max value (for a descending sequence), if min or max is specified in the ALTER
SEQUENCE statement. The WITH keyword is optional.

When you modify a sequence using the RESTART option, the restart value is stored
in the syssequences system catalog table only until the first use of the sequence
object in a NEXTVAL expression. After that, the value is reset in the system
catalog. Use of the dbschema utility can increment sequence objects in the
database, creating gaps in the generated numbers that might not be expected in
applications that require serialized integers.

MAXVALUE or NOMAXVALUE Option
Use the MAXVALUE option to specify a new upper limit of values in the
sequence. The maximum value, or max, must be an integer in the INT8 range that
is greater than sequence.CURRVAL and restart (or greater than the origin in the
original CREATE SEQUENCE statement, if restart is not specified).

Use the NOMAXVALUE option to replace the current limit with a new default
maximum of 2e64 for ascending sequences or -1 for descending sequences.

MINVALUE or NOMINVALUE Option
Use the MINVALUE option to specify a new lower limit of values in the sequence.
The minimum value, or min, must be an integer the INT8 range that is less than
sequence.CURRVAL and restart (or less than the origin in the original CREATE
SEQUENCE statement, if restart is not specified).

Use the NOMINVALUE option to replace the current lower limit with a default of
1 for ascending sequences or -(2e64) for descending sequences.

CYCLE or NOCYCLE Option
Use the CYCLE option to continue generating sequence values after the sequence
reaches the maximum (ascending) or minimum (descending) limit, to replace the
NOCYCLE attribute. After an ascending sequence reaches max, it generates the min
value for the next value. After a descending sequence reaches min, it generates the
max value for the next sequence value.

Use the NOCYCLE option to prevent the sequence from generating more values
after reaching the declared limit. Once the sequence reaches the limit, the next
reference to sequence.NEXTVAL returns an error message.

CACHE or NOCACHE Option
Use the CACHE option to specify a new number of sequence values that are
preallocated in memory for rapid access. The cache size must be a whole number

Chapter 2. SQL statements 2-71

in the INT range that is less than the number of values in a cycle (or less than
(|max - min)/step|). The minimum size is 2 preallocated values.

Use NOCACHE to have no values preallocated in memory. (See also the
description of SEQ_CACHE_SIZE in “CREATE SEQUENCE statement” on page
2-257.)

ORDER or NOORDER Option
These keywords have no effect on the behavior of the sequence. The sequence
always issues values to users in the order of their requests, as if the ORDER
keyword were always specified. The ORDER and NOORDER keywords are
accepted by the ALTER SEQUENCE statement, however, for compatibility with
implementations of sequence objects in other dialects of SQL.

ALTER TABLE statement
Use the ALTER TABLE statement to modify the schema of an existing table.

(To modify the storage distribution strategy if a table, you must use the ALTER
FRAGMENT statement, rather than the ALTER TABLE statement.)

Syntax

�� ALTER TABLE table
synonym

Basic Table Options
(1)

Logging TYPE Options
(2)

Statistics Options

��

Basic Table Options:

2-72 IBM Informix Guide to SQL: Syntax

�

,
(3)

ADD Column Clause
(4)

ADD AUDIT Clause
(5)

ADD CONSTRAINT Clause
(6)

MODIFY Clause
(7)

DROP AUDIT Clause
(8)

DROP CONSTRAINT Clause
(9)

DROP Column Clause
(10) (11)

MODIFY EXTENT SIZE Clause
(10) (12)

MODIFY NEXT SIZE Clause
(10) (13)

LOCK MODE Clause
(14)

PUT Clause
(15)

SECURITY POLICY Clause
ADD ROWIDS
DROP VERCOLS

(16)
ER Shadow Columns

(17)
ADD TYPE Clause

Notes:

1 See “Logging TYPE Options” on page 2-75

2 See “Statistics options of the ALTER TABLE statement” on page 2-76

3 See “ADD Column Clause” on page 2-81

4 See “ADD AUDIT Clause” on page 2-91

5 See “ADD CONSTRAINT Clause” on page 2-103

6 See “MODIFY Clause” on page 2-95

7 See “DROP AUDIT Clause” on page 2-95

8 See “DROP CONSTRAINT Clause” on page 2-113

9 See “DROP Column Clause” on page 2-93

10 Use this path no more than once

11 See “MODIFY EXTENT SIZE” on page 2-114

12 See “MODIFY NEXT SIZE clause” on page 2-115

13 See “LOCK MODE Clause” on page 2-116

14 See “PUT Clause” on page 2-101

15 See “SECURITY POLICY Clause” on page 2-91

16 See “Enterprise Replication shadow columns” on page 2-79

Chapter 2. SQL statements 2-73

17 See “ADD TYPE Clause” on page 2-117

Element Description Restrictions Syntax

synonym Synonym for the table to be
altered

Synonym and its table must exist;
USETABLENAME must not be set

“Identifier” on page 5-21

table Name of table to be altered Must exist in the current database “Identifier” on page 5-21

Usage

The Informix database server performs the actions in the ALTER TABLE statement
in the order that you specify. If any action fails, the entire operation is cancelled.

The ALTER TABLE statement cannot add a fragmentation strategy to a
nonfragmented table, nor modify the storage distribution strategy of a fragmented
table. For information on adding, modifying, or dropping the storage distribution
strategy of a table, see the “ALTER FRAGMENT statement” on page 2-6.

Altering a table on which a view depends might invalidate the view.

Warning: The clauses available with this statement have varying performance
implications. Before you undertake alter operations, check information in the
Altering a table definition section in your IBM Informix Performance Guide to review
effects and strategies.

You can use the Basic Table Options segment to modify the schema of a table by
adding, modifying, or dropping columns and constraints, or changing the extent
size or locking granularity of a table. The database server performs alterations in
the order that you specify. If any of the actions fails, the entire operation is
cancelled.

With Informix, you can also associate a table with a named ROW type or specify a
new storage space to store large-object data. You can also add or drop rowid
columns or shadow columns to support secondary server update operations of the
USELASTCOMMITTED feature. You cannot, however, specify these options in
conjunction with any other alterations.
Related concepts:

Table performance considerations (Performance Guide)
Related reference:
“Modes for constraints and unique indexes” on page 2-741
“CREATE TABLE statement” on page 2-265
“CREATE TEMP TABLE statement” on page 2-321
“RENAME TABLE statement” on page 2-615
“ALTER FRAGMENT statement” on page 2-6
“DROP INDEX statement” on page 2-431
“RENAME SECURITY statement” on page 2-613
“RENAME COLUMN statement” on page 2-609
“SET Transaction Mode statement” on page 2-825
“CREATE SECURITY LABEL statement” on page 2-248
“CREATE SECURITY LABEL COMPONENT statement” on page 2-250
“ALTER SECURITY LABEL COMPONENT statement” on page 2-64

2-74 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_334.htm#ids_prf_334
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_277.htm#ids_prf_277

“CREATE SECURITY POLICY statement” on page 2-254

Logging TYPE Options
Use the Logging TYPE options to specify that the table has particular
characteristics that can improve various bulk operations on it.

Logging TYPE Options:

TYPE (STANDARD)
RAW

Here STANDARD, the default option of the CREATE TABLE statement, specifies a
logged table, and RAW specifies an unlogged table.

A table can have any of the following logging characteristics.

Option Effect

STANDARD
Logging table that allows rollback, recovery, and restoration from archives.
This is the default. Use this type for recovery and constraints functionality
on OLTP databases.

RAW Nonlogging table that do not support primary key constraints, unique
constraints, or referential constraints. RAW tables can have NOT NULL
constraints and NULL constraints (but not on the same set of columns).
They can be indexed and updated. Use this type for quickly loading data.

Warning: Use RAW tables for fast loading of data. It is recommended that you
alter the logging type to STANDARD and perform a level-0 backup before you use
the table in a transaction or modify the data within the table. If you must use a
RAW table within a transaction, either set the isolation level to Repeatable Read or
lock the table in exclusive mode to prevent concurrency problems.

The Logging TYPE option can convert a non-logging table, such as a RAW table, to
a STANDARD table that supports transaction logging. If you use this feature, you
should be aware that the database server does not check to see whether a level 0
archive has been performed on the table.

Operations on a RAW table are not logged and are not recoverable, so RAW tables
are always at risk. When the database server converts a table that is not logged to
a STANDARD table type, it is your responsibility to perform a level-0 backup
before using the table in a transaction or modifying data in the table. Failure to do
this might lead to recovery problems in the event of a server crash.

For more information on these logging types of tables, refer to your IBM Informix
Administrator's Guide.

The Logging TYPE options have the following restrictions:
v You must perform a level-0 archive before the logging type of a table can be

altered to STANDARD from any other logging type.
v The table cannot be a TEMP table, and you cannot change any of these types of

tables to a TEMP table.

The following example changes a nonlogging table to a table that uses transaction
logging:

Chapter 2. SQL statements 2-75

ALTER TABLE tabnolog TYPE (STANDARD);

The following example changes a logging table to a nonlogging table.
ALTER TABLE tablog TYPE (RAW);

Related reference:

Transaction logging (Administrator's Guide)

Statistics options of the ALTER TABLE statement
Use the Statistics Options clause of the ALTER TABLE statement to change values
of the STATCHANGE property of a fragmented or nonfragmented table, and the
STATLEVEL property of a fragmented table. These table attributes control the
threshold for recalculation and the granularity of data distribution statistics.

Syntax

This clause supports the same syntax options as the Statistics Options clause of the
CREATE TABLE statement.

��
AUTO

STATCHANGE change_threshold
STATLEVEL FRAGMENT

TABLE
AUTO

��

Element Description Restrictions Syntax

change_
threshold

Percentage of changed data that
defines stale distribution statistics

Must be an integer in the range 0 - 100 “Literal Number” on
page 4-215

Usage

The Statistics Options clause can modify table statistics properties that allow the
user to control the actions of UPDATE STATISTICS when that SQL statement is
run on a fragmented table in LOW, MEDIUM or HIGH mode. The ALTER TABLE
statement can modify the specified or default values of these properties that were
set when the table was created, or that are set by a previous ALTER TABLE
statement.

The two table properties that the Statistics Options clause can set are
STATCHANGE and STATLEVEL:

The STATCHANGE table attribute specifies the minimum percentage of changes
(from UPDATE, DELETE, and INSERT operations on the rows in the table or
fragment since the previous calculation of distribution statistics) to consider the
statistics stale. You can specify the percentage change as either an integer value in
the range 0 - 100, or you can use the AUTO keyword to apply the current
STATCHANGE configuration parameter setting in the ONCONFIG file or in the
session environment as the default change threshold value.

The AUTO keyword of the UPDATE STATISTICS statement also enables
comparing the proportion of rows with changed values to the STATCHANGE
setting to determine whether the statistics in the system catalog are stale. Including
the AUTO keyword in the UPDATE STATISTICS statement enables checking for
stale statistics (and selectively updating only the tables or fragments with stale or
missing statistics) only during the current UPDATE STATISTICS operation.

2-76 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_0648.htm#ids_admin_0648

When the AUTO_STAT_MODE configuration parameter or the
AUTO_STAT_MODE session environment variable enables the automatic mode, the
UPDATE STATISTICS statement uses the explicit or default STATCHANGE value
to identify table, index, or fragment distributions whose statistics are missing or
stale, and updates only the missing or stale statistics. For more information about
the automatic mode for UPDATE STATISTICS operations, see information about
the AUTO_STAT_MODE configuration parameter in the IBM Informix
Administrator's Reference.

The STATLEVEL property can determine the level of granularity of the data
distributions and index statistics of fragmented tables. It can take one of the
following three values, with AUTO being the default, if no value is specified at
creation time:
v TABLE specifies that all distributions for the table be created at the table level.
v FRAGMENT specifies that distributions be created and maintained for each

fragment.
v AUTO specifies that the database server apply criteria at run time to determine

whether fragment-level distributions are necessary. These criteria require that the
following conditions are true:
– The SYSSBSPACENAME configuration parameter setting specifies an existing

sbspace
– The table is fragmented by an EXPRESSION, INTERVAL, or LIST strategy
– The table has more than a million rows.

If any of these criteria are not satisfied, the database server creates table-level
distributions, rather than fragment-level.

These properties are always applied. If the STATLEVEL setting is AUTO, this
setting overrides the default values.

Note: The SYSSBSPACENAME configuration parameter, which must be set when
the database server instance is initialized, specifies the sbspace in which the
database server stores fragment-level data distribution statistics. These are stored
as BLOB objects in the encdist column of the syfragsdist system catalog table. For
the database server to support fragment level statistics, the SYSSBSPACENAME
configuration parameter setting must specify an existing sbspace.

If you use the Statistics Options clause to set the STATLEVEL property to
FRAGMENT, the database server returns an error -9814 ("Invalid default sbspace
name") if either of the following is true:
v The SYSSBSPACENAME configuration parameter is not set
v The sbspace that SYSSBSPACENAME specifies was not properly allocated by the

onspaces -c -S command.

Example of changing the STATLEVEL

Suppose that table tabFrag uses a fragmented distribution strategy other than
ROUND ROBIN, and includes a BLOB or CLOB column called smartblob. You
decide to keep the storage distribution strategy, but to use TABLE, rather than
FRAGMENT, as the STATLEVEL granularity. The following SQL statements that
reference the tabFrag table have the following successive effects:
v Change the STATLEVEL to TABLE, by using the Statistics Options clause of

ALTER TABLE.

Chapter 2. SQL statements 2-77

v Discard the current fragment-level distributions of tabFrag.smartblob in the
sysfragdist system catalog table, by using UPDATE STATISTICS LOW.

v Create new table-level statistics for tabFrag in the sysdistrib system catalog
table, by using UPDATE STATISTICS HIGH.

ALTER TABLE tabFrag STATLEVEL TABLE;

UPDATE STATISTICS LOW
FOR TABLE tabFrag (smartblob) DROP DISTRIBUTIONS

UPDATE STATISTICS HIGH
FOR TABLE tabFrag (smartblob);

In the last statement above, the default HIGH resolution of 0.5 implies that the
tabFrag.smartblob distribution statistics are based on approximately 200 bins.
Related reference:

AUTO_STAT_MODE configuration parameter (Administrator's Reference)

STATCHANGE configuration parameter (Administrator's Reference)

Restrictions on the table
The table whose name or synonym follows the ALTER TABLE keywords must be a
permanent table in the current database. It is subject to the following restrictions:
v It cannot be a temporary table.
v It cannot be a table in a database that is not the current database.
v It cannot be a table object that the CREATE EXTERNAL TABLE statement

defined.
v It cannot be a violations table or a diagnostics table.

In addition, you cannot use the ALTER TABLE statement for the following
operations:
v to add, drop, or modify a column in a table that has an associated violation table

or diagnostics table.
v to define a referential constraint or a unique constraint on a RAW table.
v to define an index on a column or on a set of columns that would conflict with

the “Restrictions on columns as index keys” on page 2-200.

If the USETABLENAME environment variable is set, you cannot specify a synonym for
the table in the ALTER TABLE statement.

To use ALTER TABLE, your discretionary access privileges must meet at least one
of the following conditions:
v You must have DBA privilege on the database containing the table.
v You must own the table.
v You must have the Alter privilege on the specified table and the Resource

privilege on the database where the table resides.
v To add a referential constraint, you must have the DBA or References privilege

on either the referenced columns or the referenced table.
v To drop a constraint, you must have the DBA privilege or be the owner of the

constraint. If you are the owner of the constraint but not the owner of the table,
you must have Alter privilege on the specified table. You do not need the
References privilege to drop a constraint.

2-78 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1094.htm#ids_adr_1094
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1095.htm#ids_adr_1095

Enterprise Replication shadow columns
You can add or drop Enterprise Replication shadow columns when you alter a
table.

Adding or dropping Enterprise Replication shadow columns:

ADD CRCOLS
DROP REPLCHECK

ERKEY

Usage

If Enterprise Replication is active while you are altering the table with the ADD
CRCOLS, ADD REPLCHECK, or ADD ERKEY clauses, you must first put the table
in alter mode with the cdr alter command.

The ADD CRCOLS keywords create shadow columns, cdrserver and cdrtime, that
Enterprise Replication uses for conflict resolution. Altering a table to add the
CRCOLS shadow columns can be a slow alter operation, if any of the table
columns have data types that require a slow alter. Slow alter operations require
disk space at least twice the size of the original table plus log space. For
information on the performance implications of ALTER TABLE statements, see
Altering a table definition.

Use the DROP CRCOLS keywords to drop the cdrserver and cdrtime shadow
columns. You must stop replication before dropping the cdrserver and cdrtime
shadow columns.

The ADD REPLCHECK keywords create the shadow column, ifx_replcheck, that
you can create an index on, along with your primary key, to speed the processing
of consistency checking with Enterprise Replication. Altering a table to add the
ifx_replcheck shadow column is a slow alter operation, which requires disk space
at least twice the size of the original table plus log space.

Use the DROP REPLCHECK keywords to drop the ifx_replcheck shadow column.

The ADD ERKEY keywords create shadow columns, ifx_erkey_1, ifx_erkey_2, and
ifx_erkey_3, that Enterprise Replication uses in place of a primary key. Altering a
table to add the ERKEY shadow columns is a slow alter operation.

Use the DROP ERKEY keywords to drop the ifx_erkey_1, ifx_erkey_2, and
ifx_erkey_3 shadow columns.

For more information, refer to “Using the WITH CRCOLS Option” on page 2-290,
“Using the WITH REPLCHECK Keywords” on page 2-291, “Using the WITH
ERKEY Keywords” on page 2-290, and to the IBM Informix Enterprise Replication
Guide.

Examples

In the following example, the cdrserver and cdrtime shadow columns are added to
the customer table:
ALTER TABLE customer ADD CRCOLS;

Chapter 2. SQL statements 2-79

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_334.htm#ids_prf_334

In the next example, the ifx_replcheck shadow column is added to the customer
table:
ALTER TABLE customer ADD REPLCHECK;

The following example drops the ifx_replcheck column from the customer table:
ALTER TABLE customer DROP REPLCHECK;

The following example adds the ifx_erkey_1, ifx_erkey_2, and ifx_erkey_3
columns to the customer table:
ALTER TABLE customer ADD ERKEY;

Related concepts:

Shadow columns (Enterprise Replication Guide)

Using the ADD ROWIDS Keywords
Use the ADD ROWIDS keywords to add a new column called rowid to a
fragmented table. (Fragmented tables do not contain the hidden rowid column by
default.) When you add a rowid column, the database server assigns a unique
number to each row that remains stable for the life of the row. The database server
creates an index that it uses to find the physical location of the row. After you add
the rowid column, each row of the table contains an additional 4 bytes to store the
rowid value.

The following example uses the ADD ROWIDS option to add a new rowid column
of type INTEGER to a fragmented table called frag1:
ALTER TABLE frag1 ADD ROWIDS;

Tip: Use the ADD ROWIDS clause only on fragmented tables. In nonfragmented
tables, the rowid column remains unchanged. It is recommended that you use
primary keys as an access method rather than exploiting the rowid column.

For additional information about the rowid column, refer to your IBM Informix
Administrator's Reference.
Related concepts:

Use of Rowids (Administrator's Reference)

Using the DROP ROWIDS Keywords
The DROP ROWIDS keywords can drop a rowid column that you added (with
either the ALTER TABLE or ALTER FRAGMENT statement) to a fragmented table.

The following example drops the rowid column from the frag1 table:
ALTER TABLE frag1 DROP RWIDS;

You cannot drop the rowid column of a nonfragmented table.

Using the ADD VERCOLS Keywords
The ADD VERCOLS keywords create shadow columns, ifx_insert_checksum and
ifx_row_version, that are used to support secondary server updates.

In the following example, the ifx_insert_checksum and ifx_row_version, shadow
columns are added to the customer table:
ALTER TABLE customer ADD VERCOLS;

2-80 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.erep.doc/ids_erp_047.htm#ids_erp_047
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0305.htm#ids_adr_0305

Altering a table to add row versioning columns is a fast alter operation.

For more information, refer to “Using the WITH VERCOLS Option” on page 2-292
and to the IBM Informix Administrator's Guide.
Related concepts:

Row versioning (Administrator's Guide)

Using the DROP VERCOLS Keywords
Use the DROP VERCOLS keywords to drop the ifx_insert_checksum and
ifx_row_version shadow columns.

The following example drops those columns from the customer table:
ALTER TABLE customer DROP VERCOLS;

ADD Column Clause
Use the ADD Column clause to add a column or a security policy to a table.

ADD Column Clause:

ADD �

,

(New Column)
New Column

New Column:

new_column
(1)

Data Type �

(2) (3)
DEFAULT Clause

(2) (4)
Single-Column Constraint Format

�

�
BEFORE column (5)

Add Column Security

Notes:

1 See “Data Type” on page 4-23

2 Use this path no more than once

3 See “DEFAULT Clause” on page 2-83

4 See “Single-Column Constraint Format” on page 2-84

5 See “Add Column Security” on page 2-91

Element Description Restrictions Syntax

column Name of column before which
new_column is to be placed

Must already exist in the table “Identifier” on
page 5-21

Chapter 2. SQL statements 2-81

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_0877.htm#ids_admin_0877

Element Description Restrictions Syntax

new_column Name of column that you are adding You cannot add a serial column if the
table contains data

“Identifier” on
page 5-21

The following restrictions apply to the ADD clause:
v You cannot add a serial column to a table that contains data.
v You cannot add columns beyond the maximum row size of 32,767 bytes.

The following restrictions affect the use of the ADD Column clause to add a
column of the IDSSECURITYLABEL data type to support label-based access
control:
v If the table has no security policy, a user who holds the DBSECADM role must

also include the ADD SECURITY POLICY statement to specify an existing
security policy.

v Only a user who holds the DBSECADM role can add a column of type
IDSSECURITYLABEL.

v A table can have at most one column of type IDSSECURITYLABEL.
v The IDSSECURITYLABEL column cannot have column protection.
v The IDSSECURITYLABEL column has an implicit NOT NULL constraint by

default. If no label name for the default security label is specified in the
DEFAULT clause, the default value for this column is the security label for write
access that is held by the user.

v The IDSSECURITY LABEL column cannot have any explicit single-column
constraints, and it cannot be part of multiple-column referential or check
constraints.

Logical Character Support in Character Columns
For new columns that you declare as built-in character data types, explicit or
default size specifications are interpreted in units of bytes, unless the
SQL_LOGICAL_CHAR configuration parameter has enabled logical character
semantics for the current database. This feature is designed to reduce the risk of
truncating data strings in locales that support a multibyte code set, such as UTF-8.
Enabling this feature causes the SQL parser to interpret the declared column size
as units of logical characters, rather than as bytes, and multiplies the declared
storage size allocated for the new character column by a positive integer value,
based on the SQL_LOGICAL_CHAR setting.
v If the value of this setting is OFF or 1, the SQL_LOGICAL_CHAR configuration

parameter has no effect.
v If the value of this setting is ON, rather than a digit, the expansion factor is the

number of bytes that are required to store the largest logical character in the
code set of the database. (The ON setting is equivalent to 4, which is the largest
valid digit.)

The value of this expansion factor is an attribute of the database, and is based on
the SQL_LOGICAL_CHAR setting when the database was created, rather than
when the ALTER TABLE statement is issued, if the two settings are not identical.

For columns that you declare as VARCHAR or NCHAR data types when this
feature is enabled, only the maximum size specification is expanded by this
feature. The reserved size is the number of bytes specified by the explicit or default
reserved value in the data type declaration, because the minimum size of a logical
character is 1 byte.

2-82 IBM Informix Guide to SQL: Syntax

Size specifications for character columns of user-defined types (UDTs) are always
interpreted as bytes, and are not affected by this feature. Columns that store strings
as large objects, such as CLOB and TEXT, are similarly unaffected.

For more information about the SQL_LOGICAL_CHAR configuration parameter,
see your IBM Informix Administrator's Reference. For additional information about
multibyte locales and logical characters, see the IBM Informix GLS User's Guide.
Related reference:

SQL_LOGICAL_CHAR configuration parameter (Administrator's Reference)

BEFORE Clause
The optional BEFORE clause determines the ordinal positions of the new columns
within the schema of the table by specifying the name of an existing column before
which the ALTER TABLE ADD statement inserts the new columns.

In the following example, the BEFORE option directs the database server to add
the item_weight column before the total_price column:
ALTER TABLE items

ADD (item_weight DECIMAL(6,2) NOT NULL BEFORE total_price);

By default, if you do not include the BEFORE clause, the database server appends
the new columns after the last column in the current schema of the table, in their
lexical order within the ADD clause.

DEFAULT Clause
Use the DEFAULT clause to specify value that the database server should insert in
a column when an explicit value for the column is not specified.

DEFAULT Clause:

DEFAULT label
literal

NULL
USER
CURRENT_USER

(1)
CURRENT
SYSDATE (2)

DATETIME Field Qualifier
TODAY

SITENAME
DBSERVERNAME

Notes:

1 Informix extension

2 See “DATETIME Field Qualifier” on page 4-42

Element Description Restrictions Syntax

label Name of a security
label

Must exist and must belong to the security policy that protects
the table. The column must be of type IDSSECURITYLABEL.

“Identifier” on
page 5-21

literal Literal default value
for the column

Must be appropriate for the data type of the column. See
“Using a Literal as a Default Value” on page 2-273.

“Identifier” on
page 5-21

Chapter 2. SQL statements 2-83

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076

If the table that you are altering already has rows in it when you add a column
that contains a default value, the default values are applied only to rows inserted
after the ALTER TABLE MODIFY statement that added the new column. Any rows
that existed before the new column was added have a NULL value in the new
column, unless you update those rows to insert some non-NULL value. New rows
that you insert will have the default value that the MODIFY Clause specified,
unless you insert some other value into the new column.

You cannot specify a default value for serial columns. For columns of DISTINCT or
OPAQUE data types, you cannot specify as the default value a constant expression
(such as CURRENT, SYSDATE DBSERVERNAME, SITENAME, TODAY, USER, or
CURRENT_USER) that behaves like a variant function.

The following example adds a column of data type DECIMAL(6,2) to the items
table. In items, the new column item_weight has a literal default value:
ALTER TABLE items

ADD item_weight DECIMAL (6, 2) DEFAULT 2.00
BEFORE total_price;

In this example, each existing row in the items table has a default value of 2.00 for
the item_weight column.

For more information about the options of the DEFAULT clause, refer to the
“DEFAULT Clause” on page 2-272 topic of the CREATE TABLE statement.

DEFAULT Labels: When DBSECADM adds a IDSSECURITYLABEL column to a
table that is protected by a security policy, the DEFAULT label specification is
required unless the table is empty. If the table is not empty, the specified label is
inserted into the existing rows of the table.

An error is issued if the DEFAULT clause specifies a security label for a column
whose data type is not IDSSECURITYLABEL, or if the table has no security policy,
or if the security policy of the label is not the security policy of the table, .

To define a specificlabel as the default value of an IDSSECURITYLABEL column,
specify the label name without the policy qualifier, rather than as policy.label,
because the security policy of the table is the only valid policy for any security
label that protects data in the table.

The statement in the following example adds security policy MegaCorp to table T1
and specifies column-level protection for the table by declaring a new column D of
type IDSSECURITYLABEL, whose default value is a security label called mylabel:
ALTER TABLE T1

ADD (D IDSSECURITYLABEL DEFAULT mylabel1)
ADD SECURITY POLICY MegaCorp;

Because no BEFORE clause is included, column D is last among the columns in the
schema of table T1. This statement fails if any of the database objects that it
references (except new column D) does not already exist in the database.

Single-Column Constraint Format
Use the Single-Column Constraint Format to associate one or more constraints with
a single column.

2-84 IBM Informix Guide to SQL: Syntax

Single-Column Constraint Format:

� NULL
NOT NULL (1) (4)
UNIQUE Constraint Definition
(1)

DISTINCT
PRIMARY KEY

(2)
REFERENCES Clause

(3)
CHECK Clause

Notes:

1 Informix extension

2 See “REFERENCES Clause” on page 2-87

3 See “CHECK Clause” on page 2-90

4 See “Constraint Definition” on page 2-86

You cannot specify a primary-key or unique constraint on a new column if the
table contains data. In the case of a unique constraint, however, the table can
contain a single row of data. When you want to add a column with a primary-key
constraint, the table must be empty when you issue the ALTER TABLE statement.

The following rules apply when you place primary-key or unique constraints on
existing columns:
v When you place a primary-key or unique constraint on a column or on a set of

columns, the database server creates an internal B-tree index on the constrained
column or set of columns, and automatically calculates column statistics,
equivalent to distributions created by the UPDATE STATISTICS statement in
HIGH mode, unless a user-created index was already defined on the same
column or set of columns.

v When you place a primary-key or unique constraint on a column or set of
columns, and a unique index already exists on that column or set of columns,
the constraint shares that index. If the existing index allows duplicates, however,
the database server returns an error. You must then drop the existing index
before you can add the constraint.

v When you place a primary-key constraint or a unique constraint on a column or
on a set of columns on which a referential constraint already exists, the existing
index that enforces the constraint is upgraded to UNIQUE (if possible), and the
index is shared.

You cannot place a unique constraint on a BYTE or TEXT column, nor can you
place referential constraints on columns of these data types. A check constraint on
a BYTE or TEXT column can check only for IS NULL, IS NOT NULL, or LENGTH.

The statement fails with an error if you specify both a NOT NULL constraint and a
NULL constraint on the same column. You cannot define a NULL constraint on a
column whose data type is LIST, MULTISET, SET, or IDSSECURITYLABEL.

The IDSSECURITYLABEL column has an implicit NOT NULL constraint, but it
cannot have explicit single-column constraints nor be part of multiple-column

Chapter 2. SQL statements 2-85

referential constraints or check constraints. If the constraint is on a column that
stores encrypted data, Informix cannot enforce the constraint.

Important:

You cannot use the Single-Column Constraint Format to add a new column with a
foreign-key constraint in ENABLED NOVALIDATE or FILTERING WITH ERROR
NOVALIDATE or FILTERING WITHOUT ERROR NOVALIDATE constraint mode.
For the ALTER TABLE statement to create a new foreign-key constraint with the
NOVALIDATE keyword bypassing violations-checking during the ALTER TABLE
operation, you must use the ALTER TABLE ADD CONSTRAINT syntax with the
Multiple-Column Constraint Format.
Related reference:
“Choosing a Constraint-Mode Option” on page 2-284

Using NOT NULL Constraints with ADD COLUMN:

If a table contains data, when you add a column with a NOT NULL constraint you
must also include a DEFAULT clause.

If the table is empty, however, you can add a column and apply only the NOT
NULL constraint. The following statement is valid whether or not the table
contains data:
ALTER TABLE items

ADD (item_weight DECIMAL(6,2)
DEFAULT 2.0 NOT NULL

BEFORE total_price);

Constraint Definition:

Use the Constraint Definition segment of the ALTER TABLE statement to declare
the name of a constraint, and to set its mode to DISABLED or ENABLED, or for
tables that have violations tables, two FILTERING modes.

For enabled or filtering foreign-key constraints that the ALTER TABLE ADD
CONSTRAINT statements can create, the NOVALIDATE mode can prevent the
database server from checking every row of the table for compliance with the
enabled constraint while the ALTER TABLE statement is creating the constraint.

Both the Single-Column Constraint format and the Multiple-Column Constraint
format support the following syntax for defining constraints:

Constraint Definition:

�

CONSTRAINT constraint
ON DELETE CASCADE

�

2-86 IBM Informix Guide to SQL: Syntax

�
DISABLED

ENABLED

(1) (2)
FILTERING WITHOUT ERROR NOVALIDATE

WITH ERROR

Notes:

1 See “Filtering Modes” on page 2-746

2 Valid for FOREIGN KEY constraints only

Element Description Restrictions Syntax

constraint Name declared here for the constraint Must be unique among the names of
indexes and constraints in database

“Identifier”
on page 5-21

Usage

If the ALTER TABLE statement includes the Single-Column Constraint format or
the Multiple-Column Constraint format, but the Constraint Definition is empty, the
database server creates and enables whatever type of constraint the Single-Column
Constraint or Multiple-Column Constraint format specified, assigns to the
constraint a system-generated identifier and a default object state, and registers
these attributes in the sysconstraints and sysobjstate system catalog tables.

If you specify no mode for the constraint, the constraint is enabled by default.

The optional ON DELETE CASCADE keywords can precede or follow the declaration of
the constraint name. For referential constraints, the ON DELETE CASCADE keywords
instructs the database server to delete foreign-key rows from the child tables when
it deletes rows with the corresponding primary key from the parent table. For
more information on the effects of these keywords on DELETE operations, see
“Using the ON DELETE CASCADE Option” on page 2-89.

While creating and enabling foreign-key constraints that the ALTER TABLE ADD
CONSTRAINT statement defines, the NOVALIDATE keyword prevents the database
server from checking every row of the table for compliance with the referential
constraint while the ALTER TABLE statement is running. For more information on
the restrictions and effects of this keyword, see “Creating foreign-key constraints in
NOVALIDATE modes” on page 2-110.

Just as in the CREATE TABLE statement, you cannot define unique constraints,
primary-key constraints, or referential constraints on a BYTE or TEXT column. In
addition, the table cannot be a RAW table.

For more information about constraint-mode options, see “Choosing a
Constraint-Mode Option” on page 2-284.

REFERENCES Clause:
The REFERENCES clause has the following syntax.

Chapter 2. SQL statements 2-87

REFERENCES Clause:

REFERENCES table

�

,

(column)

(1)
ON DELETE CASCADE

Notes:

1 Informix extension

Element Description Restrictions Syntax

column Referenced column in the
referenced table

See “Restrictions on Referential Constraints.” “Identifier” on page 5-21

table The referenced table The referenced and the referencing tables
must reside in the same database

“Identifier” on page 5-21

The REFERENCES clause allows you to place a foreign-key constraint on one or
more columns. The referenced column can be in the same table as the referencing
column, or in a different table in the same database.

If the referenced table is different from the referencing table, the default column is
the primary-key column. If the referenced table is the same as the referencing table,
there is no default.

The optional ON DELETE CASCADE keywords can either be specified the last
keywords in the REFERENCES clause, or they can follow the declaration of the
constraint name in the Constraint definition. For more information on the effects of
these keywords in DELETE operations, see “Using the ON DELETE CASCADE
Option” on page 2-89.

Restrictions on Referential Constraints: You must have the REFERENCES
privilege to create a referential constraint.

The following restrictions apply to the column that is specified (the referenced
column) in the REFERENCES clause:
v The referenced and referencing tables must be in the same database.
v The referenced column (or set of columns) must have a unique or primary-key

constraint.
v The referencing and referenced columns must be the same data type.

The only exceptions are that a referencing column must be an integer data type
if the referenced column is a serial data type:
– For BIGSERIAL referenced columns, use BIGINT referencing columns.
– For SERIAL referenced columns, use INT referencing columns.
– For SERIAL8 referenced columns, use INT8 referencing columns.

v You cannot place a referential constraint on a BYTE or TEXT column.
v You cannot place a constraint on any column of a RAW table.
v Constraints uses the collation in effect at their time of creation.
v A column-level REFERENCES clause can include only a single column name.
v Maximum number of columns in a table-level REFERENCES clause is 16.
v The total length of the columns in a table-level REFERENCES clause cannot

exceed 390 bytes.

2-88 IBM Informix Guide to SQL: Syntax

Default Column for the References Clause: If the referenced table is different
from the referencing table, you do not need to specify the referenced column; the
default column is the primary-key column (or columns) of the referenced table. If
the referenced table is the same as the referencing table, you must specify the
referenced column.

The following example creates a new column in the cust_calls table, ref_order. The
ref_order column is a foreign key that references the order_num column in the
orders table.
ALTER TABLE cust_calls

ADD ref_order INTEGER
REFERENCES orders (order_num)
BEFORE user_id;

When you place a referential constraint on a column or set of columns, and a
duplicate or unique index already exists on that column or set of columns, the
index is shared.

Using the ON DELETE CASCADE Option:

Use the ON DELETE CASCADE option if you want rows deleted from the child
table when the DELETE or MERGE statement removes corresponding rows from
the parent table.

Here the parent table is the table specified in the REFERENCING clause of the
definition of an enabled foreign key constraint, and the child table is the table on
which the enabled foreign key constraint is defined. If you do not specify
cascading deletes, the default behavior of the database server prevents DELETE
and MERGE statements from deleting data in a table that another tables references
within a primary-key foreign-key relationship.

If you specify this option, when you delete a row in the parent table, the database
server also deletes any rows associated with that row (foreign keys) in a child
table. The advantage of the ON DELETE CASCADE option is that it allows you to
reduce the quantity of SQL statements needed to perform delete actions.

For example, in the stores_demo database, the stock table contains the stock_num
column as a primary key. The catalog table refers to the stock_num column as a
foreign key. The following ALTER TABLE statements drop an existing foreign-key
constraint (without cascading delete) and add a new constraint that specifies
cascading deletes:
ALTER TABLE catalog DROP CONSTRAINT aa;

ALTER TABLE catalog ADD CONSTRAINT
(FOREIGN KEY (stock_num, manu_code) REFERENCES stock
ON DELETE CASCADE CONSTRAINT ab);

With cascading deletes specified on the child table, in addition to deleting a stock
item from the stock table, the delete cascades to the catalog table that is associated
with the stock_num foreign key. This cascading delete works only if the
stock_num that you are deleting was not ordered; otherwise, the constraint from
the items table would disallow the cascading delete. For more information, see
“Restrictions on DELETE When Tables Have Cascading Deletes” on page 2-407.

Chapter 2. SQL statements 2-89

If a table has a trigger with a DELETE trigger event, you cannot define a
cascading-delete referential constraint on that table. You receive an error when you
attempt to add a referential constraint that specifies ON DELETE CASCADE to a
table that has a delete trigger.

The TRUNCATE statement cannot result in cascading deletes from a child table.
The target table of the TRUNCATE statement cannot be referenced in the definition
of an enabled foreign-key constraint on another table (unless that child table has
no rows).

For information about syntax restrictions and locking implications when you delete
rows from tables that have cascading deletes, see “Considerations When Tables
Have Cascading Deletes” on page 2-407.

Locks Held During Creation of a Referential Constraint: When you create a
referential constraint, the database server places an exclusive lock on the referenced
table. The lock is released after you finish with the ALTER TABLE statement or at
the end of a transaction (if you are altering the table in a database that uses
transaction logging).

CHECK Clause:

A check constraint designates a condition that must be met before data can be
inserted into a column.

CHECK Clause:

CHECK
(1)

(Condition)

Notes:

1 See “Condition” on page 4-5

During an insert or update, if a row returns false for any check constraint defined
on a table, the database server returns an error. No error is returned, however, if a
row returns NULL for a check constraint. In some cases, you might want to use
both a check constraint and a NOT NULL constraint.

Check constraints are defined using search conditions. The search condition cannot
contain user-defined routines, subqueries, aggregates, host variables, or rowids. In
addition, the condition cannot contain the variant built-in functions CURRENT,
SYSDATE, USER, CURRENT_USER, SITENAME, DBSERVERNAME, or TODAY.

The check constraint cannot include columns in different tables. When you are
using the ADD or MODIFY clause, the check constraint cannot depend upon
values in other columns of the same table.

The next example adds a new unit_price column to the items table and includes a
check constraint to ensure that the entered value is greater than 0:
ALTER TABLE items

ADD (unit_price MONEY (6,2) CHECK (unit_price > 0));

2-90 IBM Informix Guide to SQL: Syntax

To create a constraint that checks values in more than one column, use the ADD
CONSTRAINT clause. The following example builds a constraint on the column
that was added in the previous example. The check constraint now spans two
columns in the table.
ALTER TABLE items ADD CONSTRAINT CHECK (unit_price < total_price);

Add Column Security: The Add Column Security clause associates the new
column with a security label.

Add Column Security Clause:

SECURED WITH label
COLUMN

Element Description Restrictions Syntax

label Name of a security
label

Must exist and must belong to the same security policy that
protects the table.

“Identifier” on
page 5-21

Specify the label name without the policy qualifier, rather than as policy.label,
because the security policy of the table is the only valid policy for any security
label that protects data in the table.

The column cannot be of type IDSSECURITYLABEL

When a user who holds appropriate table access privileges attempts to access a
value in the protected column, the database server compares this label with the
security credentials of the user, and allows or withholds access on the basis of this
comparison.

ADD AUDIT Clause
Use the ADD AUDIT clause with the ALTER TABLE command to include a table
in selective row-level auditing.

When you alter a table with the ADD AUDIT clause, row-level audit events in that
table are recorded when selective row-level auditing is turned on. Applying the
ADD AUDIT attribute to a table by itself does not enable selective row-level
auditing. This type of auditing is enabled when the ADTROWS parameter of the
adtcfg file is set to 1 or 2 by using the onaudit -R command.

If selective row-level auditing is not enabled, the ADD AUDIT attribute on a table
has no effect.

You must have RESOURCE or DBA privileges to run ALTER TABLE command
with the ADD AUDIT clause.

SECURITY POLICY Clause
The optional Security Policy clause can use the following syntax to drop the
security policy that is currently associated with the table, or to associate a security
policy with a table that has none.

SECURITY POLICY Clause:

Chapter 2. SQL statements 2-91

ADD SECURITY POLICY policy
DROP SECURITY POLICY

Element Description Restrictions Syntax

policy Name of a security
policy

Must be the security policy that protects
the table

“Identifier” on page 5-21

Only DBSECADM can use this clause to add a security policy to an existing table,
or to remove from the table the protection of the security policy that currently
protects a table.

The ALTER TABLE statement cannot add a security policy to tables that were
defined by the CREATE EXTERNAL TABLE statement.

The following guidelines apply to tables that can be protected by executing the
ADD SECURITY POLICY clause of the ALTER TABLE statement:
v A table is not protected unless it has a security policy associated with it and has

either rows secured, or has at least one column secured. The former indicates
that the table is a protected table with row level granularity and the latter
indicates that the table is a protected table with column-level granularity.

v Securing rows by using the ALTER TABLE ... ADD statement to add an
IDSSECURITYLABEL column to an existing table fails if the table does not have
a security policy associated with it.

v Securing a column with the ALTER TABLE ... MODIFY ... COLUMN SECURED
WITH clause fails if the table does not have a security policy associated with it.

v A table can have at most one security policy. The ALTER TABLE ... ADD
SECURITY POLICY statement fails if the table already has a security policy.

v A table can have any number of protected columns. Each protected column can
have a different security label, or several protected columns can share the same
security label.

v You cannot use this clause to add a security policy to a temporary table, to a
typed table in a table hierarchy, or to any table outside the current database.

v A table can have at most one column of type IDSSECURITYLABEL.
v The IDSSECURITYLABEL column cannot have column protection.
v The IDSSECURITY LABEL column cannot have single column constraints nor be

part of multiple column referential or check constraints.
v The IDSSECURITYLABEL column cannot be encrypted.
v The IDSSECURITYLABEL column has an implicit DEFAULT NOT NULL

constraint. The default column value is the value of the security label of the user
for write access.

v The IDSSECURITYLABEL column can be dropped only by DBSECADM, who
must also hold the usual CONNECT, RESOURCE, and ALTER access privileges
for dropping columns.

v The IDSSECURITYLABEL column cannot be modified by the ALTER TABLE
statement.

v Attaching a fragment to a protected fragmented table fails if any of these
conditions are true:
– if the source table and the target table are not protected using the same

security policy;

2-92 IBM Informix Guide to SQL: Syntax

– if the tables do not have the same protection granularity;
– if the tables do not have the same set of protected columns, each protected by

the same security label.

For more information on using the ALTER FRAGMENT statement to attach
fragments to protected tables, see “Additional Restrictions on the ATTACH
Clause” on page 2-13.

v Detaching a fragment of a protected table creates a new table that is protected
by the same security policy for the same row security label column, and the
same set of protected columns.

If the DROP SECURITY POLICY clause executes successfully, it has the following
effects:
v A table is not protected unless it has a security policy associated with it and has

either rows secured or at least one column secured. The former indicates that the
table is a protected table with row level granularity and the latter indicates that
the table is a protected table with column level granularity.

v Securing rows with the IDSSECURITYLABEL column clause fails if the table
does not have a security policy associated with it.

v Securing a column with the COLUMN SECURED WITH clause of the ALTER
TABLE ADD or ALTER TABLE MODIFY statement fails if the table does not
have a security policy associated with it.

v When a security policy is dropped from a table by the ALTER TABLE DROP
SECURITY POLICY statement, the IDSSECURITYLABEL column is
automatically dropped. If the table has one or more protected columns, those
columns become unprotected.

Do not confuse this DROP SECURITY POLICY clause of the ALTER table
statement with the DROP SECURITY POLICY statement.
v When the DROP SECURITY POLICY clause of the ALTER TABLE statement

executes successfully, it terminates the association of the table with the security
policy, drops the IDSSECURITYLABEL column, and removes LBAC protection
from data that had been protected in that table. It has no effect, however, on the
security policy, nor on other tables protected by the policy.

v When the DROP SECURITY POLICY statement executes successfully, the effects
depend on whether the policy is dropped in RESTRICT or CASCADE mode, but
in either mode, it destroys the specified policy. See the description of “DROP
SECURITY statement” on page 2-442 for more information on the DROP
SECURITY POLICY statement of SQL, and about restrictions on that statement.

DROP Column Clause
Use the DROP Column clause to remove one or more columns from the schema of
a table.

DROP Column Clause:

DROP �

,

(column)
column

Chapter 2. SQL statements 2-93

Element Description Restrictions Syntax

column Name of a column
to be dropped

Must exist in the table. No fragment expression can reference the
column, and it cannot be the last column in the table.

“Identifier” on
page 5-21

You cannot issue an ALTER TABLE DROP statement that would drop every
column from the table. At least one column must remain in the table.

You cannot drop a column that is part of the fragmentation key of a fragmentation
strategy.

A column that is protected by a security label can be dropped by the ALTER
TABLE DROP statement, but the user must be DBSECADM and must also hold the
usual CONNECT, RESOURCE, and ALTER access privileges for modifying the
schema of the table.

How Dropping a Column Affects Constraints
When you drop a column, all constraints on that column are also dropped:
v All single-column constraints are dropped.
v All referential constraints that reference the column are dropped.
v All check constraints that reference the column are dropped.
v If the column is part of a multiple-column primary-key or unique constraint, the

constraints placed on the multiple columns are also dropped. This action, in
turn, triggers the dropping of all referential constraints that reference the
multiple columns.

Because any constraints that are associated with a column are dropped when the
column is dropped, the structure of other tables might also be altered when you
use this clause. For example, if the dropped column is a unique or primary key
that is referenced in other tables, those referential constraints also are dropped.
Therefore the structure of those other tables is also altered.

How Dropping a Column Affects Triggers
In general, when you drop a column from a table, the triggers based on that table
remain unchanged. If the column that you drop appears in the action clause of a
trigger, however, dropping the column can invalidate the trigger. The following
statements illustrate the possible effects on triggers:
CREATE TABLE tab1 (i1 int, i2 int, i3 int);
CREATE TABLE tab2 (i4 int, i5 int);
CREATE TRIGGER col1trig UPDATE OF i2 ON tab1

BEFORE(INSERT INTO tab2 VALUES(1,1));
ALTER TABLE tab2 DROP i4;

After the ALTER TABLE statement, tab2 has only one column. The col1trig trigger
is invalidated because the action clause as it is currently defined with values for
two columns cannot occur.

If you drop a column that occurs in the triggering column list of an UPDATE
trigger, the database server drops the column from the triggering column list. If the
column is the only member of the triggering column list, the database server drops
the trigger from the table. For more information on triggering columns in an
UPDATE trigger, see “CREATE TRIGGER statement” on page 2-329.

If a trigger is invalidated when you alter the underlying table, drop and then
re-create the trigger.

2-94 IBM Informix Guide to SQL: Syntax

How Dropping a Column Affects Views
When you drop a column from a table, the views based on that table remain
unchanged. That is, the database server does not automatically drop the
corresponding columns from associated views.

The view is not automatically dropped because ALTER TABLE can change the
order of columns in a table by dropping a column and then adding a new column
with the same name. In this case, views based on the altered table continue to
work, but retain their original sequence of columns.

If a view is invalidated when you alter the underlying table, you must rebuild the
view by using the DROP VIEW and CREATE VIEW statements.

DROP AUDIT Clause
Use the DROP AUDIT clause with the ALTER TABLE command to remove it from
the set of tables that is audited when selective row-level auditing is enabled.

The DROP AUDIT clause affects only tables that have been flagged for inclusion in
selective row-level auditing. If you have not created or altered the table with the
WITH AUDIT clause or ADD AUDIT clause, it is not necessary to use DROP
AUDIT to exclude it from the set of tables that are audited at the row level.

Removing the AUDIT attribute from a table does not disable or change selective
row-level auditing of other tables in the database.

You must be a DBSSO to run the ALTER TABLE command with the DROP AUDIT
clause.

MODIFY Clause
Use the MODIFY clause to change the data type, length, or default value of a
column, to add or remove the security label of a column, to allow or disallow
NULL values in a column, or to reset the serial counter of a SERIAL, SERIAL8, or
BIGSERIAL column.

MODIFY Clause:

MODIFY �

,

(Modify Column Clause)
Modify Column Clause

Modify Column Clause:

column
(1)

Data Type �

(2) (3)
DEFAULT Clause

(2) (4)
Single-Column Constraint Format

�

Chapter 2. SQL statements 2-95

�
(5)

Modify Column Security

Notes:

1 See “Data Type” on page 4-23

2 Use this path no more than once

3 See “DEFAULT Clause” on page 2-83

4 See “Single-Column Constraint Format” on page 2-84

5 See “Modify Column Security” on page 2-100

Element Description Restrictions Syntax

column Column to modify Must exist in table. Cannot be a collection or
IDSSECURITYLABEL data type.

“Identifier” on page
5-21

You cannot change the data type of a column to a COLLECTION or a ROW type.

The IDSSECURITYLABEL column of a protected table cannot be altered to a
different data type, nor can an existing column be altered to be of type
IDSSECURITYLABEL.

When you modify a column, all attributes previously associated with the column
(that is, default value, single-column check constraint, or referential constraint) are
dropped. When you want certain attributes of the column to remain, such as
PRIMARY KEY, you must respecify those attributes in the same MODIFY clause.

For example, if you are changing the data type of an existing column, quantity, to
SMALLINT, but you want to keep the default value (in this case, 1) and the NOT
NULL column attribute, you can issue this statement:
ALTER TABLE items MODIFY (quantity SMALLINT DEFAULT 1 NOT NULL);

Note: Both attributes are specified again in the MODIFY clause.
When you specify a PRIMARY KEY constraint in the MODIFY clause, the database
server also silently creates a NOT NULL constraint on the same column, or on the
same set of columns that makes up the primary key

When you change the data type of a column, the database server does not perform
the modification in place. The next example changes a VARCHAR(15) column to
an LVARCHAR(3072) column:
ALTER TABLE stock MODIFY (description LVARCHAR(3072));

When you modify a column that has column constraints associated with it, the
following constraints are dropped:
v All single-column constraints are dropped.
v All referential constraints that reference the column are dropped.
v If the modified column is part of a multiple-column primary-key or unique

constraint, all referential constraints that reference the multiple columns also are
dropped.

2-96 IBM Informix Guide to SQL: Syntax

For example, if you modify a column that has a unique constraint, the unique
constraint is dropped. If this column was referenced by columns in other tables,
those referential constraints are also dropped. In addition, if the column is part of a
multiple-column primary-key or unique constraint, the multiple-column constraints
are not dropped, but any referential constraints placed on the column by other
tables are dropped.

For another example, suppose that a column is part of a multiple-column
primary-key constraint. This primary key is referenced by foreign keys in two
other tables. When this column is modified, the multiple-column primary-key
constraint is not dropped, but the referential constraints placed on it by the two
other tables are dropped.

Consider the table that this statement defines:
CREATE TABLE tab1(c1 INT, c2 INT);

To add the NOT NULL constraint, an ALTER TABLE MODIFY statement is
required:
ALTER TABLE tab1 MODIFY (c1 INT NOT NULL);

You cannot add a NULL or a NOT NULL constraint with the ADD CONSTRAINT
clause.

Using the MODIFY Clause
The characteristics of the object you are attempting to modify can affect how you
handle your modifications.

Altering BYTE and TEXT Column data types
You can use the MODIFY clause to change a BYTE column to a TEXT column, and
vice versa. You can also use the MODIFY clause to change a BYTE column to a
BLOB column and a TEXT column to a CLOB column.

Except for these operations, however, you cannot use the MODIFY clause to
change a BYTE or TEXT column to any other type of column, nor to change any
other type of column to a BYTE or TEXT column.

When you use this clause to change a BYTE column to a BLOB column, or to
change a TEXT column to a CLOB column, you can also use the “PUT Clause” on
page 2-101 of the ALTER TABLE statement to specify an sbspace and to define its
characteristics for storing the BLOB or CLOB objects.

Altering the Next Serial Value
You can use the MODIFY clause to reset the next value of a SERIAL, BIGSERIAL,
or SERIAL8 column. You cannot set the next value below the current maximum
value in the column because that action can cause the database server to generate
duplicate numbers. You can set the next value, however, to any value higher than
the current maximum, which creates a gap in the series of values.

If the new serial value that you specify is less than the current maximum value in
the serial column, the maximum value is not altered. If the maximum value is less
than what you specify, the next serial number will be what you specify. The next
serial value is not equivalent to one greater than the maximum serial value in the
column in two situations:
v There are no rows in the table, and an initial serial value was specified when the

table was created (or by a previous ALTER TABLE statement).

Chapter 2. SQL statements 2-97

v There are rows in the table, but the next serial value was modified by a previous
ALTER TABLE statement.

The following example sets the next serial value to 1000:
ALTER TABLE my_table MODIFY (serial_num SERIAL (1000));

As an alternative, you can use the INSERT statement to create a gap in the series
of serial values in the column. For more information, see “Inserting Values into
Serial Columns” on page 2-551.

Altering the Next Serial Value in a Typed Table: You can set the initial serial
number or modify the next serial number for a ROW-type field with the MODIFY
clause of the ALTER TABLE statement. (You cannot set the initial number for a
serial field when you create a ROW data type.)

Suppose you have ROW types parent, child1, child2, and child3.
CREATE ROW TYPE parent (a int);
CREATE ROW TYPE child1 (s serial) UNDER parent;
CREATE ROW TYPE child2 (b float, s8 serial8) UNDER child1;
CREATE ROW TYPE child3 (d int) UNDER child2;

You then create corresponding typed tables:
CREATE TABLE OF TYPE parent;
CREATE TABLE OF TYPE child1 UNDER parent;
CREATE TABLE OF TYPE child2 UNDER child1;
CREATE TABLE OF TYPE child3 UNDER child2;

To change the next SERIAL and SERIAL8 numbers to 75, you can issue the
following statement:
ALTER TABLE child3 MODIFY (s serial(75), s8 serial8(75));

When the ALTER TABLE statement executes, the database server updates
corresponding serial columns in the child1, child2, and child3 tables.

Altering character columns
You can use the MODIFY clause to change the declared length of an existing
CHAR, LVARCHAR, NCHAR, NVARCHAR, or VARCHAR column.

Similarly, the MODIFY clause can change the data type of a character column to a
non-character data type.

For modified columns that you declare as built-in character data types, explicit or
default size specifications are interpreted in units of bytes, unless the database was
created with the SQL_LOGICAL_CHAR configuration parameter set to enable
logical character semantics in character type declarations. For more information
about logical character semantics when the ALTER TABLE statement declares size
specifications for character columns, see “Logical Character Support in Character
Columns” on page 2-82. For more information about the SQL_LOGICAL_CHAR
configuration parameter, see your IBM Informix Administrator's Reference. For
additional information about multibyte locales and logical characters, see the IBM
Informix GLS User's Guide.

In a database that was created as NLSCASE INSENSITIVE, changing a character
column of type NCHAR or NVARCHAR into type CHAR, LVARCHAR, or
VARCHAR causes the database server to process values in the modified column as
case-sensitive.

2-98 IBM Informix Guide to SQL: Syntax

Conversely, in the same case-insensitive database, changing a character column of
type CHAR, LVARCHAR, or VARCHAR into type NCHAR or NVARCHAR results
in case-insensitive processing of values in the modified column. (The data values
are not changed, but variations in letter case are ignored in comparison and
collation operations on those values.)
Related reference:

SQL_LOGICAL_CHAR configuration parameter (Administrator's Reference)

Altering the Structure of Tables
When you use the MODIFY clause, you can also alter the structure of other tables.
If the modified column is referenced by other tables, those referential constraints
are dropped. You must add those constraints to the referencing tables again, using
the ALTER TABLE statement.

When you change the data type of an existing column, all data is converted to the
new data type, including numbers to characters and characters to numbers (if the
characters represent numbers). The following statement changes the data type of
the quantity column:
ALTER TABLE items MODIFY (quantity CHAR(6));

When a primary-key or unique constraint exists, however, conversion takes place
only if it does not violate the constraint. If a data type conversion would result in
duplicate values (by changing FLOAT to SMALLFLOAT, for example, or by
truncating CHAR values), the ALTER TABLE statement fails.

Modifying Tables for NULL Values
You can modify an existing column that formerly permitted NULLs to disallow
NULLs, provided that the column contains no NULL values. To do this, specify
MODIFY with the same column name and data type and the NOT NULL
keywords. Those keywords create a NOT NULL constraint on the column.

You can modify an existing column that did not permit NULLs to permit NULLs.
To do this, specify MODIFY with the column name and the existing data type, and
omit the NOT NULL keywords. The omission of the NOT NULL keywords drops
the NOT NULL constraint on the column. If a unique index exists on the column,
you can remove it using the DROP INDEX statement.

An alternative method of permitting NULL values in an existing column that did
not permit NULL values is to use the DROP CONSTRAINT clause to drop the
NOT NULL constraint on the column.

When you define a PRIMARY KEY constraint, the database server also silently
creates a NOT NULL constraint on the same column, or on the same set of
columns that make up the primary key.

Adding a Constraint on a Non-Opaque Column
ALTER TABLE ... MODIFY operations that use the Single Column Constraint
format to implicitly create an index on a non-opaque column also automatically
calculate the distribution of the specified column. The distribution statistics are
available to the query optimizer when it designs query plans for the table on
which the constraint is defined:
v For columns on which the new constraint is implemented as a B-tree index, the

recalculated column distribution statistics are equivalent to distributions created
by the UPDATE STATISTICS statement in HIGH mode.

Chapter 2. SQL statements 2-99

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076

v If the new constraint is not implemented as a B-tree index, the automatically
recalculated statistics correspond to distributions created by the UPDATE
STATISTICS statement in LOW mode.

See also the section “Automatic Calculation of Distribution Statistics” on page
2-217 in the description of the CREATE INDEX statement for additional
information about statistical distributions that are produced automatically when an
index or constraint is created on an existing table.

Modify Column Security
The Modify Column Security clause is valid only for tables that are protected by a
security policy. Use this clause to add or drop row-level security for the column.

Modify Column Security Clause:

SECURED WITH label
COLUMN

DROP COLUMN SECURITY

Element Description Restrictions Syntax

label Name of a security
label

Must exist and must belong to the same security policy that
protects the table.

“Identifier” on
page 5-21

This clause can add or drop row-level protection.
v To drop the row-level protection of a column, specify the DROP COLUMN

SECURITY keywords.
v To provide row-level protection to a column, specify SECURED WITH label (or

equivalently, COLUMN SECURED WITH label).

The security label can be the same label that protects other rows or columns of the
table, or it can be a different label of the same security policy. The following
restrictions apply to the SECURED WITH label option:
v The column cannot be of type IDSSECURITYLABEL.
v Specify the label without the policy qualifier, rather than as policy.label.
v The label must be a label of the security policy that secures the table.

.

Adding a Constraint That Existing Rows Violate
If you use the MODIFY clause to add a constraint in the enabled mode and receive
an error message because existing rows would violate the constraint, take the
following steps to add the constraint successfully:
1. Add the constraint in the disabled mode.

Issue the ALTER TABLE statement again, but this time specify the DISABLED
keyword in the MODIFY clause.

2. Start a violations and diagnostics table for the target table with the START
VIOLATIONS TABLE statement.

3. Issue the SET CONSTRAINTS statement to switch the database object mode of
the constraint to the enabled mode.
When you issue this statement, existing rows in the target table that violate the
constraint are duplicated in the violations table; however, you receive an
integrity-violation error message, and the constraint remains disabled.

2-100 IBM Informix Guide to SQL: Syntax

4. Issue a SELECT statement on the violations table to retrieve the nonconforming
rows that are duplicated from the target table.
You might need to join the violations and diagnostics tables to get all the
necessary information.

5. Take corrective action on the rows in the target table that violate the constraint.
6. After you fix all the nonconforming rows in the target table, issue the SET

statement again to enable the constraint that was disabled.
Now the constraint is enabled, and no integrity-violation error message is
returned because all rows in the target table now satisfy the new constraint.

How Modifying a Column Affects Triggers
If you modify a column that appears in the triggering column list of an UPDATE
trigger, the trigger is unchanged.

When you modify a column in a table, the triggers based on that table remain
unchanged, but the column modification might invalidate the trigger.

The following statements illustrate the possible affects on triggers:
CREATE TABLE tab1 (i1 INT, i2 INT, i3 INT);
CREATE TABLE tab2 (i4 INT, i5 INT);
CREATE TRIGGER col1trig UPDATE OF i2 ON tab1

BEFORE(INSERT INTO tab2 VALUES(1,1));
ALTER TABLE tab2 MODIFY i4 CHAR;

After the ALTER TABLE statement, column i4 accepts only character values.
Because character columns accept only values enclosed in quotation marks, the
action clause of the col1trig trigger is invalidated.

If a trigger is invalidated when you modify the underlying table, drop and then
re-create the trigger.

How Modifying a Column Affects Views
When you modify a column in a table, the views based on that table remain
unchanged. If a view is invalidated when you alter the underlying table, you must
rebuild the view.

PUT Clause
Use the PUT clause to specify the storage space (an sbspace) for a column that
contains smart large objects. This clause can specify storage characteristics for a
new column or replace the storage characteristics of an existing column. The
syntax is similar to the PUT clause of the CREATE TABLE statement, but specifies
only a single column, rather than a list of columns.

PUT Clause:

PUT column �

,

IN (sbspace) �

Chapter 2. SQL statements 2-101

�

�

,

()
EXTENT SIZE kilobytes

NO LOG

LOG
HIGH INTEG

MODERATE INTEG
NO KEEP ACCESS TIME

KEEP ACCESS TIME

Element Description Restrictions Syntax

column Column to store in the
specified sbspace

Must be a UDT, or a complex, BLOB,
or CLOB data type

“Identifier” on page 5-21

kilobytes Number of kilobytes to
allocate for the extent size

Must be an integer value “Literal Number” on page
4-215

sbspace Name of an area of storage for
smart large objects

The sbspace must exist “Identifier” on page 5-21

When you modify the storage characteristics of a column, all attributes previously
associated with the storage space for that column are dropped. When you want
certain attributes to remain, you must specify those attributes again. For example,
to retain logging, you must specify the log keyword again.

The format column.field is not valid here. That is, the smart large object that you are
storing cannot be one field of a row type.

When you modify the storage characteristics of a column that holds smart large
objects, the database server does not alter smart large objects that already exist, but
applies the new storage characteristics only to those smart large objects that are
inserted after the ALTER TABLE statement takes effect.

The following example alters the table sbtab to put BLOB column c1 in sbspace
sbs1, changes the extent size to 32 kilobytes, and turns on transaction logging:
ALTER TABLE sbtab PUT c1 IN (sbs1) (EXTENT SIZE 32, LOG);

The following example changes the logging status to NO LOG, and does not keep
the last access time of this BLOB column:
ALTER TABLE sbtab PUT c1 IN (sbs1) (NO LOG, NO KEEP ACCESS TIME);

The following example alters the table to put BLOB column c1 in sbspaces sbs1
and sbs2, changes the extent size to 100 kilobytes, turns on transaction logging,
and keeps the last access time:
ALTER TABLE sbtab PUT c1 IN (sbs1, sbs2)

(EXTENT SIZE 100, LOG, KEEP ACCESS TIME);

For more information on the available storage characteristics, and for descriptions
of the keyword options of the PUT clause, refer to the counterpart of this topic in

2-102 IBM Informix Guide to SQL: Syntax

the “PUT Clause” on page 2-296 of the CREATE TABLE statement. For a
discussion of large-object characteristics, refer to “Large-Object Data Types” on
page 4-33.

ADD CONSTRAINT Clause
Use the ADD CONSTRAINT clause to specify a primary key, foreign key,
referential, unique, or check constraint on a new or existing column or on a set of
columns.

ADD CONSTRAINT Clause:

(1)
ADD CONSTRAINT �

�

�

(2)
Multiple-Column Constraint Format

,
(2)

(Multiple-Column Constraint Format)

Notes:

1 For NULL and NOT NULL constraints, use instead the “MODIFY Clause” on
page 2-95

2 See “Multiple-Column Constraint Format” on page 2-104

For example, to add a unique constraint to the fname and lname columns of the
customer table, use the following statement:
ALTER TABLE customer ADD CONSTRAINT UNIQUE (lname, fname);

To declare a name for the constraint, change the preceding statement by adding the
CONSTRAINT keyword and an identifier for the constraint:
ALTER TABLE customer

ADD CONSTRAINT UNIQUE (lname, fname) CONSTRAINT u_cust;

The name must be unique among the identifiers of constraints that are defined on
the same table. If you define no name for the constraint, the database server
assigns to the constraint a system-defined identifier, and stores this in the
sysconstraints.constrid column of the system catalog.

The new constraint is enabled by default. To add a constraint that is not enabled,
you can include the DISABLED keyword after the name of the constraint:
ALTER TABLE customer

ADD CONSTRAINT UNIQUE (lname, fname) CONSTRAINT u_cust DISABLED;

Before you perform subsequent DML operations in which you want the constraint
to be enforced. You can use the SET Database Object Mode statement to enable the
disabled constraint.

When you do not specify a name for a new constraint, the database server
provides one. You can find the name of the constraint in the sysconstraints system
catalog table. For more information about the sysconstraints system catalog table,
see the IBM Informix Guide to SQL: Reference.

Chapter 2. SQL statements 2-103

Restrictions on constraints defined by ALTER TABLE

The following restrictions on the ADD CONSTRAINT clause (and on the MODIFY
clause) affect constraints that the ALTER TABLE statement defines:
v When you add a constraint, the collating order must be the same as when the

table was created.
v The ADD CONSTRAINT clause cannot define NULL or a NOT NULL

constraints on columns of any data type. Only the MODIFY clause can define a
NULL or a NOT NULL constraint on columns in existing tables.

v You cannot define primary key constraints, foreign key constraints, or unique
constraints on RAW tables. You can, however, use the MODIFY clause of the
ALTER TABLE statement to define a NOT NULL constraint or a NULL
constraint (but not both) on a column in a RAW table. For the syntax to add a
NULL or NOT NULL constraint on a column in an existing table, see “MODIFY
Clause” on page 2-95.

v You cannot place a unique constraint nor referential constraints on a BYTE or
TEXT column.

v A check constraint on a BYTE or TEXT column can check only for IS NULL, IS
NOT NULL, or LENGTH.

v By default, every IDSSECURITYLABEL column has an implicit NOT NULL
constraint. You cannot, however, use the ADD CONSTRAINT clause to reference
an IDSSECURITYLABEL column in the definition of a single-column constraint,
nor as part of a multiple-column referential constraint or check constraint.

Related reference:

SYSCONSTRAINTS (SQL Reference)

Multiple-Column Constraint Format
Use this option to assign one or more constraints to a column or to a set of
columns in an existing table.

This closely resembles the syntax of the Multiple Column Constraint Format of the
CREATE TABLE statement, but the optional INDEX DISABLED keywords are not
valid (and return an error) in foreign key constraints that the CREATE TABLE
statement defines.

Multiple-Column Constraint Format:

�

,
(1) (4)

NOT NULL (column)
NULL (2) (6)

UNIQUE Constraint
(2)

DISTINCT
PRIMARY KEY

(3)
REFERENCES Clause

(5)
CHECK Clause
FOREIGN KEY Definition

(2)
FOREIGN KEY Definition INDEX DISABLED

CONSTRAINT constraint

2-104 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_029.htm#ids_sqr_029

FOREIGN KEY Definition:

�

,
(4) (3)

FOREIGN KEY (column) REFERENCES Clause

Notes:

1 Not valid in ALTER TABLE ADD CONSTRAINT statements. See “MODIFY Clause” on page 2-95.

2 Informix extension

3 See “REFERENCES Clause” on page 2-87

4 Use path no more than 16 times

5 See “CHECK Clause” on page 2-90

6 See “Constraint Definition” on page 2-86

Element Description Restrictions Syntax

column A column on which the constraint is placed No more than 16 columns “Identifier” on page
5-21

constraint The name of a disabled foreign-key constraint Must be unique among the
names of indexes and
constraints in the database

“Identifier” on page
5-21

As in the CREATE TABLE statement, the Multiple-Column Constraint format for
ALTER TABLE differs from the Single-Column Constraint format by requiring the
FOREIGN KEY keywords before the REFERENCES clause when you specify a
foreign key constraint. In addition, as its name implies, the Multiple-Column
format can specify a list of columns as the scope of the new constraint, but this
syntax is also valid with a single column.

For information about the INDEX DISABLED keyword option, see “Using the
INDEX DISABLED keywords in a foreign key definition” on page 2-107.

A multiple-column constraint has these cardinality and size restrictions:
v It can specify no more than 16 column names.
v The maximum total length of the list of columns depends on the page size,

according to this formula:
MAXLength = (((PageSize - 93)/5) -1)

– For a page size of 2K, the total length cannot exceed 390 bytes.
– For a page size of 16K, the total length cannot exceed 3257 bytes.

Here the slash (/) symbol represents integer division.

The statement fails with an error if you specify both a NOT NULL constraint and a
NULL constraint on the same column, or if you define a NOT NULL constraint on
a column whose default value is NULL.

You cannot define a NULL constraint on a column whose data type is LIST,
MULTISET, SET, or IDSSECURITYLABEL.

If the constraint is on a set of columns that includes a column that stores encrypted
data, Informix cannot enforce the constraint. You can declare a name for the
constraint and set its mode with “Constraint Definition” on page 2-86.

Chapter 2. SQL statements 2-105

If the ALTER TABLE ADD CONSTRAINT statement defines more than one
referential constraints on the same table, each constraint requires its own
REFERENCES clause, so that options like ON DELETE CASCADE can be specified
(or omitted) for each individual constraint, rather than applied to all of the
constraints.

If the database server implicitly creates an index on the same non-opaque column
or set of columns as the referential constraint, distribution statistics are
automatically calculated on the specified column, or on the lead column of a
multiple-column constraint.

These distribution statistics are equivalent to distributions created by the UPDATE
STATISTICS statement in HIGH mode, and are available to the query optimizer
when it designs query plans for the table on which the new constraint was created.
See also the section “Automatic Calculation of Distribution Statistics” on page
2-217 in the description of the CREATE INDEX statement for additional
information about statistical distributions that are calculated when an index or
constraint is created on an existing table.

Creating foreign-key constraints when an index exists on the
referenced table
By default, the database server automatically validates enabled referential
constraints when the ADD CONSTRAINT or MODIFY option to the ALTER TABLE
statement includes the REFERENCES keyword to define a foreign-key constraint.
You might be able to save time during validation of the new foreign-key
constraint, if the referenced table already has a unique index or a primary-key
constraint on the column (or on the set of columns) corresponding to the key of
the referential constraint.

The database server makes a cost-based decision on how to validate the
foreign-key constraint. The index-key algorithm might be faster in many contexts,
because it validates the new constraint by scanning only the index values, rather
than by scanning all the rows in the table.

The database server can consider using the index-key algorithm to validate the
foreign-key constraint that it creates, but only if all of the following conditions are
satisfied:
v The ALTER TABLE statement is creating only one foreign-key constraint.

If this is the case, the database server needs to check individual values for only
the column on which the foreign-key constraint is being created. Validating two
foreign-key constraints at the same time would require two indices to be used
on the same scan, which is not supported.

v The statement is not also creating or enabling a CHECK constraint.
If the ALTER TABLE statement is creating more than one constraint, validating
CHECK constraints requires that every row be checked, rather than individual
values. In that case, the index-key algorithm cannot be used for validating the
foreign-key constraint.

v The statement that creates the foreign-key constraint does not also change the
data type of any existing column in the same table.
If the ALTER TABLE statement that creates the foreign-key constraint includes a
MODIFY clause that changes the data type of any column, the database server
does not consider an index-scan execution path for validating the constraint.

v The foreign-key columns do not include user-defined data types (UDTs) or
built-in opaque data types.

2-106 IBM Informix Guide to SQL: Syntax

To make the fast index-key algorithm as efficient as possible, it eliminates all the
inefficiencies of executing routines associated with user-defined or opaque data
types, such as the BOOLEAN and LVARCHAR built-in opaque types.

v The mode of the new foreign-key constraint is not DISABLED.
If it is disabled, then no constraint-checking algorithm is needed, because no
checking for referential integrity violations occurs.

v The table is not associated with an active violation table.
Violations tables require that at the time of checking, every row that does not
satisfy the new constraint must be inserted into the violation table. Scanning
every row for violations prevents the database server from using the faster
index-key algorithm that skips duplicate rows.

Except in the case of one or more violating rows, the ALTER TABLE ADD
CONSTRAINT or ALTER TABLE MODIFY statement can create and validate a
foreign-key constraint when some of these requirements are not satisfied, but the
database server will not consider using the index-key algorithm to validate the
foreign-key constraint. The additional validation costs for scanning the entire table
are generally proportional to the size of the table. These costs can be substantial for
very large tables.

When you create a self-referencing foreign-key constraint, whose REFERENCING
clause specifies the same table on which the constraint is defined, the database
server can consider an index-key algorithm for validating referential-integrity, if all
of the conditions listed above are satisfied.
Related reference:
“Enabling foreign-key constraints when an index exists on the referenced table” on
page 2-743

Using the INDEX DISABLED keywords in a foreign key definition
By including the optional INDEX DISABLED keywords when you define a foreign
key constraint, you prevent DML operations on the table from using the index that
the database server associates with the foreign key. If you include the INDEX
DISABLED keywords, they must be the last specification in the ALTER TABLE
statement.

Defining foreign key constraints in the ALTER TABLE statement

To add a foreign key constraint, you must have the References privilege on either
the referenced columns or the child table. If you own the parent table or have the
Alter privilege on the parent table, you can create a foreign key constraint on that
table and specify yourself as the owner of the constraint. When you hold the DBA
privilege, you can create foreign key constraints for other users.

When the ALTER TABLE ADD CONSTRAINT statement places a foreign key
constraint on a column or on a set of columns that reference a child table, and no
referential constraint or user-defined index already exists on that column or on that
set of columns, the database server creates an internal B-tree index on the specified
column or set of columns. If a user-created index already exists on that column or
set of columns, the constraint shares the existing index.

If the ALTER TABLE ADD CONSTRAINT statement defines more than one foreign
key constraint on the same table, each constraint requires its own REFERENCES
clause, and the INDEX DISABLED keywords can be specified (or omitted) for each
constraint.

Chapter 2. SQL statements 2-107

This INDEX DISABLED option is valid in ALTER TABLE ADD CONSTRAINT
statements issued from updatable secondary servers in cluster environments.

Circumstances where a foreign key index can reduce performance

Although referential constraints protect data integrity, in some contexts the
user-defined or system-generated B-tree index that the database server associates
with a foreign key constraint can reduce the efficiency of data manipulation
operations on tables that are very large. If there are no deletes from the parent
table, the index is not used to look up rows in the child table for cascading deletes.
If no queries use this index on the child table. In this scenario, the index is simply
not needed, but it imposes unnecessary overhead in operations that update, delete,
or insert rows into the child table. A data warehousing application on a child table
with millions of rows could require fewer resources if the index that corresponds
to the foreign key constraint were disabled.

In these cases, the INDEX DISABLED keyword option to the ALTER TABLE ADD
CONSTRAINT statement offers a mechanism for defining a foreign key constraint
but avoiding the overhead of the large associated b-tree index.

When you include the INDEX DISABLED keywords at the end of the constraint
definition, the database server disables the system-generated index, if no
appropriate user-defined index already exists. If a user-defined index on the
foreign key column (or set of columns) of the child table already exists, the
database server disables that index. Subsequent DML operations on the child table
are accomplished without an index, and minimal system resources are needed for
maintenance and storage of the disabled index.

Effects of the INDEX DISABLED keywords

When you include the INDEX DISABLED keywords at the end of the constraint
definition, the database server disables the system-generated index, if no
appropriate user-defined index already exists. If a user-defined index on the
foreign key column (or set of columns) of the child table already exists, the
database server disables that index. Subsequent foreign key enforcement during
DML operations on the child or parent table are accomplished without this
disabled index, and minimal system resources are needed for maintenance and
storage of the disabled index.

These are the actions of the database server when you successfully add a foreign
key constraint with the INDEX DISABLED option:
v The index associated with the foreign key constraint is identified.
v That index is disabled, and marked as disabled in the sysobjstate table of the

system catalog.
v The physical index is dropped from the database.
v The sysfragments system catalog table is updated to show no storage allocation

for that index.

The INDEX DISABLED keywords have no effect on foreign key constraint that you
define. The database server enforces that constraint, and issues an error if any
subsequent operation on the child table or on the parent table violates the specified
foreign key constraint.

The following restrictions apply to the INDEX DISABLED keywords in constraint
definitions:

2-108 IBM Informix Guide to SQL: Syntax

v The INDEX DISABLED option is valid only in foreign key definitions.
v Only the ALTER TABLE ADD CONSTRAINT statement supports this syntax.

The CREATE TABLE or ALTER TABLE MODIFY COLUMN statements return an
exception if a foreign key constraint definition includes the INDEX DISABLED
keywords.

v If the index used by the foreign key is in use by another constraint, the database
server returns an error.

v If you include the DISABLED keyword in the constraint definition to disable the
foreign key constraint, the database server returns an error if you also specify
the INDEX DISABLED keywords, as in the following example.

ALTER TABLE child ADD
CONSTRAINT(FOREIGN KEY(x1) REFERENCES parent(c1)

CONSTRAINT cons_child_x1 DISABLED INDEX DISABLED);

To correct the error in ALTER TABLE ADD CONSTRAINT example above, you
must either drop the first DISABLED keyword, or else drop the INDEX DISABLED
keywords.

Example of creating a foreign key constraint with INDEX DISABLED

Suppose that the parent table and the child table in the following example have a
primary key and foreign key dependency, and that the data stored in these tables
satisfies the following conditions:
v The parent table has only a few rows.
v The child table has millions of rows.
v The foreign key columns in the child table have only few distinct possible

values, based on the primary key of the parent table.

This example shows how to use the INDEX DISABLED keyword option of the
ALTER TABLE ADD CONSTRAINT statement.
CREATE TABLE parent(c1 INT, c2 INT, c3 INT);
CREATE UNIQUE INDEX idx_parent_c1 ON parent(c1);
ALTER TABLE parent ADD

CONSTRAINT PRIMARY KEY(c1)
CONSTRAINT cons_parent_c1;

CREATE TABLE child(x1 INT, x2 INT, x3 VARCHAR(32));
CREATE INDEX idx_child_x1 ON child(x1);

ALTER TABLE child ADD
CONSTRAINT(FOREIGN KEY(x1) REFERENCES parent(c1)

CONSTRAINT cons_child_x1 INDEX DISABLED);

In the example above,
v cons_parent_c1 is a primary key constraint on the parent table,
v cons_child_x1 is a foreign key constraint on the child table,
v idx_parent_c1 is a unique index shared by the cons_parent_c1 constraint,
v and idx_child_x1 is an index shared by the cons_child_x1 constraint.

Data manipulation language operations like UPDATE, DELETE, INSERT, and
MERGE on the child table cannot use the idx_child_x1 index that is shared by
with the foreign key constraint, because that index is now disabled.

For some tables that have a primary key and foreign key dependencies, however,
the query optimizer might choose other indexes on the child table, based on
WHERE clause predicates, in execution plans.

Chapter 2. SQL statements 2-109

As indicated above, use of the INDEX DISABLED option in the foreign key definition
can improve performance only when the child table is very large, typically in the
context of data warehouse applications. This syntax option is not recommended for
DML operations on small tables.

Creating foreign-key constraints in NOVALIDATE modes
The ALTER TABLE ADD CONSTRAINT statement can create an enabled or
filtering foreign-key constraint in a NOVALIDATE mode. The NOVALIDATE
constraint modes prevent the database server from verifying that the foreign-key
value in every row matches a primary-key value in the referenced table while the
referential constraint is being created.

Use this syntax to create an enabled or filtering foreign-key constraint in
NOVALIDATE mode:

ALTER TABLE ADD CONSTRAINT

�� ALTER TABLE table ADD CONSTRAINT
synonym

�

� �

�

,

(FOREIGN KEY (fk_col) REFERENCES pk_tab
,

(pk_col)

�

� � CONSTRAINT constraint
ON DELETE CASCADE

�

�
ENABLED (2)

NOVALIDATE
(1)

FILTERING WITHOUT ERROR
WITH ERROR

��

Notes:

1 See “Filtering Modes” on page 2-746

2 Valid for FOREIGN KEY constraints only

Element Description Restrictions Syntax

constraint Name declared here for the constraint Must be unique among the names of
indexes and constraints in database

“Identifier”
on page 5-21

fk_col Foreign-key column for constraint Must exist in the child table “Identifier”
on page 5-21

pk_col Primary-key column in the referenced table Must exist in the referenced table “Identifier”
on page 5-21

pk_tab Name of the referenced table Must exist in the current database “Identifier”
on page 5-21

table,
synonym

Table on which constraint is placed Must exist in the current database “Identifier”
on page 5-21

2-110 IBM Informix Guide to SQL: Syntax

Usage

This diagram omits the DISABLED keyword. Because disabled constraints are not
checked for violations, the NOVALIDATE keyword is unnecessary in that case.

If no column or list of columns immediately follows the REFERENCES keyword, the
default column (or columns) is the primary key of the pk_tab table. If pk_tab and
the table or synonym specify the same table, then the constraint is self-referencing,
and there is no default primary-key column.

If you declare no constraint name, the database server generates an identifier for
the new constraint that it registers in the sysconstraints and sysobjstate system
catalog tables.

The ALTER TABLE ADD CONSTRAINT statement supports the NOVALIDATE
mode for referential constraints as a mechanism for bypassing the data-integrity
check when creating an enabled or filtering referential constraint.

Circumstances where NOVALIDATE modes can improve performance

Although referential constraints protect data integrity, in some contexts a database
table that you are moving to a new database server instance is known to be free of
referential integrity violations. For foreign-key constraints on large tables, the time
required to validate the constraint can be substantial. If a table with a million rows
is moving from an OLTP environment to a data warehousing environment,
validating the foreign key in the target environment might increase the time
required for migration by orders of magnitude.

For example, you can drop the foreign-key constraints on the large table, and then
re-create those constraints in an ENABLED NOVALIDATE mode or in a
FILTERING NOVALIDATE mode immediately before you migrate the large table
to the target database environment. The cost of the ALTER TABLE ADD
CONSTRAINT operation that re-creates the foreign-key constraint will be relatively
small, because it bypasses validation of every row for each referential constraint.
Because the NOVALIDATE mode does not persist beyond the ALTER TABLE
operation that created the constraints, the table arrives in the warehousing
environment with those constraints in an ENABLED or FILTERING mode,
protecting the referential integrity of the data in subsequent DML operations.

Restrictions on using the NOVALIDATE keyword

The ALTER TABLE ADD CONSTRAINT statement is the only DDL context where
the NOVALIDATE keyword is valid when a foreign-key constraint is being created.
You cannot, for example, create a foreign-key constraint in a NOVALIDATE mode
in any of the following SQL statements:
v CREATE TABLE statements
v CREATE TEMP TABLE statements
v SELECT INTO TABLE statements.

You can use the ALTER TABLE ADD CONSTRAINT statement to create an
enabled constraint on an existing table in NOVALIDATE mode only if all of the
following conditions are satisfied:
v The constraint that you are adding is a foreign-key constraint. If you create

multiple constraints in the same ALTER TABLE statements, all must be
foreign-key constraints.

Chapter 2. SQL statements 2-111

v In ALTER TABLE statement, the NOVALIDATE keyword is valid only in the ADD
CONSTRAINT FOREIGN KEY option.

v It is not valid for constraints that ALTER TABLE is creating in DISABLED mode.

The ALTER TABLE statement fails with an error if the constraint definition
includes the NOVALIDATE keyword in any of the following syntax contexts:
v ALTER TABLE ADD COLUMN statements.
v ALTER TABLE INIT statements
v ALTER TABLE MODIFY statements

The only other DDL statement where the NOVALIDATE keyword is valid is the SET
CONSTRAINTS option to the SET Database Object Mode statement. While the SET
CONSTRAINTS statement is running, it can change the mode of an existing
foreign-key constraint to any of these NOVALIDATE constraint modes:
v ENABLED NOVALIDATE mode
v FILTERING WITH ERROR NOVALIDATE mode
v FILTERING WITHOUT ERROR NOVALIDATE mode.

For more information, see the SET CONSTRAINTS statement.

Establishing NOVALIDATE modes as the default

Both the SET ENVIRONMENT NOVALIDATE ON statement of SQL and the
dbimport -nv command for loading databases can override any foreign-key
constraint mode (except DISABLED) that ALTER TABLE ADD CONSTRAINT or SET
CONSTRAINTS statement specifies, if that constraint mode specification omits the
NOVALIDATE keyword.
v The scope of the SET ENVIRONMENT NOVALIDATE ON statement is

subsequent ALTER TABLE ADD CONSTRAINT and SET CONSTRAINTS
statements in the same user session.

v The scope of the dbimport -nv command is the ALTER TABLE ADD
CONSTRAINT and SET CONSTRAINTS statements in the .sql file of the
exported database, whose path name is specified in the same dbimport
command.

Example of a constraint created in NOVALIDATE mode

The following DDL statements create a table called parent and define a unique
index and a primary-key constraint on column c1 of that table:
CREATE TABLE parent(c1 INT, c2 INT, c3 INT);
CREATE UNIQUE INDEX idx_parent_c1 ON parent(c1);
ALTER TABLE parent ADD CONSTRAINT PRIMARY KEY(c1) CONSTRAINT cons_parent_c1;

The next statements create another table, called child, whose first column is of the
same data type as the primary-key column of the parent table, and define an
enabled foreign-key constraint, called cons_child_x, on the child table:
CREATE TABLE child(x1 INT, x2 INT, x3 VARCHAR(32));
ALTER TABLE child

ADD CONSTRAINT (FOREIGN KEY(x1)
REFERENCES parent(c1) CONSTRAINT cons_child_x1;

Suppose that subsequent DML operations (not shown) populate the parent table
and the child table with rows of data. At some point, the workflow requires the
data to be moved rom its OLTP production environment to another database for
processing by business analytics applications.

2-112 IBM Informix Guide to SQL: Syntax

If at this point the data set in the child table contains a large number of rows, a
significant cost of importing the child table to its new database will be validating
the cons_child_x1 referential constraint. The following statement drops that
constraint:
ALTER TABLE child DROP CONSTRAINT cons_child_x1;

After the child table has been imported to its new environment, the following
statement can re-create a new constraint of the same name on the child table
without checking every row for referential-integrity violations:
ALTER TABLE child

ADD CONSTRAINT (FOREIGN KEY(x1)
REFERENCES parent(c1)

CONSTRAINT cons_child_x1 NOVALIDATE);

The new cons_child_x1 referential constraint is in ENABLED mode by default after
the ALTER TABLE statement completes execution.

Adding a Primary-Key or Unique Constraint
When you place a primary-key or unique constraint on a column or set of
columns, those columns must contain unique values. The database server checks
for existing constraints and indexes:
v If a user-created unique index already exists on that column or set of columns,

the constraint shares the index.
v If a user-created index that allows duplicates already exists on that column or

set of columns, the database server returns an error.
In this case, you must drop the existing index before adding the primary-key or
unique constraint.

v If a referential constraint already exists on that column or set of columns, the
duplicate index is upgraded to unique (if possible) and the index is shared.

v If no referential constraint or user-created index exists on that column or set of
columns, the database server creates an internal B-tree index on the specified
columns.

When you place a referential constraint on a column or set of columns, and an
index already exists on that column or set of columns, the index is shared.

If you own the table or have the Alter privilege on the table, you can create a
check, primary-key, or unique constraint on the table and specify yourself as the
owner of the constraint. To add a referential constraint, you must have the
References privilege on either the referenced columns or the referenced table.
When you have the DBA privilege, you can create constraints for other users.

Recovery from Constraint Violations
If you use the ADD CONSTRAINT clause to add a constraint in the enabled mode,
you receive an error message because existing rows would violate the constraint.
For a procedure to add the constraint successfully, see “Adding a Constraint That
Existing Rows Violate” on page 2-100.

DROP CONSTRAINT Clause
Use the DROP CONSTRAINT clause to drop a named constraint.

DROP CONSTRAINT Clause:

Chapter 2. SQL statements 2-113

DROP CONSTRAINT �

,

(constraint)
constraint

Element Description Restrictions Syntax

constraint Constraint to be dropped Must exist. “Identifier” on page 5-21

To drop an existing constraint, specify the DROP CONSTRAINT keywords and the
name of the constraint. Here is an example of dropping a constraint:
ALTER TABLE manufact DROP CONSTRAINT con_name;

If no name is specified when the constraint is created, the database server
generates the name. You can query the sysconstraints system catalog table for the
name and owner of a constraint. For example, to find the name of the constraint
placed on the items table, you can issue the following statement:
SELECT constrname FROM sysconstraints

WHERE tabid = (SELECT tabid FROM systables
WHERE tabname = ’items’);

When you drop a primary-key or unique constraint that has a corresponding
foreign key, the referential constraints are dropped. For example, if you drop the
primary-key constraint on the order_num column in the orders table and
order_num exists in the items table as a foreign key, that referential relationship is
also dropped.

By default, every IDSSECURITYLABEL column has an implicit NOT NULL
constraint, but the DROP CONSTRAINT clause cannot reference an
IDSSECURITYLABEL column.

MODIFY EXTENT SIZE
Use the MODIFY EXTENT SIZE clause with the ALTER TABLE statement to
change the size of the first extent of a table in a dbspace.

You cannot use the MODIFY EXTENT SIZE clause to change the size of the first
extent:
v of a table in a blobspace
v of external tables, virtual tables, or system catalog tables
v in the tblspace tblspace

MODIFY EXTENT SIZE Clause:

MODIFY EXTENT SIZE kilobytes

Element Description Restrictions Syntax

kilobytes Length (in kilobytes) assigned here to
the first extent for this table

Specification cannot be a variable, and (4(page
size)) ≤ kilobytes ≤ (chunk size)

“Expression”
on page 4-44

The minimum extent size is 4 times the disk-page size. For example, on a system
with 2-kilobyte pages, the minimum length is 8 kilobytes. The maximum length is
the chunk size.

2-114 IBM Informix Guide to SQL: Syntax

The following example specifies an extent size of 32 kilobytes:
ALTER TABLE customer MODIFY EXTENT SIZE 32;

When you change the size of the first extent, the database server records the
change in the system catalog and on the partition page, but only makes the actual
change when the table is rebuilt or a new partition or fragment is created.

For example, if a table has a first extent size of 8 kilobytes and you use the ALTER
TABLE statement to change this to 16 kilobytes, the server does not drop the
current first extent and recreate it with the new size. Instead, the new first extent
size of 16 kilobytes takes effect only when the server rebuilds the table after actions
such as creating a cluster index on the table or detaching a fragment from the
table.

If a TRUNCATE TABLE statement without the REUSE option is executed before
the ALTER TABLE statement with the MODIFY EXTENT SIZE clause, there is no
change in the size of the current first extent.

If an existing table in a dbspace has data in it, the first and next extents are already
allocated for the table and you will not be able to change the size of the first or
next extent. If you want to change the size of existing extents, you must drop the
table, recreate it with a storage clause indicating the desired size, and load the data
again.

You can change the size of the first and next extent at the same time. The
following example specifies changing the size of the first and next extent:
ALTER TABLE customer MODIFY EXTENT SIZE 32 NEXT SIZE 32

The first and next extent sizes are recorded in the PNSIZES logical log record.
Related reference:
“MODIFY NEXT SIZE clause”

MODIFY NEXT SIZE clause
Use the MODIFY NEXT SIZE clause to change the size of the next extent.

MODIFY NEXT SIZE clause:

MODIFY NEXT SIZE kilobytes

Element Description Restrictions Syntax

kilobytes Length (in kilobytes) assigned here to
the next extent for this table

Specification cannot be a variable, and (4(page
size)) ≤ kilobytes ≤ (chunk size)

“Expression”
on page 4-44

The minimum extent size is 4 times the disk-page size. For example, on a system
with 2-kilobyte pages, the minimum length is 8 kilobytes. The maximum length is
the chunk size. The following example specifies an extent size of 32 kilobytes:
ALTER TABLE customer MODIFY NEXT SIZE 32;

This clause cannot change the size of existing extents. You cannot change the size
of existing extents without unloading all of the data.

To change the size of existing extents, you must unload all the data, drop the table,
modify the first-extent and next-extent sizes in the CREATE TABLE definition in the

Chapter 2. SQL statements 2-115

database schema, re-create the table, and reload the data. For information about
how to optimize extent sizes, see your IBM Informix Performance Guide.
Related concepts:

Managing the size of first and next extents for the tblspace tblspace
(Performance Guide)
Related reference:
“EXTENT SIZE Options” on page 2-314
“MODIFY EXTENT SIZE” on page 2-114

LOCK MODE Clause
Use the LOCK MODE keywords to change the locking granularity of a table.

LOCK MODE Clause:

LOCK MODE (PAGE)
ROW

The following table describes the locking-granularity options available.

Granularity
Effect

PAGE
Obtains and releases one lock on a whole page of rows

This is the default locking granularity. Page-level locking is especially
useful when you know that the rows are grouped into pages in the same
order that you are using to process all the rows. For example, if you are
processing the contents of a table in the same order as its cluster index,
page locking is especially appropriate.

ROW Obtains and releases one lock per row

Row-level locking provides the highest level of concurrency. Only tables
with row-level locking support the LAST COMMITTED feature, which can
improve performance in the Committed Read and Dirty Read isolation
levels when another session holds an exclusive lock on a row that you
attempt to read. If you are using many rows at one time, however, the
lock-management overhead of row-level locking can become significant.
You can also exceed the maximum number of locks available, depending
on the configuration of your database server.

The following statement changes the lock mode for the customer table to page
level locking:
ALTER TABLE customer LOCK MODE(page);

The next example changes the lock mode for the customer table to row level
locking:
ALTER TABLE customer LOCK MODE(row);

Precedence and Default Behavior
The LOCK MODE setting in an ALTER TABLE statement takes precedence over
the settings of the IFX_DEF_TABLE_LOCKMODE environment variable and the
DEF_TABLE_LOCKMODE configuration parameter. For information about the
IFX_DEF_TABLE_LOCKMODE environment variable, refer to the IBM Informix

2-116 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_295.htm#ids_prf_295
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_295.htm#ids_prf_295

Guide to SQL: Reference. For information about the DEF_TABLE_LOCKMODE
configuration parameter, refer to the IBM Informix Administrator's Reference.
Related reference:

IFX_DEF_TABLE_LOCKMODE environment variable (SQL Reference)

DEF_TABLE_LOCKMODE configuration parameter (Administrator's Reference)

ADD TYPE Clause
Use the ADD TYPE clause to convert a table that is not based on a named ROW
data type into a typed table. This clause is an extension to the ANSI/ISO standard
for SQL.

ADD TYPE Clause:

ADD TYPE row_type

Element Description Restrictions Syntax

row_type Identifier of an existing named
ROW data type for the table

The row_type fields must match the column
data type in their order and number

“Identifier” on
page 5-21

When you use the ADD TYPE clause, you assign the specified named ROW data
type to a table whose columns match the fields of that data type.

In addition to the requirements common to all ALTER TABLE operations (namely
DBA privilege on the database, Alter privilege on the table, and ownership of the
table), all of the following must be also true when you use the ADD TYPE clause
to convert an untyped table to the specified named ROW data type:
v The named ROW data type is already registered in the database.
v You hold the Usage privilege on the named ROW data type.
v There must be a 1-to-1 correspondence between the ordered set of column data

types of the untyped table and the ordered set of field data types of the named
ROW data type.

v The table cannot be a fragmented table that has rowid values.

You cannot combine the ADD TYPE clause with any clause that changes the
schema of the table. No other ADD, DROP, or MODIFY clause is valid in the same
ALTER TABLE statement that has the ADD TYPE clause. The ADD TYPE clause
does not allow you to change column data types. (To change the data type of a
column, use the MODIFY clause.)

Options Valid on Typed Tables
ALTER TABLE supports only the following options for tables of ROW data types.

Typed-Table Options:

Chapter 2. SQL statements 2-117

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_242.htm#ids_sqr_242
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0051.htm#ids_adr_0051

�

,

(1)
ADD CONSTRAINT Clause

(2)
DROP CONSTRAINT Clause
(3) (4)

MODIFY NEXT SIZE Clause
(3) (5)

LOCK MODE Clause

Notes:

1 See “ADD CONSTRAINT Clause” on page 2-103

2 See “DROP CONSTRAINT Clause” on page 2-113

3 Use path no more than once

4 See “MODIFY NEXT SIZE clause” on page 2-115

5 See “LOCK MODE Clause” on page 2-116

Two considerations apply to typed tables that are part of inheritance hierarchies:
v For subtables, ADD CONSTRAINT and DROP CONSTRAINT are not valid on

inherited constraints.
v For supertables, ADD CONSTRAINT and DROP CONSTRAINT propagate to all

subtables.
Related concepts:

Data integrity (SQL Tutorial)

The ON DELETE CASCADE option (SQL Tutorial)

Table performance considerations (Performance Guide)
Related reference:
“CREATE TABLE statement” on page 2-265
“DROP TABLE statement” on page 2-446
“LOCK TABLE statement” on page 2-564
“SET Database Object Mode statement” on page 2-737

Create the database (Database Design Guide)

ALTER TRUSTED CONTEXT statement
Use the ALTER TRUSTED CONTEXT statement to modify the current options and
attributes (including the ENABLED or DISABLED status) of a trusted-context
object. This statement is an extension to the ANSI/ISO standard for the SQL
language.

Syntax

You must hold the database security administrator (DBSECADM) role to run this
statement, which is an extension to the ISO standard for SQL.

2-118 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_252.htm#ids_sqt_252
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_256.htm#ids_sqt_256
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_277.htm#ids_prf_277
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_227.htm#ids_ddi_227

�� ALTER TRUSTED CONTEXT context �

� � �

�

�

�

ALTER SYSTEM AUTHID auth_id
,

ATTRIBUTES (Address clause)
NO DEFAULT ROLE
DEFAULT ROLE role
DISABLE
ENABLE

,

ADD ATTRIBUTES (Address clause)
,

DROP ATTRIBUTES (ADDRESS address)
User clause

��

Address clause:

ADDRESS address

User clause:

�

�

�

,
WITHOUT AUTHENTICATION

ADD USE FOR auth_id
ROLE role WITH AUTHENTICATION

PUBLIC
,

WITHOUT AUTHENTICATION
REPLACE USE FOR auth_id

ROLE role WITH AUTHENTICATION
PUBLIC

,

DROP USE FOR auth_id
PUBLIC

Chapter 2. SQL statements 2-119

Element Description Restrictions Syntax

address Communication address
of the client connection
to the database server

Must be unique among communication
addresses of clients for this trusted-context
object, and must conform to the TCP/IP
protocol. Must be an IPv4 address, an IPv6
address, or a secure domain name.

v An IPv4 address must be real host address
(not local host), and must not contain leading
spaces.

v An IPv6 address must be a real host address
(not local host), and must not contain leading
spaces. Must not be an IPv4-mapped IPv6
address.

v A secure domain names must not be a
Dynamic Host Configuration Protocol
(DHCP) address.

“Quoted String” on page
4-219

auth_id Authorization identifier
of a user

Must be a valid authorization identifier. Cannot
be longer than 32 bytes. Must not be the
authorization ID of the statement. Must not be
specified more than once in the REPLACE USE
FOR clause.

“Owner name” on page
5-49

context Name of the
trusted-context object

Must be unique among the names of trusted
contexts in the database, and cannot begin with
the characters 'SYS' Must identify a
trusted-context object that exists on the
database server.

“Identifier” on page 5-21

role Name of an existing
user-defined or built-in
role

Must exist in the database, and must be unique
among attributes of this trusted-context object

“Owner name” on page
5-49

Usage

Attributes specifies a list of one or more connection trust attributes, upon which
the trusted-context object is defined, that are to be modified. Existing values for the
specified attributes are replaced with the new values. If an attribute is not
currently part of the trusted-context object definition, an error is returned.
Attributes that are not specified retain their previous values.

Listed ADDRESS values for specified trusted-context object are removed by the
ALTER TRUSTED CONTEXT statement. The ADDRESS attribute can be specified
multiple times, but each address pair must be unique for the set of attributes. A
new address value must be an IPv4 address, an IPv6 address, or a secure domain
name. A secure domain name is converted to an IP address by the domain name
server where a resulting IPv4 or IPv6 address is determined. When a domain name
is converted to an IP address, the result of this conversion could be a set of one or
more IP addresses. In this case, an incoming connection is said to match the
ADDRESS attribute of a trusted-context object if the IP address from which the
connection originates matches any of the IP addresses to which the domain name
was converted.

If you have an existing application that includes the ENCRYPTION or WITH
ENCRYPTION options in the ATTRIBUTES clause, you can leave them without the
database server issuing an SQL error. Except for WITH ENCRYPTION ’NONE’ and
ENCRYPTION ’NONE’, however, the encryption options of the ALTER TRUSTED
CONTEXT statement are not supported for Informix database servers.

2-120 IBM Informix Guide to SQL: Syntax

A DEFAULT ROLE object identifies a role that exists at the current server, and is
used when a user does not have a user-specific role defined as part of the
definition of the trusted-context object. The NO DEFAULT ROLE attribute will
specify that the trusted-context object does not have a default role. If a trusted
connection for this context is active, changes to DEFAULT ROLE come into effect
on the next switch user request or a new connection request.

The ENABLE attribute specifies that a trusted-context object is enabled. The
DISABLE attribute specifies that the trusted-context object is not enabled for any
new trusted connections that are established.

The ADD ATTRIBUTES clause specifies a list of one or more new trust attributes
on which the trusted-context object is defined.

The DROP ATTRIBUTES clause specifies that one or more attributes are to be
dropped from the definition of the trusted-context object. If the attribute and
attribute value pair are not currently part of the trusted-context object definition,
an error is returned.

The ADD USE FOR clause specifies additional users who can use a trusted
connection based on this trusted-context object. The PUBLIC attribute specifies that
a trusted connection that is based on this trusted-context object can be used by any
user. The PUBLIC attribute must not already be specified for the trusted-context
object, and PUBLIC must not be specified more than once in the ADD USE FOR
clause. If the definition of a trusted-context object allows access by PUBLIC and a
list of users, the specifications for a user override the specifications for PUBLIC.

The WITH AUTHENTICATION attribute specifies that switching the current user
on a trusted connection based on this trusted-context object to this user requires
authentication. The WITHOUT AUTHENTICATION attribute specifies that
switching the current does not require authentication.

The REPLACE USE FOR clause specifies that the way in which a particular user or
PUBLIC uses the trusted-context object is to change. When you use the REPLACE
USE FOR clause on PUBLIC, the trusted-context object must already be defined to
allow use by PUBLIC, and PUBLIC must not be specified more than once in the
REPLACE USE FOR clause.

The DROP USE FOR clause specifies who can no longer use the trusted-context
object. The users who are removed from the definition of the trusted-context object
are those users who are currently allowed to use the trusted-context object. If one
or more, but not all, users can be removed from the definition of the
trusted-context object, the specified users are removed and a warning is returned.
If none of the specified users can be removed from the definition of the
trusted-context object, an error is returned. If you use the DROP USE FOR clause
on PUBLIC, it removes the ability of all users (except the system authorization ID
and individual authorization IDs that have been explicitly enabled) to use this
trusted-context object.

Examples

For the following example, assume that trusted-context object appserver exists and
that it is enabled. Issue an ALTER TRUSTED CONTEXT statement to put the
trusted-context object in the disabled state.

ALTER TRUSTED CONTEXT appserver
DISABLE

Chapter 2. SQL statements 2-121

For the following example, assume that trusted-context object secure_role exists.
Issue an ALTER TRUSTED CONTEXT statement to modify the existing user joe to
use the trusted-context object with authentication and to add everyone else to use
the trusted-context object without authentication.

ALTER TRUSTED CONTEXT securerole
REPLACE USE FOR joe WITH AUTHENTICATION
ADD USE FOR PUBLIC WITHOUT AUTHENTICATION

For the following example, assume that trusted-context object securerole.
ALTER TRUSTED CONTEXT securerole

ALTER ATTRIBUTES (ADDRESS ’9.12.155.200’);

Related concepts:

Trusted-context objects and trusted connections (Security Guide)
Related reference:
“CREATE TRUSTED CONTEXT statement” on page 2-366
“DROP TRUSTED CONTEXT statement” on page 2-450
“RENAME TRUSTED CONTEXT statement” on page 2-616

ALTER USER statement (UNIX, Linux)
Use the ALTER USER statement to change one or more of the properties, including
the password, user ID, surrogate group, administrative authorization, and home
directory, and to enable or disable the account of an internally authenticated user,
or of the default internally authenticated user.

This statement is an extension to the ANSI/ISO standard for the SQL language.

Syntax

�� ALTER DEFAULT USER
USER user

ACCOUNT LOCK
ACCOUNT UNLOCK

�

2-122 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_tru_001.htm#ids_tru_001

� �

�

�

�

�

,

ADD PASSWORD password
MODIFY UID user_ID

,
(1)

GROUP (surrog_group_ID)
surrog_group

USER surrog_user
,

AUTHORIZATION (DBSA)
DBSSO
AAO
BARGROUP

HOME " directory "
DROP PASSWORD

UID
,

GROUP (surrog_group_ID)
surrog_group

USER
,

AUTHORIZATION (DBSA)
DBSSO
AAO
BARGROUP

HOME

��

Notes:

1 Use this path no more than 16 times

Element Description Restrictions Syntax

directory Path name of directory where
user files are stored.

Must be 255 bytes or fewer,
and must conform to the
rules of your operating
system. The directory must
also:

v Belong to the mapped
user_ID and
surrog_group_ID.

v Have read, write, and
execute permissions for
the owner.

“Quoted String” on page
4-219

password Password for internal
authentication of the user.

Must be between 6 and 32
bytes.

“Quoted String” on page
4-219

surrog_group Name of an existing operating
system group (surrogate group)
that has the permissions to
which you want to map user.
The list of surrog_group values
must be enclosed in parentheses.

Must be 32 bytes or fewer. “Owner name” on page 5-49

Chapter 2. SQL statements 2-123

Element Description Restrictions Syntax

surrog_group_ID Group identifier number
(surrogate group) to which you
want to map the user. The list of
surrog_group_id value or values
that you specify must be
enclosed in parentheses.

The surrog_group_ID cannot
be:

v A group ID with server
administrative privileges
(DBSA, DBSSO, AAO, and
BARGROUP)

v Group 0 (root, sometimes
referred to as wheel or
system)

v Group 80 on Mac OS X
(admin)

v A group ID associated
with group bin or group
sys

“Literal Number” on page
4-215

surrog_user Name of an existing OS user
account (surrogate user) on the
Informix host computer having
the permissions to which you
want to map user.

Must conform to the rules of
your operating system

“Owner name” on page 5-49

user Authorization identifier of the
specific user that you are
mapping to user properties.

Must be an authenticated
authorization identifier

“Owner name” on page 5-49

user_ID User identifier number to which
you want to map user.

user_ID cannot be the one
that belongs to user root or
user informix.

“Literal Number” on page
4-215

Usage

Only a DBSA can run the ALTER USER statement. With a non-root installation, the
user who installs the server is the equivalent of the DBSA, unless the user
delegates DBSA privileges to a different user.

The USERMAPPING configuration parameter must be set to a value (ADMIN or
BASIC) that enables support for mapped users before users created with the
CREATE USER statement can connect to the database server.

The USERMAPPING configuration parameter must be set to ADMIN to enable the
AUTHORIZATION clause. For more information about this deprecated syntax, see
the “CREATE USER statement (UNIX, Linux)” on page 2-368 description of the
AUTHORIZATION clause.

You must also enter values in the SYSUSERMAP table of the sysusers database to
map users with the appropriate user properties so that the mapped user statements
of SQL to work correctly.

Mapped users can connect to Informix with the surrogate user properties if they
authenticate with pluggable authentication module (PAM) or single sign-on (SSO).

The best practice is to map user to a specific surrog_user that is reserved as a
surrogate user identity only. You can add groups associated with the surrogate
user identity with the GROUP keyword, and change the home directory with the
HOME keyword.

2-124 IBM Informix Guide to SQL: Syntax

The ALTER USER statement does not affect any active operations with the same
surrogate user or user ID. Only subsequent operations that require authentication
are affected.

An ALTER USER statement can add a password for a user with the ADD keyword
only if that user does not have a password. To change an existing password, use
the MODIFY option in the ALTER USER statement.

The total number of groups after the ALTER USER operation cannot exceed 16,
which is the maximum number of allowed groups.

An ALTER USER statement can only add a home directory with the ADD keyword
if no home directory exists. To modify an existing home directory, use the MODIFY
keyword.

In a single ALTER USER statement, a specific property can only be specified once.
For example, you cannot drop a GROUP property and add a GROUP property in
the same statement.

After the ALTER USER statement, the user must have either one USER property or
one UID property.

Execution of the ALTER USER statement can be audited with the ALUR audit
code.

Examples

Example 1: Replace a USER property with a UID property
The following statement replaces the USER property with a UID property
for the user bill:
ALTER USER bill DROP USER, ADD UID 1360;

Example 2: Change and add properties
The following statement changes a UID property, adds the DBSA group,
and adds a home directory for the user bill:
ALTER USER bill MODIFY UID 1361, ADD GROUP (dbsa), ADD HOME "/u/user1";

Example 3: Unlock an account and drop an authorization property
The following statement unlocks the account and drops the DBSSO
authorization for the user bill:
ALTER USER bill ACCOUNT UNLOCK DROP AUTHORIZATION (dbsso);

Example 4: Drop a home directory
The following statement drops the home directory for the user bill:
ALTER USER bill DROP HOME;

Related reference:
“CREATE USER statement (UNIX, Linux)” on page 2-368
“CREATE DEFAULT USER statement (UNIX, Linux)” on page 2-156
“DROP USER statement (UNIX, Linux)” on page 2-451

USERMAPPING configuration parameter (UNIX, Linux) (Administrator's
Reference)
“RENAME USER statement (UNIX, Linux)” on page 2-617

Chapter 2. SQL statements 2-125

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1101.htm#ids_adr_1101
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1101.htm#ids_adr_1101

BEGIN WORK statement
Use the BEGIN WORK statement to start a transaction, which is a series of database
operations that the COMMIT WORK or ROLLBACK WORK statement terminates,
and that the database server treats as a single unit of work. This statement is an
extension to the ANSI/ISO standard for SQL.

Syntax

�� BEGIN
WORK

(1)
WITHOUT REPLICATION

��

Notes:

1 ESQL/C only

Usage

The BEGIN WORK statement is valid only in a database that supports transaction
logging. This statement is not valid in an ANSI-compliant database.

Each row that an UPDATE, DELETE, INSERT, or MERGE statement affects during
a transaction is locked and remains locked throughout the transaction. A
transaction that contains many such statements or that contains statements that
affect many rows can exceed the limits that your operating system or the database
server configuration imposes on the number of simultaneous locks.

If no other user is accessing the table, you can avoid locking limits and reduce
locking overhead by locking the table with the LOCK TABLE statement after you
begin the transaction. Like other locks, this table lock is released when the
transaction terminates. The example of a transaction on “Example of BEGIN
WORK” on page 2-127 includes a LOCK TABLE statement.

Important: Issue the BEGIN WORK statement only if a transaction is not in
progress. If you issue a BEGIN WORK statement while you are in a transaction,
the database server returns an error.

The WORK keyword is optional. The following two statements are equivalent:
BEGIN;
BEGIN WORK;

In reading SQL source code that omits the WORK keyword, do not confuse the
BEGIN statement of SQL with the SPL keyword BEGIN, which, together with the
END keyword, can be used as a delimiter to define a statement block within an
SPL routine

In Informix ESQL/C, if you use the BEGIN WORK statement within a UDR called
by a WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. These statements prevent the program from looping endlessly if the
ROLLBACK WORK statement encounters an error or a warning.
Related concepts:

Specify transactions (SQL Tutorial)

2-126 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_281.htm#ids_sqt_281

How locks work (SQL Tutorial)
Related reference:
“COMMIT WORK statement” on page 2-133
“LOCK TABLE statement” on page 2-564
“ROLLBACK WORK statement” on page 2-646
“SAVEPOINT statement” on page 2-652
“WHENEVER statement” on page 2-885
“UNLOCK TABLE statement” on page 2-851

BEGIN WORK and ANSI-Compliant Databases
In an ANSI-compliant database, you do not need the BEGIN WORK statement
because transactions are implicit; every SQL statement occurs within a transaction.
The database server generates a warning when you use a BEGIN WORK statement
immediately after any of the following statements:
v DATABASE
v COMMIT WORK
v CREATE DATABASE
v ROLLBACK WORK

The database server returns an error when you use a BEGIN WORK statement
after any other statement in an ANSI-compliant database.

BEGIN WORK WITHOUT REPLICATION (ESQL/C)
When you use Enterprise Replication for data replication, you can use the BEGIN
WORK WITHOUT REPLICATION statement to start a transaction that does not
replicate to other database servers.

You cannot execute BEGIN WORK WITHOUT REPLICATION as a stand-alone
embedded statement in an Informix ESQL/C application. Instead you must execute
this statement indirectly. You can use either of the following methods:
v You can use a combination of the PREPARE and EXECUTE statements to

prepare and execute the BEGIN WORK WITHOUT REPLICATION statement.
v You can use the EXECUTE IMMEDIATE statement to prepare and execute

BEGIN WORK WITHOUT REPLICATION in a single step.

You cannot use the DECLARE cursor CURSOR WITH HOLD statement with the
BEGIN WORK WITHOUT REPLICATION statement.

For more information about data replication, see the IBM Informix Enterprise
Replication Guide.

Example of BEGIN WORK
When consecutive SQL statements perform what is logically a single unit of work,
you can define a transaction by grouping them between the BEGIN WORK and
COMMIT WORK statements. If the business requirements dictate that either all of
the statements be performed successfully, or else that none of them be performed,
you can enclose the statements of the transaction between BEGIN WORK to start a
transaction and COMMIT WORK to complete the transaction successfully (or
ROLLBACK WORK, to cancel the transaction, if the program detects an error).

Chapter 2. SQL statements 2-127

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_369.htm#ids_sqt_369

In the following program fragment, the transaction locks the stock table (LOCK
TABLE), updates rows in the stock table (UPDATE), deletes rows from the stock
table (DELETE), and inserts a row into the manufact table (INSERT). In this
example (with no error handling), the database server executes each of these SQL
statements in sequence:
BEGIN WORK;

LOCK TABLE stock;
UPDATE stock SET unit_price = unit_price * 1.10

WHERE manu_code = ’KAR’;
DELETE FROM stock WHERE description = ’baseball bat’;
INSERT INTO manufact (manu_code, manu_name, lead_time)

VALUES (’LYM’, ’LYMAN’, 14);
COMMIT WORK;

Each statement itself is atomic; it either completes successfully or else the database
is unchanged afterwards. If any of these statements fail, the other statements will
still be executed and the net result is as if the failed statement was never
attempted. When the COMMIT WORK statement is executed, the successful
changes are made permanent.

Typically, however, transactions are defined with error handling, so that the
database server must perform a sequence of operations either completely or not at
all. In this case, when you include all of the operations within a single transaction,
the database server guarantees that all the statements are completely and perfectly
committed to disk, or else the database can be restored to the same state that it
was in before the transaction began.

By adding appropriate error handling (for example, by setting the DBACCNOIGN
environment variable in DB-Access, or by adding EXEC SQL WHENEVER ERROR
STOP in ESQL/C), the transaction can be implicitly rolled back because the
program stops on an error without executing COMMIT WORK. More careful
conditional coding in a programming language such as ESQL/C allows the
programmer to explicitly roll back the transaction while continuing the larger
program.

Error-handling and business logic in applications and UDRs can also delimit one
or more portions of a transaction by including SAVEPOINT and ROLLBACK TO
SAVEPOINT statements. If the ROLLBACK TO SAVEPOINT statement is issued
after an error is encountered, or after the results of part of the transaction indicate
a conflict with a business rule or with some other criterion, only the changes that
were made to the database between the ROLLBACK statement and its specified or
default savepoint are cancelled, rather than the entire transaction. The current
transaction continues at the statement that follows the ROLLBACK statement, with
any uncommitted changes to the data or to the schema of the database from
operations that preceded the savepoint remain pending, until the entire transaction
is either committed or rolled back. Any locks held by statements that were rolled
back are retained until the complete transaction ends.

CLOSE statement
Use the CLOSE statement when you no longer need to refer to the set of rows
associated with a Select cursor or with a Function cursor. With ESQL/C, this
statement can also flush and close an Insert cursor. Use this statement with
Informix ESQL/C or SPL.

2-128 IBM Informix Guide to SQL: Syntax

Syntax

�� CLOSE cursor_id
(1) (2)

cursor_id_var

��

Notes:

1 Informix extension

2 ESQL/C only

Element Description Restrictions Syntax

cursor_id Name of cursor to be closed Must have been declared “Identifier” on page 5-21

cursor_id_var Host variable that contains the
value of cursor_id

Must be of a character data
type

Must conform to
language-specific rules for
names.

Usage

Closing a cursor makes the cursor unusable in any statements except OPEN or
FREE and releases resources that the database server had allocated to the cursor.

In a database that is not ANSI-compliant, you can close a cursor that has not been
opened or that has already been closed. No action is taken in these cases.

In an ANSI-compliant database, the database server returns an error if you close a
cursor that was not open.

Examples

The following statement closes the cursor, democursor.
EXEC SQL close democursor;

The following is ESQL/C Source code example from demo1.ec:
#include <stdio.h>

EXEC SQL define FNAME_LEN 15;
EXEC SQL define LNAME_LEN 15;

main()
{

EXEC SQL BEGIN DECLARE SECTION;
char fname[FNAME_LEN + 1];
char lname[LNAME_LEN + 1];

EXEC SQL END DECLARE SECTION;

printf("DEMO1 Sample ESQL Program running.\n\n");

EXEC SQL WHENEVER ERROR STOP;

EXEC SQL connect to ’stores7’;

EXEC SQL declare democursor cursor for
select fname, lname

into :fname, :lname
from customer
where lname < "C";

Chapter 2. SQL statements 2-129

EXEC SQL open democursor;
for (;;)

{
EXEC SQL fetch democursor;
if (strncmp(SQLSTATE, "00", 2) != 0)

break;
printf("%s %s\n",fname, lname);
}

if (strncmp(SQLSTATE, "02", 2) != 0)
printf("SQLSTATE after fetch is %s\n", SQLSTATE);

EXEC SQL close democursor;
EXEC SQL free democursor;
EXEC SQL create routine from ’del_ord.sql’;
EXEC SQL disconnect current;
printf("\nDEMO1 Sample Program over.\n\n");
exit(0);

}

Related concepts:

A database cursor (ESQL/C Guide)
Related reference:
“FLUSH statement” on page 2-484
“DECLARE statement” on page 2-386
“FETCH statement” on page 2-474
“FREE statement” on page 2-486
“OPEN statement” on page 2-581
“PUT statement” on page 2-601
“SET AUTOFREE statement” on page 2-726

Retrieve multiple rows (SQL Tutorial)
“INSERT statement” on page 2-545

Closing a Select or Function Cursor
When a cursor is associated with a SELECT, EXECUTE FUNCTION, or EXECUTE
PROCEDURE statement of SQL, closing the cursor terminates the associated SQL
statement.

The database server releases all resources that it might have allocated to the active
set of rows, for example, a temporary table that the cursor used to hold an ordered
set. The database server also releases any locks that it might have held on rows
that were selected through the cursor. If a transaction contains the CLOSE
statement, however, the database server does not release the locks until you issue
the COMMIT WORK or ROLLBACK WORK statement.

After you close a Select cursor or a Function cursor, the FETCH statement cannot
reference that cursor until you reopen it.

In an SPL routine, the built-in SQLCODE function can indicate the result of the
CLOSE statement for a Select cursor or a Function cursor. This function returns a
value equivalent to the SQLCODE field of the sqlca structure. Informix issues an
error, however, if you invoke the built-in SQLCODE function outside the calling
context of an SPL routine.

2-130 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0536.htm#ids_esqlc_0536
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_319.htm#ids_sqt_319

Closing an Insert Cursor
Because Informix does not support Insert cursors in SPL routines, the discussion of
Insert cursors in this section applies only to Informix ESQL/C. In SPL routines, the
CLOSE statement can reference only a Select cursor or a Function cursor that the
DECLARE statement defined. (A FOREACH statement of SPL that has an INSERT
statement in its statement block can declare a direct cursor that functionally
resembles an Insert cursor, but the CLOSE statement cannot reference a direct
cursor that FOREACH declared. Informix closes the direct cursor automatically at
runtime when program control exits from the FOREACH loop where the direct
cursor was defined.)

In Informix ESQL/C, the CLOSE statement treats a cursor that is associated with
an INSERT statement differently from one that is associated with a SELECT,
EXECUTE FUNCTION, or EXECUTE PROCEDURE statement. When a cursor
identifier is associated with an INSERT statement, the CLOSE statement writes any
remaining buffered rows into the database. The number of rows that were
successfully inserted into the database is returned in the third element of the
sqlerrd array, sqlca.sqlerrd[2], in the sqlca structure. For information on how to
use SQLERRD to count the total number of rows that were inserted, see “Error
Checking” on page 2-607.

The SQLCODE field of the sqlca structure indicates the result of the CLOSE
statement for an Insert cursor. If all buffered rows are successfully inserted,
SQLCODE is set to zero. If an error is encountered, the SQLCODE field is set to a
negative error message number.

When SQLCODE is zero, the row buffer space is released, and the cursor is closed;
that is, you cannot execute a PUT or FLUSH statement that names the cursor until
you reopen it.

Tip: When you encounter an sqlca.SQLCODE error, a corresponding SQLSTATE
error value also exists. For information about how to get the message text, check
the GET DIAGNOSTICS statement.

If the insert is not successful, the number of successfully inserted rows is stored in
sqlerrd. Any buffered rows that follow the last successfully inserted row are
discarded. Because the insert fails, the CLOSE statement fails also, and the cursor
is not closed. For example, a CLOSE statement can fail if insufficient disk space
prevents some of the rows from being inserted. In this case, a second CLOSE
statement can be successful because no buffered rows exist. An OPEN statement
can also be successful because the OPEN statement performs an implicit close.

Closing a Collection Cursor
You can declare both Select and Insert cursors on collection variables. Such cursors
are called Collection cursors. Use the CLOSE statement to deallocate resources that
have been allocated for the Collection cursor. Only ESQL/C routines can use
CLOSE to reference Insert cursors on collection variables. The CLOSE statement in
SPL routines cannot reference direct Collection cursors that the FOREACH
statement of SPL can declare.

For more information on how to use a Collection cursor, see “Fetching from a
Collection Cursor” on page 2-481 and “Inserting into a Collection Cursor” on page
2-605.

Chapter 2. SQL statements 2-131

Using End of Transaction to Close a Cursor
The COMMIT WORK and ROLLBACK WORK statements close all cursors except
those that are declared with a hold. It is better to close all cursors explicitly,
however. For Select or Function cursors, this action simply makes the intent of the
program clear. It also helps to avoid a logic error if the WITH HOLD clause is later
added to the declaration of a cursor.

For an Insert cursor in ESQL/C routines, it is important to use the CLOSE
statement explicitly so that you can test the error code. Following the COMMIT
WORK statement, SQLCODE reflects the result of the COMMIT statement, not the
result of closing cursors. If you use a COMMIT WORK statement without first
using a CLOSE statement, and if an error occurs while the last buffered rows are
being written to the database, the transaction is still committed.

For how to use Insert cursors and the WITH HOLD clause, see “DECLARE
statement” on page 2-386.

In an ANSI-compliant database, a cursor cannot be closed implicitly. You must
issue the CLOSE statement.

CLOSE DATABASE statement
Use the CLOSE DATABASE statement to close the implicit connection to the
current database. This statement is an extension to the ANSI/ISO standard for
SQL.

Syntax

�� CLOSE DATABASE ��

Usage

When you issue a CLOSE DATABASE statement, you can issue only the following
SQL statements immediately after it:
v CONNECT
v CREATE DATABASE
v DATABASE
v DROP DATABASE
v DISCONNECT

(The DISCONNECT statement is valid here only if an explicit connection existed
before CLOSE DATABASE was executed.)

Issue the CLOSE DATABASE statement before you drop the current database.

If your current database supports transaction logging, and if you have started a
transaction, you must issue a COMMIT WORK or ROLLBACK WORK statement
before you can use the CLOSE DATABASE statement.

The following example shows how to use the CLOSE DATABASE statement before
you drop the current database to which your session had established an implicit
connection:

2-132 IBM Informix Guide to SQL: Syntax

DATABASE stores_demo;
. . .
CLOSE DATABASE;
DROP DATABASE stores_demo;

In Informix ESQL/C, the CLOSE DATABASE statement cannot appear in a
multistatement PREPARE operation.

If a previous CONNECT statement has established an explicit connection to a
database, and that connection is still your current connection, you cannot use the
CLOSE DATABASE statement to close that explicit connection. (You can use the
DISCONNECT statement to close the explicit connection.)

If you use the CLOSE DATABASE statement within a UDR called by a
WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. This action prevents the program from looping endlessly if the
ROLLBACK WORK statement encounters an error or a warning.

When you issue the CLOSE DATABASE statement, any declared cursors are no
longer valid. You must re-declare any cursors that you want to use.

In an ANSI-compliant database, if no error is encountered while you exit from
DB-Access in non-interactive mode without issuing the CLOSE DATABASE,
COMMIT WORK, or DISCONNECT statement, the database server automatically
commits any open transaction.
Related reference:
“CREATE DATABASE statement” on page 2-150
“DROP DATABASE statement” on page 2-427
“DATABASE statement” on page 2-381
“CONNECT statement” on page 2-135
“DISCONNECT statement” on page 2-421

COMMIT WORK statement
Use the COMMIT WORK statement to commit all modifications made to the
database from the beginning of a transaction.

Syntax

�� COMMIT
WORK

��

Usage

The COMMIT WORK statement informs the database server that you reached the
end of a series of statements that must succeed as a single unit. The database
server takes the required steps to make sure that all modifications that the
transaction makes are completed correctly and saved to disk.

Use COMMIT WORK only at the end of a multistatement operation in a database
with transaction logging, when you are sure that you want to keep all changes
made to the database from the beginning of a transaction.

Chapter 2. SQL statements 2-133

The COMMIT WORK statement releases all row and table locks.

The WORK keyword is optional in a COMMIT WORK statement. The following
two statements are equivalent:
COMMIT;
COMMIT WORK;

The following example shows a transaction bounded by BEGIN WORK and
COMMIT WORK statements.
BEGIN WORK;

DELETE FROM call_type WHERE call_code = ’O’;
INSERT INTO call_type VALUES (’S’, ’order status’);

COMMIT WORK;

In this example, the user first deletes the row from the call_type table where the
value of the call_code column is O. The user then inserts a new row in the
call_type table where the value of the call_code column is S. The database server
guarantees that both operations succeed or else neither succeeds.

In Informix ESQL/C, the COMMIT WORK statement closes all open cursors except
those that were declared using the WITH HOLD option.
Related reference:
“BEGIN WORK statement” on page 2-126
“ROLLBACK WORK statement” on page 2-646
“DECLARE statement” on page 2-386

Interrupted modifications (SQL Tutorial)
“LOCK TABLE statement” on page 2-564
“UNLOCK TABLE statement” on page 2-851

Issuing COMMIT WORK in a Database That Is Not ANSI
Compliant

In a database that is not ANSI compliant, but that supports transaction logging, if
you initiate a transaction with a BEGIN WORK statement, you must issue a
COMMIT WORK statement at the end of the transaction. If you fail to issue a
COMMIT WORK statement in this case, the database server rolls back any
modifications that the transaction made to the database.

If you do not issue a BEGIN WORK statement, however, each statement executes
within its own transaction. These single-statement transactions do not require
either a BEGIN WORK statement or a COMMIT WORK statement.

Explicit DB-Access Transactions
When you use DB-Access in interactive mode with a database that is not
ANSI-compliant but that supports transaction logging, if you select the Commit
menu but do not issue the COMMIT WORK statement after a transaction has been
started by the BEGIN WORK statement, DB-Access automatically commits the
data, but issues the following warning:
Warning: Data commit is a result of unhandled exception in TXN PROC/FUNC

The purpose of this warning is to remind you to issue COMMIT WORK explicitly
to end a transaction that BEGIN WORK initiated.

2-134 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_277.htm#ids_sqt_277

In non-interactive mode, however, DB-Access rolls back the current transaction if
you end a session without issuing the COMMIT WORK statement.

Issuing COMMIT WORK in an ANSI-Compliant Database
In an ANSI-compliant database, you do not need BEGIN WORK to mark the
beginning of a transaction. You only need to mark the end of each transaction,
because a transaction is always in effect. A new transaction starts automatically
after each COMMIT WORK or ROLLBACK WORK statement.

You must, however, issue an explicit COMMIT WORK statement to mark the end
of each transaction. If you fail to do so, the database server rolls back any
modifications that the transaction made to the database.

In an ANSI-compliant database, however, if no error is encountered while you exit
from DB-Access in non-interactive mode without issuing the CLOSE DATABASE,
COMMIT WORK, or DISCONNECT statement, the database server automatically
commits any open transaction.

CONNECT statement
Use the CONNECT statement to connect to a database environment. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CONNECT TO
(1)

Database Environment
(2) (3)

USER Clause
TRUSTED

DEFAULT

�

�
(4)

WITH CONCURRENT TRANSACTION

��

Notes:

1 See “Database Environment” on page 2-137

2 ESQL/C and DB-Access only

3 See “USER Authentication Clause” on page 2-139

4 ESQL/C only

Usage

The CONNECT statement connects an application to a database environment, which
can be a database, a database server, or a database and a database server. If the
application successfully connects to the specified database environment, the
connection becomes the current connection for the application. The SQL statements
fail if the application has no current connection to a database server. If you specify
a database name, the database server opens that database. You cannot include
CONNECT within a PREPARE statement.

Chapter 2. SQL statements 2-135

An application can connect to several database environments at the same time, and
it can establish multiple connections to the same database environment, provided
each connection has a unique connection name.

On UNIX, the only restriction on establishing multiple connections to the same
database environment is that an application can establish only one connection to
each local server that uses the shared-memory connection mechanism. To find out
whether a local server uses the shared-memory connection mechanism or the
local-loopback connection mechanism, examine the $INFORMIXDIR/etc/sqlhosts
file. For more information on the sqlhosts file, refer to your IBM Informix
Administrator's Guide.

On Windows, the local connection mechanism is named pipes. Multiple
connections to the local server from one client can exist.

Only one connection is current at any time; other connections are dormant. The
application cannot interact with a database through a dormant connection. When
an application establishes a new connection, that connection becomes current, and
the previous current connection becomes dormant. You can make a dormant
connection current with the SET CONNECTION statement. See also “SET
CONNECTION statement” on page 2-731.

For connections between databases of different Informix instances, you cannot
establish multiple active connections between the same two database servers using
different server aliases. At any time, there can be only one active connection from
the local server to a remote server. If you use CONNECT TO dbserveralias
statements to specify different server aliases to connect to the same remote server,
where the dbserveralias identifiers are declared in setting of the DBSERVERALIASES
configuration parameter setting, no error message is issued, but the initial
connection is reused.
Related concepts:

The sqlhosts file and the SQLHOSTS registry key (Administrator's Guide)
Related reference:
“CREATE DATABASE statement” on page 2-150
“SET SESSION AUTHORIZATION statement” on page 2-814
“DROP DATABASE statement” on page 2-427
“DISCONNECT statement” on page 2-421
“SET CONNECTION statement” on page 2-731
“DATABASE statement” on page 2-381
“CLOSE DATABASE statement” on page 2-132

Privileges for Executing the CONNECT Statement
The current user, or PUBLIC, must hold the Connect privilege on the database that
the CONNECT statement specifies. The user who executes the CONNECT
statement cannot have the same authorization identifier as an existing role in that
database.

For information on how to use the USER Authentication clause to specify an
alternate user name when the CONNECT statement connects to a database server
on a remote host, see “USER Authentication Clause” on page 2-139.

2-136 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_0152.htm#thesqlhostsfileandthesqlhostsregistrykey

Connection Context
Each connection encompasses a set of information that is called the connection
context. The connection context includes the name of the current user, the
information that the database environment associates with this name, and
information on the state of the connection (such as whether an active transaction is
associated with the connection). The connection context is saved when an
application becomes dormant, and this context is restored when the application
becomes current again. (For more information, see “Making a dormant connection
as the current connection” on page 2-732.)

Database Environment
The CONNECT statement, like the SET CONNECTION statement, can use the
Database Environment syntax segment to specify the database or the database
server to which the application is attempting to establish a connection. Unlike the
SET CONNECTION statement, the CONNECT statement can also declare a name
for this connection to the specified database environment.

Database Environment:

'dbname'
'@dbservername' (1)
'dbname@dbservername' AS 'connection'
(1) connection_var

db_var

Notes:

1 ESQL/C only

Element Description Restrictions Syntax

connection Optional case-sensitive name
that you declare here for a
connection

Must be unique among connection names “Identifier” on
page 5-21

connection_var Host variable that stores the
name of connection

Must be a fixed-length character data type Language
specific

db_var Host variable that contains a
valid database environment (in
one of the formats in the
syntax diagram)

Must be a fixed-length character data type,
whose contents are in a format from the
syntax diagram

Language
specific

dbname Database to which to connect Must already exist “Identifier” on
page 5-21

dbservername Name of the database server to
which a connection is made

Must already exist; blank space is not valid
between @ symbol and dbservername. See also
“Restrictions on dbservername.”

“Identifier” on
page 5-21

If the DELIMIDENT environment variable is set, any quotation (') marks in the
database environment must be single. If DELIMIDENT is not set, then either
single (') or double (") quotation marks are valid here.

Restrictions on dbservername
If you specify dbservername, it must satisfy the following restrictions.
v If the database server that you specify is not online, you receive an error.

Chapter 2. SQL statements 2-137

v UNIX: The database server that you specify in dbservername must match the
name of a database server in the sqlhosts file.

v Windows: dbservername must match the name of a database server in the
sqlhosts subkey in the registry. It is recommended that you use the setnet32
utility to update the registry.

Note: If the name of a database server is a delimited identifier, or if it includes
uppercase letters, that database server cannot participate in cross-server distributed
DML operations. (If the server name includes uppercase letters, it also cannot
participate in cross-database distributed DML operations by SQL statements that
specify the server name as a qualifier to a database name. These statements fail
with error -908, because the SQL parser downshifts all uppercase letters in server
names to lowercase characters.) To avoid this restriction, specify only undelimited
names with no uppercase letters when you declare the name or the alias of a
database server that will participate in distributed queries.

Specifying the Database Environment
You can specify a database server and a database, or a database server only, or a
database only. How a database is located and opened depends on whether you
specify a database server name in the database environment expression.

Only Database Server Specified: The @dbservername option establishes a
connection to the database server only; it does not open a database. When you use
this option, you must subsequently use the DATABASE or CREATE DATABASE
statement (or a PREPARE statement for one of these statements and an EXECUTE
statement) to open a database.

Database Server and Database Specified: If you specify both a database server
and a database, your application connects to the database server, which locates and
opens the database.

Only Database Specified: The dbname option establishes a connection to the
default database server or to another database server in the DBPATH environment
variable. It also locates and opens the specified database. (The same is true of the
db_var option if this specifies only a database name.)

If you specify only dbname, its database server is read from the DBPATH
environment variable. The database server in the INFORMIXSERVER environment
variable is always added before the DBPATH value.

On UNIX, set the INFORMIXSERVER and DBPATH environment variables as the
following example (for the C shell) shows:
setenv INFORMIXSERVER srvA
setenv DBPATH //srvB://srvC

On Windows, choose Start > Programs > Informix > setnet32 from the Task Bar
and set the INFORMIXSERVER and DBPATH environment variables:
set INFORMIXSERVER = srvA
set DBPATH = //srvA://srvB://srvC

The next example shows the resulting DBPATH that your application uses:
//srvA://srvB://srvC

The application first establishes a connection to the database server that
INFORMIXSERVER specifies. The database server uses parameters in the
configuration file to locate the database. If the database does not reside on the

2-138 IBM Informix Guide to SQL: Syntax

default database server, or if the default database server is not online, the
application connects to the next database server in DBPATH. In the previous
example, that database server would be srvB.

Declaring a Connection Name
In ESQL/C applications, you can declare an identifier for the connection to the
database environment by including the AS keyword, followed by a quoted string
or by a host variable that stores the identifier. The host variable must be a
fixed-length character data type.

Connection Identifiers
The optional connection name is a unique identifier that an ESQL/C application can
use to refer to a connection in subsequent SET CONNECTION and DISCONNECT
statements. If the application does not provide a connection name (or a connection
host variable), it can refer to the connection using the database environment. If the
application makes more than one connection to the same database environment,
however, each connection must have a unique name.

Only the CONNECT statement can use the AS keyword to declare a connection
name. The CONNECT statement cannot, however, reference a previously declared
connection name to specify a connection to a database environment.

USER Authentication Clause
The USER Authentication clause specifies information that is used to determine
whether the application can access the target computer on a remote host.

USER Authentication Clause:

USER 'user_id'
user_id_var

USING validation_var

Element Description Restrictions Syntax

user_id Valid login name See “Restrictions on the User Identifier
Parameter” on page 2-140.

“Quoted String”
on page 4-219

user_id_var Host variable that contains user_id Must be a fixed-length character data
type; same restrictions as user_id

Language specific

validation_var Host variable that contains a valid
password for login name in user_id
or user_id_var

Must be a fixed-length character type. See
“Restrictions on the Validation Variable
Parameter.”

Language specific

The USER Authentication clause is required when the CONNECT statement
connects to the database server on a remote host. Subsequent to the CONNECT
statement, all database operations on the remote host use the specified user name.

In DB-Access, the USING clause is valid within files executed from DB-Access. In
interactive mode, DB-Access prompts you for a password, so the USING keyword
and validation_var are not used.

Restrictions on the Validation Variable Parameter
On UNIX, the password stored in validation_var must be a valid password and
must exist in the /etc/passwd file. If the application connects to a remote database
server, the password must exist in this file on both the local and remote database
servers.

Chapter 2. SQL statements 2-139

On Windows, the password stored in validation_var must be valid and must be the
password entered in User Manager. If the application connects to a remote
database server, the password must exist in the domain of both the client and the
server.

Restrictions on the User Identifier Parameter
The connection is rejected if any of the following conditions occur:
v The specified user lacks the privileges to access the database specified in the

database environment.
v The specified user lacks the permissions to connect to the remote host.
v You supply a USER Authentication clause but omit the USING validation_var

specification.

In compliance with the X/Open standard for the CONNECT statement, the
Informix ESQL/C preprocessor supports a CONNECT statement that has a USER
Authentication clause without the USING validation_var specification. If the
validation_var is not present, however, the database server rejects the connection at
runtime.

On UNIX, the user_id that you specify must be a valid login name and must exist
in the /etc/passwd file. If the application connects to a remote server, the login
name must exist in this file on both the local and remote database servers.

On Windows, the user_id that you specify must be a valid login name and must
exist in User Manager. If the application connects to a remote server, the login
name must exist in the domain of both the client and the server.

Use of the Default User ID
If you do not supply the USER Authentication clause, the default user ID is used
to attempt the connection.

The default user ID is the login name of the user running the application. In this
case, you obtain network permissions with the standard authorization procedures.
For example, on UNIX, the default user ID must match a user ID in the
trusted-host file (the /etc/hosts.equiv file or the file specified by the
REMOTE_SERVER_CFG configuration parameter). On Windows, you must be a
member of the domain, or if the database server is installed locally, you must be a
valid user on the computer where it is installed.
Related concepts:

Trusted-host information (Administrator's Guide)

The DEFAULT Connection Specification
Instead of specifying an explicit database environment, you can use the DEFAULT
keyword to request a default connection to a default database server. The default
database server can be local or remote. To designate the default database server, set
its name in the INFORMIXSERVER environment variable. This option of
CONNECT does not open a database.

If the CONNECT TO DEFAULT statement succeeds, you must use the DATABASE
statement or the CREATE DATABASE statement to open or create a database in
the default database environment.

2-140 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_1407.htm#ids_admin_1407

The Implicit Connection with DATABASE Statements
If you do not execute a CONNECT statement in your application, the first SQL
statement must be one of the following database statements (or a single statement
PREPARE for one of the following statements):
v DATABASE
v CREATE DATABASE
v DROP DATABASE

If one of these database statements is the first SQL statement in an application, the
statement establishes a connection to a database server, which is known as an
implicit connection. If the database statement specifies only a database name, the
database server name is obtained from the DBPATH environment variable. This
situation is described in “Specifying the Database Environment” on page 2-138.

An application that makes an implicit connection can establish other connections
explicitly (using the CONNECT statement) but cannot establish another implicit
connection unless the original implicit connection is closed. An application can
terminate an implicit connection using the DISCONNECT statement. After you
create an explicit connection, you cannot use any database statement to create
implicit connections until after you close the explicit connection.

After any implicit connection is made, that connection is considered to be the
default connection, regardless of whether the database server is the default that the
INFORMIXSERVER environment variable specifies. This feature allows the
application to refer to the implicit connection if additional explicit connections are
made, because the implicit connection has no identifier.

For example, if you establish an implicit connection followed by an explicit
connection, you can make the implicit connection current by issuing the SET
CONNECTION DEFAULT statement. This means, however, that once you establish
an implicit connection, you cannot use the CONNECT DEFAULT statement,
because the implicit connection is now the default connection.

The database statements can always be used to open a database or create a new
database on the current database server.

WITH CONCURRENT TRANSACTION Option
The WITH CONCURRENT TRANSACTION clause enables you to switch to a
different connection while a transaction is active in the current connection. If the
current connection was not established using the WITH CONCURRENT
TRANSACTION clause, you cannot switch to a different connection if a transaction
is active; the CONNECT or SET CONNECTION statement fails, returning an error,
and the transaction in the current connection continues to be active.

In this case, the application must commit or roll back the active transaction in the
current connection before it switches to a different connection.

The WITH CONCURRENT TRANSACTION clause supports the concept of
multiple concurrent transactions, where each connection can have its own
transaction and the COMMIT WORK and ROLLBACK WORK statements affect
only the current connection. The WITH CONCURRENT TRANSACTION clause
does not support global transactions in which a single transaction spans databases
over multiple connections. The COMMIT WORK and ROLLBACK WORK
statements do not act on databases across multiple connections.

Chapter 2. SQL statements 2-141

The following example illustrates how to use the WITH CONCURRENT
TRANSACTION clause:
main()
{
EXEC SQL connect to ’a@srv1’ as ’A’;
EXEC SQL connect to ’b@srv2’ as ’B’ with concurrent transaction;
EXEC SQL connect to ’c@srv3’ as ’C’ with concurrent transaction;

/*
Execute SQL statements in connection ’C’ , starting a transaction

*/
EXEC SQL set connection ’B’; -- switch to connection ’B’

/*
Execute SQL statements starting a transaction in ’B’.
Now there are two active transactions, one each in ’B’ and ’C’.

*/

EXEC SQL set connection ’A’; -- switch to connection ’A’

/*
Execute SQL statements starting a transaction in ’A’.
Now there are three active transactions, one each in ’A’, ’B’ and ’C’.

*/

EXEC SQL set connection ’C’; -- ERROR, transaction active in ’A’

/*
SET CONNECTION ’C’ fails (current connection is still ’A’)
The transaction in ’A’ must be committed or rolled back because
connection ’A’ was started without the CONCURRENT TRANSACTION
clause.

*/

EXEC SQL commit work; -- commit tx in current connection (’A’)

/*
Now, there are two active transactions, in ’B’ and in ’C’,
which must be committed or rolled back separately

*/

EXEC SQL set connection ’B’; -- switch to connection ’B’
EXEC SQL commit work; -- commit tx in current connection (’B’)

EXEC SQL set connection ’C’; -- go back to connection ’C’
EXEC SQL commit work; -- commit tx in current connection (’C’)

EXEC SQL disconnect all;
}

Warning: When an application uses the WITH CONCURRENT TRANSACTION
clause to establish multiple connections to the same database environment, a
deadlock condition can occur.

TRUSTED clause
Use the TRUSTED clause to specify that the application can connect to a database
environment as a trusted connection.

2-142 IBM Informix Guide to SQL: Syntax

CREATE ACCESS_METHOD statement
Use the CREATE ACCESS_METHOD statement to register a new primary or
secondary access method in the sysams system catalog table.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE SECONDARY
PRIMARY

ACCESS_METHOD access_method
IF NOT EXISTS

�

� �

,
(1)

(Purpose Options) ��

Notes:

1 See “Purpose Options” on page 5-54

Element Description Restrictions Syntax

access method Name declared here for the
new access method

Must be unique among access-method names in
the sysams system catalog table

“Identifier” on
page 5-21

Usage

The CREATE ACCESS_METHOD statement adds a user-defined access method to
a database. To create an access method, you specify purpose functions (or purpose
methods), purpose flags, or purpose values as attributes of the access method, and you
associate keywords (based on column names in the sysams system catalog table)
with UDRs. You must have the DBA or Resource privilege to create an access
method.

For information on setting purpose options, including a list of all the purpose
function keywords, refer to “Purpose Options” on page 5-54.

The PRIMARY keyword specifies a user-defined primary-access method for a
virtual table. The SECONDARY keyword specifies creating a user-defined
secondary-access method for a virtual index. The SECONDARY keyword (and
creating virtual indexes) is not supported in the Java™ Virtual-Table Interface.

The following statement creates a secondary-access method named T_tree:
CREATE SECONDARY ACCESS_METHOD T_tree
(
am_getnext = ttree_getnext,

. . .
am_unique,
am_cluster,
am_sptype = ’S’
);

In the preceding example, the am_getnext keyword in the Purpose Options list is
associated with the ttree_getnext() UDR as the name of a method to scan for the

Chapter 2. SQL statements 2-143

next item that satisfies a query. This example indicates that the T_tree secondary
access method supports unique keys and clustering, and resides in an sbspace.

Any UDR that the CREATE ACCESS_METHOD statement associates with the
keyword for a purpose function task, such as the association of ttree_getnext()
with am_getnext in the preceding example, must already have been registered in
the database by the CREATE FUNCTION statement (or by a functionally
equivalent statement, such as CREATE PROCEDURE FROM).

The following statement creates a primary-access method named am_tabprops that
resides in an extspace.
CREATE PRIMARY ACCESS_METHOD am_tabprops
(
am_open = FS_open,
am_close = FS_close,
am_beginscan = FS_beginScan,
am_create = FS_create,
am_scancost = FS_scanCost,
am_endscan = FS_endScan,
am_getnext = FS_getNext,
am_getbyid = FS_getById,
am_drop = FS_drop,
am_truncate = FS_truncate,
am_rowids,
am_sptype = ’x’
);

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if an access method of
the specified name is already registered in the current database.
Related concepts:

Secondary-access methods (UDR and Data Type Guide)
Related reference:
“DROP ACCESS_METHOD statement” on page 2-424
“ALTER ACCESS_METHOD statement” on page 2-5

SYSAMS (SQL Reference)
“Purpose Options” on page 5-54

Access methods (Virtual-Table Interface Guide)

Access methods (Virtual-Index Interface Guide)
“GRANT statement” on page 2-502
“REVOKE statement” on page 2-618

Grant and limit access to your database (Database Design Guide)

CREATE AGGREGATE statement
Use the CREATE AGGREGATE statement to create a new aggregate function and
register it in the sysaggregates system catalog table.

User-defined aggregates (UDA) extend the functionality of the database server by
performing aggregate calculations that the user implements.

This statement is an extension to the ANSI/ISO standard for SQL.

2-144 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_284.htm#ids_udr_284
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_016.htm#ids_sqr_016
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.vti.doc/ids_vti_005.htm#ids_vti_005
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.vii.doc/ids_vii_005.htm#ids_vii_005
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_103.htm#ids_ddi_103

Syntax

�� CREATE AGGREGATE aggregate
IF NOT EXISTS (1)

Owner Name .

�

� �

,

WITH (Modifiers) ��

Modifiers:

INIT=init_func
ITER=iter_func
COMBINE=comb_func

FINAL=final_func
HANDLESNULLS

Notes:

1 See “Owner name” on page 5-49

Element Description Restrictions Syntax

aggregate Name of the new aggregate Must be unique among names of
built-in aggregates and UDRs

“Identifier” on page
5-21

comb_func Function that merges one partial
result into the other and returns the
updated partial result

Must specify the combined function
both for parallel queries and for
sequential queries

“Identifier” on page
5-21

final_func Function that converts a partial
result into the result type

If this is omitted, then the returned
value is the final result of iter_func

“Identifier” on page
5-21

init_func Function that initializes the data
structures required for the
aggregate computation

Must be able to handle NULL
arguments

“Identifier” on page
5-21

iter_func Function that merges a single value
with a partial result and returns
updated partial result

Must specify an iterator function. If
init_func is omitted, iter_func must be
able to handle NULL arguments

“Identifier” on page
5-21

Usage

You can specify the INIT, ITER, COMBINE, FINAL, and HANDLESNULLS
modifiers in any order.

Important: You must specify the ITER and COMBINE modifiers in a CREATE
AGGREGATE statement. You do not need to specify the INIT, FINAL, and
HANDLESNULLS modifiers in a CREATE AGGREGATE statement.

The ITER, COMBINE, FINAL, and INIT modifiers specify the support functions for
a user-defined aggregate. These support functions do not need to exist at the time
when you create the user-defined aggregate.

If you omit the HANDLESNULLS modifier, rows with NULL aggregate argument
values do not contribute to the aggregate computation. If you include the
HANDLESNULLS modifier, you must define all the support functions to handle
NULL values as well.

Chapter 2. SQL statements 2-145

Important: A SELECT statement can include no more than one UDA expression
whose first argument is the DISTINCT or UNIQUE keyword (rather than the ALL
keyword, or no keyword). In a query that includes subqueries, however, you can
specify either zero or one DISTINCT or UNIQUE user-defined aggregate
expression at each level of the query. Built-in aggregates are not subject to this
restriction.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if an aggregate of the
specified name is already registered in the current database.
Related concepts:
“User-Defined Aggregates” on page 4-195

Create user-defined aggregates (UDR and Data Type Guide)
Related reference:
“DROP AGGREGATE statement” on page 2-425
“CREATE FUNCTION statement” on page 2-183

SYSAGGREGATES (SQL Reference)

Extending the Functionality of Aggregates
Informix provides two ways to extend the functionality of aggregates. Use the
CREATE AGGREGATE statement only for the second of the two cases.
v Extensions of built-in aggregates

A built-in aggregate is an aggregate that the database server provides, such as
COUNT, SUM, or AVG. These only support built-in data types. To extend a
built-in aggregate so that it supports a user-defined data type (UDT), you must
create user-defined routines that overload the binary operators for that
aggregate. For further information on extending built-in aggregates, see the IBM
Informix User-Defined Routines and Data Types Developer's Guide.

v Creation of user-defined aggregates
A user-defined aggregate is an aggregate that you define to perform an
aggregate computation that the database server does not provide. You can use
user-defined aggregates with built-in data types, extended data types, or both.
To create a user-defined aggregate, use the CREATE AGGREGATE statement. In
this statement, you name the new aggregate and specify the support functions
that compute the aggregate result. These support functions perform
initialization, sequential aggregation, combination of results, and type
conversion.

Example of Creating a User-Defined Aggregate
The following example defines a user-defined aggregate named average:
CREATE AGGREGATE average

WITH (
INIT = average_init,
ITER = average_iter,
COMBINE = average_combine,
FINAL = average_final
);

Before you use the average aggregate in a query, you must also use CREATE
FUNCTION statements to create the support functions specified in the CREATE
AGGREGATE statement.

2-146 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_180.htm#ids_udr_180
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_015.htm#ids_sqr_015

The following table gives an example of the task that each support function might
perform for average.

Keyword Support Function Effect

INIT average_init Allocates and initializes an extended data type storing
the current sum and the current row count

ITER average_iter For each row, adds the value of the expression to the
current sum and increments the current row count by
one

COMBINE average_combine Adds the current sum and the current row count of
one partial result to the other and returns the updated
result

FINAL average_final Returns the ratio of the current sum to the current
row count and converts this ratio to the result type

Parallel Execution
The database server can break up an aggregate computation into several pieces
and compute them in parallel.

The database server uses the INIT and ITER support functions to compute each
piece sequentially. Then the database server uses the COMBINE function to
combine the partial results from all the pieces into a single result value. Whether
an aggregate is parallel is an optimization decision that is transparent to the user.
Related reference:

SYSAGGREGATES (SQL Reference)

CREATE CAST statement
Use the CREATE CAST statement to register a cast that converts data from one
data type to another.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE
EXPLICIT

IMPLICIT
CAST

IF NOT EXISTS
�

� (source_type AS target_type)
WITH function

��

Element Description Restrictions Syntax

function UDR that you register to
implement the cast

See “WITH Clause” on page 2-150. “Identifier” on
page 5-21

source_type Data type to be converted Must exist in the database at the time the cast is
registered. See also “Source and Target Data Types”
on page 2-148.

“Data Type” on
page 4-23

target_type Data type that results
from the conversion

The same restrictions that apply for the source_type (as
listed above) also apply for the target_type

“Data Type” on
page 4-23

Chapter 2. SQL statements 2-147

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_015.htm#ids_sqr_015

Usage

A cast is a mechanism that the database server uses to convert one data type to
another. The database server uses casts to perform the following tasks:
v To compare two values in the WHERE clause of a SELECT, UPDATE, or

DELETE statement
v To pass values as arguments to user-defined routines
v To return values from user-defined routines

To create a cast, you must have the necessary privileges on both the source data
type and the target data type. All users have access privileges to use the built-in
data types. To create a cast to or from an OPAQUE, DISTINCT, or named ROW
data type, however, requires the Usage privilege on that data type.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a cast between the
two specified data types is already registered in the current database.

The CREATE CAST statement registers a cast in the syscasts system catalog table.
For more information on syscasts, see the chapter on system catalog tables in the
IBM Informix Guide to SQL: Reference.
Related concepts:

Data types (SQL Reference)
Chapter 4, “Data types and expressions,” on page 4-1
Related reference:

SYSCASTS (SQL Reference)
“CREATE FUNCTION statement” on page 2-183
“CREATE DISTINCT TYPE statement” on page 2-157
“CREATE OPAQUE TYPE statement” on page 2-218
“CREATE ROW TYPE statement” on page 2-241
“DROP CAST statement” on page 2-425

Create and use user-defined casts (Database Design Guide)
“CREATE SCHEMA statement” on page 2-245

Source and Target Data Types
The CREATE CAST statement defines a cast that converts a source type to a target
type. Both the source and target data types must exist in the database when you
execute the CREATE CAST statement to register the cast.

The source and the target data types have the following restrictions:
v Either the source or the target type, but not both, can be a built-in data type.
v Neither the source nor the target type can be a DISTINCT type of the other.
v Neither the source nor the target types can be a COLLECTION data type.

Explicit and Implicit Casts
Processing queries with multiple data types often requires casts that convert data
from one data type to another.

You can use the CREATE CAST statement to create the following kinds of casts:

2-148 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_093.htm#ids_sqr_093
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_019.htm#ids_sqr_019
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_130.htm#ids_ddi_130

v Use the CREATE EXPLICIT CAST statement to define an explicit cast.
v Use the CREATE IMPLICIT CAST statement to define an implicit cast.

The database server invokes built-in casts to convert from one built-in data type to
another built-in type that is not directly substitutable. For example, the database
server performs conversion of a character type such as CHAR to a numeric type
such as INTEGER through a built-in cast.

Explicit Casts
An explicit cast is a cast that you must specifically invoke, with either the CAST
AS keywords or with the cast operator (::). The database server does not
automatically invoke an explicit cast to resolve data type conversions. The
EXPLICIT keyword is optional; by default, the CREATE CAST statement creates an
explicit cast.

The following CREATE CAST statement defines an explicit cast from the
rate_of_return opaque data type to the percent distinct data type:
CREATE EXPLICIT CAST (rate_of_return AS percent

WITH rate_to_prcnt);

The following SELECT statement explicitly invokes this explicit cast in its WHERE
clause to compare the bond_rate column (of type rate_of_return) to the
initial_APR column (of type percent):
SELECT bond_rate FROM bond

WHERE bond_rate::percent > initial_APR;

Implicit Casts
An implicit cast is a cast that the database server can invoke automatically when it
encounters data types that cannot be compared with built-in casts. This type of
cast enables the database server to automatically handle conversions between other
data types.

To define an implicit cast, specify the IMPLICIT keyword in the CREATE CAST
statement. For example, the following CREATE CAST statement specifies that the
database server should automatically use the prcnt_to_char() function to convert
from the CHAR data type to a distinct data type, percent:
CREATE IMPLICIT CAST (CHAR AS percent WITH char_to_prcnt);

This cast only supports automatic conversion from the CHAR data type to percent.
For the database server to convert from percent to CHAR, you also need to define
another implicit cast, as follows:
CREATE IMPLICIT CAST (percent AS CHAR WITH prcnt_to_char);

The database server automatically invokes the char_to_prcnt() function to evaluate
the WHERE clause of the following SELECT statement:
SELECT commission FROM sales_rep WHERE commission > "25

Users can also invoke implicit casts explicitly. For more information on how to
explicitly invoke a cast function, see “Explicit Casts.”

When a built-in cast does not exist for conversion between data types, you can
create user-defined casts to make the necessary conversion.

Chapter 2. SQL statements 2-149

WITH Clause
The WITH clause of the CREATE CAST statement specifies the name of the
user-defined function to invoke to perform the cast. This function is called the cast
function.

You must specify a function name unless the source data type and the target data type
have identical representations. Two data types have identical representations when
the following conditions are met:
v Both data types have the same length and alignment.
v Both data types are passed by reference or both are passed by value.

The cast function must be registered in the same database as the cast at the time
the cast is invoked, but need not exist when the cast is created. The CREATE CAST
statement does not check privileges on the specified function name, or even verify
that the cast function exists. Each time a user invokes the cast explicitly or
implicitly, the database server verifies that the user has the Execute privilege on
the cast function.

CREATE DATABASE statement
Use the CREATE DATABASE statement to create a new database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE DATABASE database
IF NOT EXISTS IN dbspace

�

�
NLSCASE SENSITIVE

WITH LOG NLSCASE INSENSITIVE
BUFFERED

LOG MODE ANSI

��

Element Description Restrictions Syntax

database Name that you declare here for the new
database that you are creating

Must be unique among names of
databases of the database server

“Database Name” on
page 5-15

dbspace The dbspace to store the data for this
database; default is the root dbspace

Must already exist “Identifier” on page
5-21

Usage

This statement is an extension to ANSI-standard syntax. (The ANSI/ISO standard
for the SQL language does not specify any syntax for construction of a database,
the process by which a database comes into existence and has its name declared.)

The database that CREATE DATABASE specifies becomes the current database.

If the DBCREATE_PERMISSION configuration parameter is not set, any user can
create a database. If the configuration file includes one or more
DBCREATE_PERMISSION specifications, however, only the specified users can

2-150 IBM Informix Guide to SQL: Syntax

create databases. Whether or not DBCREATE_PERMISSION is set, user informix
can use the CREATE DATABASE statement. For additional information about how
to set the DBCREATE_PERMISSION parameter to control which users can create
new databases. see the IBM Informix Administrator's Reference.

The database name that you declare must be unique within the database server
environment in which you are working. The database server creates the system
catalog tables that describe the structure of the new database.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a database of the
specified name already exists among the databases managed by the database
server instance to which you are connected.

When you create a database, you alone can access it. It remains inaccessible to
other users until you, as DBA, grant database privileges. For information on how
to grant database privileges, see the “GRANT statement” on page 2-502.

If a previous CONNECT statement has established an explicit connection to a
database, and that connection is still your current connection, you cannot use the
CREATE DATABASE statement (nor any SQL statement that creates an implicit
connection) until after you use the DISCONNECT statement to close the explicit
connection.

In Informix ESQL/C, the CREATE DATABASE statement cannot appear in a
multistatement PREPARE operation.

The SQL_LOGICAL_CHAR configuration parameter setting for the database server
instance to which you are connected is recorded in the system catalog of the new
database. This setting cannot be changed, and persists until the database is
dropped, even if the Informix instance that manages the database is stopped and
restarted with a new SQL_LOGICAL_CHAR value. For a description of
SQL_LOGICAL_CHAR, which in multibyte locales can enable logical-character
semantics in declarations of character data types, see your IBM Informix
Administrator's Reference. For information about how the flags column of the
systables system catalog table encodes the SQL_LOGICAL_CHAR setting for the
database, see your IBM Informix Guide to SQL: Reference.

If you do not specify a dbspace, the database server creates the system catalog
tables in the root dbspace by default. The following statement creates the vehicles
database in the root dbspace:
CREATE DATABASE vehicles;

Because the example above includes no logging specification and no NLSCASE
specification, then by default
v the vehicles database cannot support transaction logging,
v and if its locale uses a code set that distinguishes between uppercase and

lowercase letters, the database is case sensitive for all built-in character data
types.

The following statement defines the vehicles database in the research dbspace:
CREATE DATABASE vehicles IN research;

But if no DROP DATABASE statement has destroyed the vehicles database that the
first example above created in the root dbspace, the second example fails with an

Chapter 2. SQL statements 2-151

error, and no new database is created, because the identifier of the vehicles
database is not unique for the database server instance.
Related reference:
“CLOSE DATABASE statement” on page 2-132
“CONNECT statement” on page 2-135
“DATABASE statement” on page 2-381
“DROP DATABASE statement” on page 2-427

DBCREATE_PERMISSION configuration parameter (Administrator's Reference)

SQL_LOGICAL_CHAR configuration parameter (Administrator's Reference)
“CREATE TABLE statement” on page 2-265
“CREATE TEMP TABLE statement” on page 2-321
“RENAME DATABASE statement” on page 2-611
“SET TRANSACTION statement” on page 2-820
“SET ISOLATION statement” on page 2-796
“SET LOG statement” on page 2-806

Logging Options
The logging options of the CREATE DATABASE statement determine the type of
logging that is done for the database. In the event of a failure, the database server
uses the log to re-create all committed transactions in your database.

The following statement uses the WITH LOG option to create a database with
unbuffered logging:
CREATE DATABASE unbufDatabase WITH LOG;

If you do not specify the WITH LOG keywords Informix will create an unlogged
database that cannot use transactions nor the SQL statements that support
transaction logging (BEGIN WORK, COMMIT WORK, ROLLBACK WORK,
RELEASE SAVEPOINT, ROLLBACK TO SAVEPOINT, SET IMPLICIT
TRANSACTION, SET LOG, and SET ISOLATION).

You must use the WITH LOG option when you create a database on a secondary
server in a high-availability cluster.

Specifying Buffered Logging
The following example creates a database that uses a buffered log:
CREATE DATABASE vehicles WITH BUFFERED LOG;

If you use a buffered log, you marginally enhance the performance of logging at
the risk of not being able to re-create the last few transactions after a failure. (See
the discussion of buffered logging in the IBM Informix Database Design and
Implementation Guide.)

ANSI-Compliant Databases
When you use the LOG MODE ANSI option in the CREATE DATABASE
statement, the database that you create is an ANSI-compliant database that
conforms to the ANSI/ISO standard for the SQL language.

The following example creates an ANSI-compliant database:

2-152 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0042.htm#ids_adr_0042
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076

CREATE DATABASE employees WITH LOG MODE ANSI;

ANSI-compliant databases are different from databases that are not ANSI
compliant in several ways, including the following features:
v All SQL statements are automatically contained in transactions.
v All databases use unbuffered logging.
v Owner naming is enforced.

You must qualify with the owner name any table, view, synonym, index, or
constraint that you do not own. Unless you enclose the owner name between
quotation marks, alphabetic characters in owner names default to uppercase. (To
prevent this upshifting of lowercase letters in undelimited owner names, you
can set the ANSIOWNER environment variable to 1.)
In addition, the routine signature of a UDR includes the name of the owner; in
databases that are not ANSI compliant, this is true only for the sysdbopen()
and sysdbclose() procedures.

v For sessions, the default isolation level is REPEATABLE READ.
v Default privileges on objects differ from those in databases that are not ANSI

compliant. When you create a table or a synonym, other users do not receive
access privileges (as members if the PUBLIC group) on the object by default.

v All DECIMAL data types are fixed-point values. If you declare a column as
DECIMAL(p), the default scale is zero, meaning that only integer values can be
stored. (In a database that is not ANSI compliant, DECIMAL(p) is a
floating-point data type of a scale large enough to store the exponential notation
for a value.)

Other slight differences exist between databases that are ANSI compliant and those
that are not. These differences are noted with the related SQL statement in this
document. For a detailed discussion of the differences between ANSI compliant
databases and databases that are not ANSI-compliant, see the IBM Informix
Database Design and Implementation Guide.

Creating an ANSI-compliant database does not mean that you automatically
receive warnings for Informix extensions to the ANSI/ISO standard for SQL syntax
when you run the database. You must also use the -ansi flag or the
DBANSIWARN environment variable to receive such warnings.

For additional information about -ansi and DBANSIWARN, see the IBM Informix
Guide to SQL: Reference.
Related reference:

DBANSIWARN environment variable (SQL Reference)

Specifying NLSCASE case sensitivity
You can explicitly create a case-sensitive or case insensitive database.

By default, in databases where the locale classifies disjunct subsets of the code set
as uppercase letters and as lowercase letters, Informix databases are created as
case-sensitive. The database locale is defined by setting the DB_LOCALE
environment variable. An example of a locale whose code set recognizes letter case
is the default US English locale, where lowercase letters precede uppercase letters
in the ascending order of collation. In the default locale, the following statement
creates a case-sensitive database:
CREATE DATABASE employees IN dbspaceYee WITH BUFFERED LOG;

Chapter 2. SQL statements 2-153

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_207.htm#ids_sqr_207

To explicitly create a case-sensitive database, include the NLSCASE SENSITIVE
keywords as the last specification of the CREATE DATABASE statement, as in the
following example:
CREATE DATABASE stores IN dbsp1 WITH LOG NLSCASE SENSITIVE;

Because case sensitivity is enabled by default, the following statement has the
same effect:
CREATE DATABASE stores IN dbsp1 WITH LOG;

In a database that is case sensitive, the Boolean condition ’M’ MATCHES ’m’, for
example, evaluates as false.

All informix databases are case sensitive for operations on character strings of the
built-in CHAR, LVARCHAR, and VARCHAR data types. If you create a
case-sensitive database, whether by default, or explicitly with the NLSCASE
SENSITIVE keywords, that database also treats strings of the National Language
Support data types NCHAR and NVARCHAR as case sensitive, if the database
locale supports letter case.

Creating a database that is not case sensitive

In some applications, the letter case of character strings can be disregarded. Data
entry procedures, for example, might accept the strings ’M’ and ’m’ as logically
equivalent within a record. For large data sets, applying conditional logic to
convert both case variants to a single value can result in slower performance than
storing the records in an NCHAR or NVARCHAR column of a case-insensitive
database, in which the strings ’M’ and ’m’ encode the same case-insensitive value.
Here the condition ’M’ MATCHES ’m’ evaluates as true for NCHAR or NVARCHAR
columns.

Every database created with the NLSCASE INSENSITIVE property stores uppercase
and lowercase NCHAR and NVARCHAR letters exactly as they are loaded into
their tables; any unmodified record that a query returns has its original lettercase.
In all operations on NCHAR and NVARCHAR values, however, such as sorting,
grouping, or identifying duplicate rows, the database server ignores any letter case
variants, and treats, for example, the strings ’Mi’ and ’mI’ as the same value.
Information about the case of letters not discarded, but it is also not used when the
database server processes NLS data types.

When you include the NLSCASE INSENSITIVE keywords as the last specification of
the CREATE DATABASE statement, the database server creates a database that
always processes the following types of character strings without regard to letter
case:
v Strings stored in columns of the NLS data types NCHAR and NVARCHAR
v Strings stored as a DISTINCT data type whose base type is NCHAR or

NVARCHAR
v Strings stored as elements of these data types within a collection data type
v Strings stored in fields of the above data types in a named or unnamed ROW

data type
v Strings stored as SPL variables of these data types
v Strings implicitly or explicitly cast to these data types
v Strings returned by functions as output parameters of these data types.

2-154 IBM Informix Guide to SQL: Syntax

Here "these data types" refers to the character data types that are identified in the
same list.

The following statement creates a database with the NLSCASE property set to
INSENSITIVE:
CREATE DATABASE stores IN dbsp2 WITH BUFFERED LOG NLSCASE INSENSITIVE;

Important: A database created as NLSCASE INSENSITIVE treats all other built-in
character data types (CHAR, LVARCHAR, and VARCHAR) as case sensitive. That
is, a case-insensitive database can also perform case-sensitive processing of string
values, if their data types are not among the NLS character data types in the list
above.

To perform case-sensitive operations on a string of the NCHAR or NVARCHAR
data type in a case-insensitive database, you must first explicitly cast the string to
a CHAR, LVARCHAR, or VARCHAR data type, and then perform the
case-sensitive operation. (See, however, the topic “Return Types from CONCAT
and String Functions” on page 4-156, which identifies contexts in which the
database server automatically casts the result of built-in string-manipulation
functions and string operators to NCHAR or NVARCHAR data types.)

Examples of NLSCASE INSENSITIVE queries

In a case-insensitive database, when a query calls an aggregate function or includes
the GROUP BY clause for an NCHAR or NVARCHAR column, the database server
treats letter-case variants in the data as duplicate column values, as in the
following program fragment.

CREATE DATABASE casedb WITH LOG NLSCASE INSENSITIVE;
CREATE TABLE foo (cc CHAR(5), nc NCHAR(5));
INSERT INTO foo VALUES (’IBM’, ’iBM’);
INSERT INTO foo VALUES (’ibm’, ’ibM’);
INSERT INTO foo VALUES (’ibm’, ’ibM’);
INSERT INTO foo VALUES (’Ibm’, ’Ibm’);

SELECT COUNT(nc) FROM foo
GROUP BY nc;

SELECT COUNT(nc) FROM foo
WHERE nc = ’ibm’ GROUP BY nc;

In both of the queries above, the COUNT aggregate function returns 4, the total
number of rows that the INSERT statements loaded into foo. Because column nc is
an NLS data type, all of the rows satisfy the nc = ’ibm’ condition in the WHERE
clause, despite variations in letter case among the nc values.

For the following query on the same tables,
SELECT nc FROM foo GROUP BY nc;

the output can be any of the string values from the INSERT statements (namely
’IBM’, ’iBM’, ’ibm’, ’ibM’, or ’Ibm’), depending on the order in which the server
processes or scans the rows.

The next query on the same table excludes duplicate rows from the result set by
including the DISTINCT keyword in the projection clause:
SELECT DISTINCT nc FROM foo;

Chapter 2. SQL statements 2-155

This returns a single row, because from the NLSCASE INSENSITIVE perspective, all of
the rows have the same value, despite the variations in letter case. As in the
previous example, the first row retrieved from among the inserted rows will be
returned by the query.

The next example includes the DISTINCT keyword as one of the arguments to the
COUNT aggregate function:
SELECT COUNT(DISTINCT nc) FROM foo;

This returns a count of 1, again because in this case-insensitive database, all of the
rows in table foo evaluate as duplicates.

Restrictions on NLSCASE INSENSITIVE databases

The following restrictions apply to databases that are created with the NLSCASE
INSENSITIVE property:
v They support distributed cross-database and cross-server queries only with

databases that also have the NLSCASE INSENSITIVE property.
v Case-sensitive databases cannot connect to NLSCASE INSENSITIVE databases.

Attempts to do so fail with this error:
-26801 Cannot reference an external database that is not case sensitive.

v NLSCASE INSENSITIVE databases cannot connect to case-sensitive databases.
Attempts to do so fail with this error:
-26802 Cannot reference an external database that is case sensitive.

The only exception is that the NLSCASE setting does not prevent connections to
the case-sensitive system databases, such as sysmaster, sysadmin, sysutils,
sysusers, and syscdr, of the same Informix database server instance. The results
of operations that access a system database depends on the NLSCASE setting of
the other database.

v The onload and onunload utilities do not support databases that have the
NLSCASE INSENSITIVE property.

v In an Enterprise Replication cluster, no error or warning is issued if you specify
a replication pair in whose databases differ in their NLSCASE property. To
reduce the risk of data inconsistencies, replicate case-sensitive databases only
with case-sensitive databases. and replicate NLSCASE INSENSITIVE databases
only with NLSCASE INSENSITIVE databases.

CREATE DEFAULT USER statement (UNIX, Linux)
Use the CREATE DEFAULT USER statement to define the properties set of the
default internally authenticated user. This statement is an extension to the
ANSI/ISO standard for the SQL language.

Syntax

��
(1)

CREATE DEFAULT USER WITH Properties ��

Notes:

1 See the Properties clause in the “CREATE USER statement (UNIX, Linux)” on
page 2-368

2-156 IBM Informix Guide to SQL: Syntax

Usage

CREATE DEFAULT USER is a special case of the CREATE USER statement. After
you use the CREATE DEFAULT USER statement to define default user properties,
you can use the CREATE USER statement (but omitting the PROPERTIES clause)
to create new users who have default user properties.

Only a DBSA can issue the CREATE DEFAULT USER statement. With a non-root
installation, the user who installs the server is the equivalent of the DBSA, unless
the user delegates DBSA privileges to a different user.

The USERMAPPING configuration parameter must be set to a value (ADMIN or
BASIC) that enables support for mapped users before default users who were
created with the CREATE DEFAULT USER statement can connect to the database
server. A DBSA can issue the CREATE DEFAULT USER statement to map default
users to properties that correspond to the appropriate level of authorization. The
USERMAPPING configuration parameter must be set to ADMIN to enable a
default user to have a server administrative privilege with the AUTHORIZATION
keyword, where AAO, BARGROUP, DBSA, and DBSSO are the keyword options for
specific administrative privileges.

You must also enter values in the SYSUSERMAP table of the sysusers database to
map users with the appropriate user properties, so that the mapped user
statements of SQL can work correctly.

You cannot specify a password, or account lock, or account unlock information in
the CREATE DEFAULT USER statement. This statement is equivalent to the GRANT
ACCESS TO PUBLIC PROPERTIES statement. The equivalent syntax to
REVOKE ACCESS TO PUBLIC;

is this:
DROP DEFAULT USER;

To alter the properties of the default internally authenticated user, you can issue
the ALTER DEFAULT USER WITH PROPERTIES statement.

Execution of the CREATE DEFAULT USER statement can be audited with the
CRUR audit code, which is the same mnemonic as for the CREATE USER
statement.

For more information about the PROPERTIES options to the CREATE DEFAULT
USER statement, see the “CREATE USER statement (UNIX, Linux)” on page 2-368.
Related reference:
“CREATE USER statement (UNIX, Linux)” on page 2-368

USERMAPPING configuration parameter (UNIX, Linux) (Administrator's
Reference)
“ALTER USER statement (UNIX, Linux)” on page 2-122

CREATE DISTINCT TYPE statement
Use the CREATE DISTINCT TYPE statement to create a new distinct data type.

This statement is an extension to the ANSI/ISO standard for SQL.

Chapter 2. SQL statements 2-157

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1101.htm#ids_adr_1101
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1101.htm#ids_adr_1101

Syntax

�� CREATE DISTINCT TYPE distinct_type
IF NOT EXISTS

AS source_type ��

Element Description Restrictions Syntax

distinct_type Name that you
declare here for the
new distinct data type

In an ANSI-compliant database, the combination of the
owner and data type must be unique within the database. In
a database that is not ANSI compliant, the name must be
unique among names of data types in the database.

“Data Type”
on page 4-23

source_type Name of existing type
on which the new
type is based

Must be either a built-in data type or one created with the
CREATE DISTINCT TYPE, CREATE OPAQUE TYPE, or
CREATE ROW TYPE statement

“Data Type”
on page 4-23

Usage

A distinct type is a data type based on a built-in data type or on an existing opaque
data type, a named ROW data type, or another distinct data type. Distinct data
types are strongly typed. Although the distinct type has the same physical
representation of data as its source type, values of the two types cannot be
compared without an explicit cast from one type to the other.

To create a distinct data type, you must have the Resource privilege on the
database. Any user with the Resource privilege can create a distinct type from one
of the built-in data types, which user informix owns.

Important: You cannot create a distinct type on the SERIAL, BIGSERIAL, or
SERIAL8 data types.

To create a distinct type from an opaque type, from a named ROW type, or from
another distinct type, you must be the owner of the data type or have the Usage
privilege on the data type.

By default, after a distinct type is defined, only the owner of the distinct type and
the DBA can use it. The owner of the distinct type, however, can grant to other
users the Usage privilege on the distinct type.

A distinct type has the same storage structure as its source type. The following
statement creates the distinct type birthday, based on the built-in DATE data type:
CREATE DISTINCT TYPE birthday AS DATE;

Although Informix uses the same storage format for the distinct type as it does for
its source type, a distinct type and its source type cannot be compared in an
operation unless one type is cast explicitly to the other type.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a DISTINCT data
type of the specified name is already registered in the current database.
Related concepts:

Distinct data type (UDR and Data Type Guide)
Related reference:
“CREATE CAST statement” on page 2-147

2-158 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_134.htm#ids_udr_134

“CREATE OPAQUE TYPE statement” on page 2-218
“CREATE SCHEMA statement” on page 2-245
“CREATE FUNCTION statement” on page 2-183
“CREATE ROW TYPE statement” on page 2-241
“DROP TYPE statement” on page 2-450
“DROP ROW TYPE statement” on page 2-440

DISTINCT data types (SQL Reference)

Privileges on Distinct Types
To create a distinct type, you must have the Resource privilege on the database.
When you create the distinct type, only you, the owner, have Usage privilege on
this type. Use the GRANT or REVOKE statements to grant or revoke Usage
privilege to other database users.

To find out what privileges exist on a particular type, check the sysxtdtypes
system catalog table for the owner name and the sysxtdtypeauth system catalog
table for additional data type privileges that might have been granted. For more
information on system catalog tables, see the IBM Informix Guide to SQL: Reference.

The DB-Access utility can also display privileges on distinct types.
Related concepts:

System catalog tables (SQL Reference)

Support Functions and Casts
When you create a distinct type, Informix automatically defines two explicit casts:
v A cast from the distinct type to its source type
v A cast from the source type to the distinct type

Because the two data types have the same representation (the same length and
alignment), no support functions are required to implement the casts.

You can create an implicit cast between a distinct type and its source type. To
create an implicit cast, use the Table Options clause to specify the format of the
external data. You must first drop the default explicit cast, however, between the
distinct type and its source type.

All support functions and casts that are defined on the source type can be used on
the distinct type. Casts and support functions that are defined on the distinct type,
however, are not available to the source type. Use the Table Options clause to
specify the format of the external data.

Manipulating Distinct Types
When you compare or manipulate data of a distinct type and its source type, you
must explicitly cast one type to the other in the following situations:
v To insert or update a column of one type with values of the other type
v To use a relational operator to add, subtract, multiply, divide, compare, or

otherwise manipulate two values, one of the source type and one of the distinct
type

Chapter 2. SQL statements 2-159

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_116.htm#ids_sqr_116
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009

For example, suppose you create a distinct type, dist_type, that is based on the
NUMERIC data type. You then create a table with two columns, one of type
dist_type and one of type NUMERIC.
CREATE DISTINCT TYPE dist_type AS NUMERIC;
CREATE TABLE t(col1 dist_type, col2 NUMERIC);

To directly compare the distinct type and its source type or assign a value of the
source type to a column of the distinct type, you must cast one type to the other,
as the following examples show:
INSERT INTO tab (col1) VALUES (3.5::dist_type);

SELECT col1, col2
FROM t WHERE (col1::NUMERIC) > col2;

SELECT col1, col2, (col1 + col2::dist_type) sum_col
FROM tab;

For information about queries and other distributed DML operations that access
DISTINCT data types in tables outside the local database, see the topic “DISTINCT
Types in Distributed Operations” on page 4-37.

CREATE EXTERNAL TABLE Statement
Use the CREATE EXTERNAL TABLE statement to define an external source that is
not part of your database to load and unload data for your database.

The implementation of the CREATE EXTERNAL TABLE statement is an extension
to the ANSI/ISO standard for SQL.

Syntax

�� CREATE EXTERNAL TABLE table
IF NOT EXISTS

(1)
Column Definition �

�
(3)

USING(DATAFILES Clause)
(2) (2)

Table Options Table Options

��

Notes:

1 See “Column Definition” on page 2-161

2 See “Table options” on page 2-164

3 See “DATAFILES Clause” on page 2-163

Element Description Restrictions Syntax

table The name of the table to store
external data

Must be unique among names of tables, views,
and synonyms in the current database

“Identifier” on
page 5-21

Usage

You use external tables to load and unload data to or from your database. You can
also use external tables to query data in text files that are not in an Informix
database.

2-160 IBM Informix Guide to SQL: Syntax

The first portion of the syntax diagram declares the name of the table and defines
its columns.

The portion that follows the USING keyword identifies external files that the
database server opens when you use the external table, and specifies additional
options for characteristics of the external table.

After executing the CREATE EXTERNAL TABLE statement, you can move data to
and from the external source with an INSERT INTO ... SELECT statement. See the
section “INTO EXTERNAL clause” on page 2-722 for more information about
loading the results of a query into an external table.

The CREATE EXTERNAL TABLE statement is not supported on secondary servers
within a high-availability cluster.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if an external table of
the specified name is already registered in the systables system catalog table of the
current database, or if the specified name is the identifier of a database table, view,
sequence object, or synonym in the current database.
Related concepts:

External tables (Administrator's Guide)
Related reference:
“CREATE TABLE statement” on page 2-265

Column Definition
Use the column definition segment of the CREATE EXTERNAL TABLE statement
to declare the name and data type of a single column of the new external table.

Column Definition:

�

SAMEAS template
,

column data_type Other Optional Clauses

Other Optional Clauses:

EXTERNAL CHAR (size)
NULL ' null_string '
NOT NULL

Element Description Restrictions Syntax

column One column name for each
column of the external table

For each column, you must specify a
built-in data type

“Identifier” on page 5-21

data_type Data type of the column The data_type can be any data type
supported by Informix.

“Data Type” on page 4-23

template Existing table with the same
schema as the external table

Cannot be a subset of columns nor
differ in any column data type

“Database Object Name” on
page 5-16

size Column size in bytes. Default is
1.

Integer; 1 ≤ size ≤ 32,767 “Literal Number” on page
4-215

Chapter 2. SQL statements 2-161

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_1333.htm#ids_admin_1333.dita

Element Description Restrictions Syntax

null_string Value to represent NULL See “Defining NULL Values.” “Quoted String” on page
4-219

Using the SAMEAS Clause
The SAMEAS template clause uses all the column names and data types from the
template table in the definition of the new table.

You cannot use the SAMEAS clause for FIXED-format files.

Example

Consider loading a delimited ASCII text file into a table with the following
schema:
TABLE employee (

name CHAR(18) NOT NULL,
hiredate DATE DEFAULT TODAY,
address VARCHAR(40),
empno INTEGER);

The SQL statements used to load data into the employee table would be as follows:
CREATE EXTERNAL TABLE emp_ext
SAMEAS employee
USING (

DATAFILES ("DISK:/work2/mydir/emp.dat"),
REJECTFILE "/work2/mydir/emp.rej"
);

INSERT INTO employee SELECT * FROM emp_ext;

The external table has the same name, type, and default for each column because
the CREATE statement includes the SAMEAS keyword. The default format is
delimited, so no format keyword is required.

Check constraints defined on columns in database tables are not inherited by the
external table. However, NOT NULL constraints are inherited by the external table.

Delimited files are ASCII by default. The default row delimiter is an end-of-line
character unless you use the RECORDEND keyword to specify a different
delimiter when you created the external table. (The RECORDEND keyword works
for delimited format only.)

Using the EXTERNAL Keyword
Use the EXTERNAL keyword to specify a CHAR data type for each column of
your external table that has a data type different from the internal table.

For example, you might have a VARCHAR column in the internal table that you
want to map to a CHAR column in the external table.

You must specify an external type for every column that is in fixed format. You
cannot specify an external type for delimited format columns except for BYTE and
TEXT columns where your specification is optional.

Defining NULL Values:

You can define a value to be interpreted as a NULL when loading or unloading
data from an external source.

2-162 IBM Informix Guide to SQL: Syntax

The database server uses the NULL representation for a FIXED-format external
table to both interpret values as the data is loaded into the database and to format
NULL values into the appropriate data type when data is unloaded to an external
table.

The NULL representation must fit into the length of the external field.

Manipulating Data in Fixed Format Files
A fixed format file is one in which all rows have the same length.

For files in FIXED format, you must declare the column name and the EXTERNAL
item for each column to set the name and number of characters. For FIXED-format
files, the only data type allowed is CHAR. You can use the keyword NULL to
specify what string to interpret as a NULL value.

DATAFILES Clause
The DATAFILES clause specifies the operating system file or pipe that is opened
when you use an external table.

DATAFILES Clause:

DATAFILES �

� �

�

,

(' DISK : fixed_path ')
PIPE formatted_path ;

; BLOBDIR : fixed_path
CLOBDIR

Element Description Restrictions Syntax

fixed_path Path name for input or output files in the
definition of the external table

See the notes that follow this table Must conform to
operating-system
rules

formatted_path Formatted path name that uses
pattern-matching characters

See the notes that follow this table Must conform to
operating-system
rules

The database server does not verify that any file or pipe exists at the specified
fixed_path or formatted_path, that the specified pipe is open, nor that the user has
permission to access that file system. Subsequent operations on the external table
will fail, however, unless the path is valid and, if a named pipe is being used, that
it is open, when the database server attempts to read or write to the external table.

For examples of the DATAFILES clause, see “External Table Examples” on page
2-170.

Keyword
Description

CLOBDIR
Specifies the server directory in which the CLOB file is stored.

BLOBDIR
Specifies the server directory in which the BLOB file is stored. When

Chapter 2. SQL statements 2-163

creating queries, specify DISK followed by BLOBDIR followed by
CLOBDIR. If BLOBDIR is omitted, BLOB files are stored the same directory
as specified by the DISK clause. If both BLOBDIR and CLOBDIR are
omitted, a new file is created for each BLOB or CLOB column and stored
in the directory in which the DISK clause is specified.

In the following example, rows stored in /work1/exttab1.dat have their
BLOBs located in /work1/blobdir1 and CLOBs in the /work1/clobdir1
directory.

Rows stored in /work1/exttab2.dat have their BLOBs located in the /work1
directory and CLOBs in the /work1/clobdir2 directory. Because the
BLOBDIR clause is omitted, the BLOBs are stored in the directory where
exttab2.dat is stored.

Rows stored in the /work1/exttab3.dat have their BLOBs and CLOBs
located in the /work1 directory because both BLOBDIR and CLOBDIR are
omitted.
CREATE EXTERNAL TABLE exttab (

id SERIAL,
lobc CLOB,
lobb BLOB)

USING (DATAFILES(
"DISK:/work1/exttab1.dat;BLOBDIR:/work1/blobdir1;CLOBDIR:/work1/clobdir1",
"DISK:/work1/exttab2.dat;CLOBDIR:/work1/clobdir2",
"DISK:/work1/exttab3.dat"),
DELIMITER ’|’);

Using Formatting Characters with External Tables
You can use a formatted path name to designate a file name by using the
substitution character %r (first ..last).

Formatting String
Effect

%r(first ..last)
Specifies multiple files on the Informix server for the external table.

The first and last arguments represent a range of values that are substituted
in the expression when the statement is run. For example, specifying
my_file.%r(1..3) expands to:

my_file.1

my_file.2

my_file.3

The only supported formatting character supported by Informix is %r.

Table options
These options specify additional characteristics that define the external table, and
that define attributes of load or unload operations on that table.

Table Options:

2-164 IBM Informix Guide to SQL: Syntax

�

,
(1) DELIMITED

FORMAT ' INFORMIX '
FIXED

DEFAULT
(1)

EXPRESS
DELUXE

DBDATE 'date_format'
DBMONEY 'currency'
DELIMITER 'field_delimiter'
RECORDEND 'record_delimiter'
MAXERRORS num_errors
REJECTFILE 'filename'
(1) OFF

ESCAPE
ON

NUMROWS num_rows
SIZE

Notes:

1 Use this path no more than once

Element Description Restrictions Syntax

field_delimiter Character that separates fields.
Default is pipe (|) character

For nonprinting characters,
use octal notation

“Quoted String” on page
4-219

filename Full path name for conversion error
messages

See “Reject Files” on page
2-169

Must conform to
operating-system rules.

num_errors Number of errors before load
operations are terminated

Value is ignored unless the
REJECTFILE value is set

“Literal Number” on page
4-215

num_rows Approximate number of rows
contained in the external table

Must be a positive number “Literal Number” on page
4-215

record_delimiter Character to separate records.
Default is Newline (\n)

For nonprinting characters,
use octal

“Quoted String” on page
4-219

The num_errors specification is ignored during unload tasks.

If no RECORDEND value is specified, record_delimiter defaults to the Newline
character (\n). To specify a nonprinting character as the record delimiter or field
delimiter, you must encode it as the octal representation of the ASCII character. For
example, \006 can represent CTRL-F.

On Windows systems, if you use the DB-Access utility or the dbexport utility to
unload a database table into a file and then plan to use the file as an external table
datafile, you should define RECORDEND as '\012' in the CREATE EXTERNAL
TABLE statement.

Use the table options keywords as the following table describes. You can use each
keyword whenever you plan to load or unload data unless only one of the two
modes is specified.

Keyword
Description

DBDATE
Specifies the date format when reading or writing an external table. You

Chapter 2. SQL statements 2-165

use the DBDATE clause to convert data during load and unload operations
from external tables. In the following example, DBDATE is set to DMY2-. If
the date value in the database table was stored as 06/24/2009, the value
written to the external table is 24-06-09.
CREATE EXTERNAL TABLE ext_date (dob date)
USING (DATAFILES ("DISK:/tmp/datedisk"),

REJECTFILE "/tmp/datereject",
DBDATE "DMY2-",
FORMAT "delimited");

INSERT INTO ext_date SELECT * FROM basetab;

The DBDATE clause is also used when inserting date values from external
tables into database tables. In the following example, data in the external
table is converted to internal binary format based on the DBDATE value
set by the CREATE EXTERNAL TABLE statement.
INSERT INTO basetab SELECT * FROM ext_date;

If the DBDATE keyword is not specified in the USING clause of the
CREATE EXTERNAL TABLE statement, the date format is determined by
the setting of the DBDATE environment variable. If the DBDATE
environment variable is not specified, the date format is determined by the
setting of the GL_DATE environment variable. The value specified by the
DBDATE clause takes precedence over the value specified by the DBDATE
environment variable. The setting of the DBDATE variable takes
precedence over that of the GL_DATE environment variable. See the IBM
Informix Guide to SQL: Reference for information about DBDATE and
GL_DATE values.

DBMONEY
Specifies the currency format when reading or writing an external table.
You use the DBMONEY clause to convert data during load and unload
operations from external tables. In the following example, DBMONEY is
set to DM, . Currency is formatted as DM (deutsche mark) units, using the
currency symbol DM and comma (,) . If the currency value in the database
table is stored as 100.50, the value written to the external table is 100,50.
CREATE EXTERNAL TABLE ext_money (sales money)
USING (DATAFILES ("DISK:/tmp/moneydisk"),

REJECTFILE "/tmp/moneyreject",
DBMONEY "DM,",
FORMAT "delimited");

INSERT INTO ext_money SELECT * FROM basetab;

When reading data from an external table into a database table, the
currency symbol is not required in the external table. For example, if the
external table contained the value 1000,78 and DBMONEY was set to DM,
then the data is not rejected and the row is stored correctly.

If the decimal separator in the external table and the value set for
DBMONEY do not match, then the row is rejected. For example, if the
external table contained the value 1000,78 (with a comma instead of a
decimal point) and the DBMONEY clause is set to DM. then the row is
rejected. If the data file contains a currency symbol and the currency
symbol does not match the DBMONEY currency symbol, the row is
rejected.

When writing data from a database table into an external table, the
currency symbol is not written to the external table.

2-166 IBM Informix Guide to SQL: Syntax

If the DBMONEY clause is not specified, the data format is determined by
the setting of the DBMONEY environment variable. The value specified by
the DBMONEY clause takes precedence over the value specified by the
DBMONEY environment variable. If the DBMONEY clause is not specified
and the DBMONEY environment variable is not set, the decimal separator
specified by the database locale is used. See the IBM Informix Guide to SQL:
Reference for information about DBMONEY values.

DEFAULT (load only)
Specifies replacing missing values in delimited input files with column
defaults (if they are defined) instead of NULLs, so input files can be
sparsely populated. Files do not need an entry for every column in the file
where a default is the value to be loaded.

DELIMITED
Specifies that the data file is a delimited text file. A delimiter character can
be specified using the optional DELIMITER table option.

DELIMITER
Specifies the character that separates fields in a delimited text file. If the
table options include no DELIMITER specification, the pipe (|) character
is the default field separator.

DELUXE (load only)
Requests that the data be loaded using DELUXE mode (rather than
EXPRESS mode). The database server ignores this keyword, and internally
chooses either DELUXE or EXPRESS mode. If you specify the DELUXE
keyword, but the database server internally chooses EXPRESS mode, a
warning is written to the online log, saying "Switching load on target
table <owner>.<table> to EXPRESS".

The DELUXE mode updates indexes, performs constraint checking, and
evaluates triggers as data is inserted into the table. DELUXE mode loads
are not as fast as EXPRESS mode loads, but are more flexible. In DELUXE
mode, you can access and update the table that is being loaded. The
database server always chooses DELUXE mode when loading data into
STANDARD tables of a database that uses transaction logging, and on any
table on which an index is defined.

ESCAPE
Inserts the default escape character immediately before any instances of the
field_delimiter separator that DELIMITER specifies, where that character is a
literal value in the data, rather than a separator. Whether you include or
omit the ESCAPE keyword, this functionality is disabled by default, or you
can specify the ESCAPE OFF keywords to make it clearer to human readers
of your SQL code that this feature is disabled. To require the database
server to escape literal field_delimiter separator characters in the data, you
must specify the ESCAPE ON keywords.

By default, the escape character that the ESCAPE keyword inserts before
literal field_delimiter characters is the backslash (\) character. But if the
DEFAULTESCCHAR configuration parameter is set to a single-character
value, that character replaces backslash (\) for delimiter characters used
as literals ESCAPE ON is specified.

Note:
The default setting for ESCAPE is OFF in Informix releases earlier than
version 12.10.

Chapter 2. SQL statements 2-167

EXPRESS (load only)
Requests that the data be loaded using EXPRESS mode (rather than
DELUXE mode). The database server ignores this keyword, and internally
chooses either DELUXE or EXPRESS mode. If you specify the EXPRESS
keyword, but the database server internally chooses DELUXE mode, a
warning is written to the online log, saying "Switching load on target
table <owner>.<table> to DELUXE".

The database server internally chooses EXPRESS mode only under these
circumstances:
v The database is not logged and the target table (of any table type) has

no indexes.
v The database is logged and the target table is RAW and has no indexes.

For all other cases, the database server internally chooses DELUXE mode.

EXPRESS mode loads, which use light appends. are significantly faster
than DELUXE mode loads, but less flexible. In EXPRESS mode you cannot
update the table or read the new data entries until the load is complete.

An error message is generated and the load is stopped if EXPRESS mode is
specified and the table contains objects of type BLOB, BYTE, CLOB, or
TEXT.

When data is loaded using EXPRESS mode, the target table cannot be
located within an Enterprise Replication (ER) replicate. In addition, the
target database server must not have high-availability data replication
(HDR) enabled.

FIXED
Specifies that the data file is fixed width. When using EXTERNAL data
types in the external table, the FIXED format must be used.

FORMAT
Specifies the format of the data in the data files.

INFORMIX
Specifies that the format of the data file is internal Informix format.
Loading data from an external table saved in Informix format is faster than
loading data from a fixed or delimited external file. Use Informix format
when moving data from one Informix database to another.

MAXERRORS
Sets the number of errors that are allowed before the database server stops
loading data.

The minimum value for MAXERRORS is 1. Setting MAXERRORS to a
value less than 1 produces an error. The maximum value for MAXERRORS
is 2,147,483,647.

RECORDEND
Specifies the character that separates records in a delimited text file.

REJECTFILE
Sets the full path name where the database server writes data-conversion
errors. If not specified or if files cannot be opened, any error ends the
loading of data abnormally. See also “Reject Files” on page 2-169.

NUMROWS or SIZE
The approximate number of rows in the external table.

2-168 IBM Informix Guide to SQL: Syntax

Specifying NUMROWS (or its synonym, SIZE) can improve performance
when an external table is used in a join query. This value cannot be NULL.

Related reference:

DBMONEY environment variable (SQL Reference)

DBDATE environment variable (SQL Reference)

Reject Files
Rows that have conversion errors during a load or rows that violate check
constraints on the external table are written to a reject file. The REJECTFILE clause
declares the path and file name of the reject file.

If you perform another load to the same table during the same session, any earlier
reject file of the same name is overwritten.

Reject file entries have the following format:
filename, record, reason-code,

field-name: bad-line

The following table describes these elements of the reject file:

Element
Description

filename
Name of the input file.

record Record number in the input file where the error was detected.

reason-code
Description of the error.

field-name
External field name where the first error in the line occurred, or <none> if
the rejection is not specific to a particular column.

bad-line
Line that caused the error (delimited or fixed-position character files only).

The reject file writes the filename, record, field-name, and reason-code in ASCII. The
bad-line information varies with the type of input file.
v For delimited files or fixed-position character files, up to 80 characters of the bad

line are copied directly into the reject file.
v For Informix internal data files, the bad line information is not placed in the

reject file because you cannot edit the binary representation in a file; but the
filename, record, reason-code, and field-name are still reported in the reject file so
you can isolate the problem. Use the Table Options clause to specify the format
of the external data.

The following errors can cause a row to be rejected.

Error Text
Explanation

CONSTRAINT constraint name
This constraint was violated.

CONVERT_ERR
Any field encounters a conversion error.

Chapter 2. SQL statements 2-169

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_218.htm#ids_sqr_218
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_212.htm#ids_sqr_212

MISSING_DELIMITER
No delimiter was found.

MISSING_RECORDEND
No end of record was found.

NOT NULL
A NULL was found in field-name.

ROW_TOO_LONG
The input record is longer than 32 kilobytes.

Virtual Processors

A FIFO virtual processor is used by external tables in Informix. One FIFO virtual
processor is created when the server is initialized. Additional FIFO virtual
processors can be added using the onmode -p command. For example, use the
following command to add three FIFO virtual processors:
onmode -p +3 fifo

FIFO virtual processors cannot be deleted.

The FIFO virtual processors are used to process I/O related to the pipes that are
defined with the PIPE clause.

See the IBM Informix Administrator's Guide for more information about using FIFO
virtual processors.
Related concepts:

FIFO virtual processors (Administrator's Guide)

External Table Examples
The examples in this section illustrate different ways to load and unload data
using external tables.

The following is an example of the CREATE EXTERNAL TABLE syntax. In the
example, an external table named empdata is created with two columns. The
DATAFILES clause indicates the location of the data file, specifies that the file is
delimited, indicates the location of the reject file, and indicates that the reject file
can contain no more than 100 errors.
CREATE EXTERNAL TABLE empdata
(

empname char(40),
empdoj date

)
USING
(DATAFILES

(
"DISK:/work/empdata.unl"

),
FORMAT "DELIMITED",
REJECTFILE "/work/errlog/empdata.rej",
MAXERRORS 100);

2-170 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_1286.htm#ids_admin_1286

Creating an external table using the SAMEAS clause

The SAMEAS template clause uses all the column names and data types from the
template table in the definition of the new table. The following example uses the
column names and data types of the empdata table and uses them for the external
table.
CREATE EXTERNAL TABLE emp_ext SAMEAS empdata
USING
(DATAFILES

(
"DISK:/work/empdata2.unl"

),
REJECTFILE "/work/errlog/empdata2.rej",
DELUXE

);

Unloading data into an external table

The following example shows statements used to load data from a database table
into an external table.
CREATE EXTERNAL TABLE ext1(col1 int)
USING
(DATAFILES

(
"DISK:/tmp/ext1.unl"

)
);

CREATE TABLE base (col1 int);
INSERT INTO ext1 SELECT * FROM base;

You can also use the SELECT...INTO EXTERNAL syntax to unload data as in the
following example.
SELECT * FROM base
INTO EXTERNAL emp_target
USING
(DATAFILES

(
"DISK:/tmp/ext1.unl"

)
);

Selecting from an external table and loading into a database
table

The following example selects from an external and shows various ways to load
external data into a database table.
CREATE EXTERNAL TABLE ext1(col1 int)

USING
(DATAFILES

(
"DISK:/tmp/ext1.unl“

)
);

CREATE TABLE target1 (col1 int);
CREATE TABLE target2 (col1 serial8, col2 int);

SELECT * FROM ext1;
SELECT col1,COUNT(*) FROM ext1 GROUP BY 1;
SELECT MAX(col1) FROM ext1;

Chapter 2. SQL statements 2-171

SELECT col1 FROM ext1 a, systables b WHERE a.col1=b.tabid;

INSERT INTO target1 SELECT * FROM ext1;
INSERT INTO target2 SELECT 0,* FROM ext1;

Unloading from a database table to a text file using FIXED format

The next example creates an external table named emp_ext, defines the column
names and data types, and unloads the data from the database using fixed format.
CREATE EXTERNAL TABLE emp_ext
(name CHAR(18) EXTERNAL CHAR(20),

address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6)
)

USING (
FORMAT ’FIXED’,
DATAFILES

(
"DISK:/work2/mydir/emp.fix"

)
);

INSERT INTO emp_ext SELECT * FROM employee;

Loading data from a data file into a database table using FIXED
format

The next example creates an external table named emp_ext and loads data into the
database from a fixed format file.
CREATE EXTERNAL TABLE emp_ext
(name CHAR(18) EXTERNAL CHAR(18),

address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6)

)
USING (

FORMAT ’FIXED’,
DATAFILES

(
"DISK:/work2/mydir/emp.fix"

)
);

INSERT INTO employee SELECT * FROM emp_ext;

Using formatting characters in the DATAFILES clause

To process three files, create the DATAFILES clause as in the following example.
DATAFILES

(
"DISK:/work2/extern.dir/mytbl.%r(1..3)"

)

The following shows how the list is expanded when the statement is run:
DATAFILES

(
"DISK:/work2/extern.dir/mytbl.1",
"DISK:/work2/extern.dir/mytbl.2",
"DISK:/work2/extern.dir/mytbl.3"

)

Related concepts:

External tables (Administrator's Guide)

2-172 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_1333.htm#ids_admin_1333.dita

Loading Data from External Tables into Informix
To load data, you define the external data as an external table and then insert the
data into the database.

The database server performs express-mode loads and deluxe-mode loads. You can
perform express-mode loads only when the table is type RAW and does not have
any active indexes. The database server allows constraint checking for both load
modes.

Express mode provides the highest performance during a load.

Deluxe mode combines fast parallel loading with evaluation of indexes and unique
constraints, and is more efficient in the following situations:
v The cost of rebuilding an index is too high for the amount of data that you are

loading.
v You want to use the empty space from deleted rows in the table that you are

loading. database

If the table receiving the rows from the external table is a STANDARD table (that
is, a database table that was not created by the CREATE TEMP TABLE or CREATE
RAW TABLE statement), the EXPRESS keyword has no effect, and the table is
loaded in DELUXE mode. The database server does not issue an exception when it
ignores the EXPRESS keyword in load operations where the receiving table is not a
RAW table.

Loading Data in Express Mode:

Express mode supports rapid loading of data into tables hat have no indexes. In
logged databases, only RAW tables can use this mode.

Warning: Express-mode loads are not allowed for STANDARD tables in databases
that support transaction logging.

Note:
In versions of the database server earlier than 11.70, the EXPRESS keyword
specified how data records are loaded into the external table in SQL operations.
Beginning in version 11.70, only command-line utilities can force the database
server to use DELUXE mode or EXPRESS mode in load operations where both
modes are supported.

Express-mode loads use light appends, which bypass the buffer pool. Light
appends eliminate the overhead associated with buffer management but do not log
the data. In express mode, the database server automatically locks the table
exclusively. No other users can access the table.

Whether or not you use the DELUXE keyword, the database server uses express
mode unless the target table has indexes or is a STANDARD table.

You can use express mode for any newly created table with no data if you define
the table as type RAW and do not define any indexes until after you load the data.
Choose RAW tables if you do not want to use logging in a database that supports
transaction logging.

To prepare an existing table for express-mode load, drop all indexes, and make
sure the table type is RAW.

Chapter 2. SQL statements 2-173

Data loaded from an external table into a raw table is not logged; therefore, you
must perform a level-0 backup before the database can be dropped. If you try to
drop the database before you perform a level-0 backup, the database server issues
ISAM error -197, as follows:
Partition recently appended to; can’t open for write or logging

Consider a table with the following schema:
TABLE employee (

name CHAR(18),
hiredate DATE,
address CHAR(40),
empno INTEGER);

To use express-mode load on an existing table
1. Alter the table type to allow fast loading.

ALTER TABLE employee TYPE (RAW);

2. Create the external table description.
CREATE EXTERNAL TABLE emp_ext
SAMEAS employee
USING (

FORMAT ’DELIMITED’,
DATAFILES

("DISK:/work2/mydir/emp.dat"),
REJECTFILE "/work2/mydir/emp.rej",
EXPRESS
);

3. Load the table.
INSERT INTO employee SELECT * FROM emp_ext;

If the database server chooses express mode, the load stops with an error
message if the destination table contains indexes, constraints, or any other
problem conditions.

4. Create a level-0 backup.
Because the data is not logged, you must perform a level-0 backup to allow
data recovery. If a disk fails, you cannot recover the data automatically. You
need to use the most recent level-0 backup files. ,

If the table type is RAW (nonlogging), omit the statements BEGIN WORK and
COMMIT WORK.

Note: If you delete many rows from a table and then load many new rows into
the table in EXPRESS mode, the table grows in size because light appends insert
rows at the end of the table, and do not reuse the empty space inside the table.
(Whether or not you specify EXPRESS mode, the loader might choose DELUXE
mode to fill in the space if a table has many deleted rows.)

Loading data in DELUXE mode:

DELUXE mode combines fast parallel loading with evaluation of indexes and
unique constraints. The database server chooses this mode for indexed target tables
in all databases, and for STANDARD target tables in logged databases..

Note:
In versions of the database server earlier than 11.70, the DELUXE keyword
specified how data records are loaded into the external table in SQL operations.

2-174 IBM Informix Guide to SQL: Syntax

Beginning in version 11.70, only command-line utilities can force the database
server to use DELUXE mode or EXPRESS mode in load operations where both
modes are supported.

DELUXE mode loads use regular single-row inserts, which add rows to a table that
can contain indexes. The insert modifies each index for each row during the load.
The insert also checks all constraints for each row. A DELUXE mode load allows
you to keep the table unlocked during the load so other users can continue to use
it.

You also can use DELUXE mode on tables that do not contain indexes; for
instance, if you want to have complete recoverability or maintain access to tables
during a load.

To prepare a table for DELUXE mode load, create the internal table as type
STANDARD, and create the external table with the keyword DELUXE.

To use DELUXE-mode load on a table:
1. If you want row locking, specify row locking in the CREATE TABLE statement.

(Page locking is the default.) If you want other users to be able to read the
table during the load, set the lock mode to share. Otherwise, set it to
exclusive.
BEGIN WORK;
LOCK TABLE employee IN SHARE MODE;

2. Define the external table.
CREATE EXTERNAL TABLE emp_ext
SAMEAS employee
USING (

DATAFILES ("DISK:/work2/mydir/emp.dat"),
REJECTFILE "/work2/mydir/emp.rej",
DELUXE
);

3. Load the table.
INSERT INTO employee SELECT * FROM emp_ext;

4. Commit the load, releasing row or page locks.
COMMIT WORK;

Important: Configure logical logs to allow maximum concurrent DELUXE load
transactions to complete.

Loading from a Delimited File to a Database Table with the Same Schema:

You can avoid defining the schema of an external table if it has the same schema
as the database table.

Consider loading a delimited ASCII text file into a table with the following
schema:
TABLE employee (

name CHAR(18) NOT NULL,
hiredate DATE DEFAULT TODAY,
address VARCHAR(40),
empno INTEGER);

The SQL statements used to load data into the employee table would be as follows:

Chapter 2. SQL statements 2-175

CREATE EXTERNAL TABLE emp_ext
SAMEAS employee
USING (

DATAFILES ("DISK:/work2/mydir/emp.dat"),
REJECTFILE "/work2/mydir/emp.rej"
);

INSERT INTO employee SELECT * FROM emp_ext;

The external table has the same name, type, and default for each column because
the CREATE statement includes the SAMEAS keyword. The default format is
delimited, so no format keyword is required.

Delimited files are ASCII by default. The default row delimiter is an end-of-line
character unless you use the RECORDEND keyword to specify a different
delimiter when you created the external table. (The RECORDEND keyword works
for delimited format only.)

Loading from a Fixed Text File:

A fixed text file is one in which data resides in fixed positions within the file.

The following SQL statements load data from the emp_exp external table to a
fixed-position table (employee):
CREATE EXTERNAL TABLE emp_ext

(name CHAR(18) EXTERNAL CHAR(18),
hiredate DATE EXTERNAL CHAR(10),
address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6))

USING (
FORMAT ’FIXED’,
DATAFILES ("DISK:/work2/mydir/emp.fix")
);

INSERT INTO employee SELECT * FROM emp_ext;

The enumerated columns use the keyword EXTERNAL to describe the format in
which to store the data in the external file.

Loading Between Tables That Have the Same Schema:

You can easily move data from an external table to a database table if the tables
have the same schema.

You can load data from one table to another table that has the same schema (for
example, worldemp) with a simple INSERT statement.
INSERT INTO worldemp SELECT * FROM emp_ext;

Loading Values into Serial Columns:

You can insert successive numbers or explicit values in a serial column.

The database server loads serial columns with either the values from the original
data file or values that the database server automatically generates.

If you want the serial column values to be the values from the data file, the
INSERT statement does not require special handling. If you want the database
server to generate the value automatically, omit the serial column from the INSERT

2-176 IBM Informix Guide to SQL: Syntax

statement. For example, if the first column in the table (col1) is the serial column
and you use the following statement, the default mechanism provides the serial
value:
INSERT INTO mytable (col2, ...) SELECT ...

If the table is being loaded into multiple partitions, the serial values are
incremented in the same sequence as the table fragments.

Loading Data Warehousing Tables:

You can use external tables to load very large tables for data warehousing
applications.

This section discusses various scenarios to load very large tables:
v Loading initially
v Refreshing periodically
v Loading of OLTP data from database servers other than Informix.

Loading Initially:

The following scenario creates and loads a data warehouse table with external
data.

To load a table initially
1. Create the table as type RAW to take advantage of light appends and to avoid

the overhead of logging during the load.
CREATE RAW TABLE tab1 ...

2. Describe the external data file to the database server with the CREATE
EXTERNAL TABLE statement, specifying the EXPRESS statement in the USING
clause.

3. Load the table.
INSERT INTO tab1 SELECT * FROM ext_tab

The table loads quickly, and the operation uses very little log space.
4. Verify the integrity of the data.
5. Create indexes on the table so that queries run more quickly.
6. Perform a level-0 backup so that you can restore the table later, if necessary.

You do not need to perform this level-0 backup if it would be just as easy to
reload the table from the original source in the case of a problem.

Refreshing Periodically:

This scenario loads new data in a data warehouse table periodically from some
other source.

The scenario assumes that the table is type STANDARD during normal operation
and that the CREATE EXTERNAL TABLE statement has been previously executed
and the EXPRESS keyword was specified in the USING clause.

To refresh a table periodically
1. Drop all indexes on the table.
2. Alter the table to type RAW.

ALTER TABLE tab1 TYPE(RAW);

Chapter 2. SQL statements 2-177

3. Load the new data in the table.
INSERT INTO tab1 SELECT * FROM ext_tab

This insert statement quickly appends new data to the end of the table, and the
operation uses very little log space.

4. Verify the integrity of the data.
5. Change the table to type STANDARD.

ALTER TABLE tab1 TYPE(STANDARD);

6. Re-create indexes on the table so that queries run more quickly.
7. Perform a level-0 backup to enable you to restore the table later, if necessary.

You do not need to perform this level-0 backup if it would be just as easy to
reload the table from the original source in the case of a problem.

Initial Loading of OLTP Data from Other Database Servers:

This scenario loads data into Informix for the first time, as you might do when you
migrate from a different database server.

In this scenario, the table to load will be used for OLTP, so you need logged
transactions, rollback, and recoverability.

Note:

In versions of the database server earlier than 11.70, the DELUXE or EXPRESS
keyword specified how data records are loaded into the external table in SQL
operations. Beginning in version 11.70, only command-line utilities can force the
database server to choose between DELUXE and EXPRESS mode in load
operations where both modes are supported.

To load OLTP data initially from a different database server using the CREATE
EXTERNAL TABLE statement:
1. Create the table as type RAW to take advantage of light appends and to avoid

the overhead of logging during the load.
CREATE RAW TABLE tab1 ...

2. Describe the external data file to the database server with the CREATE
EXTERNAL TABLE statement specifying the EXPRESS in the USING clause.

3. Load the table.
INSERT INTO tab1 SELECT * FROM ext_tab

The table loads quickly, and the operation uses very little log space.
4. Verify the integrity of the data.
5. Perform a level-0 backup to provide a point from which to recover.
6. Change the table to type STANDARD.

ALTER TABLE tab1 TYPE(STANDARD);

7. Create indexes on the table so that queries run more quickly.
8. Enable constraints on the table to preserve the integrity of the data.

Unloading Data to External Tables from Informix
You unload data by creating an external table and inserting the data into it, or by
selecting data from an internal table into an external file.

To unload data in parallel, initiate a query that runs in parallel and writes its
output to multiple files. The unload job uses a round-robin technique to equalize
the number of rows in the output files.

2-178 IBM Informix Guide to SQL: Syntax

Unloading to a Delimited File:
You can unload data to a delimited-ASCII text file from a table, as the following
example shows:
CREATE EXTERNAL TABLE emp_ext
SAMEAS employee
USING (

DATAFILES ("DISK:/work2/mydir/emp.dat")
);

INSERT INTO emp_ext SELECT * FROM employee;

Delimited files are ASCII by default.

Unloading to an Informix Data File:
To unload from the employee table to a table in Informix internal format, use
statements similar to the following ones:
SELECT * FROM employee
WHERE hiredate > "1/1/1996"
INTO EXTERNAL emp_ext
USING (

FORMAT ’INFORMIX’,
DATAFILES ("DISK:/work2/mydir/emp.dat")
);

Because the output files use Informix internal representation, you need to specify
the FORMAT 'INFORMIX' option in the USING clause. (The default is
delimited-ASCII format.)

Unloading to a Fixed-Text File:

You can unload data from the database into fixed format files.

The following SQL statements unload the employee table in fixed text format into
the emp_ext external table:
CREATE EXTERNAL TABLE emp_ext

(name CHAR(18) EXTERNAL CHAR(20),
hiredate DATE EXTERNAL CHAR(10),
address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6))

USING (
FORMAT ’FIXED’,
DATAFILES ("DISK:/work2/mydir/emp.fix")
);

INSERT INTO emp_ext SELECT * FROM employee;

These statements create a fixed-text file with 20 character positions in the first field,
the next 10 character positions in the second field, and so on. Because you are
choosing the rows with a SELECT statement, you can format the SELECT list in
any way that you want.

Adding an End-of-Line Character to a Fixed Text File:

You can add an end-of-line character to each line of a fixed-text file to use the file
for other applications.

If you are writing text in a fixed-text format, separate lines for each record are
helpful. An end-of-line character makes the date more legible and clear. If you use
delimited format defaults, an end-of-line character is automatic. However, for
fixed-format unloads, you need to add an end-of-line character to your records. For
example, consider a table with the following schema:

Chapter 2. SQL statements 2-179

TABLE sample (
lastname CHAR(10),
firstname CHAR(10),
dateofbirth DATE);

This table contains the following values:
Adams Sam 10-02-1957

Smith John 01-01-1920

Next, consider an external table with the following schema:
CREATE EXTERNAL TABLE sample_ext (

lastname CHAR(10) EXTERNAL CHAR(10),
firstname CHAR(10) EXTERNAL CHAR(10),
dateofbirth DATE EXTERNAL CHAR(12));

Unloading sample_ext without an end-of-line character produces the following
output:
Adams Sam 10-02-1957 Smith John 01-01-1920

You can add end-of-line characters by using a program or script, or by adding a
newline field in a SELECT statement.

Using a Program or Script:

To add an end-of-line character, you can write the fixed-length records to a data
file and then modify the data file with a program or script.

For example, you could use a C program to find the length of each record, locate
the end of a line, and then add an end-of-line character.

Adding a Newline Field in a SELECT Statement:

You can use an external table to load the newline character in your internal table.

To add an end-of-line character, select a final value from a table that contains a
newline character, as in the following example:
1. Create a file that contains only a newline character.

echo "" > /tmp/cr.fixed

2. Create an internal table to store this newline value to use when you unload the
data.
CREATE TABLE dummyCr (cr CHAR(1));

3. Create the external table to load the newline value.
CREATE EXTERNAL TABLE x_cr (cr CHAR(1) EXTERNAL CHAR(1))

USING (DATAFILES ("DISK:/tmp/cr.fixed"), FORMAT ’FIXED’);

4. Load the external table in the internal dummyCr table.
INSERT INTO dummyCr SELECT * FROM x_cr;

The internal table, dummyCr, now contains an end-of-line character that you can
use to unload in a SELECT statement:
1. To unload data from your internal table to an external table, create the external

table with the end-of-line character as an EXTERNAL CHAR.
CREATE EXTERNAL TABLE sample_ext
(

lastname CHAR(10) EXTERNAL CHAR(10),

2-180 IBM Informix Guide to SQL: Syntax

firstname CHAR(10) EXTERNAL CHAR(10),
dateofbirth DATE EXTERNAL CHAR(12),
eol CHAR(1) EXTERNAL CHAR(1))

USING (DATAFILES), FORMAT ’FIXED’);

2. Select from the internal table and the dummyCr table to create an output file
that has rows separated by end-of-line characters.
INSERT INTO sample_ext(lastname, firstname, dateofbirth, eol)
SELECT a.lastname, a.firstname, a.dateofbirth, b.cr
FROM mytable a, dummyCr b;

Restrictions on External Tables
Certain operations on external tables are not supported or have limited scope.

Table 2-1 compares table operations that are supported for database tables and
external tables.

Table 2-1. Database Tables and External Tables

Table Operation Database Table External Table

Support for indexes and:

v Primary keys

v Foreign keys

v Unique and non-unique
indexes

v Index scans

v Automatic index
(autoindex) during query
execution

v Index join

Yes No, sequential scans are
used.

Triggers are supported Yes No

Table can be a target in a
MERGE statement

Yes No. Not allowed as target
but allowed as source. See
“MERGE Example” on page
2-182

Table fragmentation is
supported

Yes No

Multiple database tables are
allowed in the FROM clause

Yes No. See “Query Example” on
page 2-183

DB-Access LOAD FROM ...
INSERT INTO statement is
supported

Yes No

The TRUNCATE TABLE
statement truncates a table

Yes No. Data in external tables is
not truncated using the
TRUNCATE statement.
Unloading data from a
database table to an external
table automatically truncates
the external table.

Table data is replicated Yes No

The UPDATE STATISTICS
statement is supported

Yes No

UPDATE and DELETE
statements are supported

Yes No

Chapter 2. SQL statements 2-181

Table 2-1. Database Tables and External Tables (continued)

Table Operation Database Table External Table

The ALTER TABLE statement
is supported

Yes No

LBAC is supported Yes No

Compression is supported Yes No

START and STOP
VIOLATIONS statements
supported

Yes No

TEMP tables are supported Yes No

The EXTERNAL data type is
supported for table columns

No Yes

DEFAULT clause is
supported

Yes No

PUT clause is supported for
BLOB and CLOB types

Yes No. BLOBDIR and CLOBDIR
can be specified using the
DATAFILES clause.

SERIAL, SERIAL8, and
BIGSERIAL data types
generate serial numbers

Yes No. These data types are
converted to equivalent
integer types and no serial
value is generated.

Table can be replicated using
Enterprise replication (ER)

Yes No

Changes to tables are logged
and can be replicated

Yes No. External tables are not
logged and cannot be
replicated; however system
catalogs are replicated.

ACID (atomicity, consistency,
isolation, durability)
properties are supported

Yes No

ETL (extract, transform, load)
is supported

SQL interface for ETL
operations is not supported;
however, utilities such as
HPL, dbload, onload,
onunload and LOAD,
UNLOAD statements are
supported.

Supported using a simple
SQL interface using the
INSERT ... SELECT statement
for high performance loading
and unloading of data.

Certain high-availability cluster operations are not supported (see External Tables in
High-Availability Cluster Environments in the IBM Informix Administrator's Guide).

To load BLOB or CLOB objects from an external table, you must create a
temporary sbspace and create temporary smart large objects in that space to store
the BLOB or CLOB data from the external table. Loading BLOB or CLOB data
from a read-only secondary server is not supported, because you cannot create a
temporary smart large object on a read-only secondary server.

MERGE Example

An external table cannot be the target of the MERGE statement. For example, if ext
is an external table, the following MERGE statement is valid with ext as the source
table:

2-182 IBM Informix Guide to SQL: Syntax

MERGE INTO t1
USING ext ON t1.c1 = ext.c1
WHEN MATCHED THEN UPDATE
SET t1.c2 = ext.c2
WHEN NOT MATCHED THEN INSERT VALUES (99, ’999’);

The following statement, however, fails with ext as the target table:
MERGE INTO ext

USING t1 ON ext.c1 = t1.c1
WHEN MATCHED THEN UPDATE
SET ext.c2 = t1.c2
WHEN NOT MATCHED THEN INSERT VALUES (99, ’999’);

Query Example

Only the outermost query can have an external table reference. Only one external
table can be specified in any query. For example, the following statement is
allowed:

SELECT * FROM ext, t2 WHERE ext.c1 = t2.c1;

However, the following statements are not allowed:
v Multiple external tables cannot be specified within a query:

SELECT * FROM ext, ext3 WHERE ext.c1 = ext3.c1;

v An external table cannot be used in a subquery:
SELECT * FROM t1 WHERE t1.c1 IN (SELECT c1 FROM ext);

Related reference:

External tables in high-availability cluster environments (Administrator's
Guide)

CREATE FUNCTION statement
Use the CREATE FUNCTION statement to create a user-defined function, to
register an external function, or to write and register an SPL function.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE
DBA

FUNCTION function()
IF NOT EXISTS (1)

Routine Parameter List

�

�
(2)

REFERENCING Clause FOR table_object
' owner '.

(3)
Return Clause �

�
(4)

SPECIFIC Specific Name
�

,
(5)

WITH(Routine Modifier)

;
�

Chapter 2. SQL statements 2-183

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_1319.htm#ids_admin_1319
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_1319.htm#ids_admin_1319

�
(6) (7)

Statement Block END FUNCTION
(8) (9)

External Routine Reference

�

�

�

,
(10)

DOCUMENT Quoted String

WITH LISTING IN 'pathname'
��

Notes:

1 See “Routine Parameter List” on page 5-71

2 See “The REFERENCING and FOR Clauses” on page 2-186

3 See “Return Clause” on page 5-58

4 See “Specific Name” on page 5-77

5 See “Routine modifier” on page 5-63

6 Stored Procedure Language only

7 See “Statement Block” on page 5-78

8 External routines only

9 See “External Routine Reference” on page 5-19

10 See “Quoted String” on page 4-219

Element Description Restrictions Syntax

function Name of new function
that is defined here

You must have the appropriate language
privileges. See “GRANT statement” on page
2-502 and “Overloading the Name of a
Function” on page 2-188.

“Identifier” on page 5-21

owner Owner of table_object Must own table_object “Owner name” on page
5-49

pathname Pathname to a file in
which compile-time
warnings are stored

The specified pathname must exist on the
computer where the database resides

The path and filename
must conform to your
operating-system rules.

table_object Name or synonym of the
table or view whose
triggers can call function

Must exist in the local database “Identifier” on page 5-21

Tip: If you are trying to create a function from text of source code that is in a
separate file, use the CREATE FUNCTION FROM statement.

Usage

IBM Informix supports user-defined functions written in these languages:
v The IBM Informix stored procedure language (SPL).
v One of the external languages (C or Java) that Informix supports (external

functions).

When the IFX_EXTEND_ROLE configuration parameter is set to ON, only users to
whom the DBSA grants the built-in EXTEND role can create external functions.

2-184 IBM Informix Guide to SQL: Syntax

Additional requirements for using the CREATE FUNCTION statement are
identified in the topic “Privileges necessary for using CREATE FUNCTION” on
page 2-186.

How many values a function can return is language-dependent. Functions written
in SPL can return one or more values. External functions written in the C or Java
languages must return exactly one value. But a C function can return a collection
type, and external functions in queries can return additional values indirectly from
OUT parameters (and for the SPL and Java languages, from INOUT parameters)
that Informix can process as statement-local variables (SLVs).

Return values from OUT and INOUT parameters of an SPL function can be
processed as SLVs. You can also use local variables or parameters of an SPL routine
to retrieve values from SPL or C routines that have OUT or INOUT parameters.

For information about how this document uses the terms UDR, function, and
procedure, as well as recommended usage, see “Relationship Between Routines,
Functions, and Procedures” on page 2-229 and “Using CREATE PROCEDURE
Versus CREATE FUNCTION” on page 2-229.

In ESQL/C, you can use a CREATE FUNCTION statement only within a PREPARE
statement. If you want to create a user-defined function for which the text is
known at compile time, you must put the text in a file and specify this file with
the CREATE FUNCTION FROM statement.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a function of the
specified name is already registered in the current database. (Because the identifier
of a function can be overloaded, it might be unnecessary to include these
keywords, if the database server can resolve the argument list of the new function
as different from that of any other function of the same name in the current
database.)

Functions use the collating order that was in effect when they were created. See
“SET COLLATION statement” on page 2-728 for information about using
nondefault collation.
Related concepts:
“INSTEAD OF Triggers on Views” on page 2-362
Related reference:
“CREATE CAST statement” on page 2-147
“CREATE ROUTINE FROM statement” on page 2-239
“CREATE OPAQUE TYPE statement” on page 2-218
“DROP FUNCTION statement” on page 2-428
“CREATE PROCEDURE statement” on page 2-226
“EXECUTE FUNCTION statement” on page 2-462
“CREATE AGGREGATE statement” on page 2-144
“EXECUTE PROCEDURE statement” on page 2-471
“DROP ROUTINE statement” on page 2-438
“ALTER ROUTINE statement” on page 2-62
“Arguments” on page 5-1
“CREATE OPCLASS statement” on page 2-222
“ALTER FUNCTION statement” on page 2-57

Chapter 2. SQL statements 2-185

“CREATE DISTINCT TYPE statement” on page 2-157
“CREATE FUNCTION FROM statement” on page 2-193

Privileges necessary for using CREATE FUNCTION
You must hold the Resource privilege or the DBA privilege on a database to create
a function within that database.

Before you can create a function, you must also hold the Usage privilege on the
programming language in which the function is written. The GRANT USAGE ON
LANGUAGE statement can specify the SPL, C, or Java language when it grants a
language-level privilege to a user or to a role. For more information, see
“Language-Level Privileges” on page 2-516.

By default, Usage privilege on SPL is granted to PUBLIC.

To register functions in the C or Java external programming languages, you must
also hold the built-in EXTEND role, unless the IFX_EXTEND_ROLE configuration
parameter is set to 0 or to Off.

DBA keyword and Execute privilege on the created function
If you create a UDR with the DBA keyword, it is known as a DBA-privileged UDR.
You must hold the DBA privilege to create a DBA-privileged UDR.

Among users who do not hold the DBA privilege, only those to whom the DBA
grants the Execute privilege can invoke the DBA-privileged UDR. If the DBA
grants the Execute privilege to PUBLIC, however, then all users can use the
DBA-privileged UDR. For additional information about DBA-privileged UDRs, see
“Ownership of Created Database Objects” on page 2-235.

If you omit the DBA keyword, the UDR is known as an owner-privileged UDR.

When you create an owner-privileged UDR in an ANSI-compliant database, only
you can execute the UDR. Before other users can execute an owner-privileged
UDR, its owner must grant the Execute privilege, either to individual users, or to
roles, or to PUBLIC.

If you create an owner-privileged UDR in a database that is not ANSI compliant,
anyone can execute the UDR because PUBLIC is granted the Execute privilege by
default. To restrict access to an owner-privileged UDR to specific users, the owner
must revoke the Execute privilege on the UDR from PUBLIC, and then grant it to
specified users or roles. Setting the NODEFDAC environment variable to yes
prevents privileges on the UDR from being granted to PUBLIC by default when
the UDR is created in Owner mode. If this environment variable is set to yes, no
one besides the owner of the UDR can invoke it unless the owner grants the
Execute privilege for that UDR to other users.

If an external C or Java language function has a negator function, you must grant
the Execute privilege on both the external function and on its negator function
before users can execute the external function.

The REFERENCING and FOR Clauses
The REFERENCING clause can declare correlation names for the original value
and for the updated value in columns of the table_object that the FOR clause
specifies.

2-186 IBM Informix Guide to SQL: Syntax

REFERENCING and FOR Clauses:

REFERENCING �
(1)

OLD correlation
(1) AS

NEW

FOR table_object
' owner '.

Notes:

1 Use path no more than once

Element Description Restrictions Syntax

correlation Name that you declare here to qualify an old
or new column value (as correlation.column) in a
trigger routine

Must not be table_object “Identifier” on
page 5-21

owner Owner of table_object Must own table_object “Owner
name” on
page 5-49

table_object Name or synonym of a table or view whose
triggers can call function

Must exist in the local database “Identifier” on
page 5-21

If you include the REFERENCING and FOR table_object clauses immediately after
the parameter list of the CREATE FUNCTION statement, the function that you
create is known as a trigger function (or trigger UDR or trigger routine). The FOR
clause specifies the table or view whose triggers can invoke the function from the
FOR EACH ROW section of their Triggered Action list.

In the REFERENCING clause, the OLD correlation specifies a prefix by which the
trigger routine can reference the value that a column of table_object had before the
trigger routine modifies that column value. The NEW correlation specifies a prefix
for referencing the new value that the trigger routine assigns to the column.
Whether the trigger routine can use correlation names to reference the OLD
column value, the NEW column value, or both values depends on the type of
triggering event:
v A trigger routine invoked by an Insert trigger can reference only the NEW

correlation name.
v A trigger routine invoked by a Delete trigger or by a Select trigger can reference

only the OLD correlation name.
v A trigger routine invoked by an Update trigger can reference both the OLD and

the NEW correlation names.

For information about how to use the correlation.column notation in triggered
actions, see “REFERENCING Clauses” on page 2-345.

Besides the general requirements for any Informix UDR that is written in the SPL
language, trigger routines can support certain additional syntax features, and are
subject to certain restrictions, that are not features (or that are not restrictions) for
ordinary UDRs that are not trigger routines:
v A trigger routine must include the FOR table_object clause that specifies the name

of the table or view in the local database whose triggers can invoke this routine.
v A trigger routine can also include the REFERENCING clause to declare

correlation names for OLD and NEW values that SPL statements in the UDR can
reference.

Chapter 2. SQL statements 2-187

v Trigger routines can be invoked only in the FOR EACH ROW section of the
Triggered Action list in the trigger definition.

v Correlated variables for OLD or NEW values can appear in the IF statement of
SPL and in CASE expressions.

v Correlated variables for OLD values cannot be on the left-hand side of a LET
expression.

v Correlated variables for NEW values cannot be on the left-hand side of a LET
expression if the FOR clause specifies a view whose INSTEAD OF trigger action
list invokes the trigger routine.

v Only correlated variables for NEW values can be on the left-hand side of a LET
expression that references correlated variables. In this case, however, the FOR
clause must specify a table, rather than a view.

v Both OLD and NEW values can be on the right-hand side of a LET expression.
v The Boolean operators SELECTING, INSERTING, DELETING, and UPDATING

are valid in trigger routines (and only in trigger routines and in other UDRs that
are invoked in triggered action statements) in contexts where Boolean
expressions are valid. These operators return TRUE ('t') if the triggering event
matches the DML operation referenced by the name of the operator, and they
return FALSE ('f') otherwise.

v If a single triggering event activates multiple triggers on the same table or view,
then all of the BEFORE actions take place before any of the FOR EACH ROW
actions, and all of the AFTER actions follow the FOR EACH ROW actions. The
order of execution of different triggers on the same event is not guaranteed.

v Trigger routines must be written in the SPL language. They cannot be written in
an external language, like the C or Java language, but they can include calls to
external language routines, such as the mi_trigger application programming
interface for trigger introspection.

v Trigger functions cannot reference savepoints. Any changes to the data values or
to the schema of the database by a triggered action must be committed or rolled
back in their entirety. Informix does not support the partial rollback of triggered
actions.

For more information about the mi_trigger API, refer to the IBM Informix DataBlade
API Programmer's Guide and to the IBM Informix DataBlade API Function Reference.

If you include the REFERENCING clause but omit the FOR clause, or if you
include the FOR clause but omit the REFERENCING clause, the CREATE
FUNCTION statement fails with an error.

If you omit the REFERENCING and FOR clauses, the UDR cannot use the
SELECTING, INSERTING, DELETING, and UPDATING operators, and cannot
declare variables that can represent and manipulate column values in triggered
actions on the table or view that the trigger definition specifies.

See the “REFERENCING Clauses” on page 2-345 section in the CREATE TRIGGER
statement description for the syntax of the REFERENCING clause for Delete,
Insert, Select, and Update triggers.

Overloading the Name of a Function
Because Informix supports routine overloading, you can define more than one
function with the same name, but different parameter lists. You might want to
overload functions in the following situations:

2-188 IBM Informix Guide to SQL: Syntax

v You create a user-defined function with the same name as a built-in function
(such as equal()) to process a new user-defined data type.

v You create type hierarchies, in which subtypes inherit data representation and
functions from supertypes.

v You create distinct types, which are data types that have the same internal storage
representation as an existing data type, but have different names and cannot be
compared to the source type without casting. Distinct types inherit support
functions from their source types.

For a brief description of the routine signature that uniquely identifies each
user-defined function, see “Routine Overloading and Routine Signatures” on page
5-19.

Examples

Overloaded functions are uniquely identified by the name and the input parameter
list. Instead of providing a long unique identifier, it is possible to provide specific
name and use it later. The following example illustrates an overloaded function,
whose identifier isgetArea, that has the specific names getSquareArea and
getRectangleArea:
CREATE FUNCTION getArea

(i INT DEFAULT 0)
RETURNING INT SPECIFIC getSquareArea;
DEFINE j INT;
LET j = i * i;
RETURN j;
END FUNCTION;

CREATE FUNCTION getArea
(i INT DEFAULT 0, j INT DEFAULT 0)

RETURNING INT SPECIFIC getRectangleArea;
DEFINE k INT;
LET k = i * j;
RETURN k;
END FUNCTION;

Now you can use the specific name, as in the following example:
GRANT EXECUTE ON SPECIFIC FUNCTION getSquareArea TO informix;
GRANT EXECUTE ON SPECIFIC FUNCTION getRectangleArea TO informix;

Without the specific name, you would need to issue the following:
GRANT EXECUTE ON FUNCTION getArea (INTEGER) TO informix;
GRANT EXECUTE ON FUNCTION getArea (INTEGER,INTEGER) TO informix;

Related concepts:
Chapter 3, “SPL statements,” on page 3-1
Related reference:
“ALTER FUNCTION statement” on page 2-57
“ALTER ROUTINE statement” on page 2-62
“CREATE PROCEDURE statement” on page 2-226
“CREATE FUNCTION FROM statement” on page 2-193
“DROP FUNCTION statement” on page 2-428
“DROP ROUTINE statement” on page 2-438
“GRANT statement” on page 2-502
“EXECUTE FUNCTION statement” on page 2-462
“PREPARE statement” on page 2-589

Chapter 2. SQL statements 2-189

“REVOKE statement” on page 2-618
“UPDATE STATISTICS statement” on page 2-868

Create and use SPL routines (SQL Tutorial)

Create an external-language routine (UDR and Data Type Guide)

Develop a user-defined routine (DataBlade API Guide)

Using the SPECIFIC Clause to Specify a Specific Name
You can declare a specific name, unique to the database, for a user-defined
function. A specific name is useful when you are overloading a function.

DOCUMENT Clause
The quoted string in the DOCUMENT clause provides a synopsis and description
of the UDR. The string is stored in the sysprocbody system catalog table and is
intended for the user of the UDR. Anyone with access to the database can query
the sysprocbody system catalog table to obtain a description of one or all of the
UDRs stored in the database.

For example, the following query obtains a description of the SPL function
update_by_pct, that “SPL Functions” on page 2-191 shows:
SELECT data FROM sysprocbody b, sysprocedures p
WHERE b.procid = p.procid

--join between the two catalog tables
AND p.procname = ’update_by_pct’

-- look for procedure named update_by_pct
AND b.datakey = ’D’-- want user document;

The preceding query returns the following text:
USAGE: Update a price by a percentage
Enter an integer percentage from 1 - 100
and a part id number

A UDR or application program can query the system catalog tables to fetch the
DOCUMENT clause and display it for a user.

For C and Java language functions, you can include a DOCUMENT clause at the
end of the CREATE FUNCTION statement, whether or not you use the END
FUNCTION keywords.

WITH LISTING IN Clause
The WITH LISTING IN clause specifies a filename where compile time warnings
are sent. After you compile a UDR, this file holds one or more warning messages.

If you do not use the WITH LISTING IN clause, the compiler does not generate a
list of warnings.

On UNIX platforms, if you specify a filename but not a directory, this listing file is
created in your home directory on the computer where the database resides. If you
do not have a home directory on this computer, the file is created in the root
directory (the directory named “/”).

On Windows systems, if you specify a filename but not a directory, this listing file
is created in your current working directory if the database is on the local
computer. Otherwise, the default directory is %INFORMIXDIR%\bin.

2-190 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_412.htm#ids_sqt_412
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_118.htm#ids_udr_118
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dapip.doc/ids_dapip_0569.htm#ids_dapip_0569

SPL Functions
SPL functions are UDRs written in SPL that return one or more values. To write
and register an SPL function, use a CREATE FUNCTION statement. Embed
appropriate SQL and SPL statements between the CREATE FUNCTION and END
FUNCTION keywords. You can also follow the function with the DOCUMENT
and WITH FILE IN options.

SPL functions are parsed, optimized (as far as possible), and stored in the system
catalog tables in executable format. The body of an SPL function is stored in the
sysprocbody system catalog table. Other information about the function is stored
in other system catalog tables, including sysprocedures, sysprocplan, and
sysprocauth. For more information about these system catalog tables, see the IBM
Informix Guide to SQL: Reference.

The END FUNCTION keywords are required in every SPL function, and a
semicolon (;) must follow the clause that immediately precedes the statement
block. The following code example creates an SPL function:
CREATE FUNCTION update_by_pct (pct INT, pid CHAR(10))

RETURNING INT;
UPDATE inventory SET price = price + price * (pct/100)

WHERE part_id = pid;
return (select price from inventory where part_id = pid);

END FUNCTION
DOCUMENT "USAGE: Update a price by a percentage",

"Enter an integer percentage from 1 - 100",
"and a part id number"

WITH LISTING IN ’/tmp/warn_file’;

For more information on how to write SPL functions, see the chapter about SPL
routines in IBM Informix Guide to SQL: Tutorial.

See also the section “Transactions in SPL Routines” on page 5-83.

You can include valid SQL or SPL language statements in SPL functions. See,
however, the following sections in Chapter 5, “Other syntax segments,” on page
5-1 that describe restrictions on SQL and SPL statements within SPL routines:
“Subset of SPL Statements Valid in the Statement Block” on page 5-79; “SQL
Statements Valid in SPL Statement Blocks” on page 5-80; and “Restrictions on SPL
Routines in Data-Manipulation Statements” on page 5-82.
Related concepts:

System catalog tables (SQL Reference)

External Procedures
External functions are functions you write in an external language (that is, a
programming language other than SPL) that Informix supports.

To create a C user-defined function
1. Write the C function.
2. Compile the function and store the compiled code in a shared library (the

shared-object file for C).
3. Register the function in the database server with the CREATE FUNCTION

statement.

To create a user-defined function written in the Java language

Chapter 2. SQL statements 2-191

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009

1. Write a Java static method, which can use the JDBC functions to interact with
the database server.

2. Compile the Java source file and create a .jar file (the shared-object file for
Java).

3. Execute the install_jar() procedure with the EXECUTE PROCEDURE statement
to install the JAR file in the current database.

4. If the UDR uses user-defined types, create a map between SQL data types and
Java classes. Use the setUDTextName() procedure that is explained in
“EXECUTE PROCEDURE statement” on page 2-471.

5. Register the UDR with the CREATE FUNCTION statement.

Rather than storing the body of an external routine directly in the database, the
database server stores only the pathname of the shared-object file that contains the
compiled version of the routine. When it executes the external routine, the
database server invokes the external object code.

The database server stores information about an external function in system
catalog tables, including sysprocbody and sysprocauth. For more information on
the system catalog, see the IBM Informix Guide to SQL: Reference.
Related concepts:

System catalog tables (SQL Reference)

Example of Registering a C User-Defined Function
The following example registers an external C user-defined function named equal(
) in the database. This function takes two arguments of the type basetype1 and
returns a single Boolean value. The external routine reference name specifies the
path to the C shared library where the function object code is actually stored. This
library contains a C function basetype1_equal(), which is invoked during
execution of the equal() function.
CREATE FUNCTION equal (arg1 basetype1, arg2 basetype1)

RETURNING BOOLEAN;
EXTERNAL NAME

"/usr/lib/basetype1/lib/libbtype1.so(basetype1_equal)"
LANGUAGE C

END FUNCTION;

Example of Registering a UDR Written in the Java Language
The following CREATE FUNCTION statement registers the user-defined function,
sql_explosive_reaction(). This function is discussed in “sqlj.install_jar” on page
6-19.
CREATE FUNCTION sql_explosive_reaction(INT) RETURNS INT WITH (class="jvp")

EXTERNAL NAME "course_jar:Chemistry.explosiveReaction" LANGUAGE JAVA;

This function returns a single INTEGER value. The EXTERNAL NAME clause
specifies that the Java implementation of the sql_explosive_reaction() function is a
method called explosiveReaction(), which resides in the Chemistry Java class that
resides in the course_jar JAR file.

Ownership of Created Database Objects
The user who creates an owner-privileged UDR, rather than the user who executes
the UDR, owns any database objects that are created by the UDR when the UDR is
executed, unless another owner is specified for the created object.

For example, assume that user mike creates this user-defined function:

2-192 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009

CREATE FUNCTION func1 () RETURNING INT;
CREATE TABLE tab1 (colx INT);
RETURN 1;

END FUNCTION;

If user joan now executes function func1, user mike, not user joan, is the owner of
the newly created table tab1.

In the case of a DBA-privileged UDR, however, the user who executes a UDR
(rather than the UDR owner) owns any database objects created by the UDR,
unless another owner is specified for the database object within the UDR.

For example, assume that user mike creates this user-defined function:
CREATE DBA FUNCTION func2 () RETURNING INT;

CREATE TABLE tab2 (coly INT);
RETURN 1;

END FUNCTION;

If user joan now executes function func2, user joan, not user mike, is the owner of
the newly created table tab2.

See also the section “Support for roles and user identity” on page 5-83.

CREATE FUNCTION FROM statement
Use the CREATE FUNCTION FROM statement to access a user-defined function
whose CREATE FUNCTION statement resides in a separate file.

This statement is an extension to the ANSI/ISO standard for SQL. Use this
statement with ESQL/C.

Syntax

�� CREATE FUNCTION FROM
IF NOT EXISTS

'file'
file_var

��

Element Description Restrictions Syntax

file Path and filename of a file that contains the
full CREATE FUNCTION statement text.
Default pathname is current directory.

Must exist and contain
exactly one CREATE
FUNCTION statement

Must conform to
operating-system rules.

file_var Variable storing value of file Same as for file Language specific

Usage

Functions written in the C or Java language are called external functions. When the
IFX_EXTEND_ROLE configuration parameter is set to ON, only users who have
been granted the built-in EXTEND role can create external functions.

An Informix ESQL/C program cannot directly create a user-defined function. That
is, it cannot contain the CREATE FUNCTION statement.

To create these functions within an Informix ESQL/C program:
1. Create a source file with the CREATE FUNCTION statement.

Chapter 2. SQL statements 2-193

2. Use the CREATE FUNCTION FROM statement to send the contents of this
source file to the database server for execution.
The file that you specify in the file parameter can contain only one CREATE
FUNCTION statement.

For example, suppose that the following CREATE FUNCTION statement is in a
separate file, called del_ord.sql:
CREATE FUNCTION delete_order(p_order_num INT) RETURNING INT, INT;

DEFINE item_count INT;
SELECT count(*) INTO item_count FROM items

WHERE order_num = p_order_num;
DELETE FROM orders WHERE order_num = p_order_num;
RETURN p_order_num, item_count;

END FUNCTION;

In the Informix ESQL/C program, you can access the delete_order() SPL function
with the following CREATE FUNCTION FROM statement:
EXEC SQL create function from ’del_ord.sql’;

If you are not sure whether the UDR in the file is a user-defined function or a
user-defined procedure, use the CREATE ROUTINE FROM statement.

The filename that you provide is relative. If you provide a simple filename with no
pathname (as in the preceding example), the client application looks for the file in
the current directory.

Important: The Informix ESQL/C preprocessor does not process the contents of
the file that you specify. It only sends the contents to the database server for
execution. Therefore, there is no syntactic check that the file that you specify in
CREATE FUNCTION FROM actually contains a CREATE FUNCTION statement.
To improve readability of the code, however, it is recommended that you match
these two statements.
Related concepts:
“Overloading the Name of a Function” on page 2-188
Related reference:
“CREATE ROUTINE FROM statement” on page 2-239
“DROP FUNCTION statement” on page 2-428
“CREATE PROCEDURE statement” on page 2-226
“EXECUTE FUNCTION statement” on page 2-462
“CREATE PROCEDURE FROM statement” on page 2-236
“Arguments” on page 5-1
“CREATE FUNCTION statement” on page 2-183

CREATE INDEX statement
Use the CREATE INDEX statement to create an index for one or more columns in
a table, or on values returned by a UDR that uses column values as arguments.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

2-194 IBM Informix Guide to SQL: Syntax

�� CREATE
(1)

Index-Type Options INDEX index
IF NOT EXISTS

ON table
synonym

�

�
(2)

Index-Key Specs Index Options
ONLINE

��

Index Options:

(3)
USING Access-Method Clause

�

�
(4) (5)

FILLFACTOR Option Storage Options

�

�
(6) (7)

Index Modes HASH ON Clause
(8)

Extent Size Options

Notes:

1 See “Index-type options” on page 2-196

2 See “Index-key specification” on page 2-198

3 See “USING access-method clause” on page 2-204

4 See “FILLFACTOR Option” on page 2-208

5 See “Storage options” on page 2-209

6 See “Index modes” on page 2-214

7 See “HASH ON clause” on page 2-206

8 See “Extent Size Options” on page 2-209

Element Description Restrictions Syntax

index The name declared here for a new index. The name must be unique
among names of indexes in the
database.

“Identifier” on page
5-21

synonym, table The name or synonym of a standard or
temporary table to be indexed

The synonym and its table must
exist in the current database.

“Identifier” on page
5-21

Usage

When you issue the CREATE INDEX statement, the table is locked in exclusive
mode. If another process is using the table, CREATE INDEX returns an error. (For
an exception, however, see “The ONLINE keyword of CREATE INDEX” on page
2-216.)

If the index is on a column that stores encrypted data, the database server cannot
use the index.

Chapter 2. SQL statements 2-195

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if an index of the
specified name is already defined on the specified table in the current database.

Indexes use the collation that was in effect when CREATE INDEX executed.

A secondary-access method (sometimes referred to as an index-access method) is a set
of database server functions that build, access, and manipulate an index structure
such as a B-tree, R-tree, or an index structure that a DataBlade® module provides,
in order to speed up the retrieval of data.

Neither synonym nor table can refer to a virtual table or to a table object that the
CREATE EXTERNAL TABLE statement defined.

You cannot directly base a functional index on a built-in function, but you can
create an SPL wrapper that calls and returns a value from a built-in function. The
arguments to a user-defined function that defines a functional index cannot be the
values from a column of a collection data type.

The following statistics are generated automatically by the CREATE INDEX
statement, with or without the ONLINE keyword:
v Index-level statistics, equivalent to the statistics gathered in the UPDATE

STATISTICS operation in LOW mode for B-tree indexes.
v Column-distribution statistics, equivalent to the distribution generated in the

UPDATE STATISTICS operation in HIGH mode, for a non-opaque leading
indexed column of an ordinary B-tree index.

Related concepts:

Structure of B-Tree Index Pages (Administrator's Reference)

Structure of R-Tree Index Pages (Administrator's Reference)

Indexes and index performance considerations (Performance Guide)

Operator classes (UDR and Data Type Guide)

Collation order in CREATE INDEX (GLS User's Guide)
Related reference:
“Modes for constraints and unique indexes” on page 2-741
“CREATE TABLE statement” on page 2-265
“RENAME INDEX statement” on page 2-612
“ALTER FRAGMENT statement” on page 2-6
“ALTER INDEX statement” on page 2-59
“CREATE OPCLASS statement” on page 2-222
“DROP INDEX statement” on page 2-431
“SET Database Object Mode statement” on page 2-737

SQL features (GLS User's Guide)
“CREATE SCHEMA statement” on page 2-245
“START VIOLATIONS TABLE statement” on page 2-828

Index-type options
Use the DISTINCT or UNIQUE and CLUSTER options of the CREATE INDEX
statement to specify the characteristics of the index.

2-196 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0314.htm#ids_adr_0314
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0326.htm#ids_adr_0326
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_359.htm#ids_prf_359
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_288.htm#ids_udr_288
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_135.htm#ids_gug_135
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_092.htm#ids_gug_092

Index-Type Options:

DISTINCT
UNIQUE

CLUSTER

DISTINCT
Specifies that the columns on which the index is based accept only unique
data.

UNIQUE
Specifies that the columns on which the index is based accept only unique
data.

CLUSTER
Reorders the rows of the table in the order that the index designates.

UNIQUE or DISTINCT option usage

If you do not specify the UNIQUE or DISTINCT keyword, the index allows
duplicate values in the indexed column or in the set of indexed columns.

A column with a unique index can have, at most, one NULL value.

You cannot specify an R-tree secondary-access method for a UNIQUE index key.

The following example creates a unique index that prevents duplicate values in the
customer_num column:
CREATE UNIQUE INDEX c_num_ix ON customer (customer_num);

The DISTINCT and UNIQUE keywords are synonyms, so the following statement
has the same effect as the previous example:
CREATE DISTINCT INDEX c_num_ix ON customer (customer_num);

The index in both examples is maintained in ascending order, which is the default
order. The next example defines a unique descending index called c_num_desc_ix
on the same column:
CREATE UNIQUE INDEX c_num_desc_ix ON customer (customer_num DESC);

You can also prevent duplicate values in a column or in a set of columns by
creating a unique constraint with the CREATE TABLE or ALTER TABLE statement
and the ADD CONSTRAINT clause.

In an NLSCASE INSENSITIVE database, indexes on columns of the NCHAR and
NVARCHAR data types disregard lettercase differences, so that the database server
treats case variants among strings composed of the same sequence of letters as
duplicate values. You cannot insert or update a row of table with an NCHAR or
NVARCHAR column on which a unique index or a unique constraint is defined, if
that column value in the new row differs only by letter case from the value in the
same column of any existing row of the same table. For more information about
databases with the NLSCASE INSENSITIVE property, see “Duplicate rows in
NLSCASE INSENSITIVE databases” on page 2-663 and “NCHAR and
NVARCHAR expressions in case-insensitive databases” on page 4-28.

Chapter 2. SQL statements 2-197

CLUSTER option usage

You cannot specify the CLUSTER option and the ONLINE keyword in the same
statement. In addition, some secondary-access methods (such as R-tree) do not
support clustering. Before you specify CLUSTER for your index, be sure that the
index uses an access method that supports clustering.

The CREATE CLUSTER INDEX statement fails if a CLUSTER index already exists
on the same table.
CREATE CLUSTER INDEX c_clust_ix ON customer (zipcode);

This statement creates an index on the customer table and physically orders the
rows according to their postal code values, in (by default) ascending order.

If the CLUSTER option is specified and fragments exist on the data, values are
clustered only within each fragment, and not globally across the entire table.

You cannot use the CLUSTER option on a forest of trees index.
Related concepts:
“Differences Between a Unique Constraint and a Unique Index” on page 2-277

How indexes affect primary-key, unique, and referential
constraints
The database server creates internal B-tree indexes for primary-key, unique, and
referential constraints. If a primary-key, unique, or referential constraint is added
after the table is created, any user-created indexes on the constrained columns are
used, if appropriate.

An appropriate index is one that indexes the same columns that are used in the
primary-key, referential, or unique constraint.

If an appropriate user-created index is not available, the database server creates a
nonfragmented internal index on the constrained column or columns.

Index-key specification
Use the Index-key specification of the CREATE INDEX statement to define the key
value for the index. This can also specify the ascending or descending sort order,
and the operator class.

This is the syntax of the Index-Key Specification:

Index-Key Specification:

�

�

,
ASC

(column)
, op_class DESC

function (func_col)

Element Description Restrictions Syntax

column Column whose value is used
as a key to this index

See “Restrictions on columns as index keys” on page
2-200.

“Identifier” on
page 5-21

2-198 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

function User-defined function whose
return value is used as a key
to this index

Must be a nonvariant function that does not return a
large object data type. Cannot be a built-in algebraic,
exponential, log, or hex function.

“Identifier” on
page 5-21

func_col Column whose value is an
argument to function

Cannot be of a collection data type. See “Using the
return value of a function as an index key” on page
2-200.

“Identifier” on
page 5-21

op_class Operator class associated with
column or function for this
index key

If the secondary-access method in the USING clause
has no default operator class, you must specify one
here. (See “Using an Operator Class” on page 2-204.)

“Identifier” on
page 5-21

The index-key value can be one or more columns of built-in data types. If you
specify multiple columns, the concatenation of values from the set of columns is
treated as a single composite column for indexing.

The index-key value also can be one of the following:
v A column of type LVARCHAR(size), if size is smaller than 387 bytes
v One or more columns of user-defined data types
v One or more values that a user-defined function returns (referred to as a

functional index), where the argument list of the UDF is one or more column
values in the same row

v A combination of one or more column values and the return value from one or
more user-defined functions.

The 387-byte LVARCHAR size limit is for dbspaces of the default (2 kilobyte) page
size, but dbspaces of larger page sizes can support larger index key sizes, as listed
in the following table.

Table 2-2. Maximum Index Key Size for Selected Page Sizes

Page Size Maximum Index Key Size

2 kilobytes 387 bytes

4 kilobytes 796 bytes

8 kilobytes 1,615 bytes

12 kilobytes 2,435 bytes

16 kilobytes 3,245 bytes

Specifying the sort order

By default, the index is sorted in ascending order, from the lowest value to the
highest, according to the collation order for the locale, or else to the collation order
that was in effect when the index was created, if the SET COLLATION statement
has specified a nondefault collation. You can use the DESC keyword to reverse the
sort order, so that the index is sorted from the highest value to the lowest.

If you explicitly specify the ASC keyword in the Index-Key Specification, the index
is sorted in ascending order.

Specifying an operator class

If the secondary access method in the USING clause has no default operator class,
the Index-Key Specification can specify an operator class for the index key.

Chapter 2. SQL statements 2-199

If the secondary access method in the USING clause has a default operator class,
the Index-Key Specification can specify an operator class to override the default
operator class for the index.

Restrictions on columns as index keys
The following restrictions apply to any column or column list that the Index Key
Specification of the CREATE INDEX statement references:
v All the columns must exist in the table on which the index is defined.
v The table must exist in the current database, and cannot be an object that the

CREATE EXTERNAL TABLE statement defined.
v The data type of the column cannot be a collection data type.
v The maximum number of columns and the total width of all column index keys

are dependent on the page size of the database server. See “Creating Composite
Indexes” on page 2-201.

v You cannot add an ascending index to a column list on which a unique
constraint is defined. See “Using the ASC and DESC Sort-Order Options” on
page 2-202.

v You cannot add a unique index to a column list that has a primary-key
constraint. The reason is that defining the column or column list as the primary
key causes the database server to implement the constraint by creating a unique
internal index on the column or column list. The CREATE INDEX statement
cannot define another unique index whose key is the same column or column
list.

v The number of indexes that you can define on the same list of columns is
restricted. See “Restrictions on the Number of Indexes on a Set of Columns” on
page 2-204.

For additional index-key restrictions that apply to columns that are specified as
arguments to functional indexes, see “Using the return value of a function as an
index key.”

Using the return value of a function as an index key
A functional index is indexed on the value that a specified function returns from a
column-value argument, rather than on the value of a column. For example, the
following statement creates a functional index on table zones using the value that
the user-defined function Area() returns as the key:
CREATE INDEX zone_func_ind ON zones (Area(length,width));

You can create the function on which to define a functional indexes within an SPL
routine. You can also create an index on a nonvariant user-defined function that
does not return a large object.

The functional index can be a B-tree index, an R-tree index, or a user-defined
secondary-access method.

The value returned by the function can be the index key, as in the example above,
or it can be part of a composite index whose other key parts are the values of
columns, the values of partial columns, or the return values of other functional
indexes. (For more information, see the topic “Creating Composite Indexes” on
page 2-201).

Important: The database server imposes the following restrictions on the
user-defined routines (UDRs) on which a functional index is defined:

2-200 IBM Informix Guide to SQL: Syntax

v The arguments cannot be the names of column of a collection data type (LIST,
MULTISET, or SET).

v The function cannot return a large object of the data types BLOB, BYTE, CLOB,
and TEXT.

v The function cannot be a VARIANT function.
v The function cannot include any DML statement of SQL.
v The ONLINE keyword is not valid when you create a functional index; see “The

ONLINE keyword of CREATE INDEX” on page 2-216.
v The function must be a user-defined function. You cannot create a functional

index on any built-in function of SQL.

Despite the last restriction above, however, you can create a functional index on a
user-defined function that calls a non-variant built-in SQL function, so that the
value returned by the built-in function is the index key of a functional index. (That
is, create an SPL wrapper that calls and returns the value from a built-in function
of SQL, and then define a functional index on this user-defined SPL function.)

Creating Composite Indexes
A simple index lists only one column (or only one function, whose argument list
must be a list of one or more columns) in its Index Key Specification. Any other
index is a composite index. You should list the columns in a composite index in the
order from most frequently used to least frequently used.

If you use SET COLLATION to specify the collating order of a nondefault locale,
you can create multiple indexes on the same set of columns, using different
collations. (Such indexes are useful only on NCHAR or NVARCHAR columns.)

The following example creates a composite index using the stock_num and
manu_code columns of the stock table:
CREATE UNIQUE INDEX st_man_ix ON stock (stock_num, manu_code);

The UNIQUE keyword prevents any duplicates of a given combination of
stock_num and manu_code. The index is in ascending order by default.

You can include up to 16 columns in a composite index. The total width of all
indexed columns in a single composite index cannot exceed 380 bytes.

An index key part is either a column in a table, or the result of a user-defined
function on one or more columns. A composite index can have up to 16 key parts
that are columns, or up to 341 key parts that are values returned by a UDR. This
limit is language-dependent and applies to UDRs written in SPL or Java.
Functional indexes based on C language UDRs can have up to 102 key parts. A
composite index can include any of the following index key parts in its index key:
v One or more columns
v One or more values that a user-defined function returns (referred to as a

functional index).

The index key parts of a composite index can be a combination of columns and
user-defined functions.

For dbspaces of the default page size of 2 kilobytes, the total width of all indexed
columns in a single CREATE INDEX statement cannot exceed 387 bytes, except for
functional indexes of Informix, whose language-dependent limits are described

Chapter 2. SQL statements 2-201

earlier in this section. For the maximum sizes in dbspaces larger than 2 kilobytes,
see “Index-key specification” on page 2-198.

Whether the index is based directly on column values in the table, or on functions
that take column values as arguments, the maximum size of the index key depends
only on page size. The maximum index key size for functional indexes in dbspaces
larger than 2 kilobytes are the same as for column indexes. The only difference
between limits on column indexes and functional indexes is the number of key
parts. An index based on columns can have no more than 16 key parts, but a
functional index has different language-dependent limits on key parts. For a given
page size, the maximum index key size is the same for both column-based and
functional indexes.

Using the ASC and DESC Sort-Order Options
The ASC option specifies an index maintained in ascending order; this is the
default order. The DESC option can specify an index that is maintained in
descending order. These ASC and DESC options are valid with B-trees only.

Effects of Unique Constraints on Sort Order Options
When a column or list of columns is defined as unique in a CREATE TABLE or
ALTER TABLE statement, the database server implements that UNIQUE
CONSTRAINT by creating a unique ascending index. Thus, you cannot use the
CREATE INDEX statement to add an ascending index to a column or column list
that is already defined as unique.

However, you can create a descending index on such columns, and you can
include such columns in composite ascending indexes in different combinations.
For example, the following sequence of statements is valid:
CREATE TABLE customer (

customer_num SERIAL(101) UNIQUE,
fname CHAR(15),
lname CHAR(15),
company CHAR(20),
address1 CHAR(20),
address2 CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(5),
phone CHAR(18)
);

CREATE INDEX c_temp1 ON customer (customer_num DESC);
CREATE INDEX c_temp2 ON customer (customer_num, zipcode);

In this example, the customer_num column has a unique constraint placed on it.
The first CREATE INDEX statement places an index sorted in descending order on
the customer_num column. The second CREATE INDEX includes the
customer_num column as part of a composite index. For more information on
composite indexes, see “Creating Composite Indexes” on page 2-201.

Bidirectional Traversal of Indexes
If you do not specify the ASC or DESC keywords when you create an index on a
single column, key values are stored in ascending order by default; but the
bidirectional-traversal capability of the database server lets you create just one
index on a column and use that index for queries that specify sorting of results in
either ascending or descending order of the sort column.

2-202 IBM Informix Guide to SQL: Syntax

Because of this capability, it does not matter whether you create a single-column
index as an ascending or descending index. Whichever storage order you choose
for an index, the database server can traverse that index in ascending or
descending order when it processes queries.

If you create a composite index on a table, however, the ASC and DESC keywords
might be required. For example, if you want to enter a SELECT statement whose
ORDER BY clause sorts on multiple columns and sorts each column in a different
order, and you want to use an index for this query, you need to create a composite
index that corresponds to the ORDER BY columns. For example, suppose that you
want to enter the following query:
SELECT stock_num, manu_code, description, unit_price

FROM stock ORDER BY manu_code ASC, unit_price DESC;

This query sorts first in ascending order by the value of the manu_code column
and then in descending order by the value of the unit_price column. To use an
index for this query, you need to issue a CREATE INDEX statement that
corresponds to the requirements of the ORDER BY clause. For example, you can
enter either of the following statements to create the index:
CREATE INDEX stock_idx1 ON stock

(manu_code ASC, unit_price DESC);
CREATE INDEX stock_idx2 ON stock

(manu_code DESC, unit_price ASC);

The composite index that was used for this query (stock_idx1 or stock_idx2)
cannot be used for queries in which you specify the same sort direction for the two
columns in the ORDER BY clause. For example, suppose that you want to enter
the following queries:
SELECT stock_num, manu_code, description, unit_price

FROM stock ORDER BY manu_code ASC, unit_price ASC;
SELECT stock_num, manu_code, description, unit_price

FROM stock ORDER BY manu_code DESC, unit_price DESC;

If you want to use a composite index to improve the performance of these queries,
you need to enter one of the following CREATE INDEX statements. You can use
either one of the created indexes (stock_idx3 or stock_idx4) to improve the
performance of the preceding queries.
CREATE INDEX stock_idx3 ON stock

(manu_code ASC, unit_price ASC);
CREATE INDEX stock_idx4 ON stock

(manu_code DESC, unit_price DESC);

You can create no more than one ascending index and one descending index on a
column. Because of the bidirectional-traversal capability of the database server, you
only need to create one of the indexes. Creating both would achieve exactly the
same results for an ascending or descending sort on the stock_num column.

After INSERT or DELETE operations are performed on an indexed table, the
number of index entries can vary within a page, and the number of index pages
that a table requires can depend on whether the index specifies ascending or
descending order. For some load and DML operations, a descending single-column
or multi-column index might cause the database server to allocate more index
pages than an ascending index requires.
Related reference:

Page Types Within an Index Extent (Administrator's Reference)

Chapter 2. SQL statements 2-203

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0296.htm#ids_adr_0296

Restrictions on the Number of Indexes on a Set of Columns
You can create multiple indexes on a set of columns, provided that each index has
a unique combination of ascending and descending columns. For example, to
create all possible indexes on the stock_num and manu_code columns of the stock
table, you could create four indexes:
v The ix1 index on both columns in ascending order
v The ix2 index on both columns in descending order
v The ix3 index on stock_num in ascending order and on manu_code in

descending order
v The ix4 index on stock_num in descending order and on manu_code in

ascending order

Because of the bidirectional-traversal capability of the database server, you do not
need to create these four indexes. You only need to create two indexes:
v The ix1 and ix2 indexes achieve the same results for sorts in which the user

specifies the same sort direction (ascending or descending) for both columns, so
you only need one index of this pair.

v The ix3 and ix4 indexes achieve the same results for sorts in which the user
specifies different sort directions for the two columns (ascending on the first
column and descending on the second column or vice versa). Thus, you only
need to create one index of this pair. (See also “Bidirectional Traversal of
Indexes” on page 2-202.)

Informix can also support multiple indexes on the same combination of ascending
and descending columns, if each index has a different collating order; see “SET
COLLATION statement” on page 2-728.

Using an Operator Class
An operator class is the set of operators associated with a secondary-access method
for query optimization and building the index. You must specify an operator class
when you create an index if either one of the following is true:
v No default operator class for the secondary-access method exists. (A

user-defined access method can provide no default operator class.)
v You want to use an operator class that is different from the default operator

class that the secondary-access method provides.

If you use an alternative access method, and if the access method has a default
operator class, you can omit the operator class here; but if you do not specify an
operator class and the secondary-access method does not have a default operator
class, the database server returns an error. For more information, see “Default
Operator Classes” on page 2-226. The following CREATE INDEX statement creates
a B-tree index on the cust_tab table that uses the abs_btree_ops operator class for
the cust_num key:
CREATE INDEX c_num1_ix ON cust_tab (cust_num abs_btree_ops);

USING access-method clause
The USING clause specifies the secondary-access method for the new index.

2-204 IBM Informix Guide to SQL: Syntax

USING Access-Method Clause:

USING sec_acc_method �

,

(parameter = value)

Element Description Restrictions Syntax

parameter Secondary-access-method
parameter for this index

See the user documentation for your
user-defined access method

“Quoted String” on
page 4-219

sec_acc
_method

Secondary-access method for
this index

Method can be a B-tree, R-tree, BTS, or
user-defined access method, such as one that a
DataBlade module defines

“Identifier” on page
5-21

value Value of the specified
parameter

Must be a valid literal value for parameter in
this secondary-access method

“Quoted String” on
page 4-219 or
“Literal Number” on
page 4-215

A secondary-access method is a set of routines that perform all of the operations that
are needed for an index, such as create, drop, insert, delete, update, and scan.

The database server provides the following secondary-access methods:
v The generic B-tree index is the built-in secondary-access method.

A B-tree index is good for a query that retrieves a range of data values. The
database server implements this secondary-access method and registers it as
btree in the system catalog tables.

v The R-tree method is a registered secondary-access method.
An R-tree index is good for searches on multidimensional data. The database
server registers this secondary-access method as rtree in the system catalog
tables of a database. An R-tree secondary-access method is not valid for a
UNIQUE index key. An R-tree index cannot be clustered. An R-tree index cannot
be stored in a dbspace with a non-default page size. For more information about
R-tree indexes, see the IBM Informix R-Tree Index User's Guide.

v The bts method is a registered secondary-access method.
Use the bts access method to perform basic text searching for words and phrases
in a document repository that is stored in a column of a table. To perform basic
text searches, you create an index using the bts access method on a text column
and then use the bts_contains() search predicate function and other management
functions. For more information about the bts access method, see Create the
index by specifying the bts access method.

The access method that you specify must be registered in the sysams system
catalog table. The default secondary-access method is B-tree.

If the access method is B-tree, you can create only one index for each unique
combination of ascending and descending columnar or functional keys with
operator classes. (This restriction does not apply to other secondary-access
methods.) By default, CREATE INDEX creates a generic B-tree index. If you want
to create an index with a secondary-access method other than B-tree, you must
specify the name of the secondary-access method in the USING clause.

Some user-defined access methods are packaged as DataBlade modules. Some
DataBlade modules provide indexes that require specific parameters when you

Chapter 2. SQL statements 2-205

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dbext.doc/ids_dbxt_020.htm#ids_dbxt_020
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dbext.doc/ids_dbxt_020.htm#ids_dbxt_020

create them. For more information about user-defined access methods, refer to the
documentation of your secondary access-method or DataBlade module.

The following example (for a database that implements R-tree indexes) creates an
R-tree index on the location column that contains an opaque data type, point, and
performs a query with a filter on the location column.
CREATE INDEX loc_ix ON TABLE emp (location) USING rtree;
SELECT name FROM emp WHERE location N_equator_equals point(’500, 0’);

The following CREATE INDEX statement creates an index that uses the fulltext
secondary-access method, which takes two parameters: WORD_SUPPORT and
PHRASE_SUPPORT. It indexes a table t, which has two columns: i, an integer
column, and data, a TEXT column.
CREATE INDEX tx ON t(data)

USING fulltext (WORD_SUPPORT='PATTERN’,
PHRASE_SUPPORT=’MAXIMUM’);

HASH ON clause
Use the HASH ON clause of the CREATE INDEX statement to specify the columns
and number of subtrees (buckets) for a forest of trees index.

HASH ON clause:

�

,

HASH ON (column) WITH number BUCKETS

Element Description Restrictions Syntax

column The name of the column or columns
on which you use the HASH ON
clause to create a forest of trees
index

The list must be a prefix list of the
index columns used in the CREATE
INDEX statement

“Identifier” on page
5-21

number The number of subtrees (buckets) to
create for a forest of trees index

The number of buckets for a forest of
trees index must range from 2 to the
number of available index pages per
dbspace

“Integer Literals” on
page 4-216

Usage

Forest of trees indexes are detached indexes. They cannot be attached indexes.

You can create forest of trees indexes on columns with base data types.

You cannot:
v Create forest of trees indexes on columns with complex data types, UDTs, or

functional columns.
v Use the FILLFACTOR option of the CREATE INDEX statement when you create

forest of trees indexes, because the indexes are built from top to bottom.
v Create clustered forest of trees indexes.
v Run the ALTER INDEX statement on forest of trees indexes.
v Use forest of trees indexes in queries that use aggregates, including minimum

and maximum range values

2-206 IBM Informix Guide to SQL: Syntax

v Perform range scans directly on the HASH ON columns of a forest of trees
index.
However, you can perform range scans on columns that are not listed in the
HASH ON column list. For range scans on columns listed in HASH ON column
list, you must create an additional B-tree index that contains the appropriate
column list for the range scan. This additional B-tree index might have the same
column list as the forest of trees index, plus or minus a column.

v Use a forest of trees index for an OR index path. The database server does not
use forest of trees indexes for queries that have an OR predicate on the indexed
columns.

When you create a forest of trees index, choose enough columns to create unique
values.

Tip: Generally, the columns to choose depend on the number of duplicates for each
column. For example, if the first column contains a small number of duplicates, the
first two columns are sufficient for hashing if they do not contain a large number
of duplicates. If the first two columns contain a majority of duplicates, then you
need to also choose a third column.

The number of subtrees depends on your goal for the index. If your goal is:
v To reduce contention, initially create a forest of trees index with 2 subtrees per

CPU VP. You might need more subtrees, depending on the number of rows in
the table and how many duplicates exist.

v To reduce the number of levels in the B-tree:
1. Run the oncheck -pT command.
2. In the output, find the number of nodes at each level.
3. Determine how many subtrees are required to achieve the desired depth for

each tree in the index.

For example, suppose an index averages 100 keys per page, the index has 1M keys,
and the tree looks like this:

Level 1 (root) 100 keys
Level 2 10K keys
Level 3 1M keys

To reduce the 3-level tree to 100 2-level trees, the index needs roughly 100 subtrees.
To reduce the 3-level tree to 10K 1-level trees, the index needs roughly 10K
subtrees.

Forest of tree pages can be sparser than traditional B-tree pages if too many or too
few subtrees are used. When the pages are sparser, more pages occupy the buffer
pool, and therefore, cause other tables to become less cached.

Examples

The following command creates a forest of trees index named idx1 with 100
subtrees on column c1:
CREATE INDEX idx1 ON tab1(c1) HASH ON (c1) with 100 buckets;

Chapter 2. SQL statements 2-207

The following command creates a forest of trees index named idx2. In the
command, the prefix list for the HASH ON portion of the statement is c1 and c2,
which is a prefix list of the c1, c2, and c3 columns used in the CREATE INDEX
portion of the statement.
CREATE INDEX idx2 on tab2(c1, c2, c3) HASH ON (c1, c2) with 10 buckets;

The following command creates a forest of trees index for equality lookups on
columns c1 and c2:
CREATE INDEX idx3 on tab3(c1, c2) HASH ON (c1, c2) with 100 buckets;

The following command creates a B-tree index that is similar to the previous forest
of trees index. This index is for range scans on columns c1 and c2:
CREATE INDEX idx4 on tab4(c1, c2, c3);

FILLFACTOR Option
Use the FILLFACTOR option to specify the degree of index-page fullness when
you want to create compacted indexes or provide information for the expansion of
an index at a later date.

The FILLFACTOR option takes effect only in the following cases:
v when you build an index on a table that contains more than 5,000 rows and that

uses more than 100 table pages
v when you create an index on a fragmented table
v when you create a fragmented index on a nonfragmented table.

You cannot use the FILLFACTOR option on a forest of trees index.

FILLFACTOR Option:

FILLFACTOR percent

Element Description Restrictions Syntax

percent Percentage of each index page that is filled by index data
when the index is created. The default is 90.

1 ≤ percent ≤100 “Literal Number”
on page 4-215

When the index is created, the database server initially fills only that percentage of
the nodes specified with the FILLFACTOR value.

The FILLFACTOR can also be set as a parameter in the ONCONFIG file. The
FILLFACTOR clause on the CREATE INDEX statement overrides the setting in the
ONCONFIG file. For more information about the ONCONFIG file and the
parameters you can use, see your IBM Informix Administrator's Guide.

Providing a Low Percentage Value
If you provide a low percentage value, such as 50, you allow room for growth in
your index. The nodes of the index initially fill to a certain percentage and contain
space for inserts. The amount of available space depends on the number of keys in
each page as well as the percentage value.

For example, with a 50-percent FILLFACTOR value, the page would be half full
and could accommodate doubling in size. A low percentage value can result in
faster inserts and can be used for indexes that you expect to grow.

2-208 IBM Informix Guide to SQL: Syntax

Providing a High Percentage Value
If you provide a high percentage value, such as 99, indexes are compacted, and
any new index inserts result in splitting nodes. The maximum density is 100
percent. With a 100-percent FILLFACTOR value, the index has no room available
for growth; any addition to the index results in splitting the nodes.

A 99-percent FILLFACTOR value allows room for at least one insertion per node.
A high percentage value can result in faster queries and is appropriate for indexes
that you do not expect to grow, or for mostly read-only indexes.

Storage options
The storage options specify the distribution scheme of an index. You can use the
IN clause to specify a storage space for the entire index, or you can use the
FRAGMENT BY clause to fragment the index across multiple storage spaces.

Storage Options:

IN dbspace
extspace
(1)

TABLE
(2)

FRAGMENT BY Clause for Indexes

Notes:

1 B-tree indexes on nonfragmented tables only

2 See “FRAGMENT BY Clause for Indexes” on page 2-212

Element Description Restrictions Syntax

dbspace The dbspace in which to store the index Must exist “Identifier” on page 5-21

extspace Name assigned by the onspaces command to a storage
area outside the database server

Must exist See the documentation for
your access method.

If you specify any storage option (except IN TABLE), you create a detached index.
Detached indexes are indexes that are created with a specified distribution scheme.
Even if the distribution scheme specified for the index is identical to that specified
for the table, the index is still considered to be detached. If the distribution scheme
of a table changes, all detached indexes continue to use the distribution scheme
that the Storage Option clause specified.

Extent Size Options
The Extent Size options can define the size of storage extents allocated to the
index.

Extent Size Options:

EXTENT SIZE first_kilobytes NEXT SIZE next_kilobytes

Chapter 2. SQL statements 2-209

Element Description Restrictions Syntax

first_kilobytes Length in kilobytes of the first
extent for the index

Must return a positive number;
maximum is the chunk size, in
kilobytes

“Expression” on page
4-44

next_kilobytes Length in kilobytes of each
subsequent extent

Same as for first_kilobytes “Expression” on page
4-44

The minimum length of first_kilobytes (and of next_kilobytes) is four times the
disk-page size on your system. For example, if you have a 2-kilobyte page system,
the minimum length is 8 kilobytes.

If you need to revise the extent sizes of an index, you can modify the extent and
next-extent sizes in the generated schema files of an unloaded table. For example,
to make a database more efficient, you might drop an index, modify the extent
sizes in the schema files, and then create a new index. For information about how
to optimize extents, see your IBM Informix Administrator's Guide.

Only extent size values that you explicitly assign as extent sizes for the new index
are stored in the system catalog. The value that you specify in the EXTENT SIZE
option to the CREATE INDEX statement is stored in the fextsize column of the
sysindices system catalog table, and the value that you specify in the NEXT SIZE
option is stored in the nextsize column of the same table. If you omit these
options, however, the database server stores a value of zero (0) in those system
catalog columns, rather than the default value that it calculates and allocates for
the first extent or the next extent of the index.

Example of an index defined with explicit extent sizes

The following program fragment creates a new table and defines two
nonfragmented indexes on the table.
CREATE TABLE IF NOT EXISTS t (a INT, b INT);
CREATE INDEX IF NOT EXISTS idx1 ON t(a) EXTENT SIZE 32 NEXT SIZE 32;
CREATE INDEX IF NOT EXISTS idx2 ON t(b);

Here the definition of idx1 specifies 32 kilobytes as explicit extent sizes. The
second index, idx2, has default extent sizes that the system calculates. The two
CREATE INDEX statements produce system catalog descriptions of these indexes
that include these extent size entries:
v The sysindices.fextent and sysindices.nextent column values are each 32 for

idx1.
v The sysindices.fextent and sysindices.nextent column values are each 0 for

idx2.

Here the 0 values for idx2 indicate that no explicit extent sizes were specified
(rather than indicating that no storage space was allocated).

IN Clause
Use the IN clause to specify a storage space to hold the entire index. The storage
space that you specify must already exist.

Storing an Index in a dbspace
Use the IN dbspace clause to specify the dbspace where you want your index to
reside. When you use this clause with any option except the TABLE keyword, you
create a detached index.

2-210 IBM Informix Guide to SQL: Syntax

The IN dbspace clause allows you to isolate an index. For example, if the customer
table is created in the custdata dbspace, but you want to create an index in a
separate dbspace called custind, use the following statements:
CREATE TABLE customer

. . .
IN custdata EXTENT SIZE 16;

CREATE INDEX idx_cust ON customer (customer_num) IN custind;

Storing an Index Fragment in a Named Partition
Besides the option of storing a fragment of the index in a dbspace, Informix
supports storing named fragments of the index in one or more dbspaces. Unless
you explicitly declare names for the fragments in the PARTITION BY or
FRAGMENT BY clause, each fragment, by default, has the same name as the
dbspace where it resides. This includes all fragmented tables and indexes migrated
from earlier releases of Informix.

Storing Data in an extspace
In general, use the extspace storage option in conjunction with the “USING
access-method clause” on page 2-204. For more information, refer to the user
documentation for your custom-access method.

Creating an Index with the IN TABLE Keywords
Specifying IN TABLE as the storage option creates an index whose storage
behavior is the same as the default for earlier releases of Informix. Both the index
and the data pages for its table are stored together in the same extents, and the
dbspace distribution scheme for the index is the same as that of the table on which
it was built.

Using IN TABLE as the storage option specifies the same storage design for
non-fragmented B-tree indexes as enabling the DEFAULT_ATTACH environment
variable, but both DEFAULT_ATTACH and the IN TABLE keywords are
deprecated features that emulate the index storage behavior of Version 7.x of
Informix.

The name of the DEFAULT_ATTACH environment variable preserves an obsolete
definition of the term attached index. In current Informix nomenclature, this term
now designates an index whose data pages are stored in separate tablespaces and
separate extents from the data pages of the table, but the index and its table share
the same dbspace distribution scheme. For more information, see the description of
DEFAULT_ATTACH in the IBM Informix Guide to SQL: Reference.

The following restrictions apply to the IN TABLE keywords as an index storage
option:
v If the table on which you define the index is a fragmented table, Informix issues

errors -212 and -130 if you specify the IN TABLE option.
v You cannot apply the IN TABLE storage option to forest of trees indexes.
v This option does not support extensibility-related indexes, such as R-tree

indexes, functional indexes, or indexes that DataBlade modules provide.
v You cannot specify this storage option for any index that uses a collating order

different from that of its table, nor different from what the DB_LOCALE setting
specifies. For more information about the DB_LOCALE environment variable,
see the IBM Informix Guide to SQL: Reference.

Chapter 2. SQL statements 2-211

IBM does not recommend use in new applications of the IN TABLE storage option,
nor of the DEFAULT_ATTACH environment variable. Such indexes are a
deprecated feature that might not be supported in some future release of Informix.
Related reference:

DEFAULT_ATTACH environment variable (SQL Reference)

FRAGMENT BY Clause for Indexes
Use the FRAGMENT BY clause to create a detached index and to define its
fragmentation strategy across dbspaces or partitions.

This closely resembles the syntax of the FRAGMENT BY clause for tables, but the
ROUND ROBIN keywords are not supported for index fragmentation. The
PARTITION BY keywords are a synonym for the FRAGMENT BY keywords in this
context.

FRAGMENT BY Clause for Indexes:

FRAGMENT BY
PARTITION

(1)
EXPRESSION Expression Fragment Clause

(2)
RANGE (fragment_key) Interval Fragment Clause

(3)
LIST (fragment_key) List Fragment Clause

Notes:

1 See “Expression Fragment Clause” on page 2-314

2 See “Interval Fragment clause” on page 2-308

3 See “List fragment clause” on page 2-313

Element Description Restrictions Syntax

dbspace The dbspace to store the index
fragment

You can specify no more than 2,048 dbspaces. All
dbspaces that store the fragments must have the
same page size.

“Identifier” on
page 5-21

fragment _key Cast, column, or function
expressions on an index
column. Index is fragmented on
the value of this expression.

Columns must be from the current table only. “Expression”
on page 4-44

Here the IN keyword introduces the name of a storage space where an index
fragment is to be stored. If you list multiple dbspace names after the IN keyword,
use parentheses to delimit the dbspace list. All dbspaces that store the fragments
must have the same page size. The parentheses around the list of fragment
definitions that follow the EXPRESSION keyword are optional.

For indexes that use the same RANGE interval or LIST fragmentation strategy as
their table, each fragment name that you declare after the PARTITION keyword
must be the same as the identifier of the corresponding table fragment.

For attached indexes that are fragmented by a RANGE interval fragmentation
strategy, if no existing table fragment is in the range of a new inserted row, the
database server creates a new table fragment to store the new row, and declares a
system-generated name for the new table fragment. If the table is indexed, and the

2-212 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_232.htm#ids_sqr_232

index is fragmented by the same RANGE interval strategy as its table, the database
server also creates a new index fragment. In this case, the index fragment has the
same system-generated identifier as the corresponding table fragment. For more
information about system-generated RANGE interval fragments, see “Interval
Fragment clause” on page 2-308 and “Fragmenting by RANGE INTERVAL” on
page 2-305.

Restrictions on fragmentation expressions
The following restrictions apply to the expression:
v Each fragment expression can contain columns only from the current table, with

data values only from a single row.
v The expression must return a BOOLEAN (true or false) value.
v No subqueries, aggregates, user-defined routines, nor references to fields of a

ROW type column or sequence objects are valid.
v The built-in CURRENT, SYSDATE, TODAY, SITENAME, DBSERVERNAME,

CURRENT_USER, or USER functions are not valid.
v The DEFAULT_ROLE and CURRENT_ROLE operators are not valid.

The columns contained in the fragment expression for unique indexes must be the
same as the indexed columns or a subset of the indexed columns.

The restrictions listed above also apply to indexes that use a LIST fragmentation
strategy.

Fragmentation of System Indexes
System indexes (such as those that implement referential constraints and unique
constraints) utilize user-defined indexes if they exist. If no user-defined indexes can
be utilized, system indexes remain nonfragmented, and are moved to the dbspace
where the database was created.

To fragment a system index, create the fragmented index on the constraint
columns, and then add the constraint using the ALTER TABLE statement.

Fragmentation of Unique Indexes
You can fragment unique indexes on a table that uses a round-robin or an
expression-based distribution scheme, but any columns referenced in the fragment
expression must be indexed columns. If your index fragmentation strategy violates
this restriction, the CREATE INDEX statement fails, and work is rolled back.

Fragmentation of Indexes on Temporary Tables
You can fragment a unique index on a temporary table only if the underlying table
uses an expression-based distribution scheme. That is, the CREATE TEMP TABLE
statement that defines the temporary table must specify an explicit
expression-based distribution scheme. (Fragmentation of the index by ROUND
ROBIN is not supported, and fragmentation by LIST or by INTERVAL is
automatic, for a unique index on a table that uses a list or interval storage
partitioning strategy.)

If you try to create a fragmented, unique index on a temporary table for which you
did not specify a fragmentation strategy when you created the table, the database
server creates the index in the first dbspace that the DBSPACETEMP environment
variable specifies. For more information on the DBSPACETEMP environment
variable, see the IBM Informix Guide to SQL: Reference.

Chapter 2. SQL statements 2-213

For more information on the default storage characteristics of temporary tables, see
“Where temporary tables are stored” on page 2-327.
Related reference:

DBSPACETEMP environment variable (SQL Reference)

Index modes
Use the index mode options of the CREATE INDEX statement to specify the
behavior of the index during INSERT, DELETE, MERGE, and UPDATE operations.

Index Modes:

ENABLED

DISABLED
WITHOUT ERROR

FILTERING
WITH ERROR

DISABLED
The database server does not update the index after insert, delete, and
update operations that modify the base table. The optimizer does not use
the index during the execution of queries.

ENABLED
The database server updates the index after insert, delete, and update
operations that modify the base table. The optimizer uses the index during
query execution. If an insert or update operation causes a duplicate key
value to be added to a unique index, the statement fails.

FILTERING
The database server updates a unique index after insert, delete, and update
operations that modify the base table. (This option is not available with
duplicate indexes.)

The optimizer uses the index during query execution. If an insert or
update operation causes a duplicate key value to be added to a unique
index in filtering mode, the statement continues processing, but the bad
row is written to the violations table associated with the base table.
Diagnostic information about the unique-index violation is written to the
diagnostics table associated with the base table.

If you specify filtering for a unique index, you can also specify one of the
following error options.

WITHOUT ERROR
A unique-index violation during an insert or update operation returns no
integrity-violation error to the user.

WITH ERROR
Any unique-index violation during an insert or update operation returns
an integrity-violation error to the user.

For information on changing the database object mode of a unique index, see
“Modes for constraints and unique indexes” on page 2-741.

2-214 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_228.htm#ids_sqr_228

Specifying Modes for Unique Indexes
You must observe the following guidelines when you specify modes for unique
indexes in CREATE INDEX statements:
v You can set the mode of a unique index to enabled, disabled, or filtering.
v If you do not specify a mode, then by default the index is enabled.
v For an index set to filtering mode, if you do not specify an error option, the

default is WITHOUT ERROR.
v When you add a new unique index to an existing base table and specify the

disabled mode for the index, your CREATE INDEX statement succeeds even if
duplicate values in the indexed column would cause a unique-index violation.

v When you add a new unique index to an existing base table and specify the
enabled or filtering mode for the index, your CREATE INDEX statement
succeeds provided that no duplicate values exist in the indexed column that
would cause a unique-index violation. However, if any duplicate values exist in
the indexed column, your CREATE INDEX statement fails and returns an error.

v When you add a new unique index to an existing base table in the enabled or
filtering mode, and duplicate values exist in the indexed column, erroneous
rows in the base table are not filtered to the violations table. Thus, you cannot
use a violations table to detect the erroneous rows in the base table.

Adding a Unique Index When Duplicate Values Exist in the Column: If you
attempt to add a unique index in the enabled mode but receive an error message
because duplicate values are in the indexed column, take the following steps to
add the index successfully:
1. Add the index in the disabled mode. Issue the CREATE INDEX statement

again, but this time specify the DISABLED keyword.
2. Start a violations and diagnostics table for the target table with the START

VIOLATIONS TABLE statement.
3. Issue a SET Database Object Mode statement to change the mode of the index

to enabled. When you issue this statement, existing rows in the target table that
violate the unique-index requirement are duplicated in the violations table. You
receive an integrity-violation error message, however, and the index remains
disabled.

4. Issue a SELECT statement on the violations table to retrieve the nonconforming
rows that are duplicated from the target table. You might need to join the
violations and diagnostics tables to get all the necessary information.

5. Take corrective action on the rows in the target table that violate the
unique-index requirement.

6. After you fix all the nonconforming rows in the target table, issue the SET
Database Object Mode statement again to switch the disabled index to the
enabled mode. This time the index is enabled, and no integrity violation error
message is returned because all rows in the target table now satisfy the new
unique-index requirement.

Specifying Modes for Duplicate Indexes
You must observe the following guidelines when you specify modes for duplicate
indexes in CREATE INDEX statements:
v You can set a duplicate index to enabled or disabled mode. Filtering mode is

available only for unique indexes.
v If you do not specify the mode of a duplicate index, by default the index is

enabled.

Chapter 2. SQL statements 2-215

How the Database Server Treats Disabled Indexes
Whether a disabled index is a unique or duplicate index, the database server
effectively ignores the index during data-manipulation (DML) operations.

When an index is disabled, the database server stops updating it and stops using it
during queries, but the catalog information about the disabled index is retained.
You cannot create a new index on a column or set of columns if a disabled index
on that column or set of columns already exists. Similarly, you cannot create an
active (enabled) unique, foreign-key, or primary-key constraint on a column or on a
set of columns if the indexes on which the active constraint depends are disabled.

The ONLINE keyword of CREATE INDEX
The DBA can reduce the risk of nonexclusive access errors, and can increase the
availability of the indexed table, by including the ONLINE keyword as the last
specification of the CREATE INDEX statement. The ONLINE keyword instructs the
database server to create the index while minimizing the duration of an exclusive
lock, so that the index can be created while concurrent users are accessing the
table.

By default, CREATE INDEX attempts to place an exclusive lock on the indexed
table to prevent all other users from accessing the table while the index is being
created. The CREATE INDEX statement fails if another user already has a lock on
the table, or is currently accessing the table at the Dirty Read isolation level.

The database server builds the index, even if other users are performing Dirty
Read and DML operations on the indexed table. Immediately after you issue the
CREATE INDEX ONLINE statement, the new index is not yet visible to the query
optimizer for use in query plans or cost estimates, and the database server does
not support any other DDL operations on the indexed table, until after the
specified index has been built without errors. At this time, the database server
briefly locks the table while updating the system catalog with information about
the new index.

The indexed table in a CREATE INDEX ONLINE statement can be permanent or
temporary, logged or unlogged, and fragmented or non-fragmented. You cannot
specify the ONLINE keyword, however, when you are creating an index that has
any of the following attributes:
v a functional index
v a clustered index
v a virtual index
v an R-tree index
v an index that is partitioned by an interval fragmentation strategy
v an index on a table that is partitioned by an interval fragmentation strategy.

In addition, if a primary key constraint is defined on the table, a CREATE INDEX
ONLINE operation can generate error -710 if one or more concurrent sessions are
performing DML operations on a child table that has a foreign key constraint
referencing that primary key. Before the index can be created ONLINE, you must
wait until all the user sessions with those child tables have completed.

The following statement instructs the database server to create a unique online
index called idx_1 on the lname column of the customer table:
CREATE UNIQUE INDEX IF NOT EXISTS idx_1 ON customer(lname) ONLINE;

2-216 IBM Informix Guide to SQL: Syntax

If, while this index is being constructed, other users insert into the customer table
new rows in which lname is not unique, the database server issues an error after it
has created the new idx_1 index and registered it in the system catalog.

The term online index refers to the locking strategy that the database follows in
creating or dropping an index with the ONLINE keyword, rather than to
properties of the index that persist after its creation (or its destruction) has
completed. This term appears in some error messages, however, and in recovery or
restore operations, the database server re-creates as an online index any index that
you created as an online index.

No more than one CREATE INDEX ONLINE or DROP INDEX ONLINE statement
can concurrently reference online indexes on the same table, or online indexes that
have the same identifier.

Automatic Calculation of Distribution Statistics
When the CREATE INDEX statement runs successfully, with or without the
ONLINE keyword, Informix automatically gathers statistics for the newly created
index, and updates the sysdistrib system catalog table with values that are
equivalent to an UPDATE STATISTICS operation in a mode that depends on the
type of index:
v Index level statistics, equivalent to the statistics gathered by UPDATE

STATISTICS in the LOW mode, are calculated for most types of indexes,
including B-tree, Virtual Index Interface, and functional indexes.

v Column distribution statistics, equivalent to the distribution generated in the
HIGH mode, for a non-opaque leading indexed column of an ordinary B-tree
index. The resolution percentage is 1.0 if the table has fewer than a million rows,
and 0.5 for larger table sizes.

These distribution statistics are available to the query optimizer when it designs
query plans for the table on which the new index was created.

For composite key indexes, only distributions of the leading column are created
implicitly by the CREATE INDEX statement.

The implicit creation of distribution statistics is not supported for the following
types of indexes:
v Indexes on columns of user-defined data types
v Indexes on columns of the built-in opaque data types (including BOOLEAN and

LVARCHAR)
v R-tree indexes
v Attached indexes.

If the calculation of distribution statistics fails during the CREATE INDEX
operation, the database server reports that failure in the error log, but continues to
create the index.

When distributions are successfully created by an explicit or implicit CREATE
INDEX operation, explain information (similar to one generated by UPDATE
STATISTICS) such as following is generated if the SET EXPLAIN facility is set to
ON.
Index: idx_01 on nita.foo
STATISTICS CREATED AUTOMATICALLY:
Column Distribution for: nita.foo.a

Chapter 2. SQL statements 2-217

Mode: MEDIUM
Number of Bins: 101 Bin size: 100.0
Sort data: 0.3 MB
Completed building distribution in: 0 minutes 33 seconds

See the description of the “UPDATE STATISTICS statement” on page 2-868 for
information about distribution statistics and about the difference between LOW
mode and MEDIUM mode distributions.

CREATE OPAQUE TYPE statement
Use the CREATE OPAQUE TYPE statement to create an opaque data type.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE OPAQUE TYPE type
IF NOT EXISTS

�

�

�

(INTERNALLENGTH = length)
VARIABLE ,

(1)
, Opaque-Type Modifier

��

Notes:

1 See “Opaque-Type Modifier” on page 2-220

Element Description Restrictions Syntax

length Number of bytes needed to store
a value of this data type

Positive integer returned when sizeof()
directive is applied to the type structure

“Literal Number” on
page 4-215

type Name that you declare here for
the new opaque data type

Must be unique among data type names in
the database

“Identifier” on page
5-21

Usage

The CREATE OPAQUE TYPE statement registers a new opaque data type in the
sysxtdtypes system catalog table.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if an OPAQUE data
type of the specified name is already registered in the current database.

To create an opaque type, you must have the Resource privilege on the database.
When you create the opaque type, only you, the owner, have the Usage privilege
on the new opaque data type. You can use the GRANT or REVOKE statements to
grant or revoke the Usage privilege of other users of the database.

To view the privileges on a data type, check the sysxtdtypes system catalog table
for the owner name, and check the sysxtdtypeauth system catalog table for
additional type privileges that might have been granted.

For details of system catalog tables, see the IBM Informix Guide to SQL: Reference.

The DB-Access utility can also display privileges on opaque data types.

2-218 IBM Informix Guide to SQL: Syntax

Related concepts:

System catalog tables (SQL Reference)

Opaque data type (UDR and Data Type Guide)

Opaque data types (GLS User's Guide)
Related reference:
“CREATE CAST statement” on page 2-147
“CREATE DISTINCT TYPE statement” on page 2-157
“CREATE FUNCTION statement” on page 2-183
“CREATE ROW TYPE statement” on page 2-241
“CREATE TABLE statement” on page 2-265
“DROP TYPE statement” on page 2-450

OPAQUE data types (SQL Reference)

Opaque user-defined data types (J/Foundation Guide)
“CREATE SCHEMA statement” on page 2-245

Declaring a Name for an Opaque Type
The name that you declare for an opaque data type is an SQL identifier. When you
create an opaque type in a database that is not ANSI-compliant, the name must be
unique among the names of data types within the database.

When you create an opaque type in an ANSI-compliant database, owner.type
combination must be unique within the database. The owner name is case
sensitive. If you do not put quotation marks around the owner name, the name of
the opaque-type owner is stored in uppercase letters.

INTERNALLENGTH Modifier
The INTERNALLENGTH modifier specifies the storage size that is required for the
opaque data type as fixed length or varying length.

Fixed-Length Opaque Types
A fixed-length opaque type has an internal structure of fixed size. To create a
fixed-length opaque type, specify the size of the internal structure, in bytes, for the
INTERNALLENGTH modifier. The next example creates a fixed-length opaque
type called fixlen_typ and allocates 8 bytes for storing this data type.
CREATE OPAQUE TYPE fixlen_typ(INTERNALLENGTH=8, CANNOTHASH)

Varying-Length Opaque Types
A varying-length opaque type has an internal structure whose size might vary
from one value to another. For example, the internal structure of an opaque data
type might hold the actual value of a string up to a certain size, but beyond this
size it might use an LO-pointer to a CLOB to hold the value.

To create a varying-length opaque data type, use the VARIABLE keyword with the
INTERNALLENGTH modifier. The following statement creates a variable-length
opaque data type called varlen_typ:
CREATE OPAQUE TYPE varlen_typ
(INTERNALLENGTH=VARIABLE, MAXLEN=1024)

Chapter 2. SQL statements 2-219

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_135.htm#ids_udr_135
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_155.htm#ids_gug_155
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_132.htm#ids_sqr_132
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.jfoun.doc/ids_jfoun_070.htm#ids_jfoun_070

Opaque-Type Modifier

Opaque-Type Modifier:

MAXLEN=length
CANNOTHASH
PASSEDBYVALUE
ALIGNMENT=align_value

Element Description Restrictions Syntax

align_value Byte boundary on which to align an
opaque type that is passed to a
user-defined routine. Default is 4 bytes.

Must be 1, 2, 4, or 8, depending on the C
definition of the opaque data type and
hardware and compiler used to build the
object file for the data type

“Literal
Number”
on page
4-215

length Maximum length to allocate for instances
of varying-length opaque types. Default
is 2 kilobytes.

Must be a positive integer ≤ 32 kilobytes.
Do not specify for fixed-length data types.
Values that exceed this length return errors.

“Literal
Number”
on page
4-215

Modifiers can specify the following optional information for opaque types:
v MAXLEN specifies the maximum length for varying-length types.
v CANNOTHASH specifies that the database server cannot use the built-in hash

function on the opaque type.
v ALIGNMENT specifies the byte boundary on which the database server aligns

the opaque type.
v PASSEDBYVALUE specifies that an opaque type that requires 4 bytes or fewer of

storage is passed by value.

By default, opaque types are passed to user-defined routines by reference.

Defining an Opaque Type
To define a new opaque data type to the database server, you must provide the
following information in the C or Java language.
v A data structure that serves as the internal storage of the opaque data type

The internal storage details of the type are hidden, or opaque. Once you define a
new opaque data type, the database server can manipulate it without knowledge
of the C or Java structure in which it is stored.

v Support functions that allow the database server to interact with this internal
structure.
The support functions tell the database server how to interact with the internal
structure of the data type. These support functions must be written in the C or
Java programming language.

v Additional user-defined functions that other support functions or end users can
invoke to operate on the opaque type (optional)
Possible support functions include operator functions and cast functions. Before
you can use these functions in SQL statements, they must be registered with the
appropriate CREATE CAST, CREATE PROCEDURE, or CREATE FUNCTION
statement.

The following table summarizes the support functions for an opaque data type.

2-220 IBM Informix Guide to SQL: Syntax

Function Description Invoked

input() Converts the opaque type from its external
LVARCHAR representation to its internal
representation

When a client application sends a
character representation of the opaque
type in an INSERT, UPDATE, or LOAD
statement

output() Converts the opaque type from its internal
representation to its external LVARCHAR
representation

When the database server sends a
character representation of the opaque
type as a result of a SELECT or FETCH
statement

receive() Converts the opaque type from its internal
representation on the client computer to its internal
representation on the server computer Provides
platform-independent results regardless of differences
between client and server computer types

When a client application sends an
internal representation of the opaque
type in an INSERT, UPDATE, or LOAD
statement

send() Converts the opaque type from its internal
representation on the server computer to its internal
representation on the client computer Provides
platform-independent results regardless of differences
between client and database server computer types

When the database server sends an
internal representation of the opaque
type as a result of a SELECT or FETCH
statement

db_receive() Converts the opaque type from its internal
representation on the local database to the
dbsendrecv type for transfer to an external database
on the local server

When a local database receives a
dbsendrecv type from an external
database on the local database server

db_send() Converts the opaque type from its internal
representation on the local database to the
dbsendrecv type for transfer to an external database
on the local server

When a local database sends a
dbsendrecv type to an external
database on the local database server

server_receive() Converts the opaque type from its internal
representation on the local server computer to the
srvsendrecv type for transfer to a remote database
server Use any name for this function.

When the local database server receives
a srvsendrecv type from a remote
database server

server_send() Converts the opaque type from its internal
representation on the local server computer to the
srvsendrecv type for transfer to a remote database
server Use any name for this function.

When the local database server sends a
srvsendrecv type to a remote database
server

import() Performs any tasks needed to convert from the
external (character) representation of an opaque type
to the internal format for a bulk copy

When DB-Access (LOAD) or the High
Performance Loader (HPL) initiates a
bulk copy from a text file to a database

export () Performs any tasks needed to convert from the
internal representation of an opaque type to the
external (character) format for a bulk copy

When DB-Access (UNLOAD) or the
High Performance Loader initiates a
bulk copy from a database to a text file

importbinary() Performs any tasks needed to convert from the
internal representation of an opaque type on the
client computer to the internal representation on the
server computer for a bulk copy

When DB-Access (LOAD) or the High
Performance Loader initiates a bulk
copy from a binary file to a database

exportbinary() Performs any tasks needed to convert from the
internal representation of an opaque type on the
server computer to the internal representation on the
client computer for a bulk copy

When DB-Access (UNLOAD) or the
High Performance Loader initiates a
bulk copy from a database to a binary
file

assign() Performs any processing required before storing the
opaque type to disk This support function must be
named assign().

When the database server executes
INSERT, UPDATE, or LOAD, before it
stores the opaque type to disk

Chapter 2. SQL statements 2-221

Function Description Invoked

destroy() Performs any processing necessary before removing a
row that contains the opaque type This support
function must be named destroy().

When the database server executes the
DELETE or DROP TABLE, before it
removes the opaque type from disk

lohandles() Returns a list of the LO-pointer structures (pointers to
smart large objects) in an opaque type

When the database server must search
opaque types for references to smart
large objects; when oncheck runs, or an
archive is performed

compare() Compares two values of the opaque type and returns
an integer value to indicate whether the first value is
less than, equal to, or greater than the second value

When the database server encounters
an ORDER BY, UNIQUE, DISTINCT, or
UNION clause in a SELECT statement,
or when CREATE INDEX creates a
B-tree index

After you write the necessary support functions for the opaque type, use the
CREATE FUNCTION statement to register these support functions in the same
database as the opaque type. Certain support functions convert other data types to
or from the new opaque type. After you create and register these support
functions, use the CREATE CAST statement to associate each function with a
particular cast. The cast must be registered in the same database as the support
function.

After you have written the necessary C language or Java language source code to
define an opaque data type, you then use the CREATE OPAQUE TYPE statement
to register the opaque data type in the database.

CREATE OPCLASS statement
Use the CREATE OPCLASS statement to create an operator class for a
secondary-access method.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE OPCLASS opclass
IF NOT EXISTS

FOR sec_acc_method �

� �

,
(1)

STRATEGIES (Strategy Specification) �

� �

,

SUPPORT (support_function) ��

Notes:

1 See “CREATE OPCLASS statement”

2-222 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

opclass Name that you declare here for a new
operator class

Must be unique among operator
classes within the database

“Identifier”
on page
5-21

sec_acc_method Secondary-access method with which the
new operator class is associated

Must already exist and must be
registered in the sysams table

“Identifier”
on page
5-21

support_function Support function that the secondary-access
method requires

Must be listed in the order
expected by the access method

“Identifier”
on page
5-21

Usage

An operator class is the set of operators that support a secondary-access method for
query optimization and building the index. A secondary-access method (sometimes
referred to as an index access method) is a set of database server functions that build,
access, and manipulate an index structure such as a B-tree, R-tree, or an index
structure that a DataBlade module provides.

The database server provides the B-tree and R-tree secondary-access methods. For
more information on the btree secondary-access method, see “Default Operator
Classes” on page 2-226.

Define a new operator class when you want one of the following:
v An index to use a different order for the data than the sequence that the default

operator class provides
v A set of operators that is different from any existing operator classes that are

associated with a particular secondary-access method

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if an operator class of
the specified name is already registered in the current database.

You must have the Resource privilege or be the DBA to create an operator class.
The actual name of an operator class is an SQL identifier. When you create an
operator class, the opclass name must be unique within the database.

When you create an operator class in an ANSI-compliant database, the
owner.opclass combination must be unique within the database. The owner name is
case sensitive. If you do not put quotation marks around the owner name (or else
set the ANSIOWNER environment variable), the name of the operator-class owner
is stored in uppercase letters.

The following CREATE OPCLASS statement creates a new operator class called
abs_btree_ops for the btree secondary-access method:
CREATE OPCLASS abs_btree_ops FOR btree

STRATEGIES (abs_lt, abs_lte, abs_eq, abs_gte, abs_gt)
SUPPORT (abs_cmp);

An operator class has two kinds of operator-class functions:
v Strategy functions

Chapter 2. SQL statements 2-223

Specify strategy functions of an operator class in the STRATEGY clause of the
CREATE OPCLASS statement. In the preceding CREATE OPCLASS code
example, the abs_btree_ops operator class has five strategy functions.

v Support functions
Specify support functions of an operator class in the SUPPORT clause. In the
preceding CREATE OPCLASS code example, the abs_btree_ops operator class
has one support function.

Related concepts:

Support functions (UDR and Data Type Guide)

About operator classes (R-Tree Index Guide)
Related reference:
“CREATE INDEX statement” on page 2-194
“CREATE SCHEMA statement” on page 2-245
“CREATE FUNCTION statement” on page 2-183
“DROP OPCLASS statement” on page 2-434

Extend an operator class (UDR and Data Type Guide)

Name database objects (GLS User's Guide)
“Purpose Options” on page 5-54

STRATEGIES Clause
Strategy functions are functions that users can invoke within a DML statement to
operate on a specific data type. The query optimizer uses the strategy functions to
determine whether a given index can be used to process a query.

If a query includes a UDF or a column on which an index exists, and if the
qualifying operator in the query matches any function in the STRATEGIES clause,
then the query optimizer considers using the index for the query. For more
information on query plans, see your IBM Informix Performance Guide.

When you create a new operator class, the STRATEGIES clause identifies the
strategy functions for the secondary-access method. Each strategy specification lists
the name of a strategy function (and optionally, the data types of its parameters).
You must list these functions in the order that the secondary-access method
expects. For the specific order of strategy operators for the default operator classes
for a B-tree index and for an R-tree index, see IBM Informix User-Defined Routines
and Data Types Developer's Guide.
Related concepts:

The query plan (Performance Guide)

Strategy Specification
The STRATEGIES keyword introduces a comma-separated list of function names or
function signatures for the new operator class. Each element of this list is called a
strategy specification and has the following syntax:

Strategy Specification:

strategy_function
(input_type , input_type)

, output_type

2-224 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_207.htm#ids_udr_207
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.rtree.doc/ids_rti_016.htm#ids_rti_016
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_282.htm#ids_udr_282
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_093.htm#ids_gug_093
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_492.htm#ids_prf_492

Element Description Restrictions Syntax

input_type Data type of an input parameter to the
strategy function for which you intend
to use a specific secondary-access
method

A strategy function accepts two
input parameters and can have
one optional output parameter

“Data Type” on
page 4-23

output_type Data type of the optional output
parameter of the strategy function

Optional output parameter for
side-effect indexes

“Data Type” on
page 4-23

strategy_function Strategy function to associate with the
specified operator class

Must be listed in the order that
the specified secondary-access
method expects

“Identifier” on
page 5-21

Each strategy_function is an external function. The CREATE OPCLASS statement
does not verify that a user-defined function of the name you specify exists.
However, for the secondary-access method to use the strategy function, the
external function must be:
v Compiled in a shared library
v Registered in the database with the CREATE FUNCTION statement

Optionally, you can specify the signature of a strategy function in addition to its
name. A strategy function requires two input parameters and an optional output
parameter. To specify the function signature, specify:
v An input data type for each of the two input parameters of the strategy function,

in the order that the strategy function uses them
v Optionally, one output data type for an output parameter of the strategy function

You can specify UDTs as well as built-in data types. If you do not specify the
function signature, the database server assumes that each strategy function takes
two arguments of the same data type and returns a BOOLEAN value.

Indexes on Side-Effect Data
Side-effect data are additional values that a strategy function returns after a query
that contains the strategy function. For example, an image DataBlade module
might use a fuzzy index to search image data. The index ranks the images
according to how closely they match the search criteria. The database server
returns the rank values as side-effect data with the qualifying images.

SUPPORT Clause
Support functions are functions that the secondary-access method uses internally to
build and search the index. Specify these functions for the secondary-access
method in the SUPPORT clause of the CREATE OPCLASS statement.

You must list the names of the support functions in the order that the
secondary-access method expects. For the specific order of support operators for
the default operator classes for a B-tree index and an R-tree index, refer to “Default
Operator Classes” on page 2-226.

The support function is an external function. CREATE OPCLASS does not verify
that a specified support function exists. For the secondary-access method to use a
support function, however, the support function must meet these criteria:
v Be compiled in a shared library
v Be registered in the database with the CREATE FUNCTION statement

Chapter 2. SQL statements 2-225

Default Operator Classes
Each secondary-access method has a default operator class that is associated with
it. By default, the CREATE INDEX statement associates the default operator class
with an index.

For example, the following CREATE INDEX statement creates a B-tree index on the
zipcode column and automatically associates the default B-tree operator class with
this column:
CREATE INDEX zip_ix ON customer(zipcode)

For each of the secondary-access methods that Informix provides, it provides a
default operator class, as follows:
v The default B-tree operator class is a built-in operator class.

The database server implements the operator-class functions for this operator
class and registers it as btree_ops in the system catalog tables of a database.

v The default R-tree operator class is a registered operator class.
The database server registers this operator class as rtree_ops in the system
catalog tables. The database server does not implement the operator-class
functions for the default R-tree operator class.

Important: To use an R-tree index, you must install a spatial DataBlade module,
such as a third-party DataBlade module that implements the R-tree index. These
implement the R-tree operator-class functions.

DataBlade modules can provide other types of secondary-access methods. If a
DataBlade module provides a secondary-access method, it might also provide a
default operator class. For more information, refer to your DataBlade module user's
guide.

CREATE PROCEDURE statement
Use the CREATE PROCEDURE statement to create a user-defined procedure. (To
create a procedure from text of source code that is in a separate file, use the
CREATE PROCEDURE FROM statement.)

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE
DBA

PROCEDURE
IF NOT EXISTS

procedure
(1)

function

�

� ()
(2)

Routine Parameter List

�

2-226 IBM Informix Guide to SQL: Syntax

�
(3)

REFERENCING Clause FOR table_object
' owner '.

�

�
(1) (4)

Return Clause
(5)

SPECIFIC Specific Name

�

�

�

,
(1) (6)

WITH (Routine Modifier)

;
�

�
(1) (7)

Statement Block
(8) (9)

External Routine Reference

END PROCEDURE �

�

�

,
(10)

DOCUMENT Quoted String

WITH LISTING IN 'pathname'
��

Notes:

1 Stored Procedure Language only

2 See “Routine Parameter List” on page 5-71

3 See “The REFERENCING and FOR Clauses” on page 2-230

4 See “Return Clause” on page 5-58

5 See “Specific Name” on page 5-77

6 See “Routine modifier” on page 5-63

7 See “Statement Block” on page 5-78

8 External routines only

9 See “External Routine Reference” on page 5-19

10 See “Quoted String” on page 4-219

Element Description Restrictions Syntax

function,
procedure

Name declared here for a
new SPL routine

See “Procedure names in Informix” on page 2-232. “Identifier” on page
5-21

owner Owner of table_object Must own table_object “Owner name” on
page 5-49

pathname File to store compile-time
warnings

Must exist on the computer where the database
resides

Operating system
specific

table_object Name or synonym of a
table or view whose
triggers can call this UDR

Must exist in the local database “Identifier” on page
5-21

Chapter 2. SQL statements 2-227

Usage

In IBM Informix ESQL/C, you can use CREATE PROCEDURE only as text within
a PREPARE statement. If you want to create a procedure for which the text is
known at compile time, you must use a CREATE PROCEDURE FROM statement.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a procedure of the
specified name is already registered in the current database. (Because the identifier
of a procedure can be overloaded, it might be unnecessary to include these
keywords, if the database server can resolve the argument list of the new
procedure as different from that of any other procedure of the same name in the
current database.)

Routines use the collating order that was in effect when they were created. See
“SET COLLATION statement” on page 2-728 statement of Informix for information
about using non-default collation.

Example

For this example, assume that you have two overloaded procedures that are
defined as follows:
CREATE PROCEDURE raise_prices (per_cent INT)
UPDATE stock SET unit_price = unit_price + (unit_price * (per_cent/100));
END PROCEDURE

CREATE PROCEDURE raise_prices (per_cent INT, selected_unit CHAR)
UPDATE stock SET unit_price = unit_price + (unit_price * (per_cent/100))
where unit=selected_unit;
END PROCEDURE

In order to refer to the above procedures, you would need to provide the
procedure name followed by the parameter list, as in the following examples:
DROP PROCEDURE raise_prices(INT);
DROP PROCEDURE raise_prices(INT, CHAR);

A more convenient way is to use the specific name to identify each of them. The
following example will create the procedure using the specific name:
CREATE PROCEDURE raise_prices (per_cent INT) SPECIFIC

raise_prices_all
UPDATE stock SET unit_price = unit_price + (unit_price * (per_cent/100));
END PROCEDURE

DROP SPECIFIC PROCEDURE raise_prices_all;

CREATE PROCEDURE raise_prices (per_cent INT, selected_unit CHAR)
SPECIFIC raise_prices_by_unit
UPDATE stock SET unit_price = unit_price + (unit_price * (per_cent/100))
where unit=selected_unit;
END PROCEDURE

We can simply drop them using their specific names:
DROP SPECIFIC PROCEDURE raise_prices_by_all;
DROP SPECIFIC PROCEDURE raise_prices_by_unit;

Related concepts:
“Overloading the Name of a Function” on page 2-188

System catalog tables (SQL Reference)

2-228 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009

“INSTEAD OF Triggers on Views” on page 2-362
Related reference:
“CREATE ROUTINE FROM statement” on page 2-239
“ALTER FUNCTION statement” on page 2-57
“ALTER PROCEDURE statement” on page 2-60
“ALTER ROUTINE statement” on page 2-62
“CREATE FUNCTION statement” on page 2-183
“CREATE FUNCTION FROM statement” on page 2-193
“CREATE PROCEDURE FROM statement” on page 2-236
“DROP FUNCTION statement” on page 2-428
“DROP PROCEDURE statement” on page 2-434
“DROP ROUTINE statement” on page 2-438
“EXECUTE FUNCTION statement” on page 2-462
“EXECUTE PROCEDURE statement” on page 2-471
“GRANT statement” on page 2-502
“PREPARE statement” on page 2-589
“REVOKE statement” on page 2-618

Create and use SPL routines (SQL Tutorial)

Create an external-language routine (UDR and Data Type Guide)

Develop a user-defined routine (DataBlade API Guide)

NODEFDAC environment variable (SQL Reference)

Using CREATE PROCEDURE Versus CREATE FUNCTION
Although you can use CREATE PROCEDURE to write and register an SPL routine
that returns one or more values (that is, an SPL function)In Informix, it is
recommended that you use CREATE FUNCTION instead. To register an external
function, you must use CREATE FUNCTION.

Use the CREATE PROCEDURE statement to write and register an SPL procedure
or to register an external procedure.

For information on how terms such as user-defined procedures and user-defined
functions are used in this document, see “Relationship Between Routines,
Functions, and Procedures.”

Relationship Between Routines, Functions, and Procedures
A procedure is a routine that can accept arguments but does not return any values.
A function is a routine that can accept arguments and returns one or more values.
User-defined routine (UDR) is a generic term that includes both user-defined
procedures and user-defined functions. For information about named and
unnamed returned values, see “Return Clause” on page 5-58.

You can write a UDR in SPL (a SPL routine) or in an external language (an external
routine) that the database server supports. Where the term UDR appears in this
document, it can refer to both SPL routines and external routines.

The term user-defined procedure refers to SPL procedures and external procedures.
User-defined function refers to SPL functions and external functions.

Chapter 2. SQL statements 2-229

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_412.htm#ids_sqt_412
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_118.htm#ids_udr_118
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dapip.doc/ids_dapip_0569.htm#ids_dapip_0569
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_285.htm#ids_sqr_285

In the documentation of earlier releases, the term stored procedure was used for both
SPL procedures and SPL functions. In this document, the term SPL routine replaces
the term stored procedure. When it is necessary to distinguish between an SPL
function and an SPL procedure, this document does so.

The term external routine applies to an external procedure or an external function,
both constructs designating UDRs that are written in a programming language
other than SPL. When it is necessary to distinguish between an external function
and an external procedure, this document does so.

Privileges Necessary for Using CREATE PROCEDURE
You must have the Resource privilege on a database to create a user-defined
procedure within that database.

Before you can create an SPL procedure, you must also have the Usage privilege
on the SPL, C, or Java language in which the procedure is written. For more
information, see “Language-Level Privileges” on page 2-516.

By default, the Usage privilege on SPL is granted to PUBLIC. You must also have
at least the Resource privilege on a database to create an SPL procedure within that
database.

DBA Keyword and Privileges on the Procedure
If you create a UDR with the DBA keyword, it is known as a DBA-privileged UDR.
You need the DBA privilege to create a DBA-privileged UDR.

Among users who do not hold the DBA privilege, only those to whom the DBA
grants the Execute privilege can invoke the DBA-privileged UDR. If the DBA
grants the Execute privilege to PUBLIC, however, then all users can use the
DBA-privileged UDR. For additional information about DBA-privileged UDRs, see
“Ownership of Created Database Objects” on page 2-235.

If you omit the DBA keyword, the UDR is known as an owner-privileged UDR.

When you create an owner-privileged UDR in an ANSI-compliant database, only
you can execute the UDR. Before other users can execute an owner-privileged
UDR, its owner must grant the Execute privilege, either to individual users, or to
roles, or to PUBLIC.

If you create an owner-privileged UDR in a database that is not ANSI compliant,
anyone can execute the UDR because PUBLIC is granted the Execute privilege by
default. To restrict access to an owner-privileged UDR to specific users, the owner
must revoke the Execute privilege on the UDR from PUBLIC, and then grant it to
specified users or roles. Setting the NODEFDAC environment variable to yes
prevents privileges on any UDR from being granted to PUBLIC by default. If this
environment variable is set to yes, no one besides the owner of the UDR can
invoke it unless the owner grants the Execute privilege for that UDR to other
users.

The REFERENCING and FOR Clauses
The REFERENCING clause can declare correlation names for the original value
and for the updated value in columns of the table_object that the FOR clause
specifies

2-230 IBM Informix Guide to SQL: Syntax

REFERENCING and FOR Clauses:

REFERENCING �
(1)

OLD correlation
(1) AS

NEW

FOR table_object
' owner '.

Notes:

1 Use path no more than once

Element Description Restrictions Syntax

correlation Name that you declare here to qualify an old
or new column value (as correlation.column) in a
trigger routine

Must not be table_object “Identifier” on
page 5-21

owner Owner of table_object Must own table_object “Owner
name” on
page 5-49

table_object Name or synonym for the table or view whose
triggers can call this procedure

Must exist in the local database “Identifier” on
page 5-21

If you include the REFERENCING and FOR table_object clauses immediately after
the parameter list of the CREATE PROCEDURE statement, the routine that you
create is known as a trigger procedure (or trigger UDR or trigger routine). The FOR
clause specifies the table or view whose triggers can invoke the routine from the
FOR EACH ROW section of their Triggered Action list.

In the REFERENCING clause, the OLD correlation specifies a prefix by which the
trigger routine can reference the value that a column of table_object had before the
trigger routine modifies that column value. The NEW correlation specifies a prefix
for referencing the new value that the trigger routine assigns to the column.
Whether the trigger routine can use correlation names to reference the OLD
column value, the NEW column value, or both values depends on the type of
triggering event:
v A trigger routine invoked by an Insert trigger can reference only the NEW

correlation name.
v A trigger routine invoked by a Delete trigger or by a Select trigger can reference

only the OLD correlation name.
v A trigger routine invoked by an Update trigger can reference both the OLD and

the NEW correlation names.

For information about how to use the correlation.column notation in triggered
actions, see “REFERENCING Clauses” on page 2-345.

Besides the general requirements for any Informix UDR that is written in the SPL
language, trigger routines can support certain additional syntax features, and are
subject to certain restrictions, that are not features (or that are not restrictions) for
ordinary UDRs that are not trigger routines:
v A trigger routine must include the FOR table_object clause that specifies the name

of the table or view in the local database whose triggers can invoke this routine.
v A trigger routine can also include the REFERENCING clause to declare

correlation names for OLD and NEW values that SPL statements in the UDR can
reference.

Chapter 2. SQL statements 2-231

v Trigger routines can be invoked only in the FOR EACH ROW section of the
Triggered Action list in the trigger definition.

v Correlated variables for OLD or NEW values can appear in the IF statement of
SPL and in CASE expressions.

v Correlated variables for OLD values cannot be on the left-hand side of a LET
expression

v Correlated variables for NEW values cannot be on the left-hand side of a LET
expression if the FOR clause specifies a view whose INSTEAD OF trigger action
list invokes the trigger routine.

v Only correlated variables for NEW values can be on the left-hand side of a LET
expression that references correlated variables. In this case, the FOR clause must
specify a table, rather than a view, and the trigger whose action invokes the SPL
routine cannot be an INSTEAD OF trigger.

v Both OLD and NEW values can be on the right-hand side of a LET expression.
v The Boolean operators SELECTING, INSERTING, DELETING, and UPDATING

are valid in trigger routines (and only in trigger routines and in other UDRs that
are invoked in triggered action statements) in contexts where Boolean
expressions are valid. These operators return TRUE ('t') if the triggering event
matches the DML operation referenced by the name of the operator, and they
return FALSE ('f') otherwise.

v If a single triggering event activates multiple triggers on the same table or view,
then all of the BEFORE actions take place before any of the FOR EACH ROW
actions, and all of the AFTER actions follow the FOR EACH ROW actions. The
order of execution of different triggers on the same event is not guaranteed.

v Trigger routines must be written in the SPL language. They cannot be written in
an external language, like the C or Java language, but they can include calls to
external language routines, such as the mi_trigger application programming
interface for trigger introspection.

v Trigger routines cannot reference savepoints. Any changes to the data values or
to the schema of the database by a triggered action must be committed or rolled
back in their entirety. Partial rollback of a triggered action is not supported.

For more information about the mi_trigger API, refer to the IBM Informix DataBlade
API Programmer's Guide and to the IBM Informix DataBlade API Function Reference.

If you include the REFERENCING clause but omit the FOR clause, or if you
include the FOR clause but omit the REFERENCING clause, the CREATE
PROCEDURE statement fails with an error.

If you omit the REFERENCING and FOR clauses, the UDR cannot use the
SELECTING, INSERTING, DELETING, and UPDATING operators, and cannot
declare variables that can represent and manipulate column values in triggered
actions on the table or view that the trigger definition specifies.

See the “REFERENCING Clauses” on page 2-345 section in the CREATE TRIGGER
statement description for the syntax of the REFERENCING clause for Delete,
Insert, Select, and Update triggers on tables, and for Delete, Insert, and Update
INSTEAD OF triggers on views.

Procedure names in Informix
Because IBM Informix offers routine overloading, you can define more than one
user-defined routine (UDR) with the same name, but different parameter lists. You
might want to overload UDRs in the following situations:

2-232 IBM Informix Guide to SQL: Syntax

v You create a UDR with the same name as a built-in routine (such as equal()) to
process a new user-defined data type.

v You create type hierarchies in which subtypes inherit data representation and
UDRs from supertypes.

v You create distinct types, which are data types that have the same internal storage
representation as an existing data type, but have different names and cannot be
compared to the source type without casting. Distinct types inherit UDRs from
their source types.

For a brief description of the routine signature that uniquely identifies each UDR,
see “Routine Overloading and Routine Signatures” on page 5-19.

Using the SPECIFIC Clause to Specify a Specific Name
You can declare a specific name that is unique in the database for a user-defined
procedure. A specific name is useful when you are overloading a procedure.

DOCUMENT Clause
The quoted string in the DOCUMENT clause provides a synopsis and description
of a UDR. The string is stored in the sysprocbody system catalog table and is
intended for the user of the UDR.

Anyone with access to the database can query the sysprocbody system catalog
table to obtain a description of one or all the UDRs stored in the database. A UDR
or application program can query the system catalog tables to fetch the
DOCUMENT clause and display it for a user.

For example, to find the description of the SPL procedure raise_prices, shown in
“SPL Procedures” on page 2-234, enter a query such as this example:
SELECT data FROM sysprocbody b, sysprocedures p
WHERE b.procid = p.procid

--join between the two catalog tables
AND p.procname = ’raise_prices’

-- look for procedure named raise_prices
AND b.datakey = ’D’;-- want user document

The preceding query returns the following text:
USAGE: EXECUTE PROCEDURE raise_prices(xxx)
xxx = percentage from 1 - 100

For external procedures, you can use a DOCUMENT clause at the end of the
CREATE PROCEDURE statement, whether or not you use the END PROCEDURE
keywords.

Using the WITH LISTING IN Option
The WITH LISTING IN clause specifies a filename where compile time warnings
are sent. After you compile a UDR, this file holds one or more warning messages.
This listing file is created on the computer where the database resides.

If you do not use the WITH LISTING IN clause, the compiler does not generate a
list of warnings.

On UNIX, if you specify a filename but not a directory, this listing file is created in
your home directory on the computer where the database resides. If you do not
have a home directory on this computer, the file is created in the root directory
(the directory named “/”).

Chapter 2. SQL statements 2-233

On Windows, if you specify a filename but not a directory, this listing file is
created in your current working directory if the database is on the local computer.
Otherwise, the default directory is %INFORMIXDIR%\bin.

SPL Procedures
SPL procedures are UDRs written in Stored Procedure Language (SPL) that do not
return a value. To write and register an SPL routine, use the CREATE
PROCEDURE statement. Embed appropriate SQL and SPL statements between the
CREATE PROCEDURE and END PROCEDURE keywords. You can also follow the
UDR definition with the DOCUMENT and WITH FILE IN options.

SPL routines are parsed, optimized (as far as possible), and stored in the system
catalog tables in executable format. The body of an SPL routine is stored in the
sysprocbody system catalog table. Other information about the routine is stored in
other system catalog tables, including sysprocedures, sysprocplan, and
sysprocauth.

If the Statement Block portion of the CREATE PROCEDURE statement is empty, no
operation takes place when you call the procedure. You might use such a "dummy"
procedure in the development stage when you intend to establish the existence of
a procedure but have not yet coded it.

If you specify an optional clause after the parameter list, you must place a
semicolon after the clause that immediately precedes the Statement Block.

The following example creates an SPL procedure:
CREATE PROCEDURE raise_prices (per_cent INT)

UPDATE stock SET unit_price =
unit_price + (unit_price * (per_cent/100));

END PROCEDURE
DOCUMENT "USAGE: EXECUTE PROCEDURE raise_prices(xxx)",
"xxx = percentage from 1 - 100 "
WITH LISTING IN ’/tmp/warn_file’;

External Procedures
External procedures are procedures you write in an external programming language
that the database server supports. (Procedures written in the SPL language are not
external procedures.)

To create a C user-defined procedure
1. Write a C function that does not return a value.
2. Compile the C function and store the compiled code in a shared library (the

shared-object file for C).
3. Register the C function in the database server with the CREATE PROCEDURE

statement.

To create a user-defined procedure written in the Java language:
1. Write a Java static method, which can use the JDBC functions to interact with

the database server.
2. Compile the Java source and create a JAR file (the shared-object file).
3. Execute the install_jar() procedure with the EXECUTE PROCEDURE statement

to install the JAR file in the current database.

2-234 IBM Informix Guide to SQL: Syntax

4. If the UDR uses user-defined types, create a mapping between SQL data types
and Java classes, using the setUDTextName() procedure that is explained in
“EXECUTE PROCEDURE statement” on page 2-471.

5. Register the UDR with the CREATE PROCEDURE statement. (If an external
routine returns a value, you must register it with the CREATE FUNCTION
statement, rather than with CREATE PROCEDURE.)

Rather than storing the body of an external routine directly in the database, the
database server stores only the pathname of the shared-object file that contains the
compiled version of the routine. The database server executes an external routine
by invoking the external object code.

You must also hold either the Resource privilege or the DBA privilege on the
database in which the external procedure will be registered, as well as the Usage
privilege on the programming language in which the routine is written. (For the
syntax of granting Usage privileges on the C language or on the Java language to a
user, or to a role, or to the PUBLIC group, see “Language-Level Privileges” on
page 2-516.)

When the IFX_EXTEND_ROLE configuration parameter is set to 1 or to ON, only
users who have the built-in EXTEND role can create external procedures.

Registering a User-Defined Procedure
This example registers a C user-defined procedure named check_owner() that
takes one argument of the type LVARCHAR. The external routine reference
specifies the path to the C shared library where the procedure object code is stored.
This library contains a C function unix_owner(), which is invoked during
execution of the check_owner() procedure.
CREATE PROCEDURE check_owner (owner lvarchar)

EXTERNAL NAME "/usr/lib/ext_lib/genlib.so(unix_owner)"
LANGUAGE C

END PROCEDURE;

This example registers a user-defined procedure named showusers() that is
written in the Java language:
CREATE PROCEDURE showusers()

WITH (CLASS = "jvp") EXTERNAL NAME ’admin_jar:admin.showusers’
LANGUAGE JAVA;

The EXTERNAL NAME clause specifies that the Java implementation of the
showusers() procedure is a method called showusers(), which resides in the
admin Java class that resides in the admin_jar JAR file.

Ownership of Created Database Objects
The user who creates an owner-privileged UDR owns any database objects that the
UDR creates when it executes, unless some other owner is specified for the object.
In other words, the UDR owner, not the user who executes the owner-privileged
UDR, is the owner of any database objects created by the UDR unless another
owner is specified in the DDL statement that creates the database object.

In the case of a DBA-privileged UDR, however, the user who executes the UDR,
not the UDR owner, owns any database objects that the UDR creates, unless some
other owner is specified for the database object within the UDR.

For examples, see “Ownership of Created Database Objects” on page 2-192 in the
description of the CREATE FUNCTION statement.

Chapter 2. SQL statements 2-235

CREATE PROCEDURE FROM statement
Use the CREATE PROCEDURE FROM statement to access a user-defined
procedure. The actual text of the CREATE PROCEDURE statement resides in a
separate file.

This statement is an extension to the ANSI/ISO standard for SQL. You can use this
statement with Informix ESQL/C.

Syntax

�� CREATE PROCEDURE FROM 'file'
IF NOT EXISTS file_var

��

Element Description Restrictions Syntax

file Pathname and filename of file that
contains full text of a CREATE
PROCEDURE statement. Default
pathname is the current directory.

Must exist, and can contain only one
CREATE PROCEDURE statement. See also
“Default Directory That Holds the File” on
page 2-237.

Operating-
system specific

file_var Name of a program variable that
contains file specification

Must be of a character data type; its
contents have same restrictions as file

Language
specific

Usage

You cannot create a user-defined procedure directly in an Informix ESQL/C
program. That is, the program cannot contain the CREATE PROCEDURE
statement.

To use a user-defined procedure in an ESQL/C program:
1. Create a source file with the CREATE PROCEDURE statement.
2. Use the CREATE PROCEDURE FROM statement to send the contents of this

source file to the database server for execution.
The file can contain only one CREATE PROCEDURE statement.

For example, suppose that the following CREATE PROCEDURE statement is in a
separate file, called raise_pr.sql:
CREATE PROCEDURE raise_prices(per_cent INT)

UPDATE stock -- increase by percentage;
SET unit_price = unit_price +

(unit_price * (per_cent / 100));
END PROCEDURE;

In the Informix ESQL/C program, you can access the raise_prices() SPL procedure
with the following CREATE PROCEDURE FROM statement:
EXEC SQL create procedure from ’raise_pr.sql’;

If you are not sure whether the UDR in the file returns a value, use the CREATE
ROUTINE FROM statement.

When the IFX_EXTEND_ROLE configuration parameter is set to ON, only users
who have the built-in EXTEND role can create external routines.

2-236 IBM Informix Guide to SQL: Syntax

When the IFX_EXTEND_ROLE configuration parameter is set to 1 or to ON, only
users to whom the Database Server Administrator (DBSA) has granted the built-in
EXTEND role can create external routines. In addition, you must hold at least the
Resource access privilege on the database in which the routine will be registered.
You must also hold the Usage privilege on the programming language in which
the routine is written. (For the syntax of granting Usage privileges on the C
language to a user or to a role, see “Language-Level Privileges” on page 2-516.)

User-defined procedures, like user-defined functions, use the collating order that
was in effect when they were created. See “SET COLLATION statement” on page
2-728 for information about using non-default collation.
Related reference:
“CREATE ROUTINE FROM statement” on page 2-239
“DROP PROCEDURE statement” on page 2-434
“CREATE PROCEDURE statement” on page 2-226
“CREATE FUNCTION FROM statement” on page 2-193
“Arguments” on page 5-1

Default Directory That Holds the File
The database server treats the specified filename (and any pathname) as relative.

On UNIX, if you specify a simple filename instead of a full pathname as the file
parameter, the client application looks for the file in your home directory on the
computer where the database resides. If you do not have a home directory on this
computer, the default directory is the root directory.

On Windows, if you specify a filename but no directory as the file parameter, the
client application looks for the file in your current working directory if the
database is on the local computer. Otherwise, the default directory is
%INFORMIXDIR%\bin.

Important: The Informix ESQL/C preprocessor does not process the contents of
the file that you specify. It only sends the contents to the database server for
execution. Therefore, there is no syntactic check that the file that you specify in
CREATE PROCEDURE FROM actually contains a CREATE PROCEDURE
statement. To improve readability of the code, however, it is recommended that
you match these two statements.

CREATE ROLE statement
Use the CREATE ROLE statement to declare and register a new role.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE ROLE role
IF NOT EXISTS 'role'

��

Element Description Restrictions Syntax

role Name declared here for a
role that the DBA creates

Must be unique among role and user names in the
database. Maximum number of bytes is 32.

“Owner name”
on page 5-49

Chapter 2. SQL statements 2-237

Usage

CREATE ROLE declares a new role and registers it in the system catalog. A role
can associate a set of authorization identifiers with a set of access privileges on
database objects. The system catalog maintains information about the roles (and
their corresponding privileges) that are granted to users or to other roles.

Only the database administrator (DBA) can use CREATE ROLE to create a new
role. The DBA can assign the privileges required for some work task to a role, such
as engineer, and then use the GRANT statement to assign that role to specific
users, instead of granting that set of privileges to each user individually.

The role name is an authorization identifier. It cannot be a user name that is known
to the database server or to the operating system of the database server. The role
name cannot already be listed in the username column of the sysusers system
catalog table, nor in the grantor or grantee columns of the systabauth, syscolauth,
sysfragauth, sysprocauth, or sysroleauth system catalog tables.

The role name also cannot match the name of any user or role that is already listed
in the grantor or grantee columns of the sysxtdtypeauth system catalog table, nor
any built-in role, such as EXTEND or DBSECADM.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a role of the
specified name is already registered in the current database.

After a role is created, the DBA can use the GRANT statement to assign the role to
PUBLIC, to users, or to other roles, and to grant specific privileges to the role. (A
role cannot, however, hold database-level privileges.) After a role is granted
successfully to a user or to PUBLIC, the user must use the SET ROLE statement to
enable the role. Only then can the user exercise the privileges of the role.

To create the role engineer, for example, enter the following statement:
CREATE ROLE engineer;

To grant access privileges to the role engineer, the DBA can issue GRANT
statements that include engineer in the list of grantees:
GRANT USAGE ON LANGUAGE SPL TO engineer;

To assign the role engineer to user kaycee, the DBA could issue this statement:
GRANT engineer TO kaycee;

To activate the role engineer, user kaycee must issue the following statement:
SET ROLE engineer;

If this SET ROLE statement is successful, user kaycee acquires whatever privileges
have been granted to the role engineer, in addition to any other privileges that
kaycee already holds as an individual or as PUBLIC.

A user can be granted several roles, but no more than one non-default role, as
specified by SET ROLE, can be enabled for any user at a given time.

An exception to requiring SET ROLE to explicitly enable a role is any default role
that the DBA specifies in the GRANT DEFAULT ROLE role TO user statement. If
that statement succeeds, the default role is automatically enabled when user

2-238 IBM Informix Guide to SQL: Syntax

connects to the database. Any role can be a default role. (Similarly, users to whom
the Informix DBSA grants the EXTEND role need not execute SET ROLE before
they can create and drop external routines and shared libraries.)

CREATE ROLE, when used with the GRANT and SET ROLE statements, enables a
DBA to create one set of privileges for a role and then grant the role to many
users, instead of granting the same set of privileges individually to many users.

With the GRANT DEFAULT ROLE and SET ROLE DEFAULT statements, default
roles enable a DBA to assign privileges to a role that is activated automatically
when any user who holds that default role connects to the database. This feature is
useful when an application performs operations that require specific access
privileges, but the application does not include SET ROLE statements.

The REVOKE statement can cancel access privileges of a role, remove users from a
role, or cancel the default status of a role for one or more users. A role exists until
either the DBA or a user to whom the role was granted with the WITH GRANT
OPTION keywords uses the DROP ROLE statement to drop the role.

Important: The scope of a user-defined role (and of discretionary access privileges
that the GRANT statement assigns to the role) is the current database. When the
GRANT DEFAULT ROLE or SET ROLE statement activates a role, the role and its
privileges take effect in the current database only. As a security precaution,
discretionary access privileges that a user receives only from a role cannot provide
access to tables outside the current database through a view or through a trigger
action.
Related concepts:

Roles (Database Design Guide)
Related reference:
“SET ROLE statement” on page 2-812
“DROP ROLE statement” on page 2-437
“GRANT statement” on page 2-502
“REVOKE statement” on page 2-618

CREATE ROUTINE FROM statement
Use the CREATE ROUTINE FROM statement to register a UDR by referencing the
text of a CREATE FUNCTION statement or CREATE PROCEDURE statement that
resides in a separate file.

This statement is an extension to the ANSI/ISO standard for SQL.

You can use this statement with ESQL/C.

Syntax

�� CREATE ROUTINE FROM 'file'
IF NOT EXISTS file_var

��

Chapter 2. SQL statements 2-239

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_270.htm#ids_ddi_270

Element Description Restrictions Syntax

file Pathname and filename for the text of a
CREATE PROCEDURE or CREATE
FUNCTION statement. Default path is the
current directory.

Must exist and can contain only one
CREATE FUNCTION or CREATE
PROCEDURE statement.

Operating-
system
dependent

file_var Name of a program variable that contains file
specification

Must be a character data type; contents
must satisfy file restrictions

Language
specific

Usage

ESQL/C programs cannot use the CREATE FUNCTION or CREATE PROCEDURE
statement directly to define a UDR. You must instead do this:
1. Create a source file with the CREATE FUNCTION or CREATE PROCEDURE

statement.
2. Execute the CREATE ROUTINE FROM statement from an ESQL/C program to

send the contents of this source file to the database server for execution. The
file that you specify can contain only one CREATE FUNCTION or CREATE
PROCEDURE statement.

The file specification that you provide is relative. If you include no pathname, the
client application looks for the file in the current directory.

If you do not know at compile time whether the UDR in the file is a function or a
procedure, use the CREATE ROUTINE FROM statement in the Informix ESQL/C
program. If you know whether the UDR is a function or a procedure, you can
improve the readability of your code by using the matching SQL statement to
access the source file:
v To access user-defined functions, use CREATE FUNCTION FROM.
v To access user-defined procedures, use CREATE PROCEDURE FROM.

When the IFX_EXTEND_ROLE configuration parameter is set to 1 or to ON, only
users to whom the Database Server Administrator (DBSA) has granted the built-in
EXTEND role can create external routines. In addition, you must hold at least the
Resource access privilege on the database in which the routine will be registered.
You must also hold the Usage privilege on the programming language in which
the routine is written. (For the syntax of granting Usage privileges on the C
language to a user or to a role, see “Language-Level Privileges” on page 2-516.)

Routines use the collating order that was in effect when they were created. See
“SET COLLATION statement” on page 2-728 for information about using
non-default collation.

Examples

The following statement registers at UDR by referencing the text in the
del_ord.sql file.
EXEC SQL CREATE ROUTINE FROM ’del_ord.sql’;

ESQL/C source code example:
#include <stdio.h>

main()
{

2-240 IBM Informix Guide to SQL: Syntax

printf("CREATE ROUTINE FROM ESQL Program running.\n\n");
EXEC SQL WHENEVER ERROR STOP;
EXEC SQL connect to ’stores_demo’;

EXEC SQL CREATE ROUTINE FROM ’del_ord.sql’;

EXEC SQL disconnect current;
printf("\nCREATE ROUTINE Sample Program over.\n\n");

exit(0);
}

del_ord.sql

CREATE FUNCTION delete_order(p_order_num int) RETURNING int, int;
DEFINE item_count int;
SELECT count(*) INTO item_count FROM items

WHERE order_num = p_order_num;
DELETE FROM orders WHERE order_num = p_order_num;
RETURN p_order_num, item_count;

END FUNCTION;

Related reference:
“CREATE FUNCTION statement” on page 2-183
“CREATE FUNCTION FROM statement” on page 2-193
“CREATE PROCEDURE statement” on page 2-226
“CREATE PROCEDURE FROM statement” on page 2-236

CREATE ROW TYPE statement
Use the CREATE ROW TYPE statement to create a named ROW type.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE ROW TYPE row_type
IF NOT EXISTS

�

�
(1) UNDER supertype

(Field Definition)

��

Notes:

1 See “Field Definition” on page 2-244

Element Description Restrictions Syntax

row_type Name that you declare here for a
new named ROW data type

See “Procedure for Creating a Subtype” on page
2-244.

“Identifier”
on page 5-21

supertype Name of the supertype within a
data type inheritance hierarchy

Must already exist in the database as a named
ROW type

“Data Type”
on page 4-23

Usage

The CREATE ROW TYPE statement declares a named ROW data type and
registers it in the system catalog. You can assign a named ROW data type to a
table or view to create a typed table or typed view. You can also define a column as a

Chapter 2. SQL statements 2-241

named ROW type. Although you can assign a ROW type to a table to define the
schema of the table, ROW data types are not the same as table rows. Table rows
consist of one or more columns; ROW data types consist of one or more fields,
defined using the Field Definition syntax.

A named ROW data type is valid in most contexts where you can specify a data
type. Named ROW types are said to be strongly typed. No two named ROW types
are equivalent, even if they are structurally equivalent.

ROW types without identifiers are called unnamed ROW types. Any two unnamed
ROW types are considered equivalent if they are structurally equivalent. For more
information, see “ROW Data Types” on page 4-39.

Privileges on named ROW type columns are the same as privileges on any column.
For more information, see “Table-Level Privileges” on page 2-507. (To see what
privileges you have on a column, check the syscolauth system catalog table, which
is described in the IBM Informix Guide to SQL: Reference.)

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a named ROW of the
specified name is already registered in the current database.
Related concepts:

Cast individual fields of a row type (Database Design Guide)
Related reference:
“CREATE CAST statement” on page 2-147
“CREATE OPAQUE TYPE statement” on page 2-218
“DROP ROW TYPE statement” on page 2-440
“CREATE TABLE statement” on page 2-265
“GRANT statement” on page 2-502
“REVOKE statement” on page 2-618

ROW data type, Named (SQL Reference)

SYSCOLAUTH (SQL Reference)
“Literal Row” on page 4-216
“CREATE SCHEMA statement” on page 2-245
“CREATE DISTINCT TYPE statement” on page 2-157
“DROP TYPE statement” on page 2-450

Privileges on named ROW data types
The discretionary access privileges required for operations on a typed table (a table
that is assigned a named ROW data type) are the same as privileges on any table.
For more information, see “Table-Level Privileges” on page 2-507. The following
table shows which access privileges you need to create a named ROW type.

Task Privileges Required

Create a named ROW type Resource privilege on the database

Create a named ROW type as a subtype
under a supertype

Under privilege on the supertype, as well as
the Resource privilege

2-242 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_331.htm#ids_ddi_331
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_134.htm#ids_sqr_134
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_023.htm#ids_sqr_023

For information about Resource and Under privileges and the ALL keyword in the
context of privileges, see the “GRANT statement” on page 2-502.

o find out what privileges exist on a ROW type, check the sysxtdtypes system
catalog table for the owner name and the sysxtdtypeauth system catalog table for
privileges on the ROW type that might have been granted to users or to roles.

To find out what privileges you have on a given table, check the systabauth
system catalog table. For more information on system catalog tables, see the IBM
Informix Guide to SQL: Reference.
Related reference:

SYSTABAUTH (SQL Reference)

Inheritance and Named ROW Types
A named ROW type can belong to an inheritance hierarchy, as either a subtype or
a supertype. Use the UNDER clause in the CREATE ROW TYPE statement to
create a named ROW data type as a subtype of an existing ROW data type.

The supertype must also be a named ROW data type. If you create a named ROW
data type under an existing supertype, then the new type name row_type becomes
the name of the subtype.

When you create a named ROW type as a subtype, the subtype inherits all fields
of the supertype. In addition, you can add new fields to the subtype when you
create it. The new fields are specific to the subtype alone.

You cannot substitute a ROW type in an inheritance hierarchy for its supertype or
for its subtype. For example, consider a type hierarchy in which person_t is the
supertype and employee_t is the subtype. If a column is of type person_t, the
column can only contain person_t data. It cannot contain employee_t data.
Likewise, if a column is of type employee_t, the column can only contain
employee_t data. It cannot contain person_t data.

Creating a Subtype
In most cases, you add new fields when you create a named ROW type as a
subtype of another named ROW type (its supertype). To create the fields of a
named ROW type, use the field definition clause, as described in “Field Definition”
on page 2-244. When you create a subtype, you must use the UNDER keyword to
associate the supertype with the named ROW type that you want to create. The
next example creates the employee_t type under the person_t type:
CREATE ROW TYPE employee_t (salary NUMERIC(10,2),

bonus NUMERIC(10,2)) UNDER person_t;

The employee_t type inherits all the fields of person_t and has two additional
fields: salary and bonus; but the person_t type is not altered.

Type Hierarchies
When you create a subtype, you create a type hierarchy. In a type hierarchy, each
subtype that you create inherits its properties from a single supertype. If you create
a named ROW type customer_t under person_t, customer_t inherits all the fields
of person_t. If you create another named ROW type, salesrep_t under customer_t,
salesrep_t inherits all the fields of customer_t.

Chapter 2. SQL statements 2-243

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_071.htm#ids_sqr_071

Thus, salesrep_t inherits all the fields that customer_t inherited from person_t as
well as all the fields defined specifically for customer_t. For a discussion of type
inheritance, refer to the IBM Informix Guide to SQL: Tutorial.

Procedure for Creating a Subtype
Before you create a named ROW type as a subtype in an inheritance hierarchy,
check the following information:
v Verify that you are authorized to create new data types. You must have the

Resource privilege on the database. You can find this information in the sysusers
system catalog table.

v Verify that the supertype exists. You can find this information in the sysxtdtypes
system catalog table.

v Verify that you are authorized to create subtypes to that supertype. You must
have the Under privilege on the supertype. You can find this information in the
sysusers system catalog table.

v Verify that the name that you declare for the named ROW type is unique. In an
ANSI-compliant database, the owner.type combination must be unique within the
database. In a database that is not ANSI-compliant, the name must be unique
among data type names in the database. To verify whether the name for a new
data type is unique, check the sysxtdtypes system catalog table. The name must
not be the name of an existing data type.

v If you are defining fields for the ROW type, check that no duplicate field names
exist in both new and inherited fields.

Important: When you create a subtype, you cannot redefine fields that it inherited
for its supertype. If you attempt to redefine these fields, the database server
returns an error.

You cannot apply constraints to named ROW data types, but you can specify
constraints when you create or alter a table that uses the named ROW types. You
can also specify NOT NULL constraints on individual fields of a ROW type.

Field Definition
Use the Field Definition clause to define a new field in a named ROW type.

Field Definition:

field data_type
NOT NULL

Element Description Restrictions Syntax

data_type Data type of the field See “Restrictions on Serial and Simple-Large-Object
Data Types” on page 2-245.

“Identifier”
on page 5-21

field Name of a field in row_type Must be unique among field names of this ROW
type and of its supertype

“Identifier”
on page 5-21

The NOT NULL constraint on the named ROW type field applies to the
corresponding columns when a typed table of the named ROW type is created.

2-244 IBM Informix Guide to SQL: Syntax

Restrictions on Serial and Simple-Large-Object Data Types
Serial and simple-large-object data types cannot be nested within a table.
Therefore, if a ROW type contains a BYTE, TEXT, SERIAL, BIGSERIAL, or
SERIAL8 field, you cannot use the ROW type to define a column in a table that is
not based on a ROW type. For example, the following code example produces an
error:
CREATE ROW TYPE serialtype (s serial, s8 serial8);
CREATE TABLE tab1 (col1 serialtype); --INVALID CODE

You cannot create a ROW type that has a BYTE or TEXT value that is stored in a
separate storage space. That is, you cannot use the IN clause to specify the storage
location. For example, the following example produces an error:
CREATE ROW TYPE row1 (field1 byte IN blobspace1); --INVALID CODE

A table hierarchy can include no more than one SERIAL, BIGSERIAL, or SERIAL8
column. If a supertable has a SERIAL column, none of its subtables can contain a
SERIAL column (but a subtable can have a BIGSERIAL or SERIAL8 column if no
other subtable contains a BIGSERIAL or SERIAL8 column, respectively).
Consequently, when you create the named ROW types on which the table
hierarchy is to be based, they can contain at most one SERIAL and one BIGSERIAL
or SERIAL8 field among them.

You cannot set the starting SERIAL, BIGSERIAL, or SERIAL8 value in the CREATE
ROW TYPE statement. To modify the value for a serial field, you must use either
the MODIFY clause of the ALTER TABLE statement, or else use the INSERT
statement to insert a value that is larger than the current maximum (or default)
serial value.

Serial fields in ROW types have performance implications across a table hierarchy.
To insert data into a subtable whose supertable (or its supertable) contains the
serial counter, the database server must also open the supertable, update the serial
value, and close the supertable, thus adding extra overhead.

In contexts where these restrictions or performance issues for SERIAL, BIGSERIAL,
or SERIAL8 data types conflict with your design goals, you might consider using
sequence objects to emulate the functionality of serial fields or serial columns.
Related concepts:

ROW Data Types (SQL Reference)

CREATE SCHEMA statement
Use the CREATE SCHEMA statement to issue a block of data definition language
(DDL) and GRANT statements as a unit.

Use this statement with DB-Access.

Syntax

�� CREATE SCHEMA AUTHORIZATION user �

Chapter 2. SQL statements 2-245

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_163.htm#ids_sqr_163

� �
(1)

CREATE TABLE Statement
(2)

CREATE VIEW Statement
(3)

GRANT Statement
(4) (5)

CREATE INDEX Statement
(6)

CREATE SYNONYM Statement
(7)

CREATE TRIGGER Statement
(8)

CREATE OPTICAL CLUSTER Statement
(9)

CREATE SEQUENCE Statement
(10)

CREATE ROW TYPE Statement
(11)

CREATE OPAQUE TYPE Statement
(12)

CREATE DISTINCT TYPE Statement
(13)

CREATE CAST Statement

;
��

Notes:

1 See “CREATE TABLE statement” on page 2-265

2 See “CREATE VIEW statement” on page 2-373

3 See “GRANT statement” on page 2-502

4 Informix extension

5 See “CREATE INDEX statement” on page 2-194

6 See “CREATE SYNONYM statement” on page 2-261

7 See “CREATE TRIGGER statement” on page 2-329

8 Optical Subsystem only. See the IBM Informix Optical Subsystem Guide.

9 See “CREATE SEQUENCE statement” on page 2-257

10 See “CREATE ROW TYPE statement” on page 2-241

11 See “CREATE OPAQUE TYPE statement” on page 2-218

12 See “CREATE DISTINCT TYPE statement” on page 2-157

13 See “CREATE CAST statement” on page 2-147

Element Description Restrictions Syntax

user User who owns the
database objects that
this statement creates

If you have DBA privileges, you can specify the name of any
user. Otherwise, you must have the Resource privilege, and
you must specify your own user name.

“Owner
name” on
page 5-49

2-246 IBM Informix Guide to SQL: Syntax

Usage

The CREATE SCHEMA statement allows the DBA to specify an owner for all
database objects that the CREATE SCHEMA statement creates. You cannot issue
CREATE SCHEMA until you have created the database that stores the objects.

Users with the Resource privilege can create a schema for themselves. In this case,
user must be the name of the person with the Resource privilege who is running
the CREATE SCHEMA statement. Anyone with the DBA privilege can also create a
schema for someone else. In this case, user can specify a user other than the person
who is running the CREATE SCHEMA statement.

You can put CREATE and GRANT statements in any logical order, as the following
example shows. Statements are considered part of the CREATE SCHEMA
statement until a semicolon (;) or an end-of-file symbol is reached.
CREATE SCHEMA AUTHORIZATION sarah

CREATE TABLE mytable (mytime DATE, mytext TEXT)
GRANT SELECT, UPDATE, DELETE ON mytable TO rick
CREATE VIEW myview AS

SELECT * FROM mytable WHERE mytime > ’12/31/2004’
CREATE INDEX idxtime ON mytable (mytime);

Related reference:
“CREATE CAST statement” on page 2-147
“CREATE DISTINCT TYPE statement” on page 2-157
“CREATE INDEX statement” on page 2-194
“CREATE OPAQUE TYPE statement” on page 2-218
“CREATE OPCLASS statement” on page 2-222
“CREATE ROW TYPE statement” on page 2-241
“CREATE SEQUENCE statement” on page 2-257
“CREATE SYNONYM statement” on page 2-261
“CREATE TABLE statement” on page 2-265
“CREATE VIEW statement” on page 2-373
“GRANT statement” on page 2-502

Create the database (Database Design Guide)

Creating Database Objects Within CREATE SCHEMA
All database objects that a CREATE SCHEMA statement creates are owned by user,
even if you do not explicitly name each database object. If you are the DBA, you
can create database objects for another user. If you are not the DBA, specifying an
owner other than yourself results in an error message.

You can only grant privileges with the CREATE SCHEMA statement; you cannot
use CREATE SCHEMA to revoke or to drop privileges.

If you create a database object or use the GRANT statement outside a CREATE
SCHEMA statement, you receive warnings if you use the -ansi flag or set
DBANSIWARN.

Chapter 2. SQL statements 2-247

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_227.htm#ids_ddi_227

CREATE SECURITY LABEL statement
Use the CREATE SECURITY LABEL statement to define a new security label for a
specified security policy in the current database and to identify its components and
the elements of its components.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE SECURITY LABEL policy . label
IF NOT EXISTS

�

� � �

,
,

COMPONENT component element ��

Element Description Restrictions Syntax

component A security label
component

Must already exist in the database as a component
of the specified policy, and be unique among names
of components of this label.

“Identifier” on page
5-21

label Name you declare
here for this label

Must be unique among security label names for this
security policy

“Identifier” on page
5-21

element An element of the
specified component

Must have been defined when its component was
defined or was last altered. If component is an array,
only a single element can be specified.

“Quoted String” on
page 4-219

policy The security policy
of this label

Must already exist in the database “Identifier” on page
5-21

Usage

A security label is a named database object that supports a specified security policy.
A security label can be applied to a user, or to a row or to a column (or to both a
row and a column) of a table in the database. When a user who holds a security
label attempts to access data that has a security label, the database server takes
into account the security label of the column or row and the security label of the
user in determining whether to allow the user to access the data.

Every security label stores the following categories of information:
v It identifies an existing security policy that the label supports.
v It identifies at least one, but no more than 16 existing components of the security

policy that the label supports.
v It identifies one or more existing elements of each component of the security

label. (Only security label components of type SET or TREE can include more
than one element in the same security label.)

Only DBSECADM can issue this statement. When the CREATE SECURITY LABEL
statement executes successfully, it registers the specified label name, the numeric

2-248 IBM Informix Guide to SQL: Syntax

identifier of the associated security policy, and the cardinality of its security label
components in the sysseclabels system catalog table.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a security label of
the specified name is already registered in the current database.
Related concepts:

Label-based access control (Security Guide)
Related reference:
“RENAME SECURITY statement” on page 2-613
“DROP SECURITY statement” on page 2-442
“ALTER SECURITY LABEL COMPONENT statement” on page 2-64
“ALTER TABLE statement” on page 2-72
“CREATE SECURITY LABEL COMPONENT statement” on page 2-250
“CREATE SECURITY POLICY statement” on page 2-254
“CREATE TABLE statement” on page 2-265
“EXEMPTION Clause” on page 2-526
“SECURITY LABEL Clause” on page 2-528
“EXEMPTION Clause” on page 2-637
“SECURITY LABEL Clause” on page 2-639

Components and Elements of a Security Label
Like a security policy, a security label must have at least one component, but no
more than 16. The CREATE SECURITY LABEL statement cannot list security label
components that are not components of the specified security policy. The same
component name cannot be specified more than once in the same CREATE
SECURITY LABEL statement. These components must already exist in the
database, where DBSECADM can register them with the CREATE SECURITY
LABEL COMPONENT statement.

Security label components can be of type ARRAY, SET, or TREE, as described in
CREATE SECURITY LABEL COMPONENT. For a component of type ARRAY, the
element list can identify only a single element. For components of type SET or
TREE, the element list can identify multiple component elements that were defined
when the component was created (or when it was last altered). See the CREATE
SECURITY LABEL COMPONENT statement for more information about the
structure and semantics of security label components.

The following example creates a security label called label1 for a security policy
called MegaCorp. The label uses two security label components, called levels and
compartments, each with one element, called VP and Marketing respectively:
CREATE SECURITY LABEL MegaCorp.label1

COMPONENT levels ’VP’,
COMPONENT compartments ’Marketing’;

For this example to be valid, the levels and compartments components, and their
security label components, VP and Marketing elements, must have been defined in
previously executed CREATE SECURITY LABEL COMPONENT statements.

Chapter 2. SQL statements 2-249

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_lb_002.htm#ids_lb_002

In the next example, DBSECADM creates a security label called label2 for the same
MegaCorp security policy. This label uses three security label components, called
levels, compartments, and groups, where two of these components have one
element, and another has two:
CREATE SECURITY LABEL MegaCorp.label2

COMPONENT level ’Director’,
COMPONENT compartments ’HR’, ’Finance’,
COMPONENT groups ’EntireRegion’;

These examples illustrate that the components of a security label can be a subset of
the components of the security policy that the label supports, and that more than
one security label can support the same security policy.

CREATE SECURITY LABEL COMPONENT statement
Use the CREATE SECURITY LABEL COMPONENT statement to define a new
security label component in the current database and to define the elements the
component.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE SECURITY LABEL COMPONENT component
IF NOT EXISTS

�

� �

�

�

,

ARRAY [element]
,

SET { element }

TREE (element ROOT , element UNDER element)

��

Element Description Restrictions Syntax

component Name declared
here for this
component

Must be unique among the names of security label
components in the database.

“Identifier” on page
5-21

element Component
element that is
defined here

Must be unique among elements of this component,
and no longer than 32 bytes. The left (() and right
()) parentheses, comma (,), and colon (:)
symbols are not valid characters.

“Quoted String” on
page 4-219

Usage

Only the DBSECADM can issue the CREATE SECURITY LABEL COMPONENT
statement, which defines a security label component. This is a database object that
defines one or more logical categories whose values can be used in a security
policy to determine whether a user's request to read or write data is accepted or

2-250 IBM Informix Guide to SQL: Syntax

rejected. The set of all the valid individual values that the security component can
have is defined by the set of security label elements that this statement specifies for
the component.

The logical categories that security label components implement are identified by
DBSECADM in the process of designing a security policy, which is the core
construct of label-based access control (LBAC). To implement this security feature
in the database, however, DBSECADM must create security objects in the following
sequence:
1. A set of one or more security components, each of which can be defined by the

CREATE SECURITY LABEL COMPONENT statement. This statement specifies
the name of a security component, the structure of its range of values, and the
possible values for this component that can be assigned to a security label that
applies a security policy to data or to a user.

2. One or more security policies, each of which can be defined by the CREATE
SECURITY POLICY statement, which specifies a list of one or more
components and a set of rules that the security policy applies to data and to
users who attempt read or write operations on data that the security policy
protects in the database. A security policy always includes all the elements of a
component that CREATE SECURITY POLICY specifies.

3. A security label can be defined by the CREATE SECURITY LABEL statement,
which specifies one or more values for each of one or more components of the
security policy that the label supports. The security label can be applied to data
and to users. All the components of a security label must be components of the
same security policy, but multiple security policies and multiple security labels
can share the same component. A security label typically includes only a subset
of the elements of a security component that CREATE SECURITY LABEL
COMPONENT defines.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a security label
component of the specified name is already registered in the current database.

See the GRANT Security and REVOKE Security statements for information on how
security labels and exemptions from the rules of a security policy define the LBAC
credentials of a user or of a role.

See the CREATE TABLE and ALTER TABLE statements for information on how
security labels can be associated with a database table or with an individual data
row in a table.
Related concepts:

Label-based access control (Security Guide)
Related reference:
“RENAME SECURITY statement” on page 2-613
“DROP SECURITY statement” on page 2-442
“CREATE SECURITY LABEL statement” on page 2-248
“ALTER SECURITY LABEL COMPONENT statement” on page 2-64
“ALTER TABLE statement” on page 2-72
“CREATE SECURITY POLICY statement” on page 2-254
“CREATE TABLE statement” on page 2-265
“EXEMPTION Clause” on page 2-526
“SECURITY LABEL Clause” on page 2-528

Chapter 2. SQL statements 2-251

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_lb_002.htm#ids_lb_002

“EXEMPTION Clause” on page 2-637
“SECURITY LABEL Clause” on page 2-639

Types and Elements of Security Label Components
A security label component itself consists of one or more elements that the CREATE
SECURITY LABEL COMPONENT statement declares as string constants. These
elements define the set of values that are valid for the component,

When the CREATE SECURITY LABEL statement executes successfully, Informix
updates the system catalog of the database with the following new entries:
v It creates a new row in the sysseclabelcomponents table to register the new

component.
v For each element of the new component, it creates a new row in the

sysseclabelcomponentelements table.

The security label component must be defined as one of the three component
types. The ARRAY, SET, or TREE keyword that immediately follows the declaration
of the component name specifies the component type, which must be followed by a
list of the elements of the security component. These elements define the set of
values that the component can have within a security policy. For all three types of
security label components, the set of elements is under the following restrictions:
v The security component can have no more than 64 elements.
v Each element of a security component is a quoted string constant of no more

than 32 bytes.
v Characters in the quoted string constant cannot include the left (() or right ())

parentheses, comma (,), or colon (:) symbols, but other symbols that the
DB_LOCALE setting supports are valid, including the blank space (ASCII 32)
character.

v Each element must be unique among elements of the same security label
component, but the same quoted string constant value can also be an element of
other security label components.

The definition of each element within the component implies a level of data
sensitivity that a security label associates with a database table or with an
individual data row, and also affects the security credentials of users who hold a
security label to read or write data that is protected by the same label or by a
different label that specifies one or more elements of the component.

Like other database Data Definition Language statements of SQL that can define
database objects, CREATE SECURITY LABEL COMPONENT must specify a literal
value for each component element, rather than a placeholder. To change the
definition of an existing security label component, DBSECADM can use the ALTER
SECURITY LABEL COMPONENT to insert a new element into an ARRAY, SET, or
TREE component. To drop or rename one or more individual elements of a
component, however, DBSECADM must use the DROP SECURITY LABEL
COMPONENT statement to destroy the existing component, and then reissue the
CREATE SECURITY LABEL COMPONENT statement to create a new component
that defines the required set of element values within an ARRAY, SET, or TREE
component structure.

ARRAY Components
A security label component of type ARRAY is an ordered set of no more than 64
elements. Each element defines a value that is valid for that component within a

2-252 IBM Informix Guide to SQL: Syntax

security policy. The order in which elements are declared is significant, because it
defines a descending order of data sensitivity, with each successive element
ranking lower in data sensitivity than the preceding element. The set of label
elements of the array and their comma separators must be enclosed between a pair
of bracket ([...]) symbols.

When an ARRAY component is specified in the definition of a security label, the
label can specify no more than one element of that component as the value of the
component.

The following example defines a security label component of type ARRAY called
aquilae that is an ordered set of five elements called imperator, tribunus, centurio,
miles, and asinus:
CREATE SECURITY LABEL COMPONENT aquilae

ARRAY ["imperator", "tribunus", "centurio", "miles", "asinus"];

Here the component element with the highest data sensitivity is imperator and
asinus has the lowest data sensitivity, with the data sensitivity of tribunus ranking
above that of centurio but below that of imperator.

A component of type ARRAY can be appropriate in contexts where some
dimension of a multidimensional security policy can be mapped onto a single scale
that is monotonically descending.

SET Components
A security label component of type SET is an unordered set of no more than 64
elements. Each element of the SET is a string constant of no more than 32 bytes,
and must be unique within the component, but the same value can be used in
other components. The order in which the elements of a SET component are
declared is not significant in regard to the data sensitivity of the categories that
these elements identify. The elements and their comma separators must be
enclosed between a pair of braces ({ ... }) symbols.

When a SET component is specified in the definition of a security label, the label
can specify one or multiple elements of that component as valid values for the
component.

In the following example, DBSECADM defines a security label component called
departments that is an unordered set of three elements, called Marketing, HR, and
finance:
CREATE SECURITY LABEL COMPONENT departments

SET { ’Marketing’, ’HR’, ’Finance’ };

Like all components of type SET, the order in which these elements are declared
implies no relative rank in data sensitivity.

A component of type SET can be appropriate in contexts where some dimension of
a multidimensional security policy can be represented as nominal categories,
without any logical basis for ordering them on a monotonic scale, nor for
arranging them in a hierarchy.

TREE Components
A security label component of type TREE has the logical topology of a hierarchy
(that is, a simple graph with no loops) that has a single root node and no more
than 63 additional nodes. The string constant for the root node must be listed first

Chapter 2. SQL statements 2-253

and must be followed by the ROOT keyword. The string constant for each
subsequently declared node must be followed by the keyword UNDER and by the
string constant for some previously declared node. The set of elements of the TREE
component, including their ROOT and UNDER keywords and comma separators,
must be enclosed between a pair of parenthesis ((...)) symbols.

The label element specified after the UNDER keyword is called the parent of the
label element that precedes the same UNDER keyword (which is called the child of
that parent element). The CREATE SECURITY LABEL COMPONENT statement
fails with an error if a node name that follows the UNDER keyword has not
already been declared in the same statement.

The string constant that designates the root node of a tree component has the
highest data sensitivity. For a user to read or write protected data, each tree
component of the user security label must include at least one of the elements in
the tree component of the data row security label, or the ancestor of one such
element. For example, if "Beta" is declared UNDER "Alpha" and "Gamma" is
declared UNDER "Beta" then "Gamma" also ranks below "Alpha" in data
sensitivity. Only elements that are in the same chain of parent-child relationships
can be compared in their data sensitivity.

The next example defines a security label component called Oakland as a tree
structure with six nodes:
CREATE SECURITY LABEL COMPONENT Oakland
TREE (’Port’ ROOT,

’Downtown’ UNDER ’Port’,
’Airport’ UNDER ’Port’,
’Estuary’ UNDER ’Airport’,
’Avenues’ UNDER ’Downtown’,
’Hills’ UNDER ’Avenues’);

Here the root node is Port, which has the highest data sensitivity. Within this
hierarchy, the Downtown, Avenues, and Hills elements represent descending
levels of data sensitivity, and the Airport element has a higher data sensitivity than
the Estuary element. In this example, the four component elements that the
UNDER keyword designates as parent nodes are each declared before being
included in UNDER specifications. A modified version of this example would also
be valid if the Avenues node declaration preceded the Airport node declaration,
but an error would result if the Hills node declaration had preceded the Avenues
node declaration.

A component of type TREE can be appropriate in contexts where some dimension
of a multidimensional security policy can be mapped to a single logical hierarchy,
or to a group of hierarchies that share a common root.

CREATE SECURITY POLICY statement
Use the CREATE SECURITY POLICY statement to define a new security policy in
the current database and to identify its security label components and access rules.
Only Informix supports this statement.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

2-254 IBM Informix Guide to SQL: Syntax

�� CREATE SECURITY POLICY policy COMPONENTS
IF NOT EXISTS

�

,
(1)

component �

�
WITH IDSLBACRULES RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL
��

Notes:

1 You can specify no more than 16 components.

Element Description Restrictions Syntax

component A security label
component

Must already exist in the database, and be unique
among the names of components for this policy

“Identifier” on page
5-21

policy Name declared
here for a security
policy

Must be unique among the names of security
policies in the database

“Identifier” on page
5-21

Usage

A security policy is a named database object that stores the following information:
v It defines a set of security label components that comprise a security label.
v It associates that security label with a set of access rules.

For tables that are protected by a security policy, the access rules enable Informix
to compare the security credentials of a user with the security label of a row or
column. The security policy is applied to determine whether a user who holds a
given security label can read or write data in a row or column that is labeled with
a security label. A security policy has no effect on data that has no security label.

No more than one security policy can be attached to a table at any point in time,
and a security policy can include no more than 16 security label components.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a security policy of
the specified name is already registered in the current database.

Only DBSECADM can issue this statement. When the CREATE SECURITY POLICY
statement executes successfully, Informix makes the following updates to the
system catalog of the current database:
v Registers the specified policy name and the cardinality of its security label

components in the syssecpolicies table
v Creates for each component a new row in the syssecpolicycomponentrules table.
Related concepts:

Label-based access control (Security Guide)
Related reference:
“RENAME SECURITY statement” on page 2-613
“DROP SECURITY statement” on page 2-442
“CREATE SECURITY LABEL statement” on page 2-248
“CREATE SECURITY LABEL COMPONENT statement” on page 2-250

Chapter 2. SQL statements 2-255

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_lb_002.htm#ids_lb_002

“ALTER SECURITY LABEL COMPONENT statement” on page 2-64
“ALTER TABLE statement” on page 2-72
“CREATE TABLE statement” on page 2-265
“EXEMPTION Clause” on page 2-526
“SECURITY LABEL Clause” on page 2-528
“EXEMPTION Clause” on page 2-637
“SECURITY LABEL Clause” on page 2-639

Security Label Components of a Security Policy
The CREATE SECURITY POLICY statement must specify at least one (but no more
than 16) security label components. These components must already exist in the
database, where DBSECADM can register them with the CREATE SECURITY
LABEL COMPONENT statement. The same component name cannot be specified
more than once in the same CREATE SECURITY POLICY statement.

See the section CREATE SECURITY LABEL COMPONENT for more information
about the structure and semantics of security label components.

Rules Associated with a Security Policy
The WITH IDSLBACRULES keywords specify the read access rules and write
access rules that the new security policy enforces. If you do not specify them, these
keywords are in effect by default, because the IDSLBACRULES access rules are
the only access rules that the a security policy can support.

The following IDSLBACRULES access rules for read access, called
IDSLBACREAD, apply when data values are read from labeled rows or columns
in SELECT, UPDATE, or DELETE operations:
v IDSLBACREADARRAY: Each array component of the user security label must

be greater than or equal to the array component of the data row security label.
That is, only data at or below the level of the user can be read.

v IDSLBACREADTREE: Each tree component of the user security label must
include at least one of the elements in the tree component of the data row
security label (or the ancestor of one such element).

v IDSLBACREADSET: Each set component of the user security label must include
the set component of the data row security label.

The following IDSLBACRULES access rules for write access, called
IDSLBACWRITE, apply when data values are written to labeled rows or columns
in INSERT, UPDATE, or DELETE operations:
v IDSLBACWRITEARRAY: Each array component of the user security label must

be equal to the array component of the data row security label. That is, only
data at the same level as the user can be written.

v IDSLBACWRITETREE: Each tree component of the user security label must
include at least one of the elements in the tree component of the data row
security label (or the ancestor of one such element).

v IDSLBACWRITESET: Each set component of the user security label must
include the set component of the data row security label.

If DBSECADM omits the WITH IDSLBACRULES keywords, then those rules are in
effect by default. If any specification except IDSLBACRULES follows the WITH
keyword, however, the CREATE SECURITY POLICY statement fails with an error,
and no security policy is created.

2-256 IBM Informix Guide to SQL: Syntax

Besides the explicit or default WITH IDSLBACRULES keywords, the CREATE
SECURITY POLICY statement must also specify the write access rule to enforce
when a user is not authorized to write the explicitly specified security label
provided in the DELETE, INSERT, or UPDATE statement for a table protected with
this security policy. The security label of the user and the exemption credentials
that the user holds determine whether the user has write access to an explicitly
provided security label.
v If the CREATE SECURITY POLICY statement specifies OVERRIDE NOT

AUTHORIZED WRITE SECURITY LABEL, then Informix uses the value of the
user security label, rather than the security label that is explicitly specified in the
DELETE, INSERT, or UPDATE statement, to determine whether the user has
write-access to data values that are protected by a security label in the DELETE,
INSERT, or UPDATE operation.

v The default is RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL. If you
specify these keywords explicitly, or if they are in effect by default, then
DELETE, INSERT, or UPDATE statements fail with an error if the user is not
authorized to write data in a row or column that has the explicitly specified
security label.

The following example creates a security policy called MegaCorp that uses three
security label components, with no OVERRIDE provision for the user security label
to provide write access in DELETE, INSERT, or UPDATE operations on data whose
explicitly specified security label does not authorize write access for that user:
CREATE SECURITY POLICY MegaCorp

COMPONENTS levels, compartments, groups
WITH IDSLBACRULES;

For this example to be valid, the levels, compartments, and groups security label
components (or components that have been renamed to these identifiers) must
have been previously defined by the CREATE SECURITY LABEL COMPONENT
statement.

CREATE SEQUENCE statement
Use the CREATE SEQUENCE statement to create a sequence database object from
which multiple users can generate unique integers.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE SEQUENCE sequence
IF NOT EXISTS owner .

�

Chapter 2. SQL statements 2-257

�

�
BY (1)

INCREMENT step
WITH

START origin
NOMAXVALUE
MAXVALUE max
NOMINVALUE
MINVALUE min
NOCYCLE
CYCLE
CACHE size
NOCACHE
ORDER
NOORDER

��

Notes:

1 Each keyword option can appear no more than once.

Element Description Restrictions Syntax

max Upper limit of values Must be an integer > origin “Literal Number” on page
4-215

min Lower limit of values Must be an integer less than origin “Literal Number” on page
4-215

origin First number in the sequence Must be an integer in INT8 or BIGINT
range

“Literal Number” on page
4-215

owner Owner of sequence Must be an authorization identifier “Owner name” on page
5-49

sequence Name that you declare here for
the new sequence

Must be unique among sequence,
table, view, and synonym names

“Identifier” on page 5-21

size Number of values that are
preallocated in memory

Integer > 1, but < cardinality of a cycle
(= |(max - min)/step|)

“Literal Number” on page
4-215

step Interval between successive values Nonzero integer in INT range “Literal Number” on page
4-215

Usage

A sequence (sometimes called a sequence generator or sequence object) returns a
monotonically ascending or descending series of unique integers, one at a time.
The CREATE SEQUENCE statement defines a new sequence object, declares its
identifier, and registers it in the syssequences system catalog table.

Authorized users of a sequence can request a new value by including the
sequence.NEXTVAL expression in DML statements. The sequence.CURRVAL
expression returns the current value of the specified sequence. NEXTVAL and
CURRVAL expressions are valid only within SELECT, DELETE, INSERT, and
UPDATE statements; Informix returns an error if you attempt to invoke the built-in
NEXTVAL or CURRVAL functions in any other context.

Generated values logically resemble the BIGSERIAL or SERIAL8 data type, but can
be negative, and are unique within the sequence. Because the database server
generates the values, sequences support a much higher level of concurrency than a

2-258 IBM Informix Guide to SQL: Syntax

serial column can. The values are independent of transactions; a generated value
cannot be rolled back, even if the transaction in which it was generated fails.

You can use a sequence to generate primary key values automatically, using one
sequence for many tables, or each table can have its own sequence.

CREATE SEQUENCE can specify the following characteristics of a sequence:
v Initial value
v Size and sign of the increment between values
v Maximum and minimum values
v Whether the sequence recycles values after reaching its limit
v How many values are preallocated in memory for rapid access.

A database can support multiple sequences concurrently, but the name of a
sequence (or in an ANSI-compliant database, the owner.sequence combination) must
be unique within the current database among the names of tables, temporary
tables, views, synonyms, and sequences.

An error occurs if you include contradictory options, such as specifying both the
MINVALUE and NOMINVALUE options, or both CACHE and NOCACHE.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a sequence object of
the specified name is already registered in the current database, or if the specified
name is the identifier of a table, view, or synonym in the current database.

Example

The following example creates a sequence, inserts values from the sequence into
the table, and selects all rows and columns from the table.
CREATE SEQUENCE seq_2

INCREMENT BY 1 START WITH 1
MAXVALUE 30 MINVALUE 0
NOCYCLE CACHE 10 ORDER;

CREATE TABLE tab1 (col1 int, col2 int);
INSERT INTO tab1 VALUES (0, 0);

INSERT INTO tab1 (col1, col2) VALUES (seq_2.NEXTVAL, seq_2.NEXTVAL)

SELECT * FROM tab1;

col1 col2

0 0
1 1

Related reference:
“DROP SEQUENCE statement” on page 2-444
“ALTER SEQUENCE statement” on page 2-68
“RENAME SEQUENCE statement” on page 2-614
“CREATE SYNONYM statement” on page 2-261
“DROP SYNONYM statement” on page 2-445
“GRANT statement” on page 2-502
“REVOKE statement” on page 2-618

Chapter 2. SQL statements 2-259

SYSSEQUENCES (SQL Reference)
“NEXTVAL and CURRVAL Operators” on page 4-84
“CREATE SCHEMA statement” on page 2-245

INCREMENT BY Option
Use the INCREMENT BY option to specify the interval between successive
numbers in the sequence. The BY keyword is optional. The interval, or step value,
can be a positive whole number (for an ascending sequence) or a negative whole
number (for a descending sequence) in the INT8 range. If you do not specify any
step value, the default interval between successive generated values is 1, and the
sequence is an ascending sequence.

START WITH Option
Use the START WITH option to specify the first number of the sequence. This
origin value must be an integer within the INT8 range that is greater than or equal
to the min value (for an ascending sequence) or that is less than or equal to the
max value (for a descending sequence), if min or max is specified in the CREATE
SEQUENCE statement. The WITH keyword is optional.

If you do not specify an origin value, the default initial value is min for an
ascending sequence or max for a descending sequence. (The “MAXVALUE or
NOMAXVALUE Option” and “MINVALUE or NOMINVALUE Option” sections
that follow describe the max and min specifications respectively.)

MAXVALUE or NOMAXVALUE Option
Use the MAXVALUE option to specify the upper limit of values in a sequence. The
maximum value, or max, must be an integer in the INT8 range that is greater than
the value of the origin.

If you do not specify a max value, the default is NOMAXVALUE. This default
setting supports values that are less than or equal to 2e64 for ascending sequences,
or less than or equal to -1 for descending sequences.

MINVALUE or NOMINVALUE Option
Use the MINVALUE option to specify the lower limit of values, or min. This
integer must be in the INT8 range and be less than the value of origin.

If you do not specify a min value, the default is NOMINVALUE. This default
setting supports values that are greater than or equal to 1 for ascending sequences,
or greater than or equal to -(2e64) for descending sequences.

CYCLE or NOCYCLE Option
Use the CYCLE option to continue generating sequence values after the sequence
reaches the maximum (ascending) or minimum (descending) limit. After an
ascending sequence reaches the max value, it generates the min value for the next
sequence value. After a descending sequence reaches the min value, it generates
the max value for the next sequence value.

The default is NOCYCLE. At this default setting, the sequence cannot generate
more values after reaching the declared limit. Once the sequence reaches the limit,
the next reference to sequence.NEXTVAL returns an error.

2-260 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_067.htm#ids_sqr_067

CACHE or NOCACHE Option
Use the CACHE option to specify the number of sequence values that are
preallocated in memory for rapid access. This option can enhance the performance
of a heavily used sequence.

The cache size must be a positive whole number in the INT range. If you specify
the CYCLE option, then size must be less than the number of values in a cycle (or
less than |(max - min)/step|). The minimum is 2 preallocated values. The default is
20 preallocated values.

The NOCACHE keyword specifies that no generated values (that is, zero) are
preallocated in memory for this sequence object.

The configuration parameter SEQ_CACHE_SIZE specifies the maximum number of
sequence objects that can have preallocated values in the sequence cache. If this
configuration parameter is not set, then by default no more than 10 different
sequence objects can be defined with the CACHE option.

ORDER or NOORDER Option
These keywords have no effect on the behavior of the sequence. The sequence
always issues values to users in the order of their requests, as if the ORDER
keyword were always specified. The ORDER and NOORDER keywords are
accepted by the CREATE SEQUENCE statement for compatibility with
implementations of sequence objects in other dialects of SQL.

CREATE SYNONYM statement
Use the CREATE SYNONYM statement to declare and register an alternative name
for an existing table, view, or sequence object.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

��
(1) PUBLIC

CREATE SYNONYM synonym FOR table
(1) IF NOT EXISTS view

PRIVATE sequence

��

Notes:

1 This keyword is valid only in databases that are not ANSI/ISO-compliant.

Element Description Restrictions Syntax

sequence Name of a local sequence Must exist in the current database “Identifier” on page
5-21

table, view Name of database table, external
table, or view for which synonym is
being created

Must be registered in the current
database, or in a database specified in
a qualifier

“Database Object
Name” on page 5-16

synonym Synonym declared here for the name
of table, view, or sequence

Must be unique among table object
names in the database; see also Usage
notes.

“Database Object
Name” on page 5-16

Chapter 2. SQL statements 2-261

Usage

Users have the same privileges for a synonym that they have for the database
object that the synonym references. The syssynonyms, syssyntable, and systables
system catalog tables maintain information about synonyms.

You cannot create a synonym for a synonym in the same database.

The identifier of the synonym must be unique among the names of tables,
temporary tables, external tables, views, and sequence objects in the same
database. (See, however, the section “Synonyms with the Same Name” on page
2-263.)

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a synonym of the
specified name is already registered in the current database, or if the specified
name is the identifier of a table, view, or sequence object in the current database.

Once a synonym is created, it persists until the owner executes the DROP
SYNONYM statement. (This persistence distinguishes a synonym from an alias that
you can declare in the FROM clause of a SELECT statement. The alias is in scope
only while that SELECT statement is executing.)

If a synonym refers to a table, view, or sequence in the same database, however,
the synonym is automatically dropped if the referenced table, view, or sequence
object is dropped. For additional information, see the section “Synonyms for
objects outside the current database.”
Related reference:
“ALTER SEQUENCE statement” on page 2-68
“CREATE SEQUENCE statement” on page 2-257
“CREATE SCHEMA statement” on page 2-245
“DROP SYNONYM statement” on page 2-445

Use synonyms for table names (Database Design Guide)

Use synonym chains (Database Design Guide)
“RENAME SEQUENCE statement” on page 2-614

Synonyms for objects outside the current database
A synonym can be created for any table or view in any database of the database
server to which your session is currently connected.

This example declares a synonym for a table outside your current database, in the
payables database of your current database server.
CREATE SYNONYM mysum FOR payables:jean.summary;

You can also create a synonym for an external table that the CREATE EXTERNAL
TABLE statement registered in the current database. (The external table is
registered in the system catalog of the database where it was created, but it is not
stored in any database.)

You can also create a synonym for a table or view that exists in a database of a
database server that is not your current database server. Both database servers
must be online when you create the synonym. In a network, the remote database

2-262 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_222.htm#ids_ddi_222
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_223.htm#ids_ddi_223

server verifies that the table or view referenced by the synonym exists when you
create the synonym. The next example creates a synonym for a table in a database
of a remote database server:
CREATE SYNONYM mysum FOR payables@phoenix:jean.summary;

The identifier mysum now refers to the table jean.summary, which is in the
payables database on the phoenix database server. If the summary table is
dropped from the payables database, the mysum synonym is left intact.
Subsequent attempts to use mysum return the error: Table not found.

Informix, however, does not support synonyms for these table objects :
v Typed tables (including any table that is part of a table hierarchy)
v Tables or views with columns of any extended data types
v Sequence objects outside the local database

PUBLIC and PRIVATE Synonyms
If you use the PUBLIC keyword (or no keyword at all), anyone who has access to
the database can use your synonym. If the database is not ANSI-compliant, a user
does not need to know the name of the owner of a public synonym. Any synonym
in a database that is not ANSI-compliant and was created in an Informix database
server earlier than Version 5.0 is a public synonym.

In an ANSI-compliant database, all synonyms are private. If you use the PUBLIC
or PRIVATE keywords, the database server issues a syntax error.

If you use the PRIVATE keyword to declare a synonym in a database that is not
ANSI-compliant, the unqualified synonym can be used by its owner. Other users
must qualify the synonym with the name of the owner.

Synonyms with the Same Name
In an ANSI-compliant database, the owner.synonym combination must be unique
among all synonyms, tables, views, and sequences. You must specify owner when
you refer to a synonym that you do not own, as in this example:
CREATE SYNONYM emp FOR accting.employee

In a database that is not ANSI-compliant, no two public synonyms can have the
same identifier, and the identifier of a synonym must also be unique among the
names of tables, views, and sequences in the same database.

The owner.synonym combination of a private synonym must be unique among all
the synonyms in the database. That is, more than one private synonym with the
same name can exist in the same database, but a different user must own each of
these synonyms. The same user cannot create both a private and a public synonym
that have the same name. For example, the following code generates an error:
CREATE SYNONYM our_custs FOR customer;
CREATE PRIVATE SYNONYM our_custs FOR cust_calls;-- ERROR!!!

A private synonym can be declared with the same name as a public synonym only
if the two synonyms have different owners. If you own a private synonym, and a
public synonym exists with the same name, the database server resolves the
unqualified name as the private synonym. (In this case, you must specify
owner.synonym to reference the public synonym.) If you use DROP SYNONYM
with the unqualified synonym identifier when your private synonym and the
public synonym of another user both have the same identifier, only your private

Chapter 2. SQL statements 2-263

synonym is dropped. If you repeat the same DROP SYNONYM statement, the
database server drops the public synonym.

Chaining Synonyms
If you create a synonym for a table or view that is not in the current database, and
this table or view is dropped, the synonym remains registered in the system
catalog. You can create a new synonym whose identifier is the name of the
dropped table or view, but that points to a table or view in the current database
(or in another database).

In this way, after you rename a table, or after you move a table or view to another
database location, you can chain synonyms together so that the original synonym
remains valid in existing applications. You can chain up to 16 synonyms in this
manner.

Chaining synonyms to reference a relocated table object is possible for tables or
views, but this is not valid for synonyms that point to a sequence object, because
CREATE SYNONYM can define synonyms only for sequences that are registered in
the current database.

The following steps chain two synonyms together for the customer table, which
will ultimately reside on the zoo database server. Here ellipses (. . .) mark
CREATE TABLE statements that are not complete:
1. In the stores_demo database on the database server that is called training,

issue the following statement:
CREATE TABLE customer (lname CHAR(15)...);

2. On the database server called accntg, issue the following statement:
CREATE SYNONYM cust FOR stores_demo@training:customer;

3. On the database server called zoo, issue the following statement:
CREATE TABLE customer (lname CHAR(15)...);

4. On the database server called training, issue the following statement:
DROP TABLE customer;
CREATE SYNONYM customer FOR stores_demo@zoo:customer;

The synonym cust on the accntg database server now points to the customer table
on the zoo database server.

The following steps show an example of chaining two synonyms together and
changing the table to which a synonym points:
1. On the database server called training, issue the following statement:

CREATE TABLE customer (lname CHAR(15)...);

2. On the database server called accntg, issue the following statement:
CREATE SYNONYM cust FOR stores_demo@training:customer;

3. On the database server called training, issue the following statement:
DROP TABLE customer;
CREATE TABLE customer (lastname CHAR(20)...);

The synonym cust on the accntg database server now points to a new version of
the customer table on the training database server.

2-264 IBM Informix Guide to SQL: Syntax

CREATE TABLE statement
Use the CREATE TABLE statement to create a new permanent table in the current
database.

You can use the CREATE TABLE statement to create relational-database tables or to
create typed tables (object-relational tables). For information about how to create
temporary tables, see “CREATE TEMP TABLE statement” on page 2-321. For
information about how to create external table objects that are not stored in the
database, see “CREATE EXTERNAL TABLE Statement” on page 2-160.

Syntax

�� CREATE
STANDARD

RAW
TABLE table

IF NOT EXISTS
�

� Table Definition
(1) (2) (1)

OF TYPE Clause WITH Options

�

�
(3) (1) (4)

SECURITY Clause Storage Options

�

�
(5) (6)

LOCK Mode USING Access-Method
(1) (7)

Statistics Options

��

Table Definition:

�

,
(8)

(Column Definition

�

)
,

(9)
, Multiple-Column Constraint

(8)
Column Definition

WITH Options:

WITH AUDIT
CRCOLS
REPLCHECK
VERCOLS
ERKEY

Notes:

1 Informix extension

2 See “OF TYPE Clause” on page 2-318

Chapter 2. SQL statements 2-265

3 See “SECURITY POLICY Clause” on page 2-293

4 See “Storage options” on page 2-295

5 See “LOCK MODE Options” on page 2-317

6 See “USING Access-Method Clause” on page 2-316

7 See “Statistics options of the CREATE TABLE statement” on page 2-293

8 See “Column definition” on page 2-270

9 See “Multiple-Column Constraint Format” on page 2-285

Element Description Restrictions Syntax

table Name that you declare
here for the new table

Must be unique among the names of tables,
synonyms, views, and sequences in the database

“Identifier” on page
5-21

Usage

When you create a table, you must declare its name and define its schema and its
logging status. You can optionally specify additional attributes, as identified in
topics that follow. The syntax diagram shows the sequence of required or optional
specifications. These syntax segments of the CREATE TABLE statement, and some
of their components, are identified in the five lists that follow.

The following keywords and clauses define column attributes of a new table:

Table 2-3. Defining the name, data-type, default value, and security label for a column

Specification Topic What the keyword or clause defines

Column Definition “Column definition” on page 2-270 Column name and attributes, including
data type, constraints, default value

DEFAULT “DEFAULT Clause” on page 2-272 Default value for a column

COLUMN SECURED
WITH

“Column definition” on page 2-270 An LBAC label for a protected column

The following keywords and clauses define constraints on the new table:

Table 2-4. Defining constraints on one or more columns of the table

Specification Topic What the keyword or clause defines

Single-Column Constraint “Single-Column Constraint Format” on page
2-274

Data-integrity, referential, or other
constraints on an individual column

Constraint Definition “Constraint Definition” on page 2-283 Name, attributes, and enabled or
disables status of constraints on the
table

NULL “Using the NULL Constraint” on page 2-276 Column allows NULL values

NOT NULL “Using the NOT NULL Constraint” on page
2-275

Column does not allow NULL values

UNIQUE or DISTINCT “Using UNIQUE or DISTINCT Constraints”
on page 2-276

Column does not allow duplicate
values

CHECK “CHECK Clause” on page 2-281 Check constraints with other columns

PRIMARY KEY “Using the PRIMARY KEY Constraint” on
page 2-277

Contains a non-NULL unique value for
each row in a table

2-266 IBM Informix Guide to SQL: Syntax

Table 2-4. Defining constraints on one or more columns of the table (continued)

Specification Topic What the keyword or clause defines

FOREIGN KEY “Using the FOREIGN KEY Constraint” on
page 2-287

Establishes dependencies between
tables

REFERENCES “REFERENCES Clause” on page 2-278 Referential-integrity constraints with
other columns

Multiple-Column
Constraint

“Multiple-Column Constraint Format” on
page 2-285

Data-integrity constraints on a set of
columns

The following keywords and clauses define shadow columns and row-level audit
support for the table:

Table 2-5. Defining shadow columns and row-level audit support

Specification Topic What the keyword or clause defines

WITH keyword “Options clauses” on page 2-289 Keyword options for shadow columns
or for row-level audit support

WITH AUDIT “Using the WITH AUDIT Clause” on page
2-290

Row-level audit support

WITH CRCOLS “Using the WITH CRCOLS Option” on page
2-290

Keyword option for shadow columns or
for row-level audit support

WITH ERKEY “Using the WITH ERKEY Keywords” on page
2-290

3 shadow columns on which Enterprise
Replication defines a primary key

WITH REPLCHECK “Using the WITH REPLCHECK Keywords”
on page 2-291

Shadow column that Enterprise
Replication uses in consistency checking

WITH ROWIDS “Using the WITH ROWIDS Option” on page
2-301

Hidden column in a fragmented table
(deprecated)

WITH VERCOLS “Using the WITH VERCOLS Option” on page
2-292

2 shadow columns for UPDATE
operations on secondary servers

The following keywords and clauses define storage options for a new table:

Table 2-6. Defining storage for the table or for its smart-large-object columns

Specification Topic What the keyword or clause defines

Storage Options “Storage options” on page 2-295 Where the table is physically stored and
other information about how the table
is stored

IN dbspace, sbspace,
blobspace, or extspace

“Using the IN Clause” on page 2-296 Storage object to hold the new table (or
part of it, or a large object)

FRAGMENT BY or
PARTITION BY

“FRAGMENT BY clause” on page 2-300 Storage distribution scheme of a
fragmented table

BY ROUND ROBIN “Fragmenting by ROUND ROBIN” on page
2-301

A list of dbspaces for storing table
fragments

BY EXPRESSION “Expression Fragment Clause” on page 2-314 Expression-based fragment distribution

BY LIST “List fragment clause” on page 2-313 List-based fragment distribution

BY RANGE . . . INTERVAL “Interval Fragment clause” on page 2-308 RANGE INTERVAL-based fragment
distribution

PUT Clause “PUT Clause” on page 2-296 Storage location, extent size, and other
sbspace attributes for a BLOB or CLOB
column

Chapter 2. SQL statements 2-267

Table 2-6. Defining storage for the table or for its smart-large-object columns (continued)

Specification Topic What the keyword or clause defines

EXTENT SIZE “EXTENT SIZE Options” on page 2-314 Sizes of the first and subsequent storage
extents of the table

The following keywords and clauses define the logging mode and additional table
attributes, or insert into the new table the qualifying rows that a specified query
returns.

Table 2-7. Logging options, locking granularity, access methods, typed table attributes, data distribution statistics
options, or an LBAC security policy for the table.

Specification Topic What the keyword or clause defines

Logging Options
(STANDARD or RAW)

“Logging Options” on page 2-269 Logging characteristics of the new table

LOCK MODE (PAGE or
ROW)

“LOCK MODE Options” on page 2-317 Locking granularity of the new table

USING Access-Method “USING Access-Method Clause” on page
2-316

How to access the new table

OF TYPE “OF TYPE Clause” on page 2-318 Named ROW type of a typed table in
an object-relational database

UNDER “Using the UNDER Clause” on page 2-319 Supertable of a new subtable within a
typed table hierarchy

SECURITY POLICY “SECURITY POLICY Clause” on page 2-293 Label-based access control (LBAC)
policy for the table

STATCHANGE,
STATLEVEL

“Statistics options of the CREATE TABLE
statement” on page 2-293

Change threshold and granularity of
data distribution statistics

Uniqueness rules for table names and column names

When you create a new table, every column must have a data type associated with
it. The names of columns must be unique among the column in the same table.
(The OF TYPE option specifies an existing named ROW type, whose fields provide
column names and column data types for the typed table that you are creating.)

If the database was not created as MODE ANSI, the table name must be unique
among all the identifiers of tables, views, sequence objects, and synonyms within
the same database.

In an ANSI-compliant database, the combination owner.table must be unique among
all the tables, synonyms, views, and sequence objects in the same database. Table
objects qualified with different owner names can have the same identifier.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a table of the
specified name is already registered in the current database.

Additional syntax notes for CREATE TABLE

In DB-Access, using CREATE TABLE outside the CREATE SCHEMA statement
generates warnings if you use the -ansi flag or if the DBANSIWARN environment
variable is set.
Related reference:

2-268 IBM Informix Guide to SQL: Syntax

“Modes for constraints and unique indexes” on page 2-741
“CREATE OPAQUE TYPE statement” on page 2-218
“CREATE ROW TYPE statement” on page 2-241
“ALTER TABLE statement” on page 2-72
“CREATE INDEX statement” on page 2-194
“CREATE DATABASE statement” on page 2-150
“CREATE EXTERNAL TABLE Statement” on page 2-160
“CREATE TEMP TABLE statement” on page 2-321
“DROP TABLE statement” on page 2-446
“SET Database Object Mode statement” on page 2-737
“SET Transaction Mode statement” on page 2-825

Implement a relational data model (Database Design Guide)

DBANSIWARN environment variable (SQL Reference)
“RENAME TABLE statement” on page 2-615
“ALTER FRAGMENT statement” on page 2-6
“CREATE VIEW statement” on page 2-373
“DROP INDEX statement” on page 2-431
“RENAME SECURITY statement” on page 2-613
“RENAME COLUMN statement” on page 2-609
“Options Valid on Typed Tables” on page 2-117
“DROP SECURITY statement” on page 2-442
“CREATE SCHEMA statement” on page 2-245
“CREATE SECURITY LABEL statement” on page 2-248
“DROP TYPE statement” on page 2-450
“CREATE SECURITY LABEL COMPONENT statement” on page 2-250
“START VIOLATIONS TABLE statement” on page 2-828
“ALTER SECURITY LABEL COMPONENT statement” on page 2-64
“CREATE SECURITY POLICY statement” on page 2-254

Logging Options
Use the Logging Type options to specify logging characteristics that can improve
performance in various bulk operations on the table.

Other than the default option (STANDARD) that is used for OLTP databases, these
logging options are used primarily to improve performance in data warehousing
databases.

A permanent table can have either of the following logging characteristics.

Logging Type
Effect

STANDARD
Logging tables that allow rollback, recovery, and restoration from archives.
This type is the default. Use this type of table for all the recovery and
constraints functionality that OLTP databases require.

RAW Nonlogging tables that do not support primary key constraints or unique
constraints. but that support referential constraints, and can be indexed
and updated. Use this type of table for quickly loading data.

Chapter 2. SQL statements 2-269

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_081.htm#ids_ddi_081
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_207.htm#ids_sqr_207

Warning: Use raw tables for fast loading of data, but set the logging type to
STANDARD and perform a level-0 backup before you use the table in a
transaction or modify the data within the table. If you must use a raw table within
a transaction, either set the isolation level to Repeatable Read or lock the table in
exclusive mode to prevent concurrency problems.

The CREATE RAW TABLE statement is not supported on secondary servers within
a high-availability cluster.

For more information on these logging types of tables, refer to your IBM Informix
Administrator's Guide.

Column definition
Use the column definition segment of the CREATE TABLE statement to declare the
name and data type (and optionally the default value, and the constraints or the
security label) of a single column of the new table.

Column Definition:

column
(1)

Data Type �

�
(2) (3)

DEFAULT Clause Single-Column Constraint Format

(3) (2)
Single-Column Constraint Format DEFAULT Clause

�

�
(4)

Column security clause

Notes:

1 See “Data Type” on page 4-23

2 See “DEFAULT Clause” on page 2-272

3 See “Single-Column Constraint Format” on page 2-274

4 See “Column security clause” on page 2-272

Element Description Restrictions Syntax

column Name that you declare here
for a column in the table

Must be unique in this table “Identifier” on page 5-21

Because the maximum row size is 32,767 bytes, no more than approximately 97
columns can be of COLLECTION data types (SET, LIST, and MULTISET). No more
than approximately 195 columns in the table can be of the data types BYTE, TEXT,
ROW, LVARCHAR, NVARCHAR, VARCHAR, and varying-length UDTs. (Here 195
columns is an approximate lower limit that applies to platforms with a 2 KB base
page size. For platforms with a base page size of 4 KB, such as Windows and AIX®

systems, the upper limit is approximately 450 columns of these data types.)

The upper limit on the number of columns of these data types also depends on
other data that describes the table that the database server stores in the same
partition. For some tables, the maximum number of columns might be lower, if the

2-270 IBM Informix Guide to SQL: Syntax

aggregate length of all the SQL identifiers (including the database name, table
names, and index names) that are compressed and stored on the disk reduces the
free space that is available for the columns.

Character column size semantics

Any explicit or default storage size specifications for columns of built-in character
types, such as CHAR, LVARCHAR, NCHAR, NVARCHAR, or VARCHAR, are
interpreted in units of bytes, unless the SQL_LOGICAL_CHAR configuration
parameter is set to enable logical character semantics in data type declarations.

Interpreting size declarations as logical character semantics reduces the risk of
insufficient storage for column values in INSERT and UPDATE operations When
the data length exceeds the maximum size of the column, then the result depends
on the ANSI-compliance status of the database:
v If the database is not ANSI-compliant, IBM Informix truncates the value. No

warning is generated when this truncation occurs.
v If the database is ANSI-compliant, then the INSERT or UPDATE operation fails

and this error is returned:
-1279: Value exceeds string column length.

See the IBM Informix Administrator's Reference description of the
SQL_LOGICAL_CHAR configuration parameter for more information about the
effect of its setting in locales that support a multibyte code set, such as UTF-8,
where a single logical character can require more than one byte of storage.

Restrictions on IDSSECURITYLABEL columns

The following restrictions affect the use of the Column Definition clause to specify
a column of the IDSSECURITYLABEL data type to support label-based access
control (LBAC):
v If the table has no security policy, a user who holds the DBSECADM role must

also include the SECURITY POLICY clause to specify a security policy.
v Only a user who holds the DBSECADM role can specify a column of type

IDSSECURITYLABEL.
v A table can have at most one column of type IDSSECURITYLABEL.
v The IDSSECURITYLABEL column cannot have column protection.
v The IDSSECURITYLABEL column has an implicit NOT NULL constraint by

default. If no label name for the default security label is specified in the
DEFAULT clause, the default value for this column is the security label for write
access that is held by the user.

v The IDSSECURITY LABEL column cannot have any explicit single-column
constraints, and it cannot be part of multiple-column referential or check
constraints.

v The IDSSECURITYLABEL column cannot be encrypted.

As with any SQL identifier, syntactic ambiguities (and sometimes error messages
or unexpected behavior) can occur if the column name is a keyword, or if it is the
same as the table name, or the name of another table that you later join with the
table). For information about the keywords of Informix, see Appendix A,
“Keywords of SQL for IBM Informix,” on page A-1.

If you define a column of a table to be of a named ROW type, the table does not
adopt any constraints of the named ROW.

Chapter 2. SQL statements 2-271

Related reference:

SQL_LOGICAL_CHAR configuration parameter (Administrator's Reference)

Column security clause
Use the Column security clause to add label-based row-level security protection for
a column.

Column security clause:

SECURED WITH label
COLUMN

Element Description Restrictions Syntax

label Name of a security label Must exist and must belong to the
security policy that protects the table.

“Identifier” on page 5-21

The Column security clause can add label-based row-level protection. This clause is
valid only for tables that are protected by a security policy. For the syntax to
associate a label-based security policy with a table, see “SECURITY POLICY
Clause” on page 2-293.

The security label can be the same label that protects other rows or columns of the
table, or it can be a different label of the same security policy. The following
restrictions apply to the SECURED WITH clause:
v The column cannot be of type IDSSECURITYLABEL.
v Specify the label without the policy qualifier, rather than as policy.label.
v The label must be a label of the security policy that secures the table.

DEFAULT Clause
Use the DEFAULT clause to specify the default value for the database server to
insert into a column when no explicit value for the column is specified.

You cannot specify default values for SERIAL, BIGSERIAL, or SERIAL8 columns.

DEFAULT Clause:

DEFAULT NULL
label
literal
USER
CURRENT_USER
(1)

CURRENT
SYSDATE (2)

DATETIME Field Qualifier
TODAY
SITENAME
DBSERVERNAME

Notes:

1 Informix extension

2 See “DATETIME Field Qualifier” on page 4-42

2-272 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076

Element Description Restrictions Syntax

label Name of a security label Must exist and must belong to the security policy that
protects the table. The column must be of type
IDSSECURITYLABEL.

“Identifier” on
page 5-21

literal String of alphabetic or
numeric characters

Must be an appropriate data type for the column. See
“Using a Literal as a Default Value.”

“Expression”
on page 4-44

Using NULL as a Default Value
If you specify no default value for a column, the default is NULL unless you place
a NOT NULL constraint on the column. In this case, no default exists.

If you specify NULL as the default value for a column, you cannot specify a NOT
NULL constraint as part of the column definition. (For details of NOT NULL
constraints, see “Using the NOT NULL Constraint” on page 2-275.)

NULL is not a valid default value for a column that is part of a primary key.

If the column is a BYTE or TEXT data type, NULL is the only valid default value.

In Informix, if the column is a BLOB or CLOB data type, NULL is the only valid
default value.

Using a Literal as a Default Value
You can designate a literal value as a default value. A literal value is a string of
alphabetic or numeric characters. To use a literal value as a default value, you
must adhere to the syntax restrictions in the following table.

For Columns of Data Type Format of Default Value

BOOLEAN Use ’t’ or ’f’ (respectively for true or false) as a
“Quoted String” on page 4-219.

CHAR, CHARACTER VARYING, DATE, VARCHAR,
NCHAR, NVARCHAR, LVARCHAR

“Quoted String” on page 4-219. See note that follows
for DATE.

DATETIME “Literal DATETIME” on page 4-210

BIGINT, DECIMAL, FLOAT, INT8, INTEGER, MONEY,
SMALLFLOAT, SMALLINT

“Literal Number” on page 4-215

INTERVAL “Literal INTERVAL” on page 4-213

Opaque data types “Quoted String” on page 4-219 in format of
“Single-Column Constraint Format” on page 2-274

DATE literals must be of the format that the DBDATE (or else GL_DATE)
environment variable specifies. In the default locale, if neither DBDATE nor
GL_DATE is set, date literals must be of the mm/dd/yyyy format.

Using a Constant Expression as a Default Value
You can specify a constant expression as the default column value.

The following table lists constant expressions that you can specify, the data type
requirements, and the recommended size (in bytes) for their corresponding
columns.

Chapter 2. SQL statements 2-273

Table 2-8. Constant expressions as default values

Constant Expression Data Type Requirement Recommended Size

CURRENT, SYSDATE DATETIME column with matching qualifier Enough bytes to store the longest
DATETIME value for the locale

DBSERVERNAME,
SITENAME

CHAR, VARCHAR, NCHAR, NVARCHAR, or
CHARACTER VARYING column

128 bytes

TODAY DATE column Enough bytes to store the longest
DATE value for the locale

USER, CURRENT_USER CHAR, VARCHAR, NCHAR, NVARCHAR, or
CHARACTER VARYING column

32 bytes

These column sizes are recommended because, if the column length is too small to
store the default value during INSERT or ALTER TABLE operations, the database
server returns an error.

You cannot designate a constant expression that behaves like a variant function
(that is, CURRENT, SYSDATE, USER, TODAY, SITENAME, or DBSERVERNAME)
as the default value for a column that holds an OPAQUE or DISTINCT data type.
In addition, larger column sizes are required if the data values are encrypted, or if
they are encoded in the Unicode character set of the UTF-8 locale. (See the
description of the SET ENCRYPTION statement later in this chapter for more
information about storage size requirements for encrypted data.)

For descriptions of these functions, see “Constant Expressions” on page 4-76.

The following example creates a table called accounts. In accounts, the
acc_num,acc_type, and acc_descr columns have literal default values. The acc_id
column value defaults to the authorization identifier of the current user.
CREATE TABLE accounts (

acc_num INTEGER DEFAULT 1,
acc_type CHAR(1) DEFAULT ’A’,
acc_descr CHAR(20) DEFAULT ’New Account’,
acc_id CHAR(32) DEFAULT CURRENT_USER);

Single-Column Constraint Format
Use the Single-Column Constraint format to define and declare the name of at
least one constraint on a single column, and to specify the mode of each constraint.

The Single-Column Constraint format can associate one or more constraints with a
column, in order to perform any of the following tasks:
v Create one or more data-integrity constraints for a column.
v Specify a meaningful name for a constraint.
v Specify the constraint-mode that controls the behavior of a constraint during

insert, delete, and update operations.

Single-Column Constraint Format:

2-274 IBM Informix Guide to SQL: Syntax

�

NULL
NOT NULL (1) (4)
(1) Constraint Definition

DISTINCT
UNIQUE
PRIMARY KEY

(2)
REFERENCES Clause

(3)
CHECK Clause

Notes:

1 Informix extension

2 See “REFERENCES Clause” on page 2-278

3 See “CHECK Clause” on page 2-281

4 See “Constraint Definition” on page 2-283

The NULL constraint specifies that the column can store NULL values. It is not
valid for columns of serial or complex data types. The CREATE TABLE statement
fails with an error if you specify both NOT NULL and NULL constraints on the
same column.

The following example creates a standard table with two constraints: num, a
primary-key constraint on the acc_num column; and code, a unique constraint on
the acc_code column:
CREATE TABLE accounts (

acc_num INTEGER PRIMARY KEY CONSTRAINT num,
acc_code INTEGER UNIQUE CONSTRAINT code,
acc_descr CHAR(30));

The types of constraints used in this example are defined in sections that follow.

Restrictions on Using the Single-Column Constraint Format
The single-column constraint format cannot specify a constraint that involves more
than one column. Thus, you cannot use the single-column constraint format to
define a composite key. For information on multiple-column constraints, see
“Multiple-Column Constraint Format” on page 2-285.

You cannot define a referential constraint or a unique constraint on any column of
a RAW table. Only NOT NULL or NULL constraints are supported on RAW tables.

You cannot place unique, primary-key, or referential constraints on BLOB, BYTE,
CLOB, or TEXT columns. You can, however, check for NULL or non-NULL values
on BYTE or TEXT columns with a check constraint.

If the constraint is on a column that stores encrypted data, Informix cannot enforce
the constraint.

Using the NOT NULL Constraint
Use the NOT NULL keywords to require that a column receive a value during
insert or update operations. If you place a NOT NULL constraint on a column (and
no default value is specified), you must enter a value into this column when you

Chapter 2. SQL statements 2-275

insert a row or update that column in a row. If you do not enter a value, the
database server returns an error, because no default value exists.

The following example creates the newitems table. In newitems, the column
manucode does not have a default value nor does it allow NULL values.
CREATE TABLE newitems (

newitem_num INTEGER,
manucode CHAR(3) NOT NULL,
promotype INTEGER,
descrip CHAR(20));

When you define a PRIMARY KEY constraint, the database server also silently
creates a NOT NULL constraint on the same column, or on the same set of
columns that make up the primary key.

You cannot specify NULL as the explicit default value for a column if you also
specify the NOT NULL constraint.

The CREATE TABLE statement fails with an error if you specify both a NOT
NULL constraint and a NULL constraint on the same column.

The NOT NULL constraint is required for columns of the collection data types
LIST, MULTISET, and SET. No other column constraints are allowed on a collection
data type.

Using the NULL Constraint
Use the NULL keyword to specify that a column can store the NULL value for its
data type. This implies that the column need not receive any value during insert or
update operations. The NULL constraint is logically equivalent to omitting the
NOT NULL constraint from the column definition.

The following example creates the newitems table. In newitems, the column
descrip does not have a default value, but it allows NULL values.
CREATE TABLE newitems (

newitem_num INTEGER,
manucode CHAR(3) NOT NULL,
promotype INTEGER,
descrip CHAR(20) NULL);

In the example above, the columns newitem_num and promotype also allow
NULL values implicitly, because no NOT NULL constraint is defined on them.

The CREATE TABLE statement fails with an error if you specify both a NOT
NULL constraint and a NULL constraint on the same column.

You cannot specify both a NULL constraint and a PRIMARY KEY constraint on the
same column, because when the CREATE TABLE statement defines a PRIMARY
KEY constraint, the database server also silently creates a NOT NULL constraint on
the same column, or on the same set of columns that make up the primary key.

The NULL constraint is not valid for columns of the collection data types LIST,
MULTISET, and SET, nor for IDSSECURITYLABEL columns.

Using UNIQUE or DISTINCT Constraints
Use the UNIQUE or DISTINCT keyword to require that a column or set of
columns accepts only unique data values. You cannot insert values that duplicate
the values of some other row into a column that has a unique constraint. When

2-276 IBM Informix Guide to SQL: Syntax

you create a UNIQUE or DISTINCT constraint, the database server automatically
creates an internal index on the constrained column or columns. (In this context,
the keyword DISTINCT is a synonym for UNIQUE.)

You cannot place a unique constraint on a column that already has a primary-key
constraint. You cannot place a unique constraint on a BYTE or TEXT column.

As previously noted, you cannot place a unique or primary-key constraint on a
BLOB or CLOB column of Informix.

Opaque data types support a unique constraint only where a secondary-access
method supports uniqueness for that type. The default secondary-access method is
a generic B-tree, which supports the equal() operator function. Therefore, if the
definition of the opaque type includes the equal() function, a column of that
opaque type can have a unique constraint.

The following example creates a simple table that has a unique constraint on one
of its columns:
CREATE TABLE accounts

(acc_name CHAR(12),
acc_num SERIAL UNIQUE CONSTRAINT acc_num);

For an explanation of the constraint name, refer to “Declaring a Constraint Name”
on page 2-283.

Differences Between a Unique Constraint and a Unique Index
Although a unique index and a unique constraint are functionally similar, besides
various differences in the syntax by which you declare, alter, or destroy them, there
are additional differences between these two types of database objects:
v In DDL statements, they are registered or dropped in different tables of the

system catalog
v In DML statements, enabled unique constraints on a logged table are checked at

the end of a statement, but unique indexes are checked on a row-by-row basis,
thereby preventing any insert or update of a row that might potentially violate
the uniqueness of the specified column (or for a multiple-column column
constraint or index, the column list).

For example, if you stored the values 1, 2, and 3 in rows of a logged table that has
an INT column, an UPDATE operation on that table that specifies SET c = c + 1
would fail with an error if there were a unique index on the column c, but the
statement would succeed if the column had a unique constraint.
Related reference:
“Index-type options” on page 2-196

Using the PRIMARY KEY Constraint
A primary key is a column (or a set of columns, if you use the multiple-column
constraint format) that contains a non-NULL, unique value for each row in a table.
When you define a PRIMARY KEY constraint, the database server automatically
creates an internal index on the column or columns that make up the primary key,
and silently creates a NOT NULL constraint on the same column or columns.

You can designate only one primary key for a table. If you define a single column
as the primary key, then it is unique by definition. You cannot explicitly give the
same column a unique constraint.

You cannot place a unique or primary-key constraint on a BLOB or CLOB column.

Chapter 2. SQL statements 2-277

Opaque types of Informix support a primary key constraint only where a
secondary-access method supports the uniqueness for that type. The default
secondary-access method is a generic B-tree, which supports the equal() function.
Therefore, if the definition of the opaque type includes the equal() function, a
column of that opaque type can have a primary-key constraint.

You cannot place a primary-key constraint on a BYTE or TEXT column.

In the previous two examples, a unique constraint was placed on the column
acc_num. The following example creates this column as the primary key for the
accounts table:
CREATE TABLE accounts

(acc_name CHAR(12),
acc_num SERIAL PRIMARY KEY CONSTRAINT acc_num);

REFERENCES Clause
Use the REFERENCES clause to establish a referential relationship:
v Within a table (that is, between two columns of the same table)
v Between two tables (in other words, create a foreign key)

REFERENCES Clause:

REFERENCES table

�

,

(column)

(1)
ON DELETE CASCADE

Notes:

1 Informix extension

Element Description Restrictions Syntax

column A referenced column See “Restrictions on Referential Constraints.” “Identifier” on page
5-21

table The referenced table Must reside in the same database as the
referencing table

“Identifier” on page
5-21

The referencing column (the column being defined) is the column or set of columns
that refers to the referenced column or set of columns. The referencing column can
contain NULL and duplicate values, but values in the referenced column (or set of
columns) must be unique.

The relationship between referenced and referencing columns is called a
parent-child relationship, where the parent is the referenced column (primary key)
and the child is the referencing column (foreign key). The referential constraint
establishes this parent-child relationship.

When you create a referential constraint, the database server automatically creates
an internal index on the constrained column or columns.

Restrictions on Referential Constraints
You must have the References privilege to create a referential constraint.

2-278 IBM Informix Guide to SQL: Syntax

When you use the REFERENCES clause, you must observe the following
restrictions:
v The referenced and referencing tables must be in the same database.
v The referenced column (or set of columns when you use the multiple-column

constraint format) must have a unique or primary-key constraint.
v The data types of the referencing and referenced columns must be identical.

The only exceptions are that a referencing column must be an integer data type
if the referenced column is a serial data type:
– For BIGSERIAL referenced columns, use BIGINT referencing columns.
– For SERIAL referenced columns, use INT referencing columns.
– For SERIAL8 referenced columns, use INT8 referencing columns.

v You cannot place a constraint on any column of a RAW table.
v You cannot place a referential constraint on a BYTE, TEXT, BLOB, or CLOB

column.
v When you use the single-column constraint format, you can reference only one

column.
v When you use the multiple-column constraint format, the maximum number of

columns in the REFERENCES clause is 16, and the total length of the columns
cannot exceed 390 bytes if the page size is 2 kilobytes. (The maximum length
increases with the page size.)

Default Values for the Referenced Column
If the referenced table is different from the referencing table, you do not need to
specify the referenced column; the default column is the primary-key column (or
columns) of the referenced table. If the referenced table is the same as the
referencing table, you must specify the referenced column.

Referential Relationships Within a Table
You can establish a referential relationship between two columns of the same table.
In the following example, the emp_num column in the employee table uniquely
identifies every employee through an employee number. The mgr_num column in
that table contains the employee number of the manager who manages that
employee. In this case, mgr_num references emp_num. Duplicate values appear in
the mgr_num column because managers manage more than one employee.
CREATE TABLE employee

(
emp_num INTEGER PRIMARY KEY,
mgr_num INTEGER REFERENCES employee (emp_num)
);

A table in which referential relationships exist among its rows can have a
PRIMARY KEY constraint with no explicit foreign key. For the syntax to
recursively query a table in which multiple levels of a logical hierarchy exist
among the rows, see “Hierarchical Clause” on page 2-696.

Locking Implications of Creating a Referential Constraint
When you create a referential constraint, an exclusive lock is placed on the
referenced table. The lock is released when the CREATE TABLE statement is
finished. If you are creating a table in a database that supports transaction logging,
and you are using transactions, the lock is released at the end of the transaction.

Chapter 2. SQL statements 2-279

Examples of the Single-Column Constraint format
These examples illustrate single-column constraint format options to define a
foreign-key constraint that is enabled by default, and to declare the name of a
disabled referential constraint.

A referential constraint enabled by default

The following example uses the single-column constraint format to define a
referential relationship between the sub_accounts and accounts tables. (The terms
foreign-key constraint and referential constraint are synonyms.) The ref_num column
(the foreign key) in the sub_accounts table references the acc_num column (the
primary key) in the accounts table.
CREATE TABLE accounts (

acc_num INTEGER PRIMARY KEY,
acc_type INTEGER,
acc_descr CHAR(20));

CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref_num INTEGER REFERENCES accounts (acc_num),
sub_descr CHAR(20));

The single-column constraint format syntax of the CREATE TABLE statement
above that defines the sub_accounts table does not explicitly specify that the
ref_num column is a foreign key, but the REFERENCES keyword specifies that
ref_num must have the same value as the acc_num column in some row of the
accounts table. This implies that the ref_num column is the foreign key in a
referential relationship in which sub_accounts is the referencing table, and
accounts is the referenced table.

In single-column constraint format, you do not explicitly specify that the ref_num
column is a foreign key. To include the FOREIGN KEY keywords when you place a
referential constraint on a single column (or on a list of columns that reference the
same primary key) of the referencing table, you must instead use the
multiple-column constraint format syntax to define the referential constraint.

By default, this constraint on the sub_accounts table is enabled without filtering,
because no explicit constraint mode is specified. You can use the neither the
DISABLED or FILTERING keyword is specified in the example. The SET
CONSTRAINTS option to the SET Database Object Mode statement can reset the
object mode of existing constraints.

Because the sub_accounts example above declares no name for the referential
constraint, the database server generates an implicit identifier when it registers this
constraint in the sysconstraints system catalog table, and registers its mode (E) in
the sysobjstate system catalog table.

A disabled referential constraint

The next CREATE TABLE statement creates a xeno_counts table, and defines a
referential constraint between its xeno_num column and the acc_num column in
the accounts table from the first example. This single-column constraint format
syntax also includes a constraint definition, specifying DISABLED as its constraint
mode, and declaring xeno_constr as the name of this foreign-key constraint. Here
xeno_accounts is the referencing table, and accounts is the referenced table.

2-280 IBM Informix Guide to SQL: Syntax

CREATE TABLE xeno_counts (
xeno_acc INTEGER PRIMARY KEY,
xeno_num INTEGER REFERENCES accounts (acc_num)

CONSTRAINT xeno_constr DISABLED,
xeno_descr CHAR(20));

In DISABLED mode, the xeno_constr constraint is not enforced when DML
operations produce violating rows in the xeno_counts table. To enforce referential
integrity, however, you can use the SET CONSTRAINTS option to the SET
Database Object Mode statement to change the constraint mode to ENABLED.
Alternatively, SET CONSTRAINTS can reset the xeno_constr constraint to a
FILTERING mode, after the START VIOLATIONS statement associates a violations
table with the xeno_counts table.
Related reference:
“SET CONSTRAINTS statement” on page 2-735
“Choosing a Constraint-Mode Option” on page 2-284

Using the ON DELETE CASCADE Option
Use the ON DELETE CASCADE option to specify whether you want rows deleted
in a child table when corresponding rows are deleted in the parent table. If you do
not specify cascading deletes, the default behavior of the database server prevents
you from deleting data in a table if other tables reference it.

If you specify this option, later when you delete a row in the parent table, the
database server also deletes any rows associated with that row (foreign keys) in a
child table. The principal advantage to the cascading-deletes feature is that it
allows you to reduce the quantity of SQL statements you need to perform delete
actions.

For example, the all_candy table contains the candy_num column as a primary
key. The hard_candy table refers to the candy_num column as a foreign key. The
following CREATE TABLE statement creates the hard_candy table with the
cascading-delete option on the foreign key:
CREATE TABLE all_candy

(candy_num SERIAL PRIMARY KEY,
candy_maker CHAR(25));

CREATE TABLE hard_candy
(candy_num INT,
candy_flavor CHAR(20),
FOREIGN KEY (candy_num) REFERENCES all_candy
ON DELETE CASCADE);

Because ON DELETE CASCADE is specified for the dependent table, when a row
of the all_candy table is deleted, the corresponding rows of the hard_candy table
are also deleted. For information about syntax restrictions and locking implications
when you delete rows from tables that have cascading deletes, see “Considerations
When Tables Have Cascading Deletes” on page 2-407.

CHECK Clause
Use the CHECK clause to designate conditions that must be met before data can be
assigned to a column during an INSERT or UPDATE statement.

Chapter 2. SQL statements 2-281

CHECK Clause:

CHECK
(1)

(Condition)

Notes:

1 See “Condition” on page 4-5

In The condition cannot include a user-defined routine.

During an insert or update, if the check constraint of a row evaluates to false, the
database server returns an error. The database server does not return an error if a
row evaluates to NULL for a check constraint. In some cases, you might want to
use both a check constraint and a NOT NULL constraint.

Using a Search Condition
The search condition that defines a check constraint cannot contain the following
elements: user-defined routines, subqueries, aggregates, host variables, or rowids.
In addition, the search condition cannot contain the following built-in variant
functions: CURRENT, SYSDATE, USER, CURRENT_USER, SITENAME,
DBSERVERNAME, or TODAY.

When you specify a date value in a search condition, make sure you specify four
digits for the year, so that the DBCENTURY environment variable has no effect on
the condition. When you specify a two-digit year, the DBCENTURY environment
variable can produce unpredictable results if the condition depends on an
abbreviated year value. For more information about DBCENTURY, see the IBM
Informix Guide to SQL: Reference.

More generally, the database server saves the settings of environment variables
from the time of creation of check constraints. If any of these settings are
subsequently changed in a way that can affect the evaluation of a condition in a
check constraint, the new settings are disregarded, and the original environment
variable settings are used when the condition is evaluated.

With a BYTE or TEXT column, you can check for NULL or not-NULL values. This
constraint is the only constraint allowed on a BYTE or TEXT column.
Related reference:

DBCENTURY environment variable (SQL Reference)

Restrictions When Using the Single-Column Constraint Format
When you use the single-column constraint format to define a check constraint, the
check constraint cannot depend on values in other columns of the table. The
following example creates the my_accounts table that has two columns with check
constraints, each in the single-column constraint format:
CREATE TABLE my_accounts (

chk_id SERIAL PRIMARY KEY,
acct1 MONEY CHECK (acct1 BETWEEN 0 AND 99999),
acct2 MONEY CHECK (acct2 BETWEEN 0 AND 99999));

Both acct1 and acct2 are columns of MONEY data type whose values must be
between 0 and 99999. If, however, you want to test that acct1 has a larger balance
than acct2, you cannot use the single-column constraint format. To create a
constraint that checks values in more than one column, you must use the
“Multiple-Column Constraint Format” on page 2-285.

2-282 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_209.htm#ids_sqr_209

Constraint Definition
Use the constraint definition portion of CREATE TABLE for these purposes:
v To declare a name for the constraint
v To set a constraint to disabled, enabled, or filtering mode.

Constraint Definition:

CONSTRAINT constraint ENABLED

DISABLED
WITHOUT ERROR

FILTERING WITH ERROR

Element Description Restrictions Syntax

constraint Name of constraint Must be unique for the table among
index and constraint names

“Identifier” on page 5-21

Declaring a Constraint Name
The database server implements the constraint as an index. Whenever you use the
single- or multiple-column constraint format to place a data restriction on a
column, but without declaring a constraint name, the database server creates a
constraint and adds a row for that constraint in the sysconstraints system catalog
table.

The database server also generates an identifier and adds a row to the sysindices
system catalog table for each new primary-key, unique, or referential constraint
that does not share an index with an existing constraint. Even if you declare a
name for a constraint, the database server generates the name that appears in the
sysindices table. (The system catalog also includes a view on the sysindices table,
called sysindexes, which also lists each component of a composite index.)

If you want, you can specify a meaningful name for the constraint. The name must
be unique among the names of constraints and indexes in the database.

Constraint names appear in error messages having to do with constraint violations.
You can use this name when you use the DROP CONSTRAINT clause of the
ALTER TABLE statement.

You also specify a constraint name when you change the mode of constraint with
the SET Database Object Mode statement or the SET Transaction Mode statement,
and in the DROP INDEX statement for constraints that are implemented as indexes
with user-defined names.

In an ANSI-compliant database, when you declare the name of a constraint of any
type, the combination of the owner name and constraint name must be unique
within the database.

Constraint Names That the Database Server Generates: If you do not specify a
constraint name, the database server generates a constraint name using the
following template:
<constraint_type><tabid>_<constraintid>

Chapter 2. SQL statements 2-283

In this template, constraint_type is the letter u for unique or primary-key
constraints, r for referential constraints, c for check constraints, and n for NOT
NULL constraints. In the template, tabid and constraintid are values from the tabid
and constrid columns of the systables and sysconstraints system catalog tables,
respectively. For example, the constraint name for a unique constraint might look
like ” u111_14” (with a leading blank space).

If the generated name conflicts with an existing identifier, the database server
returns an error, and you must then supply an explicit constraint name.

The generated index name in sysindexes (or sysindices) has this format:
[blankspace]<tabid>_<constraintid>

For example, the index name might be something like “ 111_14 “ (quotation marks
used here to show the blank space).

Choosing a Constraint-Mode Option
Use the constraint-mode options (ENABLED, DISABLED, and FILTERING) to
control the behavior of constraints in INSERT, DELETE, MERGE, and UPDATE
operations.

For constraints that the CREATE TABLE statement defines, these are the options.

Mode Effect

DISABLED
Does not enforce the constraint during INSERT, DELETE, and UPDATE
operations

ENABLED
Enforces the constraint during INSERT, DELETE, and UPDATE operations
If a target row causes a violation of the constraint, the statement fails. This
mode is the default.

FILTERING
Enforces the constraint during INSERT, DELETE, and UPDATE operations,
if the START VIOLATIONS statement has created a violations table and a
diagnostics table. If a target row causes a violation of the constraint, the
statement continues processing. The database server writes the row in
question to the violations table associated with the target table, and writes
diagnostic information to the associated diagnostics table.

If you choose filtering mode, you can specify the WITHOUT ERROR or WITH
ERROR options. The following list explains these ERROR options.

Error Option
Effect

WITH ERROR
Returns an integrity-violation error when a filtering-mode constraint is
violated during an INSERT, DELETE, or UPDATE operation.

WITHOUT ERROR
Does not return an integrity-violation error when a filtering-mode
constraint is violated during an INSERT, DELETE, or UPDATE operation.
This is the default ERROR option.

Note:

2-284 IBM Informix Guide to SQL: Syntax

For the FILTERING WITHOUT ERROR mode to have these effects, you must also
use the START VIOLATIONS TABLE statement to start the violations and
diagnostics tables for the target table on which the constraints are defined. You can
issue that statement
v either before you set any constraints on the table to a filtering mode,
v or after you set constraints to a filtering mode, but before any users perform

INSERT, DELETE, or UPDATE operations on rows in the table.

Constraint modes are registered in the sysobjstate system catalog table.

NOVALIDATE modes for foreign-key constraints

The modes listed above are only a subset of the constraint modes that the SET
CONSTRAINTS option to the SET Database Object Mode statement can specify
while it is resetting the mode of an existing foreign-key constraint. They are also a
subset of the constraint modes that the ALTER TABLE ADD CONSTRAINT
statement can specify while creating a new foreign-key constraint on an existing
table.

The ALTER TABLE ADD CONSTRAINT and SET CONSTRAINTS statements can
specify one of these additional foreign-key constrain modes by including the
NOVALIDATE keyword in the constraint definition. The effect is that the database
server skips the checking of existing rows for violations when the foreign-key
constraint is being created or enabled, thereby reducing the time and resources
required for processing the DDL statement. When that statement completes
execution, however, each NOVALIDATE mode automatically reverts to an
ENABLED or FILTERING mode. Thus, the NOVALIDATE keyword does not prevent
enforcement of referential integrity during subsequent DML operations on the
table, because the NOVALIDATE modes do not persist beyond the DDL statement
that defined them.

Because most tables are empty when they are created, referential-integrity checking
of existing rows typically does not occur during table creation, and the CREATE
TABLE statement does not support NOVALIDATE constraint modes. Those modes
can be efficient, however, in contexts where non-empty tables with foreign-key
constraints need to be moved to another database or to a data warehouse.
Related reference:
“Examples of the Single-Column Constraint format” on page 2-280
“Single-Column Constraint Format” on page 2-84

Multiple-Column Constraint Format
Use the multiple-column constraint format to associate one or more columns with
a constraint. This alternative to the single-column constraint format allows you to
associate multiple columns with a constraint.

Multiple-Column Constraint Format:

Chapter 2. SQL statements 2-285

�

�

,

NOT NULL UNIQUE (column)
NULL (1)

DISTINCT
PRIMARY KEY

(2)
REFERENCES Clause
,

(2)
FOREIGN KEY (column) REFERENCES Clause

(3)
CHECK Clause

�

�
(1) (4)

Constraint Definition

Notes:

1 Informix extension

2 See “REFERENCES Clause” on page 2-278

3 See “CHECK Clause” on page 2-281

4 See “Constraint Definition” on page 2-283

Element Description Restrictions Syntax

column Columns on which to place constraint Not BYTE, TEXT, BLOB, CLOB “Identifier” on page
5-21

A multiple-column constraint has these cardinality and size restrictions:
v It can specify no more than 16 column names.
v In Informix, the maximum total length of the list of columns depends on the

page size, according to this formula:
MAXLength = (((PageSize - 93)/5) -1)

– For a page size of 2K, the total length cannot exceed 390 bytes.
– For a page size of 16K, the total length cannot exceed 3257 bytes.

Here the slash (/) symbol represents integer division.

When you define a unique constraint (by using the UNIQUE or DISTINCT
keyword), a column cannot appear in the constraint list more than once.

Using the multiple-column constraint format, you can perform these tasks:
v Create data-integrity constraints for a set of one or more columns
v Declare a mnemonic name for a constraint
v Specify the constraint-mode option that controls the behavior of a constraint

during insert, delete, and update operations.

When you use this format, you can create composite primary and foreign keys, or
define check constraints that compare data in different columns.

See also the section “Differences Between a Unique Constraint and a Unique
Index” on page 2-277.

2-286 IBM Informix Guide to SQL: Syntax

Restrictions with the Multiple-Column Constraint Format
When you use the multiple-column constraint format, you cannot define any
default values for columns. In addition, you cannot establish a referential
relationship between two columns of the same table.

To define a default value for a column, or to establish a referential relationship
between two columns of the same table, refer to “Single-Column Constraint
Format” on page 2-274 or to “Referential Relationships Within a Table” on page
2-279 respectively.

Using Large-Object Types in Constraints: You cannot place unique, primary-key,
or referential (FOREIGN KEY) constraints on BYTE or TEXT columns. You can,
however, check for NULL or non-NULL values with a check constraint.

You cannot place unique or primary-key constraints on BLOB or CLOB columns. If
the constraint is on a set of columns that includes a column that stores encrypted
data, Informix cannot enforce the constraint.

You can find detailed discussions of specific constraints in the following sections:

Constraint For more information, see For an example, see

CHECK “CHECK Clause” on page 2-281 “Defining Check Constraints Across
Columns” on page 2-288

DISTINCT “Using UNIQUE or DISTINCT
Constraints” on page 2-276

“Examples of the Multiple-Column
Constraint Format”

FOREIGN KEY “Using the FOREIGN KEY
Constraint”

“Defining Composite Primary and
Foreign Keys” on page 2-288

PRIMARY KEY “Using the PRIMARY KEY
Constraint” on page 2-277

“Defining Composite Primary and
Foreign Keys” on page 2-288

UNIQUE “Using UNIQUE or DISTINCT
Constraints” on page 2-276

“Examples of the Multiple-Column
Constraint Format”

Using the FOREIGN KEY Constraint
A foreign key joins and establishes dependencies between tables. That is, it creates
a referential constraint. (For more information on referential constraints, see the
“REFERENCES Clause” on page 2-278.)

A foreign key references a unique or primary key in a table. For every entry in the
foreign-key columns, a matching entry must exist in the unique or primary-key
columns if all foreign-key columns contain non-NULL values.

You cannot specify BYTE or TEXT columns as foreign keys.

You cannot specify BLOB or CLOB columns as foreign keys.

Examples of the Multiple-Column Constraint Format
The following example creates a standard table, called order_items, with a unique
constraint, called items_constr, using the multiple-column constraint format:
CREATE TABLE order_items

(
order_id SERIAL,
line_item_id INT not null,

Chapter 2. SQL statements 2-287

unit_price DECIMAL(6,2),
quantity INT,
UNIQUE (order_id,line_item_id) CONSTRAINT items_constr
);

For constraint names, see “Declaring a Constraint Name” on page 2-283.

Defining Check Constraints Across Columns:
When you use the multiple-column constraint format to define check constraints, a
check constraint can apply to more than one column in the same table. (You
cannot, however, create a check constraint whose condition uses a value from a
column in another table.)

This example compares two columns, acct1 and acct2, in the new table:
CREATE TABLE my_accounts

(
chk_id SERIAL PRIMARY KEY,
acct1 MONEY,
acct2 MONEY,
CHECK (0 < acct1 AND acct1 < 99999),
CHECK (0 < acct2 AND acct2 < 99999),
CHECK (acct1 > acct2)
);

In this example, the acct1 column must be greater than the acct2 column, or the
insert or update fails.

Defining Composite Primary and Foreign Keys:
When you use the multiple-column constraint format, you can create a composite
key. A composite key specifies multiple columns for a primary-key or foreign-key
constraint.

The next example creates two tables. The first table has a composite key that acts
as a primary key, and the second table has a composite key that acts as a foreign
key.
CREATE TABLE accounts (

acc_num INTEGER,
acc_type INTEGER,
acc_descr CHAR(20),
PRIMARY KEY (acc_num, acc_type));

CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref_num INTEGER NOT NULL,
ref_type INTEGER NOT NULL,
sub_descr CHAR(20),
FOREIGN KEY (ref_num, ref_type) REFERENCES accounts

(acc_num, acc_type));

In this example, the foreign key of the sub_accounts table, ref_num and ref_type,
references the composite key, acc_num and acc_type, in the accounts table. If,
during an insert or update, you tried to insert a row into the sub_accounts table
whose value for ref_num and ref_type did not exactly correspond to the values for
acc_num and acc_type in an existing row in the accounts table, the database server
would return an error.

A referential constraint must have a one-to-one relationship between referencing
and referenced columns. In other words, if the primary key is a set of columns (a
composite key), then the foreign key also must be a set of columns that
corresponds to the composite key.

2-288 IBM Informix Guide to SQL: Syntax

Because of the default behavior of the database server, when you create the
foreign-key reference, you do not need to reference the composite-key columns
(acc_num and acc_type) explicitly. You can rewrite the references section of the
previous example as follows:
FOREIGN KEY (ref_num, ref_type) REFERENCES accounts

Default Index Creation Strategy for Constraints
When you create a table with unique or primary-key constraints, the database
server creates an internal index that is unique and ascending for each constraint.

When you create a table with a referential constraint, the database server creates an
internal index that is ascending and that allows duplicate values for each column
that you specify in the referential constraint.

An internal index occupies the same storage location as its table. For fragmented
tables, the fragments of an internal index occupy the same dbspace partitions that
you specify for the table fragments (or in some cases, the database dbspace).

If you require an index fragmentation strategy that is independent of the
underlying table fragmentation, do not define the constraint when you create the
table. Instead, use the CREATE INDEX statement to create a unique index with the
desired fragmentation strategy. Then use the ALTER TABLE statement to add the
constraint. The new constraint uses the previously defined index.

Important: In a database without logging, detached checking is the only kind of
constraint checking available. Detached checking means that constraint checking is
performed on a row-by-row basis.

Options clauses
The Options clauses of the CREATE TABLE statement provide options to create
various shadow columns, and to specify a security policy, a storage locations, a
fragmentation strategy, the extent size, the locking mode, a user-defined access
method for the table, and other table properties.

Options:

WITH AUDIT
CRCOLS
REPLCHECK
VERCOLS
ERKEY

(1)
SECURITY POLICY Clause

�

�
(2) (3)

Storage Options
(4)

LOCK MODE Options

�

�
(5)

USING Access-Method Clause
(6)

Statistics Options

Notes:

1 See “SECURITY POLICY Clause” on page 2-293

2 Informix extension

3 See “Storage options” on page 2-295

Chapter 2. SQL statements 2-289

4 See “LOCK MODE Options” on page 2-317

5 See “USING Access-Method Clause” on page 2-316

6 See “Statistics options of the CREATE TABLE statement” on page 2-293

Using the WITH AUDIT Clause
Use the WITH AUDIT keywords to create a table that will be included in the set of
tables that are audited at the row level if selective row-level is enabled.

When you create a table with the WITH AUDIT clause, row-level audit events in
that table are recorded when selective row-level auditing is turned on. Applying
the WITH AUDIT attribute to a table by itself does not enable selective row-level
auditing. This type of auditing is enabled when the ADTROWS parameter of the
adtcfg file is set to 1 or 2 by using the onaudit -R command.

You must have RESOURCE or DBA privileges to run the CREATE TABLE
statement with the WITH AUDIT clause.

Using the WITH CRCOLS Option
Use the WITH CRCOLS keywords to create two shadow columns that Enterprise
Replication uses for conflict resolution. The first column, cdrserver, contains the
identity of the database server where the last modification occurred. The second
column, cdrtime, contains the time stamp of the last modification. You must add
these columns before you can use time stamps for UDR conflict resolution. These
two columns are hidden shadow columns, because they cannot be indexed and
cannot be viewed in system catalog tables.

For most database operations, the cdrserver and cdrtime columns are hidden. For
example, if you include the WITH CRCOLS keywords when you create a table, the
cdrserver and cdrtime columns have the following behavior:
v They are not returned by queries that specify an asterisk (*) as the projection

list, as in the statement:
SELECT * FROM tablename;

v They do not appear in DB-Access when you ask for information about the
columns of the table.

v They are not included in the number of columns (ncols) in the systables system
catalog table entry for tablename.

To view the contents of cdrserver and cdrtime, you must explicitly specify the
columns in the projection list of a SELECT statement, as the following example
shows:
SELECT cdrserver, cdrtime FROM tablename;

For more information about how to use this option, refer to the IBM Informix
Enterprise Replication Guide.
Related concepts:

Preparing Tables for a Consistency Check Index (Enterprise Replication Guide)

Using the WITH ERKEY Keywords
Use the WITH ERKEY keywords to create the ERKEY shadow columns that
Enterprise Replication uses for a replication key.

2-290 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.erep.doc/ids_erp_525.htm#ids_erp_525

The ERKEY shadow columns (ifx_erkey_1, ifx_erkey_2, and ifx_erkey_3) are
visible shadow columns because they are indexed and can be viewed in system
catalog tables. After you create the ERKEY shadow columns, a new unique index
and a unique constraint are created on the table using these columns. Enterprise
Replication uses that index as the replication key.

For most database operations, the ERKEY columns are hidden. For example, if you
include the WITH ERKEY keywords when you create a table, the ERKEY columns
have the following behavior:
v They are not returned by queries that specify an asterisk (*) as the projection

list, as in the statement:
SELECT * FROM tablename;

v They do appear in DB-Access when you ask for information about the columns
of the table.

v They are included in the number of columns (ncols) in the systables system
catalog table entry for tablename.

To view the contents of the ERKEY columns, you must explicitly specify the
columns in the projection list of a SELECT statement, as the following example
shows:
SELECT ifx_erkey_1, ifx_erkey_2, ifx_erkey_3 FROM customer;

Example

In the following example, the ERKEY shadow columns are added to the customer
table:
CREATE TABLE customer (id INT) WITH ERKEY;

Related tasks:

Preparing tables without primary keys (Enterprise Replication Guide)

Using the WITH REPLCHECK Keywords
Use the WITH REPLCHECK keywords to create the ifx_replcheck shadow column
that Enterprise Replication uses for consistency checking.

The ifx_replcheck column is a visible shadow column because it can be indexed
and can be viewed in system catalog tables. After you create the ifx_replcheck
shadow column, you must create a new unique index on the primary key and the
ifx_replcheck column. The ifx_replcheck shadow column must be the last column
in the index. Enterprise Replication uses that index to speed consistency checking.

For most database operations, the ifx_replcheck column is hidden. For example, if
you include the WITH REPLCHECK keywords when you create a table, the
ifx_replcheck column has the following behavior:
v It is not returned by queries that specify an asterisk (*) as the projection list, as

in the statement:
SELECT * FROM tablename;

v It does appear in DB-Access when you ask for information about the columns of
the table.

v It is included in the number of columns (ncols) in the systables system catalog
table entry for tablename.

Chapter 2. SQL statements 2-291

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.erep.doc/ids_erp_572.htm#ids_erp_572

To view the contents of the ifx_replcheck column, you must explicitly specify the
columns in the projection list of a SELECT statement, as the following example
shows:
SELECT ifx_replcheck FROM customer;

Example

In the following example, the ifx_replcheck shadow column is added to the
customer table:
CREATE TABLE customer (id int) WITH REPLCHECK;

Related concepts:

Shadow columns (Enterprise Replication Guide)

Using the WITH VERCOLS Option
Use the WITH VERCOLS keywords to create two shadow columns that Informix
uses to support update operations on secondary servers.

The first column, ifx_insert_checksum, contains a checksum of the row when it
was first created. The second column, ifx_row_version, contains a version number
of the row. When a row is first inserted, ifx_insert_checksum is generated, and
ifx_row_version will be set to one. Each time the row is updated, ifx_row_version
is incremented by one, but ifx_insert_checksum does not change. These two
columns are visible shadow columns because they can be indexed and can be
viewed in system catalog tables.

For most database operations, the ifx_insert_checksum and ifx_row_version
columns are hidden. For example, if you include the WITH VERCOLS keywords
when you create a table, the ifx_insert_checksum and ifx_row_version columns
have the following behavior:
v They are not returned by queries that specify an asterisk (*) as the projection

list, as in the statement:
SELECT * FROM tablename;

v They appear in DB-Access when you ask for information about the columns of
the table.

v They are included in the number of columns (ncols) in the systables system
catalog table entry for tablename.

To view the contents of ifx_insert_checksum and ifx_row_version, you must
explicitly specify the column names in the projection list of a SELECT statement, as
the following example shows:
SELECT ifx_insert_checksum, ifx_row_version FROM tablename;

When row versioning is enabled, ifx_row_version is incremented by one each time
the row is updated; however, row updates made by Enterprise Replication do not
increment the row version. To update the row version on a server using Enterprise
Replication, you must include the ifx_row_version column in the replicate
participant definition.

For more information about how to use this option, refer to the IBM Informix
Administrator's Guide.
Related concepts:

Row versioning (Administrator's Guide)

2-292 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.erep.doc/ids_erp_047.htm#ids_erp_047
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_0877.htm#ids_admin_0877

SECURITY POLICY Clause
The optional Security Policy clause can use the following syntax to specify a
security policy that is associated with the table. .

SECURITY POLICY Clause:

SECURITY POLICY policy

Element Description Restrictions Syntax

policy Name of a security
policy

Must exist in the database “Identifier” on page 5-21

Only DBSECADM can create a table that includes the Security Policy clause to
specify a security policy for the table.

The following guidelines apply to tables that can be protected by including a valid
SECURITY POLICY clause in the CREATE TABLE statement:
v A table is not protected unless it has a security policy associated with it and has

either rows secured or at least one column secured. The former indicates that the
table is a protected table with row level granularity and the latter indicates that
the table is a protected table with column level granularity.

v Securing rows with the IDSSECURITYLABEL column clause fails if the table
does not have a security policy associated with it.

v Securing a column with the COLUMN SECURED WITH clause fails if the table
does not have a security policy associated with it.

v A table can have at most one security policy.
v A table can have any number of protected columns, and each protected column

can have a different label, or several protected columns can share the same label.
v A security policy cannot be associated with a temporary table nor with a typed

table in a table hierarchy.

Statistics options of the CREATE TABLE statement
Use the Statistics Options clause of the CREATE TABLE statement to set the values
of the STATCHANGE property of a fragmented or nonfragmented table, and the
STATLEVEL property of a fragmented table.

Syntax

These table attributes control the threshold for automatic recalculation
(STATCHANGE) and the granularity (STATLEVEL) of data distribution statistics.

��
STATCHANGE AUTO

AUTO
STATCHANGE change_threshold

STATLEVEL AUTO

STATLEVEL FRAGMENT
TABLE
AUTO

��

Element Description Restrictions Syntax

change_
threshold

Percentage of changed data that
defines stale distribution statistics

Must be an integer in the range 0 - 100 “Literal Number” on
page 4-215

Chapter 2. SQL statements 2-293

Usage

The Statistics Options clause can define table statistics properties that allow the
user to control the actions of UPDATE STATISTICS when that SQL statement is
run in LOW, MEDIUM, or HIGH mode.

The two table properties that the Statistics Options clause can set are
STATCHANGE and STATLEVEL:

The STATCHANGE table attribute specifies the minimum percentage of changes
(from UPDATE, DELETE, MERGE, and INSERT operations on the rows in the table
or in a fragment since the previous calculation of distribution statistics) to consider
the statistics stale. You can specify an integer value in the range 0 - 100, or you can
use the AUTO keyword to apply the current STATCHANGE configuration
parameter setting in the ONCONFIG file or in the session environment as the
default change threshold value.

The automatic mode for selectively updating table and fragment statistics can be
enabled in any of the following ways:
v The AUTO_STAT_MODE configuration parameter is set to 1 (or is not set).

Enables automatic mode as the system default.
v The AUTO_STAT_MODE session environment variable is set to "ON". Enables

automatic mode during the current session.
v The UPDATE STATISTICS statement includes the AUTO keyword. Enables

automatic mode while the current statement is running.

While automatic mode is enabled, UPDATE STATISTICS statements use the explicit
or default STATCHANGE value to identify table, index, or fragment distributions
whose statistics are missing or stale, and updates only the missing or stale
statistics. For more information about the automatic mode for UPDATE
STATISTICS operations, see the description of the AUTO_STAT_MODE
configuration parameter in the IBM Informix Administrator's Reference. See also
“AUTO_STAT_MODE Environment Option” on page 2-766 and “Using the FORCE
and AUTO keywords” on page 2-873.

The STATLEVEL property of a fragmented table can determine the level of
granularity of its data distributions and index statistics. It can take one of the
following three values, with AUTO being the default, if no value is specified at
creation time:
v TABLE specifies that all distributions for the table be created at the table level.
v FRAGMENT specifies that distributions be created and maintained for each

fragment.
v AUTO specifies that the database server apply criteria at run time to determine

whether fragment-level distributions are necessary. These criteria require that all
of the following conditions are true:
– The SYSSBSPACENAME configuration parameter setting specifies an existing

sbspace.
– The table is fragmented by an EXPRESSION, INTERVAL, or LIST strategy.
– The table has more than a million rows.

If any of these criteria are not satisfied, the database server creates table-level
distributions, rather than fragment-level.

2-294 IBM Informix Guide to SQL: Syntax

These properties are always applied. If the STATLEVEL setting is AUTO, this
setting overrides the default values.

Note: The SYSSBSPACENAME configuration parameter, which must be set when
the database server instance is initialized, specifies the sbspace in which the
database server stores fragment-level data distribution statistics. These statistics are
stored as BLOB objects in the encdist column of the syfragsdist system catalog
table. For the database server to support fragment level statistics, the
SYSSBSPACENAME configuration parameter setting specifies an existing sbspace.

If you use the Statistics Options clause to set the STATLEVEL property to
FRAGMENT, the database server returns an error if either of the following is true:
v The SYSSBSPACENAME configuration parameter is not set.
v The sbspace that SYSSBSPACENAME specifies was not properly allocated by the

onspaces -c -S command.
Related reference:

AUTO_STAT_MODE configuration parameter (Administrator's Reference)

STATCHANGE configuration parameter (Administrator's Reference)

Storage options
Use the FRAGMENT BY clause, PUT clause, and EXTENT size options of the
CREATE TABLE statement to specify the storage location, distribution scheme, and
extent size for the table.

Storage Options:

IN dbspace
extspace

(1)
FRAGMENT BY clause

(2)
PUT clause

�

�
(3)

EXTENT SIZE options

Notes:

1 See “FRAGMENT BY clause” on page 2-300

2 See “PUT Clause” on page 2-296

3 See “EXTENT SIZE Options” on page 2-314

Element Description Restrictions Syntax

dbspace Dbspace to store the table Must already exist “Identifier” on page 5-21

extspace Name declared in the onspaces command to a
storage area outside the database server

Must already exist See documentation for your
access method.

Usage

The storage options that specify the location, distribution scheme, and extent size
for the table are an extension to the ANSI/ISO standard for SQL syntax.

Chapter 2. SQL statements 2-295

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1094.htm#ids_adr_1094
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1095.htm#ids_adr_1095

If you use the “USING Access-Method Clause” on page 2-316 to specify an access
method, that method must support the storage space.

You can specify a dbspace for the table that is different from the storage location
for the database, or fragment the table among dbspaces, or among named
fragments in one or more dbspaces. If you specify no IN clause nor fragmentation
scheme, the new table resides in the same dbspace where the current database
resides.

In Informix, you can use the PUT clause to specify storage options for smart large
objects.

Note: If your table contains simple large objects (TEXT or BYTE), you can specify
a separate blobspace for each object. For information on storing simple large
objects, refer to “Large-Object Data Types” on page 4-33.

Using the IN Clause
Use the IN clause to specify a storage space for the table. The storage space that
you specify must already exist.

Storing Data in a dbspace: You can use the IN clause to isolate a table. For
example, if the history database is in the dbs1 dbspace, but you want the family
data placed in a separate dbspace called famdata, use the following statements:
CREATE DATABASE history IN dbs1;

CREATE TABLE family
(
id_num SERIAL(101) UNIQUE,
name CHAR(40),
nickname CHAR(20),
mother CHAR(40),
father CHAR(40)
)
IN famdata;

For more information about how to store and manage your tables in separate
dbspaces, see your IBM Informix Administrator's Guide.
Related concepts:

Tables (Administrator's Guide)

Storing Data in an extspace: In general, use the extspace storage option in
conjunction with the “USING Access-Method Clause” on page 2-316. For more
information, refer to the documentation of your access method.

PUT Clause
Use the PUT clause to specify the storage spaces and their characteristics for each
column that will contain smart large objects.

PUT Clause:

2-296 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_0510.htm#ids_admin_0510

PUT � �

�

,
,

column IN (sbspace)
,

()
EXTENT SIZE kilobytes

NO LOG

LOG
HIGH INTEG

MODERATE INTEG
NO KEEP ACCESS TIME

KEEP ACCESS TIME

Element Description Restrictions Syntax

column Column to store in sbspace Must contain a BLOB, CLOB,
user-defined, or complex data type

“Identifier” on page 5-21

kilobytes Number of kilobytes to allocate for
the extent size

Must be an integer value “Literal Number” on
page 4-215

sbspace Name of a storage area for smart
large objects

Must exist “Identifier” on page 5-21

The specified column cannot be in the form column.field. That is, the smart large
object that you are storing cannot be one field of a ROW type.

Specifying the storage location

Each smart large object is stored in a single sbspace. The SBSPACENAME
configuration parameter specifies the system default sbspace in which smart large
objects are created, unless the PUT clause specifies another sbspace.

For example, the following statement defines tabwblob as a table whose only
column is of data type BLOB. The column name is declared as image01, and the
PUT clause specifies the storage location for all of its BLOB objects as sbspace01:
CREATE TABLE tabwblob

(
image01 BLOB
) PUT image01 IN (sbspace01);

For the example above to be valid, the sbspace01 must already exist. Because the
no other options to the PUT clause are specified, sbspace01 has default values for
its extent size and for the other storage characteristics that the PUT clause can
define, including NO LOG, HIGH INTEG, and NO KEEP ACCESS TIME, as defined below.

The PUT clause can specify storage locations for a list of BLOB and CLOB
columns. The following example defines tabw2blobs as a table with two columns,
where column image02 is of type BLOB, and column commentary03 is of type
CLOB. In the next example, the PUT clause specifies that all the smart large objects
in both columns are stored in the same sbspace01 smart large object space:

Chapter 2. SQL statements 2-297

CREATE TABLE tabw2blobs
(
image02 BLOB,
commentary03 CLOB
) PUT image02 IN (sbspace01),

commentary03 IN (sbspace01);

You can specify that more than one sbspace stores the same BLOB or CLOB
column. This distributes the smart large objects in a round-robin distribution
scheme, so that the number of smart large objects in each sbspace is approximately
equal. The comma-separated list of sbspaces for a single column must be delimited
by parentheses.

The next example defines tabw2sblobs as a table with two columns, where column
image04 is of type BLOB, and column commentary05 is of type CLOB. The PUT
clause specifies that the BLOB objects in column image04 are stored in two
sbspaces, sbspace01 and sbspace02, and all the CLOB objects in column image05
are stored in sbspace sbspace03:
CREATE TABLE tabw2sblobs

(
image04 BLOB,
commentary05 CLOB
) PUT image04 IN (sbspace01,sbspace02),

commentary05 IN (sbspace03);

If an INSERT or MERGE operation adds six new rows to the table in this example,
v three of the image04 BLOB objects of will be stored in sbspace01,
v the other three image04 BLOB objects will be stored in sbspace02,
v and all six commentary05 CLOB objects will be stored in sbspace03.

When you distribute smart large objects across different sbspaces, you can work
with smaller sbspaces. If you limit the size of an sbspace, backup and archive
operations can perform more quickly. For an additional example of the PUT clause,
see “Alternative to Full Logging” on page 2-299.

Specifying sbspace characteristics

The following storage options are available to store BLOB and CLOB data:

Option Effect

EXTENT SIZE
Specifies a lower limit on how many kilobytes can be stored in a
smart-large-object extent. The database server might round the specified
kilobytes value up, so that the extent size is an integer multiple of the
sbspace page size.

HIGH INTEG
This high data-integrity option produces user-data pages that contain a
page header and a page trailer to detect incomplete writes and data
corruption. This option is the default data-integrity behavior.

MODERATE INTEG
This data-integrity option produces user-data pages that contain a page
header but no page trailer. This option cannot compare the page header
with the page trailer to detect incomplete writes and data corruption.

2-298 IBM Informix Guide to SQL: Syntax

KEEP ACCESS TIME
This maintains a record in the smart-large-object metadata of the system
time when the smart large object was last read or written.

NO KEEP ACCESS TIME
Does not record the system time when the smart large object was last read
or written. This provides better performance than the KEEP ACCESS TIME
option, and is the default tracking behavior.

LOG Follows the logging procedure used with the current database log for the
corresponding smart large object. This option can generate large amounts
of log traffic and increase the risk of filling the logical log. (See also
“Alternative to Full Logging.”)

NO LOG
Turns off logging. This option is the default behavior.

The comma-separated list of keyword options that define sbspace characteristics
must be enclosed in parentheses, and immediately follows the sbspace (or the list
of sbspaces) that stores the BLOB or CLOB column. In the following example, the
PUT clause specifies that the unlogged sbspace01 and sbspace02 sbspaces that
store the BLOB objects of column image04 have characteristics different from
sbspace03, a logged sbspace that stores CLOB objects of column commentary05:
CREATE TABLE tabw2sblobs

(
image04 BLOB,
commentary05 CLOB
) PUT image04 IN (sbspace01,sbspace02) (KEEP ACCESS TIME, MODERATE INTEG),

commentary05 IN (sbspace03) (EXTENT SIZE 30, LOG);

When you turn logging on for a smart large object, you must immediately perform
a level-0 backup to be able to recover and restore the smart large object.

The syscolattribs system catalog table contains one row for each sbspace and
column combination in the PUT clause:
v The syscolattribs.extentsize column stores the extent size, based on the kilobytes

value.
v The syscolattribs.flags column stores a bitmap corresponding to the logging and

access time status, and data integrity setting.

If a user-defined or complex data type contains more than one large object, the
specified large-object storage options apply to all large objects in the type, unless
the storage options are overridden when the large object is created.

Important: The PUT clause does not affect the storage of simple-large-object data
types (BYTE and TEXT). For information on how to store BYTE and TEXT data,
see “Large-Object Data Types” on page 4-33.

Alternative to Full Logging: Instead of full logging, you can turn off logging
when you load the smart large object initially and then turn logging back on once
the object is loaded.

Use the NO LOG option to turn off logging. If you use NO LOG, you can restore
the smart-large-object metadata later to a state in which no structural
inconsistencies exist. In most cases, no transaction inconsistencies will exist either,
but that result is not guaranteed.

Chapter 2. SQL statements 2-299

The following statement creates the greek table. Data values for the table are
fragmented into the dbs1 and dbs2 dbspaces. The PUT clause assigns the
smart-large-object data in the gamma and delta columns to the sb1 and sb2
sbspaces, respectively. The TEXT data values in the eps column are assigned to the
blb1 blobspace.
CREATE TABLE greek
(alpha INTEGER,
beta VARCHAR(150),
gamma CLOB,
delta BLOB,
eps TEXT IN blb1)

FRAGMENT BY EXPRESSION
alpha <= 5 IN dbs1, alpha > 5 IN dbs2
PUT gamma IN (sb1), delta IN (sb2);

FRAGMENT BY clause
Use the FRAGMENT BY clause to create a fragmented table and to specify its
storage distribution scheme. The keywords PARTITION BY are a synonym for
FRAGMENT BY.

FRAGMENT BY clause for tables:

WITH ROWIDS
FRAGMENT BY
PARTITION

�

� �

�

,

ROUND ROBIN IN dbspace
,

PARTITION partition IN dbspace
(1)

EXPRESSION Expression Fragment Clause
(2)

RANGE (fragment_key) Interval Fragment Clause
(3)

LIST (fragment_key) List Fragment Clause

Notes:

1 See “Expression Fragment Clause” on page 2-314

2 See “Interval Fragment clause” on page 2-308

3 See “List fragment clause” on page 2-313

Element Description Restrictions Syntax

column Column to which to apply the
fragmentation strategy

Must be a column within the table “Identifier” on
page 5-21

dbspace Dbspace to store the table
fragment

You can specify no more than 2,048 dbspaces. All
dbspaces that store the fragments must have the
same page size.

“Identifier” on
page 5-21

fragment _key Cast, column, or function
expression on a table column.
This is the expression on which
the table is fragmented.

Columns must be from the current table only “Expression”
on page 4-44

2-300 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

partition Name declared here for a
fragment

Must be unique among the names of fragments of
the table

“Identifier” on
page 5-21

When you fragment a table, the IN keyword is followed by the name of the
storage space where a table fragment is to be stored.

Using the WITH ROWIDS Option: Nonfragmented tables contain a hidden
column called rowid, but by default, fragmented tables have no rowid column.
You can use the WITH ROWIDS keywords to add the rowid column to a
fragmented table. Each row is automatically assigned a unique rowid value that
remains stable for the life of the row and that the database server can use to find
the physical location of the row. Each row requires an additional four bytes to store
the rowid.

Important: This is a deprecated feature. Use primary keys as an access method
rather than the rowid column.

You cannot use the WITH ROWIDS clause with typed tables.

Fragmenting by ROUND ROBIN: In a round-robin distribution scheme, specify
at least two dbspaces where you want the fragments to be placed, or specify at
least two fragment names in one or more dbspaces. As records are inserted into the
table, they are placed in the first available fragment. The database server balances
the load among the specified fragments as you insert records and distributes the
rows in such a way that the fragments always maintain approximately the same
number of rows. In this distribution scheme, the database server must scan all
fragments when it searches for a row.

Round-robin fragmentation with large object data types

For simple large objects in tables that contain BYTE or TEXT columns and that are
fragmented by round-robin, you can reserve space for inserting BYTE and TEXT
data by setting the PN_STAGEBLOB_THRESHOLD configuration parameter. For
information about how the database server stages simple large objects in
round-robin fragments, see the description of PN_STAGEBLOB_THRESHOLD in
your IBM Informix Administrator's Reference.

For smart large objects in tables that contain BLOB or CLOB columns, you can use
the PUT clause to specify round-robin fragmentation in a list of sbspaces. When
you include the PUT clause in the CREATE TABLE statement (or in the CREATE
TEMP TABLE statement or in the ALTER TABLE statement), you have the options
to include or not include a FRAGMENT BY clause defining distributed storage for
other columns in the same table. The PUT clause applies a round-robin storage
distribution strategy only to smart large object columns for which it specifies more
than one sbspace. For more information and examples, see the “PUT Clause” on
page 2-296.

Fragmenting by EXPRESSION:

In an expression-based distribution scheme, each fragment expression in a rule
specifies a storage space. Each fragment expression in the rule isolates data and
aids the database server in searching for rows.

To fragment a table by expression, specify one of the following rules:

Chapter 2. SQL statements 2-301

v Range rule
A range rule specifies fragment expressions that use a range to specify which
rows are placed in a fragment, as the next example shows:
FRAGMENT BY EXPRESSION c1 < 100 IN dbsp1,

c1 >= 100 AND c1 < 200 IN dbsp2, c1 >= 200 IN dbsp3;

v Arbitrary rule
An arbitrary rule specifies fragment expressions based on a predefined SQL
expression that typically uses OR clauses to group data, as the following
example shows:
FRAGMENT BY EXPRESSION

zip_num = 95228 OR zip_num = 95443 IN dbsp2,
zip_num = 91120 OR zip_num = 92310 IN dbsp4,
REMAINDER IN dbsp5;

Warning: See the note about the DBCENTURY environment variable and date
values in fragment expressions in the section “Logging Options” on page 2-269.

In databases with the NLSCASE INSENSITIVE property, operations on NCHAR
and NVARCHAR data ignore lettercase, so that the database server treats case
variants among strings composed of same sequence letters as duplicates. If the
fragment keys for a table that is fragmented by expression are NCHAR or
NVARCHAR columns, then each fragment defined by a character expression stores
all lettercase variants that match the expression that defines the fragment. For
example, for the expression lname = ’Garcia’ where lname is a column of type
NCHAR or NVARCHAR, rows with the following values in that column would all
be stored in the same fragment, because the case-insensitive expression evaluates
to TRUE for these (and similar) string values:
’Garcia’ ’garcia’ ’GARCIA’ ’GarCia’ ’gARCia’

For more information about NLSCASE INSENSITIVE databases, see “CREATE
DATABASE statement” on page 2-150, “Duplicate rows in NLSCASE INSENSITIVE
databases” on page 2-663, and “NCHAR and NVARCHAR expressions in
case-insensitive databases” on page 4-28.

User-Defined Functions in Fragment Expressions: For rows that include user-defined
data types, you can use comparison conditions or user-defined functions to define
the range rules. In the following example, comparison conditions define the range
rules for the long1 column, which contains an opaque data type:
FRAGMENT BY EXPRESSION

long1 < ’3001’ IN dbsp1,
long1 BETWEEN ’3001’ AND ’6000’ IN dbsp2,
long1 > ’6000’ IN dbsp3;

An implicit, user-defined cast converts 3001 and 6000 to the opaque type.

Alternatively, you can use user-defined functions to define the range rules for the
opaque data type of the long1 column:
FRAGMENT BY EXPRESSION

(lessthan(long1,’3001’)) IN dbsp1,
(greaterthanorequal(long1,’3001’) AND
lessthanorequal(long1,’6000’)) IN dbsp2,
(greaterthan(long1,’6000’)) IN dbsp3;

Explicit user-defined functions require parentheses around the entire fragment
expression before the IN clause, as the previous example shows.

2-302 IBM Informix Guide to SQL: Syntax

User-defined functions in a fragment expression can be written in SPL or in the C
or Java language. These functions must satisfy four requirements:
v They must evaluate to a Boolean value.
v They must be nonvariant.
v They must reside within the same database as the table.
v They must not generate OUT nor INOUT parameters.

For information on how to create UDRs for fragment expressions, refer to IBM
Informix User-Defined Routines and Data Types Developer's Guide.

Using the REMAINDER Keyword: Use the REMAINDER keyword to specify the
storage space in which to store valid values that fall outside the specified
expression or expressions. If you do not specify a remainder, and a row is inserted
or updated with values that do not correspond to any fragment definition, the
database server returns an error.

The following example uses an arbitrary rule to define five fragments for specific
values of the c1 column, and a sixth fragment for all other values:
CREATE TABLE T1 (c1 INT) FRAGMENT BY EXPRESSION

PARTITION PART_1 (c1 = 10) IN dbs1,
PARTITION PART_2 (c1 = 20) IN dbs1,
PARTITION PART_3 (c1 = 30) IN dbs1,
PARTITION PART_4 (c1 = 40) IN dbs2,
PARTITION PART_5 (c1 = 50) IN dbs2,
PARTITION PART_6 REMAINDER IN dbs2;

Here the first three fragments are stored in partitions of the dbs1 dbspace, and the
other fragments, including the remainder, are stored in named fragments of the
dbs2 dbspace. Explicit fragment names are required in this example, because each
dbspace has multiple partitions.

Fragmenting by LIST:

Fragmenting by list defines fragments that are each based upon a list of discrete
values of the fragment key.

You can use this fragmentation strategy when the values of the fragment key are
categories on a nominal scale that has no quantified order within the set of
categories. Fragmenting by list is useful when a table contains a finite set of values
for the fragment key and queries on the table have an equality predicate on the
fragment key. For example, you can fragment data geographically, based on a list
of the states or provinces within a country. The rows that are stored in each
fragment can be restricted to a single fragment key value, or to a list of values
representing some logical subset of fragment key values, provided that no
fragment key value is shared by two or more fragments.

Fragmenting by list also helps to logically segregate data.

Fragmenting by list supports these features:
v Both a table and its indexes can be fragmented by list.
v The fragment key can be a column expression based on a single column or on

multiple columns.
v The list can optionally include a remainder fragment.
v The list can optionally include a NULL fragment that stores only NULL values.

Chapter 2. SQL statements 2-303

Fragmenting a table by list (or fragmenting an index, in the CREATE INDEX
statement) must satisfy these requirements:
v The list that includes NULL (or IS NULL) cannot include any other value.
v The fragment key must be based on a single row.
v The fragment key must be a column expression. This constant expression can be

based on a single column or on multiple columns.
v Lists cannot include duplicate constant expression values. Each value must be

unique within the FRAGMENT BY LIST clause.

Load, INSERT, MERGE, or UPDATE operations on tables fragmented BY LIST can
fail at runtime under these circumstances:
v The fragment key for a row evaluates to NULL, but the FRAGMENT BY LIST

clause defined no NULL fragment.
v The fragment key for a row matches no constant expression value for any

fragment, but no remainder fragment is defined.

The following is an example of a table fragmented by list:
CREATE TABLE customer

(id SERIAL, fname CHAR(32), lname CHAR(32), state CHAR(2), phone CHAR(12))
FRAGMENT BY LIST (state)

PARTITION p0 VALUES ("KS", "IL") IN dbs0,
PARTITION p1 VALUES ("CA", "OR") IN dbs1,
PARTITION p2 VALUES ("NY", "MN") IN dbs2,
PARTITION p3 VALUES (NULL) IN dbs3,
PARTITION p4 REMAINDER IN dbs3;

In the example above, the table is fragmented on column state, which is called the
fragment key or partitioning key. The fragment key can be a column expression:
FRAGMENT BY LIST (SUBSTR(phone, 1, 3))

The fragment key expression can have multiple columns, as in the following
example:
FRAGMENT BY LIST (fname[1,1] || lname[1,1])

The fragments must be non-overlapping, which means that duplicates are not
allowed in the lists of values. For example, the following expression lists are not
valid for fragments of the same table or index, because their "KS" expressions
overlap:
PARTITION p0 VALUES ("KS", "IL") IN dbs0,
PARTITION p1 VALUES ("CA", "KS") IN dbs1,
PARTITION p0 VALUES ("KS", "OR", "NM") IN dbs0,

The list values must be constant literals. For example, the identifier or variable
name is not allowed in the following list:
PARTITION p0 VALUES (name, "KS", "IL") IN dbs0,

A NULL fragment is a fragment that contains rows with NULL values for the
fragment key column. Unlike FRAGMENT BY EXPRESSION definitions, you
cannot mix NULL and any other list value in the same LIST fragment definition.
For example, the following VALUES list is not valid:
PARTITION p0 VALUES ("KS", "IL", NULL) IN dbs0,

A remainder fragment is a fragment that stores the rows whose fragment key value
does not match any expression in the expression lists of the explicitly defined

2-304 IBM Informix Guide to SQL: Syntax

fragments. If you define a remainder fragment, it must be the last fragment listed
in the FRAGMENT BY or PARTITION BY clause that defines the list fragmentation
strategy.

LIST fragmentation in NLSCASE INSENSITIVE databases

In databases with the NLSCASE INSENSITIVE property, operations on NCHAR
and NVARCHAR data ignore lettercase, so that the database server treats case
variants among strings composed of same sequence letters as duplicates. If the
fragment key is a NCHAR or NVARCHAR column, the list of character
expressions that define a fragment also match any column values that are lettercase
variants of those expressions in the fragmented table.

In following examples, ad_state column values with ’A’ and ’a’ values are stored
in the part0 fragment/partition.
CREATE TABLE addr

(
ad_id NCHAR(100),
ad_street NVARCHAR(255),
ad_apt INT,
ad_state NCHAR(2),
ad_zip1 INT,
ad_zip2 INT,
checksum CHAR(48),
PRIMARY KEY(ad_id)

)
FRAGMENT BY LIST(ad_state)

PARTITION part0 VALUES (’A’, ’B’, ’C’, ’D’) IN dbs1,
PARTITION part1 VALUES (’E’, ’F’, ’G’, ’H’) IN dbs2,
PARTITION part2 VALUES (’I’, ’J’, ’K’, ’L’) IN dbs3,
PARTITION part3 VALUES (’M’, ’N’, ’O’, ’P’) IN dbs4,
PARTITION part4 VALUES (’Q’, ’R’, ’S’, ’T’) IN dbs5,
PARTITION part5 REMAINDER IN dbs6 LOCK MODE ROW;

A query designed to return only rows with the values ’A’ or ’a’ could apply a
filter on the ad_state column so that only the first fragment is scanned in the query
execution plan:
SELECT * FROM addr WHERE ad_state = ’A’;

The above case-insensitive query eliminates all of the fragments except part0 by
scanning only that fragment, where any rows containing ’A’ or ’a’ are stored.

For more information on databases with the NLSCASE INSENSITIVE property, see
“CREATE DATABASE statement” on page 2-150, “Duplicate rows in NLSCASE
INSENSITIVE databases” on page 2-663, and “NCHAR and NVARCHAR
expressions in case-insensitive databases” on page 4-28.
Related reference:
“List fragment clause” on page 2-313

Fragmenting by RANGE INTERVAL:

You can use this storage distribution strategy to assign quantified values of the
fragment key to nonoverlapping intervals within its range of numeric, or DATE, or
DATETIME values.

Distributed storage based on RANGE INTERVAL fragmentation typically partitions
the table into two types of fragments:

Chapter 2. SQL statements 2-305

v range fragments that you explicitly define in the FRAGMENT BY or PARTITION
BY clause

v interval fragments that the database server creates automatically during insert
operations.

To fragment a table or index according to intervals within the range of a fragment
key (also called a partitioning key), you must define the following parameters:
v A fragment-key expression, based a single numeric, DATE, or DATETIME

column.
v At least one range expression. Rows with a fragment-key value within the

specified range are stored in that fragment.
v For each range expression, a list of at least one dbspace in which to store the

corresponding fragment.

Fragments that you explicitly define by specifying a range expression are called
range fragments. The syntax for RANGE INTERVAL fragmentation requires that at
least one fragment be based on a range expression.

For system-generated fragments (called interval fragments) that the database server
creates automatically to store rows in which the fragment-key value exceeds the
upper limit for the current list of fragments, you can specify these additional
parameters:
v An interval size within the range of fragment-key values that each interval

fragment will store.
v A list of dbspaces in which to store interval fragments.

If you specify an interval size but the list of dbspaces is empty, interval fragments
are stored in the same dbspaces that store the range fragments. If you specify no
interval size, automatic creation of interval fragments is disabled. In that case,
range fragments can store rows whose fragment-key values are within the
specified ranges, but the table cannot store rows that have fragment-key values
outside those ranges.

The CREATE INDEX statement also supports RANGE INTERVAL fragmentation
strategies. If a table has an attached index defined with the same FRAGMENT BY
RANGE syntax, corresponding index fragments (with the same names as the new
table fragments) are similarly created automatically when rows outside the existing
intervals are inserted.

A table or index fragmented by intervals of a range does not support a
REMAINDER fragment, because if you define all the parameters that are identified
above, the database server automatically creates new interval fragments to store
inserted rows that have fragment-key values outside the range of any existing
fragment.

For tables that have no NOT NULL constraint, you can define a NULL fragment
by specifying VALUES IS NULL as the range expression.

The RANGE INTERVAL fragmentation strategy is useful when all possible
fragment-key values in a growing table are not known, and the DBA does not
want to preallocate fragments for data that is not yet there.

The following is an example of a table fragmented by range interval, using an
integer column as the partitioning key:

2-306 IBM Informix Guide to SQL: Syntax

CREATE TABLE employee (id INTEGER, name CHAR(32), basepay DECIMAL (10,2),
varpay DECIMAL (10,2), dept CHAR(2), hiredate DATE)

FRAGMENT BY RANGE (id)
INTERVAL (100) STORE IN (dbs1, dbs2, dbs3, dbs4)

PARTITION p0 VALUES IS NULL IN dbs0,
PARTITION p1 VALUES < 200 IN dbs1,
PARTITION p2 VALUES < 400 IN dbs2;

In this table
v the value of the interval size is 100,
v the fragment key is the value of the employee.id column,
v and the VALUES IS NULL keywords define p0 as the table fragment to store rows

that have no id column value.

When employee ID exceeds 199, fragments are created automatically in intervals of
100, the specified interval size.

If a row is inserted with an employee ID of 405, a new interval fragment is created
to accommodate the row. The new fragment holds rows with id column values in
the range >= 400 AND < 500.

If a row is updated and the employee ID is modified to 821, the database server
creates a new fragment to accommodate the new row. The fragment holds rows
with id column values in the range >= 800 AND < 900.

The interval fragments are created in round-robin fashion in the dbspaces specified
in the STORE IN clause. If this clause had been omitted, interval fragments would
be created in the dbspaces that store the range fragments (dbspaces dbs0, dbs1 and
dbs2 in the previous example). If a dbspace specified for the interval fragment is
full or down, the database server skips that dbspace and selects the next one in the
list.

Note that the range expressions for the interval fragments are non-overlapping,
and there is no remainder fragment.

The fragment key for range interval fragmentation can reference only a single
column. For example, the following specification is not valid:
FRAGMENT BY RANGE (basepay + varpay)

The fragment key can be a column expression, as in the following specification:
FRAGMENT BY RANGE ((ROUND(basepay))

No exclusive lock is required for fragment creation. The fragment-key expression
must evaluate to a numeric, DATE, or DATETIME data type. For example, you can
create a fragment for every month, or for every million customer records. The
interval size specification (that follows the INTERVAL keyword) must be
v a nonzero positive constant expression of a numeric data type (for numeric

fragment keys),
v or of an INTERVAL data type (for DATE or DATETIME fragment keys).

The ALTER FRAGMENT statement of SQL can apply a RANGE INTERVAL storage
distribution to a nonfragmented table or index, as described in “INIT Clause” on
page 2-23. That statement can also modify features of an existing RANGE

Chapter 2. SQL statements 2-307

INTERVAL strategy. For more information and examples, see “MODIFY Clause” on
page 2-34 and “Examples of the MODIFY clause with interval fragments” on page
2-44.
Related reference:
“Interval Fragment clause”

Interval Fragment clause
Use the Interval Fragment clause to store rows in fragments defined by one or
more range expressions, based on a numeric or INTERVAL fragment key. The
database server can create new interval fragments automatically during DML
operations that insert new rows whose fragment key values are outside the range
of any existing fragment.

You can use this syntax to define a set of range fragments to store quantified data.
A range interval fragmentation strategy requires that at least one fragment for
storing rows with non-NULL fragment key values be defined by this syntax.

The Interval Fragment clause of the CREATE TABLE statement supports the
following syntax:

Interval Fragment clause:

INTERVAL ()
intvl_valexpr

�

,

IN (dbspace)
STORE

�

� �

,

PARTITION partition VALUES < range_expr IN dbspace
(1)

VALUES IS NULL

Notes:

1 Use this path no more than once

Element Description Restrictions Syntax

dbspace Name of a dbspace to
store a fragment

You can specify no more than 2,048 dbspaces. All
dbspaces that store the fragments must have the
same page size.

“Identifier” on page 5-21

intvl_
valexpr

Interval value expression
that defines an interval
size in the fragment key
range

Must be a constant literal expression that
evaluates to a numeric or INTERVAL value
compatible with the data type of the fragment
key expression

“Identifier” on page 5-21

partition Name that you declare
here for a range fragment

Must be unique among fragment names of the
same table. If a table and its index use the same
range interval fragmentation strategy, each
index fragment must have the same name as the
corresponding table fragment.

“Identifier” on page 5-21

2-308 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

range _expr Constant expression that
defines the upper bound
for fragment key values
stored in the fragment

Must be a constant literal expression that
evaluates to a numeric, DATETIME, or DATE
data type compatible with the data type of the
fragment key expression

“Constant Expressions” on
page 4-76

The Interval Fragment clause defines non-overlapping intervals in the range of the
fragment key expression that you specify (within parentheses) immediately after
the FRAGMENT BY RANGE keywords of the FRAGMENT BY clause. (The
PARTITION BY RANGE keywords are a synonym for the FRAGMENT BY RANGE
keywords.)

The Interval Fragment clause cannot define a remainder fragment.

The INTERVAL size specification

The intvl_valexpr expression that follows (within parentheses) the INTERVAL
keyword defines the size of an interval within the range of fragment key values.

The data type of the intvl_valexpr expression depends on the data type of the
fragment key column that followed the RANGE keyword:
v If the fragment key is a numeric data type, the intvl_valexpr expression must

evaluate to a numeric value. A numeric intvl_valexpr expression must be a
constant expression greater than zero, with no fractional part.

v If the fragment key is a DATE or DATETIME data type, the intvl_valexpr
expression must evaluate to an INTERVAL value. An INTERVAL intvl_valexpr
expression must be a constant expression greater than zero.

The minimum value of the intvl_valexpr expression depends on the data type of the
fragment key expression.
v The minimum is a second if the fragment key is a DATETIME column
v The minimum is a day if the fragment key is DATE column
v The minimum is 1 if the fragment key is a numeric column.

You can use a literal number or a literal INTERVAL value as the intvl_valexpr
expression. You can also use the built-in NUMTODSINTERVAL,
NUMTOYMINTERVAL, TO_DSINTERVAL, or TO_YMINTERVAL functions to
specify the intvl_valexpr expression. For the syntax of these functions, and examples
of their use in the Interval Fragment clause, see “TO_YMINTERVAL() function”
on page 6-3 and “TO_DSINTERVAL() function” on page 6-1.

If you specify no intvl_valexpr expression, the automatic creation of interval
fragments is disabled, but empty parentheses are still required after the INTERVAL
keyword to avoid a syntax error.

The STORE IN specification

The dbspace (or the comma-separated list of dbspace names) that follows the
STORE IN keywords identifies storage spaces for new interval fragments that the
server automatically creates when DML operations store rows whose fragment key
values are outside the range of existing fragments. If you specify multiple

Chapter 2. SQL statements 2-309

dbspaces, the database server creates interval fragment in a round-robin fashion in
the dbspaces specified in the STORE IN clause, and declares system-generated
names for the new fragments.

The dbspaces in the STORE IN clause need not be present when the table or index
is created. You can add the dbspaces to the system after creating the table or index.
All of the dbspaces referenced in the Interval Fragment clause must have the same
page size.

If you omit the STORE IN clause, and the table needs to store rows outside the
existing interval and range fragments, the database server automatically creates
new interval fragments in a round-robin fashion in the dbspaces that the
PARTITION specifications list for the range expression fragments.

User-defined range fragments

You must define at least one range fragment in the Interval Fragment clause. Each
fragment declaration requires these elements:
v The PARTITION keyword, followed by a name that you declare for the

fragment. No other fragment of the table can have the same name.
v The VALUES keyword, followed by a Boolean expression with one of the

following formats:
– the less than (<) relational operator and a range expression defining the

upper bound for fragment key values that can be stored in the fragment
– the IS NULL operator. If the fragment key can take a NULL value, you can

use this to define the NULL fragment that stores only the rows with NULL as
their fragment key value.

No more than one fragment can be defined by the IS NULL operator. The NULL
fragment is not required, but if the NULL fragment does not exist, the database
server returns an error if a user attempts to insert a row in which the fragment
key column is NULL.

v The IN keyword, followed by the name of the dbspace that stores the fragment.
This can be a dbspace that the STORE IN specification also references, or a
dbspace that is not included in the STORE IN list.

If the range fragments are not defined in ascending order, the database server sorts
them in ascending order, so that the fragment in the first ordinal position has the
smallest upper bound.

Two fragments in the same Interval Fragment clause cannot have the same upper
bound. None of the range fragments defined in the PARTITION specifications can
overlap. If an (intvl_valexpr) size specification follows the INTERVAL keyword, the
database server issues an error if the difference between the range expressions that
define consecutive range fragments is not the same value as the INTERVAL size
specification.

The NULL fragment is not required, but the database server returns an error if a
user attempts to insert a row in which the fragment key value is NULL, but no
NULL fragment exists.

Output from the dbschema -ss command to display the schema of a table
fragmented by a range interval distribution scheme returns only the range
fragments that the user defined in the CREATE TABLE or ALTER FRAGMENT
statement.

2-310 IBM Informix Guide to SQL: Syntax

The same is true for output from the dbexport -ss command. When data records
are loaded from the dbexport data file, however, one or more additional fragments
are created automatically by the database server, if the data file includes rows with
fragment key values outside the range of any existing fragment.

System-generated interval fragments

When you use the Interval Fragment clause to define range interval fragmentation
for a table or index, it is not necessary to know what the full range of fragment
key values will be. When a row is inserted that does not fit in any range fragment
or interval fragment, the database server automatically creates a new interval
fragment to store the row, based on the interval intvl_valexp value, without DBA
intervention.

The system-generated name for interval partitions of a table or of an index is
sys_pevalpos, where evalpos is the sysfragments.evalpos entry for the fragment in
the system catalog. If a table and its index use the same range interval
fragmentation strategy, each system-generated index fragment will have the same
identifier as a system-generated fragment of the table.

These automatically generated fragments correspond to parts of the fragment key
range that include the new data values. Gaps can separate automatically generated
interval fragments, if between two successive fragments a portion of the range that
is larger than intvl_valexp includes no rows. Gaps are not allowed, however,
between the fragments that you explicitly define in the Interval Fragment clause.

If you specify no intvl_valexp expression, the range fragments that you explicitly
define in the Interval Fragment clause are available to store rows that have
corresponding fragment key values within their range intervals, as are any existing
interval fragments that were generated before the ALTER FRAGMENT statement
disabled the automatic creation of interval fragments. In both cases, however, the
automatic creation of new interval fragments is disabled. If a user attempts to
insert a row whose fragment key value does not fall in the range of any existing
fragment, the database server issues error -772, and the insertion fails.

Output from the dbschema -ss command to display the schema of a table
fragmented by a range interval distribution scheme returns only the range
fragments that the user defined in the CREATE TABLE or ALTER FRAGMENT
statement.

The same is true for output from the dbexport -ss command. When data records
are loaded from the dbexport data file, however, the database server can create
additional interval fragments automatically,
v based on the range fragments,
v and on the fragment key values in the inserted rows,
v and on other storage specifications of the INTERVAL fragment clause, as

registered in the system catalog.

Examples of range interval fragmentation

The following example uses the value of the INT column cust_id as the numeric
fragment key, and defines four range fragments. Interval fragments whose interval
size is 1000000 will be created by the database server for inserted rows with
cust_id values that exceed 7999999:

Chapter 2. SQL statements 2-311

CREATE TABLE customer (cust_id INT, name CHAR (128), street CHAR (1024),
state CHAR (2), zipcode CHAR (5), phone CHAR (12))
FRAGMENT BY RANGE (cust_id)
INTERVAL (1000000) STORE IN (dbs2, dbs1)

PARTITION p0 VALUES < 2000000 IN dbs1,
PARTITION p1 VALUES < 4000000 IN dbs1,
PARTITION p2 VALUES < 6000000 IN dbs2,
PARTITION p3 VALUES < 8000000 IN dbs3;

In the following example of a DATETIME fragment key, if values of the dt1
column exceed the limit of the range fragment that the VALUES clause specifies,
interval fragments will be created in the dbs1 dbspace for rows with year values
after 2005 in 25-year intervals:
CREATE TABLE t1 (c1 int, d1 date, dt1 DATETIME YEAR TO FRACTION)

FRAGMENT BY RANGE (dt1) INTERVAL (INTERVAL(25) YEAR(2) TO YEAR)
PARTITION p1 VALUES <
DATETIME(2006-01-01 00:00:00.00000) YEAR TO FRACTION(5) IN dbs1;

In the next example, the value of the DATE column order_date is the fragment key,
and four range fragments are defined, including p4 for rows that have NULL
values for order_date. For an inserted row where the year value in order_date is
later than 2007, interval fragments will be created automatically in intervals of 1
month after 01/01/2008, with successive fragments created in the dbs1, dbs2, and
dbs3 dbspaces:
CREATE TABLE orders (order_id INT, cust_id INT,

order_date DATE, order_desc CHAR (1024))
FRAGMENT BY RANGE (order_date)
INTERVAL (NUMTOYMINTERVAL (1,’MONTH’)) STORE IN (dbs1, dbs2, dbs3)

PARTITION p0 VALUES < DATE (’01/01/2005’) IN dbs1,
PARTITION p1 VALUES < DATE (’01/01/2006’) IN dbs1,
PARTITION p2 VALUES < DATE (’01/01/2007’) IN dbs2,
PARTITION p3 VALUES < DATE (’01/01/2008’) IN dbs3,
PARTITION p4 VALUES IS NULL in dbs3;

The next example of a DATE fragment key is similar to the previous example, but
here the interval size is specified as 1.5 years. Interval fragments will be created in
intervals of 18 months (1.5 years) for order_date values after 12/31/2009:
CREATE TABLE orders1 (order_id INT, cust_id INT, order_date DATE,

order_desc CHAR (1024))
FRAGMENT BY RANGE (order_date)
INTERVAL (NUMTOYMINTERVAL (1.5,’YEAR’)) STORE IN (dbs1, dbs2, dbs3)

PARTITION p0 VALUES < DATE (’01/01/2004’) IN dbs1,
PARTITION p1 VALUES < DATE (’01/01/2006’) IN dbs1,
PARTITION p2 VALUES < DATE (’01/01/2008’) IN dbs2,
PARTITION p3 VALUES < DATE (’01/01/2010’) IN dbs3;

You cannot insert rows into the orders1 table if the order_date value is missing,
because no NULL fragment is defined. For the syntax to add a NULL fragment to
an existing table that uses range interval fragmentation, see the “ADD Clause” on
page 2-30 topic of the ALTER FRAGMENT statement.
Related reference:
“TO_DSINTERVAL() function” on page 6-1
“TO_YMINTERVAL() function” on page 6-3
“Fragmenting by RANGE INTERVAL” on page 2-305

2-312 IBM Informix Guide to SQL: Syntax

List fragment clause
Use the List Fragment clause to specify a list of fragment key values to store in the
same fragment. The rows assigned to each fragment must match the fragment key
value (or one of a comma-separated list of fragment key values) that defines the
fragment.

List Fragment Clause:

�

,

PARTITION partition List Expression Clause IN dbspace �

�
(1)

, PARTITION partition REMAINDER IN dbspace

List Expression Clause:

�

,

VALUES (const_expr)
(1)

NULL
IS

Notes:

1 Use this path no more than once

Element Description Restrictions Syntax

const_expr Constant expression that
defines the list of
fragment key values for
the fragment to store

Must be a quoted string or a literal value. Each
value in the list must be unique among the lists
for fragments of the same object.

“Constant Expressions” on
page 4-76

dbspace dbspace to store the
fragment

You can specify no more than 2,048 dbspaces. All
of these dbspaces must have the same page size.

“Identifier” on page 5-21

partition Name that you declare
here for a fragment

Must be unique among the names of fragments
of the same object. If a table and its index use
the same list fragmentation strategy, each index
fragment must have the same name as the
corresponding table fragment.

“Identifier” on page 5-21

REMAINDER and NULL fragments in list-based storage distribution

You can optionally define a REMAINDER fragment to store rows that do not
match the list of fragment key values for any fragment.

You can optionally define a NULL fragment to store rows with missing fragment
key values by specifying only IS NULL or NULL after the VALUES keyword in the
List Expression clause for the fragment. You cannot include NULL or IS NULL in an
expression list that also includes any other expression. (In this context, NULL and IS
NULL are keyword synonyms.)

Chapter 2. SQL statements 2-313

If no NULL fragment is defined, and an operation attempts to insert a row that is
missing data for the fragment key, the result depends on whether a REMAINDER
fragment exists:
v If a REMAINDER fragment is defined, the row is stored in the REMAINDER

fragment.
v If no REMAINDER fragment is defined, the database server issues an exception.

If no REMAINDER fragment is defined, and an INSERT, UPDATE, MERGE, or
other DML operation attempts to store a row whose fragment key does not match
a list value for any fragment, the database server issues an exception.

When you define a list-based partitioning scheme for a table or index, the fragment
list can include no more than one NULL fragment, and no more than one
REMAINDER fragment.

If a table that is partitioned BY LIST has no NULL or REMAINDER fragment, but
you subsequently determine that either or both of these fragments are needed, you
can add a NULL fragment or a REMAINDER fragment, or both, to the fragment
list by using the ADD option to the ALTER FRAGMENT statement. For more
information, see “ADD Clause” on page 2-30.
Related reference:
“Fragmenting by LIST” on page 2-303

Expression Fragment Clause

Expression Fragment Clause:

�

,

expr IN dbspace
PARTITION part (expr)

�

�
, REMAINDER IN dbspace

PARTITION part

Element Description Restrictions Syntax

part Name of a fragment Required if part is stored in the same dbspace
as another fragment of this table. Must be
unique among names of fragments of the same
table.

“Identifier” on page 5-21

dbspace dbspace to store the table
fragment

You can specify no more than 2,048 dbspaces. All
dbspaces that store the fragments must have the
same page size.

“Identifier” on page 5-21

expr An expression, based on
column values, defining
a fragment

Must return a Boolean value (true or false).
Data values must be from a single row of the
table.

“Expression” on page 4-44

EXTENT SIZE Options
The EXTENT SIZE options can define the size of storage extents allocated to the
table.

2-314 IBM Informix Guide to SQL: Syntax

EXTENT SIZE Options:

EXTENT SIZE first_kilobytes NEXT SIZE next_kilobytes

Element Description Restrictions Syntax

first_kilobytes Length in kilobytes of the first
extent for the table; default is 16
kilobytes.

Must return a positive number;
maximum is the chunk size

“Expression” on page
4-44

next_kilobytes Length in kilobytes of each
subsequent extent; default is 16
kilobytes.

Must return a positive number;
maximum is the chunk size

“Expression” on page
4-44

Usage

The minimum length of first_kilobytes (and of next_kilobytes) is four times the
disk-page size on your system. For example, if you have a 2-kilobyte page system,
the minimum length is 8 kilobytes.

If the CREATE TABLE (or the CREATE TEMP TABLE) statement includes no IN
dbspace clause, no EXTENT SIZE specification, and no NEXT SIZE specification,
no storage is allocated for the table until at least one data row is inserted into it.
The default size of the first extent is either 16 kilobytes or 4 pages.

The next example specifies a first extent of 20 kilobytes and allows the rest of the
extents to use the default size:
CREATE TABLE emp_info

(
f_name CHAR(20),
l_name CHAR(20),
position CHAR(20),
start_date DATETIME YEAR TO DAY,
comments VARCHAR(255)
)

EXTENT SIZE 20;

If a table contains no data, you can use the ALTER TABLE MODIFY EXTENT SIZE
or ALTER TABLE MODIFY NEXT SIZE statements of SQL to change the size of the
first extent and of the next extent of the empty table. These operations are not
supported, however, for tables that contain one or more rows. For more
information about these options to the ALTER TABLE statement, see “MODIFY
EXTENT SIZE” on page 2-114 and “MODIFY NEXT SIZE clause” on page 2-115.

If you need to revise the extent sizes of a table, you can modify the first extent and
next-extent sizes in the generated schema files of an unloaded table. For example,
to make a database more efficient, you might unload a table, modify the extent
sizes in the schema files, and then create and load a new table. For information
about how to optimize extents, see your IBM Informix Administrator's Guide.
Related concepts:

Extents (Administrator's Guide)
Related reference:
“MODIFY NEXT SIZE clause” on page 2-115

Chapter 2. SQL statements 2-315

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_0485.htm#ids_admin_0485

Deferred extent storage allocation
If IN dbspace is the only storage specification for the new table, then by default 16
kilobytes of storage (or enough storage for four pages, if 4 pages require more than
16 kilobytes) are allocated for the first extent size at the time of table creation.

No storage is allocated for the first extent, however, if the CREATE TABLE
statement includes none of the following storage specifications:
v EXTENT SIZE
v NEXT SIZE
v IN dbspace.

In this case, storage allocation for the first extent is deferred until the first row is
stored in the table.

The same storage allocation deferral applies to tables defined by the CREATE
TEMP TABLE statement that do not include any of the storage specifications listed
above.

When rows are first inserted into a table for which extent allocation has been
deferred, the default size for the first extent is 16 kilobytes. If 16 kilobytes are
insufficient for 4 pages, the first extent size will be 4 pages.

When reverting a Version 11.70 or later database server to an earlier release that
does not support deferred extent allocation for empty tables, you must either drop
or else insert a row into any empty database table that you wish to revert. Empty
external tables that do not support INSERT operations must be dropped.

USING Access-Method Clause
The USING Access Method clause can specify an access method.

USING Access-Method Clause:

USING
(1)

Specific Name �

� �

�

,

,

(config_keyword)
='config_value'

Notes:

1 See “Specific Name” on page 5-77

Element Description Restrictions Syntax

config_keyword Configuration keyword associated
with the specified access method

No more than 18 bytes. The access
method must exist.

Literal keyword

config_value Value of the specified configuration
keyword

No more than 236 bytes. Must be
defined by the access method.

“Quoted String”
on page 4-219

2-316 IBM Informix Guide to SQL: Syntax

A primary-access method is a set of routines to perform DDL and DML operations,
such as create, drop, insert, delete, update, and scan, to make a table available to
the database server. Informix provides a built-in primary-access method.

You store and manage a virtual table either outside of the database server in an
extspace or inside the database server in an sbspace. (See “Storage options” on
page 2-295.) You can access a virtual table with SQL statements. Access to a virtual
table requires a user-defined primary-access method.

DataBlade modules can provide other primary-access methods to access virtual
tables. When you access a virtual table, the database server calls the routines
associated with that access method rather than the built-in table routines. For more
information on these other primary-access methods, refer to your access-method
documentation.

You can retrieve a list of configuration values for an access method from a table
descriptor (mi_am_table_desc) using the MI_TAB_AMPARAM macro. Not all
keywords require configuration values.

The access method must already exist. For example, if an access method called
textfile exists, you can specify it with the following syntax:
CREATE TABLE mybook

(...)
IN myextspace
USING textfile (DELIMITER=’:’);

LOCK MODE Options
Use the LOCK MODE options to specify the locking granularity of the table.

LOCK MODE Options:

LOCK MODE PAGE
ROW

The following table describes the locking-granularity options available.

Granularity Effect

PAGE Obtains and releases one lock on a whole page of rows

This is the default locking granularity. Page-level locking is especially
useful when you know that the rows are grouped into pages in the same
order that you are using to process all the rows. For example, if you are
processing the contents of a table in the same order as its cluster index,
page locking is appropriate.

ROW Obtains and releases one lock per row

Row-level locking provides the highest level of concurrency. If you are
using many rows at one time, however, the lock-management overhead
can become significant. You might also exceed the maximum number of
locks available, depending on the configuration of your database server,
but Informix can support up to 18 million locks on 32-bit platforms, or 600
million locks on 64-bit platforms. Only tables with row-level locking can
support the LAST COMMITTED isolation level feature.

Chapter 2. SQL statements 2-317

You can subsequently change the lock mode of the table with the ALTER TABLE ...
LOCK MODE statement.

Precedence and Default Behavior
In Informix, you do not need to specify the lock mode each time you create a new
table. You can globally set the locking granularity of all new tables in the following
environments:
v Database session of an individual user

You can set the IFX_DEF_TABLE_LOCKMODE environment variable to specify
the lock mode of new tables during your current session.

v Database server (all sessions on the database server)
If you are a DBA, you can set the DEF_TABLE_LOCKMODE configuration
parameter in the ONCONFIG file to determine the lock mode of all new tables
in the database server.
If you are not a DBA, you can set the IFX_DEF_TABLE_LOCKMODE
environment variable for the database server, before you run oninit, to specify
the lock mode of all new tables of the database server.

The LOCK MODE setting in a CREATE TABLE statement takes precedence over
the settings of the IFX_DEF_TABLE_LOCKMODE environment variable and the
DEF_TABLE_LOCKMODE configuration parameter.

If CREATE TABLE specifies no lock mode setting, the default mode depends on
the setting of the IFX_DEF_TABLE_LOCKMODE environment variable or the
DEF_TABLE_LOCKMODE configuration parameter. For information about
IFX_DEF_TABLE_LOCKMODE, refer to the IBM Informix Guide to SQL: Reference.
For information about the DEF_TABLE_LOCKMODE configuration parameter,
refer to the IBM Informix Administrator's Reference.
Related reference:

IFX_DEF_TABLE_LOCKMODE environment variable (SQL Reference)

DEF_TABLE_LOCKMODE configuration parameter (Administrator's Reference)

OF TYPE Clause
Use the OF TYPE clause to create a typed table for an object-relational database. A
typed table is a table in which every row is an object of the named ROW data type
that you specify in this clause.

OF TYPE Clause:

OF TYPE row_type

�

,
(1)

(Multiple-Column Constraint Format)

�

�
UNDER supertable

Notes:

1 See “Multiple-Column Constraint Format” on page 2-285

2-318 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_242.htm#ids_sqr_242
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0051.htm#ids_adr_0051

Element Description Restrictions Syntax

row_type Name of the ROW type on which
this table is based

Must be a named ROW data type
registered in the local database

“Identifier” on page
5-21

supertable Name of the table from which this
table inherits its properties

Must already exist as a typed table “Identifier” on page
5-21

If you use the UNDER clause, the row_type must be derived from the ROW type of
the supertable. A type hierarchy must already exist in which the named ROW type
of the new table is a subtype of the named ROW type of the supertable.

Jagged rows are any set rows from a table hierarchy in which the number of
columns is not fixed among the typed tables within the hierarchy. Some APIs, such
as Informix ESQL/C and Informix JDBC Driver, do not support queries that return
jagged rows.

When you create a typed table, CREATE TABLE cannot specify names for its
columns, because the column names were declared when you created the ROW
type. Columns of a typed table correspond to the fields of the named ROW type.
The ALTER TABLE statement cannot add additional columns to a typed table.

For example, suppose you create a named ROW type, student_t, as follows:
CREATE ROW TYPE student_t

(name VARCHAR(30),
average REAL,
birthdate DATETIME YEAR TO DAY);

If a table is assigned the type student_t in the OF TYPE clause, the table is a typed
table whose columns are of the same name and data type, and in the same order,
as the fields of the named ROW type student_t. For example, the following
CREATE TABLE statement creates a typed table named students whose type is
student_t:
CREATE TABLE students OF TYPE student_t;

The students table has the following columns:
name VARCHAR(30)
average REAL
birthdate DATETIME YEAR TO DAY

For more information about named ROW types, refer to the “CREATE ROW TYPE
statement” on page 2-241.

Using Large-Object Data in Typed Tables
Use the BLOB or CLOB instead of BYTE or TEXT data types when you create a
typed table that contains columns for large objects. For backward compatibility,
you can create a named-ROW type that contains BYTE or TEXT fields and use that
ROW type to re-create an existing (untyped) table as a typed table. Although you
can use a ROW type that contains BYTE or TEXT fields to create a typed table,
such a ROW type is not valid as a column. You can, however, use a ROW type that
contains BLOB or CLOB fields both in typed tables and in columns.

Using the UNDER Clause
Use the UNDER clause to specify inheritance (that is, define the new table as a
subtable). The subtable inherits properties from the specified supertable. In
addition, you can define new properties specific to the subtable.

Chapter 2. SQL statements 2-319

Continuing the example shown in “OF TYPE Clause” on page 2-318, the following
statements create a typed table, grad_students, that inherits all of the columns of
the students table but also has columns for adviser and field_of_study that
correspond to fields in the grad_student_t ROW type:
CREATE ROW TYPE grad_student_t

(adviser CHAR(25),
field_of_study CHAR(40)) UNDER student_t;

CREATE TABLE grad_students OF TYPE grad_student_t UNDER students;

When you use the UNDER clause, the subtable inherits these properties:
v All columns in the supertable
v All constraints defined on the supertable
v All indexes defined on the supertable
v All triggers defined on the supertable.
v All referential integrity constraints
v The access method
v The storage option specification (including fragmentation strategy)

If a subtable defines no fragments, but if its supertable has fragments defined,
then the subtable inherits the fragments of the supertable.

Tip: Any heritable attributes that are added to a supertable after subtables have
been created are automatically inherited by existing subtables. You do not need to
add all heritable attributes to a supertable before you create its subtables.

Restrictions on Table Hierarchies: Inheritance occurs in one direction only,
namely from supertable to subtable. Properties of subtables are not inherited by
supertables. The section “System Catalog Information” on page 2-321 lists the
inherited database objects for which the system catalog maintains no information
regarding subtables.

No two tables in a table hierarchy can have the same data type. For example, the
final line of the next code example is invalid, because the tables tab2 and tab3
cannot have the same row type (rowtype2):

create row type rowtype1 (...);
create row type rowtype2 (...) under rowtype1;
create table tab1 of type rowtype1;
create table tab2 of type rowtype2 under tab1;
create table tab3 of type rowtype2 under tab1; -- This is not valid.

Access Privileges on Tables
The privileges on a table describe both who can access the information in the table
and who can create new tables. For more information about access privileges, see
the description of the “GRANT statement” on page 2-502 statement.

In an ANSI-compliant database, no default table-level privileges exist. You must
grant these privileges explicitly.

Setting the environment variable NODEFDAC to yes prevents default privileges
from being granted to PUBLIC on new tables in a database that is not ANSI
compliant, as described in the IBM Informix Guide to SQL: Reference. For more
information about privileges, see the IBM Informix Guide to SQL: Tutorial.
Related reference:

NODEFDAC environment variable (SQL Reference)

2-320 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_285.htm#ids_sqr_285

System Catalog Information
When you create a table, the database server adds information about the table to
the systables system catalog table, and column information to syscolumns system
catalog table. The sysfragments system catalog table contains information about
fragmentation strategies and the storage location of fragments. The sysblobs
system catalog table contains information about the location of dbspaces and of
simple large objects. (The syschunks table in the sysmaster database contains
information about the location of smart large objects.)

The systabauth, syscolauth, sysfragauth, sysprocauth, sysusers, and
sysxtdtypeauth tables contain information about the discretionary access privileges
that various CREATE TABLE options require.

The sysextcols, sysextdfiles, and sysexternal tables contain additional information
about objects that the CREATE EXTERNAL TABLE statement registers in the
database.

The systables, sysxtdtypes, and sysinherits system catalog tables provide
information about typed tables. For typed-table hierarchies, constraints, indexes,
and triggers are recorded in the system catalog for the supertable, but not for
subtables that inherit them. Fragmentation information, however, is recorded for
both supertables and subtables. For more information about inheritance, refer to
the IBM Informix Guide to SQL: Tutorial.
Related concepts:

System catalog tables (SQL Reference)
Related reference:

syschunks (Administrator's Reference)

CREATE TEMP TABLE statement
Use the CREATE TEMP TABLE statement to create a temporary table in the
current database.

Syntax

�� �

,
(1)

CREATE TEMP TABLE table (Column Definition
IF NOT EXISTS

�

�

�

)
,

(2)
, Multiple-Column Constraint Format

(1)
Column Definition

WITH NO LOG
�

Chapter 2. SQL statements 2-321

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0216.htm#ids_adr_0216

�
(3) (4)

Storage Options

�

�
(5) (6)

LOCK MODE Options USING Access-Method Clause

��

Notes:

1 See “Column definition” on page 2-323

2 See “Multiple-Column Constraint Format” on page 2-325

3 Informix extension

4 See “Storage options for temporary tables” on page 2-326

5 See “LOCK MODE Options” on page 2-317

6 See “USING Access-Method Clause” on page 2-316

Element Description Restrictions Syntax

table Name declared here for a table Must be unique in session.
See “Declaring a name for a
temporary table” on page
2-323

“Identifier” on page 5-21

Usage

You must have the Connect privilege on the database to create a temporary table.
The temporary table is visible only to the user who created it.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a temporary table of
the specified name already exists in the current session.

You can also define indexes and constraints on temporary tables that you define
with the CREATE TEMP TABLE statement.

In DB-Access, using the CREATE TEMP TABLE statement outside the CREATE
SCHEMA statement generates warnings if you set DBANSIWARN.

In ESQL/C, the CREATE TEMP TABLE statement generates warnings if you use
the -ansi flag or set the DBANSIWARN environment variable.
Related concepts:

Environment variables in Informix products (SQL Reference)
Related reference:
“CREATE TABLE statement” on page 2-265
“ALTER TABLE statement” on page 2-72
“CREATE DATABASE statement” on page 2-150
“DROP TABLE statement” on page 2-446
“SELECT statement” on page 2-654

2-322 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_199.htm#ids_sqr_199

DBSPACETEMP configuration parameter (Administrator's Reference)
“DROP INDEX statement” on page 2-431

Declaring a name for a temporary table
A temporary table is associated with a session, not with a database. When you
create a temporary table, you cannot create another temporary table with the same
name (even for another database) until you drop the first temporary table or end
the session.

The name of a temporary table must follow the naming requirements for SQL
identifiers, but it cannot be a component of a qualified database-object name.
When you create a temporary table with the CREATE TEMP TABLE statement, you
cannot specify any authorization identifier as its owner. Unlike a permanent table, a
temporary table cannot be referenced in an SQL statement by qualifying its
identifier with an owner name, or a database name, or a database server name.

The name of a temporary table must be different from the name of any other table,
view, sequence object, or synonym in the current database server. Otherwise, the
temporary table takes precedence in your session over any permanent table of the
same name. The name that you declare for the temporary table, however, need not
be different from the temporary table names that are declared in other sessions of
the same database server.

If you issue a cross-database DML statement that references a remote permanent
table while your local database contains a temporary table with the same name,
the DML statement accesses that local temporary table, rather than the remote
permanent table.

Column definition
Use the Column Definition segment of the CREATE TEMP TABLE statement to
declare the name and the data type (and optionally a default value and
constraints) of a single column of the temporary table.

Column Definition:

column
(1)

Data Type �

� �

(2) (3)
DEFAULT Clause

(2) (4)
Single-Column Constraint Format

Notes:

1 See “Data Type” on page 4-23

2 Use this path no more than once

3 See “DEFAULT Clause” on page 2-272

4 See “Single-Column Constraint Format” on page 2-324

Chapter 2. SQL statements 2-323

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0046.htm#ids_adr_0046

Element Description Restrictions Syntax

column Name declared here for a column in the table Must be unique in its table “Identifier” on page
5-21

This portion of the CREATE TEMP TABLE statement resembles the corresponding
syntax segment in the CREATE TABLE statement. The differences include these:
v You cannot define a referential constraint on the column.
v The data type cannot be IDSSECURITYLABEL.
v The SECURED WITH label option is not supported for temporary tables.

Just as when you create permanent tables, any explicit or default storage size
specification for a column of a built-in character type, such as CHAR, LVARCHAR,
NCHAR, NVARCHAR, or VARCHAR, is interpreted in units of bytes, unless the
SQL_LOGICAL_CHAR configuration parameter is set to enable logical character
semantics for datatype declarations. See the IBM Informix Administrator's Reference
for more information about the effect of the SQL_LOGICAL_CHAR setting in
locales that support multibyte code sets, such as UTF-8, where a single logical
character can require more than one byte of storage.
Related reference:

SQL_LOGICAL_CHAR configuration parameter (Administrator's Reference)

Single-Column Constraint Format
Use the single-column constraint format to create one or more data-integrity
constraints for a single column in a temporary table.

Single-Column Constraint Format:

� NULL
NOT NULL

UNIQUE
(1)

DISTINCT
PRIMARY KEY

(2)
CHECK Clause

Notes:

1 Informix extension

2 See “CHECK Clause” on page 2-281

This is a subset of the syntax of “Single-Column Constraint Format” on page 2-274
that the CREATE TABLE statement supports.

You can find detailed discussions of specific constraints in these sections.

Constraint
For more information, see

CHECK
“CHECK Clause” on page 2-281

2-324 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076

DISTINCT
“Using UNIQUE or DISTINCT Constraints” on page 2-276

NOT NULL
“Using the NOT NULL Constraint” on page 2-275

NULL “Using the NULL Constraint” on page 2-276

PRIMARY KEY
“Using the PRIMARY KEY Constraint” on page 2-277

UNIQUE
“Using UNIQUE or DISTINCT Constraints” on page 2-276

Constraints that you define on temporary tables are always enabled.

Multiple-Column Constraint Format
Use the multiple-column constraint format to associate one or more columns with
a constraint. This alternative to the single-column constraint format allows you to
associate multiple columns with a constraint.

Multiple-Column Constraint Format:

�

,

NOT NULL (column)
NULL

UNIQUE
(1)

DISTINCT
PRIMARY KEY

(2)
CHECK Clause

Notes:

1 Informix extension

2 See “CHECK Clause” on page 2-281

Element Description Restrictions Syntax

column Name of column or columns on
which the constraint is placed

Must be unique in a table, but the same name can
be in different tables of the same database

“Identifier”
on page 5-21

This is a subset of the syntax of “Multiple-Column Constraint Format” on page
2-285 that the CREATE TABLE statement supports.

This alternative to the single-column constraint segment of CREATE TEMP TABLE
can associate multiple columns with a constraint. Constraints that you define on
temporary tables are always enabled.

The following table indicates where you can find detailed discussions of specific
constraints.

Constraint For more information, see For an example, see

CHECK “CHECK Clause” on page 2-281 “Defining Check Constraints Across Columns”
on page 2-288

Chapter 2. SQL statements 2-325

Constraint For more information, see For an example, see

DISTINCT “Using UNIQUE or DISTINCT
Constraints” on page 2-276

“Examples of the Multiple-Column Constraint
Format” on page 2-287

PRIMARY KEY “Using the PRIMARY KEY Constraint”
on page 2-277

“Defining Composite Primary and Foreign
Keys” on page 2-288

UNIQUE “Using UNIQUE or DISTINCT
Constraints” on page 2-276

“Examples of the Multiple-Column Constraint
Format” on page 2-287

See also the section “Differences Between a Unique Constraint and a Unique
Index” on page 2-277.

Using the WITH NO LOG option
Use the WITH NO LOG option to reduce the overhead of transaction logging for
the temporary table. If you specify WITH NO LOG, data manipulation language
(DML) operations on the temporary table are not included in the transaction log
records.

The WITH NO LOG keywords are required on all temporary tables that you create
in temporary dbspaces. Within a cluster environment, the WITH NO LOG
keywords are required when you create a temporary table on a secondary server.

If the ONCONFIG parameter TEMPTAB_NOLOG is set to 1, logging of temporary
tables is disabled and all temporary tables are non-logging by default. This setting
can improve the performance of operations that use temporary tables, such as
HDR operations. The WITH NO LOG option is not needed when the
TEMPTAB_NOLOG setting has disabled logging of temporary tables. For
information about how to set the TEMPTAB_NOLOG parameter, see your IBM
Informix Administrator's Reference.

If you use the WITH NO LOG option in a database that does not use logging, the
WITH NO LOG keywords of the CREATE TEMP TABLE statement have no effect.
If your database does not support transaction logging, every table behaves as if the
WITH NO LOG option were specified.

The ALTER TABLE statement cannot change the logging status of a temporary
table. Once you turn off logging on a temporary table, you cannot turn it back on;
a temporary table, therefore, is either always logged or else never logged.

The following temporary table is not logged in a database that uses transaction
logging:
CREATE TEMP TABLE tab2 (fname CHAR(15), lname CHAR(15))

WITH NO LOG;

Like all data definition language (DDL) statements of SQL, the CREATE TEMP TABLE
statement above that creates tab2 is logged. The WITH NO LOG keywords, however,
prevent transaction logging of any DELETE, INSERT, LOAD, MERGE, SELECT,
UNLOAD, or UPDATE operations on tab2.

Storage options for temporary tables
Use the Storage Options segment of the CREATE TEMP TABLE statement to
specify the storage location and distribution scheme for the table. This is an
extension to the ANSI/ISO standard for SQL syntax.

2-326 IBM Informix Guide to SQL: Syntax

Storage Options:

IN dbspace
extspace

(1)
FRAGMENT BY Clause

(2)
PUT Clause

(3)
EXTENT SIZE Options

Notes:

1 See “FRAGMENT BY clause” on page 2-300

2 See “PUT Clause” on page 2-296

3 See “EXTENT SIZE Options” on page 2-314

Element Description Restrictions Syntax

dbspace Dbspace or temporary dbspace in which to store the
temporary table.

Must already exist “Identifier” on page
5-21

extspace Name that onspaces assigned to a storage area outside
the database server

Must already exist See documentation for
access method.

Only temporary tables that include BLOB or CLOB columns can include the PUT
clause as a storage option.

If you specify a temporary dbspace after the IN keyword, the database server does
not perform any logical logging nor physical logging of the temporary table. You
cannot mirror a temporary dbspace.

If you specify no extent size option, the default extent size is 8 pages.

To create a fragmented, unique index on a temporary table, you must specify an
explicit expression-based distribution scheme for a temporary table in the CREATE
TEMP TABLE statement. (Fragmentation of the index by ROUND ROBIN is not
supported, and fragmentation by LIST or by INTERVAL is automatic, for a unique
index on a table that uses a list or interval storage partitioning strategy.)

Where temporary tables are stored
The distribution scheme that you specify with the CREATE TEMP TABLE
statement (either with the IN clause or the FRAGMENT BY clause) takes
precedence over the information that the DBSPACETEMP environment variable or
the DBSPACETEMP configuration parameter specifies.

If you do not specify an explicit distribution scheme for a temporary table, its
storage location depends on the DBSPACETEMP environment variable (or
DBSPACETEMP configuration parameter) setting.
v If DBSPACETEMP and DBSPACETEMP are not set, all temporary tables are

created without fragmentation in the same dbspace where the database was
created (or in rootdbs, if the database was not created in another dbspace).

v If only one dbspace for temporary tables is specified by DBSPACETEMP (or by
DBSPACETEMP, if DBSPACETEMP is not set), all temporary tables are created
without fragmentation in the specified dbspace.

v If DBSPACETEMP (or DBSPACETEMP, if DBSPACETEMP is not set) specifies
two or more dbspaces for temporary tables, then each temporary table is created
in one of the specified dbspaces.

Chapter 2. SQL statements 2-327

In a non-logging database, each temporary table is created in a temporary
dbspace; in databases that support transaction logging, the temporary table is
created in a standard dbspace. The database server tracks which of these
dbspaces was most recently used, and when it receives the next request to
allocate temporary storage, the database server uses the next available dbspace
(in a round-robin pattern) to allocate I/O operations evenly among the dbspaces.

For example, if you create three temporary tables in a database with logging where
DBSPACETEMP specifies tempspc1, tempspc2, and tempspc3 as the default
dbspaces for temporary tables, then the first table is created in the dbspace called
tempspc1, the second table is created in tempspc2, and the third one is created in
tempspc3, if these are the only requests for temporary storage.

Temporary tables created with SELECT INTO TEMP and WITH NO LOG are
spread across the dbspaces listed in the DBSPACETEMP configuration parameter
or DBSPACETEMP environment variable. Thus, the DBSPACETEMP (or
DBSPACETEMP) settings that specify multiple dbspaces can result in round-robin
fragmentation across all dbspaces in the temporary dbspace.

If you create a temporary table and specify WITH NO LOG, operations on the
temporary table are not included in the transaction log records. If there is a logged
space in the DBSPACETEMP list, the temporary table created with the SELECT ..
INTO TEMP WITH NO LOG option is fragmented by a round-robin distribution
scheme in the non-logged temporary dbspaces. For example, if from a list of 10
dbspaces, only one dbspace is logged, the table is fragmented by a round-robin
distribution scheme in the 9 non-logged temporary dbspaces.

The following example shows how to insert data into a temporary table called
result_tmp to output to a file the results of a user-defined function (f_one) that
returns multiple rows:
CREATE TEMP TABLE result_tmp(...);
INSERT INTO result_tmp EXECUTE FUNCTION f_one();
UNLOAD TO ’file’ SELECT * FROM result_tmp;

Related reference:

DBSPACETEMP environment variable (SQL Reference)

DBSPACETEMP configuration parameter (Administrator's Reference)

Differences between temporary and permanent tables
Compared to permanent tables, temporary tables differ in these ways:
v They have fewer types of constraints available.
v They have fewer options that you can specify.
v They are not visible to other users or sessions.
v They do not appear in the system catalog tables.
v They are not preserved, as described in the section “Duration of temporary

tables” on page 2-329.

The INFO statement and the Info Menu option of DB-Access cannot reference
temporary tables.

2-328 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_228.htm#ids_sqr_228
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0046.htm#ids_adr_0046

Duration of temporary tables
The duration of a temporary table depends on whether or not it is logged.

A logged temporary table exists until one of the following events occurs:
v The application disconnects.
v The DROP TABLE statement is issued on the temporary table.
v The database is closed.

When any of these events occurs, the temporary table is deleted.

Nonlogging temporary tables include tables that were created using the WITH NO
LOG option of CREATE TEMP TABLE.

A nonlogging temporary table exists until one of the following situations occurs:
v The application disconnects.
v The DROP TABLE statement is issued on the temporary table.
v The database is closed, and the nonlogging temporary table includes at least one

column of a user-defined type, or of a built-in opaque data type. (The Informix
built-in opaque data types include BLOB, BOOLEAN, CLOB, LVARCHAR, and
IDSSECURITYLABEL.)

If the nonlogging temporary table does not include any columns of UDTs or of
built-in opaque data types, you can use that table to transfer data from one
database to another while the application remains connected, because the table is
not destroyed when the database is closed. You must use a permanent table (or
some other strategy) if the data to be transferred includes UDTs or built-in opaque
data types.

CREATE TRIGGER statement
Use the CREATE TRIGGER statement to define a trigger on a table. You can also
use CREATE TRIGGER to define an INSTEAD OF trigger on a view.

This is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE TRIGGER
IF NOT EXISTS (1)

Owner Name

trigger �

�
(2)

Trigger on a Table
INSTEAD OF

(3)
Trigger on a View

ENABLED

DISABLED
��

Notes:

1 See “Owner name” on page 5-49

2 See “Defining a Trigger Event and Action” on page 2-331

Chapter 2. SQL statements 2-329

3 See “INSTEAD OF Triggers on Views” on page 2-362

Element Description Restrictions Syntax

trigger Name that you declare here
for a new trigger

Must be unique among the names of
triggers in the current database

“Identifier” on page
5-21

Usage

A trigger is a database object that, unless disabled, automatically executes a
specified set of SQL statements, called the trigger action, when a specified trigger
event occurs.

The trigger event that initiates the trigger action can be an INSERT, DELETE,
UPDATE, or a SELECT statement. The MERGE statement can also be the triggering
event for an UPDATE, DELETE, or INSERT trigger. The event definition must
specify the table or view on which the trigger is defined. (SELECT or UPDATE
events for triggers on tables can also specify one or more columns.)

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a trigger of the
specified name is already defined on a table or view in the current database.

You can use the CREATE TRIGGER statement in two distinct ways:
v You can define a trigger on a table in the current database.
v You can also define an INSTEAD OF trigger on a view in the current database.

Any SQL statement that is an instance of the trigger event is called a triggering
statement. When the event occurs, triggers defined on tables and triggers defined
on views differ in whether the triggering statement is executed:
v For tables, the trigger event and the trigger action both execute.
v For views, only the trigger action executes, instead of the event.

The CREATE TRIGGER statement can support the integrity of data in the database
by defining rules by which specified DML operations (the triggering events) cause
the database server to take specified actions. The following sections describe the
syntax elements.

Clause Page Effect

Defining a Trigger
Event and Actions

“Defining a Trigger Event and Action”
on page 2-331

Associates triggered actions
with an event

Trigger Modes “Trigger Modes” on page 2-334 Enables or disables the trigger

Insert Events and
Delete Events

“INSERT Events and DELETE Events”
on page 2-337

Defines Insert events and
Delete events

Update Events “UPDATE Event” on page 2-337 Defines Update events

Select Events “SELECT Event” on page 2-339 Defines Select events

Action Clause “Action Clause” on page 2-343 Defines triggered actions

REFERENCING
Clause for Delete

“REFERENCING Clause for Delete” on
page 2-345

Declares qualifier for deleted
values

REFERENCING
Clause for Insert

“REFERENCING Clause for Insert” on
page 2-346

Declares qualifier for inserted
values

2-330 IBM Informix Guide to SQL: Syntax

Clause Page Effect

REFERENCING
Clause for Update

“REFERENCING Clause for Update”
on page 2-347

Declares qualifiers for old and
new values

REFERENCING
Clause for Select

“REFERENCING Clause for Select” on
page 2-347

Declares qualifier for result set
values

Correlated Table
Action

“Correlated Table Action” on page
2-348

Defines triggered actions

Triggered Action “Triggered Action” on page 2-349 Defines triggered actions

INSTEAD OF
Trigger on Views

“INSTEAD OF Triggers on Views” on
page 2-362

Defines a trigger on views

Action Clause of
INSTEAD OF
Triggers

“The Action Clause of INSTEAD OF
Triggers” on page 2-364

Triggered actions on views

Related reference:
“Modes for constraints and unique indexes” on page 2-741
“CREATE VIEW statement” on page 2-373
“RENAME COLUMN statement” on page 2-609
“EXECUTE PROCEDURE statement” on page 2-471
“DROP TRIGGER statement” on page 2-449

Defining a Trigger Event and Action
This syntax defines the event and action of a trigger on a table or on a view.

Trigger on a Table:

�

�

DELETE ON table DELETE and SELECT Subclauses
SELECT

,

OF column
UPDATE ON table UPDATE Subclauses

,

OF column
(1) (2)

INSERT ON table NEW Declaration Correlated Table Action
(3)

Action Clause

DELETE and SELECT Subclauses:

(3)
Action Clause

(4) (2)
OLD Declaration Correlated Table Action

UPDATE Subclauses:

Chapter 2. SQL statements 2-331

(3)
Action Clause

(4) (2)
OLD Declaration Correlated Table Action

(4) (1) (2)
OLD Declaration NEW Declaration Correlated Table Action

Trigger on a View:

INSERT ON view
REFERENCING NEW correlation

AS
DELETE ON view

REFERENCING OLD correlation
AS

UPDATE ON view
REFERENCING OLD correlation

AS NEW correlation
AS

REFERENCING NEW correlation
AS OLD correlation

AS

�

� FOR EACH ROW
(5)

INSTEAD OF Triggered Action

Notes:

1 See “REFERENCING Clause for Insert” on page 2-346

2 See “Correlated Table Action” on page 2-348

3 See “Action Clause” on page 2-343

4 See “REFERENCING Clause for Update” on page 2-347

5 See “INSTEAD OF Triggers on Views” on page 2-362

Element Description Restrictions Syntax

column The name of a column in the triggering table Must exist “Identifier” on page
5-21

correlation Name that you declare here to qualify an old or new
column value (as correlation.column) in a triggered
action

Must be unique in this
trigger

“Identifier” on page
5-21

table, view Name or synonym of the triggering table or view. The
table or view can include an owner. qualifier.

Must exist in the current
database

“Identifier” on page
5-21

The left-hand portion of the main diagram (including the table or view) defines the
trigger event (sometimes called the triggering event). The rest of the diagram declares
correlation names and defines the trigger action (sometimes called the triggered
action). (For triggers on tables, see “Action Clause” on page 2-343 and “Correlated
Table Action” on page 2-348. For INSTEAD OF triggers on views, see “The Action
Clause of INSTEAD OF Triggers” on page 2-364.)

2-332 IBM Informix Guide to SQL: Syntax

Restrictions on Triggers
To create a trigger on a table (or an INSTEAD OF trigger on a view), you must
own the table or view, or have DBA privilege. For the relationship between the
privileges of the trigger owner and those of other users, see “Privileges to Execute
Trigger Actions” on page 2-357.

The table on which you create a trigger must exist in the current database. You
cannot create a trigger on any of the following types of tables:
v A diagnostics table, a violations table, or a table in another database
v A temporary table or a system catalog table
v A table object that the CREATE EXTERNAL TABLE or CREATE SEQUENCE

statement created.

In DB-Access, if you want to define a trigger as part of a schema, place the
CREATE TRIGGER statement inside a CREATE SCHEMA statement.

If you are embedding the CREATE TRIGGER statement in an Informix ESQL/C
program, you cannot use a host variable in the trigger definition.

You can use the DROP TRIGGER statement to remove an existing trigger. If you
use the DROP TABLE or DROP VIEW statement to remove triggering tables or
views from the database, all triggers on those tables or views are also dropped.

The ON EXCEPTION statement of SPL has no effect when it is issued from a
trigger routine, nor from the Action clause or the Correlated Action clause of a
trigger.

The triggered action of an Insert trigger that increments a BIGSERIAL, SERIAL, or
SERIAL8 column does not update the sqlca.sqlerrd[1] field of the SQL
Communication Area structure. The triggered INSERT operation can successfully
increment the serial counter for the column, but the value of the sqlca.sqlerrd[1]
field remains zero, rather than being reset to the new serial value.

You cannot define a DELETE trigger on a table that has a referential constraint that
specifies ON DELETE CASCADE.

UNION subqueries cannot be triggering events. If a valid UNION subquery
specifies a column on which a Select trigger has been defined, the query succeeds,
but the trigger (or the INSTEAD OF trigger on a view) is ignored.

The database server cannot use parallel processing for some triggered actions. PDQ
is automatically disabled in the FOR EACH ROW section for any DML statement
that corresponds to the type of triggering event:
v SELECT statements in the Action clause of a Select trigger
v DELETE or MERGE statements in the Action clause of a Delete trigger
v INSERT or MERGE statements in the Action clause of an Insert trigger
v UPDATE or MERGE statements in the Action clause of an Update trigger.

The scope of this restriction on PDQ is the FOR EACH ROW section. It has no
effect on DML statements in the BEFORE or AFTER sections of the Action clause.

For additional restrictions on INSTEAD OF triggers on views, see “Restrictions on
INSTEAD OF Triggers on Views” on page 2-365.

Chapter 2. SQL statements 2-333

Trigger Modes
You can set a trigger mode to enable or disable a trigger when you create it.

Trigger Modes

��
ENABLED
DISABLED ��

You can create triggers on tables or on views in ENABLED or DISABLED mode.
v When a trigger is created in ENABLED mode, the database server executes the

trigger action when the trigger event is encountered. (If you specify no mode
when you create a trigger, ENABLED is the default mode.)

v When a trigger is created in DISABLED mode, the trigger event does not cause
execution of the trigger action. In effect, the database server ignores the trigger
and its action, even though the systriggers system catalog table maintains
information about the disabled trigger.

You can also use the SET TRIGGERS option of the Database Object Mode
statement to set an existing trigger to the ENABLED or DISABLED mode.

After a DISABLED trigger is enabled by the SET TRIGGERS statement, the
database server can execute the trigger action when the trigger event is
encountered, but the trigger does not perform retroactively. The database server
does not attempt to execute the trigger for rows that were selected, inserted,
deleted, or updated while the trigger was disabled and before it was enabled.

Warning: Because the behavior of a trigger varies according to its ENABLED or
DISABLED mode, be cautious about disabling a trigger. If disabling a trigger will
eventually destroy the semantic integrity of the database, do not disable the
trigger.

Trigger Inheritance in a Table Hierarchy
By default, any trigger that you define on a typed table of Informix is inherited by
all its subtables.

In versions of Informix earlier than version 11.10, however, if you define a trigger
on a subtable of a typed table, that trigger overrides any trigger for the same type
of triggering event (Select, Delete, Insert, or Update) that the subtable inherits from
its supertable. In this version of Informix, however, a table can inherit more than
one trigger that the same triggering event activates, so both triggers are defined for
the same type of event on the subtable.

In all versions of Informix, a trigger that you set on a subtable is inherited by all
its dependent tables, but has no effect on its supertable.

This behavior is important when you require a trigger to be enabled in a
supertable, but to be disabled in its subtable. In Informix 10.00 and in earlier
versions, you cannot use the SET TRIGGERS option of the SET Database Object
Mode statement to disable an inherited trigger selectively within a hierarchy. In
this release, however, disabling a trigger on a table within a table hierarchy has no
effect on inherited triggers. For example, the following statement has no effect on
triggers on table objects that are above or below subtable within a table hierarchy:
SET TRIGGERS FOR subtable DISABLED

2-334 IBM Informix Guide to SQL: Syntax

Similarly, the DROP TRIGGER statement cannot destroy an inherited trigger
without also destroying the trigger on the supertable. In this situation, you must
instead define a trigger with no Action clause on the subtable. Because triggers are
not additive, this empty trigger overrides the inherited trigger and executes for the
subtable and for any subtables under the subtable, which are not subject to further
overrides.

Triggers and SPL Routines
You cannot define a trigger in an SPL routine that is called inside a DML (data
manipulation language) statement, as listed in “Data Manipulation Language
Statements” on page 1-8. Thus, the following statement returns an error if the
sp_items procedure includes the CREATE TRIGGER statement:
INSERT INTO items EXECUTE PROCEDURE sp_items;

You can use the CREATE FUNCTION or CREATE PROCEDURE statement of SQL
with the REFERENCING clause to define trigger routines that include the FOR table
or FOR view specification. These UDRs must include the REFERENCING clause
that declares correlation names for OLD or NEW column values in the specified
table or view. Triggers on the table or view can invoke the trigger routine from the
FOR EACH ROW section of the Triggered Action list. Triggers can also invoke
non-trigger routines from the BEFORE and AFTER sections of the Triggered Action
list, but these UDRs cannot use correlation names to reference the NEW or OLD
column values. The REFERENCING clause in a trigger routine supports the same
syntax as in the CREATE TRIGGER statement, as described in the section
“REFERENCING Clauses” on page 2-345.

Multiple triggers that the same triggering event executes can invoke more than one
trigger routine, and these trigger routines can access the same NEW or OLD
column values by using SPL variables that have the same names or different
names. When a single triggering event executes multiple triggers, the order of
execution is not guaranteed, but all of the BEFORE triggered actions execute before
any of the FOR EACH ROW triggered actions, and all of the AFTER triggered
actions execute after all of the FOR EACH ROW triggered actions.

For UDRs that are not trigger routines, SPL variables are not valid in CREATE
TRIGGER statements. An SPL routine cannot perform INSERT, DELETE, or
UPDATE operations on any table or view that is not local to the current database.
See also “Rules for SPL Routines” on page 2-356 for additional restrictions on SPL
routines that are invoked in triggered actions.

Trigger Events
The trigger event specifies what DML statements can initiate the trigger. The event
can be an INSERT, DELETE, or UPDATE operation on the table or view, or a
SELECT operation that queries the table. Each CREATE TRIGGER statement must
specify exactly one trigger event. Any SQL statement that is an instance of the
trigger event is called a triggering statement.

For each table, you can define triggers that are activated by INSERT, DELETE,
UPDATE, or SELECT statements. For each view, you can define INSTEAD OF
triggers that are activated by INSERT, DELETE, or UPDATE statements. Multiple
triggers on the same table or view can be activated by different types of trigger
events or by the same type of trigger event.

You cannot specify a DELETE event if the triggering table has a referential
constraint that specifies ON DELETE CASCADE.

Chapter 2. SQL statements 2-335

You are responsible for guaranteeing that the triggering statement returns the same
result with and without the trigger action on a table. See also the sections “Action
Clause” on page 2-343 and “Triggered Action” on page 2-349.

A triggering statement from an external database server can activate the trigger.

As the following example shows, an Insert trigger on newtab, managed by
dbserver1, is activated by an INSERT statement from dbserver2. The trigger
executes as if the INSERT originated on dbserver1.
-- Trigger on stores_demo@dbserver1:newtab
CREATE TRIGGER ins_tr INSERT ON newtab

REFERENCING new AS post_ins
FOR EACH ROW(EXECUTE PROCEDURE nt_pct (post_ins.mc));

-- Triggering statement from dbserver2
INSERT INTO stores_demo@dbserver1:newtab

SELECT item_num, order_num, quantity, stock_num, manu_code,
total_price FROM items;

Informix also supports INSTEAD OF triggers on views, which are initiated when a
triggering DML operation references the specified view. The INSTEAD OF trigger
replaces the trigger event with the specified trigger action on a view, rather than
execute the triggering INSERT, DELETE, or UPDATE operation. A view can have
any number of INSTEAD OF trigger defined for each type of INSERT, DELETE, or
UPDATE triggering event.

Trigger Events with Cursors
For triggers on tables, if the triggering statement uses a cursor, each part of the
trigger action (including BEFORE, FOR EACH ROW, and AFTER, if these are
specified for the trigger) is activated for each row that the cursor processes.

This behavior differs from what occurs when a triggering statement does not use a
cursor and updates multiple rows. In this case, any BEFORE and AFTER triggered
actions execute only once, but the FOR EACH ROW action list is executed for each
row processed by the triggering statement. For additional information about
trigger actions, see “Action Clause” on page 2-343

Privileges on the Trigger Event
You must have appropriate Insert, Delete, Update, or Select privilege on the
triggering table or view to execute a triggering INSERT, DELETE, UPDATE, or
SELECT statement as the trigger event. The triggering statement might still fail,
however, if you do not also have the privileges necessary to execute one of the
SQL statements in the trigger action. When the trigger actions are executed, the
database server checks your privileges for each SQL statement in the trigger
definition, as if the statement were being executed independently of the trigger.
For information on the privileges needed to execute the trigger actions, see
“Privileges to Execute Trigger Actions” on page 2-357.

Performance Impact of Triggers
The INSERT, DELETE, UPDATE, and SELECT statements that initiate triggers
might appear to execute slowly because they execute additional SQL statements,
and the user might not know that other actions are occurring.

The execution time for a trigger event depends on the complexity of the trigger
action and whether it initiates other triggers. The time increases as the number of
cascading triggers increases. For more information on triggers that initiate other
triggers, see “Cascading Triggers” on page 2-358.

2-336 IBM Informix Guide to SQL: Syntax

INSERT Events and DELETE Events
INSERT and DELETE events on tables are defined by those keywords and by the
ON table clause, using the following syntax.

INSERT or DELETE Event on a Table:

INSERT
DELETE

ON table

Element Description Restrictions Syntax

table Name of the triggering table Must exist in the database “Identifier” on page
5-21

An Insert trigger is activated when an INSERT statement includes the specified
table (or a synonym for table) in its INTO clause. Similarly, a Delete trigger is
activated when a DELETE statement includes the specified table (or a synonym for
table) in its FROM clause.

The MERGE statement can also activate an Insert trigger, if the specified table of
the Insert trigger is the target table of a MERGE statement that includes the Insert
clause. Similarly, the MERGE statement can also activate a Delete trigger, if the
specified table of the Delete trigger is the target table of a MERGE statement that
includes the Delete clause.

The TRUNCATE TABLE statement does not activate Delete triggers when it
removes all the rows from a table. If an enabled Delete trigger is defined for a
table on which you do not hold the Alter privilege, the database server returns an
error if you attempt to truncate that table, even though the TRUNCATE statement
cannot be the triggering event for a Delete trigger. (For more information about the
discretionary access privileges that truncate operations require, see the
“TRUNCATE statement” on page 2-842.)

For triggers on views, the INSTEAD OF keywords must immediately precede the
INSERT, DELETE, or UPDATE keyword that specifies the type of trigger event,
and the name or synonym of a view (rather than of a table) must follow the ON
keyword. The section “INSTEAD OF Triggers on Views” on page 2-362 describes
the syntax for defining INSTEAD OF trigger events.

Any number of Insert triggers, and any number of Delete triggers, can be defined
on the same table.

If you define a trigger on a subtable within a table hierarchy, and the subtable
supports cascading deletes, then a DELETE operation on the supertable activates
the Delete triggers on the subtable.

See also the section “Re-Entrancy of Triggers” on page 2-353 for information about
dependencies and restrictions on the actions of Insert triggers and Delete triggers.

UPDATE Event
UPDATE events (and SELECT events) can include an optional column list.

Chapter 2. SQL statements 2-337

UPDATE Event:

UPDATE

�

,

OF column

ON table

Element Description Restrictions Syntax

column Column that activates the trigger Must exist in the triggering table “Identifier” on page
5-21

table Name of the triggering table Must exist in the database “Identifier” on page
5-21

The column list is optional. If you omit the OF column list, updating any column of
table activates the trigger.

The OF column clause is not valid for an INSTEAD OF trigger on a view.

An UPDATE on the triggering table can activate the trigger in two cases:
v The UPDATE statement references any column in the column list.
v The UPDATE event definition has no OF column list specification.

Whether it updates one column or more than one column from the column list, a
triggering UPDATE statement activates each Update trigger only once.

The MERGE statement can also activate an Update trigger, if the specified table of a
trigger with no columns list is the target table of the MERGE statement, or if the
Update clause of the MERGE statement references a column in the column list of
the Update trigger.

Defining Multiple Update Triggers
Multiple Update triggers on a table can include the same or different columns. In
the following example, trig3 on the items table includes in its column list
stock_num, which is a triggering column in trig1.
CREATE TRIGGER trig1 UPDATE OF item_num, stock_num ON items

REFERENCING OLD AS pre NEW AS post
FOR EACH ROW(EXECUTE PROCEDURE proc1());

CREATE TRIGGER trig2 UPDATE OF manu_code ON items
BEFORE(EXECUTE PROCEDURE proc2());

CREATE TRIGGER trig3 UPDATE OF order_num, stock_num ON items
BEFORE(EXECUTE PROCEDURE proc3());

When an UPDATE statement updates multiple columns that have different
triggers, the firing order is based on the lowest-numbered column that is defined
in the triggers that actually fired, regardless of whether that lowest-numbered
column was actually the triggering column when the trigger fired. If several
Update triggers are set on the same column or on the same set of columns,
however, the order of trigger execution is not guaranteed.

The following example shows that table taba has four columns (a, b, c, d):
CREATE TABLE taba (a int, b int, c int, d int);

Define trig1 as an update on columns a and c, and define trig2 as an update on
columns b and d, as the following example shows:

2-338 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER trig1 UPDATE OF a, c ON taba
AFTER (UPDATE tabb SET y = y + 1);

CREATE TRIGGER trig2 UPDATE OF b, d ON taba
AFTER (UPDATE tabb SET z = z + 1);

The following example shows a triggering statement for the Update trigger:
UPDATE taba SET (b, c) = (b + 1, c + 1);

Then trig1 for columns a and c executes first, and trig2 for columns b and d
executes next. In this case, the smallest column number in the two triggers is
column 1 (a), and the next is column 2 (b).

SELECT Event
DELETE and INSERT events are defined by those keywords (and the ON table
clause), but SELECT and UPDATE events also support an optional column list.

SELECT Event:

SELECT

�

,

OF column

ON table
' owner '.

Element Description Restrictions Syntax

column Column that activates the trigger Must exist in the triggering table “Identifier” on page
5-21

owner Owner of table Must own table “Owner name” on
page 5-49

table Name of the triggering table Must exist in the database “Identifier” on page
5-21

If you define more than one Select trigger on the same table, the column list is
optional, and the column lists for each trigger can be unique or can duplicate that
of another Select trigger.

A SELECT on the triggering table can activate the trigger in two cases:
v The SELECT statement references any column in the column list.
v The SELECT event definition has no OF column list specification.

(Sections that follow, however, describe additional circumstances that can affect
whether or not a SELECT statement activates a Select trigger.)

Whether it specifies one column or more than one column from the column list, a
triggering SELECT statement activates the Select trigger only once.

The action of a Select trigger cannot include an UPDATE, INSERT, or DELETE on
the triggering table. The action of a Select trigger can include UPDATE, INSERT,
and DELETE actions on tables other than the triggering table. The following
example defines a Select trigger on one column of a table:
CREATE TRIGGER mytrig

SELECT OF cola ON mytab REFERENCING OLD AS pre
FOR EACH ROW (INSERT INTO newtab VALUES(’for each action’));

Chapter 2. SQL statements 2-339

You cannot specify a SELECT event for an INSTEAD OF trigger on a view.

Circumstances When a Select Trigger Is Activated
A query on the triggering table activates a Select trigger in these cases:
v The SELECT statement is a stand-alone SELECT statement.
v The SELECT statement occurs within a UDR called in a select list.
v The SELECT statement is a subquery in the Projection list.
v The SELECT statement is a subquery in the FROM clause.
v The SELECT statement occurs within a UDR called by EXECUTE PROCEDURE

or EXECUTE FUNCTION.
v The SELECT statement selects data from a supertable in a table hierarchy. In this

case the SELECT statement activates Select triggers for the supertable and all the
subtables in the hierarchy.

For information on SELECT statements that do not activate a Select trigger, see
“Circumstances When a Select Trigger Is Not Activated” on page 2-342.

Stand-alone SELECT Statements
A Select trigger is activated if the triggering column appears in the select list of the
Projection clause of a stand-alone SELECT statement.

For example, if a Select trigger is defined to execute whenever column col1 of table
tab1 is selected, then both of the following stand-alone SELECT statements activate
the Select trigger:
SELECT * FROM tab1;
SELECT col1 FROM tab1;

SELECT Statements Within UDRs in the Select List
A Select trigger is activated by a UDR if the UDR contains a SELECT statement
within its statement block, and the UDR also appears in the select list of the
Projection clause of a SELECT statement. For example, assume that a UDR named
my_rtn contains this SELECT statement in its statement block:
SELECT col1 FROM tab1;

Now suppose that the following SELECT statement invokes the my_rtn UDR in its
select list:
SELECT my_rtn() FROM tab2;

This SELECT statement activates the Select trigger defined on column col1 of table
tab1 when the my_rtn UDR is executed.

UDRs That EXECUTE PROCEDURE and EXECUTE FUNCTION
Call

A Select trigger is activated by a UDR if the UDR contains a SELECT statement
within its statement block and the UDR is called by an EXECUTE PROCEDURE or
the EXECUTE FUNCTION statement. For example, assume that the user-defined
procedure named my_rtn contains the following SELECT statement in its statement
block:
SELECT col1 FROM tab1;

Now suppose that the following statement invokes the my_rtn procedure:

2-340 IBM Informix Guide to SQL: Syntax

EXECUTE PROCEDURE my_rtn();

This statement activates the Select trigger defined on column col1 of table tab1
when the SELECT statement within the statement block is executed.

Subqueries in the Select List
A Select trigger can be activated by a subquery that appears in the select list of the
Projection clause of a SELECT statement.

For example, if an enabled Select trigger was defined on col1 of tab1, the subquery
in the following SELECT statement activates that trigger:
SELECT (SELECT col1 FROM tab1 WHERE col1=1), colx, col y FROM tabz;

Subqueries in the FROM Clause of SELECT
Table expressions in the FROM clause of a SELECT statement can be the triggering
event on a table that is referenced by an uncorrelated subquery. In the following
example, the subquery that specifies a table expression is the triggering event for
any enabled Select triggers that are defined on col1 of tab1:
SELECT vcol FROM (SELECT FIRST 5 col1 FROM tab1 ORDER BY col1) vtab(vcol);

Subqueries in the WHERE Clause of DELETE or UPDATE
Subqueries that are specified using the Condition with Subquery syntax in the
WHERE clause of the DELETE statement or the UPDATE statement cannot be the
triggering event for a Select trigger. In the following example, the subquery is not
the triggering event for any enabled Select triggers that are defined on col2 of
tab1::
DELETE tab1 WHERE EXISTS

(SELECT col2 FROM tab1 WHERE col2 > 1024);

The DELETE operation in same example, however, activates any enabled Delete
triggers that are defined on tab1. No enabled Select trigger on tab1 can be
activated by a subquery within a DELETE statement that modifies a table
referenced in the FROM clause of the subquery.

Similarly, the subquery in the WHERE clause of the following UPDATE statement
is not the triggering event for any enabled Select triggers that are defined on col3
of tab1:
UPDATE tab1 SET col3 = col3 + 10

WHERE col3 > ANY
(SELECT col3 from tab1 WHERE col3 > 1);

The same example activates any enabled Update trigger that is defined on col3 of
tab1, but no Select trigger can be updated by the subquery. For additional
restrictions on Select triggers, see “Circumstances When a Select Trigger Is Not
Activated” on page 2-342.

Select Triggers in Table Hierarchies
A subtable in an Informix database inherits the Select triggers that are defined on
its supertable. When you select from a supertable, the SELECT statement activates
the Select triggers on the supertable and the inherited Select triggers on the
subtables in the table hierarchy.

For example, assume that table tab1 is the supertable and table tab2 is the subtable
in a table hierarchy. If the Select trigger trig1 is defined on table tab1, a SELECT

Chapter 2. SQL statements 2-341

statement on table tab1 activates the Select trigger trig1 for the rows in table tab1
and the inherited Select trigger trig1 for the rows in table tab2.

If you add a Select trigger to a subtable, this Select trigger does not override the
Select trigger that the subtable inherits from its supertable, but increases the
number of Select triggers on the subtable. For example, if the Select trigger trig1 is
defined on column col1 in supertable tab1, the subtable tab2 inherits this trigger. If
you define a Select trigger named trig2 on column col1 in subtable tab2, and a
SELECT statement selects from col1 in supertable tab1, this SELECT statement
activates trigger trig1 for the rows in table tab1 and both triggers trig1 and trig2
for the rows in table tab2. (In version 10.0 and in earlier releases of Informix,
however, a Select trigger that you add to the subtable overrides the Select trigger
that the subtable inherited from the supertable.)

Circumstances When a Select Trigger Is Not Activated
A SELECT statement on the triggering table does not activate a Select trigger in
certain circumstances:
v If a subquery or UDR that contains the triggering SELECT statement appears in

any clause of a SELECT statement other than the Projection clause or the FROM
clause, the Select trigger is not activated.
For example, if the subquery or UDR appears in the WHERE clause or HAVING
clause of a SELECT statement, the SELECT statement within the subquery or
UDR does not activate the Select trigger.

v If the trigger action of a Select trigger calls a UDR that includes a triggering
SELECT statement, the Select trigger on the SELECT in the UDR is not activated.
Cascading Select triggers are not supported.

v If a SELECT statement contains a built-in aggregate or user-defined aggregate in
its Projection clause, the Select trigger is not activated. For example, the
following SELECT statement does not activate a Select trigger defined on col1 of
tab1:
SELECT MIN(col1) FROM tab1;

v A SELECT statement that includes a set operator (including INTERSECT,
MINUS, EXCEPT, UNION, or UNION ALL) does not activate a Select trigger.

v The SELECT clause of INSERT does not activate a Select trigger.
v A subquery in the WHERE clause of the DELETE or UPDATE statement cannot

activate a Select trigger on the same table that the DELETE or UPDATE
statement is modifying.

v If the Projection clause of a SELECT includes the DISTINCT or UNIQUE
keywords, the SELECT statement does not activate a Select trigger.

v Select triggers are not supported on scroll cursors.
v If a SELECT statement refers to a remote triggering table, the Select trigger is not

activated on the remote database server.
v Columns in the ORDER BY list of a query activate no Select triggers (nor any

other triggers) unless they are also listed in the Projection clause.

An exception to the last restriction is that a Select trigger can be activated by a
column in the ORDER BY list of a subquery in the FROM clause, whether or not
the same column also appears in the Projection clause. In the following example, a
table expression that includes col1 in the ORDER BY clause (but not in the select
list of the Projection clause) is the triggering event for any enabled Select triggers
that are defined on col1 of tab1:
SELECT vcol FROM (SELECT col2 FROM tab1 ORDER BY col1) vtab(vcol);

2-342 IBM Informix Guide to SQL: Syntax

Action Clause
The Action clause defines the SQL statements that are executed when the trigger is
activated. For a trigger on a table, there can be up to three sections in the Action
clause: BEFORE, AFTER and FOR EACH ROW.
v The BEFORE actions are executed once for each triggering event, before the

database server performs the triggering DML operation.
v The AFTER actions are also executed once for each triggering DML event, after

the operation on the table is complete, in the context of the triggering statement.
v The FOR EACH ROW actions are executed for each row that is inserted,

updated, deleted or selected in the DML operation, after the DML operation is
executed on each row, but before the database server writes the values into the
log and into the table.

If the same table has multiple triggers that are activated by the same triggering
event, the order of trigger execution is not guaranteed, but all of the BEFORE
triggered actions execute before any of the FOR EACH ROW triggered actions, and
all of the AFTER triggered actions execute after all of the FOR EACH ROW
triggered actions.

When you define an INSTEAD OF trigger on a view, the BEFORE and AFTER
keywords are not supported, but the FOR EACH ROW section of the Action clause
is valid. See the section “INSTEAD OF Triggers on Views” on page 2-362 for the
syntax of specifying triggered actions on a view.

The Action clause has the following syntax.

Action Clause:

(1)
BEFORE Triggered Action

(1)
FOR EACH ROW Triggered Action

�

�
(1)

AFTER Triggered Action

Notes:

1 See “Triggered Action” on page 2-349

For the trigger to have any effect on the table, you must define at least one
triggered action, using the keywords BEFORE, FOR EACH ROW, or AFTER to
indicate when the action occurs relative to execution of the triggering event.

You can specify actions for any or all of these three options on a single trigger, but
any BEFORE action list must be specified first, and any AFTER action list must be
specified last. For more information on the Action clause when a REFERENCING
clause is also specified, see “Correlated Table Action” on page 2-348.

BEFORE Actions
The list of BEFORE trigger actions execute once before the triggering statement
executes. Even if the triggering statement does not process any rows, the database
server executes the BEFORE trigger actions.

Chapter 2. SQL statements 2-343

FOR EACH ROW Actions
After a row of the triggering table is processed, the database server executes all of
the statements of the FOR EACH ROW trigger action list; this cycle is repeated for
every row that the triggering statement processes. (But if the triggering statement
does not insert, delete, update, or select any rows, the database server does not
execute the FOR EACH ROW trigger actions.)

The FOR EACH ROW action list of a Select trigger is executed once for each
instance of a row. For example, the same row can appear more than once in the
result of a query joining two tables. For more information on FOR EACH ROW
actions that reference specific values in rows that the triggering statement
processes, see “REFERENCING Clauses” on page 2-345.

As noted in the section “Restrictions on Triggers” on page 2-333, parallel data
processing is disabled in FOR EACH ROW trigger actions for DML statements that
correspond to the type of trigger event. For example, the database server does not
apply PDQ to UPDATE statements in the FOR EACH ROW section of the Action
clause of an Update trigger, nor to DELETE statements in the FOR EACH ROW
section of the Action clause of a Delete trigger. This restriction on PDQ processing
does not apply to DML statements in the BEFORE or AFTER sections of the Action
clause.

AFTER Actions
The specified set of AFTER trigger actions executes once after the action of the
triggering statement is complete. If the triggering statement does not process any
rows, the AFTER trigger actions still execute.

Actions of Multiple Triggers
When an UPDATE or MERGE statement activates multiple triggers, the trigger
actions merge. Assume that taba has columns a, b, c, and d, as this example
shows:
CREATE TABLE taba (a INT, b INT, c INT, d INT);

Next, assume that you define trig1 on columns a and c, and trig2 on columns b
and d. If both triggers specify BEFORE, FOR EACH ROW, and AFTER actions,
then the trigger actions are executed in the following order:
1. BEFORE action list for trigger (a, c)
2. BEFORE action list for trigger (b, d)
3. FOR EACH ROW action list for trigger (a, c)
4. FOR EACH ROW action list for trigger (b, d)
5. AFTER action list for trigger (a, c)
6. AFTER action list for trigger (b, d)

The database server treats all the triggers that are activated by the same triggering
statement as a single trigger, and the trigger action is the merged-action list. All the
rules that govern a trigger action apply to the merged list as one list, and no
distinction is made between the two original triggers.

Guaranteeing Row-Order Independence
In a FOR EACH ROW triggered-action list, the result might depend on the order
of the rows being processed. You can ensure that the result is independent of row
order by following these suggestions:
v Avoid selecting the triggering table in the FOR EACH ROW section.

2-344 IBM Informix Guide to SQL: Syntax

If the triggering statement affects multiple rows in the triggering table, the result
of the SELECT statement in the FOR EACH ROW section varies as each row is
processed. This condition also applies to any cascading triggers. See “Cascading
Triggers” on page 2-358.

v In the FOR EACH ROW section, avoid updating a table with values derived
from the current row of the triggering table.
If the trigger actions modify any row in the table more than once, the final result
for that row depends on the order in which rows from the triggering table are
processed.

v Avoid modifying a table in the FOR EACH ROW section that is selected by
another statement in the same FOR EACH ROW trigger action, including any
cascading trigger actions.

If FOR EACH ROW actions modify a table, the changes might not be complete
when a subsequent action of the trigger refers to the table. In this case, the result
might differ, depending on the order in which rows are processed.

The database server does not enforce rules to prevent these situations because
doing so would restrict the set of tables from which a trigger action can select.
Furthermore, the result of most trigger actions is independent of row order.
Consequently, you are responsible for ensuring that the results of the trigger
actions are independent of row order.

REFERENCING Clauses
The REFERENCING clause for any event declares a correlation name (or for Update
triggers, two correlation names) that can be used to qualify column values in the
triggering table. These names enable FOR EACH ROW actions to reference new or
old column values in the result of trigger events.

They also enable FOR EACH ROW actions to reference old column values that
existed in the triggering table prior to modification by trigger events.

Correlation names are not valid if the triggered action includes both the INSERT
statement and the BEFORE WHEN or AFTER WHEN keywords. This restriction
does not affect triggered actions that specify the FOR EACH ROW keywords
without the BEFORE or AFTER keywords, or that include no INSERT statement.

The REFERENCING clause syntax that is described here for the CREATE
TRIGGER statement is also valid in CREATE FUNCTION and CREATE
PROCEDURE statements that define a trigger routine, provided that the CREATE
FUNCTION or CREATE PROCEDURE statement also includes the FOR table_object
clause to specify the table or view whose FOR EACH ROW actions can invoke the
trigger routine.

REFERENCING Clause for Delete
The REFERENCING clause for a Delete trigger can declare a correlation name for
the deleted value in a column.

REFERENCING Clause for Delete:

REFERENCING OLD
AS

correlation

Chapter 2. SQL statements 2-345

Element Description Restrictions Syntax

correlation Name that you declare here to qualify an old
column value (as correlation.column) in a
triggered action

Must be unique within this CREATE
TRIGGER statement

“Identifier”
on page 5-21

The correlation is a qualifier for the column value in the triggering table before the
triggering statement executed. The correlation is in scope in the FOR EACH ROW
trigger action list. See “Correlated Table Action” on page 2-348.

To use a correlation name in a trigger action to refer to an old column value, prefix
the column name with the correlation name and a period (.) symbol. For
example, if the NEW correlation name is post, refer to the new value for the column
fname as post.fname.

If the trigger event is a DELETE statement, using the new correlation name as a
qualifier causes an error, because the column has no value after the row is deleted.
For the rules that govern the use of correlation names, see “Using Correlation
Names in Triggered Actions” on page 2-352.

You can use the REFERENCING clause for Delete only if you define a FOR EACH
ROW trigger action.

REFERENCING Clause for Insert
The REFERENCING clause for an Insert trigger can declare a correlation name for
the inserted value in a column.

REFERENCING Clause for Insert:

REFERENCING NEW
AS

correlation

Element Description Restrictions Syntax

correlation Name that you declare here to qualify a new
column value (as correlation.column) in a triggered
action

Must be unique within this
CREATE TRIGGER statement

“Identifier”
on page
5-21

The correlation is a name for the new column value after the triggering statement
has executed. Its scope of reference is only the FOR EACH ROW trigger action list;
see “Correlated Table Action” on page 2-348. To use the correlation name, precede
the column name with the correlation name, followed by a period (.) symbol.
Thus, if the NEW correlation name is post, refer to the new value for the column
fname as post.fname.

If the trigger event is an INSERT statement, using the old correlation name as a
qualifier causes an error, because no value exists before the row is inserted. For the
rules that govern how to use correlation names, see “Using Correlation Names in
Triggered Actions” on page 2-352. You can use the INSERT REFERENCING clause
only if you define a FOR EACH ROW trigger action.

The following example illustrates use of the INSERT REFERENCING clause. This
example inserts a row into backup_table1 for every row that is inserted into
table1. The values that are inserted into col1 and col2 of backup_table1 are an
exact copy of the values that were just inserted into table1.

2-346 IBM Informix Guide to SQL: Syntax

CREATE TABLE table1 (col1 INT, col2 INT);
CREATE TABLE backup_table1 (col1 INT, col2 INT);
CREATE TRIGGER before_trig

INSERT ON table1 REFERENCING NEW AS new
FOR EACH ROW
(
INSERT INTO backup_table1 (col1, col2)
VALUES (new.col1, new.col2)
);

As the preceding example shows, the INSERT REFERENCING clause allows you
to refer to data values produced by the trigger action.

REFERENCING Clause for Update
The REFERENCING clause for an Update trigger can declare correlation names for
the original value and for the updated value in a column.

REFERENCING Clause for Update:

REFERENCING �
(1)

OLD correlation
(1) AS

NEW

Notes:

1 Use path no more than once

Element Description Restrictions Syntax

correlation Name that you declare here to qualify an old
or new column value (as correlation.column) in a
triggered action

Must be unique within this
CREATE TRIGGER statement

“Identifier” on
page 5-21

The OLD correlation is the name of the value of the column in the triggering table
before execution of the triggering statement; the NEW correlation identifies the
corresponding value after the triggering statement executes.

The scope of reference of the correlation names that you declare here is only within
the FOR EACH ROW trigger action list. See “Correlated Table Action” on page
2-348.

To refer to an old or new column value, prefix the column name with the
correlation name and a period (.) symbol. For example, if the new correlation name
is post, you can refer to the new value in column fname as post.fname.

If the trigger event is an UPDATE statement, you can define both old and new
correlation names to refer to column values before and after the triggering UPDATE
statement. For rules that govern the use of correlation names, see “Using
Correlation Names in Triggered Actions” on page 2-352.

You can use the UPDATE REFERENCING clause only if you define a FOR EACH
ROW trigger action.

REFERENCING Clause for Select
The REFERENCING clause for a Select trigger can declare a correlation name for
the value in a column.

Chapter 2. SQL statements 2-347

REFERENCING Clause for Select:

REFERENCING OLD
AS

correlation

Element Description Restrictions Syntax

correlation Name that you declare here to qualify an old
or new column value (as correlation.column) in
a triggered action

Must be unique within this
CREATE TRIGGER statement

“Identifier” on
page 5-21

This has the same syntax as the “REFERENCING Clause for Delete” on page 2-345.
The scope of reference of the correlation name that you declare here is only within
the FOR EACH ROW trigger action list. See “Correlated Table Action.”

You use the correlation name to refer to an old column value by preceding the
column name with the correlation name and a period (.) symbol. For example, if
the old correlation name is pre, you can refer to the old value for the column fname
as pre.fname.

If the trigger event is a SELECT statement, using the new correlation name as a
qualifier causes an error because the column does not have a new value after the
column is selected. For the rules that govern the use of correlation names, see
“Using Correlation Names in Triggered Actions” on page 2-352.

You can use the SELECT REFERENCING clause only if you define a FOR EACH
ROW trigger action.

Correlated Table Action
Use the Correlated Trigger Action clause to define the SQL statements that are
executed as the trigger action when a triggering event activates a trigger on a
table.

Correlated Table Action:

(1)
BEFORE Triggered-Action

�

�
(1)

FOR EACH ROW Triggered-Action
(1)

AFTER Triggered-Action

Notes:

1 See “Triggered Action” on page 2-349

If the CREATE TRIGGER statement contains an INSERT REFERENCING clause, a
DELETE REFERENCING clause, an UPDATE REFERENCING clause, or a SELECT
REFERENCING clause, you must include a FOR EACH ROW triggered-action list
in the Action clause. You can also include BEFORE and AFTER triggered-action
lists, but they are optional.

2-348 IBM Informix Guide to SQL: Syntax

For information on the BEFORE, FOR EACH ROW, and AFTER triggered-action
lists, see “Action Clause” on page 2-343

Triggered Action
The Triggered Action specifies a list of SQL statements to execute when a trigger is
activated. The BEFORE, FOR EACH ROW, and AFTER sections of the Action
Clause can each specify different list of triggered actions for the same trigger.

Triggered Action:

� �

,
,

(2)
(INSERT Statement)

(1) (3)
WHEN (Condition) DELETE Statement

(4)
UPDATE Statement

(5)
EXECUTE PROCEDURE Statement

(6)
EXECUTE FUNCTION Statement

Notes:

1 See “Condition” on page 4-5

2 See “INSERT statement” on page 2-545

3 See “DELETE statement” on page 2-404

4 See “UPDATE statement” on page 2-852

5 See “EXECUTE PROCEDURE statement” on page 2-471

6 See “EXECUTE FUNCTION statement” on page 2-462

For a trigger on a table, the trigger action consists of an optional WHEN condition
and the action statements. You can specify a triggered-action list for each WHEN
clause, or you can specify a single list (of one or more trigger actions) if you
include no WHEN clause.

Database objects that are referenced explicitly in the trigger action or in the
definition of the trigger event, such as tables, columns, and UDRs, must exist when
the CREATE TRIGGER statement defines the new trigger.

Attention: When you specify a date expression in the WHEN condition or in an
action statement, make sure to specify four digits instead of two digits for the year.
For more about abbreviated years, see the description of DBCENTURY in the IBM
Informix Guide to SQL: Reference, which also describes how the behavior of some
database objects can be affected by environment variable settings. Like
fragmentation expressions, check constraints, and UDRs, triggers are stored in the
system catalog with the creation-time settings of environment variables that can
affect the evaluation of expressions like the WHEN condition. The database server
ignores any subsequent changes to those settings when evaluating expressions in
those database objects.
Related reference:

DBCENTURY environment variable (SQL Reference)

Chapter 2. SQL statements 2-349

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_209.htm#ids_sqr_209

WHEN Condition
The WHEN condition makes the triggered action dependent on the outcome of a
test. When you include a WHEN condition in a triggered action, the statements in
the triggered action list execute only if the condition evaluates to true. If the
WHEN condition evaluates to false or unknown, then the statements in the
triggered action list are not executed.

If the triggered action is in a FOR EACH ROW section, its condition is evaluated
for each row. For example, the triggered action in the following trigger executes
only if the condition in the WHEN clause is true:
CREATE TRIGGER up_price

UPDATE OF unit_price ON stock
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW WHEN(post.unit_price > pre.unit_price * 2)
(INSERT INTO warn_tab VALUES(pre.stock_num, pre.order_num,

pre.unit_price, post.unit_price, CURRENT));

An SPL routine that executes inside the WHEN condition carries the same
restrictions as a UDR that is called in a data manipulation statement. That is, the
SPL routine cannot contain certain SQL statements. For information on which
statements are restricted, see “Restrictions on SPL Routines in Data-Manipulation
Statements” on page 5-82.

Action Statements
The triggered-action statements can be INSERT, DELETE, UPDATE, EXECUTE
FUNCTION, or EXECUTE PROCEDURE statements. If the action list contains
multiple statements, and the WHEN condition is satisfied (or is absent), then these
statements execute in the order in which they appear in the list.

UDRs as Triggered Actions: Calls to user-defined functions and procedures,
including trigger routines, can be triggered actions. The triggered action list of the
FOR EACH ROW clause can include calls to UDRs that call mi_trigger*()
functions. Triggered actions are the only context in which a trigger routine of
Informix can be invoked. For restrictions on the calling context and the syntax of
trigger routines, see “The REFERENCING and FOR Clauses” on page 2-186.

You can use the EXECUTE FUNCTION statement to call any user-defined function
or trigger function. Use the EXECUTE PROCEDURE statement to call any
user-defined procedure or trigger procedure.

In contexts where Boolean expressions are valid, the Boolean operators
SELECTING, INSERTING, DELETING, and UPDATING are valid in trigger
routines and in other UDRs that are invoked in triggered action statements. These
operators return TRUE ('t') if the triggering event matches the DML operation that
matches the name of the operator; otherwise they return FALSE ('f'). A single
trigger routine can be designed to perform different triggered actions for different
types of triggering events, using these Boolean operators to execute program
blocks that are appropriate to the type of trigger.

For restrictions on using SPL routines as triggered actions, see “Rules for SPL
Routines” on page 2-356 and “Triggers and SPL Routines” on page 2-335.

Achieving a Consistent Result: To guarantee that the triggering statement returns
the same result with and without the triggered actions, make sure that the
triggered actions in the BEFORE and FOR EACH ROW sections do not modify any
table referenced in the following clauses:

2-350 IBM Informix Guide to SQL: Syntax

v WHERE clause
v SET clause in the UPDATE statement
v SELECT clause
v EXECUTE PROCEDURE clause or EXECUTE FUNCTION clause in a

multiple-row INSERT statement.

Declaring keywords of SQL as correlation names: If you use the INSERT,
DELETE, UPDATE, or EXECUTE keywords as a correlation identifier in any of the
following clauses inside a triggered action list, you must qualify them by the owner
name, the table name, or both:
v FROM clause of a SELECT statement
v INTO clause of the EXECUTE PROCEDURE or EXECUTE FUNCTION statement
v GROUP BY clause
v SET clause of the UPDATE statement.

The database server issues a syntax error if these keywords are not qualified when
you include these clauses inside a triggered action.

If you use the keyword as a column name, it must be qualified by the table name;
for example, table.update. If both the table name and the column name are
keywords, they must be qualified by the owner name (for example,
owner.insert.update). If the owner name, table name, and column name are all
keywords, the owner name must be in quotation marks; for example,
'delete'.insert.update. (These are general rules regarding reserved words as
identifiers, rather than special cases for triggers. Your code will be easier to read
and to maintain if you avoid using the keywords of SQL as identifiers.)

The only exception is when these keywords are the first table or column name in
the list, and you do not need to qualify them. For example, delete in the following
statement does not need to be qualified because it is the first column listed in the
INTO clause:
CREATE TRIGGER t1 UPDATE OF b ON tab1

FOR EACH ROW (EXECUTE PROCEDURE p2() INTO delete, d);

The following statements show examples in which you must qualify the column
name or the table name:
v FROM clause of a SELECT statement

CREATE TRIGGER t1 INSERT ON tab1
BEFORE (INSERT INTO tab2 SELECT * FROM tab3, ’owner1’.update);

v INTO clause of an EXECUTE PROCEDURE statement
CREATE TRIGGER t3 UPDATE OF b ON tab1

FOR EACH ROW (EXECUTE PROCEDURE p2() INTO
d, tab1.delete);

An INSTEAD OF trigger on a view cannot include the EXECUTE PROCEDURE
INTO statement among its triggered actions.

v GROUP BY clause of a SELECT statement
CREATE TRIGGER t4 DELETE ON tab1

BEFORE (INSERT INTO tab3 SELECT deptno, SUM(exp)
FROM budget GROUP BY deptno, budget.update);

v SET clause of an UPDATE statement
CREATE TRIGGER t2 UPDATE OF a ON tab1

BEFORE (UPDATE tab2 SET a = 10, tab2.insert = 5);

Chapter 2. SQL statements 2-351

Using Correlation Names in Triggered Actions
These rules apply when you use correlation names in triggered actions:
v You can use the correlation names as qualifiers for the old and new column

values in SQL statements of the FOR EACH ROW triggered-action list and in
the WHEN condition.

v The WHEN conditions and FOR EACH ROW clauses of multiple triggers on the
same table can use different correlated variables in the REFERENCING clauses
of triggers and of trigger routines to reference values in the same column.

v The old and new correlation names refer to all rows affected by the triggering
statement.

v You cannot use the correlation name to qualify a column name in the GROUP
BY, the SET, or the COUNT DISTINCT clause.

v The scope of reference of the correlation names is the entire trigger definition.
This scope is statically determined, meaning that it is limited to the trigger
definition; it does not encompass cascading triggers or columns that are
qualified by a table name in a UDR that is a triggered action, except for trigger
routines that are invoked in the FOR EACH ROW clause.

For additional information on using correlation names in trigger routines, see
“Rules for SPL Routines” on page 2-356.

When to Use Correlation Names
In SQL statements of the FOR EACH ROW list, you must qualify all references to
columns in the triggering table with either the old or new correlation name, unless
the statement is valid independent of the triggered action.

In other words, if a column name inside a FOR EACH ROW triggered action list is
not qualified by a correlation name, even if it is qualified by the triggering table
name, it is interpreted as if the statement were independent of the triggered action.
No special effort is made to search the definition of the triggering table for the
non-qualified column name.

For example, assume that the following DELETE statement is a triggered action
inside the FOR EACH ROW section of a trigger:
DELETE FROM tab1 WHERE col_c = col_c2;

For the statement to be valid, both col_c and col_c2 must be columns from tab1. If
col_c2 is intended to be a correlation reference to a column in the triggering table,
it must be qualified by either the old or the new correlation name. If col_c2 is not
a column in tab1 and is not qualified by either the old or new correlation name,
you get an error.

In a statement that is valid independent of the triggered action, a column name
with no correlation qualifier refers to the current value in the database.

In the triggered action for trigger t1 in the next example, mgr in the WHERE
clause of the correlated subquery is an unqualified column in the triggering table.
In this case, mgr refers to the current column value in empsal because the INSERT
statement is valid independent of the triggered action.
CREATE DATABASE db1;
CREATE TABLE empsal (empno INT, salary INT, mgr INT);
CREATE TABLE mgr (eno INT, bonus INT);
CREATE TABLE biggap (empno INT, salary INT, mgr INT);

2-352 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER t1 UPDATE OF salary ON empsal
AFTER (INSERT INTO biggap SELECT * FROM empsal WHERE salary <

(SELECT bonus FROM mgr WHERE eno = mgr));

In a triggered action, an unqualified column name from the triggering table refers
to the current column value, but only when the triggered statement is valid
independent of the triggered action.

Qualified Versus Unqualified Value
The following table summarizes what value is retrieved when the column name is
qualified by the old or by the new correlation name after various trigger events.

Trigger Event old.column new.column

INSERT No value (error) Inserted value

UPDATE (column updated) Original value Current value (U)

UPDATE (column not updated) Original value Original value (N)

DELETE Original value No value (error)

SELECT Original value No value (error)

When a correlation name has no value, an error is issued only when an SQL or
SPL statement referencing the undefined correlation is executed, rather than when
the correlation name is declared. Refer to the following key when you read the
previous table.

Term Meaning

Original value
Value before the triggering event

Current value
Value after the triggering event

(N) Cannot be changed by triggered action

(U) Can be updated by triggered actions; updated value might be different
from the original value because of preceding triggered actions.

Outside a FOR EACH ROW triggered-action list, you cannot qualify a column
from the triggering table with either the old correlation name or the new
correlation name; it always refers to the current value in the database.

Statements in the trigger action list use whatever collating order was in effect
when the trigger was created, even if a different collation is in effect when the
trigger action is executed. See “SET COLLATION statement” on page 2-728 for
details of how to specify a collating order different from what DB_LOCALE
specifies.

Re-Entrancy of Triggers
In some cases a trigger can be re-entrant. In these cases the triggered action can
reference the triggering table. In other words, both the trigger event and the
triggered action can operate on the same table. The following list summarizes the
situations in which triggers can be re-entrant and the situations in which triggers
cannot be re-entrant:
v The trigger action of an Update trigger cannot be an INSERT or DELETE of the

table that the trigger event updated.

Chapter 2. SQL statements 2-353

v Similarly, the trigger action of an Update trigger cannot be an UPDATE of a
column that the trigger event updated. (But the trigger action of an Update
trigger can update a column that was not updated by the trigger event.)
For example, assume that the following UPDATE statement, which updates
columns a and b of tab1, is the triggering statement:
UPDATE tab1 SET (a, b) = (a + 1, b + 1);

Now consider the trigger actions in the following example. The first UPDATE
statement is a valid trigger action, but the second one is not, because it updates
column b again.
UPDATE tab1 SET c = c + 1; -- OK
UPDATE tab1 SET b = b + 1; -- INVALID

v If the trigger has an UPDATE event, the trigger action can be an EXECUTE
PROCEDURE or EXECUTE FUNCTION statement with an INTO clause that
references a column that was updated by the trigger event or any other column
in the triggering table.
When an EXECUTE PROCEDURE or EXECUTE FUNCTION statement is the
trigger action, the INTO clause for an UPDATE trigger is valid only in FOR
EACH ROW trigger actions, and column names that appear in the INTO clause
must be from the triggering table.
The following statement illustrates the appropriate use of the INTO clause:
CREATE TRIGGER upd_totpr UPDATE OF quantity ON items

REFERENCING OLD AS pre_upd NEW AS post_upd
FOR EACH ROW(EXECUTE PROCEDURE

calc_totpr(pre_upd.quantity,post_upd.quantity,
pre_upd.total_price) INTO total_price);

The column that follows the INTO keyword must be in the triggering table, but
need not have been updated by the trigger event.
When the INTO clause appears in the EXECUTE PROCEDURE or EXECUTE
FUNCTION statement, the database server updates the specified columns with
values returned from the UDR, immediately upon returning from the UDR.

v If the trigger has an INSERT event, the trigger action cannot be an INSERT or
DELETE statement that references the triggering table.

v If the trigger has an INSERT event, the trigger action can be an UPDATE
statement that references a column in the triggering table, but this column
cannot be a column for which a value was supplied by the trigger event.
If the trigger has an INSERT event, and the trigger action updates the triggering
table, the columns in both statements must be mutually exclusive. For example,
assume that the triggering statement inserts values for columns cola and colb of
table tab1:
INSERT INTO tab1 (cola, colb) VALUES (1,10);

Now consider the following trigger actions. The first UPDATE is valid, but the
second one is not, because it updates column colb even though the trigger event
already supplied a value for column colb:
UPDATE tab1 SET colc=100; --OK
UPDATE tab1 SET colb=100; --INVALID

v If the trigger has an INSERT event, the trigger action can be an EXECUTE
PROCEDURE or EXECUTE FUNCTION statement with an INTO clause that
references a column that was supplied by the trigger event or a column that was
not supplied by the trigger event.
When an EXECUTE PROCEDURE or EXECUTE FUNCTION statement is the
trigger action, you can specify the INTO clause for an INSERT trigger only when
the trigger action occurs in the FOR EACH ROW list. In this case, the INTO
clause can contain only column names from the triggering table.

2-354 IBM Informix Guide to SQL: Syntax

The following statement illustrates the valid use of the INTO clause:
CREATE TRIGGER ins_totpr INSERT ON items

REFERENCING NEW AS new_ins
FOR EACH ROW (EXECUTE PROCEDURE calc_totpr

(0, new_ins.quantity, 0) INTO total_price);

The column that follows the INTO keyword can be a column in the triggering
table that was supplied by the trigger event, or a column in the triggering table
that was not supplied by the trigger event.
When the INTO clause appears in the EXECUTE PROCEDURE or the EXECUTE
FUNCTION statement, the database server immediately updates the specified
columns with values returned from the UDR.

v If the trigger action is a SELECT statement, the SELECT statement can reference
the triggering table. The SELECT statement can be a trigger action in the
following instances:
– The SELECT statement appears in a subquery in the WHEN clause or in a

trigger-action statement.
– The trigger action is a UDR, and the SELECT statement appears inside the

UDR.

Re-Entrancy and Cascading Triggers
The cases when a trigger cannot be re-entrant apply recursively to all cascading
triggers, which are considered part of the initial trigger. In particular, this rule
means that a cascading trigger cannot update any columns in the triggering table
that were updated by the original triggering statement, including any
nontriggering columns affected by that statement. For example, assume this
UPDATE statement is the triggering statement:
UPDATE tab1 SET (a, b) = (a + 1, b + 1);

In the cascading triggers of the next example, trig2 fails at runtime because it
references column b, which the triggering UPDATE statement updates:
CREATE TRIGGER trig1 UPDATE OF a ON tab1-- Valid

AFTER (UPDATE tab2 SET e = e + 1);

CREATE TRIGGER trig2 UPDATE OF e ON tab2-- Invalid
AFTER (UPDATE tab1 SET b = b + 1);

Now consider the following SQL statements. When the final UPDATE statement is
executed, column a is updated and the trigger trig1 is activated.

The trigger action again updates column a with an EXECUTE PROCEDURE INTO
statement.
CREATE TABLE temp1 (a INT, b INT, e INT);
INSERT INTO temp1 VALUES (10, 20, 30);

CREATE PROCEDURE proc(val iINT) RETURNING INT,INT;
RETURN val+10, val+20;

END PROCEDURE;

CREATE TRIGGER trig1 UPDATE OF a ON temp1
FOR EACH ROW (EXECUTE PROCEDURE proc(50) INTO a, e);

CREATE TRIGGER trig2 UPDATE OF e ON temp1
FOR EACH ROW (EXECUTE PROCEDURE proc(100) INTO a, e);

UPDATE temp1 SET (a,b) = (40,50);

Chapter 2. SQL statements 2-355

Several questions arise from this example of cascading triggers. First, should the
update of column a activate trigger trig1 again? The answer is no. Because the
trigger was activated, it is not activated a second time. If the trigger action is an
EXECUTE PROCEDURE INTO or EXECUTE FUNCTION INTO statement, the
only triggers that are activated are those that are defined on columns that are
mutually exclusive from the columns updated until then (in the cascade of
triggers) in that table. Other triggers are ignored.

Another question that arises from the example is whether trigger trig2 should be
activated. The answer is yes. The trigger trig2 is defined on column e. Until now,
column e in table temp1 has not been modified. Trigger trig2 is activated.

A final question that arises from the example is whether triggers trig1 and trig2
should be activated after the trigger action in trig2 is performed. The answer is no.
Neither trigger is activated. By this time columns a and e have been updated once,
and triggers trig1 and trig2 have been executed once. The database server ignores
and does not activate these triggers. For more about cascading triggers, see
“Cascading Triggers” on page 2-358.

As noted earlier, an INSTEAD OF trigger on a view cannot include the EXECUTE
PROCEDURE INTO statement among its trigger actions. In addition, an error
results if two views each have INSERT INSTEAD OF triggers with actions defined
to perform INSERT operations on the other view.

Rules for SPL Routines
In addition to the rules listed in “Re-Entrancy of Triggers” on page 2-353, the
following guidelines apply to an SPL routine that is specified as a trigger action:
v The SPL routine cannot be a cursor function (one that returns more than one

row) in a context where only one row is expected.
v You cannot use the old or new correlation name inside the SPL routine unless

the CREATE FUNCTION or CREATE PROCEDURE statement includes the
REFERENCING clause that defines the UDR as a trigger routine. If you need to
use the corresponding values in a routine that is not a trigger routine, you must
pass them as parameters. In this case, the routine should be independent of
triggers, and the old or new correlation name does not have any meaning
outside the trigger.

v A trigger routine must include the REFERENCING clause that can declare a
correlation name for OLD or NEW column values that SPL statements in the
trigger routine can reference.

v A trigger routine must include the FOR table_object clause that specifies the name
of the table or view in the local database whose triggers can invoke this routine.
The triggered action cannot call a trigger routine that does not specify the
triggering table or view.

v Only trigger routines invoked in the FOR EACH ROW section of the Triggered
Action list can operate directly on old or new correlation names that are defined
in the REFERENCING clause of the trigger or of the trigger routine.

v Trigger routines can be invoked only in the FOR EACH ROW section of the
Triggered Action list in the trigger definition.

v Correlated variables for OLD or NEW values can appear in the IF statement of
SPL and in CASE expressions.

v Only correlated variables for NEW values can be on the left-hand side of a LET
expression that references correlated variables. In this case, the FOR clause of the

2-356 IBM Informix Guide to SQL: Syntax

SPL routine must specify a table, rather than a view, and the trigger whose
action invokes the SPL routine cannot be an INSTEAD OF trigger.

v Both OLD and NEW values can be on the right-hand side of a LET expression.
v Only trigger routines that are invoked in the FOR EACH ROW clause can use

the Boolean operators SELECTING, INSERTING, DELETING, and UPDATING.
These operators return TRUE ('t') if the triggering event matches the DML
operation referenced by the name of the operator, and they return FALSE ('f')
otherwise.

v The IF statement of SPL and CASE expressions of SQL can specify these
operators as the condition in a trigger routine.

v Trigger routines must be written in the SPL language. They cannot be written in
an external language, such as the C or Java language, but the trigger routine can
include calls to external language routines, such as the mi_trigger application
programming interface for trigger introspection.

v Trigger routines cannot reference savepoints. Any changes to the data values or
to the schema of the database by a triggered action must be committed or rolled
back in their entirety. Informix does not support the ROLLBACK TO
SAVEPOINT statement in a trigger routine for the partial rollback of a triggered
action.

For more information about the mi_trigger API, refer to the IBM Informix DataBlade
API Programmer's Guide and to the IBM Informix DataBlade API Function Reference.

When you use an SPL routine as a trigger action, the database objects that the
routine references are not checked until the routine is executed.

See also the SPL restrictions in “Triggers and SPL Routines” on page 2-335.

Privileges to Execute Trigger Actions
If you do not own the trigger, but the access privileges held by the trigger owner
include WITH GRANT OPTION, then for each triggered SQL statement you inherit
the privileges of the trigger owner (with grant option), in addition to any
privileges that have been granted to you individually, or through an active or
default role that you hold, or that you hold as a member of the PUBLIC group. If
the triggered action calls a UDR, you need Execute privilege on the UDR, or the
trigger owner must have Execute privilege with grant option.

Important: As a security precaution, discretionary access privileges that the user
holds only from a role (but that were not granted to the user individually or as
member of the PUBLIC group) cannot provide access to tables outside the current
database through a triggered action or through a trigger routine.

As a security precaution, however, discretionary access privileges that the user
holds only from a role (but that were not granted to the user individually or as
member of the PUBLIC group) cannot provide access to tables outside the current
database through a triggered action or through a trigger routine.

While executing the UDR, however, you do not inherit the privileges of the trigger
owner; instead, you receive the privileges granted with the UDR, depending on
whether the routine is a DBA-privileged or an owner-privileged UDR:
1. Privileges for a DBA-privileged UDR

Chapter 2. SQL statements 2-357

When a UDR is registered with the DBA keyword, and you are granted the
Execute privilege on the UDR, the database server automatically grants you
temporary DBA privileges that are available only when you are executing the
UDR.

2. Privileges for an owner-privileged UDR
If the UDR was created without the DBA keyword, but the owner of the UDR
was granted the necessary privileges on the underlying database objects with
the WITH GRANT OPTION keywords, then you inherit these privileges when
you are granted the Execute privilege on the UDR.

For a UDR that is not DBA privileged, all non-qualified database objects that the
UDR references are implicitly qualified by the name of the UDR owner.

If the UDR owner has no WITH GRANT OPTION privilege, you have your
original privileges on the underlying database objects when the UDR executes. For
more information on privileges on SPL routines, refer to the IBM Informix Guide to
SQL: Tutorial.

A view that has no INSTEAD OF trigger has only Select (with grant option)
privilege. If an INSTEAD OF trigger is created on it, however, then the view has
Insert (with grant option) privilege during creation of the trigger. The view owner
can now grant only Select and Insert privileges to others. This is independent of
the trigger action. It is not necessary to obtain Execute (with grant option) privilege
on the procedure or function. By default, Execute privilege (without grant option)
is granted on each UDR in the action list.

You can use roles with triggers. Role-related statements (CREATE ROLE, DROP
ROLE, GRANT, REVOKE, and SET ROLE) and SET SESSION AUTHORIZATION
statements are valid in a UDR that the triggered action invokes. Privileges that a
user acquired by enabling a role or by a SET SESSION AUTHORIZATION
statement are not relinquished when a trigger is executed.

On a complex view (one with columns from more than one table), only the owner
or DBA can create an INSTEAD OF trigger. The owner receives Select privileges
when the trigger is created. Only after obtaining the required Execute privileges
can the owner of the view grant privileges to other users. When the trigger on the
complex view is dropped, all of these privileges are revoked.

Creating a Trigger Action That Anyone Can Use
For a trigger to be executable by anyone who has the privileges to execute the
triggering statement, you can ask the DBA to create a DBA-privileged UDR and
grant you the Execute privilege with the WITH GRANT OPTION right.

You then use the DBA-privileged UDR as the trigger action. Anyone can execute
the trigger action because the DBA-privileged UDR carries the WITH GRANT
OPTION right. When you activate the UDR, the database server applies
privilege-checking rules for a DBA.

Cascading Triggers
The database server allows triggers other than Select triggers to cascade, meaning
that the trigger actions of one trigger can activate another trigger. (For further
information on the restriction against cascading Select triggers, see “Circumstances
When a Select Trigger Is Activated” on page 2-340.)

2-358 IBM Informix Guide to SQL: Syntax

The maximum number of triggers in a cascading series is 61: the initial trigger plus
a maximum of 60 cascading triggers. When the number of cascading triggers in a
series exceeds the maximum, the database server returns error number -748, with
the following message:
Exceeded limit on maximum number of cascaded triggers.

The next example illustrates a series of cascading triggers that enforce referential
integrity on the manufact, stock, and items tables in the stores_demo database.
When a manufacturer is deleted from the manufact table, the first trigger,
del_manu, deletes all the items of that manufacturer from the stock table. Each
DELETE in the stock table activates a second trigger, del_items, that deletes all
items of that manufacturer from the items table. Finally, each DELETE in the items
table triggers SPL routine log_order, creating a record of any orders in the orders
table that can no longer be filled.
CREATE TRIGGER del_manu

DELETE ON manufact REFERENCING OLD AS pre_del
FOR EACH ROW(DELETE FROM stock WHERE manu_code = pre_del.manu_code);

CREATE TRIGGER del_stock
DELETE ON stock REFERENCING OLD AS pre_del
FOR EACH ROW(DELETE FROM items WHERE manu_code = pre_del.manu_code);

CREATE TRIGGER del_items
DELETE ON items REFERENCING OLD AS pre_del
FOR EACH ROW(EXECUTE PROCEDURE log_order(pre_del.order_num));

When you are not using logging, referential integrity constraints on both the
manufact and stock tables prohibit the triggers in this example from executing.
When you use logging, however, the triggers execute successfully because
constraint checking is deferred until all the trigger actions are complete, including
the actions of cascading triggers. For more information about how constraints are
handled when triggers execute, see “Constraint Checking.”

The database server prevents loops of cascading triggers by not allowing you to
modify the triggering table in any cascading trigger action, except with an
UPDATE statement that does not modify any column that the triggering UPDATE
statement updated, or with an INSERT statement. An INSERT trigger can define
UPDATE trigger actions on the same table.

Constraint Checking
When you use logging, the database server defers constraint checking on the
triggering statement until after the statements in the triggered-action list execute.
This is equivalent to executing a SET CONSTRAINTS ALL DEFERRED statement
before executing the triggering statement. After the trigger action is completed, the
database server effectively executes a SET CONSTRAINTS constraint IMMEDIATE
statement to check the constraints that were deferred. This action allows you to
write triggers so that the trigger action can resolve any constraint violations that
the triggering statement creates. For more information, see “SET Database Object
Mode statement” on page 2-737.

Consider the following example, in which the table child has constraint r1, which
references the table parent. You define trigger trig1 and activate it with an INSERT
statement. In the trigger action, trig1 checks to see if parent has a row with the
value of the current cola in child; if not, it inserts it.
CREATE TABLE parent (cola INT PRIMARY KEY);
CREATE TABLE child (cola INT REFERENCES parent CONSTRAINT r1);
CREATE TRIGGER trig1 INSERT ON child

REFERENCING NEW AS new
FOR EACH ROW
WHEN((SELECT COUNT (*) FROM parent

Chapter 2. SQL statements 2-359

WHERE cola = new.cola) = 0)
-- parent row does not exist

(INSERT INTO parent VALUES (new.cola));

When you insert a row into a table that is the child table in a referential constraint,
the row might not exist in the parent table. The database server does not
immediately return this error on a triggering statement. Instead, it allows the
trigger action to resolve the constraint violation by inserting the corresponding row
into the parent table. As the previous example shows, you can check within the
trigger action to see whether the parent row exists, and if so, you can provide logic
to bypass the INSERT action.

For a database without logging, the database server does not defer constraint
checking on the triggering statement. In this case, the database server immediately
returns an error if the triggering statement violates a constraint.

You cannot use the SET Transaction Mode statement in a trigger action. The
database server checks this restriction when you activate a trigger, because the
statement could occur inside a UDR.

Preventing Triggers from Overriding Each Other
When you activate multiple triggers with an UPDATE statement, a trigger can
possibly override the changes that an earlier trigger made. If you do not want the
trigger actions to interact, you can split the UPDATE statement into multiple
UPDATE statements, each of which updates an individual column.

As another alternative, you can create a single update trigger for all columns that
require a trigger action. Then, inside the trigger action, you can test for the column
being updated and apply the actions in the desired order. This approach, however,
is different from having the database server apply the actions of individual
triggers, and it has the following disadvantages:
v If the triggering UPDATE statement sets a column to the current value, you

cannot detect the UPDATE, so the trigger action is skipped. You might wish to
execute the trigger action, even though the value of the column has not changed.

v If the trigger has a BEFORE action, it applies to all columns, because you cannot
yet detect whether a column has changed.

Tables in Remote Databases
You cannot create triggers on tables or views that reside outside the current
database. You can, however, define a trigger on a local table whose trigger action
manipulates a table in another database of the local server instance, or a table in a
database of another server instance.

The following example defines an Update trigger on the newtab table in the
current database of the local Informix server instance, dbserver1, to which the
session is connected. Here the trigger action specifies an UPDATE operation on the
items table of the stores_demo database of the remote dbserver2 Informix server
instance:
CREATE TRIGGER upd_nt UPDATE ON newtab

REFERENCING NEW AS post
FOR EACH ROW(UPDATE stores_demo@dbserver2:items

SET quantity = post.qty WHERE stock_num = post.stock
AND manu_code = post.mc);

In summary, triggers registered in the local database can support local,
cross-database, and cross-server trigger actions:

2-360 IBM Informix Guide to SQL: Syntax

v local trigger actions on a table in the local database
v cross-database trigger actions on a table in another database of the local server

instance
v cross-server trigger actions on a table in a database of a remote server instance.

The cross-server triggered action of a trigger that is defined in a database of a
remote server instance can be the event that activates one or more triggers in the
local database, but in this case, triggered actions of the local trigger cannot be
cross-server operations. If a SELECT, DELETE, INSERT, MERGE, or UPDATE
statement from a remote database server is the event that activates a local trigger
whose action specifies a table in a database of a remote server instance, the trigger
actions fail.

For example, the following combination of trigger action and triggering statement
results in an error when the triggering statement executes:
-- Trigger action from dbserver1 to dbserver3:
CREATE TRIGGER upd_nt UPDATE ON newtab

REFERENCING NEW AS post
FOR EACH ROW(UPDATE stores_demo@dbserver3:items

SET quantity = post.qty WHERE stock_num = post.stock
AND manu_code = post.mc);

-- Triggering statement from dbserver2:
UPDATE stores_demo@dbserver1:newtab

SET qty = qty * 2 WHERE s_num = 5
AND mc = ’ANZ’;

The UPDATE statement above returns an error at run time, because a cross-server
triggering event cannot trigger another cross-server action.

Important: As a security precaution, discretionary access privileges that a user
holds only from a role cannot provide access to tables outside the current database
through a view or through a trigger. Cross-database trigger actions and
cross-server trigger actions require access privileges on the non-local database and
table that were granted directly to the user, or granted to the PUBLIC group.

Logging and Recovery
You can create triggers for databases, with and without logging. If the trigger fails
in a database that has transaction logging, the triggering statement and trigger
actions are rolled back, as if the actions were an extension of the triggering
statement, but the rest of the transaction is not rolled back.

In a database that does not have transaction logging, however, you cannot roll
back when the triggering statement fails. In this case, you are responsible for
maintaining data integrity in the database. The UPDATE, INSERT, or DELETE
action of the triggering statement occurs before the trigger actions in the FOR
EACH ROW section. If the trigger action fails for a database without logging, the
application must restore the row that was changed by the triggering statement to
its previous value.

If a trigger action calls a UDR, but the UDR terminates in an exception-handling
section, any actions that modify data inside that section are rolled back with the
triggering statement. In the following partial example, when the exception handler
traps an error, it inserts a row into the table logtab:

Chapter 2. SQL statements 2-361

ON EXCEPTION IN (-201)
INSERT INTO logtab values (errno, errstr);
RAISE EXCEPTION -201

END EXCEPTION;

When the RAISE EXCEPTION statement returns the error, however, the database
server rolls back this INSERT because it is part of the trigger actions. If the UDR is
executed outside a trigger action, the INSERT is not rolled back.

The UDR that implements a trigger action cannot contain any BEGIN WORK,
COMMIT WORK, or ROLLBACK WORK statements. If the database has
transaction logging, you must either begin an explicit transaction before the
triggering statement, or the statement itself must be an implicit transaction. In any
case, no other transaction-related statement is valid inside the UDR.

You can use triggers to enforce referential actions that the database server does not
currently support. In a database without logging, you are responsible for
maintaining data integrity when the triggering statement fails.

INSTEAD OF Triggers on Views
Use INSTEAD OF triggers to define a specified action for the database server to
perform when a trigger on a view is activated, rather than execute the triggering
INSERT, DELETE, MERGE, or UPDATE statement.

Syntax

�� CREATE TRIGGER trigger INSTEAD OF
ENABLED

Trigger on a View
DISABLED

��

Trigger on a View:

INSERT ON view
REFERENCING NEW correlation

AS
DELETE ON view

REFERENCING OLD correlation
AS

UPDATE ON view
REFERENCING OLD correlation

AS NEW correlation
AS

REFERENCING NEW correlation
AS OLD correlation

AS

�

� FOR EACH ROW
(1)

INSTEAD OF Triggered Action

Notes:

1 See “The Action Clause of INSTEAD OF Triggers” on page 2-364

Element Description Restrictions Syntax

correlation Name that you declare here to qualify
an old or new column value (as
correlation.column) in a triggered action

Must be unique in this statement “Identifier” on page
5-21

2-362 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

trigger Name declared here for the trigger Must be unique among the names of
triggers in the database

“Identifier” on page
5-21

view Name or synonym of the triggering
view. Can include owner. qualifier.

The view or synonym must exist in the
current database

“Identifier” on page
5-21

You can use the trigger action to update the tables underlying the view, in some
cases updating an otherwise “non-updatable” view. You can also use INSTEAD OF
triggers to substitute other actions when INSERT, DELETE, or UPDATE statements
reference specific columns within the database.

In the optional REFERENCING clause of an INSTEAD OF UPDATE trigger, the
new correlation name can appear before or after the old correlation name.

With Informix, the same REFERENCING OLD and REFERENCING NEW syntax is
supported in the CREATE FUNCTION and CREATE PROCEDURE statements for
defining correlation names in trigger routines. A trigger routine can be invoked in
the Action clause for INSTEAD OF triggers on the view that is specified in the
FOR clause of the CREATE FUNCTION or CREATE PROCEDURE statement that
defines the trigger routine.

The specified view is sometimes called the triggering view. The left-hand portion of
this diagram (including the view specification) defines the trigger event. The rest of
the diagram defines correlation names and the trigger action.

Example

Suppose that dept and emp are tables that list departments and employees:
CREATE TABLE dept (

deptno INTEGER PRIMARY KEY,
deptname CHAR(20),
manager_num INT

);
CREATE TABLE emp (

empno INTEGER PRIMARY KEY,
empname CHAR(20),
deptno INTEGER REFERENCES dept(deptno),
startdate DATE

);
ALTER TABLE dept ADD CONSTRAINT(FOREIGN KEY (manager_num)

REFERENCES emp(empno));

The next statement defines manager_info, a view of columns in the dept and emp
tables that includes all the managers of each department:
CREATE VIEW manager_info AS

SELECT d.deptno, d.deptname, e.empno, e.empname
FROM emp e, dept d WHERE e.empno = d.manager_num;

The following CREATE TRIGGER statement creates manager_info_insert, an
INSTEAD OF trigger that is designed to insert rows into the dept and emp tables
through the manager_info view:
CREATE TRIGGER manager_info_insert

INSTEAD OF INSERT ON manager_info --defines trigger event
REFERENCING NEW AS n --new manager data

FOR EACH ROW --defines trigger action
(EXECUTE PROCEDURE instab(n.deptno, n.empno));

Chapter 2. SQL statements 2-363

CREATE PROCEDURE instab (dno INT, eno INT)
INSERT INTO dept(deptno, manager_num) VALUES(dno, eno);
INSERT INTO emp (empno, deptno) VALUES (eno, dno);

END PROCEDURE;

After the tables, view, trigger, and SPL routine have been created, the database
server treats the following INSERT statement as a triggering event:
INSERT INTO manager_info(deptno, empno) VALUES (08, 4232);

This triggering INSERT statement is not executed, but this event causes the trigger
action to be executed instead, invoking the instab() SPL routine. The INSERT
statements in the SPL routine insert new values into both the emp and dept base
tables of the manager_info view.
Related concepts:

Performance implications for triggers (Performance Guide)
Related reference:
“CREATE FUNCTION statement” on page 2-183
“CREATE PROCEDURE statement” on page 2-226
“CREATE VIEW statement” on page 2-373
“DROP TRIGGER statement” on page 2-449
“EXECUTE PROCEDURE statement” on page 2-471
“SET Database Object Mode statement” on page 2-737

Create and use triggers (SQL Tutorial)

The Action Clause of INSTEAD OF Triggers
When the trigger event for the specified view is encountered, the SQL statements of
the trigger action are executed, instead of the triggering statement. Triggers defined
on a view support the following syntax in the action clause.

INSTEAD OF Triggered Action:

�

,
(1)

(INSERT Statement)
(2)

DELETE Statement
(3)

UPDATE Statement
(4)

EXECUTE PROCEDURE Statement
(5)

EXECUTE FUNCTION Statement

Notes:

1 See “INSERT statement” on page 2-545

2 See “DELETE statement” on page 2-404

3 See “UPDATE statement” on page 2-852

4 See “EXECUTE PROCEDURE statement” on page 2-471

5 See “EXECUTE FUNCTION statement” on page 2-462

2-364 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_551.htm#ids_prf_551
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_522.htm#ids_sqt_522

This is not identical to the syntax of the trigger action for a trigger on a table, as
described in the section “Triggered Action” on page 2-349. Because no WHEN
(condition) is supported, the same trigger action is executed whenever the
INSTEAD OF trigger event is encountered, and only one action list can be
specified, rather than a separate list for each condition.

Restrictions on INSTEAD OF Triggers on Views
You must be either the owner of the view or have the DBA status to create an
INSTEAD OF trigger on a view. The owner of a simple view (based on only one
table) has Insert, Update, and Delete privileges. For information about the
relationship between the privileges of the trigger owner and the privileges of other
users, see “Privileges to Execute Trigger Actions” on page 2-357.

If multiple tables underlie a view, only the owner of the view can create a trigger,
but that owner can grant DML privileges on the view to other users.

An INSTEAD OF trigger defined on a view cannot violate the “Restrictions on
Triggers” on page 2-333 and must observe the following additional rules:
v You can define an INSTEAD OF trigger only on a view, not on a table.
v The view must be local to the current database.
v The view cannot be an updatable view WITH CHECK OPTION.
v No SELECT event or WHEN clause is valid in an INSTEAD OF trigger.
v No BEFORE nor AFTER action is valid in an INSTEAD OF trigger.
v No OF column clause is valid in an INSTEAD OF UPDATE trigger.
v Every INSTEAD OF trigger must specify FOR EACH ROW.
v Trigger routines called by INSTEAD OF triggers cannot reference savepoints.

A view can have any number of INSTEAD OF triggers defined for each type of
event (INSERT, DELETE, or UPDATE).

The ON EXCEPTION statement of SPL has no effect when it is issued from the
Action clause of an INSTEAD OF trigger.

Just as with triggers on tables, an INSTEAD OF trigger whose triggered action
inserts a new serial value into a BIGSERIAL, SERIAL, or SERIAL8 column cannot
update the sqlca.sqlerrd[1] field of the SQL Communication Area structure. The
triggered INSERT operation can successfully increment the serial counter for the
column, but the value of the sqlca.sqlerrd[1] field remains zero, rather than being
reset to the serial value. The sqlca.sqlerrd[1] field can show the new serial value
that you insert directly through an updatable view, but that field cannot show the
action of an INSTEAD OF Insert trigger on a serial column.

Updating Views
INSERT, DELETE, or UPDATE statements can directly modify a view only if all of
the following are true of the SELECT statement that defines the view:
v All of the columns in the view are from a single table.
v No columns in the projection list are aggregate values.
v No UNIQUE or DISTINCT keyword is in the SELECT projection list.
v No GROUP BY clause nor UNION operator is in the view definition.
v The query selects no calculated values and no literal values.

By using INSTEAD OF triggers, however, you can circumvent these restrictions on
the view, if the trigger action modifies the base table.

Chapter 2. SQL statements 2-365

CREATE TRUSTED CONTEXT statement
Use the CREATE TRUSTED CONTEXT statement to define a trusted-context object.
This statement is an extension to the ANSI/ISO standard for the SQL language.

You must hold the database security administrator (DBSECADM) role to run this
statement.

Syntax

�� CREATE TRUSTED CONTEXT context USER auth_id
BASED UPON CONNECTION USING SYSTEM AUTHID

�

� � �

�

,
(1)

ATTRIBUTES (ADDRESS ' address ')
,

(1) WITHOUT AUTHENTICATION
WITH USE FOR auth_id

ROLE role WITH AUTHENTICATION
PUBLIC

(1) NO DEFAULT ROLE

DEFAULT ROLE role
(1) DISABLE

ENABLE

��

Notes:

1 Use path no more than once

Element Description Restrictions Syntax

address Communication address
of the client connection
to the database server

Must be unique among communication
addresses of clients for this trusted-context
object, and must conform to the TCP/IP
protocol. Must be an IPv4 address, an IPv6
address, or a secure domain name.

v An IPv4 address must be real host address
(not local host), and must not contain leading
spaces.

v An IPv6 address must be a real host address
(not local host), and must not contain leading
spaces. Must not be an IPv4-mapped IPv6
address.

v A secure domain names must not be a
Dynamic Host Configuration Protocol
(DHCP) address.

“Quoted String” on page
4-219

auth_id Authorization identifier
of a user

Must be a valid authorization identifier. Cannot
be longer than 32 bytes. Must not be the
authorization ID of the statement. Must not be
specified more than once in the WITH USE
FOR clause.

“Owner name” on page
5-49

2-366 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

context Name of the
trusted-context object

Must be unique among the names of trusted
contexts in the database, and cannot begin with
the characters 'SYS' Must identify a
trusted-context object that exists on the
database server.

“Identifier” on page 5-21

role Name of an existing
user-defined or built-in
role

Must exist in the database, and must be unique
among attributes of this trusted-context object

“Owner name” on page
5-49

Usage

The CREATE TRUSTED CONTEXT statement is used to create trusted-context
objects, which can allow users to have trusted connections. Within the CREATE
TRUSTED CONTEXT STATEMENT, each ATTRIBUTES, DEFAULT ROLE,
ENABLE, and WITH USE clause can be specified no more than once, and each
attribute name and corresponding value must be unique.

The USER clause specifies the system authorization ID that can establish the
context created in this SQL statement. The USER clause in this statement functions
on the Informix database server only. USER is equivalent to the clause BASED
UPON CONNECTION USING SYSTEM AUTHID, which is the valid DB2® clause
and can be used on both Informix and DB2 database servers.

The ADDRESS attribute can be specified multiple times, but each address pair must
be unique for the set of attributes. A new address value must be an IPv4 address,
an IPv6 address, or a secure domain name. A secure domain name is converted to
an IP address by the domain name server where a resulting IPv4 or IPv6 address is
determined. When a domain name is converted to an IP address, the result of this
conversion could be a set of one or more IP addresses. In this case, an incoming
connection is said to match the ADDRESS attribute of a trusted-context object if the
IP address from which the connection originates matches any of the IP addresses
to which the domain name was converted.

If you have an existing application that includes the ENCRYPTION or WITH
ENCRYPTION options in the ATTRIBUTES clause, you can leave them without the
database server issuing an SQL error. Except for WITH ENCRYPTION ’NONE’ and
ENCRYPTION ’NONE’, however, these encryption options of the CREATE TRUSTED
CONTEXT statement are not supported for Informix database servers.

The WITH USE FOR clause specifies that the trusted connection can be used by
the specified authorization identifier. The WITH USE FOR clause allows access by
both the list of specific users and by PUBLIC. The WITH AUTHENTICATION
attribute specifies that switching the current user on a trusted connection based on
this trusted-context object to this user requires authentication. The WITHOUT
AUTHENTICATION attribute specifies that switching the current user does not
require authentication. The specifications for a user override the specifications for
PUBLIC. For example, assume that a trusted-context object is defined that allows
access by both PUBLIC WITH AUTHENTICATION and joe WITHOUT AUTHENTICATION. If
the trusted-context object is used by joe, authentication is not required. However,
if the trusted-context object is used by george, who has access only as a member of
PUBLIC, authentication is required.

A ROLE object specifies the user's role (and privileges) when using a trusted
connection. A DEFAULT ROLE identifies a role that exists at the current server,

Chapter 2. SQL statements 2-367

and is used when a user does not have a user-specific role defined as part of the
definition of the trusted-context object. The NO DEFAULT ROLE attribute will
specify that the trusted-context object does not have a default role. The default is
NO DEFAULT ROLE. The role explicitly specified for the user overrides any
default role associated with the trusted-context object.

The ENABLE keyword specifies that the trusted-context object is created in an
enabled state. The DISABLE keyword specifies that the new trusted-context object
is created in a disabled state, and is not enabled for any new trusted connections
that are established.

Examples

Example 1: Create a trusted-context object such that the current user on a trusted
connection based on this trusted-context object can be switched to two different
user IDs. When the current user of the connection is switched to joe,
authentication is not required. However, authentication is required when the
current user of the connection is switched to bob. Note that the trusted-context
object has a default role called MANAGER. This implies that users working within the
confines of this trusted-context object inherit the discretionary access privileges
associated with the MANAGER role.

CREATE TRUSTED CONTEXT appserver
USER wrjaibi
DEFAULT ROLE MANAGER
ENABLE
ATTRIBUTES (ADDRESS ’9.26.113.204’)
WITH USE FOR joe WITHOUT AUTHENTICATION,

bob WITH AUTHENTICATION;

Example 2: Create a trusted-context object such that the current user of a trusted
connection based on this trusted-context object can be switched to any user ID
without authentication.

CREATE TRUSTED CONTEXT securerole
USER pbird
ENABLE
ATTRIBUTES (ADDRESS ’example.ibm.com’)
WITH USE FOR PUBLIC WITHOUT AUTHENTICATION;

Related concepts:

Trusted-context objects and trusted connections (Security Guide)
Related reference:
“ALTER TRUSTED CONTEXT statement” on page 2-118
“DROP TRUSTED CONTEXT statement” on page 2-450
“RENAME TRUSTED CONTEXT statement” on page 2-616

CREATE USER statement (UNIX, Linux)
Use the CREATE USER statement to define internally authenticated users, or to
map externally authenticated users to surrogate user properties required for access
to Informix resources.

This statement is an extension to the ANSI/ISO standard for the SQL language.

2-368 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_tru_001.htm#ids_tru_001

Syntax

�� CREATE �

�
ACCOUNT UNLOCK

DEFAULT USER WITH Properties
ACCOUNT LOCK

USER user
ACCOUNT UNLOCK

WITH
PASSWORD password ACCOUNT LOCK Properties

��

Properties:

PROPERTIES �

� �

�

,
(1)

UID user_ID GROUP (surrog_group_ID)
surrog_group

USER surrog_user
,

(1)
GROUP (surrog_group_ID)

surrog_group

�

�
HOME " directory "

�

,

AUTHORIZATION (DBSA)
DBSSO
AAO
BARGROUP

Notes:

1 Use this path no more than 16 times

Element Description Restrictions Syntax

directory Path name of directory where
user files are stored.

Must be 255 bytes or fewer,
and must conform to the
rules of your operating
system. The directory must
also:

v Belong to the mapped
user_ID and
surrog_group_ID.

v Have read, write, and
execute permissions for
the owner.

“Quoted String” on page
4-219

password Password for internal
authentication of user.

Must be 6 - 32 bytes. “Quoted String” on page
4-219

Chapter 2. SQL statements 2-369

Element Description Restrictions Syntax

surrog_group Name of an existing operating
system group (surrogate group)
that has the permissions to which
you want to map user. The list of
surrog_group values must be
enclosed in parentheses.

Must be 32 bytes or fewer.

You must use one of the
surrogates that are specified
in the /etc/informix/
allowed.surrogates file.

“Owner name” on page 5-49

surrog_group_ID Group identifier number
(surrogate group) to which you
want to map the user. The list of
surrog_group_id value or values
that you specify must be
enclosed in parentheses.

The surrog_group_ID cannot
be:

v A group ID with server
administrative privileges
(DBSA, DBSSO, AAO, and
BARGROUP)

v Group 0 (root, sometimes
referred to as wheel or
system)

v Group 80 on Mac OS X
(admin)

v A group ID associated
with group bin or group
sys

You must use one of the
surrogates that are specified
in the /etc/informix/
allowed.surrogates file.

“Literal Number” on page
4-215

surrog_user Name of an existing OS user
account (surrogate user) on the
Informix host computer that has
the permissions to which you
want to map user.

Must conform to the rules of
your operating system.

Must be one of the
surrogates that are specified
in file /etc/informix/
allowed.surrogates file.

“Owner name” on page 5-49

user Authorization identifier of the
specific user that you are
mapping to user properties.

Cannot be PUBLIC. “Owner name” on page 5-49

user_ID User identifier number to which
to map user.

Cannot be that of user root
or of user informix.

Must be one of the
surrogates that are specified
in file /etc/informix/
allowed.surrogates.

“Literal Number” on page
4-215

Usage

Only a DBSA can run the CREATE USER statement. With a non-root installation,
the user who installs the server is the equivalent of the DBSA, unless the user
delegates DBSA privileges to a different user.

The USERMAPPING configuration parameter must be set to a value that enables
support for mapped users before users defined by the CREATE USER statement
can connect to the database server. A DBSA can issue the CREATE USER statement
to map users to properties that correspond to the appropriate level of
authorization.

2-370 IBM Informix Guide to SQL: Syntax

You must also enter values in the SYSUSERMAP table of the sysusers database to
map users with the appropriate user properties so that the mapped user statements
of SQL to work correctly.

Execution of the CREATE USER statement can be audited with the CRUR audit
code.

PASSWORD clause

For a root-privileged server, if an OS user is connecting and the USERMAPPING
configuration parameter is unset, OS authentication occurs even though the user
exists in the database. When the USERMAPPING parameter is set, internal user
authentication takes precedence over OS authentication. Mapped users are
authenticated internally or externally. When a user is created without a password,
a mapped user is created. When a user is created with a password, an internally
authenticated user is created with the properties from the operating system, unless
an explicit PROPERTIES clause is also specified in the statement. When the
CREATE USER statement contains both the PASSWORD clause and PROPERTIES
clause, the user is an internally authenticated user, but has the surrogate properties
that are specified in PROPERTIES clause. In this case, the surrogate user or group
must also be listed in the /etc/informix/allowed.surrogates file.

PROPERTIES clause

The PROPERTIES clause can define a new user, and can optionally associate that
user with surrogate properties that can include a group and a home directory.
CREATE DEFAULT USER is a special case of the CREATE USER statement. The
CREATE DEFAULT USER statement defines the properties that are set for the
default user. After you define default user properties, you can create new users
who have default user properties by omitting the PROPERTIES clause. Mapped
users can connect to the database server with the surrogate user properties if they
authenticate with pluggable authentication module (PAM), single sign-on (SSO), or
internal authentication. Property values are not applicable to non-root installations
but must be specified just like a root-privileged server. However, surrogate users
and groups in non-root installations are not required in the allowed.surrogates
file.

AUTHORIZATION clause

The AUTHORIZATION clause grants a subset of administrative privileges. The
USERMAPPING configuration parameter must be set to ADMIN to enable this
clause.

Note:

Use of this AUTHORIZATION clause (and of the AUTHORIZATION clause of the
ALTER USER or GRANT ACCESS TO PROPERTIES statements) is not
recommended. This syntax will not support role separation in a future release.

HOME directory clause

Specifying a directory for the user files with the HOME keyword is optional, but in
some cases it is highly desirable. If you do not specify a home directory, an
externally authenticated user has the same home directory as the surrogate user
account on the Informix host computer. If the surrogate user identity that does not
have a set home directory, then Informix creates a directory for user files in

Chapter 2. SQL statements 2-371

$INFORMIXDIR/users. In the latter case, the directory name in $INFORMIXDIR/users
takes the form uid.ID_number (for example, uid.101).

ACCOUNT LOCK and ACCOUNT UNLOCK keywords

With the ACCOUNT LOCK and ACCOUNT UNLOCK keywords, the DBSA can
toggle disabling and enabling the specified user's access to the database server.

Examples

Example 1: Create a mapped user:

The following statement creates a mapped user named joe.
CREATE USER joe;

If the user joe is an OS user, joe has the operating system properties that are
associated with his user name.

If the user joe is not an OS user and if default user properties are defined, joe has
the surrogate properties of the default user. If default user properties are not
defined, an error is returned.

Example 2: Create an internally authenticated user:

The following statement creates an internally authenticated user named joe with a
password of joebar:
CREATE USER joe WITH PASSWORD "joebar";

If the user joe is not an OS user and if default user properties are defined, joe has
the surrogate properties of the default user. If default user properties are not
defined, an error is returned

Example 3: Create an internally authenticated user with a locked account:

The following statement creates an internally authenticated user named phil with a
locked account:
CREATE USER phil WITH PASSWORD "joebar" ACCOUNT LOCK;

If the user phil is not an OS user and if default user properties are defined, phil
has the surrogate properties of the default user. If default user properties are not
defined, an error is returned

Example 4: Create an internally authenticated user with specific properties:

The following statement creates an internally authenticated user named mary with
a UID, a group, and a home directory:
CREATE USER mary WITH PASSWORD "joebar" PROPERTIES UID 44567
GROUP(1234) HOME "/home/pd/osuser";

Example 5: Create a mapped user with a surrogate user:

The following statement creates a mapped user named bill with a surrogate user
name of foo_os:
CREATE USER bill WITH PROPERTIES user "foo_os";

2-372 IBM Informix Guide to SQL: Syntax

The user bill has the properties of the operating system user foo_os.

Example 6: Create a default user:

The following statement creates a user, internally named PUBLIC, with the
properties of the surrogate user tmp:
CREATE DEFAULT USER WITH PROPERTIES USER "tmp";

Other users created without surrogate properties will have these properties.
Related reference:
“ALTER USER statement (UNIX, Linux)” on page 2-122
“CREATE DEFAULT USER statement (UNIX, Linux)” on page 2-156
“DROP USER statement (UNIX, Linux)” on page 2-451
“RENAME USER statement (UNIX, Linux)” on page 2-617

USERMAPPING configuration parameter (UNIX, Linux) (Administrator's
Reference)
“SET USER PASSWORD statement (UNIX, Linux)” on page 2-828

CREATE VIEW statement
Use the CREATE VIEW statement to create a new view that is based on one or
more existing tables and views that reside in the database, or in another database
of the local database server or of a different database server.

Syntax

�� CREATE VIEW view
IF NOT EXISTS owner

�

,

(column)
OF TYPE row_type

AS �

�
(1)

Subset of SELECT Statement
WITH CHECK OPTION

��

Notes:

1 See “Subset of SELECT statements valid in view definitions” on page 2-376

Element Description Restrictions Syntax

column Name that you declare here for a column
in view. Default is a column name from
Projection list of SELECT.

See “Naming View Columns” on
page 2-376.

“Identifier” on page
5-21

owner Owner of the view. If omitted, default is
the user ID that issues the statement.

To specify another user ID requires
DBA access privilege.

“Owner name” on
page 5-49

row_type Named-row type for typed view Must already exist in the database “Data Type” on page
4-23

view Name that you declare here for the view Must be unique among view, table,
sequence, and synonym names in the
database.

“Identifier” on page
5-21

Chapter 2. SQL statements 2-373

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1101.htm#ids_adr_1101
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1101.htm#ids_adr_1101

Usage

A view is a virtual table, defined by a SELECT statement. Except for the statements
in the following list, you can specify the name or synonym of a view in any SQL
statement where the name of a table is syntactically valid:
v ALTER FRAGMENT
v CREATE INDEX
v CREATE TABLE
v CREATE TRIGGER
v RENAME TABLE
v START VIOLATIONS TABLE
v STOP VIOLATIONS TABLE
v TRUNCATE
v UPDATE STATISTICS

You must specify the name of a view when you use the CREATE TRIGGER
statement to define an INSTEAD OF trigger on a view, but the syntax and
functionality are different from those of a trigger defined on a table.

“Updating Through Views” on page 2-378 prohibits non-updatable views in
INSERT, DELETE, or UPDATE statements (where other views are valid).

To create a view, you must have the Select privilege on all columns from which the
view is derived. You can query a view as if it were a table, and in some cases, you
can update it as if it were a table; but a view is not a table.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a view of the
specified name is already registered in the current database, or if the specified
name is the identifier of a table, synonym, or sequence object in the current
database.

The view consists of the set of rows and columns that the SELECT statement in the
view definition returns each time you refer to the view in a query.

In some cases, the database server merges the SELECT statement of the user with
the SELECT statement defining the view and executes the combined statements. In
other cases, a query against a view might execute more slowly than expected, if
the complexity of the view definition causes the database server to create a
temporary table (referred to as a materialized view). For more information on
materialized views, see the IBM Informix Performance Guide.

The view reflects changes to the underlying tables, but with two exceptions:
v If a SELECT * specification defines the view, the view has only the columns that

existed in the underlying tables when the view was defined by CREATE VIEW.
Any new columns that are subsequently added to the underlying tables with the
ALTER TABLE statement do not appear in the view.

v If a GRANT or REVOKE statement changes the discretionary access privileges
on any table referenced in the view definition, the database server does not
automatically apply those access privilege changes to the view.

To force modifications of the access privileges or schema of an underlying table to
be applied to the view, you can use the DROP VIEW and CREATE VIEW
statements of SQL to drop and recreate the view. You can also use the CREATE

2-374 IBM Informix Guide to SQL: Syntax

VIEW and CREATE TRIGGER statements to recreate, respectively, any dependent
views or INSTEAD OF triggers that the DROP VIEW statement destroyed.

The view inherits the data types of the columns in the tables from which the view
is derived. The database server determines data types of virtual columns from the
nature of the expression.

The SELECT statement is stored in the sysviews system catalog table. When you
subsequently refer to a view in another statement, the database server performs the
defining SELECT statement while it executes the new statement.

In DB-Access, if you create a view outside the CREATE SCHEMA statement, you
receive warnings if you use the -ansi flag or if you set the DBANSIWARN
environment variable.

The following statement creates a view that is based on the person table. When
you create a view like this, which has no OF TYPE clause, the view is referred to
as an untyped view.
CREATE VIEW v1 AS SELECT * FROM person;

Related concepts:
“INSTEAD OF Triggers on Views” on page 2-362
“CREATE TRIGGER statement” on page 2-329

Views (Database Design Guide)

Control database use (SQL Tutorial)

View costs (Performance Guide)
Related reference:
“CREATE TABLE statement” on page 2-265
“DROP VIEW statement” on page 2-452
“GRANT statement” on page 2-502
“REVOKE statement” on page 2-618
“SELECT statement” on page 2-654
“SET SESSION AUTHORIZATION statement” on page 2-814
“RENAME COLUMN statement” on page 2-609
“CREATE SCHEMA statement” on page 2-245

Typed Views
You can create typed views if you have Usage privileges on the named-ROW type
or if you are its owner or the DBA. If you omit the OF TYPE clause, rows in the
view are considered untyped and default to an unnamed-ROW type.

Typed views, like typed tables, are based on a named-ROW type. Each column in
the view corresponds to a field in the named-ROW type. The following statement
creates a typed view that is based on the table person.
CREATE VIEW v2 OF TYPE person_t AS SELECT * FROM person;

To create a typed view, you must include an OF TYPE clause. When you create a
typed view, the named-ROW type that you specify immediately after the OF TYPE
keywords must already exist.

Chapter 2. SQL statements 2-375

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_284.htm#ids_ddi_284
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_014.htm#ids_sqt_014
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_534.htm#ids_prf_534

Subset of SELECT statements valid in view definitions
Most SELECT statement syntax is supported in view definitions, with certain
exceptions.

You cannot create a view on a temporary table. The FROM clause of the SELECT
statement cannot include the name of a temporary table.

If Select privileges are revoked from a user for a table that is referenced in the
SELECT statement defining a view that the same user owns, then that view is
dropped, unless it also includes columns from tables in another database.

You cannot create a view on a table that is part of a typed-table hierarchy, if that
table resides in a remote database.

Do not use display labels in the Select list of the Projection clause. Display labels in
the Projection clause are interpreted as column names.

Hardcoded values should not be used in a view, but only in the WHERE clause of
the SELECT statements that query the view. If the values are not hardcoded in the
view, the query optimizer can then always exclude those literal values and can
complete the query in less time. But if the same values are hardcoded in the view,
the query optimizer still must evaluate the literal value.

The SELECT statement in CREATE VIEW cannot include the SKIP, FIRST, or LIMIT
keywords, or the INTO TEMP clause. For complete information about SELECT
statement syntax and usage, see “SELECT statement” on page 2-654.

Union Views
A view that contains a UNION or UNION ALL operator in its SELECT statement
is known as a union view. Certain restrictions apply to union views:
v If a CREATE VIEW statement defines a union view, you cannot specify the

WITH CHECK OPTION keywords in the CREATE VIEW statement.
v All restrictions that apply to UNION or UNION ALL set operations in

stand-alone SELECT statements also apply to UNION and UNION ALL
operations in the SELECT statement of a union view.

For a list of these restrictions, see “Restrictions on a Combined SELECT” on page
2-724. For an example of a CREATE VIEW statement that defines a union view, see
“Naming View Columns.”

Naming View Columns
The number of columns that you specify in the column list must match the number
of columns returned by the SELECT statement that defines the view. If you do not
specify a list of columns, the view inherits the column names of the underlying
tables. In the following example, the view herostock has the same column names
as the columns in Projection clause of the SELECT statement:
CREATE VIEW herostock AS

SELECT stock_num, description, unit_price, unit, unit_descr
FROM stock WHERE manu_code = ’HRO’;

You must specify at least one column name in the following circumstances:
v If you provide names for some of the columns in a view, then you must provide

names for all the columns. That is, the column list must contain an entry for
every column that appears in the view.

2-376 IBM Informix Guide to SQL: Syntax

v If the SELECT statement returns an expression, the corresponding column in the
view is called a virtual column. You must provide a name for a virtual column.
In the following example, the user must specify the column parameter because
the select list of the Projection clause of the SELECT statement contains an
aggregate expression:
CREATE VIEW newview (firstcol, secondcol) AS

SELECT sum(cola), colb FROM oldtab;

v You must also specify column names in cases where any of the selected columns
have duplicate column names without the table qualifiers. For example, if both
orders.order_num and items.order_num appear in the SELECT statement, the
CREATE VIEW statement, must provide two separate column names to label
them:
CREATE VIEW someorders (custnum,ocustnum,newprice) AS

SELECT orders.order_num,items.order_num,
items.total_price*1.5

FROM orders, items
WHERE orders.order_num = items.order_num
AND items.total_price > 100.00;

Here custnum and ocustnum replace the two identical column names.
v The CREATE VIEW statement must also provide column names in the column

list when the SELECT statement includes a UNION or UNION ALL operator
and the names of the corresponding columns in the SELECT statements are not
identical.
For example, code in the following CREATE VIEW statement must specify the
column list because the second column in the first SELECT statement has a
different name from the second column in the second SELECT statement:
CREATE VIEW myview (cola, colb) AS

SELECT colx, coly from firsttab
UNION
SELECT colx, colz from secondtab;

Using a View in the SELECT Statement
You can define a view whose columns are based on other views, but you must
abide by the restrictions on creating views that are discussed in the IBM Informix
Database Design and Implementation Guide.

WITH CHECK OPTION Keywords
The WITH CHECK OPTION keywords instruct the database server to ensure that
all modifications that are made through the view to the underlying tables satisfy
the definition of the view.

The following example creates a view that is named palo_alto, which uses all the
information in the customer table for customers in the city of Palo Alto. The
database server checks any modifications made to the customer table through
palo_alto because the WITH CHECK OPTION keywords are specified.
CREATE VIEW palo_alto AS

SELECT * FROM customer WHERE city = ’Palo Alto’
WITH CHECK OPTION

You can insert into a view a row that does not satisfy the conditions of the view
(that is, a row that is not visible through the view). You can also update a row of a
view so that it no longer satisfies the conditions of the view. For example, if the
view was created without the WITH CHECK OPTION keywords, you could insert
a row through the view where the city is Los Altos, or you could update a row
through the view by changing the city from Palo Alto to Los Altos.

Chapter 2. SQL statements 2-377

To prevent such inserts and updates, you can add the WITH CHECK OPTION
keywords when you create the view. These keywords ask the database server to
test every inserted or updated row to ensure that it meets the conditions that are
set by the WHERE clause of the view. The database server rejects the operation
with an error if the row does not meet the conditions.

Even if the view was created with the WITH CHECK OPTION keywords,
however, you can perform inserts and updates through the view to change
columns that are not part of the view definition. A column is not part of the view
definition if it does not appear in the WHERE clause of the SELECT statement that
defines the view.

The CREATE VIEW statement fails with error -940 if you include the WITH
CHECK OPTION keywords in a CREATE VIEW statement in which the UNION
set operator combines two queries in the view definition.

Updating Through Views
If a view is built on a single table, the view is updatable if the SELECT statement
that defines the view does not contain any of the following elements:
v Columns in the projection list that are aggregate values
v Columns in the projection list that use the UNIQUE or DISTINCT keyword
v A GROUP BY clause
v A UNION operator
v A query that selects calculated or literal values.

You can DELETE from a view that selects calculated values from a single table, but
INSERT and UPDATE operations are not valid on such views.

In an updatable view, you can update the values in the underlying table by
inserting values into the view. If a view is built on a table that has a derived value
for a column, however, that column is not updatable through the view. Other
columns in the view, however, can be updated.

See also “Updating Views” on page 2-365 for information about using INSTEAD
OF triggers to update views that are based on more than one table or that include
columns containing aggregates or other calculated values.

Important: You cannot update or insert rows in a remote table through views that
were created using the WITH CHECK OPTION keywords.

CREATE XADATASOURCE statement
Use the CREATE XADATASOURCE statement to create a new XA-compliant data
source and create an entry for it in the sysxadatasources system catalog table. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE XADATASOURCE xa_source
IF NOT EXISTS

USING xa_type ��

2-378 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

xa_source Name that you declare here for
the new XA data source

Must be unique among XA data source names
in sysxadatasources

“Identifier” on page
5-21

xa_type Name of an existing XA data
source type

Must already exist in the database in the
sysxasourcetypes system catalog table

“Identifier” on page
5-21

Usage

An XA-compliant data source is an external data source that complies with the
X/Open DTP XA Standard for managing interactions between a transaction
manager and a resource manager. To register XA-compliant data sources in the
database requires two SQL statements:
v First create one or more XA-compliant data source types by using the CREATE

XADATASOURCE TYPE statement.
v Then create one or more instances of XA-compliant data sources with the

CREATE XADATASOURCE statement.

You can integrate transactions at the XA data source with the Informix transaction,
using a 2-phase commit protocol to ensure that transactions are uniformly
committed or rolled back among multiple database servers, and manage multiple
external XA data sources within the same global transaction.

The CREATE XADATASOURCE statement is not supported on secondary servers
within a high-availability cluster.

Any user can create an XA data source, which follows standard owner-naming
rules, according to the ANSI-compliance status of the database. Only a database
that uses transaction logging can support the X/Open DTP XA Standard.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if an XA data source of
the specified name is already registered in the current database.

Both XA data source types and instances of XA data sources are specific to one
database. To support distributed transactions, they must be created in each
database that interacts with the external XA data source.

The following statement creates a new XA data source instance called
informix.NewYork of type informix.MQSeries.
CREATE XADATASOURCE informix.NewYork USING informix.MQSeries;

SQL statements that are not valid in XA environments

The Informix database server issues error -701 when you attempt to execute any of
the following statements within an X/Open distributed transaction-processing
environment:
v CLOSE DATABASE
v CREATE DATABASE
v DROP DATABASE
v SET LOG
v SAVEPOINT
v RELEASE SAVEPOINT

Chapter 2. SQL statements 2-379

v ROLLBACK TO SAVEPOINT

Within an XA environment, you can execute a single DATABASE statement after
an xa_open call to specify a current database. After this database is selected,
however, no subsequent DATABASE statement can be executed in the same
session. If you attempt to execute a second DATABASE statement, the DATABASE
statement fails with error -701.
Related reference:
“CREATE XADATASOURCE TYPE statement”
“DROP XADATASOURCE statement” on page 2-453
“DROP XADATASOURCE TYPE statement” on page 2-454

SYSXADATASOURCES (SQL Reference)

XA-compliant external data sources (DataBlade API Guide)

CREATE XADATASOURCE TYPE statement
Use the CREATE XADATASOURCE TYPE statement to create a new XA-compliant
data source type and create an entry for it in the sysxasourcetypes system catalog
table. This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE XADATASOURCE TYPE xa_type
IF NOT EXISTS

�

� �

,
(1)

(Purpose Options) ��

Notes:

1 See “Purpose Options” on page 5-54

Element Description Restrictions Syntax

xa_type Name that you declare here
for a new XA data source
type

Must be unique among XA data source type
names in the sysxasourcetypes system catalog
table

“Identifier” on
page 5-21

Usage

The CREATE XADATASOURCE TYPE statement adds an XA-compliant data
source type to the database.

The CREATE XADATASOURCE TYPE statement is not supported on secondary
servers within a high-availability cluster.

Any user can create an XA data source type, whose owner-naming rules depend
on the ANSI-compliance status of the database. Only a database that uses
transaction logging can support the X/Open DTP XA Standard.

To create a data source type, you must declare its name and specify purpose
functions and purpose values as attributes of the XA source type. Most of the

2-380 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_080.htm#ids_sqr_080
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dapip.doc/ids_dapip_0536.htm#ids_dapip_0536

purpose options that follow the source type name associate columns in the
sysxasourcetypes system catalog table with the name of a UDR.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if an XA data source
type of the specified name is already registered in the current database.

Both XA data source types and instances of XA data sources are specific to one
database. To support distributed transactions, they must be created in each
database that interacts with the external XA data source.

The following statement creates a new XA data source type called MQSeries,
owned by user informix.
CREATE XADATASOURCE TYPE ’informix’.MQSeries(

xa_flags = 1,
xa_version = 0,
xa_open = informix.mqseries_open,
xa_close = informix.mqseries_close,
xa_start = informix.mqseries_start,
xa_end = informix.mqseries_end,
xa_rollback = informix.mqseries_rollback,
xa_prepare = informix.mqseries_prepare,
xa_commit = informix.mqseries_commit,
xa_recover = informix.mqseries_recover,
xa_forget = informix.mqseries_forget,

xa_complete = informix.mqseries_complete);

You need to provide one value or UDR name for each of the options listed above,
but the sequence in which you list them is not critical. (The order of purpose
options in this example corresponds to the order of column names in the
sysxasourcetypes system catalog table.)

After this statement executes successfully, you can create instances of type
informix.MQSeries. The following statement creates a new instance called
informix.MenloPark of XA-compliant data source type informix.MQSeries:
CREATE XADATASOURCE informix.MenloPark USING informix.MQSeries;

Related reference:
“CREATE XADATASOURCE statement” on page 2-378
“DROP XADATASOURCE statement” on page 2-453
“DROP XADATASOURCE TYPE statement” on page 2-454
“Purpose Options” on page 5-54

XA-compliant external data sources (DataBlade API Guide)

SYSXASOURCETYPES (SQL Reference)

DATABASE statement
Use the DATABASE statement to open an accessible database as the current
database. This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DATABASE database
EXCLUSIVE

��

Chapter 2. SQL statements 2-381

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dapip.doc/ids_dapip_0536.htm#ids_dapip_0536
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_081.htm#ids_sqr_081

Element Description Restrictions Syntax

database Name of the database The database must exist “Database Name” on page
5-15

Usage

You can use the DATABASE statement to select any database on your database
server. To select a database on another database server, specify the name of the
database server with the database name.

If you include the name of the current (or another) database server with the
database name, the database server name cannot be uppercase. (See “Database
Name” on page 5-15 for the syntax of specifying the database server name.)

Issuing a DATABASE statement when a database is already open closes the current
database before opening the new one. Closing the current database releases any
cursor resources that the database server holds, invalidating any cursors that you
have declared up to that point. If the user specification was changed through a SET
SESSION AUTHORIZATION statement, the original user name is restored when
the new database is opened.

If a previous CONNECT statement has established an explicit connection to a
database, and that connection is still your current connection, you cannot use the
DATABASE statement (nor any SQL statement that creates an implicit connection)
until after you use DISCONNECT to close the explicit connection.

The current user (or PUBLIC) must have the Connect privilege on the database
that is specified in the DATABASE statement. The current user cannot have the
same user name as an existing role in the database.

DATABASE is not a valid statement in multistatement PREPARE operations.
Related concepts:

SQL Communications Area (SQL Tutorial)

Exception handling with the sqlca structure (ESQL/C Guide)
Related reference:
“CREATE DATABASE statement” on page 2-150
“SET SESSION AUTHORIZATION statement” on page 2-814
“DROP DATABASE statement” on page 2-427
“DISCONNECT statement” on page 2-421
“SET CONNECTION statement” on page 2-731
“CLOSE DATABASE statement” on page 2-132
“CONNECT statement” on page 2-135

Select a data model for your database (Database Design Guide)

SQLCA.SQLWARN Settings Immediately after DATABASE
Executes (ESQL/C)

Immediately after DATABASE executes, you can identify characteristics of the
specified database by examining warning flags in the sqlca structure.
v If the first field of sqlca.sqlwarn is blank, then no warnings were issued.

2-382 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_302.htm#ids_sqt_302
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0406.htm#ids_esqlc_0406
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_148.htm#ids_ddi_148

v The second sqlca.sqlwarn field is set to the letter W if the database that was
opened supports transaction logging.

v The third field is set to W if database is an ANSI-compliant database.
v The fourth field is set to W if database is an Informix database.
v The fifth field is set to W if database converts all floating-point data to DECIMAL

format. (System lacks FLOAT and SMALLFLOAT support.)
v The seventh field is set to W if database is the secondary server (that is, running in

read-only mode) in a data-replication pair.
v The eighth field is set to W if database has DB_LOCALE set to a locale different

from the DB_LOCALE setting on the client system.

EXCLUSIVE keyword
The EXCLUSIVE keyword opens the database in exclusive mode and prevents
access by anyone but the current user. To allow others to access the database, you
must first execute the CLOSE DATABASE statement and then reopen the database
without the EXCLUSIVE keyword.

The following statement opens the stores_demo database on the training database
server in exclusive mode:
DATABASE stores_demo@training EXCLUSIVE;

If another user has already opened the specified database, exclusive access is
denied, an error is returned, and no database is opened.

If you encounter this error, but you are unable to confirm that other users are
connected to the database, your non-exclusive access might be caused by a sensor
or task that is running in the Scheduler API. To temporarily disable the Scheduler,
you can issue this SQL administration API command:
EXECUTE FUNCTION admin(’scheduler shutdown’);

After the admin('scheduler shutdown') routine has completed execution. retry the
DATABASE ... EXCLUSIVE statement.

For more information on the Scheduler API commands, see your IBM Informix
Administrator's Guide. For information about the privileges that you must hold to
call SQL administration API functions, see your IBM Informix Administrator's
Reference.
Related concepts:

The Scheduler (Administrator's Guide)
Related reference:

SQL Administration API Overview (Administrator's Reference)

DEALLOCATE COLLECTION statement
Use the DEALLOCATE COLLECTION statement to release memory for a collection
variable that was previously allocated with the ALLOCATE COLLECTION
statement.

This statement is an extension to the ANSI/ISO standard for SQL. Use this
statement with ESQL/C.

Chapter 2. SQL statements 2-383

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_1121.htm#ids_admin_1121
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_sapi_001.htm#ids_sapi_001

Syntax

�� DEALLOCATE COLLECTION :variable ��

Element Description Restrictions Syntax

variable Name that identifies a typed or
untyped collection variable for
which to deallocate memory

Must be the name of an Informix
ESQL/C collection variable that
has already been allocated

Name must conform to
language-specific rules for
names of variables

Usage

The DEALLOCATE COLLECTION statement frees all the memory that is
associated with the Informix ESQL/C collection variable that variable identifies.
You must explicitly release memory resources for a collection variable with
DEALLOCATE COLLECTION. Otherwise, deallocation occurs automatically at the
end of the program.

The DEALLOCATE COLLECTION statement releases resources for both typed and
untyped collection variables.

Tip: The DEALLOCATE COLLECTION statement deallocates memory for an
Informix ESQL/C collection variable only. To deallocate memory for an Informix
ESQL/C row variable, use the DEALLOCATE ROW statement.

If you deallocate a nonexistent collection variable or a variable that is not an
Informix ESQL/C collection variable, an error results. Once you deallocate a
collection variable, you can use the ALLOCATE COLLECTION to reallocate
resources and you can then reuse a collection variable.

This example shows how to deallocate resources with the DEALLOCATE
COLLECTION statement for the untyped collection variable, a_set:
EXEC SQL BEGIN DECLARE SECTION;

client collection a_set;
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate collection :a_set;
. . .
EXEC SQL deallocate collection :a_set;

For a related example, see the related concept, Inserting into a Collection Cursor.
Related concepts:
“Inserting into a Collection Cursor” on page 2-605
Related reference:
“ALLOCATE COLLECTION statement” on page 2-1
“DEALLOCATE ROW statement” on page 2-386

Complex data types (ESQL/C Guide)

DEALLOCATE DESCRIPTOR statement
Use the DEALLOCATE DESCRIPTOR statement to free a previously allocated,
system-descriptor area. Use this statement with Informix ESQL/C.

2-384 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0280.htm#ids_esqlc_0280

Syntax

This statement is an extension to the ANSI/ISO standard for the SQL language.

�� DEALLOCATE DESCRIPTOR 'descriptor'
descriptor_var

��

Element Description Restrictions Syntax

descriptor Name of a system-descriptor
area

Use single quotation marks.
System-descriptor area must already be
allocated

“Quoted String” on
page 4-219

descriptor_var Host variable that contains
the name of a
system-descriptor area

System-descriptor area must already be
allocated, and the variable must already
have been declared

Name must conform to
language-specific rules

Usage

The DEALLOCATE DESCRIPTOR statement frees all the memory that is associated
with the system-descriptor area that descriptor or descriptor_var identifies. It also
frees all the item descriptors (including memory for data items in the item
descriptors).

You can reuse a descriptor or descriptor variable after it is deallocated. Otherwise,
deallocation occurs automatically at the end of the program.

If you deallocate a nonexistent descriptor or descriptor variable, an error results.

You cannot use the DEALLOCATE DESCRIPTOR statement to deallocate an sqlda
structure. You can use it only to free the memory that is allocated for a
system-descriptor area.

The following examples show valid DEALLOCATE DESCRIPTOR statements. The
first line uses an embedded-variable name, and the second line uses a quoted
string to identify the allocated system-descriptor area.
EXEC SQL deallocate descriptor :descname;

EXEC SQL deallocate descriptor ’desc1’;

Related reference:
“GET DESCRIPTOR statement” on page 2-487
“SET DESCRIPTOR statement” on page 2-753
“ALLOCATE DESCRIPTOR statement” on page 2-2
“EXECUTE statement” on page 2-455
“DESCRIBE statement” on page 2-412
“DESCRIBE INPUT statement” on page 2-417
“DECLARE statement” on page 2-386
“FETCH statement” on page 2-474
“OPEN statement” on page 2-581
“PREPARE statement” on page 2-589
“PUT statement” on page 2-601

A system-descriptor area (ESQL/C Guide)

Chapter 2. SQL statements 2-385

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0610.htm#ids_esqlc_0610

DEALLOCATE ROW statement
Use the DEALLOCATE ROW statement to release memory for a ROW variable.

This statement is an extension to the ANSI/ISO standard for SQL. Use this
statement with ESQL/C.

Syntax

�� DEALLOCATE ROW :variable ��

Element Description Restrictions Syntax

variable Typed or untyped row variable Must be declared and allocated Language specific

Usage

DEALLOCATE ROW frees all the memory that is associated with the Informix
ESQL/C typed or untyped row variable that variable identifies. If you do not
explicitly release memory resources with DEALLOCATE ROW, deallocation occurs
automatically at the end of the program. To deallocate memory for an Informix
ESQL/C collection variable, use the DEALLOCATE COLLECTION statement.

After you deallocate a ROW variable, you can use the ALLOCATE ROW statement
to reallocate resources, and you can then reuse a ROW variable. The following
example shows how to deallocate resources for the ROW variable, a_row, using
the DEALLOCATE ROW statement:
EXEC SQL BEGIN DECLARE SECTION; row (a int, b int) a_row;
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate row :a_row;
. . .
EXEC SQL deallocate row :a_row;

Related reference:
“DEALLOCATE COLLECTION statement” on page 2-383
“ALLOCATE ROW statement” on page 2-4

Select row-type data (SQL Tutorial)

Complex data types (ESQL/C Guide)

DECLARE statement
Use the DECLARE statement of dynamic SQL to declare a cursor and to associate
it with an SQL statement that returns a set of rows to an IBM Informix ESQL/C or
SPL routine.

Syntax

�� DECLARE cursor_id
(1) (2)

cursor_id_var

�

2-386 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_095.htm#ids_sqt_095
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0280.htm#ids_esqlc_0280

�
(1) (2) (3)

CURSOR FOR Subset of INSERT Statement
(1) FOR UPDATE or FOR READ ONLY Select Options

WITH HOLD Other Select or Function Options
(1) (2)

SCROLL CURSOR Other Select or Function Options
WITH HOLD

(2) (4)
CURSOR FOR SELECT with Collection-Derived Table

(5)
INSERT with Collection-Derived Table

��

FOR UPDATE or FOR READ ONLY Select Options:

�

FOR READ ONLY
(2) (6) (1)

Subset of SELECT Statement FOR UPDATE
,

OF column

Other Select or Function Options:

(2) (7)
FOR SELECT Statement

statement_id
(1) (2)

statement_id_var
(8)

EXECUTE PROCEDURE Statement
(2) (9)

EXECUTE FUNCTION Statement

Notes:

1 Informix extension

2 ESQL/C only

3 See “Subset of INSERT Statement with a Sequential Cursor” on page 2-394

4 See “Select with a Collection-Derived Table” on page 2-400

5 See “Insert with a Collection-Derived Table” on page 2-401

6 See “Subset of SELECT statements associated with cursors” on page 2-398

7 See “SELECT statement” on page 2-654

8 See “EXECUTE PROCEDURE statement” on page 2-471

9 See “EXECUTE FUNCTION statement” on page 2-462

Element Description Restrictions Syntax

column Column to update with cursor Must exist, but need not be listed in
Select list of the Projection clause

“Identifier” on page
5-21

cursor_id Name declared here for cursor Must be unique in the routine among
names of cursors and prepared
objects (and in SPL, among variables)

“Identifier” on page
5-21

Chapter 2. SQL statements 2-387

Element Description Restrictions Syntax

cursor_id_var Variable holding cursor_id Must have a character data type Language-specific

statement_id Name of prepared statement Must have been declared by a
PREPARE statement

“Identifier” on page
5-21

statement_id_var Variable holding statement_id Must have a character data type Language-specific

Usage

Except as noted, sections that follow describe how to use the DECLARE statement
in Informix ESQL/C routines. For information about the more restricted syntax
and semantics of the DECLARE statement in SPL routines, see “Declaring a
Dynamic Cursor in an SPL Routine” on page 2-403.

A cursor is an identifier that you associate with an SQL statement that returns a
group of rows. The DECLARE statement associates the cursor with one of the
following database objects:
v With an SQL statement, such as SELECT, EXECUTE FUNCTION (or EXECUTE

PROCEDURE), or INSERT.
Each of these SQL statements creates a different type of cursor. For more
information, see “Overview of Cursor Types” on page 2-390.

v With the statement identifier (statement id or statement id variable) of a prepared
statement
You can prepare one of the previous SQL statements and associate the prepared
statement with a cursor. For more information, see “Associating a Cursor with a
Prepared Statement” on page 2-399.

v With a collection variable in an Informix ESQL/C program
The name of the collection variable appears in the FROM clause of a SELECT or
the INTO clause of an INSERT. For more information, see “Associating a Cursor
with a Prepared Statement” on page 2-399.

DECLARE assigns an identifier to the cursor, specifies its uses, and directs the
Informix ESQL/C preprocessor to allocate storage for it. DECLARE must precede
any other statement that references the cursor during program execution.

The cursors and prepared objects that can exist concurrently in a single program
are limited by available memory. To avoid exceeding the limit, use the FREE
statement to release the resources of prepared statements or cursors that are no
longer needed.

An ESQL/C program can consist of one or more source-code files. By default, the
scope of reference of a cursor is global to a program, so a cursor that was declared
in one source file can be referenced from a statement in another file. If you want to
limit the scope of each cursor name to the file where it was declared, you must
preprocess each file with the -local command-line option.

Multiple cursors can be declared for the same prepared statement identifier. For
example, the following Informix ESQL/C example does not return an error:
EXEC SQL prepare id1 from ’select * from customer’;
EXEC SQL declare x cursor for id1;
EXEC SQL declare y scroll cursor for id1;
EXEC SQL declare z cursor with hold for id1;

2-388 IBM Informix Guide to SQL: Syntax

If you include the -ansi compilation flag (or if DBANSIWARN is set), warnings are
generated for statements that use dynamic cursor names, dynamic statement
identifiers, or statements that use collection-derived tables. Some error checking is
performed at runtime, such as these typical checks:
v Invalid use of sequential cursors as scroll cursors
v Use of undeclared cursors
v Invalid cursor names or statement names (empty)

Checks for multiple declarations of a cursor of the same name are performed at
compile time only if the cursor or statement is specified as an identifier. The
following example uses a host variable to store the cursor name:
EXEC SQL declare x cursor for select * from customer;
. . .
stcopy("x", s);
EXEC SQL declare :s cursor for select * from customer;

A cursor uses the collating order that was in effect when the cursor was declared,
even if this is different from the collation of the session at run time.
Related concepts:

A database cursor (ESQL/C Guide)
Related reference:
“FLUSH statement” on page 2-484
“CLOSE statement” on page 2-128
“GET DESCRIPTOR statement” on page 2-487
“UPDATE statement” on page 2-852
“SET AUTOFREE statement” on page 2-726
“SET DESCRIPTOR statement” on page 2-753
“INSERT statement” on page 2-545
“ALLOCATE DESCRIPTOR statement” on page 2-2
“SET DEFERRED_PREPARE statement” on page 2-751
“DELETE statement” on page 2-404
“COMMIT WORK statement” on page 2-133
“EXECUTE statement” on page 2-455
“DESCRIBE statement” on page 2-412
“DESCRIBE INPUT statement” on page 2-417
“DEALLOCATE DESCRIPTOR statement” on page 2-384
“Collection-Derived Table” on page 5-4
“OPEN statement” on page 2-581
“FETCH statement” on page 2-474
“FREE statement” on page 2-486
“EXECUTE PROCEDURE statement” on page 2-471
“PREPARE statement” on page 2-589
“PUT statement” on page 2-601
“SELECT statement” on page 2-654
“FOREACH” on page 3-30

Declare a cursor (SQL Tutorial)

Modify data (SQL Tutorial)

Chapter 2. SQL statements 2-389

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0536.htm#ids_esqlc_0536
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_320.htm#ids_sqt_320
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_202.htm#ids_sqt_202

Overview of Cursor Types
Cursors are typically required for data manipulation language (DML) operations
on more than one row of data (or on an Informix ESQL/C collection variable). You
can declare the following types of cursors with the DECLARE statement:
v A Select cursor is a cursor associated with a SELECT statement.
v A Function cursor is a cursor associated with an EXECUTE FUNCTION (or

EXECUTE PROCEDURE) statement.
v An Insert cursor is a cursor associated with an INSERT statement.

Sections that follow describe each of these cursor types. Cursors can also have
sequential, scroll, and hold characteristics (but an Insert cursor cannot be a scroll
cursor). These characteristics determine the structure of the cursor; see “Cursor
Characteristics” on page 2-395. In addition, a Select or Function cursor can specify
read-only or update mode. For more information, see “Select Cursor or Function
Cursor.”

Tip: Function cursors behave the same as Select cursors that are enabled as update
cursors.

Besides associating a cursor directly with the text of an SQL statement, the FOR
keyword of the DECLARE statement can be followed by the identifier of a
prepared SQL statement, associating the cursor with the result set of an INSERT,
SELECT, EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement that was
prepared dynamically. This feature enables you to associate different SQL
statements with the same cursor at different times. In this case, the type of cursor
depends on the prepared SQL statement that the statement_id or statement_id
variable specifies when the cursor is opened. (For more information, see
“Associating a Cursor with a Prepared Statement” on page 2-399.)

Select Cursor or Function Cursor
When an SQL statement returns more than one group of values to an Informix
ESQL/C program, you must declare a cursor to save the multiple groups, or rows,
of data and to access these rows one at a time. You must associate one of the
following SQL statements with a cursor:
v If you associate a SELECT statement with a cursor, the cursor is called a Select

cursor.
A Select cursor is a data structure that represents a specific location within the
active set of rows that the SELECT statement retrieved.

v If you associate an EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement with a cursor, the cursor is called a Function cursor.
The Function cursor represents the columns or values that a user-defined
function returns. Function cursors behave the same as Select cursors that are
enabled as update cursors.

In Informix, for compatibility with legacy applications, if an SPL function was
created with the CREATE PROCEDURE statement, you can create a Function
cursor with the EXECUTE PROCEDURE statement. With external functions, you
must use the EXECUTE FUNCTION statement.

When you associate a SELECT or EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement with a cursor, the statement can include an INTO clause.
However, if you prepare the SELECT or EXECUTE FUNCTION (or EXECUTE

2-390 IBM Informix Guide to SQL: Syntax

PROCEDURE) statement, you must omit the INTO clause in the PREPARE
statement and use the INTO clause of the FETCH statement to retrieve the values
from the Collection cursor.

A Select or Function cursor can scan returned rows of data and to move data row
by row into a set of receiving variables, as the following steps describe:
1. DECLARE

Use DECLARE to define a cursor and associate it with a statement.
2. OPEN

Use OPEN to open the cursor. The database server processes the query until it
locates or constructs the first row of the active set.

3. FETCH
Use FETCH to retrieve successive rows of data from the cursor.

4. CLOSE
Use CLOSE to close the cursor when its active set is no longer needed.

5. FREE
Use FREE to release the resources that are allocated for the cursor.

Using the FOR READ ONLY Option
Use the FOR READ ONLY keywords to define a cursor as a read-only cursor. A
cursor declared to be read-only cannot be used to update (or delete) any row that
it fetches.

The need for the FOR READ ONLY keywords depends on whether your database
is ANSI compliant or not ANSI compliant.

In a database that is not ANSI compliant, the cursor that the DECLARE statement
defines is a read-only cursor by default, so you do not need to specify the FOR
READ ONLY keywords if you want the cursor to be a read-only cursor. The only
advantage of specifying the FOR READ ONLY keywords explicitly is for better
program documentation.

In an ANSI-compliant database, the cursor associated with a SELECT statement
through the DECLARE statement is an update cursor by default, provided that the
SELECT statement conforms to all of the restrictions for update cursors listed in
“Subset of SELECT statements associated with cursors” on page 2-398. If you want
a Select cursor to be read-only, you must use the FOR READ ONLY keywords
when you declare the cursor.

The database server can use less stringent locking for a read-only cursor than for
an update cursor.

The following example creates a read-only cursor:
EXEC SQL declare z_curs cursor for

select * from customer_ansi
for read only;

Using the FOR UPDATE Option
Use the FOR UPDATE option to declare an update cursor. You can use the update
cursor to modify (update or delete) the current row.

In an ANSI-compliant database, you can use a Select cursor to update or delete
data if the cursor was not declared with the FOR READ ONLY keywords and it
follows the restrictions on update cursors that are described in “Subset of SELECT

Chapter 2. SQL statements 2-391

statements associated with cursors” on page 2-398. You do not need to use the
FOR UPDATE keywords when you declare the cursor.

The following example declares an update cursor:
EXEC SQL declare new_curs cursor for

select * from customer_notansi
for update;

In an update cursor, you can update or delete rows in the active set. After you
create an update cursor, you can update or delete the currently selected row by
using an UPDATE or DELETE statement with the WHERE CURRENT OF clause.
The words CURRENT OF refer to the row that was most recently fetched; they
take the place of the usual test expressions in the WHERE clause.

An update cursor lets you perform updates that are not possible with the UPDATE
statement because the decision to update and the values of the new data items can
be based on the original contents of the row. Your program can evaluate or
manipulate the selected data before it decides whether to update. The UPDATE
statement cannot interrogate the table that is being updated.

You can specify particular columns that can be updated. The columns need not
appear in the Select list of the Projection clause.

Using FOR UPDATE with a List of Columns: When you declare an update
cursor, you can limit the update to specific columns by including the OF keyword
and a list of columns. You can modify only those named columns in subsequent
UPDATE statements. The columns need not be in the select list of the SELECT
clause.

The next example declares an update cursor and specifies that this cursor can
update only the fname and lname columns in the customer_notansi table:
EXEC SQL declare name_curs cursor for

select * from customer_notansi
for update of fname, lname;

By default, unless declared as FOR READ ONLY, a Select cursor in a database that
is ANSI compliant is an update cursor, so the FOR UPDATE keywords are
optional. If you want an update cursor to be able to modify only some of the
columns in a table, however, you must specify these columns in the FOR UPDATE
OF column list.

The principal advantage to specifying columns is documentation and preventing
programming errors. (The database server refuses to update any other columns.)
An additional advantage is improved performance, when the SELECT statement
meets the following criteria:
v The SELECT statement can be processed using an index.
v The columns that are listed are not part of the index that is used to process the

SELECT statement.

If the columns that you intend to update are part of the index that is used to
process the SELECT statement, the database server keeps a list of each updated
row, to ensure that no row is updated twice. If the OF keyword specifies which
columns can be updated, the database server determines whether or not to keep
the list of updated rows. If the database server determines that the work of

2-392 IBM Informix Guide to SQL: Syntax

keeping the list is unnecessary, performance improves. If you do not use the OF
column list, the database server always maintains a list of updated rows, although
the list might be unnecessary.

The following example contains Informix ESQL/C code that uses an update cursor
with a DELETE statement to delete the current row.

Whenever the row is deleted, the cursor remains between rows. After you delete
data, you must use a FETCH statement to advance the cursor to the next row
before you can refer to the cursor in a DELETE or UPDATE statement.
EXEC SQL declare q_curs cursor for

select * from customer where lname matches :last_name for update;

EXEC SQL open q_curs;
for (;;)
{

EXEC SQL fetch q_curs into :cust_rec;
if (strncmp(SQLSTATE, "00", 2) != 0)

break;

/* Display customer values and prompt for answer */
printf("\n%s %s", cust_rec.fname, cust_rec.lname);
printf("\nDelete this customer? ");
scanf("%s", answer);

if (answer[0] == ’y’)
EXEC SQL delete from customer where current of q_curs;

if (strncmp(SQLSTATE, "00", 2) != 0)
break;

}
printf("\n");
EXEC SQL close q_curs;

Locking with an Update Cursor: The FOR UPDATE keywords notify the
database server that updating is possible and cause it to use more stringent locking
than with a Select cursor. You declare an update cursor to let the database server
know that the program might update (or delete) any row that it fetches as part of
the SELECT statement. The update cursor employs promotable locks for rows that
the program fetches. Other programs can read the locked row, but no other
program can place a promotable lock (also called a write lock). Before the program
modifies the row, the row lock is promoted to an exclusive lock.

It is possible to declare an update cursor with the WITH HOLD keywords, but the
only reason to do so is to break a long series of updates into smaller transactions.
You must fetch and update a particular row in the same transaction.

If an operation involves fetching and updating a large number of rows, the lock
table that the database server maintains can overflow. The usual way to prevent
this overflow is to lock the entire table that is being updated. If this action is
impossible, an alternative is to update through a hold cursor and to execute
COMMIT WORK at frequent intervals. You must plan such an application
carefully, however, because COMMIT WORK releases all locks, even those that are
placed through a hold cursor.

Locking with concurrent 4GL cursors in unlogged databases:

In databases that are created without transaction logging, a 4GL program can
declare two Update cursors on the same table. But if the cursor that the second

Chapter 2. SQL statements 2-393

DECLARE statement defines is on a column that is also the key to an index on the
table, the database server releases the lock that the first cursor held on the table.

For Informix 4GL programs in databases created without transaction logging,
v if the DECLARE statement places a lock on a table by defining a cursor,
v and another DECLARE statement defines a second cursor on the same table,
v and if the column referenced by the second cursor is also an index key,

then when the second cursor is declared on the indexed column, the database
server automatically releases the lock associated with the first cursor.

The lock that the first DECLARE statement created is typically not released,
however, under the following circumstances:
v The database supports transaction logging.
v The column referenced by the second cursor is not indexed.
v The application is not an Informix 4GL program.

But there might be other scenarios in which a concurrent lock that the DECLARE
statement created in a 4GL program could be released for reasons other than an
index partition.

Subset of INSERT Statement with a Sequential Cursor
As indicated in the diagram for “DECLARE statement” on page 2-386, to create an
Insert cursor, you associate a sequential cursor with a restricted form of the
INSERT statement. The INSERT statement must include a VALUES clause; it
cannot contain an embedded SELECT statement.

The following example contains Informix ESQL/C code that declares an Insert
cursor:
EXEC SQL declare ins_cur cursor for

insert into stock values
(:stock_no,:manu_code,:descr,:u_price,:unit,:u_desc);

The Insert cursor simply inserts rows of data; it cannot be used to fetch data.
When an Insert cursor is opened, a buffer is created in memory. The buffer receives
rows of data as the program executes PUT statements. The rows are written to disk
only when the buffer is full. You can flush the buffer (that is, to write its contents
into the database) when it is less than full, using the CLOSE, FLUSH, or COMMIT
WORK statements. This topic is discussed further under the CLOSE, FLUSH, and
PUT statements.

You must close an Insert cursor to insert any buffered rows into the database
before the program ends. You can lose data if you do not close the cursor properly.
For a complete description of INSERT syntax and usage, see “INSERT statement”
on page 2-545.

Insert Cursor
When you associate an INSERT statement with a cursor, the cursor is called an
Insert cursor. An Insert cursor is a data structure that represents the rows that the
INSERT statement is to add to the database. The Insert cursor simply inserts rows
of data; it cannot be used to fetch data. To create an Insert cursor, you associate a
cursor with a restricted form of the INSERT statement. The INSERT statement
must include a VALUES clause; it cannot contain an embedded SELECT statement.

2-394 IBM Informix Guide to SQL: Syntax

Create an Insert cursor if you want to add multiple rows to the database in an
INSERT operation. An Insert cursor allows bulk insert data to be buffered in
memory and written to disk when the buffer is full, as these steps describe:
1. Use DECLARE to define an Insert cursor for the INSERT statement.
2. Open the cursor with the OPEN statement. The database server creates the

insert buffer in memory and positions the cursor at the first row of the insert
buffer.

3. Copy successive rows of data into the insert buffer with the PUT statement.
4. The database server writes the rows to disk only when the buffer is full. You

can use the CLOSE, FLUSH, or COMMIT WORK statement to flush the buffer
when it is less than full. This topic is discussed further under the PUT and
CLOSE statements.

5. Close the cursor with the CLOSE statement when the insert cursor is no longer
needed. You must close an Insert cursor to insert any buffered rows into the
database before the program ends. You can lose data if you do not close the
cursor properly.

6. Free the cursor with the FREE statement. The FREE statement releases the
resources that are allocated for an Insert cursor.

Using an Insert cursor is more efficient than embedding the INSERT statement
directly. This process reduces communication between the program and the
database server and also increases the speed of the insertions.

Insert cursors also have the sequential cursor characteristic. To create an Insert
cursor, you associate a sequential cursor with a restricted form of the INSERT
statement. (For more information, see “Insert Cursor” on page 2-394.) The
following example contains IBM Informix ESQL/C code that declares a sequential
Insert cursor:
EXEC SQL declare ins_cur cursor for

insert into stock values
(:stock_no,:manu_code,:descr,:u_price,:unit,:u_desc);

Cursor Characteristics
You can declare a cursor as a sequential cursor (the default), a scroll cursor (by
using the SCROLL keyword), or a hold cursor (by using the WITH HOLD
keywords). The SCROLL and WITH HOLD keywords are not mutually exclusive.
Sections that follow explain these structural characteristics.

A Select or Function cursor can be either a sequential or a scroll cursor. An Insert
cursor can only be a sequential cursor. In ESQL/C routines, Select, Function, and
Insert cursors can optionally be hold cursors. (In SPL routines, all cursors are
sequential cursors, but only Select cursors can be hold cursors.)

Creating a Sequential Cursor by Default
If you use only the CURSOR keyword, you create a sequential cursor, which can
fetch only the next row in sequence from the active set. The sequential cursor can
read through the active set only once each time it is opened.

If you are using a sequential cursor for a Select cursor, on each execution of the
FETCH statement, the database server returns the contents of the current row and
locates the next row in the active set.

Chapter 2. SQL statements 2-395

The following example creates a read-only sequential cursor in a database that is
not ANSI compliant and an update sequential cursor in an ANSI-compliant
database:
EXEC SQL declare s_cur cursor for

select fname, lname into :st_fname, :st_lname
from orders where customer_num = 114;

Insert cursors also have the sequential cursor characteristic. To create a Insert
cursor, you associate a sequential cursor with a restricted form of the INSERT
statement. (For more information, see “Insert Cursor” on page 2-394.) The
following example declares an Insert cursor:
EXEC SQL declare ins_cur cursor for

insert into stock values
(:stock_no,:manu_code,:descr,:u_price,:unit,:u_desc);

Using the SCROLL Keyword to Create a Scroll Cursor
Use the SCROLL keyword to create a scroll cursor, which can fetch rows of the
active set in any sequence.

The database server retains the active set of the cursor as a temporary table until
the cursor is closed. You can fetch the first, last, or any intermediate rows of the
active set as well as fetch rows repeatedly without having to close and reopen the
cursor. (See FETCH.)

On a multiuser system, the rows in the tables from which the active-set rows were
derived might change after the cursor is opened and a copy is made in the
temporary table. If you use a scroll cursor within a transaction, you can prevent
copied rows from changing either by setting the isolation level to Repeatable Read
or by locking the entire table in share mode during the transaction. (See SET
ISOLATION and LOCK TABLE.)

The following example creates a scroll cursor for a SELECT statement:
DECLARE sc_cur SCROLL CURSOR FOR SELECT * FROM orders;

You can create scroll cursors as Select and Function cursors but not as Insert
cursors. Scroll cursors cannot be declared as FOR UPDATE.

Using the WITH HOLD Keywords to Create a Hold Cursor
Use the WITH HOLD keywords to create a hold cursor. A hold cursor allows
uninterrupted access to a set of rows across multiple transactions. Ordinarily, all
cursors close at the end of a transaction. A hold cursor does not close; it remains
open after a transaction ends.

A hold cursor can be either a sequential cursor or (in ESQL/C) a scroll cursor.

The WITH HOLD keywords are valid in SPL routines only for Select cursors. For
the syntax of the DECLARE statement in SPL routines, see “Declaring a Dynamic
Cursor in an SPL Routine” on page 2-403.

In ESQL/C, you can use the WITH HOLD keywords to declare Select and
Function cursors (with the sequential attribute or the scroll attribute) and also to
declare Insert cursors. These keywords follow the CURSOR keyword in the
DECLARE statement. The following example creates a sequential hold cursor for a
SELECT statement:
DECLARE hld_cur CURSOR WITH HOLD FOR

SELECT customer_num, lname, city FROM customer;

2-396 IBM Informix Guide to SQL: Syntax

You can use a select hold cursor as the following Informix ESQL/C code example
shows. This code fragment uses a hold cursor as a master cursor to scan one set of
records and a sequential cursor as a detail cursor to point to records that are
located in a different table. The records that the master cursor scans are the basis
for updating the records to which the detail cursor points. The COMMIT WORK
statement at the end of each iteration of the first WHILE loop leaves the hold
cursor c_master open but closes the sequential cursor c_detail and releases all
locks. This technique minimizes the resources that the database server must devote
to locks and unfinished transactions, and it gives other users immediate access to
updated rows.
EXEC SQL BEGIN DECLARE SECTION;

int p_custnum, int save_status; long p_orddate;
EXEC SQL END DECLARE SECTION;

EXEC SQL prepare st_1 from
’select order_date from orders where customer_num = ? for update’;

EXEC SQL declare c_detail cursor for st_1;
EXEC SQL declare c_master cursor with hold for

select customer_num from customer where city = ’Pittsburgh’;

EXEC SQL open c_master;
if(SQLCODE==0) /* the open worked */

EXEC SQL fetch c_master into :p_custnum; /* discover first customer */
while(SQLCODE==0) /* while no errors and not end of pittsburgh customers */

{
EXEC SQL begin work; /* start transaction for customer p_custnum */
EXEC SQL open c_detail using :p_custnum;
if(SQLCODE==0) /* detail open succeeded */

EXEC SQL fetch c_detail into :p_orddate; /* get first order */
while(SQLCODE==0) /* while no errors and not end of orders */

{
EXEC SQL update orders set order_date = ’08/15/94’

where current of c_detail;
if(status==0) /* update was ok */

EXEC SQL fetch c_detail into :p_orddate; /* next order */
}

if(SQLCODE==SQLNOTFOUND) /* correctly updated all found orders */
EXEC SQL commit work; /* make updates permanent, set status */

else /* some failure in an update */
{

save_status = SQLCODE; /* save error for loop control */
EXEC SQL rollback work;
SQLCODE = save_status; /* force loop to end */
}

if(SQLCODE==0) /* all updates, and the commit, worked ok */
EXEC SQL fetch c_master into :p_custnum; /* next customer? */

}
EXEC SQL close c_master;

Use either the CLOSE statement to close the hold cursor explicitly or the CLOSE
DATABASE or DISCONNECT statements to close it implicitly. The CLOSE
DATABASE statement closes all cursors.

Releases earlier than Version 9.40 of Informix do not support the PDQPRIORITY
feature with cursors that were declared WITH HOLD.

Using an Insert Cursor with Hold: If you associate a hold cursor with an INSERT
statement, you can use transactions to break a long series of PUT statements into
smaller sets of PUT statements. Instead of waiting for the PUT statements to fill
the buffer and cause an automatic write to the database, you can execute a
COMMIT WORK statement to flush the row buffer. With a hold cursor, COMMIT
WORK commits the inserted rows but leaves the cursor open for further inserts.

Chapter 2. SQL statements 2-397

This method can be desirable when you are inserting a large number of rows,
because pending uncommitted work consumes database server resources.

Subset of SELECT statements associated with cursors
As indicated in the syntax diagram for the DECLARE statement, not all SELECT
statements can be associated with a read-only or update cursor.

If the “DECLARE statement” on page 2-386 includes the FOR READ ONLY or FOR
UPDATE option, you must observe certain restrictions on the SELECT statement
that is included in the DECLARE statement (either directly or as a prepared
statement).

If the DECLARE statement includes the FOR READ ONLY option, the SELECT
statement cannot have a FOR READ ONLY or FOR UPDATE option. (For a
description of SELECT syntax and usage, see “SELECT statement” on page 2-654.)

If the DECLARE statement includes the FOR UPDATE option, the SELECT
statement must conform to the following restrictions:
v The statement can select data from only one table.
v The statement cannot include any aggregate functions.
v The statement cannot also include the FOR UPDATE keywords.
v The statement cannot include any of the following clauses or keywords:

DISTINCT, EXCEPT, FOR READ ONLY, FOR UPDATE, GROUP BY, INTERSECT,
INTO TEMP, MINUS, ORDER BY, UNION, or UNIQUE.

Examples of Cursors in Non-ANSI Compliant Databases
In a database that is not ANSI compliant, a cursor associated with a SELECT
statement is a read-only cursor by default. The following example declares a
read-only cursor in a non-ANSI compliant database:
EXEC SQL declare cust_curs cursor for

select * from customer_notansi;

If you want to make it clear in the program code that this cursor is a read-only
cursor, specify the FOR READ ONLY option as the following example shows:
EXEC SQL declare cust_curs cursor for

select * from customer_notansi for read only;

If you want this cursor to be an update cursor, specify the FOR UPDATE option in
your DECLARE statement. This example declares an update cursor:
EXEC SQL declare new_curs cursor for

select * from customer_notansi for update;

If you want an update cursor to be able to modify only some columns in a table,
you must specify those columns in the FOR UPDATE clause. The following
example declares an update cursor that can update only the fname and lname
columns in the customer_notansi table:
EXEC SQL declare name_curs cursor for

select * from customer_notansi for update of fname, lname;

Examples of Cursors in ANSI-Compliant Databases
In an ANSI-compliant database, a cursor associated with a SELECT statement is an
update cursor by default.

The following example declares an update cursor in an ANSI-compliant database:
EXEC SQL declare x_curs cursor for select * from customer_ansi;

2-398 IBM Informix Guide to SQL: Syntax

To make it clear in the program documentation that this cursor is an update cursor,
you can specify the FOR UPDATE option as in this example:
EXEC SQL declare x_curs cursor for

select * from customer_ansi for update;

If you want an update cursor to be able to modify only some of the columns in a
table, you must specify these columns in the FOR UPDATE option. The following
example declares an update cursor and specifies that this cursor can update only
the fname and lname columns in the customer_ansi table:
EXEC SQL declare y_curs cursor for

select * from customer_ansi for update of fname, lname;

If you want a cursor to be a read-only cursor, you must override the default
behavior of the DECLARE statement by specifying the FOR READ ONLY option in
your DECLARE statement. The following example declares a read-only cursor:
EXEC SQL declare z_curs cursor for

select * from customer_ansi for read only;

Associating a Cursor with a Prepared Statement
The PREPARE statement lets you assemble the text of an SQL statement at runtime
and pass the statement text to the database server for execution. If you anticipate
that a dynamically prepared SELECT, EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement that returns values could produce more than one row of
data, the prepared statement must be associated with a cursor. (See PREPARE.)

The result of a PREPARE statement is a statement identifier (statement id or id
variable), which is a data structure that represents the prepared statement text. To
declare a cursor for the statement text, associate a cursor with the statement
identifier.

You can associate a sequential cursor with any prepared SELECT or EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement. You cannot associate a scroll
cursor with a prepared INSERT statement or with a SELECT statement that was
prepared to include a FOR UPDATE clause.

After a cursor is opened, used, and closed, a different statement can be prepared
under the same statement identifier. In this way, it is possible to use a single cursor
with different statements at different times. The cursor must be redeclared before
you use it again.

The following example contains Informix ESQL/C code that prepares a SELECT
statement and declares a sequential cursor for the prepared statement text. The
statement identifier st_1 is first prepared from a SELECT statement that returns
values; then the cursor c_detail is declared for st_1.
EXEC SQL prepare st_1 from

’select order_date
from orders where customer_num = ?’;

EXEC SQL declare c_detail cursor for st_1;

If you want to use a prepared SELECT statement to modify data, add a FOR
UPDATE clause to the statement text that you want to prepare, as the following
Informix ESQL/C example shows:
EXEC SQL prepare sel_1 from

’select * from customer for update’;
EXEC SQL declare sel_curs cursor for sel_1;

Chapter 2. SQL statements 2-399

DDL operations that change the schema of a table can invalidate a cursor whose
associated prepared statement or associated routine references the modified table,
unless the prepared objects are recompiled, or unless the routine is reoptimized.
For more information, see the section “DDL Operations on Tables Referenced by
Cursors” on page 2-587.

The DECLARE statement allows you to declare a cursor for an Informix ESQL/C
collection variable. Such a cursor is called a Collection cursor. You use a collection
variable to access the elements of a collection (SET, MULTISET, LIST) column. Use
a cursor when you want to access one or more elements in a collection variable.

The Collection-Derived Table segment identifies the collection variable for which to
declare the cursor. For more information, see “Collection-Derived Table” on page
5-4.

Select with a Collection-Derived Table
The diagram for “DECLARE statement” on page 2-386 refers to this section.

To declare a Select cursor for a collection variable, include the Collection- Derived
Table segment with the SELECT statement that you associate with the Collection
cursor. A Select cursor allows you to select one or more elements from the
collection variable. (For a description of SELECT syntax and usage, see “SELECT
statement” on page 2-654.)

When you declare a Select cursor for a collection variable, the DECLARE statement
has the following restrictions:
v It cannot include the FOR READ ONLY keywords as cursor mode.

The Select cursor is an update cursor.
v It cannot include the SCROLL or WITH HOLD keywords.

The Select cursor must be a sequential cursor.

In addition, the SELECT statement that you associate with the collection cursor has
the following restrictions:
v It cannot include the following clauses or options: WHERE, GROUP BY, ORDER

BY, HAVING, INTO TEMP, and WITH REOPTIMIZATION.
v It cannot contain expressions in the projection list.
v If the collection contains elements of opaque, distinct, built-in, or other collection

data types, the projection list must be an asterisk (*).
v Column names in the projection list must be simple column names, without

qualifiers.
These columns cannot use the following syntax:
database@server:table.column --INVALID SYNTAX

v It must specify the name of the collection variable in the FROM clause.
You cannot specify an input parameter (the question-mark (?) symbol) for the
collection variable. Likewise, you cannot use the virtual table format of the
Collection-Derived Table segment.

Using a Select Cursor with a Collection Variable:
A Collection cursor that includes a SELECT statement with the Collection- Derived
Table clause provides access to the elements in a collection variable.

To select more than one element:
1. Create a client collection variable in your Informix ESQL/C program.

2-400 IBM Informix Guide to SQL: Syntax

2. Declare the Collection cursor for the SELECT statement with the DECLARE
statement. To modify elements of the collection variable, declare the Select
cursor as an update cursor with the FOR UPDATE keywords. You can then use
the WHERE CURRENT OF clause of the DELETE and UPDATE statements to
delete or update elements of the collection.

3. Open this cursor with the OPEN statement.
4. Fetch the elements from the Collection cursor with the FETCH statement and

the INTO clause.
5. If necessary, perform any updates or deletes on the fetched data and save the

modified collection variable in the collection column. Once the collection
variable contains the correct elements, use the UPDATE or INSERT statement to
save the contents of the collection variable in the actual collection column (SET,
MULTISET, or LIST).

6. Close the Collection cursor with the CLOSE statement.

This DECLARE statement declares a Select cursor for a collection variable:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(integer not null) a_set;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL declare set_curs cursor for select * from table(:a_set);

For an extended code example that uses a Collection cursor for a SELECT
statement, see “Fetching from a Collection Cursor” on page 2-481.

Insert with a Collection-Derived Table
To declare an Insert cursor for a collection variable, include the Collection- Derived
Table segment in the INSERT statement associated with the Collection cursor. An
Insert cursor can insert one or more elements in the collection. For a description of
INSERT syntax and usage, see “INSERT statement” on page 2-545.

The Insert cursor must be a sequential cursor. That is, the DECLARE statement
cannot specify the SCROLL keyword.

When you declare an Insert cursor for a collection variable, the Collection- Derived
Table clause of the INSERT statement must contain the name of the collection
variable. You cannot specify an input parameter (the question-mark (?) symbol)
for the collection variable. However, you can use an input parameter in the
VALUES clause of the INSERT statement. This parameter indicates that the
collection element is to be provided later by the FROM clause of the PUT
statement.

A Collection cursor that includes an INSERT statement with the Collection-
Derived Table clause allows you to insert more than one element into a collection
variable.

To insert more than one element:
1. Create a client collection variable in your Informix ESQL/C program.
2. Declare the Collection cursor for the INSERT statement with the DECLARE

statement.
3. Open the cursor with the OPEN statement.
4. Put the elements into the Collection cursor with the PUT statement and the

FROM clause.

Chapter 2. SQL statements 2-401

5. Once the collection variable contains all the elements, use the UPDATE
statement or the INSERT statement on a table name to save the contents of the
collection variable in a collection column (SET, MULTISET, or LIST).

6. Close the Collection cursor with the CLOSE statement.

This example declares an Insert cursor for the a_set collection variable:
EXEC SQL BEGIN DECLARE SECTION;

client collection multiset(smallint not null) a_mset;
int an_element;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL declare mset_curs cursor for

insert into table(:a_mset) values (?);
EXEC SQL open mset_curs;
while (1)
{
...

EXEC SQL put mset_curs from :an_element;
...
}

To insert the elements into the collection variable, use the PUT statement with the
FROM clause. For a code example that uses a Collection cursor for an INSERT
statement, see “Inserting into a Collection Cursor” on page 2-605.

Using Cursors with Transactions
To roll back a modification, you must perform the modification within a
transaction. A transaction in a database that is not ANSI compliant begins only
when the BEGIN WORK statement is executed.

In an ANSI-compliant database, transactions are always in effect.

The database server enforces these guidelines for select and update cursors to
ensure that modifications can be committed or rolled back properly:
v Open an insert or update cursor within a transaction.
v Include PUT and FLUSH statements within one transaction.
v Modify data (update, insert, or delete) within one transaction.

The database server lets you open and close a hold cursor for an update outside a
transaction; however, you should fetch all the rows that pertain to a given
modification and then perform the modification all within a single transaction. You
cannot open and close a hold cursor or an update cursor outside a transaction.

The following example uses an update cursor within a transaction:
EXEC SQL declare q_curs cursor for

select customer_num, fname, lname from customer
where lname matches :last_name for update;

EXEC SQL open q_curs;
EXEC SQL begin work;
EXEC SQL fetch q_curs into :cust_rec; /* fetch after begin */
EXEC SQL update customer set lname = ’Smith’

where current of q_curs;
/* no error */
EXEC SQL commit work;

When you update a row within a transaction, the row remains locked until the
cursor is closed or the transaction is committed or rolled back. If you update a row

2-402 IBM Informix Guide to SQL: Syntax

when no transaction is in effect, the row lock is released when the modified row is
written to disk. If you update or delete a row outside a transaction, you cannot roll
back the operation.

In a database that uses transactions, you cannot open an Insert cursor outside a
transaction unless it was also declared with the WITH HOLD keywords.

Declaring a Dynamic Cursor in an SPL Routine
Use the DECLARE statement in an SPL routine to declare the name of a dynamic
cursor, and to associate that cursor with the statement identifier of a prepared
statement that the PREPARE statement has declared in the same SPL routine.

Dynamic cursors that the DECLARE statement of SQL can create in SPL routines
are distinct from the direct sequential cursors that the FOREACH statement of SPL
can create in SPL routines. (For the syntax and usage of direct sequential cursors,
see “FOREACH” on page 3-30.)

Syntax

The syntax of the DECLARE statement in SPL routines is a subset of the syntax
that DECLARE supports in Informix ESQL/C routines.

�� DECLARE cursor_id FOR statement_id
(1)

WITH HOLD

��

Notes:

1 Informix extension

Element Description Restrictions Syntax

cursor_id Name declared here for a
new dynamic cursor

Must be unique among
names of cursors, prepared
statements, and SPL variables
in the routine

“Identifier” on
page 5-21

statement_id Identifier of a single
prepared SQL statement

Must have been declared in a
PREPARE statement of the
same SPL routine

“Identifier” on
page 5-21

Usage

In UDRs written in the SPL language, the statement_id associated with the cursor
must have been declared earlier in the same UDR by a PREPARE statement from
the text of a single SQL statement of one of these statement types:
v EXECUTE FUNCTION
v EXECUTE PROCEDURE
v SELECT.

This prepared statement text that statement_id specifies can include question mark (
?) symbols as placeholders for values that the user supplies at runtime, but these
placeholders in the PREPARE statement can represent only data values, not SQL
identifiers.

Chapter 2. SQL statements 2-403

Dynamic cursors that the DECLARE statement can define in SPL routines resemble
ESQL/C Select cursors or Function cursors in their functionality, but with these
restrictions:
v Cursors that DECLARE defines in an SPL routine can be Select cursors or

Function cursors, but they cannot be Insert cursors nor Collection cursors.
v The identifier of the cursor or of the prepared statement cannot be specified as

an SPL variable, because in SPL, the identifiers of variables, cursors, and
prepared objects all share the same namespace.

v By default, dynamic cursors of SPL are sequential. They cannot be scroll cursors.
v The semantics of dynamic cursors that you create with the WITH HOLD

keywords are the same as for hold cursors that the FOREACH statement
declares.

v The WITH HOLD keywords are valid in SPL routines only for Select cursors. If
statement_id references the prepared text of an EXECUTE FUNCTION or
EXECUTE PROCEDURE statement, the DECLARE statement fails with error
-26056.

v The FOR UPDATE and FOR READ ONLY keywords that ESQL/C supports in
DECLARE statements are not supported in SPL routines. Use the FOREACH
statement of SPL to declare direct cursors that can emulate the functionality of
ESQL/C update cursors. (But queries associated with direct cursors are defined
when the UDR is compiled, rather than at runtime.)

v The DECLARE statement in SPL routines does not support SELECT operations
on collection-derived tables.

v Syntax errors in DECLARE statements of SPL routines are reported at runtime,
unlike syntax errors of ESQL/C, which are reported when the routine is
compiled.

The names of the dynamic cursors that the DECLARE statement associates with a
prepared statement in SPL routines can be referenced by the OPEN, CLOSE,
FETCH, and FREE statements of dynamic SQL in the same SPL routine.

In the following program fragment, a cursor called equi_noctis is declared,
opened, closed, and freed.
CREATE FUNCTION lente

DEFINE first, last VARCHAR(30);
. . .
DATABASE stores_demo;
LET first = "select * from state";
LET lsst = "where code < ?";
PREPARE stmt_1 FROM first || last;
DECLARE cursor_1 FOR stmt_1;
OPEN cursor_1
. . .
CLOSE cursor_1;
FREE cursor_1;
FREE stmt_1;
...
END FUNCTION;

DELETE statement
Use the DELETE statement to delete one or more rows from a table, or to delete
one or more elements from an SPL or Informix ESQL/C collection variable.

2-404 IBM Informix Guide to SQL: Syntax

Syntax

�� DELETE
(1) (2)

Optimizer Directives

FROM
(1)

�

� table
view (1)
synonym alias

AS
(1)

ONLY (table)
(synonym)

(3)
Collection-Derived Table

�

�
(1) (4)

WHERE condition
(5)

WHERE CURRENT OF cursor_id

��

Notes:

1 Informix extension

2 See “Optimizer Directives” on page 5-35

3 See “Collection-Derived Table” on page 5-4

4 See “Using the WHERE Keyword to Specify a Condition” on page 2-408

5 ESQL/C and Stored Procedure Language only

Element Description Restrictions Syntax

alias Temporary name that you
declare here for a table, view,
or synonym.

The AS keyword must precede alias if
WHERE is the identifier of alias

“Identifier” on page
5-21

condition Logical criteria that deleted
rows must satisfy

Cannot be a UDR nor a correlated subquery “Condition” on page
4-5

cursor_id Previously declared cursor Must have been declared FOR UPDATE “Identifier” on page
5-21

synonym,
table, view

Table, view, or synonym with
rows to be deleted

The table or view (or synonym and the table or
view to which it points) must exist

“Database Object
Name” on page 5-16

Usage

Use the DELETE statement to remove any of the following types of database
objects or program objects:
v A row in a table: a single row, a group of rows, or all rows in a table
v An element in a column of a collection data type
v In a column of a named or unnamed ROW data type, a field or all fields.

You can also use this statement to remove the values in one or more elements in
an Informix ESQL/C or SPL collection variable or ROW variable.

Chapter 2. SQL statements 2-405

To execute the DELETE statement, you must hold the DBA access privilege on the
database, or the Delete access privilege on the table.

In a database with explicit transaction logging, any DELETE statement that you
execute outside a transaction is treated as a single transaction.

If you specify a view name, the view must be updatable. For an explanation of an
updatable view, see “Updating Through Views” on page 2-378.

The DELETE statement cannot reference table objects that the CREATE EXTERNAL
TABLE statement defined.

The database server locks each row affected by a DELETE statement within a
transaction for the duration of the transaction. The type of lock that the database
server uses is determined by the lock mode of the table, as set by a CREATE
TABLE or ALTER TABLE statement, as follows:
v If the lock mode is ROW, the database server acquires one lock for each row

affected by the delete.

If the number of rows affected is very large and the lock mode is ROW, you might
exceed the limits your operating system places on the maximum number of
simultaneous locks. If this occurs, you can either reduce the scope of the DELETE
statement or lock the table in exclusive mode before you execute the statement.

If you use DELETE without a WHERE clause (to specify either a condition or the
active set of the cursor), all rows in the table are deleted. It is typically more
efficient, however, to use the TRUNCATE statement, rather than the DELETE
statement, to remove all rows from a table.

In DB-Access, if you omit the WHERE clause while working at the SQL menu,
DB-Access prompts you to verify that you want to delete all rows from a table.
You do not receive a prompt if you execute DELETE within a command file.

In an ANSI-compliant database, data manipulation language (DML) statements are
always in a transaction. You cannot execute a DELETE statement outside a
transaction.

On Informix, the FROM keyword that immediately follows DELETE can be
omitted if the DELIMIDENT environment variable has been set.
Related concepts:

Data manipulation statements (GLS User's Guide)
Related reference:
“TRUNCATE statement” on page 2-842
“DECLARE statement” on page 2-386
“FETCH statement” on page 2-474
“GET DIAGNOSTICS statement” on page 2-493
“INSERT statement” on page 2-545
“OPEN statement” on page 2-581
“SELECT statement” on page 2-654
“UPDATE statement” on page 2-852

Modify data through SQL programs (SQL Tutorial)

2-406 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_159.htm#ids_gug_159
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_342.htm#ids_sqt_342

Create and use SPL routines (SQL Tutorial)

Complex data types (ESQL/C Guide)
“Collection-Derived Table” on page 5-4
“MERGE statement” on page 2-568

Using the ONLY Keyword
If you use DELETE to remove rows of a supertable, rows from both the supertable
and its subtables can be deleted. To delete rows from the supertable only, specify
the ONLY keyword before the table name.
DELETE FROM ONLY(super_tab)

WHERE name = "johnson";

Warning: If you use the DELETE statement on a supertable and omit the ONLY
keyword and WHERE clause, all rows of the supertable and its subtables are
deleted.

You cannot specify the ONLY keyword if you plan to use the WHERE CURRENT
OF clause to delete the current row of the active set of a cursor.

Considerations When Tables Have Cascading Deletes
When you use the ON DELETE CASCADE option of the REFERENCES clause of
either the CREATE TABLE or ALTER TABLE statement, you specify that you want
deletes to cascade from one table to another. For example, in the stores_demo
database, the stock table contains the column stock_num as a primary key. The
catalog and items tables each contain the column stock_num as foreign keys with
the ON DELETE CASCADE option specified. When a delete is performed from the
stock table, rows are also deleted in the catalog and items tables, which are
referenced through the foreign keys.

To have DELETE actions cascade to a table that has a referential constraint on a
parent table, you need the Delete privilege only on the parent table that you
reference in the DELETE statement.

If a DELETE operation with no WHERE clause is performed on a table that one or
more child tables reference with cascading deletes, Informix deletes all rows from
that table and from any affected child tables. (This resembles the effect of the
TRUNCATE statement, but Informix does not support TRUNCATE operations on
any table that has a child table referencing it.)

For an example of how to create a referential constraint that uses cascading deletes,
see “Using the ON DELETE CASCADE Option” on page 2-281.

Restrictions on DELETE When Tables Have Cascading Deletes
You cannot use a child table in a correlated subquery to delete a row from a parent
table. If two child tables reference the same parent table, and one child specifies
cascading deletes but the other child does not, then if you attempt to delete a row
that applies to both child tables from the parent table, the delete fails, and no rows
are deleted from the parent or child tables.

Locking and Logging Implications of Cascading Deletes
During deletes, the database server places locks on all qualifying rows of the
referenced and referencing tables.

Chapter 2. SQL statements 2-407

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_412.htm#ids_sqt_412
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0280.htm#ids_esqlc_0280

Informix requires transaction logging for cascading deletes. If logging is turned off
in a database that is not ANSI-compliant, even temporarily, deletes do not cascade,
because you cannot roll back any actions. For example, if a parent row is deleted,
but the system fails before the child rows are deleted, the database will have
dangling child records, in violation of referential integrity. After logging is turned
back on, however, subsequent deletes cascade.

Using the WHERE Keyword to Specify a Condition
Use the WHERE condition clause to specify which rows you want to delete from
the table. The condition after the WHERE keyword is equivalent to the condition in
the SELECT or UPDATE statement. For example, the next statement deletes all the
rows of the items table where the order number is less than 1034:
DELETE FROM items WHERE order_num < 1034;

In DB-Access, if you include a WHERE clause that selects all rows in the table,
DB-Access gives no prompt and deletes all rows.

If you are deleting from a supertable in a table hierarchy, a subquery in the
WHERE clause cannot reference a subtable.

When deleting from a subtable, a subquery in the WHERE clause can reference the
supertable only in SELECT ... FROM ONLY (supertable)... syntax.

Subqueries in the WHERE Clause of DELETE
The FROM clause of a subquery in the WHERE clause of the DELETE statement
can specify as a data source the same table or view that the FROM clause of the
DELETE statement specifies. DELETE operations with subqueries that reference the
same table object are supported only if all of the following conditions are true:
v The subquery either returns a single row, or else has no correlated column

references.
v The subquery is in the DELETE statement WHERE clause, using Condition with

Subquery syntax.
v Any SPL routines within the subquery cannot reference the table that is being

modified.

Unless all of these conditions are satisfied, DELETE statements that include
subqueries that reference the same table or view that the DELETE statement
modifies return error -360.

The following example deletes from the orders table a subset of rows whose
paid_date column value satisfies the condition in the WHERE clause. The WHERE
clause specifies which rows to delete by applying the IN operator to the rows
returned by a subquery that selects only the rows of the orders table where the
paid_date value is earlier than the current date:
DELETE FROM orders WHERE paid_date IN

(SELECT paid_date FROM orders WHERE paid_date < CURRENT);

This subquery includes only uncorrelated column references, because its only
referenced column is in a table specified in its FROM clause. The requirements
listed above are in effect, because the data source of the subquery is the same
orders table that the FROM clause of the outer UPDATE statement specifies. The
previous example illustrates Informix support for uncorrelated subqueries in the
WHERE clause of the DELETE statement. rather than how to write short SQL
statements. The next example achieves the same result with simpler syntax:

2-408 IBM Informix Guide to SQL: Syntax

DELETE orders WHERE paid_date < CURRENT;

The following example deletes from the stock table the row (or rows) with the
largest unit_price value. The WHERE clause identifies which unit_price value is
the largest by applying the equality operator to the result of a subquery that calls
the built-in MAX aggregate function for the unit_price column values:
DELETE FROM stock WHERE unit_price =

(SELECT MAX(unit_price) FROM stock);

If an enabled Select trigger is defined on a table that is the data source of a
subquery in the WHERE clause of a DELETE statement that modifies the same
table, executing that subquery within the DELETE statement does not activate the
trigger.

A subquery in the DELETE statement can include the UNION or UNION ALL
operators.

If the table that the outer DELETE statement modifies a typed table within a table
hierarchy, Informix supports all of the following operations that use valid
subqueries in the WHERE clause of DELETE:
v DELETE from parent table with subquery (SELECT from parent table)
v DELETE from parent table with subquery (SELECT from child table)
v DELETE from child table with subquery (SELECT from parent table)
v DELETE from child table with subquery (SELECT from child table).

See the Condition with Subquery topic for more information about the syntax of
subqueries to return multiple rows as predicates in the WHERE clause of the
DELETE statement.

Declaring an alias for the table
You can declare an alias for the table. The alias can reference the fully-qualified
database object name of a local or remote table, view, or synonym.

The alias is a temporary name that is not registered in the system catalog of the
database, and that persists only while the DELETE statement is running.

If the name that you declare as the alias is the keyword WHERE, you must use the
AS keyword to clarify the syntax:
DELETE stock AS where

WHERE manu_code =
(SELECT manu_code FROM where WHERE manu_code MATCHES ’H*’);

Because where is a keyword of both the DELETE and SELECT statements, the
previous example is not easy to read. The following example accesses a remote
table without declaring an alias for the table:
DELETE overstock@cleveland:stock AS ocs

WHERE manu_code =
(SELECT manu_code FROM overstock@cleveland:stock
WHERE manu_code MATCHES ’H*’);

;

The next example is logically equivalent to the previous DELETE statement, but
simplifies the notation by declaring ocs as alias that references the same table in
the subquery"

Chapter 2. SQL statements 2-409

DELETE overstock@cleveland:stock AS ocs
WHERE manu_code =

(SELECT manu_code FROM ocs WHERE manu_code MATCHES ’H*’);
;

Using the WHERE CURRENT OF Keywords (ESQL/C, SPL)
The WHERE CURRENT OF clause deletes the current row of the active set of a
cursor. When you include this clause, the DELETE statement removes the row of
the active set at the current position of the cursor. After the deletion, no current
row exists; you cannot use the cursor to delete or update a row until you
reposition the cursor with a FETCH statement (in ESQL/C routines) or with a
FOREACH statement (in SPL routines).

You access the current row of the active set of a cursor with an update cursor.
Before you can use the WHERE CURRENT OF clause, you must first create an
update cursor by using the FOREACH statement (in SPL) or the DECLARE
statement with the FOR UPDATE clause (in Informix ESQL/C). The cursor_id that
follows the OF keyword cannot be declared, however, by the DECLARE statement
in an SPL routine

Unless they are declared with the FOR READ ONLY keywords, all Select cursors
are potentially update cursors in an ANSI-compliant database. You can use the
WHERE CURRENT OF clause with any Select cursor that was not declared with
the FOR READ ONLY keywords.

You cannot use WHERE CURRENT OF if you are selecting from only one table in
a table hierarchy. That is, this clause is not valid with the ONLY keyword.

The WHERE CURRENT OF clause can be used to delete an element from a
collection by deleting the current row of the collection-derived table that a
collection variable holds. For more information, see “Collection-Derived Table” on
page 5-4.

Deleting Rows That Contain Opaque Data Types
Some opaque data types require special processing when they are deleted. For
example, if an opaque data type contains spatial or multirepresentational data, it
might provide a choice of how to store the data: inside the internal structure or, for
large objects, in a smart large object.

To accomplish this process, call a user-defined support function called destroy().
When you use DELETE to remove a row that contains one of these opaque types,
the database server automatically invokes destroy() for the opaque type. This
function decides how to remove the data, regardless of where it is stored. For more
information on the destroy() support function, see IBM Informix User-Defined
Routines and Data Types Developer's Guide.

Deleting Rows That Contain Collection Data Types
When a row contains a column that is a collection data type (LIST, MULTISET, or
SET), you can search for a particular element in the collection, and delete the row
or rows in which the element is found.

For example, the following statement deletes any rows from the new_tab table in
which the set_col column contains the element jimmy smith:
DELETE FROM new_tab WHERE ’jimmy smith’ IN set_col;

2-410 IBM Informix Guide to SQL: Syntax

You can also use a collection variable to delete values in a collection column by
deleting one or more individual elements in a collection. For more information, see
“Collection-Derived Table” on page 5-4 and the examples in “Database Name” on
page 5-15 and “Example of Deleting from a Collection” on page 5-12.

Data Types in Distributed DELETE Operations
A DELETE statement (or any other SQL data-manipulation language statement)
that accesses a database of another Informix instance can reference only the
following data types:
v Built-in data types that are not opaque
v BOOLEAN
v LVARCHAR
v DISTINCT of the built-in data types that are not opaque
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of any of the DISTINCT data types that appear in this list.

Cross-server distributed DELETE operations can support these DISTINCT types
only if the DISTINCT types are cast explicitly to built-in types, and all of the
DISTINCT types, their data type hierarchies, and their casts are defined exactly the
same way in each participating database.

Cross-server DML operations cannot reference a column or expression of a
complex, large-object, nor user-defined opaque data type (UDT), nor of an
unsupported DISTINCT type or built-in opaque type. For additional information
about the data types that Informix supports in cross-server DML operations, see
“Data Types in Cross-Server Transactions” on page 2-665.

Distributed operations that access other databases of the local Informix instance,
however, can access the same data types that are listed above for cross-server
operations, and also the following additional data types:
v Most of the built-in opaque data types, as listed in “Data Types in Cross-Database

Transactions” on page 2-663
v DISTINCT of the built-in types that are referenced in the line above
v DISTINCT of any of the data types that are listed in either of the two lines

above
v Opaque user-defined data types (UDTs) that can be cast explicitly to built-in

data types.

Cross-database DELETE operations can support these DISTINCT and opaque UDTs
only if all the opaque and DISTINCT UDTs are cast explicitly to built-in types, and
all of the opaque UDTs, DISTINCT types, data type hierarchies, and casts are
defined exactly the same way in each of the participating databases.

Distributed DELETE statements cannot access a database of another Informix
instance unless both server instances support either a TCP/IP or an IPCSTR
connection, as defined in their DBSERVERNAME or DBSERVERALIASES
configuration parameters and in the sqlhosts information. This connection-type
requirement applies to any communication between Informix instances, even if
both database servers reside on the same computer.

Chapter 2. SQL statements 2-411

SQLSTATE Values in an ANSI-Compliant Database
If no rows satisfy the WHERE clause of a DELETE operation on a table in an
ANSI-compliant database, the database server issues a warning. You can detect this
warning condition in either of the following ways:
v The GET DIAGNOSTICS statement sets the RETURNED_SQLSTATE field to

the value 02000. In an SQL API application, the SQLSTATE variable contains
this same value.

v In an SQL API application, the sqlca.sqlcode and SQLCODE variables contain
the value 100.

The database server also sets SQLSTATE and SQLCODE to these values if the
DELETE . . . WHERE statement is part of a multistatement prepared object, and
the database server returns no rows.

SQLSTATE Values in a Database That Is Not ANSI-Compliant
In a database that is not ANSI compliant, the database server does not return a
warning when it finds no rows satisfying the WHERE clause of a DELETE
statement. In this case, the SQLSTATE code is 00000 and the SQLCODE code is
zero (0). If the DELETE . . . WHERE is part of a multistatement prepared object,
however, and no rows are returned, the database server does issue a warning. It
sets SQLSTATE to 02000 and sets the SQLCODE value to 100.

For information on the ANSI/ISO-compliance status of values returned to the
SQLSTATE variable, see the section “SQLSTATE Support for the ANSI/ISO
Standard for SQL” on page 2-494.

DESCRIBE statement
Use the DESCRIBE statement to obtain information about output parameters and
other features of a prepared statement before you execute it. Use this statement
with Informix ESQL/C. (See also “DESCRIBE INPUT statement” on page 2-417.)

Syntax

�� DESCRIBE
OUTPUT

statement_id_var
statement_id

�

� USING SQL DESCRIPTOR descriptor_var
'descriptor'

INTO SQL DESCRIPTOR descriptor_var
'descriptor'

sqlda_pointer

��

Element Description Restrictions Syntax

descriptor Name of a system-descriptor
area

System-descriptor area must already
be allocated

“Quoted String” on page
4-219

descriptor_var Host variable specifying a
system-descriptor area

Must contain the name of an
allocated system-descriptor area

Language-specific rules for
names

sqlda_pointer Pointer to an sqlda structure Cannot begin with dollar ($) sign
or colon (:). An sqlda structure is
required if dynamic SQL is used.

See the sqlda structure in
the IBM Informix ESQL/C
Programmer's Manual

2-412 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

statement_id Statement identifier for a
prepared SQL statement

Must be defined in a previous
PREPARE statement

“PREPARE statement” on
page 2-589; “Identifier” on
page 5-21

statement
_id_var

Host variable that contains
the value of statement_id

Must be declared in a previous
PREPARE statement

Language-specific rules for
names

Usage

DESCRIBE can provide information at runtime about a prepared statement:
v The type of SQL statement that was prepared
v Whether an UPDATE or DELETE statement contains a WHERE clause
v For a SELECT, EXECUTE FUNCTION (or EXECUTE PROCEDURE), INSERT, or

UPDATE statement, the DESCRIBE statement also returns the number, data
types, and size of the values, and the name of the column or expression that the
query returns.

With this information, you can write code to allocate memory to hold retrieved
values and display or process them after they are fetched.
Related concepts:

Dynamic host variables (SQL Tutorial)

Dynamic-management structure (ESQL/C Guide)
Related reference:
“GET DESCRIPTOR statement” on page 2-487
“SET DESCRIPTOR statement” on page 2-753
“INSERT statement” on page 2-545
“ALLOCATE DESCRIPTOR statement” on page 2-2
“SET DEFERRED_PREPARE statement” on page 2-751
“DEALLOCATE DESCRIPTOR statement” on page 2-384
“DECLARE statement” on page 2-386
“DESCRIBE INPUT statement” on page 2-417
“EXECUTE statement” on page 2-455
“FETCH statement” on page 2-474
“OPEN statement” on page 2-581
“PREPARE statement” on page 2-589
“PUT statement” on page 2-601
“Collection-Derived Table” on page 5-4

The OUTPUT Keyword
The OUTPUT keyword specifies that only information about output parameters of
the prepared statement are stored in the sqlda descriptor area. If you omit this
keyword, DESCRIBE can return input parameters, but only for INSERT statements
(and for UPDATE, if the IFX_UPDDESC environment variable is set in the
environment where the database server is initialized).

Chapter 2. SQL statements 2-413

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_335.htm#ids_sqt_335
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0577.htm#ids_esqlc_0577

Describing the Statement Type
The DESCRIBE statement takes a statement identifier from a PREPARE statement
as input. When the DESCRIBE statement executes, the database server sets the
value of the SQLCODE field of the sqlca to indicate the statement type (that is, the
keyword with which the statement begins). If the prepared statement text contains
more than one SQL statement, the DESCRIBE statement returns the type of the first
statement in the text.

SQLCODE is set to zero to indicate a SELECT statement without an INTO TEMP
clause. This situation is the most common. For any other SQL statement,
SQLCODE is set to a positive integer. You can test the number against the constant
names that are defined. In Informix ESQL/C, the constant names are defined in
the sqlstypes.h header file.

The DESCRIBE statement (and the DESCRIBE INPUT statement) use the
SQLCODE field differently from any other statement, possibly returning a nonzero
value when it executes successfully. You can revise standard error-checking
routines to accommodate this behavior, if desired.

Checking for the Existence of a WHERE Clause
If the DESCRIBE statement detects that a prepared statement contains an UPDATE
or DELETE statement without a WHERE clause, the DESCRIBE statement sets the
sqlca.sqlwarn.sqlwarn4 variable to W.

When you do not specify a WHERE clause in either a DELETE or UPDATE
statement, the database server performs the delete or update operation on the
entire table. Check the sqlca.sqlwarn.sqlwarn4 variable to avoid unintended global
changes to your table.

Describing a Statement with Runtime Parameters
If the prepared statement contains parameters for which the number of parameters
or parameter data types is to be supplied at runtime, you can describe these input
values. If the prepared statement text includes one of the following statements, the
DESCRIBE statement returns a description of each column or expression that is
included in the list:
v EXECUTE FUNCTION (or EXECUTE PROCEDURE)
v INSERT
v SELECT (without an INTO TEMP clause)
v UPDATE

In Informix, the IFX_UPDDESC environment variable, as described in the IBM
Informix Guide to SQL: Reference, must be set before you can use DESCRIBE to
obtain information about an UPDATE statement.

The description includes the following information:
v The data type of the column, as defined in the table
v The length of the column, in bytes
v The name of the column or expression

For a prepared INSERT or UPDATE statement, DESCRIBE returns only the
dynamic parameters (those expressed with a question mark (?) symbol). Using the
OUTPUT keyword, however, prevents these from being returned.

2-414 IBM Informix Guide to SQL: Syntax

You can specify a destination for the returned information as a new or existing
system-descriptor area, or as a pointer to an sqlda structure.

A system-descriptor area conforms to the X/Open standards.
Related reference:

IFX_UPDDESC environment variable (SQL Reference)

Using the SQL DESCRIPTOR Keywords
Use the USING SQL DESCRIPTOR clause to store the description of a prepared
statement list in a previously allocated system-descriptor area.

Use the INTO SQL DESCRIPTOR clause to create a new system-descriptor
structure and store the description of a statement list in that structure.

To describe one of the previously mentioned statements into a system-descriptor
area, DESCRIBE updates the system-descriptor area in these ways:
v It sets the COUNT field in the system-descriptor area to the number of values in

the statement list. An error results if COUNT is greater than the number of item
descriptors in the system-descriptor area.

v It sets the TYPE, LENGTH, NAME, SCALE, PRECISION, and NULLABLE fields
in the system-descriptor area.
If the column has an opaque data type, the database server sets the EXTYPEID,
EXTYPENAME, EXTYPELENGTH, EXTYPEOWNERLENGTH, and
EXTYPEOWNERNAME fields of the item descriptor.

v It allocates memory for the DATA field for each item descriptor, based on the
TYPE and LENGTH information.

After a DESCRIBE statement is executed, the SCALE and PRECISION fields
contain the scale and precision of the column, respectively. If SCALE and
PRECISION are set in the SET DESCRIPTOR statement, and TYPE is set to
DECIMAL or MONEY, the LENGTH field is modified to adjust for the scale and
precision of the decimal value. If TYPE is not set to DECIMAL or MONEY, the
values for SCALE and PRECISION are not set, and LENGTH is unaffected.

You must modify system-descriptor-area information with SET DESCRIPTOR
statements to show the address in memory that is to receive the described value.
You can change the data type to another compatible type. This change causes data
conversion to take place when data values are fetched.

You can use the system-descriptor area in prepared statements that support a
USING SQL DESCRIPTOR clause, such as EXECUTE, FETCH, OPEN, and PUT.

The following examples show the use of a system descriptor in a DESCRIBE
statement. In the first example, the system descriptor is a quoted string; in the
second example, it is an embedded variable name.
main()
{
. . .
EXEC SQL allocate descriptor ’desc1’ with max 3;
EXEC SQL prepare curs1 FROM ’select * from tab’;
EXEC SQL describe curs1 using sql descriptor ’desc1’;
}
EXEC SQL describe curs1 using sql descriptor :desc1var;

Chapter 2. SQL statements 2-415

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_253.htm#ids_sqr_253

Using the INTO sqlda Pointer Clause
Use the INTO sqlda_pointer clause to allocate memory for an sqlda structure and
store its address in an sqlda pointer. The DESCRIBE statement fills in the allocated
memory with descriptive information. Unlike the USING clause, the INTO clause
creates new sqlda structures to store the output from DESCRIBE.

The DESCRIBE statement sets the sqlda.sqld field to the number of values in the
statement list. The sqlda structure also contains an array of data descriptors
(sqlvar structures), one for each value in the statement list. After a DESCRIBE
statement is executed, the sqlda.sqlvar structure has the sqltype, sqllen, and
sqlname fields set.

If the column has an opaque data type, DESCRIBE...INTO sets the sqlxid,
sqltypename, sqltypelen, sqlownerlen, and sqlownername fields of the item
descriptor.

The DESCRIBE statement allocates memory for an sqlda pointer once it is declared
in a program. The application program, however, must designate the storage area
of the sqlda.sqlvar.sqldatafields.

Describing a Collection Variable
The DESCRIBE statement can provide information about a collection variable when
you use the USING SQL DESCRIPTOR or INTO clause. You must issue the
DESCRIBE statement after you open the Select or Insert cursor, because the
OPEN...USING statement specifies the name of the collection variable to use.

The next Informix ESQL/C code fragment dynamically selects the elements of the
:a_set collection variable into a system-descriptor area called desc1:
EXEC SQL BEGIN DECLARE SECTION;

client collection a_set;
int i, set_count;
int element_type, element_value;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL allocate descriptor ’desc1’;
EXEC SQL select set_col into :a_set from table1;
EXEC SQL prepare set_id from ’select * from table(?)’

EXEC SQL declare set_curs cursor for set_id;
EXEC SQL open set_curs using :a_set;
EXEC SQL describe set_id using sql descriptor ’desc1’;

do
{

EXEC SQL fetch set_curs using sql descriptor ’desc1’;
...
EXEC SQL get descriptor ’desc1’ :set_count = count;
for (i = 1; i <= set_count; i++)
{

EXEC SQL get descriptor ’desc1’ value :i
:element_type = TYPE;

switch
{

case SQLINTEGER:
EXEC SQL get descriptor ’desc1’ value :i

:element_value = data;
...

} /* end switch */
} /* end for */

2-416 IBM Informix Guide to SQL: Syntax

} while (SQLCODE == 0);

EXEC SQL close set_curs;
EXEC SQL free set_curs;
EXEC SQL free set_id;
EXEC SQL deallocate collection :a_set;
EXEC SQL deallocate descriptor ’desc1’;

DESCRIBE INPUT statement
Use the DESCRIBE INPUT statement to return input parameter information before
a prepared statement is executed.

Use this statement with ESQL/C.

Syntax

�� DESCRIBE INPUT statement_var
statement_id

�

� USING SQL DESCRIPTOR 'descriptor'
descriptor_var

INTO SQL DESCRIPTOR 'descriptor'
descriptor_var

(1)
sqlda_pointer

��

Notes:

1 Informix extension

Element Description Restrictions Syntax

descriptor Name of a system-descriptor
area

System-descriptor area must already
be allocated

“Quoted String” on page
4-219

descriptor_var Host variable specifying a
system-descriptor area

Must contain the name of an
allocated system-descriptor area

Language-specific rules for
names

sqlda_pointer Pointer to an sqlda structure Cannot begin with dollar ($) sign
or colon (:). An sqlda structure is
required if dynamic SQL is used.

See the sqlda structure in
the IBM Informix ESQL/C
Programmer's Manual.

statement_id Statement identifier for a
prepared SQL statement

Must be defined in a previously
executed PREPARE statement

“PREPARE statement” on
page 2-589; “PREPARE
statement” on page 2-589;
“Identifier” on page 5-21

statement_var Host variable that contains
the value of statement_id

Variable and statement_id both must
be declared

Language-specific rules for
names

Usage

The DESCRIBE INPUT and the DESCRIBE OUTPUT statements can return
information about a prepared statement to an SQL Descriptor Area (sqlda):
v For a SELECT, EXECUTE FUNCTION (or PROCEDURE), INSERT, or UPDATE

statement, the DESCRIBE statement (with no INPUT keyword) returns the
number, data types, and size of the returned values, and the name of the column
or expression.

Chapter 2. SQL statements 2-417

v For a SELECT, EXECUTE FUNCTION, EXECUTE PROCEDURE, DELETE,
INSERT, or UPDATE statement, the DESCRIBE INPUT statement returns all the
input parameters of a prepared statement.

Tip: Informix versions earlier than 9.40 do not support the INPUT keyword. For
compatibility with legacy applications, DESCRIBE without INPUT is supported. In
new applications, you should use DESCRIBE INPUT statements to provide
information about dynamic parameters in the WHERE clause, in subqueries, and in
other syntactic contexts where the old form of DESCRIBE cannot provide
information.

With this information, you can write code to allocate memory to hold retrieved
values that you can display or process after they are fetched.

The IFX_UPDDESC environment variable does not need to be set before you can
use DESCRIBE INPUT to obtain information about an UPDATE statement.
Related concepts:

Dynamic host variables (SQL Tutorial)
Related reference:
“DESCRIBE statement” on page 2-412
“ALLOCATE DESCRIPTOR statement” on page 2-2
“DEALLOCATE DESCRIPTOR statement” on page 2-384
“DECLARE statement” on page 2-386
“EXECUTE statement” on page 2-455
“FETCH statement” on page 2-474
“GET DESCRIPTOR statement” on page 2-487
“OPEN statement” on page 2-581
“PREPARE statement” on page 2-589
“PUT statement” on page 2-601
“SET DESCRIPTOR statement” on page 2-753

A system-descriptor area (ESQL/C Guide)

An sqlda structure (ESQL/C Guide)

Describing the Statement Type
This statement takes a statement identifier from a PREPARE statement as input.
After DESCRIBE INPUT executes, the SQLCODE field of the sqlca indicates the
statement type (that is, the keyword with which the statement begins). If a
prepared object contains more than one SQL statement, DESCRIBE INPUT returns
the type of the first statement in the prepared text.

SQLCODE is set to zero to indicate a SELECT statement without an INTO TEMP
clause. This situation is the most common. For any other SQL statement,
SQLCODE is set to a positive integer. You can compare the number with the
named constants that are defined in the sqlstypes.h header file.

The DESCRIBE and DESCRIBE INPUT statements use SQLCODE differently from
other statements, under some circumstances returning a nonzero value after
successful execution. You can revise standard error-checking routines to
accommodate this behavior, if desired.

2-418 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_335.htm#ids_sqt_335
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0610.htm#ids_esqlc_0610
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0647.htm#ids_esqlc_0647

Checking for Existence of a WHERE Clause
If the DESCRIBE INPUT statement detects that a prepared object contains an
UPDATE or DELETE statement without a WHERE clause, the database server sets
the sqlca.sqlwarn.sqlwarn4 variable to W.

When you do not specify a WHERE clause in either a DELETE or UPDATE
statement, the database server performs the delete or update action on the entire
table. Check the sqlca.sqlwarn.sqlwarn4 variable after DESCRIBE INPUT executes
to avoid unintended global changes to your table.

Describing a Statement with Dynamic Runtime Parameters
If the prepared statement specifies a set of parameters whose cardinality or data
types must be supplied at runtime, you can describe these input values. If the
prepared statement text includes one of the following statements, the DESCRIBE
INPUT statement returns a description of each column or expression that is
included in the list:
v EXECUTE FUNCTION (or EXECUTE PROCEDURE)
v INSERT or SELECT
v UPDATE or DELETE

The description includes the following information:
v The data type of the column, as defined in the table
v The length of the column, in bytes
v The name of the column or expression
v Information about dynamic parameters (parameters that are expressed as question

(?) mark symbols within the prepared statement)

If the database server cannot infer the data type of an expression parameter, the
DESCRIBE INPUT statement returns SQLUNKNOWN as the data type.

You can specify a destination for the returned information as a new or existing
system-descriptor area, or as a pointer to an sqlda structure.

Using the SQL DESCRIPTOR Keywords
Specify INTO SQL DESCRIPTOR to create a new system-descriptor structure and
store the description of a prepared statement list in that structure.

Use the USING SQL DESCRIPTOR clause to store the description of a prepared
statement list in a previously allocated system-descriptor area. Executing the
DESCRIBE INPUT . . . USING SQL DESCRIPTOR statement updates an existing
system-descriptor area in the following ways:
v It allocates memory for the DATA field for each item descriptor, based on the

TYPE and LENGTH information.
v It sets the COUNT field in the system-descriptor area to the number of values in

the statement list. An error results if COUNT is greater than the number of item
descriptors in the system-descriptor area.

v It sets the TYPE, LENGTH, NAME, SCALE, PRECISION, and NULLABLE fields
in the system-descriptor area.

For columns of opaque data types, the DESCRIBE INPUT statement sets the
EXTYPEID, EXTYPENAME, EXTYPELENGTH, EXTYPEOWNERLENGTH, and
EXTYPEOWNERNAME fields of the item descriptor.

Chapter 2. SQL statements 2-419

After a DESCRIBE INPUT statement executes, the SCALE and PRECISION fields
contain the scale and precision of the column, respectively. If SCALE and
PRECISION are set in the SET DESCRIPTOR statement, and TYPE is set to
DECIMAL or MONEY, the LENGTH field is modified to adjust for the decimal
scale and precision. If TYPE is not set to DECIMAL or MONEY, the values for
SCALE and PRECISION are not set, and LENGTH is unaffected.

You must modify the system-descriptor-area information with the SET
DESCRIPTOR statement to specify the address in memory that is to receive the
described value. You can change the data type to another compatible type. This
causes data conversion to take place when the data values are fetched.

You can also use the system-descriptor area in other statements that support a
USING SQL DESCRIPTOR clause, such as EXECUTE, FETCH, OPEN, and PUT.

The following examples show the use of a system descriptor in a DESCRIBE
statement. In the first example, the system descriptor is a quoted string; in the
second example, it is an embedded variable name.
main()
{
. . .
EXEC SQL allocate descriptor ’desc1’ with max 3;
EXEC SQL prepare curs1 FROM ’select * from tab’;
EXEC SQL describe curs1 using sql descriptor ’desc1’;
}
EXEC SQL describe curs1 using sql descriptor :desc1var;

A system-descriptor area conforms to the X/Open standards.

Using the INTO sqlda Pointer Clause
The INTO sqlda_pointer clause allocates memory for an sqlda structure and store its
address in an sqlda pointer. The DESCRIBE INPUT statement fills in the allocated
memory with descriptive information.

The DESCRIBE INPUT statement sets the sqlda.sqld field to the number of values
in the statement list. The sqlda structure also contains an array of data descriptors
(sqlvar structures), one for each value in the statement list. After a DESCRIBE
statement is executed, the sqlda.sqlvar structure has the sqltype, sqllen, and
sqlname fields set.

If the column has an opaque data type, DESCRIBE INPUT . . . INTO sets the
sqlxid, sqltypename, sqltypelen, sqlownerlen, and sqlownername fields of the
item descriptor.

The DESCRIBE INPUT statement allocates memory for an sqlda pointer once it is
declared in a program. The application program, however, must designate the
storage area of the sqlda.sqlvar.sqldata fields.

Describing a Collection Variable
The DESCRIBE INPUT statement can provide information about a collection
variable if you use the INTO or USING SQL DESCRIPTOR clause.

You must execute the DESCRIBE INPUT statement after you open the Select or
Insert cursor. Otherwise, DESCRIBE INPUT cannot get information about the
collection variable because it is the OPEN . . . USING statement that specifies the
name of the collection variable to use.

2-420 IBM Informix Guide to SQL: Syntax

The next Informix ESQL/C program fragment dynamically selects the elements of
the :a_set collection variable into a system-descriptor area called desc1:
EXEC SQL BEGIN DECLARE SECTION;

client collection a_set;
int i, set_count;
int element_type, element_value;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL allocate descriptor ’desc1’;
EXEC SQL select set_col into :a_set from table1;
EXEC SQL prepare set_id from

’select * from table(?)’;

EXEC SQL declare set_curs cursor for set_id;
EXEC SQL open set_curs using :a_set;
EXEC SQL describe set_id using sql descriptor ’desc1’;do
{

EXEC SQL fetch set_curs using sql descriptor ’desc1’;
...
EXEC SQL get descriptor ’desc1’ :set_count = count;
for (i = 1; i <= set_count; i++)
{

EXEC SQL get descriptor ’desc1’ value :i
:element_type = TYPE;

switch
{

case SQLINTEGER:
EXEC SQL get descriptor ’desc1’ value :i

:element_value = data;
...

} /* end switch */
} /* end for */

} while (SQLCODE == 0);

EXEC SQL close set_curs;
EXEC SQL free set_curs;
EXEC SQL free set_id;
EXEC SQL deallocate collection :a_set;
EXEC SQL deallocate descriptor ’desc1’;

DISCONNECT statement
Use the DISCONNECT statement to terminate a connection between an application
and a database server.

Syntax

�� DISCONNECT CURRENT
(1)

ALL
DEFAULT

'connection'
connection_var

��

Notes:

1 ESQL/C only

Chapter 2. SQL statements 2-421

Element Description Restrictions Syntax

connection String that specifies a
connection to terminate

Connection name that the CONNECT
statement assigned

“Quoted String” on
page 4-219

connection_var Host variable that holds the
name of a connection

Must be a fixed-length character data
type

Language specific

Usage

DISCONNECT terminates a connection to a database server. If a database is open,
it closes before the connection drops. Even if you made a connection to a specific
database only, the connection to the database server is terminated by
DISCONNECT. If DISCONNECT does not terminate the current connection, the
connection context of the current environment is not changed.

DISCONNECT is not valid as statement text in a PREPARE statement.

In ESQL/C, if you disconnect with connection or connection_var, DISCONNECT
generates an error if the specified connection is not a current or dormant
connection.
Related concepts:

The DISCONNECT ALL Statement (ESQL/C Guide)
Related reference:
“DROP DATABASE statement” on page 2-427
“CONNECT statement” on page 2-135
“DATABASE statement” on page 2-381
“SET CONNECTION statement” on page 2-731
“CLOSE DATABASE statement” on page 2-132

DEFAULT Option
DISCONNECT DEFAULT disconnects the default connection.

The default connection is one of the following connections:
v A connection established by the CONNECT TO DEFAULT statement
v An implicit default connection established by the DATABASE or CREATE

DATABASE statement

You can use DISCONNECT to drop the default connection. If the DATABASE
statement does not specify a database server, as in the following example, the
default connection is made to the default database server:
EXEC SQL database ’stores_demo’;
. . .
EXEC SQL disconnect default;

If the DATABASE statement specifies a database server, as the following example
shows, the default connection is made to that database server:
EXEC SQL database ’stores_demo@mydbsrvr’;
. . .
EXEC SQL disconnect default;

2-422 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0502.htm#ids_esqlc_0502

In either case, the DEFAULT option of DISCONNECT disconnects this default
connection. For more information, see “The DEFAULT Connection Specification”
on page 2-140.

Specifying the CURRENT Keyword
The DISCONNECT CURRENT statement terminates the current connection. For
example, the DISCONNECT statement in the following program fragment
terminates the current connection to the database server mydbsrvr:
CONNECT TO ’stores_demo@mydbsrvr’;
. . .
DISCONNECT CURRENT;

When a Transaction is Active
DISCONNECT generates an error during a transaction. The transaction remains
active, and the application must explicitly commit it or roll it back. If an
application terminates without issuing DISCONNECT (because of a system failure
or program error, for example), active transactions are rolled back.

In an ANSI-compliant database, however, if no error is encountered while you exit
from DB-Access in non-interactive mode without issuing the CLOSE DATABASE,
COMMIT WORK, or DISCONNECT statement, the database server automatically
commits any open transaction.

Disconnecting in a Thread-Safe Environment
If you issue the DISCONNECT statement in a thread-safe Informix ESQL/C
application, keep in mind that an active connection can be disconnected only from
within the thread in which it is active. Therefore, one thread cannot disconnect the
active connection of another thread. The DISCONNECT statement generates an
error if such an attempt is made.

Once a connection becomes dormant, however, any other thread can disconnect it
unless an ongoing transaction is associated with the dormant connection that was
established with the WITH CONCURRENT TRANSACTION clause of CONNECT.
If the dormant connection was not established with the WITH CONCURRENT
TRANSACTION clause, DISCONNECT generates an error when it tries to
disconnect the connection.

For an explanation of connections in a thread-safe Informix ESQL/C application,
see “SET CONNECTION statement” on page 2-731.

Specifying the ALL Option
Use the keyword ALL to terminate all connections established by the application
up to that time. For example, the following DISCONNECT statement disconnects
the current connection as well as all dormant connections:
DISCONNECT ALL;

In Informix ESQL/C, the ALL keyword has the same effect on multithreaded
applications that it has on single-threaded applications. Execution of the
DISCONNECT ALL statement causes all connections in all threads to be
terminated. However, the DISCONNECT ALL statement fails if any of the
connections is in use or has an ongoing transaction associated with it. If either of
these conditions is true, none of the connections is disconnected.

Chapter 2. SQL statements 2-423

DROP ACCESS_METHOD statement
Use the DROP ACCESS_METHOD statement to remove a previously defined
primary or secondary access method from the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP ACCESS_METHOD
IF EXISTS

access_method RESTRICT ��

Element Description Restrictions Syntax

access_method Name of access
method to drop

Must be registered in sysams system catalog table;
cannot be a built-in access method

“Identifier” on page
5-21

owner Owner of the
access method

Must own the access method “Owner name” on
page 5-49

Usage

The RESTRICT keyword is required. You cannot drop an access method if virtual
tables or indexes exist that use the access method. You must be the owner of the
access method or have DBA privileges to drop an access method.

If a transaction is in progress, the database server waits to drop the access method
until the transaction is committed or rolled back. No other users can execute the
access method until the transaction has completed.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no access method of
the specified name is registered in the current database.

Example

For this example, suppose that an access method was created by this statement:
CREATE SECONDARY ACCESS_METHOD T_tree
(

am_getnext = ttree_getnext,
am_unique,
am_cluster,
am_sptype = ’S’

);

The following statement drops this access method:
DROP ACCESS_METHOD T_tree RESTRICT;

Details of existing access methods can be found in the sysams system catalog table
with the following query:
SELECT am_name FROM informix.sysams;

Related concepts:
“Specifying RESTRICT Mode” on page 2-448
Related reference:
“ALTER ACCESS_METHOD statement” on page 2-5

2-424 IBM Informix Guide to SQL: Syntax

“CREATE ACCESS_METHOD statement” on page 2-143

Access methods (Virtual-Table Interface Guide)

Access methods (Virtual-Index Interface Guide)
“GRANT statement” on page 2-502

Grant and limit access to your database (Database Design Guide)

DROP AGGREGATE statement
Use the DROP AGGREGATE statement to drop a user-defined aggregate that you
created with the CREATE AGGREGATE statement.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP AGGREGATE
IF EXISTS owner .

aggregate ��

Element Description Restrictions Syntax

aggregate Name of the user-defined
aggregate to be dropped

Must have been previously created with
the CREATE AGGREGATE statement

“Identifier” on page 5-21

owner Owner of the aggregate Must own the aggregate “Owner name” on page
5-49

Usage

Dropping a user-defined aggregate does not drop the support functions that you
defined for the aggregate in the CREATE AGGREGATE statement. The database
server does not track dependency of SQL statements on user-defined aggregates
that you use in the statements. For example, you can drop a user-defined
aggregate that is used in an SPL routine.

The following example drops the user-defined aggregate named my_avg:
DROP AGGREGATE my_avg;

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no aggregate with
the specified name is registered in the current database.
Related reference:
“CREATE AGGREGATE statement” on page 2-144

SYSAGGREGATES (SQL Reference)

Create user-defined aggregates (UDR and Data Type Guide)

DROP CAST statement
Use the DROP CAST statement to remove an existing cast from the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Chapter 2. SQL statements 2-425

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.vti.doc/ids_vti_005.htm#ids_vti_005
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.vii.doc/ids_vii_005.htm#ids_vii_005
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_103.htm#ids_ddi_103
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_015.htm#ids_sqr_015
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_175.htm#ids_udr_175

Syntax

�� DROP CAST
IF EXISTS

(source_type AS target_type) ��

Element Description Restrictions Syntax

source_type Data type that the cast accepts as input Must exist “Identifier” on page 5-21; “Data Type”
on page 4-23

target_type Data type returned by the cast Must exist “Identifier” on page 5-21; “Data Type”
on page 4-23

Usage

You must be owner of the cast or have the DBA privilege to use DROP CAST.
Dropping a cast removes its definition from the syscasts system catalog table, so
the cast cannot be invoked explicitly or implicitly. Dropping a cast has no effect on
the user-defined function associated with the cast. Use the DROP FUNCTION
statement to remove the user-defined function from the database.

Warning: Do not drop built-in casts, which user informix owns. These are
required for automatic conversions between built-in data types.

A cast defined on a given data type can also be used on any DISTINCT types
created from that source type. If you drop the cast, you can no longer invoke it for
the DISTINCT types, but dropping a cast that is defined for a DISTINCT type has
no effect on casts for its source type. When you create a DISTINCT type, the
database server automatically defines an explicit cast from the DISTINCT type to
its source type and another explicit cast from the source type to the DISTINCT
type. When you drop the DISTINCT type, the database server automatically drops
these two casts.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an error to the application) if no cast between the two
specified data types is registered in the current database.

Example

A cast (like this one in the superstores_demo database) can be dropped with the
DROP CAST statement:
DROP CAST (decimal(5,5) AS percent);

Details of existing casts can be found in the syscasts system catalog table the
following SQL:
SELECT routine_name, class, argument_type, result_type FROM Syscasts;

Related concepts:

Data types (SQL Reference)
Related reference:
“CREATE CAST statement” on page 2-147
“DROP FUNCTION statement” on page 2-428

2-426 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_093.htm#ids_sqr_093

DROP DATABASE statement
Use the DROP DATABASE statement to delete an entire database, including all
system catalog tables, objects, and data.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP DATABASE
IF EXISTS

(1)
Database Name ��

Notes:

1 See “Database Name” on page 5-15

Usage

The DROP DATABASE statement is an extension to the ANSI/ISO standard, which
does not provide syntax for the destruction of a database.

The following statement drops the stores_demo database:
DROP DATABASE stores_demo

You must have the DBA privilege or be user informix to run the DROP
DATABASE statement successfully. Otherwise, the database server issues an error
message and does not drop the database.

You cannot drop the current database or a database that is currently being used by
another user. All the current users of the database must first execute the CLOSE
DATABASE statement before DROP DATABASE can be successful.

The DROP DATABASE statement attempts to create an implicit connection to the
database that you intend to drop. If a previous CONNECT statement has
established an explicit connection to another database, and that connection is still
your current connection, the DROP DATABASE statement fails with error -1811. In
this case, you must first use the DISCONNECT statement to close the explicit
connection before you can execute the DROP DATABASE statement.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than returning an error to the application) if no database of the
specified name is managed by the database server instance to which you are
connected.

The DROP DATABASE statement cannot appear in a multistatement PREPARE
statement, nor within an SPL routine.

In a DROP DATABASE operation, the database server acquires a lock on each table
in the database and holds the locks until the entire operation is complete.
Configure your database server with enough locks to accommodate this fact.

For example, if the database to be dropped has 2500 tables, but fewer than 2500
locks were configured for your database server, the DROP DATABASE statement
fails. For more information on how to configure the number of locks available to

Chapter 2. SQL statements 2-427

the database server, see the discussion of the LOCKS configuration parameter in
your IBM Informix Administrator's Reference.

In DB-Access, use the DROP DATABASE statement with caution. DB-Access does
not prompt you to verify that you want to delete the entire database.

In ESQL/C, you can use an unqualified database name in a program or host
variable, or you can specify the fully-qualified database@server format. For example,
the following statement drops the stores_demo database of a database server
called gibson95:
EXEC SQL DROP DATABASE stores_demo@gibson95;

If this statement executes successfully, the gibson95 database server instance
continues to exist, but the stores_demo database of that database server no longer
exists. For more information, see “Database Name” on page 5-15.
Related reference:
“CREATE DATABASE statement” on page 2-150
“CLOSE DATABASE statement” on page 2-132
“CONNECT statement” on page 2-135
“DATABASE statement” on page 2-381
“DISCONNECT statement” on page 2-421

LOCKS configuration parameter (Administrator's Reference)
“DROP TABLE statement” on page 2-446

DROP FUNCTION statement
Use the DROP FUNCTION statement to remove a user-defined function from the
database. This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP FUNCTION
IF EXISTS

�

�

�

function
owner . ,

(parameter_type)
(1)

SPECIFIC FUNCTION Specific Name
IF EXISTS

��

Notes:

1 See “Specific Name” on page 5-77

Element Description Restrictions Syntax

function Name of the
user-defined function to
be dropped

Must exist (that is, be registered) in the database. If
the name does not uniquely identify a function, you
must enter one or more appropriate values for
parameter_type.

“Identifier” on
page 5-21

2-428 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0094.htm#ids_adr_0094

Element Description Restrictions Syntax

parameter_type Data type of the
parameter

The data type (or list of data types) must be the same
data types (and specified in the same order) as in the
CREATE FUNCTION statement that registered the
function

“Data Type” on
page 4-23

Usage

Dropping a user-defined function removes the text and executable versions of the
function from the database. (Make sure to keep a copy of the function text
somewhere outside the database, in case you need to re-create a function after it is
dropped.)

If you do not know whether a UDR is a function or a procedure, you can drop it
by using the DROP ROUTINE statement.

To use the DROP FUNCTION statement, you must be the owner of the
user-defined function (and hold the Resource privilege on the database) or have
the DBA privilege. You must also hold the Usage privilege on the programming
language in which the UDR is written. To drop an external user-defined function,
see also “Dropping an External Routine” on page 2-440.

You cannot use the DROP ROUTINE, DROP FUNCTION, or DROP PROCEDURE
statement to drop a protected routine. For more information about protected
routines, see the description of the sysprocedures system catalog table in the IBM
Informix Guide to SQL: Reference.

You cannot drop an SPL function from within the same SPL function.

Informix can resolve a function by its specific name, if the function definition
declared a specific name. If you use the specific name in this statement, you must
also use the keyword SPECIFIC, as in the following example:
DROP SPECIFIC FUNCTION compare_point;

Otherwise, if the function name is not unique within the database, you must
specify enough parameter_type information to disambiguate the name. If you use
parameter data types to identify a user-defined function, they follow the function
name, as in the following example:
DROP FUNCTION compare (int, int);

But the database server returns an error if it cannot resolve an ambiguous function
name whose signature differs from that of another function only in an unnamed
ROW-type parameter. (This error cannot be anticipated by the database server
when the ambiguous function is defined.)

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than issue an error) if the database server cannot find in the current
database any function that matches what your DROP FUNCTION statement
specifies.

Chapter 2. SQL statements 2-429

Determine whether a function exists

Before you attempt to drop a user-defined function, you can check for its existence
in the database by querying the system catalog. In the following example, the
SELECT statement retrieves from the sysprodures table any routines whose
identifier is MyFunction:
SELECT * FROM sysprocedures WHERE procname = MyFunction;

If this query returns a single row, then a UDR called MyFunction is registered in the
current database.

If this query returns no rows, you do not need to issue the DROP FUNCTION
statement, but you might wish to verify that the WHERE clause specified the
correct name, and that you are connected to the correct database.

If the query returns more than one row, then the routine name MyFunction is
overloaded in the current database, and you need to examine the attributes of the
MyFunction routines to determine which of them, if any, need to be unregistered by
the DROP FUNCTION statement.

Examples

Most functions can be dropped using SQL statements similar to the following:
DROP FUNCTION best_month;

If you have more than one function with the same name, however, by using
function overloading, the DROP FUNCTION statement must either specify the
specific name of the function (if it has one), or the parameter list to uniquely
identify it. For example, the superstores_demo database has two last_contact
functions that were created with the following arguments:
CREATE FUNCTION last_contact(cust_name name_t) ...

and
CREATE FUNCTION last_contact(c_num INT) ...

To drop the second of these functions, use the following:
DROP FUNCTION last_contact(INT);

If the above functions had been created with the specific names
last_cname_contact and last_cnum_contact, then to drop the second of these, issue
the following statement:
DROP SPECIFIC FUNCTION last_cnum_contact;

Details of existing functions can be found in the sysprocedures system catalog
table using SQL queries like the following:
SELECT procname, specificname, paramtypes

FROM sysprocedures ;

Related concepts:
“Overloading the Name of a Function” on page 2-188

A user-defined routine (UDR and Data Type Guide)
Related reference:

SYSPROCEDURES (SQL Reference)
“ALTER FUNCTION statement” on page 2-57

2-430 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_012.htm#ids_udr_012
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_053.htm#ids_sqr_053

“CREATE FUNCTION statement” on page 2-183
“CREATE FUNCTION FROM statement” on page 2-193
“DROP PROCEDURE statement” on page 2-434
“DROP ROUTINE statement” on page 2-438
“EXECUTE FUNCTION statement” on page 2-462
“GRANT statement” on page 2-502
“CREATE PROCEDURE statement” on page 2-226
“DROP CAST statement” on page 2-425
“ALTER ROUTINE statement” on page 2-62

Dropping External Functions
A user-defined function (UDF) written in C language or in the Java language is
called an external function. External functions must include the External Routine
Reference clause that specifies a shared-object filename. By default, only users to
whom the DBSA has granted the built-in EXTEND role can create or drop an
external function. You must also hold the Usage privilege on the external
programming language in which the UDF is written. See the section “Granting the
EXTEND Role” on page 2-521 for additional information about the EXTEND role
security feature. See the section “Language-Level Privileges” on page 2-516 for the
syntax of the USAGE ON LANGUAGE clause for the C language or for the Java
language.

To remove the executable version of a C language routine from shared memory,
call the IFX_UNLOAD_MODULE function. To replace the executable version of a
C routine with another routine, call the IFX_REPLACE_MODULE function. Both
of these built-in functions are described in “UDR Definition Routines” on page
6-15.

DROP INDEX statement
Use the DROP INDEX statement to remove an index.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP INDEX
IF EXISTS owner .

index
ONLINE

��

Element Description Restrictions Syntax

index Name of the index to be dropped Must exist in the
database

“Identifier” on page 5-21

owner Name of index owner Must own the index “Owner name” on page 5-49

Usage

In a typical online transaction processing (OLTP) environment, concurrent
applications are connected to the database server to perform DML operations. For
every query, the optimizer chooses a plan that is based on existing indexes,
distribution statistics, and directives. After numerous OLTP transactions, however,

Chapter 2. SQL statements 2-431

the chosen plan might no longer be the best plan for query execution. In this case,
dropping an inefficient index can sometimes improve performance.

You must be the owner of the index or have the DBA privilege to use the DROP
INDEX statement. The following example drops the index o_num_ix that joed
owns. The stores_demo database must be the current database:
DROP INDEX stores_demo:joed.o_num_ix;

You cannot use the DROP INDEX statement to drop a unique constraint, nor to
drop an index that supports a constraint; you must use the ALTER TABLE . . .
DROP CONSTRAINT statement to drop the constraint. When you drop the
constraint, the database server automatically drops any index that exists solely to
support that constraint. If you attempt to use DROP INDEX to drop an index that
is shared by a unique constraint, the database server renames the specified index
in the sysindexes system catalog table, declaring a new name in this format:
[space]<tabid>_<constraint_id>

Here tabid and constraint_id are from the systables and sysconstraints system
catalog tables, respectively. The sysconstraints.idxname column is then updated to
something like: " 121_13" (where quotation marks show the leading blank space).
If this index is a unique index with only referential constraints sharing it, the index
is downgraded to a duplicate index after it is renamed.

In some contexts, an alternative to the DROP INDEX statement is the SET
Database Object Mode statement, which can disable a specified index without
removing it from the system catalog. For more information about this SQL
statement, which can also enable an index that is currently disabled, see “SET
Database Object Mode statement” on page 2-737.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no index of the
specified name is registered in the current database.

Example

An index such as the one found in the stores_demo database can be dropped with:
DROP INDEX zip_ix;

If necessary, you can specify the index name as the fully qualified four-part object
name (database@instance:owner.indexname), as in the following:
DROP INDEX stores_demo@prod:"informix".zip_ix ;

Details of existing functions can be found in the sysprocedures system catalog table,
as in the following:
SELECT idxname FROM sysindices ;

Related concepts:

Indexes and index performance considerations (Performance Guide)
Related reference:
“RENAME INDEX statement” on page 2-612
“CREATE INDEX statement” on page 2-194
“ALTER TABLE statement” on page 2-72
“CREATE TABLE statement” on page 2-265
“CREATE TEMP TABLE statement” on page 2-321

2-432 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_359.htm#ids_prf_359

“DROP OPCLASS statement” on page 2-434

The ONLINE keyword of DROP INDEX
The DBA can reduce the risk of nonexclusive access errors, and can increase the
availability of the indexed table, by including the ONLINE keyword as the last
specification of the DROP INDEX statement. The ONLINE keyword instructs the
database server to drop the index while minimizing the duration of an exclusive
lock, so that the index can be dropped while concurrent users are accessing the
table.

By default, DROP INDEX attempts to place an exclusive lock on the indexed table
to prevent all other users from accessing the table while the index is being
dropped. The DROP INDEX statement fails if another user already has a lock on
the table, or is currently accessing the table at the Dirty Read isolation level.

After you issue the DROP INDEX ONLINE statement, the query optimizer does
not consider using the specified index in subsequent query plans or cost estimates,
and the database server does not support any other DDL operations on the
indexed table, until after the specified index has been dropped. Query operations
that were initiated prior to the DROP INDEX ONLINE statement, however, can
continue to access the index until the queries are completed.

When no other users are accessing the index, the database server drops the index,
and the DROP INDEX ONLINE statement terminates execution.

By default, the DROP INDEX ONLINE statement does not wait indefinitely for
locks to be released. If one or more concurrent sessions hold locks on the table, the
statement might fail with error -216 or -113 unless you first issue the SET LOCK
MODE TO WAIT statement to specify an indefinite wait. Otherwise, DROP INDEX
ONLINE uses the waiting period for locks that the DEADLOCK_TIMEOUT
configuration parameter specifies, or that a previous SET LOCK MODE statement
specified. To avoid locking errors, execute SET LOCK MODE TO WAIT (with no
specified limit) before you attempt to drop an index online.

You cannot use the CREATE INDEX statement to declare a new index that has the
same identifier until after the specified index has been dropped. No more than one
CREATE INDEX ONLINE or DROP INDEX ONLINE statement can concurrently
reference indexes on the same table.

The indexed table in a DROP INDEX ONLINE statement can be permanent or
temporary, logged or unlogged, and fragmented or non-fragmented. You cannot
specify the ONLINE keyword, however, when you are dropping an index that has
any of the following attributes:
v a functional index
v a clustered index
v a virtual index
v an R-tree index.

The following statement instructs the database server to drop online an index
called idx_01:
DROP INDEX IF EXISTS idx_01 ONLINE;

Chapter 2. SQL statements 2-433

DROP OPCLASS statement
Use the DROP OPCLASS statement to remove an existing operator class from the
database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP OPCLASS
IF EXISTS owner .

opclass RESTRICT ��

Element Description Restrictions Syntax

opclass Name of operator class to be
dropped

Must have been created by a previous
CREATE OPCLASS statement

“Identifier” on page
5-21

owner Name of opclass owner Must own the operator class “Owner name” on page
5-49

Usage

You must be the owner of the operator class or have the DBA privilege to use the
DROP OPCLASS statement.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no operator class of
the specified name is registered in the current database.

The RESTRICT keyword causes DROP OPCLASS to fail if the database contains
indexes defined on the operator class that you plan to drop. Therefore, before you
drop the operator class, you must use the DROP INDEX statement to drop any
dependent indexes.

The following DROP OPCLASS statement drops an operator class called
abs_btree_ops:
DROP OPCLASS abs_btree_ops RESTRICT

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no function of the
specified name (or of the specified specific name, if you include the SPECIFIC
keyword) is registered in the current database.
Related reference:
“CREATE OPCLASS statement” on page 2-222
“DROP INDEX statement” on page 2-431

Extend an operator class (UDR and Data Type Guide)

DROP PROCEDURE statement
Use the DROP PROCEDURE statement to drop a user-defined procedure from the
database. This statement is an extension to the ANSI/ISO standard for SQL.

2-434 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_282.htm#ids_udr_282

Syntax

�� DROP

�

PROCEDURE procedure
IF EXISTS owner . (1) ,

function
(parameter_type)

(2)
SPECIFIC PROCEDURE Specific Name

IF EXISTS

��

Notes:

1 Informix-SPL language only

2 See “Specific Name” on page 5-77

Element Description Restrictions Syntax

function Name of a procedure or
SPL function to drop

Must exist (that is, be registered) in the database “Identifier” on
page 5-21

owner Name of UDR owner Must own the procedure or SPL function “Owner name” on
page 5-49

parameter _type The data type of the
parameter

The data type (or list of data types) must be the
same types (and in the same order) as those
specified when the procedure was created

“Identifier” on
page 5-21; “Data
Type” on page
4-23

procedure Name of user-defined
procedure to drop

Must exist (that is, be registered) in the database “Database Object
Name” on page
5-16

Usage

Dropping a user-defined procedure removes the text and executable version of the
procedure from the database. You cannot drop an SPL procedure within the same
SPL procedure.

You cannot use the DROP ROUTINE, DROP FUNCTION, or DROP PROCEDURE
statement to drop a protected routine. For more information about protected
routines, see the description of the sysprocedures system catalog table in the IBM
Informix Guide to SQL: Reference.

To use the DROP PROCEDURE statement, you must be the owner of the
procedure and also hold the Resource privilege on the database, or have the DBA
privilege. You must also hold the Usage privilege on the programming language in
which the UDR is written. To drop an external user-defined procedure, see also
“Dropping an External Procedure” on page 2-436.

If the function or procedure name is not unique within the database, you must
specify enough parameter_type information to disambiguate the name. If the
database server cannot resolve an ambiguous UDR name whose signature differs
from that of another UDR only in an unnamed ROW type parameter, an error is
returned. (This error cannot be anticipated by the database server when the
ambiguous function or procedure is defined.)

If you do not know whether a UDR is a user-defined procedure or a user-defined
function, you can use the DROP ROUTINE statement. For more information, see
“DROP ROUTINE statement” on page 2-438.

Chapter 2. SQL statements 2-435

For compatibility with earlier Informix versions, you can use this statement to drop
an SPL function that CREATE PROCEDURE created. You can include parameter
data types after the name of the procedure to identify the procedure:
DROP PROCEDURE compare(int, int);

If you use the specific name for the user-defined procedure, you must also use the
keyword SPECIFIC, as in the following example:
DROP SPECIFIC PROCEDURE compare_point;

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no procedure of the
specified name is registered in the current database.

Determine whether a procedure exists

Before you attempt to drop a user-defined procedure, you can check for its
existence in the database by querying the system catalog. In the following example,
the SELECT statement retrieves from the sysprodures table any routines whose
identifier is MyProcedure:
SELECT * FROM sysprocedures WHERE procname = MyProcedure;

If this query returns a single row, then a UDR called MyProcedure is registered in
the current database.

If this query returns no rows, you do not need to issue the DROP PROCEDURE
statement, but you might wish to verify that the WHERE clause specified the
correct name, and that you are connected to the correct database.

If the query returns more than one row, then the routine name MyProcedure is
overloaded in the current database, and you need to examine the attributes of the
MyProcedure routines to determine which of them, if any, need to be unregistered
by the DROP PROCEDURE statement.
Related concepts:

Create user-defined routines (UDR and Data Type Guide)
Related reference:
“DROP FUNCTION statement” on page 2-428

SYSPROCEDURES (SQL Reference)
“CREATE PROCEDURE FROM statement” on page 2-236
“DROP ROUTINE statement” on page 2-438
“EXECUTE PROCEDURE statement” on page 2-471
“GRANT statement” on page 2-502
“CREATE PROCEDURE statement” on page 2-226
“ALTER ROUTINE statement” on page 2-62
“ALTER PROCEDURE statement” on page 2-60

Dropping an External Procedure
A user-defined procedure (UDP) written in C language or in the Java language is
called an external routine. External routines must include the External Routine
Reference clause that specifies a shared-object filename. By default, only users to
whom the DBSA has granted the built-in EXTEND role can create or drop an
external routine. You must also hold the Usage privilege on the external

2-436 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_006.htm#ids_udr_006
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_053.htm#ids_sqr_053

programming language in which the UDP is written. See the section “Granting the
EXTEND Role” on page 2-521 for additional information about the EXTEND role
security feature. See the section unctions are described in “Language-Level
Privileges” on page 2-516 for the syntax of the USAGE ON LANGUAGE clause for
the C language or for the Java language.

To remove the executable version of a C language procedure from shared memory,
call the IFX_UNLOAD_MODULE function. To replace the executable version of a
C routine with another routine, call the IFX_REPLACE_MODULE function. Both
of these built-in functions are described in “UDR Definition Routines” on page
6-15.

DROP ROLE statement
Use the DROP ROLE statement to remove a user-defined role from the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP ROLE
IF EXISTS

role
'role'

��

Element Description Restrictions Syntax

role Name of the role to be
dropped

Must be registered in the local database. When a role name
is enclosed in quotation marks, it is case sensitive.

“Owner
name” on
page 5-49

Usage

Either the DBA or a user to whom the role was granted with the WITH GRANT
OPTION keywords can issue the DROP ROLE statement. (Like a user name, a role
is an authorization identifier, not a database object, so a role has no owner.)

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no role of the
specified name is registered in the current database.

After you drop a role, no user can grant or enable the dropped role, and any user
who had been assigned the role loses its privileges (such as table-level privileges
or routine-level privileges) when the role is dropped, unless the same privileges
were granted to PUBLIC or to the user individually. If the dropped role was the
default role of a user, the default role for that user becomes NULL.

The following statement drops the role engineer:
DROP ROLE engineer;

You cannot use the DROP ROLE statement to drop a built-in role, such as the
EXTEND or DBSECADM roles of Informix.
Related concepts:

Access-management strategies (SQL Tutorial)
Related reference:
“SET ROLE statement” on page 2-812

Chapter 2. SQL statements 2-437

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_015.htm#ids_sqt_015

“CREATE ROLE statement” on page 2-237
“GRANT statement” on page 2-502
“REVOKE statement” on page 2-618

DROP ROUTINE statement
Use the DROP ROUTINE statement to remove a user-defined routine (UDR) from
the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP �

�

�

ROUTINE routine
IF EXISTS owner . ,

(parameter_type)
(1)

SPECIFIC ROUTINE Specific Name
IF EXISTS

��

Notes:

1 See “Specific Name” on page 5-77

Element Description Restrictions Syntax

owner Name of UDR owner Must own the UDR “Owner name” on
page 5-49

parameter_type Data type of a parameter of
routine

The data type (or list of data types) must be
the same type (and specified in the same
order) as in the UDR definition

“Identifier” on
page 5-21; “Data
Type” on page
4-23

routine Name of the UDR to drop The UDR must exist (that is, be registered) in
the database

“Identifier” on
page 5-21

Usage

Dropping a UDR removes the text and executable versions of the UDR from the
database. If you do not know whether a UDR is a user-defined function or a
user-defined procedure, this statement instructs the database server to drop the
specified user-defined function or user-defined procedure.

To use the DROP ROUTINE statement, you must be the owner of the UDR (and
also hold the Resource privilege on the database), or you must have the DBA
privilege. You must also hold the Usage privilege on the programming language in
which the UDR is written. To drop an external user-defined routine, see also
“Dropping an External Routine” on page 2-440.
Related concepts:
“Overloading the Name of a Function” on page 2-188
Related reference:
“DROP FUNCTION statement” on page 2-428
“DROP PROCEDURE statement” on page 2-434
“CREATE PROCEDURE statement” on page 2-226

2-438 IBM Informix Guide to SQL: Syntax

“EXECUTE FUNCTION statement” on page 2-462
“CREATE FUNCTION statement” on page 2-183
“EXECUTE PROCEDURE statement” on page 2-471
“GRANT statement” on page 2-502
“ALTER ROUTINE statement” on page 2-62
“ALTER PROCEDURE statement” on page 2-60

Restrictions
You cannot drop an SPL routine from within the same SPL routine.

You cannot use the DROP ROUTINE, DROP FUNCTION, or DROP PROCEDURE
statement to drop a protected routine. For more information about protected
routines, see the description of the sysprocedures system catalog table in the IBM
Informix Guide to SQL: Reference.

To use the DROP ROUTINE statement to unregister a UDR, the type of UDR
cannot be ambiguous. The name of the UDR that you specify must refer to either a
user-defined function or a user-defined procedure. If either of the following
conditions exist, the database server returns an error:
v The name (and parameters) that you specify apply to both a user-defined

procedure and a user-defined function,
v The specific name that you specify applies to both a user-defined procedure and

a user-defined function.

If the routine name is not unique within the database, you must specify enough
parameter_type information to disambiguate the name. If the database server cannot
resolve an ambiguous routine name whose signature differs from that of another
routine only in an unnamed ROW type parameter, an error is returned. (This error
cannot be anticipated by the database server when the ambiguous routine is
defined.)

If you use parameter data types to identify a UDR, they follow the UDR name, as
in the following example:
DROP ROUTINE compare(INT, INT);

If you use the specific name for the UDR, you must also include the keyword
SPECIFIC, as in the following example:
DROP SPECIFIC ROUTINE compare_point;

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than issues an error) if the database server cannot find in the current
database any routine that matches what your DROP ROUTINE statement specifies.

Determining Whether a Routine Exists

Before you attempt to drop a user-defined routine, you can check for its existence
in the database by querying the system catalog. In the following example, the
SELECT statement retrieves from the sysprodures table any routines whose
identifier is MyRoutine:
SELECT * FROM sysprocedures WHERE procname = MyRoutine;

If this query returns a single row, then a UDR called MyRoutine is registered in
the current database.

Chapter 2. SQL statements 2-439

If this query returns no rows, you do not need to issue the DROP ROUTINE
statement, but you might wish to verify that the WHERE clause specified the
correct name, and that you are connected to the correct database.

If the query returns more than one row, then the routine name MyRoutine is
overloaded in the current database, and you need to examine the attributes of the
MyRoutine routines to determine which of them, if any, need to be unregistered
by the DROP ROUTINE statement.
Related reference:

SYSPROCEDURES (SQL Reference)

Dropping an External Routine
A user-defined routine (UDR) written in C language or in the Java language is
called an external routine. External routines must include the External Routine
Reference clause that specifies a shared-object filename. By default, only users to
whom the DBSA has granted the built-in EXTEND role can create or drop an
external routine. You must also hold the Usage privilege on the external
programming language in which the UDR is written. See the section “Granting the
EXTEND Role” on page 2-521 for additional information about the EXTEND
security feature. See the section “Language-Level Privileges” on page 2-516 for the
syntax of the USAGE ON LANGUAGE clause for the C language or for the Java
language.

To remove the executable version of a C language procedure from shared memory,
call the IFX_UNLOAD_MODULE function. To replace the executable version of a
C routine with another routine, call the IFX_REPLACE_MODULE function. Both
of these built-in functions are described in “UDR Definition Routines” on page
6-15.

DROP ROW TYPE statement
Use the DROP ROW TYPE statement to remove an existing named ROW data type
from the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP ROW TYPE
IF EXISTS owner .

row_type RESTRICT ��

Element Description Restrictions Syntax

owner Name of owner of the ROW type Must be the owner of row_type “Owner name” on page
5-49

row_type Name of an existing named ROW
data type to be dropped

Must exist. See also the Usage
section that follows.

“Identifier” on page 5-21;
“Data Type” on page 4-23

2-440 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_053.htm#ids_sqr_053

Usage

The DROP ROW TYPE statement removes the entry for the specified row_type from
the sysxtdtypes system catalog table. You must be the owner of the specified
named ROW data type or have the DBA privilege to execute the DROP ROW
TYPE statement.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no named ROW data
type of the specified name is registered in the current database.

You cannot drop a named ROW data type if its name is in use. You cannot drop a
named ROW data type when any of the following conditions are true:
v Any existing tables or columns are using the named ROW data type.
v The named ROW data type is a supertype in an inheritance hierarchy.
v A view is defined on a column of the named ROW data type.

To drop a named ROW-type column from a table, use ALTER TABLE.

The DROP ROW TYPE statement cannot drop unnamed ROW data types.
Related concepts:

System catalog tables (SQL Reference)

User-defined data types (UDR and Data Type Guide)
Related reference:
“CREATE ROW TYPE statement” on page 2-241

ROW data type, Named (SQL Reference)
“CREATE DISTINCT TYPE statement” on page 2-157
“DROP TYPE statement” on page 2-450

The RESTRICT Keyword
The RESTRICT keyword is required with the DROP ROW TYPE statement.
RESTRICT causes DROP ROW TYPE to fail if dependencies on row_type exist.

The DROP ROW TYPE statement fails and returns an error message if any of the
following conditions is true:
v The named ROW data type is used for an existing table or column.

Check the systables and syscolumns system catalog tables to find out whether
any tables or data types use the named ROW data type.

v The named ROW data type is the supertype in an inheritance hierarchy.
Look in the sysinherits system catalog table to see which named ROW data
types have child types.

The following statement drops the named ROW data type employee_t:
DROP ROW TYPE employee_t RESTRICT

Chapter 2. SQL statements 2-441

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/ids_udr_133.htm#ids_udr_133
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_134.htm#ids_sqr_134

DROP SECURITY statement
Use the DROP SECURITY statement to remove an existing security object from the
current database. The object can be a security policy, security label, or a security
label component.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP SECURITY �

�
RESTRICT

LABEL policy . label
IF EXISTS

LABEL COMPONENT component
IF EXISTS

RESTRICT
POLICY policy CASCADE

IF EXISTS

��

Element Description Restrictions Syntax

component Security label
component to drop

Must exist in the database “Identifier” on page
5-21

label Security label to
drop

Must exist in the database as a label of the specified
policy

“Identifier” on page
5-21

policy Security policy to
drop

Must exist in the database “Identifier” on page
5-21

Usage

Only DBSECADM can issue this statement. When the DROP SECURITY statement
executes successfully, the database server deletes any rows that reference the name
or the numeric identifier of the specified object from the tables of the system
catalog, including these tables:
v sysecpolicies for security policies
v sysseclabels for security labels
v sysseclabelcomponents for security label components.

The keyword or keywords that follow the SECURITY keyword identify the type of
security object that is being dropped.
v SECURITY POLICY policy specifies a security policy
v SECURITY LABEL policy.label specifies a security label
v SECURITY LABEL COMPONENT component specifies a security label

component.

There is no SQL statement that selectively drops some elements of a security label
component without destroying the entire component object. To remove only a
subset of the elements of a security label component from the database,
DBSECADM can use the DROP SECURITY LABEL COMPONENT statement to
drop the component, and then redefine the dropped component, using the
CREATE SECURITY LABEL COMPONENT statement, but without including any

2-442 IBM Informix Guide to SQL: Syntax

elements that are no longer needed. (An alternative is to drop all the security
labels that include the deprecated elements, and then use the CREATE SECURITY
LABEL statement to redefine new labels with the same components as the dropped
labels, but without those elements. In this case, the deprecated elements persist in
the database, but no security label uses them as values for their component.)

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no security object of
the specified security object type and of the specified name is registered in the
current database.

Examples

The following statement instructs the database server to drop the security label
witty:
DROP SECURITY LABEL witty;

The statement fails if any column is protected by the witty label, or if any user
holds this label.

The next example instructs the database server to drop the security label
component adhesive from the database:
DROP SECURITY LABEL COMPONENT adhesive;

The statement fails if any security policy depends on the adhesive security label
component.

The following example instructs the database server to drop the best security
policy in CASCADE mode:
DROP SECURITY POLICY best CASCADE;

This statement fails if that policy is currently protecting any table. If this statement
succeeds, however, it has the following additional effects because of the CASCADE
specification:
v All security labels associated with the best security policy are also dropped.
v All exemptions from the best security policy are revoked.
v All security labels that were dropped because the best security policy was

dropped are revoked from all users who hold those labels.
Related concepts:

Label-based access control (Security Guide)
Related reference:
“RENAME SECURITY statement” on page 2-613
“ALTER SECURITY LABEL COMPONENT statement” on page 2-64
“CREATE SECURITY LABEL statement” on page 2-248
“CREATE SECURITY LABEL COMPONENT statement” on page 2-250
“CREATE SECURITY POLICY statement” on page 2-254
“CREATE TABLE statement” on page 2-265
“EXEMPTION Clause” on page 2-526
“SECURITY LABEL Clause” on page 2-528
“EXEMPTION Clause” on page 2-637
“SECURITY LABEL Clause” on page 2-639

Chapter 2. SQL statements 2-443

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_lb_002.htm#ids_lb_002

Dropping security objects in RESTRICT mode or in CASCADE
mode

By default, the RESTRICT keyword is in effect when any security object is
dropped. Only a security policy can be dropped in CASCADE mode. DBSECADM
cannot drop a security policy in RESTRICT mode if any of the following conditions
are true:
v A table is protected by that security policy
v A security label depends on that security policy
v A user has been granted an exemption from a rule of that security policy.

A security policy cannot be dropped in CASCADE mode if the policy is protecting
any table. When a security policy is successfully dropped in CASCADE mode, the
following security objects are also dropped or revoked:
v All the security labels that are associated with the dropped security policy
v All the security labels that were dropped are also revoked from the users who

hold those labels
v All the exemptions from the dropped security policy are revoked.

A security label cannot be dropped in RESTRICT mode, which is the only
supported mode for dropping labels, if any of the following conditions are true:
v A column is protected by that security label
v A user holds that security label.

A security label component cannot be dropped in RESTRICT mode, which is the
only supported mode for dropping components, if any security policy depends on
that security label component.

DROP SEQUENCE statement
Use the DROP SEQUENCE statement to remove a sequence object from the
database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP SEQUENCE
IF EXISTS owner .

sequence ��

Element Description Restrictions Syntax

owner Name of sequence owner Must own the sequence object “Owner name” on page
5-49

sequence Name of a sequence Must exist in the current database “Identifier” on page 5-21

Usage

This statement removes the sequence entry from the syssequences system catalog
table. To drop a sequence, you must be its owner or have the DBA privilege on the
database. In an ANSI-compliant database, you must qualify the name of the
sequence with the name of its owner (owner.sequence) if you are not the owner.

2-444 IBM Informix Guide to SQL: Syntax

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no sequence object of
the specified name is registered in the current database.

If you drop a sequence, any synonyms for the name of the sequence are also
dropped automatically by the database server.

You cannot use a synonym to specify the identifier of the sequence in the DROP
SEQUENCE statement.

Examples

Suppose you had a sequence created with something code similar to the following:
CREATE SEQUENCE Invoice_Numbers

START 10000 INCREMENT 1 NOCYCLE ;

Such a sequence can be dropped using the following:
DROP SEQUENCE Invoice_Numbers;

Details of existing sequences can be found by joining the syssequences and systables
system catalog tables as in the following:
SELECT t.tabname SeqName

FROM Syssequences s, Systables t
WHERE t.tabid = s.tabid ;

Related reference:
“ALTER SEQUENCE statement” on page 2-68
“CREATE SEQUENCE statement” on page 2-257
“RENAME SEQUENCE statement” on page 2-614
“GRANT statement” on page 2-502
“REVOKE statement” on page 2-618
“INSERT statement” on page 2-545
“SELECT statement” on page 2-654
“UPDATE statement” on page 2-852

DROP SYNONYM statement
Use the DROP SYNONYM statement to unregister an existing synonym.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP SYNONYM
IF EXISTS owner .

synonym ��

Element Description Restrictions Syntax

owner Owner of synonym Must own synonym “Owner name” on
page 5-49

synonym Synonym to be
dropped

The synonym must exist in the current database. “Identifier” on page
5-21

Chapter 2. SQL statements 2-445

Usage

This removes the entries for the synonym from the systables, syssynonyms, and
syssyntable system catalog tables. You must own the synonym or have the DBA
privilege to execute the DROP SYNONYM statement. Dropping a synonym has no
effect on the table, view, or sequence object to which the synonym points.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no synonym of the
specified name is registered in the current database.

The following statement drops the synonym nj_cust, that user cathyg owns:
DROP SYNONYM cathyg.nj_cust;

DROP SYNONYM is not the only DDL operation that can unregister a synonym. If
a table, view, or sequence is dropped, any synonyms that exist in the same
database and that refer to that table, view, or sequence object are also dropped.

If a synonym in the current database refers to a dropped table or view in another
database, however, that synonym remains registered in the system catalog until
you explicitly drop it by using the DROP SYNONYM statement. You can create in
the same database another table or view, and declare as its identifier the name of
the dropped table or view. (If that is not the name of any table object in the current
database, you can instead create a table, view, or sequence object in the current
database, and declare as its name the identifier of the table or view that was
dropped in the other database.) In either case, the old synonym now refers to the
new table object. For a more complete discussion of synonym chaining, see the
topic “Chaining Synonyms” on page 2-264 in the CREATE SYNONYM statement
description.
Related reference:
“ALTER SEQUENCE statement” on page 2-68
“CREATE SEQUENCE statement” on page 2-257
“CREATE SYNONYM statement” on page 2-261
“RENAME SEQUENCE statement” on page 2-614

SYSSYNONYMS (SQL Reference)

SYSSYNTABLE (SQL Reference)

SYSTABLES (SQL Reference)

DROP TABLE statement
Use the DROP TABLE statement to remove a table with its associated indexes and
data. This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP TABLE
IF EXISTS owner .

table
synonym

CASCADE

RESTRICT
��

2-446 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_068.htm#ids_sqr_068
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_069.htm#ids_sqr_069
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_072.htm#ids_sqr_072

Element Description Restrictions Syntax

owner Name of table owner Must own the table “Owner name”
on page 5-49

synonym Local synonym for a table that
is to be dropped

The synonym and its table must exist, and
USETABLENAME must not be set to 1

“Identifier” on
page 5-21

table Name of a table to drop Must be registered in the systables system catalog
table of the local database

“Identifier” on
page 5-21

Usage

You must be the owner of the table or have the DBA privilege to use the DROP
TABLE statement.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no table of the
specified name is registered in the current database.

You cannot drop a system catalog table.

If you issue a DROP TABLE statement, DB-Access does not prompt you to verify
that you want to delete an entire table.
Related concepts:

Data integrity (SQL Tutorial)
Related reference:
“CREATE TABLE statement” on page 2-265
“CREATE TEMP TABLE statement” on page 2-321
“RENAME TABLE statement” on page 2-615
“Options Valid on Typed Tables” on page 2-117
“TRUNCATE statement” on page 2-842
“DROP DATABASE statement” on page 2-427

Use CREATE TABLE (Database Design Guide)
“DROP VIEW statement” on page 2-452
“DROP XADATASOURCE statement” on page 2-453
“DROP TRIGGER statement” on page 2-449

Effects of the DROP TABLE Statement
Use the DROP TABLE statement with caution. When you remove a table, you also
delete the data stored in it, the indexes or constraints on the columns (including all
the referential constraints placed on its columns), any local synonyms assigned to
it, any triggers created on it, and any access privileges granted on the table. You
also drop all views based on the table and any violations and diagnostics tables
associated with the table.

DROP TABLE does not remove any synonyms for the table that were created in an
external database. To remove external synonyms for the dropped table, you must
do so explicitly with the DROP SYNONYM statement.

You can prevent users from specifying a synonym in DROP TABLE statements by
setting the USETABLENAME environment variable. If USETABLENAME is set, an
error results if any user attempts to specify DROP TABLE synonym.

Chapter 2. SQL statements 2-447

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_252.htm#ids_sqt_252
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_083.htm#ids_ddi_083

Specifying CASCADE Mode
The CASCADE keyword in DROP TABLE removes related database objects,
including referential constraints built on the table, views defined on the table, and
any violations and diagnostics tables associated with the table.

If the table is the supertable in an inheritance hierarchy, CASCADE drops all of the
subtables as well as the supertable.

The CASCADE mode is the default mode of the DROP TABLE statement. You can
also specify this mode explicitly with the CASCADE keyword.

Specifying RESTRICT Mode
The RESTRICT keyword can control the drop operation for supertables, for tables
that have referential constraints and views defined on them, or for tables that have
violations and diagnostics tables associated them. Using the RESTRICT option
causes the drop operation to fail and an error message to be returned if any of the
following conditions are true:
v Existing referential constraints reference table.

v Existing views are defined on table.

v Any violations tables or diagnostics tables are associated with table.
v The table is the supertable in an inheritance hierarchy.
Related reference:
“DROP ACCESS_METHOD statement” on page 2-424
“DROP XADATASOURCE statement” on page 2-453
“DROP XADATASOURCE TYPE statement” on page 2-454

Dropping a Table That Contains Opaque Data Types
Some opaque data types require special processing when they are deleted. For
example, if an opaque type contains spatial or multi-representational data, it might
provide a choice of how to store the data: inside the internal structure or, for large
objects, in a smart large object.

The database server removes opaque types by calling a user-defined support
function called destroy(). When you execute the DROP TABLE statement on a
table whose rows contain an opaque type, the database server automatically
invokes the destroy() function for the type. The destroy() function can perform
certain operations on columns of the opaque data type before the table is dropped.
For more information about the destroy() support function, see IBM Informix
User-Defined Routines and Data Types Developer's Guide.

Tables That Cannot Be Dropped
Restrictions exist on the types of tables that you can drop.
v You cannot drop any system catalog table.
v You cannot drop a table that is not in the current database.
v You cannot drop a violations table or a diagnostics table.

Before you can drop such a table, you must first issue a STOP VIOLATIONS
TABLE statement on the base table with which the violations and diagnostics
tables are associated.

2-448 IBM Informix Guide to SQL: Syntax

The following example removes two tables in the current database. Both are owned
by joed, the current user. Neither table has an associated violations or diagnostics
table, nor a referential constraint or view defined on it.
DROP TABLE customer;
DROP TABLE stores_demo@accntg:joed.state;

DROP TRIGGER statement
Use the DROP TRIGGER statement to remove a trigger definition from the
database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP TRIGGER
IF EXISTS owner .

trigger ��

Element Description Restrictions Syntax

owner Name of the owner of the trigger Must own the trigger “Owner name” on page 5-49

trigger Name of the trigger to drop The trigger must exist in
the local database

“Identifier” on page 5-21

Usage

You must be the owner of the trigger or have the DBA privilege to drop the
trigger. Dropping a trigger removes the text of the trigger definition and the
executable trigger from the database. The row describing the specified trigger is
deleted from the systriggers system catalog table.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no trigger of the
specified name is registered in the current database.

Dropping an INSTEAD OF trigger on a complex view (a view with columns from
more than one table) revokes any privileges on the view that the owner of the
trigger received automatically when creating the trigger, and also revokes any
privileges that the owner of the trigger granted to other users. (Dropping a trigger
on a simple view does not revoke any privileges.)

The following statement drops the items_pct trigger:
DROP TRIGGER items_pct;

If a DROP TRIGGER statement appears inside an SPL routine that is called by a
data manipulation (DML) statement, the database server returns an error.

When multiple triggers are defined on the same table or view for the same
triggering event, the order in which the triggers execute is not guaranteed. If you
have a preferred sequence of execution, but the triggers are executing in some
other sequence, you might wish to drop all of the triggers except the one that you
want to run first, and then re-create the other triggers in the relative order in
which you want them to execute, so that they are listed in the system catalog in
the intended order of execution.

Chapter 2. SQL statements 2-449

Related concepts:
“INSTEAD OF Triggers on Views” on page 2-362
“CREATE TRIGGER statement” on page 2-329
Related reference:
“DROP TABLE statement” on page 2-446

DROP TRUSTED CONTEXT statement
Use the DROP TRUSTED CONTEXT statement to remove a trusted context
definition from the Informix system catalog.

This statement is an Informix extension to the ANSI/ISO standard for SQL. You
must hold the database security administrator (DBSECADM) role to drop a trusted
context.

Syntax

�� DROP TRUSTED CONTEXT context ��

Element Description Restrictions Syntax

context Trusted context to drop from the
Informix system catalog tables.

Must be defined on the
Informix server.

“Identifier” on page 5-21

Usage

When the DROP TRUSTED CONTEXT statement executes successfully, the
specified trusted context object is deleted from the system catalog. If you drop the
trusted context while trusted connections for this context are active, those
connections remain trusted until they terminate or until the next reuse attempt. If
an attempt is made to switch the user on these trusted connections, an error is
returned. The specified trusted context is deleted from the system catalog table that
contains the context definition.
Related concepts:

Trusted-context objects and trusted connections (Security Guide)
Related reference:
“ALTER TRUSTED CONTEXT statement” on page 2-118
“CREATE TRUSTED CONTEXT statement” on page 2-366
“RENAME TRUSTED CONTEXT statement” on page 2-616

DROP TYPE statement
Use the DROP TYPE statement to remove a user-defined distinct or opaque data
type from the database. (You cannot use this statement to remove a built-in data
type.)

This statement is an extension to the ANSI/ISO standard for SQL.

2-450 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_tru_001.htm#ids_tru_001

Syntax

�� DROP TYPE
IF EXISTS owner .

data_type RESTRICT ��

Element Description Restrictions Syntax

data_type Name of distinct or opaque
data type to be removed

Must be an existing user-defined distinct or
opaque type in the local database; cannot
be a built-in data type

“Identifier” on page 5-21

owner Name of data type owner Must own the data type “Owner name” on page
5-49

Usage

To drop a distinct or opaque data type with the DROP TYPE statement, you must
be the owner of the data type or have the DBA privilege. When you use this
statement, you remove the data type definition from the database (in the
sysxtdtypes system catalog table). In general, this statement does not remove any
definitions of casts or of support functions associated with that data type.

Important: When you drop a distinct type, the database server automatically
drops the two explicit casts between the distinct type and the type on which it is
based.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no user-defined
distinct or opaque data type of the specified name is registered in the current
database.

The DROP TYPE statement fails with an error if you attempt to drop a built-in
data type, such as the built-in opaque BOOLEAN or LVARCHAR type, or the
built-in distinct IDSSECURITYLABEL type.

You cannot drop a distinct or opaque type if the database contains any casts,
columns, or user-defined functions whose definitions reference the data type.

The following statement drops the new_type data type:
DROP TYPE new_type RESTRICT;

Related reference:
“CREATE OPAQUE TYPE statement” on page 2-218
“CREATE DISTINCT TYPE statement” on page 2-157
“CREATE ROW TYPE statement” on page 2-241
“DROP ROW TYPE statement” on page 2-440
“CREATE TABLE statement” on page 2-265

DROP USER statement (UNIX, Linux)
Use the DROP USER statement to remove an internal user.

This statement is an extension to the ANSI/ISO standard for the SQL language.

Chapter 2. SQL statements 2-451

Syntax

�� DROP USER user ��

Element Description Restrictions Syntax

user Authorization identifier of a
specific user that you are
dropping.

Must be an existing
authorization identifier

“Owner name” on page 5-49

Usage

Only a DBSA can run the DROP USER statement. With a non-root installation, the
user who installs the server is the equivalent of the DBSA, unless the user
delegates DBSA privileges to a different user.

It is recommended that you do not run the DROP USER statement while the
specified user is active on a connection.

Execution of the DROP USER statement can be audited with the DRUR audit code.

Example

The following statement drops the user bill:
DROP USER bill;

Related reference:
“CREATE USER statement (UNIX, Linux)” on page 2-368
“ALTER USER statement (UNIX, Linux)” on page 2-122

DROP VIEW statement
Use the DROP VIEW statement to remove a view from the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP VIEW
IF EXISTS owner .

view
synonym

CASCADE

RESTRICT
��

Element Description Restrictions Syntax

owner Name of view owner Must own the view “Owner name” on page 5-49

synonym Synonym for a view that this
statement drops

The synonym and the view to
which it points must exist in the
local database

“Identifier” on page 5-21

view Name of a view to drop Must exist in systables “Identifier” on page 5-21

Usage

To drop a view, you must be the owner or have the DBA privilege.

2-452 IBM Informix Guide to SQL: Syntax

When you drop a view, you also drop any other views and INSTEAD OF triggers
whose definitions depend on that view. (You can also specify this default behavior
explicitly with the CASCADE keyword.)

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no view of the
specified name is registered in the current database.

When you include the RESTRICT keyword in the DROP VIEW statement, the drop
operation fails if any other existing views are defined on view; otherwise, these
dependent views would be unregistered by the DROP VIEW operation.

You can query the sysdepend system catalog table to determine which views, if
any, depend on another view.

The following statement drops the view that is named cust1:
DROP VIEW cust1

Related reference:
“CREATE VIEW statement” on page 2-373
“DROP TABLE statement” on page 2-446

Views (SQL Tutorial)

DROP XADATASOURCE statement
Use the DROP XADATASOURCE statement to drop a previously defined
XA-compliant data source from the system catalog of the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP XADATASOURCE
IF EXISTS

xa_source RESTRICT ��

Element Description Restrictions Syntax

xa_source The XA-compliant data
source to drop

Must be present in the sysxadatasources system catalog
table

“Identifier” on
page 5-21

Usage

The RESTRICT keyword is required. You must be the owner of the XA data source
or hold DBA privileges to drop an access method.

The DROP XADATASOURCE statement is not supported on secondary servers
within a high-availability cluster.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no XA data source of
the specified name is registered in the current database.

The following statement drops the XA data source instance called NewYork that is
owned by user informix.

Chapter 2. SQL statements 2-453

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_545.htm#ids_sqt_545

DROP XADATASOURCE informix.NewYork RESTRICT;

You cannot drop an access method if it is being used in a transaction that is
currently open. If an XA data source has been registered with a transaction that is
not complete, you can drop the data source only after the database is closed or the
session ends.
Related concepts:
“Specifying RESTRICT Mode” on page 2-448
Related reference:
“CREATE XADATASOURCE TYPE statement” on page 2-380
“CREATE XADATASOURCE statement” on page 2-378
“DROP TABLE statement” on page 2-446

XA-compliant external data sources (DataBlade API Guide)
“DROP XADATASOURCE TYPE statement”

DROP XADATASOURCE TYPE statement
Use the DROP XADATASOURCE TYPE statement to drop a previously defined
XA-compliant data source type from the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP XADATASOURCE TYPE
IF EXISTS

xa_type RESTRICT ��

Element Description Restrictions Syntax

xa_type Name of the XA data source
type to be dropped

Must be present in the sysxasourcetypes system
catalog table

“Identifier” on
page 5-21

Usage

The RESTRICT keyword is required. You cannot unregister an XA data source type
if virtual tables or indexes exist that use the data source. You must be user
informix or have DBA privileges to drop an XA data source type.

The DROP XADATASOURCE TYPE statement is not supported on secondary
servers within a high-availability cluster.

The following statement drops an XA data source type called MQSeries owned by
user informix:

DROP XADATASOURCE TYPE informix.MQSeries RESTRICT;

You cannot drop an XA data source type until after all the XA data source
instances that use that data source type have been dropped.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no XA data source
type of the specified name is registered in the current database.
Related concepts:

2-454 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dapip.doc/ids_dapip_0536.htm#ids_dapip_0536

“Specifying RESTRICT Mode” on page 2-448
Related reference:
“CREATE XADATASOURCE TYPE statement” on page 2-380
“CREATE XADATASOURCE statement” on page 2-378
“DROP XADATASOURCE statement” on page 2-453

XA-compliant external data sources (DataBlade API Guide)

EXECUTE statement
Use the EXECUTE statement to run a previously prepared statement or a
multiple-statement prepared object.

Use this statement with Informix ESQL/C.

Syntax

�� EXECUTE stmt_id
stmt_id_var (1)

INTO Clause

�

�
(2)

USING Clause

��

Notes:

1 See “INTO Clause” on page 2-457

2 See “USING Clause” on page 2-460

Element Description Restrictions Syntax

stmt_id Identifier of a prepared
SQL statement

Must have been declared in a previous PREPARE
statement

“Identifier” on
page 5-21

stmt_id_var Host variable containing
the identifier of a prepared
statement

Must exist and must contain a statement identifier
that a previous PREPARE statement declared, and
must be of a character data type

“PREPARE
statement” on
page 2-589

Usage

The EXECUTE statement passes a prepared SQL statement to the database server
for execution. The following example shows an EXECUTE statement within an
Informix ESQL/C program:
EXEC SQL PREPARE del_1 FROM

’DELETE FROM customer WHERE customer_num = 119’;
EXEC SQL EXECUTE del_1;

Once prepared, an SQL statement can be executed as often as needed.

After you release the database server resources (using a FREE statement), you
cannot use the statement identifier with a DECLARE cursor or with the EXECUTE
statement until you prepare the statement again.

Chapter 2. SQL statements 2-455

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dapip.doc/ids_dapip_0536.htm#ids_dapip_0536

If the statement contained question mark (?) placeholders, use the USING clause
to provide specific values for them before execution. For more information, see the
“USING Clause” on page 2-460.

You can execute any prepared statement except those in the following list:
v A prepared SELECT statement that returns more than one row

When you use a prepared SELECT statement to return multiple rows of data,
you must use a cursor to retrieve the data rows. As an alternative, you can
EXECUTE a prepared SELECT INTO TEMP statement to achieve the same
result.
For more information on cursors, see “DECLARE statement” on page 2-386.

v A prepared EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement for
an SPL function that returns more than one row
When you prepare an EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement to invoke an SPL function that returns multiple rows, you must use a
cursor to retrieve the data rows.
For more information on how to execute a SELECT or an EXECUTE FUNCTION
(or EXECUTE PROCEDURE) statement, see “PREPARE statement” on page
2-589.

If you create or drop a trigger after you prepare a triggering INSERT, DELETE, or
UPDATE statement, the prepared statement returns an error when you execute it.
Related reference:
“GET DESCRIPTOR statement” on page 2-487
“SET DESCRIPTOR statement” on page 2-753
“INSERT statement” on page 2-545
“ALLOCATE DESCRIPTOR statement” on page 2-2
“SET DEFERRED_PREPARE statement” on page 2-751
“EXECUTE IMMEDIATE statement” on page 2-467
“DEALLOCATE DESCRIPTOR statement” on page 2-384
“DECLARE statement” on page 2-386
“FETCH statement” on page 2-474
“PREPARE statement” on page 2-589
“PUT statement” on page 2-601

The EXECUTE statements (SQL Tutorial)

The PREPARE and EXECUTE statements (ESQL/C Guide)
“DESCRIBE statement” on page 2-412
“DESCRIBE INPUT statement” on page 2-417
“OPEN statement” on page 2-581
“FREE statement” on page 2-486

Scope of Statement Identifiers
A program can consist of one or more source-code files. By default, the scope of
reference of a statement identifier is global to the program. A statement identifier
created in one file can be referenced from another file.

In a multiple-file program, if you want to limit the scope of reference of a
statement identifier to the file in which it is executed, you can preprocess all the
files with the -local command-line option.

2-456 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_496.htm#ids_sqt_496
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0560.htm#ids_esqlc_0560

INTO Clause

Use the INTO clause to save the returned values of these SQL statements:
v A prepared singleton SELECT statement that returns only one row of column

values for the columns in the select list
v A prepared EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement for

an SPL function that returns only one set of values

The INTO clause of the EXECUTE statement has the following syntax:

INTO Clause:

�

,

INTO output_var
(1)

: indicator_var
INDICATOR

SQL DESCRIPTOR descriptor_var
'descriptor'

DESCRIPTOR sqlda_pointer

Notes:

1 Informix extension

Element Description Restrictions Syntax

descriptor Quoted string that identifies a
system-descriptor area

Must already be allocated. Use
single (') quotation marks

“Quoted String”
on page 4-219

descriptor_var Host variable that identifies a
system-descriptor area

System-descriptor area must
already be allocated

Language specific

indicator_var Host variable that receives a return code
if corresponding parameter_var is NULL
value, or if truncation occurs

Cannot be DATETIME or
INTERVAL data type

Language specific

output_var Host variable whose contents replace a
question-mark (?) placeholder in a
prepared statement

Must be a character data type Language specific

sqlda_pointer Pointer to an sqlda structure that defines
data type and memory location of values
to replace a question-mark (?)
placeholder in a prepared object

Cannot begin with a dollar sign ($
) or a colon (:) symbol. An sqlda
structure is required with dynamic
SQL

“DESCRIBE
INPUT
statement” on
page 2-417

This closely resembles the syntax of the “USING Clause” on page 2-460.

The INTO clause provides a concise and efficient alternative to more complicated
and lengthy syntax. In addition, by placing values into variables that can be
displayed, the INTO clause simplifies and enhances your ability to retrieve and
display data values. For example, if you use the INTO clause, you do not need to
use a cursor to retrieve values from a table.

You can store the returned values in output variables, in output SQL descriptors,
or in output sqlda pointers.

Chapter 2. SQL statements 2-457

Restrictions with the INTO Clause
If you execute a prepared SELECT statement that returns more than one row, or
execute a prepared EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement
for an SPL function that returns more than one group of return values, you receive
an error message. In addition, if you prepare and declare a statement and then
attempt to execute that statement, you receive an error message.

You cannot select a NULL value from a table column and place that value into an
output variable. If you know in advance that a table column contains a NULL
value, after you select the data, check the indicator variable that is associated with
the column to determine if the value is NULL.

To use the INTO clause with the EXECUTE statement:
1. Declare the output variables that the EXECUTE statement uses.
2. Use PREPARE to prepare your SELECT statement or to prepare your EXECUTE

FUNCTION (or EXECUTE PROCEDURE) statement.
3. Use the EXECUTE statement, with the INTO clause, to execute your SELECT

statement or to execute your EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement.

Replacing Placeholders with Parameters
You can specify any of the following items to replace the question-mark
placeholders in a prepared statement before you execute it:
v A host variable name (if the number and data type of the parameters are known

at compile time)
v A system descriptor that identifies a system descriptor area
v A descriptor that is a pointer to an sqlda structure

Sections that follow describe each of these options for specifying parameters.

Saving Values In Host or Program Variables
If you know the number of return values to be supplied at runtime and their data
types, you can define the values that the SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement returns as host variables in your program. Use
these host variables with the INTO keyword, followed by the names of the
variables. These variables are matched with the return values in a one-to-one
correspondence, from left to right.

You must supply one variable name for each value that the SELECT or EXECUTE
FUNCTION (or EXECUTE PROCEDURE) returns. The data type of each variable
must be compatible with the corresponding returned value from the prepared
statement.

Saving Values in a System-Descriptor Area
If you do not know the number of return values to be supplied at runtime or their
data types, you can associate output values with a system-descriptor area. A
system-descriptor area describes the data type and memory location of one or
more values.

A system-descriptor area conforms to the X/Open standards.

2-458 IBM Informix Guide to SQL: Syntax

To specify a system-descriptor area as the location of output values, use the INTO
SQL DESCRIPTOR clause of the EXECUTE statement. Each time that the
EXECUTE statement is run, the values that the system-descriptor area describes are
stored in the system-descriptor area.

The following example shows how to use the system-descriptor area to execute
prepared statements in IBM Informix ESQL/C:
EXEC SQL allocate descriptor ’desc1’;
...
sprintf(sel_stmt, "%s %s %s",

"select fname, lname from customer",
"where customer_num =",
cust_num);

EXEC SQL prepare sel1 from :sel_stmt;
EXEC SQL execute sel1 into sql descriptor ’desc1’;

The COUNT field corresponds to the number of values that the prepared statement
returns. The value of COUNT must be less than or equal to the value of the
occurrences that were specified when the system-descriptor area was allocated
with the ALLOCATE DESCRIPTOR statement.

You can obtain the value of a field with the GET DESCRIPTOR statement and set
the value with the SET DESCRIPTOR statement.

For more information, refer to the discussion of the system-descriptor area in the
IBM Informix ESQL/C Programmer's Manual.

Saving Values in an sqlda Structure (ESQL/C)
If you do not know the number of output values to be returned at runtime or their
data types, you can associate output values from an sqlda structure. An sqlda
structure lists the data type and memory location of one or more return values. To
specify an sqlda structure as the location of return values, use the INTO
DESCRIPTOR clause of the EXECUTE statement. Each time the EXECUTE
statement is run, the database server places the returns values that the sqlda
structure describes into the sqlda structure.

The next example uses an sqlda structure to execute a prepared statement:
struct sqlda *pointer2;
...
sprintf(sel_stmt, "%s %s %s",

"select fname, lname from customer",
"where customer_num =",
cust_num);

EXEC SQL prepare sel1 from :sel_stmt;
EXEC SQL describe sel1 into pointer2;
EXEC SQL execute sel1 into descriptor pointer2;

The sqlda.sqld value specifies the number of output values that are described in
occurrences of sqlvar. This number must correspond to the number of values that
the SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement
returns.

For more information, refer to the sqlda discussion in the IBM Informix ESQL/C
Programmer's Manual.

This example uses the INTO clause with an EXECUTE statement in Informix
ESQL/C:

Chapter 2. SQL statements 2-459

EXEC SQL prepare sel1 from ’select fname, lname from customer
where customer_num =123’;

EXEC SQL execute sel1 into :fname, :lname using :cust_num;

The next example uses the INTO clause to return multiple rows of data:
EXEC SQL BEGIN DECLARE SECTION;
int customer_num =100;
char fname[25];
EXEC SQL END DECLARE SECTION;

EXEC SQL prepare sel1 from ’select fname from customer
where customer_num=?’;

for (;customer_num < 200; customer_num++)
{
EXEC SQL execute sel1 into :fname using customer_num;
printf("Customer number is %d\n", customer_num);
printf("Customer first name is %s\n\n", fname);
}

The sqlca Record and EXECUTE
After an EXECUTE statement, the sqlca can reflect two results:
v The sqlca can reflect an error within the EXECUTE statement.

For example, when an UPDATE ...WHERE statement in a prepared statement
processes zero rows, the database server sets sqlca to 100.

v The sqlca can reflect the success or failure of the executed statement.

Returned SQLCODE Values with EXECUTE
If a prepared statement fails to access any rows when it executes, the database
server returns the SQLCODE value of zero (0).

For a multistatement prepared object, however, if any statement in the following
list fails to access rows, the returned SQLCODE value is SQLNOTFOUND (= 100):
v INSERT INTO table SELECT ... WHERE
v SELECT...WHERE ... INTO TEMP
v DELETE ... WHERE
v UPDATE ... WHERE

In an ANSI-compliant database, if you prepare and execute any of the statements
in the preceding list, and no rows are returned, the returned SQLCODE value is
SQLNOTFOUND (= 100).

USING Clause

Use the USING clause to specify the values that are to replace question-mark (?)
placeholders in the prepared statement. Providing values in the EXECUTE
statement that replace the question-mark (?) placeholders in the prepared
statement is sometimes called parameterizing the prepared statement.

USING Clause:

2-460 IBM Informix Guide to SQL: Syntax

�

,

USING parameter_var
(1)

: indicator_var
INDICATOR

SQL DESCRIPTOR descriptor_var
'descriptor'

DESCRIPTOR sqlda_pointer

Notes:

1 Informix extension

Element Description Restrictions Syntax

descriptor Quoted string that identifies a
system-descriptor area

System-descriptor area must
already be allocated. Use single
(') quotation marks.

“Quoted String”
on page 4-219

descriptor_var Host variable that identifies a
system-descriptor area

System-descriptor area must
already be allocated

Language specific

indicator_var Host variable that receives a return code if
corresponding parameter_var is NULL
value, or if truncation occurs

Cannot be DATETIME or
INTERVAL data type

Language specific

parameter_var Host variable whose contents replace a
question-mark (?) placeholder in a
prepared statement

Must be a character data type Language specific

sqlda_pointer Pointer to an sqlda structure that defines
data type and memory location of values to
replace question-mark (?) placeholder in a
prepared object

Cannot begin with a dollar sign
($) or a colon (:). An sqlda
structure is required with
dynamic SQL

“DESCRIBE
INPUT statement”
on page 2-417

This closely resembles the syntax of the “INTO Clause” on page 2-457.

If you know the number of parameters to be supplied at runtime and their data
types, you can define the parameters that are needed by the EXECUTE statement
as host variables in your program.

If you do not know the number of parameters to be supplied at runtime or their
data types, you can associate input values from a system-descriptor area or an
sqlda structure. Both of these descriptor structures describe the data type and
memory location of one or more values to replace question-mark (?) placeholders.

Supplying Parameters Through Host or Program Variables
You pass parameters to the database server by opening the cursor with the USING
keyword, followed by the names of the variables. These variables are matched with
prepared statement question-mark (?) placeholders in a one-to-one
correspondence, from left to right. You must supply one storage- parameter
variable for each placeholder. The data type of each variable must be compatible
with the corresponding value that the prepared statement requires.

The following example executes the prepared UPDATE statement in Informix
ESQL/C:

Chapter 2. SQL statements 2-461

stcopy ("update orders set order_date = ?
where po_num = ?", stm1);

EXEC SQL prepare statement_1 from :stm1;
EXEC SQL execute statement_1 using :order_date, :po_num;

Supplying Parameters Through a System Descriptor
You can create a system-descriptor area that describes the data type and memory
location of one or more values and then specify the descriptor in the USING SQL
DESCRIPTOR clause of the EXECUTE statement.

Each time that the EXECUTE statement is run, the values that the
system-descriptor area describes are used to replace question-mark (?)
placeholders in the PREPARE statement.

The COUNT field corresponds to the number of dynamic parameters in the
prepared statement. The value of COUNT must be less than or equal to the
number of item descriptors that were specified when the system-descriptor area
was allocated with the ALLOCATE DESCRIPTOR statement.

The following example shows how to use system descriptors to execute a prepared
statement in Informix ESQL/C:
EXEC SQL execute prep_stmt using sql descriptor ’desc1’;

Supplying Parameters Through an sqlda Structure (ESQL/C)
You can specify the sqlda pointer in the USING DESCRIPTOR clause of the
EXECUTE statement.

Each time the EXECUTE statement is run, the values that the descriptor structure
describes are used to replace question-mark (?) placeholders in the PREPARE
statement.

The sqlda.sqld value specifies the number of input values that are described in
occurrences of sqlvar. This number must correspond to the number of dynamic
parameters in the prepared statement.

The following example shows how to use an sqlda structure to execute a prepared
statement in Informix ESQL/C:
EXEC SQL execute prep_stmt using descriptor pointer2;

EXECUTE FUNCTION statement
Use the EXECUTE FUNCTION statement to invoke a user-defined function or a
built-in routine that returns a value.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� EXECUTE FUNCTION �

2-462 IBM Informix Guide to SQL: Syntax

�

�

(1) (3) (4)
function () INTO Clause
(1) ,

SPL_var (2)
Argument

�

�
(5) (6)

WITH TRIGGER REFERENCES

��

Notes:

1 Stored Procedure Language only

2 See “Arguments” on page 5-1

3 ESQL/C only

4 See “INTO Clause” on page 2-465

5 Trigger functions only

6 See “The WITH TRIGGER REFERENCES Keywords” on page 2-472

Element Description Restrictions Syntax

function Name of a user-defined
function to execute

Must be registered in the database “Database Object
Name” on page 5-16

SPL_var Variable that contains the
name of an SPL routine to
be executed

Must be a CHAR, VARCHAR, NCHAR, or
NVARCHAR data type that contains the
non-NULL name of an existing SPL function

“Identifier” on page
5-21

Usage

The EXECUTE FUNCTION statement invokes a user-defined function (UDF), with
arguments, and specifies where the results are to be returned.

An external C or Java language function returns exactly one value.

An SPL function can return one or more values.

You cannot use the EXECUTE FUNCTION statement to invoke any type of
user-defined procedure that returns no value. Instead, use the EXECUTE
PROCEDURE or EXECUTE ROUTINE statement to execute procedures.

You must have the Execute privilege on the user-defined function.

For more information, see “GRANT statement” on page 2-502.

In ANSI/ISO-compliant databases that support implicit transactions, the EXECUTE
FUNCTION statement does not, by default, begin a new transaction. SQL
statements within the invoked function, however, can begin a new transaction.
Related concepts:
“Overloading the Name of a Function” on page 2-188
Related reference:
“DROP FUNCTION statement” on page 2-428
“CREATE PROCEDURE statement” on page 2-226

Chapter 2. SQL statements 2-463

“CALL” on page 3-11
“CREATE FUNCTION statement” on page 2-183
“CREATE FUNCTION FROM statement” on page 2-193
“DROP ROUTINE statement” on page 2-438
“EXECUTE PROCEDURE statement” on page 2-471
“FOREACH” on page 3-30
“Arguments” on page 5-1

Negator Functions and Their Companions
If a UDF that returns a BOOLEAN value has a companion function, any user who
executes the function must have the Execute privilege on both the function and on
its companion. For example, if a function has a negator function, any user who
executes the function must have the Execute privilege on both the function and its
negator. In addition, the companion function must have the same owner as its
negator function.

For information on how to designate a UDF as the companion to its negator
function, see “NEGATOR” on page 5-67.

How the EXECUTE FUNCTION Statement Works
For a user-defined function (UDF) to be executed with the EXECUTE FUNCTION
statement, the following conditions must exist:
v The qualified function name or the function signature (the function name with

its parameter list) must be unique within the name space or database.
v The function must exist in the current database.

If EXECUTE FUNCTION specifies fewer arguments than the user-defined function
expects, the unspecified arguments are said to be missing. Missing arguments are
initialized to their corresponding parameter default values, if these were defined.
The syntax of specifying default values for parameters is described in “Routine
Parameter List” on page 5-71.

EXECUTE FUNCTION returns an error under the following conditions:
v EXECUTE FUNCTION specifies more arguments than the UDF expects.
v One or more arguments are missing and do not have default values.
v The fully qualified function name or the function signature is not unique.
v No function with the specified name or signature that you specify is found.
v EXECUTE FUNCTION attempts to invoke a user-defined procedure.

If the function name is not unique within the database, you must specify enough
parameter_type information to disambiguate the name. See the section “Arguments”
on page 5-1 for more information about how to specify parameters when invoking
a function.

The specific name of an external UDR is valid in some DDL statements, but is not
valid in contexts where you invoke the function.

If Informix cannot resolve an ambiguous function name whose signature differs
from the signature of another routine only in an unnamed-ROW type parameter,
an error is returned. (This error cannot be anticipated by the database server when
the ambiguous function is defined.)

2-464 IBM Informix Guide to SQL: Syntax

INTO Clause

INTO Clause:

�

,

INTO data_var
(1)

: indicator_var
(2)

$
INDICATOR

data_structure

Notes:

1 ESQL/C only

2 Informix extension

Element Description Restrictions Syntax

data_structure Structure that was declared as a
host variable

Individual elements of structure must
be compatible with the data types of
the returned values

Language specific

data_var Variable to receive the value that a
user-defined function returns

See “Data Variables.” Language specific

indicator_var Program variable to store a return
code if the corresponding data_var
receives a NULL value

Use an indicator variable if the value
of the corresponding data_var might
be NULL

Language specific

You must include an INTO clause with EXECUTE FUNCTION to specify the
variables that receive the values that a user-defined function returns. If the
function returns more than one value, the values are returned into the list of
variables in the order in which you specify them.

If the EXECUTE FUNCTION statement stands alone (that is, it is not part of a
DECLARE statement and does not use the INTO clause), it must execute a
noncursor function. A noncursor function returns only one row of values. The
following example shows a SELECT statement in IBM Informix ESQL/C:
EXEC SQL EXECUTE FUNCTION

cust_num(fname, lname, company_name) INTO :c_num;

Data Variables
If you issue EXECUTE FUNCTION within an Informix ESQL/C program, data_var
must be a host variable. Within an SPL routine, data_var must be an SPL variable.

If you issue EXECUTE FUNCTION within a CREATE TRIGGER statement,
data_var must be a column name in the triggering table or in another table.

INTO Clause with Indicator Variables (ESQL/C)
You should use an indicator variable if the possibility exists that data returned
from the user-defined function is NULL. For more information about indicator
variables, see the IBM Informix ESQL/C Programmer's Manual.

Chapter 2. SQL statements 2-465

INTO Clause with Cursors
If EXECUTE FUNCTION calls a UDF that returns more than one row of values, it
must execute a cursor function. A cursor function can return one or more rows of
values and must be associated with a Function cursor to execute.

If the SPL function returns more than one row or a collection data type, you must
access the rows or collection elements with a cursor.

To return more than one row of values, an external function (one written in the C
or Java language) must be defined as an iterator function. For more information on
iterator functions, see the IBM Informix DataBlade API Programmer's Guide.

In an SPL routine, if a SELECT returns more than one row, you must use the
FOREACH statement to access the rows individually. The INTO clause of the
SELECT statement can store the fetched values. For more information, see
“FOREACH” on page 3-30.

To return more than one row of values, an SPL function must include the WITH
RESUME keywords in its RETURN statement. For more information on how to
write SPL functions, see the IBM Informix Guide to SQL: Tutorial.

In an IBM Informix ESQL/C program, the DECLARE statement can declare a
Function cursor and the FETCH statement can return rows individually from the
cursor. You can put the INTO clause in the EXECUTE FUNCTION or in the
FETCH statement, but you cannot put it in both. The following IBM Informix
ESQL/C code examples show different ways you can use the INTO clause:
v Using the INTO clause in the EXECUTE FUNCTION statement:

EXEC SQL declare f_curs cursor for
execute function get_orders(customer_num)
into :ord_num, :ord_date;

EXEC SQL open f_curs;
while (SQLCODE == 0)

EXEC SQL fetch f_curs;
EXEC SQL close f_curs;

v Using the INTO clause in the FETCH statement:
EXEC SQL declare f_curs cursor for

execute function get_orders(customer_num);
EXEC SQL open f_curs;
while (SQLCODE == 0)

EXEC SQL fetch f_curs into :ord_num, :ord_date;
EXEC SQL close f_curs;

Alternatives to PREPARE ... EXECUTE FUNCTION ... INTO
In ESQL/C, you cannot prepare an EXECUTE FUNCTION statement that includes
the INTO clause. For similar functionality, however, follow these steps:
1. Prepare the EXECUTE FUNCTION statement with no INTO clause.
2. Declare a Function cursor for the prepared statement.
3. Open the cursor.
4. Execute the FETCH statement with an INTO clause to fetch the returned values

into program variables.

Alternatively, you can do the following:
1. Declare a cursor for the EXECUTE FUNCTION statement without first

preparing the statement, and include the INTO clause in the EXECUTE
FUNCTION when you declare the cursor.

2-466 IBM Informix Guide to SQL: Syntax

2. Open the cursor.
3. Fetch the returned values from the cursor without using the INTO clause of the

FETCH statement.

Dynamic Routine-Name Specification of SPL Functions
Dynamic routine-name specification simplifies the writing of an SPL function that
calls another SPL routine whose name is not known until runtime. To specify the
name of an SPL routine in the EXECUTE FUNCTION statement, instead of listing
the explicit name of an SPL routine, you can use an SPL variable to hold the
routine name. For more information about how to execute SPL functions
dynamically, see the IBM Informix Guide to SQL: Tutorial.

EXECUTE IMMEDIATE statement
Use the EXECUTE IMMEDIATE statement to perform tasks equivalent to what the
PREPARE, EXECUTE, and FREE statements accomplish, but as a single operation.

Use this Dynamic SQL statement with IBM Informix ESQL/C and SPL.

Syntax

�� EXECUTE IMMEDIATE

�

' statement '
; ;

(1)
; statement

statement_var
(2)

char_expr

��

Notes:

1 ESQL/C only

2 SPL only

Element Description Restrictions Syntax

char_expr Expression that
evaluates to a character
data type

Must evaluate to a CHAR, LVARCHAR, NCHAR,
NVARCHAR, or VARCHAR data type

“Expression”
on page 4-44

statement Text of a valid SQL
statement

See the same sections that are listed below for
statement_var

See this
chapter.

statement _var Variable containing
statement or (in
ESQL/C) a
semicolon-separated
list of statements

Must be a previously declared variable of type CHAR,
NCHAR, NVARCHAR, or VARCHAR (or in SPL,
LVARCHAR). See “EXECUTE IMMEDIATE and
Restricted Statements” on page 2-468 and “Restrictions
on Valid Statements” on page 2-469.

Language
specific

Usage

The EXECUTE IMMEDIATE statement dynamically executes a single SQL
statement (or in ESQL/C routines, a semicolon-separated list of SQL statements)
that is constructed during program execution. For example, you can obtain the
name of a database from program input, construct the DATABASE statement as a
program variable, and then use EXECUTE IMMEDIATE to execute the statement,
which opens the specified database.

Chapter 2. SQL statements 2-467

Within ESQL/C routines, the statement text specified by the variable or quoted
string can include more than one SQL statement, if consecutive statements are
separated by a semicolon (;) delimiter. In SPL routines, however, only one
statement can be included. The statement cannot be an SPL statement, but can be
any SQL statement that is not listed in the sections “EXECUTE IMMEDIATE and
Restricted Statements” or “Restrictions on Valid Statements” on page 2-469.

The specification that follows the IMMEDIATE keyword, if valid, is parsed and
executed; then all data structures and memory resources are released immediately.
Unless you use EXECUTE IMMEDIATE, these operations would otherwise require
separate PREPARE, EXECUTE, and FREE statements.

The session environment values (such as the EXTDIRECTIVES, OPTCOMPIND, or
USELASTCOMMITTED settings of the ESQL/C or SPL routine that issues the
EXECUTE IMMEDIATE statement) override the corresponding ONCONFIG
parameter values, if these are different.

In ANSI/ISO-compliant databases that support implicit transactions, the EXECUTE
IMMEDIATE statement does not, by default, begin a new transaction. Execution of
the specified SQL statement text, however, can begin a new transaction.
Related reference:
“EXECUTE statement” on page 2-455
“FREE statement” on page 2-486
“PREPARE statement” on page 2-589

Quick execution (SQL Tutorial)

EXECUTE IMMEDIATE and Restricted Statements
The EXECUTE IMMEDIATE statement cannot execute the following SQL
statements.
v CLOSE
v CONNECT
v DECLARE
v DISCONNECT
v EXECUTE
v EXECUTE FUNCTION
v EXECUTE PROCEDURE
v FETCH
v FLUSH
v FREE
v GET DESCRIPTOR
v GET DIAGNOSTICS
v OPEN
v OUTPUT
v PREPARE
v PUT
v SELECT
v SET AUTOFREE
v SET CONNECTION

2-468 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_337.htm#ids_sqt_337

v SET DEFERRED_PREPARE
v SET DESCRIPTOR
v WHENEVER

For EXECUTE PROCEDURE, this restriction applies only to calls that return one or
more values.

The only form of the SELECT statement that EXECUTE IMMEDIATE supports as
statement text is SELECT ... INTO TEMP table. For the syntax of the INTO TEMP
table clause in SELECT statements, see “INTO table clauses” on page 2-720.

In addition, ESQL/C cannot use the EXECUTE IMMEDIATE statement to execute
the following statements in text that contains multiple SQL statements that are
separated by semicolons:
v CLOSE DATABASE
v CREATE DATABASE
v DATABASE
v DROP DATABASE
v SELECT (except SELECT INTO TEMP)

The EXECUTE IMMEDIATE statement cannot process SQL statement text that
includes question mark (?) symbols as placeholders. Use the PREPARE statement
and either a cursor or the EXECUTE statement to execute a dynamically
constructed SELECT statement.

(In SPL routines, the EXECUTE IMMEDIATE statement can execute only a single
SQL statement. If the specification that immediately follows the IMMEDIATE
keyword evaluates to a list of multiple SQL statements, or by a NULL value, or
text that is not a valid SQL statement, the database server issues a runtime error.)

Restrictions on Valid Statements
The following restrictions apply to the statements contained in the character
expression, quoted string, or statement variable that immediately follows the
EXECUTE IMMEDIATE keywords:
v The SQL statement cannot contain a host-language comment.
v Names of host-language variables are not recognized as such in prepared text.

The only identifiers that you can use are names registered in the system catalog
of the current database, such as table names and column names.

v The statement cannot reference a host-variable list or a descriptor; it must not
contain any question-mark (?) placeholders, which are allowed with a
PREPARE statement.

v The text must not include any embedded SQL statement prefix, such as the
dollar sign ($) or the keywords EXEC SQL.
Although it is not required, the SQL statement terminator (;) can be included in
the statement text.

v A SELECT or INSERT statement specified within the EXECUTE IMMEDIATE
statement cannot contain a Collection-Derived Table clause.
EXECUTE IMMEDIATE cannot process input host variables, which are required
for a collection variable. Use the EXECUTE statement or a cursor to process
prepared accesses to collection variables.

Chapter 2. SQL statements 2-469

Handling Exceptions from EXECUTE IMMEDIATE Statements
If the Informix ESQL/C parser detects a syntax error when the EXECUTE
IMMEDIATE statement is compiled, it issues a compilation error, and no
executable UDR is produced until the syntax is corrected and recompiled. If the
parser accepts the EXECUTE IMMEDIATE syntax and the UDR compiles
successfully, but an exception occurs during a call to the UDR when the EXECUTE
IMMEDIATE statement is executing, the database server issues an error at runtime.
Runtime errors can be trapped by the WHENEVER statement, or by some other
exception-handling mechanism in the program logic of the UDR.

For routines written in the SPL language, SQL expressions are evaluated at
runtime, not when the routine is compiled or optimized. If an expression that
follows the IMMEDIATE keyword specifies invalid SQL statement text, Informix
issues a runtime exception, rather than a compilation error. After any runtime error
condition in an SPL routine, program control passes to the ON EXCEPTION
statement block (if this is defined); otherwise, execution of the UDR terminates
abnormally, and an error is returned to the calling context. For information on how
to handle runtime errors in SPL routines, see the descriptions of the SPL statement
“ON EXCEPTION” on page 3-46. (See also the built-in SQL function SQLCODE.)

Examples of the EXECUTE IMMEDIATE Statement
The following ESQL/C examples show EXECUTE IMMEDIATE statements in
Informix ESQL/C. Both examples use host variables that contain a CREATE
DATABASE statement.
sprintf(cdb_text1, "create database %s", usr_db_id);
EXEC SQL execute immediate :cdb_text1;

sprintf(cdb_text2, "create database %s", usr_db_id2);
EXEC SQL execute immediate :cdb_text2;

The next example shows an SPL program fragment that declares local SPL
variables and assigns to them portions of the text of two DDL statements. It then
issues an EXECUTE IMMEDIATE statement to drop a table called DYN_TAB,
specifying the DROP TABLE statement text in an SPL variable. The second
EXECUTE IMMEDIATE statement in this example creates a table of the same
name, in this case specifying the CREATE TABLE statement text in a character
expression that concatenates the contents of two SPL variables.

CREATE PROCEDURE myproc()
DEFINE COLS VARCHAR(22);
DEFINE CRTOPER VARCHAR(16);
DEFINE DRPOPER VARCHAR(16);
DEFINE TABNAME VARCHAR(16);
DEFINE QRYSTR VARCHAR(100);
...
LET CRTOPER = "CREATE TABLE ";
LET DRPOPER = "DROP TABLE ";
LET TABNAME = "DYN_TAB";
LET COLS = "(ID INT, NAME CHAR(20))";
LET QRYSTR = DRPOPER || TABNAME;
EXECUTE IMMEDIATE QRYSTR;

EXECUTE IMMEDIATE CRTOPER || TABNAME || COLS;

END PROCEDURE;

2-470 IBM Informix Guide to SQL: Syntax

EXECUTE PROCEDURE statement
Use the EXECUTE PROCEDURE statement to invoke a user-defined procedure or
a built-in routine. This statement is an extension to the ANSI/ISO standard for
SQL.

Syntax

�� EXECUTE PROCEDURE

�

procedure ()
(1) ,

SPL_var (2)
function Argument

�

�

�

,
(1)

INTO output_var

(3)
WITH TRIGGER REFERENCES

��

Notes:

1 Stored Procedure Language only

2 See “Arguments” on page 5-1

3 Trigger routines only

Element Description Restrictions Syntax

function SPL routine to execute Must exist “Database Object
Name” on page 5-16

output_var Host variable or program
variable that receives the
returned value from UDR

In the context of a CREATE TRIGGER
statement, must contain column names in the
triggering table or in another table

Language specific

procedure User-defined procedure to
execute

Must exist “Database Object
Name” on page 5-16

SPL_var Variable that contains the
name of the SPL routine to
execute

Must be a character data type that contains
the non-NULL name of an SPL routine.

“Identifier” on page
5-21

Usage

The EXECUTE PROCEDURE statement invokes a user-defined procedure and
specifies its arguments.

For compatibility with earlier Informix versions, you can use the EXECUTE
PROCEDURE statement to execute an SPL function that the CREATE PROCEDURE
statement defined.

If the EXECUTE PROCEDURE statement returns more than one row, the result set
must be processed within a FOREACH loop of an SPL routine, or else accessed
through a cursor of an ESQL/C routine.

In ANSI/ISO-compliant databases that support implicit transactions, the EXECUTE
PROCEDURE statement does not, by default, begin a new transaction. SQL
statements within the invoked procedure, however, can begin a new transaction.
Related concepts:

Chapter 2. SQL statements 2-471

“INSTEAD OF Triggers on Views” on page 2-362
“CREATE TRIGGER statement” on page 2-329
Related reference:
“DROP PROCEDURE statement” on page 2-434
“CREATE PROCEDURE statement” on page 2-226
“EXECUTE FUNCTION statement” on page 2-462
“CREATE FUNCTION statement” on page 2-183
“GRANT statement” on page 2-502
“CALL” on page 3-11
“FOREACH” on page 3-30
“LET” on page 3-40
“DROP ROUTINE statement” on page 2-438
“Arguments” on page 5-1
“DECLARE statement” on page 2-386

Causes of Errors
EXECUTE PROCEDURE returns an error under the following conditions.
v It has more arguments than the called procedure expects.
v One or more arguments are missing and do not have default values.
v The fully qualified procedure name or the routine signature is not unique.
v No procedure with the specified name or signature is found.

If the procedure name is not unique within the database, you must specify enough
parameter_type information to disambiguate the name. See “Arguments” on page
5-1 for additional information about how to specify parameters when invoking a
procedure. (In Informix, the specific name of an external UDR is valid in DDL
statements, but is not valid in contexts where you invoke the procedure.)

Using the INTO Clause
Use the INTO clause to specify where to store the values that the SPL function
returns.

If an SPL function returns more than one value, the values are returned into the
list of variables in the order in which you specify them. If an SPL function returns
more than one row or a collection data type, you must access the rows or
collection elements with a cursor.

You cannot prepare an EXECUTE PROCEDURE statement that has an INTO
clause. For more information, see “Alternatives to PREPARE ... EXECUTE
FUNCTION ... INTO” on page 2-466.

The WITH TRIGGER REFERENCES Keywords
You must include the WITH TRIGGER REFERENCES keywords when you use the
EXECUTE PROCEDURE statement to invoke a trigger procedure.

A trigger procedure is an SPL routine that EXECUTE PROCEDURE can invoke
only from the FOR EACH ROW section of the Action clause of a trigger definition.
Such procedures must include the REFERENCING clause and the FOR clause in
the CREATE PROCEDURE statement that defined the procedure. This
REFERENCING clause declares names for correlated variables that the procedure

2-472 IBM Informix Guide to SQL: Syntax

can use to reference the old column value in the row when the trigger event
occurred, or the new value of the column after the row was modified by the
trigger. The FOR clause specifies the table or view on which the trigger is defined.

Example of Invoking a Trigger Procedure
The following example defines three tables and a trigger procedure that references
one of these tables in its FOR clause:
CREATE TABLE tab1 (col1 INT,col2 INT);
CREATE TABLE tab2 (col1 INT);
CREATE TABLE temptab1

(old_col1 INTt, new_col1 INT, old_col2 INT, new_col2 INT);

/* The following procedure is invoked from an INSERT trigger in this example.
*/
CREATE PROCEDURE proc1()
REFERENCING OLD AS o NEW AS n FOR tab1;

IF (INSERTING) THEN -- INSERTING Boolean operator
LET n.col1 = n.col1 + 1; -- You can modify new values.
INSERT INTO temptab1 VALUES(0,n.col1,1,n.col2);

END IF

IF (UPDATING) THEN -- UPDATING Boolean operator
-- you can access relevant old and new values.
INSERT INTO temptab1 values(o.col1,n.col1,o.col2,n.col2);

END IF

if (SELECTING) THEN -- SELECTING Boolean operator
-- you can access relevant old values.
INSERT INTO temptab1 VALUES(o.col1,0,o.col2,0);

END IF

if (DELETING) THEN -- DELETING Boolean operator
DELETE FROM temptab1 WHERE temptab1.col1 = o.col1;

END IF

END PROCEDURE;

This example illustrates that the triggered action can be a different DML operation
from the triggering event. Although this procedure inserts a row when an Insert
trigger calls it, and deletes a row when a Delete trigger calls it, it also performs
INSERT operations if it is called by a Select trigger or by an Update trigger.

The proc1() trigger procedure in this example uses Boolean conditional operators
that are valid only in trigger routines. The INSERTING operator returns true only
if the procedure is called from the FOR EACH ROW action of an INSERT trigger.
This procedure can also be called from other triggers whose trigger event is an
UPDATE, SELECT, or DELETE. statement, because the UPDATING, SELECTING
and DELETING operators return true (t) if the procedure is invoked in the
triggered action of the corresponding type of triggering event.

The following statement defines an Insert trigger on tab1 that calls proc1() from
the FOR EACH ROW section as its triggered action, and perform an INSERT
operation that activates this trigger:
CREATE TRIGGER ins_trig_tab1 INSERT ON tab1 REFERENCING NEW AS post

FOR EACH ROW(EXECUTE PROCEDURE proc1() WITH TRIGGER REFERENCES);

Note that the REFERENCING clause of the trigger declares a correlation name for
the NEW value that is different from the correlation name that the trigger
procedure declared. These names do not need to match, because the correlation

Chapter 2. SQL statements 2-473

name that was declared in the trigger procedure has that procedure as its scope of
reference. The following statement activates the ins_trig_tab1 trigger, which
executes the proc1() procedure.
INSERT INTO tab1 VALUES (111,222);

Because the trigger procedure increments the new value of col1 by 1, the value
inserted is (112, 222), rather than the value that the triggering event specified.

Dynamic Routine-Name Specification of SPL Procedures
Dynamic routine-name specification simplifies the writing of an SPL routine that calls
another SPL routine whose name is not known until runtime.

To specify the name of an SPL routine in the EXECUTE PROCEDURE statement,
instead of listing the explicit name of an SPL routine, you can use an SPL variable
to hold the routine name.

If the SPL variable names an SPL routine that returns a value (an SPL function),
include the INTO clause of EXECUTE PROCEDURE to specify a receiving variable
(or variables) to hold the value (or values) that the SPL function returns. For more
information on how to execute SPL procedures dynamically, see the IBM Informix
Guide to SQL: Tutorial.

FETCH statement
Use the FETCH statement to move a cursor to a new row in the active set and to
retrieve the row values from memory.

Use this statement with Informix ESQL/C and with SPL.

Syntax

�� FETCH
(1) (2) NEXT

PRIOR
PREVIOUS
FIRST
LAST
CURRENT

+
RELATIVE position_num_var

position_num
- position_num

ABSOLUTE row_position_var
row_position

�

�
(1) (2)

cursor_id_var
cursor_id

�

2-474 IBM Informix Guide to SQL: Syntax

�

�

(1) (2)

USING SQL DESCRIPTOR ' descriptor '
descriptor_var

DESCRIPTOR sqlda_pointer
,

INTO output_var
(2)

INDICATOR indicator_var
(1)

:
(2)

data_structure

��

Notes:

1 Informix extension

2 ESQL/C only

Element Description Restrictions Syntax

cursor_id Cursor to retrieve rows Must be open “Identifier” on page
5-21

cursor_id_var Host variable storing cursor_id Must be character data type Language specific

data_structure Structure as a host variable Must store fetched values Language specific

descriptor System-descriptor area Must have been allocated “Quoted String” on
page 4-219

descriptor_var Host variable storing descriptor Must be allocated Language specific

indicator_var Host variable for return code if
output_var can be NULL value

See “Using Indicator Variables”
on page 2-478.

Language specific

output_var Host variable for fetched value Must store value from row Language specific

position_num Position relative to current row Value 0 fetches current row “Literal Number” on
page 4-215

position_num_var Host variable (= position_num) Value 0 fetches current row Language specific

row_position Ordinal position in active set Must be an integer >1 “Literal Number” on
page 4-215

row_position_var Host variable (= row_ position) Must be 1 or greater Language specific

sqlda_pointer Pointer to an sqlda structure Cannot begin with $ nor : See ESQL/C .

Usage

Except as noted, sections that follow describe how to use the FETCH statement in
Informix ESQL/C routines. For information about the more restricted syntax and
semantics of the FETCH statement in SPL routines, see “Fetching from Dynamic
Cursors in SPL Routines” on page 2-483.

How the database server creates, stores, and fetches members of the active set of
rows depends on whether the cursor was declared as a sequential cursor or as a
scroll cursor. All cursors that the FETCH statement can reference in SPL routines
are sequential cursors.

Chapter 2. SQL statements 2-475

In X/Open mode, if a cursor-direction value (such as NEXT or RELATIVE) is
specified, a warning message is issued, indicating that the statement does not
conform to X/Open standards.
Related concepts:

A fetch array (ESQL/C Guide)
Related reference:
“CLOSE statement” on page 2-128
“GET DESCRIPTOR statement” on page 2-487
“SET AUTOFREE statement” on page 2-726
“SET DESCRIPTOR statement” on page 2-753
“ALLOCATE DESCRIPTOR statement” on page 2-2
“DELETE statement” on page 2-404
“EXECUTE statement” on page 2-455
“DESCRIBE statement” on page 2-412
“DESCRIBE INPUT statement” on page 2-417
“DEALLOCATE DESCRIPTOR statement” on page 2-384
“Collection-Derived Table” on page 5-4
“OPEN statement” on page 2-581
“DECLARE statement” on page 2-386
“PREPARE statement” on page 2-589
“SET DEFERRED_PREPARE statement” on page 2-751

Fetch rows (SQL Tutorial)

Fetch elements from the select cursor (ESQL/C Guide)

FETCH with a Sequential Cursor
A sequential cursor can fetch only the next row in sequence from the active set.
The only option available is the default option, NEXT. A sequential cursor can read
through a table only once each time the table is opened. The following Informix
ESQL/C example illustrates the FETCH statement with a sequential cursor:
EXEC SQL FETCH seq_curs INTO :fname, :lname;
EXEC SQL FETCH NEXT seq_curs INTO :fname, :lname;

When the program opens a sequential cursor, the database server processes the
query to the point of locating or constructing the first row of data. The goal of the
database server is to tie up as few resources as possible.

Because the sequential cursor can retrieve only the next row, the database server
can frequently create the active set one row at a time.

On each FETCH operation, the database server returns the contents of the current
row and locates the next row. This one-row-at-a-time strategy is not possible if the
database server must create the entire active set to determine which row is the first
row (as would be the case if the SELECT statement included an ORDER BY
clause).

FETCH with a Scroll Cursor
These Informix ESQL/C examples illustrate the FETCH statement with a scroll
cursor:

2-476 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0603.htm#ids_esqlc_0603
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_322.htm#ids_sqt_322
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0310.htm#ids_esqlc_0310

EXEC SQL fetch previous q_curs into :orders;
EXEC SQL fetch last q_curs into :orders;
EXEC SQL fetch relative -10 q_curs into :orders;
printf("Which row? ");
scanf("
EXEC SQL fetch absolute :row_num q_curs into :orders;

A scroll cursor can fetch any row in the active set, either by specifying an absolute
row position or a relative offset. Use the following cursor-position options to
specify a particular row that you want to retrieve.

Keyword
Effect

NEXT Retrieves next row in active set

PREVIOUS
Retrieves previous row in active set

PRIOR
Retrieves previous row in active set (Synonymous with PREVIOUS.)

FIRST Retrieves the first row in active set

LAST Retrieves the last row in active set

CURRENT
Retrieves the current row in active set (the same row as returned by the
previous FETCH statement from the scroll cursor)

RELATIVE
Retrieves nth row, relative to the current cursor position in the active set,
where position_num (or position_num_var) supplies n. A negative value
indicates the nth row prior to the current cursor position. If position_num =
0, the current row is fetched.

ABSOLUTE
Retrieves nth row in active set, where row_position_var (or row_position) = n
. Absolute row positions are numbered from 1.

Tip: Do not confuse row-position values with rowid values. A rowid value is
based on the position of a row in its table and remains valid until the table is
rebuilt. A row-position value (a value that the ABSOLUTE keyword retrieves) is
the relative position of the row in the current active set of the cursor; the next time
the cursor is opened, different rows might be selected.

How the Database Server Implements Scroll Cursors
Because it cannot anticipate which row the program will ask for next, the database
server must retain all the rows in the active set until the scroll cursor closes. When
a scroll cursor opens, the database server implements the active set as a temporary
table, although it might not populate this table immediately.

The first time a row is fetched, the database server copies it into the temporary
table as well as returning it to the program.

When a row is fetched for the second time, it can be taken from the temporary
table. This scheme uses the fewest resources, in case the program abandons the
query before it fetches all the rows. Rows that are never fetched are usually not
copied from the database, or are saved in a temporary table.

Chapter 2. SQL statements 2-477

Specifying Where Values Go in Memory
Each value from the select list of the query or the output of the executed
user-defined function must be returned into a memory location. You can specify
these destinations in one of the following ways:
v Use the INTO clause of a SELECT statement.
v Use the INTO clause of an EXECUTE Function (or EXECUTE PROCEDURE)

statement.
v Use the INTO clause of a FETCH statement.
v Use a system-descriptor area.
v Use an sqlda structure.

Using the INTO Clause
If you associate a SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement with a Function cursor, the statement can contain an INTO clause to
specify variables to receive the returned values. You can use this method only
when you write the SELECT, EXECUTE FUNCTION, or EXECUTE PROCEDURE
statement as part of the cursor declaration; see “DECLARE statement” on page
2-386. In this case, the FETCH statement cannot contain an INTO clause.

The following example uses the INTO clause of the SELECT statement to specify
program variables in Informix ESQL/C:
EXEC SQL declare ord_date cursor for

select order_num, order_date, po_num
into :o_num, :o_date, :o_po;

EXEC SQL open ord_date;
EXEC SQL fetch next ord_date;

If you prepare a SELECT statement, the SELECT cannot include the INTO clause so
you must use the INTO clause of the FETCH statement.

When you create a SELECT statement dynamically, you cannot use an INTO clause
because you cannot name host variables in a prepared statement.

If you are certain of the number and data type of values in the projection list, you
can use an INTO clause in the FETCH statement. If user input generated the query,
however, you might not be certain of the number and data type of values that are
being selected. In this case, you must use either a system descriptor or else a
pointer to an sqlda structure.

Using Indicator Variables
Use an indicator variable if the returned data might be null.

The indicator_var parameter is optional, but use an indicator variable if the
possibility exists that the value of output_var is NULL.

If you specify the indicator variable without the INDICATOR keyword, you cannot
put a blank space between output_var and indicator_var.

For information about rules for placing a prefix before the indicator_var, see the
IBM Informix ESQL/C Programmer's Manual.

The host variable cannot be a DATETIME or INTERVAL data type.

2-478 IBM Informix Guide to SQL: Syntax

When the INTO Clause of FETCH is Required
When SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE) omits the
INTO clause, you must specify a data destination when a row is fetched.

For example, to dynamically execute a SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement, the SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) cannot include its INTO clause in the PREPARE
statement. Therefore, the FETCH statement must include an INTO clause to
retrieve data into a set of variables. This method lets you store different rows in
different memory locations.

You can fetch into a program-array element only by using an INTO clause in the
FETCH statement. If you use a program array, you must list both the array name
and a specific element of the array in data_structure. When you are declaring a
cursor, do not refer to an array element within the SQL statement.

Tip: If you are certain of the number and data type of values in the select list of
the Projection clause, you can use an INTO clause in the FETCH statement.

In the following Informix ESQL/C example, a series of complete rows is fetched
into a program array. The INTO clause of each FETCH statement specifies an array
element as well as the array name:
EXEC SQL BEGIN DECLARE SECTION;

char wanted_state[2];
short int row_count = 0;
struct customer_t{
{

int c_no;
char fname[15];
char lname[15];

} cust_rec[100];
EXEC SQL END DECLARE SECTION;

main()
{

EXEC SQL connect to’stores_demo’;
printf("Enter 2-letter state code: ");
scanf ("%s", wanted_state);
EXEC SQL declare cust cursor for

select * from customer where state = :wanted_state;
EXEC SQL open cust;
EXEC SQL fetch cust into :cust_rec[row_count];
while (SQLCODE == 0)
{

printf("\n%s %s", cust_rec[row_count].fname,
cust_rec[row_count].lname);

row_count++;
EXEC SQL fetch cust into :cust_rec[row_count];

}
printf ("\n");
EXEC SQL close cust;
EXEC SQL free cust;

}

Using a System-Descriptor Area (X/Open)
You can use a system-descriptor area to store output values when you do not
know the number of return values or their data types that a SELECT or EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement returns at runtime. A
system-descriptor area describes the data type and memory location of one or
more return values, and conforms to the X/Open standards.

Chapter 2. SQL statements 2-479

The keywords USING SQL DESCRIPTOR introduce the name of the
system-descriptor area into which you fetch the contents of a row or the return
values of a user-defined function. You can then use the GET DESCRIPTOR
statement to transfer the values that the FETCH statement returns from the
system-descriptor area into host variables.

The following example shows a valid FETCH...USING SQL DESCRIPTOR
statement:
EXEC SQL allocate descriptor ’desc’;

...
EXEC SQL declare selcurs cursor for

select * from customer where state = ’CA’;
EXEC SQL describe selcurs using sql descriptor ’desc’;
EXEC SQL open selcurs;
while (1)

{
EXEC SQL fetch selcurs using sql descriptor ’desc’;

You can also use an sqlda structure to supply parameters dynamically.

Using sqlda Structures
You can use a pointer to an sqlda structure to stores output values when you do
not know the number of values or their data types that a SELECT or EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement returns.

This structure contains data descriptors that specify the data type and memory
location for one selected value. The keywords USING DESCRIPTOR introduce the
name of the pointer to the sqlda structure.

Tip: If you know the number and data types of all values in the select list, you can
use an INTO clause in the FETCH statement. For more information, see “When the
INTO Clause of FETCH is Required” on page 2-479.

To specify an sqlda structure as the location of parameters:
1. Declare an sqlda pointer variable.
2. Use the DESCRIBE statement to fill in the sqlda structure.
3. Allocate memory to hold the data values.
4. Use the USING DESCRIPTOR clause of FETCH to specify the sqlda structure

as the location into which you fetch the returned values.

The following example shows a FETCH USING DESCRIPTOR statement:
struct sqlda *sqlda_ptr;
...
EXEC SQL declare selcurs2 cursor for

select * from customer where state = ’CA’;
EXEC SQL describe selcurs2 into sqlda_ptr;
...
EXEC SQL open selcurs2;
while (1)

{
EXEC SQL fetch selcurs2 using descriptor sqlda_ptr;
...

The sqld value specifies the number of output values that are described in
occurrences of the sqlvar structures of the sqlda structure. This number must
correspond to the number of values returned from the prepared statement.

2-480 IBM Informix Guide to SQL: Syntax

Fetching a Row for Update
The FETCH statement does not ordinarily lock a row that is fetched. Thus, another
process can modify (update or delete) the fetched row immediately after your
program receives it. A fetched row is locked in the following cases:
v When you set the isolation level to Repeatable Read, each row that you fetch is

locked with a read lock until the cursor closes or until the current transaction
ends. Other programs can also read the locked rows.

v When you set the isolation level to Cursor Stability, the current row is locked.
v In an ANSI-compliant database, an isolation level of Repeatable Read is the

default; you can set it to something else.
v When you are fetching through an update cursor (one that is declared FOR

UPDATE), each row you fetch is locked with a promotable lock. Other programs
can read the locked row, but no other program can place a promotable or write
lock; therefore, the row is unchanged if another user tries to modify it using the
WHERE CURRENT OF clause of an UPDATE or DELETE statement.

When you modify a row, the lock is upgraded to a write lock and remains until
the cursor is closed or the transaction ends. If you do not modify the row, the
behavior of the database server depends on the isolation level you have set. The
database server releases the lock on an unchanged row as soon as another row is
fetched, unless you are using Repeatable Read isolation. (See “SET ISOLATION
statement” on page 2-796.)

Important: You can hold locks on additional rows even when Repeatable Read
isolation is not in use or is unavailable. Update the row with unchanged data to
hold it locked while your program is reading other rows. You must evaluate the
effect of this technique on performance in the context of your application, and you
must be aware of the increased potential for deadlock.

When you use explicit transactions, be sure that a row is both fetched and
modified within a single transaction; that is, both the FETCH statement and the
subsequent UPDATE or DELETE statement must fall between a BEGIN WORK
statement and the next COMMIT WORK statement.

Fetching from a Collection Cursor
A Collection cursor allows you to access the individual elements of an Informix
ESQL/C collection variable. To declare a Collection cursor, use the DECLARE
statement and include the Collection-Derived Table segment in the SELECT
statement that you associate with the cursor. After you open the collection cursor
with the OPEN statement, the cursor allows you to access the elements of the
collection variable.

To fetch elements, one at a time, from a Collection cursor, use the FETCH
statement and the INTO clause. The FETCH statement identifies the Collection
cursor that is associated with the collection variable. The INTO clause identifies the
host variable that holds the element value that is fetched from the Collection
cursor. The data type of the host variable in the INTO clause must match the
element type of the collection.

Suppose you have a table called children with the following structure:

Chapter 2. SQL statements 2-481

CREATE TABLE children
(

age SMALLINT,
name VARCHAR(30),
fav_colors SET(VARCHAR(20) NOT NULL),

)

The following Informix ESQL/C code fragment shows how to fetch elements from
the child_colors collection variable:
EXEC SQL BEGIN DECLARE SECTION;

client collection child_colors;
varchar one_favorite[21];
char child_name[31] = "marybeth";

EXEC SQL END DECLARE SECTION;
EXEC SQL allocate collection :child_colors;
/* Get structure of fav_colors column for untyped
* child_colors collection variable */
EXEC SQL select fav_colors into :child_colors

from children
where name = :child_name;

/* Declare select cursor for child_colors collection
* variable */
EXEC SQL declare colors_curs cursor for

select * from table(:child_colors);
EXEC SQL open colors_curs;
do
{

EXEC SQL fetch colors_curs into :one_favorite;
...

} while (SQLCODE == 0)
EXEC SQL close colors_curs;
EXEC SQL free colors_curs;
EXEC SQL deallocate collection :child_colors;

After you fetch a collection element, you can modify the element with the
UPDATE or DELETE statements. For more information, see the UPDATE and
DELETE statements in this document. You can also insert new elements into the
collection variable with an INSERT statement. For more information, see the
INSERT statement.

Checking the Result of FETCH
You can use the SQLSTATE variable to check the result of each FETCH statement.
The database server sets the SQLSTATE variable after each SQL statement. If a
row is returned successfully, the SQLSTATE variable contains the value 00000. If
no row is found, the database server sets the SQLSTATE code to 02000, which
indicates no data found, and the current row is unchanged. The following
conditions set the SQLSTATE code to 02000, indicating no data found:
v The active set contains no rows.
v You issue a FETCH NEXT statement when the cursor points to the last row in

the active set or points past it.
v You issue a FETCH PRIOR or FETCH PREVIOUS statement when the cursor

points to the first row in the active set.
v You issue a FETCH RELATIVE n statement when no nth row exists in the active

set.
v You issue a FETCH ABSOLUTE n statement when no nth row exists in the

active set.

The database server copies the SQLSTATE code from the RETURNED_SQLSTATE
field of the system-diagnostics area. Client-server communication protocols of

2-482 IBM Informix Guide to SQL: Syntax

Informix, such as SQLI and DRDA®, support SQLSTATE code values. For a list of
these codes, and for information about how to get the message text, see “Using the
SQLSTATE Error Status Code” on page 2-493. You can use the GET DIAGNOSTICS
statement to examine the RETURNED_SQLSTATEfield directly. The
system-diagnostics area can also contain additional error information.

You can also use SQLCODE variable of the SQL Communications Area (sqlca) to
determine the same results.

Fetching from Dynamic Cursors in SPL Routines

Use the FETCH statement in an SPL routine to retrieve the next row of the active
set of a specified dynamic cursor into an ordered list of SPL variables that were
declared in the same SPL routine.

Syntax

The syntax of the FETCH statement in SPL routines is a subset of the syntax that
FETCH supports in Informix ESQL/C routines.

�� �

,

FETCH cursor_id INTO output_var ��

Element Description Restrictions Syntax

cursor_id Name of a dynamic
cursor

Must be open and must have
been declared in the same
SPL routine

“Identifier” on
page 5-21

output_var An SPL variable to store a
fetched value from the
row

Must have been declared
locally or globally in the
calling context, and must be
of a data type compatible
with the fetched column
value

“Identifier” on
page 5-21

Just as in ESQL/C routines, the list of output variables must correspond in
number, order, and data type with column values that the SQL statement
associated with the rows returned by the specified cursor.

All SPL cursors are sequential cursors. Your UDR must include logic to detect the
end of the active set of the cursor, because the NOTFOUND condition does not
automatically raise an exception in SPL.

The built-in SQLCODE function, which can only be called from SPL routines, can
return the status code of a FETCH operation.

All other restrictions of ESQL/C on FETCH statements that reference sequential
Select or Function cursors also apply to FETCH operations in SPL.

The FETCH statement in SPL routines does not support the following ESQL/C
features:
v cursor names specified as host variables
v positional specifications or positional keywords (which require scroll cursors)
v the USING clause with descriptors or with sqlda pointers.

Chapter 2. SQL statements 2-483

In the SPL language, indicator variables are not needed. If the FETCH operation
retrieves a NULL value, the SPL variable that receives that fetched value is set to
NULL.

The FETCH statement can reference only dynamic cursors that the DECLARE
statement defined. The cursor_id cannot specify the name of a direct cursor that the
FOREACH statement of SPL declared.

FLUSH statement
Use the FLUSH statement to force rows that a PUT statement buffered to be
written to the database.

Syntax

�� FLUSH cursor_id
cursor_id_var

��

Element Description Restrictions Syntax

cursor_id Name of a cursor Must have been declared “Identifier” on page
5-21

cursor_id_var Host variable that holds the value
of cursor_id

Must be a character data type Language specific

Usage

Use this statement, which is an extension to the ANSI/ISO standard for SQL, with
Informix ESQL/C.

The PUT statement adds a row to a buffer, whose content is written to the
database when the buffer is full. Use the FLUSH statement to force the insertion
when the buffer is not full.

If the program terminates without closing the cursor, the buffer is left unflushed.
Rows placed into the buffer since the last flush are lost. Do not expect the end of
the program to close the cursor and flush the buffer automatically. The following
example shows a FLUSH statement that operates on a cursor called icurs:
FLUSH icurs

Example

The following example assumes that a function named next_cust returns either
information about a new customer or null data to signal the end of input:
EXEC SQL BEGIN WORK;
EXEC SQL OPEN new_custs;

while(SQLCODE == 0)
{
next_cust();
if(the_company == NULL)
break;

EXEC SQL PUT new_custs;
}

2-484 IBM Informix Guide to SQL: Syntax

if(SQLCODE == 0) /* if no problem with PUT */
{
EXEC SQL FLUSH new_custs;
/* write any rows left */

if(SQLCODE == 0) /* if no problem with FLUSH */
EXEC SQL COMMIT WORK; /* commit changes */

}
else
EXEC SQL ROLLBACK WORK; /* else undo changes */

The code in this example calls next_cust repeatedly. When it returns non-null data,
the PUT statement sends the returned data to the row buffer. When the buffer fills,
the rows it contains are automatically sent to the database server. The loop
normally ends when next_cust has no more data to return.
Related concepts:

Exception handling with the sqlca structure (ESQL/C Guide)
Related reference:
“CLOSE statement” on page 2-128
“DECLARE statement” on page 2-386
“OPEN statement” on page 2-581
“PREPARE statement” on page 2-589

An insert cursor (SQL Tutorial)
“INSERT statement” on page 2-545

Error Checking FLUSH Statements
The SQL Communications Area (sqlca) structure contains information on the
success of each FLUSH statement and the number of rows that are inserted
successfully. The result of each FLUSH statement is described in the fields of the
sqlca: sqlca.sqlcode, SQLCODE, and sqlca.sqlerrd[2].

When you use data buffering with an Insert cursor, you do not discover errors
until the buffer is flushed. For example, an input value that is incompatible with
the data type of the column for which it is intended is discovered only when the
buffer is flushed. When an error is discovered, any rows in the buffer that are
located after the error are not inserted; they are lost from memory.

The SQLCODE field is set either to an error code or to zero (0) if no error occurs.
The third element of the SQLERRD array is set to the number of rows that are
successfully inserted into the database:
v If a block of rows is successfully inserted into the database, SQLCODE is set to

zero (0) and SQLERRD to the count of rows.
v If an error occurs while the FLUSH statement is inserting a block of rows,

SQLCODE shows which error, and SQLERRD contains the number of rows that
were successfully inserted. (Uninserted rows are discarded from the buffer.)

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value also exists. Client-server communication protocols of Informix, such as SQLI
and DRDA, support SQLSTATE code values. For a list of these codes, and for
information about how to get the message text, see “Using the SQLSTATE Error
Status Code” on page 2-493.

To count the number of rows actually inserted into the database as well as the
number not yet inserted

Chapter 2. SQL statements 2-485

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0406.htm#ids_esqlc_0406
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_350.htm#ids_sqt_350

1. Prepare two integer variables, for example, total and pending.
2. When the cursor opens, set both variables to 0.
3. Each time a PUT statement executes, increment both total and pending.
4. Whenever a FLUSH statement executes or the cursor is closed, subtract the

third field of the SQLERRD array from pending.

FREE statement
Use the FREE statement to release resources that are allocated to a prepared
statement or to a cursor.

Syntax

�� FREE cursor_id
statement_id
(1)

cursor_id_var
statement_id_var

��

Notes:

1 ESQL/C only

Element Description Restrictions Syntax

cursor_id Name of a cursor Must have been declared “Identifier” on page
5-21

cursor_id_var Host variable that holds the
value of cursor_id

Must be a character data type Language specific

statement_id Identifier of a prepared SQL
statement

Must be defined in a previous
PREPARE statement

“PREPARE statement”
on page 2-589

statement_id_var Host variable that stores the
name of a prepared object

Must be declared as a character
data type.

“PREPARE statement”
on page 2-589

Usage

Use this statement, which is an extension to the ANSI/ISO standard for SQL, with
Informix ESQL/C or with SPL.

FREE releases the resources that the database server and (for ESQL/C) the
application-development tool allocated for a prepared statement or for a cursor.

If you declared a cursor for a prepared statement, FREE statement_id (or
statement_id_var) releases only the resources in the application development tool;
the cursor can still be used. The resources in the database server are released only
when you free the cursor.

If you prepared a statement (but did not declare a cursor for it), FREE statement_id
(or FREE statement_id_var) releases the resources in both the application
development tool and the database server.

After you free a statement, you cannot execute it or declare a cursor for it until
you prepare it again.

2-486 IBM Informix Guide to SQL: Syntax

The following Informix ESQL/C example shows the sequence of statements that is
used to free an implicitly prepared statement:
EXEC SQL prepare sel_stmt from ’select * from orders’;
...
EXEC SQL free sel_stmt;

The following Informix ESQL/C example shows the sequence of statements that
are used to release the resources of an explicitly prepared statement. The first FREE
statement in this example frees the cursor. The second FREE statement in this
example frees the prepared statement.
sprintf(demoselect, "%s %s",

"select * from customer ",
"where customer_num between 100 and 200");

EXEC SQL prepare sel_stmt from :demoselect;
EXEC SQL declare sel_curs cursor for sel_stmt;
EXEC SQL open sel_curs;
...
EXEC SQL close sel_curs;
EXEC SQL free sel_curs;
EXEC SQL free sel_stmt;

If you declared a cursor for a prepared statement, freeing the cursor releases only
the resources in the database server. To release the resources for the statement in
the application-development tool, use FREE statement_id (or FREE statement_id_var).
If a cursor is not declared for a prepared statement, freeing it releases the resources
in both the application-development tool and the database server. For an ESQL/C
example of a FREE statement that frees a cursor, see the previous example.

After a cursor is freed, it cannot be opened until it is declared again. The cursor
should be explicitly closed before it is freed.

When an SPL routine completes execution, the database server automatically
releases any resources that had been allocated to the cursor or to prepared
statements by PREPARE or DECLARE statements in the routine, if these have not
already been released by the FREE statement.

The FREE statement in SPL routines cannot reference the cursor_id of a direct
cursor that the FOREACH statement of SPL can declare.
Related concepts:

Free prepared statements (SQL Tutorial)
Related reference:
“CLOSE statement” on page 2-128
“SET AUTOFREE statement” on page 2-726
“EXECUTE IMMEDIATE statement” on page 2-467
“OPEN statement” on page 2-581
“DECLARE statement” on page 2-386
“EXECUTE statement” on page 2-455
“PREPARE statement” on page 2-589

GET DESCRIPTOR statement
Use the GET DESCRIPTOR statement to read from a system descriptor area.

Chapter 2. SQL statements 2-487

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_336.htm#ids_sqt_336

Syntax

�� GET DESCRIPTOR descriptor_var
'descriptor '

�

�

�

total_items_var = COUNT
,

VALUE item_num_var Described Item Information
item_num

��

Described Item Information:

field_var = DATA
IDATA
ILENGTH
INDICATOR
ITYPE
LENGTH
NAME
NULLABLE
PRECISION
SCALE
TYPE
(1)

EXTYPEID
EXTYPELENGTH
EXTYPENAME
EXTYPEOWNERLENGTH
EXTYPEOWNERNAME
SOURCEID
SOURCETYPE

Notes:

1 Informix extension

Element Description Restrictions Syntax

descriptor Quoted string that identifies a
system-descriptor area (SDA)

System-descriptor area must
already have been allocated

“Quoted String” on
page 4-219

descriptor_var Variable that stores descriptor value Same restrictions as descriptor Language specific

field_var Host variable to receive the contents
of a field from an SDA

Must be of type that can receive
value of a specified SDA field

Language specific

item_num Unsigned ordinal number of an item
described in the SDA

0 ≤ item_num ≤ (number of item
descriptors in the SDA)

“Literal Number” on
page 4-215

item_num_ var Host variable storing item_num Must be an integer data type Language specific

total_items_var Host variable storing the number of
items described in the SDA

Must be an integer data type Language specific

Usage

Use this statement with Informix ESQL/C.

Use the GET DESCRIPTOR statement to accomplish any of the following tasks:
v Determine how many items are described in a system-descriptor area.

2-488 IBM Informix Guide to SQL: Syntax

v Determine the characteristics of each column or expression that is described in
the system-descriptor area.

v Copy a value from the system-descriptor area into a host variable after a FETCH
statement.

You can use GET DESCRIPTOR after you describe EXECUTE FUNCTION, INSERT,
SELECT, or UPDATE statements with the DESCRIBE . . . USING SQL
DESCRIPTOR statement.

The host variables that you reference in the GET DESCRIPTOR statement must be
declared in the BEGIN DECLARE SECTION of a program.

If an error occurs during the assignment of a value to any specified host variable,
the contents of the host variable are undefined.

Examples

The following ESQL/C example shows how to use a GET DESCRIPTOR statement
with a host variable to determine how many items are described in the
system-descriptor area called desc1: GET DESCRIPTOR
main()
{
EXEC SQL BEGIN DECLARE SECTION;
int h_count;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate descriptor ’desc1’ with max 20;

/* This section of program would prepare a SELECT or INSERT
* statement into the s_id statement id.
*/

EXEC SQL describe s_id using sql descriptor ’desc1’;
EXEC SQL get descriptor ’desc1’ :h_count = count;

The following ESQL/C example uses GET DESCRIPTOR to obtain data type
information from the demodesc system-descriptor area:
EXEC SQL get descriptor ’demodesc’ value
:index :type = TYPE,
:len = LENGTH,
:name = NAME;
printf("Column %d: type = %d, len = %d, name = %s\n",
index, type, len, name);

The following ESQL/C example shows how you can copy data from the DATA
field into a host variable (result) after a fetch. For this example, it is predetermined
that all returned values are the same data type:
EXEC SQL get descriptor ’demodesc’ :desc_count = count;
.. .
EXEC SQL fetch democursor using sql descriptor ’demodesc’;
for (i = 1; i <= desc_count; i++)
{
if (sqlca.sqlcode != 0) break;
EXEC SQL get descriptor ’demodesc’ value :i :result = DATA;
printf("%s ", result);
}
printf("\n");

Related reference:
“ALLOCATE DESCRIPTOR statement” on page 2-2

Chapter 2. SQL statements 2-489

“DEALLOCATE DESCRIPTOR statement” on page 2-384
“DECLARE statement” on page 2-386
“DESCRIBE statement” on page 2-412
“EXECUTE statement” on page 2-455
“FETCH statement” on page 2-474
“OPEN statement” on page 2-581
“PREPARE statement” on page 2-589
“PUT statement” on page 2-601
“SET DESCRIPTOR statement” on page 2-753

The GET DESCRIPTOR statement (ESQL/C Guide)

SYSXTDTYPES (SQL Reference)
“DESCRIBE INPUT statement” on page 2-417

Using the COUNT Keyword
Use the COUNT keyword to determine how many items are described in the
system-descriptor area.

The following Informix ESQL/C example shows how to use a GET DESCRIPTOR
statement with a host variable to determine how many items are described in the
system-descriptor area called desc1:
main()
{
EXEC SQL BEGIN DECLARE SECTION;
int h_count;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate descriptor ’desc1’ with max 20;

/* This section of program would prepare a SELECT or INSERT
* statement into the s_id statement id.
*/
EXEC SQL describe s_id using sql descriptor ’desc1’;

EXEC SQL get descriptor ’desc1’ :h_count = count;
...
}

Using the VALUE Clause
Use the VALUE clause to obtain information about a described column or
expression or to retrieve values that the database server returns in a system
descriptor area.

The item_num must be greater than zero (0) but not greater than the number of
item descriptors that were specified when the system-descriptor area was allocated
with the ALLOCATE DESCRIPTOR statement.

Using the VALUE Clause After a DESCRIBE
After you describe a SELECT, EXECUTE FUNCTION (or EXECUTE PROCEDURE),
INSERT, or UPDATE statement, the characteristics of each column or expression in
the select list of the SELECT statement, the characteristics of the values returned by
the EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement, or the
characteristics of each column in an INSERT or UPDATE statement are returned to
the system-descriptor area. Each value in the system-descriptor area describes the
characteristics of one returned column or expression.

2-490 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0619.htm#ids_esqlc_0619
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_084.htm#ids_sqr_084

The following Informix ESQL/C example uses GET DESCRIPTOR to obtain data
type information from the demodesc system-descriptor area:
EXEC SQL get descriptor ’demodesc’ value :index

:type = TYPE,
:len = LENGTH,
:name = NAME;

printf("Column %d: type = %d, len = %d, name = %s\n",
index, type, len, name);

The value that the database server returns into the TYPE field is a defined integer.
To evaluate the data type that is returned, test for a specific integer value. For
additional information about integer data type values, see “Setting the TYPE or
ITYPE Field” on page 2-756.

In X/Open mode, the X/Open code is returned to the TYPE field. You cannot mix
the two modes because errors can result. For example, if a particular data type is
not defined under X/Open mode but is defined for IBM Informix products,
executing a GET DESCRIPTOR statement can result in an error.

In X/Open mode, a warning message appears if ILENGTH, IDATA, or ITYPE is
used. It indicates that these fields are not standard X/Open fields for a
system-descriptor area.

If the TYPE of a fetched value is DECIMAL or MONEY, the database server
returns the precision and scale information for a column into the PRECISION and
SCALE fields after a DESCRIBE statement is executed. If the TYPE is not
DECIMAL or MONEY, the SCALE and PRECISION fields are undefined.

Using the VALUE Clause After a FETCH
Each time your program fetches a row, it must copy the fetched value into host
variables so that the data can be used. To accomplish this task, use a GET
DESCRIPTOR statement after each fetch of each value in the select list. If three
values exist in the select list, you need to use three GET DESCRIPTOR statements
after each fetch (assuming you want to read all three values). The item numbers
for each of the three GET DESCRIPTOR statements are 1, 2, and 3.

The following Informix ESQL/C example shows how you can copy data from the
DATA field into a host variable (result) after a fetch. For this example, it is
predetermined that all returned values are the same data type:
EXEC SQL get descriptor ’demodesc’ :desc_count = count;
.. .
EXEC SQL fetch democursor using sql descriptor ’demodesc’;
for (i = 1; i <= desc_count; i++)

{
if (sqlca.sqlcode != 0) break;
EXEC SQL get descriptor ’demodesc’ value :i :result = DATA;
printf("%s ", result);
}

printf("\n");

Fetching a NULL Value
When you use GET DESCRIPTOR after a fetch, and the fetched value is NULL, the
INDICATOR field is set to -1 to indicate the NULL value. The value of DATA is
undefined if INDICATOR indicates a NULL value. The host variable into which
DATA is copied has an unpredictable value.

Chapter 2. SQL statements 2-491

Using LENGTH or ILENGTH
If your DATA or IDATA field contains a character string, you must specify a value
for LENGTH. If you specify LENGTH=0, LENGTH is automatically set to the
maximum length of the string. The DATA or IDATA field might contain a literal
character string or a character string that is derived from a character variable of
CHAR or VARCHAR data type. This provides a method to determine the length of
a string in the DATA or IDATA field dynamically.

If a DESCRIBE statement precedes a GET DESCRIPTOR statement, LENGTH is
automatically set to the maximum length of the character field that is specified in
your table.

This information is identical for ILENGTH. Use ILENGTH when you create a
dynamic program that does not comply with the X/Open standard.

Describing an Opaque-Type Column
The DESCRIBE statement sets the following item-descriptor fields when the
column to fetch has an opaque type as its data type:
v The EXTYPEID field stores the extended ID for the opaque type. This integer is

the value in the corresponding extended_id column of the sysxtdtypes system
catalog table.

v The EXTYPENAME field stores the name of the opaque type. This character
value is the value in the name column of the row with the matching
extended_id value in the sysxtdtypes system catalog table.

v The EXTYPELENGTH field stores the length of the opaque-type name. This
integer is the length of the data type name (in bytes).

v The EXTYPEOWNERNAME field stores the name of the opaque-type owner.
This character value is the value in the owner column of the row with the
matching extended_id value in the sysxtdtypes system catalog table.

v The EXTYPEOWNERLENGTH field stores the length of the value in the
EXTTYPEOWNERNAME field. This integer is the length, in bytes, of the name
of the owner of the opaque type.

Use these field names with the GET DESCRIPTOR statement to obtain information
about an opaque column.

Describing a Distinct-Type Column
The DESCRIBE statement sets the following item-descriptor fields when the
column to fetch has a distinct type as its data type:
v The SOURCEID field stores the extended identifier for the source data type.

This integer has the value of the source column for the row of the sysxtdtypes
system catalog table whose extended_id value matches that of the distinct data
type. This field is set only if the source data type is an opaque data type.

v The SOURCETYPE field stores the data type constant for the source data type.
This value is the data type constant (from the sqltypes.h file) for the data type
of the source type for the DISTINCT data type. The codes for the SOURCETYPE
field are listed in the description of the TYPE field in the SET DESCRIPTOR
statement. (For more information, see “Setting the TYPE or ITYPE Field” on
page 2-756.) This integer value must correspond to the value in the type column
for the row of the sysxtdtypes system catalog table whose extended_id value
matches that of the DISTINCT data type.

2-492 IBM Informix Guide to SQL: Syntax

Use these field names with the GET DESCRIPTOR statement to obtain information
about a distinct-type column.

GET DIAGNOSTICS statement
Use the GET DIAGNOSTICS statement to return diagnostic information about the
most recently executed SQL statement.

Syntax

�� GET DIAGNOSTICS
(1)

Statement Clause
(2)

EXCEPTION Clause

��

Notes:

1 See “Statement Clause” on page 2-497

2 See “EXCEPTION Clause” on page 2-498

Usage

Use this statement with Informix ESQL/C.

The GET DIAGNOSTICS statement retrieves specified status information that the
database server records in a structure called the diagnostics area. Using GET
DIAGNOSTICS does not change the contents of the diagnostics area.

The GET DIAGNOSTICS statement uses one of the following two clauses:
v The Statement clause returns count and overflow information about errors and

warnings that the most recent SQL statement generates.
v The EXCEPTION clause provides specific information about errors and warnings

that the most recent SQL statement generates.
Related concepts:

SQLSTATE value (SQL Tutorial)

Exception handling with SQLSTATE (ESQL/C Guide)
Related reference:
“DELETE statement” on page 2-404

Dealing with errors (SQL Tutorial)

Using the SQLSTATE Error Status Code
When an SQL statement executes, an error status code is automatically generated.
This code represents success, failure, warning, or no data found. This error status
code is stored in a built-in variable called SQLSTATE.

Class and Subclass Codes
The SQLSTATE status code is a five-character string that can contain only digits
and uppercase letters.

The first two characters of the SQLSTATE status code indicate a class. The last
three characters of the SQLSTATE code indicate a subclass. Figure 2-1 on page
2-494 shows the structure of the SQLSTATE code. This example uses the value

Chapter 2. SQL statements 2-493

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_309.htm#ids_sqt_309
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0391.htm#ids_esqlc_0391
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_313.htm#ids_sqt_313

08001, where 08 is the class code and 001 is the subclass code. The value 08001
represents the error unable to connect with database environment.

The following table is a quick reference for interpreting class code values.

SQLSTATE Class Code Value
Outcome

00 Success

01 Success with warning

02 No data found

> 02 Error or warning

SQLSTATE Support for the ANSI/ISO Standard for SQL
All status codes returned to the SQLSTATE variable are ANSI-compliant except in
the following cases:
v SQLSTATE codes with a class code of 01 and a subclass code that begins with

an I are Informix-specific warning messages.
v SQLSTATE codes with a class code of IX and any subclass code are

Informix-specific error messages.
v SQLSTATE codes whose class code begins with a digit in the range 5 to 9 or

with an uppercase letter in the range I to Z indicate conditions that are currently
undefined by the ANSI/ISO standard for SQL. The only exception is that
SQLSTATE codes whose class code is IX are Informix-specific error messages.

Client-server communication protocols of Informix, such as SQLI and DRDA,
support these SQLSTATE code values.

List of SQLSTATE Codes
This table describes the class codes, subclass codes, and the meaning of all valid
warning and error codes associated with the SQLSTATE variable.

Class Subclass Meaning

00 000 Success.

01 000 Success with warning.

01 002 Disconnect error. Transaction rolled back.

01 003 NULL value eliminated in set function.

01 004 String data, right truncation.

01 005 Insufficient item descriptor areas.

01 006 Privilege not revoked.

01 007 Privilege not granted.

01 I01 Database has transactions.

01 I03 ANSI-compliant database selected.

Class
code

Subclass code

0 8 0 0 1

Figure 2-1. Structure of the SQLSTATE Code

2-494 IBM Informix Guide to SQL: Syntax

Class Subclass Meaning

01 I04 IBM Informix database server selected.

01 I05 Float to decimal conversion was used.

01 I06 Informix extension to ANSI-compliant syntax.

01 I07 UPDATE or DELETE statement does not have a WHERE clause.

01 I08 An ANSI keyword was used as a cursor name.

01 I09 Cardinalities of the projection list and of the INTO list are not equal.

01 I10 Database server running in secondary mode.

01 I11 Dataskip is turned on.

02 000 No data found.

07 000 Dynamic SQL error.

07 001 USING clause does not match dynamic parameters.

07 002 USING clause does not match target specifications.

07 003 Cursor specification cannot be executed.

07 004 USING clause is required for dynamic parameters.

07 005 Prepared statement is not a cursor specification.

07 006 Restricted data type attribute violation.

07 008 Invalid descriptor count.

07 009 Invalid descriptor index.

08 000 Connection exception.

08 001 Database server rejected the connection.

08 002 Connection name in use.

08 003 Connection does not exist.

08 004 Client unable to establish connection.

08 006 Transaction rolled back.

08 007 Transaction state unknown.

08 S01 Communication failure.

0A 000 Feature not supported.

0A 001 Multiple server transactions.

21 000 Cardinality violation.

21 S01 Insert value list does not match column list.

21 S02 Degree of derived table does not match column list.

22 000 Data exception.

22 001 String data, right truncation.

22 002 NULL value, no indicator parameter.

22 003 Numeric value out of range.

22 005 Error in assignment.

22 027 Data exception trim error.

22 012 Division by zero (0).

22 019 Invalid escape character.

22 024 Unterminated string.

22 025 Invalid escape sequence.

Chapter 2. SQL statements 2-495

Class Subclass Meaning

23 000 Integrity constraint violation.

24 000 Invalid cursor state.

25 000 Invalid transaction state.

2B 000 Dependent privilege descriptors still exist.

2D 000 Invalid transaction termination.

26 000 Invalid SQL statement identifier.

2E 000 Invalid connection name.

28 000 Invalid user-authorization specification.

33 000 Invalid SQL descriptor name.

34 000 Invalid cursor name.

35 000 Invalid exception number.

37 000 Syntax error or access violation in PREPARE or EXECUTE
IMMEDIATE.

3C 000 Duplicate cursor name.

40 000 Transaction rollback.

40 003 Statement completion unknown.

42 000 Syntax error or access violation.

S0 000 Invalid name.

S0 001 Base table or view table already exists.

S0 002 Base table not found.

S0 011 Index already exists.

S0 021 Column already exists.

S1 001 Memory allocation failure.

IX 000 Informix reserved error message.

Using SQLSTATE in Applications
You can use a built-in variable, called SQLSTATE, which you do not need to
declare in your program. SQLSTATE contains the status code, essential for error
handling, which is generated every time your program executes an SQL statement.
SQLSTATE is created automatically. You can examine the SQLSTATE variable to
determine whether an SQL statement was successful. If the SQLSTATE variable
indicates that the statement failed, you can execute a GET DIAGNOSTICS
statement to obtain additional error information.

For an example of how to use an SQLSTATE variable in a program, see “Using
GET DIAGNOSTICS for Error Checking” on page 2-501.

2-496 IBM Informix Guide to SQL: Syntax

Statement Clause

Statement Clause:

�

,

status_var = ROW_COUNT
NUMBER
MORE

Element Description Restrictions Syntax

status_var Host variable to receive status information about the most
recent SQL statement for the specified status field name

Must match data
type of the field

Language
specific

When retrieving count and overflow information, GET DIAGNOSTICS can deposit
the values of the three statement fields into a corresponding host variable. The
host-variable data type must be the same as that of the requested field. The
following keywords represent these three fields.

Field Name
Keyword Field Data Type Field Contents

ESQL/C Host Variable Data
Type

MORE Character Y or N char[2]

NUMBER Integer 1 to 35,000 int

ROW_COUNT Integer 0 to 999,999,999 int

Using the MORE Keyword
Use the MORE keyword to determine if the most recently executed SQL statement
resulted in the following actions by the database server:
v Stored all the exceptions that it detected in the diagnostics area

If so, GET DIAGNOSTICS returns a value of N.
v Detected more exceptions than it stored in the diagnostics area

If so, GET DIAGNOSTICS returns a value of Y. (The value of MORE is always
N.)

Using the ROW_COUNT Keyword
The ROW_COUNT keyword returns the number of rows the most recently
executed DML statement processed. ROW_COUNT counts these rows:
v Inserted into a table
v Updated in a table
v Deleted from a table

Using the NUMBER Keyword
The NUMBER keyword returns the number of exceptions that the most recently
executed SQL statement raised. The NUMBER field can hold a value from 1 to
35,000, depending on how many exceptions are counted.

Chapter 2. SQL statements 2-497

EXCEPTION Clause

Exception Clause:

EXCEPTION exception_num
exception_var

�

,

information = CLASS_ORIGIN
CONNECTION_NAME
INFORMIX_SQLCODE
MESSAGE_LENGTH
MESSAGE_TEXT
RETURNED_SQLSTATE
SERVER_NAME
SUBCLASS_ORIGIN

Element Description Restrictions Syntax

exception_num Number of exceptions Integer in range 1 to 35,000 “Literal Number” on page
4-215

exception_var Variable storing exception_num Must be SMALLINT or INT Language specific

information Host variable to receive the value of
a specified exception field

Data type must match that of
the specified field

Language specific

The exception_num literal indicates one of the exception values from the number of
exceptions that the NUMBER field in the Statement clause returns.

When retrieving exception information, GET DIAGNOSTICS writes the values of
each of the seven fields into corresponding host variables. These fields are located
in the diagnostics area and are derived from an exception raised by the most recent
SQL statement.

The host-variable data type must be the same as that of the requested field. The
following table describes the seven exception information fields.

Field Name Keyword Field Data Type Field Contents
ESQL/C Host
Variable Data Type

RETURNED_SQLSTATE Character SQLSTATE value char[6]

INFORMIX_SQLCODE Integer Informix-specific
status code

int4

CLASS_ORIGIN Character String char[255]

SUBCLASS_ORIGIN Character String char[255]

MESSAGE_TEXT Character String char[255]

MESSAGE_LENGTH Integer Numeric value int

SERVER_NAME Character String char[255]

CONNECTION_NAME Character String char[255]

The application specifies the exception by number, using either an unsigned
integer or an integer host variable (an exact numeric with a scale of 0). An
exception with a value of 1 corresponds to the SQLSTATE value set by the most
recent SQL statement other than GET DIAGNOSTICS. The association between
other exception numbers and other exceptions raised by that SQL statement is

2-498 IBM Informix Guide to SQL: Syntax

undefined. Thus, no set order exists in which the diagnostic area can be filled with
exception values. You always get at least one exception, even if the SQLSTATE
value indicates success.

If an error occurs within the GET DIAGNOSTICS statement (that is, if an invalid
exception number is requested), the Informix internal SQLCODE and SQLSTATE
variables are set to the value of that exception. In addition, the GET
DIAGNOSTICS fields are undefined.

Using the RETURNED_SQLSTATE Keyword
The RETURNED_SQLSTATE keyword returns the SQLSTATE value that describes
the exception.

Using the INFORMIX_SQLCODE Keyword
The INFORMIX_SQLCODE keyword returns the Informix-specific status code. The
same value is also available in the global SQLCODE variable. For more
information, see the discussion of the SQLCODE variable in the IBM Informix
ESQL/C Programmer's Manual.

Using the CLASS_ORIGIN Keyword
Use the CLASS_ORIGIN keyword to retrieve the class portion of the
RETURNED_SQLSTATE value. If the ISO standard for SQL defines the class, the
value of CLASS_ORIGIN is equal to ISO 9075. Otherwise, the value returned by
CLASS_ORIGIN is defined by Informix and cannot be ISO 9075. The terms ANSI
SQL and ISO SQL are synonymous.

Using the SUBCLASS_ORIGIN Keyword
The SUBCLASS_ORIGIN keyword returns data on the RETURNED_SQLSTATE
subclass. (This value is ISO 9075 if the ISO standard defines the subclass.)

Using the MESSAGE_TEXT Keyword
The MESSAGE_TEXT keyword returns the message text of the exception (for
example, an error message).

Using the MESSAGE_LENGTH Keyword
The MESSAGE_LENGTH keyword returns the length in bytes of the current
message text string.

Using the SERVER_NAME Keyword
The SERVER_NAME keyword returns the name of the database server associated
with a CONNECT or DATABASE statement. GET DIAGNOSTICS updates the
SERVER_NAME field when any of the following events occur:
v A CONNECT statement successfully executes.
v A SET CONNECTION statement successfully executes.
v A DISCONNECT statement successfully terminates the current connection.
v A DISCONNECT ALL statement fails.

The SERVER_NAME field is not updated, however, after these events:
v A CONNECT statement fails.
v A DISCONNECT statement fails (but this does not include the DISCONNECT

ALL statement).
v A SET CONNECTION statement fails.

Chapter 2. SQL statements 2-499

The SERVER_NAME field retains the value set in the previous SQL statement. If
any of the preceding conditions occur on the first SQL statement that executes, the
SERVER_NAME field is blank.

The Contents of the SERVER_NAME Field
The SERVER_NAME field contains different information after you execute the
following statements.

Executed Statement
SERVER_NAME Field Contents

CONNECT
Contains the name of the database server to which you connect or fail to
connect. Field is blank if you do not have a current connection or if you
make a default connection.

DATABASE
Contains the name of the database server on which the specified database
resides.

DISCONNECT
Contains the name of the database server from which you disconnect or
fail to disconnect. If you disconnect and then you execute a DISCONNECT
statement for a connection that is not current, the SERVER_NAME field
remains unchanged.

DISCONNECT ALL
Sets the field to blank if the statement executes successfully. If the
statement fails, SERVER_NAME contains the names of all the database
servers from which you did not disconnect. (This information does not
mean that the connection still exists.)

SET CONNECTION
Contains the name of the database server to which you switch or fail to
switch

If CONNECT succeeds, SERVER_NAME is set to one of the following values:
v The INFORMIXSERVER value (if the connection is to a default database server,

because CONNECT specified no database server)
v The name of the database server (if the connection is to a specific database

server)

Using the CONNECTION_NAME Keyword
Use the CONNECTION_NAME keyword to return the name of the connection
specified in your CONNECT or SET CONNECTION statement.

When the CONNECTION_NAME Keyword Is Updated
GET DIAGNOSTICS updates the CONNECTION_NAME field when the following
situations occur:
v A CONNECT statement successfully executes.
v A SET CONNECTION statement successfully executes.
v A DISCONNECT statement successfully executes at the current connection.

GET DIAGNOSTICS fills the CONNECTION_NAME field with blanks because
no current connection exists.

v A DISCONNECT ALL statement fails.

2-500 IBM Informix Guide to SQL: Syntax

When the CONNECTION_NAME Is Not Updated
The CONNECTION_NAME field is not updated in the following cases:
v A CONNECT statement fails.
v A DISCONNECT statement fails (but this does not include the DISCONNECT

ALL statement).
v A SET CONNECTION statement fails.

The CONNECTION_NAME field retains the value set in the previous SQL
statement. If any of the preceding conditions occurs on the first SQL statement that
executes, the CONNECTION_NAME field is blank.

An implicit connection has no name. After a DATABASE statement successfully
creates an implicit connection, the CONNECTION_NAME field is blank.

The Contents of the CONNECTION_NAME Field
The CONNECTION_NAME field contains different information after you execute
the following statements.

Executed Statement
CONNECTION_NAME Field Contents

CONNECT
Contains connection name specified in the CONNECT statement, to which
you connect or fail to connect The field is blank for no current connection
or a default connection.

SET CONNECTION
Contains the connection name specified in the CONNECT statement, to
which you switch or fail to switch

DISCONNECT
Contains the connection name specified in the CONNECT statement, from
which you disconnect or fail to disconnect If you disconnect, and then
execute a DISCONNECT statement for a connection that is not current, the
CONNECTION_NAME field remains unchanged.

DISCONNECT ALL
Contains no information if the statement executes successfully If the
statement does not execute successfully, the CONNECTION_NAME field
contains the names of all the connections specified in your CONNECT
statement from which you did not disconnect. This information does not
mean, however, that the connection still exists.

If CONNECT is successful, CONNECTION_NAME takes one of these values:
v The name of the database environment as specified in the CONNECT statement

if the CONNECT statement does not include the AS clause
v The name of the connection (the identifier that was declared after the AS

keyword) if the CONNECT statement includes the AS clause

Using GET DIAGNOSTICS for Error Checking
GET DIAGNOSTICS returns values from various fields in the diagnostics area. For
each field in the diagnostics area that you wish to access, you must supply a host
variable of a compatible data type.

Chapter 2. SQL statements 2-501

The following example illustrates how to use the GET DIAGNOSTICS statement to
display error information. The example shows an Informix ESQL/C error display
routine called disp_sqlstate_err():
void disp_sqlstate_err()
{
int j;
EXEC SQL BEGIN DECLARE SECTION;

int exception_count;
char overflow[2];
int exception_num=1;
char class_id[255];
char subclass_id[255];
char message[255];
int messlen;
char sqlstate_code[6];
int i;

EXEC SQL END DECLARE SECTION;
printf("---------------------------------");
printf("-------------------------\n");
printf("SQLSTATE:
printf("SQLCODE: %d\n", SQLCODE);
printf("\n");
EXEC SQL get diagnostics :exception_count = NUMBER,

:overflow = MORE;
printf("EXCEPTIONS: Number=%d\t", exception_count);
printf("More? %s\n", overflow);
for (i = 1; i <= exception_count; i++)
{

EXEC SQL get diagnostics exception :i
:sqlstate_code = RETURNED_SQLSTATE,
:class_id = CLASS_ORIGIN, :subclass_id = SUBCLASS_ORIGIN,
:message = MESSAGE_TEXT, :messlen = MESSAGE_LENGTH;

printf("- - - - - - - - - - - - - - - - - - - -\n");
printf("EXCEPTION %d: SQLSTATE=%s\n", i, sqlstate_code);
message[messlen-1] =’\0’;
printf("MESSAGE TEXT: %s\n", message);
j = stleng(class_id);
while((class_id[j] == ’\0’) ||

(class_id[j] == ’ ’))
j--;

class_id[j+1] = ’\0’;
printf("CLASS ORIGIN:
j = stleng(subclass_id);
while((subclass_id[j] == ’\0’) ||

(subclass_id[j] == ’ ’))
j--;

subclass_id[j+1] = ’\0’;
printf("SUBCLASS ORIGIN:

}
printf("---------------------------------");
printf("-------------------------\n");

}

GRANT statement
Use the GRANT statement to assign access privileges and roles to users and to
other roles. Users who hold the DBSECADM role can use this statement to assign
user security labels and exemptions from label-based access control (LBAC)
security rules.

Syntax

2-502 IBM Informix Guide to SQL: Syntax

�� GRANT

�

(1) (2)
Database-Level Privileges TO PUBLIC

(3) ,
DEFAULT ROLE Role Name

'user'
(3)

Role Name TO Options
(4)

Security Administration Options
(5)

Surrogate User Properties
(6)

Table-Level Privileges TO Options
(1) (7)

Routine-Level Privileges
(8)

Language-Level Privileges
(9)

Type-Level Privileges
(10)

Sequence-Level Privileges

��

TO Options:

�

�

,

TO 'user'
WITH GRANT OPTION AS 'grantor'

,

'role'
'user'
PUBLIC

Notes:

1 Informix extension

2 See “Database-Level Privileges” on page 2-505

3 See “Role Name” on page 2-518

4 See “Security Administration Options” on page 2-524

5 See “Surrogate user properties (UNIX, Linux)” on page 2-533

6 See “Table-Level Privileges” on page 2-507

7 See “Routine-Level Privileges” on page 2-513

8 See “Language-Level Privileges” on page 2-516

9 See “Type-Level Privileges” on page 2-511

10 See “Sequence-Level Privileges” on page 2-517

Chapter 2. SQL statements 2-503

Element Description Restrictions Syntax

grantor Authorization identifier of a user who can use REVOKE to cancel
the effects of this GRANT statement. If AS clause is omitted,
default is login name of user issuing this statement

Must be valid
user name (not a
role name). On
Windows, the
user name
cannot exceed 20
bytes. On other
platforms, the
limit is 32 bytes.

“Owner name”
on page 5-49

role Name of an existing role to which you grant one or more access
privileges, or to which you assign another role

Must exist in the
database

“Owner name”
on page 5-49

user Authorization identifier of a user to whom you grant one or more
access privileges, or to whom you assign a role

Same as for
grantor

“Owner name”
on page 5-49

Usage

The GRANT statement extends to other users specific discretionary access
privileges or LBAC labels and exceptions that would normally accrue only to the
DBA or to the creator of an object. Subsequent GRANT statements do not affect
privileges that have already been granted to a user.

You can use the GRANT statement for operations like the following:
v Authorize others to use or administer a database that you create
v Allow others to view, alter, or drop a table, synonym, view or a sequence object

that you create
v Allow others to use a data type or the SPL language, or to execute a

user-defined routine (UDR) that you create
v Assign a role and its privileges to users, or to PUBLIC, or to another role
v Assign a default role to one or more users or to PUBLIC
v If you hold the DBSECADM role, assign LBAC security labels or exemptions

from rules of LBAC security policies to users,

You can grant privileges to a previously created role or to a built-in role. You can
grant a role to PUBLIC, to individual users, or to another role.

If you enclose grantor, role, or user in quotation marks, the name is case sensitive
and is stored exactly as you typed it. In an ANSI-compliant database, if you do not
use quotation marks as delimiters, the name is stored in uppercase letters.

On Windows only, the database server does not support user name that consists of
more than 20 characters.

Privileges that you grant remain in effect until you cancel them with a REVOKE
statement. Only the grantor of a privilege can revoke that privilege. The grantor is
the person who issues the GRANT statement, unless the AS grantor clause transfers
the right to revoke those privileges to another user.

Only the owner of an object or a user to whom privileges were explicitly granted
with the WITH GRANT OPTION keywords can grant privileges on an object.
Having DBA privileges is not sufficient. As DBA, however, you can grant a
privilege on behalf of another user by using the AS grantor clause. For privileges
on database objects whose owner is not a user recognized by the operating system
(for example, user informix), the AS grantor clause is useful.

2-504 IBM Informix Guide to SQL: Syntax

The keyword PUBLIC extends the specified privilege or role to the PUBLIC group
of all users who connect to the database. If you intend to restrict privileges that
PUBLIC already holds to only a subset of users, you must first revoke those
privileges from PUBLIC.

To grant privileges on one or more fragments of a table that has been fragmented
by expression, see “GRANT FRAGMENT statement” on page 2-538.
Related concepts:
“Overloading the Name of a Function” on page 2-188

Grant privileges (Database Design Guide)
Related reference:
“DROP ACCESS_METHOD statement” on page 2-424
“INFO statement” on page 2-543
“ALTER ACCESS_METHOD statement” on page 2-5
“DROP SEQUENCE statement” on page 2-444
“ALTER SEQUENCE statement” on page 2-68
“CREATE ACCESS_METHOD statement” on page 2-143
“CREATE ROW TYPE statement” on page 2-241
“CREATE SEQUENCE statement” on page 2-257
“DROP FUNCTION statement” on page 2-428
“DROP PROCEDURE statement” on page 2-434
“SET SESSION AUTHORIZATION statement” on page 2-814
“CREATE PROCEDURE statement” on page 2-226
“CREATE VIEW statement” on page 2-373
“EXECUTE PROCEDURE statement” on page 2-471
“DROP ROUTINE statement” on page 2-438
“GRANT FRAGMENT statement” on page 2-538
“CREATE SCHEMA statement” on page 2-245
“SET ROLE statement” on page 2-812
“RENAME SEQUENCE statement” on page 2-614
“DROP ROLE statement” on page 2-437
“REVOKE statement” on page 2-618
“REVOKE FRAGMENT statement” on page 2-643
“CREATE ROLE statement” on page 2-237

Grant and revoke privileges in applications (SQL Tutorial)

Database-Level Privileges
Database-level access privileges affect access to a database. Only individual users,
rather than roles, can hold database privileges.

Database-Level Privileges:

CONNECT
RESOURCE
DBA

Chapter 2. SQL statements 2-505

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_105.htm#ids_ddi_105
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_339.htm#ids_sqt_339

When you create a database with the CREATE DATABASE statement, you are the
owner and automatically receive all database-level privileges.

The database remains inaccessible to any other users until you, as DBA, grant
database privileges to them.

As database owner, you also receive table-level privileges on all tables in the
database automatically. For more information about table-level privileges, see
“Table-Level Privileges” on page 2-507.

Recommendation: Only user informix can modify system catalog tables directly.
Except as noted specifically in your database server documentation, however, do
not use DML statements to insert, delete, or update rows of system catalog tables
directly, because modifying data in these tables can destroy the integrity of the
database.

When database-level privileges conflict with table-level privileges, the more
restrictive privileges take precedence.

Database access levels are, from lowest to highest, Connect, Resource, and DBA.
Use the corresponding keyword to grant a level of access privilege.

Privilege Effect

CONNECT Lets you query and modify data

You can modify the database schema if you own the database object that
you intend to modify. Any user with the Connect privilege can perform
the following operations:

v Connect to the database with the CONNECT statement or another
connection statement

v Execute SELECT, INSERT, UPDATE, and DELETE statements, provided
the user has the necessary table-level privileges

v Create views, provided the user has the Select privilege on the
underlying tables

v Create synonyms

v Create temporary tables and create indexes on the temporary tables

v Alter or drop a table or an index, provided the user owns the table or
index (or has Alter, Index, or References privileges on the table)

v Grant privileges on a table or view, provided the user owns the table
(or was given privileges on the table with the WITH GRANT OPTION
keywords)

RESOURCE Lets you extend the structure of the database In addition to the
capabilities of the Connect privilege, the holder of the Resource privilege
can perform the following functions:

v Create new tables

v Create new indexes

v Create new UDRs

v Create new data types

2-506 IBM Informix Guide to SQL: Syntax

Privilege Effect

DBA Has all the capabilities of the Resource privilege and can perform the
following additional operations:

v Grant any database-level privilege, including the DBA privilege, to
another user

v Grant any table-level privilege to another user or to a role

v Grant a role to a user or to another role

v Revoke a privilege whose grantor you specify as the revoker in the AS
clause of the REVOKE statement

v Restrict the Execute privilege to DBAs when registering a UDR

v Execute the SET SESSION AUTHORIZATION statement

v Create any database object

v Create tables, views, and indexes, designating another user as owner of
these objects

v Alter, drop, or rename database objects, regardless of who owns them

v Execute the DROP DISTRIBUTIONS option of the UPDATE STATISTICS
statement

v Execute DROP DATABASE and RENAME DATABASE statements

User informix has the privilege required to alter the tables of the system catalog,
including the systables table.

The following example uses the PUBLIC keyword to grant the Connect privilege
on the currently active database to all users:
GRANT CONNECT TO PUBLIC;

You cannot grant database-level privileges to a role. Only individual users or
PUBLIC can hold database-level privileges.

Table-Level Privileges
When you create a table with the CREATE TABLE statement, you are the table
owner and automatically receive all table-level privileges. You cannot transfer
ownership to another user, but you can grant table-level privileges to another user
or to a role. (See, however, “RENAME TABLE statement” on page 2-615, which can
change both the name and the ownership of a table.)

A user with the database-level DBA privilege automatically receives all table-level
privileges on every table in that database.

Table-Level Privileges:

Chapter 2. SQL statements 2-507

�

�

PRIVILEGES
ALL

,

INSERT
DELETE

(1)
UPDATE
(1) ,

SELECT
REFERENCES (column)

(1)
ALTER
INDEX
UNDER

ON �

�
owner .

table
view
synonym

Notes:

1 Informix extension

Element Description Restrictions Syntax

column Column on which the References, Select, or Update
privilege is granted. Default scope is all columns of
table, view, or synonym.

Must be a column of the
table, view, or synonym

“Identifier” on page
5-21

owner Name of the user who owns the table, view, or
synonym

Must be a valid
authorization identifier

“Owner name” on
page 5-49

synonym,
table, view

Synonym, table, or view on which privileges are
granted.

Must exist in the current
database

“Identifier” on page
5-21

The GRANT statement can list one or more of the following keywords to specify
the table privileges that you grant to the same users or roles.

Privilege Effect

INSERT Lets you insert rows

DELETE Lets you delete rows

SELECT Lets you access any column in SELECT statements. You can restrict the
Select privilege to one or more columns by listing the columns.

UPDATE Lets you access any column in UPDATE statements. You can restrict the
Update privilege to one or more columns by listing the columns.

REFERENCES Lets you define referential constraints on columns. You must have the
Resource privilege to take advantage of the References privilege. (You can
add, however, a referential constraint during an ALTER TABLE statement
without holding the Resource privilege on the database.) You need only
the References privilege to indicate cascading deletes. You do not need
the Delete privilege to place cascading deletes on a table. You can restrict
the References privilege to one or more columns by listing the columns.

INDEX Lets you create permanent indexes. You must have the Resource privilege
to use the Index privilege. (Any user with the Connect privilege can
create an index on temporary tables.)

2-508 IBM Informix Guide to SQL: Syntax

Privilege Effect

ALTER Lets you add or delete columns, modify column data types, add or delete
constraints, change the locking mode of the table from PAGE to ROW, or
add or drop a corresponding ROW data type for your table. It also lets
you enable or disable indexes, constraints and triggers, as described in
“SET Database Object Mode statement” on page 2-737.

You must have the Resource privilege to use the Alter privilege. In
addition, you also need the Usage privilege for any user-defined data
type affected by the ALTER TABLE statement.

UNDER Lets you create sub-tables under a typed table.

ALL Provides all privileges listed above. The PRIVILEGES keyword is
optional.

You can narrow the scope of a Select, Update, or References privilege by specifying
the columns to which the privilege applies.

Specify the keyword PUBLIC as user if you intend the GRANT statement to apply
to all users.

Some simple examples that follow illustrate how to give table-level privileges with
the GRANT statement.

The following statement grants the privilege to delete and select values in any
column in the table customer to users mary and john. It also grants the Update
privilege, but only for columns customer_num, fname, and lname:
GRANT DELETE, SELECT, UPDATE (customer_num, fname, lname)

ON customer TO mary, john;

To grant the same privileges as those above to all authorized users, use the
keyword PUBLIC as the following example shows:
GRANT DELETE, SELECT, UPDATE (customer_num, fname, lname)

ON customer TO PUBLIC;

For an Informixdatabase, suppose a user named mary has created a typed table
named tab1. By default, only user mary can create subtables under the tab1 table.
If mary wants to grant the ability to create subtables under the tab1 table to a user
named john, mary must enter the following GRANT statement:
GRANT UNDER ON tab1 TO john;

After receiving the Under privilege on table tab1, user john can create one or more
subtables under tab1.

Effect of the ALL Keyword
The ALL keyword grants all possible table-level privileges to the specified user. If
any or all of the table-level privileges do not exist for the grantor, the GRANT
statement with the ALL keyword succeeds (in the sense of SQLCODE being set to
zero, even if the possible privileges are an empty set for the grantor on the table).
In this case, however, the following SQLSTATE warning is returned:
01007 - Privilege not granted.

For example, assume that user ted has the Select and Insert privileges on the
customer table with the authority to grant those privileges to other users.

Chapter 2. SQL statements 2-509

User ted wants to grant all table-level privileges to user tania. So user ted issues
the following GRANT statement:
GRANT ALL ON customer TO tania;

This statement executes successfully but returns SQLSTATE code 01007 for the
following reasons:
v The statement succeeds in granting the Select and Insert privileges to user tania

because user ted has those privileges and the right to grant those privileges to
other users.

v The other privileges implied by the ALL keyword were not grantable by user
ted and, therefore, were not granted to user tania.

If you grant all table-level privileges with the ALL keyword, the privileges
includes the Under privilege only if the table is a typed table. The grant of ALL
privileges does not include the Under privilege if the table is not based on a ROW
type.

If the table owner grants ALL privileges on a traditional relational table and later
changes that table to a typed table, the table owner must explicitly grant the Under
privilege to allow other users to create subtables under it.

Table Reference
You grant table-level privileges directly by specifying the name or an existing
synonym of a table or of a view, which you can qualify with the owner name.

Table Reference:

owner .
view
table
synonym

Element Description Restrictions Syntax

owner Name of the user who owns the
table, view, or synonym

Must be a valid authorization
identifier

“Owner name” on
page 5-49

synonym, table,
view

Synonym, table, or view on which
privileges are granted

The table, view, or synonym must
exist in the database

“Identifier” on page
5-21

The object on which you grant privileges must reside in the current database.

For table objects that the CREATE EXTERNAL TABLE statement has registered in
the current database, the Select privilege and the Insert privilege are supported,
but no other table or column access privileges can be granted or revoked.

In an ANSI-compliant database, if owner is not enclosed between quotation marks,
the database stores the owner name in lowercase letters.

Privileges on Tables and Synonyms
In an ANSI-compliant database, if you create a table, only you, its owner, have any
table-level privileges until you explicitly grant them to others.

When you create a table in a database that is not ANSI compliant, however,
PUBLIC receives Select, Insert, Delete, Under, and Update privileges for that table

2-510 IBM Informix Guide to SQL: Syntax

and its synonyms. (The NODEFDAC environment variable, when set to yes,
prevents PUBLIC from automatically receiving these table-level privileges.)

To allow access only to some users, or only on some columns in a database that is
not ANSI compliant, you must explicitly revoke the privileges that PUBLIC
receives by default, and then grant only the privileges that you intend. For
example, this series of statements grants privileges on the entire customer table to
users john and mary, but restricts PUBLIC access to the Select privilege on only
four of the columns in that table:
REVOKE ALL ON customer FROM PUBLIC;
GRANT ALL ON customer TO john, mary;
GRANT SELECT (fname, lname, company, city) ON customer TO PUBLIC;

Privileges on a View
You must have at least the Select privilege on a table or columns to create a view
on that table. For views that reference only tables in the current database, if the
owner of a view loses the Select privilege on any base table underlying the view,
the view is dropped.

You have the same privileges for the view that you have for the table or tables
contributing data to the view. For example, if you create a view from a table to
which you have only Select privileges, you can select data from your view but you
cannot delete or update data. For information on how to create a view, see
“CREATE VIEW statement” on page 2-373.

When you create a view, PUBLIC does not automatically receive any privileges for
a view that you create. Only you have access to table data through that view. Even
users who have privileges on the base table of the view do not automatically
receive privileges for the view.

You can grant (or revoke) privileges on a view only if you are the owner of the
underlying base tables, or if you received these privileges on the base table with
the right to grant them (specified by the WITH GRANT OPTION keywords). You
must explicitly grant those privileges within your authority, because PUBLIC does
not automatically receive any privileges on a view when it is created.

The creator of a view can explicitly grant Select, Insert, Delete, and Update
privileges for the view to other users or to a role. You cannot grant Index, Alter,
Under, or References privileges on a view (nor can you specify the ALL keyword
for views, because ALL confers Index, References, and Alter privileges).

When a GRANT or REVOKE statement changes the discretionary access privileges
on any table referenced in the definition of an existing view, the database server
does not automatically apply those privilege modifications to the view. To apply
the new table access privileges to a view that depends on that table, you can use
the DROP VIEW and CREATE VIEW statements to drop and recreate the view.

In this case, if the definitions of other views reference the view that you drop, or if
INSTEAD OF triggers are defined on that view, you can also use CREATE VIEW
and CREATE TRIGGER statements to recreate, respectively, the dependent views
and the INSTEAD OF triggers that the DROP VIEW statement destroyed.

Type-Level Privileges
You can specify two privileges on data types that are not built-in data types:
v The Usage privilege on a user-defined data type

Chapter 2. SQL statements 2-511

v The Under privilege on a named ROW type

Type-Level Privileges:

USAGE ON TYPE type_name
UNDER ON TYPE row_type_name

Element Description Restrictions Syntax

row_type_name Named ROW type on which the
Under privilege is granted

Named ROW data type must exist “Identifier” on page
5-21; “Data Type” on
page 4-23

type_name User-defined type on which the
Usage privilege is granted

User-defined data type must exist. “Identifier” on page
5-21; “Data Type” on
page 4-23

To see what privileges exist on user-defined data types, check the sysxtdtypes
system catalog table for the owner of each UDT, and the sysxtdtypeauth system
catalog table for any other users or roles that hold privileges on UDTs. See the IBM
Informix Guide to SQL: Reference for information on the system catalog tables.

For all the built-in data types, however, these access privileges are automatically
available to PUBLIC and cannot be revoked.
Related concepts:

System catalog tables (SQL Reference)

USAGE Privilege
You own any user-defined data type (UDT) that you create. As owner, you
automatically receive the Usage privilege on that data type and can grant the
Usage privilege to others so that they can reference the type name or data of that
type in SQL statements. DBAs can also grant the Usage privilege for UDTs.

The following example grants user mark access privileges to use the widget
user-defined type:
GRANT USAGE ON TYPE widget TO mark;

If you grant Usage privilege to a user (or to a role) that has Alter privileges, that
grantee can add a column to a table that contains values of your UDT.

Without privileges from the GRANT statement, any user can issue SQL statements
that reference built-in data types. In contrast, a user must receive an explicit Usage
privilege from a GRANT statement to use a distinct data type, even if the distinct
type is based on a built-in type.

For more information about user-defined types, see “CREATE OPAQUE TYPE
statement” on page 2-218, “CREATE DISTINCT TYPE statement” on page 2-157,
the discussion of data types in the IBM Informix Guide to SQL: Reference and the
IBM Informix Database Design and Implementation Guide.

UNDER Privilege
You own any named ROW type that you create. If you want other users to be able
to create subtypes under this named ROW type, you must grant to these users the
Under privilege on your named ROW type.

2-512 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009

For example, suppose that you create a ROW type named rtype1:
CREATE ROW TYPE rtype1 (cola INT, colb INT);

If you want another user named kathy to be able to create a subtype under this
named ROW type, you must grant the Under privilege on this named ROW type
to user kathy:
GRANT UNDER ON ROW TYPE rtype1 TO kathy;

Now user kathy can create another ROW type under the rtype1 ROW type, even
though kathy is not the owner of the rtype1 ROW type:
CREATE ROW TYPE rtype2 (colc INT, cold INT) UNDER rtype1;

For more about named ROW types, see “CREATE ROW TYPE statement” on page
2-241, and the discussion of data types in the IBM Informix Guide to SQL: Reference
and the IBM Informix Database Design and Implementation Guide.
Related concepts:

ROW Data Types (SQL Reference)

Named row types (Database Design Guide)

Unnamed row types (Database Design Guide)

Routine-Level Privileges
When you create a user-defined routine (UDR), you become owner of the UDR
and you automatically receive the Execute privilege on that UDR.

The Execute privilege allows you to invoke the UDR with an EXECUTE
FUNCTION or EXECUTE PROCEDURE statement, whichever is appropriate, or
with a CALL statement in an SPL routine. The Execute privilege also allows you to
use a user-defined function in an expression, as in this example:
SELECT * FROM table WHERE in_stock(partnum) < 20;

For users, roles, or members of the PUBLIC group who need the Execute privilege
on a given UDR, the GRANT statement supports the following syntax:

Routine-Level Privileges:

EXECUTE ON SPL_routine
PROCEDURE routine ()
FUNCTION (1)
ROUTINE Routine Parameter List

(2)
SPECIFIC ROUTINE Specific Name

FUNCTION
PROCEDURE

Notes:

1 See “Routine Parameter List” on page 5-71

2 See “Specific Name” on page 5-77

Element Description Restrictions Syntax

routine A user-defined routine Must exist “Identifier” on page 5-21

SPL_routine An SPL routine Must be unique in the database “Identifier” on page 5-21

Chapter 2. SQL statements 2-513

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_163.htm#ids_sqr_163
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_311.htm#ids_ddi_311
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_312.htm#ids_ddi_312

The following statement grants Execute privilege on the delete_order routine to
user finn:
GRANT EXECUTE ON ROUTINE delete_order TO finn;

Whether you must grant the Execute privilege explicitly depends on the following
conditions:
v If you have DBA-level privileges, you can use the DBA keyword of CREATE

FUNCTION or CREATE PROCEDURE to restrict the default Execute privilege to
users with the DBA privilege. You must explicitly grant the Execute privilege on
that UDR to users who do not have the DBA privilege.

v If you have the Resource database-level privilege but not the DBA privilege, you
cannot use the DBA keyword when you create a UDR:
– When you create a UDR in a database that is not ANSI compliant, PUBLIC

can execute that UDR. You do not need to issue a GRANT statement for other
users to receive the Execute privilege.

– Setting the NODEFDAC environment variable to yes prevents PUBLIC from
executing the UDR until you explicitly grant the Execute privilege.

v In an ANSI-compliant database, the creator of a UDR must explicitly grant the
Execute privilege on the UDR for other users to be able to execute it.

In Informix, if two or more UDRs have the same name, use a keyword from this
list to specify which of those UDRs a user list can execute.

Keyword
UDR that the User Can Execute

SPECIFIC
The UDR identified by specific name

FUNCTION
Any function with the specified routine name (and parameter types that
match routine parameter list, if specified)

PROCEDURE
Any procedure with the specified routine name (and parameter types that
match routine parameter list, if specified)

ROUTINE
Functions or procedures with the specified routine name (and parameter
types that match routine parameter list, if specified)

If both a user-defined function and a user-defined procedure of Informix have the
same name and the same list of parameter data types, you can grant the Execute
privilege to both with the keyword ROUTINE.

To limit the Execute privilege to one routine among several that have the same
identifier, use the FUNCTION, PROCEDURE, or SPECIFIC keyword.

To limit the Execute privilege to a UDR that accepts certain data types as
arguments, include the routine parameter list or use the SPECIFIC keyword to
introduce the specific name of a UDR.

If an external function has a negator function, you must grant the Execute privilege
on both the external function and on its negator function before other users can
execute the external function.

2-514 IBM Informix Guide to SQL: Syntax

A user must hold the Usage privilege on the language in which the user-defined
routine is written to register a UDR with the CREATE FUNCTION, CREATE
FUNCTION FROM, CREATE PROCEDURE, CREATE PROCEDURE FROM, or
CREATE ROUTINE FROM statement. For more information on the requirements to
register a UDR, see “Privileges necessary for using CREATE FUNCTION” on page
2-186.

Granting the Execute privilege to PUBLIC
The GRANT statement supports syntax for granting access to the PUBLIC group,
which includes all users who hold the Connect privilege on the database.

GRANT EXECUTE TO PUBLIC

�� GRANT Routine level privileges TO PUBLIC
AS ' grantor '

��

Element Description Restrictions Syntax

grantor Owner of the UDR Cannot be a role “Owner name” on page 5-49

This statement enables everyone in the PUBLIC group to execute the specified
routine. It overrides the NODEFDAC environment variable, if that is set to prevent
the PUBLIC group from receiving Execute privilege on the routine by default. This
statement also enables users who do not hold the DBA privilege to execute the
specified routine, whether that routine was created with the DBA keyword.

Only users who hold the DBA privilege can specify the AS grantor clause. The
specified grantor must be the owner of the specified routine, as listed in the owner
column of the sysprocedures system catalog table. The grantor cannot be the name
of a role or the PUBLIC keyword.

In an ANSI-compliant database, the AS grantor clause is required, rather than
optional, if the DBA who issues the GRANT EXECUTE statement is not the owner
of the specified routine.

Only the user specified in the optional AS grantor clause can use the REVOKE
statement of SQL to revoke the Execute privilege from the PUBLIC group

The user specified in the optional AS grantor clause can use the REVOKE statement
to revoke the Execute privilege from the PUBLIC group.

Revoking the Execute privilege from PUBLIC
The REVOKE statement supports the following syntax for revoking access to the
specified routine from the PUBLIC group, which includes all users who hold the
Connect privilege on the database.

REVOKE EXECUTE TO PUBLIC

�� GRANT Routine level privileges FROM PUBLIC
AS ' revoker '

��

Element Description Restrictions Syntax

revoker Owner of the UDR Cannot be a role “Owner name” on page 5-49

Chapter 2. SQL statements 2-515

This statement prevents the PUBLIC group from receiving Execute privileges on
the specified routine by default. (Individual users who hold the DBA privilege,
however, or who own the routine, or who were granted Execute privilege on the
routine individually or through a role, are not affected by this statement.

Only users who hold the DBA privilege can specify the AS revoker clause. The
specified revoker must be the owner of the specified routine, as listed in the owner
column of the sysprocedures system catalog table. The name cannot be the name
of a role or the PUBLIC keyword.

In an ANSI-compliant database, the AS revoker clause is required, rather than
optional, if the DBA who issues the REVOKE EXECUTE statement is not the
owner of the specified routine.

In databases where the PUBLIC group holds Execute privilege on owner-privileged
routines by default, the REVOKE EXECUTE ON PUBLIC statement must be
successfully executed before the discretionary access privilege to execute the
specified routine can be granted to a subset of users or to one or more roles.
Otherwise, only users with the DBA privilege or the owner of the routine can start
it.

Language-Level Privileges
Informix also supports language-level privileges, which specify the programming
languages of UDRs that users who have been granted Usage privileges for a given
language can register in the database.

This is the syntax of the USAGE ON LANGUAGE clause for granting Usage
privileges on a programming language:

Language-Level Privileges:

USAGE ON LANGUAGE SPL
C
JAVA

The SPL, C, and JAVA keywords can specify a programming language in the
USAGE ON LANGUAGE clause. Each GRANT USAGE ON LANGUAGE
statement can specify no more than one programming language. By default, Usage
privilege on SPL is granted to PUBLIC.

When a user executes the CREATE FUNCTION or CREATE PROCEDURE
statement to register a UDR that is written in the SPL, C, or Java language, the
database server verifies that the user has the Usage privilege on the language in
which the UDR is written. If the IFX_EXTEND_ROLE configuration parameter has
enabled the built-in EXTEND role, only users who also hold that role can register
or drop UDRs written in the C language or in the Java language, even if the users
hold USAGE ON LANGUAGE privileges for those languages.

The GRANT USAGE ON LANGUAGE statement can grant Usage privilege on a
programming language to a restricted group of users. The following example
grants Usage privileges on the C language to a user-defined role named
developers:
GRANT USAGE ON LANGUAGE C TO developers;

2-516 IBM Informix Guide to SQL: Syntax

If the preceding example executes successfully, users who hold the developers role
as their current role can create or drop C routines (if they also hold the EXTEND
role, or if the IFX_EXTEND_ROLE parameter is set to 0 or to Off).

For information on other access privileges that these statements require, see
“CREATE FUNCTION statement” on page 2-183 and “CREATE PROCEDURE
statement” on page 2-226.

Usage Privilege in Stored Procedure Language
The Usage privilege on SPL is granted to PUBLIC by default. Only user informix,
the DBA, or a user who was granted the Usage privilege WITH GRANT OPTION
can grant the Usage privilege on SPL to another user.

In the following example, assume that the default Usage privilege on SPL was
revoked from PUBLIC and the DBA wants to grant the Usage privilege on SPL to
the role named developers:
GRANT USAGE ON LANGUAGE SPL TO developers;

Sequence-Level Privileges
Although Informix implements sequence objects as tables, only a subset of
table-level privileges (page “Table-Level Privileges” on page 2-507) can be granted
on a sequence. You can grant the Select or Alter privilege (or both) on a sequence:

Sequence-Level Privileges:

�

ALL
,

(1)
SELECT
ALTER

ON
owner.

(1)
sequence

synonym

Notes:

1 Informix extension

Element Description Restrictions Syntax

owner Owner of sequence (or owner of synonym) Must be the owner “Owner name” on page
5-49

sequence Sequence on which to grant privileges Must exist “Identifier” on page
5-21

synonym Synonym for a sequence object Must exist “Identifier” on page
5-21

The sequence object must exist in the current database. You can qualify the sequence
or synonym identifier with a valid owner name, but the name of a remote database
(or database@server) is not valid as a qualifier. You can include the WITH GRANT
OPTION keywords when you grant ALTER, SELECT, or ALL to a user or to
PUBLIC (but not to a role) as privileges on a sequence object.

Alter Privilege
You can grant the Alter privilege on a sequence to another user or to a role. The
Alter privilege enables a specified user or role to modify the definition of a
sequence with the ALTER SEQUENCE statement or to rename the sequence with
the RENAME SEQUENCE statement.

Chapter 2. SQL statements 2-517

The following statement grants the Alter privilege to user mark on the cust_seq
sequence object:
GRANT ALTER ON cust_seq TO mark;

Select Privilege
You can grant the Select privilege on a sequence to another user or to a role. The
Select privilege enables a specified user or role to use sequence.CURRVAL and
sequence.NEXTVAL expressions in SQL statements to read and to increment
(respectively) the value of a sequence.

The following statement grants the Select privilege to user mark on the cust_seq
sequence object:
GRANT SELECT ON cust_seq TO mark;

ALL Keyword
You can specify the ALL keyword to grant both Alter and Select privileges on a
sequence object to another user or to a role, or to a list of users or roles.

The User List
You can grant privileges to an individual user or to a list of users. You can also
specify the PUBLIC keyword to grant privileges to all users.

User List:

�

PUBLIC
,

user
'user'

Element Description Restrictions Syntax

user Login name of a user to whom you are granting
privilege or granting a role

Must be a valid
authorization identifier

“Owner name” on
page 5-49

The following example grants the Insert table-level privilege on table1 to the user
mary in a database that is not ANSI-compliant:
GRANT INSERT ON table1 TO mary;

In an ANSI-compliant database, if you do not include quotation marks as
delimiters around user, the name of the user is stored in uppercase letters.

Role Name
You can use the GRANT statement to associate a list of one or more users (or all
users, using the PUBLIC keyword) with a role name that can describe what they
do. After you declare and grant a role, access privileges that you grant to that role
are thereby granted to all users who are currently associated with that role.

Role Name:

role
'role'

2-518 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

role Role that is granted, or to which a
privilege or another role is granted

Must exist. If enclosed between quotation
marks, role is case sensitive.

“Owner name” on
page 5-49

You can also grant an existing role to another role. This action gives whatever
privileges the granted role possesses to all users who have the receiving role.

Granting a Role to a User or to Another Role
You must register a role in the database before the role can be used in a GRANT
statement. For more information, see “CREATE ROLE statement” on page 2-237.

A DBA has the authority to grant a new role to another user. If a user receives a
role WITH GRANT OPTION, that user can grant the role to other users or to
another role. Users keep a role that was granted to them until the REVOKE
statement breaks the association between their login names and the role name.

Important: The CREATE ROLE and GRANT statements do not activate the role. A
non-default role has no effect until SET ROLE enables it. The grantor or the
grantee of a role can issue the SET ROLE statement.

The following example shows the actions required to grant and activate the role
payables to a group of employees who perform account payable functions. First
the DBA creates role payables, then grants it to maryf.
CREATE ROLE payables;
GRANT payables TO maryf WITH GRANT OPTION;

The DBA or maryf can activate the role with the following statement:
SET ROLE payables;

User maryf has the WITH GRANT OPTION authorization to grant payables to
other employees who pay accounts.
GRANT payables TO charly, gene, marvin, raoul;

If you grant privileges for one role to another role, the recipient role has the
combined set of privileges that have been granted to both roles. The following
example grants the role petty_cash to the role payables:
CREATE ROLE petty_cash;
SET ROLE petty_cash;
GRANT petty_cash TO payables;

After all of these statements execute successfully, if user raoul uses the SET ROLE
statement to make payables his current role, then (aside from the effects of any
REVOKE operations) he holds the following combined set of access privileges:
v The privileges granted to the payables role
v The privileges granted to the petty_cash role
v The privileges granted individually to raoul

v The privileges granted to PUBLIC

If you attempt to grant a role to yourself, either directly or indirectly, the database
server generates an error. (For an important exception to this rule, however, see the
description of the “DBSECADM Clause” on page 2-524.)

Chapter 2. SQL statements 2-519

The database server also generates an error if you include the WITH GRANT
OPTION keywords in a GRANT statement that assigns a role to another role.

Granting privileges to a role
You can grant table-level and routine-level access privileges to a role if you have
the authority to grant these same privileges to login names or to PUBLIC. You can
also grant type-level privileges to a role. A role cannot hold database-level
privileges.

Important: The scope of a user-defined role (and of discretionary access privileges
that the GRANT statement assigns to the role) is the current database. When the
GRANT DEFAULT ROLE or SET ROLE statement activates a role, the role and its
privileges take effect in the current database only. As a security precaution,
discretionary access privileges that a user receives only from a role cannot provide
access to tables outside the current database through a view or through the action
of a trigger.

The syntax is more restricted for granting privileges to a role than to a user:
v You can specify the AS grantor clause.

In this way, whoever has the role can revoke these same privileges. For more
information, see “AS grantor clause” on page 2-523.

v You cannot include the WITH GRANT OPTION clause.
A role cannot, in turn, grant the same access privileges to another user.

This example grants Insert privilege on the supplier table to the role payables:
GRANT INSERT ON supplier TO payables;

Anyone who has been granted the payables role, and who successfully activates it
by issuing the SET ROLE statement, can now insert rows into supplier.

Granting a Default Role
The DBA or the owner of the database (by default, user informix) can define a
default role for one or more users or for PUBLIC with the GRANT DEFAULT ROLE
statement. A default role is activated when the user connects to the database. The
SET ROLE statement is not required to activate a default role.

Default roles are useful if users access databases through client applications that
cannot modify access privileges nor set roles.

A default role can specify a set of access privileges to all the users who are
assigned that role, as in the following example:
CREATE ROLE accounting;
GRANT ALTER, INSERT, SELECT ON stock TO accounting;
GRANT DEFAULT ROLE accounting TO mary, asok, vlad;

The last statement provides users mary, asok, and vlad with accounting as their
default role. If any of these users connects to a database, that user activates
whatever privileges the accounting role holds, in addition to any privileges that
the user already possesses as an individual or as PUBLIC.

The role must already exist and the user must have the access privileges to set the
role. If the role has not previously been granted to a user, it is granted as part of
setting the default role.

2-520 IBM Informix Guide to SQL: Syntax

If no default role is defined for a user nor for PUBLIC, then no role is set, and the
existing privileges of the user are in effect.

The following example shows how the default role can be assigned to all users:
DATABASE hrdb;
CREATE ROLE emprole;
GRANT CONNECT TO PUBLIC;
GRANT SELECT ON emptab TO emprole;
GRANT emprole TO PUBLIC;
GRANT DEFAULT ROLE emprole TO PUBLIC;

Note: Using GRANT DEFAULT ROLE is an alternative to issuing the SET ROLE
statement in the sysdbopen() procedure. Default roles defined using the
sysdbopen() procedure, however, have precedence over any other role when a
user establishes a connection.

Changing the default role for a user or for PUBLIC only affects new database
connections. Existing connection continue to run under currently assigned roles. If
one default role was granted to user, and another default role was granted to
PUBLIC, the default role granted to user takes precedence at connection time.

A default role cannot be assigned to another role. Because roles are not defined
across databases, the default role must be assigned for each database. No options
besides the user-list are valid after the TO keyword in the GRANT DEFAULT
ROLE statement. The database server issues an error if you attempt to include the
AS grantor clause or the WITH GRANT OPTION clause.

Granting the EXTEND Role
If the IFX_EXTEND_ROLE configuration parameter is set to ON or to 1, only users
who hold the EXTEND role (and who also hold the Resource privilege on the
database and the Usage privilege on the programming language in which the UDR
is written) can create or drop UDRs that are written in the C or Java external
languages that can support shared libraries.

The Database Server Administrator (DBSA), by default user informix, can grant
the EXTEND role to one or more users or to PUBLIC with the GRANT EXTEND
TO user-list statement.

Because EXTEND is a built-in role, the SET ROLE statement is not required for the
EXTEND role to have this effect. It is sufficient for a user to hold the EXTEND role
without using SET ROLE to enable it.

For example, suppose that user max holds Resource privileges on the database,
and has also been granted Usage privilege on the C language by the GRANT
USAGE ON LANGUAGE C statement. The following statement grants the
EXTEND role to user max:
GRANT EXTEND TO ’max’;

This statement enables user max to create or drop UDRs that are written in the C
language, without requiring max to issue the SET ROLE EXTEND statement. (Here
the quotation marks preserve the lowercase letters in the authorization identifier
max.) Before user max can create or drop UDRs written in the Java language,
however, the TO clause of a valid GRANT USAGE ON LANGUAGE JAVA
statement must specify either ’max’, or PUBLIC, or the name of a user-defined role
that max holds (and that max has used the SET ROLE statement to specify as his
current role).

Chapter 2. SQL statements 2-521

In databases for which this security feature is not needed, the DBSA can disable
this restriction on who can create or drop external UDRs by setting the
IFX_EXTEND_ROLE configuration parameter to OFF or to 0 in the ONCONFIG file.
When IFX_EXTEND_ROLE is set to OFF or to 0, any user who holds the Resource
privilege (and also holds the Usage privilege on the programming language in
which the UDR is written) can create or drop external UDRs.

Resource privileges on the database and Usage privilege on the external language
are required for any user to create or drop an external UDR, regardless of the
IFX_EXTEND_ROLE configuration parameter setting, or whether the user holds
the EXTEND role. User informix, the DBA, or any user who has received Usage
privileges WITH GRANT OPTION can grant Usage privileges on the SPL, C, and
Java languages to PUBLIC. See “Database-Level Privileges” on page 2-505 for
information about granting the Resource privilege. See “Language-Level
Privileges” on page 2-516 for information about granting Usage privileges on
programming languages.

WITH GRANT OPTION keywords
The WITH GRANT OPTION keywords convey the privilege or role to a user with
the right to grant the same privileges or role to other users.

You create a chain of privileges that begins with you and extends to user as well as
to whomever user subsequently conveys the right to grant privileges. If you
include WITH GRANT OPTION, you can no longer control the dissemination of
privileges.

The following example grants the Alter and Select privileges to user mark on the
cust_seq sequence object, with the ability to grant those privileges to others:
GRANT ALL ON cust_seq TO mark WITH GRANT OPTION;

If you revoke from user the privilege that you granted using the WITH GRANT
OPTION keyword, you sever the chain of privileges. That is, when you revoke
privileges from user, you automatically revoke the privileges of all users who
received privileges from user or from the chain that user created (unless user, or the
users who received privileges from user, were granted the same set of privileges by
someone else).

The following examples illustrate this situation. You, as the owner of the table
items, issue the following statements to grant access to user mary:
REVOKE ALL ON items FROM PUBLIC;
GRANT SELECT, UPDATE ON items TO mary WITH GRANT OPTION;

User mary uses her privilege to grant users cathy and paul access to the table:
GRANT SELECT, UPDATE ON items TO cathy;
GRANT SELECT ON items TO paul;

Later you revoke the access privileges for user mary on the items table:
REVOKE SELECT, UPDATE ON items FROM mary;

This single statement effectively revokes all privileges on the items table from
users mary, cathy, and paul. If you want to create a chain of privileges with
another user as the source of the privilege, use the AS grantor clause.

2-522 IBM Informix Guide to SQL: Syntax

In Informix, the WITH GRANT OPTION keywords are valid only for users. They
are not valid when a role is the grantee of a privilege or of another role. You
cannot specify WITH GRANT OPTION in a statement that grants a privilege to the
PUBLIC group.

The Database Server Administrator cannot include the WITH GRANT OPTION
keywords in the GRANT EXTEND or GRANT DBSECADM statements. The DBSA
cannot delegate to another user the authorization to grant the built-in EXTEND or
DBSECADM roles. If more than one user needs either of these authorizations, they
should be included in the DBSA group when the database server is installed.

In addition to the GRANT DBSECADM statement, none of the other security
administration options of the GRANT statement support the WITH GRANT
OPTION keywords. For more information about these statements and their syntax,
see “Security Administration Options” on page 2-524.

AS grantor clause
When you grant discretionary access privileges to other users, roles, or to PUBLIC,
by default you are the one who can revoke those privileges. The AS grantor clause
lets you establish another user as the source of the privileges that you are granting.

When you use the AS grantor clause, the login provided in the AS grantor clause
replaces your login in the appropriate system catalog table. You can use this clause
only if you have the DBA privilege on the database.

After you use this clause, only the specified grantor can revoke the effects of the
current GRANT operation. Even a DBA cannot revoke a privilege unless that DBA
is listed in the system catalog table as the user who granted the privilege.

The following example illustrates this situation. You are the DBA and you grant all
privileges on the items table to user tom with the right to grant all privileges:
REVOKE ALL ON items FROM PUBLIC;
GRANT ALL ON items TO tom WITH GRANT OPTION;

The next example illustrates a different situation. You also grant Select and Update
privileges to user jim, but you specify that the privileges are granted as user tom.
(The records of the database server in the systabauth system catalog table show
that user tom is the grantor of those privileges, rather than you.)
GRANT SELECT, UPDATE ON items TO jim AS tom;

Later, you decide to revoke privileges on the items table from user tom, so you
issue the following statement:
REVOKE ALL ON items FROM tom;

If instead, however, you try to revoke privileges from user jim with a similar
statement, the database server returns an error, as the next example shows:
REVOKE SELECT, UPDATE ON items FROM jim;

580: Cannot revoke permission.

You receive an error because the database server record shows the original grantor
as user tom, and you cannot revoke the privilege. Although you are the DBA, you
cannot revoke a privilege that another user granted.

The AS grantor clause is not valid in the GRANT DEFAULT ROLE statement.

Chapter 2. SQL statements 2-523

For contexts where the AS grantor clause is required, rather than optional, see
“Granting the Execute privilege to PUBLIC” on page 2-515.

Security Administration Options
In conjunction with the REVOKE statement, the GRANT statement supports the
discretionary access control (DAC) data security feature of Informix by specifying
which users or roles hold privileges that are required to access the database or
objects within the database.

The Security Administration Options of the GRANT statement, like their
counterparts for the REVOKE statement, support an additional set of data security
features, called label-based access control (LBAC). These features enable Informix
to allow or withhold access to protected data on the basis of a comparing a row
security label or column security label that is contained in the data object to the
user security label and other credentials that have been granted to the user who is
seeking access.

Security Administration Options:

(1)
DBSECADM Clause

(2)
EXEMPTION Clause

(3)
SECURITY LABEL Clause

(4)
SETSESSIONAUTH Clause

Notes:

1 See “DBSECADM Clause”

2 See “EXEMPTION Clause” on page 2-526

3 See “SECURITY LABEL Clause” on page 2-528

4 See “SETSESSIONAUTH Clause” on page 2-532

Use of these GRANT statement security administration options is restricted:
v Only the Database Server Administrator (DBSA), by default user informix, or

(on UNIX) a member of the DBSA group, or (on Windows) a member of the
Informix-Admin group, can use the GRANT DBSECADM statement to grant the
DBSECADM role.

v Only a user who holds the DBSECADM role can issue the GRANT
EXEMPTION, GRANT SECURITY LABEL, or GRANT SETSESSIONAUTH
statements, or the corresponding REVOKE statements.

DBSECADM Clause
The GRANT DBSECADM statement enables the user to whom the DBSECADM
role is granted to issue DDL statements that can create, alter, rename, or drop
security objects, including security policies, security labels, and security
components.

DBSECADM Clause:

2-524 IBM Informix Guide to SQL: Syntax

DBSECADM TO �

,

user
USER

Element Description Restrictions Syntax

user User to whom the role is to be granted Must be the authorization
identifier of a user

“Owner name” on page
5-49

The DBSECADM role is a built-in role that only the DBSA can grant. Unlike
user-defined roles, whose scope is the database in which the role is created, the
scope of the DBSECADM role is all of the databases of the Informix instance. It is
not necessary for DBSA to reissue the GRANT DBSECADM statement in other
databases of the same server. Like all built-in roles of Informix, the DBSECADM
role is enabled when it is granted, without requiring activation by the SET ROLE
statement, and it remains in effect until it is revoked.

Only a user who holds the DBSECADM role can issue the following SQL
statements that create or modify security objects:
v ALTER SECURITY LABEL COMPONENT
v CREATE SECURITY LABEL
v CREATE SECURITY LABEL COMPONENT
v CREATE SECURITY POLICY
v DROP SECURITY LABEL
v DROP SECURITY LABEL COMPONENT
v DROP SECURITY POLICY
v RENAME SECURITY LABEL
v RENAME SECURITY LABEL COMPONENT
v RENAME SECURITY POLICY

Only a user who holds the DBSECADM role can use the following SQL statements
to reference tables that are protected by a security policy:
v ALTER TABLE ... ADD SECURITY POLICY
v ALTER TABLE ... ADD ... IDSSECURITYLABEL [DEFAULT label]
v ALTER TABLE ... ADD ... [COLUMN] SECURED WITH
v ALTER TABLE ... DROP SECURITY POLICY
v ALTER TABLE ... MODIFY ... [COLUMN] SECURED WITH
v ALTER TABLE ... MODIFY ... DROP COLUMN SECURITY
v CREATE TABLE ... COLUMN SECURED WITH
v CREATE TABLE ... IDSSECURITYLABEL [DEFAULT label]
v CREATE TABLE ... SECURITY POLICY

The following GRANT and REVOKE statements also cannot be issued by a user
who does not hold the DBSECADM role:
v GRANT EXEMPTION
v GRANT SECURITY LABEL
v GRANT SETSESSIONAUTH
v REVOKE EXEMPTION

Chapter 2. SQL statements 2-525

v REVOKE SECURITY LABEL
v REVOKE SETSESSIONAUTH

The USER keyword that can follow the TO keyword is optional, and has no effect,
but any authorization identifier that the DBSA specifies in the GRANT
DBSECADM statement must be the identifier of an individual user, rather than the
identifier of a role, or the PUBLIC group.

The user can be the DBSA who issues this GRANT DBSECADM statement. This is
an important exception to the general restriction that the TO clause of the GRANT
statement (like the FROM clause in the REVOKE statements) cannot explicitly
reference the authorization identifier of the user who issues the statement. Unlike
other roles, access privileges, user security labels, and exemptions on rules that the
GRANT statement can specify, you can grant the DBSECADM role to yourself, if
you are user informix, or a member of the DBSA group, or (on Windows if you are
a member of the Informix-Admin group.

In the following example, the DBSA grants the DBSECADM role to user niccolo:
GRANT DBSECADM TO niccolo;

If this statement executes successfully, user niccolo can perform the LBAC
operations listed above, provided that niccolo also holds sufficient discretionary
access privileges on the database and on the database objects that those SQL
statements reference.

After a user is granted the DBSECADM role, only the DBSA can revoke it.

For a discussion of LBAC security objects, see your IBM Informix Security Guide.

EXEMPTION Clause
The GRANT EXEMPTION statement modifies the security credentials of the
specified user (or list of users) by disabling one or all of the rules of a specified
security policy.

EXEMPTION Clause:

EXEMPTION ON RULE IDSLBACREADARRAY
IDSLBACREADTREE
IDSLBACREADSET
IDSLBACWRITEARRAY

WRITEDOWN
WRITEUP

IDSLBACWRITESET
IDSLBACWRITETREE
ALL

FOR policy �

,

TO user
USER

Element Description Restrictions Syntax

policy The security policy from which the exemption
is granted

Must exist in the database “Identifier” on page
5-21

user User to whom the exemption is to be granted Must be the authorization
identifier of a user

“Owner name” on page
5-49

2-526 IBM Informix Guide to SQL: Syntax

Only a user who holds the DBSECADM role can issue the GRANT EXEMPTION
statement.
Related reference:
“RENAME SECURITY statement” on page 2-613
“DROP SECURITY statement” on page 2-442
“CREATE SECURITY LABEL statement” on page 2-248
“CREATE SECURITY LABEL COMPONENT statement” on page 2-250
“ALTER SECURITY LABEL COMPONENT statement” on page 2-64
“CREATE SECURITY POLICY statement” on page 2-254

Rules on Which Exemptions Are Granted: The keyword that follows the ON
keyword specifies the predefined LBAC access rule of the security policy (whose
identifier follows the FOR keyword) for which an exemption is granted. The access
rule for which exemption is granted does not apply when a table that is protected
by the specified security policy is accessed by a user to whom the exemption is
granted. For descriptions of the predefined rules for read access and for write
access that are associated with a security policy, see the section “Rules Associated
with a Security Policy” on page 2-256.

The following keywords of the GRANT EXEMPTION statement identify specific
IDSLBACRULES rules from which this statement can exempt users:
v IDSLBACREADARRAY exempts the user from the IDSLBACREADARRAY rule

for the specified security policy. That rule requires that each array component of
the user security label must be greater than or equal to the corresponding array
component of the data row security label.

v IDSLBACREADSET exempts the user from the IDSLBACREADSET rule for the
specified security policy. That rule requires that each set component of the user
security label must include the set component of the data row security label

v IDSLBACREADTREE exempts the user from the IDSLBACREADTREE rule for
the specified security policy. That rule requires that each tree component of the
user security label must include at least one of the elements in the tree
component of the data row security label, or else the ancestor of one such
element.

v IDSLBACWRITEARRAY WRITEDOWN exempts the user from one aspect of the
IDSLBACWRITEARRAY rule for the specified security policy. That rule requires
that each array component of the user security label must be equal to the array
component of the data row security label. The user who holds this exemption
can write to a row whose array component level is below the level in the label
of the user. The user cannot, however, write to a row in whose label the array
component level is above the level in the label of the user.

v IDSLBACWRITEARRAY WRITEUP exempts the user from one aspect of the
IDSLBACWRITEARRAY rule for the specified security policy. The user who
holds this exemption can write to a row whose array component level is above
the level in the label of the user. The user cannot, however, write to a row in
whose label the array component level is below the level in the label of the user.

v IDSLBACWRITEARRAY (with no WRITEDOWN or WRITEUP keyword)
exempts the user from the IDSLBACWRITEARRAY rule for the specified
security policy. The user who holds this exemption can write to a row without
regard to the corresponding array component level of the row label.

v IDSLBACWRITESET exempts the user from the IDSLBACWRITESET rule for
the specified security policy. That rule requires that each set component of the
user security label must include the set component of the data row security label

Chapter 2. SQL statements 2-527

v IDSLBACWRITETREE exempts the user from the IDSLBACWRITETREE rule
for the specified security policy. That rule requires that each tree component of
the user security label must include at least one of the elements in the tree
component of the data row security label, or an ancestor of one such element.

v ALL exempts the user from all IDSLBACRULES rules for the specified security
policy. This form of exemption is required to load data into a protected table.

In the following example, DBSECADM grants an exemption from all of the rules of
the MegaCorp security policy to users manoj and sam:
GRANT EXEMPTION ON RULE ALL FOR MegaCorp TO manoj, sam;

Security Policies and Grantees of Exemptions: An exemption applies only to the
rules of the security policy whose name follows the FOR keyword. A protected
table can have multiple security labels, but no more than one security policy.

The GRANT EXEMPTION statement fails with an error if the specified policy does
not exist in the database.

The USER keyword that can follow the TO keyword is optional, and has no effect,
but any authorization identifier specified in the GRANT EXEMPTION statement
must be the identifier of an individual user, rather than the identifier of a role. This
user cannot be the DBSECADM who issues the same GRANT EXEMPTION
statement.

In the following example, DBSECADM grants an exemption to user lynette from
rule IDSLBACREADARRAY of the MegaCorp security policy:
GRANT EXEMPTION ON RULE IDSLBACREADARRAY FOR MegaCorp TO lynette;

This exemption bypasses the read access rules for all array components of security
labels of the specified policy.

When the GRANT EXEMPTION statement successfully grants an exemption to a
user, the database server updates the syssecpolicyexemptions table of the system
catalog to register the new exemption (or multiple exemptions, if several users are
listed after the TO keyword).

For a discussion of LBAC security objects, see your Informix.

SECURITY LABEL Clause
The GRANT SECURITY LABEL statement grants a security label to a user or to a
list of users.

SECURITY LABEL Clause:

SECURITY LABEL policy . label �

,

TO user
USER

FOR ALL ACCESS

FOR READ ACCESS

FOR WRITE ACCESS

Element Description Restrictions Syntax

label Name of an existing security label Must exist as a label for the
specified security policy

“Identifier” on page
5-21

2-528 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

policy The security policy of this label Must already exist in the
database

“Identifier” on page
5-21

user User to whom the label is to be granted Must be the authorization
identifier of a user

“Owner name” on page
5-49

Only a user who holds the DBSECADM role can issue the GRANT SECURITY
LABEL statement.

A security label is a database object that is always associated with a security policy.
That policy defines the set of valid security components that make up the security
label. The label stores a set of one or more values for each component of the
security policy.

The DBSECADM can associate a security label with the following entities:
v A column of a database table, which a column security label can protect
v A row of a database table, which a row security label can protect
v A user, whose user security label (and any exemptions from rules of the security

policy that have been granted to the user) are called the security credentials of the
user.

When a user who holds a security label for a specific security policy attempts to
access a row that is protected by a row security label of the same security policy,
the database server compares the sets of values in the user security label and in the
row security label to determine whether the user should be allowed access to the
data. Similarly, LBAC takes into account the user security label and the column
security label in determining whether the credentials of the user should allow
access to the protected column.

The GRANT SECURITY LABEL statement is the mechanism by which DBSECADM
associates a user with a security label. (Data values in a protected table are
associated with a row security label or with a column security label by options to
the CREATE TABLE or ALTER TABLE statements that only DBSECADM can
execute, rather than by the GRANT SECURITY LABEL statement.)

The USER keyword that can follow the TO keyword is optional, and has no effect,
but any authorization identifier specified in the GRANT SECURITY LABEL
statement must be the identifier of an individual user, rather than of a role.
Related reference:
“RENAME SECURITY statement” on page 2-613
“DROP SECURITY statement” on page 2-442
“CREATE SECURITY LABEL statement” on page 2-248
“CREATE SECURITY LABEL COMPONENT statement” on page 2-250
“ALTER SECURITY LABEL COMPONENT statement” on page 2-64
“CREATE SECURITY POLICY statement” on page 2-254

Access Specifications: The list of users to whom the security label is granted can
optionally be followed by keywords that specify the type of access to data that the
security policy of the label protects
v FOR WRITE ACCESS

Chapter 2. SQL statements 2-529

These keywords restrict the label to the write access rules of IDSLBACRULES,
namely IDLSBACWRITEARRAY, IDLSBACWRITESET, and
IDLSBACWRITETREE. These rules affect INSERT, DELETE, and UPDATE
operations on protected data.

v FOR READ ACCESS
These keywords restrict the label to the read access rules of IDSLBACRULES,
namely IDLSBACWREADARRAY, IDLSBACREADSET, and
IDLSBACREADTREE. These rules affect SELECT, DELETE, and UPDATE
operations on protected data.

v FOR ALL ACCESS
These keywords apply the label to all of the read and write access rules that are
listed above. If the GRANT SECURITY LABEL statement includes no FOR ...
ACCESS specification, this option takes effect as the default.

For more information about these IDSLBACRULES rules for label-based read and
write access, see “Rules Associated with a Security Policy” on page 2-256. For
information about exemptions to these rules that can be granted for a specific
security policy, see “Rules on Which Exemptions Are Granted” on page 2-527.

If a user is granted a different security label for read access than for write access,
then the values given for the security label components must follow these rules:
v For security label components of type ARRAY, the value must be the same in

both security labels.
v For security label components of type SET, the values given in the security label

used for WRITE access must be a subset of the values given in the security label
used for READ access. If all of the values are the same, this is interpreted as
being a subset, and is allowed.

v For security label components of type TREE, every element in the tree
component of the security label for write access must be either an element or a
descendent of an element in the tree component of the security label for read
access.

In summary, when DBSECADM attempts to grant a security label for read access
to a user who already holds a security label for write access, or vice versa, the read
label cannot be more restrictive than the write label. Otherwise, the GRANT
SECURITY LABEL statement fails with an error.

A user can be granted no more than two labels for the same security policy. If two
labels are granted for the same policy, one label must be for read access and the
other for write access. If DBSECADM attempts to grant a security label for read
access to a user who already holds a security label for read access that is based on
the same security policy, the GRANT SECURITY LABEL statement fails with an
error. A similar failure result if both labels are for write access and are on the same
security policy.

In both of these cases, the first security label must be revoked explicitly by the
REVOKE SECURITY LABEL statement before a second label can be granted for the
same access mode and the same security policy. The only exception to this rule is if
both labels specify the same values for component elements, because in this case
both security labels are functionally identical, and no error is issued.

Rules for User Security Labels: The following rules affect security labels that are
granted to users by the GRANT SECURITY LABEL statement:
v The user cannot be the DBSECADM who issues this GRANT SECURITY LABEL

statement.

2-530 IBM Informix Guide to SQL: Syntax

v A user without a security label has a NULL or zero label. A user with no
security label cannot access data in a protected table, unless the user holds the
necessary exemptions on the policy.

v By default, the IDSSECURITYLABEL column of a protected table cannot have
NULL values. A user with no security label cannot insert data into a table with
row protection, even if the user has been granted the necessary exemptions on
the security policy, unless the row label is explicitly specified in the INSERT
statement. For details of how to specify a security label explicitly in the INSERT
statement, see “Security Label Support Functions” on page 4-128.

v User security labels have no effect on the following types of database tables,
because these tables cannot be protected by a security policy:
– Virtual Table Interface tables,
– tables with Virtual Index Interface indexes,
– tables in a typed-table hierarchy,
– temporary tables.

Examples of Granting User Security Labels:
The following three statements create three security label components called level,
compartments, and groups respectively:
CREATE SECURITY LABEL COMPONENT

level ARRAY [’TS’,’S’,’C’,’U’];

CREATE SECURITY LABEL COMPONENT
compartments SET {’A’,’B’,’C’,’D’};

CREATE SECURITY LABEL COMPONENT
groups TREE (’G1’ ROOT,

’G2’ UNDER ROOT,
’G3’ UNDER ROOT);

The following statement creates a security policy called secPolicy based on the
three components above:
CREATE SECURITY POLICY secPolicy COMPONENTS

level, compartments, groups;

The following statement creates a security label called secLabel1:
CREATE SECURITY LABEL secPolicy.secLabel1

COMPONENT level ’S’,
COMPONENT compartments ’A’, ’B’,
COMPONENT groups ’G2’;

The following statement creates a security label called secLabel2:
CREATE SECURITY LABEL secPolicy.secLabel2

COMPONENT level ’S’,
COMPONENT compartments ’B’,
COMPONENT groups ’G2’;

The following statement creates a security label called secLabel3:
CREATE SECURITY LABEL secPolicy.secLabel3

COMPONENT level ’S’,
COMPONENT compartments ’A’,
COMPONENT groups ’G3’;

The following statement creates a security label called secLabel4:

Chapter 2. SQL statements 2-531

CREATE SECURITY LABEL secPolicy.secLabel4
COMPONENT level ’TS’,
COMPONENT compartments ’A’,
COMPONENT groups ’G1’;

The following statement grants a security label for read access to user sam:
GRANT SECURITY LABEL secPolicy.secLabel1

TO sam FOR READ ACCESS;

The following statement grants a security label for write access to user sam. This
statement succeeds because it satisfies the rules given above.
GRANT SECURITY LABEL secPolicy.secLabel2

TO sam FOR WRITE ACCESS;

The following statement grants a security label for read access to user lynette:
GRANT SECURITY LABEL secPolicy.secLabel1

TO lynette FOR READ ACCESS;

The following statement attempts to grant a security label for write access to user
sam. This statement fails because it violates the rule with respect to the tree
component.
GRANT SECURITY LABEL secPolicy.secLabel3

TO sam FOR WRITE ACCESS;

The following statement attempts to grant a security label for write access to user
sam. This statement fails because it violates the rule with respect to the array
component.
GRANT SECURITY LABEL secPolicy.secLabel4

TO sam FOR WRITE ACCESS;

When the GRANT SECURITY LABEL statement successfully grants a security label
to a user, the database server updates the sysseclabelauth table of the system
catalog to register the new holder of the security label.

For a discussion of LBAC security objects, see your IBM Informix Security Guide
Related concepts:

Label-based access control (Security Guide)

SETSESSIONAUTH Clause
The GRANT SETSESSIONAUTH statement grants the SETSESSIONAUTH
privilege to one or more users or roles. This privilege allows the holder to use the
SET SESSION AUTHORIZATION statement to set the session authorization to
PUBLIC or to any one of a list of specified users.

SETSESSIONAUTH Clause:

�

SETSESSIONAUTH ON PUBLIC
,

user
USER

�

,

TO user
USER

role
ROLE

2-532 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_lb_002.htm#ids_lb_002

Element Description Restrictions Syntax

role Role to which the privilege is to be granted Must be the authorization
identifier of a role

“Owner name” on page
5-49

user After the TO keyword, a user to whom the
privilege is to be granted. After the ON
keyword, a user whose identity the grantee can
specify in the SET AUTHORIZATION statement.

Must be the authorization
identifier of a user

“Owner name” on page
5-49

Only a user who holds the DBSECADM role can grant the SETSESSIONAUTH
privilege. Both the SETSESSIONAUTH privilege and the DBA privilege are
required to execute the SET AUTHORIZATION statement.

The user or PUBLIC specification that follows the ON keyword specifies whose
identity the grantee of the SETSESSIONAUTH privilege can take while using SET
SESSION AUTHORIZATION statement. This can be a user or PUBLIC but not a
role. If PUBLIC is specified, then the grantee of the privilege can assume the
identity of any database user.

The USER and ROLE keywords that can follow the TO keyword are optional.
Neither the user nor the role can be the holder of the DBSECADM role who issues
the GRANT SETSESSIONAUTH statement. The TO clause cannot specify PUBLIC
as the grantee.

The following example grants to user sam the ability to set the session
authorization to users lynette and manoj:
GRANT SETSESSIONAUTH ON lynette, manoj TO sam;

The next example grants to user lynette the ability to set the session authorization
to PUBLIC:
GRANT SETSESSIONAUTH ON PUBLIC TO lynette;

Only a user who holds the DBSECADM role can revoke the SETSESSIONAUTH
privilege. For a discussion of LBAC security objects, see your IBM Informix
Security Guide

Surrogate user properties (UNIX, Linux)
Use the ACCESS TO PROPERTIES clause of the GRANT statement to map users to
surrogate user properties required for access to Informix resources.

Note:

Only a DBSA can map externally authenticated users to valid surrogate user
properties. If the USERMAPPING configuration parameter is set to enable support
for mapped users, a DBSA issues the GRANT ACCESS TO PROPERTIES statement
to map users to properties that correspond to the appropriate level of
authorization.

Mapped users can connect to Informix with the surrogate user properties if they
authenticate with pluggable authentication module (PAM) or single sign-on (SSO).

ACCESS TO PROPERTIES Clause:

Chapter 2. SQL statements 2-533

�

ACCESS TO PUBLIC PROPERTIES
,

user

�

� �

�

,
(1)

UID user_ID , GROUP (group_ID)
group_name

USER OS_user_name
,

(1)
, GROUP (group_ID)

group_name

�

�
HOME " directory "

�

,

, AUTHORIZATION (privilege)

Notes:

1 Use this path no more than 16 times

Element Description Restrictions Syntax

directory Path name of directory where
user files are stored.

Length cannot exceed 255
bytes, and must conform to
the rules of your operating
system. The directory must
also:

v Belong to the mapped
user_ID and group_ID

v Have read, write, and
execute permissions for
the owner

v Not have PUBLIC write
permissions

“Quoted String” on page
4-219

2-534 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

group_ID Group identifier number to
which you want to map user. The
list of group_id value or values
that you specify must be
enclosed in parentheses. .

The group_ID cannot be:

v A group ID with server
administrative privileges
(DBSA, DBSSO, AAO, and
BARGROUP)

v Group 0 (root, sometimes
referred to as wheel or
system)

v Group 80 on Mac OS X
(admin)

v A group ID associated
with group bin or group
sys

The group ID must be
present in
/etc/informix/
allowed.surrogates file.

“Literal Number” on page
4-215

group_name Name of an existing operating
system group having the
permissions to which you want
to map user . The list of
group_name values must be
enclosed in parentheses.

Length cannot exceed 32
bytes.

The group name must be
present in
/etc/informix/
allowed.surrogates file.

“Owner name” on page 5-49

privilege Administrative privilege to
assign user. Valid values are as
follows:

v DBSA

v DBSSO

v AAO

v BARGROUP

The privilege value or values
must be enclosed in parentheses.

The USERMAPPING
configuration parameter
must be set to ADMIN to
grant server administrative
privileges with the
AUTHORIZATION
keyword.

“Quoted String” on page
4-219

user Authorization identifier of a
specific user that you are
mapping to user properties.

Must be an authenticated
authorization identifier

“Owner name” on page 5-49

user_ID User identifier number to which
you want to map user.

user_ID cannot be the one
that belongs to user root or
user informix.

The user ID must be present
in /etc/informix/
allowed.surrogates file.

“Literal Number” on page
4-215

OS_user_name Name of an existing OS user
account on the Informix host
computer having the permissions
to which you want to map user.

Must conform to the rules of
your operating system .

The user name must be
present in
/etc/informix/
allowed.surrogates file.

“Owner name” on page 5-49

Chapter 2. SQL statements 2-535

Usage

The best practice is to map user to a specific OS user name that is reserved as a
surrogate user identity only. You can add groups associated with the surrogate
user identity with the GROUP keyword, and change the home directory with the
HOME keyword. If the operating system administrator has specified acceptable
surrogates in the /etc/informix/allowed.surrogates file, you can only map users
to those specified OS users or groups.

If you map user to a user ID number, then remember to not create a user account
on the Informix host computer with the same number.

The USERMAPPING configuration parameter must be set to ADMIN in order to
assign user a server administrative privilege with the ADMINISTRATOR keyword.

Note:

Use of this AUTHORIZATION clause (and of the AUTHORIZATION clause of the
ALTER USER, CREATE USER, or CREATE DEFAULT USER statements) is not
recommended. Different syntax will support role separation in a future release.

The PUBLIC and AUTHORIZATION keywords cannot be used together in the
same statement, because the PUBLIC group cannot be granted server administrator
privileges.

Specifying a directory for the user files with the HOME keyword is optional, but in
some cases it is highly recommended. When an externally authenticated user is
mapped to a surrogate user name but no HOME directory is specified in the
GRANT ACCESS TO statement, then the mapped user has the same home
directory as the user account on the Informix host computer. When a user is
mapped to a surrogate user identity with no set home directory, then Informix
creates a directory for user files in $INFORMIXDIR/users. In the latter case, the
directory name in $INFORMIXDIR/users takes the form uid.ID_number (for example,
uid.101).

Examples

The syntax and explanations in this section are examples for the following
environment, where the acronym GID abbreviates group ID number, and the
acronym UID abbreviates user ID number:
v There is a user fred with an OS account on the Informix host computer. User

fred has database server access with UID 3000, GID 3000 (users), auxiliary group
200 (staff), and home directory /home/fred.

v On the same computer, there exists an OS account for user dbuser. This account
is locked so that dbuser cannot log in. The dbuser account exists only for the
purpose of surrogate user mapping. It has UID 3050, GID 4000 (ifx_user), and
home directory /home/dbuser.

v The group ifx_user has GID 4000, with users bill and eileen.
v The administrator setting up mapped users knows that there is no entry for UID

101 in /etc/passwd (or its equivalent) and no entry for GID 10011 or 10101 in
/etc/group (or its equivalent) .

v User bob does not have OS account on the Informix host computer but can
authenticate through PAM or LDAP. The database server is configured to accept
authentication through the PAM or LDAP module.

2-536 IBM Informix Guide to SQL: Syntax

v The USERMAPPING parameter in the onconfig file is set to ADMIN.

Mapping an externally authenticated user to a surrogate user name:

The administrator maps bob to the database server access privileges that already
exist for user fred by issuing the following GRANT statement:
GRANT ACCESS TO bob PROPERTIES USER fred;

Granting Informix access to all externally authenticated users:

In this environment, the purpose of the user dbuser account on the Informix host
computer is to grant database server access to mapped users. In a situation where
there are many mapped users and they do not need to know about the user files
created in the home directory, the administrator might find it efficient and
sufficiently secure to map PUBLIC to the dbuser surrogate user identity. The
administrator can map all authenticated users (PUBLIC) to the privileges
established for dbuser with the following GRANT ACCESS statement:
GRANT ACCESS TO PUBLIC PROPERTIES USER dbuser;

Note: The mapping of PUBLIC to a surrogate user identity is designed for
mapped users who do not create or are not concerned with user files on the home
directory, such as a consumer who is accessing Informix databases on a retail Web
site. If you want to map users concerned with the functioning of the database
server to a surrogate user identity like dbuser, it is recommended to map these
users individually with a designated home directory, as in the following example:
GRANT ACCESS TO bob PROPERTIES USER dbuser HOME "/home/dbuser/bob";

Mapping an externally authenticated user to a UID-GID pair:

The administrator maps bob to a surrogate user identity that consists of a
UID-GID pair that enables database server access by running the following
statement:
GRANT ACCESS TO bob PROPERTIES UID 101, GROUP (10011);

Because no specific directory was specified, a directory under $INFORMIXDIR/users
will be created with the name uid.101 and this path will be used as the home
directory. The UID 101 and GROUP (10011) are anonymous because they do not
have entries in the respective /etc directories that designate UIDs and GIDs that
can access Informix .

Alternatively, the administrator can map bob to a surrogate user identity that is a
combination of an anonymous UID and to an explicit group, such as in the
following example:
GRANT ACCESS TO bob PROPERTIES 101, GROUP (ifx_user);

Because the ifx_user group has members bill and eileen, the group is not
anonymous.

Mapping an externally authenticated user to a surrogate user identity that has
server administrative privileges:

In the following example, the administrator grants DBSA privileges to bob:

GRANT ACCESS TO bob PROPERTIES USER fred, GROUP (ifx_user), AUTHORIZATION
(dbsa);

Chapter 2. SQL statements 2-537

User bob is assigned UID 3000 (fred) and GIDs 3000 (users), 200 (staff), and the
extra group 1000 (ifx_user). The administrative role granted to bob could be
different by replacing dbsa with a different privilege (DBSSO, AAO, or
BARGROUP). If the USERMAPPING parameter were set to BASIC in the onconfig
file, then bob would not be granted DBSA privileges by this statement. If
USERMAPPING were set to OFF, then bob would not be able to connect to the
database server at all.

Examples

The following GRANT statements are examples of valid ACCESS TO PROPERTIES
clauses, using hypothetical values. These examples do not represent the entire
syntax and possible semantics of the ACCESS TO PROPERTIES clause.
v GRANT ACCESS TO bob PROPERTIES USER fred;

v GRANT ACCESS TO PUBLIC PROPERTIES USER dbuser;

v GRANT ACCESS TO bob PROPERTIES USER dbuser HOME "/home/dbuser/bob";

v GRANT ACCESS TO bob PROPERTIES UID 101, GROUP (10011);

v GRANT ACCESS TO bob PROPERTIES 101, GROUP (ifx_user);

v GRANT ACCESS TO bob PROPERTIES USER fred, GROUP (ifx_user), AUTHORIZATION
(DBSA);

Related concepts:
“Revoking database server access from mapped users (UNIX, Linux)” on page
2-621

Mapped user surrogates in the allowed.surrogates file (UNIX, Linux) (Security
Guide)
Related tasks:

Specifying surrogates for mapped users (UNIX, Linux) (Security Guide)
Related reference:

onmode -cache surrogates: Cache the allowed.surrogates file (Administrator's
Reference)

USERMAPPING configuration parameter (UNIX, Linux) (Administrator's
Reference)

GRANT FRAGMENT statement
Use the GRANT FRAGMENT statement to assign privileges on table fragments in
the local database if the table is fragmented by expression.

Syntax

�� GRANT FRAGMENT
(1)

Fragment-Level Privileges ON table
'owner' .

�

,

(fragment) �

2-538 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_am_050.htm#ids_am_050
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_am_050.htm#ids_am_050
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_am_051.htm#ids_am_051
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1138.htm#ids_adr_1138
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1138.htm#ids_adr_1138
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1101.htm#ids_adr_1101
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1101.htm#ids_adr_1101

�

�

�

TO PUBLIC
, WITH GRANT OPTION AS 'grantor'

'user'
,

'role'

��

Notes:

1 See “Fragment-Level Privileges”

Element Description Restrictions Syntax

fragment Name of a fragment Must exist; cannot be
delimited by quotation
marks

“Identifier” on page
5-21

grantor User who can revoke the privileges Same as for user “Owner name” on page
5-49

owner User who owns table Must be owner of table “Owner name” on page
5-49

role Role to receive privileges Must exist in sysusers “Owner name” on page
5-49

table Fragmented table on which fragment
privileges are granted

Must exist and must be
fragmented by expression

“Identifier” on page
5-21

user User to whom privileges are to be granted Must be a valid
authorization identifier

“Owner name” on page
5-49

Usage

This statement is an extension to the ANSI/ISO standard for SQL.

Use the GRANT FRAGMENT statement to grant to users (or roles) any of the
Insert, Update, and Delete access privileges on individual fragments of a table. The
GRANT FRAGMENT statement is valid only for tables that are fragmented
according to an expression-based distribution scheme. For an explanation of this
type of fragmentation strategy, see “Expression Distribution Scheme” on page 2-19.
Related concepts:

Table-level privileges (Database Design Guide)
Related reference:
“GRANT statement” on page 2-502
“REVOKE FRAGMENT statement” on page 2-643
“REVOKE statement” on page 2-618

Fragment-Level Privileges
The keyword or keywords that follow the FRAGMENT keyword specify
fragment-level privileges, which are a logical subset of table-level privileges:

Fragment-Level Privileges:

Chapter 2. SQL statements 2-539

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_095.htm#ids_ddi_095

�

ALL
,

INSERT
DELETE
UPDATE

These keywords correspond to the following fragment-level privileges:

Keyword
Effect on Grantee

ALL Receives Insert, Delete, and Update privileges on the fragment

INSERT
Can insert rows into the fragment

DELETE
Can delete rows from the fragment

UPDATE
Can update rows in the fragment and in any columns.

Definition of Fragment-Level Authorization
In an ANSI-compliant database, the owner implicitly receives all table-level
privileges on a newly created table, but no other users receive privileges.

A user who has table privileges on a fragmented table has the privileges implicitly
on all fragments of the table. These privileges are not recorded in the sysfragauth
system catalog table.

When a fragmented table is created in a database that is not ANSI compliant, the
table owner implicitly receives all table-level privileges on the table, and other
users (that is, PUBLIC) receive all fragment-level privileges by default. The
privileges granted to PUBLIC are explicitly recorded in the systabauth system
catalog table.

If you use the REVOKE statement to withdraw existing table-level privileges,
however, you can then use the GRANT FRAGMENT statement to restore specified
table-level privileges to users, roles, or PUBLIC on some subset of the fragments.

Whether or not the database is ANSI compliant, you can use the GRANT
FRAGMENT statement to grant explicit Insert, Update, and Delete privileges on
one or more fragments of a table that is fragmented by expression. The privileges
that the GRANT FRAGMENT statement grants are explicitly recorded in the
sysfragauth system catalog table.

The Insert, Update, and Delete privileges that are conferred on table fragments by
the GRANT FRAGMENT statement are collectively known as fragment-level
privileges or fragment-level authority.

Effect of Fragment-Level Authorization in Statement Validation
Fragment-level privilege enables users to execute INSERT, DELETE, and UPDATE
data manipulation language (DML) statements on table fragments, even if the
grantees lack Insert, Update, and Delete privileges on the table as a whole. Users
who lack the table privileges can insert, delete, and update rows in authorized
fragments because of the algorithm by which the database server validates DML
statements. This algorithm consists of the following checks:

2-540 IBM Informix Guide to SQL: Syntax

1. When a user executes an INSERT, DELETE, or UPDATE statement, the
database server first checks whether the user has the table privileges necessary
for the operation attempted. If the table privileges exist, the statement continues
processing.

2. If the table privileges do not exist, the database server checks whether the table
is fragmented by expression. If the table is not fragmented by expression, the
database server returns an error to the user. This error indicates that the user
does not have the privilege to execute the statement.

3. If the table is fragmented by expression, the database server checks whether the
user holds the fragment privileges necessary for the attempted operation. If the
user holds the required fragment privileges, the database server continues to
process the statement. If the fragment privileges do not exist, the database
server returns an error to the user. This error indicates that the user does not
have the privilege to execute the statement.

Duration of Fragment-Level Privileges
The duration of fragment-level privileges is tied to the duration of the
fragmentation strategy for the table as a whole.

If you drop a fragmentation strategy by means of a DROP TABLE statement or by
the INIT, DROP, or DETACH clauses of an ALTER FRAGMENT statement, you
also drop any privileges that exist for the affected fragments. Similarly, if you drop
a fragment of a table, you also drop any privileges that exist for the fragment.

Tables that are created as a result of a DETACH or INIT clause of an ALTER
FRAGMENT statement do not keep the privileges that the former fragment or
fragments had when they were part of the fragmented table. Instead, such tables
assume the default table privileges.

If a table on which fragment privileges are defined is changed to a table with a
round-robin strategy or some other expression strategy, the fragment privileges are
also dropped, and the table assumes the default table privileges.

Specifying Fragments
You can specify one fragment or a comma-separated list of fragments, with the
name (or list of names) enclosed between parentheses that immediately follow the
ON table specification. You cannot use quotation marks to delimit fragment names.
The database server issues an error if you include no fragment, or if no fragment
of the specified table matches a fragment that you list.

Each fragment must be referenced by its name. If you did not declare an explicit
identifier when you created the fragment, its name defaults to the name of the
dbspace in which it resides.

After a dbspace is renamed successfully by the onspaces utility, only the new name
is valid. Informix automatically updates existing fragmentation strategies in the
system catalog to substitute the new dbspace name, but you must specify the new
name in GRANT FRAGMENT statement to reference a fragment whose default
name is the name of a renamed dbspace.

The TO Clause
The list of one or more users or roles that follows the TO keyword identifies the
grantees. You can specify the PUBLIC keyword to grant the specified
fragment-level privileges to all users.

Chapter 2. SQL statements 2-541

You cannot use GRANT FRAGMENT to grant fragment-level privileges to yourself,
either directly or through roles.

If you enclose user or role in quotation marks, the name is case sensitive and is
stored exactly as you typed it. In an ANSI-compliant database, if you do not use
quotation marks around user or around role, the name is stored in uppercase
letters.

The following statement grants the Insert, Update, and Delete privileges on the
fragment of the customer table in part1 to user larry:
GRANT FRAGMENT ALL ON customer (part1) TO larry;

The following statement grants the Insert, Update, and Delete privileges on the
fragments of the customer table in part1 and part2 to user millie:
GRANT FRAGMENT ALL ON customer (part1, part2) TO millie;

To grant privileges on all fragments of a table to the same user or users, you can
use the GRANT statement instead of the GRANT FRAGMENT statement. You can
also use the GRANT FRAGMENT statement for this purpose.

Assume that the customer table is fragmented by expression into three fragments,
and these fragments reside in the dbspaces named part1, part2, and part3. You can
use either of the following statements to grant the Insert privilege on all fragments
of the table to user helen:
GRANT FRAGMENT INSERT ON customer (part1, part2, part3) TO helen;

GRANT INSERT ON customer TO helen;

Granting Privileges to One User or a List of Users
You can grant fragment-level privileges to a single user or to a list of users.

The following statement grants the Insert, Update, and Delete privileges on the
fragment of the customer table in part3 to user oswald:
GRANT FRAGMENT ALL ON customer (part3) TO oswald;

The following statement grants the Insert, Update, and Delete privileges on the
fragment of the customer table in part3 to users jerome and hilda:
GRANT FRAGMENT ALL ON customer (part3) TO jerome, hilda;

Granting One Privilege or a List of Privileges
When you specify fragment-level privileges in a GRANT FRAGMENT statement,
you can specify one privilege, a list of privileges, or all privileges.

The following statement grants the Update privilege on the fragment of the
customer table in part1 to user ed:
GRANT FRAGMENT UPDATE ON customer (part1) TO ed;

The following statement grants the Update and Insert privileges on the fragment of
the customer table in part1 to user susan:
GRANT FRAGMENT UPDATE, INSERT ON customer (part1) TO susan;

The following statement grants the Insert, Update, and Delete privileges on the
fragment of the customer table in part1 to user harry:
GRANT FRAGMENT ALL ON customer (part1) TO harry;

2-542 IBM Informix Guide to SQL: Syntax

WITH GRANT OPTION Clause
As in other GRANT statements, the WITH GRANT OPTION keywords specify that
the grantee can grant the same fragment-level privileges to other users. WITH
GRANT OPTION is not valid if the TO clause specifies a role as grantee. For
additional information, see “WITH GRANT OPTION keywords” on page 2-522.

The following statement grants the Update privilege on the fragment of the
customer table in part3 to user george and also gives george the right to grant the
Update privilege on the same fragment to other users:
GRANT FRAGMENT UPDATE ON customer (part3) TO george WITH GRANT OPTION;

AS grantor Clause
The AS grantor clause of the GRANT FRAGMENT statement can specify the
grantor of the privilege. You can use this clause only if you have the DBA privilege
on the database. When you include the AS grantor clause, the database server lists
the user or role who is specified as grantor as the grantor of the privilege in the
grantor column of the sysfragauth system catalog table.

In the next example, the DBA grants the Delete privilege on the fragment of the
customer table in the part3 fragment to user martha, and uses the AS grantor
clause to specify that user jack is listed in sysfragauth as the grantor of the
privilege:
GRANT FRAGMENT DELETE ON customer (part3) TO martha AS jack;

One effect of the AS grantor clause in the previous example is that user jack can
execute the REVOKE FRAGMENT statement to cancel the Delete fragment-level
privilege that martha holds, if this GRANT FRAGMENT statement were the only
source of the fragment authority of martha on the customer rows in part3.

Omitting the AS grantor Clause
When GRANT FRAGMENT does not include the AS grantor clause, the user who
issues the statement is the default grantor of the specified fragment privileges.

In the next example, the user grants the Update privilege on the fragment of the
customer table in part3 to user fred. Because this statement does not specify the
AS grantor clause, the user who issues the statement is listed by default as the
grantor of the privilege in the sysfragauth system catalog table.
GRANT FRAGMENT UPDATE ON customer (part3) TO fred;

If you omit the AS grantor clause of GRANT FRAGMENT, or if you specify your
own login name as the grantor, you can later use the REVOKE FRAGMENT
statement to revoke the privilege that you granted to the specified user. For
example, if you grant the Delete privilege on the fragment of the customer table in
part3 to user martha but specify user jack as the grantor of the privilege, user jack
can revoke that privilege from user martha, but you cannot revoke that privilege
from user martha.

The DBA, or the owner of the fragment, can use the AS clause of the REVOKE
FRAGMENT statement to revoke privileges on the fragment.

INFO statement
Use the INFO statement to list the names of all the user-defined tables in the
current database, or to display information about a specific table.

Chapter 2. SQL statements 2-543

Syntax

This statement is an extension to the ANSI/ISO standard for SQL. You can use this
statement only with DB-Access.

�� INFO TABLES
COLUMNS FOR table
INDEXES
STATUS
PRIVILEGES
ACCESS
FRAGMENTS
REFERENCES

��

Element Description Restrictions Syntax

table Table about which you seek information Must exist “Database Object Name” on page
5-16

Usage

The INFO TABLES statement lists the names of all the user-defined tables in the
current database. Other keywords that can immediately follow the INFO keyword
instruct DB-Access to display various attributes of the table whose name follows
the FOR keyword. To display information from more than one keyword option,
issue multiple INFO statements.

The keyword options that the INFO statement supports can display the following
information:
v TABLES Keyword

Use TABLES (with no FOR clause) to list the identifier of every table in the
current database, not including system catalog tables. Each user-defined table is
listed in one of the following formats:
– If you are the owner of the cust_calls table, it appears as cust_calls.
– If you are not the owner of the cust_calls table, the authorization identifier of

the owner precedes the table name, such as 'june'.cust_calls.
v COLUMNS Keyword

Use COLUMNS to display the names and data types of the columns in the
specified table, showing for each column whether NULL values are allowed.

v INDEXES Keyword

Use INDEXES to display the name, owner, and type of each index of the
specified table, the clustered status, and listing the indexed columns.

v FRAGMENTS Keyword

Use FRAGMENTS to display the fragmentation strategy and the names of the
dbspaces storing the fragments of a fragmented table. If the table is fragmented
with an expression-based distribution scheme, the INFO statement also shows
the expressions.

v ACCESS or PRIVILEGES Keyword

Use ACCESS or PRIVILEGES to display the discretionary access privileges
currently held by users, roles, and the PUBLIC group for the specified table.
(These two keywords are synonyms in this context.)

v REFERENCES Keyword

2-544 IBM Informix Guide to SQL: Syntax

Use REFERENCES to display the References access privilege for users who can
define referential constraints on the columns of the specified table. For
database-level privileges, use a SELECT statement to query the sysusers system
catalog table.

v STATUS Keyword

Use STATUS to display information about the owner, row length, number of
rows and columns, creation date, and the status of audit trails for the specified
table.

An alternative to using the INFO statement of SQL is to use the Info command of
the SQL menu or of the Table menu of DB-Access to display the same and
additional information.

Examples

Use the following example to list the user tables in a database:
INFO TABLES;

To display information about a specific table, use the syntax:
INFO info_keyword FOR table

Here table is the table name and info_keyword is one of the seven keyword options,
besides TABLES, to the INFO statement. For example, to display the names of the
columns of the table customer, use this statement:
INFO COLUMNS FOR customer;

This example produces the following output:
Column name Type Nulls

customer_num serial no
fname char(15) yes
lname char(15) yes
company char(20) yes
address1 char(20) yes
address2 char(20) yes
city char(15) yes
state char(2) yes
zipcode char(5) yes
phone char(18) yes

Related concepts:

The Query-language option (DB-Access Guide)
Related reference:
“GRANT statement” on page 2-502
“REVOKE statement” on page 2-618
Related information:

Display table information (DB-Access Guide)

INSERT statement
Use the INSERT statement to insert one or more new rows into a table or view, or
to insert one or more elements into an SQL or Informix ESQL/C collection
variable.

Chapter 2. SQL statements 2-545

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dba.doc/ids_dba_057.htm#ids_dba_057
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dba.doc/ids_dba_138.htm#ids_dba_138

Syntax

�� INSERT �

�

�

�

(1)
INTO synonym VALUES Clause

view , (2)
table EXECUTE Routine Clause

(column) (3)
Subset of SELECT Statement

external
, (3)

Subset of SELECT Statement
(column)

(6) (7)
INTO Collection-Derived Table Field Options

(4) (5)
AT position

��

Field Options:

�

,

field

(1)
VALUES Clause

(3)
Subset of SELECT Statement

Notes:

1 See “VALUES Clause” on page 2-550

2 See “Execute Routine Clause” on page 2-556

3 See “Subset of SELECT Statement” on page 2-556

4 Stored Procedure Language only

5 ESQL/C only

6 See “Collection-Derived Table” on page 5-4

7 Informix extension

Element Description Restrictions Syntax

column Column to receive new value See “Specifying Columns” on page
2-547.

“Identifier” on page
5-21

external External table into which to
insert data

Must exist “Database Object
Name” on page 5-16

field Field of a named or unnamed
ROW data type

Must already be defined in the
database

“Field Definition” on
page 2-244

position Position at which to insert an
element of a LIST data type

Literal integer or an INT or
SMALLINT type SPL variable.

“Literal Number” on
page 4-215

synonym, table,
view

Table, view, or synonym in
which to insert data

Synonym or view and the table to
which it points must exist

“Database Object
Name” on page 5-16

Usage

To insert data into a table, you must either own the table or have the Insert
privilege for the table (see “GRANT statement” on page 2-502). To insert data into

2-546 IBM Informix Guide to SQL: Syntax

a view, you must have the required Insert privilege, and the view must meet the
requirements explained in “Inserting Rows Through a View” on page 2-548.

If the table or view has data integrity constraints, the inserted rows must meet the
constraint criteria. If they do not, the database server returns an error. If the
checking mode is set to IMMEDIATE, all specified constraints are checked at the
end of each INSERT statement. If the checking mode is set to DEFERRED, all
specified constraints are not checked until the transaction is committed.
Related concepts:

Data manipulation statements (GLS User's Guide)
Related reference:
“DROP SEQUENCE statement” on page 2-444
“ALTER SEQUENCE statement” on page 2-68
“UPDATE statement” on page 2-852
“LOAD statement” on page 2-558
“Literal Row” on page 4-216
“CLOSE statement” on page 2-128
“DECLARE statement” on page 2-386
“DESCRIBE statement” on page 2-412
“EXECUTE statement” on page 2-455
“FLUSH statement” on page 2-484
“FOREACH” on page 3-30
“OPEN statement” on page 2-581
“PREPARE statement” on page 2-589
“PUT statement” on page 2-601
“SELECT statement” on page 2-654

The INSERT statement (SQL Tutorial)

Create and use SPL routines (SQL Tutorial)

Complex data types (ESQL/C Guide)
“DELETE statement” on page 2-404
“RENAME SEQUENCE statement” on page 2-614
“Collection-Derived Table” on page 5-4
“MERGE statement” on page 2-568

Specifying Columns
If you do not explicitly specify one or more columns, data is inserted into columns
using the column order that was established when the table was created or last
altered. The column order is listed in the syscolumns system catalog table.

In Informix ESQL/C, you can use the DESCRIBE statement with an INSERT
statement to identify the column order and the data type of the columns in a table.

The number of columns specified in the INSERT INTO clause must equal the
number of values supplied in the VALUES clause or by the SELECT statement,
either implicitly or explicitly. If you specify a column list, the columns receive data
in the order in which you list the columns. The first value following the VALUES
keyword is inserted into the first column listed, the second value is inserted into
the second column listed, and so on.

Chapter 2. SQL statements 2-547

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_159.htm#ids_gug_159
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_349.htm#ids_sqt_349
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_412.htm#ids_sqt_412
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0280.htm#ids_esqlc_0280

If you omit a column from the column list, and the column does not have a default
value associated with it, the database server places a NULL value in the column
when the INSERT statement is executed.

Using the AT Clause (ESQL/C, SPL)
Use the AT clause to insert LIST elements at a specified position in a collection
variable. By default, Informix adds a new element at the end of a LIST collection.

If you specify a position greater than the number of elements in the list, the
database server adds the element to the end of the list. You must specify a position
value of at least 1 because the first element in the list is at position 1.

The following SPL example inserts a value at a specific position in a list:
CREATE PROCEDURE test3()

DEFINE a_list LIST(SMALLINT NOT NULL);
SELECT list_col INTO a_list FROM table1 WHERE id = 201;
INSERT AT 3 INTO TABLE(a_list) VALUES(9);
UPDATE table1 VALUES list_col = a_list WHERE id = 201;

END PROCEDURE;

Suppose that before this INSERT, a_list contained the elements {1,8,4,5,2}. After
this INSERT, a_list contains the elements {1,8,9,4,5,2}. The new element 9 was
inserted at position 3 in the list. For more information on inserting values into
collection variables, see “Collection-Derived Table” on page 5-4.

Inserting Rows Through a View
You can insert data through a single-table view if you have the Insert privilege on
the view. To do this, the defining SELECT statement can select from only one table,
and it cannot contain any of the following components:
v DISTINCT keyword
v GROUP BY clause
v Derived value (also referred to as a virtual column)
v Aggregate value

Columns in the underlying table that are unspecified in the view receive either a
default value or a NULL value if no default is specified. If one of these columns
has no default value, and a NULL value is not allowed, the INSERT fails.

You can use data-integrity constraints to prevent users from inserting values into
the underlying table that do not fit the view-defining SELECT statement. For
further information, see “WITH CHECK OPTION Keywords” on page 2-377.

You can insert rows through a single-table or a multiple-table view if an INSTEAD
OF trigger specifies valid INSERT operations in its Action clause. See “INSTEAD
OF Triggers on Views” on page 2-362 for information on how to create INSTEAD
OF triggers that insert through views.

If several users are entering sensitive information into a single table, the built-in
USER function can limit their view to only the specific rows that each user
inserted. The following example contains a view and an INSERT statement that
achieves this effect:
CREATE VIEW salary_view AS

SELECT lname, fname, current_salary FROM salary WHERE entered_by = USER;

INSERT INTO salary VALUES (’Smith’, ’Pat’, 75000, USER);

2-548 IBM Informix Guide to SQL: Syntax

Inserting Rows with a Cursor
In Informix ESQL/C, if you associate a cursor with an INSERT statement, you
must use the OPEN, PUT, and CLOSE statements to carry out the INSERT
operation. For databases that have transactions but are not ANSI-compliant, you
must issue these statements within a transaction.

If you are using a cursor that is associated with an INSERT statement, the rows are
buffered before they are written to the disk. The insert buffer is flushed under the
following conditions:
v The buffer becomes full.
v A FLUSH statement executes.
v A CLOSE statement closes the cursor.
v In a database that is not ANSI-compliant, an OPEN statement implicitly closes

and then reopens the cursor.
v A COMMIT WORK statement ends the transaction.

When the insert buffer is flushed, the client processor performs appropriate data
conversion before it sends the rows to the database server. When the database
server receives the buffer, it converts any user-defined data types and then begins
to insert the rows one at a time into the database. If an error is encountered while
the database server inserts the buffered rows into the database, any buffered rows
that follow the last successfully inserted rows are discarded.

Inserting Rows into a Database Without Transactions
If you are inserting rows into a database with no transaction logging, you must
take explicit action to restore inserted rows if the operation fails. For example, if
INSERT fails after entering some rows, the successfully inserted rows remain in the
table. You cannot recover automatically from a failed insert into a database for
which no transaction log exists

Inserting Rows into a Database with Transactions
If you are inserting rows into a database and you are using explicit transactions,
use the ROLLBACK WORK statement to undo the INSERT. If you do not execute
BEGIN WORK before the INSERT, and the INSERT fails, the database server
automatically rolls back any data modifications made since the beginning of the
INSERT. If you are using an explicit transaction, and the INSERT fails, the database
server automatically undoes the effects of the INSERT.

In an ANSI-compliant database, transactions are implicit, and all database
modifications take place within a transaction. In this case, if an INSERT statement
fails, use the ROLLBACK WORK statement to undo the insertions.

Tables that you create with the RAW logging type are not logged. Thus, raw tables
are not recoverable, even if the database uses logging.

Rows that you insert with a transaction remain locked until the end of the
transaction. The end of a transaction is either a COMMIT WORK statement, where
all modifications are made to the database, or a ROLLBACK WORK statement,
where none of the modifications are made to the database. If many rows are
affected by a single INSERT statement, you can exceed the maximum number of
simultaneous locks permitted. To prevent this situation, either insert fewer rows
per transaction, or lock the page (or the entire table) before you execute the
INSERT statement.

Chapter 2. SQL statements 2-549

VALUES Clause
The VALUES clause can specify values to insert into one or more columns. When
you use the VALUES clause, you can insert only one row at a time.

Each value that follows the VALUES keyword is assigned to the corresponding
column listed in the INSERT INTO clause (or in column order, if a list of columns
is not specified). If you are inserting a quoted string into a column, the maximum
length that can be inserted without error is 256 bytes.

VALUES Clause:

VALUES �

,

(input_var)
(1)

: indicator_var
(2)

$ indicator_var
NULL
USER

(3)
Quoted String

(4)
Literal Number
(2) (5)

Constant Expression
(6)

Column Expression
(7)

Literal Collection
(8)

Literal Row
(9)

Expression
'literal_Boolean'
literal_opaque

Notes:

1 ESQL/C only

2 Informix extension

3 See “Quoted String” on page 4-219

4 See “Literal Number” on page 4-215

5 See “Constant Expressions” on page 4-76

6 See “Column Expressions” on page 4-64

7 See “Literal Collection” on page 4-208

8 See “Literal Row” on page 4-216

9 See “Expression” on page 4-44

Element Description Restrictions Syntax

indicator_var Variable to show if SQL statement
returns NULL to input_var

See the IBM Informix ESQL/C
Programmer's Manual.

Language specific

2-550 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

input_var Variable that holds value to insert.
This can be a collection variable.

Can contain any value option of
VALUES clause

Language specific

literal_opaque Literal representation for an opaque
data type

Must be recognized by the input
support function of the opaque
data type

See documentation of
the opaque type.

literal_Boolean Literal representation of a
BOOLEAN value as a single
character

Either ’t’ (TRUE) or ’f’ (FALSE) “Quoted String” on
page 4-219

In Informix ESQL/C, if you use an input_var variable to specify the value, you can
insert character strings longer than 256 bytes into a table.

For the keywords and the types of literal values that are valid in the VALUES
clause, refer to “Constant Expressions” on page 4-76.

Considering Data Types
The value that the INSERT statement puts into a column does not need to be of
the same data type as the column that receives it. These two data types, however,
must be compatible. Two data types are compatible if the database server has some
way to cast one data type to another. A cast is the mechanism by which the
database server converts one data type to another.

The database server makes every effort to perform data conversion. If the data
cannot be converted, the INSERT operation fails. Data conversion also fails if the
target data type cannot hold the value that is specified. For example, you cannot
insert the integer 123456 into a column defined as a SMALLINT data type because
this data type cannot hold a number that large.

For a summary of the casting that the database server provides, see the IBM
Informix Guide to SQL: Reference. For information on how to create a user-defined
cast, see the CREATE CAST statement in this document and IBM Informix
User-Defined Routines and Data Types Developer's Guide.

In a database that uses a nondefault locale, if the GL_DATETIME environment
variable has a nondefault setting, the USE_DTENV environment variable must be
set to 1 before the INSERT statement can correctly insert localized DATETIME
values into a database table, or into a view, or into an EXTERNAL table object.
Related tasks:

Data Type Casting and Conversion (SQL Reference)

Inserting Values into Serial Columns
You can insert successive numbers, explicit values, or explicit values that reset the
value in a SERIAL, BIGSERIAL, or SERIAL8 column:
v To insert a consecutive serial value

Specify a zero (0) for the serial column in the INSERT statement. In this case, the
database server assigns the next highest value.

v To insert an explicit value
Specify the nonzero value after first verifying that it does not duplicate one
already in the table. If the serial column is uniquely indexed or has a unique
constraint, and your value duplicates one already in the table, an error results. If
the value is greater than the current maximum value, you will create a gap in
the series.

Chapter 2. SQL statements 2-551

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_166.htm#ids_sqr_166

v To create a gap in the series (that is, to reset the serial value)
Specify a positive value that is greater than the current maximum value in the
column.
Alternatively, you can use the MODIFY clause of the ALTER TABLE statement to
reset the next value of a serial column.

For more information, see “Altering the Next Serial Value” on page 2-97.

NULL values are not valid in serial columns.

In Informix, inserting a serial value into a table that is part of a table hierarchy
updates all tables in the hierarchy that contain the serial counter with the value
that you insert. You can express this value either as zero (0) for the next highest
value, or as a specific positive integer.

Inserting Values into Opaque-Type Columns
Informix supports INSERT operations that specify literal values of opaque data
types as quoted strings in the VALUES clause. You can use this syntax to insert
values of opaque UDTs into columns of tables in the local database, or into
columns of tables in other databases of the local instance.

Some opaque data types require special processing when they are inserted. For
example, if an opaque data type contains spatial or multirepresentational data, it
might provide a choice of how to store the data: inside the internal structure or, for
large objects, in a smart large object.

This is accomplished by calling a user-defined support function called assign().
When you execute INSERT on a table whose rows contains one of these opaque
types, the database server automatically invokes the assign() function for the type.
The assign() function can make the decision of how to store the data. For more
information about the assign() support function, see IBM Informix User-Defined
Routines and Data Types Developer's Guide.

Inserting Values into Collection Columns
You can use the VALUES clause to insert values into a collection column. For more
information, see “Collection Constructors” on page 4-88.

For example, suppose you define the tab1 table as follows:
CREATE TABLE tab1

(
int1 INTEGER,
list1 LIST(ROW(a INTEGER, b CHAR(5)) NOT NULL),
dec1 DECIMAL(5,2)
);

The following INSERT statement inserts a row into tab1:
INSERT INTO tab1 VALUES

(
10,
LIST{ROW(1,’abcde’),

ROW(POW(3,3), ’=27’),
ROW(ROUND(ROOT(126)), ’=11’)},

100
);

The collection column, list1, in this example, has three elements. Each element is
an unnamed row type with an INTEGER field and a CHAR(5) field. The first

2-552 IBM Informix Guide to SQL: Syntax

element is composed of two literal values, an integer (1) and a quoted string
(abcde). The second and third elements also use a quoted string to indicate the
second field, but specify the value for the first field with an expression.

Regardless of what method you use to insert values into a collection column, you
cannot insert NULL elements into the column. Thus expressions that you use
cannot evaluate to NULL. If the collection that you are attempting to insert
contains a NULL element, the database server returns an error.

You can also use a collection variable to insert the values of one or more collection
elements into a collection column. For more information, see “Collection-Derived
Table” on page 5-4.

Inserting Values into ROW-Type Columns
Use the VALUES clause to insert values into a named or unnamed ROW type
column, as in the following example:
CREATE ROW TYPE address_t

(
street CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(9)
);

CREATE TABLE employee
(
name ROW (fname CHAR(20), lname CHAR(20)),
address address_t
);

The next example inserts literal values in the name and address columns:
INSERT INTO employee VALUES

(
ROW(’John’, ’Williams’),
ROW(’103 Baker St’, ’Tracy’,’CA’, 94060)::address_t

);

INSERT uses ROW constructors to generate values for the name column (an
unnamed ROW data type) and the address column (a named ROW data type).
When you specify a value for a named ROW data type, you must use the CAST
AS keywords or the double colon (::) operator, with the name of the ROW data
type, to cast the value to the named ROW data type.

For the syntax of ROW constructors, see “Constructor Expressions” on page 4-87 in
the Expression segment. For information on literal values for named ROW and
unnamed ROW data types, see “Literal Row” on page 4-216.

When you use a ROW variable in the VALUES clause, the ROW variable must
contain values for each field value. For more information, see “Inserting into a
Row Variable (ESQL/C, SPL)” on page 2-557.

You can use Informix ESQL/C host variables to insert nonliteral values in two
ways:
v An entire ROW type into a column. Use a row variable in the VALUES clause to

insert values for all fields in a ROW column at one time.
v Individual fields of a ROW type. To insert nonliteral values in a ROW-type

column, insert the elements into a row variable and then specify the collection
variable in the SET clause of an UPDATE statement.

Chapter 2. SQL statements 2-553

Data Types in Distributed INSERT Operations
An INSERT statement (or any other SQL data-manipulation language statement)
that accesses a database of another Informix instance can reference only the
following data types:
v Built-in data types that are not opaque
v BOOLEAN
v LVARCHAR
v DISTINCT of the built-in data types that are not opaque
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of any of the DISTINCT data types that appear in this list.

Cross-server distributed INSERT operations can support these DISTINCT types
only if the DISTINCT types are cast explicitly to built-in types, and all of the
DISTINCT types, their data type hierarchies, and their casts are defined exactly the
same way in each participating database.

Cross-server DML operations cannot reference a column or expression of a
complex, large-object, nor user-defined data type (UDT), nor of an unsupported
DISTINCT or built-in opaque type. For additional information about the data types
that Informix supports in cross-server DML operations, see “Data Types in
Cross-Server Transactions” on page 2-665.

Distributed operations that access other databases of the local Informix instance,
however, can access the cross-server data types that are listed above, and also the
following data types:
v Most of the built-in opaque data types, as listed in “Data Types in Cross-Database

Transactions” on page 2-663
v DISTINCT of the built-in types that are referenced in the line above
v DISTINCT of any of the data types that are listed in either of the two lines

above
v Opaque user-defined data types (UDTs) that can be cast explicitly to built-in

data types.

Cross-database INSERT operations can support these DISTINCT and opaque UDTs
only if all the opaque UDTs and DISTINCT types are cast explicitly to built-in
types, and all of the opaque UDTs, DISTINCT types, data type hierarchies, and
casts are defined exactly the same way in each participating database.

Distributed INSERT transactions cannot access the database of another Informix
instance unless both servers define TCP/IP or IPCSTR connections in their
DBSERVERNAME or DBSERVERALIASES configuration parameters and in the
sqlhosts file or SQLHOSTS registry subkey. The requirement, that both
participating servers support the same type of connection (either TCP/IP or else
IPCSTR), applies to any communication between Informix instances, even if both
reside on the same computer.

Using Expressions in the VALUES Clause
With IBM Informix, you can insert any type of expression except a column
expression into a column. For example, you can insert built-in functions that return
the current date, date and time, login name of the current user, or database server
name where the current database resides.

2-554 IBM Informix Guide to SQL: Syntax

The TODAY keyword returns the system date. The CURRENT or SYSDATE
keyword returns the system date and time. The USER or CURRENT_USER
keyword returns a string that contains the login account name of the current user.
The SITENAME or DBSERVERNAME keyword returns the database server name
where the current database resides. The following example uses built-in functions
to insert data:
INSERT INTO cust_calls (customer_num, call_dtime, user_id,

call_code, call_descr)
VALUES (212, CURRENT, USER, ’L’, ’2 days’);

For more information, see “Expression” on page 4-44.

Inserting NULL Values
When you execute the INSERT statement, the database server inserts a NULL
value into any column for which you provide no value, as well as for all columns
that have no default values and that are not listed explicitly. You also can specify
the NULL keyword in the VALUES clause to indicate that a column should be
assigned a NULL value.

The following example inserts values into three columns of the orders table:
INSERT INTO orders (orders_num, order_date, customer_num) VALUES (0, NULL, 123);

In this example, a NULL value is explicitly entered in the order_date column, and
all other columns of the orders table that are not explicitly listed in the INSERT
INTO clause are also filled with NULL values.

Inserting Values into Protected Tables
In a database that uses label-based access control (LBAC), the INTO clause of the
INSERT statement can reference a table that is protected by a security policy if the
user holds sufficient credentials for the security policy of the label that protects the
table, as well as holding the Insert privilege on the table.

A user who holds no security label, however, cannot insert data into a table that
has LBAC row protection, even if the user has been granted the required
exemptions from rules of the security policy, unless the row label of the protected
table is specified in the VALUES clause of the INSERT statement. Data
manipulation language statements can provide the row label of a protected table
by calling any of three built-in functions whose first argument specifies the name
of the security policy, and whose additional arguments are one of the following:
v name of the security label
v name of the IDSSECURITYLABEL column in the table.
v names of the security policy components in the label and the values of their

elements

For example, the following INSERT statement calls the built-in
SECLABEL_BY_NAME function in order to insert a new row into a table called
tab002 that is protected by a row label called Decca of the MegaCorp security
policy:
INSERT INTO tab002

VALUES (SECLABEL_BY_NAME(’Megacorp’, ’Decca’), 45, ’A.C.Debussy’);

Whether this INSERT operation succeeds depends on whether the security
credentials of the user are sufficient, relative to the component values of the Decca
label, to enable write access to the tab002 table.

Chapter 2. SQL statements 2-555

For additional examples of INSERT statements that access protected tables by
calling SECLABEL_BY_NAME or similar built-in functions, see “Security Label
Support Functions” on page 4-128. For general information about LBAC security
policies, security labels, read and write access rules, and exemptions from those
rules, see your IBM Informix Security Guide.
Related concepts:

Label-based access control (Security Guide)

Truncated CHAR Values
In a database that is not ANSI-compliant, if you assign a value to a CHAR(n)
column or variable and the length of that value exceeds n characters, the database
server truncates the last characters without raising an error. For example, suppose
that you define this table:
CREATE TABLE tab1 (col_one CHAR(2);

The database server truncates the data values in the following INSERT statements
to "jo" and "sa" respectively, but does not return a warning:
INSERT INTO tab1 VALUES ("john");
INSERT INTO tab1 VALUES ("sally");

Thus, in a database that is not ANSI-compliant, the semantic integrity of data for a
CHAR(n) column or variable is not enforced when the value inserted or updated
exceeds the declared length n. (But in an ANSI-compliant database, the database
server issues error -1279 when truncation of character data occurs.)

Subset of SELECT Statement
As indicated in the “INSERT statement” on page 2-545 syntax diagram, not all
clauses and options of the SELECT statement are available for you to use in a
query within an INSERT statement. The following SELECT clauses and options are
not supported in an INSERT statement:
v FIRST and LIMIT
v INTO TEMP
v UNION set operators.

In an ANSI-compliant database, if this statement has a WHERE clause that does
not return rows, sqlca returns SQLNOTFOUND (100).

If an INSERT statement that is part of a multistatement prepared object inserts no
rows, sqlca returns SQLNOTFOUND (100) for both ANSI-compliant databases and
databases that are not ANSI-compliant. In databases that are not ANSI-compliant,
sqlca returns zero (0) if no rows satisfy the WHERE clause.

In Informix, if you are inserting values into a supertable in a table hierarchy, the
subquery can reference a subtable. If you are inserting values into a subtable in a
table hierarchy, the subquery can reference the supertable if it references only the
supertable. That is, the subquery must use the SELECT...FROM ONLY (supertable)
syntax.

Execute Routine Clause
You can specify the EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement
to insert values that a user-defined function returns.

2-556 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_lb_002.htm#ids_lb_002

Execute Routine Clause:

EXECUTE PROCEDURE procedure
FUNCTION function

�

()
,

(1)
Argument

Notes:

1 See “Arguments” on page 5-1

Element Description Restrictions Syntax

function,
procedure

User-defined function or procedure to insert the
data

Must exist “Database Object
Name” on page 5-16

When you use a user-defined function to insert column values, the return values of
the function must have a one-to-one correspondence with the listed columns. That
is, each value that the function returns must be of the data type expected by the
corresponding column in the column list.

For backward compatibility, Informix can use the EXECUTE PROCEDURE
keywords to execute an SPL function that was created with the CREATE
PROCEDURE statement.

If the called SPL routine scans or updates the target table of the INSERT statement,
the database returns an error. That is, the SPL routine cannot select data from the
table into which you are inserting rows.

If a called SPL routine contains certain SQL statements, the database server returns
an error. For information on which SQL statements cannot be used in an SPL
routine that is called within a data manipulation statement, see “Restrictions on
SPL Routines in Data-Manipulation Statements” on page 5-82.

Number of Values Returned by SPL, C, and Java Functions
An SPL function can return one or more values. Make sure that the number of
returned values matches the number of columns in the table or the number of
columns in the column list of the INSERT statement. These columns must have
data types that are compatible with the values that the SPL function returns.

An external function written in the C or Java language can only return one value.
Make sure that you specify only one column in the column list of the INSERT
statement. This column must have a compatible data type with the value that the
external function returns. The external function can be an iterator function.

The following example shows how to insert data into a temporary table called
result_tmp in order to output to a file the results of a user-defined function (f_one)
that returns multiple rows:
CREATE TEMP TABLE result_tmp(...);
INSERT INTO result_tmp EXECUTE FUNCTION f_one();
UNLOAD TO ’file’ SELECT * FROM foo_tmp;

Inserting into a Row Variable (ESQL/C, SPL)
The INSERT statement does not support a row variable in the Collection-
Derived-Table segment. You can use the UPDATE statement, however, to insert
new field values into a row variable. For example, the following Informix ESQL/C

Chapter 2. SQL statements 2-557

code fragment inserts a new row into the rectangles table (which “Inserting Values
into ROW-Type Columns” on page 2-553 defines):
EXEC SQL BEGIN DECLARE SECTION;

row (x int, y int, length float, width float) myrect;
EXEC SQL END DECLARE SECTION;

...
EXEC SQL update table(:myrect)

set x=7, y=3, length=6, width=2;
EXEC SQL insert into rectangles values (12, :myrect);

For more information, see “Updating a Row Variable (ESQL/C)” on page 2-867.

Using INSERT as a Dynamic Management Statement
In Informix ESQL/C, you can use the INSERT statement to handle situations
where you need to write code that can insert data whose structure is unknown at
the time you compile. For more information, refer to the dynamic management
section of the IBM Informix ESQL/C Programmer's Manual.

LOAD statement
Use the LOAD statement to insert data from an operating-system file into an
existing table or view.

Syntax

Only DB-Access supports the LOAD statement.

�� LOAD FROM 'filename'
DELIMITER 'delimiter'

INSERT INTO �

� table
view
synonym

�

,

(column)

��

Element Description Restrictions Syntax

column Column to receive data values from
filename

See “INSERT INTO Clause” on
page 2-564.

“Identifier” on page
5-21

delimiter Character to separate data values in each
line of the load file. Default delimiter is
the pipe (|) symbol.

See “DELIMITER Clause” on
page 2-563.

“Quoted String” on
page 4-219

filename Path and filename of file to read. Default
pathname is current directory

See “LOAD FROM File” on
page 2-559.

Specific to operating
system rules

synonym, table,
view

Synonym for the table in which to insert
data from filename

Synonym and table or view to
which it points must exist

“Database Object
Name” on page 5-16

Usage

This statement is an extension to the ANSI/ISO standard for SQL. You can use this
statement only with DB-Access.

The LOAD statement appends new rows to the table. It does not overwrite existing
data. You cannot add a row that has the same key as an existing row.

2-558 IBM Informix Guide to SQL: Syntax

To use the LOAD statement, you must have Insert privileges for the table where
you want to insert data. For information on database-level and table-level
privileges, see the “GRANT statement” on page 2-502.

In a database that uses a nondefault locale, if the GL_DATETIME environment
variable has a nondefault setting, the USE_DTENV environment variable must be
set to 1 before the LOAD statement can correctly insert localized DATETIME
values into a database table, or into a view, or into an object that the CREATE
EXTERNAL TABLE statement defined. For more information on the
GL_DATETIME, GL_DATE, DBTIME, and USE_DTENV environment variables,
refer to the IBM Informix GLS User's Guide.
Related concepts:

The LOAD and UNLOAD statements (Migration Guide)

Load and unload data (GLS User's Guide)
Related reference:
“UNLOAD statement” on page 2-846
“INSERT statement” on page 2-545

LOAD FROM File
The LOAD FROM file contains the data to be loaded into the specified table or
view. The default pathname for the load file is the current directory.

You can use the file that the UNLOAD statement creates as the LOAD FROM file.
(See “UNLOAD TO File” on page 2-847 for a description of how values of various
data types are represented within the UNLOAD TO file.)

If you do not include a list of columns in the INSERT INTO clause, the fields in
the file must match the columns that are specified for the table in number, order,
and data type.

Each line of the file must have the same number of fields. You must define field
lengths that are less than or equal to the length that is specified for the
corresponding column. Specify only values that can convert to the data type of the
corresponding column. The following table indicates how the database server
expects you to represent the data types in the LOAD FROM file (when you use the
default locale, U.S. English).

Type of Data Input Format

blank One or more blank characters between delimiters You can
include leading blanks in fields that do not correspond to
character columns.

BOOLEAN A t or T indicates a TRUE value, and an f or F indicates a
FALSE value.

COLLECTIONS Collection must have its values surrounded by braces ({ }) and
a field delimiter separating each element. For more information,
see “Loading Complex Data Types” on page 2-563.

Chapter 2. SQL statements 2-559

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.mig.doc/ids_mig_181.htm#ids_mig_181
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_162.htm#ids_gug_162

Type of Data Input Format

DATE Character string in the following format: mm/dd/year You must
state the month as a two-digit number. You can use a two-digit
number for the year if the year is in the 20th century. (You can
specify another century algorithm with the DBCENTURY
environment variable.) The value must be an actual date; for
example, February 30 is illegal. You can use a different date
format if you indicate this format with the GL_DATE or
DBDATE environment variable. For more information about
environment variables, see the IBM Informix Guide to SQL:
Reference and the IBM Informix GLS User's Guide.

DECIMAL, MONEY,
FLOAT

Value that can include a leading and/or trailing currency
symbol and thousands and decimal separators Your locale files
or the DBMONEY environment variable can specify a currency
format.

NULL Nothing between the delimiters

ROW types (named or
unnamed)

ROW type must have its values surrounded by parentheses and
a field delimiter that separates each element. For more
information, see “Loading Complex Data Types” on page 2-563.

Simple large objects
(TEXT, BYTE)

TEXT and BYTE columns are loaded directly from the LOAD
TO file. For more information, see “Loading Simple Large
Objects” on page 2-561.

Smart large objects
(CLOB, BLOB)

CLOB and BLOB columns are loaded from a separate
operating-system file. The field for the CLOB or BLOB column
in the LOAD FROM file contains the name of this separate file.
For more information, see “Loading Smart Large Objects” on
page 2-562.

Time Character string in year-month-day hour:minute:second.fraction
format You cannot use data type keywords or qualifiers for
DATETIME or INTERVAL values. The year must be a 4-digit
number, and the month must be a 2-digit number. The DBTIME
or GL_DATETIME environment variable can specify other
end-user formats.

User-defined data formats
(opaque types)

Associated opaque type must have an import support function
defined if special processing is required to copy the data in the
LOAD FROM file to the internal format of the opaque type. An
import binary support function might also be required for data
in binary format. The LOAD FROM file data must be in the
format that the import or import binary support function
expects. The associated opaque type must have an assign
support function if special processing is required before writing
the data in the database. See “Loading Opaque-Type Columns”
on page 2-563.

For more information on DB* environment variables, refer to the IBM Informix
Guide to SQL: Reference. For more information on GL* environment variables, refer
to the IBM Informix GLS User's Guide.

If you are using a nondefault locale, the formats of DATE, DATETIME, MONEY,
and numeric column values in the LOAD FROM file must be compatible with the
formats that the locale supports for these data types. For more information, see the
IBM Informix GLS User's Guide.

The following example shows the contents of an input file named new_custs:

2-560 IBM Informix Guide to SQL: Syntax

0|Jeffery|Padgett|Wheel Thrills|3450 El Camino|Suite 10|Palo Alto|CA|94306||
0|Linda|Lane|Palo Alto Bicycles|2344 University||Palo Alto|CA|94301|

(415)323-6440

This data file conveys the following information:
v Indicates a serial field by specifying a zero (0)
v Uses the pipe (|), the default delimiter
v Assigns NULL values to the phone field for the first row and the address2 field

for the second row
The NULL values are shown by two delimiters with nothing between them.

The following statement loads the values from the new_custs file into the
customer table that jason owns:
LOAD FROM ’new_custs’ INSERT INTO jason.customer;

If you include any of the following special characters as part of the value of a field,
you must precede the character with a backslash (\) escape symbol:
v Backslash
v Delimiter
v Newline character anywhere in the value of a VARCHAR or NVARCHAR

column
v Newline character at end of a value for a TEXT value

Do not use the backslash character (\) as a field separator. It serves as an escape
character to inform the LOAD statement that the next character is to be interpreted
as part of the data, rather than as having special significance.

Fields that correspond to character columns can contain more characters than the
defined maximum allows for the field. The extra characters are ignored.

If you are loading files that contain VARCHAR data types, note the following
information:
v If you give the LOAD statement data in which the character fields (including

VARCHAR) are longer than the column size, the excess characters are
disregarded.

v Use the backslash (\) to escape embedded delimiter and backslash characters
in all character fields, including VARCHAR.

v Do not use the following characters as delimiting characters in the LOAD FROM
file: digits (0 to 9), the letters a to f, and A to F, the backslash (\) character, or
the NEWLINE (CTRL-J) character.

Related concepts:

Environment variables in Informix products (SQL Reference)

Loading Simple Large Objects
The database server loads simple large objects (BYTE and TEXT columns) directly
from the LOAD FROM file. Keep the following restrictions in mind when you load
BYTE and TEXT data:
v You cannot have leading and trailing blanks in BYTE fields.
v Use the backslash (\) to escape the special significance of literal delimiter and

backslash characters in TEXT fields.

Chapter 2. SQL statements 2-561

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_199.htm#ids_sqr_199

v Data being loaded into a BYTE column must be in ASCII-hexadecimal form.
BYTE columns cannot contain preceding blanks.

v Do not use the following characters as delimiting characters in the LOAD FROM
file: digits (0 to 9), the letters a to f, and A to F, the backslash (\) character, or
the NEWLINE (CTRL-J) character.

For loading TEXT columns in a non-default locale, the database server handles any
required code-set conversions for the data. See also the IBM Informix GLS User's
Guide.

If you are unloading files that contain BYTE or TEXT data types, objects smaller
than 10 kilobytes are stored temporarily in memory. You can adjust the 10-kilobyte
setting to a larger setting with the DBBLOBBUF environment variable. Simple
large objects that are larger than the default or the setting of DBBLOBBUF are
stored in a temporary file. For more information about the DBBLOBBUF
environment variable, see the IBM Informix Guide to SQL: Reference.
Related reference:

DBBLOBBUF environment variable (SQL Reference)

Loading Smart Large Objects
The database server loads smart large objects (BLOB and CLOB columns) from a
separate operating-system file on the client computer. For information on the
structure of this file, see “Unloading Smart Large Objects” on page 2-849.

In a LOAD FROM file, a CLOB or BLOB column value appears as follows:
start_off,length,client_path

In this format, start_off is the starting offset (in hexadecimal) of the
smart-large-object value within the client file, length is the length (in hexadecimal)
of the BLOB or CLOB value, and client_path is the pathname for the client file. No
blank spaces can appear between these values.

For example, to load a CLOB value that is 512 bytes long and is at offset 256 in the
/usr/apps/clob9ce7.318 file, the database server expects the CLOB value to appear
as follows in the LOAD FROM file:
|100,200,/usr/apps/clob9ce7.318|

If the whole client file is to be loaded, a CLOB or BLOB column value appears as
follows in the LOAD FROM file:
client_path

For example, to load a CLOB value that occupies the entire file
/usr/apps/clob9ce7.318, the database server expects the CLOB value to appear as
follows in the LOAD FROM file:
|/usr/apps/clob9ce7.318|

In DB-Access, the USING clause is valid within files executed from DB-Access. In
interactive mode, DB-Access prompts you for a password, so the USING keyword
and validation_var are not used.

For CLOB columns, the database server handles any required code-set conversions
for the data. See also the IBM Informix GLS User's Guide.

2-562 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_208.htm#ids_sqr_208

Loading Complex Data Types
In a LOAD FROM file, complex data types appear as follows:
v Collections are introduced with the appropriate constructor (SET, MULTISET, or

LIST), and their elements are enclosed in braces ({ }) and separated with a
comma, as follows:
constructor{val1 , val2 , ... }

For example, to load the SET values {1, 3, 4} into a column whose data type is
SET(INTEGER NOT NULL), the corresponding field of the LOAD FROM file
appears as:
|SET{1 , 3 , 4}|

v Row types (named and unnamed) are introduced with the ROW constructor and
their fields are enclosed with parentheses and separated with a comma, as
follows:
ROW(val1 , val2 , ...)

For example, to load the ROW values (1, ’abc’), the corresponding field of the
LOAD FROM file appears as:
|ROW(1 , abc)|

Loading Opaque-Type Columns
Some opaque data types require special processing when they are inserted. For
example, if an opaque data type contains spatial or multirepresentational data, it
might provide a choice of how to store the data: inside the internal structure or, for
large objects, in a smart large object.

This processing is accomplished by calling a user-defined support function called
assign(). When you execute the LOAD statement on a table whose rows contain
one of these opaque types, the database server automatically invokes the assign()
function for the type. The assign() function can make the decision of how to store
the data. For more information about the assign() support function, see the IBM
Informix User-Defined Routines and Data Types Developer's Guide.

DELIMITER Clause
Use the DELIMITER clause to specify the delimiter that separates the data
contained in each column in a row in the input file. You can specify TAB (CTRL-I)
or a blank space (= ASCII 32) as the delimiter symbol. You cannot use the
following items as the delimiter symbol:
v Backslash (\)
v NEWLINE character (CTRL-J)
v Hexadecimal numbers (0 to 9, a to f, A to F)

If you omit this clause, the database server checks the DBDELIMITER
environment variable. For information about how to set the DBDELIMITER
environment variable, see the IBM Informix Guide to SQL: Reference.

If the DBDELIMITER environment variable has not been set, the default delimiter
is the pipe (|).

The following example specifies the semicolon (;) as the delimiting character. The
example uses Windows file-naming conventions.
LOAD FROM ’C:\data\loadfile’ DELIMITER ’;’

INSERT INTO orders;

Related reference:

Chapter 2. SQL statements 2-563

DBDELIMITER environment variable (SQL Reference)

INSERT INTO Clause
Use the INSERT INTO clause to specify the table, synonym, or view in which to
load the new data.

You must specify the column names only if one of the following conditions is true:
v You are not loading data into all columns.
v The input file does not match the default order of the columns (the order

specified when the table was created).

The INTO clause cannot specify a table object that the CREATE EXTERNAL
TABLE statement defined.

The following example identifies the price and discount columns as the only
columns in which to add data. The example uses Windows file naming
conventions.
LOAD FROM ’C:\tmp\prices’ DELIMITER ’,’

INSERT INTO norman.worktab(price,discount)

LOCK TABLE statement
Use the LOCK TABLE statement to control access to a table by other processes.

Syntax

�� LOCK TABLE
owner.

table
synonym

IN SHARE
EXCLUSIVE

MODE ��

Element Description Restrictions Syntax

owner Owner of synonym or table Must be the owner of the
specified object

“Owner name” on page 5-49

synonym Synonym for the table to be
locked

Synonym and the table to which it
points must exist

“Identifier” on page 5-21

table Table to be locked See first paragraph of “Usage.” “Identifier” on page 5-21

Usage

This statement is an extension to the ANSI/ISO standard for SQL.

You can use LOCK TABLE to lock a table if either of the following is true:
v You are the owner of the table.
v You have Select privilege on the table or on a column in the table, either from a

direct grant or from a grant to PUBLIC or to your current role.

The LOCK TABLE statement fails if the table is already locked in EXCLUSIVE
mode by another process, or if you request an EXCLUSIVE lock while another user
has locked the same table in SHARE mode.

The SHARE keyword locks a table in shared mode. Shared mode gives other
processes read access to the table but denies write access. Other processes cannot

2-564 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_214.htm#ids_sqr_214

update or delete data if a table is locked in shared mode.

The EXCLUSIVE keyword locks a table in exclusive mode. This mode denies other
processes both read and write access to the table. Exclusive-mode locking
automatically occurs during the following statements:
v ALTER FRAGMENT
v ALTER INDEX
v ALTER TABLE
v CREATE INDEX
v DROP INDEX
v RENAME COLUMN
v RENAME TABLE
v START VIOLATIONS TABLE
v STOP VIOLATIONS TABLE
v TRUNCATE

The ONLINE keyword in some DDL operations

During certain ALTER FRAGMENT, DROP INDEX, and CREATE INDEX
operations, including the ONLINE keyword can reduce the risk of run time errors
when a concurrent session attempts to access the same table. For more information
about the locking behavior of DDL statements that support the ONLINE keyword
option, see these topics:
v “Using the ONLINE keyword in ATTACH operations” on page 2-15
v “Using the ONLINE keyword in DETACH operations” on page 2-21
v “Using the ONLINE keyword in MODIFY operations” on page 2-43
v “The ONLINE keyword of CREATE INDEX” on page 2-216
v “The ONLINE keyword of DROP INDEX” on page 2-433.

LOCK TABLE statement behavior on secondary servers

You can set an exclusive lock on a table from an updatable secondary server in a
high-availability cluster. For exclusive mode locks requested from a secondary
server, sessions can read the table but not update it. This behavior is similar to
shared access mode on a secondary server; that is, when one session has an
exclusive lock on a given table, no other session can obtain a shared or exclusive
lock on that table.

On read-only secondary servers, the session issuing the LOCK TABLE statement
does not lock the table and the database server does not return an error to the
client.

Shared mode locks in a cluster behave the same as for a standalone server. After a
LOCK TABLE statement runs successfully, users can read the table but cannot
modify it until the lock is released.
Related reference:
“Options Valid on Typed Tables” on page 2-117
“BEGIN WORK statement” on page 2-126
“COMMIT WORK statement” on page 2-133
“ROLLBACK WORK statement” on page 2-646
“SET ISOLATION statement” on page 2-796

Chapter 2. SQL statements 2-565

“SET LOCK MODE statement” on page 2-804
“UNLOCK TABLE statement” on page 2-851

Concurrency and locks (SQL Tutorial)

Concurrent Access to Tables with Shared Locks
After the LOCK TABLE statement that specifies the IN SHARE MODE keywords
executes successfully, other users can read the table but cannot modify its data
until the lock is released. In databases that support transaction logging, the
SELECT statement can implicitly place a shared lock on each tables that is listed in
the FROM clause, in order to prevent other users from modifying those tables until
the query is committed or rolled back.

Concurrent Access to Tables with Exclusive Locks
After the LOCK TABLE statement with the IN EXCLUSIVE MODE option executes
successfully, no other user can obtain a lock on the specified table. When you
attempt a DDL operation on that table, however, you might receive RSAM error
-106 if the same table is being accessed by a concurrent session (for example, by
opening a cursor). This error can also affect implicit locks that certain DDL
statements place on tables automatically.

This is possible because table locks do not preclude table access. An exclusive lock
prevents other users from obtaining a lock, but it cannot prevent them from
opening the table for write operations that wait for the exclusive lock to be
released, or for Dirty Read operations on the table. You can set the
IFX_DIRTY_WAIT environment variable to specify that the DDL operation wait
for a specified number of seconds for Dirty Read operations to commit or rollback.

When one or more rows in a table are locked by an exclusive lock, the effect on
other users partly depends on their transaction isolation level. Other users in all
isolation levels except the Dirty Read isolation level might encounter locking
errors, such as transactions that fail because the lock was not released within a
specified time limit, or a deadlock situation.

On tables where row-level locking affects some of the rows, the risk of locking
conflicts can be reduced by enabling transactions to read the most recently
committed version of the data in the row-level locked table, rather than waiting for
the transaction that holds the lock on that row to be committed or rolled back. This
can be accomplished in several different ways, including these:
v From an individual session, issue this SQL statement

SET ISOLATION TO COMMITTED READ LAST COMMITTED;

v For all sessions using Committed Read or Read Committed isolation levels, set
the USELASTCOMMITTED configuration parameter to ’ALL’ or to ’COMMITTED
READ’, or else issue the SET ENVIRONMENT USELASTCOMMITTED statement
with ’ALL’ or ’COMMITTED READ’ as the session environment option.

v For all sessions using Dirty Read or Read Uncommitted isolation levels, set the
USELASTCOMMITTED configuration parameter to ’ALL’ or to ’DIRTY READ’, or
else issue the SET ENVIRONMENT USELASTCOMMITTED statement with
’ALL’ or ’DIRTY READ’ as the session environment option.

v For users for whom a user.sysdbopen() procedure is defined in the database,
the DBA can define that procedure to include the SET ENVIRONMENT
USELASTCOMMITTED statement with ’ALL’ or ’COMMITTED READ’ as the session
environment option, and also issue the SET ISOLATION statement to set
Committed Read as the isolation level.

2-566 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_283.htm#ids_sqt_283

v For users for whom no user.sysdbopen() procedure exists in the database, the
DBA can define a PUBLIC.sysdbopen procedure that specifies the same SET
ENVIRONMENT USELASTCOMMITTED and SET ISOLATION statements.

This LAST COMMITTED isolation feature is useful only when row-level locking is
in effect, rather than when another session holds an exclusive lock on the entire
table. This feature is disabled for the specified table when LOCK TABLE applies a
table-level lock. See “The LAST COMMITTED Option to Committed Read” on
page 2-799 for more information about this LAST COMMITTED feature for
concurrent access to tables in which some rows are locked by exclusive locks, and
for restrictions on the kinds of tables that can support this feature.

Databases with transaction logging
If your database was created with transaction logging, the LOCK TABLE statement
succeeds only if it executes within a transaction. You must issue a BEGIN WORK
statement before you can execute a LOCK TABLE statement.

Transactions are implicit in an ANSI-compliant database. The LOCK TABLE
statement succeeds if the specified table is not already locked by another process.

The following guidelines apply to the use of the LOCK TABLE statement within
transactions:
v You cannot lock system catalog tables.
v You cannot switch between shared and exclusive table locking within a

transaction. For example, once you lock the table in shared mode, you cannot
upgrade the lock mode to exclusive.

v If you issue a LOCK TABLE statement before you access a row in the table, and
PDQ is not in effect, no row locks are set for the table. In this way, you can
override row-level locking and avoid exceeding the maximum number of locks
that are defined in the database server configuration. (But if PDQ is in effect,
you might run out of locks with error -134 unless the LOCKS parameter of your
ONCONFIG file specifies a large enough number of locks.)

v All row and table locks release automatically after a transaction is completed.
The UNLOCK TABLE statement fails in a database that uses transaction logging.

v The same user can explicitly use LOCK TABLE to lock up to 32 tables
concurrently. (Use SET ISOLATION to specify an appropriate isolation level,
such as Repeatable Read, if you need to lock rows from more than 32 tables
during a single transaction.)

The following example shows how to change the locking mode of a table in a
database that was created with transaction logging:
BEGIN WORK;
LOCK TABLE orders IN EXCLUSIVE MODE;
...
COMMIT WORK;
BEGIN WORK;
LOCK TABLE orders IN SHARE MODE;
...
COMMIT WORK;

Warning: It is recommended that you not use nonlogging tables in a transaction. If
you need to use a nonlogging table in a transaction, either lock the table in
exclusive mode or set the isolation level to Repeatable Read to prevent concurrency
problems.

Chapter 2. SQL statements 2-567

Databases without transaction logging
In a database that was created without transaction logging (by omitting the WITH
LOG keywords in the CREATE DATABASE statement), table locks that were set by
the LOCK TABLE statement are released after any of the following events:
v An UNLOCK TABLE statement executes.
v The user closes the database.
v The user exits from the application.

To change the lock mode on a table, release the lock with the UNLOCK TABLE
statement and then issue a new LOCK TABLE statement.

The following example shows how to change the lock mode of a table in an
unlogged database:
LOCK TABLE orders IN EXCLUSIVE MODE;

. . .
UNLOCK TABLE orders;

. . .
LOCK TABLE orders IN SHARE MODE;

Locking Granularity
The default granularity for locking a table is at the page level, or whatever you
specify (either PAGE or ROW) in the IFX_TABLE_LOCKMODE environment
variable, or if that is not set, by setting DEF_TABLE_LOCKMODE in the
ONCONFIG file. The LOCK MODE clause of the CREATE TABLE or ALTER
TABLE statement can override the default locking granularity by specifying PAGE
or ROW. Only row-level locks support the LAST COMMITTED feature of Informix.

The LOCK TABLE statement, however, always locks the entire table, overriding
any other locking granularity specification for the table.

In all of these contexts, the term "lock mode" means the locking granularity. In the
context of the SET LOCK MODE statement, however, "lock mode" refers to the
behavior of the database server when a process attempts to access a row or a table
that another process has locked.
Related reference:
“SET LOCK MODE statement” on page 2-804

MERGE statement
Use the MERGE statement to transfer data from a source table into a target table
by combining UPDATE or DELETE operations with INSERT operations in a single
SQL statement. You can also use this statement to join the source and target tables,
and then perform only UPDATE operations, only DELETE operations, or only
INSERT operations on the target table.

The MERGE statement supports the ANSI/ISO standard for SQL with Informix
extensions.

Syntax

��

�

MERGE INTO target_table
, target_view alias

target_synonym AS
directive

�

2-568 IBM Informix Guide to SQL: Syntax

� USING source_table
source_view alias
(source_subquery) AS

�

,

(derived_column)

ON condition �

�
(1)

Insert Clause
(1)

Update Clause
Delete Clause

��

Update Clause:

(2)
WHEN MATCHED THEN UPDATE SET Clause

Delete Clause:

WHEN MATCHED THEN DELETE

Insert Clause:

�

(3)
WHEN NOT MATCHED THEN INSERT VALUES Clause

,

(column)

Notes:

1 Use this path no more than once

2 See “SET Clause” on page 2-857

3 See “VALUES Clause” on page 2-550

Element Description Restrictions Syntax

alias A temporary name that you declare
here for the target or source table
object

The source and target aliases must
be different. If potentially
ambiguous, the AS keyword must
precede alias.

“Identifier” on page
5-21

column A column in the target object into
which to insert source data

This must exist in the target object “Identifier” on page
5-21

condition A Boolean condition to apply to
rows in the join of the source and
target tables

This can reference data values in
the source and target objects

“Condition” on page
4-5

derived_column A name that you declare here if the
source object is a derived table

The SET and VALUES clauses can
reference this name.

“Identifier” on page
5-21

directive A query optimizer directive The directive must be valid. “Optimizer
Directives” on page
5-35

Chapter 2. SQL statements 2-569

Element Description Restrictions Syntax

source_table,
source_view,
source_subquery

A table (or the result of a query)
containing data to be relocated

Object must exist. See also
“Restrictions on Source and Target
Tables” on page 2-574.

“Database Object
Name” on page 5-16;
“SELECT statement”
on page 2-654

target_table,
target_view,
target_synonym

The name or synonym of a table or
updatable view in which to insert,
update, or delete data

See “Restrictions on Source and
Target Tables” on page 2-574.

“Database Object
Name” on page 5-16

Usage

The MERGE statement of Informix is a data manipulation language (DML)
statement that joins a source table object with a target table or view. The condition
that you specify after the ON keyword determines which rows from the source
object are used in UPDATE or DELETE operations on the target, and which rows
are used in INSERT operations on the target. The MERGE statement does not
modify its source object.

The condition must be followed by the WHEN MATCHED THEN keywords of the
Delete or the Update clause, or by the WHEN NOT MATCHED THEN keywords
of the Insert clause, or by both the Update (or Delete) and Insert clauses.
v If you specify both the Update clause and the Insert clause, the MERGE

statement can perform both INSERT and UPDATE operations on the target
object.

v If you specify both the Delete clause and the Insert clause, the MERGE statement
can perform both INSERT and DELETE operations on the target object.

v If you specify no Insert clause, no INSERT operations are performed, but the
Update clause must specify an UPDATE operation (or else the Delete clause
must specify a DELETE operation) on the target object for source rows that
match the condition.

v If you specify no Update clause and no Delete clause, no UPDATE or DELETE
operations are performed, but the Insert clause must specify an INSERT
operation on the target object for source rows that do not match the condition.

The MERGE statement fails with an error if no Delete clause, no Update clause,
and no Insert clause is specified.

The MERGE statement can have the following effects on the target object:
v If the Update clause is included, the MERGE statement updates rows in the

target table or view according to the specifications of the SET clause with data
from rows in the source table for which the condition evaluates to true.

v If the Delete clause is included, the MERGE statement deletes from the target
table or view the rows for which the condition evaluates to true.

v If the Insert clause is included, the MERGE statement inserts new rows into the
target table or view according to the specifications of the VALUES clause with
data from rows in the source table for which the condition evaluates to false.

A single MERGE statement, however, can have no more than two of these three
effects, because the Delete clause and the Update clause are mutually exclusive.

For operations on large tables, make sure that these resources are available on your
system:
v A sufficient number of locks

2-570 IBM Informix Guide to SQL: Syntax

v Sufficient temporary dbspace storage for the intermediate join results
v Sufficient dbspace storage for the results of the MERGE statement.

In a high-availability cluster configuration, you can issue the MERGE statement
from a primary server or from an updatable secondary server.

Optimizer Directives and Subqueries

You can optionally specify one or more query optimizer directives after the
MERGE keyword, such as access method directives, join order directives, and join
method directives to specify how the source and target tables are joined. The
goal-oriented directives like EXPLAIN and AVOID_EXECUTE are also valid in the
MERGE statement.

Within the MERGE statement, subqueries can also include optimizer directives to
control other aspects of the execution plan. Subqueries are valid in the following
contexts in the MERGE statement:
v In the condition of the ON clause
v In the SET clause of the Update clause
v In the VALUES clause of the Insert clause
v In the USING clause if it specifies a source query, which can include a subquery

in any context where the SELECT statement supports a subquery.

The MERGE statement fails with an error, however, if it includes a subquery that
references the target table.

In a database that supports external directives, the query optimizer can also apply
external directives to the outer join of the source and target tables, or to subqueries
within the MERGE statement.

The ON Condition

The condition that follows the ON keyword specifies a join filter for the source and
target table objects. This ON clause filter determines the matched rows and
unmatched rows in the MERGE statement, based on the outer join of the target
and source tables.
v If the MERGE statement includes the Update clause, and the ON clause

condition evaluates to true, then the corresponding rows are updated in the
target.

v If the MERGE statement includes the Delete clause, and the ON clause condition
evaluates to true, then the corresponding rows are deleted from the target.

v If the MERGE statement includes the Insert clause, and the ON clause condition
evaluates to false, then the corresponding source rows are inserted into the
target.

Update operations of the MERGE statement on rows that match the condition obey
the UPDATE statement rules for the SET clause. For details of the syntax for
specifying the updated values in the target table, see “SET Clause” on page 2-857.

Delete operations of MERGE on rows that match the condition obey the DELETE
statement rules. For details of deleting values from the target table, see “Using the
WHERE Keyword to Specify a Condition” on page 2-408.

Chapter 2. SQL statements 2-571

Insert operations on rows that do not match the condition obey the INSERT
statement rules for the VALUES clause. For details of the syntax for specifying the
inserted values in the target table, see “VALUES Clause” on page 2-550.

Error Handling

If an error occurs while the MERGE statement is executing, the entire statement is
rolled back.

For databases that support transaction logging, you can include error-handling
logic that includes the ROLLBACK TO SAVEPOINT statement in a transaction that
includes the MERGE statement and that defines one or more savepoints. After a
partial rollback of the transaction to a savepoint, the effects of the INSERT,
DELETE, or UPDATE operations of the MERGE statement persist in the target
table if the MERGE statement precedes the savepoint in the lexical order of
statements for that savepoint level of the transaction. The effects of MERGE are
rolled back, however, if the MERGE statement follows the specified savepoint
within the transaction.

In an ANSI-compliant database, data manipulation language (DML) statements are
always in a transaction. These databases do not support the MERGE statement
outside a transaction.

Constraint Checking

Enabled data-integrity constraints on the target object are enforced in MERGE
operations.
v If the checking mode is set to DEFERRED, the constraints are not checked until

after the transaction is committed.
v If the constraint-checking mode for the target table is set to IMMEDIATE, then

unique and referential constraints are checked after all the UPDATE (or
DELETE) and INSERT operations are complete. The NOT NULL and check
constraints are checked during the UPDATE, DELETE, and INSERT operations.

For information on setting the constraint-checking mode, see the topic “SET
Transaction Mode statement” on page 2-825.

If a referential constraint on the target table was defined with the ON DELETE
CASCADE keywords, the DELETE clause of the MERGE statement also performs
cascading deletes on rows of child tables of the target table.

A Delete merge fails, however, if an enabled referential constraint has established a
parent-child relationship between the target and source tables, if the constraint was
defined with the ON DELETE CASCADE keywords. The MERGE statement cannot
perform cascading deletes on rows of its source table. For more information, see
the topic “Restrictions on DELETE When Tables Have Cascading Deletes” on page
2-407.

If the START VIOLATIONS statement has defined an active violations table on the
target table, then the MERGE statement can have the following effects on the
target, violations, and diagnostic tables:
v The conforming rows in the target table that match the join condition are either

deleted or updated.
v The target table also receives the conforming unmatched rows that MERGE

successfully inserts.

2-572 IBM Informix Guide to SQL: Syntax

v The violation table receives the nonconforming rows.
v A diagnostic table receives information about why the nonconforming rows

failed to satisfy a constraint or a unique index during operations of the MERGE
statement on the target table.

To enable a violations table and a diagnostic table on the target table, the SET
Database Object Mode statement must set the constraints or unique indexes of the
target table to ENABLED or FILTERING mode. For more information, see the
topics “Relationship to the SET Database Object Mode statement” on page 2-829
and “SET Database Object Mode statement” on page 2-737.

Using the MERGE Statement with Triggers

The target object can be a table on which an Update, Delete, or Insert trigger is
defined. If both an Update trigger and an Insert trigger (or both a Delete trigger
and an Insert trigger) are enabled on the target table, MERGE can act as the
triggering event for both triggers, if the MERGE statement performs both UPDATE
(or DELETE) and INSERT operations on the target.

If the MERGE statement includes operations that activate both Update (or Delete)
and Insert triggers, the BEFORE trigger actions of both triggers are executed when
the MERGE operation starts. Similarly, the AFTER trigger actions of both triggers
are executed at the end of the MERGE operation. The FOR EACH ROW trigger
actions are activated for each row processed.

Just as for any DML statement, the database server treats all the triggers that are
activated by the same MERGE statement as a single trigger, and the resulting
trigger action is the merged-action list. All the rules that govern a trigger action
apply to the merged list as one list, and no distinction is made between the two
original triggers. For more information, see “Actions of Multiple Triggers” on page
2-344.

The target object, however, cannot be a view on which an enabled INSTEAD OF
trigger is defined. Before you can use that view as the target of a MERGE
statement, you must disable or drop the INSTEAD OF trigger.

In the definition of a trigger, the MERGE statement cannot be specified directly as
a triggered action. An SPL trigger routine that is called in a triggered action,
however, can issue the MERGE statement.

Security Policies and Secure Auditing

If the source object or any of its columns is protected by a label-based access
control (LBAC) security policy, the user who issues the MERGE statement must
have a security label (or must hold a security policy exemption) that provides
sufficient credentials to read the source table in MERGE operations.

If the target object or any of its columns is protected by a label-based security
policy, the user who issues the MERGE statement must have a security label (or
must hold a security policy exemption) that provides sufficient credentials to write
in the target object columns that the SET clause or the VALUES clause specifies, or
to delete rows from the target that include protected data.

If both the source and the target table are protected, they must be protected by the
same security policy. The MERGE statement cannot join tables that are protected
by different LBAC security policies.

Chapter 2. SQL statements 2-573

On Informix instances that use the secure-auditing facility to record activity that
could potentially alter or reveal data or the auditing configuration, no specific
audit event mnemonic is defined in audit trails for the MERGE statement:
v Activities specified by the Delete clause are recorded as DELETE events.
v Activities specified by the Insert clause are recorded as INSERT events.
v Activities specified by the Update clause are recorded as UPDATE events.
Related reference:
“DELETE statement” on page 2-404
“INSERT statement” on page 2-545
“UPDATE statement” on page 2-852

Restrictions on Source and Target Tables
Which table objects can be the source or target of the MERGE statement depends
on attributes of the table object, and on what access privileges are held by the user
who issues the MERGE statement.

The target table must be local to the database to which the current session is
connected, but you can specify a remote a table as the source table, or in
subqueries of the SET clause for UPDATE operations, and in subqueries of the
VALUES clause for INSERT operations.

Sections that follow identify additional restrictions on the source and target tables.

Restrictions on the Source Table

The source object can be the name or synonym of a STANDARD, RAW, TEMP,
EXTERNAL, or collection-derived table, or a view. It can be in the same database
as the target object, or in a different database of the local Informix instance, or it
can be a remote table that is managed by a different Informix instance.

If the source is a collection-derived table that is defined by the result of a query,
the USING clause can declare names for derived columns that the SET and
VALUES clauses of the MERGE statement can reference.

The user who issues the MERGE statement must hold the Connect access privilege
(or a higher privilege) on the database of the source object, and must also hold the
Select privilege (or a higher privilege) on the source object. The user can be
granted these access privileges individually, or can hold them as a member of the
PUBLIC group, or through the current or default role of the user, if the role or
PUBLIC holds those privileges.

If the source object or any of its columns is protected by a label-based security
policy, the user who issues the MERGE statement must have a security label (or
must hold a security policy exemption) that provides sufficient credentials to read
the source object. If the credentials of the user are insufficient to read protected
columns, according to the standard label-based access control (LBAC) rules, then
the MERGE statement can process only a subset of the source data. If this subset is
empty, the MERGE statement cannot insert any values from the source object into
the target table.

The following restrictions apply to the source table object:
v The source cannot be a view on which an enabled SELECT trigger is defined.

2-574 IBM Informix Guide to SQL: Syntax

v The source cannot be a typed table in the same table hierarchy as the target
table.

v In a Delete merge, the source cannot have a child-table relationship with the
target, as defined by an enabled referential constraint, if that constraint was
defined with the ON DELETE CASCADE keywords. (Child-table relationships
have no effect on the Delete merge, however, unless a target table constraint
specifies cascading deletes.)

Restrictions on the Target Table

The target table object must be in a database of the same Informix instance to
which the current session is connected. It can be the name or synonym of a
STANDARD, RAW, or TEMP table, or an updatable view. If the target is a
supertable within a table hierarchy, the Delete clause also deletes the
corresponding rows in all the subtables of the target table.

The user who issues the MERGE statement must hold the Connect access privilege
(or a higher privilege) on the database of the target object, and must also hold the
Insert privilege and the Update or Delete privilege on the target object, if the
MERGE statement includes the corresponding Insert, Update, or Delete clause.

The following restrictions apply to the target table of the MERGE statement. If that
table has any of the following attributes, the MERGE operation returns an error.
v The target cannot be a typed table in the same table hierarchy as the source

table.
v The target cannot be a Virtual Table Interface (VTI) table.
v The target cannot be an object that the CREATE EXTERNAL TABLE statement

defined.
v The target cannot be in a database of a remote Informix instance.
v The target cannot be a system catalog table.
v The target cannot be a view on which an enabled INSTEAD OF trigger is

defined.
v The target cannot be a read-only view.
v The target cannot be a pseudo-table (a memory-resident object in a system

database, such as the sysmaster or sysadmin databases).
v The target cannot be a data source of any subquery of the same MERGE

statement, including subqueries in the ON clause, in the SET clause, or in the
VALUES clause.

v If the MERGE statement includes the DELETE clause, the target cannot have a
parent-table relationship with the source table, if this relationship is defined by
an enabled referential constraint that specifies the ON DELETE CASCADE
keywords.

Restriction on the combined row length

The source table and the target table in the MERGE statement cannot have a total
combined row length (= row size of source table + row size of target table)
greater than 32,767 bytes. Otherwise, the MERGE statement fails with an error, as
in the following example:
CREATE TABLE t1

(f1 INT,
f2 VARCHAR(10),
lv1 LVARCHAR(5000),
lv2 LVARCHAR(4000),

Chapter 2. SQL statements 2-575

lv3 LVARCHAR(8000));
CREATE TABLE t2

(f1 INT,
f2 VARCHAR(10),
lv1 LVARCHAR(5000),
lv2 LVARCHAR(4000),
lv3 LVARCHAR(8000));

INSERT INTO t1 (f1,f2) VALUES (1,’t1 1’);
INSERT INTO t1 (f1,f2) VALUES (2,’t1 2’);
INSERT INTO t1 (f1,f2) VALUES (3,’t1 3’);
INSERT INTO t1 (f1,f2,lv1) VALUES (7,’t1 7’,

’loooooooooooooooooong’);

INSERT INTO t2 (f1,f2) VALUES (3,’t2 3’);
INSERT INTO t2 (f1,f2) VALUES (4,’t2 4’);
INSERT INTO t2 (f1,f2) VALUES (5,’t2 5’);
INSERT INTO t2 (f1,f2) VALUES (6,’t2 6’);

MERGE INTO t2 AS o USING t1 AS n ON o.f1 = n.f1
WHEN NOT MATCHED THEN INSERT (o.f1,o.f2)

VALUES (n.f1,n.f2);

The MERGE statement above fails, because the sum of the row lengths of the
source and target tables exceeds the upper limit of 32,767 bytes.

For MERGE operations that include only the INSERT clause (but no DELETE
clause nor UPDATE clause), you can circumvent this row length limit by replacing
the MERGE statement with INSERT INTO . . . SELECT statements. For the same
tables and data values in the MERGE example above, the following INSERT
statements run successfully:
INSERT INTO t2(f1, f2)

SELECT t1.f1, t1.f2 FROM t1
WHERE NOT EXISTS

(SELECT f1, f2 FROM t2
WHERE t2.f1 = t1.f1);

INSERT INTO t2(f1,f2)
SELECT t1.f1, t1.f2 FROM t1

LEFT JOIN t2 ON t1.f1 = t2.f1
WHERE t2.f1 IS NULL;

After the two INSERT INTO . . . SELECT operations, table t2 contains what the
row size restriction prevented the previous MERGE example from returning.

Restrictions on distributed MERGE statements

If the source and target tables are not in the same database, both databases must
satisfy the compatibility requirements for cross-database and cross-server DML
operations:
v If one database is ANSI-compliant, the other must also be ANSI-compliant.
v If one database is not ANSI-compliant but uses explicit transaction logging, the

other must also support explicit transaction logging.
v If one database does not support transaction logging, the other also must not.
v Both databases must have the same NLSCASE sensitivity setting.

A distributed MERGE statement cannot, for example, specify a source table in a
case-sensitive database and a target table in a database created as NLSCASE
INSENSITIVE, whether or not either table includes NCHAR or NVARCHAR
columns.

2-576 IBM Informix Guide to SQL: Syntax

Handling Duplicate Rows
While MERGE is executing, the same row in the target table cannot be updated or
deleted more than once. No attempt is made to update or delete any row in the
target that did not already exist before the MERGE statement was executed. That
is, there are no updates or deletes of rows that the same MERGE statement
inserted into the target.

The following example of the MERGE statement uses the transaction table
new_sale as the source table from which to insert or update rows in the fact table
sale. The join condition in this example tests whether the new_sale.cust_id column
value matches the sale.cust_id column value.
MERGE INTO sale USING new_sale AS n

ON sale.cust_id = n.cust_id
WHEN MATCHED THEN UPDATE

SET sale.salecount = sale.salecount + n.salecount
WHEN NOT MATCHED THEN INSERT (cust_id, salecount)

VALUES (n.cust_id, n.salecount);

To execute this MERGE statement, the database server joins the target and source
tables, and then applies the specified equality condition to process the result of the
join:
v For rows that satisfy the condition (because the sale.cust_id value matches the

new_sale.cust_id value), MERGE updates the sale.salecount column value,
according to the SET clause specification.

v For rows that do not satisfy the condition (because no row in the sale table has
the same cust_id value as new_sale.cust_id), MERGE inserts new rows
containing the new_sale.cust_id and new_sale.salecount values into the sale
table, according to the VALUES clause specification.

For the MERGE statement in the previous example, suppose that the sale target
table contains the two records and that the new_sale source table contains the
three records.

Table 2-9. Records in 'sale' Table

cust_id sale_count

Tom 129

Julie 230

Table 2-10. Records in 'new_sale' Table

cust_id sale_count

Tom 20

Julie 3

Julie 10

When merging new_sale into sale by specifying the expression sale.cust_id =
new_sale.cust_id as the matching condition, the MERGE statement returns an
error, because it attempts to update one of the records in the sale target table more
than once.

Chapter 2. SQL statements 2-577

Data Types in Distributed MERGE Operations

If the source table or view (or any table object referenced in the source query)
specifies a table object in a database of a Informix instance other than the local
instance that manages the database of the target table, the MERGE statement can
access columns of only the following data types in the remote database:
v Built-in data types that are not opaque
v BOOLEAN
v LVARCHAR
v DISTINCT of the built-in data types that are not opaque
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of any DISTINCT data type that appears in this list.

Cross-server distributed MERGE operations can support these DISTINCT types
only if the DISTINCT types are cast explicitly to built-in types, and all of the
DISTINCT types, their data type hierarchies, and their casts are defined exactly the
same way in each participating database. For additional information about the data
types that Informix supports in cross-server DML operations, see “Data Types in
Cross-Server Transactions” on page 2-665.

MERGE operations cannot access a database of another Informix instance unless
both server instances support either a TCP/IP or an IPCSTR connection, as defined
in their DBSERVERNAME or DBSERVERALIASES configuration parameters and in
the sqlhosts file or SQLHOSTS registry subkey. This connection-type requirement
applies to any communication between Informix instances, even if both database
servers reside on the same computer.

Distributed MERGE operations that access table objects in other databases of the
local Informix instance, however, can access all of the cross-server data types in the
preceding list, and these additional data types:
v Most built-in opaque data types, as listed in “Data Types in Cross-Database

Transactions” on page 2-663
v DISTINCT of the same built-in opaque types
v DISTINCT of any of the data types in either of the two preceding lines
v Opaque user-defined data types (UDTs) that are explicitly cast to built-in data

types.

The MERGE statement also supports Distributed Relational Database Architecture™

(DRDA) protocols in common client APIs. For the Informix data types that MERGE
can return from a remote database through DRDA protocols, see the IBM Informix
Administrator's Guide for lists of the Informix data types that are supported (and
that are not supported) by DRDA.
Related reference:

SQL and supported and unsupported data types (Administrator's Guide)

Examples of MERGE Statements
Examples in this section include MERGE statements that illustrate join conditions
and various DML operations on the result set of the join.

2-578 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_0211.htm#ids_admin_0211

Examples

The following MERGE statement includes the Update and Insert clauses, and uses
an equality predicate as the join condition:
MERGE INTO customer c

USING ext_customer e
ON c.customer_num=e.customer_num

WHEN MATCHED THEN
UPDATE SET c.fname = e.fname,

c.lname = e.lname,
c.company = e.company,
c.address1 = e.address1,
c.address2 = e.address2,
c.city = e.city,
c.state = e.state,
c.zipcode = e.zipcode,
c.phone = e.phone

WHEN NOT MATCHED THEN
INSERT (c.fname, c.lname, c.company, c.address1, c.address2,

c.city, c.state, c.zipcode, c.phone)
VALUES

(e.fname, e.lname, e.company, e.address1, e.address2,
e.city, e.state, e.zipcode, e.phone);

The next example specifies multiple predicates in the ON clause:
MERGE INTO customer c

USING ext_customer e
ON c.customer_num=e.customer_num

AND c.fname=e.fname AND c.lname=e.lname
WHEN MATCHED THEN

UPDATE SET c.fname = e.fname,
c.lname = e.lname,
c.company = e.company,
c.address1 = e.address1,
c.address2 = e.address2,
c.city = e.city,
c.state = e.state,
c.zipcode = e.zipcode,
c.phone = e.phone

WHEN NOT MATCHED THEN
INSERT

(c.fname, c.lname, c.company, c.address1, c.address2,
c.city, c.state, c.zipcode, c.phone)
VALUES
(e.fname, e.lname, e.company, e.address1, e.address2,
e.city, e.state, e.zipcode, e.phone);

The following MERGE statement performs an Update join, with no Insert clause:
MERGE INTO customer c
USING ext_customer e
ON c.customer_num=e.customer_num
WHEN MATCHED THEN
UPDATE SET c.fname = e.fname,

c.lname = e.lname,
c.company = e.company,
c.address1 = e.address1,
c.address2 = e.address2,
c.city = e.city,
c.state = e.state,
c.zipcode = e.zipcode,
c.phone = e.phone ;

The following MERGE statement includes only the Delete clause after the join
condition:

Chapter 2. SQL statements 2-579

MERGE INTO customer c
USING ext_customer e

ON c.customer_num=e.customer_num
WHEN MATCHED THEN

DELETE ;

The next MERGE example includes only the Insert clause:
MERGE INTO customer c
USING ext_customer e
ON c.customer_num=e.customer_num AND c.fname=e.fname

AND c.lname=e.lname
WHEN NOT MATCHED THEN

INSERT
(c.fname, c.lname, c.company, c.address1, c.address2,
c.city, c.state, c.zipcode, c.phone)
VALUES
(e.fname, e.lname, e.company, e.address1, e.address2,
e.city, e.state, e.zipcode, e.phone);

The next example illustrates that the WHEN MATCHED and WHEN NOT
MATCHED specifications can appear in any order:
MERGE INTO customer c

USING ext_customer e
ON c.customer_num=e.customer_num AND c.fname=e.fname AND c.lname=e.lname

WHEN NOT MATCHED THEN
INSERT

(c.fname, c.lname, c.company, c.address1, c.address2,
c.city, c.state, c.zipcode, c.phone)

VALUES
(e.fname, e.lname, e.company, e.address1, e.address2,
e.city, e.state, e.zipcode, e.phone)

WHEN MATCHED THEN UPDATE
SET c.fname = e.fname,

c.lname = e.lname,
c.company = e.company,
c.address1 = e.address1,
c.address2 = e.address2,
c.city = e.city,
c.state = e.state,
c.zipcode = e.zipcode,
c.phone = e.phone ;

The following MERGE statement specifies as its source a derived table that the
query in the USING clause defines:
MERGE INTO customer c

USING (SELECT * from ext_customer e1, orders e2
WHERE e1.customer_num=e2.customer_num) e

ON c.customer_num=e.customer_num AND c.fname=e.fname
AND c.lname=e.lname

WHEN NOT MATCHED THEN
INSERT (c.fname, c.lname, c.company, c.address1, c.address2,

c.city, c.state, c.zipcode, c.phone)
VALUES (e.fname, e.lname, e.company, e.address1, e.address2,

e.city, e.state, e.zipcode, e.phone)
WHEN MATCHED THEN

UPDATE SET c.fname = e.fname,
c.lname = e.lname,
c.company = e.company,
c.address1 = e.address1,
c.address2 = e.address2,
c.city = e.city,
c.state = e.state,
c.zipcode = e.zipcode,
c.phone = e.phone ;

2-580 IBM Informix Guide to SQL: Syntax

OPEN statement
Use the OPEN statement to activate a cursor.

Syntax

�� OPEN cursor_id
(1) (2)

cursor_id_var

�

�

�

,

USING parameter_var
(2)

SQL DESCRIPTOR 'descriptor ' DESCRIPTOR sqlda_pointer
descriptor_var

�

�
(1) (2)

WITH REOPTIMIZATION

��

Notes:

1 Informix extension

2 ESQL/C only

Element Description Restrictions Syntax

cursor_id Name of a cursor Must have been declared by the
DECLARE statement

“Identifier” on page
5-21

cursor_id_var Host variable = cursor_id Must be a character data type Language specific

descriptor Name of a system-descriptor area Must have been allocated “Quoted String” on
page 4-219

descriptor_var Host variable that identifies the
system-descriptor area

System-descriptor area must have
been allocated

“Quoted String” on
page 4-219

parameter_var Host variable whose contents replace
a question (?) mark placeholder in a
prepared SQL statement

Must be a character or collection
data type

Language specific

sqlda_pointer Pointer to sqlda structure defining
data type and memory location of
values to replace question (?) marks
in a prepared statement

Cannot begin with a dollar ($)
sign nor with a colon (:). You
must use an sqlda structure with
dynamic SQL statements.

“DESCRIBE statement”
on page 2-412

Usage

Use this statement with Informix ESQL/C or with SPL.

A cursor is an identifier associated with an SQL statement that returns an ordered
set of values. The OPEN statement activates a cursor that the DECLARE statement
defined.

Cursor can be classified by their associated SQL statements:
v A Select cursor: a cursor that is associated with a SELECT statement

Chapter 2. SQL statements 2-581

v A Function cursor: a cursor that is associated with the EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement

v An Insert cursor: a cursor that is associated with the INSERT statement
v A Collection cursor: a Select or Insert cursor that operates on a collection variable.

In UDRs written in the SPL language, the OPEN statement can reference only
Select or Function cursors, and these must specify the identifier of the cursor,
rather than a variable that stores the cursor_id. The OPEN statement cannot
reference a direct cursor that the FOREACH statement of SPL has declared.

The specific actions that the database server takes differ, depending on the
statement with which the cursor is associated. In ESQL/C, when you associate one
of the previous statements with a cursor directly (that is, you do not prepare the
statement and associate the statement identifier with the cursor), the OPEN
statement implicitly prepares the statement. (This is not a feature of OPEN in SPL
routines, where the DECLARE statement associates a cursor with the identifier of
an existing prepared statement, rather than directly with SQL statement text.)

In an ANSI-compliant database, you receive an error code if you try to open a
cursor that is already open.
Related reference:
“FLUSH statement” on page 2-484
“CLOSE statement” on page 2-128
“GET DESCRIPTOR statement” on page 2-487
“UPDATE statement” on page 2-852
“SET AUTOFREE statement” on page 2-726
“SET DESCRIPTOR statement” on page 2-753
“INSERT statement” on page 2-545
“ALLOCATE DESCRIPTOR statement” on page 2-2
“SET DEFERRED_PREPARE statement” on page 2-751
“DELETE statement” on page 2-404
“DESCRIBE statement” on page 2-412
“DESCRIBE INPUT statement” on page 2-417
“DEALLOCATE DESCRIPTOR statement” on page 2-384
“DECLARE statement” on page 2-386
“EXECUTE statement” on page 2-455
“FETCH statement” on page 2-474
“FREE statement” on page 2-486
“PREPARE statement” on page 2-589
“PUT statement” on page 2-601

Retrieve multiple rows (SQL Tutorial)

A system-descriptor area (ESQL/C Guide)

An sqlda structure (ESQL/C Guide)

Opening a Select Cursor
When you open either a Select cursor or an update cursor that is created with the
SELECT... FOR UPDATE syntax, the SELECT statement is passed to the database
server with any values that are specified in the USING clause. The database server

2-582 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_319.htm#ids_sqt_319
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0610.htm#ids_esqlc_0610
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0647.htm#ids_esqlc_0647

processes the query to the point of locating or constructing the first row of the
active set. The following example illustrates a simple OPEN statement in Informix
ESQL/C:
EXEC SQL declare s_curs cursor for select * from orders;
EXEC SQL open s_curs;

An SPL routine cannot reference an update cursor in the OPEN statement.

Opening an Update Cursor Inside a Transaction
If you are working in a database with explicit transactions, you must open an
update cursor within a transaction. This requirement is waived if you declared the
cursor using the WITH HOLD option.

Opening a Function Cursor
When you open a Function cursor, the EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement is passed to the database server with any values that are
specified in the USING clause.

The values in the USING clause are passed as arguments to the user-defined
function. This user-defined function must be declared to accept values. (If the
statement was previously prepared, the statement was passed to the database
server when it was prepared.) The database server executes the function to the
point where it returns the first set of values.

The following example illustrates a simple OPEN statement in Informix ESQL/C:
EXEC SQL declare s_curs cursor for

execute function new_func(arg1,arg2)
into :ret_val1, :ret_val2;

EXEC SQL open s_curs;

Reopening a Select or Function Cursor
The database server evaluates the values that are specified in the USING clause of
the OPEN statement only when it opens a Select cursor or Function cursor. While
the cursor is open, subsequent changes to program variables in the USING clause
do not change the active set of the cursor.

In a database that is ANSI-compliant, you receive an error code if you try to open
a cursor that is already open.

In a database that is not ANSI-compliant, a subsequent OPEN statement closes the
cursor and then reopens it. When the database server reopens the cursor, it creates
a new active set, based on the current values of the variables in the USING clause.
If the variables have changed since the previous OPEN statement, reopening the
cursor can generate an entirely different active set.

Even if the values of the variables are unchanged, the values in the active set can
be different, as in the following situations:
v If the user-defined function takes a different execution path from the previous

OPEN statement on a Function cursor
v If data in the table was modified since the previous OPEN statement on a Select

cursor

The database server can process most queries dynamically, without pre-fetching all
rows when it opens the Select or Function cursor. Therefore, if other users are

Chapter 2. SQL statements 2-583

modifying the table at the same time that the cursor is being processed, the active
set might reflect the results of these actions.

For some queries, the database server evaluates the entire active set when it opens
the cursor. These queries include those with the following features:
v Queries that require sorting: those with an ORDER BY clause or with the

DISTINCT or UNIQUE keyword
v Queries that require hashing: those with a join or with the GROUP BY clause

For these queries, any changes that other users make to the table while the cursor
is being processed are not reflected in the active set.

Errors Associated with Select and Function Cursors
Because the database server is seeing the query for the first time, it might detect
errors. In this case, it does not actually return the first row of data, but it resets the
SQLCODE variable and the sqlca.sqlcode field of the sqlca. The value is either
negative or zero, as the following table describes.

Code Value
Significance

Negative
An error was detected in the SELECT statement

Zero The SELECT statement is valid

Unlike ESQL/C routines, SPL routines do not have direct access to the sqlca
structure. An ESQL/C routine must invoke the built-in SQLCODE function
explicitly to access the return code of the SELECT, EXECUTE FUNCTION, or
EXECUTE PROCEDURE statement associated with the cursor that OPEN
references.

If the SELECT, SELECT...FOR UPDATE, EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement is valid, but no rows match its criteria, the first FETCH
statement returns a value of 100 (SQLNOTFOUND), meaning that no rows were found.

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value also exists. For information about how to view the message text, refer to
“Using the SQLSTATE Error Status Code” on page 2-493.

Opening an Insert Cursor (ESQL/C)
When you open an Insert cursor, the cursor passes the INSERT statement to the
database server, which checks the validity of the keywords and column names. The
database server also allocates memory for an insert buffer to hold new data. (See
“DECLARE statement” on page 2-386.)

An OPEN statement for a cursor that is associated with an INSERT statement
cannot include a USING clause.

Example of Opening an Insert Cursor
The following Informix ESQL/C example illustrates an OPEN statement with an
Insert cursor:

2-584 IBM Informix Guide to SQL: Syntax

EXEC SQL prepare s1 from
’insert into manufact values (’npr’, ’napier’)’;

EXEC SQL declare in_curs cursor for s1;
EXEC SQL open in_curs;
EXEC SQL put in_curs;
EXEC SQL close in_curs;

Reopening an Insert Cursor
When you reopen an Insert cursor that is already open, you effectively flush the
insert buffer; any rows that are stored in the insert buffer are written into the
database table. The database server first closes the cursor, which causes the flush
and then reopens the cursor. For information about how to check errors and count
inserted rows, see “Error Checking” on page 2-607.

In an ANSI-compliant database, you receive an error code if you try to open a
cursor that is already open.

Opening a Collection Cursor (ESQL/C)
You can declare both Select and Insert cursors on collection variables. Such cursors
are called Collection cursors. You must use the OPEN statement to activate these
cursors.

Use the name of a collection variable in the USING clause of the OPEN statement.
For more information on the use of OPEN ... USING with a collection variable, see
“Fetching from a Collection Cursor” on page 2-481 and “Inserting into a Collection
Cursor” on page 2-605.

USING Clause
The USING clause is required when the cursor is associated with a prepared
statement that includes question-mark (?) placeholders, as follows:
v A SELECT statement with input parameters in its WHERE clause
v An EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement with input

parameters as arguments to its user-defined function
v An INSERT statement with input parameters in its VALUES clause (in ESQL/C).

In SPL routines, you must specify these parameters as SPL variables.

In ESQL/C, you can supply values for these parameters in one of the following
ways:
v You can specify one or more host variables.
v You can specify a system-descriptor area.
v You can specify a pointer to an sqlda structure.

For more information, see “PREPARE statement” on page 2-589.

If you know the number and the order of parameters to be supplied at runtime
and their data types, you can define the parameters that are needed by the
statement as host variables in your program. You pass parameters to the database
server positionally, by opening the cursor with the USING keyword, followed by
the names of the variables in their sequential order. These variables are matched
with the SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement question-mark (?) placeholders in a one-to-one correspondence, from
left to right.

Chapter 2. SQL statements 2-585

You cannot include indicator variables of ESQL/C in the list of variables. To use an
indicator variable, you must include the SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement text as part of the DECLARE statement, rather
than the identifier of a prepared statement.

You must supply one host variable name for each placeholder. The data type of
each variable must be compatible with the corresponding type that the prepared
statement requires. The following Informix ESQL/C code fragment opens a Select
cursor and specifies host variables in the USING clause:
sprintf (select_1, "%s %s %s %s %s",

"SELECT o.order_num, sum(total price)",
"FROM orders o, items i",
"WHERE o.order_date > ? AND o.customer_num = ?",
"AND o.order_num = i.order_num",
"GROUP BY o.order_num");

EXEC SQL prepare statement_1 from :select_1;
EXEC SQL declare q_curs cursor for statement_1;
EXEC SQL open q_curs using :o_date, :o.customer_num;

The following example illustrates the USING clause of the OPEN statement with
an EXECUTE FUNCTION statement in an Informix ESQL/C code fragment:
stcopy ("EXECUTE FUNCTION one_func(?, ?)", exfunc_stmt);
EXEC SQL prepare exfunc_id from :exfunc_stmt;
EXEC SQL declare func_curs cursor for exfunc_id;
EXEC SQL open func_curs using :arg1, :arg2;

Specifying a System Descriptor Area (ESQL/C)
If you do not know the number of parameters to be supplied at runtime or their
data types, you can associate input values from a system-descriptor area. A
system-descriptor area describes the data type and memory location of one or
more values to replace question-mark (?) placeholders.

A system-descriptor area conforms to the X/Open standards.

Use the SQL DESCRIPTOR keywords to introduce the name of a system descriptor
area as the location of the parameters.

The COUNT field in the system-descriptor area corresponds to the number of
dynamic parameters in the prepared statement. The value of COUNT must be less
than or equal to the number of item descriptors that were specified when the
system-descriptor area was allocated with the ALLOCATE DESCRIPTOR
statement. You can obtain the value of a field with the GET DESCRIPTOR
statement and set the value with the SET DESCRIPTOR statement.

The following example shows the OPEN ... USING SQL DESCRIPTOR statement:
EXEC SQL allocate descriptor ’desc1’;
...
EXEC SQL open selcurs using sql descriptor ’desc1’;

As the example indicates, the system descriptor area must be allocated before you
reference it in the OPEN statement.

Specifying a Pointer to an sqlda Structure (ESQL/C)
If you do not know the number of parameters to be supplied at runtime, or their
data types, you can associate input values from an sqlda structure. An sqlda
structure lists the data type and memory location of one or more values to replace
question-mark (?) placeholders.

2-586 IBM Informix Guide to SQL: Syntax

Use the DESCRIPTOR keyword to introduce a pointer to the sqlda structure as the
location of the parameters.

The sqlda value specifies the number of input values that are described in
occurrences of sqlvar. This number must correspond to the number of dynamic
parameters in the prepared statement.

Example of Specifying a Pointer to an sqlda Structure
The following example shows an OPEN ... USING DESCRIPTOR statement:
struct sqlda *sdp;
...
EXEC SQL open selcurs using descriptor sdp;

Using the WITH REOPTIMIZATION Option (ESQL/C)
Use the WITH REOPTIMIZATION keywords to reoptimize your query plan. When
you prepare SELECT, EXECUTE FUNCTION, or EXECUTE PROCEDURE
statements, the database server uses a query plan to optimize the query. If you
later modify the data associated with the prepared statement, you can compromise
the effectiveness of the query plan for that statement. In other words, if you
change the data, you might deoptimize your query. To ensure optimization of your
query, you can prepare the statement again, or open the cursor again using the
WITH REOPTIMIZATION option.

You should generally use the WITH REOPTIMIZATION option, because it
provides the following advantages over preparing a statement again:
v Rebuilds only the query plan, rather than the entire statement
v Uses fewer resources
v Reduces overhead
v Requires less time

The WITH REOPTIMIZATION option forces the database server to optimize the
query-design plan before it processes the OPEN cursor statement.

The following examples use the WITH REOPTIMIZATION keywords:
EXEC SQL open selcurs using descriptor sdp with reoptimization;

Relationship Between OPEN and FREE
The database server allocates resources to prepared statements and open cursors. If
you execute a FREE statement_id or FREE statement_id_var statement, you can still
open the cursor associated with the freed statement ID. If you release resources
with a FREE cursor_id or FREE cursor_id_var statement, however, you cannot use
the cursor unless you declare the cursor again.

Similarly, if you use the SET AUTOFREE statement for one or more cursors, when
the program closes the specific cursor, the database server automatically frees the
cursor-related resources. In this case, you cannot use the cursor unless you declare
the cursor again.

DDL Operations on Tables Referenced by Cursors
Various DDL statements can drop, rename, or alter the schema of a table that is
referenced directly (or indirectly, by the identifier of a prepared statement) in the
DECLARE statement that defines a cursor. Subsequent OPEN operations on the
cursor might fail with error -710, or might produce unexpected results. Changing
the number of columns or the data type of a column has this effect, and the user

Chapter 2. SQL statements 2-587

typically must reissue the DESCRIBE statement, the PREPARE statement, and (for
cursors associated with routines) the UPDATE STATISTICS statement for any SPL
routines that reference a table whose schema has been modified.

These restrictions do not apply, however, if an index is added or dropped when
automatic recompilation is enabled for prepared objects and for SPL routines that
reference tables that ALTER TABLE, CREATE INDEX, or DROP INDEX operations
have modified. This is the default behavior of Informix. For more information
about enabling or disabling automatic recompilation after schema changes, see the
description of the IFX_AUTO_REPREPARE option to the SET ENVIRONMENT
statement. For more information about the AUTO_REPREPARE configuration
parameter, see your IBM Informix Administrator's Reference.

When the AUTO_REPREPARE configuration parameter and the
IFX_AUTO_REPREPARE session environment variable are set to disable
recompilation of prepared objects, however, adding an index to a table that is
referenced directly or indirectly in a DECLARE statement can similarly invalidate
the associated cursor. Subsequent OPEN statements that specify the invalid cursor
fail, even if they include the WITH REOPTIMIZATION keywords. If an index is
added to the table that is associated with a cursor while automatic recompilation is
disabled, you must prepare the statement again and declare the cursor again before
you can open the cursor. For cursors associated with calls to SPL routines, you
must run the UPDATE STATISTICS statement for routines that reference tables to
which an index has been added or dropped. You cannot simply reopen a cursor
that is based on a prepared statement that is no longer valid.
Related reference:

AUTO_REPREPARE configuration parameter (Administrator's Reference)

OUTPUT statement
Use the OUTPUT statement to send the results of a query to an operating-system
file or to a program.

Syntax

�� OUTPUT TO filename
PIPE program WITHOUT HEADINGS

(1)
SELECT Statement ��

Notes:

1 See “SELECT statement” on page 2-654

Element Description Restrictions Syntax

filename Path and filename where query
results are written. The default
path is the current directory.

Can specify a new or existing file. If the
file exists, query results overwrite the
current contents of the file.

Must conform to the
rules of your operating
system.

program Name of a program to receive the
query results as input

Program must exist, must be known to
the operating system, and must be able
to read the results of a query.

Must conform to the
rules of your operating
system.

2-588 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0026.htm#ids_adr_0026

Usage

The OUTPUT statement writes query results in an operating-system file, or pipes
query results to another program. You can optionally specify whether column
headings are omitted from the query output. This statement is an extension to the
ANSI/ISO standard for SQL. You can use this statement only with DB-Access.
Related reference:
“SELECT statement” on page 2-654
“UNLOAD statement” on page 2-846

Sending Query Results to a File
To send the results of a query to an operating-system file, specify the full
pathname for the file. If the file already exists, the output overwrites the current
contents.

The following examples show how to send the result of a query to an
operating-system file. The example uses UNIX file naming conventions.
OUTPUT TO /usr/april/query1

SELECT * FROM cust_calls WHERE call_code = ’L’

Displaying Query Results Without Column Headings
To display the results of a query without column headings, use the WITHOUT
HEADINGS keywords.

Sending Query Results to Another Program
You can use the keyword PIPE to send the query results to another program, as
the following example shows:
OUTPUT TO PIPE more

SELECT customer_num, call_dtime, call_code
FROM cust_calls;

PREPARE statement
Use the PREPARE statement to parse, validate, and generate an execution plan for
one or more SQL statements at runtime.

Syntax

�� PREPARE statement_id
(1)

statement_id_var

FROM ' statement_text '
(1)

statement_var
(2)

char_expression

��

Notes:

1 ESQL/C only

2 SPL only

Element Description Restrictions Syntax

char_expression Expression that evaluates to
the text of a single SQL
statement

Statement must be a SELECT, EXECUTE
FUNCTION, or EXECUTE PROCEDURE

“Expression” on
page 4-44

Chapter 2. SQL statements 2-589

Element Description Restrictions Syntax

statement_id Identifier declared here for
the prepared object

Must be unique in the routine among names
of cursors and prepared objects (and in SPL,
among variables)

“Identifier” on
page 5-21

statement_id_var Host variable storing
statement_id

Must have been previously declared as a
character data type

Language specific

statement_text Text of the SQL statement(s)
to prepare

See “Preparing Multiple SQL Statements” on
page 2-598 and “Statement Text” on page
2-592.

“Quoted String”
on page 4-219.

statement_var Host variable storing the text
of one or more SQL
statements

Must be a character data type. Not valid if
the SQL statement(s) contains the
Collection-Derived Table segment.

Language specific

Usage

Use this statement in ESQL/C or SPL routines.

The PREPARE statement enables your program to assemble the text of one (or for
ESQL/C, more than one) SQL statement at runtime, to declare an identifier for the
resulting prepared object, and to make it executable. This dynamic form of SQL is
accomplished in three steps:
1. The PREPARE statement accepts statement text as input, either as a quoted

string, or an ESQL/C character variable, or (in SPL) as the value to which a
character expression evaluates. Statement text can contain question-mark (?)
placeholders to represent values that are to be defined when the statement is
executed.

2. The OPEN statement (and in ESQL/C routines, the EXECUTE statement) can
supply the required input values and execute the prepared statement once or
many times.

3. Resources allocated to the prepared statement can be released later using the
FREE statement.

For more information about the replacement of placeholders in prepared
statements with runtime values, see the section “Preparing Statements That Receive
Parameters” on page 2-596.

The same collating order that is current when you create a prepared object is also
used when that object is executed, even if the execution-time collation of the
session (or of DB_LOCALE) is different.
Related concepts:
“Overloading the Name of a Function” on page 2-188
Related reference:
“FLUSH statement” on page 2-484
“GET DESCRIPTOR statement” on page 2-487
“CREATE PROCEDURE statement” on page 2-226
“SET AUTOFREE statement” on page 2-726
“SET DESCRIPTOR statement” on page 2-753
“INSERT statement” on page 2-545
“ALLOCATE DESCRIPTOR statement” on page 2-2
“SET DEFERRED_PREPARE statement” on page 2-751
“EXECUTE IMMEDIATE statement” on page 2-467

2-590 IBM Informix Guide to SQL: Syntax

“EXECUTE statement” on page 2-455
“DESCRIBE statement” on page 2-412
“DESCRIBE INPUT statement” on page 2-417
“DEALLOCATE DESCRIPTOR statement” on page 2-384
“OPEN statement” on page 2-581
“FETCH statement” on page 2-474
“FREE statement” on page 2-486
“DECLARE statement” on page 2-386

Restrictions
The number of prepared objects in a single program is limited by available
memory. These include statement identifiers declared in PREPARE statements
(statement_id or statement_id_var) and declared cursors. To avoid exceeding the
limit, use the FREE statement to release some statements or cursors.

In SPL routines, a prepared object can include the text of no more than one SQL
statement, and that statement must be either an EXECUTE FUNCTION, EXECUTE
PROCEDURE, or SELECT statement, but the SELECT statement cannot include the
INTO variable, INTO TEMP, or FOR UPDATE clause.

An expression that specifies the statement text in an SPL routine must evaluate to
a CHAR, LVARCHAR, NCHAR, NVARCHAR, or VARCHAR data type. You must
explicitly cast to one of these types an expression of any other text data type, such
as a UDT.

For restrictions in ESQL/C routines on the SQL statements in the character string,
see “Restricted Statements in Single-Statement Prepares” on page 2-594 and
“Restricted Statements in Multistatement Prepared Objects” on page 2-599.

Declaring a Statement Identifier
PREPARE sends the statement text to the database server, which analyzes the
statement text. If the text contains no syntax errors, the database server translates it
to an internal form. This translated statement is saved for later execution in a data
structure that the PREPARE statement allocates. The name of the structure is the
value that is assigned to the statement identifier in the PREPARE statement.
Subsequent SQL statements can refer to the structure by using the same statement
identifier that was used in the PREPARE statement.

A subsequent FREE statement releases the database server resources that were
allocated to the statement. After you release these resources with FREE, you cannot
use the statement identifier in a DECLARE statement or (in ESQL/C) with the
EXECUTE statement until you prepare the statement again.

The database server resources for the prepared objects that an SPL routine defines
are released automatically when the routine exits.

Scope of Statement Identifiers
An ESQL/C program can consist of one or more source-code files. By default, the
scope of reference of a statement identifier is global to the program. Therefore, a
statement identifier that is prepared in one file can be referenced from another file.

Chapter 2. SQL statements 2-591

In a multiple-file program, if you want to limit the scope of reference of a
statement identifier to the file in which it is prepared, preprocess all the files with
the -local command-line option.

Releasing a Statement Identifier
A statement identifier can represent only one SQL statement or (in ESQL/C) one
semicolon-separated list of SQL statements at a time. A new PREPARE statement
can specify an existing statement identifier if you want to bind the identifier to a
different SQL statement text.

The PREPARE statement supports dynamic statement-identifier names, which
allow you to prepare a statement identifier as an identifier or (in ESQL/C) as a
host variable of a data type that can contain a character string. The first example
that follows shows a statement identifier that was specified as a host variable. The
second specifies a statement identifier as a character string.
stcopy ("query2", stmtid);
EXEC SQL prepare :stmtid from ’select * from customer’;

EXEC SQL prepare query2 from ’select * from customer’;

The variable must be a character data type. In C, it must be declared as char.

In an SPL routine, statement identifiers that the PREPARE statement declares are
automatically defined in the local scope. Do not attempt to declare a statement
identifier as having local or global scope. A statement identifier defined in one SPL
routine is not visible to any other SPL routine that the same session calls. SPL
statement identifiers share the same namespace as SPL variables and cursor names.

Statement Text
Statement text can be specified in the PREPARE statement
v as a quoted string
v or as text that is stored in an ESQL/C program variable
v or (in SPL routines) as a character expression.

The following restrictions apply to the statement text:
v The text can contain only SQL statements. It cannot contain statements or

comments from the host programming language.
v The text can contain comments preceded by a double hyphen (--), or that are

enclosed in braces ({ }) or in C-style slash and asterisk (/* */) delimiters.
These symbols introduce or enclose SQL comments. For more information on
SQL comment symbols, see “How to Enter SQL Comments” on page 1-3.

v The text can contain either a single SQL statement or (in ESQL/C routines) a
series of statements that are separated by semicolon (;) symbols.
For a list of SQL statements that cannot be prepared, see “Restricted Statements
in Single-Statement Prepares” on page 2-594. For more information on how to
prepare multiple SQL statements, see “Preparing Multiple SQL Statements” on
page 2-598.

v The text cannot include an embedded SQL statement prefix or terminator, such
as a dollar sign ($) or the words EXEC SQL.

v Host-language variables are not recognized as such in prepared text.
Therefore, you cannot prepare a SELECT (or EXECUTE FUNCTION or
EXECUTE PROCEDURE) statement that includes an INTO clause, because the
INTO clause requires a host-language variable.

2-592 IBM Informix Guide to SQL: Syntax

v The only identifiers that you can use are names that are defined in the database,
such as names of tables and columns. For more information on how to use
identifiers in statement text, see “Preparing Statements with SQL Identifiers” on
page 2-596.

v Use a question mark (?) as a placeholder to indicate where data is supplied
when the statement executes, as in this Informix ESQL/C example:
EXEC SQL prepare new_cust from

’insert into customer(fname,lname) values(?,?)’;

For more information on how to use question marks as placeholders, see
“Preparing Statements That Receive Parameters” on page 2-596.

If the prepared statement contains the Collection-Derived Table segment or an
Informix ESQL/C collection variable, some additional limitations exist on how you
can assemble the text for the PREPARE statement. For information about dynamic
SQL, see the IBM Informix ESQL/C Programmer's Manual. SPL routines cannot use
dynamic SQL statements to process prepared statements that contain the
Collection-Derived Table segment.

Example of a PREPARE statement in an SPL routine
The IBM Informix SPL language supports single-statement prepared objects.

For example, the following SQL and SPL statements perform these tasks:
1. Create the cities table.
2. Populates the cities table with four rows of data.
3. Creates the order_city SPL routine that defines a prepared statement and a

cursor to query the cities table:
CREATE TABLE cities -- defines a table
(

id INT,
city_name CHAR(50)

);

INSERT INTO cities VALUES (1, ’Chicago’);
INSERT INTO cities VALUES (2, ’New York’);
INSERT INTO cities VALUES (3, ’San Francisco’);
INSERT INTO cities VALUES (4, ’Atlanta’);

UPDATE STATISTICS HIGH;

CREATE PROCEDURE order_city() -- defines a UDR
RETURNING INT, CHAR(50);
DEFINE c_num INT;
DEFINE c_name CHAR(50);
DEFINE c_query VARCHAR(250);
LET c_query =
"SELECT id, city_name FROM cities ORDER BY city_name;";

PREPARE c_stmt FROM c_query;
DECLARE c_cur CURSOR FOR c_stmt;

OPEN c_cur ;
while (1 = 1)

FETCH c_cur INTO c_num, c_name;
IF (SQLCODE != 100) THEN

RETURN c_num, c_name WITH RESUME;
ELSE

EXIT;
END IF

END WHILE

Chapter 2. SQL statements 2-593

CLOSE c_cur;
FREE c_cur;
FREE c_stmt;

END PROCEDURE;

The following SQL statement invokes the order_city routine:
EXECUTE PROCEDURE order_city();

If the order_city function is called from the dbaccess utility, this output is
displayed:
(expression) (expression)

4 Atlanta
1 Chicago
2 New York
3 San Francisco

For an overview with detailed examples of how to create and use prepared objects
and Dynamic SQL in SPL routines, see this IBM developerWorks® article: Dynamic
SQL support in Informix Dynamic Server Stored Procedure Language

Preparing and Executing User-Defined Routines
The way to prepare a user-defined routine (UDR) depends on whether the UDR is
a user-defined procedure or a user-defined function:
v To prepare a user-defined procedure, prepare the EXECUTE PROCEDURE

statement that executes the procedure.
To execute the prepared procedure, use the EXECUTE statement.

v To prepare a user-defined function, prepare the EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement that executes the function.
You cannot include the INTO clause of EXECUTE FUNCTION (or EXECUTE
PROCEDURE) in the PREPARE statement.

How to execute a prepared user-defined function depends on whether it returns
only one group or multiple groups of values. Use the EXECUTE statement for
user-defined functions that return only one group of values.

To execute user-defined functions that return more than one group of return
values, you must associate the EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement with a cursor.

Restricted Statements in Single-Statement Prepares
In general, you can prepare any data manipulation language (DML) statement.

In Informix, you can prepare any single SQL statement except for the following
statements:
v ALLOCATE COLLECTION
v ALLOCATE DESCRIPTOR
v ALLOCATE ROW
v CLOSE
v CONNECT
v CREATE FUNCTION FROM
v CREATE PROCEDURE FROM

2-594 IBM Informix Guide to SQL: Syntax

http://www.ibm.com/developerworks/data/library/techarticle/dm-0806mottupalli/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0806mottupalli/index.html

v CREATE ROUTINE FROM
v DEALLOCATE COLLECTION
v DEALLOCATE DESCRIPTOR
v DEALLOCATE ROW
v DECLARE
v DESCRIBE
v DISCONNECT
v EXECUTE
v EXECUTE IMMEDIATE
v FETCH
v FLUSH
v FREE
v GET DESCRIPTOR
v GET DIAGNOSTICS
v INFO
v LOAD
v OPEN
v OUTPUT
v PREPARE
v PUT
v SET AUTOFREE
v SET CONNECTION
v SET DEFERRED_PREPARE
v SET DESCRIPTOR
v UNLOAD
v WHENEVER

You can prepare a SELECT statement. If SELECT includes the INTO TEMP clause,
an ESQL/C program can execute the prepared statement with an EXECUTE
statement. If it does not include the INTO TEMP clause, the statement returns rows
of data. Use DECLARE, OPEN, and FETCH cursor statements to retrieve the rows.

In ESQL/C, a prepared SELECT statement can include a FOR UPDATE clause.
This clause is used with the DECLARE statement to create an update cursor. The
next example shows a SELECT statement with a FOR UPDATE clause in Informix
ESQL/C:
sprintf(up_query, "%s %s %s",

"select * from customer ",
"where customer_num between ? and ? ",
"for update");

EXEC SQL prepare up_sel from :up_query;
EXEC SQL declare up_curs cursor for up_sel;
EXEC SQL open up_curs using :low_cust,:high_cust;

Preparing Statements When Parameters Are Known
In some prepared statements, all necessary information is known at the time the
statement is prepared. The following example in Informix ESQL/C shows two
statements that were prepared from constant data:

Chapter 2. SQL statements 2-595

sprintf(redo_st, "%s %s",
"drop table workt1; ",
"create table workt1 (wtk serial, wtv float)");

EXEC SQL prepare redotab from :redo_st;

Preparing Statements That Receive Parameters
In some statements, parameters are unknown when the statement is prepared
because a different value can be inserted each time the statement is executed. In
these statements, you can use a question-mark (?) placeholder where a parameter
must be supplied when the statement is executed.

The PREPARE statements in the following Informix ESQL/C examples show some
uses of question-mark (?) placeholders:
EXEC SQL prepare s3 from

’select * from customer where state matches ?’;
EXEC SQL prepare in1 from ’insert into manufact values (?,?,?)’;
sprintf(up_query, "%s %s",

"update customer set zipcode = ?"
"where current of zip_cursor");

EXEC SQL prepare update2 from :up_query;
EXEC SQL prepare exfunc from

’execute function func1 (?, ?)’;

You can use a placeholder to defer evaluation of a value until runtime only for an
expression, but not for an SQL identifier, except as noted in “Preparing Statements
with SQL Identifiers.”

The following example of an Informix ESQL/C code fragment prepares a
statement from a variable that is named demoquery. The text in the variable
includes one question-mark (?) placeholder. The prepared statement is associated
with a cursor and, when the cursor is opened, the USING clause of the OPEN
statement supplies a value for the placeholder:
EXEC SQL BEGIN DECLARE SECTION;

char queryvalue [6];
char demoquery [80];

EXEC SQL END DECLARE SECTION;

EXEC SQL connect to ’stores_demo’;
sprintf(demoquery, "%s %s",

"select fname, lname from customer ",
"where lname > ? ");

EXEC SQL prepare quid from :demoquery;
EXEC SQL declare democursor cursor for quid;
stcopy("C", queryvalue);
EXEC SQL open democursor using :queryvalue;

The USING clause is available in both OPEN statements that are associated with a
cursor and EXECUTE statements (all other prepared statements).

You can use a question-mark (?) placeholder to represent the name of an Informix
ESQL/C or SPL collection variable.

Preparing Statements with SQL Identifiers
In general, you must specify SQL identifiers explicitly in the statement text when
you prepare the statement. In a few special cases, however, you can use the
question-mark (?) placeholder for an SQL identifier:
v For the database name in the DATABASE statement.

2-596 IBM Informix Guide to SQL: Syntax

v For the dbspace name in the IN dbspace clause of the CREATE DATABASE
statement.

v For the cursor name in statements that use cursor names.

Obtaining SQL Identifiers from User Input
If a prepared statement requires identifiers, but the identifiers are unknown when
you write the prepared statement, you can construct a statement that receives SQL
identifiers from user input.

The following Informix ESQL/C example prompts the user for the name of a table
and uses that name in a SELECT statement. Because this name is unknown until
runtime, the number and data types of the table columns are also unknown.
Therefore, the program cannot allocate host variables to receive data from each
row in advance. Instead, this program fragment describes the statement into an
sqlda descriptor and fetches each row with the descriptor. The fetch puts each row
into memory locations that the program provides dynamically.

If a program retrieves all the rows in the active set, the FETCH statement would be
placed in a loop that fetched each row. If the FETCH statement retrieves more than
one data value (column), another loop exists after the FETCH, which performs
some action on each data value:
#include <stdio.h>
EXEC SQL include sqlda;
EXEC SQL include sqltypes;
char *malloc();

main()
{

struct sqlda *demodesc;
char tablename[19];
int i;

EXEC SQL BEGIN DECLARE SECTION;
char demoselect[200];

EXEC SQL END DECLARE SECTION;

/* This program selects all the columns of a given tablename.
The tablename is supplied interactively. */

EXEC SQL connect to ’stores_demo’;
printf("This program does a select * on a table\n");
printf("Enter table name: ");
scanf("%s", tablename);
sprintf(demoselect, "select * from %s", tablename);

EXEC SQL prepare iid from :demoselect;
EXEC SQL describe iid into demodesc;

/* Print what describe returns */

for (i = 0; i < demodesc->sqld; i++)
prsqlda (demodesc->sqlvar + i);

/* Assign the data pointers. */

for (i = 0; i < demodesc->sqld; i++)
{
switch (demodesc->sqlvar[i].sqltype & SQLTYPE)

{
case SQLCHAR:

demodesc->sqlvar[i].sqltype = CCHARTYPE;
/* make room for null terminator */
demodesc->sqlvar[i].sqllen++;
demodesc->sqlvar[i].sqldata =

Chapter 2. SQL statements 2-597

malloc(demodesc->sqlvar[i].sqllen);
break;

case SQLSMINT: /* fall through */
case SQLINT: /* fall through */
case SQLSERIAL:

demodesc->sqlvar[i].sqltype = CINTTYPE;
demodesc->sqlvar[i].sqldata =

malloc(sizeof(int));
break;

/* And so on for each type. */
}

}

/* Declare and open cursor for select . */
EXEC SQL declare d_curs cursor for iid;
EXEC SQL open d_curs;

/* Fetch selected rows one at a time into demodesc. */
for(; ;)

{
printf("\n");
EXEC SQL fetch d_curs using descriptor demodesc;
if (sqlca.sqlcode != 0)

break;
for (i = 0; i < demodesc->sqld; i++)

{
switch (demodesc->sqlvar[i].sqltype)

{
case CCHARTYPE:

printf("%s: \"%s\n", demodesc->sqlvar[i].sqlname,
demodesc->sqlvar[i].sqldata);

break;
case CINTTYPE:

printf("%s: %d\n", demodesc->sqlvar[i].sqlname,
*((int *) demodesc->sqlvar[i].sqldata));

break;
/* And so forth for each type... */

}
}

}
EXEC SQL close d_curs;
EXEC SQL free d_curs;
/* Free the data memory. */

for (i = 0; i < demodesc->sqld; i++)
free(demodesc->sqlvar[i].sqldata);

free(demodesc);

printf ("Program Over.\n");
}

prsqlda(sp)
struct sqlvar_struct *sp;

{
printf ("type = %d\n", sp->sqltype);
printf ("len = %d\n", sp->sqllen);
printf ("data = %lx\n", sp->sqldata);
printf ("ind = %lx\n", sp->sqlind);
printf ("name = %s\n", sp->sqlname);
}

Preparing Multiple SQL Statements
In ESQL/C, you can execute several SQL statements as one action if you include
them in the same PREPARE statement. Multistatement text is processed as a unit;

2-598 IBM Informix Guide to SQL: Syntax

actions are not treated sequentially. Therefore, multistatement text cannot include
statements that depend on actions that occur in a previous statement in the text.
For example, you cannot create a table and insert values into that table in the same
prepared statement block.

If a statement in a multistatement prepare returns an error, the whole prepared
statement stops executing. The database server does not execute any remaining
statements. In most situations, compiled products return error-status information
on the error, but do not indicate which statement in the text causes an error. You
can use the sqlca.sqlerrd[4] field in the sqlca to find the offset of the errors.

In a multistatement prepare, if no rows are returned from a WHERE clause in the
following statements, the database server returns SQLNOTFOUND (100):
v UPDATE ... WHERE ...
v SELECT INTO TEMP ... WHERE ...
v INSERT INTO ... WHERE ...
v DELETE FROM ... WHERE ...

In the next example, four SQL statements are prepared into a single Informix
ESQL/C string called query. Individual statements are delimited with semicolons.

A single PREPARE statement can prepare the four statements for execution, and a
single EXECUTE statement can execute the statements that are associated with the
qid statement identifier:
sprintf (query, "%s %s %s %s %s %s %s",

"update account set balance = balance + ? ",
"where acct_number = ?;",

"update teller set balance = balance + ? ",
"where teller_number = ?;",

"update branch set balance = balance + ? ",
"where branch_number = ?;",

"insert into history values (?, ?);";
EXEC SQL prepare qid from :query;

EXEC SQL begin work;
EXEC SQL execute qid using

:delta, :acct_number, :delta, :teller_number,
:delta, :branch_number, :timestamp, :values;

EXEC SQL commit work;

Here the semicolons (;) are required as SQL statement-terminator symbols
between each SQL statement in the text that query holds.

Restricted Statements in Multistatement Prepared Objects
In addition to the statements listed as exceptions in “Restricted Statements in
Single-Statement Prepares” on page 2-594, you cannot use the following statements
in the text of a multiple-statement prepared object:
v CLOSE DATABASE
v CREATE DATABASE
v DATABASE
v DROP DATABASE
v RENAME DATABASE
v SELECT (with one exception)

The following types of statements are also not valid in a multistatement prepare:

Chapter 2. SQL statements 2-599

v Statements that can cause the current database to close during the execution of
the multistatement sequence

v Statements that include references to TEXT or BYTE host variables

In general, you cannot use the SELECT statement in a multistatement prepare. The
only form of the SELECT statement allowed in a multistatement prepare is a
SELECT statement with an INTO temporary table clause.

Using Prepared Statements for Efficiency
To increase performance efficiency, you can use the PREPARE statement and an
EXECUTE statement in a loop to eliminate overhead that redundant parsing and
optimizing cause. For example, an UPDATE statement that is located within a
WHILE loop is parsed each time the loop runs. If you prepare the UPDATE
statement outside the loop, the statement is parsed only once, eliminating
overhead and speeding statement execution. The following example shows how to
prepare an Informix ESQL/C statement to improve performance:
EXEC SQL BEGIN DECLARE SECTION;

char disc_up[80];
int cust_num;

EXEC SQL END DECLARE SECTION;
main()
{

sprintf(disc_up, "%s %s","update customer ",
"set discount = 0.1 where customer_num = ?");

EXEC SQL prepare up1 from :disc_up;
while (1)

{
printf("Enter customer number (or 0 to quit): ");
scanf("%d", cust_num);
if (cust_num == 0)

break;
EXEC SQL execute up1 using :cust_num;
}

}

Like the SQL statement cache, prepared statements can reduce how often the same
query plan is reoptimized, thereby conserving resources in some contexts. The
section “Prepared Statements and the Statement Cache” on page 2-820 discusses
the use of prepared DML statements, cursors, and the SQL statement cache as
combined or alternative techniques for improving query performance.

DDL Operations on Tables Referenced in Prepared Objects
Various DDL statements can drop, rename, or alter the schema of a table that a
prepared object references, but subsequent attempts to execute the prepared object
might fail with error -710, or might produce unexpected results.

These restrictions do not necessarily apply, however, if an index is added or
dropped when automatic recompilation is enabled for prepared objects and
routines that directly reference tables that ALTER TABLE, CREATE INDEX, or
DROP INDEX operations have modified. This is the default behavior of Informix.
For more information about using the SET ENVIRONMENT
IFX_AUTO_REPREPARE statement to enable or disable automatic recompilation
after changes to the schema of a table, and for contexts where the database server
issues error -710 even when automatic recompilation is enabled, see
“IFX_AUTO_REPREPARE Environment Option” on page 2-773.

When the AUTO_REPREPARE configuration parameter and the
IFX_AUTO_REPREPARE session environment variable are set to disable automatic

2-600 IBM Informix Guide to SQL: Syntax

recompilation, however, adding an index to a table that a prepared statement
references indirectly can similarly invalidate the prepared statement. A subsequent
OPEN statement fails if the cursor refers to the invalid prepared statement, even if
the OPEN statement includes the WITH REOPTIMIZATION keywords. If an index
on an indirectly referenced table is added after the statement was prepared while
automatic recompilation is disabled, you must prepare the statement again and
declare the cursor again. You cannot simply reopen the cursor if it is based on a
prepared statement that is no longer valid.

Related Statements

Related statements: “CLOSE statement” on page 2-128, “DECLARE statement” on
page 2-386, “DESCRIBE statement” on page 2-412, “EXECUTE statement” on page
2-455, “FREE statement” on page 2-486, “OPEN statement” on page 2-581, “SET
AUTOFREE statement” on page 2-726, and “SET DEFERRED_PREPARE statement”
on page 2-751

For information about basic concepts that relate to the PREPARE statement, see the
IBM Informix Guide to SQL: Tutorial.

For information about more advanced concepts that relate to the PREPARE
statement, see the IBM Informix ESQL/C Programmer's Manual.

PUT statement
Use the PUT statement to store a row in an insert buffer for later insertion into the
database.

Syntax

�� PUT cursor_id_var
cursor_id

�

�

�

,

FROM output_var
INDICATOR indicator_var
$indicator_var
:indicator_var

USING SQL DESCRIPTOR 'descriptor '
descriptor_var

DESCRIPTOR sqlda_pointer

��

Element Description Restrictions Syntax

cursor_id Name of a cursor Must be open “Identifier” on page 5-21

cursor_id_var Host variable = cursor_id Must be a character type;
cursor must be open

Language specific

descriptor Name of a system-descriptor area Must already be allocated “Quoted String” on page
4-219

descriptor_var Host-variable that contains descriptor Must already be allocated “Quoted String” on page
4-219

Chapter 2. SQL statements 2-601

Element Description Restrictions Syntax

indicator_var Host variable to receive a return code if
corresponding output_var receives a
NULL value

Cannot be a DATETIME or
INTERVAL data type

Language specific

output_var Host variable whose contents replace a
question-mark (?) placeholder in a
prepared INSERT statement

Must be a character data
type

Language specific

sqlda_pointer Pointer to an sqlda structure First character cannot be the
($) or (:) symbol

“DESCRIBE statement” on
page 2-412

Usage

This statement is an extension to the ANSI/ISO standard for SQL. You can use this
statement with ESQL/C.

PUT stores a row in an insert buffer that is created when the cursor is opened.

If the buffer has no room for the new row when the statement executes, the
buffered rows are written to the database in a block, and the buffer is emptied. As
a result, some PUT statement executions cause rows to be written to the database,
and some do not. You can use the FLUSH statement to write buffered rows to the
database without adding a new row. The CLOSE statement writes any remaining
rows before it closes an Insert cursor.

If the current database uses explicit transactions, you must execute a PUT
statement within a transaction.

The following example uses a PUT statement in Informix ESQL/C:
EXEC SQL prepare ins_mcode from

’insert into manufact values(?,?)’;
EXEC SQL declare mcode cursor for ins_mcode;
EXEC SQL open mcode;
EXEC SQL put mcode from :the_code, :the_name;

The PUT statement is not an X/Open SQL statement. Therefore, you get a warning
message if you compile a PUT statement in X/Open mode.
Related reference:
“CLOSE statement” on page 2-128
“GET DESCRIPTOR statement” on page 2-487
“SET DESCRIPTOR statement” on page 2-753
“INSERT statement” on page 2-545
“ALLOCATE DESCRIPTOR statement” on page 2-2
“EXECUTE statement” on page 2-455
“DESCRIBE statement” on page 2-412
“DESCRIBE INPUT statement” on page 2-417
“DEALLOCATE DESCRIPTOR statement” on page 2-384
“Collection-Derived Table” on page 5-4
“OPEN statement” on page 2-581
“DECLARE statement” on page 2-386

2-602 IBM Informix Guide to SQL: Syntax

Supplying Inserted Values
The values in the inserted row can come from one of the following sources:
v Constant values that are written into the INSERT statement
v Program variables that are named in the INSERT statement
v Program variables in the FROM clause of the PUT statement
v Values that are prepared in memory addressed by an sqlda structure or a

system-descriptor area and then specified in the USING clause of the PUT
statement

The system descriptor area or sqlda structure that descriptor or sqlda_pointer
references must define a data type and memory location of each value that
corresponds to a question-mark (?) placeholder in a prepared INSERT statement.

Using Constant Values in INSERT
The VALUES clause lists the values for the inserted columns. One or more of these
values can be constants (that is, numbers or character strings).

When all the inserted values are constants, the PUT statement has a special effect.
Instead of creating a row and putting it in the buffer, the PUT statement merely
increments a counter. When you use a FLUSH or CLOSE statement to empty the
buffer, one row and a repetition count are sent to the database server, which inserts
that number of rows. In the following Informix ESQL/C example, 99 empty
customer records are inserted into the customer table. Because all values are
constants, no disk output occurs until the cursor closes. (The constant zero for
customer_num causes generation of a SERIAL value.) The following example
inserts 99 empty customer records into the customer table:
int count;
EXEC SQL declare fill_c cursor for

insert into customer(customer_num) values(0);
EXEC SQL open fill_c;
for (count = 1; count <= 99; ++count)

EXEC SQL put fill_c;
EXEC SQL close fill_c;

Naming Program Variables in INSERT
When you associate the INSERT statement with a cursor (in the DECLARE
statement), you create an Insert cursor. In the INSERT statement, you can name
program variables in the VALUES clause. When each PUT statement is executed,
the contents of the program variables at that time are used to populate the row
that is inserted into the buffer.

If you are creating an Insert cursor (using DECLARE with INSERT), you must use
only program variables in the VALUES clause. Variable names are not recognized
in the context of a prepared statement; you associate a prepared statement with a
cursor through its statement identifier.

The following Informix ESQL/C example illustrates the use of an Insert cursor.
The code includes the following statements:
v The DECLARE statement associates a cursor called ins_curs with an INSERT

statement that inserts data into the customer table.
The VALUES clause specifies a data structure that is called cust_rec; the
Informix ESQL/C preprocessor converts cust_rec to a list of values, one for each
component of the structure.

v The OPEN statement creates a buffer.

Chapter 2. SQL statements 2-603

v A user-defined function (not defined within this example) obtains customer
information from user input and stores it in cust_rec.

v The PUT statement composes a row from the current contents of the cust_rec
structure and sends it to the row buffer.

v The CLOSE statement inserts into the customer table any rows that remain in
the row buffer and closes the Insert cursor:

int keep_going = 1;
EXEC SQL BEGIN DECLARE SECTION

struct cust_row { /* fields of a row of customer table */ } cust_rec;
EXEC SQL END DECLARE SECTION
EXEC SQL declare ins_curs cursor for

insert into customer values (:cust_row);
EXEC SQL open ins_curs;
while ((sqlca.sqlcode == 0) && (keep_going))

{
keep_going = get_user_input(cust_rec); /* ask user for new customer */

if (keep_going) /* user did supply customer info
*/

{
cust_rec.customer_num = 0; /* request new serial value */
EXEC SQL put ins_curs;
}

if (sqlca.sqlcode == 0) /* no error from PUT */
keep_going = (prompt_for_y_or_n("another new customer") ==’Y’)

}
EXEC SQL close ins_curs;

Use an indicator variable if the data to be inserted might be NULL.

Naming Program Variables in PUT
When the INSERT statement is prepared (see “PREPARE statement” on page
2-589), you cannot use program variables in its VALUES clause, but you can
represent values by a question-mark (?) placeholder. List the program variables in
the FROM clause of the PUT statement to supply the missing values.

The following Informix ESQL/C example lists host variables in a PUT statement:
char answer [1] = ’y’;
EXEC SQL BEGIN DECLARE SECTION;

char ins_comp[80];
char u_company[20];

EXEC SQL END DECLARE SECTION;

main()
{

EXEC SQL connect to ’stores_demo’;
EXEC SQL prepare ins_comp from

’insert into customer (customer_num, company) values (0, ?)’;
EXEC SQL declare ins_curs cursor for ins_comp;
EXEC SQL open ins_curs;

while (1)
{
printf("\nEnter a customer: ");
gets(u_company);
EXEC SQL put ins_curs from :u_company;
printf("Enter another customer (y/n) ? ");
if (answer = getch() != ’y’)

break;

2-604 IBM Informix Guide to SQL: Syntax

}
EXEC SQL close ins_curs;
EXEC SQL disconnect all;

}

Indicator variables are optional, but you should use an indicator variable if the
possibility exists that output_var might contain a NULL value. If you specify the
indicator variable without the INDICATOR keyword, you cannot put a blank space
between output_var and indicator_var.

Using the USING Clause
If you do not know the number of parameters to be supplied at runtime or their
data types, you can associate input values from a system-descriptor area or an
sqlda structure. Both of these descriptor structures describe the data type and
memory location of one or more values to replace question-mark (?) placeholders.

Each time the PUT statement executes, the values that the descriptor structure
describes are used to replace question-mark (?) placeholders in the INSERT
statement. This process is similar to using a FROM clause with a list of variables,
except that your program has full control over the memory location of the data
values.

Specifying a System-Descriptor Area
The SQL DESCRIPTOR option specifies the name of a system-descriptor area.

The COUNT field in the system-descriptor area corresponds to the number of
dynamic parameters in the prepared statement. The value of COUNT must be less
than or equal to the number of item descriptors that were specified when the
system-descriptor area was allocated with the ALLOCATE DESCRIPTOR
statement. You can obtain the value of a field with the GET DESCRIPTOR
statement and set the value with the SET DESCRIPTOR statement.

A system-descriptor area conforms to the X/Open standards.

The following Informix ESQL/C example shows how to associate values from a
system-descriptor area:
EXEC SQL allocate descriptor ’desc1’;
...
EXEC SQL put selcurs using sql descriptor ’desc1’;

Specifying an sqlda Structure
Use the DESCRIPTOR option to introduce the name of a pointer to an sqlda
structure. The following Informix ESQL/C example shows how to associate values
from an sqlda structure:
EXEC SQL put selcurs using descriptor pointer2;

Inserting into a Collection Cursor
A Collection cursor allows you to access the individual elements of a collection
variable. To declare a Collection cursor, use the DECLARE statement and include
the Collection-Derived Table segment in the INSERT statement that you associate
with the cursor. Once you open the Collection cursor with the OPEN statement,
the cursor can put elements in the collection variable.

To put elements, one at a time, into the Insert cursor, use the PUT statement and
the FROM clause. The PUT statement identifies the Collection cursor that is
associated with the collection variable. The FROM clause identifies the element

Chapter 2. SQL statements 2-605

value to be inserted into the cursor. The data type of any host variable in the
FROM clause must match the element type of the collection.

Important: The collection variable stores the elements of the collection. However, it
has no intrinsic connection with a database column. Once the collection variable
contains the correct elements, you must then save the variable into the actual
collection column with the INSERT or UPDATE statement.

Suppose you have a table called children with the following schema:
CREATE TABLE children
(

age SMALLINT,
name VARCHAR(30),
fav_colors SET(VARCHAR(20) NOT NULL)

);

The following Informix ESQL/C program fragment shows how to use an Insert
cursor to put elements into a collection variable called child_colors:
EXEC SQL BEGIN DECLARE SECTION;

client collection child_colors;
char *favorites[]
(

"blue",
"purple",
"green",
"white",
"gold",
0

);
int a = 0;
char child_name[21];

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :child_colors;

/* Get structure of fav_colors column for untyped
* child_colors collection variable */
EXEC SQL select fav_colors into :child_colors

from children where name = :child_name;
/* Declare insert cursor for child_colors collection
* variable and open this cursor */
EXEC SQL declare colors_curs cursor for

insert into table(:child_colors)
values (?);

EXEC SQL open colors_curs;
/* Use PUT to gather the favorite-color values
* into a cursor */
while (fav_colors[a])

{
EXEC SQL put colors_curs from :favorites[:a];
a++
...

}
/* Flush cursor contents to collection variable */
EXEC SQL flush colors_curs;
EXEC SQL update children set fav_colors = :child_colors;

EXEC SQL close colors_curs;
EXEC SQL deallocate collection :child_colors;

After the FLUSH statement executes, the collection variable, child_colors, contains
the elements {"blue", "purple", "green", "white", "gold"}. The UPDATE
statement at the end of this program fragment saves the new collection into the

2-606 IBM Informix Guide to SQL: Syntax

fav_colors column of the database. Without this UPDATE statement, the new
collection would not be added to the collection column.
Related reference:
“ALLOCATE COLLECTION statement” on page 2-1
“DEALLOCATE COLLECTION statement” on page 2-383

Writing Buffered Rows
To open an Insert cursor, the OPEN statement creates an insert buffer. The PUT
statement puts a row into this insert buffer. The buffered rows are inserted into the
database table as a block only when necessary; this process is called flushing the
buffer. The buffer is flushed after any of the following events:
v Buffer is too full to hold the new row at the start of a PUT statement.
v A FLUSH statement executes.
v A CLOSE statement closes the cursor.
v An OPEN statement specifies an already open cursor, closing it before reopening

it. (This implicit CLOSE statement flushes the buffer.)
v A COMMIT WORK statement executes.
v Buffer contains BYTE or TEXT data (flushed after a single PUT statement).

If the program terminates without closing an Insert cursor, the buffer remains
unflushed. Rows that were inserted into the buffer since the last flush are lost. Do
not rely on the end of the program to close the cursor and flush the buffer.

Error Checking
The sqlca structure contains information on the success of each PUT statement as
well as information that lets you count the rows that were inserted. The result of
each PUT statement is contained in the following fields of the sqlca: sqlca.sqlcode,
SQLCODE, and sqlca.sqlerrd[2].

Data buffering with an Insert cursor means that errors are not discovered until the
buffer is flushed. For example, an input value that is incompatible with the data
type of the column for which it is intended is discovered only when the buffer is
flushed. When an error is discovered, buffered rows that were not inserted before
the error are not inserted; they are lost from memory.

The SQLCODE field is set to 0 if no error occurs; otherwise, it is set to an error
code. The third element of the sqlerrd array is set to the number of rows that were
successfully inserted into the database:
v If any row is put into the insert buffer, but not written to the database,

SQLCODE and sqlerrd are set to 0 (SQLCODE because no error occurred, and
sqlerrd because no rows were inserted).

v If a block of buffered rows is written to the database during the execution of a
PUT statement, SQLCODE is set to 0 and sqlerrd is set to the number of rows
that was successfully inserted into the database.

v If an error occurs while the buffered rows are written to the database,
SQLCODE indicates the error, and sqlerrd contains the number of successfully
inserted rows. (The uninserted rows are discarded from the buffer.)

Tip: When you encounter an SQLCODE error, a SQLSTATE error value also
exists. See the GET DIAGNOSTICS statement for details of how to obtain the
message text.

Chapter 2. SQL statements 2-607

To count the number of pending and inserted rows in the database

1. Prepare two integer variables (for example, total and pending).
2. When the cursor is opened, set both variables to 0.
3. Each time a PUT statement executes, increment both total and pending.
4. Whenever a PUT or FLUSH statement executes or the cursor closes, subtract

the third field of the SQLERRD array from pending.

At any time, (total - pending) represents the number of rows actually inserted. If
no statements fail, pending contains zero after the cursor is closed. If an error
occurs during a PUT, FLUSH, or CLOSE statement, the value that remains in
pending is the number of uninserted (discarded) rows.

Related Statements

Related statements: “ALLOCATE DESCRIPTOR statement” on page 2-2, “CLOSE
statement” on page 2-128, “DEALLOCATE DESCRIPTOR statement” on page
2-384, “FLUSH statement” on page 2-484, “DECLARE statement” on page 2-386,
“GET DESCRIPTOR statement” on page 2-487, “OPEN statement” on page 2-581,
“PREPARE statement” on page 2-589, and “SET DESCRIPTOR statement” on page
2-753

For a task-oriented discussion of the PUT statement, see the IBM Informix Guide to
SQL: Tutorial.

For more information about error checking, the system-descriptor area, and the
sqlda structure, see the IBM Informix ESQL/C Programmer's Manual.

RELEASE SAVEPOINT statement
Use the RELEASE SAVEPOINT statement to destroy a specified savepoint. The
RELEASE SAVEPOINT statement is compliant with the ANSI/ISO standard for
SQL.

Syntax

�� RELEASE SAVEPOINT savepoint ��

Element Description Restrictions Syntax

savepoint Name of the
savepoint to be
destroyed

Must exist in the current savepoint level “Identifier” on page 5-21

Usage

Restriction: After this statement executes successfully, rollback to the specified
savepoint (or to any other savepoint between the RELEASE SAVEPOINT statement
and the specified savepoint) is no longer possible.

The RELEASE SAVEPOINT statement destroys the specified savepoint. Any
savepoints set between that savepoint and the RELEASE SAVEPOINT statement in
the current savepoint level are also destroyed. Any other savepoints, however, that
were set earlier than the specified savepoint in the current savepoint level continue
to be active.

2-608 IBM Informix Guide to SQL: Syntax

The RELEASE SAVEPOINT statement fails with an error in the following contexts:
v No SQL transaction is open.
v No savepoint with the specified name exists in the current savepoint level.
v The statement is part of a triggered action.
v The statement is part of an XA transaction.
v The autocommit transaction mode of the client API is enabled.
v The statement is part of a cross-server distributed SQL transaction in which one

of the participating database servers does not support savepoints.
v The statement is issued within a UDR that is invoked within a DML statement.

The identifier of any savepoint that RELEASE SAVEPOINT destroys can be reused
in a subsequent SAVEPOINT statement of the same savepoint level, even if the
released savepoint was set by a SAVEPOINT statement that included the UNIQUE
keyword.

Because savepoints are program objects, not database objects, the RELEASE
SAVEPOINT statement has no direct effect on the database or on its system catalog
tables. RELEASE SAVEPOINT can affect user tables and the system catalog
indirectly, however, if it changes the scope of a subsequent ROLLBACK TO
SAVEPOINT operation that cancels uncommitted changes to the database within a
different portion of the current savepoint level, as the next example illustrates.

The following program fragment sets and then releases a savepoint called sp45:
BEGIN WORK;
CREATE DATABASE third_base IN db3 WITH BUFFERED LOG;
SAVEPOINT sp46;
CREATE TABLE tab1 (col1 INT, col2 CHAR(24));
SAVEPOINT sp45 UNIQUE;
...
CREATE TABLE tab2 (col1 INT8, col2 LVARCHAR(24000));
SAVEPOINT sp44;
...
RELEASE SAVEPOINT sp45;
ROLLBACK TO SAVEPOINT;

The effect of the RELEASE SAVEPOINT statement in this example is to destroy
two savepoints, sp45 and sp44. If the only remaining savepoint in the current
savepoint level is sp46, the subsequent ROLLBACK TO SAVEPOINT statement
cancels the DDL statements that created tab1 and tab2, and any DML operations
on those tables that preceded the ROLLBACK statement. The rollback does not,
however, cancel the CREATE DATABASE statement that created the third_base
database. Without the RELEASE SAVEPOINT statement, the CREATE TABLE
statement that created tab1 would not have been cancelled, because Informix
would have treated sp44 as the default.savepoint that the TO SAVEPOINT clause
of the ROLLBACK statement references.
Related reference:
“SAVEPOINT statement” on page 2-652
“ROLLBACK WORK statement” on page 2-646

RENAME COLUMN statement
Use the RENAME COLUMN statement to change the name of a column. The
RENAME COLUMN statement is an extension to the ANSI/ISO standard for SQL.

Chapter 2. SQL statements 2-609

Syntax

�� RENAME COLUMN
owner.

table . old_column TO new_column ��

Element Description Restrictions Syntax

new_column Name that you
declare here to replace
old_column

Must be unique among column names in table.
See also “How Triggers Are Affected.”

“Identifier” on page 5-21

old_column Column to rename Must exist within table “Identifier” on page 5-21

owner Owner of the table Must be the owner of table “Owner name” on page
5-49

table Table that contains
old_column

Must be registered in the current database “Identifier” on page 5-21

Usage

You can rename a column of a table if any of the following conditions are true:
v You own the table or have Alter privilege on the table.
v You have the DBA privilege on the database.

The column can be in a table object that the CREATE EXTERNAL TABLE
statement defined.

Example

The following example assigns the new name of c_num to the customer_num
column in the customer table:
RENAME COLUMN customer.customer_num TO c_num;

Related concepts:
“CREATE TRIGGER statement” on page 2-329
Related reference:
“RENAME TABLE statement” on page 2-615
“ALTER TABLE statement” on page 2-72
“CREATE TABLE statement” on page 2-265
“CREATE VIEW statement” on page 2-373

How Views and Check Constraints Are Affected
If you rename a column that appears in a view, the text of the view definition in
the sysviews system catalog table is updated to reflect the new column name. If
you rename a column that appears in a check constraint, the text of the check
constraint in the syschecks system catalog table is updated to reflect the new
column name.

How Triggers Are Affected
If you rename a column that appears within the definition a trigger, it is replaced
with the new name only in the following instances:
v When it appears as part of a correlation name inside the FOR EACH ROW

action clause of a trigger

2-610 IBM Informix Guide to SQL: Syntax

v When it appears as part of a correlation name in the INTO clause of an
EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement

v When it appears as a triggering column in the UPDATE clause

When the trigger executes, if the database server encounters a column name that
no longer exists in the table, an error is returned.

RENAME DATABASE statement
Use the RENAME DATABASE statement to change the name of a database. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� RENAME DATABASE
owner.

old_database TO new_database ��

Element Description Restrictions Syntax

new_database New name that you
declare here for
old_database

Must be unique among database names of the
current database server; must not be opened by any
user when this statement is issued

“Database Name”
on page 5-15

old_database Name that new_database
replaces

Must exist on current database server, but it cannot
be the name of the current database

“Database Name”
on page 5-15

owner Owner of old_database Must be the owner of the database “Owner name” on
page 5-49

Usage

You can rename a database if either of the following is true:
v You created the database.
v You have the DBA privilege on the database.

The RENAME DATABASE statement fails with error -9874, however, if the
specified database contains any of the following objects:
v a virtual table
v a virtual index
v an R-tree index
v a DataBlade that references the current name of the database in a user-defined

primary access method or in a user-defined secondary access method.

You can only rename databases of the database server to which you are currently
connected.

You cannot rename a database from inside an SPL routine.
Related reference:
“CREATE DATABASE statement” on page 2-150

Update JAR file names (J/Foundation Guide)

Chapter 2. SQL statements 2-611

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.jfoun.doc/ids_jfoun_050.htm#ids_jfoun_050

RENAME INDEX statement
Use the RENAME INDEX statement to change the name of an existing index. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� RENAME INDEX
owner.

old_index TO new_index ��

Element Description Restrictions Syntax

new_index New name that you
declare here for the
index

Name must be unique to the database (or to the
session, if old_index is on a temporary table)

“Identifier” on page
5-21

old_index Index name that
new_index replaces

Must exist, but it cannot be any of the following: --
An index on a system catalog table -- A
system-generated constraint index -- A Virtual-Index
Interface (VII)

“Identifier” on page
5-21

owner Owner of index Must be the owner of old_index “Owner name” on page
5-49

Usage

You can rename an index if you are the owner of the index or have the DBA
privilege on the database.

When you rename an index, the database server changes the index name in the
sysindexes, sysconstraints, sysobjstate, and sysfragments system catalog tables.
(But for an index on a temporary table, no system catalog tables are updated.)

Indexes on system catalog tables cannot be renamed. If you want to change the
name of a system-generated index that implements a constraint, use the ALTER
TABLE ... DROP CONSTRAINT statement to drop the constraint, and then use the
ALTER TABLE ... ADD CONSTRAINT statement to define a new constraint that
has the same definition as the constraint that you dropped, but for which you
declare the new name.

By default, SPL routines that use the renamed index are reoptimized when they are
next executed after the index is renamed. When automatic recompilation is
disabled, however, SPL routines that use the renamed index are automatically
recompiled on their next use if the renamed index is associated with a directly
referenced table. If the table is only referenced indirectly, however, execution can
fail with error -710. For more information about enabling or disabling automatic
recompilation after changes to the schema of a referenced table, see the
“IFX_AUTO_REPREPARE Environment Option” on page 2-773. For more
information about the AUTO_REPREPARE configuration parameter, see your IBM
Informix Administrator's Reference.
Related concepts:

Reoptimizing SPL routines (Performance Guide)
Related reference:
“ALTER INDEX statement” on page 2-59
“CREATE INDEX statement” on page 2-194

2-612 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_544.htm#ids_prf_544

“DROP INDEX statement” on page 2-431

RENAME SECURITY statement
Use the RENAME SECURITY statement to change the name of an existing security
object. The object can be a security policy, or a security label, or a security label
component.

Syntax

�� RENAME SECURITY POLICY
LABEL policy .
LABEL COMPONENT

old_name TO new_name ��

Element Description Restrictions Syntax

new_name New name that you
declare here for the
security object

Must be unique among identifiers of security objects
in the database, and must be different from old_name

“Identifier” on page
5-21

old_name Current name that
new_name replaces

Must exist in the database as the identifiers of a
security object

“Identifier” on page
5-21

policy Security policy of
the old_name label

Must be the security policy for which old_name is a
security label

“Identifier” on page
5-21

Usage

This statement is an extension to the ANSI/ISO standard for SQL.

Only DBSECADM can issue this statement. The RENAME SECURITY statement
replaces the old_name with the specified new_name in the table of the system
catalog in which the renamed security object is registered:
v sysecpolicies.secpolicyname for security policies
v sysseclabels.seclabelname for security labels
v sysseclabelcomponents.compname for security label components.

This statement does not, however, change the numeric value of the
sysecpolicies.secpolicyid, sysseclabels.seclabelid, nor
sysseclabelcomponents.compid of the renamed security object.

The keyword or keywords that follow the SECURITY keyword identify the type of
security object that is being renamed. In the following example, the new identifier
honesty replaces best as the name of a security policy:
RENAME SECURITY POLICY best TO honesty;

In the following example, the new identifier transparent replaces opaque as the
name of a label for the honesty security policy:
RENAME SECURITY LABEL honesty.opaque TO transparent;

In the next example, the new identifier accountant replaces architect as the name
of a security label component:
RENAME SECURITY LABEL COMPONENT architect TO accountant;

Related concepts:

Label-based access control (Security Guide)

Chapter 2. SQL statements 2-613

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_lb_002.htm#ids_lb_002

Related reference:
“ALTER SECURITY LABEL COMPONENT statement” on page 2-64
“ALTER TABLE statement” on page 2-72
“CREATE SECURITY LABEL statement” on page 2-248
“CREATE SECURITY LABEL COMPONENT statement” on page 2-250
“CREATE SECURITY POLICY statement” on page 2-254
“CREATE TABLE statement” on page 2-265
“DROP SECURITY statement” on page 2-442
“EXEMPTION Clause” on page 2-526
“SECURITY LABEL Clause” on page 2-528
“EXEMPTION Clause” on page 2-637
“SECURITY LABEL Clause” on page 2-639

RENAME SEQUENCE statement
Use the RENAME SEQUENCE statement to change the name of a sequence. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� RENAME SEQUENCE
owner.

old_sequence TO new_sequence ��

Element Description Restrictions Syntax

new_sequence New name that you declare here
for an existing sequence

Must be unique among the names of
sequences, tables, views, and
synonyms in the database

“Identifier” on page 5-21

old_sequence Current name of a sequence Must exist in the current database “Identifier” on page 5-21

owner Owner of the sequence Must be the owner of the sequence “Owner name” on page
5-49

Usage

To rename a sequence, you must be the owner of the sequence, have the ALTER
privilege on the sequence, or have the DBA privilege on the database.

You cannot use a synonym to specify the name of the sequence.

In a database that is not ANSI compliant, the name of new_sequence (or in an
ANSI-compliant database, the combination of owner.new_sequence) must be unique
among sequences, tables, views, and synonyms in the database.
Related reference:
“DROP SEQUENCE statement” on page 2-444
“ALTER SEQUENCE statement” on page 2-68
“CREATE SEQUENCE statement” on page 2-257
“CREATE SYNONYM statement” on page 2-261
“DROP SYNONYM statement” on page 2-445
“GRANT statement” on page 2-502
“REVOKE statement” on page 2-618

2-614 IBM Informix Guide to SQL: Syntax

“INSERT statement” on page 2-545
“UPDATE statement” on page 2-852
“SELECT statement” on page 2-654
“NEXTVAL and CURRVAL Operators” on page 4-84

RENAME TABLE statement
Use the RENAME TABLE statement to change the name of a table. The RENAME
TABLE statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� RENAME TABLE
owner.

old_table TO new_table ��

Element Description Restrictions Syntax

new_table New name for old_table Must be unique among the names of
sequences, tables, views, and synonyms in
the database

“Identifier” on page
5-21

old_table Name that new_table replaces Must be the name (not the synonym) of a
table that is registered in the current
database

“Identifier” on page
5-21

owner Current owner of the table Must be the owner of the table. “Owner name” on
page 5-49

Usage

To rename a table, you must be the owner of the table, or have the ALTER
privilege on the table, or have the DBA privilege on the database.

An error occurs if old_table is a synonym, rather than the name of a table.

The old_table can be an object that the CREATE EXTERNAL TABLE statement
defined.

The renamed table remains in the current database. You cannot use the RENAME
TABLE statement to move a table from the current database to another database,
nor to rename a table that resides in another database.

You cannot change the table owner by renaming the table. An error occurs if you
try to specify an owner. qualifier for the new name of the table.

When the table owner is changed, you must specify both the old owner and new
owner.

In an ANSI-compliant database, if you are not the owner of old_table, you must
specify owner.old_table as the old name of the table.

If old_table is referenced by a view in the current database, the view definition is
updated in the sysviews system catalog table to reflect the new table name. For
further information on the sysviews system catalog table, see the IBM Informix
Guide to SQL: Reference.

Chapter 2. SQL statements 2-615

If old_table is a triggering table, the database server takes these actions:
v Replaces the name of the table in the trigger definition but does not replace the

table name where it appears inside any triggered actions
v Returns an error if the new table name is the same as a correlation name in the

REFERENCING clause of the trigger definition

When the trigger executes, the database server returns an error if it encounters a
table name for which no table exists.

Using RENAME TABLE to Reorganize a Table

The RENAME TABLE statement can be a useful alternative to the ALTER TABLE
statement when you need to reorganize the schema of an existing table. Suppose,
for example, that you decide to change the order of columns in the items table of
the stores demonstration database. You can reorganize the items table to move the
quantity column from the fifth position to the third position by following these
steps:
1. Create a new table, new_table, that contains the column quantity in the third

position.
2. Fill the table with data from the current items table.
3. Drop the old items table.
4. Rename new_table with the identifier items.

The following example uses the RENAME TABLE statement as the last step:
CREATE TABLE new_table

(
item_num SMALLINT,
order_num INTEGER,
quantity SMALLINT,
stock_num SMALLINT,
manu_code CHAR(3),
total_price MONEY(8)
);

INSERT INTO new_table
SELECT item_num, order_num, quantity, stock_num,

manu_code, total_price FROM items;
DROP TABLE items;
RENAME TABLE new_table TO items;

Related reference:
“ALTER TABLE statement” on page 2-72
“CREATE TABLE statement” on page 2-265
“DROP TABLE statement” on page 2-446
“RENAME COLUMN statement” on page 2-609

SYSVIEWS (SQL Reference)

RENAME TRUSTED CONTEXT statement
Use the RENAME TRUSTED CONTEXT statement to change the name of a trusted
context definition.

Syntax

This statement is an extension to the ANSI/ISO standard for SQL. You must hold
the database security administrator (DBSECADM) role to rename a trusted context.

2-616 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_078.htm#ids_sqr_078

�� RENAME TRUSTED CONTEXT old_name TO new_name ��

Element Description Restrictions Syntax

old_name Name of the trusted
context identifier that
new_name replaces

Must be an existing
trusted context
definition on the
database server

“Identifier” on page
5-21

new_name New name that you
declare here for the
trusted context

Must be a one-part
name. It cannot begin
with the characters
"SYS" and must not
identify a trusted
context that already
exists on the
database server.

“Identifier” on page
5-21

The following is an example of a complete RENAME TRUSTED CONTEXT
statement:
RENAME TRUSTED CONTEXT cntx1 TO cntx2;

Related concepts:

Trusted-context objects and trusted connections (Security Guide)
Related reference:
“ALTER TRUSTED CONTEXT statement” on page 2-118
“CREATE TRUSTED CONTEXT statement” on page 2-366
“DROP TRUSTED CONTEXT statement” on page 2-450

RENAME USER statement (UNIX, Linux)
Use the RENAME USER statement to change the name of an internal user of a
non-root installation of the database server.

This statement is an extension to the ANSI/ISO standard for the SQL language.

Syntax

�� RENAME USER old_name TO new_name ��

Element Description Restrictions Syntax

old_name Authorization identifier of a
specific user that you are
renaming.

Must be an existing
authorization identifier

“Owner name” on page 5-49

new_name Authorization identifier of a
specific user.

Cannot be an existing
authorization identifier

“Owner name” on page 5-49

Usage

Only a DBSA can run the RENAME USER statement. With a non-root installation,
the user who installs the server is the equivalent of the DBSA, unless the user
delegates DBSA privileges to a different user.

Chapter 2. SQL statements 2-617

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_tru_001.htm#ids_tru_001

Do not rename a user while the user is active on a connection. Running the
statement does not transfer any database or table level privileges granted to the
old user name to the new user name.

Execution of the RENAME USER statement can be audited with the RNUR audit
code.

The USERMAPPING configuration parameter must be set to BASIC or ADMIN.

You must also enter values in the SYSUSERMAP table of the sysusers database to
map users with the appropriate user properties so that the mapped user statements
of SQL to work correctly.

Example

The following statement renames the user bill to bob:
RENAME USER bill TO bob;

Related reference:
“CREATE USER statement (UNIX, Linux)” on page 2-368
“ALTER USER statement (UNIX, Linux)” on page 2-122
“RENAME USER statement (UNIX, Linux)” on page 2-617

USERMAPPING configuration parameter (UNIX, Linux) (Administrator's
Reference)

REVOKE statement
Use the REVOKE statement to cancel access privileges or roles that are held by
users, by roles, or by PUBLIC, or to cancel user security labels or exemptions from
the rules of security policies.

2-618 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1101.htm#ids_adr_1101
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1101.htm#ids_adr_1101

Syntax

�� REVOKE

�

�

(1) (2) (3)
Database-Level Privileges FROM User List
DEFAULT ROLE FROM PUBLIC
ACCESS ,

' user '
(4)

Role Name FROM PUBLIC
, AS ' revoker '

' user '
' role '

(5)
Security Administration Options

(6)
Table-Level Privileges FROM Options
(1) (7)

Routine-Level Privileges
(8)

Language-Level Privileges
(9)

Type-Level Privileges
(10)

Sequence-Level Privileges

��

FROM options:

FROM

�

(3) CASCADE
User List

RESTRICT AS ' revoker '
,

(1) (4)
Role Name

' user '

Notes:

1 Informix extension

2 See “Database-level privileges” on page 2-621

3 See “User List” on page 2-630

4 See “Role Name” on page 2-631

5 See “Security Administration Options” on page 2-635

6 See “Table-Level Privileges” on page 2-623

7 See “Routine-Level Privileges” on page 2-627

8 See “Language-Level Privileges” on page 2-628

9 See “Type-Level Privileges” on page 2-626

10 See “Sequence-Level Privileges” on page 2-629

Element Description Restrictions Syntax

revoker Authorization identifier of the grantor of the
privileges to be revoked

Must be grantor of the
specified privileges

“Owner name” on page
5-49

Chapter 2. SQL statements 2-619

Element Description Restrictions Syntax

role Role from which you revoke another role Must exist “Owner name” on page
5-49

user User whose role (or default role) you cancel Must exist “Owner name” on page
5-49

Usage

To cancel privileges on one or more fragments of a table that has been fragmented
by expression, see “REVOKE FRAGMENT statement” on page 2-643.

You can revoke privileges if any of the following conditions is true for the
privileges that you are attempting to revoke on some database object:
v You granted them and did not designate another user as grantor.
v The GRANT statement specified you as grantor.
v You are revoking privileges from PUBLIC on an object that you own, and those

privileges were granted by default when you created the object.
v You have database-level DBA privileges and you specify in the AS clause the

name of a user who was grantor of the privilege.

The REVOKE statement can cancel any of the following access privileges or roles
that a user, or PUBLIC, or a role currently holds:
v Privileges on the database (but a role cannot hold database-level privileges)
v Privileges on a table, synonym, view, or sequence object
v Privileges on a user-defined data type (UDT), a user-defined routine (UDR), or

on the SPL language
v A non-default role, or the default role of PUBLIC or of a user.

You cannot revoke privileges from yourself. You cannot revoke grantor status from
another user. To revoke a privilege that was granted to another user by the AS
grantor clause of the GRANT statement, you must have the DBA privilege, and you
must use the AS clause to specify that user as revoker.

If you enclose revoker, role, or user in quotation marks, the name is case sensitive
and is stored exactly as you typed it. In an ANSI-compliant database, if you do not
use quotation marks as delimiters, the name is stored in uppercase letters.
Related concepts:
“Overloading the Name of a Function” on page 2-188

Grant privileges (Database Design Guide)

Label-based access control (Security Guide)
Related reference:
“INFO statement” on page 2-543
“DROP SEQUENCE statement” on page 2-444
“ALTER SEQUENCE statement” on page 2-68
“CREATE ACCESS_METHOD statement” on page 2-143
“CREATE ROW TYPE statement” on page 2-241
“CREATE SEQUENCE statement” on page 2-257
“SET SESSION AUTHORIZATION statement” on page 2-814

2-620 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_105.htm#ids_ddi_105
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_lb_002.htm#ids_lb_002

“CREATE PROCEDURE statement” on page 2-226
“CREATE VIEW statement” on page 2-373
“SET ROLE statement” on page 2-812
“RENAME SEQUENCE statement” on page 2-614
“DROP ROLE statement” on page 2-437
“GRANT statement” on page 2-502
“GRANT FRAGMENT statement” on page 2-538
“REVOKE FRAGMENT statement” on page 2-643
“CREATE ROLE statement” on page 2-237

Grant and revoke privileges in applications (SQL Tutorial)

Revoking database server access from mapped users (UNIX,
Linux)

Use the REVOKE ACCESS FROM statement to remove surrogate user properties
from specific mapped users.

Only user informix or a DBSA can run the REVOKE ACCESS FROM statement.

The REVOKE ACCESS FROM statement does not affect any access privileges of an
Informix user account name that accesses the database server through an OS-level
account on the host computer.

Example:

User informix or a DBSA can run the following statement on a system that
supports mapped users, and one of the mapped users is user bob:
REVOKE ACCESS FROM bob;

This statement entirely removes the access of user bob to the database server,
except when one or both of the following is true:
v PUBLIC is mapped to surrogate user properties. In this case, user bob still

retains the same access privileges that the PUBLIC group holds.
v User bob is also a user account on the Informix host computer with database

server access.
Related reference:
“Surrogate user properties (UNIX, Linux)” on page 2-533

Database-level privileges
Three concentric layers of database-level privileges, Connect, Resource, and DBA,
authorize increasing power over database access and control. Only a user with the
DBA privilege can grant or revoke database-level privileges.

Database-Level Privileges:

DBA
RESOURCE
CONNECT

Because of the hierarchical organization of the privileges (as outlined in the
privilege definitions that are described later in this section), if you revoke either

Chapter 2. SQL statements 2-621

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_339.htm#ids_sqt_339

the Resource or the Connect privilege from a user with the DBA privilege, the
statement has no effect. If you revoke the DBA privilege from a user who has the
DBA privilege, the user retains the Connect privilege on the database. To deny
database access to a user with the DBA or Resource privilege, you must first
revoke the DBA or the Resource privilege and then revoke the Connect privilege in
a separate REVOKE statement.

Similarly, if you revoke the Connect privilege from a user who has the Resource
privilege, the statement has no effect. If you revoke the Resource privilege from a
user, the user retains the Connect privilege on the database.

Only users or PUBLIC can hold database-level privileges. You cannot revoke these
privileges from a role, because a role cannot hold database level privileges.

The following table lists the keyword for each database-level privilege.

Privilege Effect

DBA Has all the capabilities of the Resource privilege and can perform the
following additional operations:

v Grant any database-level privilege, including the DBA privilege, to
another user.

v Grant any table-level privilege to another user or to a role.

v Grant a role to a user or to another role.

v Revoke a privilege whose grantor you specify as the revoker in the AS
clause of the REVOKE statement.

v Restrict the Execute privilege to DBAs when registering a UDR.

v Execute the SET SESSION AUTHORIZATION statement.

v Create any database object.

v Create tables, views, and indexes, designating another user as owner of
these objects.

v Alter, drop, or rename database objects, regardless of who owns it.

v Execute the DROP DISTRIBUTIONS option of the UPDATE STATISTICS
statement.

v Execute DROP DATABASE and RENAME DATABASE statements.

RESOURCE Lets you extend the structure of the database. In addition to the capabilities
of the Connect privilege, the holder of the Resource privilege can perform
the following operations:

v Create new tables.

v Create new indexes.

v Create new user-defined routines.

v Create new data types.

2-622 IBM Informix Guide to SQL: Syntax

Privilege Effect

CONNECT If you have this privilege, you can query and modify data, and modify the
database schema if you own the database object that you want to modify.
A user holding the Connect privilege can perform the following operations:

v Connect to the database with the CONNECT statement or another
connection statement.

v Execute SELECT, INSERT, UPDATE, and DELETE statements, provided
that the user has the necessary table-level privileges.

v Create views, provided that the user has the Select privilege on the
underlying tables.

v Create synonyms.

v Create temporary tables and create indexes on temporary tables.

v Alter or drop a table or an index, if the user owns the table or index (or
has the Alter, Index, or References privilege on the table).

v Grant privileges on a table, if the user owns the table (or was given
privileges on the table with the WITH GRANT OPTION keyword).

Tip: To determine which users have DBA privileges on a database, run this query
from DB-Access or your application:
select username,usertype from sysusers;

The output shows user names (for example, public and informix) followed by one
of the following codes:
v D = DBA privilege
v C = Connect privilege
v R = Resource privilege

Table-Level Privileges
Table-level privileges, also called table privileges, specify which operations a user or
role can perform on a table or view in the database. You can use a synonym to
specify the table or view on which you grant or revoke table privileges.

Select, Update, and References privileges can be granted on a subset of the
columns of a table or view, but can be revoked only for all columns. If Select
privileges are revoked from a user for a table that is referenced in the SELECT
statement defining a view that the same user owns, then that view is dropped,
unless it also includes columns from tables in another database.

For table objects that the CREATE EXTERNAL TABLE statement has registered in
the current database, only the Select privilege and the Insert privilege are
supported; no other table or column access privileges can be granted or revoked.

Use the following syntax to specifying which table-level privileges to revoke from
one or more users or roles:

Table-Level Privileges:

Chapter 2. SQL statements 2-623

�

PRIVILEGES
ALL

,

INSERT
DELETE
UPDATE
(1)

SELECT
ALTER
INDEX
REFERENCES
UNDER

ON
owner .

table
view
synonym

Notes:

1 Informix extension

Element Description Restrictions Syntax

owner Name of the user who owns the table, view, or
synonym

Must be a valid
authorization identifier

“Owner name” on
page 5-49

synonym, table,
view

Synonym, table, or view on which privileges are
granted

Must exist in the
current database

“Identifier” on page
5-21

In one REVOKE statement, you can list one or more of the following keywords to
specify the privileges on the specified table to be revoked from the users or roles.

Privilege Effect after REVOKE

INSERT User cannot insert rows.

DELETE User cannot delete rows.

SELECT User cannot display data retrieved by a SELECT statement.

UPDATE User cannot change column values.

INDEX User cannot create permanent indexes. You must have the Resource
privilege to take advantage of the Index privilege. (But any user who has
the Connect privilege can create indexes on temporary tables.)

ALTER The holder cannot add or delete columns, modify column data types, add
or delete constraints, change the locking mode of a table from PAGE to
ROW, nor add or drop a corresponding named ROW type table. The user
also cannot enable or disable indexes, constraints, nor triggers, as
described in “SET Database Object Mode statement” on page 2-737.

Privilege Effect after REVOKE

REFERENCES User cannot reference columns in referential constraints. You must also
have the Resource privilege on the database to take advantage of the
References privilege on tables. (You can add, however, a referential
constraint during an ALTER TABLE statement. without holding the
Resource privilege on the database.) Revoking the References privilege
disallows cascading DELETE operations.

UNDER User cannot create subtables under a typed table.

ALL This removes all of the table privileges that are listed above. (Here the
PRIVILEGES keyword is optional.)

2-624 IBM Informix Guide to SQL: Syntax

See also “Table-Level Privileges” on page 2-507.

If a user receives the same privilege from two different grantors and one grantor
revokes the privilege, the grantee still has the privilege until the second grantor
also revokes the privilege. For example, if both you and a DBA grant the Update
privilege on your table to ted, both you and the DBA must revoke the Update
privilege to prevent ted from updating your table.

If user ted holds the same privileges through a role or as PUBLIC, however, this
REVOKE operation does not prevent ted from exercising the Update privilege.

When to Use REVOKE Before GRANT
You can use combinations of REVOKE and GRANT to replace PUBLIC with
specific users as grantees, and to remove table-level privileges on some columns.

Replacing PUBLIC with Specified Users: If a table owner grants a privilege to
PUBLIC, the owner cannot revoke the same privilege from any specific user. For
example, assume PUBLIC has default Select privileges on your customer table.
Suppose that you issue the following statement in an attempt to exclude ted from
accessing your table:
REVOKE ALL ON customer FROM ted;

This statement results in ISAM error message 111, No record found, because the
system catalog tables (syscolauth or systabauth) contain no table-level privilege
entry for a user named ted. This REVOKE operation does not prevent ted from
keeping all the table-level privileges given to PUBLIC on the customer table.

To restrict table-level privileges, first revoke the privileges with the PUBLIC
keyword, then re-grant them to some appropriate list of users and roles. The
following statements revoke the Index and Alter privileges from all users for the
customer table, and then grant these privileges specifically to user mary:
REVOKE INDEX, ALTER ON customer FROM PUBLIC;
GRANT INDEX, ALTER ON customer TO mary;

Restricting Access to Specific Columns: Unlike GRANT, the REVOKE statement
has no syntax to specify privileges on a subset of columns in a table. To revoke the
Select, Update, or References privilege on a column from a user, you must revoke
the privilege for all the columns of the table. To provide access to some of the
columns on which you previously had granted privileges, issue a new GRANT
statement to restore the appropriate privilege on specific columns.

The next example cancels Select privileges for PUBLIC on certain columns:
REVOKE SELECT ON customer FROM PUBLIC;
GRANT SELECT (fname, lname, company, city) ON customer TO PUBLIC;

In the next example, mary first receives the ability to reference four columns in
customer, then the table owner restricts references to two columns:
GRANT REFERENCES (fname, lname, company, city) ON customer TO mary;
REVOKE REFERENCES ON customer FROM mary;
GRANT REFERENCES (company, city) ON customer TO mary;

Effect of the ALL Keyword
The ALL keyword revokes all table-level privileges. If any or all of the table-level
privileges do not exist for the revokee, REVOKE with the ALL keyword executes
successfully but returns the following SQLSTATE code:
01006--Privilege not revoked

Chapter 2. SQL statements 2-625

For example, assume that user hal has the Select and Insert privileges on the
customer table. User jocelyn wants to revoke all table-level privileges from user
hal. So user jocelyn issues the following REVOKE statement:
REVOKE ALL ON customer FROM hal;

This statement executes successfully but returns SQLSTATE code 01006. The
SQLSTATE warning is returned because both of the following are true:
v The statement succeeds in revoking the Select and Insert privileges from user

hal because user hal had those privileges.
v SQLSTATE code 01006 is returned because user hal lacked other privileges

implied by the ALL keyword, but these privileges were not revoked.

The ALL keyword instructs the database server to revoke everything possible,
including nothing. If the user from whom privileges are revoked has no privileges
on the table, the REVOKE ALL statement still succeeds, because it revokes
everything possible from the user (in this case, no privileges at all).

Effect of the ALL Keyword on UNDER Privilege: If you revoke ALL privileges
on a typed table, the Under privilege is included in the privileges that are revoked.
If you revoke ALL privileges on a table that is not based on a ROW type, the
Under privilege is not included among the privileges that are revoked. (The Under
privilege can be granted only on a typed table.)

Effect of Uncommitted Transactions
The REVOKE statement places an exclusive row lock on the entry in the systables
system catalog table for the table on which privileges are revoked. This lock is not
released until the transaction that contains the REVOKE statement terminates.
When another transaction attempts to prepare a SELECT statement against this
table while the first transaction is open, the concurrent transaction fails, because
the systables row for the specified table remains exclusively locked. The attempt to
prepare the SELECT statement cannot succeed until after the first transaction is
either committed or rolled back.

Type-Level Privileges
You can revoke two privileges on data types:
v The Usage privilege on a user-defined data type
v The Under privilege on a named ROW type

Type-Level Privileges:

USAGE ON TYPE type_name
UNDER ON TYPE row_type

Element Description Restrictions Syntax

row_type Named ROW type for which to revoke Under privilege Must exist Data Type, p. “Data
Type” on page 4-23

type_name User-defined type for which to revoke Usage privilege Must exist Data Type, p. “Data
Type” on page 4-23

Usage Privilege
Any user can reference a built-in data type in an SQL statement, but not a
DISTINCT data type that is based on a built-in data type. The creator of a

2-626 IBM Informix Guide to SQL: Syntax

user-defined data type or a DBA must explicitly grant the Usage privilege on the
UDT, including a DISTINCT data type based on a built-in data type.

REVOKE with the USAGE ON TYPE keywords removes the Usage privilege that
you granted earlier to another user, to PUBLIC, or to a role.

The following statement revokes from user mark the privilege of using the widget
user-defined type:
REVOKE USAGE ON TYPE widget FROM mark;

Under Privilege
You own any named ROW data type that you create. If you want other users to be
able to create subtypes under this named ROW type, you must grant these users
the Under privilege on your named ROW type. If you later want to remove the
ability of these users to create subtypes under the named ROW type, you must
revoke the Under privilege from these users. A REVOKE statement with the
UNDER ON TYPE keywords removes the Under privilege that you granted earlier
to these users.

For example, suppose that you created a ROW type named rtype1:
CREATE ROW TYPE rtype1 (cola INT, colb INT);

If you want another user named kathy to be able to create a subtype under this
named ROW type, you must grant the Under privilege on this named ROW type
to user kathy:
GRANT UNDER ON TYPE rtype1 TO kathy;

Now user kathy can create another ROW type under the rtype1 ROW type even
though kathy is not the owner of the rtype1 ROW type:
CREATE ROW TYPE rtype2 (colc INT, cold INT) UNDER rtype1;

If you later want to remove the ability of user kathy to create subtypes under the
rtype1 ROW type, enter the following statement:
REVOKE UNDER ON TYPE rtype1 FROM kathy;

Routine-Level Privileges
If you revoke the Execute privilege on a UDR from a user, that user can no longer
execute that UDR in any way. For details of how a user can execute a UDR, see
“Routine-Level Privileges” on page 2-513.

Routine-Level Privileges:

EXECUTE ON �

� SPL_routine
PROCEDURE routine ()
FUNCTION (1)
ROUTINE Routine Parameter List

(2)
SPECIFIC ROUTINE Specific Name

FUNCTION
PROCEDURE

Notes:

1 See “Routine Parameter List” on page 5-71

Chapter 2. SQL statements 2-627

2 See “Specific Name” on page 5-77

Element Description Restrictions Syntax

routine A user-defined routine Must exist “Identifier” on page 5-21

SPL_routine An SPL routine Must be unique in the database “Identifier” on page 5-21

In an ANSI-compliant database, the owner name must qualify the routine name,
unless the user who issues the REVOKE statement is the owner of the routine.

The following example cancels the Execute privilege of user mark on the
delete_order routine that is owned by luke:
REVOKE EXECUTE ON ROUTINE luke.delete_order FROM mark;

In Informix, any negator function for which you grant the Execute privilege
requires a separate, explicit, REVOKE statement.

When you create a UDR under any of the following circumstances, PUBLIC is not
granted Execute privilege by default. Therefore you must explicitly grant the
Execute privilege before you can revoke it:
v You create the UDR in an ANSI-compliant database.
v You have DBA privilege and specify DBA after the CREATE keyword to restrict

the Execute privilege to users with the DBA database-level privilege.
v The NODEFDAC environment variable is set to yes to prevent PUBLIC from

receiving any privileges that are not explicitly granted.

But if you create a UDR with none of those conditions in effect, PUBLIC can
execute your UDR without the GRANT EXECUTE statement. To limit who can
execute your UDR, revoke Execute privilege FROM PUBLIC, and grant it to users
(see “User List” on page 2-630) or roles (see “Role Name” on page 2-631).

In Informix, if two or more UDRs have the same name, use a keyword from this
list to specify which of those UDRs a user list can no longer execute.

Keyword
UDR for Which Execution by the User is Prevented

SPECIFIC
The UDR identified by specific name

FUNCTION
Any function with the specified routine name (and parameter types that
match routine parameter list, if specified)

PROCEDURE
Any procedure with the specified routine name (and parameter types that
match routine parameter list, if specified)

ROUTINE
Functions or procedures with the specified routine name (and parameter
types that match routine parameter list, if specified)

Language-Level Privileges
To register or drop a UDR written in the SPL, C, or Java languages, a user must
hold the Usage privilege on the programming language in which the routine is
written.

2-628 IBM Informix Guide to SQL: Syntax

This is the syntax of the USAGE ON LANGUAGE clause for specifying a
language-level privilege to revoke:

Language-Level Privileges:

USAGE ON LANGUAGE SPL
C
JAVA

Each REVOKE USAGE ON LANGUAGE statement can specify no more than one
programming language.

When a user registers a UDR that is written in the SPL, C, or Java language, the
database server verifies that the user has the Usage privilege on the language in
which the UDR is written. If the user does not, the CREATE FUNCTION or
CREATE PROCEDURE statement fails with an error. If the IFX_EXTEND_ROLE
configuration parameter has enabled the built-in EXTEND role, only users who
also hold that role can register or drop UDRs written in the C language or in the
Java language, even if the users hold USAGE ON LANGUAGE privileges for those
languages.

To revoke the Usage privilege on a programming language from a user or role,
issue a REVOKE statement that includes the USAGE ON LANGUAGE keywords
and a keyword that specifies the programming language. If this statement
succeeds, any user or role that you specify in the FROM clause can no longer
register UDRs that are written in the specified language. For example, if you
revoke the default Usage privilege on SPL from PUBLIC, the ability to create SPL
routines is taken away from all users (except those who have been individually
granted the Usage privilege on the SPL language, or who hold that Usage privilege
through a role:
REVOKE USAGE ON LANGUAGE SPL FROM PUBLIC;

You can issue a GRANT USAGE ON LANGUAGE statement to restore Usage
privilege on SPL to a restricted group, such as to the role named developers:
GRANT USAGE ON LANGUAGE SPL TO developers;

Sequence-Level Privileges
Although Informix implements sequence objects as tables, only the following
subset of the table privileges (as described in “Table-Level Privileges” on page
2-507) can be granted or revoked on a sequence:
v Select privilege
v Alter privilege

Use the following syntax to specify privileges to revoke on a sequence object:

Sequence-Level Privileges:

�

ALL
,

ALTER
SELECT

ON
'owner.'

sequence
synonym

Chapter 2. SQL statements 2-629

Element Description Restrictions Syntax

owner Owner of the sequence or of its synonym Must be the owner “Owner name” on page
5-49

sequence Sequence on which to revoke privileges Must exist “Identifier” on page 5-21

synonym Synonym for a sequence object Must point to a sequence “Identifier” on page 5-21

The sequence must reside in the current database. (You can qualify the sequence or
synonym identifier with a valid owner name, but the name of a remote database (or
database@server) is not valid as a qualifier.) Syntax to revoke sequence-level
privileges is an extension to the ANSI/ISO standard for SQL.

Alter Privilege
You can revoke the Alter privilege on a sequence from another user, from PUBLIC,
or from a role. The Alter privilege enables a specified user or role to modify the
definition of a sequence with the ALTER SEQUENCE statement or to rename the
sequence with the RENAME SEQUENCE statement.

The following REVOKE statement cancels any Alter privilege that was granted
individually to user mark on the cust_seq sequence object:
REVOKE ALTER ON cust_seq FROM mark;

Select Privilege
You can revoke the Select privilege on a sequence from another user, from PUBLIC,
or from a role. Select privilege enables a user or role to use the sequence.CURRVAL
and sequence.NEXTVAL in SQL statements to access and to increment the value of
a sequence.

The following REVOKE statement cancels any Select privilege that was granted
individually to user mark on the cust_seq sequence object:
REVOKE SELECT ON cust_seq FROM mark;

ALL Keyword
You can use the ALL keyword to revoke both Alter and Select privileges from
another user, from PUBLIC, or from a role.

The following example cancels any Alter and Select privileges that user mark
holds on the cust_seq sequence object:
REVOKE ALL ON cust_seq FROM mark;

Whether mark can still access cust_seq after this statement executes depends on
whether the user still holds Alter or Select privileges on cust_seq that were
granted to PUBLIC, or if he holds a role to which unrevoked privileges on
cust_seq have been granted.

User List
The authorization identifiers (or the PUBLIC keyword) that follow the FROM
keyword of REVOKE specify who loses the revoked privileges or revoked roles. If
you use the PUBLIC keyword as the user list, the REVOKE statement revokes the
specified privileges or roles from PUBLIC, thereby revoking them from all users to
whom the privileges or roles have not been explicitly granted, or who do not hold
some other role through which they have received the role or privilege.

2-630 IBM Informix Guide to SQL: Syntax

The user list can consist of the authorization identifier of a single user or of
multiple users, separated by commas. If you use the PUBLIC keyword as the user
list, the REVOKE statement revokes the specified privileges from all users.

User List:

�

PUBLIC
,

user
'user'

Element Description Restrictions Syntax

user Login name of a user whose privilege or role
you are revoking

Must be a valid
authorization identifier

“Owner name” on
page 5-49

Spell the user names in the list exactly as they were spelled in the GRANT
statement. You can optionally use quotation marks around each user name in the
list to preserve the lettercase. In an ANSI-compliant database, if you do not use
quotation marks to delimit user, the name of the user is stored in uppercase letters
unless the ANSIOWNER environment variable was set to 1 before the database
server was initialized.

When you specify login names, you can use the REVOKE statement and the
GRANT statement to secure various types of database objects selectively. For
examples, see “When to Use REVOKE Before GRANT” on page 2-625.

Role Name
Only the DBA or a user who was granted a role WITH GRANT OPTION can
revoke a role or its privileges. Users cannot revoke roles from themselves.

Role Name:

'role'
role

Element Description Restrictions Syntax

role A role with one of these attributes:

v Loses an existing privilege or role

v Is lost by a user or by another role

Must exist. If enclosed between
quotation marks, role is case sensitive.

“Owner
name” on
page 5-49

Immediately after the REVOKE keyword, the name of a role specifies a role to be
revoked from the user list. After the FROM keyword, however, the name of a role
specifies a role from which access privilege (or another role) is to be revoked. The
same FROM clause can include both user and role names if no other REVOKE
options conflict with the user or role specifications. Syntax to revoke privileges on a
role or from a role are extensions to the ANSI/ISO standard for SQL.

When you include a role after the FROM keyword of the REVOKE statement, the
specified privilege (or another role) is revoked from that role, but users who have
that role retain any privileges or roles that were granted to them individually.

Chapter 2. SQL statements 2-631

If you enclose role between quotation marks, the name is case sensitive and is
stored exactly as you typed it. In an ANSI-compliant database, if you do not use
quotation marks as delimiters, the role is stored in uppercase letters.

When you revoke a role that was granted to a user with the WITH GRANT
OPTION keywords, you revoke both the role and the option to grant it.

The following examples show the effects of REVOKE role:
v Remove users or remove another role from inclusion in the specified role:

REVOKE accounting FROM mary;
REVOKE payroll FROM accounting;

v Remove one or more access privileges from a role:
REVOKE UPDATE ON employee FROM accounting;

When you revoke table-level privileges from a role, you cannot include the
RESTRICT or CASCADE keywords.

Revoking a Default Role
The DBA or the owner of the database can define a default role for one or more
users or for PUBLIC with the GRANT DEFAULT ROLE statement. Unlike a
non-default role, which does not take effect until the SET ROLE statement activates
the role, a default role takes effect automatically when the user connects to the
database. The default role can specify a set of access privileges for all the users
who are granted that default role. Conversely, the REVOKE DEFAULT ROLE
statement cancels the current default role as the default role for the specified
user-list, as in the following program fragment:
CREATE ROLE accounting;
GRANT USAGE ON LANGUAGE SPL TO accounting;
GRANT ALL PRIVILEGES ON receivables TO accounting;
GRANT DEFAULT ROLE accounting TO mary;
. . .
REVOKE DEFAULT ROLE FROM mary;

The last statement removes from user mary any access privileges that she holds
only through her default role. In this example, the default role was accounting, but
because at a given point in time there can be only one default role for an
individual user (or for the PUBLIC group), the name of the default role is not
specified in the REVOKE DEFAULT ROLE statement. If mary issues the SET ROLE
DEFAULT statement, it has no effect until she is granted some new default role.

After you execute REVOKE DEFAULT ROLE specifying one or more users or
PUBLIC, any privileges that those users held only through the default role are
cancelled. (But this statement does not revoke any privileges that were granted to a
user individually, or privileges that were granted to a user through another role, or
privileges that PUBLIC holds.)

After REVOKE DEFAULT ROLE successfully cancels the default role of user, the
default role of user becomes NULL, and the default role information is removed
from the system catalog. (In this context, NULL and NONE are synonyms.)

No warning is issued if REVOKE DEFAULT ROLE specifies a user who has not
been granted a default role.

No options besides the user-list are valid after the FROM keyword in the REVOKE
DEFAULT ROLE statement.

2-632 IBM Informix Guide to SQL: Syntax

Revoking the EXTEND Role
The REVOKE EXTEND FROM user-list statement cancels the EXTEND role of the
specified users. In databases where the IFX_EXTEND_ROLE configuration
parameter is enabled, revoking this role prevents the specified users from creating
or dropping external UDRs. Whether or not a user holds the EXTEND role has no
effect on creating or dropping UDRs written in the SPL language.

Only the Database Server Administrator (DBSA), by default user informix, can
grant the built-in EXTEND role to one or more users or to PUBLIC by issuing the
GRANT EXTEND TO user-list statement. (Because EXTEND is a built-in role, a
user who holds it does not need to activate it with the SET ROLE statement, and
the DROP ROLE statement cannot destroy the EXTEND role.)

If the IFX_EXTEND_ROLE configuration parameter is set to ON or to 1, users who
do not hold the EXTEND role cannot create or drop UDRs that are written in the C
or Java languages, both of which support shared libraries. The following example
revokes the EXTEND role from user max:
REVOKE EXTEND FROM ’max’;

This prevents user max from creating or dropping external UDRs, even if max is
the owner of a UDR that he subsequently attempts to drop.

In databases for which this security feature is not needed, the DBSA can disable
this restriction on who can create or drop external UDRs by setting the
IFX_EXTEND_ROLE parameter to OFF or to 0 in the ONCONFIG file. But whether
IFX_EXTEND_ROLE is enabled or disabled, users who create or drop external
UDRs must also hold the following access privileges:
v Either the Resource privilege or the DBA privilege on the database in which the

UDR is registered.
v The Usage privilege on the external programming language in which the UDR is

written,

See “Database-level privileges” on page 2-621 for information about the Resource
privilege. See “Language-Level Privileges” on page 2-516 for the syntax of the
GRANT USAGE ON LANGUAGE C and the GRANT USAGE ON LANGUAGE
JAVA statements of SQL.

Revoking privileges granted WITH GRANT OPTION
If you revoke from user privileges or a role that you granted using the WITH
GRANT OPTION keywords, you sever the chain of privileges granted by that user.

Thus, when you revoke privileges from users or from a role, you also revoke the
same privilege resulting from GRANT statements in the following contexts:
v Issued by your grantee
v Allowed because your grantee specified the WITH GRANT OPTION clause
v Allowed because subsequent grantees granted the same privilege or role using

the WITH GRANT OPTION clause

The WITH GRANT OPTION clause is only valid in GRANT statements that assign
privileges to specific users. The grantee cannot be the PUBLIC group or a role.

The following examples show the revocation of privileges. Suppose you, as the
owner of the table items, issue the following statements to grant access privileges
to user mary:

Chapter 2. SQL statements 2-633

REVOKE ALL ON items FROM PUBLIC;
GRANT SELECT, UPDATE ON items TO mary WITH GRANT OPTION;

User mary then uses her new privilege to grant users cathy and paul access to the
items table:
GRANT SELECT, UPDATE ON items TO cathy;
GRANT SELECT ON items TO paul;

Later you revoke privileges on the items table from user mary:
REVOKE SELECT, UPDATE ON items FROM mary;

This single statement effectively revokes all privileges on the items table from
users mary, cathy, and paul.

The CASCADE keyword has the same effect as this default condition.

The AS Clause
Without the AS clause, the user who executes the REVOKE statement must be the
grantor of the privilege that is being revoked. The DBA or the owner of the object
can use the AS clause to specify another user (who must be the grantor of the
privilege) as the revoker of the privileges.

The AS clause provides the only mechanism by which privileges can be revoked
on a database object whose owner is an authorization identifier, such as informix,
that is not also a valid user account known to the operating system.

For contexts where the AS revoker clause is required, rather than optional, see
“Revoking the Execute privilege from PUBLIC” on page 2-515.

Effect of CASCADE Keyword on UNDER Privileges
If you revoke the Under privilege on a typed table with the CASCADE option, the
Under privilege is removed from the specified user, and any subtables created
under the typed table by that user are dropped from the database.

If you revoke the Under privilege on a named ROW type with the CASCADE
option when that data type is in use, the REVOKE fails. This exception to the
default behavior of the CASCADE option occurs because the database server
supports the DROP ROW TYPE statement with the RESTRICT keyword only.

For example, assume that user jeff creates a ROW type named rtype1 and grants
the Under privilege on that ROW type to user mary. User mary now creates a
ROW type named rtype2 under ROW type rtype1 and grants the Under privilege
on ROW type rtype2 to user andy. Then user andy creates a ROW type named
rtype3 under ROW type rtype2.

If user jeff now tries to revoke the Under privilege on ROW type rtype1 from user
mary with the CASCADE option, the REVOKE statement fails, because ROW type
rtype2 is still in use by ROW type rtype3.

Controlling the Scope of REVOKE with the RESTRICT Option
The RESTRICT keyword causes the REVOKE statement to fail when any of the
following dependencies exist:
v A view depends on a Select privilege that you are attempting to revoke.
v A foreign-key constraint depends on a References privilege that you attempt to

revoke.

2-634 IBM Informix Guide to SQL: Syntax

v You attempt to revoke a privilege from a user who subsequently granted this
privilege to another user or to a role.

REVOKE does not fail if it specifies a user who has the right to grant the privilege
to others but has not exercised that right. For example, assume that user clara
specifies WITH GRANT OPTION when she grants the Select privilege on the
customer table to user ted. Further assume that user ted, in turn, grants the Select
privilege on the customer table to user tania. The following statement that clara
issued has no effect, because ted has used his authority to grant the Select
privilege:
REVOKE SELECT ON customer FROM ted RESTRICT;

In contrast, if user ted does not grant the Select privilege to tania or to any other
user, the same REVOKE statement succeeds. Even if ted does grant the Select
privilege to another user, either of the following statements succeeds:
REVOKE SELECT ON customer FROM ted CASCADE;
REVOKE SELECT ON customer FROM ted;

Security Administration Options
In conjunction with the GRANT statement, the REVOKE statement supports the
discretionary access control (DAC) data security feature of Informix by specifying
which users or roles hold privileges that are required to access the database or
objects within the database.

The Security Administration Options of the REVOKE statement, like their
counterparts for the GRANT statement, support an additional set of data security
features, called label-based access control (LBAC). These features enable Informix
to allow or withhold access to protected data on the basis of a comparing a row
security label or column security label that is contained in the data object to the
user security label and other credentials that have been granted to the user who is
seeking access.

Security Administration Options:

(1)
DBSECADM Clause

(2)
EXEMPTION Clause

(3)
SECURITY LABEL Clause

(4)
SETSESSIONAUTH Clause

Notes:

1 See “DBSECADM Clause” on page 2-636

2 See “EXEMPTION Clause” on page 2-637

3 See “SECURITY LABEL Clause” on page 2-639

4 See “SETSESSIONAUTH Clause” on page 2-642

Use of these REVOKE statement security administration options is restricted:
v Only the Database Server Administrator (DBSA), by default user informix, can

use the REVOKE DBSECADM statement to revoke the DBSECADM role.

Chapter 2. SQL statements 2-635

v Only a user who holds the DBSECADM role can issue the REVOKE
EXEMPTION, REVOKE SECURITY LABEL, or REVOKE SETSESSIONAUTH
statements.

DBSECADM Clause
The REVOKE DBSECADM statement prevents the user to whom the DBSECADM
role was granted from issuing DDL statements that can create, alter, rename, or
drop security objects, including security policies, security labels, and security
components.

DBSECADM Clause:

DBSECADM FROM �

,

user
USER

Element Description Restrictions Syntax

user User from whom the role is to be revoked Must be the authorization
identifier of a user

“Owner name” on page
5-49

The DBSECADM role is a built-in role that only the DBSA can revoke. Unlike
user-defined roles, whose scope is the database in which the role is created, the
scope of the DBSECADM role is all of the databases of the Informix instance. It is
not necessary for DBSA to reissue the REVOKE DBSECADM statement in other
databases of the same server.

Only a user who holds the DBSECADM role can issue the following SQL
statements that create or modify security objects:
v ALTER SECURITY LABEL COMPONENT
v CREATE SECURITY LABEL
v CREATE SECURITY LABEL COMPONENT
v CREATE SECURITY POLICY
v DROP SECURITY LABEL
v DROP SECURITY LABEL COMPONENT
v DROP SECURITY POLICY
v RENAME SECURITY LABEL
v RENAME SECURITY LABEL COMPONENT
v RENAME SECURITY POLICY

Only a user who holds the DBSECADM role can use the following SQL statements
to reference tables that are protected by a security policy:
v ALTER TABLE ... ADD SECURITY POLICY
v ALTER TABLE ... ADD ... IDSSECURITYLABEL [DEFAULT label]
v ALTER TABLE ... ADD ... [COLUMN] SECURED WITH
v ALTER TABLE ... DROP SECURITY POLICY
v ALTER TABLE ... MODIFY ... [COLUMN] SECURED WITH
v ALTER TABLE ... MODIFY ... DROP COLUMN SECURITY
v CREATE TABLE ... COLUMN SECURED WITH
v CREATE TABLE ... IDSSECURITYLABEL [DEFAULT label]

2-636 IBM Informix Guide to SQL: Syntax

v CREATE TABLE ... SECURITY POLICY

The following GRANT and REVOKE statements also cannot be issued by a user
who does not hold the DBSECADM role:
v GRANT EXEMPTION
v GRANT SECURITY LABEL
v GRANT SETSESSIONAUTH
v REVOKE EXEMPTION
v REVOKE SECURITY LABEL
v REVOKE SETSESSIONAUTH

The USER keyword that can follow the FROM keyword is optional, and has no
effect, but any authorization identifier that the DBSA specifies in the REVOKE
DBSECADM statement must be the identifier of an individual user, rather than the
identifier of a role. The user cannot be the DBSA who issues this REVOKE
DBSECADM statement.

In the following example, the DBSA cancels the DBSECADM role of user niccolo:
REVOKE DBSECADM FROM niccolo;

If this statement executes successfully, user niccolo can no longer perform the
operations listed above.

After the DBSECADM role is revoked, only the DBSA can grant it again to the user
from whom it was revoked.

EXEMPTION Clause
The REVOKE EXEMPTION statement modifies the security credentials of the
specified user (or list of users) by enabling one or all of the rules of a specified
security policy from which the user had been exempt.

EXEMPTION Clause:

EXEMPTION ON RULE IDSLBACREADARRAY
IDSLBACREADTREE
IDSLBACREADSET
IDSLBACWRITEARRAY

WRITEDOWN
WRITEUP

IDSLBACWRITESET
IDSLBACWRITETREE
ALL

FOR policy �

,

FROM user
USER

Element Description Restrictions Syntax

policy Security policy for which the exemption is
revoked

Must exist in the database “Identifier” on page
5-21

user User to whom the exemption is to be revoked Must be the authorization
identifier of a user

“Owner name” on page
5-49

Only a user who holds the DBSECADM role can issue the REVOKE EXEMPTION
statement.

Chapter 2. SQL statements 2-637

Related reference:
“RENAME SECURITY statement” on page 2-613
“DROP SECURITY statement” on page 2-442
“CREATE SECURITY LABEL statement” on page 2-248
“CREATE SECURITY LABEL COMPONENT statement” on page 2-250
“ALTER SECURITY LABEL COMPONENT statement” on page 2-64
“CREATE SECURITY POLICY statement” on page 2-254

Rules on Which Exemptions Are Revoked: The keyword that follows the ON
keyword specifies the predefined access rule of the security policy (whose
identifier follows the FOR keyword) for which an exemption is cancelled. The
access rule for which exemption is revoked applies when a table that is protected
by the specified policy is accessed by a user from whom the exemption is revoked.
For descriptions of the predefined rules for read access and for write access that
are associated with a security policy, see the section “Rules Associated with a
Security Policy” on page 2-256.

The following keywords of the REVOKE EXEMPTION statement identify specific
IDSLBACRULES rules that this statement can apply to formerly exempt users:
v IDSLBACREADARRAY applies to the user the IDSLBACREADARRAY rule for

the specified security policy. For a user with no exemption, this rule requires
that each array component of the user security label must be greater than or
equal to the corresponding array component of the data row security label.

v IDSLBACREADSET applies to the user the IDSLBACREADSET rule for the
specified security policy. For a user with no exemption, this rule requires that
each set component of the user security label must include the set component of
the data row security label

v IDSLBACREADTREE applies to the user the IDSLBACREADTREE rule for the
specified security policy. For a user with no exemption, this rule requires that
each tree component of the user security label must include at least one of the
elements in the tree component of the data row security label, or else an
ancestor of one such element.

v IDSLBACWRITEARRAY WRITEDOWN exempts the user from one aspect of the
IDSLBACWRITEARRAY rule for the specified security policy. The user who
loses this exemption cannot write to a row protected by a label that includes an
array component level below the level in the label of the user.

v IDSLBACWRITEARRAY WRITEUP exempts the user from one aspect of the
IDSLBACWRITEARRAY rule for the specified security policy. The user who
loses this exemption cannot write to a row protected by a label that includes an
array component level above the level in the label of the user.

v IDSLBACWRITEARRAY (with no WRITEDOWN or WRITEUP keyword) applies
to the user the IDSLBACWRITEARRAY rule for the specified security policy.
The user who loses this exemption cannot write to a row whose array
component level is above or below the level in the label of the user. .

v IDSLBACWRITESET applies to the user the IDSLBACWRITESET rule for the
specified security policy. For a user with no exemption, that rule requires that
each set component of the user security label must include the set component of
the data row security label

v IDSLBACWRITETREE applies to the user the IDSLBACWRITETREE rule for
the specified security policy. For a user with no exemption, that rule requires
that each tree component of the user security label must include at least one of
the elements in the tree component of the data row security label, or the
ancestor of one such element.

2-638 IBM Informix Guide to SQL: Syntax

v ALL revokes an exemption from all IDSLBACRULES rules for the specified
security policy.

In the following example, DBSECADM revokes an exemption from all of the rules
of the MegaCorp security policy from users manoj and sam:
REVOKE EXEMPTION ON RULE ALL FOR MegaCorp FROM manoj, sam;

Security Policies and Grantees of Exemptions: An exemption applies only to the
rules of a single security policy. whose name follows the FOR keyword. Because a
protected table can have multiple security labels, but no more than one security
policy, revocation of an exemption can prevent a user with insufficient security
credentials from accessing data in tables that are protected by the specified security
policy.

The REVOKE EXEMPTION statement fails with an error if the specified policy
does not exist in the database.

The USER keyword that can follow the FROM keyword is optional, and has no
effect, but any authorization identifier specified in the REVOKE EXEMPTION
statement must be the identifier of an individual user, rather than the identifier of
a role. This user cannot be the DBSECADM who issues the same REVOKE
EXEMPTION statement.

In the following example, DBSECADM revokes an exemption from user lynette for
rule IDSLBACREADARRAY of the MegaCorp security policy:
REVOKE EXEMPTION ON RULE IDSLBACREADARRAY FOR MegaCorp FROM lynette;

This exemption restores the read access rules for all array components for
subsequent read operations that user lynette attempts on tables protected by
security labels of the specified policy.

When the REVOKE EXEMPTION statement successfully cancels an exemption of a
user, the database server updates the syssecpolicyexemptions table of the system
catalog to unregister the revoked exemption (or multiple exemptions, if several
users are listed after the FROM keyword).

SECURITY LABEL Clause
The REVOKE SECURITY LABEL statement cancels a security label (or all the
security labels of a specified security policy) held by one or more users.

SECURITY LABEL Clause:

SECURITY LABEL policy . label
*

�

,

FROM user
USER

FOR ALL ACCESS

FOR READ ACCESS

FOR WRITE ACCESS

Element Description Restrictions Syntax

label Name of an existing security label Must exist as a label for the
specified security policy

“Identifier” on page 5-21

policy The security policy of this label Must already exist in the
database

“Identifier” on page 5-21

Chapter 2. SQL statements 2-639

Element Description Restrictions Syntax

user User from whom the label is revoked Must be the authorization
identifier of a user

“Owner name” on page 5-49

Only a user who holds the DBSECADM role can issue the REVOKE SECURITY
LABEL statement.

A security label is a database object that is always associated with a security policy.
That policy defines the set of valid security components that make up the security
label. The label stores a set of one or more values for each component of the
security policy.

The DBSECADM can associate a security label with the following entities:
v A column of a database table, which a column security label can protect
v A row of a database table, which a row security label can protect
v A user, whose user security label (and any exemptions from rules of the security

policy that have been granted to the user) are called the security credentials of the
user.

When a user who holds a security label for a specific security policy attempts to
access a row that is protected by a row security label of the same security policy,
the database server compares the sets of values in the user security label and in the
row security label in determining whether or not the user should be allowed to
access the data. Similarly, LBAC takes into account the user security label and the
column security label in determining whether or not the credentials of the user
should be allowed to access a protected column.

The GRANT SECURITY LABEL and REVOKE SECURITY LABEL statements
enable DBSECADM to control the association of a user with a label. (Data values
in a protected table are associated with a row security label or with a column
security label by options to the CREATE TABLE or ALTER TABLE statements that
only DBSECADM can execute, rather than by the GRANT SECURITY LABEL
statement.)

Immediately following the LABEL keyword, the asterisk (*) symbol in the policy.*
specification instructs the database server to revoke every security label of the
policy. If instead of an asterisk you specify policy.label, that label must be the name
of a security label of the specified policy. In this case, if the statement is successful,
only that security label is revoked from the user list.

The USER keyword that can follow the FROM keyword is optional, but any
authorization identifier specified in the REVOKE SECURITY LABEL statement
must be the identifier of an individual user, rather than the identifier of a role.
Related reference:
“RENAME SECURITY statement” on page 2-613
“DROP SECURITY statement” on page 2-442
“CREATE SECURITY LABEL statement” on page 2-248
“CREATE SECURITY LABEL COMPONENT statement” on page 2-250
“ALTER SECURITY LABEL COMPONENT statement” on page 2-64
“CREATE SECURITY POLICY statement” on page 2-254

2-640 IBM Informix Guide to SQL: Syntax

Access Specifications: The list of users from whom the security label is revoked
can optionally be followed by keywords that specify the type of access to data that
the security policy of the label protects
v FOR WRITE ACCESS

These keywords restrict the label to the write access rules of IDSLBACRULES,
namely IDLSBACWRITEARRAY, IDLSBACWRITESET, and
IDLSBACWRITETREE.

v FOR READ ACCESS
These keywords restrict the label to the read access rules of IDSLBACRULES,
namely IDLSBACWREADARRAY, IDLSBACREADSET, and
IDLSBACREADTREE.

v FOR ALL ACCESS
These keywords apply the label to all of the read and write access rules that are
listed above. If the REVOKE SECURITY LABEL statement includes no FOR ...
ACCESS specification, this option takes effect as the default.

For more information about these IDSLBACRULES rules for label-based read and
write access, see “Rules Associated with a Security Policy” on page 2-256. For
information about exemptions to these rules that can be granted for a specific
security policy, see “Rules on Which Exemptions Are Revoked” on page 2-638.

Examples of Revoking User Security Labels:
The following three statements create three security label components called level,
compartments, and groups respectively:
CREATE SECURITY LABEL COMPONENT

level ARRAY [’TS’,’S’,’C’,’U’];

CREATE SECURITY LABEL COMPONENT
compartments SET {’A’,’B’,’C’,’D’};

CREATE SECURITY LABEL COMPONENT
groups TREE (’G1’ ROOT,

’G2’ UNDER ROOT,
’G3’ UNDER ROOT);

The following statement creates a security policy called secPolicy based on the
three components above:
CREATE SECURITY POLICY secPolicy COMPONENTS

level, compartments, groups;

The following statement creates a security label called secLabel1:
CREATE SECURITY LABEL secPolicy.secLabel1

COMPONENT level ’S’,
COMPONENT compartments ’A’, ’B’,
COMPONENT groups ’G2’;

The following statement grants this security label for read access to user sam:
GRANT SECURITY LABEL secPolicy.secLabel1

TO sam FOR READ ACCESS;

The following statement revokes the security label for read access from user sam.
REVOKE SECURITY LABEL secPolicy.secLabel1

FROM sam FOR READ ACCESS;

Chapter 2. SQL statements 2-641

When the REVOKE SECURITY LABEL statement successfully cancels a security
label that was held by a user, the database server updates the sysseclabelauth
table of the system catalog to remove the user from the list of those who hold that
security label.

SETSESSIONAUTH Clause
The REVOKE SETSESSIONAUTH statement revokes the SETSESSIONAUTH
privilege from one or more users or roles. The SETSESSIONAUTH privilege allows
users who also hold the DBA privilege to use the SET SESSION
AUTHORIZATION statement to set the session authorization to one of a set of
specified users.

SETSESSIONAUTH Clause:

�

SETSESSIONAUTH ON PUBLIC
,

user
USER

�

,

FROM user
USER

role
ROLE

Element Description Restrictions Syntax

role Role from which the privilege is to be revoked Must be the authorization
identifier of a role

“Owner name” on page
5-49

user After the FROM keyword, a user from whom the
privilege is to be revoked. After the ON
keyword, a user whose identity the grantee can
specify in the SET AUTHORIZATION statement.

Must be the authorization
identifier of a user

“Owner name” on page
5-49

Only a user who holds the DBSECADM role can revoke the SETSESSIONAUTH
privilege.

The user or PUBLIC specification that follows the ON keyword specifies whose
identity the grantee of the SETSESSIONAUTH privilege is no longer able to
assume while using the SET SESSION AUTHORIZATION statement. This can be a
user or PUBLIC, but not a role. If PUBLIC is specified, then the grantee of the
privilege no longer has the ability to assume the identity of an arbitrary database
user.

The USER and ROLE keywords that can follow the FROM keyword are optional.
Neither the user nor the role can be the holder of the DBSECADM role who issues
the REVOKE SETSESSIONAUTH statement. The FROM clause cannot specify
PUBLIC.

The following example grants to user sam the ability to set the session
authorization to users lynette and manor:
REVOKE SETSESSIONAUTH ON lynette, manoj TO sam;

The next example revokes from user lynette the ability to set the session
authorization to PUBLIC:
REVOKE SETSESSIONAUTH ON PUBLIC FROM lynette;

2-642 IBM Informix Guide to SQL: Syntax

The PUBLIC scope of the privilege that this statement revokes had enabled user
lynette to assume the access privileges and the security credentials of any user
whose name she specified in the SET SESSION AUTHORIZATION statement.

REVOKE FRAGMENT statement
Use the REVOKE FRAGMENT statement to revoke from one or more users or
roles the Insert, Update, or Delete fragment-level privileges that were granted on
individual fragments of a table that has been fragmented by expression. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� REVOKE FRAGMENT
(1)

Fragment-Level Privileges ON table �

�

�

,

(fragment)

FROM

�

PUBLIC
,

user
'user'
role
'role'

AS revoker
'revoker'

��

Notes:

1 See “Fragment-Level Privileges” on page 2-644

Element Description Restrictions Syntax

fragment Name of a fragment or the dbspace that stores
one fragment. Default is all fragments of table.

Must exist and must store a
fragment of table

“Identifier” on page
5-21

revoker User (who is not executing this statement) who
was grantor of privileges to be revoked

Must be grantor of the
fragment-level privileges

“Owner name” on
page 5-49

role Role from which privileges are to be revoked Must exist in the database “Owner name” on
page 5-49

table Fragmented table whose fragment-level privileges
are to be revoked

Must exist and must be
fragmented by expression

“Database Object
Name” on page 5-16

user User from whom privileges are to be revoked Must be a valid
authorization identifier

“Owner name” on
page 5-49

Usage

The REVOKE FRAGMENT statement is a special case of the REVOKE statement
for assigning privileges on table fragments. Use the REVOKE FRAGMENT
statement to revoke the Insert, Update, or Delete privilege on one or more table
fragments from one or more users or roles. The DBA can use this statement to
revoke privileges on a fragment whose owner is another user.

The REVOKE FRAGMENT statement is valid only for tables that are fragmented
by an expression-based distribution scheme. For an explanation of this
fragmentation strategy, see “Expression Distribution Scheme” on page 2-19.
Related reference:
“GRANT FRAGMENT statement” on page 2-538

Chapter 2. SQL statements 2-643

“GRANT statement” on page 2-502
“REVOKE statement” on page 2-618

Specifying Fragments
If you specify no fragment, the privileges are revoked for all fragments of table. You
can specify one fragment or a comma-separated list of fragments enclosed between
parentheses that immediately follow the ON table specification.

Each fragment must be referenced by its name. If you did not declare an explicit
identifier when you created the fragment, its name defaults to the name of the
dbspace in which it resides.

After a dbspace is renamed successfully by the onspaces utility, only the new name
is valid. Informix automatically updates existing fragmentation strategies in the
system catalog to substitute the new dbspace name, but you must specify the new
name in REVOKE FRAGMENT statement to reference a fragment whose default
name is the name of a renamed dbspace.

The FROM Clause
You can specify the PUBLIC keyword to revoke the specified fragment-level
privileges from PUBLIC, thereby revoking the privileges from all users to whom
the privileges have not been explicitly granted, or who do not hold a role through
which they have received the privileges.

If you enclose user or role in quotation marks, the name is case sensitive and is
stored exactly as you typed it. In an ANSI-compliant database, if you do not use
quotation marks around user or around role, the name is stored in uppercase letters
by default, although you can set the ANSIOWNER environment variable to
preserve lowercase characters in owner specifications.

When you include a role in the FROM clause of REVOKE FRAGMENT, the
specified fragment privilege is revoked from that role. Users who have that role,
however, retain any fragment privileges they hold that were granted to them
individually or to PUBLIC.

Fragment-Level Privileges
The keyword or keywords that follow the FRAGMENT keyword specify
fragment-level privileges, which are a logical subset of table-level privileges:

Fragment-Level Privileges:

�

ALL
,

INSERT
DELETE
UPDATE

You can revoke fragment-level privileges individually or in combination. The
following keywords specify the fragment-level privileges that you can revoke.

Keyword
Effect

2-644 IBM Informix Guide to SQL: Syntax

INSERT
Prevents the user from inserting rows in the fragment

DELETE
Prevents the user from deleting rows in the fragment

UPDATE
Prevents the user from updating rows in the fragment

ALL Cancels Insert, Delete, and Update privileges on a fragment

If you specify the ALL keyword in a REVOKE FRAGMENT statement, the
specified users and roles lose all fragment-level privileges that they currently
possess on the specified fragments. For example, assume that a user currently has
the Update privilege on one fragment of a table. If you use the ALL keyword to
revoke all current privileges on this fragment from this user, the user loses the
Update privilege that he or she had on this fragment.

For the distinction between fragment-level and table-level privileges, see the
sections “Definition of Fragment-Level Authorization” on page 2-540 and “Effect of
Fragment-Level Authorization in Statement Validation” on page 2-540.

The AS Clause
Without the AS clause, the user who executes the REVOKE statement must be a
grantor of the privilege that is being revoked. The DBA or the owner of the
fragment can use the AS clause to specify another user (who must be the grantor
of the privilege) as the revoker of privileges on a fragment.

The AS clause provides the only mechanism by which privileges can be revoked
on a fragment whose owner is an authorization identifier that is not a valid user
account known to the operating system.

Examples of the REVOKE FRAGMENT Statement
Examples that follow are based on the customer table. They all assume that the
customer table is fragmented by expression into three fragments named part1,
part2, and part3.

Revoking Privileges on One Fragment
The following statement revokes the Update privilege on the fragment of the
customer table in part1 from user ed:
REVOKE FRAGMENT UPDATE ON customer (part1) FROM ed;

The following statement revokes the Update and Insert privileges on the fragment
of the customer table in part1 from user susan:
REVOKE FRAGMENT UPDATE, INSERT ON customer (part1) FROM susan;

The following statement revokes all privileges currently granted to user harry on
the fragment of the customer table in part1:
REVOKE FRAGMENT ALL ON customer (part1) FROM harry;

Revoking Privileges on More Than One Fragment
The following statement revokes all privileges currently granted to user millie on
the fragments of the customer table in part1 and part2:
REVOKE FRAGMENT ALL ON customer (part1, part2) FROM millie;

Chapter 2. SQL statements 2-645

Revoking Privileges from More Than One User
The following statement revokes all privileges currently granted to users jerome
and hilda on the fragment of the customer table in part3:
REVOKE FRAGMENT ALL ON customer (part3) FROM jerome, hilda;

Revoking Privileges Without Specifying Fragments
The following statement revokes all current privileges from user mel on all
fragments for which this user currently has privileges:
REVOKE FRAGMENT ALL ON customer FROM mel;

Related Statements

Related statements: “GRANT FRAGMENT statement” on page 2-538 and
“REVOKE statement” on page 2-618

For a discussion of fragment-level and table-level privileges, see the section
“Fragment-Level Privileges” on page 2-539. See also the IBM Informix Database
Design and Implementation Guide.

ROLLBACK WORK statement
Use the ROLLBACK WORK statement to cancel all or part of the current
transaction intentionally, undoing any changes that occurred since the beginning of
the transaction, or between the ROLLBACK WORK statement and a specified or
default savepoint.

Syntax

��
WORK

ROLLBACK
TO SAVEPOINT

savepoint

��

Element Description Restrictions Syntax

savepoint Name of the
savepoint that
delimits the scope of
the rollback

Must exist in the current transaction. “Identifier” on page 5-21

Usage

The ROLLBACK WORK statement is valid only in databases that support
transaction logging. Only logged operations can be rolled back. Use ROLLBACK
WORK only at the end of a multistatement operation.

The ROLLBACK WORK statement restores the database to its state that existed
before the cancelled portion of the transaction began.

In a database that is not ANSI-compliant, the BEGIN WORK statement starts a
transaction. You can end a transaction with the COMMIT WORK statement or
cancel all or part of the transaction with the ROLLBACK WORK statement. If you
issue the ROLLBACK WORK statement when no transaction is pending in a
database that is not ANSI-compliant, Informix issues an error.

2-646 IBM Informix Guide to SQL: Syntax

In an ANSI-compliant database, multistatement transactions are implicit. You do
not need to mark the beginning of a transaction with the BEGIN WORK statement.
You only need to mark the end of each transaction with a COMMIT WORK
statement or cancel the transaction with a ROLLBACK WORK statement. If you
issue the ROLLBACK WORK statement when no transaction is pending, the
statement is accepted but has no effect.

The ROLLBACK WORK statement restores the database to the state that existed
before the cancelled portion of the transaction began. Unless you include the TO
SAVEPOINT keywords, ROLLBACK WORK cancels the entire transaction.

The ROLLBACK WORK statement releases all row and table locks that the
cancelled transaction holds.

In Informix ESQL/C and SPL, the ROLLBACK WORK statement closes all open
cursors except those that are declared as hold cursors by including the WITH HOLD
keywords. Hold cursors remain open after a transaction is committed or rolled
back.

If you use the ROLLBACK WORK statement within an SPL routine that the
WHENEVER statement calls, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. This step prevents the program from looping if the ROLLBACK WORK
statement encounters an error or a warning.

If a program terminates abnormally, the current transaction is implicitly rolled
back.
Related reference:
“COMMIT WORK statement” on page 2-133
“LOCK TABLE statement” on page 2-564
“BEGIN WORK statement” on page 2-126
“UNLOCK TABLE statement” on page 2-851
“RELEASE SAVEPOINT statement” on page 2-608

WORK Keyword
The WORK keyword is optional in a ROLLBACK WORK statement. The following
two statements are equivalent:
ROLLBACK;

ROLLBACK WORK;

TO SAVEPOINT Clause
The optional TO SAVEPOINT clause specifies a partial rollback. This clause can
restrict the scope of the rollback to the operations of the current savepoint level
between the ROLLBACK statement and the specified or default savepoint. If no
savepoint is specified after the SAVEPOINT keyword, the rollback ends at the most
recently set savepoint within the current savepoint level.

When the ROLLBACK WORK TO SAVEPOINT statement executes successfully,
any effects of DDL and DML statements that preceded the savepoint persist, but
changes to the schema of the database or to its data values by statements that
follow the savepoint are cancelled. Any locks acquired by these cancelled
statements persist, but are released at the end of the transaction. Any savepoints
between the specified savepoint and the ROLLBACK statement are destroyed, but

Chapter 2. SQL statements 2-647

the savepoint referenced by the ROLLBACK statement (and any savepoints that
precede the referenced savepoint) continue to exist. Program control passes to the
statement that immediately follows the ROLLBACK statement.

If the TO SAVEPOINT clause is omitted, the ROLLBACK statement rolls back the
entire transaction, and all savepoints within the transaction are released.

If the specified savepoint does not exist in the current transaction, the database
server issues an exception.

The TO SAVEPOINT clause is not valid in a ROLLBACK statement that
immediately follows the TRUNCATE statement. In this case, the attempted partial
rollback fails with an error. To cancel uncommitted changes that the TRUNCATE
statement has made to a table, issue ROLLBACK WORK as the next statement, but
with no TO SAVEPOINT clause.

The following program fragment rolls back part of the current transaction to a
savepoint called pt109:
BEGIN WORK;
DROP TABLE tab03;
CREATE TABLE tab03 (col1 CHAR(24), col2 DATE);
SAVEPOINT pt108;
...
INSERT INTO tab03 VALUES (’First day of autumn’, ’09/23/2012’);
SAVEPOINT pt109;
...
DELETE FROM tab03 WHERE col2 < ’12/09/2009’;
SAVEPOINT pt110;
...
ROLLBACK TO SAVEPOINT pt109;

The ROLLBACK statement in this example has these effects:
v Cancels the DML operation that deleted any rows with col2 date values earlier

than December 9, 2009.
v Releases savepoint pt110, and any other savepoints between pt109 and the

ROLLBACK statement.
v Cancels any other changes to the database by operations that follow savepoint

pt109 in the lexical order of SQL statements within the current transaction.

Savepoint pt108, however, is not released, because it was set earlier than pt109 in
the transaction. Not cancelled by this partial rollback are the effects of any
uncommitted DDL or DML operations of the transaction before savepoint pt109
was set, including the creation of table tab03 and the INSERT operation that added
a row to that table. These persist after the partial rollback, pending the possibility
of another partial rollback to a savepoint, and the eventual commitment or rollback
of the entire transaction.

Related Statements

Related statements: “BEGIN WORK statement” on page 2-126, “COMMIT WORK
statement” on page 2-133, “RELEASE SAVEPOINT statement” on page 2-608, and
“SAVEPOINT statement” on page 2-652.

For a discussion of transactions and ROLLBACK WORK, see the IBM Informix
Guide to SQL: Tutorial.

2-648 IBM Informix Guide to SQL: Syntax

SAVE EXTERNAL DIRECTIVES statement
Use the SAVE EXTERNAL DIRECTIVES statement to create external optimizer
directives for a specified query, and save the directives in the database. These
directives are applied automatically to subsequent instances of the same query.
This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� SAVE EXTERNAL DIRECTIVES � directive ACTIVE
INACTIVE
TEST ONLY

FOR query ��

Element Description Restrictions Syntax

directive Optimizer directive valid for query Must be valid for the query
and delimited by comment
indicators

“Optimizer Directives” on page
5-35

query Text of a valid SELECT statement NULL string is not valid “SELECT statement” on page
2-654

Usage

SAVE EXTERNAL DIRECTIVES associates one or more optimizer directives with a
query, and stores a record of this association in the sysdirectives system catalog
table, for subsequent use with queries that match the specified query string. This
statement establishes an association between the list of optimizer directives and the
text of a query, but it does not execute the specified query.

If the SAVE EXTERNAL DIRECTIVES statement specifies more than one optimizer
directive, use the blank character (ASCII 32) as the separator between consecutive
directives, as in the following example:
SAVE EXTERNAL DIRECTIVES /*+ USE_INDEX */ /*+ ORDERED */ ACTIVE FOR

SELECT * FROM systables;

Unlike in a query, comma (,) is not a valid separator in the directives list of
SAVE EXTERNAL DIRECTIVES statements.

Only the DBA or user informix can execute SAVE EXTERNAL DIRECTIVES.
Optimizer directives that it stores in the database are called external directives.
Related reference:
“SET STATEMENT CACHE statement” on page 2-817
“Optimizer Directives” on page 5-35

External optimizer directives
External directives that the SAVE EXTERNAL DIRECTIVES statement associates
with the text of a query can improve performance in some queries for which the
default behavior of the query optimizer is not satisfactory.

External optimizer directives are similar to inline optimizer directives that are
embedded within a query. However, unlike inline directives, external directives can
be applied without revising or recompiling existing applications.

Chapter 2. SQL statements 2-649

Enabling or disabling external directives for a session
Informix ignores external directives if the EXT_DIRECTIVES parameter is set to 0
in the configuration file or the EXTDIRECTIVES keyword in the SET
ENVIRONMENT statement is set to 0, OFF, or off during a session.

In addition, the client system can disable external directives for its current session
when the IFX_EXTDIRECTIVES environment variable is set to 0.

The following table shows whether external directives are disabled (OFF) or
enabled (ON) for various combinations of valid IFX_EXTDIRECTIVES settings on
the client system and valid EXT_DIRECTIVES configuration parameter settings on
Informix:

Table 2-11. Combinations of IFX_DIRECTIVES settings and EXT_DIRECTIVES configuration parameter settings

IFX_EXTDIRECTIVES setting
on client system EXT_DIRECTIVES = 0 EXT_DIRECTIVES = 1 EXT_DIRECTIVES = 2

IFX_EXTDIRECTIVES not set OFF OFF ON

IFX_EXTDIRECTIVES = 1 OFF ON ON

IFX_EXTDIRECTIVES = 0 OFF OFF OFF

If EXT_DIRECTIVES is set to 1 or 2 when the database server is initialized, then
the server is enabled for external directives. Individual sessions can enable or
disable external directives by setting IFX_EXTDIRECTIVES, as the table shows.
Any settings other than 1 or 2 are interpreted as zero, disabling this feature.

When external directives are enabled, the status of individual external directives is
specified by the ACTIVE, INACTIVE, or TEST ONLY keywords. (But only queries
on which directives are effective can benefit from external directives.)

You can also use the EXTDIRECTIVES option of the SET ENVIRONMENT
statement to enable or disable external directives during a session. What you
specify using the EXTDIRECTIVES option overwrites the external directive value
that is specified in the EXT_DIRECTIVES configuration parameter in the
ONCONFIG file.

To overwrite the value for enabling or disabling the external directive in the
ONCONFIG file and:
v To enable the external directives during a session, specify 1, on, or ON as the

value for SET ENVIRONMENT EXTDIRECTIVES.
v To disable the external directives during a session, specify 0, off, or OFF as the

value for SET ENVIRONMENT EXTDIRECTIVES.

To enable the default values specified in the EXT_DIRECTIVES configuration
parameter and in the client-side IFX_EXTDIRECTIVES environment variable
during a session, specify DEFAULT as the value for the EXTDIRECTIVES option of
the SET ENVIRONMENT statement.

For more information on using the EXTDIRECTIVES option of the SET
ENVIRONMENT statement, see “SET ENVIRONMENT statement” on page 2-763.

The directive Specification
Each directive specification in the SAVE EXTERNAL DIRECTIVES statement must
follow the syntax of the Optimizer Directives segment, as described in “Optimizer

2-650 IBM Informix Guide to SQL: Syntax

Directives” on page 5-35, except that if you specify more than one directive, you
must separate them in the directives list by a blank character, rather than by a
comma (,) symbol, as in the following example:
SAVE EXTERNAL DIRECTIVES /*+ AVOID_INDEX (table1 index1)*/ /*+ FULL(table1) */

ACTIVE FOR
SELECT /*+ INDEX(table1 index1) */ col1, col2

FROM table1, table2 WHERE table1.col1 = table2.col1;

This example associates AVOID_INDEX and FULL directives with the specified
query. The inline INDEX directive is ignored by the query optimizer when the
external directives are applied to a query that matches the SELECT statement.

The ACTIVE, INACTIVE, and TEST ONLY Keywords
You must include one of the ACTIVE, INACTIVE, or TEST ONLY keyword options
to enable, disable, or restrict the scope of external directives:
v If external directives are enabled, the ACTIVE keyword applies the list of

directives to any subsequent query that matches the query string.
v The INACTIVE keyword causes Informix to ignore the directive. (It is associated

with the query in sysdirectives, but it is dormant, with no effect.)
v If external directives are enabled, the TEST ONLY keywords apply the directives

only to matching queries that the DBA or user informix executes. Queries by
any other users cannot use TEST ONLY external directives.

An INACTIVE directive has no effect unless the DBA or user informix changes the
sysdirectives.active system catalog column value from zero (INACTIVE) to one
(ACTIVE) or two (TEST ONLY) for that directive. External directives do not have
SQL identifiers, but the DBA can reference the sysdirectives.id column in an
UPDATE statement to specify which external directive to update.

Alternatively, the DBA or user informix can delete an INACTIVE or TEST ONLY
row from sysdirectives and use the SET EXTERNAL DIRECTIVES statement to
redefine the deleted directive, but now specifying the ACTIVE keyword. This can
give other users access to TEST ONLY directives that the DBA has validated.

The query Specification
The query specification that follows the FOR keyword in SAVE EXTERNAL
DIRECTIVES must specify the syntax of a valid SELECT statement, as described in
“SELECT statement” on page 2-654. If the query text also includes any inline
optimizer directives, the inline directives are ignored when external directives are
applied to the query.

When external directives are enabled and the sysdirectives system catalog table is
not empty, the database server compares every query with the query text of every
ACTIVE external directive, and for queries executed by the DBA or user informix,
with every TEST ONLY external directive. If an external directive has been applied
to a query, output from the SET EXPLAIN statement indicates “EXTERNAL
DIRECTIVES IN EFFECT” for that query.

The purpose of external directives is to improve the performance of queries that
match the query string, but the use of such directives can potentially slow other
queries, if the query optimizer must compare the query strings of a large number of
active external directives with the text of every SELECT statement. For this reason,
IBM recommends that the DBA not allow the sysdirectives table to accumulate
more than a few ACTIVE rows. (Another way to avoid unintended performance
impact on other queries is to disable this feature.)

Chapter 2. SQL statements 2-651

If more than one SET EXTERNAL DIRECTIVES statements associate active external
directives with the same query, the effect is unpredictable, because the optimizer
uses the first sysdirectives row whose query string matches the query.

Related Statements

For information about optimizer directives and their syntax, see the segment
“Optimizer Directives” in “Optimizer Directives” on page 5-35.

For information about the sysdirectives table and the IFX_EXTDIRECTIVES
environment variable, see the IBM Informix Guide to SQL: Reference.
Related reference:

IFX_EXTDIRECTIVES environment variable (SQL Reference)

SAVEPOINT statement
Use the SAVEPOINT statement to declare the name of a new savepoint within the
current SQL transaction, and to set the position of the new savepoint within the
lexical order of SQL statements within the transaction. The SAVEPOINT statement
is compliant with the ANSI/ISO standard for SQL.

Syntax

�� SAVEPOINT savepoint
(1)

UNIQUE

��

Notes:

1 Informix extension

Element Description Restrictions Syntax

savepoint Name declared here
for the new savepoint

Cannot be the name of an existing unique
savepoint in the same savepoint level

“Identifier” on page 5-21

Usage

You can use the SAVEPOINT statement in SQL transactions to support error
handling with DB-Access and in SPL, C, and Java routines. You can define
savepoint to partition a single complex transaction into smaller logical subsets of
its component SQL statements. Within that transaction, the subset of statements
that follow each savepoint can be rolled back more efficiently than if you had used
multiple COMMIT WORK and ROLLBACK WORK statements in multiple
transactions.

The SAVEPOINT statement sets the specified savepoint at the current position in
the lexical order of statements within the current transaction. After the
SAVEPOINT statement executes successfully, subsequent ROLLBACK TO
SAVEPOINT statements that reference this savepoint can cancel any uncommitted
changes to the database from logged DML or DDL operations in the current
transaction that follow the new savepoint but precede the ROLLBACK TO
SAVEPOINT statement.

2-652 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_244.htm#ids_sqr_244

If an existing savepoint in the same transaction has the same name that the
SAVEPOINT statement specifies, the existing savepoint is destroyed, unless one of
the following conditions is true:
v The existing savepoint was set in a different savepoint level.
v The existing savepoint name was declared with the UNIQUE keyword option. In

this case, the SAVEPOINT statement fails with an error, unless the existing
UNIQUE savepoint was set in a different savepoint level.

Destroying a savepoint to reuse its name for another savepoint is not the same as
releasing the savepoint. Reusing a savepoint name destroys only one savepoint.
Releasing a savepoint with the RELEASE SAVEPOINT statement releases the
specified savepoint and all savepoints that have been subsequently set.

The UNIQUE option

This optional keyword specifies that the application does not intend to reuse the
name of this savepoint in another SAVEPOINT statement while this savepoint is
active within the current savepoint level.

If a savepoint already exists that was set with the same name and with the
UNIQUE keyword within the current savepoint level, the SAVEPOINT statement
fails with an error, and the existing savepoint is not destroyed.

Savepoint levels

Informix supports the construct of nested savepoint levels. A single SQL
transaction can have multiple savepoint levels. New savepoint levels are
automatically created for the duration of execution of an SPL routine or an external
UDR. Recursive calls to the same SPL routine or UDR also increment the savepoint
level of the current transaction.

A savepoint level ends when the UDR in which it was created finishes execution.
When a savepoint level ends, all savepoints within it are automatically released.
Any DDL or DML modifications are inherited by the parent savepoint level (that
is, by the savepoint level within which the one that just ended was created), and
are subject to any savepoint-related statements that are issued against the parent
savepoint level.

The following rules apply to actions within a savepoint level:
v Savepoints can only be referenced within the savepoint level in which they are

established. You cannot release, destroy, or roll back to a savepoint established
outside of the current savepoint level.

v The uniqueness of savepoint names is only enforced within the current
savepoint level. The names of savepoints that are active in other savepoint levels
can be reused in the current savepoint level without affecting those savepoints in
other savepoint levels.

Savepoints in distributed SQL transactions

Savepoints are valid in cross-database distributed SQL transactions of a single
Informix instance that supports transactions if all of the participating databases
support transaction logging. Savepoints are also supported in cross-server SQL
transactions, including operations in high-availability clusters, if all of the
participating Informix instances support savepoints, and all of the databases that
are accessed in the transaction use logging.

Chapter 2. SQL statements 2-653

If any of the participating database servers in a cross-server transaction does not
support savepoints, however, and a connection is established between a
coordinator that can support savepoints and a subordinate server that cannot, any
ROLLBACK TO SAVEPOINT statement within the distributed transaction fails
with an error.

Persistence of savepoints

Savepoints are position markers within SQL transactions, not database objects. An
existing savepoint S is destroyed by any of the following events within the same
transaction:
v A COMMIT WORK or ROLLBACK WORK (without the TO SAVEPOINT clause)

statement is executed.
v A RELEASE SAVEPOINT statement is executed that specifies S in the same

savepoint level.
v A ROLLBACK TO SAVEPOINT or RELEASE SAVEPOINT statement is executed

that specifies a savepoint that was established earlier than S in the same
savepoint level.

v A SAVEPOINT statement specifies the same name as S in the same savepoint
level, and S was not created with the UNIQUE keyword.

Restrictions on savepoints

Savepoints and savepoint levels are not supported in the following contexts:
v in databases that do not support transaction logging
v in triggered actions
v in XA global transactions
v in applications or UDRs where the AUTOCOMMIT connection attribute is

enabled.

In addition, the SAVEPOINT statement (like the RELEASE SAVEPOINT and
ROLLBACK WORK TO SAVEPOINT statements) is not valid in UDRs that are
invoked within DML statements, as in the following example:
SELECT first_1 foo() FROM systables;

Here the foo() routine cannot set a savepoint.

Related Statements

Related statements: “COMMIT WORK statement” on page 2-133, “RELEASE
SAVEPOINT statement” on page 2-608, and “ROLLBACK WORK statement” on
page 2-646
Related reference:
“BEGIN WORK statement” on page 2-126
“RELEASE SAVEPOINT statement” on page 2-608

SELECT statement
Use the SELECT statement to retrieve values from a database or from an SPL or
Informix ESQL/C collection variable. A SELECT operation is called a query.

2-654 IBM Informix Guide to SQL: Syntax

Rows or values that satisfy the specified search criteria of the query are called
qualifying rows or values. What the query retrieves to its calling context, after
applying any additional logical conditions, is called the result set of the query. This
result set can be empty.

Syntax

�� SELECT Select Options �

UNION SELECT Select Options
ALL

MINUS
EXCEPT

�

�
(1)

ORDER BY Clause

�

(2)
FOR READ ONLY

(3)
UPDATE

,

OF column

�

�
(2) (4)

INTO Table Clause

��

Select options:

(2) (5)
Optimizer Directives

(6)
Projection Clause �

�
(7) (8)

INTO Clause

(9)
FROM Clause �

�
(10) (11)

WHERE Clause Hierarchical Clause
(12)

GROUP BY Clause

�

�
(13)

HAVING Clause

Notes:

1 See “ORDER BY Clause” on page 2-711

2 Informix extension

Chapter 2. SQL statements 2-655

3 Informix ESQL/C only

4 See “INTO table clauses” on page 2-720

5 See “Optimizer Directives” on page 5-35

6 See “Projection Clause” on page 2-658

7 Informix ESQL/C and SPL routines only

8 See “INTO Clause” on page 2-669

9 See “FROM Clause” on page 2-672

10 See “WHERE Clause of SELECT” on page 2-689

11 See “Hierarchical Clause” on page 2-696

12 See “GROUP BY Clause” on page 2-708

13 See “HAVING Clause” on page 2-710

Element Description Restrictions Syntax

column Name of a column that can be
updated after a FETCH

Must be in a FROM clause table, but does not need to
be in the select list of the Projection clause

“Identifier”
on page 5-21

Usage

The SELECT statement can return data from tables in the current database, or in
another database of the current database server, or in a database of another
database server. Only the SELECT keyword, the Projection clause, and the FROM
clause are required specifications.

For hierarchical queries that include the CONNECT BY clause, the FROM clause
can specify only a single table that must reside in the local database of the
Informix database server instance to which the current session is connected.

The SELECT statement can reference no more than one external table that the
CREATE EXTERNAL TABLE statement has defined. In complex queries, this
external table can be specified only in the outermost query. You cannot reference
an external table in a subquery.

You need the Connect access privilege on the database to execute a query, as well
as the Select privilege on the table objects from which the query retrieves rows.

The SELECT statement can include various basic clauses, which are identified in
the following list.

Clause Effect

“Optimizer Directives”
on page 5-35

Specifies how the query should be implemented

“Projection Clause” on
page 2-658

Specifies a list of items to be read from the database

“INTO Clause” on page
2-669

Specifies variables to receive the result set

“FROM Clause” on
page 2-672

Specifies the data sources of Projection clause items

“Aliases for Tables or
Views” on page 2-673

Temporary names for tables or columns in a query

2-656 IBM Informix Guide to SQL: Syntax

Clause Effect

“Table expressions” on
page 2-674

Define derived tables as query data sources

“Lateral derived tables”
on page 2-676

Define correlated table references in a query

“The ONLY Keyword”
on page 2-678

Excludes child tables as data sources in queries of typed
tables

“Iterator Functions” on
page 2-680

Functions repeatedly returning values as a data source

“ANSI-Compliant
Joins” on page 2-682

Join queries compliant with ISO/ANSI syntax standards

“Informix-Extension
Outer Joins” on page
2-688

Query syntax based on implicit LEFT OUTER joins

“Using the ON Clause”
on page 2-686

Specifies join conditions as pre-join filters

“WHERE Clause of
SELECT” on page 2-689

Sets conditions on qualifying rows and post-join filters

“Hierarchical Clause”
on page 2-696

Sets conditions for queries of hierarchical data

“GROUP BY Clause” on
page 2-708

Combines groups of rows into summary results

“HAVING Clause” on
page 2-710

Sets conditions on the summary results

“ORDER BY Clause” on
page 2-711

Sorts qualifying rows according to column values

“ORDER SIBLINGS BY
Clause” on page 2-716

Sorts hierarchical data for siblings at every level

“FOR UPDATE Clause”
on page 2-717

Enables updating of the result set after a FETCH

“FOR READ ONLY
Clause” on page 2-719

Disables updating of the result set after a FETCH

“INTO TEMP clause”
on page 2-721

Puts the result set into a temporary table

“INTO EXTERNAL
clause” on page 2-722

Stores the query result set in an external table

“UNION ALL operator”
on page 2-725

Combines the result sets of two SELECT statements

“UNION Operator” on
page 2-725

Same as UNION ALL, but discards duplicate rows

Sections that follow describe these and other clauses of the SELECT statement.
Related reference:
“DROP SEQUENCE statement” on page 2-444
“ALTER SEQUENCE statement” on page 2-68
“CREATE TEMP TABLE statement” on page 2-321
“UPDATE statement” on page 2-852
“CREATE VIEW statement” on page 2-373

Chapter 2. SQL statements 2-657

“OUTPUT statement” on page 2-588
“Literal Row” on page 4-216
“INSERT statement” on page 2-545
“DELETE statement” on page 2-404
“UNLOAD statement” on page 2-846
“RENAME SEQUENCE statement” on page 2-614

Compose SELECT statements (SQL Tutorial)

Handle character data (GLS User's Guide)

Complex data types (ESQL/C Guide)
“Collection-Derived Table” on page 5-4
“DECLARE statement” on page 2-386

Projection Clause
The Projection clause (sometimes called the Select clause) specifies a list of database
objects or expressions to retrieve, and can set restrictions on qualifying rows. (The
select list is sometimes also called the projection list.)

Projection Clause:

(1)
SKIP offset

off_var

(1)
FIRST max
LIMIT max_var

ALL

DISTINCT
(1)

UNIQUE

�

� �

,

Select List

Select List:

(2)
Expression

column display_label
AS

column
table. column_alias
view. AS display_label
synonym. *
alias.
external. *

(3)
(Collection Subquery)

subquery

Notes:

1 Informix extension

2 See “Expression” on page 4-44

3 See “Collection Subquery” on page 4-3

2-658 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_036.htm#ids_sqt_036
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_121.htm#ids_gug_121
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0280.htm#ids_esqlc_0280

Element Description Restrictions Syntax

alias Temporary table or view name. See
“FROM Clause” on page 2-672.

Valid only if the FROM clause declares
the alias for table or view

“Identifier” on page
5-21

column_alias Temporary identifier that you declare
here for a column

Must be unique among columns and
column_alias names in this query. Only
the GROUP BY clause can reference a
column_alias.

“Identifier” on page
5-21

column Column from which to retrieve data Must exist in a data source that the
FROM clause references

“Identifier” on page
5-21

display _label Temporary name declared here for a
column or for an expression

See “Declaring a Display Label” on
page 2-668

“Identifier” on page
5-21

external External table from which to retrieve
data

Must exist “Database Object
Name” on page 5-16

max Integer (> 0) specifying maximum
number of rows to return

If max > number of qualifying rows
then all matching rows are returned

“Literal Number” on
page 4-215

max_var Host variable or local SPL variable
storing the value of max

Same as max; valid in prepared objects
and in SPL routines

Language dependent

offset Integer (> 0) specifying how many
qualifying rows to exclude before the
first row of the result set

Cannot be negative. If offset > (number
of qualifying rows), then no rows are
returned

“Literal Number” on
page 4-215

off_var Host variable or local SPL variable
storing the value of offset

Same as offset; valid in prepared
objects and in user-defined routines

Language dependent

subquery Embedded query A subquery within the Projection
clause cannot include the SKIP, FIRST,
INTO TEMP, or the ORDER BY clause.

“SELECT statement”
on page 2-654

table, view,
synonym

Name of a table, view, or synonym
from which to retrieve data

The synonym and the table or view to
which it points must exist

“Database Object
Name” on page 5-16

The asterisk (*) specifies all columns in the table or view in their defined order. To
retrieve all columns in another order, or a subset of columns, you must specify
individual column names explicitly. A solitary asterisk (*) can be a valid Projection
clause if the FROM clause specifies only a single data source.

The SKIP, FIRST, LIMIT, MIDDLE, DISTINCT, and UNIQUE specifications can
restrict results to a subset of the qualifying rows, as sections that follow explain.
Related reference:
“Syntax of SQL Expressions” on page 4-45

The Order of Qualifying Rows
To execute a query, the database server constructs a query plan and retrieves all
qualifying rows that match the WHERE clause conditions. (Here a row refers to one
set of values, as specified in the select list, from a single record in the table or
joined tables that the FROM clause specifies.) If the query has no ORDER BY
clause, the qualifying rows are sequenced in the order of their retrieval, which
might vary with each execution; otherwise, their sequence follows the ORDER BY
specification, as described in “ORDER BY Clause” on page 2-711.

Whether or not the query specifies ORDER BY can affect which qualifying rows
are in the result set if the Projection clause includes any of the following options:
v the FIRST option
v the SKIP and LIMIT options

Chapter 2. SQL statements 2-659

Using the SKIP Option
The SKIP offset option specifies how many of the qualifying rows to exclude, for
offset an integer in the SERIAL8 range, counting from the first qualifying row. The
following example retrieves the values from all rows except the first 10 rows:
SELECT SKIP 10 a, b FROM tab1;

You can also use a host variable to specify how many rows to exclude. In an SPL
routine, you can use an input parameter or a local variable to provide this value.

When you use the SKIP option in a query with an ORDER BY clause, you can
exclude the first offset rows that have the lowest values according to the ORDER
BY criteria. You can also use SKIP to exclude rows with the highest values, if the
ORDER BY clause includes the DESC keyword. For example, the following query
returns all rows of the orders table, except for the fifty oldest orders:
SELECT SKIP 50 * FROM orders ORDER BY order_date;

Here the result set is empty if there are fewer than 50 rows in the orders table. An
offset = 0 is not invalid, but in that case the SKIP option does nothing.

You can also use the SKIP option to restrict the result sets of prepared SELECT
statements, of UNION queries, in queries whose result set defines a
collection-derived table, and in the events and actions of triggers.

You can use the SKIP and the FIRST options together to specify which and how
many qualifying rows are in the result set, as illustrated by examples in the section
“Using the SKIP Option with the FIRST Option” on page 2-661.

The SKIP option is not valid in the following contexts:
v In the definition of a view
v In nested SELECT statements
v In subqueries.

Using the FIRST Option
The FIRST max option specifies that the result set includes no more than max rows
(or exactly max, if max is not greater than the number of qualifying rows). Any
additional rows that satisfy the selection criteria are not returned. The following
example retrieves at most 10 rows from table tab1:
SELECT FIRST 10 a, b FROM tab1;

Informix can use a host variable or the value of an SPL input parameter in a local
variable to specify max.

With an ORDER BY clause, you can retrieve the first max qualifying rows. For
example, the following query finds the ten highest-paid employees:
SELECT FIRST 10 name, salary FROM emp ORDER BY salary DESC;

You can use the FIRST option in a query whose result set defines
collection-derived table (CDT) within the FROM clause of another SELECT
statement. The following query specifies a CDT that has no more than ten rows:
SELECT *

FROM TABLE(MULTISET(SELECT FIRST 10 * FROM employees
ORDER BY employee_id)) vt(x,y), tab2
WHERE tab2.id = vt.x;

2-660 IBM Informix Guide to SQL: Syntax

The FIRST and SKIP keywords are also valid in queries that include table
expressions in the FROM clause:
SELECT * FROM (SELECT SKIP 2 FIRST 8 col1 FROM tab1 WHERE col1 > 50);

The next example applies the FIRST option to the result of a UNION expression:
SELECT FIRST 10 a, b FROM tab1 UNION SELECT a, b FROM tab2;

The FIRST option is not valid in any of the following contexts:
v In the definition of a view
v In nested SELECT statements
v In subqueries, except for subqueries that specify table expressions in the FROM

clause
v In a singleton SELECT (where max = 1) within an SPL routine
v Where embedded SELECT statements are used as expressions

The LIMIT Keyword
LIMIT is a keyword synonym for the FIRST keyword in the Projection clause. You
cannot, however, substitute LIMIT for FIRST in other syntactic contexts where
FIRST is valid, such as in the FETCH statement.

Using SKIP, FIRST, LIMIT, or MIDDLE as a Column Name
If no integer follows the FIRST keyword, the database server interprets FIRST as a
column identifier. For example, if table T has columns first, second, and third, the
following query would return data from the column named first:
SELECT first FROM T

The same considerations apply to the SKIP and LIMIT keywords. If no literal
integer or integer variable follows the LIMIT keyword in the Projection clause,
Informix interprets LIMIT as a column name. If no data source in the FROM clause
has a column with that name, the query fails with an error.

Using the SKIP Option with the FIRST Option
If a Projection clause with the SKIP offset option also includes FIRST or LIMIT, the
result set begins with the row whose ordinal position is (offset + 1) in the set of
qualifying rows, rather than with the first row. The row in position (offset + max) is
the last row in the result set, unless there are fewer than (offset + max) qualifying
rows. The following example ignores the first 50 rows from table tab1, but returns
a result set of at most 10 rows, beginning with the fifty-first row:
SELECT SKIP 50 FIRST 10 a, b FROM tab1;

The next example uses in a query with SKIP and FIRST to insert no more than five
rows from table tab1 into table tab2, beginning with the eleventh row:
INSERT INTO tab2 SELECT SKIP 10 FIRST 5 * FROM tab1;

The following collection subquery returns only the eleventh through fifteenth
qualifying rows as a collection-derived table, orders these five rows by the value in
column a, and stores this result set in a temporary table.
SELECT * FROM TABLE (MULTISET (SELECT SKIP 10 FIRST 5 a FROM tab3

ORDER BY a)) INTO TEMP;

The following INSERT statement includes a collection subquery whose results
define a collection-derived table. The rows are ordered by the value in column a,
and are inserted into table tab1.

Chapter 2. SQL statements 2-661

INSERT INTO tab1 (a) SELECT * FROM TABLE (MULTISET (SELECT SKIP 10 FIRST 5 a
FROM tab3 ORDER BY a));

Queries that combine the FIRST or LIMIT and SKIP options with the ORDER BY
clause can impose a unique order on the qualifying rows, so successive queries
that increment the offset value by the value of max can partition the qualifying
rows into disjunct subsets of max rows. This can support web applications that
require a fixed page size, without requiring cursor management.

You can use these features in distributed queries only if all of the participating
database servers support the SKIP and FIRST options.

Allowing Duplicates
You can apply the ALL, UNIQUE, or DISTINCT keywords to indicate whether
duplicate values are returned, if any exist. If you do not specify any of these
keywords in the Projection clause, all qualifying rows are returned by default.

Keyword
Effect

ALL Specifies that all qualifying rows are returned, regardless of whether
duplicates exist. (This is the default specification.)

DISTINCT
Excludes duplicates of qualifying rows from the result set

UNIQUE
Excludes duplicate. (Here UNIQUE is a synonym for DISTINCT. This is an
extension to the ANSI/ISO standard.)

For example, the next query returns all the unique ordered pairs of values from the
stock_num and manu_code columns in rows of the items table. If several rows
have the same pair of values, that pair appears only once in the result set:
SELECT DISTINCT stock_num, manu_code FROM items;

For information on how the database server identifies duplicate NCHAR and
NVARCHAR values in a database that has the NLCASE INSENSITIVE property,
see “NCHAR and NVARCHAR expressions in case-insensitive databases” on page
4-28.

You can specify the DISTINCT or UNIQUE keyword of the SELECT statement no
more than once in each level of a query or subquery. The following example uses
DISTINCT in both the query and in the subquery:
SELECT DISTINCT stock_num, manu_code FROM items

WHERE order_num = (SELECT DISTINCT order_num FROM orders
WHERE customer_num = 120);

The example above is valid, because DISTINCT is used no more than once in each
of the SELECT statements.

If a query includes the DISTINCT or UNIQUE keyword (rather than the ALL
keyword or no keyword) in the Projection clause whose Select list also includes an
aggregate function whose argument list begins with the DISTINCT or UNIQUE
keyword, the database server issues an error, as in the following example: .
SELECT DISTINCT COUNT(DISTINCT ship_weight)

FROM orders;

2-662 IBM Informix Guide to SQL: Syntax

That is, it is not valid in the same query for both the Projection clause and for an
aggregate function to restrict the result set to unique values. (In the example above,
replacing either of the DISTINCT keyword with UNIQUE would not avoid this
error.)

Duplicate rows in NLSCASE INSENSITIVE databases
In a database that was created with the NLSCASE INSENSITIVE option, columns
and expressions of NCHAR or NVARCHAR data types make no distinction
between upper case and lower case letters, so that strings of these data types that
have the same sequence of characters, but with letter case variants, evaluate as
duplicates.

Queries that include the ALL, DISTINCT, or UNIQUE keywords might return
results different from what the same query returns from a case-sensitive database
into which the same character string values had been loaded. For example, the
NVARCHAR strings "aCe", "ACE", and "AcE" evaluate as identical in databases that
have the NLSCASE INSENSITIVE property, but the same three strings are
processed as distinct values in case-sensitive databases.

Strings of type CHAR, LVARCHAR, and VARCHAR, however, are processed
identically in NLSCASE SENSITIVE and in NLSCASE INSENSITIVE databases by
queries that use the ALL, DISTINCT, or UNIQUE keywords to include or exclude
duplicate rows. For more information about databases with the NLSCASE
INSENSITIVE property, see “Specifying NLSCASE case sensitivity” on page 2-153
and “NCHAR and NVARCHAR expressions in case-insensitive databases” on page
4-28.

Data Types in Distributed Queries
Queries whose only data sources are tables and views in the local database to
which the session is connected can return values from columns or expressions of
any built-in or user-defined data type that is registered in the local database.
Queries that reference tables or views in other databases are called distributed
queries, and the data types that they can access are a subset of the data types that
Informix supports in local queries.

Among distributed queries, the restrictions on data types depend on the number of
participating database servers.
v If all the databases that the query accesses are databases of the same Informix

instance, the query is called a cross-database distributed query.
v If the query accesses databases of multiple Informix instances, the query is called

a cross-server distributed query.

In both types of distributed queries, all participating databases must have the same
ANSI/ISO-compliance status. A cross-server distributed query can use both the
SKIP and FIRST options if all participating servers support the SKIP option;
otherwise the query fails with an error. More generally, all cross-server operations
require that the participating database server instances support the SQL syntax that
specifies the operation.

For additional information about distributed queries, see the IBM Informix Database
Design and Implementation Guide.

Data Types in Cross-Database Transactions: Distributed queries (and other
distributed DML operations or function calls) that access only databases of the
local Informix instance can access data types of the following categories:
v The built-in data types that are not opaque, including these:

Chapter 2. SQL statements 2-663

– BIGINT
– BIGSERIAL
– BYTE
– CHAR
– DATE
– DATETIME
– DECIMAL
– FLOAT
– INT
– INTERVAL
– INT8
– MONEY
– NCHAR
– NVARCHAR
– SERIAL
– SERIAL8
– SMALLFLOAT
– SMALLINT
– TEXT
– VARCHAR

v Most built-in opaque data types, including these:
– BLOB
– BOOLEAN
– CLIENTBINVAL
– CLOB
– IFX_LO_SPEC
– IFX_LO_STAT
– INDEXKEYARRAY
– LVARCHAR
– POINTER
– RTNPARAMTYPES,
– SELFUNCARGS
– STAT
– XID

v User-defined types (UDTs) that are cast explicitly to any of the built-in types that
are listed above

v DISTINCT of any of the built-in types in the preceding list.

Distributed operations across databases of the local Informix instance can return
UDTs and DISTINCT types based on built-in data types only if all the UDTs and
DISTINCT types are cast explicitly to built-in data types.

All the opaque UDTs, DISTINCT types, data type hierarchies, and casts must have
exactly the same definitions in each database that participates in the distributed
query. For queries or other DML operations in cross-server UDRs that use the data
types listed above as parameters or as returned data types, the UDR must also
have the same definition in each participating database.

2-664 IBM Informix Guide to SQL: Syntax

A cross-database distributed query (or any other cross-database DML operation)
fails with an error if it references a table, view, or synonym in another database of
the local Informix instance that includes a column of any of the following data
types:
v LOLIST
v IMPEX
v IMPEXBIN
v SENDRECV
v DISTINCT of any of the opaque data types that are listed above.
v Complex types (named or unnamed ROW, COLLECTION, LIST, MULTISET, or

SET)

Data Types in Cross-Server Transactions: A distributed query (or any other
distributed DML operation or function call) across databases of two or more
Informix instances cannot return complex or large-object data types, nor most
user-defined data types (UDTs) or opaque data types. Cross-server distributed
queries, DML operations, and function calls can return only the following data
types:
v Any non-opaque built-in data type
v BOOLEAN
v LVARCHAR
v DISTINCT of non-opaque built-in types
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of any of the DISTINCT types that appear above in this list.

A cross-server distributed query can support DISTINCT data types only if they are
cast explicitly to built-in types, and all of the DISTINCT types, their data type
hierarchies, and their casts are defined exactly the same way in each database that
participates in the distributed query. For queries or other DML operations in
cross-server UDRs that use the data types in the preceding list as parameters or as
returned data types, the UDR must also have the same definition in every
participating database.

The built-in DISTINCT data type IDSSECURITYLABEL, which stores security label
objects, can be accessed in cross-server and cross-database operations on protected
data by users who hold sufficient security credentials. Like local operations on
protected data, distributed queries that access remote tables protected by a security
policy can return only the qualifying rows that IDSLBACRULES allow, after the
database server has compared the security label that secures the data with the
security credentials of the user who issues the query.

For additional information about the data types that Informix supports in
cross-server DML operations, see “Data Types in Distributed Queries” on page
2-663. For information about the table hierarchies of the DISTINCT data types that
are valid in cross-server operations, see “DISTINCT Types in Distributed
Operations” on page 4-37.

A cross-server query (or any other cross-server DML operation) fails with an error
if it references a table, view, or synonym in a database of another Informix instance
that includes a column of any of the following data types:
v BLOB
v CLOB

Chapter 2. SQL statements 2-665

v INDEXKEYARRAY
v POINTER
v RTNPARAMTYPES
v SELFUNCARGS
v IFX_LO_SPEC
v IFX_LO_STAT
v STAT
v CLIENTBINVAL
v User-defined OPAQUE types
v Complex types (named or unnamed ROW, COLLECTION, LIST, MULTISET, or

SET)
v DISTINCT of any of the opaque or complex data types that are listed above.

Cross-server queries cannot access the database of another Informix instance unless
both servers define TCP/IP or IPCSTR connections in their DBSERVERNAME or
DSERVERALIASES configuration parameters and in the sqlhosts information. The
requirement that both participating servers support the same type of connection
(either TCP/IP or else IPCSTR) applies to any communication between Informix
instances, even if both reside on the same computer.

Expressions in the Select List
You can use any basic type of expression (column, constant, built-in function,
aggregate function, and user-defined routine), or combination thereof, in the select
list. The expression types are described in “Expression” on page 4-44. Sections that
follow present examples of simple expression in the select list.

You can combine simple numeric expressions by connecting them with arithmetic
operators for addition, subtraction, multiplication, and division. If you combine a
column expression and an aggregate function, however, you must include the
column expression in the GROUP BY clause. (See also “Dependencies between the
GROUP BY and Projection clauses” on page 2-709.)

In general, you cannot use variables (for example, host variables in an Informix
ESQL/C application) in the select list by themselves. A variable is valid in the
select list, however, if an arithmetic or concatenation operator connects it to a
constant.

In a FOREACH SELECT statement, you cannot use SPL variables in the select list,
by themselves or with column names, when the tables in the FROM clause are
remote tables. You can use SPL variables by themselves or with a constant in the
select list only when the tables in the FROM clause are local tables.

In distributed queries of Informix, values in expressions (and returned by
expressions) are restricted, as “Data Types in Cross-Server Transactions” on page
2-665 describes. Any UDRs whose return values are used as expressions in other
databases of the same Informix instance must be defined in each participating
database.

The Boolean operator NOT is not valid in the Projection clause.

Selecting Columns: Column expressions are the most commonly used expressions
in a SELECT statement. For a complete description of the syntax and use of
column expressions, see “Column Expressions” on page 4-64. The following
examples use column expressions in the Projection clause:

2-666 IBM Informix Guide to SQL: Syntax

SELECT orders.order_num, items.price FROM orders, items;
SELECT customer.customer_num ccnum, company FROM customer;
SELECT catalog_num, stock_num, cat_advert [1,15] FROM catalog;
SELECT lead_time - 2 UNITS DAY FROM manufact;

Selecting Constants: If you include a constant expression in the projection list, the
same value is returned for each row that the query returns (except when the
constant expression is NEXTVAL). For a complete description of the syntax and
use of constant expressions, see “Constant Expressions” on page 4-76. Examples
that follow show constant expressions within a select list:
SELECT ’The first name is’, fname FROM customer;
SELECT TODAY FROM cust_calls;
SELECT SITENAME FROM systables WHERE tabid = ;1
SELECT lead_time - 2 UNITS DAY FROM manufact;
SELECT customer_num + LENGTH(’string’) from customer;

Selecting Built-In Function Expressions: A built-in function expression uses a
function that is evaluated for each row in the query. All built-in function
expressions require arguments. This set of expressions contains the time functions
and the length function when they are used with a column name as an argument.
The following examples show built-in function expressions within the select list of
the Projection clause:
SELECT EXTEND(res_dtime, YEAR TO SECOND) FROM cust_calls;
SELECT LENGTH(fname) + LENGTH(lname) FROM customer;
SELECT HEX(order_num) FROM orders;
SELECT MONTH(order_date) FROM orders;

Selecting Aggregate Function Expressions:

An aggregate function returns one value for a set of queried rows. This value
depends on the set of rows that the WHERE clause of the SELECT statement
qualifies. In the absence of a WHERE clause, the aggregate functions take on
values that depend on all the rows that the FROM clause forms.

Examples that follow show aggregate functions in a projection list:
SELECT SUM(total_price) FROM items WHERE order_num = 1013;
SELECT COUNT(*) FROM orders WHERE order_num = 1001;
SELECT MAX(LENGTH(fname) + LENGTH(lname)) FROM customer;

Selecting User-Defined Function Expressions: User-defined functions extend the
range of functions that are available to you and allow you to perform a subquery
on each row that you select.

The following example calls the get_orders() user-defined function for each
customer_num and displays the returned value under the n_orders label:
SELECT customer_num, lname, get_orders(customer_num) n_orders

FROM customer;

If an SPL routine in a SELECT statement contains certain SQL statements, the
database server returns an error. For information on which SQL statements cannot
be used in an SPL routine that is called within a query, see “Restrictions on SPL
Routines in Data-Manipulation Statements” on page 5-82.

For the complete syntax of user-defined function expressions, see “User-Defined
Functions” on page 4-188.

Selecting Expressions That Use Arithmetic Operators: You can combine numeric
expressions with arithmetic operators to make complex expressions. You cannot

Chapter 2. SQL statements 2-667

combine expressions that contain aggregate functions with column expressions.
These examples show expressions that use arithmetic operators within a select list
in the Projection clause:
SELECT stock_num, quantity*total_price FROM customer;
SELECT price*2 doubleprice FROM items;
SELECT count(*)+2 FROM customer;
SELECT count(*)+LENGTH(’ab’) FROM customer;

Selecting ROW Fields: You can select a specific field of a named or unnamed
ROW type column with row.field notation, using a period (.) as a separator
between the row and field names. For example, suppose you have the following
table structure:
CREATE ROW TYPE one (a INTEGER, b FLOAT);
CREATE ROW TYPE two (c one, d CHAR(10));
CREATE ROW TYPE three (e CHAR(10), f two);

CREATE TABLE new_tab OF TYPE two;
CREATE TABLE three_tab OF TYPE three;

The following examples show expressions that are valid in the select list:
SELECT t.c FROM new_tab t;
SELECT f.c.a FROM three_tab;
SELECT f.d FROM three_tab;

You can also enter an asterisk (*) in place of a field name to signify that all fields
of the ROW-type column are to be selected.

For example, if the my_tab table has a ROW-type column named rowcol that
contains four fields, the following SELECT statement retrieves all four fields of the
rowcol column:
SELECT rowcol.* FROM my_tab;

You can also retrieve all fields from a row-type column by specifying only the
column name. This example has the same effect as the previous query:
SELECT rowcol FROM my_tab;

You can use row.field notation not only with ROW-type columns but with
expressions that evaluate to ROW-type values. For more information, see “Column
Expressions” on page 4-64 in the Expression segment.

Declaring a Display Label
You can declare a display label for any column or column expression in the select
list of the Projection clause. This temporary name is in scope only while the
SELECT statement is executing.

In DB-Access, a display label appears as the heading for that column in the output
of the SELECT statement.

In Informix ESQL/C, the value of display_label is stored in the sqlname field of the
sqlda structure. For more information on the sqlda structure, see the IBM Informix
ESQL/C Programmer's Manual.

If your display label is an SQL keyword, use the AS keyword to clarify the syntax.
For example, to use UNITS, YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, or
FRACTION as display labels, use the AS keyword with the display label. The
following statement uses AS with minute as a display label:
SELECT call_dtime AS minute FROM cust_calls;

2-668 IBM Informix Guide to SQL: Syntax

For the keywords of SQL, see Appendix A, “Keywords of SQL for IBM Informix,”
on page A-1.

If you use the INTO Table clause to create a temporary or permanent table to store
the query results, you must declare a display label for any database object or
expression in the select list that is not a simple column expression. The display
label is used as the name of the column in the temporary or permanent table.

If you are using the SELECT statement to define a view, do not use display labels.
Specify the desired label names in the CREATE VIEW column list instead.

Declaring a Column Alias
You can declare an alias for any column in the select list of the Projection clause.
The GROUP BY clause can reference the column by its alias. This temporary name
is in scope only while the SELECT statement is executing.

If your alias is an SQL keyword of the SELECT statement, use the AS column_alias
keyword to clarify the syntax. For example, to use FROM as a table alias, the AS
keyword must immediately precede the alias to avoid a syntax error. The following
statement uses AS with from as an alias:
SELECT status AS from FROM stock GROUP BY from;

The following equivalent queries declare pcol as an alias, and use that alias in the
GROUP BY clause:
SELECT pseudo_corinthian AS pcol FROM architecture GROUP BY pcol;
SELECTt pseudo_corinthian pcol FROM architecture GROUP BY pco1;

INTO Clause
Use the INTO clause in an SPL routine or an Informix ESQL/C program to specify
the program variables or host variables to receive data that SELECT retrieves.

INTO Clause:

INTO �

,

output_var
(1)

:indicator_var
(2)

$indicator_var
data_structure

Notes:

1 ESQL/C only

2 Informix extension

Element Description Restrictions Syntax

data_ structure Structure that was declared as a host
variable

Data types of elements must be able to
store the values that are being selected

Language
specific

indicator_ var Program variable to receive a return
code if corresponding output_var
receives a NULL value

Optional; use an indicator variable if the
possibility exists that the value of the
corresponding output_var is NULL

Language
specific

Chapter 2. SQL statements 2-669

Element Description Restrictions Syntax

output_ var Program or host variable to receive
value of the corresponding select list
item. Can be a collection variable

Order of receiving variables must match
the order of corresponding items in the
select list of Projection clause

Language
specific

The INTO clause specifies one or more variables that receive the values that the
query returns. If it returns multiple values, they are assigned to the list of variables
in the order in which you specify the variables.

If the SELECT statement stands alone (that is, it is not part of a DECLARE
statement and does not use the INTO clause), it must be a singleton SELECT
statement. A singleton SELECT statement returns only one row.

The number of receiving variables must be equal to the number of items in the
select list of the Projection clause. The data type of each receiving variable should
be compatible with the data type of the corresponding column or expression in the
select list.

For the actions that the database server takes when the data type of the receiving
variable does not match that of the selected item, see “Warnings in ESQL/C” on
page 2-671.

The following example shows a singleton SELECT statement in Informix ESQL/C:
EXEC SQL select fname, lname, company

into :p_fname, :p_lname, :p_coname
from customer where customer_num = 101;

In an SPL routine, if a SELECT returns more than one row, you must use the
FOREACH statement to access the rows individually. The INTO clause of the
SELECT statement holds the fetched values. For more information, see
“FOREACH” on page 3-30.

INTO Clause with Indicator Variables
If the possibility exists that a data value returned from the query is NULL, use an
ESQL/C indicator variable in the INTO clause. For more information, see the IBM
Informix ESQL/C Programmer's Manual.

INTO Clause with Cursors
If the SELECT statement returns more than one row, you must use a cursor in a
FETCH statement to fetch the rows individually. You can put the INTO clause in
the FETCH statement rather than in the SELECT statement, but you should not put
it in both.

The following Informix ESQL/C code examples show different ways you can use
the INTO clause. As both examples show, first you must use the DECLARE
statement to declare a cursor.

Using the INTO clause in the SELECT statement:
EXEC SQL declare q_curs cursor for

select lname, company
into :p_lname, :p_company
from customer;

EXEC SQL open q_curs;
while (SQLCODE == 0)

EXEC SQL fetch q_curs;
EXEC SQL close q_curs;

2-670 IBM Informix Guide to SQL: Syntax

Using the INTO clause in the FETCH statement:
EXEC SQL declare q_curs cursor for

select lname, company from customer;
EXEC SQL open q_curs;
while (SQLCODE == 0)

EXEC SQL fetch q_curs into :p_lname, :p_company;
EXEC SQL close q_curs;

Preparing a SELECT ... INTO Query
In Informix ESQL/C, you cannot prepare a query that has an INTO clause. You
can prepare the query without the INTO clause, declare a cursor for the prepared
query, open the cursor, and then use the FETCH statement with an INTO clause to
fetch the cursor into the program variable.

Alternatively, you can declare a cursor for the query without first preparing the
query and include the INTO clause in the query when you declare the cursor. Then
open the cursor and fetch the cursor without using the INTO clause of the FETCH
statement.

Using Array Variables with the INTO Clause
In Informix ESQL/C, if you use a DECLARE statement with a SELECT statement
that contains an INTO clause, and the variable is an array element, you can
identify individual elements of the array with integer literals or variables. The
value of the variable that is used as a subscript is determined when the cursor is
declared; the subscript variable subsequently acts as a constant.

The following Informix ESQL/C code example declares a cursor for a SELECT ...
INTO statement using the variables i and j as subscripts for the array a. After you
declare the cursor, the INTO clause of the SELECT statement is equivalent to INTO
a[5], a[2].
i = 5
j = 2
EXEC SQL declare c cursor for

select order_num, po_num into :a[i], :a[j] from orders
where order_num =1005 and po_num =2865;

You can also use program variables in the FETCH statement to specify an element
of a program array in the INTO clause. The program variables are evaluated at
each fetch, rather than when you declare the cursor.

Error Checking
If the data type of the receiving variable does not match that of the selected item,
the data type of the selected item is converted, if possible, to the data type of the
variable. If the conversion is impossible, an error occurs, and a negative value is
returned in the status variable, sqlca.sqlcode, or SQLCODE. In this case, the value
in the program variable is unpredictable.

In an ANSI-compliant database, if the number of variables that are listed in the
INTO clause differs from the number of items in the select list of the Projection
clause, you receive an error.

Warnings in ESQL/C: In Informix ESQL/C, if the number of variables listed in
the INTO clause differs from the number of items in the Projection clause, a
warning is returned in the sqlwarn structure: sqlca.sqlwarn.sqlwarn3. The actual
number of variables that are transferred is the lesser of the two numbers. For
information about the sqlwarn structure, see the IBM Informix ESQL/C
Programmer's Manual.

Chapter 2. SQL statements 2-671

FROM Clause
The FROM clause of the SELECT statement lists table objects from which to
retrieve data.

The FROM clause has this syntax:

FROM Clause:

FROM �

�

� �

�

,

Table Reference
,

(1) (2)
, Informix OUTER Clause

, ,
(1) (2)

Informix OUTER Clause , Table Reference
,

(3)
ANSI Table Reference

Table Reference:

Relation
alias

(1)
AS

(1) (4)
Iterator

(1) (5)
Collection-Derived Table

Relation:

table
external
view
synonym
(1) (6) (7)

ONLY (table)
synonym

�

�

�

alias
(1) ,

AS
(derived_column)

Notes:

1 Informix extension

2 See “Informix-Extension Outer Joins” on page 2-688

3 See “ANSI Table Reference” on page 2-683

4 See “Iterator Functions” on page 2-680

2-672 IBM Informix Guide to SQL: Syntax

5 See “Collection-Derived Table” on page 5-4

6 Must specify a supertable within a typed table hierarchy

7 See “The ONLY Keyword” on page 2-678

Element Description Restrictions Syntax

alias Temporary name for a table,
view, or derived table in this
query

See “The AS Keyword.” “Identifier” on page 5-21

derived
_column

Temporary name for a derived
column in a table expression

Unless the underlying collection is a
ROW type, you can declare no more
than one derived_column name

“Identifier” on page 5-21

external External table from which to
retrieve data

Must exist, but cannot be the outer
table in an outer join

“Database Object Name” on
page 5-16

synonym,
table, view

Synonym for a table from which
to retrieve data

Synonym and table or view to
which it points must exist

“Database Object Name” on
page 5-16

Every SELECT statement requires the FROM clause, whether or not any data
source is required. If your query uses the database server to evaluate an expression
that requires no data source, the FROM clause can reference any existing table in
the current database on which you hold sufficient access privileges, as in the
following example:
SELECT ATANH(SQRT(POW(4,2) + POW(5,2))) FROM systables;

If the FROM clause specifies more than one data source, the query is called a join,
because its result set can join rows from several table references. For more
information about joins, see “Queries that Join Tables” on page 2-681.

Aliases for Tables or Views
You can declare an alias for a table or view in the FROM clause. If you do so, you
must use the alias to refer to the table or view in other clauses of the SELECT
statement. You can also use aliases to make the query shorter.

The following examples show typical uses of the FROM clause. The first query
selects all the columns and rows from the customer table. The second query uses a
join between the customer and orders table to select all the customers who have
placed orders.
SELECT * FROM customer;
SELECT fname, lname, order_num FROM customer, orders

WHERE customer.customer_num = orders.customer_num;

The next example is equivalent to the second query in the preceding example, but
it declares aliases in the FROM clause and uses them in the WHERE clause:
SELECT fname, lname, order_num FROM customer c, orders o

WHERE c.customer_num = o.customer_num;

Aliases (sometimes called correlation names) are especially useful with a self-join.
For more information about self-joins, see “Self-Joins” on page 2-695. In a self-join,
you must list the table name twice in the FROM clause and declare a different alias
for each of the two instances of the table name.

The AS Keyword: If you use a potentially ambiguous word as an alias (or as a
display label), you must begin its declaration with the keyword AS. This keyword

Chapter 2. SQL statements 2-673

is required if you use any of the keywords ORDER, FOR, AT, GROUP, HAVING,
INTO, NOT, UNION, WHERE, WITH, CREATE, or GRANT as an alias for a table
or view.

The database server would issue an error if the next example did not include the
AS keyword to indicate that not is a display label, rather than an operator:
CREATE TABLE t1(a INT);
SELECT a AS not FROM t1;

If you do not declare an alias for a collection-derived table, the database server
assigns an implementation-dependent name to it.

Table expressions
A table expression (sometimes called a derived table) is the name of a table or view,
or a specification that evaluates to a set of rows. These rows are typically the result
of a query that is embedded in a nested SELECT statement, or in some other SQL
statement.

Table expressions can have the following syntax:

Table expression

�� table_object
(subquery)
(1) (2)

Collection-Derived Table
(1) (3)

(Collection Subquery)
(4)

Lateral derived table
(1) (5)

Iterator

��

Notes:

1 Informix extension

2 See “Collection-Derived Table” on page 5-4

3 See “Collection Subquery” on page 4-3

4 See “Lateral derived tables” on page 2-676

5 See “Iterator Functions” on page 2-680

Element Description Restrictions Syntax

subquery Nested query whose results are
available to the outer query

See Usage notes below “SELECT statement” on
page 2-654

table _object Name, synonym, or alias of a
table, view, or EXTERNAL table

Must exist, or must reference a
derived table that the SELECT
statement creates

“Identifier” on page 5-21 or
“Database Object Name” on
page 5-16

Usage

Table expressions can be simple or complex:
v Simple table expressions

2-674 IBM Informix Guide to SQL: Syntax

A simple table expression is one whose underlying query can be folded into the
main query while preserving the correctness of the query result.

v Complex table expressions
A complex table expression is one whose underlying query cannot be folded into
the main query while preserving the correctness of the query result. The
database server materializes such table expressions into a temporary table that is
used in the main query. Subqueries in the FROM clause that specify aggregates,
set operators, or the ORDER BY clause are implemented as complex table
expressions, which typically require more resources of the database server than
simple table expressions.

In either case, the table expression is evaluated as a general SQL query and its
results can be thought of as a logical table. This logical table and its columns can
be used just like an ordinary base table, but it is not persistent. It exists only
during the execution of the query that references it.

Restrictions on table expressions

Table expressions have the same syntax as general SELECT statements, but with
most of the restrictions that apply to subqueries in other contexts. A table
expression cannot include the SELECT INTO clause that explicitly creates a result
table.

Informix does not support Generalized Key indexes. It supports table expressions
in the triggered actions of CREATE TRIGGER statements, and as the triggering
event of a Select trigger. Informix also supports the ORDER BY clause in table
expressions.

Informix supports iterator functions as FROM clause table expressions. The CALL
statement of SPL, however, cannot invoke an iterator TABLE function within a
subquery in the FROM clause.

Apart from these restrictions, any valid SQL query can be a table expression. A
table expression can be nested within another table expression and can include
tables and views in its definition. You can use table expressions in CREATE VIEW
statements to define views.

Correlated subqueries and derived tables

A correlated subquery is a subquery that refers to a column of a table that is not
listed in its FROM clause. Conversely, any subquery that references only columns
in tables that are listed in its FROM clause is an uncorrelated subquery.

In the following example, the uncorrelated subquery that defines a derived table in
its FROM clause contains a correlated subquery in its WHERE clause:
SELECT * FROM (SELECT * FROM t1

WHERE a IN (SELECT b FROM t2 WHERE t1.a = t2.b));

Here the subquery in the first WHERE clause is a correlated subquery, because it
references column a of table t1, but its FROM clause specifies only table t2.

In FROM clause table expressions, IBM Informix also supports the ORDER BY
clause, which is not valid in subqueries outside the FROM clause. Columns or
expressions that are specified by the ORDER BY clause in a table expression need
not be included in the Projection clause.

Chapter 2. SQL statements 2-675

Lateral derived tables:

The LATERAL keyword must immediately precede any query in the FROM clause
that defines a derived table, if that query references any other table or column that
appears earlier in the same FROM clause than the query that defines the derived
table.

Lateral derived tables, and the scope of reference of the table and column aliases
that can be declared in their syntax, are part of the ISO/ANSI standard for the
SQL language. This is the syntax for a lateral derived table in the FROM clause:

LATERAL derived table:

�

LATERAL (subquery) alias
AS ,

(column_alias)

Element Description Restrictions Syntax

alias Temporary name
declared here for the
derived table of
subquery results

See “The AS Keyword” on
page 2-673.

“Identifier” on page
5-21

column_alias Temporary name
declared here for a
column in the derived
table

“Identifier” on page
5-21

subquery Specifies rows to be
retrieved

Can be uncorrelated or
correlated

“SELECT statement”
on page 2-654

Usage

The LATERAL keyword is required if the subquery whose result set is the derived
table references any table or column that appears earlier in the same FROM clause.
Here earlier means "to the left of the derived-table" in the left-to-right order of
syntax tokens in the FROM clause. A derived table defined with the LATERAL
keyword is called a lateral derived table.

This support for references to columns in other tables in the FROM clause, rather
than only to columns in subsequent derived tables. can improve performance in
SELECT statements that join one or more derived tables. Lateral table and column
references are also valid in derived tables within DELETE, UPDATE, and CREATE
VIEW statements.

The LATERAL keyword is not required in the FROM clause for derived tables in
which all uncorrelated table and column references have already been resolved.

Examples of lateral derived tables

The following query includes a lateral derived table in the FROM clause, where
t1_a is a lateral correlation reference:
SELECT * FROM t1 ,

LATERAL (SELECT t2.a AS t2_a
FROM t2 WHERE t2.a = t1.a);

2-676 IBM Informix Guide to SQL: Syntax

In the next example, d.deptno is a lateral correlation reference:
SELECT d.deptno, d.deptname,

empinfo.avgsal, empinfo.empcount
FROM department d,

LATERAL (SELECT AVG(e.salary) AS avgsal,
COUNT(*) AS empcount

FROM employee e
WHERE e.workdept=d.deptno) AS empinfo;

Here the avgsal and empcount aliases for column expressions and the empinfo
lateral table reference appear in the projection list of the outer query, which joins
qualifying rows from the department table and the derived table, using the
correlation deptno.

Restrictions on lateral correlated references

The following restrictions apply to lateral derived table and column references:
v They cannot be used in ANSI FULL OUTER JOIN queries.
v They cannot be used in ANSI RIGHT OUTER JOIN queries.
v They cannot be used in Informix-extension OUTER JOIN queries.

Usability and Performance Considerations: Although equivalent functionality is
available through views, subqueries as table expressions simplify the formulation
of queries, make the syntax more flexible and intuitive, and support the ANSI/ISO
standard for SQL.

The query optimizer does not materialize simple table expressions that the FROM
clause specifies. The performance of a query that uses the ANSI/ISO syntax for a
table expression in the FROM clause is at least as good as a that of a query that
uses the Informix-extension TABLE (MULTISET (SELECT ...)) syntax to specify an
equivalent derived table in the FROM clause. Subqueries in the FROM clause that
include aggregate functions, set operators like UNION, or ORDER BY
specifications are implemented as complex table expressions that can impose
greater costs than simple table expressions. Use the SET EXPLAIN statement to
examine the query plan and the estimated cost of a table expression.

The following are examples of valid table expressions:
SELECT * FROM (SELECT * FROM t);

SELECT * FROM (SELECT * FROM t) AS s;

SELECT * FROM (SELECT * FROM t) AS s WHERE t.a = s.b;

SELECT * FROM (SELECT * FROM t) AS s, (SELECT * FROM u) AS v WHERE s.a = v.b;

SELECT * FROM (SELECT SKIP 2 col1 FROM tab1 WHERE col1 > 50 ORDER BY col1 DESC);

SELECT * FROM (SELECT col1,col3 FROM tab1
WHERE col1 < 50 GROUP BY col1,col3 ORDER BY col3) vtab(vcol0,vcol1);

SELECT * FROM (SELECT * FROM t WHERE t.a = 1) AS s,
OUTER
(SELECT * FROM u WHERE u.b = 2 GROUP BY 1) AS v WHERE s.a = v.b;

SELECT * FROM (SELECT a AS colA FROM t WHERE t.a = 1) AS s,
OUTER
(SELECT b AS colB FROM u WHERE u.b = 2 GROUP BY 1) AS v

WHERE s.colA = v.colB;

Chapter 2. SQL statements 2-677

CREATE VIEW vu AS SELECT * FROM (SELECT * FROM t);

SELECT * FROM ((SELECT * FROM t) AS r) AS s;

Restrictions on External Tables in Joins and Subqueries
When you use external tables in joins or subqueries, the following restrictions
apply:
v No more than one external table is valid in a query.
v The external table cannot be the outer table in an outer join.
v For subqueries that cannot be converted to joins, you can use an external table

in the main query, but not in the subquery.
v You cannot do a self-join on an external table.

For more information on subqueries, see your IBM Informix Performance Guide.

The ONLY Keyword
If the FROM clause includes a permanent table that is a supertable within a typed
table hierarchy, the query returns the qualifying rows from both the supertable and
from its subtables by default, unless you specify the ONLY keyword.

For the SELECT statement to return rows from the supertable only, you must
include the ONLY keyword immediately before the supertable name in the FROM
clause, and you must enclose the identifier or synonym of the supertable within
parentheses, as in this example:
SELECT * FROM ONLY(super_tab);

The data sources for this query do not include the subtables of super_tab.

Selecting from a Collection Variable
The SELECT statement in conjunction with the Collection-Derived Table segment
allows you to select elements from a collection variable.

The Collection-Derived Table segment identifies the collection variable from which
to select the elements. (See “Collection-Derived Table” on page 5-4.)

Using Collection Variables with SELECT: To modify the contents of a column of
a collection data type, you can use the SELECT statement with a collection variable
in various ways:
v You can select the contents (if any) of a collection column into a collection

variable.
You can assign the data type of the column to a collection variable of type
COLLECTION (that is, an untyped collection variable).

v You can select the contents from a collection variable to determine the data that
you might want to update.

v You can select the contents from a collection variable INTO another variable in
order to update certain collection elements.
The INTO clause identifies the variable for the element value that is selected
from the collection variable. The data type of the host variable in the INTO
clause must be compatible with that of the corresponding collection element.

v You can use a Collection cursor to select one or more elements from an Informix
ESQL/C collection variable.
For more information, including restrictions on the SELECT statement, see
“Associating a Cursor with a Prepared Statement” on page 2-399.

2-678 IBM Informix Guide to SQL: Syntax

v You can use a Collection cursor to select one or more elements from an SPL
collection variable.
For more information, including restrictions on the SELECT statement, see
“Using a SELECT ... INTO Statement” on page 3-33.

When one of the tables to be joined is a collection, the FROM clause cannot specify
a join. This restriction applies when the collection variable holds your
collection-derived table. See also “Collection-Derived Table” on page 5-4. and the
INSERT, UPDATE, and DELETE statement descriptions in this chapter.

Selecting from a Row Variable (ESQL/C)
The SELECT statement can include the Collection-Derived Table segment to select
one or more fields from a row variable.

The Collection-Derived Table segment identifies the row variable from which to
select the fields. For more information, see “Collection-Derived Table” on page 5-4.

To select fields:
1. Create a row variable in your Informix ESQL/C program.
2. Optionally, fill the row variable with field values. You can select a ROW-type

column into the row variable with the SELECT statement (without the
Collection-Derived Table segment). Alternatively, you can insert field values
into the row variable with the UPDATE statement and the Collection-Derived
Table segment.

3. Select row fields from the row variable with the SELECT statement and the
Collection-Derived Table segment.

4. Once the row variable contains the correct field values, you can use the
INSERT or UPDATE statement on a table or view name to save the contents of
the row variable in a named or unnamed row column.

The INTO clause can specify a host variable to hold a field value selected from the
row variable.

The type of the host variable must be compatible with that of the field. For
example, this code fragment puts the width field value into the rect_width host
variable.
EXEC SQL BEGIN DECLARE SECTION;

ROW (x INT, y INT, length FLOAT, width FLOAT) myrect;
double rect_width;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT rect INTO :myrect FROM rectangles

WHERE area = 200;
EXEC SQL SELECT width INTO :rect_width FROM table(:myrect);

The SELECT statement on a row variable has the following restrictions:
v No expressions are allowed in the select list of the Projection clause.
v ROW columns cannot be in a WHERE clause comparison condition.
v The Projection clause must be an asterisk (*) if the row-type contains fields of

opaque, distinct, or built-in data types.
v Columns listed in the Projection clause can have only unqualified names. They

cannot use the syntax database@server:table.column.

v The following clauses are not allowed: GROUP BY, HAVING, INTO TEMP,
ORDER BY, and WHERE.

Chapter 2. SQL statements 2-679

v The FROM clause has no provisions to do a join.

You can modify the row variable with the Collection-Derived Table segment of the
UPDATE statements. (The INSERT and DELETE statements do not support a row
variable in the Collection-Derived Table segment.)

The row variable stores the fields of the row. It has no intrinsic connection,
however, with a database column. Once the row variable contains the correct field
values, you must then save the variable into the ROW column with one of the
following SQL statements:
v To update the ROW column in the table with the row variable, use an UPDATE

statement on a table or view name and specify the row variable in the SET
clause. For more information, see “Updating ROW-Type Columns” on page
2-860.

v To insert a row into a ROW column, use the INSERT statement on a table or
view and specify the row variable in the VALUES clause. See “Inserting Values
into ROW-Type Columns” on page 2-553.

For examples of how to use SPL row variables, see the IBM Informix Guide to SQL:
Tutorial. For information on using Informix ESQL/C row variables, see the
discussion of complex data types in the IBM Informix ESQL/C Programmer's Manual.

Iterator Functions
The FROM clause can include a call to an iterator function to specify the source for
a query. An iterator function is a user-defined function that returns to its calling
SQL statement multiple times, each time returning at least one value.

You can query the returned result set of an iterator UDR using a virtual table
interface. Use this syntax to invoke an iterator function in the FROM clause:

Iterator:

TABLE (
(1)

FUNCTION
PROCEDURE

�

� iterator ())
(2)

Routine Parameter List

�

�

�

table
AS ,

(column)

Notes:

1 Informix extension

2 See “Routine Parameter List” on page 5-71

Element Description Restrictions Syntax

column Name declared here for a virtual
column in table

Must be unique among column names in
table, and cannot include qualifiers.

“Identifier” on page
5-21

2-680 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

iterator Name of the iterator function Must be registered in the database “Identifier” on page
5-21

table Name declared here for virtual table
holding the iterator result set

Cannot include qualifiers “Identifier” on page
5-21

The keyword FUNCTION (or PROCEDURE) was required in releases earlier than
Informix 10.5. These keyword extensions to the ANSI/ISO standard for SQL are
optional in this release, and have no effect. The following two query specifications,
which specify fibGen() as an iterator function, are equivalent:
SELECT * FROM TABLE FUNCTION (fibGen(10));
SELECT * FROM TABLE (fibGen(10));

The table can only be referenced within the context of this query. After the SELECT
statement terminates, the virtual table no longer exists.

The number of columns must match the number of values returned by the iterator.
An external function can return no more than one value (but that can be of a
collection data type). An SPL routine can return multiple values.

The database server issues error -595, however, if any argument to the iterator table
function is an aggregate expression.

To reference the virtual table columns in other parts of the SELECT statement, for
example, in the WHERE clause or HAVING clause, you must declare its name and
the virtual column names in the FROM clause. You do not need to declare the table
name or column names in the FROM clause if you use the asterisk notation in the
Select list of the Projection clause:
SELECT * FROM ...

For more information and examples of using iterator functions in queries, see IBM
Informix User-Defined Routines and Data Types Developer's Guide.

Queries that Join Tables
If the FROM clause specifies more than one table reference, the query can join
rows from several tables or views.

A join condition specifies a relationship between at least one column from each
table to be joined. Because the columns in a join condition are being compared,
they must have compatible data types.

Note: By default, the order in which the database server joins tables and views is
independent of the order in which they are referenced in the FROM clause. To
force the order in which table objects are joined to match the FROM clause order,
you can specify the ORDERED optimizer directive after the SELECT keyword. For
more information, see the section “Join-Order Directive” on page 5-42.

The FROM clause of the SELECT statement can specify several types of joins.

FROM Clause Keywords Corresponding Result Set

CROSS JOIN
Cartesian product (all possible pairs of rows)

INNER JOIN
Only rows from CROSS that satisfy the join condition

Chapter 2. SQL statements 2-681

FROM Clause Keywords Corresponding Result Set

LEFT OUTER JOIN
Qualifying rows of one table, and all rows of another

RIGHT OUTER JOIN
Same as LEFT, but roles of the two tables are reversed

FULL OUTER JOIN The union of all rows from an INNER join of the two tables,
and of all rows of each table that have no match in the other
table (using NULL values in the selected columns of the
other table)

The last four categories are collectively called “Join Types” in the literature of the
relational model; a CROSS JOIN ignores the specific data values in joined tables,
returning the Cartesian product as its result set: every possible pair of rows, where
one row in each pair is from each table.

In an inner (or simple) join, the result contains only the combination of rows that
satisfy the join conditions. Outer joins preserve rows that otherwise would be
discarded by inner joins. In an outer join, the result contains the combination of
rows that satisfy the join conditions and the rows from the dominant table that
would otherwise be discarded. The rows from the dominant table that do not have
matching rows in the subordinate table contain NULL values in the columns
selected from the subordinate table.

Informix supports the two different syntaxes for left outer joins:
v Informix-extension OUTER join syntax
v ANSI-compliant syntax

Earlier versions of the database server supported only Informix-extension syntax
for outer joins. Informix continues to support this legacy syntax, but using the
syntax that is compliant with the ISO/ANSI standards for join queries in the SQL
language provides greater flexibility. In view definitions, however, the
Informix-extension syntax does not require materialized views, so it might offer
performance advantages.

If you use ANSI-compliant syntax to specify a join in the FROM clause, you must
also use ANSI-compliant syntax for all outer joins in the same query block. Thus,
you cannot begin another outer join with only the OUTER keyword. The following
query, for example, is not valid:
SELECT * FROM customer, OUTER orders RIGHT JOIN cust_calls

ON (customer.customer_num = orders.customer_num)
WHERE customer.customer_num = 104);

This returns an error, because it attempts to combine the Informix-extension
OUTER syntax with the ANSI-compliant RIGHT JOIN syntax for outer joins.

See the section “Informix-Extension Outer Joins” on page 2-688 for the
Informix-extension syntax for LEFT OUTER joins.

ANSI-Compliant Joins
The ANSI-compliant syntax for joins supports these join specifications:
v To use a CROSS join, a LEFT OUTER, RIGHT OUTER, or FULL OUTER join, or

an INNER (or simple) join, see “ANSI INNER Joins” on page 2-685.
v To use pre-join filters, see “Using the ON Clause” on page 2-686.

2-682 IBM Informix Guide to SQL: Syntax

v To use one or more post-join filters in the WHERE clause, see “Specifying a
Post-Join Filter” on page 2-687.

v To have the dominant or subordinate part of an outer join be the result set of
another join, see “Using a Join as the Dominant or Subordinate Part of an Outer
Join” on page 2-688.

Important: Use the ANSI-compliant syntax for joins when you create new queries
in Informix. In Informix releases earlier than 10.00.xC3, cross-server distributed
queries with ANSI-compliant joins use query plans that are inefficient for this
release. For any UDR older than Informix 10.00.xC3 that performs a cross-server
ANSI-compliant join, use the UPDATE STATISTICS statement to replace the
original query plan with a re-optimized plan.

ANSI Table Reference:
This diagram shows the ANSI-compliant syntax for a table reference.

ANSI Table Reference:

synonym
table alias
view (1)
ONLY (table) AS

(synonym)
(2) (1) (3) (4)

Collection Derived Table
(5)

Iterator
(6)

ANSI Joined Tables
alias

(1)
AS

Notes:

1 Informix extension

2 Stored Procedure Language only

3 ESQL/C only

4 See “Collection-Derived Table” on page 5-4

5 See “Iterator Functions” on page 2-680

6 See “ANSI Joined Tables” on page 2-684

Element Description Restrictions Syntax

alias Temporary name for a table or view
within the scope of the SELECT

See “The AS Keyword” on page 2-673. “Identifier” on
page 5-21

synonym,
table, view

Source from which to retrieve data The synonym and the table or view to
which it points must exist

“Database Object
Name” on page
5-16

Here the ONLY keyword is the same semantically as in the Informix-extension
Table Reference segment, as described in “The ONLY Keyword” on page 2-678.

The AS keyword is optional when you declare an alias (also called a correlation
name) for a table reference, as described in “The AS Keyword” on page 2-673,
unless the alias conflicts with an SQL keyword.

Chapter 2. SQL statements 2-683

ANSI Joined Tables:

Using ISO/ANSI-compliant syntax for joining tables, you can specify the INNER
JOIN, CROSS JOIN, NATURAL JOIN, LEFT JOIN (or LEFT OUTER JOIN), RIGHT
JOIN (or RIGHT OUTER JOIN), and FULL JOIN (or FULL OUTER JOIN)
keywords. The OUTER keyword is optional in ANSI-compliant outer joins.

This is the ANSI-compliant syntax for specifying inner and outer joins.

ANSI Joined Tables:

�
(1)

ANSI Table Reference Join Options
(1)

CROSS JOIN ANSI Table Reference
(ANSI Joined Tables)

Join Options:

INNER (1)
JOIN ANSI Table Reference ON Clause

LEFT
RIGHT OUTER
FULL

ON Clause:

ON �

�

AND
(2) (6)

Join
(3)

Function Expression
(4)

Condition
(subquery)

(5)
(Collection Subquery)

OR
(2)

Join
(3)

Function Expression
(4)

Condition
(subquery)

(5)
(Collection Subquery)

Notes:

1 See “ANSI Table Reference” on page 2-683

2 See “Specifying a Join in the WHERE Clause” on page 2-694

3 See “Function Expressions” on page 4-92

4 See “Condition” on page 4-5

2-684 IBM Informix Guide to SQL: Syntax

5 See “Collection Subquery” on page 4-3

6 See “Using the ON Clause” on page 2-686

Element Description Restrictions Syntax

subquery Embedded query Cannot contain the FIRST or the ORDER BY clause “SELECT statement” on
page 2-654

You must use the same form of join syntax (either Informix® extension or
ANSI-compliant) for all of the outer joins in the same query block. When you use
the ANSI-compliant join syntax, you must also specify the join condition in the ON
clause.

The ANSI-Joined Table segment must be enclosed between parentheses if it is
immediately followed by another join specification. For example, the first of the
following two queries returns an error; the second query is valid:
SELECT * FROM (T1 LEFT JOIN T2) CROSS JOIN T3 ON (T1.c1 = T2.c5)

WHERE (T1.c1 < 100); -- Ambiguous order of operations;

SELECT * FROM (T1 LEFT JOIN T2 ON (T1.c1 = T2.c5)) CROSS JOIN T3
WHERE (T1.c1 < 100); -- Unambiguous order of operations;

The following valid query specifies nested LEFT OUTER joins of table expressions
within the FROM clause of the outer SELECT statement:
SELECT * FROM
((SELECT C1,C2 FROM T3) AS VT3(V31,V32)
LEFT OUTER JOIN

((SELECT C1,C2 FROM T1) AS VT1(VC1,VC2)
LEFT OUTER JOIN
(SELECT C1,C2 FROM T2) AS VT2(VC3,VC4)
ON VT1.VC1 = VT2.VC3)

ON VT3.V31 = VT2.VC3);

ANSI CROSS Joins: The CROSS keyword specifies the Cartesian product,
returning all possible paired combinations that include one row from each of the
joined tables.

ANSI INNER Joins: To create an inner (or simple) join using the ANSI-compliant
syntax, specify the join with the JOIN or INNER JOIN keywords. If you specify
only the JOIN keyword, the database server creates an implicit inner join by
default. An inner join returns all the rows in a table that have one or more
matching rows in the other table (or tables). The unmatched rows are discarded.

ANSI LEFT OUTER Joins: The LEFT keyword specifies a join that treats the first
table reference as the dominant table in the join. In a left outer join, the
subordinate part of the outer join appears to the right of the keyword that begins
the outer join specification. The result set includes all the rows that an INNER join
returns, plus all rows that would otherwise have been discarded from the
dominant table.

ANSI RIGHT OUTER Joins: The RIGHT keyword specifies a join that treats the
second table reference as the dominant table in the join. In a right outer join, the
subordinate part of the outer join appears to the left of the keyword that begins the
outer join specification. The result set includes all the rows that an INNER join
returns, plus all rows that would otherwise have been discarded from the
dominant table.

Chapter 2. SQL statements 2-685

Correlated references to lateral derived tables are not valid table references in ANSI
RIGHT OUTER joins. For example, the following query fails, because the
correlated reference t1.c1 in the ON clause of the derived table is an unsupported
lateral correlation:
SELECT * FROM t1 RIGHT JOIN LATERAL

(SELECT * FROM t2 JOIN t3
ON t2.c1 = t1.c1) AS X ON 1=1;

ANSI FULL OUTER Joins: The FULL keyword specifies a join in which the result
set includes all the rows from the Cartesian product for which the join condition is
true, plus all the rows from each table that do not match the join condition.

In an ANSI-compliant join that specifies the LEFT, RIGHT, or FULL keywords in
the FROM clause, the OUTER keyword is optional.

Correlated references to lateral derived tables are not valid table references in ANSI
FULL OUTER joins. For example, the following query fails, because the correlated
reference t1.c1 in the ON clause of the derived table is an unsupported lateral
correlation:
SELECT * FROM t1 FULL JOIN LATERAL

(SELECT * FROM t2 JOIN t3
ON t2.c1 = t1.c1) AS X ON 1=1;

Join-method optimizer directives that you specify for an ANSI-compliant joined
query are ignored, but are listed under Directives Not Followed in the explain output
file.
Related concepts:
“Default name and location of the explain output file on UNIX” on page 2-788
“Default name and location of the output file on Windows” on page 2-789

Using the ON Clause: Use the ON clause to specify the join condition and any
expressions as optional join filters.

The following example from the stores_demo database illustrates how the join
condition in the ON clause combines the customer and orders tables:
SELECT c.customer_num, c.company, c.phone, o.order_date

FROM customer c LEFT JOIN orders o
ON c.customer_num = o.customer_num;

The following table shows part of the joined customer and orders tables.

customer_num company phone order_date

101 All Sports Supplies 408-789-8075 05/21/2008

102 Sports Spot 415-822-1289 NULL

103 Phil’s Sports 415-328-4543 NULL

104 Play Ball! 415-368-1100 05/20/2008

— — — —

In an outer join, the join filters (expressions) that you specify in the ON clause
determine which rows of the subordinate table join to the dominant (or outer)
table. The dominant table, by definition, returns all its rows in the joined table.
That is, a join filter in the ON clause has no effect on the dominant table.

2-686 IBM Informix Guide to SQL: Syntax

If the ON clause specifies a join filter on the dominant table, the database server
joins only those dominant table rows that meet the criterion of the join filter to
rows in the subordinate table. The joined result contains all rows from the
dominant table. Rows in the dominant table that do not meet the criterion of the
join filter are extended with NULL values for the subordinate columns.

The following example from the stores_demo database illustrates the effect of a
join filter in the ON clause:
SELECT c.customer_num, c.company, c.phone, o.order_date

FROM customer c LEFT JOIN orders o
ON c.customer_num = o.customer_num

AND c.company <> "All Sports Supplies";

The row that contains All Sports Supplies remains in the joined result.

customer_num company phone order_date

101 All Sports Supplies 408-789-8075 NULL

102 Sports Spot 415-822-1289 NULL

103 Phil’s Sports 415-328-4543 NULL

104 Play Ball! 415-368-1100 05/20/2008

— — — —

Even though the order date for customer number 101 is 05/21/2008 in the orders
table, the effect of placing the join filter (c.company <> "All Sports Supplies")
prevents this row in the dominant customer table from being joined to the
subordinate orders table. Instead, a NULL value for order_date is extended to the
row of All Sports Supplies.

Applying a join filter to a base table in the subordinate part of an outer join can
improve performance. For more information, see your IBM Informix Performance
Guide.

Specifying a Post-Join Filter: When you use the ON clause to specify the join, you
can use the WHERE clause as a post-join filter. The database server applies the
post-join filter of the WHERE clause to the results of the outer join.

The following example illustrates the use of a post-join filter. This query returns
data from the stores_demo database. Suppose you want to determine which items
in the catalog are not being ordered. The next query creates an outer join of the
data from the catalog and items tables and then determines which catalog items
from a specific manufacturer (HRO) have not sold:
SELECT c.catalog_num, c.stock_num, c.manu_code, i.quantity

FROM catalog c LEFT JOIN items i
ON c.stock_num = i.stock_num AND c.manu_code = i.manu_code
WHERE i.quantity IS NULL AND c.manu_code = "HRO";

The WHERE clause contains the post-join filter that locates the rows of HRO items
in the catalog for which nothing has been sold.

When you apply a post-join filter to a base table in the dominant or subordinate
part of an outer join, you might improve performance. For more information, see
your IBM Informix Performance Guide.

Chapter 2. SQL statements 2-687

Using a Join as the Dominant or Subordinate Part of an Outer Join: With the ANSI join
syntax, you can nest joins. You can use a join as the dominant or subordinate part
of an outer or inner join.

Suppose you want to modify the previous query (the post-join filter example) to
get more information that will help you determine whether to continue carrying
each unsold item in the catalog. You can modify the query to include information
from the stock table so that you can see a short description of each unsold item
with its cost:
SELECT c.catalog_num, c.stock_num, s.description, s.unit_price,

s.unit_descr, c.manu_code, i.quantity
FROM (catalog c INNER JOIN stock s

ON c.stock_num = s.stock_num
AND c.manu_code = s.manu_code)

LEFT JOIN items i
ON c.stock_num = i.stock_num

AND c.manu_code = i.manu_code
WHERE i.quantity IS NULL

AND c.manu_code = "HRO";

In this example, an inner join between the catalog and stock tables forms the
dominant part of an outer join with the items table.

For additional examples of outer joins, see the IBM Informix Guide to SQL: Tutorial.

Informix-Extension Outer Joins
The Informix-extension syntax for outer joins begins with an implicit left outer
join. That is, you begin an Informix-extension outer join with the OUTER keyword.

This is the syntax of the Informix-extension OUTER clause.

Informix OUTER Clause:

OUTER

� � �

� �

(1)
Table Reference

,
, ,

(1) (2)
(Table Reference , Informix OUTER Clause)

, ,
(2) (1)

Informix OUTER Clause , Table Reference

Notes:

1 See “FROM Clause” on page 2-672

2 Informix extension

The following example uses the OUTER keyword to create an outer join that lists
all customers and their orders, regardless of whether they have placed orders:
SELECT c.customer_num, c.lname, o.order_num FROM customer c,

OUTER orders o WHERE c.customer_num = o.customer_num;

This example returns all the rows from the customer table with the rows that
match in the orders table. If no record for a customer appears in the orders table,
the returned order_num column for that customer has a NULL value.

2-688 IBM Informix Guide to SQL: Syntax

If you have a complex outer join, that is, the query has more than one outer join,
you must either embed the additional outer join or joins in parentheses, as the
syntax diagram shows, or establish join conditions, or relationships, between the
dominant table and each subordinate table in the WHERE clause.

When an expression or a condition in the WHERE clause relates two subordinate
tables, you must use parentheses around the joined tables in the FROM clause to
enforce dominant-subordinate relationships, as in this example:
SELECT c.company, o.order_date, i.total_price, m.manu_name

FROM customer c,
OUTER (orders o, OUTER (items i, OUTER manufact m))

WHERE c.customer_num = o.customer_num
AND o.order_num = i.order_num
AND i.manu_code = m.manu_code;

When you omit parentheses around the subordinate tables in the FROM clause,
you must establish join conditions between the dominant table and each
subordinate table in the WHERE clause. If a join condition is between two
subordinate tables, the query fails.

The following example, however, successfully returns a result
v that joins the dominant customer table with the subordinate orders table,
v and joins the dominant customer table with the subordinate cust_calls table:
SELECT c.company, o.order_date, c2.call_descr

FROM customer c, OUTER orders o, OUTER cust_calls c2
WHERE c.customer_num = o.customer_num

AND c.customer_num = c2.customer_num;

The IBM Informix Guide to SQL: Tutorial has examples of complex outer joins.

Restrictions on Informix-extension outer joins

If you use this Informix-extension syntax for an outer join, all of the following
restrictions apply to the same SELECT statement:
v You must use Informix-extension syntax for all outer joins in a single query

block.
v You must include the join condition in the WHERE clause.
v You cannot begin another outer join with the LEFT JOIN or the LEFT OUTER

JOIN keywords.
v You cannot define a lateral table reference or include the LATERAL keyword.
v Within an Informix-extension outer join, the Table Reference syntax segment

cannot include a lateral table reference that is declared in the same SELECT
statement.

WHERE Clause of SELECT
The WHERE clause can specify join conditions for Informix-extension joins,
post-join filters for ANSI-compliant joins, and for search criteria on data values.

WHERE Clause:

Chapter 2. SQL statements 2-689

WHERE �

Logical_Operator
(1)

Condition
(2)

Join
(3)

Function Expression
(subquery)

(4)
(Collection Subquery)

(5)
Statement Local Variable Expressions

Notes:

1 See “Condition” on page 4-5

2 See “Specifying a Join in the WHERE Clause” on page 2-694

3 See “Function Expressions” on page 4-92

4 See “Collection Subquery” on page 4-3

5 See “Statement-Local Variable Expressions” on page 4-192

Element Description Restrictions Syntax

Logical_
Operator

Combines two
conditions

Valid options are logical union (= OR or OR NOT) or
logical intersection (= AND or AND NOT)

“Conditions with
AND or OR” on
page 4-22

subquery Embedded query Cannot include the FIRST or ORDER BY keywords “SELECT statement”
on page 2-654

Using a Condition in the WHERE Clause
You can use these simple conditions or comparisons in the WHERE clause:
v Relational-operator condition
v IN or BETWEEN . . . AND
v IS NULL or IS NOT NULL
v LIKE or MATCHES

You also can use a SELECT statement within the WHERE clause; this is called a
subquery. The following WHERE clause operators are valid in a subquery:
v IN or EXISTS
v ALL, ANY, or SOME

For more information, see “Condition” on page 4-5.

In the WHERE clause, an aggregate function is not valid unless it is part of a
subquery or is on a correlated column originating from a parent query, and the
WHERE clause is in a subquery within a HAVING clause.

Relational-Operator Condition: A relational-operator condition is satisfied if the
expressions on each side of the operator fulfill the relation that the operator
specifies. The following statements use the greater than (>) and equal (=)
relational operators:

2-690 IBM Informix Guide to SQL: Syntax

SELECT order_num FROM orders
WHERE order_date > ’6/04/08’;

SELECT fname, lname, company
FROM customer
WHERE city[1,3] = ’San’;

Single quotation marks are required around 'San' because the substring is from a
character column. See the “Relational-Operator Condition” on page 4-9.

Blank strings and empty strings in the WHERE clause

For LVARCHAR, NVARCHAR, or VARCHAR columns, queries with a WHERE
clause specifying equality of the column value to an empty string (
WHERE varlength_col = ’’

) return the same result set as an otherwise identical query in which the WHERE
clause specifies equality to a string of blank (ASCII 32) characters.

For example, if varlength_col is of type VARCHAR, NVARCHAR, or LVARCHAR,
the following WHERE clause examples are all functionally equivalent to a WHERE
clause that specifies equality to an empty string:

WHERE varlength_col = ’ ’
WHERE varlength_col = ’ ’
WHERE varlength_col = ’ ’

Thus, for the built-in variable-length character data types, the WHERE clause
makes no distinction between an empty string and a string consisting entirely of
one or more blank characters. (Note, however, that the query filter

WHERE varlength_col IS NULL

is not equivalent to the previous WHERE clause examples, and returns a different
result set if any varlength_col value is NULL.)

IN Condition: The IN condition is satisfied when the expression to the left of the
IN keyword is included in the list of values to the right of the keyword.

The following examples show the IN condition:
SELECT lname, fname, company FROM customer

WHERE state IN (’CA’,’WA’, ’NJ’);
SELECT * FROM cust_calls

WHERE user_id NOT IN (USER);

For more information, see the “IN Subquery” on page 4-20.

BETWEEN Condition: The BETWEEN condition is satisfied when the value to
the left of BETWEEN is in the inclusive range of the two values on the right of
BETWEEN. The first two queries in the following example use literal values after
the BETWEEN keyword. The third query uses the built-in CURRENT function and
a literal interval to search for dates between the current day and seven days earlier.
SELECT stock_num, manu_code FROM stock

WHERE unit_price BETWEEN 125.00 AND 200.00;
SELECT DISTINCT customer_num, stock_num, manu_code

FROM orders, items
WHERE order_date BETWEEN ’6/1/07’ AND ’9/1/07’;

SELECT * FROM cust_calls WHERE call_dtime
BETWEEN (CURRENT - INTERVAL(7) DAY TO DAY) AND CURRENT;

For more information, see the “BETWEEN Condition” on page 4-10.

Chapter 2. SQL statements 2-691

Using IS NULL and IS NOT NULL Conditions: The IS NULL condition is
satisfied if the specified column contains a NULL value, or if the specified expression
evaluates to NULL.

If you use the IS NOT NULL predicate, the condition is satisfied when the column
contains a value that is not NULL, or when the expression does not evaluate to
NULL. The following example selects the order numbers and customer numbers
for which the order has not been paid:
SELECT order_num, customer_num FROM orders

WHERE paid_date IS NULL;

For a complete description of the IS NULL and IS NOT NULL operators, see the
“IS NULL and IS NOT NULL Conditions” on page 4-13.

LIKE or MATCHES Condition: The LIKE or MATCHES condition is satisfied if
either of the following is true:
v The value of the column that precedes the LIKE or MATCHES keyword matches

the pattern that the quoted string specifies. You can use wildcard characters in
the string.

v The value of the column that precedes the LIKE or MATCHES keyword matches
the pattern that is specified by the column that follows the LIKE or MATCHES
keyword. The value of the column on the right serves as the matching pattern in
the condition.

The following examples use a backslash (\) as the default escape character. The
default escape character is set by the DEFAULTESCCHAR configuration parameter
or the DEFAULTESCCHAR session environment option.

The following SELECT statement returns all rows in the customer table in which
the lname column begins with the literal string ’Baxter’. Because the string is a
literal string, the condition is case sensitive.
SELECT * FROM customer WHERE lname LIKE ’Baxter%’ ;

The next SELECT statement returns all rows in the customer table in which the
value of the lname column matches the value of the fname column:
SELECT * FROM customer WHERE lname LIKE fname;

The following examples use the LIKE condition with a wildcard. The first SELECT
statement finds all stock items that are some kind of ball. The second SELECT
statement finds all company names that contain a percent (%) sign. Backslash (\
) is used as the default escape character for the percent (%) sign wildcard. The
third SELECT statement uses the ESCAPE option with the LIKE condition to
retrieve rows from the customer table in which the company column includes a
percent (%) sign. The z is used as an escape character for the percent (%) sign:
SELECT stock_num, manu_code FROM stock

WHERE description LIKE ’%ball’;
SELECT * FROM customer WHERE company LIKE ’%\%%’;
SELECT * FROM customer WHERE company LIKE ’%z%%’ ESCAPE ’z’;

The following examples use MATCHES with a wildcard in SELECT statements.
The first SELECT statement finds all stock items that are some kind of ball. The
second SELECT statement finds all company names that contain an asterisk (*).
The backslash (\) is used as the default escape character for a literal asterisk (*)
character. The third statement uses the ESCAPE option with the MATCHES

2-692 IBM Informix Guide to SQL: Syntax

condition to retrieve rows from the customer table where the company column
includes an asterisk (*). The z character is specified as an escape character for the
asterisk (*) character:
SELECT stock_num, manu_code FROM stock

WHERE description MATCHES ’*ball’;

SELECT * FROM customer WHERE company MATCHES ’***’;

SELECT * FROM customer WHERE company MATCHES ’*z**’ ESCAPE ’z’;

For information about the supported data types of operands in LIKE or MATCHES
expressions, see the topic “LIKE and MATCHES Condition” on page 4-15.

IN Subquery:

With the IN subquery, more than one row that satisfies the IN or NOT IN
condition can be returned, but only one column can be returned.

This example shows the use of a NOT IN subquery in a SELECT statement:
SELECT DISTINCT customer_num FROM orders

WHERE order_num NOT IN
(SELECT order_num FROM items

WHERE stock_num = 1);

For additional information, see the “IN Condition” on page 4-11.

EXISTS Subquery:

From the EXISTS subquery, rows that satisfy EXISTS conditions in one or more
columns can be returned. (Similarly, the NOT EXISTS subquery can returns rows
that satisfy NOT EXISTS conditions in one or more columns.)

The following example of a SELECT statement with a NOT EXISTS subquery
returns the stock number and manufacturer code for every item that has never
been ordered (and is therefore not listed in the items table).

It is appropriate to use a NOT EXISTS subquery in this SELECT statement because
you need the correlated subquery to test both stock_num and manu_code in the
items table.
SELECT stock_num, manu_code FROM stock

WHERE NOT EXISTS
(SELECT stock_num, manu_code FROM items

WHERE stock.stock_num = items.stock_num AND
stock.manu_code = items.manu_code);

The preceding example would work equally well if you use a SELECT * in the
subquery in place of the column names, because you are testing for the existence
of a row or rows.

For additional information, see the “EXISTS Subquery condition” on page 4-20.

ALL, ANY, SOME Subqueries: The following examples return the order number
of all orders that contain an item whose total price is greater than the total price of
every item in order number 1023. The first SELECT uses the ALL subquery, and
the second SELECT produces the same result by using the MAX aggregate
function.

Chapter 2. SQL statements 2-693

SELECT DISTINCT order_num FROM items
WHERE total_price > ALL (SELECT total_price FROM items

WHERE order_num = 1023);

SELECT DISTINCT order_num FROM items
WHERE total_price > SELECT MAX(total_price) FROM items

WHERE order_num = 1023);

The following SELECT statements return the order number of all orders that
contain an item whose total price is greater than the total price of at least one of
the items in order number 1023. The first SELECT statement uses the ANY
keyword, and the second SELECT statement uses the MIN aggregate function:
SELECT DISTINCT order_num FROM items

WHERE total_price > ANY (SELECT total_price FROM items
WHERE order_num = 1023);

SELECT DISTINCT order_num FROM items
WHERE total_price > (SELECT MIN(total_price) FROM items

WHERE order_num = 1023);

You can omit the keywords ANY, ALL, or SOME in a subquery if the subquery
returns exactly one value. If you omit ANY, ALL, or SOME, and the subquery
returns more than one value, you receive an error. The subquery in the next
example returns only one row, because it uses an aggregate function:
SELECT order_num FROM items

WHERE stock_num = 9 AND quantity =
(SELECT MAX(quantity) FROM items WHERE stock_num = 9);

See also “ALL, ANY, and SOME Subqueries” on page 4-21.

Specifying a Join in the WHERE Clause
You join two tables by creating a relationship in the WHERE clause between at
least one column from one table and at least one column from another. The join
creates a temporary composite table where each pair of rows (one from each table)
that satisfies the join condition is linked to form a single row.

Join:

Data Source
column

(1)
Relational Operator �

�
Data Source

column

Data Source:

alias .
external .
table .
view .
synonym .

Notes:

1 See “Relational Operator” on page 4-224

2-694 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

alias Temporary alternative name declared in the
FROM clause for a table or view

See “Self-Joins”; “FROM Clause”
on page 2-672

“Identifier” on page
5-21

column Column of a table or view to be joined Must exist in the table or view “Identifier” on page
5-21

external External table from which to retrieve data External table must exist “Database Object
Name” on page
5-16

synonym,
table, view

Name of a synonym, table, or view to be
joined in the query

Synonym and the table or view to
which it points must exist

“Database Object
Name” on page
5-16

Rows from the tables or views are joined when there is a match between the values
of specified columns. When the columns to be joined have the same name, you
must qualify each column name with its data source.

Two-Table Joins:
You can create two-table joins, multiple-table joins, self-joins, and outer joins
(Informix-extension syntax). The following example shows a two-table join:
SELECT order_num, lname, fname FROM customer, orders

WHERE customer.customer_num = orders.customer_num;

Multiple-Table Joins:
A multiple-table join is a join of more than two tables. Its structure is similar to the
structure of a two-table join, except that you have a join condition for more than
one pair of tables in the WHERE clause. When columns from different tables have
the same name, you must qualify the column name with its associated table or
table alias, as in table.column. For the full syntax of a table name, see “Database
Object Name” on page 5-16.

The following multiple-table join yields the company name of the customer who
ordered an item as well as its stock number and manufacturer code:
SELECT DISTINCT company, stock_num, manu_code

FROM customer c, orders o, items i
WHERE c.customer_num = o.customer_num

AND o.order_num = i.order_num;

Self-Joins:
You can join a table to itself. To do so, you must list the table name twice in the
FROM clause and assign it two different table aliases. Use the aliases to refer to
each of the two tables in the WHERE clause. The next example is a self-join on the
stock table. It finds pairs of stock items whose unit prices differ by a factor greater
than 2.5. The letters x and y are each aliases for the stock table.
SELECT x.stock_num, x.manu_code, y.stock_num, y.manu_code

FROM stock x, stock y WHERE x.unit_price > 2.5 * y.unit_price;

Informix-Extension Outer Joins: The next outer join lists the company name of
the customer and all associated order numbers, if the customer has placed an
order. If not, the company name is still listed, and a NULL value is returned for
the order number.
SELECT company, order_num FROM customer c, OUTER orders o

WHERE c.customer_num = o.customer_num;

For more information about outer joins, see the IBM Informix Guide to SQL: Tutorial.

Chapter 2. SQL statements 2-695

Hierarchical Clause
The Hierarchical clause sets the conditions for recursive queries on a table object in
which a hierarchy of parent-child dependencies exists among the rows. SELECT
statements that include this clause are called hierarchical queries.

The table object on which the hierarchical query operates must be specified in the
FROM clause of the SELECT statement. The table object is typically a
self-referencing table in which one or more columns acts as a foreign key
constraint for another column (or for a subset of the columns) in the same table.

A hierarchical query operates on rows in which one or more column values
correspond to nodes within a logical structure of parent-child relationships. If
parent rows have multiple children, sibling relationships exist among child rows of
the same parent. These relationships might reflect, for example, the reporting
structure among employees and managers within the divisions and management
levels of an organization.

The syntax that this clause supports is an extension to the ANSI/ISO standard for
SQL.

Syntax

Hierarchical Clause

��
(1)

START WITH Clause

(2)
CONNECT BY Clause ��

Notes:

1 See “START WITH Clause” on page 2-700

2 See “CONNECT BY Clause” on page 2-701

The table object on which the hierarchical query operates must be specified in the
FROM clause of the SELECT statement. The table object can be any of the
following table objects:
v A table or updateable view
v A temporary table
v A table in another database of the same Informix instance to which the session is

connected
v A derived table that is the result of a query
v A table that is protected by a label-based access control (LBAC) security policy
v A table with column level encryption or row level encryption
v A synonym for any of the other table objects.

The following table objects are not supported in the FROM clause of a hierarchical
query:
v A join of two or more tables
v A view that is not updatable
v A table in a database of a remote Informix instance
v An external table that the CREATE EXTERNAL TABLE statement defined

2-696 IBM Informix Guide to SQL: Syntax

v A sequence object.

Informix supports sequence objects in the projection list of hierarchical queries, in
the WHERE clause, and in other contexts where an expression is valid in SELECT
statements, but not in the hierarchical query clause.

The hierarchical clause is valid in correlated subqueries and in uncorrelated
subqueries.

Hierarchical queries can include all types of optimizer directives, with these
exceptions:
v Join-order directives
v Join-method directives

Hierarchical queries do not support the Parallel Database Query (PDQ) feature of
Informix.

The Hierarchical clause can specify recursive queries on a table whose rows
describe a hierarchy of parent-child relationships.
v The hierarchy can be a simple hierarchy, such as the reporting structure of an

organization in which every node that is not the root reports to a single node at
higher level within the hierarchy. (In the LBAC security feature of Informix, a
security label component of type TREE has the logical structure of a simple
hierarchy.)

v The Hierarchical clause can query data hierarchies of more complex topologies,
in which nodes have many-to-many relationships, and in which a child node can
be the ancestor of its parent. For information about using the Hierarchical clause
to query a table that has cycles within the data hierarchy, see “CONNECT BY
Clause” on page 2-701.

Important: Hierarchical queries are most efficient for data sets in which
parent-child dependencies in the table have the logical topology of a simple graph.
If the self-referencing table includes more than one independent hierarchy for the
same set of columns, or if any child row is also an ancestor of its parent, see
“Dependency patterns that are not a simple graph” on page 2-708.

Note: The Hierarchical clause is unrelated to table hierarchies, in which a
hierarchy of parent-child relationships exist among the schemas of a set of typed
tables. Similarly, the hierarchy of a set of DISTINCT data types that all derive from
a common base type resembles a data hierarchy, but is unrelated to the
Hierarchical clause, where the hierarchy exists in parent-child dependencies
between data entities, rather than relationships among data types.

SQL Syntax Specific to Hierarchical Queries

Besides the START WITH, CONNECT BY, and CONNECT NOCYCLE BY
keywords that specify the conditions for recursive queries of a table that contains
hierarchical data, hierarchical queries also support syntax tokens that are valid
only in hierarchical queries, and that cannot be used in SELECT statements that
have no CONNECT BY clause. Syntax tokens specific to hierarchical queries
include two operators, three pseudocolumns, and a built-in function:
v CONNECT_BY_ROOT operator

This operator can return an expression for the root ancestor of its operand.
v PRIOR operator

Chapter 2. SQL statements 2-697

This operator can reference a returned value from the previous recursive step
(where "step" refers to an iteration of the recursive query).

v LEVEL pseudocolumn
This pseudocolumn returns an integer, indicating which step of the recursive
query returned a row within the hierarchy.

v CONNECT_BY_ISCYCLE pseudocolumn
This pseudocolumn can indicate whether a row has a child row that is also its
ancestor.

v CONNECT_BY_ISLEAF pseudocolumn
This pseudocolumn can indicate whether a row has any children among the
rows that the query returns.

v SYS_CONNECT_BY_PATH function
This function can construct and return a string that represents the path from a
specified row to the root of the hierarchy

v SIBLINGS keyword in the ORDER BY clause
The ORDER SIBLINGS BY clause can sort returned rows for siblings of the same
parent at every level.

A pseudocolumn is a built-in identifier that the SQL parser can recognize in specific
contexts, and that shares the same namespace as columns and variables. These
pseudocolumns and the SYS_CONNECT_BY_PATH function are typically specified
in the Projection clause of the SELECT statement, but the LEVEL pseudocolumn
and the PRIOR operator can be specified in the Hierarchical clause.

For details of the syntax and semantics of these tokens that support only
hierarchical queries, see “Conditions in the CONNECT BY Clause” on page 2-703
and “ORDER SIBLINGS BY Clause” on page 2-716.

Overview of Hierarchical Queries

The clauses of a SELECT statement that includes the Hierarchical clause are
processed in the following sequence:
1. FROM clause (for only a single table object in the current database)
2. Hierarchical clause
3. WHERE clause (without join predicates)
4. GROUP BY clause
5. HAVING clause
6. Projection clause
7. ORDER BY clause

The ORDER BY SIBLING option of the ORDER BY clause can order the set of rows
that are children of the same parent.

A subquery that includes the Hierarchical clause returns the intermediate result set
in a partial order, where the rows produced in iteration (n+1) for a specific
hierarchy immediately follow the row in iteration (n) that produced them.
However, specifying an ORDER BY clause, a GROUP BY or HAVING clause, or the
DISTINCT or UNIQUE keyword in the Projection clause destroys that partial
order.

The Hierarchical clause follows the WHERE clause in the lexical sequence of
SELECT statement clauses, but the WHERE clause predicates are processed on the

2-698 IBM Informix Guide to SQL: Syntax

result of the Hierarchical clause. The WHERE clause cannot specify join predicates
if the SELECT statement includes the Hierarchical clause, but the table object that
is specified in the FROM clause can be the result set of a query that joins one or
more tables.

Any SELECT statement that includes a hierarchical-query-clause is called a
hierarchical query, which performs a recursive series of queries on the table that
the FROM clause specifies:
1. The optional START WITH clause can specify a condition. Any rows that

satisfy this condition are returned as the first intermediate result set of the
hierarchical query.

2. The next step applies the condition that is specified in the CONNECT BY
clause to the table. Any rows that satisfy that condition are returned as the
second intermediate result set.

3. The next step applies the CONNECT BY condition to the table. Any rows that
are returned comprise the third intermediate result set.

4. The CONNECT BY clause runs queries recursively to produce successive
intermediate result sets, until an iteration yields an empty result set.

5. The hierarchical SELECT statement then combines all of the intermediate result
sets of the preceding recursive steps, producing the final result set of the
Hierarchical clause.

6. The predicates of the WHERE clause are then applied to this set of rows that
the Hierarchical clause retrieved, and the remaining clauses of the SELECT
statement are then applied in the order listed.

After the START WITH and CONNECT BY clauses return all of the intermediate
result sets, you can use the ORDER SIBLINGS BY clause to sort the sibling rows
that have the same parent for every level within the hierarchy. For more
information, see “ORDER SIBLINGS BY Clause” on page 2-716.

You can use output from the SET EXPLAIN statement to view the execution path
of a hierarchical query.

The Hierarchical clause provides an efficient alternative to using the Node
database extension to retrieve information from hierarchical data sets

Example of a Hierarchical Data Set

In several topics that follow, SQL code examples that illustrate hierarchical queries
are based on hierarchic data in the following employee table, whose rows contains
information about employees within an organizational hierarchy. The mgrid
column shows the employee identifier (empid) of the manager to whom the
employee reports:
CREATE TABLE employee(

empid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(10),
salary DECIMAL(9, 2),
mgrid INTEGER

);

Data values for the 17 rows in the employee table are these.
INSERT INTO employee VALUES (1, ’Jones’, 30000, 10);
INSERT INTO employee VALUES (2, ’Hall’, 35000, 10);
INSERT INTO employee VALUES (3, ’Kim’, 40000, 10);
INSERT INTO employee VALUES (4, ’Lindsay’, 38000, 10);
INSERT INTO employee VALUES (5, ’McKeough’, 42000, 11);

Chapter 2. SQL statements 2-699

INSERT INTO employee VALUES (6, ’Barnes’, 41000, 11);
INSERT INTO employee VALUES (7, ’O’’Neil’, 36000, 12);
INSERT INTO employee VALUES (8, ’Smith’, 34000, 12);
INSERT INTO employee VALUES (9, ’Shoeman’, 33000, 12);
INSERT INTO employee VALUES (10, ’Monroe’, 50000, 15);
INSERT INTO employee VALUES (11, ’Zander’, 52000, 16);
INSERT INTO employee VALUES (12, ’Henry’, 51000, 16);
INSERT INTO employee VALUES (13, ’Aaron’, 54000, 15);
INSERT INTO employee VALUES (14, ’Scott’, 53000, 16);
INSERT INTO employee VALUES (15, ’Mills’, 70000, 17);
INSERT INTO employee VALUES (16, ’Goyal’, 80000, 17);
INSERT INTO employee VALUES (17, ’Urbassek’, 95000, NULL);

Each pair of empid and mgrid values express referential relationships that the
recursive iterations of a query with an appropriate CONNECT BY condition can
correctly assemble into a hierarchy.

Here the NULL value in the mgrid column in the last row shows that employee
Urbassek, whose empid value is 17 is the root node of this reporting hierarchy.

The following diagram illustrates the four levels of the reporting hierarchy (with
nodes that show the empid values) for the employee table data:

START WITH Clause
The optional START WITH clause specifies a condition. The row that satisfies this
condition becomes the root for beginning the recursive operations of the
CONNECT BY clause in hierarchical queries.

The START WITH clause is an extension to the ANSI/ISO standard for SQL.

Syntax

��
(1)

START WITH Condition ��

Notes:

1 See “Condition” on page 4-5

Usage

The START WITH clause specifies a search condition that the CONNECT BY clause
uses for the first iteration of its recursive actions. If you omit the START WITH

51 2 3 7 8 9

10 13

4

12

17

1411

6

1615

Figure 2-2. Relationships of Elements in a Reporting Hierarchy

2-700 IBM Informix Guide to SQL: Syntax

clause, the CONNECT BY clause treats every row as the root of the hierarchy for
the initial set of intermediate results.

CONNECT BY Clause
The CONNECT BY clause specifies conditions for performing recursive operations
in hierarchical queries.

The CONNECT BY clause is an extension to the ANSI/ISO standard for SQL.

Syntax

��
(1)

CONNECT BY Condition
NOCYCLE

��

Notes:

1 See “Condition” on page 4-5

Usage

If you include the START WITH clause, the search condition that it specifies is
applied in producing the first intermediate result set for the hierarchical query.
This consists of the rows of the table specified in the FROM clause for which the
START WITH condition is true.

If the START WITH clause is omitted, no START WITH condition is available as a
filter, and the first intermediate result set is the entire set of rows in the table that
the FROM clause specifies.

The CONNECT BY clause produces successive intermediate result sets by applying
the CONNECT BY search condition until this recursive process terminates when an
iteration yields an empty result set.

The NOCYCLE Keyword

Rows returned by recursive queries of the CONNECT BY clause must be part of a
simple hierarchy. SELECT statements that include the Hierarchical clause fail with
an error if the query returns a row that is both the ancestor and the descendant of
another node. This topology is called a cycle.

You can include the NOCYCLE keyword between the CONNECT BY keywords
and the condition specification of the CONNECT BY clause to filter out any rows
that would otherwise cause the hierarchical query to fail with error -26079 because
of a cycle in an intermediate result set.

For example, for the hierarchical data set of the employee table that is described in
the topic“Hierarchical Clause” on page 2-696, the following UPDATE statement
introduces a cycle for the employees whose empid values are 5 and 17:
UPDATE employee SET mgrid = 5 WHERE name = ’Urbassek’;

After the hierarchical data set has been modified by the UPDATE statement above,
the following query (which omits the NOCYCLE keyword) fails:

Chapter 2. SQL statements 2-701

SELECT empid, name, mgrid , CONNECT_BY_ISLEAF leaf
FROM employee
START WITH name = ’Goyal’
CONNECT BY PRIOR empid = mgrid;

Error -26079 is issued when the last CONNECT BY step detects that employee
McKeough is part of a loop:

empid name mgrid leaf

16 Goyal 17 0
14 Scott 16 1
12 Henry 16 0
9 Shoeman 12 1
8 Smith 12 1
7 O’Neil 12 1
11 Zander 16 0
6 Barnes 11 1
5 McKeough 11 0

26079: CONNECT BY query resulted in a loop/cycle.
Error in line 8
Near character position 28

You can include the NOCYCLE keyword between the CONNECT BY keywords
and the condition specification of the CONNECT BY clause to filter out any rows
that would otherwise cause the hierarchical query to fail with error -26079 because
of a cycle in an intermediate result set. The following query differs from the query
that failed by including the CONNECT_BY_ISCYCLE pseudocolumn in the
Projection clause, and by including the NOCYCLE keyword in the CONNECT BY
clause.
SELECT empid, name, mgrid, CONNECT_BY_ISLEAF leaf, CONNECT_BY_ISCYCLE cycle
FROM employee
START WITH name = ’Goyal’
CONNECT BY NOCYCLE PRIOR empid = mgrid;

empid name mgrid leaf cycle

16 Goyal 17 0 0
14 Scott 16 1 0
12 Henry 16 0 0
9 Shoeman 12 1 0
8 Smith 12 1 0
7 O’Neil 12 1 0
11 Zander 16 0 0
6 Barnes 11 1 0
5 McKeough 11 0 0
17 Urbassek 5 0 1
15 Mills 17 0 0
13 Aaron 15 1 0
10 Monroe 15 0 0
4 Lindsay 10 1 0
3 Kim 10 1 0
2 Hall 10 1 0
1 Jones 10 1 0

17 row(s) retrieved.

Because the NOCYCLE keyword enabled the CONNECT BY clause to continue
processing after the cycle was detected, Urbassek was returned from the
CONNECT BY step that had failed in the previous example, and processing
continued until all of the rows in the data set had been returned. In the output
display above, leaf is an alias for the CONNECT_BY_ISLEAF pseudocolumn, and

2-702 IBM Informix Guide to SQL: Syntax

cycle is an alias for the CONNECT_BY_ISCYCLE pseudocolumn, with both aliases
declared in the Projection clause. In these results, Urbassek is marked in the cycle
column as the cause of the loop.

The result set above implies that the cycle can be removed from the employee
table by changing the mgrid value in the row that had identified McKeough as the
manager of Urbassek:
UPDATE employee SET mgrid = NULL WHERE empid = 17;

Conditions in the CONNECT BY Clause
Besides expressions and operators that are valid in Boolean conditions and in
general SQL expressions, the condition that is specified in CONNECT BY clause
supports two more syntax constructs, the PRIOR operator and the LEVEL
pseudocolumn that are valid only in SELECT statements that include the
Hierarchical clause.

The PRIOR Operator

The PRIOR unary operator can be included in the CONNECT BY clause with a
column name as its operand. PRIOR can be used to distinguish column references
to the result of the most recent previous recursive step of the CONNECT BY clause
from column references to the current result set. The column name immediately
follows this right-associative operator, as in the following syntax fragment:
CONNECT BY mgrid = PRIOR empid

Here the CONNECT BY condition is satisfied by those rows in which the manager
specified in the mgrid, column matches the employee value was in the empid
column in the previous iteration.

The PRIOR operator can be applied to expressions more complex than column
names. The following condition uses an arithmetic expression as the operand of
PRIOR:
CONNECT BY PRIOR (salary - 10000) = salary

The PRIOR operator can be included more than once in the same CONNECT BY
condition. See also the topic “Hierarchical Clause” on page 2-696, which provides
an example of a hierarchical query that uses the PRIOR operator in a condition of
the CONNECT BY clause.

The LEVEL Pseudocolumn

A pseudocolumn is a keyword of SQL that shares the same namespace as column
names, and that is valid in some contexts where a column expression is valid.

LEVEL is a pseudocolumn that returns the ordinal number of the recursive step in
the Hierarchic clause that returned the row. For all the rows returned by the
START WITH clause, LEVEL return the value 1. Rows that are returned by
applying the first iteration of the CONNECT BY clause return 2. Rows that are
returned by successive iterations of the CONNECT BY have LEVEL values
incremented by 1, so that LEVEL = (N + 1) indicates a row that the Nth
CONNECT BY iteration returned. The data type of the LEVEL column is
INTEGER.

The following example of a hierarchical query specifies LEVEL in the select list of
the Projection clause:

Chapter 2. SQL statements 2-703

SELECT name, LEVEL FROM employee START WITH name = ’Goyal’
CONNECT BY PRIOR empid = mgrid;

The query returns these results:
name level

Goyal 1
Zander 2
McKeough 3
Barnes 3
Henry 2
O’Neil 3
Smith 3
Shoeman 3
Scott 2

9 row(s) retrieved.

LEVEL can be included in the Projection clause of SELECT statements that include
the Hierarchical clause, and in the condition of the CONNECT BY clause.

The LEVEL pseudocolumn is not valid, however, in the following contexts:
v A SELECT statement that has no CONNECT BY clause
v The START WITH condition of the Hierarchical clause
v An operand of the CONNECT_BY_ROOT operator
v An argument to the SYS_CONNECT_BY_PATH function.

Additional Syntax Valid Only in Hierarchical Queries

The following syntax tokens support hierarchical queries, and are valid only in
hierarchical queries. Unlike the PRIOR operator and the LEVEL pseudocolumn,
however, they are not valid in the Hierarchical clause:
v The CONNECT_BY_ISCYCLE pseudocolumn
v The CONNECT_BY_ISLEAF pseudocolumn
v The CONNECT_BY_ROOT unary operator
v The SYS_CONNECT_BY_PATH() function of SQL.

The CONNECT_BY_ISCYCLE Pseudocolumn

CONNECT_BY_ISCYCLE is a pseudocolumn that returns a 1 if the row would
cycle at the next level in the hierarchy. That is, the row has an immediate child that
is also an ancestor given the search-condition that is specified in the CONNECT
BY clause. If the row does not directly cause a cycle, the column returns 0. A value
other than 0 is only possible when NOCYCLE is specified in the CONNECT BY
clause. The data type of this column is INTEGER.

The following UPDATE statement creates a loop in the data hierarchy of the
employee table:
UPDATE employee SET mgrid = 5 WHERE empid = 17;

The following hierarchical query includes the CONNECT_BY_ISCYCLE
pseudocolumn in the Projection clause, but the CONNECT BY clause throws an
error in the step where it encounters the loop that the UPDATE statement created.
SELECT empid,

name,
mgrid,

2-704 IBM Informix Guide to SQL: Syntax

CONNECT_BY_ISLEAF leaf,
CONNECT_BY_ISCYCLE cycle

FROM employee
START WITH name = ’Goyal’
CONNECT BY PRIOR empid = mgrid;

665: Internal error on semantics -
CONNECT_BY_ISCYCLE is used without NOCYCLE parameter..

Error in line 1
Near character position 72

This query avoids the -655 error by specifying the NOCYCLE in the CONNECT BY
clause that throws an error in the step where it encounters the loop that the
UPDATE statement created.
SELECT empid, name, mgrid,

CONNECT_BY_ISLEAF leaf, CONNECT_BY_ISCYCLE cycle
FROM employee

START WITH name = ’Goyal’
CONNECT BY NOCYCLE PRIOR empid = mgrid;

For the results of this query, see the example in the description of the NOCYCLE
keyword in the topic “CONNECT BY Clause” on page 2-701.

The CONNECT_BY_ISCYCLE pseudocolumn is not valid in the following contexts:
v A SELECT statement that has no CONNECT BY clause
v The START WITH or CONNECT BY clause
v An operand of the CONNECT_BY_ROOT operator
v An argument to the SYS_CONNECT_BY_PATH function

The CONNECT_BY_ISLEAF Pseudocolumn

CONNECT_BY_ISLEAF is a pseudocolumn that returns a 1 if the row is a leaf in
the hierarchy as defined by the CONNECT BY clause. A node is a leaf node if it has
no children in the query result hierarchy (not in the actual data hierarchy). If the
row is not a leaf the column returns 0. The data type of the column is INTEGER.

The following hierarchical query specifies the CONNECT_BY_ISLEAF
pseudocolumn in the Projection clause, and declares leaf as an alias for that
column, which shows in the DB-Access display of the result set:
SELECT empid, name, mgrid, CONNECT_BY_ISLEAF leaf
FROM emp1oyee
START WITH name = ’Goyal’
CONNECT BY PRIOR empid = mgrid;

empid name mgrid leaf

16 Goyal 17 0
14 Scott 16 1
12 Henry 16 0
9 Shoeman 12 1
8 Smith 12 1
7 O’Neil 12 1
11 Zander 16 0
6 Barnes 11 1
5 McKeough 11 1

9 row(s) retrieved.

Chapter 2. SQL statements 2-705

The CONNECT_BY_ROOT Operator

For every row in the hierarchy, the CONNECT_BY_ROOT unary operator accepts
as its operand an expression that evaluates to a row that is a node of the hierarchy.
CONNECT_BY_ROOT returns the expression for the root ancestor of its operand.

�� CONNECT_BY_ROOT expression ��

The expression operand can be any SQL expression, but it must not contain any
hierarchical query token, including the following tokens:
v The CONNECT_BY_ROOT or PRIOR unary operators
v The CONNECT_BY_ISCYCLE, CONNECT_BY_ISLEAF, or LEVEL

pseudocolumns
v The SYS_CONNECT_BY_PATH function.

The return data type of this right-associative operator is the data type of the
specified expression.

The hierarchical query in the following example returns rows from the employee
table that include both the identifying number of the manager to whom the
employee reports directly, and also the name of the manager at the root of the
hierarchy for this query.
SELECT empid, name, mgrid, CONNECT_BY_ROOT name AS topboss
FROM employee
START WITH name = ’Goyal’
CONNECT BY PRIOR empid = mgrid;

empid name mgrid topboss

16 Goyal 17 Goyal
14 Scott 16 Goyal
12 Henry 16 Goyal
9 Shoeman 12 Goyal
8 Smith 12 Goyal
7 O’Neil 12 Goyal
11 Zander 16 Goyal
6 Barnes 11 Goyal
5 McKeough 11 Goyal

9 row(s) retrieved.

The CONNECT_BY_ROOT operator is not valid in the following contexts:
v A SELECT statement that has no CONNECT BY clause
v The START WITH or CONNECT BY clause
v An argument to the SYS_CONNECT_BY_PATH function

The SYS_CONNECT_BY_PATH Function

Calls to SYS_CONNECT_BY_PATH () function are valid in SELECT statements
that include the Hierarchical clause, but this function cannot be called from the
Hierarchical clause. Informix returns an error if you attempt to run this function
within the condition of the START WITH or CONNECT BY clauses.

The SYS_CONNECT_BY_PATH function can be used in hierarchical queries to
build a string that represents a path from the row corresponding to the root node
to the current row.

2-706 IBM Informix Guide to SQL: Syntax

This is the calling syntax for SYS_CONNECT_BY_PATH to return a string for a
specified row at LEVEL N:

SYS_CONNECT_BY_PATH Function

�� �

,

SYS_CONNECT_BY_PATH (string_expression , ' format_string ') ��

Element Description Restrictions Syntax

format_string Typically a constant string that
serves as a separator

None “Quoted String” on
page 4-219

string_expression An expression that identifies a row. Cannot include hierarchical query
tokens

“Expression” on
page 4-44

SYS_CONNECT_BY_PATH builds the string representation of the path from the
root to a specified row at LEVEL N of the hierarchy by recursively concatenating
the successive returned values:
v path1 := string_expression1||format_string represents the path to the root row

from the first intermediate result set,
v path2 := path1||string_expression2||format_string evaluates to the path from the

root to a row in the second intermediate result set,
v . . .
v pathN := path(N-1)||string_expressionN||format_string evaluates to the path from

the root to the Nth intermediate result set.

The expressions in arguments to SYS_CONNECT_BY_PATH must not include any
hierarchical query construct, including the following constructs:
v The CONNECT_BY_ROOT or PRIOR unary operators
v The CONNECT_BY_ISCYCLE, CONNECT_BY_ISLEAF, or LEVEL

pseudocolumns
v The SYS_CONNECT_BY_PATH function.

Also not valid in the argument list are aggregate expressions.

The return value from SYS_CONNECT_BY_PATH () is of type LVARCHAR(4000).

The hierarchical query in the following example calls the
SYS_CONNECT_BY_PATH function in the Projection list with the employee.name
column and the slash (/) character as its arguments.
SELECT empid, name, mgrid, SYS_CONNECT_BY_PATH(name,’/’) as hierarchy

FROM employee
START WITH name = ’Henry’
CONNECT BY PRIOR empid = mgrid;

The query returns the rows within the subset of the data hierarchy in which Henry
is specified as the root in the START WITH clause, showing the name and empid
number of each employee and of the employee's manager, and the path within the
hierarchy to Henry. The CONNECT BY clause uses the equality predicate PRIOR
empid = mgrid to return the employees who report to the managers (in this case,
onlyHenry) whose empid was returned by the previous step. The result set of the
query is:

Chapter 2. SQL statements 2-707

empid 12
name Henry
mgrid 16
hierarchy /Henry

empid 9
name Shoeman
mgrid 12
hierarchy /Henry/Shoeman

empid 8
name Smith
mgrid 12
hierarchy /Henry/Smith

empid 7
name O’Neil
mgrid 12
hierarchy /Henry/O’Neil

4 row(s) retrieved.

These rows are listed in the order in which they were retrieved:
v The START WITH clause returned the Henry row at the root of this hierarchy.
v The first step of the CONNECT BY clause returned three rows, corresponding to

the three employees who report to Henry.
v The next CONNECT BY step returned no rows, because the Shoeman, Smith,

and O'Neil rows that returned by the previous step are all leaf nodes within this
hierarchy, for which the PRIOR empid = mgrid condition evaluates to false.

Query execution ended, returning the four rows that are shown, where hierarchy
is an alias for the path to Henry that SYS_CONNECT_BY_PATH(name,’/’)
returned for each row. (In the first returned row, the string /Henry shows the root
status of Henry.)

Dependency patterns that are not a simple graph
You can run a recursive hierarchical query on a data set that includes complex
dependencies, such as multiple root nodes, or multiple parent nodes for child
nodes. However, cycling might occur and more records might be returned, based
on hierarchical data tree structures.

The CONNECT BY clause cannot analyze data sets that include cycles where some
child nodes are identified as ancestors of their parent node. If your data set
includes cycles, the cycles might be artifacts of rows that contain invalid data.

If the data set that the self-referential table describes includes more than one
hierarchy, include the START WITH clause with a condition that is only true for
the root of the hierarchy that you want the recursive query to return. Run a
separate query on the table for each hierarchy, using a different START WITH
clause to specify the root in each query.

GROUP BY Clause
Use the GROUP BY clause to produce a single row of results for each group. A
group is a set of rows that have the same values for each column (or column
expression) that is referenced in this clause.

2-708 IBM Informix Guide to SQL: Syntax

GROUP BY Clause:

GROUP BY �

,

column
table_object .

(1)
col_alias
select_number

Notes:

1 Informix extension

Element Description Restrictions Syntax

col_alias Alias for a column name Must have been declared in the
Projection clause

“Identifier” on
page 5-21

column Group rows by the value of this column
(or of this expression)

See “Dependencies between the
GROUP BY and Projection clauses.”

“Identifier” on
page 5-21,
“Expression” on
page 4-44

select _number Integer specifying the ordinal position of
a column or expression in the select list
of the Projection clause

See “Using Select Numbers” on page
2-710.

“Literal Number”
on page 4-215

table_object Name, synonym, or alias of the table or
view containing column

Must exist and must be specified in
the FROM clause

“Identifier” on
page 5-21

The SELECT statement with a GROUP BY clause returns a single row of results for
each group of rows that have the same value in column, or that have the same
value in the column that col_alias references, or that have the same value in the
column or expression that the select_number specifies.

In an NLSCASE INSENSITIVE database, collation and string comparisons on
NCHAR and NVARCHAR data disregard lettercase differences, so that the
database server treats case variants among strings composed of same sequence
letters as duplicates. For queries that group data on NCHAR or NVARCHAR
columns, if some of the qualifying rows differ only in letter case, the number of
groups will be smaller than from the same query on the same data set in a
case-sensitive database. For more information on data processing in databases that
were created with the NLSCASE INSENSITIVE property, see “Duplicate rows in
NLSCASE INSENSITIVE databases” on page 2-663 and “NCHAR and
NVARCHAR expressions in case-insensitive databases” on page 4-28.

Dependencies between the GROUP BY and Projection clauses
The GROUP BY clause restricts what the Projection clause can specify. If you
include a GROUP BY clause, each column in the select list of the Projection clause
must also be referenced in the GROUP BY clause.

If you specify an aggregate function and one or more column expressions in the
select list of a query that includes the GROUP BY clause, you must include all the
column names that are not used as part of an aggregate or time expression in the
GROUP BY clause.

Chapter 2. SQL statements 2-709

If you declare an alias for a column in the select list, you can substitute that alias
for the column name in the GROUP BY clause, but either the name or alias of the
column is required in the GROUP BY clause.

Constant expressions and BYTE or TEXT column expressions are not valid in the
GROUP BY list.

If the select list includes a BYTE or TEXT column, you cannot use the GROUP BY
clause. In addition, you cannot include a ROWID in a GROUP BY clause.

If the select list includes a column of a user-defined data type, the column cannot
be used in a GROUP BY clause unless the UDT can use the built-in bit-hashing
function. Any UDT that cannot use the built-in bit-hashing function must be
created with the CANNOTHASH modifier, which tells the database server that the
UDT cannot be used in a GROUP BY clause.

The following example specifies one column that is not in an aggregate expression.
The total_price column should not be in the GROUP BY list because it appears as
the argument of an aggregate function. The COUNT and SUM aggregates are
applied to each group, rather than to the entire result set of the query.
SELECT order_num, COUNT(*), SUM(total_price)

FROM items GROUP BY order_num;

If a column expression in the select list is only the column name, you must use its
name or its alias in the GROUP BY clause. If a column is combined with another
column by an arithmetic operator, you can choose to group the query result set in
either of two ways:
v By the names or aliases of the individual columns,
v or else by the combined expression using the select number, a literal integer that

specifies the ordinal position of that expression within the select list of the
Projection clause.

NULL Values in the GROUP BY Clause
In a column listed in a GROUP BY clause, each row that contains a NULL value
belongs to a single group. That is, all NULL values are grouped together.

Using Select Numbers
You can use one or more integers in the GROUP BY clause to stand for column
expressions. In the next example, the first SELECT statement uses select numbers
for order_date and paid_date - order_date in the GROUP BY clause. You can
group only by a combined expression using the select numbers.

In the second SELECT statement, you cannot replace the 2 with the arithmetic
expression paid_date - order_date:
SELECT order_date, COUNT(*), paid_date - order_date

FROM orders GROUP BY 1, 3;
SELECT order_date, paid_date - order_date

FROM orders GROUP BY order_date, 2;

HAVING Clause
Use the HAVING clause to apply one or more qualifying conditions to groups or
to the entire result set.

2-710 IBM Informix Guide to SQL: Syntax

HAVING Clause:

HAVING
(1)

Condition

Notes:

1 See “Condition” on page 4-5

In the following examples, each condition compares one calculated property of the
group with another calculated property of the group or with a constant. The first
SELECT statement uses a HAVING clause that compares the calculated expression
COUNT(*) with the constant 2. The query returns the average total price per item on
all orders that have more than two items.

The second SELECT statement lists customers and the call months for customers
who have made two or more calls in the same month:
SELECT order_num, AVG(total_price) FROM items

GROUP BY order_num HAVING COUNT(*) > 2;
SELECT customer_num, EXTEND (call_dtime, MONTH TO MONTH)

FROM cust_calls GROUP BY 1, 2 HAVING COUNT(*) > 1;

You can use the HAVING clause to place conditions on the GROUP BY column
values as well as on calculated values. This example returns cust_code and
customer_num, call_dtime, and groups them by call_code for all calls that have
been received from customers with customer_num less than 120:
SELECT customer_num, EXTEND (call_dtime), call_code

FROM cust_calls GROUP BY call_code, 2, 1
HAVING customer_num < 120;

The HAVING clause generally complements a GROUP BY clause. If you omit the
GROUP BY clause, the HAVING clause applies to all rows that satisfy the query,
and all rows in the table make up a single group. The following example returns
the average price of all the values in the table, as long as more than ten rows are
in the table:
SELECT AVG(total_price) FROM items HAVING COUNT(*) > 10;

Because conditions in the WHERE clause cannot include aggregate expressions,
you can use the HAVING clause to apply conditions with aggregates to the entire
result set of a query, as in the example above.

The condition in the HAVING clause cannot include a DISTINCT or UNIQUE
aggregate expression. For example, the following query fails with a syntax error:
SELECT order_num, COUNT(*) number, AVG (total_price) average

FROM items
GROUP BY order_num

HAVING COUNT(DISTINCT *) > 2;

No error is issued, however, if the DISTINCT keyword is omitted from the
example above.

ORDER BY Clause
The ORDER BY clause sorts query results by specified columns or expressions.

Chapter 2. SQL statements 2-711

ORDER BY Clause:

ORDER BY
(1)

SIBLINGS

�

,
ASC (5)

column
table . Substring DESC

(2)
Expression

select_number
display_label
(3)

ROWID
(4)

Substring:

(3) (6)
[first, last]

Notes:

1 See “ORDER SIBLINGS BY Clause” on page 2-716

2 See “Expression” on page 4-44

3 Informix extension

4 Not valid if SIBLINGS keyword is also specified

5 See “Ascending and Descending Orders” on page 2-714

6 See “Ordering by a Substring” on page 2-714

Element Description Restrictions Syntax

column Sort rows by value in this column None “Identifier” on page
5-21

display_label Temporary name for a column or for a
column expression

Must be unique among labels
declared in the Projection clause

“Identifier” on page
5-21

first, last First and last byte in column substring
to sort the result set

Integers; for BYTE, TEXT, and
character data types only

“Literal Number”
on page 4-215

select_ number Ordinal position of a column in the
select list of the Projection clause

See “Using Select Numbers” on page
2-710.

“Literal Number”
on page 4-215

table Name, synonym, or alias of the table
or view containing column

Must exist and must be specified in
the FROM clause

“Identifier” on page
5-21

The ORDER BY clause implies that the query returns more than one row. In SPL,
the database server issues an error if you specify the ORDER BY clause without a
FOREACH loop to process the returned rows individually within the SPL routine.

The following query specifies a derived table in the FROM clause whose rows are
ordered by the col1 value, and declares vtab as the name of the derived table, and
vcol as the name of its only column:
SELECT vcol FROM

(SELECT FIRST 5 col1 FROM tab1 ORDER BY col1) vtab(vcol);

2-712 IBM Informix Guide to SQL: Syntax

ORDER BY in NLSCASE INSENSITIVE databases

In databases created with the NLSCASE INSENSITIVE property, operations on
columns and expressions of NCHAR or NVARCHAR data types make no
distinction between upper case and lower case letters. For this reason, queries that
include the ORDER BY clause might return rows in a sequence that disregard
variants in letter case, if the column or expression are of NLS data types, and the
data includes values that differ only in letter case.

If the data set includes letter case variants of the same string, these will be
processed as duplicates, with case variants listed in their order of retrieval. For
example, a set of NCHAR or NVARCHAR strings that were processed as
duplicates might appear in this order:
gAMma
GAmma
GaMMa
gamma
GAMMA

For more information, see “Duplicate rows in NLSCASE INSENSITIVE databases”
on page 2-663 and “NCHAR and NVARCHAR expressions in case-insensitive
databases” on page 4-28.

Ordering by a Column or by an Expression
To order query results by an expression, you must also declare a display label for
the expression in the Projection clause, as in the following example, which declares
the display label span for the difference between two columns:
SELECT paid_date - ship_date span, customer_num FROM orders

ORDER BY span;

Informix supports columns and expressions in the ORDER BY clause that do not
appear in the select list of the Projection clause. You can omit a display label for
the derived column in the select list and specify the derived column by means of a
select number in the ORDER BY clause.

The select list of the Projection clause must include any column or expression that
the ORDER BY clause specifies, however, if any of the following is true:
v The query includes the DISTINCT, UNIQUE, or UNION operator.
v The query includes the INTO TEMP table clause.
v The distributed query accesses a remote database whose server requires every

column or expression in the ORDER BY clause to also appear in the select list of
the Projection clause.

v An expression in the ORDER BY clause includes a display label for a column
substring. (See the next section, “Ordering by a Substring” on page 2-714.)

The next query selects one column from the orders table and sorts the results by
the value of another column. By default, the rows are listed in ascending order.
SELECT ship_date FROM orders ORDER BY order_date;

You can order by an aggregate expression only if the query also has a GROUP BY
clause. This query declares the display label maxwgt for an aggregate in the
ORDER BY clause:
SELECT ship_charge, MAX(ship_weight) maxwgt

FROM orders GROUP BY ship_charge ORDER BY maxwgt;

Chapter 2. SQL statements 2-713

If the current processing locale defines a localized collation, then NCHAR and
NVARCHAR column values are sorted in that localized order.

In Informix, no column in the ORDER BY clause can be a collection type, but a
query whose result set defines a collection-derived table can include the ORDER
BY clause. For an example, see “Collection-Derived Table” on page 5-4.

You might improve the performance of some non-PDQ queries that use the
ORDER BY clause to sort a large set of rows if you increase the setting of the
DS_NONPDQ_QUERY_MEM configuration parameter.

Ordering by a Substring
You can order by a substring instead of by the entire length of a character, BYTE,
or TEXT column, or of an expression returning a character string. The database
server uses the substring to sort the result set. Define the substring by specifying
integer subscripts (the first and last parameters), representing the starting and
ending byte positions of the substring within the column value.

The following SELECT statement queries the customer table and specifies a
column substring in the ORDER BY column. This instructs the database server to
sort the query results by the portion of the lname column contained in the sixth
through ninth bytes of the column value.
SELECT * from customer ORDER BY lname[6,9];

Assume that the value of lname in one row of the customer table is Greenburg.
Because of the column substring in the ORDER BY clause, the database server
determines the sort position of this row by using the value burg, rather than the
complete column value Greenburg.

When ordering by an expression, you can specify substrings only for expressions
that return a character data type. If you specify a column substring in the ORDER
BY clause, the column must have one of the following data types: BYTE, CHAR,
NCHAR, NVARCHAR, TEXT, or VARCHAR.

Informix can also support LVARCHAR column substrings in the ORDER BY
clause, if the column is in a database of the local database server.

For information on the GLS aspects of using column substrings in the ORDER BY
clause, see the IBM Informix GLS User's Guide.

Ascending and Descending Orders
You can use the ASC and DESC keywords to specify ascending (smallest value
first) or descending (largest value first) order.

The default order is ascending. For DATE and DATETIME data types, smallest
means earliest in time and largest means latest in time. For character data types in
the default locale, the order is the ASCII collating sequence, as listed in “Collating
Order for U.S. English Data” on page 4-226.

For NCHAR or NVARCHAR data types, the localized collating order of the current
session is used, if that is different from the code set order. For more information
about collation, see “SET COLLATION statement” on page 2-728.

If you specify the ORDER BY clause, NULL values by default are ordered as less
than values that are not NULL. Using the ASC order, a NULL value comes before
any non-NULL value; using DESC order, the NULL comes last.

2-714 IBM Informix Guide to SQL: Syntax

Nested Ordering
If you list more than one column in the ORDER BY clause, your query is ordered
by a nested sort. The first level of sort is based on the first column; the second
column determines the second level of sort. The following example of a nested sort
selects all the rows in the cust_calls table and orders them by call_code and by
call_dtime within call_code:
SELECT * FROM cust_calls ORDER BY call_code, call_dtime;

Using Select Numbers
In place of column names, you can enter in the ORDER BY clause one or more
integers that refer to the position of items listed in the select list of the Projection
clause. You can also use a select number to sort by an expression.

The following example orders by the expression paid_date - order_date and
customer_num, using select numbers in a nested sort:
SELECT order_num, customer_num, paid_date - order_date

FROM orders
ORDER BY 3, 2;

Select numbers are required in the ORDER BY clause when SELECT statements are
joined by the UNION or UNION ALL keywords, or when compatible columns in
the same position have different names.

Ordering by Rowids
You can specify the ROWID keyword in the ORDER BY clause. This specifies the
rowid column, a hidden column in nonfragmented tables and in fragmented tables
that were created with the WITH ROWIDS clause. The rowid column contains a
unique internal record number that is associated with a row in a table. (It is
recommended, however, that you utilize primary keys as your access method,
rather than exploiting the rowid column.)

The ORDER BY clause cannot specify the rowid column if the table from which
you are selecting is a fragmented table that has no rowid column.

You do not need to include the ROWID keyword in the Projection clause when
you specify ROWID in the ORDER BY clause.

For further information about rowid values and how to use the rowid column in
column expressions, see “WITH ROWIDS Option” on page 2-24 and “Using
Rowids” on page 4-68.

ORDER BY Clause with DECLARE
In Informix ESQL/C, you cannot use a DECLARE statement with a FOR UPDATE
clause to associate a cursor with a SELECT statement that has an ORDER BY
clause.

Placing Indexes on ORDER BY Columns
When you include an ORDER BY clause in a SELECT statement, you can improve
the performance of the query by creating an index on the column or columns that
the ORDER BY clause specifies. The database server uses the index that you placed
on the ORDER BY columns to sort the query results in the most efficient manner.
For more information on how to create indexes that correspond to the columns of
an ORDER BY clause, see “Using the ASC and DESC Sort-Order Options” on page
2-202.

Chapter 2. SQL statements 2-715

ORDER SIBLINGS BY Clause
The ORDER SIBLINGS BY clause is valid only in a hierarchical query. The optional
SIBLINGS keyword specifies an order that first sorts the parent rows, and then
sorts the child rows of each parent for every level within the hierarchy.

Rows that have duplicate lists of values in the columns specified after the
SIBLINGS BY keywords are arbitrarily ordered among the rows with the same list
of values and the same parent. If a hierarchical query includes the ORDER BY
clause without the SIBLINGS keyword, rows are ordered according to the sort
specifications that follow the ORDER BY keywords. Neither the ORDER BY clause
nor the ORDER SIBLINGS BY option to the ORDER BY clause is required in
hierarchical queries.

The hierarchical query in the following example returns the subset of rows in the
hierarchical data set whose root is Goyal, as listed in the topic “Hierarchical
Clause” on page 2-696. This query includes the ORDER SIBLINGS BY clause to
sort by name the employees who report to the same manager:
SELECT empid, name, mgrid, LEVEL

FROM employee
START WITH name = ’Goyal’
CONNECT BY PRIOR empid = mgrid

ORDER SIBLINGS BY name;

The rows returned by this query are sorted in the following order:
empid name mgrid level

16 Goyal 17 1
12 Henry 16 2
7 O’Neil 12 3
9 Shoeman 12 3
8 Smith 12 3
14 Scott 16 2
11 Zander 16 2
6 Barnes 11 3
5 McKeough 11 3

9 row(s) retrieved.

Here the START WITH clause returned the Goyal row at the root of this hierarchy.
Two subsequent CONNECT BY steps (marked as 2 and 3 in the level
pseudocolumn) returned three sets of sibling rows:
v Henry, Scott, and Zander are siblings whose parent is Goyal;
v O'Neil, Shoeman, and Smith are siblings whose parent is Henry;
v Barnes and McKeough are siblings whose parent is Zander.

The next CONNECT BY step returned no rows, because the rows for which level =
3 are leaf nodes within this hierarchy. At this point in the execution of the query,
the ORDER SIBLINGS BY clause was applied to the result set, sorting the rows in
the order shown above.

Because the sort key, name, is a VARCHAR column, the returned rows within each
set of siblings are in the ASCII order of their employee.name values. Only the sets
of siblings that are leaf nodes in the hierarchy of returned rows appear
consecutively in the sorted result set, because the managers are immediately
followed by the employees who report to them, rather than by their siblings. An
exception in this example is Scott, whose child nodes form an empty set.

2-716 IBM Informix Guide to SQL: Syntax

The SIBLINGS keyword in the ORDER BY clause is an extension to the ISO
standard syntax for the SQL language. The SELECT statement fails with an error if
you include the SIBLINGS keyword in the ORDER BY clause of a query or
subquery that does not include a valid CONNECT BY clause.

For more information about hierarchical queries and the CONNECT BY clause, see
“Hierarchical Clause” on page 2-696.

FOR UPDATE Clause
Use the FOR UPDATE clause in ESQL/C applications and in DB-Access when you
intend to update the values returned by a prepared SELECT statement when the
values are fetched.

Preparing a SELECT statement that contains a FOR UPDATE clause is equivalent
to preparing the SELECT statement without the FOR UPDATE clause and then
declaring a FOR UPDATE cursor for the prepared statement.

FOR UPDATE Clause:

(1)
FOR UPDATE

�

,

OF column

Notes:

1 Informix ESQL/C and DB-Access only

Element Description Restrictions Syntax

column Name of a column that can be
updated after a FETCH

Must be in the FROM clause table, but it need not be in
the Projection list. All columns must be from the same
table.

“Identifier”
on page 5-21

The FOR UPDATE keywords notify the database server that updating is possible,
causing it to use more stringent locking than it would with a Select cursor. You
cannot modify data through a cursor without this clause. You can specify which
columns can be updated.

After you declare a cursor for a SELECT . . . FOR UPDATE statement, you can
update or delete the currently selected row using an UPDATE or DELETE
statement with the WHERE CURRENT OF clause. The keywords CURRENT OF
refer to the row that was most recently fetched; they replace the usual conditional
expressions in the WHERE clause. To update rows with a specific value, your
program might contain statements such as those in the following example:
EXEC SQL BEGIN DECLARE SECTION;

char fname[16];
char lname[16];
EXEC SQL END DECLARE SECTION;

. . .

EXEC SQL connect to ’stores_demo’;
/* select statement being prepared contains a for update clause */
EXEC SQL prepare x from ’select fname, lname from customer for update’;
EXEC SQL declare xc cursor for x;

for (;;)

Chapter 2. SQL statements 2-717

{
EXEC SQL fetch xc into $fname, $lname;
if (strncmp(SQLSTATE, ’00’, 2) != 0) break;
printf("%d %s %s\n",cnum, fname, lname);
if (cnum == 999) --update rows with 999 customer_num

EXEC SQL update customer set fname = ’rosey’ where current of xc;
}

EXEC SQL close xc;
EXEC SQL disconnect current;

A SELECT . . . FOR UPDATE statement, like an Update cursor, allows you to
perform updates that are not possible with the UPDATE statement alone, because
both the decision to update and the values of the new data items can be based on
the original contents of the row. The UPDATE statement cannot query the table
that is being updated.

Note: A normal update inside the FETCH loop of a cursor cannot guarantee that
the updated rows are not fetched again after the UPDATE. The WHERE
CURRENT OF specification relates the UPDATE to the Update cursor, and
guarantees that each row is updated no more than once, by internally keeping a
list of the rows that have already been updated. These rows will not be fetched
again by the Update cursor.

Syntax incompatible with the FOR UPDATE clause
A SELECT statement that includes the FOR UPDATE clause must conform to the
following restrictions:
v The statement can select data from only one table.
v The statement cannot include any aggregate functions.
v The statement cannot include any of the following clauses or keywords:

DISTINCT, EXCEPT, FOR READ ONLY, GROUP BY, INTO TEMP, INTERSECT,
INTO EXTERNAL, MINUS, ORDER BY, UNION, UNIQUE.

v DECLARE statements that associate a cursor with the statement cannot also
include the FOR UPDATE keywords.

v The statement is valid only in ESQL/C routines, in IBM Informix 4GL, and
(within transactions) in the DB-Access utility. It cannot, for example, be issued
within an SPL routine.

For information on how to declare an update cursor for a SELECT statement that
does not include a FOR UPDATE clause, see “Using the FOR UPDATE Option” on
page 2-391.

Update cursors in SPL routines

You cannot include the FOR UPDATE keywords in the SELECT . . . INTO segment
of the FOREACH statement of SPL. An SPL routine, however, can provide the
functionality of a FOR UPDATE cursor
v by declaring a cursor name in the FOREACH statement,
v and then using the WHERE CURRENT OF cursor clause in UPDATE or DELETE

statements that operate on the current row of that cursor within the same
FOREACH loop.

2-718 IBM Informix Guide to SQL: Syntax

FOR READ ONLY Clause
Use the FOR READ ONLY keywords to specify that the Select cursor declared for
the SELECT statement is a read-only cursor. A read-only cursor is a cursor that
cannot modify data. This section provides the following information about the FOR
READ ONLY clause:
v When you must use the FOR READ ONLY clause
v Syntax restrictions on a SELECT statement that uses a FOR READ ONLY clause

Using the FOR READ ONLY Clause in Read-Only Mode
Normally, you do not need to include the FOR READ ONLY clause in a SELECT
statement. SELECT is a read-only operation by definition, so the FOR READ ONLY
clause is usually unnecessary. In certain circumstances, however, you must include
the FOR READ ONLY keywords in a SELECT statement.

If you have used the High-Performance Loader (HPL) in express mode to load
data into the tables of an ANSI-compliant database, and you have not yet
performed a level-0 backup of this data, the database is in read-only mode. When
the database is in read-only mode, the database server rejects any attempts by a
Select cursor to access the data unless the SELECT or the DECLARE includes a
FOR READ ONLY clause. This restriction remains in effect until the user has
performed a level-0 backup of the data.

In an ANSI-compliant database, Select cursors are update cursors by default. An
update cursor is a cursor that can be used to modify data. These update cursors
are incompatible with the read-only mode of the database. For example, this
SELECT statement against the customer_ansi table fails:
EXEC SQL declare ansi_curs cursor for

select * from customer_ansi;

The solution is to include the FOR READ ONLY clause in your Select cursors. The
read-only cursor that this clause specifies is compatible with the read-only mode of
the database. For example, the following SELECT FOR READ ONLY statement
against the customer_ansi table succeeds:
EXEC SQL declare ansi_read cursor for

select * from customer_ansi for read only;

DB-Access executes all SELECT statements with Select cursors, so you must specify
FOR READ ONLY in all queries that access data in a read-only ANSI-compliant
database. The FOR READ ONLY clause causes DB-Access to declare the cursor for
the SELECT statement as a read-only cursor.

For more information on level-0 backups, see your IBM Informix Backup and Restore
Guide. For more information on Select cursors, read-only cursors, and update
cursors, see “DECLARE statement” on page 2-386.

For more information on the express mode of the HPL of Informix, see the IBM
Informix High-Performance Loader User's Guide.
Related concepts:

Backup levels that ontape supports (Backup and Restore Guide)

Syntax That Is Incompatible with the FOR READ ONLY Clause
If you attempt to include both the FOR READ ONLY clause and the FOR UPDATE
clause in the same SELECT statement, the SELECT statement fails. For information

Chapter 2. SQL statements 2-719

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.bar.doc/ids_bar_463.htm#ids_bar_463

on declaring a read-only cursor for a SELECT statement that does not include a
FOR READ ONLY clause, see “DECLARE statement” on page 2-386.

INTO table clauses
Use the INTO Table clauses to create a new temporary or external table to receive
the data that the SELECT statement retrieves.

INTO table clauses:

INTO TEMP table
WITH NO LOG

(1)
EXTERNAL table USING USING Options

Notes:

1 See “INTO EXTERNAL clause” on page 2-722

Element Description Restrictions Syntax

table Name declared here of a
table to receive the query
results

Must be unique among names of tables, views,
synonyms, and sequence objects that you own in the
current database

“Database Object
Name” on page
5-16

You must have the Connect privilege on the database to create a temporary or
external table. The name of a temporary table need not be unique among the
identifiers of temporary tables in other user sessions.

Column names in the temporary or external table must be specified in the
Projection clause, where you must supply a display label for all expressions that
are not simple column expressions. The display label becomes the column name in
the temporary or external table. If you do not declare a display label for a simple
column expression, the resulting new table uses the column name from the select
list of the Projection clause.

The following INTO TEMP example creates the pushdate table with two columns,
customer_num and slowdate:
SELECT customer_num, call_dtime + 5 UNITS DAY slowdate

FROM cust_calls INTO TEMP pushdate;

Results when no rows are returned

When you use an INTO Table clause combined with the WHERE clause, and no
rows are returned, the SQLNOTFOUND value is 100 in ANSI-compliant databases
and 0 in databases that are not ANSI compliant. If the SELECT INTO
TEMP...WHERE... statement is a part of a multistatement PREPARE and no rows
are returned, the SQLNOTFOUND value is 100 for both ANSI-compliant databases
and databases that are not ANSI-compliant.

This release of Informix continues to process the remaining statements of a
multistatement prepared object after encountering the SQLNOTFOUND value of
100. You can maintain the legacy behavior, however, of not executing the
remaining prepared statements by setting the IFX_MULTIPREPSTMT environment
variable to 1.

2-720 IBM Informix Guide to SQL: Syntax

Restrictions with INTO table clauses in ESQL/C

In Informix ESQL/C, do not use both the INTO table clause and the INTO variable
clause in the same query. If you do, no results are returned to the program
variables and the SQLCODE variable is set to a negative value. For more
information about the INTO variable clause, see “INTO Clause” on page 2-669.

INTO TEMP clause
The INTO TEMP clause creates a temporary table to hold the query results.

INTO TEMP clause:

INTO TEMP table
WITH NO LOG

The default initial extent and next extent for a temporary table that the INTO
TEMP clause creates are each eight pages. The temporary table must be accessible
by the built-in RSAM access method of the database server; you cannot specify
another access method.

If you use the same query results more than once, using a temporary table saves
time. In addition, using an INTO TEMP clause often gives you clearer and more
understandable SELECT statements.

Data values in a temporary table are static; they are not updated as changes are
made to the tables that were used to build the temporary table. You can use the
CREATE INDEX statement to create indexes on a temporary table.

A logged temporary table exists until one of the following events occurs:
v The application disconnects from the database.
v A DROP TABLE statement is issued on the temporary table.
v The database is closed.

A nonlogging temporary table exists until one of the following events occurs:
v The application disconnects from the database.
v A DROP TABLE statement is issued on the temporary table.

If your Informix database does not have transaction logging, the temporary table
behaves in the same way as a table created with the WITH NO LOG option.

If you specify more than one temporary dbspace in the DBSPACETEMP
environment variable (or if this is not set, in the DBSPACETEMP configuration
parameter), the INTO TEMP clause loads the rows of the results set of the query
into each of these dbspaces in round-robin fashion. For more information about the
storage location of temporary tables that queries with the INTO TEMP clause
create, see “Where temporary tables are stored” on page 2-327.

Because operations on nonlogging temporary tables are not logged, using the
WITH NO LOG option reduces the overhead of transaction logging.

Because nonlogging temporary tables do not disappear when the database is
closed, you can use a nonlogging temporary table to transfer data from one
database to another while the application remains connected. The behavior of a

Chapter 2. SQL statements 2-721

temporary table that you create with the WITH NO LOG option of the INTO
TEMP clause resembles that of a RAW table.

For more information about temporary tables, see “CREATE TEMP TABLE
statement” on page 2-321.

INTO EXTERNAL clause
The INTO EXTERNAL clause unloads query results into an external table, creating
a default external table description that you can use when you later reload the
files.

Use the Table Options clause of the SELECT INTO EXTERNAL statement to
specify the format of the unloaded data in the external table.

INTO table clauses:

INTO EXTERNAL table USING USING Options

USING Options:

(
Table Options ,

(1)
DATAFILES Clause �

�
Table Options

)

Table Options:

�

,
(2) DELIMITED

FORMAT ' INFORMIX '
DELIMITER 'field_delimiter '
RECORDEND 'record_delimiter '
(2) OFF

ESCAPE
ON

Notes:

1 See “DATAFILES Clause” on page 2-163

2 Use this path no more than once

Element Description Restrictions Syntax

field_delimiter Character to separate fields. Default
is pipe (|) character

If you do not set the RECORDEND
environment variable, the default value
for record_delimiter is the newline
character (CTRL-J).

If you use a non-printing character as a
delimiter, encode it as the octal
representation of the ASCII character. For
example, '\006' can represent CTRL-F.

“Quoted String”
on page 4-219

2-722 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

record_delimiter Character to separate records “Quoted String”
on page 4-219

table Name declared here of a table to
receive the query results

Must be unique among names of tables,
views, synonyms, and sequence objects
that you own in the current database

“Database Object
Name” on page
5-16

The INTO EXTERNAL clause combines the functionality of the CREATE
EXTERNAL TABLE . . . SAMEAS and INSERT INTO . . . SELECT statements.

The INTO EXTERNAL clause overwrites any previously existing rows in the
EXTERNAL table.

The following table describes the keywords that apply to unloading data. If you
want to specify additional table options in the external-table description for
reloading the table later, see “Table options” on page 2-164.

In the SELECT ... INTO EXTERNAL statement, you can specify all table options
that are discussed in the CREATE EXTERNAL TABLE statement except the
fixed-format option.

You can use the INTO EXTERNAL clause when the format type of the created data
file is either delimited text (if you use the DELIMITED keyword) or text in
Informix internal data format (if you use the INFORMIX keyword). You cannot use
it for a fixed-format unload.

Keyword
Effect

DELIMITER
Specifies the character that separates fields in a delimited text file

ESCAPE ON
Directs the database server to recognize ASCII special characters embedded
as separators between fields in ASCII-text-based data files Inserts the
default escape character immediately before any instances of the
field_delimiter separator that DELIMITER specifies, where that character is a
literal value in the data, rather than a separator. Whether you include or
omit the ESCAPE keyword, this functionality is disabled by default, or you
can specify the ESCAPE OFF keywords to make it clearer to human readers
of your SQL code that this feature is disabled. To require the database
server to escape literal field_delimiter separator characters in the data, you
must specify the ESCAPE ON keywords.

By default, the escape character that the ESCAPE keyword inserts before
literal field_delimiter characters is the backslash (\) character. But if the
DEFAULTESCCHAR configuration parameter is set to a single-character
value, that character replaces backslash (\) for delimiter characters used
as literals ESCAPE ON is specified.

FORMAT
Specifies the format of the data in the data files

RECORDEND
Specifies the character that separates records in a delimited text file

Chapter 2. SQL statements 2-723

For more information about external tables, see the “CREATE EXTERNAL TABLE
Statement” on page 2-160.

Set operators in combined queries
The set operators UNION and UNION ALL can combine the result sets of two
queries that specify the same number of columns in the Projection clause, and that
have compatible data types in the corresponding columns of both queries.
v The UNION operator returns the distinct results from both queries, excluding

any duplicate rows.
v The UNION ALL operator returns the all the qualifying rows from both queries,

including any duplicate rows.

Restrictions on a Combined SELECT
Several restrictions apply to queries that you can combine with the UNION or
UNION ALL operator.
v The number of items in the Projection clause of each query must be the same,

and the corresponding items in each Projection clause must have compatible
data types.

v The Projection clause of each query cannot specify BYTE or TEXT objects. (This
restriction does not apply to UNION ALL operations.)

v If a combined query includes the ORDER BY clause of the SELECT statement, it
must follow the last Projection clause, and you must specify each ordered item
by its integer select_number, not by its SQL identifier. Sorting takes place after the
UNION or UNION ALL operation is complete.

v You can store the combined results of the UNION operator in a temporary table,
but the INTO TEMP clause can appear only in the final SELECT statement.

v In Informix ESQL/C, you cannot use an INTO clause in a compound query
unless exactly one row is returned, and you are not using a cursor. In this case,
the INTO clause must be in the first SELECT statement that the UNION
operator combines.

A UNION subquery is a query that includes the UNION or UNION ALL operator
within a subquery. The following additional restrictions affect UNION subqueries:
v The CREATE VIEW statement cannot specify a UNION subquery to define the

view.
v Only columns in the local database are valid in a UNION subquery. You cannot

reference a remote table or view in a UNION subquery.
v UNION subqueries cannot be triggering events. If a valid UNION or UNION

ALL subquery specifies a column on which a Select trigger has been defined, the
query succeeds, but the trigger (or the INSTEAD OF trigger on a view) is
ignored.

v General expressions that include host variables are not valid on the left of the
ALL, ANY, IN, NOT IN and SOME operators in a query that includes a UNION
subquery. An expression that consists solely of a single host variable, however, is
valid in this context.

For example, the following query is valid under the above restriction:
SELECT col1 FROM tab1 WHERE ? <= ALL

(SELECT col2 FROM tab2 UNION SELECT col3 FROM tab3);

2-724 IBM Informix Guide to SQL: Syntax

In this example, the expression to the left of ALL is a single host variable (?),
which is the only expression involving host variables that is supported before the
ALL, ANY, IN, NOT IN, or SOME operators in a query that also includes a
UNION subquery.

In contrast, the following example shows an invalid query:
SELECT col1 FROM tab1 WHERE (? + 8) <= ALL

(SELECT col2 FROM tab2 UNION SELECT col3 FROM tab3);

This query fails because an operand of the <= relational operator to the left of the
ALL operator is (? + 8). An arithmetic expression that includes a host variable is
not valid syntax in a UNION subquery.

Expressions that do not contain host variables are not subject to this restriction.
Thus, the following query (that includes the same UNION subquery) is valid:
SELECT col1 FROM tab1 WHERE (col1 + 8) <= ALL

(SELECT col2 FROM tab2 UNION SELECT col3 FROM tab3);

UNION Operator
Place the UNION operator between two SELECT statements to combine the
queries into a single query.

You can string several SELECT statements together using the UNION operator.
Corresponding items do not need to have the same name. Omitting the ALL
keyword excludes duplicate rows.

UNION ALL operator: If you use the UNION ALL operator, all the qualifying
rows from both queries are returned, without excluding any duplicate rows. (If
you combine two queries by using the UNION operator without the ALL keyword,
any duplicate rows are removed from the combined set of qualifying rows. That is,
if multiple rows contain identical values in the corresponding columns or
expressions that the Projection clauses of both queries specify, only one row from
each set of duplicates is retained in the result set.)

The next example uses UNION ALL to combine the results of two SELECT
statements without removing duplicates. The query returns a list of all the calls
that were received during the first quarter of 2007 and the first quarter of 2008.
SELECT customer_num, call_code FROM cust_calls

WHERE call_dtime BETWEEN
DATETIME (2007-1-1) YEAR TO DAY

AND DATETIME (2007-3-31) YEAR TO DAY
UNION ALL
SELECT customer_num, call_code FROM cust_calls

WHERE call_dtime BETWEEN
DATETIME (2008-1-1)YEAR TO DAY

AND DATETIME (2008-3-31) YEAR TO DAY;

If you want to remove duplicates from the result set, use UNION without the
keyword ALL as the set operator between the queries. In the preceding example, if
the combination 101 B were returned by both SELECT statements, the UNION
operator would cause the combination to be listed only once. (If you want to
remove duplicates within each SELECT statement, use the DISTINCT or UNIQUE
keyword immediately before the Select list of the Projection clause, as described in
“Allowing Duplicates” on page 2-662.)

Chapter 2. SQL statements 2-725

For information on how the database server identifies duplicate NCHAR and
NVARCHAR values in databases that have the NLCASE INSENSITIVE property,
see the topic “NCHAR and NVARCHAR expressions in case-insensitive databases”
on page 4-28.

UNION in Subqueries: You can use the UNION and UNION ALL operators in
subqueries of SELECT statements within the WHERE clause, the FROM clause,
and in collection subqueries. In this release of Informix, however, subqueries that
include UNION or UNION ALL are not supported in the following contexts:
v In the definition of a view
v In the event or in the Action clause of a trigger
v With the FOR UPDATE clause or with an Update cursor
v In a distributed query (accessing tables outside the local database)

For more information about collection subqueries, see “Collection Subquery” on
page 4-3. For more information about the FOR UPDATE clause, see “FOR UPDATE
Clause” on page 2-717.

In a combined subquery, the database server can resolve a column name only
within the scope of its qualifying table reference. The following query, for example,
returns an error:
SELECT * FROM t1 WHERE EXISTS

(SELECT a FROM t2
UNION
SELECT b FROM t3 WHERE t3.c IN

(SELECT t4.x FROM t4 WHERE t4.4 = t2.z));

Here t2.z in the innermost subquery cannot be resolved, because z occurs outside
the scope of reference of the table reference t2. Only column references that belong
to t4, t3, or t1 can be resolved in the innermost subquery. The scope of a table
reference extends downwards through subqueries, but not across the UNION
operator to sibling SELECT statements.

SET AUTOFREE statement
Use the SET AUTOFREE statement to instruct the database server to enable or
disable a memory-management feature that can free the memory allocated for a
cursor automatically, as soon as the cursor is closed.

Syntax

�� SET AUTOFREE
ENABLED

DISABLED FOR cursor_id
cursor_id_var

��

Element Description Restrictions Syntax

cursor_id Name of a cursor for which
Autofree is to be reset

Must already be declared within the
program

“Identifier” on page 5-21

cursor_id_var Host variable that holds the
value of cursor_id

Must store a cursor_id already
declared in the program

Must conform to
language-specific rules for
names.

2-726 IBM Informix Guide to SQL: Syntax

Usage

This statement is an extension to the ANSI/ISO standard for SQL. You can use this
statement only with Informix ESQL/C.

When the Autofree feature is enabled for a cursor, and the cursor is subsequently
closed, you do not need to explicitly use the FREE statement to release the
memory that the database server allocated for the cursor. If you issue SET
AUTOFREE but specify no option, the default is ENABLED.

The SET AUTOFREE statement that enables the Autofree feature must appear
before the OPEN statement that opens a cursor. The SET AUTOFREE statement
does not affect the memory allocated to a cursor that is already open. After a
cursor is Autofree enabled, you cannot open that cursor a second time.
Related concepts:

Automatically freeing a cursor (ESQL/C Guide)
Related reference:
“CLOSE statement” on page 2-128
“DECLARE statement” on page 2-386
“FETCH statement” on page 2-474
“FREE statement” on page 2-486
“OPEN statement” on page 2-581
“PREPARE statement” on page 2-589

Globally Affecting Cursors with SET AUTOFREE
If you include no FOR cursor_id or FOR cursor_id_var clause, then the scope of SET
AUTOFREE is all subsequently-declared cursors in the program (or more precisely,
all cursors declared before a subsequent SET AUTOFREE statement with no FOR
clause globally resets the Autofree feature). This example enables the Autofree
feature for all subsequent cursors in the program:
EXEC SQL set autofree;

The next example disables the Autofree feature for all subsequent cursors:
EXEC SQL set autofree disabled;

Using the FOR Clause to Specify a Specific Cursor
If you specify FOR cursor _id or FOR cursor_id_var, then SET AUTOFREE affects
only the cursor that you specify after the FOR keyword.

This option allows you to override a global setting for all cursors. For example, if
you issue a SET AUTOFREE ENABLED statement for all cursors in a program, you
can issue a subsequent SET AUTOFREE DISABLED FOR statement to disable the
Autofree feature for a specific cursor.

In the following example, the first statement enables the Autofree feature for all
cursors, while the second statement disables the Autofree feature for the cursor
named x1:
EXEC SQL set autofree enabled;
EXEC SQL set autofree disabled for x1;

Here the x1 cursor must have been declared but not yet opened.

Chapter 2. SQL statements 2-727

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0546.htm#ids_esqlc_0546

Associated and Detached Statements
When a cursor is automatically freed, its associated prepared statement (or
associated statement) is also freed.

The term associated statement has a special meaning in the context of the Autofree
feature. A cursor is associated with a prepared statement if it is the first cursor that
you declare with the prepared statement, or if it is the first cursor that you declare
with the statement after the statement is detached.

The term detached statement has a special meaning in the context of the Autofree
feature. A prepared statement is detached if you do not declare a cursor with the
statement, or if the cursor with which the statement is associated was freed.

If the Autofree feature is enabled for a cursor that has an associated prepared
statement, and that cursor is closed, the database server frees the memory allocated
to the prepared statement as well as the memory allocated for the cursor. Suppose
that you enable the Autofree feature for the following cursor:
/*Cursor associated with a prepared statement */
EXEC SQL prepare sel_stmt ’select * from customer’;
EXEC SQL declare sel_curs2 cursor for sel_stmt;

When the database server closes the sel_curs2 cursor, it automatically performs the
equivalent of the following FREE statements:
FREE sel_curs2;
FREE sel_stmt;

Because memory for the sel_stmt statement is freed automatically, you cannot
declare a new cursor on it unless you prepare the statement again.

Closing Cursors Implicitly
A potential problem exists with cursors that have the Autofree feature enabled. In
a database that is not ANSI-compliant, if you do not close a cursor explicitly and
then open it again, the cursor is closed implicitly. This implicit closing of the cursor
triggers the Autofree feature. The second time the cursor is opened, the database
server generates an error message (cursor not found) because the cursor is already
freed.

SET COLLATION statement
Use the SET COLLATION statement to specify a new collating order for the
session, superseding the collation implied by the DB_LOCALE environment
variable setting. SET NO COLLATION restores the default collation.

Syntax

�� SET COLLATION locale
NO COLLATION

��

Element Description Restrictions Syntax

locale Name of a locale whose collating
order is to be used in this session

Must be the name of a locale that the
database server can access

“Quoted String”
on page 4-219

2-728 IBM Informix Guide to SQL: Syntax

Usage

The SET COLLATION statement is an extension to the ANSI/ISO standard for
SQL. You can use this statement with Informix ESQL/C.

As the IBM Informix GLS User's Guide explains, the database server uses locale files
to specify the character set, the collating order, and other conventions of some
natural language to display and manipulate character strings and other data
values. The collating order of the database locale is the sequential order in which
the database server sorts character strings.

If you set no value for DB_LOCALE, the default locale, based on United States
English, is en_us.8859-1 for UNIX, or Code Page 1252 for Windows systems.
Otherwise, the database server uses the DB_LOCALE setting as its locale. The SET
COLLATION statement overrides the collating order of DB_LOCALE at runtime
for all database servers previously accessed in the same session.

The new collating order remains in effect for the rest of the session, or until you
issue another SET COLLATION statement. Other sessions are not affected, but
database objects that you created with a non-default collation use whatever
collating order was in effect at their time of their creation.

By default, the collating order is the code-set order, but some locales also support a
locale-specific order. In most contexts, only NCHAR and NVARCHAR data values
can be sorted according to a locale-specific collating order.
Related concepts:

A GLS locale (GLS User's Guide)

Specifying a Collating Order with SET COLLATION
SET COLLATION replaces the current collating order with that of the specified
locale for all database servers previously accessed in the current session. For
example, this specifies the collating order of the German language:
EXEC SQL set collation "de_de.8859-1";

If the next action of a database server in this session sorted NCHAR or
NVARCHAR values, this would follow the German collating order.

Suppose that, in the same session, the following SET NO COLLATION statement
restores the DB_LOCALE setting for the collating order:
EXEC SQL set no collation;

After SET NO COLLATION executes, subsequent collation in the same session is
based on the DB_LOCALE setting. Any database objects that you created using the
German collating order, however, such as check constraints, indexes, prepared
objects, triggers, or UDRs, will continue to apply German collation to NCHAR and
NVARCHAR data types.

Collation in an NLSCASE INSENSITIVE database

In an NLSCASE INSENSITIVE database, collating operations on NCHAR and
NVARCHAR data disregard lettercase differences, so that the database server treats
case variants among strings composed of same sequence letters as duplicates. The
collated list orders these case-insensitive duplicates in their order of retrieval, so a

Chapter 2. SQL statements 2-729

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_023.htm#ids_gug_023

collated list with case variants of the string alpha might appear in any order, such
as this order, which disregards variations in case:
alpha
Alpha
alpha
ALPHA
Alpha

For more information, see “Duplicate rows in NLSCASE INSENSITIVE databases”
on page 2-663 and “NCHAR and NVARCHAR expressions in case-insensitive
databases” on page 4-28.

Restrictions on SET COLLATION
Although SET COLLATION enables you to change the collating order of the
database server dynamically within a session, you should be aware of these
limitations on the effects of the SET COLLATION statement.
v Only collation performed by the database server is affected. Client processes that

sort data are not affected by SET COLLATION.
v Only the current session is affected. Other sessions are not affected directly by

your SET COLLATION statements (but any database objects that you create will
sort in their creation-time collating order).

v Changing the collating order does not change the code set. The database server
always uses the code set specified by DB_LOCALE.

v Only NCHAR and NVARCHAR values sort in locale-specific order.
v For IBM Informix to use the ICU library to support versions of Unicode up to

5.1, the GL_USEGLU environment variable must be set to a value of 1 (one) in the
server environment before the server is started or before the database is created.
This setting initializes conversion routines that enable Unicode collation by the
server in databases that use UTF-8 character encoding, including the Chinese
GB18030-2000 code set. The conversion applies only to databases that were
created with GL_USEGLU=1 already set.

Because SET COLLATION changes only the collating order, rather than the current
locale or code set, you generally cannot use this statement to insert character data
from different locales, such as French and Japanese, into the same database. You
must use a locale that supports Unicode if the database needs to store characters
from two or more languages that require inherently different code sets or code
pages. The database can store characters from the dissimilar character sets of more
than one natural language only if you set DB_LOCALE to a Unicode locale when
the database is created.

Collation Performed by Database Objects
Although the database reverts to the DB_LOCALE collating order after the session
ends (or after you execute SET NO COLLATION), objects that you create using a
non-default collation persist in the database. You can create, for example, multiple
indexes on the same set of columns, called multilingual indexes, using different
collating orders that SET COLLATION specifies.

Only one clustered index, however, can exist on a given set of columns.

Only one unique constraint or primary key can exist on a given set of columns, but
you can create multiple unique indexes on the same set of columns, if each index
has a different collation order.

2-730 IBM Informix Guide to SQL: Syntax

The query optimizer ignores indexes that apply any collation other than the
current session collation to NCHAR or NVARCHAR columns when calculating the
cost of a query.

The collating order of an attached index must be the same as that of its table, and
this must be the default collating order specified by DB_LOCALE.

The ALTER INDEX statement cannot change the collation of an index. Any
previous SET COLLATION statement is ignored when ALTER INDEX executes.

When you compare values from CHAR columns with NCHAR columns, Informix
casts the CHAR value to NCHAR, and then applies the current collation. Similarly,
before comparing VARCHAR and NVARCHAR values, Informix first casts the
VARCHAR values to NVARCHAR.

When synonyms are created for remote tables or views, the participating databases
must have the same collating order. Existing synonyms, however, can be used in
other databases that support SET COLLATION and the collating order of the
synonym, regardless of the DB_LOCALE setting.

Check constraints, cursors, prepared objects, triggers, and SPL routines that sort
NCHAR or NVARCHAR values use the collation that was in effect at the time of
their creation, if this is different from the DB_LOCALE setting.

The effect on performance is sensitive to how many different collations are used
when creating database objects that sort in a localized order.

SET CONNECTION statement
Use the SET CONNECTION statement to reestablish a connection between an
application and a database environment and to make the connection current. You
can also use this statement with the DORMANT option to put the current
connection in a dormant state. Use this statement with Informix ESQL/C.

Syntax

�� SET CONNECTION �

� 'connection '
(1) (1)

connection_var DORMANT
(1) (2)

Database Environment
DEFAULT
(1)

CURRENT DORMANT

��

Notes:

1 Informix extension

2 See “Database Environment” on page 2-137

Element Description Restrictions Syntax

connection Name of the initial connection that the CONNECT
statement made

The database must
already exist

“Quoted String”
on page 4-219

Chapter 2. SQL statements 2-731

Element Description Restrictions Syntax

connection_var Host variable that contains the value of connection Must be a character
data type

Language specific

Usage

You can use SET CONNECTION to make a dormant connection the current
connection or to make the current connection dormant.

SET CONNECTION is not valid as a prepared statement.
Related reference:
“SET SESSION AUTHORIZATION statement” on page 2-814
“DISCONNECT statement” on page 2-421
“CONNECT statement” on page 2-135
“DATABASE statement” on page 2-381

Program a thread-safe ESQL/C application (ESQL/C Guide)

Making a dormant connection as the current connection
If you use the SET CONNECTION statement without the DORMANT option,
connection must represent a dormant connection. A dormant connection is a
connection that is established but is not current.

The SET CONNECTION statement, with no DORMANT option, makes the
specified dormant connection the current one. The connection that the application
specifies must be dormant. The connection that is current when the statement
executes becomes dormant.

The SET CONNECTION statement in the following example makes connection
con1 the current connection and makes con2 a dormant connection:
CONNECT TO ’stores_demo’ AS ’con1’;
...
CONNECT TO ’demo’ AS ’con2’;
...
SET CONNECTION ’con1’;

A dormant connection has a connection context associated with it. When an
application makes a dormant connection current, it reestablishes that connection to
a database environment and restores its connection context. (For more information
on connection context, see the “CONNECT statement” on page 2-135 statement on
page “CONNECT statement” on page 2-135.) Reestablishing a connection is
comparable to establishing the initial connection, except that it typically avoids
authenticating the permissions for the user again, and it avoids reallocating
resources associated with the initial connection. For example, the application does
not need to reprepare any statements that have previously been prepared in the
connection, nor does it need to redeclare any cursors.

Making a current connection as the dormant connection
In the SET CONNECTION connection DORMANT statement, connection must
represent the current connection. The SET CONNECTION statement with the
DORMANT option makes the specified current connection a dormant connection.

2-732 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0499.htm#ids_esqlc_0499

For example, the following SET CONNECTION statement makes connection con1
dormant:
SET CONNECTION ’con1’ DORMANT;

The SET CONNECTION statement with the DORMANT option generates an error
if you specify a connection that is already dormant. For example, if connection
con1 is current and connection con2 is dormant, the following SET CONNECTION
statement returns an error message:
SET CONNECTION ’con2’ DORMANT;

The following SET CONNECTION statement executes successfully:
SET CONNECTION ’con1’ DORMANT;

Dormant Connections in a Single-Threaded Environment
In a single-threaded Informix ESQL/C application (one that does not use threads),
the DORMANT option makes the current connection dormant. Using this option
makes single-threaded Informix ESQL/C applications upwardly compatible with
thread-safe Informix ESQL/C applications. A single-threaded environment,
however, can have only one active connection while the program executes.

Dormant Connections in a Thread-Safe Environment
In a thread-safe Informix ESQL/C application, the DORMANT option makes an
active connection dormant. Another thread can now use the connection by issuing
the SET CONNECTION statement without the DORMANT option. A thread-safe
environment can have many threads (concurrent pieces of work performing
particular tasks) in one Informix ESQL/C application, and each thread can have
one active connection.

An active connection is associated with a particular thread. Two threads cannot
share the same active connection. Once a thread makes an active connection
dormant, that connection is available to other threads. A dormant connection is still
established but is not currently associated with any thread. For example, if the
connection named con1 is active in the thread named thread_1, the thread named
thread_2 cannot make connection con1 its active connection until thread_1 has
made connection con1 dormant.

The following code fragment from a thread-safe Informix ESQL/C program shows
how a particular thread within a thread-safe application makes a connection active,
performs work on a table through this connection, and then makes the connection
dormant so that other threads can use the connection:
thread_2()
{ /* Make con2 an active connection */

EXEC SQL connect to ’db2’ as ’con2’;
/*Do insert on table t2 in db2*/
EXEC SQL insert into table t2 values(10);
/* make con2 available to other threads */
EXEC SQL set connection ’con2’ dormant;

}

If a connection to a database environment was initiated using the CONNECT . . .
WITH CONCURRENT TRANSACTION statement, any thread that subsequently
connects to that database environment can use an ongoing transaction. In addition,
if an open cursor is associated with such a connection, the cursor remains open
when the connection is made dormant.

Chapter 2. SQL statements 2-733

Threads within a thread-safe Informix ESQL/C application can use the same
cursor by making the associated connection current, even though only one thread
can use the connection at any given time.

Identifying the Connection
If the application did not specify a connection name in the initial CONNECT
statement, you must use a database environment (such as a database name or a
database pathname) as the connection name. For example, the following SET
CONNECTION statement uses a database environment for the connection name
because the CONNECT statement does not use a connection name. For information
about quoted strings that specify a database environment, see “Database
Environment” on page 2-137.
CONNECT TO ’stores_demo’;
...
CONNECT TO ’demo’;
...
SET CONNECTION ’stores_demo’;

If a connection to a database server was assigned a connection name, however, you
must use the connection name to reconnect to the database server. An error is
returned if you use a database environment rather than the connection name when
a connection name exists.

DEFAULT Option
The DEFAULT option specifies the default connection for a SET CONNECTION
statement. The default connection is one of the following connections:
v An explicit default connection (a connection established with the CONNECT TO

DEFAULT statement)
v An implicit default connection (any connection established with the DATABASE

or CREATE DATABASE statements)

Use SET CONNECTION without a DORMANT option to reestablish the default
connection, or with that option to make the default connection dormant.

For more information, see “The DEFAULT Connection Specification” on page 2-140
and “The Implicit Connection with DATABASE Statements” on page 2-141.

CURRENT Keyword
Use the CURRENT keyword with the DORMANT option of the SET
CONNECTION statement as a shorthand form of identifying the current
connection. The CURRENT keyword replaces the current connection name. If the
current connection is con1, the following two statements are equivalent:
SET CONNECTION ’con1’ DORMANT;

SET CONNECTION CURRENT DORMANT;

When a Transaction is Active
Without the DORMANT keyword, the SET CONNECTION statement implicitly
puts the current connection in the dormant state.

When you issue a SET CONNECTION statement with the DORMANT keyword,
the SET CONNECTION statement explicitly puts the current connection in the
dormant state. In both cases, the statement can fail if a connection that becomes

2-734 IBM Informix Guide to SQL: Syntax

dormant has an uncommitted transaction. If the connection that becomes dormant
has an uncommitted transaction, the following conditions apply:
v If the connection was established using the WITH CONCURRENT

TRANSACTION clause of the CONNECT statement, SET CONNECTION
succeeds and puts the connection in a dormant state.

v If the connection was not established by the WITH CONCURRENT
TRANSACTION clause of the CONNECT statement, SET CONNECTION fails
and cannot set the connection to a dormant state, and the transaction in the
current connection continues to be active. The statement generates an error and
the application must decide whether to commit or roll back the active
transaction.

SET CONSTRAINTS statement
Use the SET CONSTRAINTS statements to change how some or all of the existing
constraints on a table are processed.

Syntax

Only the CREATE TABLE, CREATE TEMP TABLE and ALTER TABLE ADD
CONSTRAINT statements of SQL can create new constraints. The SET
CONSTRAINTS statement supports the following syntax for modifying how the
database server enforces (or ignores) one or more existing constraints on a single
table:

�� SET CONSTRAINTS �

�

,

constraint IMMEDIATE
ALL DEFERRED

,
(1)

constraint Constraint Mode
FOR table

'owner' .

��

Constraint Mode:

DISABLED
ENABLED

(2) (3)
FILTERING WITHOUT ERROR NOVALIDATE

WITH ERROR

Notes:

1 Informix extension. Constraint must be on a table in the current database.

2 See “Filtering Modes” on page 2-746

3 Valid for FOREIGN KEY constraints only

Element Description Restrictions Syntax

constraint Constraint whose mode is to be
reset

Must exist, and must all be defined on
the same table

“Identifier” on page
5-21

owner Owner of table Must own table “Owner name” on
page 5-49

Chapter 2. SQL statements 2-735

Element Description Restrictions Syntax

table Table whose constraint mode is to
be reset for all constraints

Must exist in the database “Identifier” on page
5-21

Usage

Constraint-mode keyword options of the SET CONSTRAINTS statements include
these:
v Whether constraints are checked at the statement level (IMMEDIATE) or at the

transaction level (DEFERRED)
v Whether to enable (ENABLED) or disable (DISABLED) constraints
v Whether the filtering mode of constraints on tables with violations tables should

be FILTERING WITH ERROR or FILTERING WITHOUT ERROR

v Whether to enable referential constraints without verifying (NOVALIDATE) that the
foreign-key value in every row matches a primary-key value in the referenced
table.

The SET CONSTRAINTS keywords can begin the SET Transaction Mode statement,
which is described in “SET Transaction Mode statement” on page 2-825.

The SET CONSTRAINTS keywords can also begin a special case of the SET Database
Object Mode statement, which is an extension to the ANSI/ISO standard for SQL.
Besides constraints, the SET Database Object Mode statement can also enable or
disable a trigger or index, or change the filtering mode of a unique index. For the
complete syntax and semantics of that statement, see “SET Database Object Mode
statement” on page 2-737.

For information on using the SET CONSTRAINTS statement to enable or disable
system-defined indexes that are implicitly created by PRIMARY KEY and
FOREIGN KEY constraint definitions, see the topic “SET INDEXES statement” on
page 2-795.

Persistence of Constraint Modes

Any changes that you make to the mode of a constraint persist until that constraint
mode setting is modified again, or until that constraint or its table are dropped.

The NOVALIDATE modes for referential constraints, however, are exceptions,
because these mode do not persist beyond the SET CONSTRAINTS statement (or
beyond the ALTER TABLE ADD CONSTRAINT statement) that specified the
NOVALIDATE mode.

That is, when the DDL statement that specifies a NOVALIDATE mode completes,
the constraint mode reverts to whichever mode the sysobjstate system catalog
table recorded for that foreign-key constraint among these three possible modes:
v ENABLED NOVALIDATE becomes ENABLED

v FILTERING WITH ERROR NOVALIDATE becomes FILTERING WITH ERROR

v FILTERING WITHOUT ERROR NOVALIDATE becomes FILTERING WITHOUT ERROR.

In all subsequent DML operations on the table, such as DELETE, INSERT, MERGE,
or UPDATE statements of SQL, the database server enforces the enabled
foreign-key constraint at a time determined by its IMMEDIATE or DEFERRED setting,
but ignoring any previous NOVALIDATE mode.

2-736 IBM Informix Guide to SQL: Syntax

Restrictions on Secondary Servers

In cluster environments, the SET CONSTRAINTS ENABLED and SET
CONSTRAINTS DISABLED statements are not supported on updatable secondary
servers. (More generally, session-level index, trigger, and constraint modes that the
SET Database Object Mode statement specifies are not redirected for UPDATE
operations on table objects in databases of secondary servers.)
Related reference:
“Examples of the Single-Column Constraint format” on page 2-280
“SET Transaction Mode statement” on page 2-825
“SET Database Object Mode statement”
“SET INDEXES statement” on page 2-795

SET Database Object Mode statement
Use the SET Database Object Mode statement to change the filtering mode of
constraints and of unique indexes, or to enable or disable constraints, indexes, and
triggers, or to bypass referential-integrity checking of foreign-key constraints while
this statement is resetting their constraint mode.

This statement is an extension to the ANSI/ISO standard for SQL. To specify
whether constraints are checked at the statement level or at the transaction level,
see “SET Transaction Mode statement” on page 2-825.

Syntax

�� SET
(1)

Object-List Format
(2)

Table Format

��

Notes:

1 See “Object-List Format” on page 2-739

2 See “Table Format” on page 2-740

Usage

In the context of this statement, database object has the restricted meaning of an
index, a trigger, or a constraint, rather than the more general meaning of this term
that the description of the “Database Object Name” on page 5-16 segment defines
in Chapter 5, “Other syntax segments,” on page 5-1.

The scope of the SET Database Object Mode statement is restricted to constraints,
indexes, or triggers in the local database to which the session is currently
connected. After you change the mode of an object, the new mode is in effect for
all sessions of that database, and persists until another SET Database Object Mode
statement changes it again, or until the object is dropped from the database.

Important:
The NOVALIDATE modes to which this statement can reset foreign-key constraints
are exceptions to the general statement above, as the following section of this topic
explains.

Chapter 2. SQL statements 2-737

Object modes for triggers, indexes and constraints

Only two object modes are available for triggers and for indexes that allow
duplicate values:
v Enabled (by the ENABLED keyword)
v DISABLED Disabled (by the DISABLED keyword)

For constraints and for unique indexes, you can also specify two additional modes:
v filtering without integrity-violation errors (by the FILTERING WITHOUT ERROR

keywords)
v filtering with integrity-violation errors (by the FILTERING WITH ERROR keywords)

For foreign-key constraints, you can also specify three additional modes:
v enabled, but without checking for integrity-violation errors (by the ENABLED

NOVALIDATE keywords)
v filtering with integrity-violation errors, but without checking for

integrity-violation errors (by the FILTERING WITH ERROR NOVALIDATE keywords)
v filtering without integrity-violation errors, but without checking for

integrity-violation errors (by the FILTERING WITHOUT ERROR NOVALIDATE
keywords).

The last three constraint modes only persist while the SET Database Object Mode
statement is running, after which the constraint mode reverts to the corresponding
enabled or filtering mode, and with enforcement of referential integrity during
subsequent DML operations. But for large tables that are thought to be free of
referential constraint violations, these modes that bypass validation of the
foreign-key constraint can significantly reduce the time required to migrate or to
import large data sets.

At any given time, an object must be in exactly one of these modes. These modes,
which are sometimes called object states, are described in the section “Definitions of
Database Object Modes” on page 2-744.

The sysobjstate system catalog table lists all of the constraint, index, and trigger
objects in the database, and the current mode of each object. Because the
NOVALIDATE modes persist only during the SET CONSTRAINTS statement or
ALTER TABLE ADD CONSTRAINT statement that specified that mode, the
sysobjstate table ignores NOVALIDATE modes, which suppress violation-checking
only within those DDL statements. For information on the sysobjstate table, see
the IBM Informix Guide to SQL: Reference.

In cluster environments, the SET Database Object Mode statement is not supported
on updatable secondary servers. (More generally, any session-level index, trigger,
or constraint modes that the statement specifies are not redirected for UPDATE
operations on table objects in databases of secondary servers.)
Related concepts:
“INSTEAD OF Triggers on Views” on page 2-362
Related reference:
“CREATE TABLE statement” on page 2-265

SYSOBJSTATE (SQL Reference)
“CREATE INDEX statement” on page 2-194
“STOP VIOLATIONS TABLE statement” on page 2-840

2-738 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_047.htm#ids_sqr_047

“Options Valid on Typed Tables” on page 2-117
“START VIOLATIONS TABLE statement” on page 2-828
“SET CONSTRAINTS statement” on page 2-735

Privileges Required for Changing Database Object Modes
To change the mode of a constraint, index, or trigger, you must have the necessary
access privileges. You must meet at least one of these requirements:
v You must have the DBA privilege on the database.
v You must be the owner of the table on which the database object is defined and

you must also have the Resource privilege on the database.
v You must have the Alter privilege on the table on which the database object is

defined and you must also have the Resource privilege on the database.

Object-List Format
Use the object-list format to change the mode for one or more constraint, index, or
trigger.

Object-List Format:

�

�

�

,
(1)

CONSTRAINTS constraint Modes for Constraints and Unique Indexes
,

(1)
INDEXES index Modes for Constraints and Unique Indexes

(2)
Modes for Triggers and Duplicate Indexes

,

TRIGGERS trigger
(2)

Modes for Triggers and Duplicate Indexes

Notes:

1 See “Modes for constraints and unique indexes” on page 2-741

2 See “Modes for Triggers and Duplicate Indexes” on page 2-744

Element Description Restrictions Syntax

constraint Name of a constraint whose
mode is to be set

Must be a local constraint, and all constraints in the
list must be defined on the same table

“Identifier” on
page 5-21

index Name of an index whose
mode is to be set

Must be a local index, and all indexes in the list
must be defined on the same table

“Identifier” on
page 5-21

trigger Name of a trigger whose
mode is to be set

Must be a local trigger, and all triggers in the list
must be defined on the same table or view

“Identifier” on
page 5-21

For example, to change the mode of the unique index unq_ssn on the cust_subset
table to filtering, enter the following statement:
SET INDEXES unq_ssn FILTERING;

You can also use the object-list format to change the mode for a list of constraints,
indexes, or triggers that are defined on the same table. Assume that four triggers

Chapter 2. SQL statements 2-739

are defined on the cust_subset table: insert_trig, update_trig, delete_trig, and
execute_trig. Also assume that all four triggers are enabled. To disable all triggers
except execute_trig, enter this statement:
SET TRIGGERS insert_trig, update_trig, delete_trig DISABLED;

If my_trig is a disabled INSTEAD OF trigger on a view, the following statement
enables that trigger:
SET TRIGGERS my_trig ENABLED;

In cluster environments, the SET TRIGGERS statement is not supported on
updatable secondary servers. More generally, session-level index, trigger, and
constraint modes that the SET Database Object Mode statement specifies are not
redirected for UPDATE operations on table objects in databases of secondary
servers.

Table Format
Use the table format to change the mode of all database objects of a specified type
that have been defined on the same table or view.

Table Format:

�

,

CONSTRAINTS
INDEXES
TRIGGERS

FOR table_object
'owner' .

�

�
(1)

Modes for Constraints and Unique Indexes
(2)

Modes for Triggers and Duplicate Indexes

Notes:

1 See “Modes for constraints and unique indexes” on page 2-741

2 See “Modes for Triggers and Duplicate Indexes” on page 2-744

Element Description Restrictions Syntax

owner Owner of table Must own table “Owner name” on
page 5-49

table_object Table or view on
which objects are
defined

Must be a local table or view. Objects defined on a
temporary table cannot be set to disabled or filtering
modes.

“Identifier” on
page 5-21

This example disables all constraints defined on the cust_subset table:
SET CONSTRAINTS FOR cust_subset DISABLED;

In table format, you can change the modes of more than one database object type
with a single statement. For example, this enables all constraints, indexes, and
triggers that are defined on the cust_subset table:
SET CONSTRAINTS, INDEXES, TRIGGERS FOR cust_subset ENABLED;

2-740 IBM Informix Guide to SQL: Syntax

In Informix 10.00 and in earlier versions, you cannot use the SET TRIGGERS
option of the SET Database Object Mode statement to disable an inherited trigger
selectively within a table hierarchy. In this release, however, disabling a trigger on
a table within a hierarchy has no effect on inherited triggers. For example, the
following statement disables all triggers on the specified subtable, but the statement
has no effect on triggers on table objects that are above or below subtable within a
table hierarchy:
SET TRIGGERS FOR subtable DISABLED;

In cluster environments, however, the SET TRIGGERS, SET INDEXES, and SET
CONSTRAINTS statements are not supported on updatable secondary servers.
Session-level index, trigger, and constraint modes that the SET Database Object
Mode statement specifies are not redirected for UPDATE operations on table
objects in databases of secondary server

Modes for constraints and unique indexes
You can specify enabled or disabled mode for a constraint or for a unique index.
For tables that the START VIOLATIONS TABLE statement has associated with a
violations table and a diagnostics table, you can also use the FILTERING keyword
to specify an ERROR mode for processing rows that do not comply with
constraints or with unique index requirements.

When you change the mode of a foreign-key constraint to ENABLED or to
FILTERING, you can optionally include the NOVALIDATE keyword. This
suspends referential-integrity checking for rows that violate the constraint during
execution of the SET CONSTRAINTS statement.

This is the syntax for changing the database object mode of constraints or of
unique indexes in SET CONSTRAINTS or SET INDEXES statements:

Modes for constraints and unique indexes:

DISABLED
ENABLED

(1) (2)
FILTERING WITHOUT ERROR NOVALIDATE

WITH ERROR

Notes:

1 See “Filtering Modes” on page 2-746

2 Valid for FOREIGN KEY constraints only

Usage

If you specify no mode in the ALTER TABLE or CREATE TABLE statement that
creates a constraint, the constraint is enabled by default.

Similarly, if you specify no mode in the CREATE INDEX statement that creates an
index, the index is enabled by default.

There is no default mode, however, for database objects in SET Database Object
Mode statements. If you specify no mode in the SET CONSTRAINTS or the SET
INDEXES options of SET Database Object Mode statements, the statement fails
with error -201, and the constraint mode or index mode is unchanged.

Chapter 2. SQL statements 2-741

The WITHOUT ERROR and WITH ERROR filtering options support DML
operations in which the database server tests whether new or modified rows
violate constraints or unique indexes on the target table. How the database server
processes noncompliant rows in filtering mode also depends on these factors:
v Whether a violations table and a diagnostics table are associated with the table

on which the constraint or the unique index is defined.
v Whether input to the associated violations and diagnostics tables is currently

enabled or disabled.

For more information, see the topics “START VIOLATIONS TABLE statement” on
page 2-828 and “STOP VIOLATIONS TABLE statement” on page 2-840.

Examples of changing constraint modes and unique index
modes

The following statement disables the constraint u100_1, so that it is still registered
in the system catalog, but has no effect:
SET CONSTRAINTS u100_1 DISABLED;

If u100_1 is an enabled unique index, rather than a constraint, then the following
statement has a similar effect:
SET INDEXES u100_1 DISABLED;

The following statement enables the referential constraint u100_1 without
validating the foreign-key relationships for each row:
SET CONSTRAINTS u100_2 ENABLED NOVALIDATE;

Note:

You can specify the new mode of a foreign key constraint as ENABLED NOVALIDATE,
or as FILTERING WITH ERROR NOVALIDATE or FILTERING WITHOUT ERROR NOVALIDATE.
This can improve performance in load operations, for example, if the data set is
known to have a corresponding primary key for every row that is in scope of the
foreign key constraint. It is the responsibility of the user, however, to avoid
corruption of the database in subsequent DML operations. If you are not sure that
the data rows are compliant,
v you should disable the foreign-key constraint,
v load the data into the new database,
v and then enable the foreign-key constrain after its table has been successfully

loaded, so that the database server can validate the referential integrity of the
data.

The database server automatically drops the NOVALIDATE attribute when the SET
CONSTRAINTS statement completes execution. The following statement enables
the same foreign-key constraint and restores automatic validation of the constraint:
SET CONSTRAINTS u100_2 ENABLE;

When you use the FILTERING WITHOUT ERROR keywords to define a filtering mode,
subsequent violations of that constraint, or uniqueness violations of that index, do
not cause INSERT, DELETE, MERGE, or UPDATE operations to fail if some rows
violate the constraint or the unique index. In this filtering mode, the DML
statement succeeds, but the database server enforces the constraint or the unique
index requirement by writing the noncompliant rows to the violations table.

2-742 IBM Informix Guide to SQL: Syntax

The following statement instructs the database server to write any rows that
violate the r104_11 constraint to the violations table, provided that a violations
table is associated with the target table.
SET CONSTRAINTS r104_11 FILTERING WITHOUT ERROR;

For more information about filtering modes, see the topic “Filtering Modes” on
page 2-746.

The following statement disables all constraints defined on the orders table:
SET CONSTRAINTS FOR orders DISABLED;

Subsequent DML operations on that table ignore rows that violate constraints on
the orders table, creating no entries in its violations or diagnostics tables, if those
tables exist. If any unique indexes exist on the orders table, however, rows that
violate uniqueness requirements are processed according to the current modes of
the indexes, as listed in the sysobjstate system catalog table.
Related concepts:
“CREATE TRIGGER statement” on page 2-329

System catalog tables (SQL Reference)
Related reference:
“ALTER TABLE statement” on page 2-72
“CREATE TABLE statement” on page 2-265
“CREATE INDEX statement” on page 2-194
“START VIOLATIONS TABLE statement” on page 2-828
“STOP VIOLATIONS TABLE statement” on page 2-840

Object modes and violation detection (SQL Tutorial)

SYSOBJSTATE (SQL Reference)

SYSVIOLATIONS (SQL Reference)

Enabling foreign-key constraints when an index exists on the
referenced table
By default, the database server automatically validates referential constraints when
their mode is changed to ENABLED. You might be able to save time when the SET
CONSTRAINTS statement enables a foreign-key constraint, if the referenced table
already has a unique index or a primary-key constraint on the column (or on the
set of columns) corresponding to the key of the foreign-key constraint.

The database server makes a cost-based decision on how to validate the enabled
foreign-key constraint. The index-key algorithm might be faster in many contexts,
because it validates the constraint by scanning only the index values, rather than
by scanning all the rows in the table.

The database server can consider using the index-key algorithm to validate the
foreign-key constraint that it enables, but only if all of the following conditions are
satisfied when the SET CONSTRAINTS ENABLED statement resets the constraint
mode:
v The SET CONSTRAINTS statement is enabling only one foreign-key constraint.

If this is the case, the database server needs to check individual values for only
the column on which the foreign-key constraint is being enabled. Validating two
foreign-key constraints at the same time would require two indices to be used
on the same scan, which is not supported.

Chapter 2. SQL statements 2-743

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_259.htm#ids_sqt_259
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_047.htm#ids_sqr_047
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_079.htm#ids_sqr_079

v The same statement is not enabling a CHECK constraint.
If the SET CONSTRAINTS statement is enabling more than one constraint,
validating CHECK constraints requires that every row be checked, rather than
individual values. In that case, the index-key algorithm cannot be used for
validating the foreign-key constraint.

v The foreign-key columns do not include user-defined data types (UDTs) or
built-in opaque data types.
To make the fast index-key algorithm as efficient as possible, it eliminates all the
inefficiencies of executing routines associated with user-defined or built-in
opaque data types, such as the BOOLEAN and LVARCHAR built-in opaque
types.

v The new mode of the foreign-key constraint is not DISABLED.
If it is disabled, then no constraint-checking algorithm is needed, because no
checking for referential integrity violations occurs.

v The table is not associated with an active violation table.
Violations tables require that at the time of checking, every row that does not
satisfy the new constraint must be inserted into the violation table. Scanning
every row for violations prevents the database server from using the faster
index-key algorithm that skips duplicate rows.

Except in the case of one or more violating rows, the SET CONSTRAINTS
statement can enable and validate a foreign-key constraint when some of these
requirements are not satisfied, but the database server will not consider using the
index-key algorithm to validate the foreign-key constraint. The additional
validation costs for scanning the entire table are generally proportional to the size
of the table. These costs can be substantial for very large tables.

When you enable a self-referencing foreign-key constraint, whose REFERENCING
clause specifies the same table on which the constraint is defined, the database
server can consider an index-key algorithm for validating referential-integrity, if all
the conditions listed above are satisfied.
Related reference:
“Creating foreign-key constraints when an index exists on the referenced table” on
page 2-106

Modes for Triggers and Duplicate Indexes
You can specify the modes for triggers or duplicate indexes.

Modes for Triggers and Duplicate Indexes:

ENABLED
DISABLED

If you specify no mode for an index or for a trigger when you create it or in a
subsequent SET Database Object Mode statement, the object is enabled by default.

Definitions of Database Object Modes
You can use database object modes to control the effects of INSERT, DELETE, and
UPDATE statements. Your choice of mode affects the tables whose data you are
manipulating, the behavior of the database objects defined on those tables, and the
behavior of the data manipulation statements themselves.

2-744 IBM Informix Guide to SQL: Syntax

Enabled Mode
Database objects in the enabled mode behave as constraints, indexes, or triggers
during DML operations on the table.

If you specify no database object mode when constraints, indexes, or triggers are
created, they are enabled by default. The data definition statements CREATE
TABLE, ALTER TABLE, CREATE INDEX, and CREATE TRIGGER all create
database objects in enabled mode, unless you explicitly specify a different mode.

Which nondefault object modes are available at creation-time depends on the type
of object:
v When a trigger or a non-unique index is created, the only keyword alternative to

the enabled mode is DISABLED.
v When a constraint or a unique index is created, alternatives to the default or

explicit ENABLED keyword include DISABLED, FILTERING WITH ERROR, and
FILTERING WITHOUT ERROR. (But if you only specify FILTERING, then FILTERING
WITHOUT ERROR is the default error mode for FILTERING objects.)

v While the ALTER TABLE ADD CONSTRAINT statement is creating a
foreign-key constraint, however, any of these three modes can instead be
specified as additional alternatives to the enabled mode:
– ENABLED NOVALIDATE

– FILTERING WITH ERROR NOVALIDATE

– FILTERING WITHOUT ERROR NOVALIDATE.

When the SET Database Object Mode statement changes the mode of an existing
constraint, index, or trigger, however, there no default mode. If you specify no
object mode, the SET Database Object Mode statement fails with error -201. If you
want to reset the mode of a constraint, index, or trigger to enabled from some
other mode, you must explicitly specify the ENABLED keyword.

When a database object is successfully enabled, the database server registers that
object state in the sysobjstate table of the system catalog, and takes that database
object into consideration when its table is the target of a subsequent INSERT,
DELETE, MERGE, or UPDATE statement (or for Select triggers, a SELECT
statement). Thus, an enabled constraint is enforced, an enabled index is updated,
and an enabled trigger on a table is executed when the trigger event takes place.

For example, after you set foreign-key constraints and unique indexes to enabled
mode, when an INSERT, DELETE, MERGE, or UPDATE operation attempts to
violate the referential integrity of the table, the data manipulation operation fails,
no rows in the table are changed, and the database server returns an error
message.

ENABLED NOVALIDATE mode for foreign-key constraints

While the SET Database Object Mode statement is changing the mode of a
foreign-key constraint to ENABLED, the database server validates the constraint by
examining every row in the constrained table to verify that a row with a
corresponding value exists in the primary-key column of the referenced table. This
validation can require significant time and resources. You can instead bypass the
search for violating rows during the SET Database Object mode operation by
including the NOVALIDATE keyword to change the foreign-key constraint mode to
ENABLED NOVALIDATE. For large tables, specifying ENABLED NOVALIDATE can
substantially reduce the time required to enable the foreign-key constraint.

Chapter 2. SQL statements 2-745

After the SET CONSTRAINTS option to the SET Database Object Mode statement
successfully enables a foreign-key constraint,
v the constraint mode is registered as enabled (E) in the sysobjstate system catalog

table,
v but the NOVALIDATE keyword, that had prevented checking for

referential-integrity violations while the SET CONSTRAINTS statement was
running, is not encoded anywhere in the system catalog, and has no further
effect on the object mode or the behavior of the foreign-key constraint.

Until it is dropped or disabled, that constraint is enforced during subsequent DML
operations on its table, in order to maintain the referential integrity of the database.

Disabled Mode
When a database object is disabled, the database server ignores it during the
execution of an INSERT, DELETE, SELECT, or UPDATE statement. A disabled
constraint is not enforced, a disabled index is not updated, and a disabled trigger
is not executed when the trigger event takes place. When you disable constraints
and unique indexes, any data manipulation statement that violates the restriction
of the constraint or unique index succeeds (that is, the target row is changed), and
the database server does not return an error message.

You can use the disabled mode to add a new constraint or new unique index to an
existing table, even if some rows in the table do not satisfy the new integrity
specification. Disabling can also be efficient in LOAD operations.

For information on adding a constraint, see “Adding a Constraint That Existing
Rows Violate” on page 2-100 in the ALTER TABLE statement. For information on
adding a unique index, see “Adding a Unique Index When Duplicate Values Exist
in the Column” on page 2-215 in the CREATE INDEX statement.

Filtering Modes
A constraint or unique index in a filtering mode can insert into an associated
violations table any rows that fail to comply with the constraint or index during
DML operation. This mode also supports WITH ERROR and WITHOUT ERROR
options for processing referential-integrity violations from INSERT, DELETE,
MERGE, and UPDATE statements.

When a constraint or unique index is in FILTERING WITH ERROR mode, the
database server returns a referential-integrity violation error message after the
INSERT, DELETE, MERGE, or UPDATE statement results in one or more rows that
are not in compliance with the unique index or with the constraint.

By default, the FILTERING keyword with no error option specifies the FILTERING
WITHOUT ERROR object mode.

When a constraint or unique index is in FILTERING WITHOUT ERROR mode, the
INSERT, DELETE, MERGE, or UPDATE statement succeeds, but the database
server enforces the constraint or the unique-index requirement by writing any
failed rows to the violations table associated with the target table. Diagnostic
information about the constraint violation or unique-index violation is written to
the diagnostics table associated with the target table.

In data manipulation operations, filtering mode has the following specific effects
on INSERT, UPDATE, and DELETE statements:

2-746 IBM Informix Guide to SQL: Syntax

v A constraint violation during an INSERT statement causes the database server to
make a copy of the nonconforming record and write it to the violations table.
The database server does not write the nonconforming record to the target table.
If the INSERT statement is not a singleton INSERT, the rest of the insert
operation proceeds with the next record.

v A constraint violation or unique-index violation during an UPDATE statement
causes the database server to make a copy of the existing record that was to be
updated and write it to the violations table. The database server also makes a
copy of the new record and writes it to the violations table, but the actual record
is not updated in the target table. If the UPDATE statement is not a singleton
update, the rest of the update operation proceeds with the next record.

v A constraint violation or unique-index violation during a DELETE statement
causes the database server to make a copy of the record that was to be deleted
and write it to the violations table. The database server does not delete the
actual record in the target table. If the DELETE statement is not a singleton
delete, the rest of the delete operation proceeds with the next record.

v In MERGE statements, the component INSERT, DELETE, or UPDATE operations
are processed as respectively described above.

In all of these cases, the database server sends diagnostic information about each
constraint violation or unique-index violation to the diagnostics table associated
with the target table.

For information on the structure of the records that the database server writes to
the violations and diagnostics tables, see “Structure of the violations table” on page
2-831 and “Structure of the diagnostics table” on page 2-837.

FILTERING NOVALIDATE modes for foreign-key constraints

While the SET Database Object Mode statement is changing the mode of a
foreign-key constraint to FILTERING WITHOUT ERROR or to FILTERING WITH
ERROR, the database server validates the constraint by examining every row in the
constrained table to verify that a row with a corresponding value exists in the
primary-key column of the referenced table. This validation can require significant
time and resources. You can instead bypass the search for violating rows during
the SET Database Object mode operation by including the NOVALIDATE keyword to
change the foreign-key constraint mode to FILTERING WITHOUT ERROR
NOVALIDATE or to FILTERING WITH ERROR NOVALIDATE. For large tables,
specifying ENABLED NOVALIDATE can substantially reduce the time required to
change the mode of the foreign-key constraint to a filtering mode.

After the SET Database Object Mode statement successfully enables a foreign-key
constraint,
v the constraint is registered in FILTERING WITHOUT ERROR mode (F) or in

FILTERING WITH ERROR mode (G) in the sysobjstate system catalog table,
v but the NOVALIDATE keyword has no encoding and no subsequent effect.

The database server enforces the foreign-key constraint during subsequent DML
operations as the SET CONSTRAINTS statement specified, with or without
integrity violation errors, to maintain the referential integrity of the database.

Starting and Stopping the Violations and Diagnostics Tables:
You must use the START VIOLATIONS TABLE statement to start the violations
and diagnostics tables for the target table on which the database objects are
defined, either before you set any database objects that are defined on the table to

Chapter 2. SQL statements 2-747

the filtering mode, or after you set database objects to filtering, but before any
users issue INSERT, DELETE, or UPDATE statements.

If you want to stop the database server from filtering bad records to the violations
table and sending diagnostic information about each bad record to the diagnostics
table, you must issue a STOP VIOLATIONS TABLE statement.

For further information on these statements, see “START VIOLATIONS TABLE
statement” on page 2-828 and “STOP VIOLATIONS TABLE statement” on page
2-840.

Error Options for Filtering Mode: When you set the mode of a constraint or
unique index to filtering, you can specify one of two error options. These error
options control whether the database server displays an integrity-violation error
message when it encounters bad records during execution of data manipulation
statements:
v The WITH ERROR option instructs the database server to return a referential

integrity-violation error message after executing an INSERT, DELETE, or
UPDATE statement in which one or more of the target rows causes a constraint
violation or a unique-index violation.

v The WITHOUT ERROR option is the default. This option prevents the database
server from issuing a referential integrity-violation error message to the user
after an INSERT, DELETE, or UPDATE statement causes a constraint violation or
a unique-index violation.

Effect of Filtering Mode on the Database: The net effect of the filtering mode is
that the contents of the target table always satisfy all constraints on the table and
any unique-index requirements on the table.

In addition, the database server does not lose any data values that violate a
constraint or unique-index requirement, because non-conforming records are sent
to the violations table, and diagnostic information about those records is sent to
the diagnostics table.

Furthermore, when filtering mode is in effect, insert, delete, and update operations
on the target table do not fail when the database server encounters bad records.
These operations succeed in adding all the good records to the target table. Thus,
filtering mode is appropriate for large-scale batch updates of tables. The user can
fix records that violate constraints and unique-index requirements after the fact.
The user does not need to fix the bad records before the batch update to avoid
losing the bad records during the batch update.

SET DATASKIP statement
Use the SET DATASKIP statement to control whether the database server skips a
dbspace that is unavailable during the processing of a transaction.

This statement is an extension to the ANSI/ISO standard for SQL.

2-748 IBM Informix Guide to SQL: Syntax

Syntax

�� SET DATASKIP

�

ON
,

dbspace
OFF
DEFAULT

��

Element Description Restrictions Syntax

dbspace Name of the skipped dbspace Must exist at time of execution “Identifier” on page
5-21

Usage

SET DATASKIP allows you to reset at runtime the Dataskip feature, which controls
whether the database server skips a dbspace that is unavailable (for example, due
to a media failure) in the course of processing a transaction.

In Informix ESQL/C, the warning flag sqlca.sqlwarn.sqlwarn6 is set to W if a
dbspace is skipped. See also the IBM Informix ESQL/C Programmer's Manual.

In Informix, this statement applies only to tables that are fragmented across
dbspaces or partitions. It does not apply to blobspaces nor to sbspaces.

Specifying SET DATASKIP ON without including a dbspace instructs the database
server to skip any dbspaces in the fragmentation list that are unavailable. You can
use the onstat -d or -D options to determine whether a dbspace is down.

When you specify SET DATASKIP ON dbspace, you are instructing the database
server to skip the specified dbspace if it is unavailable.

If you specify SET DATASKIP OFF, the Dataskip feature is disabled. If you specify
SET DATASKIP DEFAULT, the database server uses the setting that is specified in
the DATASKIP configuration parameter in ONCONFIG file.

Examples

The following skips dbsp1 for the current session:
SET DATASKIP ON dbsp1;

The following sets the value of DATASKIP to the value specified in onconfig:
SET DATASKIP DEFAULT;

The following switches DATASKIP off so that all dbspaces are used.
SET DATASKIP OFF;

Related reference:

Skip inaccessible fragments (Administrator's Guide)

Circumstances When a Dbspace Cannot Be Skipped
The database server cannot skip a dbspace under certain conditions. The following
list outlines those conditions:

Chapter 2. SQL statements 2-749

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_0605.htm#ids_admin_0605

v Referential constraint checking
When you want to delete a parent row, the child rows must also be available for
deletion, and must exist in an available fragment.
When you want to insert a new child row, the parent row must be found in the
available fragments.

v Updates
When you perform an update that moves a record from one fragment to
another, both fragments must be available.

v Inserts
When you try to insert records in a expression-based fragmentation strategy and
the dbspace is unavailable, an error is returned.
When you try to insert records in a round-robin fragment-based strategy, and a
dbspace is down, the database server inserts the rows into any available
dbspace.
When no dbspace is available, an error is returned.

v Indexing
When you perform updates that affect the index, such as when you insert or
delete rows, or update an indexed column, the index must be available.
When you try to create an index, the dbspace you want to use must be available.

v Serial keys
The first fragment is used to store the current serial-key value internally. This is
not visible to you except when the first fragment becomes unavailable and a
new serial key value is required, which can happen during INSERT statements.

SET DEBUG FILE statement
Use the SET DEBUG FILE statement to identify the file that is to receive the
runtime trace output of an SPL routine.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� SET DEBUG FILE TO 'filename'
filename_var
expression

WITH APPEND
��

Element Description Restrictions Syntax

expression Expression that returns a filename Must be a valid filename “Expression” on page
4-44

filename Pathname of the file that contains the
output of the TRACE statement

See “Using the WITH
APPEND Option” on page
2-751

“Quoted String” on page
4-219.

filename_var Host variable storing filename string Must be a character type Language specific

Usage

This statement specifies the file to which the database server writes the output
from the TRACE statement in the SPL routine. Each time the TRACE statement is
executed, the trace information is added to this output file.

2-750 IBM Informix Guide to SQL: Syntax

Related reference:
“TRACE” on page 3-56

Create and use SPL routines (SQL Tutorial)

Using the WITH APPEND Option
The output file that you specify in the SET DEBUG FILE statement can be a new
file or existing file. If you specify an existing file, its current contents are deleted
when you issue the SET DEBUG FILE TO statement. The first execution of a
TRACE statement sends trace output to the beginning of the file.

If you include the WITH APPEND option, the current contents of the file are
preserved when you issue the SET DEBUG FILE statement. The first execution of a
TRACE statement adds the new trace output to the end of the file.

If you specify a new file in the SET DEBUG FILE TO statement, it makes no
difference whether you include the WITH APPEND option. The first execution of a
TRACE statement sends trace output to the beginning of the new file whether you
include or omit the WITH APPEND option.

Closing the Output File
To close the file that the SET DEBUG FILE TO statement opened, issue another
SET DEBUG FILE TO statement with another filename. You can then read or edit
the contents of the first file.

Redirecting Trace Output
You can use the SET DEBUG FILE TO statement outside an SPL routine to direct
the trace output of the SPL routine to a file. You can also use this statement within
an SPL routine to redirect its own output.

Location of the Output File
If you execute the SET DEBUG FILE statement with a simple filename on a local
database, the output file is located in your current directory. If your current
database is on a remote database server, the output file is located in your home
directory on the remote database server. If you provide a full pathname for the
debug file, the file is placed in the directory that you specify on the remote
database server. If you do not have write permissions in the directory, you receive
an error.

The following example sends the output of the SET DEBUG FILE TO statement to
a file called debug.out:
SET DEBUG FILE TO ’debug’ || ’.out’;

SET DEFERRED_PREPARE statement
Use the SET DEFERRED_PREPARE statement to control whether a client process
postpones sending a PREPARE statement to the database server until the OPEN or
EXECUTE statement is sent.

Only Informix supports this statement, which is an extension to the ANSI/ISO
standard for SQL. You can use this statement only with Informix ESQL/C.

Chapter 2. SQL statements 2-751

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_412.htm#ids_sqt_412

Syntax

�� SET DEFERRED_PREPARE
ENABLED

DISABLED
��

Usage

By default, the SET DEFERRED_PREPARE statement causes the application
program to delay sending the PREPARE statement to the database server until the
OPEN or EXECUTE statement is executed. In effect, the PREPARE statement is
bundled with the other statement so that one round-trip of messages, instead of
two, is sent between the client and the server. This Deferred-Prepare feature can
affect the following series of Dynamic SQL statement:
v PREPARE, DECLARE, OPEN statement blocks that operate with the FETCH or

PUT statements
v PREPARE followed by the EXECUTE or EXECUTE IMMEDIATE statement

You can specify ENABLED or DISABLED options for SET DEFERRED_PREPARE.

If you specify no option, the default is ENABLED. The following example enables
the Deferred-Prepare feature by default:
EXEC SQL set deferred_prepare;

The ENABLED option enables the Deferred-Prepare feature within the application.
The following example explicitly specifies the ENABLED option:
EXEC SQL set deferred_prepare enabled;

After an application issues SET DEFERRED_PREPARE ENABLED, the
Deferred-Prepare feature is enabled for subsequent PREPARE statements in the
application. The application then exhibits the following behavior:
v The sequence PREPARE, DECLARE, OPEN sends the PREPARE statement to the

database server with the OPEN statement. If the prepared statement has syntax
errors, the database server does not return error messages to the application
until the application declares a cursor for the prepared statement and opens the
cursor.

v The sequence PREPARE, EXECUTE sends the PREPARE statement to the
database server with the EXECUTE statement. If a prepared statement contains
syntax errors, the database server does not return error messages to the
application until the application attempts to execute the prepared statement.

If Deferred-Prepare is enabled in a PREPARE, DECLARE, OPEN statement block
that contains a DESCRIBE statement, the DESCRIBE statement must follow the
OPEN statement rather than the PREPARE statement. If the DESCRIBE follows
PREPARE, the DESCRIBE statement results in an error.

Use the DISABLED option to disable the Deferred-Prepare feature within the
application. The following example specifies the DISABLED option:
EXEC SQL set deferred_prepare disabled;

If you specify the DISABLED option, the application sends each PREPARE
statement to the database server when the PREPARE statement is executed.
Related concepts:

2-752 IBM Informix Guide to SQL: Syntax

Dynamic SQL (SQL Tutorial)
Related reference:
“DECLARE statement” on page 2-386
“DESCRIBE statement” on page 2-412
“EXECUTE statement” on page 2-455
“OPEN statement” on page 2-581
“PREPARE statement” on page 2-589

The SET DEFERRED_PREPARE statement (ESQL/C Guide)
“FETCH statement” on page 2-474

Example of SET DEFERRED_PREPARE
The following code fragment shows a SET DEFERRED_PREPARE statement with a
PREPARE, EXECUTE statement block. In this case, the database server executes the
PREPARE and EXECUTE statements all at once:
EXEC SQL BEGIN DECLARE SECTION;

int a;
EXEC SQL END DECLARE SECTION;
EXEC SQL allocate descriptor ’desc’;
EXEC SQL create database test;
EXEC SQL create table x (a int);

/* Enable Deferred-Prepare feature */
EXEC SQL set deferred_prepare enabled;
/* Prepare an INSERT statement */
EXEC SQL prepare ins_stmt from ’insert into x values(?)’;
a = 2;
EXEC SQL EXECUTE ins_stmt using :a;
if (SQLCODE)

printf("EXECUTE : SQLCODE is %d\n", SQLCODE);

Using Deferred-Prepare with OPTOFC
You can use the Deferred-Prepare and Open-Fetch-Close Optimization (OPTOFC)
features in combination. The OPTOFC feature delays sending the OPEN message
to the database server until the FETCH message is sent. The following situations
occur if you enable the Deferred-Prepare and OPTOFC features at the same time:
v If the text of a prepared statement contains syntax errors, the error messages are

not returned to the application until the first FETCH statement is executed.
v A DESCRIBE statement cannot be executed until after the FETCH statement.
v You must issue an ALLOCATE DESCRIPTOR statement before a DESCRIBE or

GET DESCRIPTOR statement can be executed.

The database server performs an internal execution of a SET DESCRIPTOR
statement which sets the TYPE, LENGTH, DATA, and other fields in the system
descriptor area. You can specify a GET DESCRIPTOR statement after the FETCH
statement to see the data that is returned.

SET DESCRIPTOR statement
Use the SET DESCRIPTOR statement to set values in a system-descriptor area
(SDA).

Use this statement with Informix ESQL/C.

Chapter 2. SQL statements 2-753

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_332.htm#ids_sqt_332
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0552.htm#ids_esqlc_0552

Syntax

�� SET DESCRIPTOR descriptor_var
'descriptor '

�

�

�

COUNT= total_items_var
total_items

,
(1)

VALUE item_num_var Item Descriptor
item_num

��

Notes:

1 See “Item Descriptor” on page 2-755

Element Description Restrictions Syntax

descriptor String that identifies the SDA to which
values are assigned

System-descriptor area (SDA)
must be previously allocated

“Quoted String” on
page 4-219

descriptor_var Host variable that stores descriptor Same restrictions as descriptor Language specific

item_num Unsigned integer that specifies ordinal
position of an item descriptor in the
SDA

0 < item_num ≤ (number of item
descriptors specified when SDA
was allocated)

“Literal Number” on
page 4-215

item_num_var Host variable that stores item_num Same restrictions as item_num Language specific

total_items Unsigned integer that specifies how
many items the SDA describes

Same restrictions as item_num “Literal Number” on
page 4-215

total_items_var Host variable that stores total_items Same restrictions as total_items Language specific

Usage

The SET DESCRIPTOR statement can be used after you have described SELECT,
EXECUTE FUNCTION, EXECUTE PROCEDURE, ALLOCATE DESCRIPTOR, or
INSERT statements with the DESCRIBE ... USING SQL DESCRIPTOR statement.

SET DESCRIPTOR can assign values to a system-descriptor area in these cases:
v To set the COUNT field of a system-descriptor area to match the number of

items for which you are providing descriptions in the system-descriptor area
v To set the item descriptor for each value for which you are providing

descriptions in the system-descriptor area
v To modify the contents of an item-descriptor field

If an error occurs during the assignment to any identified system-descriptor fields,
the contents of all identified fields are set to 0 or NULL, depending on the data
type of the variable.
Related reference:
“GET DESCRIPTOR statement” on page 2-487
“ALLOCATE DESCRIPTOR statement” on page 2-2
“DEALLOCATE DESCRIPTOR statement” on page 2-384
“DECLARE statement” on page 2-386
“DESCRIBE statement” on page 2-412
“EXECUTE statement” on page 2-455

2-754 IBM Informix Guide to SQL: Syntax

“FETCH statement” on page 2-474
“OPEN statement” on page 2-581
“PREPARE statement” on page 2-589
“PUT statement” on page 2-601

A system-descriptor area (ESQL/C Guide)
“DESCRIBE INPUT statement” on page 2-417

Using the COUNT Clause
Use the COUNT clause to set the number of items that are to be used in the
system-descriptor area. If you allocate a system-descriptor area with more items
than you are using, you need to set the COUNT field to the number of items that
you are actually using. The following example shows a fragment of an Informix
ESQL/C program:
EXEC SQL BEGIN DECLARE SECTION;

int count;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate descriptor ’desc_100’; /*allocates for 100 items*/
count = 2;

EXEC SQL set descriptor ’desc_100’ count = :count;

Using the VALUE Clause
Use the VALUE clause to assign values from host variables into fields of a
system-descriptor area. You can assign values for items for which you are
providing a description (such as parameters in a WHERE clause), or you can
modify values for items after you use a DESCRIBE statement to fill the fields for
an UPDATE or INSERT statement.

Item Descriptor
Use the Item Descriptor portion of the SET DESCRIPTOR statement to set value
for an individual field in a system-descriptor area.

Item Descriptor:

Chapter 2. SQL statements 2-755

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0610.htm#ids_esqlc_0610

TYPE = literal_int_var
LENGTH literal_int
PRECISION
SCALE
NULLABLE
INDICATOR
ITYPE
ILENGTH

(1)
DATA = Literal Number
IDATA (2)

Literal DATETIME
(3)

Literal INTERVAL
(4)

Quoted String
input_var

(4)
NAME = Quoted String
EXTYPENAME input_var
EXTYPEOWNERNAME
SOURCEID = literal_int_var
SOURCETYPE literal_int
EXTYPEID
EXTYPELENGTH
EXTYPEOWNERLENGTH

Notes:

1 See “Literal Number” on page 4-215

2 See “Literal DATETIME” on page 4-210

3 See “Literal INTERVAL” on page 4-213

4 See “Quoted String” on page 4-219

Element Description Restrictions Syntax

input_var Host variable storing data for the
specified item descriptor field

Must be appropriate for the specified
field

Language-specific

literal_int Integer value (> 0) assigned to the
specified item descriptor field

Restrictions depend on the keyword
to the left of = symbol

“Literal Number” on
page 4-215

literal_int_var Variable having literal_int value Same as for literal_int Language-specific

For information on codes that are valid for the TYPE or ITYPE fields and their
meanings, see “Setting the TYPE or ITYPE Field.”

For the restrictions that apply to other field types, see the individual headings for
field types under “Using the VALUE Clause” on page 2-755.

Setting the TYPE or ITYPE Field
Use these integer values to set the value of TYPE or ITYPE for each item.

SQL Data Type
Integer
Value

X-Open
Integer
Value SQL Data Type

Integer
Value

X-Open
Integer
Value

CHAR 0 1 MONEY 8 –

2-756 IBM Informix Guide to SQL: Syntax

SQL Data Type
Integer
Value

X-Open
Integer
Value SQL Data Type

Integer
Value

X-Open
Integer
Value

SMALLINT 1 4 DATETIME 10 –

INTEGER 2 5 BYTE 11 –

FLOAT 3 6 TEXT 12 –

SMALLFLOAT 4 – VARCHAR 13 –

DECIMAL 5 3 INTERVAL 14 –

SERIAL 6 – NCHAR 15 –

DATE 7 – NVARCHAR 16 –

The following table lists integer values that represent additional data types
available with Informix.

SQL Data Type
Integer
Value SQL Data Type

Integer
Value

INT8 17 Fixed-length OPAQUE type 41

SERIAL8 18 LVARCHAR (client-side only) 43

SET 19 BOOLEAN 45

MULTISET 20 BIGINT 52

LIST 21 BIGSERIAL 53

ROW (unnamed) 22 IDSSECURITYLABEL 2061

COLLECTION 23 ROW (named) 4118

Variable-length
OPAQUE type

40

The same TYPE constants can also appear in the syscolumns.coltype column in
the system catalog; see IBM Informix Guide to SQL: Reference.

For code that is easier to maintain, use the predefined constants for these SQL data
types instead of their actual integer values. These constants are defined in the
$INFORMIX/incl/public/sqltypes.h header file. You cannot, however, use the
actual constant name in the SET DESCRIPTOR statement. Instead, assign the
constant to an integer host variable and specify the host variable in the SET
DESCRIPTOR statement file.

The following example shows how you can set the TYPE field in Informix
ESQL/C:
main()
{
EXEC SQL BEGIN DECLARE SECTION;

int itemno, type;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL allocate descriptor ’desc1’ with max 5;
...
type = SQLINT; itemno = 3;
EXEC SQL set descriptor ’desc1’ value :itemno type = :type;
}

Chapter 2. SQL statements 2-757

This information is identical for ITYPE. Use ITYPE when you create a dynamic
program that does not comply with the X/Open standard.

Compiling Without the -xopen Option: If you compile without the -xopen
option, the normal Informix SQL code is assigned for TYPE. You must be careful
not to mix normal and X/Open modes, because errors can result. For example, if a
data type is not defined under X/Open mode, but is defined under normal mode,
executing a SET DESCRIPTOR statement can result in an error.

Setting the TYPE Field in X/Open Programs: In X/Open mode, you must use the
X/Open set of integer codes for the data type in the TYPE field.

If you use the ILENGTH, IDATA, or ITYPE fields in a SET DESCRIPTOR
statement, a warning message appears. The warning indicates that these fields are
not standard X/Open fields for a system-descriptor area.

For code that is easier to maintain, use the predefined constants for these X/Open
SQL data types instead of their actual integer value. These constants are defined in
the $INFORMIX/incl/public/sqlxtype.h header file.

Using DECIMAL or MONEY Data Types: If you set the TYPE field for a
DECIMAL or MONEY data type, and you want to use a scale or precision other
than the default values, set the SCALE and PRECISION fields. You do not need to
set the LENGTHfield for a DECIMAL or MONEY item; the LENGTH field is set
accordingly from the SCALE and PRECISION fields.

Using DATETIME or INTERVAL Data Types: If you set the TYPE field for a
DATETIME or INTERVAL value, the DATA field can be a DATETIME or
INTERVAL literal or a character string. If you use a character string, the LENGTH
field must be the encoded qualifier value.

To determine the encoded qualifiers for a DATETIME or INTERVAL character
string, use the datetime and interval macros in the datetime.h header file.

If you set DATA to a host variable of DATETIME or INTERVAL, you do not need
to set LENGTH explicitly to the encoded qualifier integer.

Setting the DATA or IDATA Field
When you set the DATA or IDATA field, use the appropriate type of data
(character string for CHAR or VARCHAR, integer for INTEGER, and so on).

If any value other than DATA is set, the value of DATA is undefined. You cannot
set the DATA or IDATA field for an item without setting TYPE for that item. If
you set the TYPE field for an item to a character type, you must also set the
LENGTH field. If you do not set the LENGTH field for a character item, you
receive an error.

Setting the LENGTH or ILENGTH Field
If your DATA or IDATA field contains a character string, you must specify a value
for LENGTH. If you specify LENGTH=0, LENGTH is automatically set to the
maximum length of the string. The DATA or IDATA field can contain a literal
character string of up to 368-bytes, or a character string derived from a character
variable of a CHAR or VARCHAR data type. This provides a method to determine
dynamically the length of a string in the DATA or IDATAfield.

2-758 IBM Informix Guide to SQL: Syntax

If a DESCRIBE statement precedes a SET DESCRIPTOR statement, LENGTH is
automatically set to the maximum length of the character field that is specified in
your table.

This information is identical for ILENGTH. Use ILENGTH when you create a
dynamic program that does not comply with the X/Open standard.

Setting the INDICATOR Field
If you want to put a NULL value into the system-descriptor area, set the
INDICATOR field to -1 and do not set the DATA field.

If you set the INDICATOR field to 0 to indicate that the data is not NULL, you
must set the DATA field.

Setting Opaque-Type Fields
The following item-descriptor fields provide information about a column that has
an opaque type as its data type:
v The EXTYPEID field stores the extended identifier for the opaque type. This

integer value must correspond to a value in the extended_id column of the
sysxtdtypes system catalog table.

v TheEXTYPENAME field stores the name of the opaque type. This character
value must correspond to a value in the name column of the row with the
matching extended_id value in the sysxtdtypes system catalog table.

v The EXTYPELENGTH field stores the length of the opaque-type name. This
integer value is the length, in bytes, of the string in the EXTYPENAME field.

v The EXTYPEOWNERNAME field stores the name of the opaque-type owner.
This character value must correspond to a value in the owner column of the row
with the matching extended_id value in the sysxtdtypes system catalog table.

v The EXTYPEOWNERLENGTH field stores the length of the value in the
EXTTYPEOWNERNAME field. This integer value is the length, in bytes, of the
string in the EXTYPEOWNERNAME field.

For more information on the sysxtdtypes system catalog table, see the IBM Informix
Guide to SQL: Reference.
Related reference:

SYSXTDTYPES (SQL Reference)

Setting Distinct-Type Fields
The following item-descriptor fields provide information about a column that has a
distinct type as its data type:
v The SOURCEID field stores the extended identifier for the source data type.

Set this field if the source type of the distinct type is an opaque data type. This
integer value must correspond to a value in the source column for the row of
the sysxtdtypes system catalog table whose extended_id value matches that of
the distinct type you are setting.

v TheSOURCETYPE field stores the data type constant for the source data type.
This value is the data type constant for the built-in data type that is the source
type for the distinct type. The codes for the SOURCETYPE field are the same as
those for the TYPE field (page “Setting the TYPE or ITYPE Field” on page
2-756). This integer value must correspond to the value in the type column for
the row of the sysxtdtypes system catalog table whose extended_id value
matches that of the distinct type you are setting.

Chapter 2. SQL statements 2-759

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_084.htm#ids_sqr_084

For more information on the sysxtdtypes system catalog table, see the IBM Informix
Guide to SQL: Reference.
Related reference:

SYSXTDTYPES (SQL Reference)

Modifying Values Set by the DESCRIBE Statement
You can use a DESCRIBE statement to modify the contents of a system-descriptor
area after it is set.

After you use DESCRIBE on a SELECT or an INSERT statement, you must check to
determine whether the TYPE field is set to either 11 or 12 to indicate a TEXT or
BYTE data type. If TYPE contains an 11 or a 12, you must use the SET
DESCRIPTOR statement to reset TYPE to 116, which indicates FILE type.

SET ENCRYPTION PASSWORD statement
Use the SET ENCRYPTION PASSWORD statement to define or reset a session
password for the encryption and decryption of character, BLOB, or CLOB values.

Only Informix supports this statement, which is an extension to the ANSI/ISO
standard for SQL. You can use this statement with ESQL/C.

Syntax

�� SET ENCRYPTION PASSWORD 'password'
WITH HINT 'hint'

��

Element Description Restrictions Syntax

hint String that GETHINT returns from
an encrypted argument

(0 byte) ≤ hint ≤ (32 bytes). Do not
include the password in the hint.

“Expression” on page
4-44

password Password (or a multi-word phrase)
for data encryption

(6 bytes) ≤ password ≤ (120 bytes). Do
not specify your login password.

“Expression” on page
4-44

Usage

The SET ENCRYPTION PASSWORD statement declares a password to support
data confidentiality through built-in functions that use the Triple-DES or AES
algorithms for encryption and decryption. These functions enable the database to
store sensitive data in an encrypted format that prevents anyone who cannot
provide the secret password from viewing, copying, or modifying encrypted data.

The password is not stored as plain text in the database and is not accessible to the
DBA. This security feature is independent of the Trusted Facility feature.

Important: By default, communication between client systems and Informix is in
plain text. Unless the database is accessible only by a secure network, the DBA
must enable the encryption communication support module (ENCCSM) to provide
data encryption between the database server and any client system. Otherwise, an
attacker might read the password and use it to access encrypted data.

2-760 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_084.htm#ids_sqr_084

If the network is not secure, all of the database servers in a distributed query need
ENCCSM enabled, so that the password is not transmitted as plain text. For
information about how to enable a communication support module (CSM), see
your IBM Informix Administrator's Guide.

Operations on encrypted data tend to be slower than corresponding operations on
plain text data, but use of this feature has no effect on unencrypted data.

The SET ENCRYPTION PASSWORD statements can be prepared, and EXECUTE
IMMEDIATE can process a prepared SET ENCRYPTION PASSWORD statement.
Related concepts:
“IFX_AUTO_REPREPARE Environment Option” on page 2-773
Related reference:

INFORMIXCONCSMCFG environment variable (SQL Reference)

Storage Requirements for Encryption
Use the ENCRYPT_AES or ENCRYPT_TDES built-in functions to encrypt data.
Encrypted values of character data types are stored in BASE64 format (also called
Radix-64). For character data, this requires significantly more storage than the
corresponding unencrypted data. Omitting the hint can reduce encryption
overhead by more than 50 bytes for each encrypted value. It is the responsibility of
the user to make sufficient storage space available for encrypted values.

The following table lists the data types that can be encrypted, and built-in
functions that you can use to encrypt and decrypt values of those data types:

Original Data Type Encrypted Data Type BASE64 Format Decryption Function

CHAR CHAR Yes DECRYPT_CHAR

NCHAR NCHAR Yes DECRYPT_CHAR

VARCHAR VARCHAR Yes DECRYPT_CHAR

NVARCHAR NVARCHAR Yes DECRYPT_CHAR

LVARCHAR LVARCHAR Yes DECRYPT_CHAR

BLOB BLOB No DECRYPT_BINARY

CLOB BLOB No DECRYPT_CHAR

You cannot encrypt a column of the IDSSECURITYLABEL data type.

If the encrypted VARCHAR (or NVARCHAR) value is longer than the 255 byte
maximum size for those data types, the encryption function returns a CHAR (or
NCHAR) value of sufficient size to store the encrypted value.

DECRYPT_BINARY and DECRYPT_CHAR both return the same value from
encrypted CHAR, NCHAR, VARCHAR, NVARCHAR, or LVARCHAR values. No
built-in encryption or decryption functions support BYTE or TEXT data types, but
you can use BLOB data types to encrypt very large strings.

Warning: If the declared size of a database column in which you intend to store
encrypted data is smaller than the encrypted data length, truncation occurs when
you insert the encrypted data into the column. The truncated data cannot
subsequently be decrypted, because the data length indicated in the header of the
encrypted string does not match what the column stores. To avoid truncation,

Chapter 2. SQL statements 2-761

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_260.htm#ids_sqr_260

make sure that any column storing encrypted strings has sufficient length. (See the
cross-reference in the next paragraph for details of how to calculate encrypted
string lengths.)

Besides the unencrypted data length, the storage required for encrypted data
depends on the encoding format, on whether you specify a hint, and on the block
size of the encryption function. For a formula to estimate the encrypted size, see
"Calculating storage requirements for encrypted data" on page “Calculating storage
requirements for encrypted data” on page 4-119.

Specifying a Session Password and Hint
The required password specification can be quoted strings or other character
expression that evaluates to a string whose length is at least 6 bytes but no more
than 128 bytes. The optional hint can specify a string no longer than 32 bytes.

The password or hint can be a single word or several words. The hint should be a
word or phrase that helps you to remember the password, but does not include the
password. You can subsequently execute the built-in GETHINT function (with an
encrypted value as its argument) to return the plain text of hint.

The following ESQL/C program fragment defines a routine that includes the SET
ENCRYPTION PASSWORD statement and executes DML statements:
process_ssn()
{
EXEC SQL BEGIN DECLARE SECTION;
char password[128];
char myhint[33];
char myid[16], myssn[16];
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL SET ENCRYPTION PASSWORD :password WITH HINT :myhint;
...
EXEC SQL INSERT INTO tab1 VALUES (’:abcd’, ENCRYPT_AES("111-22-3333")) ;
EXEC SQL SELECT Pid, DECRYPT(ssn, :password) INTO :myid, :myssn;
...
EXEC SQL SELECT GETHINT(ssn) INTO :myhint, WHERE id = :myid;
}

Levels of Encryption
You can use SET ENCRYPTION PASSWORD with encryption and decryption
functions to support these granularities of encryption in the database.
v Column-Level Encryption: All values in a given column of a database table are

encrypted using the same password, the same encryption algorithm, and the
same encryption mode. (In this case, you can save disk space by storing the hint
outside the encrypted column, rather than repeating it in every row.)

v Cell-Level Encryption: Values of a given column in different rows of the same
database table are encrypted using different passwords, or different encryption
algorithms, or different encryption modes. This technique is sometimes
necessary to protect personal data. (Row-column level encryption and set-column
level encryption are both synonyms for cell-level encryption.)
Cell-level encryption can cause substantial maintenance costs. If you implement
this level of encryption, your application is responsible for determining which
rows contain encrypted data and for using the correct code to handle the data.
The built-in decryption functions of Informix fail with error -26005 if they are
applied to unencrypted data. The simplest way to avoid this error is to use
column-level encryption rather than cell-level encryption.

2-762 IBM Informix Guide to SQL: Syntax

If you do not use encryption functions, people might enter unencrypted data
into columns that are meant to contain encrypted data. To ensure that data
entered into a field is always encrypted, use views and INSTEAD OF triggers.

Protecting Passwords
Passwords and hints that you declare with SET ENCRYPTION PASSWORD are not
stored as plain text in any table of the system catalog, which also maintains no
record of which columns or tables contain encrypted data.

To prevent other users from accessing the plain text of encrypted data or of a
password, however, you must avoid actions that might compromise the secrecy of
a password:
v Do not create a functional index using a decryption function. (This would store

plain-text data in the database, defeating the purpose of encryption.)
v On a network that is not secure, always work with encrypted data, or use

session encryption, because the SQL communication between client and server
sends passwords, hints, and the data to be encrypted as plain text.

v Do not store passwords in a trigger or in a UDR that exposes the password to
the public.

v Do not set the session password prior to creating any view, trigger, procedure, or
UDR. Set the session password only when you use the object. Otherwise, the
password might be visible in the schema to other users, and queries executed by
other users might return unencrypted data. The following example shows a
procedure that includes an encrypted password:
-- reset session encryption password
set encryption password null;

-- create procedure without password
create procedure p1 ();

insert into tab2 select (decrypt_char (col1))
from tab1;

end procedure;

-- set session encryption password
set encryption password ("PASSWD2");

-- insert data
insert into tab1 values (encrypt_aes (’WXY’));

-- call procedure

Output from the SET EXPLAIN statement always displays the password and hint
parameters as XXXXX, rather than displaying actual password or hint values.

SET ENVIRONMENT statement
Use the SET ENVIRONMENT statement to specify settings for session environment
options that can affect subsequent queries that are submitted within the same
routine, or other operations of the current user session. For some options, this
statement overrides the default behavior that is set by a configuration parameter or
by an environment variable for the database server instance.

This is an extension to the ANSI/ISO standard for SQL. Informix supports the
AUTO_READAHEAD, AUTO_STAT_MODE, BOUND_IMPL_PDQ,
CLUSTER_TXN_SCOPE, DEFAULTESCCHAR, EXTDIRECTIVES,
FORCE_DDL_EXEC, IFX_AUTO_REPREPARE, IFX_BATCHEDREAD_INDEX,
IFX_BATCHEDREAD_TABLE, IMPLICIT_PDQ, INFORMIXCONRETRY,

Chapter 2. SQL statements 2-763

INFORMIXCONTIME, NOVALIDATE, OPTCOMPIND, RETAINUPDATELOCKS,
STATCHANGE, USELASTCOMMITTED, and USTLOW_SAMPLE session
environment options.

Syntax

�� SET ENVIRONMENT AUTO_READAHEAD '0'
IFX_BATCHEDREAD_INDEX '1'
IFX_BATCHEDREAD_TABLE (1)

'2'
AUTO_STAT_MODE OFF
EXTDIRECTIVES '0'
IFX_AUTO_REPREPARE ON
NOVALIDATE '1'
USTLOW_SAMPLE (2)

DEFAULT
BOUND_IMPL_PDQ OFF
IMPLICIT_PDQ ON

'integer'
CLUSTER_TXN_SCOPE 'SESSION'

'SERVER'
'CLUSTER'
DEFAULT

DEFAULTESCCHAR 'char'
'NONE'

FORCE_DDL_EXEC OFF
'0'
ON
'1'
'integer'

HDR_TXN_SCOPE 'ASYNC'
'FULL_SYNC'
'NEAR_SYNC'

INFORMIXCONRETRY
'integer'

INFORMIXCONTIME
'integer'

OPTCOMPIND DEFAULT
STATCHANGE 'integer'

RETAINUPDATELOCKS 'ALL'
USELASTCOMMITTED 'NONE'

'DIRTY READ'
'COMMITTED READ'
(3)

'CURSOR STABILITY'

��

Notes:

1 With AUTO_READAHEAD only. ’2’ is not valid for IFX_BATCHEDREAD_INDEX or IFX_BATCHEDREAD_TABLE.

2 With EXTDIRECTIVES only. DEFAULT is not valid for AUTO_STAT_MODE, IFX_AUTO_REPREPARE, NOVALIDATE,
or USTLOW_SAMPLE.

3 With RETAINUPDATELOCKS only

Element Description Restrictions Syntax

char A single character to set as the default escape
character in LIKE or MATCHES operands in
the session

Must be a single-byte character “Quoted String”
on page 4-219

2-764 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

integer OPTCOMPIND codes 0, 1, or 2 prioritize a
nested-loop join optimizer strategy.

FORCE_DDL_EXEC value > 1 sets a timeout limit,
in seconds.

IMPLICIT_PDQ or BOUND_IMPL_PDQ value of 1 ≤
integer ≤ 100 scales the explicit PDQPRIORITY
value by that percentage.

INFORMIXCONRETRY value sets the maximum
number of additional connection attempts
after the first failure

INFORMIXCONTIME value > 0 sets the number of
seconds that the CONNECT statement
attempts to establish a connection to a
database server. A setting of 0 defaults to the
INFORMIXCONTIME configuration parameter
value.

STATCHANGE value of 1 ≤ integer ≤ 100 sets a
data change threshold, as a percentage, for
UPDATE STATISTICS operations.

Must be valid for the specified
session environment option

“Quoted String”
on page 4-219

Usage

SET ENVIRONMENT specifies environment options that can affect queries or
manage resource use by the routine in which the statement is executed. Some
options can override the setting of an environment variable or of a configuration
parameter during the session in which SET ENVIRONMENT is issued. For
example, the SET ENVIRONMENT OPTCOMPIND ’2’ statement instructs the query
optimizer to use cost as the basis for subsequent join plans during the session,
rather than favoring nested-loop joins. This instruction is carried out even if this
behavior conflicts with the current 0 or 1 setting of the OPTCOMPIND environment
variable.

The following keywords have similar effects for several session environment
options:
v OFF disables the specified option
v ON enables the option
v DEFAULT sets the option to its default value

The arguments that follow the option name depend on the syntax of the option.
The option name and its ON, OFF, and DEFAULT keywords do not require quotation
mark delimiters, and are not case-sensitive. All other arguments must be enclosed
between single (’) or double (") quotation marks. If a quoted string is a valid
argument for a session environment option, the argument is case-sensitive. The
preceding syntax diagram is simplified, by showing only single (’) quotation
mark around syntax tokens for which double (") quotation marks are also valid
as delimiters.

If you specify an unsupported environment option name, error -19840 is returned.
If you specify an unsupported integer or digit value as the setting for a valid
environment option, an option-specific error is returned (for example, error -19843,

Chapter 2. SQL statements 2-765

Invalid IFX_AUTO_REPREPARE value specified).
Related concepts:
“Performance considerations of UPDATE STATISTICS statements” on page 2-883
Related reference:
“SET OPTIMIZATION statement” on page 2-807
“SET ISOLATION statement” on page 2-796
“SET PDQPRIORITY statement” on page 2-811

AUTO_READAHEAD environment option
Use the AUTO_READAHEAD environment option to change the automatic
read-ahead mode or to disable automatic read-ahead operations for a session.

Specify the automatic read-ahead mode for a session as follows:
v 0 = Disable automatic read-ahead requests.
v 1 = Enable automatic read-ahead requests in the standard mode. The server will

automatically process read-ahead requests only when a query waits on I/O.
(Default)

v 2 = Enable automatic read-ahead requests in the aggressive mode. The server
will automatically process read-ahead requests at the start of the query and
continuously through the duration of the query.

You can optionally specify a read-ahead count (readahead_cnt) value. To do this
specify 4 to 4096 for the number of pages that automatic read-ahead requests to be
read ahead. If this value is not set, the default is 128 pages. Use a comma as a
separator between the read-ahead mode and the read-ahead count value.

The value you specify overrides the setting of the AUTO_READAHEAD
configuration parameter for the session.

For example, to disable automatic read-ahead operations for a session, specify:
SET ENVIRONMENT AUTO_READAHEAD ’0’;

Generally, the default setting (AUTO_READAHEAD = 1) is appropriate for most
production environments, even cached environments.
Related reference:

AUTO_READAHEAD configuration parameter (Administrator's Reference)

AUTO_STAT_MODE Environment Option
Use the AUTO_STAT_MODE environment option to enable or disable an automatic
mode for UPDATE STATISTICS operations during the current session. In
automatic mode, the user can define a minimum data change threshold as an
attribute of the table. The database server refreshes statistics on the table, its
indexes, and on table and index fragments only if the data has changed beyond
that threshold since the distribution statistics were last calculated.

Distribution statistics are used by the query optimizer to identify efficient
execution plans for DML operations. Because calculating statistics for a large table
is a resource-intensive operation, however, recalculating distributions that have not
significantly differed from their current values in the system catalog degrades the
performance of the database server, compared to a more efficient allocation of
system resources.

2-766 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1125.htm#ids_adr_1125

When automatic UPDATE STATISTICS mode is enabled, the UPDATE STATISTICS
statement selectively refreshes only the table, column, and index data distribution
statistics that it identifies as stale or missing. The user can specify the minimum
change threshold as a table attribute when the table is created or altered. The value
of this attribute overrides the explicit or default setting of the STATCHANGE
configuration parameter. The SET ENVIRONMENT STATCHANGE statement
similarly overrides the STATCHANGE configuration parameter setting for the
current session. If no STATCHANGE threshold is explicitly set, the system default
threshold (of at least 10 percent of the rows changed since statistics were last
calculated) defines stale data distributions when the automatic UPDATE
STATISTICS mode is enabled.

When automatic mode is disabled, the database server does not consider any
user-defined or default threshold for stale statistics when the UPDATE STATISTICS
statement recalculates distribution statistic. In nonautomatic mode (or when you
include the FORCE keyword in the UPDATE STATISTICS statement), the database
server drops and recalculates the statistics for all of the specified tables and
indexes, without reference to any previously calculated data distributions.

The value that the SET ENVIRONMENT AUTO_STAT_MODE statement specifies
can enable or disable the automatic identification and recalculation of stale
statistics:
v If the specified AUTO_STAT_MODE value is ’ON’, the automatic mode is

enabled and stale statistics are automatically recalculated.
v If the specified AUTO_STAT_MODE value is ’OFF’, the automatic mode is

disabled and UPDATE STATISTICS operations recalculate both stale and current
statistics.

The automatic mode for UPDATE STATISTICS requires all of the fragments of a
table to maintain the distribution of a column at the same resolution. This implies
that consecutive UPDATE STATISTICS operations with a resolution different from
what was used for creating the current column distribution in the system catalog
forces a refresh of all column distributions for all fragments. If no resolution is
specified, use the one that is stored with the distribution, rather than the default
resolution of 2.5.

Only permanent tables are affected by automatic mode. The AUTO_STAT_MODE
setting has no effect on temporary tables.

The AUTO_STAT_MODE and STATCHANGE configuration
parameters

The AUTO_STAT_MODE configuration parameter can specify a 1 or 0 global value
for the automatic mode for UPDATE STATISTICS operations for all sessions of the
database server. You can use the SET ENVIRONMENT AUTO_STAT_MODE
statement of SQL, however, to override the AUTO_STAT_MODE configuration
parameter setting for the current session.

The STATCHANGE configuration parameter can specify a positive integer as a
global percentage of the change threshold to define stale data distributions. When
the automatic mode for UPDATE STATISTICS is enabled by the
AUTO_STAT_MODE configuration parameter, this setting takes effect as the
default change threshold for any table whose STATCHANGE table attribute is
specified as AUTO, or that is AUTO by default. You can use the SET

Chapter 2. SQL statements 2-767

ENVIRONMENT STATCHANGE statement of SQL, however, to override the
STATCHANGE configuration parameter setting for the current session.

For more information about the AUTO_STAT_MODE and STATCHANGE
configuration parameters, see your IBM Informix Administrator's Reference.

For more information about the STATCHANGE table attribute, see the topics
“Statistics options of the ALTER TABLE statement” on page 2-76, “Statistics options
of the CREATE TABLE statement” on page 2-293, and “Performance considerations
of UPDATE STATISTICS statements” on page 2-883.

Examples of SET ENVIRONMENT AUTO_STAT_MODE

The following statement enables automatic mode for the current session:
SET ENVIRONMENT AUTO_STAT_MODE ’ON’;

This overrides the setting of the AUTO_STAT_MODE configuration parameter, if it
is 'OFF', for the remainder of the current session, or until you reset the
AUTO_STAT_MODE session environment variable.

If you are satisfied the behavior of UPDATE STATISTICS operations on
distribution statistics without automatic mode, you can disable automatic mode, as
in this example:
SET ENVIRONMENT AUTO_STAT_MODE ’OFF’;

Related reference:

AUTO_STAT_MODE configuration parameter (Administrator's Reference)

STATCHANGE configuration parameter (Administrator's Reference)

BOUND_IMPL_PDQ environment option
If IMPLICIT_PDQ is set to ON or to a positive integer value no greater than 100,
use the BOUND_IMPL_PDQ environment option to specify that the allocated
memory should be bounded by the current explicit PDQPRIORITY value or
range. If IMPLICIT_PDQ is OFF, then BOUND_IMPL_PDQ is ignored.

For example, you might execute the following statement to force the database
server to use explicit PDQPRIORITY values as guidelines in allocating memory if
the IMPLICIT_PDQ environment option is enabled for the current session:
SET ENVIRONMENT BOUND_IMPL_PDQ ON;

If you instead specify a positive integer in the range from 1 to 100, the explicit
PDQPRIORITY value is scaled by that setting during the current session. The
specified integer must be delimited by quotation marks, as in the following
example, which specifies 75% of available PDQ memory as the upper bound:
SET ENVIRONMENT BOUND_IMPL_PDQ "75";

By default, BOUND_IMPL_PDQ is not enabled. When the BOUND_IMPL_PDQ
session environment option is set to ON for the current session, you require the
database server to use the explicit PDQPRIORITY setting as the upper bound for
memory that can be allocated to a query. If you set both IMPLICIT_PDQ and
BOUND_IMPL_PDQ, then the explicit PDQPRIORITY value determines the upper
limit of memory that can be allocated to a query. If PDQPRIORITY is specified as
a range, the database server grants memory within the range specified.

2-768 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1094.htm#ids_adr_1094
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1095.htm#ids_adr_1095

See also the IBM Informix Performance Guide discussion of parallel database query
(PDQ).

CLUSTER_TXN_SCOPE environment option
Run the SET ENVIRONMENT CLUSTER_TXN_SCOPE statement so that when a
client session on a high-availability cluster server issues a commit, the server
blocks the session until the transaction is applied in that session, on a secondary
server, or across the cluster.

In a cluster environment, this statement can override the current setting of the
CLUSTER_TXN_SCOPE configuration parameter for the current user session, or
can restore the effects of that onconfig file setting, after a previous SET
ENVIRONMENT CLUSTER_TXN_SCOPE statement in the same session overrode the
configuration parameter setting.

To use this transaction coordination feature, immediately following the SET
ENVIRONMENT CLUSTER_TXN_SCOPE keywords, specify one of the following
options.
v ’SESSION’ so that when a client session issues a commit, the database server

blocks the session until the effects of the transaction commit are returned to that
session. After control is returned to the session, other sessions at the same
database server or on other database servers in the cluster might be unaware of
the transaction commit and the transaction's effects.

v ’SERVER’ so that when a client session issues a commit, the database server
blocks the session until the transaction is applied at the database server from
which the client session issued the commit. Other sessions at that database
server are aware of the transaction commit and the transaction's effects. Sessions
at other database servers in the cluster might be unaware of the transaction's
commit and its effects. This behavior is default for high-availability cluster
servers.

v ’CLUSTER’ so that when a client session issues a commit, the database server
blocks the session until the transaction is applied at all database servers in the
high-availability cluster, excluding RS secondary servers that are using
DELAY_APPLY or STOP_APPLY. Other sessions at any database server in the
high-availability cluster, excluding RS secondary servers that are using
DELAY_APPLY or STOP_APPLY, are aware of the transaction commit and the
transaction's effects.

v DEFAULT so that the cluster transaction scope reverts to the
CLUSTER_TXN_SCOPE configuration parameter setting in the onconfig file of
the database server instance, if that parameter is set.

For example, to enable transaction coordination for a cluster, run the following
statement:
SET ENVIRONMENT CLUSTER_TXN_SCOPE ’CLUSTER’;

Related reference:

CLUSTER_TXN_SCOPE configuration parameter (Administrator's Reference)

DELAY_APPLY Configuration Parameter (Administrator's Reference)

STOP_APPLY configuration parameter (Administrator's Reference)

Cluster transaction coordination (Administrator's Guide)

Chapter 2. SQL statements 2-769

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1165.htm#ids_adr_1165
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1069.htm#ids_adr_1069
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1070.htm#ids_adr_1070
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_1410.htm#ids_admin_1410

DEFAULTESCCHAR Environment Option
You can use the DEFAULTESCCHAR session environment option of the SET
ENVIRONMENT statement to override the current default escape character within
character-string operands of LIKE or MATCHES expressions during the current
session.

An escape character instructs the SQL parser to interpret characters that can be
wildcard characters (for example, % or _ for operands of the LIKE operator, or * or
^ for operands of the MATCHES operator) as literal characters. In a LIKE or
MATCHES expression, the escape character must immediately precede the
character whose special significance is to be ignored.

The setting that you specify for DEFAULTESCCHAR option can override the
setting of the DEFAULTESCCHAR configuration parameter in the ONCONFIG file
to define the default escape character within character string operands of LIKE or
MATCHES expressions in the current session. Other user sessions are not affected
by the SET ENVIRONMENT DEFAULTESCCHAR statement.

To override the system default escape character (\) or to override any default
escape character set by the DEFAULTESCCHAR configuration parameter, or to
override any default escape character that you previously set with SET
ENVIRONMENT DEFAULTESCCHAR in the current session, you can specify
’NONE’ as the default escape character. When the ’NONE’ setting is in effect, any
escape character that you use in LIKE or MATCHES expressions to treat a wildcard
symbol as a literal character must be defined in the ESCAPE clause of the LIKE or
MATCHES expression.

Only LIKE or MATCHES expressions that have no ESCAPE clause are affected by
the DEFAULTESCCHAR session environment setting. For more information about
escape characters in LIKE or MATCHES conditions, see “ESCAPE with LIKE” on
page 4-17 and “ESCAPE with MATCHES” on page 4-18.

EXTDIRECTIVES Environment Option
You can use the EXTDIRECTIVES environment option of the SET ENVIRONMENT
statement to enable or disable external optimizer directives during the current
session.

The setting that you specify for EXTDIRECTIVES option can override the settings
of both the IFX_EXTDIRECTIVES environment variable and of the
EXT_DIRECTIVES configuration parameter in the ONCONFIG file for enabling or
disabling external optimizer directives. Other user sessions are not affected.

To disable external optimizer directives during the current session, specify 0, off,
or OFF as the value for SET ENVIRONMENT EXTDIRECTIVES.

To enable external optimizer directives during the current session, specify 1, on, or
ON as the value for SET ENVIRONMENT EXTDIRECTIVES.

To enable the default values specified in the EXT_DIRECTIVES configuration
parameter and the client-side IFX_EXTDIRECTIVES environment variable during
the current session, specify DEFAULT as the value for SET ENVIRONMENT
EXTDIRECTIVES.

For information on how to define external optimizer directives and save them in
the sysdirectives table of the system catalog, see the description of the SAVE

2-770 IBM Informix Guide to SQL: Syntax

EXTERNAL DIRECTIVES statement. For more information about the
EXT_DIRECTIVES configuration parameter and the effects of its settings, see the
IBM Informix Administrator's Reference. For more information about the
IFX_EXTDIRECTIVES environment variable, see the IBM Informix Guide to SQL:
Reference, which also describes how the settings of both the EXT_DIRECTIVES
configuration parameter and of the IFX_EXTDIRECTIVES environment variable
can determine whether access to external directives is enabled or disabled for the
query optimizer.

FORCE_DDL_EXEC Environment Option
Use the FORCE_DDL_EXEC environment option of the SET ENVIRONMENT
statement to force out other transactions that have opened or have locks on the
tables involved in an ALTER FRAGMENT ON TABLE operation.

When the FORCE_DDL_EXEC environment option is enabled, the server also
closes the hold cursors during rollback by the session that performs the ALTER
FRAGMENT ON TABLE operation

The FORCE_DDL_EXEC option can have any of the following values:
v ’ON’, ’on’, or ’1’ to enable the server to force out transactions that are open or

have a lock on the table when an ALTER FRAGMENT ON TABLE statement is
issued until the server gets a lock and exclusive access on the table.

v ’OFF’, ’off’, or’0’ to prevent the server from forcing out transactions that are
open or have a lock on the table when an ALTER FRAGMENT ON TABLE
statement is issued. (The default value is off.)

v A numeric positive integer that represents an amount of time in seconds. The
numeric value enables the server to force out transactions until the server gets
exclusive access and exclusive locks on the table or until the specified time limit
occurs. If the server cannot force out transactions by the specified amount of
time, the server stops attempting to force out the transactions.

For example, to enable the FORCE_DDL_EXEC environment option to operate for
100 seconds when an ALTER FRAGMENT ON TABLE statement is issued, specify:
SET ENVIRONMENT FORCE_DDL_EXEC ’100’;

Important: When you use the FORCE_DDL_EXEC environment option, also use
the SET LOCK MODE TO WAIT statement to specify a period of time for the
server to force out any transactions in order to get exclusive access and a lock. If
you run SET LOCK MODE TO WAIT without specifying an amount of time, the
FORCE_DDL_EXEC option will not impact the alter fragment operation. For more
information, see “SET LOCK MODE statement” on page 2-804.

When you enable the FORCE_DDL_EXEC environment option, the server supports
multiple sessions performing ALTER FRAGMENT ON TABLE operations. If two
sessions perform ALTER FRAGMENT ON TABLE on a common table when the
FORCE_DDL_EXEC option is enabled, the second session will get an error. If
another ALTER operation is occurring on the table, the ALTER FRAGMENT ON
TABLE operation with an enabled FORCE_DDL_EXEC environment option will get
an error.

The prerequisites for enabling the FORCE_DDL_EXEC option are:
v You must be user informix or have DBA privileges on the database.
v The database must be a logging database.

Chapter 2. SQL statements 2-771

After you complete an ALTER FRAGMENT ON TABLE operation with the
FORCE_DDL_EXEC environment option enabled, you can turn the
FORCE_DDL_EXEC environment option off.

The onshowaudit utility displays an alter fragment event code (ALFR), which
identifies alter fragment events that ran when the FORCE_DDL_EXEC
environment option was enabled.

HDR_TXN_SCOPE environment option
Run the SET ENVIRONMENT HDR_TXN_SCOPE statement to control when a
transaction commit is returned to a client application in a cluster environment.

In a cluster environment, this statement can perform the following actions:
v Override the current setting of the HDR_TXN_SCOPE configuration parameter

for the current user session.
v Restore the effects of that onconfig file setting after a previous SET

ENVIRONMENT HDR_TXN_SCOPE statement in the same session overrode the
configuration parameter setting.

To use this transaction synchronization feature, set the DRINTERVAL configuration
parameter to 0, and then run a SET ENVIRONMENT HDR_TXN_SCOPE statement with one
of the following options:
v ’ASYNC’ for Asynchronous mode, where transactions do not require

acknowledgement of being received or completed on the HDR secondary server
before they can complete. System performance is best when a replication pair
uses asynchronous mode, but if there is a server failure, data can be lost.

v ’FULL_SYNC’ for fully synchronous mode, where transactions require
acknowledgement of completion on the HDR secondary server before they can
complete. Data integrity is highest when a replication pair uses fully
synchronous mode, but system performance can be negatively affected if client
applications use unbuffered logging and have many small transactions.

v ’NEAR_SYNC’ for nearly synchronous mode, where transactions require
acknowledgement of being received on the HDR secondary server before they
can complete. Nearly synchronous mode can have better performance than fully
synchronous mode and better data integrity than asynchronous mode. If used
with unbuffered logging, SYNC mode, which is turned on when DRINTERVAL
is set to -1, is the same as nearly synchronous mode.

Example

To maintain safeguards against data loss, but avoid performance problems that are
caused by client applications that perform many small transactions with
unbuffered logging, you can enable nearly synchronous mode by running the
following statement:
SET ENVIRONMENT HDR_TXN_SCOPE ’NEAR_SYNC’;

Related concepts:

Fully synchronous mode for HDR replication (Administrator's Guide)

Nearly synchronous mode for HDR replication (Administrator's Guide)

Asynchronous mode for HDR replication (Administrator's Guide)
Related reference:

DRINTERVAL configuration parameter (Administrator's Reference)

2-772 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_0868.htm#ids_admin_0868
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_1417.htm#ids_admin_1417
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_0869.htm#ids_admin_0869
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0058.htm#ids_adr_0058

HDR_TXN_SCOPE configuration parameter (Administrator's Reference)

onstat -g dri command: Print high-availability data replication information
(Administrator's Reference)

IFX_AUTO_REPREPARE Environment Option
Use the IFX_AUTO_REPREPARE environment option to reduce the incidence of
SQL error -710 in databases that dynamic SQL applications access.

Error -710 might be issued when a cursor attempts to execute a prepared object, or
when an SPL routine performs a query, after DDL operations have changed the
schema of a table that the prepared object or the SPL routine references.

While the IFX_AUTO_REPREPARE option is enabled, you can avoid -710 errors
after some changes to the schema of a database table, such as adding an enabled
index. This feature can reduce the need to issue the PREPARE statement explicitly
to recompile prepared objects. or to issue the UPDATE STATISTICS statement
explicitly to reoptimize SPL routines. If IFX_AUTO_REPREPARE is enabled during
table schema changes that do not require reissuing the DESCRIBE statement, the
database server automatically identifies and recompiles prepared statements and
SPL routines that reference the modified table.

The value that the SET ENVIRONMENT IFX_AUTO_REPREPARE statement
specifies can enable or disable this automatic recompilation feature:
v If the specified IFX_AUTO_REPREPARE value is ’1’ or ’ON’ or ’on’, then

automatic recompilation is enabled.
v If the specified IFX_AUTO_REPREPARE value is ’0’ or ’OFF’ or ’off’, then

automatic recompilation is disabled.

The following statement enables automatic recompilation after DDL operations on
tables that prepared objects or SPL routines reference:
SET ENVIRONMENT IFX_AUTO_REPREPARE ’1’;

This overrides the setting of the AUTO_REPREPARE configuration parameter, if it
is zero or 'None', for the remainder of the current session, or until you reset
IFX_AUTO_REPREPARE.

The database server might not detect some changes to a table schema that
invalidate prepared objects or SPL routines, even when IFX_AUTO_REPREPARE is
enabled. For example, changes to a table schema by one session causes concurrent
sessions to receive error -710 when they attempt to read the same table after
obtaining a shared lock.

Enabling IFX_AUTO_REPREPARE might have no effect on prepared statements
and SPL routines that reference tables in which DDL operations change the number
of columns in the table, or change the data type of a column. To avoid error -710
after these schema changes, you typically must reissue the DESCRIBE statement,
the PREPARE statement, and (for cursors associated with routines) the UPDATE
STATISTICS statement for any routines that reference the table whose schema has
been modified.

If you are satisfied with how your applications currently handle errors from
schema changes, you can disable automatic recompilation, as in this example:
SET ENVIRONMENT IFX_AUTO_REPREPARE ’OFF’;

Chapter 2. SQL statements 2-773

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1175.htm#ids_adr_1175
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0527.htm#ids_adr_0527
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0527.htm#ids_adr_0527

If enabling the IFX_AUTO_REPREPARE session environment variable results in a
runtime error, that error is passed back to the application.

For more information about the AUTO_REPREPARE configuration parameter, see
your IBM Informix Administrator's Reference. For a discussion of the effects of the
IFX_AUTO_REPREPARE and AUTO_REPREPARE settings on cursors and on
queries, see your IBM Informix Performance Guide.
Related reference:
“SET ENCRYPTION PASSWORD statement” on page 2-760

IFX_BATCHEDREAD_INDEX environment option
Use the IFX_BATCHEDREAD_INDEX environment option of the SET
ENVIRONMENT statement of SQL to enable or disable the automatic fetching of a
set of keys from an index buffer during the current session.

Specify:
v ’1’ to enable the optimizer to automatically fetch a set of keys from an index

buffer
v ’0’ to disable the automatic fetching of keys from an index buffer

For example, to enable the optimizer to automatically fetch a set of keys from an
index buffer for a session, specify:
SET ENVIRONMENT IFX_BATCHEDREAD_INDEX ’1’;

Related reference:

BATCHEDREAD_INDEX configuration parameter (Administrator's Reference)

IFX_BATCHEDREAD_TABLE environment option
Use the IFX_BATCHEDREAD_TABLE environment option of the SET
ENVIRONMENT statement of SQL to enable or disable light scans on compressed
tables, tables with rows that are larger than a page, and tables with VARCHAR,
LVARCHAR, and NVARCHAR data during the current session.

Specify:
v ’1’ to enable light scans on compressed tables, tables with rows that are larger

than a page, and tables with VARCHAR, LVARCHAR, and NVARCHAR data
for a session

v ’0’ to disable these light scans for a session

For example, to enable light scans on large tables with VARCHAR data, specify:
SET ENVIRONMENT IFX_BATCHEDREAD_TABLE ’1’;

Related concepts:

Light scans (Performance Guide)
Related reference:

BATCHEDREAD_TABLE configuration parameter (Administrator's Reference)

IMPLICIT_PDQ environment option
Use the IMPLICIT_PDQ session environment option to allow the database server
to determine the amount of memory allocated to a query. Unless

2-774 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1096.htm#ids_adr_1096
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_237.htm#ids_prf_237
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1036.htm#ids_adr_1036

BOUND_IMPL_PDQ is also set, the database server ignores the current explicit
setting of the PDQPRIORITY environment variable when IMPLICIT_PDQ is set to
ON or to 100.

The database server does not allocate more memory, however, than is available
when PDQPRIORITY is set to 100. The maximum amount of memory that the
database server can allocate is limited by the physical memory available to your
system, and by the settings of these parameters:
v The PDQPRIORITY environment variable
v The most recent SET PDQPRIORITY statement of SQL
v The MAX_PDQPRIORITY configuration parameter
v The DS_TOTAL_MEMORY configuration parameter
v The BOUND_IMPL_PDQ session environment variable

When concurrent queries are running, the DS_MAX_QUERIES configuration
parameter setting can also restrict the amount of PDQ memory available for a new
query.

By default, IMPLICIT_PDQ is not enabled. When IMPLICIT_PDQ is set to OFF,
whether explicitly or by default, the database server does not override the current
PDQPRIORITY setting when allocating resources to queries.

The IMPLICIT_PDQ session environment option is available only on systems that
support PDQPRIORITY.

If you set value between 1 and 100, the database server scales its estimate by the
specified value. If you set a low value, the amount of memory allocated to the
query is reduced, which might increase the risk of query-operator overflow.

To request the database server to determine memory allocations for queries and
distribute memory among query operators according to their needs, enter the
following statement:
SET ENVIRONMENT IMPLICIT_PDQ ON;

To require the database server to use explicit PDQPRIORITY settings as the upper
bound and optional lower bound of memory that it grants to a query, set the
BOUND_IMPL_PDQ session environment option.

Star-join query execution plans require PDQ priority to be set. Setting the
IMPLICIT_PDQ session environment option to enable implicit PDQ offers an
alternative. If IMPLICIT_PDQ is set to ON for the session, then a star-join execution
plan will be considered without explicit setting PDQPRIORITY. The SET
ENVIRONMENT IMPLICIT_PDQ ON statement can be issued by a sysdbopen
procedure, so that users automatically enable implicit PDQ when they open the
database. In this case, the query optimizer automatically considered a star join
without explicit PDQPRIORITY setting by the user.

The IMPLICIT_PDQ functionality for a query requires at least LOW level statistics
on all tables in the query. If distribution statistics are missing for one or more
tables in the query, the IMPLICIT_PDQ setting has no effect. This restriction also
applies to star join queries, which are not supported in the case of missing
statistics.

For information on creating a sysdbopen procedure and on specifying the users
whose sessions it will affect, see the topic “Using SYSDBOPEN and SYSDBCLOSE

Chapter 2. SQL statements 2-775

Procedures” on page 6-6. For information about the PDQPRIORITY environment
variable, see the IBM Informix Guide to SQL: Reference. For information about the
DS_TOTAL_MEMORY and MAX_PDQPRIORITY configuration parameters, see the
IBM Informix Administrator's Reference.

INFORMIXCONRETRY environment option
Use the INFORMIXCONRETRY environment option of the SET ENVIRONMENT
statement to specify the maximum number of connection attempts that can be
made to each database server in the current session after the initial connection
attempt fails. These attempts are made within the time limit that the
INFORMIXCONTIME environment option specifies.

The INFORMIXCONRETRY environment option overrides the values that are set for
both the client's INFORMIXCONRETRY environment variable and the INFORMIXCONRETRY
configuration parameter in the onconfig file. Use this option to specify the number
of connection attempts that can be made to each database server during a session
for a server-to-server connection.

For example, the following statement specifies that, if the initial connection attempt
fails, up to three additional connection attempts are made before the database
server issues an error.
SET ENVIRONMENT INFORMIXCONRETRY ’3’;

The default value for the INFORMIXCONRETRY environment option is 1, which
specifies that one attempt is made after the initial connection attempt fails.

The INFORMIXCONTIME setting takes precedence over the INFORMIXCONRETRY setting.
Connection attempts can end after the INFORMIXCONTIME value is exceeded, but
before the INFORMIXCONRETRY value is reached.
Related reference:

INFORMIXCONRETRY environment variable (SQL Reference)

INFORMIXCONRETRY configuration parameter (Administrator's Reference)

INFORMIXCONTIME environment option
Use the INFORMIXCONTIME environment option of the SET ENVIRONMENT
statement to specify the number of seconds that the CONNECT statement attempts
to establish a connection to a database server in the current session.

The INFORMIXCONTIME environment option overrides the settings of both the client's
INFORMIXCONTIME environment variable and the INFORMIXCONTIME configuration
parameter in the onconfig file. Use this option to set the INFORMIXCONTIME and
INFORMIXCONRETRY environment variables to configure your sever-to-server
connection capability in the current session to minimize connection errors. To set
the optimal value for the INFORMIXCONTIME environment option, take into account
the total distance between nodes, the hardware speed, the volume of traffic, and
the concurrency level of the network.

INFORMIXCONTIME is divided by INFORMIXCONRETRY to determine the number of
seconds between connection attempts.

For example, the following statement sets INFORMIXCONTIME to 60 seconds:
SET ENVIRONMENT INFORMIXCONTIME ’60’;

2-776 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_261.htm#ids_sqr_261
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1184.htm#ids_adr_1184

In this example, the CONNECT statement attempts to establish a connection for 60
seconds. An initial attempt is made to connect to the database server at 0 seconds.
If the INFORMIXCONRETRY environment option is set to the default value of 1, an
additional attempt to connect is made at 60 seconds, if necessary, before an error is
returned. Similarly, if the INFORMIXCONRETRY environment option is set to 3,
additional attempts to connect to the database server are made at 20, 40, and 60
seconds, if necessary, before an error is returned. This 20-second interval is the
result of the INFORMIXCONTIME value divided by INFORMIXCONRETRY value. If you set
the INFORMIXCONTIME environment option to zero, the database server automatically
uses the default value of 60 seconds.

If the CONNECT statement must search DBPATH, the INFORMIXCONRETRY
environment option specifies the number of additional connection attempts that
can be made for each database server entry in DBPATH.
v All appropriate servers in the DBPATH setting are accessed at least once, even if

the INFORMIXCONTIME value is exceeded. Thus, the CONNECT statement might
take longer than the INFORMIXCONTIME time limit to return an error that indicates
connection failure or that the database was not found.

v The INFORMIXCONTIME value is divided among the number of database server
entries that are specified in DBPATH. Thus, if DBPATH contains numerous servers,
increase the INFORMIXCONTIME value accordingly. For example, if DBPATH contains
three entries, to spend at least 30 seconds attempting each connection, set
INFORMIXCONTIME to 90.

Related reference:

INFORMIXCONTIME environment variable (SQL Reference)

INFORMIXCONTIME configuration parameter (Administrator's Reference)

NOVALIDATE evironment option
Use the NOVALIDATE environment option to specify whether foreign-key
constraints that the ALTER TABLE ADD CONSTRAINT statement creates (or that
has its constraint mode reset by the SET CONSTRAINTS statement) are in
NOVALIDATE mode by default, unless they are created in (or changed to)
DISABLED mode.

Enabling this session environment variable can prevent referential-integrity
checking of the foreign-key constraint during subsequent ALTER TABLE ADD
CONSTRAINT or SET CONSTRAINTS ENABLED or SET CONSTRAINTS
FILTERING operations. This can improve the performance of these DDL statements
in contexts where there is no reason to expect integrity violations, or where
validation of foreign key-constraints can be postponed until after the tables are
relocated to another database.
v If you set the value to ON or to ’1’, you do not need to explicitly include the

NOVALIDATE keyword to bypass validation of the ENABLED or FILTERING
constraint while either of those DDL statements is running.

v If you set the value to OFF or to ’0’, you restore the default behavior of those
data definition language (DDL) statements, so that the database server
automatically checks the table for existing rows that violate the foreign-key
constraint during the ALTER TABLE or SET CONSTRAINTS operation that
created or enabled the constraint.

Note:

Chapter 2. SQL statements 2-777

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_262.htm#ids_sqr_262
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1185.htm#ids_adr_1185

Whether or not the SET ENVIRONMENT NOVALIDATE session environment
option is enabled, any NOVALIDATE attribute that the ALTER TABLE ADD
CONSTRAINT statement or the SET CONSTRAINTS option of the SET Database
Object Mode statement applied to the object mode of a foreign-key constraint is
automatically dropped after execution of that DDL statement completes. The mode
of the foreign-key constraint becomes whatever the SET CONSTRAINTS or ALTER
TABLE statement registered in the sysobjstate system catalog table, which ignores
the NOVALIDATE attribute.

While you are creating ENABLED or FILTERING foreign-key constraints with the
ALTER TABLE ADD CONSTRAINT statement, or changing the mode of a
foreign-key constraint to ENABLED or FILTERING with the SET CONSTRAINTS
statement, the NOVALIDATE option prevents the database server from checking
every row of the table for compliance with the referential constraint while the
ALTER TABLE or SET CONSTRAINTS statement is running. That can save
significant time in moving large tables whose referential integrity is not in doubt.

For example, the following statement enables the NOVALIDATE session
environment variable:
SET ENVIRONMENT NOVALIDATE ’1’;

It has these subsequent effects during the following DDL operations on foreign-key
constraints in the database to which the current session is connected:
v SET CONSTRAINTS options of the SET Database Object Node statements for

foreign-key constraints change the default or explicit constraint mode to include
NOVALIDATE, unless DISABLED is specified as the constraint mode.

v Foreign-key constraints that the ALTER TABLE ADD CONSTRAINT statement
specifies with no explicit mode are created in ENABLED NOVALIDATE mode
by default.

v Foreign-key constraints that the ALTER TABLE ADD CONSTRAINT statement
specifies in ENABLED or in FILTERING mode are also in NOVALIDATE mode
by default.

The following example restores the default constraint mode behavior, in which
NOVALIDATE is not part of the default constraint mode for foreign keys that are
not in DISABLED mode during SET CONSTRAINTS or ALTER TABLE ADD
CONSTRAINT operations:
SET ENVIRONMENT NOVALIDATE OFF;

For subsequent SET CONSTRAINTS or ALTER TABLE ADD CONSTRAINT
statements, the database server performs a full-table scan or an index scan of the
table with the foreign-key constraint, in order to validate the referential integrity of
the table. For tables with a million rows, the cost of this validation is substantial.

Suspending foreign-key constraint-checking during SET CONSTRAINTS or ALTER
TABLE ADD CONSTRAINT statements by enabling the NOVALIDATE session
environment option can be efficient for tables that have been populated by OLTP
operations that enforced the same constraints. After moving those tables to another
database or to a data warehouse with their foreign-key constraints dropped or
disabled, you can use the SET ENVIRONMENT NOVALIDATE ON statement to
avoid the overhead of checking for violations while the referential constraints are
being restored.

2-778 IBM Informix Guide to SQL: Syntax

OPTCOMPIND Environment Option
Use the OPTCOMPIND environment option of the SET ENVIRONMENT statement
to specify methods for the query optimizer to choose in subsequent join queries
and MERGE statements of the currently executing routine. This statement
overrides the system default setting of the OPTCOMPIND environment variable.

The OPTCOMPIND environment option can improve the performance of databases
that are used for both decision support and online transaction processing. Use this
option to specify join methods for the query optimizer to use in subsequent
queries.
v If the value is ’0’ then the query optimizer uses a nested-loop join where

possible, rather than a sort-merge join or a hash join.
v If the value is ’1’ and the transaction isolation level is Repeatable Read, the

optimizer behaves as in setting ’0’, as described above; for any other isolation
level, it behaves like setting ’2’, as described next.

v If the value is ’2’ then the query optimizer does not necessarily prefer
nested-loop joins, but bases its decision entirely on the estimated cost, regardless
of the transaction isolation mode.

For example, the following statement replaces whatever OPTCOMPIND setting
was previously in effect with a purely cost-based optimizer strategy:
SET ENVIRONMENT OPTCOMPIND ’2’;

Use the DEFAULT keyword to restore the system default value, as described in the
OPTCOMPIND topic of the IBM Informix Guide to SQL: Reference.

For performance implications of the OPTCOMPIND option, see your IBM Informix
Performance Guide.

The scope of the OPTCOMPIND setting that the SET ENVIRONMENT
OPTCOMPIND statement specifies is local to the routine that issues the statement,
and persists until the routine exits, or until the routine issues another SET
ENVIRONMENT OPTCOMPIND statement, rather than persisting for the entire
session. After that routine terminates, the setting reverts to the system default
value that the OPTCOMPIND environment variable specifies.

No other option to SET ENVIRONMENT has a scope that is local to the routine.
The settings of all the other SET ENVIRONMENT options persist until the session
ends, or until another SQL statement resets their value.
Related concepts:

Influencing the choice of a query plan (Performance Guide)
Related reference:

OPTCOMPIND environment variable (SQL Reference)

RETAINUPDATELOCKS Environment Option
The RETAINUPDATELOCKS environment option can improve concurrency in
Dynamic SQL applications that include the SELECT ... FOR UPDATE statement.
This option can modify the behavior of the current transaction isolation level at
runtime if the session is using the Committed Read, Dirty Read, or Cursor Stability
isolation levels to enable (or to disable) the RETAIN UPDATE LOCKS clause of the
SET ISOLATION statement.

Chapter 2. SQL statements 2-779

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_609.htm#ids_prf_609
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_287.htm#ids_sqr_287

When the RETAINUPDATELOCKS environment option is enabled for the current
isolation level, the database server, by default, retains the update lock on a row
until the end of the transaction. Any update locks are held until the transaction is
committed or rolled back, whether or not the SET ISOLATION statement that
defined the isolation level included the RETAIN UPDATE LOCKS keywords. When
this option is set to ALL or to the name of the current Informix isolation level (if
this level is Committed Read, Dirty Read, or Cursor Stability), this setting prevents
concurrent users in other sessions from deleting or updating a row on which you
have placed an update lock, but that you have not yet updated.

By specifying NONE as the RETAINUPDATELOCKS setting, you disable this
feature and restore the default locking behavior. When NONE is the setting, unless
the isolation level has been set by a SET ISOLATION statement that explicitly
included the RETAIN UPDATE LOCKS keywords, the database server releases the
update lock at the next FETCH operation, or when the cursor is closed.

The SET ENVIRONMENT RETAINUPDATELOCKS statement has no effect on
update cursors if the Informix isolation level is REPEATABLE READ. Similarly out
of scope are transactions whose isolation level has been set by the SET
TRANSACTION statement, which defines ANSI/ISO-compliant isolation levels,
rather than Informix isolation levels. (For more information about Informix and
ISO isolation levels, see the topic “Comparing SET TRANSACTION with SET
ISOLATION” on page 2-821.)

The RETAINUPDATELOCKS option accepts any one of five settings that can affect
the current Informix isolation level, as well as the isolation levels established by
SET ISOLATION statements issued after the SET ENVIRONMENT statement. For
every setting except ’NONE’, the effect of the setting is to implicitly include the
RETAIN UPDATE LOCKS keywords in SET ISOLATION specifications:
v If the value is ’COMMITTED READ’ the database server retains any update lock

until the end of a transaction that uses the Committed Read isolation level.
v If the value is ’CURSOR STABILITY’, the database server retains any update lock

until the end of a transaction that uses the Cursor Stability isolation level.
v If the value is ’DIRTY READ’, the database server retains any update lock until

the end of a transaction that uses the Dirty Read isolation level.
v If the value is ’ALL’, the database server retains any update lock until the end of

the transaction that uses the Committed Read, Dirty Read, or Cursor Stability
isolation level.

v If the value is ’NONE’, the RETAINUPDATELOCKS feature is disabled until the
session ends, or until another SET ISOLATION or SET ENVIRONMENT
statement re-enables the retention of update locks. Under the NONE setting, if
your application defines an update cursor, the database server releases its
update locks at the next FETCH operation, or when the update cursor is closed.
Update locks are not retained, even if the Committed Read, Dirty Read, or
Cursor Stability isolation level had enforced RETAIN UPDATE LOCKS behavior
before the SET ENVIRONMENT RETAINUPDATELOCKS 'NONE' statement
executed.

These settings are not case-sensitive. For example, ’ALL’ and ’all’ have the same
effect.

The SET ENVIRONMENT RETAINUPDATELOCKS statement takes effect (by
resetting the session environment) when it is issued. It can be issued outside a
transaction. If the isolation level of the current transaction matches the setting

2-780 IBM Informix Guide to SQL: Syntax

specified after the RETAINUPDATELOCKS keyword, the new setting can change
the RETAIN UPDATE LOCKS behavior of the transaction that is running when the
statement is issued.

For example, consider the following SET ENVIRONMENT and SET ISOLATION
statements:
BEGIN WORK; --Begin first transaction
SET ENVIRONMENT RETAINUPDATELOCKS ’COMMITTED READ’;
SET ISOLATION TO COMMITTED READ LAST COMMITTED;
SELECT ... FOR UPDATE ...
...
COMMIT WORK;
SET ENVIRONMENT RETAINUPDATELOCKS ’DIRTY READ’;
BEGIN WORK; --Begin second transaction
SET ISOLATION TO COMMITTED READ LAST COMMITTED;
SELECT ... FOR UPDATE ...
...
COMMIT WORK;

In the first transaction above, the RETAINUPDATELOCKS setting in the SET
ENVIRONMENT statement makes the retention of update locks the default
behavior for the Committed Read isolation level. As a result, the database server
interprets the first SET ISOLATION statement, which specifies Committed Read
but has no RETAIN UPDATE LOCKS clause, as if it had included that clause:
SET ISOLATION TO

READ LAST COMMITTED RETAIN UPDATE LOCKS;

Because the SET ENVIRONMENT RETAINUPDATELOCKS statement in the
second transaction specifies DIRTY READ as its setting, however, it has no effect
on the second SET ISOLATION statement, which defines a Committed Read
isolation level. Each of the settings that correspond to a specific Informix isolation
level only affect update locks in transactions that use the same isolation level.

In cross-server SELECT ... FOR UPDATE distributed queries, but some
participating servers do not support update lock retention, the entire transaction
conforms to the isolation level of the session that issued the transaction. If that
session has an enabled RETAINUPDATELOCKS option in effect, it is also in effect
for the servers that support update lock retention, but other participating servers
follow their default behavior for releasing update locks.

The SET ENVIRONMENT RETAINUPDATELOCKS statement fails with error
-26199 if the database in which it is issued does not support transaction logging.

The sysdbopen() Procedure

The built-in sysdbopen() routine can issue the SET ENVIRONMENT
RETAINUPDATELOCKS statement when your session connects to a database in
which sysdbopen() is defined, as in the following example.
CREATE PROCEDURE PUBLIC.SYSDBOPEN()

SET PDQPRIORITY 10;
SET ENVIRONMENT RETAINUPDATELOCKS ’ALL’;

END PROCEDURE

After the example above takes effect, it prevents other sessions from modifying
rows on which you have placed an update lock, so that you can update the rows
later in the current transaction. Unless you issue another SQL statement within the
same session to disable the retention of update locks, the effects of a SET
ENVIRONMENT RETAINUPDATELOCKS statement that sysdbopen() issues

Chapter 2. SQL statements 2-781

persists until the end of the session. This session-long persistence of the
RETAINUPDATELOCKS value that sysdbopen() specifies, however, is a special
case. Any other SPL routine can use the SET ENVIRONMENT statements to
specify update lock retention for the Committed Read, Dirty Read, or Cursor
Stability transaction isolation level, or for ’ALL’, but their effect persists only while
the routine is executing, and not after the routine exits.

Resetting the Default Update Lock Behavior

In releases of Informix earlier than version 11.50.xC6, the most recently executed
SET ISOLATION statement specified the default for subsequent transactions. If the
most recent SET ISOLATION statement included the RETAIN UPDATE LOCKS
clause, it was necessary to execute the SET ISOLATION statement for the same
isolation level (but without the RETAIN UPDATE LOCKS clause) to disable the
retention of update locks. Now, however, if SET ENVIRONMENT
RETAINUPDATELOCKS has enabled retention, you must explicitly run the SET
ENVIRONMENT RETAINUPDATELOCKS ’NONE’ statement to restore non-retention as the
default behavior, as in the following example.
BEGIN WORK; --Begin first transaction
SET ISOLATION TO COMMITTED READ LAST COMMITTED;
SET ENVIRONMENT RETAINUPDATELOCKS ’COMMITTED READ’;
SELECT ... FOR UPDATE ...
...
COMMIT WORK;
BEGIN WORK; --Begin second transaction
SET ENVIRONMENT RETAINUPDATELOCKS ’NONE’;
SET ISOLATION TO COMMITTED READ LAST COMMITTED;
SELECT ... FOR UPDATE ...
...

In the first transaction above, the first SET ENVIRONMENT statement modifies
the behavior of the Committed Read isolation level of the current transaction to
retain update locks, even though the SET ISOLATION statement that established
that isolation level preceded the SET ENVIRONMENT statement in the lexical
order of statements within the transaction. The LAST COMMITTED specification
for this isolation level is not affected by this SET ENVIRONMENT statement.

The SET ISOLATION statement in the second transaction is interpreted literally,
however, because the default behavior was reset to NONE by the second SET
ENVIRONMENT statement.

Update Lock Retention in High Availability Clusters

In a high availability cluster environment, the RETAINUPDATELOCKS option is
valid only on a primary server. Applications that require the retention of update
locks must be run on the primary server if they include the SET ENVIRONMENT
RETAINUPDATELOCKS statement. When it is issued from a secondary server, the
statement has no effect on locking behavior, and the server returns an error.

STATCHANGE Environment Option
Use the STATCHANGE environment option to specify a positive integer for a
global percentage of a change threshold for the UPDATE STATISTICS statement to
use when the automatic mode for restricting UPDATE STATISTICS operations to
stale or missing distributions is enabled.

The value of the STATCHANGE environment option is used when the
AUTO_STAT_MODE configuration parameter or the AUTO_STAT_MODE

2-782 IBM Informix Guide to SQL: Syntax

environment option has enabled the automatic mode for the UPDATE STATISTICS
statement, so that it selectively refreshes only stale data distributions.

The value that you set for STATCHANGE specifies a change threshold to
determine whether distribution statistics qualify for an update when the UPDATE
STATISTICS statement is operating in automatic mode.

The STATCHANGE configuration parameter can specify a positive integer as a
percentage of change threshold to define stale data distributions. When the
automatic mode for UPDATE STATISTICS is enabled, this setting takes effect as the
default change threshold for any table whose STATCHANGE table attribute is
specified as AUTO, or that is AUTO by default. The default value of the
STATCHANGE configuration parameter is 10. You can use the SET
ENVIRONMENT STATCHANGE statement, however, to specify an integer value
that overrides the explicit or default STATCHANGE configuration parameter
setting for the current session.

You can specify an integer percentage value in the range from 0 - 100 for the
STATCHANGE session environment option.

Example of SET ENVIRONMENT STATCHANGE

The following statement sets the threshold for the server to use to determine if
distribution statistics qualify for an update to 50 percent:
SET ENVIRONMENT STATCHANGE ’50’;

USELASTCOMMITTED Environment Option
The USELASTCOMMITTED environment option can improve concurrency in
sessions that use the Committed Read, Dirty Read, Read Committed, or Read
Uncommitted isolation levels by reducing the risk of locking conflicts when two or
more sessions attempt to access the same row in a table whose locking granularity
is row-level locking.

The SET ENVIRONMENT USELASTCOMMITTED statement can specify whether
queries and other operations that encounter exclusive locks that other sessions
hold while changing data values should use the most recently committed version
of the data, rather than wait for the lock to be released.

This statement can override the USELASTCOMMITTED configuration parameter
setting for the duration of the current session. You can use the SET ISOLATION
statement to override the USELASTCOMMITTED session environment setting.

The USELASTCOMMITTED option can have any one of four values:
v If the value is ’COMMITTED READ’ then the database server reads the most recently

committed version of the data when it encounters an exclusive lock while
attempting to read a row in the Committed Read or Read Committed isolation
level.

v If the value is ’DIRTY READ’ then the database server reads the most recently
committed version of the data if it encounters an exclusive lock while
attempting to read a row in the Dirty Read or Read Uncommitted isolation level.

v If the value is ’ALL’ then the database server reads the most recently committed
version of the data if it encounters an exclusive lock while attempting to read a
row in the Committed Read, Dirty Read, Read Committed, or Read
Uncommitted isolation level.

Chapter 2. SQL statements 2-783

v If the value is ’NONE’, this value disables the USELASTCOMMITTED feature
that can access the last committed version of data in a locked row. Under this
setting, if your session encounters an exclusive lock when attempting to read a
row in the Committed Read, Dirty Read, Read Committed, or Read
Uncommitted isolation level, your transaction cannot read that row until the
concurrent transaction that holds the exclusive lock is committed or rolled back.

For example, the following statements specify the Committed Read isolation mode
and replace the explicit or default USELASTCOMMITTED configuration parameter
setting with a setting that reads the most recently committed version of the data in
rows on which concurrent readers hold an exclusive lock:
SET ISOLATION COMMITTED READ;
SET ENVIRONMENT USELASTCOMMITTED ’ALL’;

Any SPL routine can use these statements to specify the Committed Read Last
Committed transaction isolation level during a session. These statements enable
SQL operations that read data to use the last committed version when an exclusive
lock is encountered during an operation that reads a row. This can avoid deadlock
situations or other locking errors when another session is attempting to modify the
same row. It does not reduce the risk of locking conflicts with other sessions that
are writing to tables, or with concurrent DDL transactions that hold implicit or
explicit locks on a user table or on a system catalog table.

For example, the following statements within a PUBLIC.sysdbopen or
user.sysdbopen procedure specify at connection time the Committed Read isolation
mode and replace the explicit or default USELASTCOMMITTED configuration
parameter setting with a setting that reads the most recently committed version of
the data in tables on which concurrent readers hold an exclusive lock:
SET ISOLATION COMMITTED READ;
SET ENVIRONMENT USELASTCOMMITTED ’ALL’;

Besides sysdbopen(), any SPL routine can use these statements to specify the
Committed Read Last Committed transaction isolation level during a session.
These statements enable SQL operations that read data to use the last committed
version when an exclusive lock is encountered during an operation that reads a
table. This can avoid deadlock situations or other locking errors when another
session is attempting to modify the same row or table. It does not reduce the risk
of locking conflicts with other sessions that are writing to tables, or with
concurrent DDL transactions that hold implicit or explicit locks on a user table or
on a system catalog table.

In cross-server distributed queries, if the isolation level of the session that issued
the query has the LAST COMMITTED isolation level option in effect, but one or
more of the participating databases does not support this LAST COMMITTED
feature, then the entire transaction conforms to the Committed Read or Dirty Read
isolation level of the session that issued the transaction, without the LAST
COMMITTED option enabled.

For information about additional restrictions that can prevent a transaction from
reading the most recently committed data from a table locked by another
transaction while USELASTCOMMITTED is enabled, see “The LAST COMMITTED
Option to Committed Read” on page 2-799.

For more information about the USELASTCOMMITTED configuration parameter,
see your IBM Informix Administrator's Reference.
Related reference:

2-784 IBM Informix Guide to SQL: Syntax

USELASTCOMMITTED configuration parameter (Administrator's Reference)

USTLOW_SAMPLE environment option
Use the USTLOW_SAMPLE session environment option to enable or disable
sampling during the collection of index statistics for UPDATE STATISTICS LOW
operations in the current session.

For an index with more than 100 K leaf pages, the gathering of statistics using
sampling can increase the speed of the update statistics operation.

Specify:
v 0 or OFF to disable sampling
v 1 or ON to enable sampling

The value that you specify overrides the setting of the USTLOW_SAMPLE
configuration parameter for the session.

For example, to enable sampling for the current session, use either of the following
statements:
SET ENVIRONMENT USTLOW_SAMPLE ’1’;

SET ENVIRONMENT USTLOW_SAMPLE ’ON’;

Related concepts:
“Using the LOW mode option” on page 2-874
“Performance considerations of UPDATE STATISTICS statements” on page 2-883

Data sampling during update statistics operations (Performance Guide)
Related reference:
“UPDATE STATISTICS statement” on page 2-868

USTLOW_SAMPLE configuration parameter (Administrator's Reference)

SET EXPLAIN statement
Use the SET EXPLAIN statement to enable or disable the recording measurements
of queries in the current session, including the plan of the query optimizer, an
estimate of the number of rows returned, and the relative cost of the query.

Syntax

�� SET EXPLAIN OFF
ON

AVOID_EXECUTE
FILE TO expression

' file_name '
file_name_var

��

Element Description Restrictions Syntax

expression Expression that returns a file name
specification

Must return a string satisfying the
restrictions on the file name

“Expression” on page
4-44

Chapter 2. SQL statements 2-785

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0186.htm#ids_adr_0186
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_777.htm#ids_prf_777
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1143.htm#ids_adr_1143

Element Description Restrictions Syntax

file_name The explain output file name. If the
file's absolute path is not included, the
explain output file will be created in
the default explain output file location

Must conform to operating-system
rules. If the file already exists,
explain output will be appended to
it.

“Quoted String” on
page 4-219

file_name_var Host variable that stores a file name Must be a character data type Language specific

Usage

Output from a SET EXPLAIN ON statement is directed to the appropriate file until
you issue a SET EXPLAIN OFF statement or until the program ends. If you do not
enter a SET EXPLAIN statement, then the default behavior is OFF, and the
database server does not generate measurements for queries.

The SET EXPLAIN statement executes during the database server optimization
phase, which occurs when you initiate a query. For queries that are associated with
a cursor, if the query is prepared and does not have host variables, optimization
occurs when you prepare it. Otherwise, optimization occurs when you open the
cursor.

The SET EXPLAIN statement provides various measurements of the work involved
in performing a query.

Option Effect

ON Generates measurements for each subsequent query and writes the results
to an output file in the current directory. If the file already exists, new
output is appended to the existing file.

AVOID_EXECUTE
Prevents a SELECT, INSERT, MERGE, UPDATE, or DELETE statement
from executing. The database server prints the query plan to an output file

OFF Terminates activity of the SET EXPLAIN statement, so that measurements
for subsequent queries are no longer generated or written to the output file

FILE TO
Generates measurements for each subsequent query and allows you to
specify the location for the explain output file.

The following example writes the query plan in the explain output file for
subsequent queries in the current session:
SET EXPLAIN ON;

The following example suspends writing query plans to a file in the current
session:
SET EXPLAIN OFF;

Related concepts:
“Performance considerations of UPDATE STATISTICS statements” on page 2-883
“Default name and location of the explain output file on UNIX” on page 2-788
“Default name and location of the output file on Windows” on page 2-789
Related reference:
“SET OPTIMIZATION statement” on page 2-807
“SET EXPLAIN output” on page 2-789

2-786 IBM Informix Guide to SQL: Syntax

Using the AVOID_EXECUTE Option
The AVOID_EXECUTE keyword prevents DML statements from executing. Instead,
the database server prints the query plan to an output file.

The SET EXPLAIN ON AVOID_EXECUTE statement activates the Avoid Execute
option for a session, or until the next SET EXPLAIN OFF (or ON) without
AVOID_EXECUTE. If you activate AVOID_EXECUTE for a query that contains a
remote table, the query does not execute at either the local or remote site.

The following example stores the output in the specified file.
SET EXPLAIN ON AVOID_EXECUTE;
SET EXPLAIN FILE TO ’/tmp/explain.out’;

When AVOID_EXECUTE is set, the database server sends a warning message. If
you are using DB-Access, it displays a text message
Warning! avoid_execute has been set

for any select, delete, update or insert query operations. From ESQL, the
sqlwarn.sqlwarn7 character is set to 'W'.

Use the SET EXPLAIN ON or the SET EXPLAIN OFF statement to turn off the
AVOID_EXECUTE option. The SET EXPLAIN ON statement turns off the
AVOID_EXECUTE option but continues to generate a query plan and writes the
results to an output file.

If you issue the SET EXPLAIN ON AVOID_EXECUTE statement in an SPL routine,
the SPL routine and any DDL statements still execute, but the DML statements
inside the SPL routine do not execute. The database server prints the query plan of
the SPL routine to an output file. To turn off this option, you must execute the SET
EXPLAIN ON or the SET EXPLAIN OFF statement outside the SPL routine. If you
execute the SET EXPLAIN ON AVOID_EXECUTE statement before you execute an
SPL routine, the DML statements inside the SPL routine do not execute, and the
database server does not print a query plan of the SPL routine to an output file.

Nonvariant functions in a query are still evaluated when AVOID_EXECUTE is in
effect, because the database server calculates these functions before optimization.

For example, the func() function is evaluated, even though the following SELECT
statement is not executed:
SELECT * FROM orders WHERE func(10) > 5;

For other performance implications of the AVOID_EXECUTE option, see your IBM
Informix Performance Guide.

If you execute the SET EXPLAIN ON AVOID_EXECUTE statement before you
open a cursor in an Informix ESQL/C program, each FETCH operation returns the
message that the row was not found. If you execute SET EXPLAIN ON
AVOID_EXECUTE after an Informix ESQL/C program opens a cursor, however,
this statement has no effect on the cursor, which continues to return rows.

Using the FILE TO option
When you execute a SET EXPLAIN FILE TO statement, explain output is turned
on. The SET EXPLAIN FILE TO statement can change the default file name for the
explain output until the end of the session or until another SET EXPLAIN
statement is issued.

Chapter 2. SQL statements 2-787

The filename can be any valid combination of path and file name. If no path
component is specified, the file is placed in the default explain output location. The
permissions for the file are owned by the current user.

The output file that you specify in the SET EXPLAIN statement can be a new file
or an existing file. If the FILE TO clause specifies an existing file, the new output is
appended to that file.
Related concepts:
“Default name and location of the explain output file on UNIX”
“Default name and location of the output file on Windows” on page 2-789
Related reference:
“SET EXPLAIN output” on page 2-789

Default name and location of the explain output file on UNIX
When you issue the SET EXPLAIN ON statement, the plan that the optimizer
chooses for each subsequent query is written to the explain output file.

If the explain output file does not exist when you issue SET EXPLAIN ON, the
database server creates the file. If the explain output file already exists when you
issue the SET EXPLAIN ON statement, subsequent output is appended to the file.

Default name of the explain output file

Explain output files generated by a SET EXPLAIN statement and explain files
generated by onmode -Y have different default names. Explain output filenames
for mapped users are different than the explain output filenames for OS users, as
well. The following table shows the default names:

Table 2-12. Default explain output file names.

User and generation type File name

Regular user and SET EXPLAIN sqexplain.out

Mapped user and SET EXPLAIN username_sqexplain.out

Regular user and onmode -Y sqexplain.out.session_id

Mapped user and onmode -Y username_sqexplain.out.session_id

Default location of the explain output file

If the client application and the database server are on the same computer, the
output file is stored in your current directory. If you are using a Version 5.x or
earlier client application and the output file does not appear in the current
directory, check your home directory for the file. When the current database is on
another computer, the output file is stored in your home directory on the remote
host.

For a mapped user without a home directory, the explain output file is stored in
$INFORMIXDIR/users/server_svrnum/uid_uid.

For a mapped user with a home directory, remote clients' explain output files are
stored in the user's home directory, and local clients' explain output files are stored
in the user's current working directory.
Related concepts:

2-788 IBM Informix Guide to SQL: Syntax

Mapped users (UNIX, Linux) (Security Guide)

Location and file names for mapped users' generated files (UNIX, Linux)
(Security Guide)
“Using the FILE TO option” on page 2-787
Related reference:
“SET EXPLAIN statement” on page 2-785

onmode -Y: Dynamically change SET EXPLAIN (Administrator's Reference)

onmode and Y arguments: Change query plan measurements for a session
(SQL administration API) (Administrator's Reference)

Default name and location of the output file on Windows
On Windows, SET EXPLAIN ON writes the plan that the optimizer chooses for
each subsequent query to a file in %INFORMIXDIR%\sqexpln.

For explain output files generated by the SET EXPLAIN statement, the default file
name is user_name.out, where user_name is the user login.

For explain output files generated by onmode -Y, the default file name is
sqexplain.out.session_id.
Related concepts:
“Using the FILE TO option” on page 2-787

Location and file names for mapped users' generated files (UNIX, Linux)
(Security Guide)
Related reference:
“SET EXPLAIN statement” on page 2-785

onmode -Y: Dynamically change SET EXPLAIN (Administrator's Reference)

onmode and Y arguments: Change query plan measurements for a session
(SQL administration API) (Administrator's Reference)

SET EXPLAIN output
View the SET EXPLAIN output file to analyze information on an executed query,
including the directives set for the query, an estimate of the cost of the query, an
estimate of the number of returned rows, the order in which the server accessed
tables, index keys, join methods, and query statistics.

The following table lists terms that can appear in the output file and their
significance.

Table 2-13. Output file terms

Term Significance

Query Displays the executed query and indicates whether SET OPTIMIZATION
was set to HIGH or LOW. If you SET OPTIMIZATION to LOW, the
output displays the following uppercase string as the first line:
QUERY:{LOW}

If you SET OPTIMIZATION to HIGH, the output of SET EXPLAIN
displays the following uppercase string as the first line: QUERY:

Chapter 2. SQL statements 2-789

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_am_037.htm#ids_am_037
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_am_052.htm#ids_am_052
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_am_052.htm#ids_am_052
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0441.htm#ids_adr_0441
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_sapi_064.htm#ids_sapi_064
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_sapi_064.htm#ids_sapi_064
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_am_052.htm#ids_am_052
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_am_052.htm#ids_am_052
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0441.htm#ids_adr_0441
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_sapi_064.htm#ids_sapi_064
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_sapi_064.htm#ids_sapi_064

Table 2-13. Output file terms (continued)

Term Significance

Directives
followed

Lists the directives set for the query

If the syntax for a directive is incorrect, the query is processed without
the directive. In that case, the output shows DIRECTIVES NOT FOLLOWED in
addition to DIRECTIVES FOLLOWED.

For more information on the directives specified after this term, see the
“Optimizer Directives” on page 5-35 or “SET OPTIMIZATION statement”
on page 2-807.

If a DELETE or UPDATE statement specifies an uncorrelated subquery in
the WHERE clause, the set of qualifying rows returned by the subquery
is materialized as a temporary table, and the output of SET EXPLAIN
displays within parentheses the following message: (Temp Table For
Subquery)

Estimated cost An estimate of the amount of work for the query

The optimizer uses an estimate to compare the cost of one path with
another. The estimate is a number the optimizer assigns to the selected
access method. This number does not translate directly into time and
cannot be used to compare different queries. It can be used, however, to
compare changes made for the same query. When data distributions are
used, a query with a higher estimate generally takes longer to run than
one with a smaller estimate.

In the case of a query and a subquery, two estimated cost figures are
returned; the query figure also includes the subquery cost. The subquery
cost is shown so that you can see the cost that is associated with only the
subquery.

Estimated
number of rows
returned

An estimate of the number of rows to be returned

This number is based on information in the system catalog tables.

Numbered list The order in which tables are accessed, followed by the access method
used (index path or sequential scan)

When a query involves table inheritance, all the tables are listed under
the supertable in the order in which they were accessed.

Index name The name of the index

For example, idx1 is the name of the following index:Index Name:
informix.idx1

FOT in the index name identifies the index as a forest of trees index: For
example, the following index is a forest of trees index:

Index Name: informix.fot_idx (FOT)

2-790 IBM Informix Guide to SQL: Syntax

Table 2-13. Output file terms (continued)

Term Significance

Index keys The columns used as filters or indexes; the column name used for the
index path or filter is indicated.

The notation (Key Only) indicates that all the desired columns are part of
the index key, so a key-only read of the index could be substituted for a
read of the actual table. In databases that have the NLSCASE
INSENSITIVE property, all index scan methods (except key-only scans)
allow the query execution plan to map all case-sensitive values to a
single value for NCHAR and NVARCHAR columns. For more on
NLSCASE INSENSITIVE databases, see “Duplicate rows in NLSCASE
INSENSITIVE databases” on page 2-663.

The Lower Index Filter shows the key value where the index read begins;
and the Upper Index Filter is shown for the key value where the index
read stops. The Index Key Filters show filters that will be applied on
retrieved index key values. If the query uses an index self-join path, the
Index Self Join Keys shows the leading index key columns used as self-join
keys, and the Lower bound and Upper bound show the boundaries of the
leading index key columns.

Join method When the query involves a join between two tables, the join method that
the optimizer used (Nested Loop or Dynamic Hash) is shown at the
bottom of the output for that query.

When the query involves a dynamic join of two tables, if the output
contains the words Build Outer, the hash table is built on the first table
listed (called the build table). If the words Build Outer do not appear, the
hash table is built on the second table listed.

Query statistics When the EXPLAIN_STAT configuration parameter is set to 1, this
section shows the number of rows returned, the number of rows
estimated in the query plan, the time required, calls to iterator functions,
and the estimated cost of scan and join operations on table objects.

Time When the output displays the elapsed time for a query execution plan or
for a component of that plan, the value is formatted as
minutes:seconds.fraction to display the minutes, seconds, and fractional
part of a second.

If the query uses a collating order other than the default for the DB_LOCALE
setting, then the DB_LOCALE setting and the name of the other locale that is the
basis for the collation in the query (as specified by the SET COLLATION
statement) are both included in the output file. Similarly, if an index is not used
because of its collation, the output file indicates this.
Related concepts:
“Default name and location of the explain output file on UNIX” on page 2-788
“Default name and location of the output file on Windows” on page 2-789

Mapped users (UNIX, Linux) (Security Guide)

Location and file names for mapped users' generated files (UNIX, Linux)
(Security Guide)
“Using the FILE TO option” on page 2-787
Related reference:
“SET EXPLAIN statement” on page 2-785

onmode -Y: Dynamically change SET EXPLAIN (Administrator's Reference)

Chapter 2. SQL statements 2-791

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_am_037.htm#ids_am_037
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_am_052.htm#ids_am_052
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sec.doc/ids_am_052.htm#ids_am_052
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0441.htm#ids_adr_0441

onmode and Y arguments: Change query plan measurements for a session
(SQL administration API) (Administrator's Reference)

Complete-Connection Level Settings and Output Examples
The SET EXPLAIN statement supports complete-connection level settings.

The SET EXPLAIN statement supports complete-connection level settings. This means
that values in the local session environment at the time of connection are
propagated to all new or resumed transactions of the following types:
v transactions within the local database
v distributed transactions across databases of the same server instance
v distributed transactions across databases of two or more database server

instances
v global transactions with XA-compliant data sources that are registered in the

local database

If you change the SET EXPLAIN setting within a transaction, the new value is
propagated back to the local environment and also to all subsequent new or
resumed transactions.

Examples of SET EXPLAIN Output

The following SQL statements cause the database server to write the query plans
of the UPDATE statement (and of its subquery) to the default explain output file:
DATABASE stores_demo;
SET EXPLAIN ON;
UPDATE orders SET ship_charge = ship_charge + 2.00

WHERE customer_num IN
(SELECT orders.customer_num FROM orders

WHERE orders.ship_weight < 50);
CLOSE DATABASE;

The following information is displayed in the resulting output:
QUERY:

update orders set ship_charge = ship_charge + 2.00
where customer_num in
(select orders.customer_num from orders where

orders.ship_weight < 50)

Estimated Cost: 4
Estimated # of Rows Returned: 8

1) informix.orders: INDEX PATH

(1) Index Keys: customer_num (Serial, fragments: ALL)
Lower Index Filter: informix.orders.customer_num = ANY

Subquery:

Estimated Cost: 2
Estimated # of Rows Returned: 8
(Temp Table For Subquery)

1) informix.orders: SEQUENTIAL SCAN

Filters: informix.orders.ship_weight < 50.00

The next example is based on the following SQL statements, which include a
DELETE operation:

2-792 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_sapi_064.htm#ids_sapi_064
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_sapi_064.htm#ids_sapi_064

DATABASE stores_demo;
SET EXPLAIN ON;
DELETE FROM catalog WHERE stock_num IN
(SELECT stock.stock_num FROM stock, catalog WHERE

stock.stock_num = catalog.stock_num
AND stock.unit_price < 50);

CLOSE DATABASE;

Below is the resulting output:
QUERY:

DELETE FROM catalog WHERE stock_num IN
(SELECTstock.stock_num from stock, catalog

WHERE stock.stock_num = catalog.stock_num
AND stock.unit_price < 50);

Estimated Cost: 19
Estimated # of Rows Returned: 37

1) ajay.catalog: INDEX PATH

(1) Index Keys: stock_num manu_code (Serial, fragments: ALL)
Lower Index Filter: ajay.catalog.stock_num = ANY

Subquery:

Estimated Cost: 12
Estimated # of Rows Returned: 44
(Temp Table For Subquery)

1) ajay.stock: SEQUENTIAL SCAN

Filters: ajay.stock.unit_price < $50.00

2) ajay.catalog: INDEX PATH

(1) Index Keys: stock_num manu_code
(Key-Only) (Serial, fragments: ALL)
Lower Index Filter:
ajay.stock.stock_num = ajay.catalog.stock_num

NESTED LOOP JOIN

Related concepts:
“Default name and location of the explain output file on UNIX” on page 2-788
“Default name and location of the output file on Windows” on page 2-789

Report that shows the query plan chosen by the optimizer (Performance
Guide)

The explain output file (Performance Guide)

Query statistics section provides performance debugging information
(Performance Guide)
Related reference:
“UPDATE STATISTICS statement” on page 2-868
“Explain-Mode Directives” on page 5-47

External Table Operations in SET EXPLAIN Output
The Query Statistics section of SET EXPLAIN output provides information on
operations that are loading data from or unloading data to an external table.

Chapter 2. SQL statements 2-793

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_503.htm#ids_prf_503
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_503.htm#ids_prf_503
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_504.htm#ids_prf_504
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_505.htm#ids_prf_505
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_505.htm#ids_prf_505

The following codes in the Query Statistics section of the SET EXPLAIN output file
provides information on external tables:
v xlcnv identifies an operation that is loading data from an external table and

inserting the data into a base table. Here x = external table, l = loading, and cnv
= converter

v xucnv identifies an operation that is reading data from the base table and writing
to the file that the external table is pointing to. Here x = external table, u =
unloading, and cnv = converter

Examples

The following example shows a query in which an operating is loading data from
an external table and inserting the data into a base table:
QUERY: (OPTIMIZATION TIMESTAMP: 11-11-2009 12:55:20)

insert into items select * from ext_items

Estimated Cost: 5
Estimated # of Rows Returned: 68

1) informix.ext_items: SEQUENTIAL SCAN

Query statistics:

Table map :

Internal name Table name

t1 items

type it_count time

xlread 1 00:00.00

type it_count time

xlcnv 67 00:00.00

type table rows_ins time

insert t1 67 00:00.00

The following example shows a query in which an operating is loading data from
an external table and inserting the data into a base table:
QUERY: (OPTIMIZATION TIMESTAMP: 11-11-2009 12:47:55)

select * from orders into external ord_ext
using (datafiles (’disk:/tmp/ord’))

Estimated Cost: 2
Estimated # of Rows Returned: 23

1) informix.orders: SEQUENTIAL SCAN

Query statistics:

Table map :

Internal name Table name

2-794 IBM Informix Guide to SQL: Syntax

t1 orders

type table rows_prod est_rows rows_scan time est_cost

scan t1 23 23 23 00:00.00 3

type it_count time

xucnv 23 00:00.00

type it_count time

xuwrite 23 00:00.00

SET INDEXES statement
Use the SET INDEXES statement to enable or disable a user-defined index, or to
change the filtering mode of a unique index.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� SET INDEXES �

,

index
FOR table

ENABLED
DISABLED

(1) WITHOUT ERROR (2)
FILTERING WITH ERROR

��

Notes:

1 Unique indexes only

2 See “Filtering Modes” on page 2-746

Element Description Restrictions Syntax

index Index to be enabled, disabled, or changed in its filtering
mode

Must exist “Identifier” on page
5-21

table Table whose indexes are all to be enabled, disabled, or
changed in their filtering mode

Must exist “Identifier” on page
5-21

Usage

You can use this statement to enable or disable a specific index or a list of indexes.
You can also use the table option to enable or disable all of the user-defined
indexes on a table without specifying their individual identifiers. For example, the
next two examples respectively disable and enable all of the indexes on the
cust_calls table:
SET INDEXES FOR cust_calls DISABLED;
SET INDEXES FOR cust_calls ENABLED;

This simple syntax can be convenient in operations where you intend to LOAD or
TRUNCATE all the data in a table, or to consolidate the free space in a table.

Chapter 2. SQL statements 2-795

Explicitly-defined and implicitly-defined indexes

The SET INDEXES statement operates on indexes that the CREATE INDEX
statement created explicitly. It is not useful, however, with system-defined indexes
that PRIMARY KEY or FOREIGN KEY constraint definitions create implicitly. The
SET INDEXES statement cannot specify system-generated names that begin with
the blank (ASCII 32) character, even if your database has the DELIMIDENT
environment variable set to support double quotation marks as delimiters for
database object identifiers.

To enable or disable implicitly-defined indexes, use instead the SET
CONSTRAINTS statement, whose FOR table option can reference system-generated
constraints implicitly, as in the following examples:
SET CONSTRAINTS FOR cust_calls DISABLED;
SET CONSTRAINTS FOR cust_calls ENABLED;

To disable all the explicitly-defined and implicitly-defined indexes of a table, use
the FOR table options of both the SET INDEXES and SET CONSTRAINTS
statements, as in the following examples:
SET INDEXES FOR cust_calls DISABLED;
SET CONSTRAINTS FOR cust_calls DISABLED;

You can similarly enable all the explicitly-defined and implicitly-defined indexes of
a table, without referencing the system-generated names of the implicitly-defined
indexes, by substituting ENABLED for DISABLED in the examples above.

The SET INDEXES statement is a special case of the SET Database Object Mode
statement. The SET Database Object Mode statement can also enable or disable a
trigger or constraint, or can change the filtering mode of constraints and unique
indexes.

For the complete syntax and semantics of the SET INDEXES statement, see “SET
Database Object Mode statement” on page 2-737.

Do not confuse the SET INDEXES statement with the SET INDEX statement, which
was supported in releases earlier than Version 9.40. The Informix database server
ignores the SET INDEX statement in current releases.

Restrictions on Secondary Servers

In cluster environments, the SET INDEXES statement is not supported on
updatable secondary servers. (More generally, session-level index, trigger, and
constraint modes that the SET Database Object Mode statement specifies are not
redirected for UPDATE operations on table objects in databases of secondary
servers.)
Related reference:
“SET CONSTRAINTS statement” on page 2-735

SET ISOLATION statement
Use the SET ISOLATION statement to define the degree of concurrency among
processes that attempt to access the same rows simultaneously.

This statement is an extension to the ANSI/ISO standard for SQL.

2-796 IBM Informix Guide to SQL: Syntax

Syntax

�� SET ISOLATION
TO

�

� REPEATABLE READ
COMMITTED READ

LAST COMMITTED RETAIN UPDATE LOCKS
CURSOR STABILITY
DIRTY READ

WITH WARNING

��

Usage

The SET ISOLATION statement is an Informix extension to the ANSI SQL-92
standard. The SET ISOLATION statement can change the enduring isolation level
for the session. If you want to set isolation levels through an ANSI-compliant
statement, use the SET TRANSACTION statement instead. For a comparison of
these two statements, see “SET TRANSACTION statement” on page 2-820.

The TO keyword is optional, and has no effect.

SET ISOLATION provides the same functionality as the ISO/ANSI-compliant SET
TRANSACTION statement for isolation levels of DIRTY READ (called
UNCOMMITTED in SET TRANSACTION), COMMITTED READ, and
REPEATABLE READ (called SERIALIZABLE in SET TRANSACTION).

The database isolation_level affects read concurrency when rows are retrieved from
the database. The isolation level specifies the phenomena that can occur during
execution of concurrent SQL transactions. The following phenomena are possible:
v Dirty Read. SQL transaction T1 modifies a row. SQL transaction T2 then reads

that row before T1 performs a COMMIT. If T1 then performs a ROLLBACK, T2
will have read a row that was never committed, and therefore can be considered
never to have existed.

v Non-Repeatable Read. SQL transaction T1 reads a row. SQL transaction T2 then
modifies or deletes that row and performs a COMMIT. If T1 then attempts to
reread that row, T1 might receive the modified value or discover that the row
has been deleted.

v Phantom Row. SQL transaction T1 reads the set of rows N that satisfy some
search condition. SQL transaction T2 then executes SQL statements that generate
one or more new rows that satisfy the search condition used by SQL transaction
T1. If T1 then repeats the original read with the same search condition, T1
receives a different set of rows.

The database server uses shared locks to support different levels of isolation
among processes attempting to access data.

The update or delete process always acquires an exclusive lock on the row that is
being modified. The level of isolation does not interfere with rows that you are
updating or deleting. If another process attempts to update or delete rows that you
are reading with an isolation level of Repeatable Read, that process is denied
access to those rows.

In Informix ESQL/C, cursors that are open when SET ISOLATION executes might
or might not use the new isolation level when rows are retrieved. Any isolation

Chapter 2. SQL statements 2-797

level that was set from the time the cursor was opened until the application fetches
a row might be in effect. The database server might have read rows into internal
buffers and internal temporary tables using the isolation level that was in effect at
that time. To ensure consistency and reproducible results, close any open cursors
before you execute the SET ISOLATION statement.

You can issue the SET ISOLATION statement from a client computer only after a
database is opened.
Related concepts:

Set the isolation level (SQL Tutorial)
Related reference:
“LOCK TABLE statement” on page 2-564
“SET LOCK MODE statement” on page 2-804
“SET TRANSACTION statement” on page 2-820
“CREATE DATABASE statement” on page 2-150
“SET ENVIRONMENT statement” on page 2-763

Complete-Connection Level Settings
The SET ISOLATION statement supports complete-connection level settings. This
means that values in the local session environment at the time of connection are
propagated to all new or resumed transactions. These can include the following
types of transactions:
v transactions within the local database,
v distributed transactions across databases of the same server instance,
v distributed transactions across databases of two or more database server

instances,
v global transactions with XA-compliant data sources that are registered in the

local database.

If you change the isolation level within a transaction, the new value is propagated
back to the local environment and also to all subsequent new or resumed
transactions.

Informix Isolation Levels
The following definitions explain the critical characteristics of each isolation level,
from the lowest level of isolation to the highest.

Using the Dirty Read Isolation Level
Use the Dirty Read option to copy rows from the database whether or not there
are locks on them. The program that fetches a row places no locks and it respects
none. Dirty Read is the only isolation level available to databases that do not
implement transaction logging.

This isolation level is most appropriate for static tables that are used for queries of
tables where data is not being modified, because it provides no isolation. With
Dirty Read, the program might return an uncommitted row that was inserted or
modified within a transaction that has subsequently rolled back, or a phantom row
that was not visible when you first read the query set, but that materializes in the
query set before a subsequent read within the same transaction. (Only the
Repeatable Read isolation level prevents access to phantom rows. Only Dirty Read
provides access to uncommitted rows from concurrent transactions that might
subsequently be rolled back.)

2-798 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_389.htm#ids_sqt_389

The optional WITH WARNING keywords instruct the database server to issue a
warning when DML operations that use the Dirty Read isolation level might return
an uncommitted row or a phantom row. The transaction in the following example
uses this isolation level:
BEGIN WORK;
SET ISOLATION TO DIRTY READ WITH WARNING;
...
COMMIT WORK;

The Dirty Read isolation level is sensitive to the current setting of the
USELASTCOMMITTED configuration parameter and of the
USELASTCOMMITTED session environment variable. For information about the
behavior of the Dirty Read isolation level when either of these are set to DIRTY
READ or to ALL, see “The LAST COMMITTED Option to Committed Read.”

When you use High Availability Data Replication, the database server effectively
uses Dirty Read isolation on the HDR Secondary Server, regardless of the specified
SET ISOLATION or SET TRANSACTION isolation level, unless the
UPDATABLE_SECONDARY configuration parameter is enabled. For more
information about this topic, see “Isolation Levels for Secondary Data Replication
Servers” on page 2-803.

Using the Committed Read Isolation Level
Use the Committed Read option to guarantee that every retrieved row is
committed in the table at the time that the row is retrieved. This option does not
place a lock on the fetched row. Committed Read is the default level of isolation in
a database with logging that is not ANSI compliant.

Committed Read is appropriate when each row is processed as an independent
unit, without reference to other rows in the same table or in other tables.
Related reference:
“SET LOCK MODE statement” on page 2-804

The LAST COMMITTED Option to Committed Read:

Use the LAST COMMITTED keyword option of the Committed Read isolation
level to reduce the risk of exclusive row-level locks held by other sessions either
causing applications to fail with locking errors, or preventing applications from
reading a locked row until after a concurrent transaction is committed or rolled
back.

In contexts where an application attempts to read a row on which another session
holds an exclusive lock, these keywords instruct the database server to return the
most recently committed version of the row, rather than wait for the lock to be
released.

This feature takes effect implicitly in all user sessions that use the Committed Read
isolation level of the SET ISOLATION statement, or that use the Read Committed
isolation level of the ANSI/ISO-compliant SET TRANSACTION statement, under
any of the following circumstances:
v if the USELASTCOMMITTED configuration parameter is set to ’COMMITTED

READ’ or to ’ALL’

v if the SET ENVIRONMENT statement sets the USELASTCOMMITTED session
environment variable to ’COMMITTED READ’ or to ’ALL’.

Chapter 2. SQL statements 2-799

This feature also takes effect implicitly in all user sessions that use the Dirty Read
isolation level of the SET ISOLATION statement, or that use the Read
Uncommitted isolation level of the ANSI/ISO-compliant SET TRANSACTION
statement, under any of the following circumstances:
v if the USELASTCOMMITTED configuration parameter is set to ’DIRTY READ’ or

to ’ALL’

v if the SET ENVIRONMENT statement sets the USELASTCOMMITTED session
environment variable to ’DIRTY READ’ or to ’ALL’.

Enabling this feature cannot eliminate the possibility of locking conflicts, but they
reduce the number of scenarios in which other sessions reading the same row can
cause an error. The LAST COMMITTED keywords are only effective with
concurrent read operations. They cannot prevent locking conflicts or errors that can
occur when concurrent sessions attempt to write to the same row.

This feature has no effect on Committed Read or Dirty Read behavior in contexts
where no “last committed" version of the table is available, including these:
v The database does not support transaction logging
v The table was created with the LOCK MODE PAGE keywords, or has been

altered to have a locking mode of PAGE
v The IFX_DEF_TABLE_LOCKMODE environment variable is set to ‘PAGE'
v The DEF_TABLE_LOCKMODE configuration parameter is set to ‘PAGE'
v The LOCK TABLE statement has explicitly set an exclusive lock on the table
v An uncommitted DDL statement has implicitly set an exclusive lock on the table
v The table is a system catalog table on which an uncommitted DDL statement has

implicitly set an exclusive lock
v The table has columns of complex data types or of user-defined data types
v The table is a RAW table
v A DataBlade module is accessing the table
v The table was created using the Virtual Table Interface.

User-defined access methods are not required to support the LAST COMMITTED
feature.

The scope of LAST COMMITTED semantics is neither statement-based nor
transaction-based. This isolation level has the same instant-in-time scope that the
Committed Read isolation level has without the LAST COMMITTED option. For
example, when a query is executed twice within a single transaction with LAST
COMMITTED in effect, different results might be returned by the same query, if
other DML transactions that were operating on the same data are committed in the
interval between the two submissions of the query. This instantaneous nature of
the semantics of Committed Read and of Committed Read Last Committed exactly
implements the ANSI/ISO Read Committed isolation level.

The LAST COMMITTED feature does not support reading through table-level
locks. If the access plan for a query that uses the LAST COMMITTED feature
encounters a table-level lock in a table or index that it needs to access, the query
will return the following error codes:

SQL error code:
252: Cannot get system information for table.

ISAM error code:
113: ISAM error: the file is locked.

2-800 IBM Informix Guide to SQL: Syntax

Using the Cursor Stability Isolation Level
Use the Cursor Stability option to place a shared lock on the fetched row, which is
released when you fetch another row or close the cursor. Another process can also
place a shared lock on the same row, but no process can acquire an exclusive lock
to modify data in the row. Such row stability is important when the program
updates another table based on the data it reads from the row.

If you set the isolation level to Cursor Stability, but you are not using a transaction,
the Cursor Stability acts like the Committed Read isolation level.

Using the Repeatable Read Isolation Level
Use the Repeatable Read option to place a shared lock on every row that is
selected during the transaction. Another process can also place a shared lock on a
selected row, but no other process can modify any selected row during your
transaction, nor insert a row that meets the search criteria of your query during
your transaction. If you repeat the query during the transaction, you reread the
same information. The shared locks are released only when the transaction
commits or rolls back. Repeatable Read is the default isolation level in an
ANSI-compliant database.

Repeatable Read isolation places the largest number of locks and holds them the
longest. Therefore, it is the level that reduces concurrency the most.

Default Isolation Levels
The default isolation level for a particular database is established when you create
the database according to database type. The following list describes the default
isolation level for each database type.

Isolation Level
Database Type

Dirty Read
Default level in a database without logging

Committed Read
Default level in a logged database that is not ANSI compliant

Repeatable Read
Default level in an ANSI-compliant database

The default level remains in effect until you issue a SET ISOLATION statement.
After a SET ISOLATION statement executes, the new isolation level remains in
effect until one of the following events occurs:
v You enter another SET ISOLATION statement.
v You open another database that has a default isolation level different from the

level that your last SET ISOLATION statement specified.
v The program ends.

For a Informix database that is not ANSI-compliant, unless you explicitly set the
USELASTCOMMITTED configuration parameter, the LAST COMMITTED feature
is not in effect for the default isolation levels. The SET ENVIRONMENT statement
or the SET ISOLATION statement can override this default and enable LAST
COMMITTED for the current session.

Using the RETAIN UPDATE LOCKS Option
Use the RETAIN UPDATE LOCKS option to affect the behavior of the database
server when it handles a SELECT ... FOR UPDATE statement.

Chapter 2. SQL statements 2-801

In a database with the isolation level set to Dirty Read, Committed Read, or
Cursor Stability, the database server places an update lock on a fetched row of a
SELECT ... FOR UPDATE statement. When you turn on the RETAIN UPDATE
LOCKS option, the database server retains the update lock until the end of the
transaction rather than releasing it at the next subsequent FETCH or when the
cursor is closed. This option prevents other users from placing an exclusive lock on
the updated row before the current user reaches the end of the transaction.

You can use this option to achieve the same locking effects but avoid the overhead
of dummy updates or the repeatable read isolation level.

You can turn this option on or off at any time during the current session.

You can turn the option off by resetting the isolation level without using the
RETAIN UPDATE LOCKS keywords, as in the following example.
BEGIN WORK;
SET ISOLATION TO

COMMITTED READ LAST COMMITTED RETAIN UPDATE LOCKS;
...
COMMIT WORK;
BEGIN WORK;
SET ISOLATION TO COMMITTED READ LAST COMMITTED ;
...
COMMIT WORK;

Controlling Update Locks through the Session Environment

Another way to disable RETAIN UPDATE LOCKS behavior is to execute this SQL
statement:
SET ENVIRONMENT RETAINUPDATELOCKS ’NONE’;

This disables the RETAIN UPDATE LOCKS clause for the current transaction, and
for any subsequent transactions of the same session, by resetting the
RETAINUPDATELOCKS session environment variable.

The SET ENVIRONMENT RETAINUPDATELOCKS statement can also make the
retention of update locks the default behavior for either the Committed Read,
Cursor Stability, or Dirty Read isolation levels, or for all of these isolation levels,
regardless of whether the SET ISOLATION statement includes the RETAIN
UPDATE LOCKS clause.

For more information on update locks, see “RETAINUPDATELOCKS Environment
Option” on page 2-779 and “Locking Considerations” on page 2-856.

Turning the Option OFF During a Transaction:

If you set the RETAIN UPDATE LOCKS option to OFF after a transaction has
begun, but before the transaction has been committed or rolled back, several
update locks might still exist.

Switching OFF the feature does not directly release any update lock. When you
turn this option off, the database server reverts to normal behavior for the three
isolation levels. That is, a FETCH statement releases the update lock placed on a
row by the immediately preceding FETCH statement, and a closed cursor releases
the update lock on the current row.

2-802 IBM Informix Guide to SQL: Syntax

Update locks placed by earlier FETCH statements are not released unless multiple
update cursors are present within the same transaction. In this case, a subsequent
FETCH could also release older update locks of other cursors.

Effects of Isolation Levels
You cannot set the transaction isolation level in a database that does not have
logging. Every retrieval in such a database occurs as a Dirty Read.

The data retrieved from a BYTE or TEXT column can vary, depending on the
transaction isolation level. Under Dirty Read or Committed Read levels of
isolation, a process can read a BYTE or TEXT column that is either deleted (if the
delete is not yet committed) or in the process of being deleted. Under these
isolation levels, deleted data is readable under certain conditions. For information
about these conditions, see the IBM Informix Administrator's Guide.

When you use DB-Access, as you use higher levels of isolation, lock conflicts occur
more frequently. For example, if you use Cursor Stability, more lock conflicts occur
than if you use Committed Read.

Using a scroll cursor in an Informix ESQL/C transaction, you can force consistency
between your temporary table and the database table either by setting the level to
Repeatable Read or by locking the entire table during the transaction.

If you use a scroll cursor WITH HOLD in a transaction, you cannot force
consistency between your temporary table and the database table. A table-level
lock or locks that are set by Repeatable Read are released when the transaction is
completed, but the scroll cursor with hold remains open beyond the end of the
transaction. You can modify released rows as soon as the transaction ends, but
retrieved data in the temporary table might be inconsistent with the actual data.

Attention: Do not use nonlogging tables within a transaction. If you need to use a
nonlogging table within a transaction, either set the isolation level to Repeatable
Read or else lock the table in Exclusive mode to prevent concurrency problems.

Isolation Levels for Secondary Data Replication Servers
If the UPDATABLE_SECONDARY configuration parameter is disabled (by being
unset or by being set to zero), a secondary data replication server is read-only. In
this case, only the Dirty Read or Read Uncommitted transaction isolation levels are
available on High-Availability Data Replication (HDR) and Remote Standalone
Secondary (RSS) servers.

If the UPDATABLE_SECONDARY parameter is enabled (by being set to a valid
number of connections greater than zero), a secondary data replication server can
support the Read Committed, Committed Read, or Committed Read Last
Committed transaction isolation level, with or without the USELASTCOMMITTED
session environment variable of the SET ENVIRONMENT statement. Only the
DELETE, INSERT, UPDATE, and MERGE statements of SQL(and the dbexport
utility, if the STOP_APPLY, USELASTCOMMITTED, and
UPDATABLE_SECONDARY configuration parameters are set) can support write
operations on an updatable secondary server.

Shared Disk Secondary (SDS) servers, however, can support the Read Committed,
Committed Read, Committed Read Last Committed isolation levels, regardless of

Chapter 2. SQL statements 2-803

their UPDATABLE_SECONDARY setting. For more information about the
UPDATABLE_SECONDARY configuration parameter, see the IBM Informix
Administrator's Reference.

SET LOCK MODE statement
Use the SET LOCK MODE statement to define how the database server handles a
process that tries to access a locked row or table.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� SET LOCK MODE TO NOT WAIT
WAIT

seconds

��

Element Description Restrictions Syntax

seconds Maximum number of seconds that a process waits for a
lock to be released before issuing an error

Valid only if shorter than
system default

“Literal Number”
on page 4-215

Usage

This statement can direct the response of the database server in the following ways
when a process tries to access a locked row or table.

Lock Mode
Effect

NOT WAIT
Database server ends the operation immediately and returns an error code.
This condition is the default.

WAIT Database server suspends the process until the lock releases.

WAIT seconds
Database server suspends the process until the lock releases or until the
waiting period ends. If the lock remains after the waiting period, the
operation ends and an error code is returned.

For a description of the two distinct meanings of the term lock mode in this
document, see Locking Granularity in the related concepts section.

To avoid waiting in operations that attempt to read rows on which concurrent
sessions hold exclusive row-level locks, you can also use the LAST COMMITTED
feature, either by setting it explicitly in the SET ISOLATION COMMITTED READ
statement, or by setting the USELASTCOMMITTED configuration parameter or the
USELASTCOMMITTED session environment option.

Examples

In the following example, the user specifies that if the process requests a locked
row, the operation should end immediately and an error code should be returned:
SET LOCK MODE TO NOT WAIT;

2-804 IBM Informix Guide to SQL: Syntax

In the following example, the user specifies that the process should be suspended
until the lock is released:
SET LOCK MODE TO WAIT;

The next example sets an upper limit of 17 seconds on the length of any wait:
SET LOCK MODE TO WAIT 17;

Related concepts:
“Locking Granularity” on page 2-568
“Using the Committed Read Isolation Level” on page 2-799
Related reference:
“LOCK TABLE statement” on page 2-564
“SET ISOLATION statement” on page 2-796
“SET TRANSACTION statement” on page 2-820
“UNLOCK TABLE statement” on page 2-851

Set the lock mode (SQL Tutorial)

WAIT Clause
The WAIT clause causes the database server to suspend the process until the lock
is released or until a specified number of seconds have passed without the lock
being released.

The database server protects against the possibility of a deadlock when you
request the WAIT option. Before the database server suspends a process, it checks
whether suspending the process could create a deadlock. If the database server
discovers that a deadlock could occur, it ends the operation (overruling your
instruction to wait) and returns an error code. In the case of either a suspected or
actual deadlock, the database server returns an error.

Cautiously use the unlimited waiting period that was created when you specify the
WAIT option without seconds. If you do not specify an upper limit, and the process
that placed the lock somehow fails to release it, suspended processes could wait
indefinitely. Because a true deadlock situation does not exist, the database server
does not take corrective action.

In a network environment, the DBA uses the ONCONFIG parameter
DEADLOCK_TIMEOUT to establish a default value for seconds. If you use a SET
LOCK MODE statement to set an upper limit, your value applies only when your
waiting period is shorter than the system default.

Complete-Connection Level Settings
The SET LOCK MODE statement supports complete-connection level settings. This
means that values in the local session environment at the time of connection are
propagated to all new or resumed transactions. These can include the following
types of transactions:
v transactions within the local database,
v distributed transactions across databases of the same server instance,
v distributed transactions across databases of two or more database server

instances,
v global transactions with XA-compliant data sources that are registered in the

local database.

Chapter 2. SQL statements 2-805

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_402.htm#ids_sqt_402

If you change the lock mode setting within a transaction, the new value is
propagated back to the local environment and also to all subsequent new or
resumed transactions.

In releases of Informix earlier than 9.40.UC8, the SET LOCK MODE statement did
not support complete-connection level settings. The process waited for the
specified number of seconds only if you acquired locks within the current database
server and a remote database server within the same transaction.

SET LOG statement
Use the SET LOG statement to change your database logging mode from buffered
transaction logging to unbuffered transaction logging or vice versa.

This statement is an extension to the ANSI/ISO standard for SQL. Unlike most
extensions, the SET LOG statement is not valid in an ANSI-compliant database.

Syntax

�� SET
BUFFERED

LOG ��

Usage

You activate transaction logging when you create a database or add logging to an
existing database. These transaction logs can be buffered or unbuffered.

Buffered logging is a type of logging that holds transactions in a memory buffer
until the buffer is full, regardless of when the transaction is committed or rolled
back. The database server provides this option to speed up operations by reducing
the number of disk writes.

Attention: You gain a marginal increase in efficiency with buffered logging, but
you incur some risk. In the event of a system failure, the database server cannot
recover any completed transactions in the memory buffer that were not written to
disk.

The SET LOG statement in the following example changes the transaction logging
mode to buffered logging:
SET BUFFERED LOG;

Unbuffered logging is a type of logging that does not hold transactions in a
memory buffer. As soon as a transaction ends, the database server writes the
transaction to disk. If a system failure occurs when you are using unbuffered
logging, you recover all completed transactions, but not those still in the buffer.
The default condition for transaction logs is unbuffered logging.

The SET LOG statement in the following example changes the transaction logging
mode to unbuffered logging:
SET LOG;

The SET LOG statement redefines the mode for the current session only. The
default mode, which the database administrator sets with the ondblog utility,
remains unchanged.

2-806 IBM Informix Guide to SQL: Syntax

The buffering option does not affect retrievals from external tables. For distributed
queries, a database with logging can retrieve only from databases with logging, but
it makes no difference whether the databases use buffered or unbuffered logging.

An ANSI-compliant database cannot use buffered logging.

You cannot change the logging mode of ANSI-compliant databases. If you created
a database with the WITH LOG MODE ANSI keywords, you cannot later use the
SET LOG statement to change the logging mode to buffered or unbuffered
transaction logging.
Related reference:
“CREATE DATABASE statement” on page 2-150

SET OPTIMIZATION statement
Use the SET OPTIMIZATION statement to specify how much time the query
execution optimizer spends developing a query plan or specifying optimization
goals. The SET OPTIMIZATION statement is an extension to the ANSI/ISO
standard for SQL

When you use DB-Access with Informix, the ENVIRONMENT options to the SET
OPTIMIZATION statement can define a general optimization environment for all
statements in the current session.

Syntax

�� SET OPTIMIZATION HIGH
LOW

FIRST_ROWS
ALL_ROWS

(1) (2)
ENVIRONMENT Options

��

Notes:

1 DB-Access only

2 See “ENVIRONMENT Options” on page 2-809

Usage

You can execute a SET OPTIMIZATION statement at any time. The specified
optimization level carries across databases on the current database server. The
option that you specify remains in effect until you issue another SET
OPTIMIZATION statement or until the program ends. The default database server
optimization level for the amount of time that the query optimizer spends
determining the query plan is HIGH.

On Informix, the default optimization goal is ALL_ROWS. Although you can set
only one option at a time, you can issue two SET OPTIMIZATION statements: one
that specifies the time the optimizer spends to determine the query plan and one
that specifies the optimization goal of the query.

Similarly, you can issue multiple SET OPTIMIZATION statements that include the
ENVIRONMENT Options clause to specify a session environment for optimizing
queries. In data warehousing applications, an appropriate optimizer environment

Chapter 2. SQL statements 2-807

can improve the performance of join queries of tables in a star schema. Optimizer
environment settings persist until another SET OPTIMIZATION ENVIRONMENT
statement overrides them, or until the session ends. For more information, see the
“ENVIRONMENT Options” on page 2-809 topic.

Examples

The following example shows optimization across a network. The central database
(on the midstate database server) is to have LOW optimization; the western
database (on the rockies database server) is to have HIGH optimization.
CONNECT TO ’central@midstate’;
SET OPTIMIZATION LOW;
SELECT * FROM customer;
CLOSE DATABASE;
CONNECT TO ’western@rockies’;
SET OPTIMIZATION HIGH;
SELECT * FROM customer;
CLOSE DATABASE;
CONNECT TO ’wyoming@rockies’;
SELECT * FROM customer;

Here the wyoming database is to have HIGH optimization because it resides on
the same database server as the western database. The code does not need to
re-specify the optimization level for the wyoming database because the wyoming
database resides on the rockies database server like the western database.

The following example directs the Informix optimizer to use the most time to
determine a query plan, and to then return the first rows of the result as soon as
possible:
SET OPTIMIZATION LOW;
SET OPTIMIZATION FIRST_ROWS;
SELECT lname, fname, bonus

FROM sales_emp, sales
WHERE sales.empid = sales_emp.empid AND bonus > 5,000

ORDER BY bonus DESC;

Related concepts:
“Performance considerations of UPDATE STATISTICS statements” on page 2-883

Queries and the query optimizer (Performance Guide)
Related reference:
“SET EXPLAIN statement” on page 2-785
“SET ENVIRONMENT statement” on page 2-763
“UPDATE STATISTICS statement” on page 2-868
“Optimizer Directives” on page 5-35
“SET STATEMENT CACHE statement” on page 2-817

HIGH and LOW Options
The HIGH and LOW options determine how much time the query optimizer
spends to determine the query plan:
v HIGH

This option directs the optimizer to use a sophisticated cost-based algorithm that
examines all reasonable query-plan choices and selects the best overall
alternative.
For large joins, this algorithm can incur more overhead than you desire. In
extreme cases, you can run out of memory.

2-808 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_491.htm#ids_prf_491

v LOW
This option directs the optimizer to use a less sophisticated but faster to design
optimization algorithm, based on the lowest-cost path at each stage. This
algorithm eliminates unlikely join strategies during the early stages of
optimization and reduces the time and resources spent during optimization.
When you specify the LOW level of optimization, the database server might not
select the optimal strategy because that strategy was eliminated from
consideration during the early stages of the algorithm.

FIRST_ROWS and ALL_ROWS Options
The FIRST_ROWS and ALL_ROWS options relate to the optimization goal of the
query:
v FIRST_ROWS

This option directs the optimizer to choose the query plan that returns the first
result record as soon as possible, ignoring plans that would sort records or
create a hash table.

v ALL_ROWS
This option directs the optimizer to choose the query plan that returns all the
records as quickly as possible.

You can also specify the optimization goal of a specific query with the
optimization-goal directive. For more information, see “Optimizer Directives” on
page 5-35.

Optimizing SPL Routines
For SPL routines that remain unchanged or change only slightly, you might want
to set the SET OPTIMIZATION statement to HIGH when you create the SPL
routine. This step stores the best query plans for the SPL routine. Then execute a
SET OPTIMIZATION LOW statement before you execute the SPL routine. The SPL
routine then uses the optimal query plans and runs at the more cost-effective rate.

ENVIRONMENT Options
Use the ENVIRONMENT Options clause of the SET OPTIMIZATION statement to
define a general optimization environment for all queries in the current session.
For some data warehousing applications, session environment settings that you
specify in this clause can improve the performance of queries that join fact tables
with dimension tables, in databases where the primary key of each dimension table
corresponds to a foreign key of the fact table.

The DB-Access utility of Informix supports the ENVIRONMENT Options clause of
the SET OPTIMIZATION statement.

Syntax

��

�

ENVIRONMENT STAR_JOIN ' ENABLED '
DISABLED
FORCED

,

FACT ' table '
AVOID_FACT DEFAULT
NON_DIM ''

��

Chapter 2. SQL statements 2-809

Element Description Restrictions Syntax

table Table, view, or synonym Must exist in the database “Identifier” on
page 5-21

Usage

The ENVIRONMENT Options clause can specify attributes of the optimization
environment of the current session. These properties persist until the session ends,
or until another SET OPTIMIZATION ENVIRONMENT statement resets an
optimization property.

The following table describes each of the star-join directives and indicates how it
affects the query plan of the optimizer.

Keywords Effect Optimizer Action

STAR_JOIN The 'ENABLED' setting turns on (and 'DISABLED'
turns off) star-join support for the current session.
The 'FORCED' setting favors a star-join execution
path, when possible, for all queries

For 'ENABLED', the optimizer considers the
possibility of a star-join execution plan. For
'FORCED', a star join plan will be chosen, if
available. For 'DISABLED', star-join is not
considered.

FACT Identifies tables that correspond to fact tables in a
star schema. If an AVOID_FACT table is also listed
as FACT, then FACT takes precedence. DEFAULT (or
an empty string) turns off this environment setting
for the session.

Only tables in the FACT list are considered as
fact tables in star-join optimization. Multiple
tables can be listed as FACT.

AVOID_FACT Do not use the table (or any table in the list of
tables) as a fact table in star-join optimization.
DEFAULT (or an empty string) turns off this
environment setting for the session.

Tables in the AVOID_FACT list are not
considered as fact tables in star-join
optimization. Multiple tables can be listed as
AVOID_FACT.

NON_DIM Identifies tables that do not correspond to dimension
tables in a star schema. DEFAULT (or an empty
string) turns off this environment setting for the
session.

Tables in the NON_DIM list are not
considered as dimension tables in star-join
optimization. Multiple tables can be listed as
NON_DIM.

Each keyword or table identifier that specifies the setting of an optimizer
environment attribute must be delimited by a pair of single (') or double (")
quotation mark symbols. If a comma-separated list of more than one table identifier
follows the FACT, AVOID_FACT, or NON_DIM keywords, do not include blank
spaces between any of the items in the list.

The DBA can use an sysdbopen() routine to define an optimization environment
that takes effect when the user connects to the database. For example, to specify an
optimizer environment that always favors a star-join execution plan, the
sysdbopen() routine should include these SQL statements:
SET OPTIMIZATION ENVIRONMENT STAR_JOIN ’FORCED’;
SET OPTIMIZATION ENVIRONMENT FACT ’table1’,’table2’, ... ’tableN’;

Here the tables whose names are listed after the FACT keyword should all be fact
tables.

For information about query optimizer directives that can favor or avoid star-join
execution plans, see “Star-Join Directives” on page 5-45.

2-810 IBM Informix Guide to SQL: Syntax

For more information about how to use the built-in sysdbopen() routine to define
the session environment at the time of connection for a specified user, for the
PUBLIC group, or for a role, see “Session Configuration Procedures” on page 6-5.

SET PDQPRIORITY statement
The SET PDQPRIORITY statement enables an application to set the query priority
level dynamically within a routine. The SET PDQPRIORITY statement is an
extension to the ANSI/ISO standard for SQL.

Syntax

�� SET PDQPRIORITY DEFAULT
LOW
OFF
HIGH
resources

��

Element Description Restrictions Syntax

resources Integer that specifies the query priority
level and the percent of resources to
process the query

Can range from -1 to 100. See also
“Allocating Database Server
Resources” on page 2-812.

“Literal Number”
on page 4-215

Usage

The SET PDQPRIORITY statement overrides the PDQPRIORITY environment
variable (but has lower precedence than the MAX_PDQPRIORITY configuration
parameter). The scope of SET PDQPRIORITY is local to the routine, and does not
affect other routines within the same session. When a routine that issues this
statement terminates, the setting reverts to the system default value.

Set PDQ priority to a value less than the quotient of 100 divided by the maximum
number of prepared statements. For example, if two prepared statements are
active, you should set the PDQ priority to less than 50.

For example, assume that the DBA sets the MAX_PDQPRIORITY parameter to 50.
Then a user enters the following SET PDQPRIORITY statement to set the query
priority level to 80 percent of resources:
SET PDQPRIORITY 80;

When it processes the query, the database server uses the MAX_PDQPRIORITY
value to factor the query priority level set by the user. The database server silently
processes the query with a priority level of 40. This priority level represents 50
percent of the 80 percent of resources that the user specifies.

The following keywords are supported by the SET PDQPRIORITY statement.

Keyword
Effect

DEFAULT
Uses the setting of the PDQPRIORITY environment variable

LOW Data values are fetched from fragmented tables in parallel. (In Informix,
when you specify LOW, the database server uses no other forms of
parallelism.)

Chapter 2. SQL statements 2-811

OFF PDQ is turned off (Informix only). The database server uses no parallelism.
OFF is the default if you use neither the PDQPRIORITY environment
variable nor the SET PDQPRIORITY statement.

HIGH The database server determines an appropriate PDQPRIORITY value,
based on factors that include the number of available processors, the
fragmentation of the tables being queried, the complexity of the query, and
others. IBM reserves the right to change the performance behavior of
queries when HIGH is specified in future releases.

Related reference:
“SET ENVIRONMENT statement” on page 2-763

Allocating Database Server Resources
You can specify an integer in the range from -1 to 100 to indicate a query priority
level as the percent of database server resources to process the query. Resources
include the amount of memory and the number of processors. The higher the
number you specify, the more resources the database server uses.

Use of more resources usually indicates better performance for a given query.
Using excessive resources, however, can cause contention for resources and remove
resources from other queries, so that degraded performance results. With the
resources option, the following values are numeric equivalents of the keywords that
indicate query priority level.

Value Equivalent Keyword-Priority Level

-1 DEFAULT

0 OFF

1 LOW

For Informix, the following statements are equivalent. The first statement uses the
keyword LOW to establish a low query-priority level. The second uses a value of 1
in the resources parameter to establish a low query-priority level.
SET PDQPRIORITY LOW;

SET PDQPRIORITY 1;

SET ROLE statement
Use the SET ROLE statement to enable the privileges of a user-defined role. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� SET ROLE role
'role'
NULL
NONE
DEFAULT

��

Element Description Restrictions Syntax

role Name of a role to
be enabled

Must already exist in the database and must already have
been granted to the user, but cannot be a built-in role. If
enclosed between quotation marks, role is case sensitive.

“Owner name” on
page 5-49;

2-812 IBM Informix Guide to SQL: Syntax

Usage

Any user who is granted a role can enable the role by using the SET ROLE
statement. You can only enable one role at a time. If you execute the SET ROLE
statement after a role is already set, the new role replaces the old role as the
current role.

The SET ROLE statement returns an error if the user does not currently hold the
role, or if the role is a built-in role. (The access privileges held by a built-in role,
such as the EXTEND role or the DBSECADM role, are always in effect, and do not
require activation by the SET ROLE statement if the user holds that role.)

Users can be granted a default role for the database instance when the DBA issues
the GRANT DEFAULT ROLE statement. If no default role exists for the user in the
current database, role NULL or NONE is assigned by default. In this context,
NULL and NONE are synonyms. Roles NULL and NONE can have no privileges.
To set your role to NULL or NONE disables your current role.

When you use SET ROLE to enable a role, you gain the privileges of the role, in
addition to the privileges of PUBLIC and your own privileges. If a role is granted
to another role that has been assigned to you, you gain the privileges of both roles,
in addition to any privileges of PUBLIC and your own privileges.

After SET ROLE executes successfully, the specified role remains effective until the
current database is closed or the user executes another SET ROLE statement. Only
the user, however, not the role, retains ownership of any database objects, such as
tables, that were created during the session.

A role is in scope only within the current database. You cannot use privileges that
you acquire from a role to access data in another database. For example, if you
have privileges from a role in the database named acctg, and you execute a
distributed query over the databases named acctg and inventory, your query
cannot access the data in the inventory database unless you were also granted
appropriate privileges in the inventory database. As a security precaution,
discretionary access privileges that the user holds only from a role cannot provide
access to tables outside the current database through a view or through the action
of a trigger.

If your database supports explicit transactions, you must issue the SET ROLE
statement outside a transaction. If your database is ANSI-compliant, SET ROLE
must be the first statement of a new transaction. If the SET ROLE statement is
executed while a transaction is active, an error occurs. For more information about
SQL statements that initiate an implicit transaction, see “SET SESSION
AUTHORIZATION and Transactions” on page 2-817.

If the SET ROLE statement is executed as a part of a trigger or SPL routine, and
the owner of the trigger or SPL routine was granted the role with the WITH
GRANT OPTION, the role is enabled even if you are not granted the role. For
example, this code fragment sets a role and then relinquishes it after a query:
EXEC SQL set role engineer;
EXEC SQL select fname, lname, project

INTO :efname, :elname, :eproject FROM projects
WHERE project_num > 100 AND lname = ’Larkin’;

printf ("%s is working on %s\n", efname, eproject);
EXEC SQL set role NULL;

Related concepts:

Chapter 2. SQL statements 2-813

Access-management strategies (SQL Tutorial)
Related reference:
“CREATE ROLE statement” on page 2-237
“DROP ROLE statement” on page 2-437
“GRANT statement” on page 2-502
“REVOKE statement” on page 2-618

Setting the Default Role
The DBA or the owner of the database can issue the GRANT DEFAULT ROLE
statement to assign an existing role as the default role to a specified list of users or
to PUBLIC. Unlike a non-default role, the default role does not require the SET
ROLE statement to enable it. When a user is assigned to the default role, an
implicit connection to the database is granted to the user.

Each of the three statements in next example respectively performs one of the
following operations on a role:
v Declares a role called Engineer

v Assigns Select privileges on the locomotives table to the Engineer role
v Defines Engineer as the default role for the user jgould.
EXEC SQL CREATE ROLE ’Engineer’;
EXEC SQL GRANT SELECT ON locomotives TO ’Engineer’;
EXEC SQL GRANT DEFAULT ROLE ’Engineer’ TO jgould;

If jgould subsequently uses the SET ROLE statement to enable some other role,
then by executing the following statement, jgould replaces that role with Engineer
as the current role:
SET ROLE DEFAULT;

If you have no default role, SET ROLE DEFAULT makes NONE your current role,
leaving only the privileges that have been granted explicitly to your username or to
PUBLIC. After GRANT DEFAULT ROLE changes your default role to a new
default role, executing SET ROLE DEFAULT restores your most recently granted
default role, even if this role was not your default role when you connected to the
database.

If one default role is granted to PUBLIC, but a different role is granted as the
default role to an individual user, the individually-granted default role takes
precedence if that user issues SET ROLE DEFAULT or connects to the database.

SET SESSION AUTHORIZATION statement
The SET SESSION AUTHORIZATION statement lets you change the user name
under which database operations are performed in the current session.

Syntax

��
'user_identifier'

SET SESSION AUTHORIZATION TO user_ID_variable
USING password

auth_variable

��

2-814 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_015.htm#ids_sqt_015

Element Description Restrictions Syntax

auth_variable Host variable that holds the valid
password for the login name specified in
user_identifier or user_ID_variable.

Variable must be a
fixed-length character data
type. Its value has the
same restrictions as
password.

Must conform to
language-specific
rules for variable
names.

password Quoted string that is the password of
the specified user.

Must be the password of
that user, and no more
than 32 bytes

“Quoted String” on
page 4-219

user_identifier Quoted string that is a valid login name
for the application. The quotation mark
delimiters preserve the lettercase.

Authorization identifier of
no more than 32 bytes

“Quoted String” on
page 4-219

user_ID_variable The name of an ESQL/C host variable
that holds the value of a user identifier.

Variable must be a
fixed-length character data
type. Its value has the
same restrictions as
user_identifier.

Must conform to
language-specific
rules for variable
names.

Usage

This statement allows you to assume the identity of another user, including the
discretionary access control (DAC) and label-based access control (LBAC)
credentials. You can also use this statement in an API that supports Informix
trusted contexts to switch the user ID on a trusted connection.

Both the DBA and SETSESSIONAUTH access privilege are required to execute this
statement. Unless when you start the session you already hold the
SETSESSIONAUTH privilege for PUBLIC (or for the user whose name you specify
in the SET SESSION AUTHORIZATION statement), and you also hold the DBA
privilege, this statement fails with an error.

If the database server has been converted from a legacy version that did not
support label-based access control, users who held the DBA privilege are
automatically granted the SETSESSIONAUTH access privilege for PUBLIC in the
migration process. If the database server has been initialized as a version that
supports LBAC security policies, users who hold the DBSECADM role can grant
the SETSESSIONAUTH privilege to other users. Because the security credentials of
each user determine what data rows can be accessed in protected tables, the
DBSECADM should exercise care in granting the SETSESSIONAUTH privilege
and in specifying its scope.

The new identity remains in effect in the current database until you execute SET
SESSION AUTHORIZATION again, or until you close the current database. When
you use this statement, the specified user must have the Connect privilege on the
current database. In addition, the DBA cannot set the new authorization identifier
to the PUBLIC group, nor to any existing role in the current database.

Setting a session to another user causes a change in a user name in the current
active database server. The specified user, as far as this database server process is
concerned, is completely dispossessed of any privileges while accessing the
database server through some administrative utility. Additionally, the new session
user is not able to initiate any administrative operation (execute a utility, for
example) by virtue of the acquired identity.

Chapter 2. SQL statements 2-815

After the SET SESSION AUTHORIZATION statement successfully executes, any
role enabled by a previous user is relinquished. You must use the SET ROLE
statement if you wish to assume a role that has been granted to the specified user.
The database server does not enable the default role of user automatically.

After SET SESSION AUTHORIZATION successfully executes, the database server
puts any owner-privileged UDRs that the DBA created while using the new
authorization identifier in RESTRICTED mode, which can affect access privileges
during operations of the UDR on objects in remote databases. For more
information on RESTRICTED mode, see the sysprocedures system catalog table in
the IBM Informix Guide to SQL: Reference.

When you assume the identity of another user by executing the SET SESSION
AUTHORIZATION statement, you can perform operations in the current database
only. You cannot perform an operation on a database object outside the current
database, such as a remote table. In addition, you cannot execute a DROP
DATABASE or RENAME DATABASE statement, even if the database is owned by
the real user or by the effective user.

You can use this statement either to obtain access to the data directly or to grant
the database-level or table-level privileges needed for the database operation to
proceed. The following example shows how to use the SET SESSION
AUTHORIZATION statement to obtain table-level privileges:
SET SESSION AUTHORIZATION TO ’cathl’;
GRANT ALL ON customer TO ’mary’;
SET SESSION AUTHORIZATION TO ’mary’;
UPDATE customer SET fname = ’Carl’ WHERE lname = ’Pauli’;

If you enclose user in quotation marks, the name is case sensitive and is stored
exactly as you typed it. In an ANSI-compliant database, if you do not use
quotation marks as delimiters, the authorization identifier is stored in uppercase
letters, unless the ANSIOWNER environment variable is set to prevent the
conversion of lowercase letters to uppercase.

The following Open Database Connectivity (ODBC) API example enables user ID
switching on a trusted connection with an authentication requirement:
SQLExecDirect(hstmt,"SET SESSION AUTHORIZATION TO ’zurbie’ USING ’pass01’",SQL_NTS);

In the function call above,
v ’zurbie’ specifies the authorization identifier for subsequent operations in this

session
v pass01 must be the current password of user zurbie.

Note:

Except in a non-hostile environment, ’pass01’ is not a recommended example of a
login password, because in some locales it might be easy to guess.
Related reference:

SYSPROCEDURES (SQL Reference)
“CONNECT statement” on page 2-135
“DATABASE statement” on page 2-381
“GRANT statement” on page 2-502
“REVOKE statement” on page 2-618
“SET CONNECTION statement” on page 2-731

2-816 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_053.htm#ids_sqr_053

“CREATE VIEW statement” on page 2-373

SET SESSION AUTHORIZATION and Transactions
If your database is not ANSI compliant, you must issue the SET SESSION
AUTHORIZATION statement outside a transaction. If you issue the statement
within a transaction, you receive an error message.

In an ANSI-compliant database, you can execute the SET SESSION
AUTHORIZATION statement only if you have not executed a statement that
initiates an implicit transaction (for example, CREATE TABLE or SELECT).
Statements that do not initiate an implicit transaction are statements that do not
acquire locks or log data (for example, SET EXPLAIN and SET ISOLATION). You
can execute the SET SESSION AUTHORIZATION statement immediately after a
DATABASE statement or a COMMIT WORK statement.

SET STATEMENT CACHE statement
Use the SET STATEMENT CACHE statement to turn on caching or turn off
caching for the current session. This statement is an extension to the ANSI/ISO
standard for SQL.

Syntax

�� SET STATEMENT CACHE ON
OFF

��

Usage

You can use the SET STATEMENT CACHE statement to turn caching in the SQL
statement cache ON or OFF for the current session. The statement cache stores in a
buffer identical statements that are repeatedly run in a session. Only data
manipulation language (DML) statements (DELETE, INSERT, UPDATE, or
SELECT) can be stored in the statement cache.

This mechanism allows qualifying statements to bypass the optimization stage, and
avoid recompiling, which can reduce memory consumption and can improve
query processing time.

Examples

The following example turns on statement caching for the current session:
SET STATEMENT CACHE ON;

The following turns off statement caching for the current session:
SET STATEMENT CACHE OFF;

Related concepts:

Optimize queries with the SQL statement cache (Performance Guide)
Related reference:
“SAVE EXTERNAL DIRECTIVES statement” on page 2-649
“SET OPTIMIZATION statement” on page 2-807
“Optimizer Directives” on page 5-35

STMT_CACHE environment variable (SQL Reference)

Chapter 2. SQL statements 2-817

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_672.htm#ids_prf_672
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_304.htm#ids_sqr_304

STMT_CACHE configuration parameter (Administrator's Reference)

STMT_CACHE_NUMPOOL configuration parameter (Administrator's
Reference)

STMT_CACHE_HITS configuration parameter (Administrator's Reference)

The onmode utility (Administrator's Reference)

Precedence and Default Behavior
SET STATEMENT CACHE takes precedence over the STMT_CACHE environment
variable and the STMT_CACHE configuration parameter. You must enable the SQL
statement cache, however, either by setting the STMT_CACHE configuration
parameter or by using the onmode utility, before the SET STATEMENT CACHE
statement can execute successfully.

When you issue a SET STATEMENT CACHE ON statement, the SQL statement
cache remains in effect until you issue a SET STATEMENT CACHE OFF statement
or until the program ends. If you do not use SET STATEMENT CACHE, the
default behavior depends on the setting of the STMT_CACHE environment
variable or the STMT_CACHE configuration parameter.

Turning the Cache ON
Use the ON option to enable the SQL statement cache. When the SQL statement
cache is enabled, each statement that you execute passes through the SQL
statement cache to determine if a matching cache entry is present. If so, the
database server uses the cached entry to execute the statement.

If the statement has no matching entry, the database server tests to see if it
qualifies for entry into the cache. For the conditions a statement must meet to enter
into the cache, see “SQL statement cache qualifying criteria” on page 2-819.

Restrictions on Matching Entries in the SQL Statement Cache
When the database server considers whether or not a statement is identical to a
statement in the SQL statement cache, the following items must match:
v Lettercase
v Comments
v White space
v Optimization settings

– SET OPTIMIZATION statement options
– Optimizer directives
– The SET ENVIRONMENT OPTCOMPIND statement options or settings of the

OPTCOMPIND environment variable, or of the OPTCOMPIND configuration
parameter in the ONCONFIG file. (If conflicting settings exist for the same
query, this is the descending order of precedence.)

v Parallelism settings
– SET PDQPRIORITY statement options or settings of the PDQPRIORITY

environment variable
v Query text strings
v Literals

2-818 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0167.htm#ids_adr_0167
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0170.htm#ids_adr_0170
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0170.htm#ids_adr_0170
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0168.htm#ids_adr_0168
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0407.htm#ids_adr_0407

If an SQL statement is semantically equivalent to a statement in the SQL statement
cache but has different literals, the statement is not considered identical and
qualifies for entry into the cache. For example, the following SELECT statements
are not identical:
SELECT col1, col2 FROM tab1 WHERE col1=3;

SELECT col1, col2 FROM tab1 WHERE col1=5;

In this example, both statements are entered into the SQL statement cache.

Host-variable names, however, are insignificant. For example, the following select
statements are considered identical:
SELECT * FROM tab1 WHERE x = :x AND y = :y;

SELECT * FROM tab1 WHERE x = :p AND y = :q;

In the previous example, although the host names are different, the statements
qualify, because the case, query text strings, and white space match. Performance
does not improve, however, because each statement has already been parsed and
optimized by the PREPARE statement.

Turning the Cache OFF
The OFF option disables the SQL statement cache. When you turn caching OFF for
your session, no SQL statement cache code is executed for that session.

The SQL statement cache is designed to save memory in environments where
identical queries are executed repeatedly and schema changes are infrequent. If this
is not the case, you might want to turn the SQL statement cache off to avoid the
overhead of caching. For example, if you have little cache cohesion, that is, when
relatively few matches but many new entries into the cache exist, the cache
management overhead is high. In this case, turn the SQL statement cache off.

If you know that you are executing many statements that do not qualify for the
SQL statement cache, you might want to disable it and avoid the overhead of
testing to see if each DML statement qualifies for insertion into the cache.

SQL statement cache qualifying criteria
A statement that can be cached in the SQL statement cache (and consequently, one
that can match a statement that already appears in the SQL statement cache) must
meet specified conditions.

To quality for caching, the statement must meet all of the following conditions:
v It must be a SELECT, INSERT, UPDATE, or DELETE statement.
v It must contain only non-opaque built-in data types (excluding BLOB,

BOOLEAN, BYTE, CLOB, LVARCHAR, and TEXT).
v It must contain only built-in operators.
v It cannot contain user-defined routines.
v It cannot contain temporary or remote tables.
v It cannot contain subqueries in the Projection list.
v It cannot be part of a multistatement PREPARE.
v It cannot have user-privilege restrictions on target columns.
v In an ANSI-compliant database, it must contain fully qualified object names.
v It cannot require re-optimization.

Chapter 2. SQL statements 2-819

Requiring Re-Execution Before Cache Insertion
A qualified SQL statement is fully inserted into the SQL statement cache only after
the database server counts a configurable number of references (which are
sometimes called "hits") to that statement. For the default value of zero, a qualified
DML statement does not need to be re-executed before it is cached.

Using the STMT_CACHE_HITS configuration parameter, however, the database
administrator (DBA) can specify that qualified DML statements must be executed a
minimum number of times before they are inserted into the statement cache. By
setting this to a value of one (or to a larger value), the DBA excludes one-time-only
ad hoc queries from full insertion into the SQL statement cache, thereby lowering
cache-management overhead.

Enabling or Disabling Insertions After Size Exceeds Configured
Limit
The DBA can prevent the insertion of additional qualified SQL statements into the
statement cache when the cache size reaches its configured size (as specified by the
STMT_CACHE_SIZE configuration parameter) by setting the configuration
parameter STMT_CACHE_NOLIMIT to zero.

Prepared Statements and the Statement Cache
Prepared statements are inherently cached for a single session. That is, if a
prepared statement is executed many times (or if a single cursor is opened many
times), the same prepared query plan is used by that session. If a session prepares
a statement and then executes it many times, its performance is essentially
unaffected by using the SQL statement cache, because the statement is optimized
just once, during the PREPARE statement.

If other sessions also prepare that same statement, however, or if the first session
prepares the statement several times, then the statement cache usually provides a
direct performance benefit, because the database server only calculates the query
plan once. Of course, the original session might gain a (small) benefit from the
statement cache, even if it prepares the statement only once, because other sessions
use less memory, and the database server does less work for the other sessions.

SET TRANSACTION statement
Use the SET TRANSACTION statement to define the isolation level and to specify
whether the access mode of a transaction is read-only or read-write.

Syntax

�� SET TRANSACTION �

,
(1)

READ WRITE
READ ONLY

(1)
ISOLATION LEVEL READ COMMITTED

REPEATABLE READ
SERIALIZABLE
READ UNCOMMITTED

��

Notes:

1 Use path no more than once

2-820 IBM Informix Guide to SQL: Syntax

Usage

SET TRANSACTION is valid only in databases with transaction logging. You can
issue this statement from a client computer only after a database is opened. The
transaction isolation level affects concurrency among processes that attempt to
access the same rows simultaneously from the database. The database server uses
shared locks to support different levels of isolation among processes that are
attempting to read data, as the following list shows:
v Read Uncommitted
v Read Committed
v (ANSI) Repeatable Read
v Serializable

The update or delete process always acquires an exclusive lock on the row that is
being modified. The level of isolation does not interfere with such rows, but the
access mode does affect whether you can update or delete rows.

If another process attempts to update or delete rows that you are reading with an
isolation level of Serializable or (ANSI) Repeatable Read, that process will be
denied access to those rows.
Related concepts:

Set the isolation level (SQL Tutorial)
Related reference:
“SET LOCK MODE statement” on page 2-804
“CREATE DATABASE statement” on page 2-150
“SET ISOLATION statement” on page 2-796

Concurrency issues (SQL Tutorial)

Comparing SET TRANSACTION with SET ISOLATION
The SET TRANSACTION statement complies with ANSI SQL-92. This statement is
similar to the Informix SET ISOLATION statement; however, the SET ISOLATION
statement is not ANSI compliant and does not provide access modes. In fact, the
isolation levels that you can set with the SET TRANSACTION statement are almost
parallel to the isolation levels that you can set with the SET ISOLATION statement,
as the following table shows.

SET TRANSACTION Isolation Level SET ISOLATION Isolation Level

Read Uncommitted Dirty Read

Read Committed Committed Read

[Not supported] Cursor Stability

(ANSI) Repeatable Read (Informix) Repeatable Read

Serializable (Informix) Repeatable Read

Another difference between SET TRANSACTION and SET ISOLATION is the
behavior of the isolation levels within transactions. You can issue SET
TRANSACTION only once for a transaction. Any cursors that are opened during
that transaction are guaranteed that isolation level (or access mode, if you are
defining an access mode). With SET ISOLATION, after a transaction is started, you
can change the isolation level more than once within the transaction.

Chapter 2. SQL statements 2-821

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_389.htm#ids_sqt_389
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_368.htm#ids_sqt_368

The following examples illustrate this difference in the behavior of the SET
ISOLATION and SET TRANSACTION statements:
EXEC SQL BEGIN WORK;
EXEC SQL SET ISOLATION TO DIRTY READ;
EXEC SQL SELECT ... ;
EXEC SQL SET ISOLATION TO REPEATABLE READ;
EXEC SQL INSERT ... ;
EXEC SQL COMMIT WORK; -- Executes without error

Compare the previous example to these SET TRANSACTION statements:
EXEC SQL BEGIN WORK;
EXEC SQL SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
EXEC SQL SELECT ... ;
EXEC SQL SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

-- Produces error 876: Cannot issue SET TRANSACTION
-- in an active transaction.

An additional difference between SET ISOLATION and SET TRANSACTION is the
duration of isolation levels. Because SET ISOLATION supports
complete-connection level settings, the isolation level specified by SET ISOLATION
remains in effect until another SET ISOLATION statement is issued. The isolation
level set by SET TRANSACTION only remains in effect until the transaction
terminates. Then the isolation level is reset to the default for the database type.

Informix Isolation Levels
The following definitions explain the critical characteristics of each isolation level,
from the lowest level of isolation to the highest.

Using the Read Uncommitted Option
Use the Read Uncommitted option to copy rows from the database whether or not
locks are present on them. The program that fetches a row places no locks and it
respects none. Read Uncommitted is the only isolation level available to databases
that do not have transactions.

This isolation level is most appropriate in queries of static tables whose data is not
being modified, because it provides no isolation. With Read Uncommitted, the
program might return an uncommitted row that was inserted or modified within a
transaction that was subsequently rolled back.

The Uncommitted Read isolation level of SET TRANSACTION does not directly
support the LAST COMMITTED feature of the Committed Read isolation level of
the SET ISOLATION statement. The LAST COMMITTED feature can reduce the
risk of locking conflicts when an application attempts to read a row on which
another session holds an exclusive lock while modifying data. When this feature is
enabled, the database server returns the most recently committed version of the
data, rather than wait for the lock to be released.

This feature takes effect implicitly, however, in all user sessions that use the Read
Uncommitted isolation level of the SET TRANSACTION statement, under either of
the following circumstances:
v if the USELASTCOMMITTED configuration parameter is set to ’DIRTY READ’ or

to ’ALL’

v if the SET ENVIRONMENT statement set the USELASTCOMMITTED session
environment option to ’DIRTY READ’ or to ’ALL’.

2-822 IBM Informix Guide to SQL: Syntax

See the section “The LAST COMMITTED Option to Committed Read” on page
2-799 for more information about the LAST COMMITTED feature and its
restrictions.

Using the Read Committed Option
Use the Read Committed option to guarantee that every retrieved row is
committed in the table at the time that the row is retrieved. This option does not
place a lock on the fetched row. Read Committed is the default level of isolation in
a database with logging that is not ANSI compliant.

Read Committed is appropriate when each row of data is processed as an
independent unit, without reference to other rows in the same or other tables.

The Read Committed isolation level of SET TRANSACTION does not directly
support the LAST COMMITTED feature of the Committed Read isolation level of
the SET ISOLATION statement, which can reduce the risk of locking conflicts
when an application attempts to read data in a row on which another session
holds an exclusive row-level lock. When this feature is enabled, the database server
returns the most recently committed version of the data, rather than wait for the
lock to be released

This feature takes effect implicitly, however, in all user sessions that use the Read
Committed isolation level of the SET TRANSACTION statement, under either of
the following circumstances:
v if the USELASTCOMMITTED configuration parameter is set to ’COMMITTED

READ’ or to ’ALL’

v if the SET ENVIRONMENT statement set the USELASTCOMMITTED session
environment variable to ’COMMITTED READ’ or to ’ALL’.

See the section “The LAST COMMITTED Option to Committed Read” on page
2-799 for more information about the LAST COMMITTED feature and its
restrictions.

Using the Repeatable Read and Serializable Options
The Informix implementation of Repeatable Read and of Serializable are
equivalent. The Serializable (or Repeatable Read) option places a shared lock on
every row that is selected during the transaction.

Another process can also place a shared lock on a selected row, but no other
process can modify any selected row during your transaction or insert a row that
meets the search criteria of your query during your transaction.

A phantom row is a row that was not visible when you first read the query set, but
that materializes in a subsequent read of the query set in the same transaction.
Only this isolation level prevents access to a phantom row.

If you repeat the query during the transaction, you reread the same data. The
shared locks are released only when the transaction is committed or rolled back.
Serializable is the default isolation level in an ANSI-compliant database.
Serializable isolation places the largest number of locks and holds them the
longest. Therefore, it is the level that reduces concurrency the most.

Chapter 2. SQL statements 2-823

Default Isolation Levels
The default isolation level is established when you create the database.

Informix Name ANSI Name When This Is the Default Level of Isolation

Dirty Read Read Uncommitted Database without transaction logging

Committed Read Read Committed Databases with logging that are not ANSI-
compliant

Repeatable Read Serializable ANSI-compliant databases

For an Informix database that is not ANSI-compliant, unless you explicitly set the
USELASTCOMMITTED configuration parameter, the LAST COMMITTED feature
is not in effect for the default isolation levels. The SET ENVIRONMENT statement
or the SET ISOLATION statement can override this default and enable LAST
COMMITTED for the current session.

The default isolation level remains in effect until you issue a SET TRANSACTION
statement within a transaction. After a COMMIT WORK statement completes the
transaction or a ROLLBACK WORK statement cancels the entire transaction, the
isolation level is reset to the default.

When you use High Availability Data Replication, the database server effectively
uses Dirty Read isolation on the HDR Secondary Server, regardless of the specified
SET ISOLATION or SET TRANSACTION isolation level, unless the
UPDATABLE_SECONDARY configuration parameter is enabled. For more
information about this topic, see “Isolation Levels for Secondary Data Replication
Servers” on page 2-803.

Access Modes
Access modes affect read and write concurrency for rows within transactions. Use
access modes to control data modification. SET TRANSACTION can specify that a
transaction is read-only or read-write. By default, transactions are read-write.
When you specify a read-only transaction, certain limitations apply. Read-only
transactions cannot perform the following actions:
v Insert, delete, or update rows of a table.
v Create, alter, or drop any database object such as schemas, tables, temporary

tables, indexes, or SPL routines.
v Grant or revoke access privileges.
v Update statistics.
v Rename columns or tables.

You can execute SPL routines in a read-only transaction as long as the SPL routine
does not try to perform any restricted statement.

Effects of Isolation Levels
You cannot set the transaction isolation level in a database that does not have
logging. Every retrieval in an unlogged database occurs as a Read Uncommitted.

The data that is obtained during retrieval of BYTE or TEXT data can vary,
depending on the transaction isolation levels. Under Read Uncommitted or Read
Committed isolation levels, a process is permitted to read a BYTE or TEXT column
that is either deleted (if the delete is not yet committed) or in the process of being
deleted. Under these isolation levels, an application can read a deleted BYTE or

2-824 IBM Informix Guide to SQL: Syntax

TEXT column when certain conditions exist. For information about these
conditions, see the IBM Informix Administrator's Guide.

In Informix ESQL/C, if you use a scroll cursor in a transaction, you can force
consistency between your temporary table and the database table either by setting
the isolation level to Serializable or by locking the entire table. A scroll cursor with
hold, however, cannot guarantee the same consistency between the two tables.
Table-level locks set by Serializable are released when the transaction is completed,
but the scroll cursor with hold remains open beyond the end of the transaction.
You can modify released rows as soon as the transaction ends, so the retrieved
data in the temporary table might be inconsistent with the actual data.

Warning: Do not use nonlogging tables within a transaction. If you need to use a
nonlogging table within a transaction, either set the isolation level to Repeatable
Read or lock the table in exclusive mode to prevent concurrency problems.

SET Transaction Mode statement
Use the SET Transaction Mode statement to specify whether constraints are
checked at the statement level or at the transaction level during the current
transaction.

Syntax

�� SET CONSTRAINTS �

,

constraint
ALL

IMMEDIATE
DEFERRED

��

Element Description Restrictions Syntax

constraint Constraint whose transaction
mode is to be changed

All constraints must exist in the same
database, which must support logging

“Identifier” on page
5-21

Usage

To enable or disable constraints, or to change their filtering mode, see “SET
Database Object Mode statement” on page 2-737.

This statement is valid only in a database with transaction logging, and its effect is
limited to the transaction in which it is executed.

Use the IMMEDIATE keyword to set the transaction mode of constraints to
statement-level checking. IMMEDIATE is the default transaction mode of
constraints when they are created.

Use the DEFERRED keyword to set the transaction mode to transaction-level
checking. You cannot change the transaction mode of a constraint to DEFERRED
unless the constraint is currently enabled.
Related reference:
“CREATE TABLE statement” on page 2-265
“ALTER TABLE statement” on page 2-72
“SET CONSTRAINTS statement” on page 2-735

Chapter 2. SQL statements 2-825

Statement-Level Checking
When you set the transaction mode to IMMEDIATE, statement-level checking is
turned on, and all specified constraints are checked at the end of each INSERT,
UPDATE, or DELETE statement. If a constraint violation occurs, the statement is
not executed.

Transaction-Level Checking
When you set the transaction mode of constraints to DEFERRED, statement-level
checking is turned off, and all (or the specified) constraints are not checked until
the transaction is committed. If a constraint violation occurs while the transaction
is being committed, the transaction is rolled back.

Tip: If you defer checking a primary-key constraint, checking the not-NULL
constraint for that column or set of columns is also deferred.

Duration of Transaction Modes
The duration of the transaction mode that the SET Transaction Mode statement
specifies is the transaction in which the SET Transaction Mode statement is
executed. You cannot execute this statement outside a transaction. Once a
COMMIT WORK or ROLLBACK WORK statement is successfully completed, the
transaction mode of all constraints reverts to IMMEDIATE.

To switch from transaction-level checking to statement-level checking, you can use
the SET Transaction Mode statement to set the transaction mode to IMMEDIATE,
or you can use a COMMIT WORK or ROLLBACK WORK statement to terminate
your transaction.

Specifying All Constraints or a List of Constraints
You can specify all constraints in the database in the SET Transaction Mode
statement, or you can specify a single constraint, or list of constraints.

If you specify the ALL keyword, the SET Transaction Mode statement sets the
transaction mode for all constraints in the database. If any statement in the
transaction requires that any constraint on any table in the database be checked,
the database server performs the checks at the statement level or the transaction
level, depending on the setting that you specify in the SET Transaction Mode
statement.

If you specify a single constraint name or a list of constraints, the SET Transaction
Mode statement sets the transaction mode for the specified constraints only. If any
statement in the transaction requires checking of a constraint that you did not
specify in the SET Transaction Mode statement, that constraint is checked at the
statement level regardless of the setting that you specified in the SET Transaction
Mode statement for other constraints.

When you specify a list of constraints, the constraints do not need to be defined on
the same table, but they must exist in the same database.

Specifying Remote Constraints
You can set the transaction mode of local constraints or remote constraints. That is,
the constraints that are specified in the SET Transaction Mode statement can be
constraints that are defined on local tables or constraints that are defined on
remote tables.

2-826 IBM Informix Guide to SQL: Syntax

Examples of Setting the Transaction Mode for Constraints
The following example shows how to defer checking constraints within a
transaction until the transaction is complete. The SET Transaction Mode statement
in the example specifies that any constraints on any tables in the database are not
checked until the COMMIT WORK statement is encountered.
BEGIN WORK;
SET CONSTRAINTS ALL DEFERRED;
...
COMMIT WORK;

The following example specifies that a list of constraints is not checked until the
transaction is complete:
BEGIN WORK;
SET CONSTRAINTS update_const, insert_const DEFERRED;
...
COMMIT WORK;

SET TRIGGERS statement
Use the SET TRIGGERS statement to enable or disable all or some of the triggers
on a table, or all or some of the INSTEAD OF triggers on a view.

Syntax

�� SET TRIGGERS �

,

trigger
FOR table

'owner' . view

ENABLED

DISABLED
��

Element Description Restrictions Syntax

owner The owner of table or view Must own the table or
view

“Owner name” on page 5-49

table Table whose triggers are all to be enabled or
disabled

Must exist “Identifier” on page 5-21

trigger Trigger to be enabled or disabled Must exist “Identifier” on page 5-21

view View whose INSTEAD OF triggers are all to be
enabled or disabled

Must exist “Identifier” on page 5-21

Usage

The SET TRIGGERS statement is a special case of the SET Database Object Mode
statement. The SET Database Object Mode statement can also enable or disable an
index or a constraint, or change the filtering mode of a unique index or of a
constraint.

For the complete syntax and semantics of the SET TRIGGERS statement, see “SET
Database Object Mode statement” on page 2-737.

Restrictions on secondary servers

In cluster environments, the SET TRIGGERS statement is not supported on
updatable secondary servers. (More generally, session-level index, trigger, and
constraint modes that the SET Database Object Mode statement specifies are not

Chapter 2. SQL statements 2-827

redirected for UPDATE operations on table objects in databases of secondary
servers.)

SET USER PASSWORD statement (UNIX, Linux)
Use the SET USER PASSWORD statement to change your password for database
server access if you are an internally authenticated user. This statement is an
extension to the ANSI/ISO standard for the SQL language.

Syntax

�� SET USER PASSWORD OLD old_password NEW new_password ��

Element Description Restrictions Syntax

new_password New password for internal
authentication of the user.

Length must be between 6
and 32 bytes.

“Quoted String” on page
4-219

old_password Existing password for internal
authentication of the user.

Length must be between 6
and 32 bytes.

“Quoted String” on page
4-219

Usage

A DBSA cannot use this statement to change the password of another user. To
change the passwords of other users, a DBSA can use the ALTER USER statement.

Execution of the SET USER PASSWORD statement can be audited with the PWUR
audit code.

Example

The following statement changes the password from joebar to joefoo:
SET USER PASSWORD OLD ’joebar’ NEW ’joefoo’;

Related reference:
“CREATE USER statement (UNIX, Linux)” on page 2-368

START VIOLATIONS TABLE statement
Use the START VIOLATIONS TABLE statement to create a violations table and a
diagnostics table for a specified target table. The START VIOLATIONS TABLE
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� START VIOLATIONS TABLE FOR table
'owner' .

�

�
USING violations , diagnostics MAX ROWS num_rows

��

Element Description Restrictions Syntax

diagnostics Declares the name of a diagnostics table to
be associated with the target table. Default
name is table_dia.

Must be unique among names of
tables, views, sequences, and
synonyms

“Identifier” on page
5-21

2-828 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

num_rows Maximum number of rows that the
database server can insert into violations
when a single statement is executed on
table

Must be an integer in range from 1
to the maximum value of the
INTEGER data type

“Literal Number”
on page 4-215

owner The owner of table Must own the table “Owner name” on
page 5-49

table Target table for which violations and
diagnostics tables are to be created

If USING clause is omitted, no
more than 124 bytes

“Identifier” on page
5-21

violations Violations table to be associated with table.
Default name is table_vio.

Same restrictions as diagnostics “Identifier” on page
5-21

Usage

The database server associates the violations table and the diagnostics table) with the
target table that you specify after the FOR keyword by recording the relationship
among the three tables in the sysviolations system catalog table.

A target table must satisfy these requirements:
v It cannot be a table in a database that is not the current database.
v It cannot be an object that the CREATE EXTERNAL TABLE statement defined.
v It cannot already be associated with a violations or diagnostics table.
v It cannot be a system catalog table.

The START VIOLATIONS TABLE statement creates the special violations table that
holds nonconforming rows that fail to satisfy constraints and unique indexes
during insert, update, and delete operations on target tables. This statement also
creates the special diagnostics table that contains information about the integrity
violations that each row causes in the violations table.
Related reference:
“Modes for constraints and unique indexes” on page 2-741
“STOP VIOLATIONS TABLE statement” on page 2-840
“CREATE INDEX statement” on page 2-194
“CREATE TABLE statement” on page 2-265
“SET Database Object Mode statement” on page 2-737

Object modes and violation detection (SQL Tutorial)

Relationship to the SET Database Object Mode statement
The START VIOLATIONS TABLE statement is closely related to the SET Database
Object Mode statement. If you use SET Database Object Mode to set the constraints
or unique indexes defined on a table to the FILTERING mode, without also using
START VIOLATIONS TABLE, any rows that violate a constraint or unique-index
requirement in data manipulation operations are not filtered out to a violations
table. Instead you receive an error message that indicates that you must start a
violations table for the target table.

Similarly, if you use the SET Database Object Mode statement to set a disabled
constraint or disabled unique index to the ENABLED or FILTERING mode, but
you do not use START VIOLATIONS TABLE for the table on which the database

Chapter 2. SQL statements 2-829

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_259.htm#ids_sqt_259

objects are defined, any rows that do not satisfy the constraint or unique-index
requirement are not filtered out to a violations table.

In these cases, to identify the rows that do not satisfy the constraint or
unique-index requirement, issue the START VIOLATIONS TABLE statement to
start the violations and diagnostics tables. Do this before you use the SET Database
Object Mode statement to set the database objects to the ENABLED or FILTERING
database object mode.

Effect on concurrent transactions
If the database has transaction logging, you must issue START VIOLATIONS
TABLE in isolation. That is, no other transaction can be in progress on a target
table when you issue START VIOLATIONS TABLE on that table within a
transaction. Any transactions that start on the target table after the first transaction
has issued the START VIOLATIONS TABLE statement will behave the same way
as the first transaction with respect to the violations and diagnostics tables. That is,
any constraint and unique-index violations by these subsequent transactions will
be recorded in the violations and diagnostics tables.

For example, if transaction A operates on table tab1 and issues a START
VIOLATIONS TABLE statement on table tab1, the database server starts a
violations table named tab1_vio and filters any constraint or unique-index
violations on table tab1 by transaction A to table tab1_vio. If transactions B and C
start on table tab1 after transaction A has issued the START VIOLATIONS TABLE
statement, the database server also filters any constraint and unique-index
violations by transactions B and C to table tab1_vio.

The result is that all three transactions do not receive error messages about
constraint and unique-index violations, even though transactions B and C do not
expect this behavior. For example, if transaction B issues an INSERT or UPDATE
statement that violates a check constraint on table tab1, the database server does
not issue a constraint violation error to transaction B. Instead, the database server
filters the nonconforming row (also called a "bad row") to the violations table
without notifying transaction B that a data-integrity violation occurred.

You can prevent this situation from arising in Informix by specifying WITH
ERRORS when you specify the FILTERING mode in a SET Database Object Mode,
CREATE TABLE, ALTER TABLE, or CREATE INDEX statement. When multiple
transactions operate on a table and the WITH ERRORS option is in effect, any
transaction that violates a constraint or unique-index requirement on a target table
receives a data-integrity error message.

Stopping the Violations and Diagnostics Tables
After you use START VIOLATIONS TABLE to create an association between a
target table and the violations and diagnostics tables, the only way to drop the
association between the target table and the violations and diagnostics tables is to
issue a STOP VIOLATIONS TABLE statement for the target table. For more
information, see “STOP VIOLATIONS TABLE statement” on page 2-840.

USING Clause
You can use the USING clause to declare explicit names for the violations table and
for the diagnostics table.

2-830 IBM Informix Guide to SQL: Syntax

If you omit the USING clause, the database server assigns names to the violation
table and the diagnostics table. The system-assigned name of the violations table
consists of the name of the target table followed by the string _vio. The name that
the database server assigns to the diagnostics table consists of the name of the
target table followed by the string _dia.

If you omit the USING clause, the maximum length of the name of the target table
is 124 bytes.

Using the MAX ROWS clause
The MAX ROWS clause specifies the maximum number of rows that the database
server can insert into the diagnostics table when a single statement is executed on
the target table. If you omit the MAX ROWS clause, no upper limit is imposed on
the number of rows that can be inserted into the diagnostics table when a single
statement is executed on the target table.

Specifying the maximum number of rows in the diagnostics
table

The following statement starts violations and diagnostics tables for the target table
named orders. The MAX ROWS clause specifies the maximum number of rows
that can be inserted into the diagnostics table when a single statement, such as an
INSERT statement, is executed on the target table.
START VIOLATIONS TABLE FOR orders MAX ROWS 50000;

Privileges required for starting violations or diagnostics tables
To start a violations or a diagnostics table for a target table, you must meet one of
the following requirements:
v You must have the DBA privilege on the database.
v You must be the owner of the target table and also have the Resource privilege

on the database.
v You must have the Alter privilege on the target table and also have the Resource

privilege on the database.

Structure of the violations table
When you issue START VIOLATIONS TABLE for a target table, the violations table
that the statement creates has a predefined structure. This structure consists of the
columns of the target table and three additional columns.

The following table shows the schema of the violations table.

Column Name Data Type Column Description

Same columns (in the same
order) that appear in the
target table

Same types as corresponding
columns in the target table.

The violations table has the
same schema as the target
table, so that rows violating
constraints or a unique-index
during insert, update, and
delete operations can be
filtered to the violations
table.

informix_tupleid SERIAL Unique serial code for the
nonconforming row

Chapter 2. SQL statements 2-831

Column Name Data Type Column Description

informix_optype CHAR(1) The type of operation that
caused this bad row. This
column can have the
following values:

I = Insert

D = Delete

O = Update (with original
values in this row)

N = Update (with new
values in this row)

S = SET Database Object
Mode

informix_recowner CHAR(32) User who issued the
statement that created this
nonconforming row

If the target table of the START VIOLATIONS TABLE statement is protected by a
security policy, the database server protects the violations table with same security
policy. In this case, the schema of the violations table includes an
IDSSECURITYLABEL column whose name and position among other columns
corresponds to the IDSSECURITYLABEL column of the target table. When the
violations table is created, any SECURED WITH label specifications that protect
columns in the target table also protect the corresponding violations table columns.

Serial columns in the target table are converted to integer data types in the
violations table.

Users can examine these nonconforming rows in the violations table, analyze the
related rows that contain diagnostic information in the diagnostics table, and take
corrective actions.

Examples of START VIOLATIONS TABLE Statements
The following examples show different ways to execute the START VIOLATIONS
TABLE statement.

Violations and Diagnostics Tables with Default Names
The following statement starts violations and diagnostics tables for the target table
named cust_subset. The violations table is named cust_subset_vio by default, and
the diagnostics table is named cust_subset_dia by default.
START VIOLATIONS TABLE FOR cust_subset;

Violations and Diagnostics Tables with Explicit Names
The following statement starts a violations and diagnostics table for the target table
named items. The USING clause assigns explicit names to the violations and
diagnostics tables. The violations table is to be named exceptions, and the
diagnostics table is to be named reasons.
START VIOLATIONS TABLE FOR items USING exceptions, reasons;

2-832 IBM Informix Guide to SQL: Syntax

Relationships Among the Target, Violations, and Diagnostics
Tables

Users can take advantage of the relationships among the target, violations, and
diagnostics tables to obtain diagnostic information about rows that cause
data-integrity violations during INSERT, DELETE, and UPDATE statements. Each
row of the violations table has at least one corresponding row in the diagnostics
table.
v One row in the violations table is a copy of any row in the target table for which

a data-integrity violation was detected. A row in the diagnostics table contains
information about the nature of the data-integrity violation caused by the
nonconforming row in the violations table.

v One row in the violations table has a unique serial identifier in the
informix_tupleid column. A row in the diagnostics table has the same serial
identifier in its informix_tupleid column.

A given row in the violations table can have more than one corresponding row in
the diagnostics table. The multiple rows in the diagnostics table all have the same
serial identifier in their informix_tupleid column so that they are all linked to the
same row in the violations table. Multiple rows can exist in the diagnostics table
for the same row in the violations table because a nonconforming row in the
violations table can cause more than one data-integrity violation.

For example, the same nonconforming row can violate a unique index for one
column, a not-NULL constraint for another column, and a check constraint for a
third column. In this case, the diagnostics table contains three rows for the single
nonconforming row in the violations table. Each of these diagnostic rows identifies
a different data-integrity violation that the nonconforming row in the violations
table caused.

By joining the violations and diagnostics tables, the DBA or target-table owner can
obtain diagnostic information about any or all nonconforming rows in the
violations table. SELECT statements can perform these joins interactively, or you
can write a program to perform them within transactions.

Initial Privileges on the Violations Table
When you issue the START VIOLATIONS TABLE statement to create the violations
table, the database server uses the set of privileges granted on the target table as a
basis for granting privileges on the violations table. The database server follows
different rules, however, when it grants each type of privilege.

The following table summarizes the circumstances under which the database
server grants each type of privilege on the violations table.

Privilege
Condition for Granting the Privilege

Alter Alter privilege is not granted on the violations table. (Users cannot alter
violations tables.)

Index User has Index privilege on the violations table if the user has the Index
privilege on the target table.

Insert User has the Insert privilege on the violations table if the user has the
Insert, Delete, or Update privilege on any column of the target table.

Delete User has the Delete privilege on the violations table if the user has the
Insert, Delete, or Update privilege on any column of the target table.

Chapter 2. SQL statements 2-833

Select User has the Select privilege on the informix_tupleid, informix_optype,
and informix_recowner columns of the violations table if the user has the
Select privilege on any column of the target table.

User has the Select privilege on any other column of the violations table if
the user has the Select privilege on the same column in the target table.

Update
User has the Update privilege on the informix_tupleid, informix_optype,
and informix_recowner columns of the violations table if the user has the
Update privilege on any column of the target table.

(Even with the Update privilege on the informix_tupleid column,
however, the user cannot update this SERIAL column.)

User has the Update privilege on any other violations table column if the
user has the Update privilege on the same column in the target table.

References
The References privilege is not granted on the violations table. (Users
cannot add referential constraints to violations tables.)

The following rules apply to ownership of the violations table and privileges on
the violations table:
v When the violations table is created, the owner of the target table becomes the

owner of the violations table.
v The owner of the violations table automatically receives all table-level privileges

on the violations table, including the Alter and References privileges. The
database server, however, prevents the owner of the violations table from
altering the violations table or adding a referential constraint to the violations
table.

v You can use the GRANT and REVOKE statements to modify the initial set of
privileges on the violations table.

v When you issue an INSERT, DELETE, or UPDATE statement on a target table
that has a filtering-mode unique index or constraint defined on it, you must
have the Insert privilege on the violations and diagnostics tables.
If you do not have the Insert privilege on the violations and diagnostics tables,
the database server executes the INSERT, DELETE, or UPDATE statement on the
target table provided that you have the necessary privileges on the target table.
The database server does not return an error concerning the lack of Insert
privilege on the violations and diagnostics tables unless an integrity violation is
detected during execution of the INSERT, DELETE, or UPDATE statement.
Similarly, when you issue a SET Database Object Mode statement to set a
disabled constraint or disabled unique index to the enabled or filtering mode,
and a violations table and diagnostics table exist for the target table, you must
have the Insert privilege on the violations and diagnostics tables.
If you do not have the Insert privilege on the violations and diagnostics tables,
the database server executes the SET Database Object Mode statement if you
have the necessary privileges on the target table. The database server does not
return an error concerning the lack of Insert privilege on the violations and
diagnostics tables, unless an integrity violation is detected during the execution
of the SET Database Object Mode statement.

v The grantor of the initial set of privileges on the violations table is the same as
the grantor of the privileges on the target table.

2-834 IBM Informix Guide to SQL: Syntax

For example, if user henry was granted the Insert privilege on the target table
by both user jill and user albert, then the Insert privilege on the violations table
is granted to henry both by jill and by albert.

v After the violations table is started, revoking a privilege on the target table from
a user does not automatically revoke the same privilege on the violations table
from that user. Instead, you must explicitly revoke the privilege on the violations
table from the user.

v If you have fragment-level privileges on the target table, you have the
corresponding fragment-level privileges on the violations table.

Example of Privileges on the Violations Table
The following example illustrates how the initial set of privileges on a violations
table is derived from the current set of privileges on the target table. Assume that a
table named cust_subset consists of the following columns: ssn (customer Social
Security number), fname (customer first name), lname (customer last name), and
city (city in which the customer lives).

The following set of privileges exists on the cust_subset table:
v User barbara has the Insert and Index privileges on the table. She also has the

Select privilege on the ssn and lname columns.
v User carrie has the Update privilege on the city column. She also has the Select

privilege on the ssn column.
v User danny has the Alter privilege on the table.

Now user alvin starts a violations table named cust_subset_viols and a diagnostics
table named cust_subset_diags for the cust_subset table:
START VIOLATIONS TABLE FOR cust_subset

USING cust_subset_viols, cust_subset_diags;

The database server grants the following set of initial privileges on the
cust_subset_viols violations table:
v User alvin is the owner of the violations table, so he has all table-level privileges

on the table.
v User barbara has the Insert, Delete, and Index privileges on the table.

User barbara has the Select privilege on five columns of the violations table: the
ssn, the lname, the informix_tupleid, the informix_optype, and the
informix_recowner columns.

v User carrie has Insert and Delete privileges on the violations table.
User carrie has the Update privilege on four columns of the violations table: the
city, the informix_tupleid, the informix_optype, and the informix_recowner
columns. She cannot, however, update the informix_tupleid column (because
this is a SERIAL column).
User carrie has the Select privilege on four columns of the violations table: the
ssn column, the informix_tupleid column, the informix_optype column, and the
informix_recowner column.

v User danny has no privileges on the violations table.

Using the Violations Table
The following rules concern the structure and use of the violations table:
v Every pair of update rows in the violations table has the same value in the

informix_tupleid column to indicate that both rows refer to the same row in the
target table.

Chapter 2. SQL statements 2-835

v If the target table has columns named informix_tupleid, informix_optype, or
informix_recowner, the database server attempts to generate alternative names
for these columns in the violations table by appending a digit to the end of the
column name (for example, informix_tupleid1). If this fails, an error is returned,
and no violations table is started for the target table.

v When a table functions as a violations table, it cannot have triggers or
constraints defined on it.

v When a table functions as a violations table, users can create indexes on it, even
though the existence of an index affects performance. Unique indexes on the
violations table cannot be set to FILTERING database object mode.

v If a target table has a violations and diagnostics table associated with it,
dropping the target table in cascade mode (the default mode) causes the
violations and diagnostics tables to be dropped also. If the target table is
dropped in the restricted mode, the DROP TABLE operation fails (because the
violations and diagnostics tables exist).

v After a violations table is started for a target table, ALTER TABLE cannot add,
modify, or drop columns of the violations, diagnostics, or target tables. Before
you can alter any of these tables, you must issue a STOP VIOLATIONS TABLE
statement for the target table.

v The database server does not clear out the contents of the violations table before
or after it uses the violations table during an INSERT, UPDATE, DELETE, or SET
Database Object Mode operation.

v If a target table has a filtering-mode constraint or unique index defined on it and
a violations table associated with it, users cannot insert into the target table by
selecting from the violations table. Before you insert rows into the target table by
selecting from the violations table, you must take one of the following steps:
– You can set the constraint or unique index to DISABLED mode.
– You can issue STOP VIOLATIONS TABLE for the target table.
If it is inconvenient to take either of these steps, but you intend to copy records
from the violations table into the target table, a third option is to select from the
violations table into a temporary table and then insert the contents of the
temporary table into the target table.

v If the target table that is specified in the START VIOLATIONS TABLE statement
is fragmented, the violations table has the same fragmentation strategy as the
target table. Each fragment of the violations table is stored in the same dbspace
partition as the corresponding fragment of the target table.

v Once a violations table is started for a target table, you cannot use the ALTER
FRAGMENT statement to alter the fragmentation strategy of the target table or
the violations table.

v If the target table specified in the START VIOLATIONS TABLE statement is not
fragmented, the database server places the violations table in the same dbspace
as the target table.

v If the target table has BYTE or TEXT columns, BYTE or TEXT data values in the
violations table are created in the same blobspace that stores the BYTE or TEXT
data in the target table.

Example of a Violations Table
To start a violations and diagnostics table for the target table named customer in
the demonstration database, enter the following statement:
START VIOLATIONS TABLE FOR customer;

2-836 IBM Informix Guide to SQL: Syntax

Because you include no USING clause, the violations table is named customer_vio
by default. The customer_vio table includes these five columns:

Column One Column Two
Column
Three Column Four Column Five

customer_num
fname lname

company
address1
address2

city state zipcode
phone

informix_tupleid
informix_optype
informix_recowner

The customer_vio table has the same table definition as the customer table except
that the customer_vio table has three additional columns that contain information
about the operation that caused the nonconforming row.

Structure of the diagnostics table
When you issue a START VIOLATIONS TABLE statement for a target table, the
diagnostics table that the statement creates has a predefined structure. This
structure is independent of the structure of the target table.

The following table shows the schema of the diagnostics table.

Column Name Data Type Description

informix_tupleid INTEGER Implicitly refers to informix_tupleid column
values in the violations table This relationship,
however, is not declared as a foreign-key to
primary-key relationship.

objtype CHAR(1) Identifies the type of violation This column can
have the following values:

C = Constraint violation

I = Unique-index violation

objowner CHAR(32) Identifies the owner of the constraint or index
for which an integrity violation was detected

objname VARCHAR(128, 0) Contains the name of the constraint or index
for which an integrity violation was detected

Initial privileges on the diagnostics table
When the START VIOLATIONS TABLE statement creates the diagnostics table, the
set of access privileges granted on the target table are a basis for granting
privileges on the diagnostics table. The database server follows different rules,
however, when it grants each type of privilege.

The following table explains the circumstances under which the database server
grants each privilege on the diagnostics table.

Privilege
Condition for Granting the Privilege

Insert User has the Insert privilege on the diagnostics table if the user has the
Insert, Delete, or Update privilege on any column of the target table.

Delete User has the Delete privilege on the diagnostics table if the user has the
Insert, Delete, or Update privilege on any column of the target table.

Select User has the Select privilege on the diagnostics table if the user has the
Select privilege on any column in the target table.

Chapter 2. SQL statements 2-837

Update
User has the Update privilege on the diagnostics table if the user has the
Update privilege on any column in the target table.

Index User has the Index privilege on the diagnostics table if the user has the
Index privilege on the target table.

Alter Alter privilege is not granted on the diagnostics table.

(Users cannot alter the schema of diagnostics tables.)

References
References privilege is not granted on the diagnostics table.

(Users cannot define referential constraints on diagnostics tables.)

The following rules concern access privileges on the diagnostics table:
v When the diagnostics table is created, the owner of the target table becomes the

owner of the diagnostics table.
v The owner of the diagnostics table automatically receives all table-level

privileges on the diagnostics table, including the Alter and References privileges.
The database server, however, prevents the owner of the diagnostics table from
altering the diagnostics table or adding a referential constraint to the diagnostics
table.

v You can use the GRANT and REVOKE statements to modify the initial set of
privileges on the diagnostics table.

v For INSERT, DELETE, or UPDATE operations on a target table that has a
filtering-mode unique index or constraint defined on it, you must have the Insert
privilege on the violations and diagnostics tables.
If you do not have the Insert privilege on the violations and diagnostics tables,
the database server executes the INSERT, DELETE, or UPDATE statement on the
target table, provided you have the necessary privileges on the target table. The
database server does not return an error concerning the lack of Insert privilege
on the violations and diagnostics tables unless an integrity violation is detected
during execution of the INSERT, DELETE, or UPDATE statement.
Similarly, when you issue a SET Database Object Mode statement to set a
disabled constraint or disabled unique index to the enabled or filtering mode,
and a violations table and diagnostics table exist for the target table, you must
have the Insert privilege on the violations and diagnostics tables.
If you do not have the Insert privilege on the violations and diagnostics tables,
the database server executes the SET Database Object Mode statement, provided
you have the necessary privileges on the target table. The database server does
not return an error concerning the lack of Insert privilege on the violations and
diagnostics tables unless an integrity violation is detected during the execution
of the SET Database Object Mode statement.

v The grantor of the initial set of privileges on the diagnostics table is the same as
the grantor of the privileges on the target table. For example, if the user jenny
was granted the Insert privilege on the target table by both the user wayne and
the user laurie, both user wayne and user laurie grant the Insert privilege on
the diagnostics table to user jenny.

v Once a diagnostics table is started for a target table, revoking a privilege on the
target table from a user does not automatically revoke the same privilege on the
diagnostics table from that user. Instead you must explicitly revoke the privilege
on the diagnostics table from the user.

v If you have fragment-level privileges on the target table, you have the
corresponding table-level privileges on the diagnostics table.

2-838 IBM Informix Guide to SQL: Syntax

The next example illustrates how the initial set of privileges on a diagnostics table
is derived from the current privileges on the target table. Assume that you have a
table called cust_subset that holds customer data. This table consists of the
following columns: ssn (social security number), fname (first name), lname (last
name), and city (city in which the customer lives). The following set of access
privileges exists on the cust_subset table:
v User alvin is the owner of the table.
v User barbara has the Insert and Index privileges on the table. She also has the

Select privilege on the ssn and lname columns.
v User danny has the Alter privilege on the table.
v User carrie has the Update privilege on the city column. She also has the Select

privilege on the ssn column.

Now user alvin starts a violations table named cust_subset_viols and a diagnostics
table named cust_subset_diags for the cust_subset table:
START VIOLATIONS TABLE FOR cust_subset

USING cust_subset_viols, cust_subset_diags;

The database server grants the following set of initial privileges on the
cust_subset_diags diagnostics table:
v User alvin is the owner of the diagnostics table, so he has all table-level

privileges on the table.
v User barbara has the Insert, Delete, Select, and Index privileges on the

diagnostics table.
v User carrie has the Insert, Delete, Select, and Update privileges on the

diagnostics table.
v User danny has no privileges on the diagnostics table.

Using the Diagnostics Table
The following issues concern the structure and use of the diagnostics table.
v The MAX ROWS clause of the START VIOLATIONS TABLE statement sets a

limit on the number of rows that can be inserted into the diagnostics table when
you execute a single statement, such as an INSERT or SET Database Object
Mode statement, on the target table.

v The MAX ROWS clause limits the number of rows only for operations in which
the table functions as a diagnostics table.

v When a table functions as a diagnostics table, it cannot have triggers or
constraints defined on it.

v When a table functions as a diagnostics table, users can create indexes on the
table, but the existence of an index affects performance. You cannot set unique
indexes on a diagnostics table to FILTERING database object mode.

v If a target table has a violations and diagnostics table associated with it,
dropping the target table in cascade mode (the default mode) causes the
violations and diagnostics tables to be dropped also.

v If the target table is dropped in restricted mode, the DROP TABLE operation
fails (because the violations and diagnostics tables exist).

v Once a violations table is started for a target table, you cannot use the ALTER
TABLE statement to add, modify, or drop columns in the target table, violations
table, or diagnostics table. Before you can alter any of these tables, you must
issue a STOP VIOLATIONS TABLE statement for the target table.

Chapter 2. SQL statements 2-839

v The database server does not clear out the contents of the diagnostics table
before or after it uses the diagnostics table during an Insert, Update, Delete,
Merge, SET CONSTRAINTS, or SET INDEXES operation.

v If the target table that is specified in the START VIOLATIONS TABLE statement
is fragmented, the diagnostics table is fragmented with a round-robin strategy
over the same dbspaces in which the target table is fragmented.

To start a violations and diagnostics table for the target table named stock in the
demonstration database, enter the following statement:
START VIOLATIONS TABLE FOR stock;

Because your START VIOLATIONS TABLE statement does not include a USING
clause, the diagnostics table is named stock_dia by default. The stock_dia table
includes the following two columns:

Column One Column Two

informix_tupleid objtype objowner objname

This list of columns shows an important difference between the diagnostics table
and violations table for a target table. Whereas the violations table has a matching
column for every column in the target table, the columns of the diagnostics table
do not match any columns in the target table. The diagnostics table created by any
START VIOLATIONS TABLE statement always has the same columns, with the
same column names and data types.

For information on the relationship between the diagnostics table and the
violations table, see “Relationships Among the Target, Violations, and Diagnostics
Tables” on page 2-833.

STOP VIOLATIONS TABLE statement
Use the STOP VIOLATIONS TABLE statement to drop the association between a
target table, its violations table, and its diagnostics table. This statement is an
extension to the ANSI/ISO standard for SQL.

Syntax

�� STOP VIOLATIONS TABLE FOR table
'owner' .

��

Element Description Restrictions Syntax

owner The owner of table Must own the table “Owner name” on
page 5-49

table Name of a target table whose association
with the violations and diagnostics table is to
be dropped. No default value exists.

Must be a local table that has an
associated violations table and a
diagnostics table

“Identifier” on page
5-21

Usage

The STOP VIOLATIONS TABLE statement drops the association between the target
table, the violations table, and the diagnostics table. After you issue this statement,
the former violations and diagnostics tables continue to exist, but they no longer

2-840 IBM Informix Guide to SQL: Syntax

function as violations and diagnostics tables for the target table. They now have
the status of regular database tables instead of violations and diagnostics tables for
the target table. You must issue the DROP TABLE statement to drop these two
tables explicitly.

When DML operations (INSERT, DELETE, or UPDATE) cause data-integrity
violations for rows of the target table, the nonconforming rows are no longer
filtered to the former violations table, and diagnostic information about the
data-integrity violations is not placed in the former diagnostics table.
Related reference:
“Modes for constraints and unique indexes” on page 2-741
“SET Database Object Mode statement” on page 2-737
“START VIOLATIONS TABLE statement” on page 2-828

Object modes and violation detection (SQL Tutorial)

Example of Stopping the Violations and Diagnostics Tables
Assume that a target table named cust_subset has an associated violations table
named cust_subset_vio and an associated diagnostics table named
cust_subset_dia. To drop the association between the target table and the
violations and diagnostics tables, enter the following statement:
STOP VIOLATIONS TABLE FOR cust_subset;

This deletes the row in the sysviolations system catalog table that had registered
the former association. Subsequent DML operations on the target cust_subset table
will no longer cause the database server to insert information about
nonconforming rows into its former violations table or diagnostics table.

Example of Dropping the Violations and Diagnostics Tables
After you execute the STOP VIOLATIONS TABLE statement in the preceding
example, the cust_subset_vio and the cust_subset_dia tables continue to exist, but
they are no longer associated with the cust_subset table. Instead they now have
the status of regular database tables. To drop these two tables, enter the following
statements:
DROP TABLE cust_subset_vio;
DROP TABLE cust_subset_dia;

If you had previously issued the DROP TABLE statement without the RESTRICT
keyword to successfully drop the cust_subset table, then the statements above
would not be necessary, because dropping the target table in cascade mode
implicitly drops any associated violations table and diagnostics table.

Privileges Required for Stopping a Violations Table
To stop a violations or a diagnostics table for a given target table, you must meet
one of the following requirements:
v You must have the DBA privilege on the database.
v You must be the owner of the target table and have the Resource privilege on

the database.
v You must have the Alter privilege on the target table and the Resource privilege

on the database.

Chapter 2. SQL statements 2-841

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_259.htm#ids_sqt_259

TRUNCATE statement
Use the TRUNCATE statement to quickly delete all rows from a local table and
free the associated storage space. You can optionally reserve the space for the same
table and its indexes. Only Informix supports this implementation of the
TRUNCATE statement, which is an extension to the ANSI/ISO standard for SQL.

Syntax

�� TRUNCATE
TABLE

'owner' .
table
synonym

DROP STORAGE

REUSE STORAGE
��

Element Description Restrictions Syntax

owner Owner of table or synonym See Usage notes. “Owner name” on page 5-49

synonym Synonym for the table from which to remove
all data

Must exist, and
USETABLENAME
must not be set

“Identifier” on page 5-21

table Name of table from which to remove all data
and all B-tree structures of its indexes

Must exist in the
database

“Identifier” on page 5-21

Usage

The TRUNCATE statement rapidly deletes from a local table all active data rows
and the B-tree structures of indexes on the table. You have the option of releasing
the storage space that was occupied by the rows and index extents, or of reusing
the same space when the table is subsequently repopulated with new rows.

To execute the TRUNCATE statement, at least one of the following conditions must
be satisfied:
v You are the owner of the table.
v You hold the Delete access privilege on the table.
v You hold the DBA access privilege on the current database.

If an enabled Delete trigger is defined on the table, you must also hold the Alter
privilege on the table, even though the TRUNCATE statement does not activate
triggers.

Although it requires the Delete privilege for a non-DBA user who does not own
the table, TRUNCATE is a data definition language (DDL) statement. Like other
DDL statements, TRUNCATE cannot operate on any table outside the database to
which you are connected, nor on a table that a concurrent session is reading in
Dirty Read isolation mode.

Informix always logs the TRUNCATE operation, even for a non-logging table. In
databases that support transaction logging, only the COMMIT WORK or
ROLLBACK WORK statement of SQL is valid after the TRUNCATE statement
within the same transaction. Here the ROLLBACK statement must cancel the entire
transaction that includes the TRUNCATE statement. Informix issues an error if
ROLLBACK TO SAVEPOINT (or any other SQL statement except for COMMIT
WORK or ROLLBACK WORK without the TO SAVEPOINT clause) immediately
follows the TRUNCATE statement.

2-842 IBM Informix Guide to SQL: Syntax

When you successfully rollback the TRUNCATE statement, no rows are removed
from the table, and the storage extents that hold the rows and index partitions
continue to be allocated to the table. Only databases with transaction logging can
support the ROLLBACK WORK statement.

After the TRUNCATE statement successfully executes, Informix automatically
updates the statistics and distributions for the table and for its indexes in the
system catalog to show no rows in the table nor in its dbspace partitions. It is not
necessary to run the UPDATE STATISTICS statement immediately after you
commit the TRUNCATE statement.

If the table that the TRUNCATE statement specifies is a typed table, a successful
TRUNCATE operation removes all the rows and B-tree structures from that table
and from all its subtables within the table hierarchy.

The TRUNCATE statement does not reset the serial value of SERIAL, BIGSERIAL,
or SERIAL8 columns. To reset the counter of a serial column, use the MODIFY
clause of the ALTER TABLE statement, either before or after you execute the
TRUNCATE statement.
Related reference:
“DELETE statement” on page 2-404
“DROP TABLE statement” on page 2-446

The TABLE Keyword
The TABLE keyword has no effect on this statement, but it can be included to
make your code more legible for human readers. Both of the following statements
have the same effect, deleting all rows and any related index data from the
customer table:
TRUNCATE TABLE customer;

TRUNCATE customer;

The Table Specification
You must specify the name or synonym of a table in the local database to which
you are currently connected. If the USETABLENAME environment variable is set,
you must use the name of the table, rather than a synonym. The table can be of
type STANDARD, RAW, or TEMP, but you cannot specify the name or synonym of
a view, or an object that the CREATE EXTERNAL TABLE statement defined.
(Categories of tables that are not valid with TRUNCATE are listed in the section
“Restrictions on the TRUNCATE statement” on page 2-846.)

In a database that is ANSI-compliant, you must specify the owner qualifier if you
are not the owner of the table or synonym.

After the TRUNCATE statement begins execution, Informix attempts to place an
exclusive lock on the specified table, to prevent other sessions from locking the
table until the TRUNCATE statement is committed or rolled back. Exclusive locks
are also applied to any dependent tables of the truncated table within a table
hierarchy.

While concurrent sessions that use the Dirty Read isolation level are reading the
table, however, the TRUNCATE statement fails with an RSAM -106 error. To
reduce this risk, you can set the IFX_DIRTY_WAIT environment variable to

Chapter 2. SQL statements 2-843

specify that the TRUNCATE operation wait for a specified number of seconds for
Dirty Read transactions to commit or rollback.

The STORAGE specification
The optional DROP STORAGE or REUSE STORAGE keywords specify what action
the database server takes with the storage extents of the table when the
TRUNCATE operation begins. If you omit this specification, the DROP STORAGE
option is the default.

Using the default or explicit DROP STORAGE option, a successful TRUNCATE
statement releases all but the first extent among the extents currently allocated to
the table and to its indexes. You can display the current list of extents with the
oncheck -pT table command. If your table has only one extent, no space will be
freed.

For the following table, for example, four default eight-page extents were merged
into what is now the first extent. There is also a second, larger extent:
Extents

Logical Page Physical Page Size Physical Pages
0 1:104455 32 32
32 1:104495 4576 4576

After the TRUNCATE statement runs, output from the same oncheck command
displays this:

Extents
Logical Page Physical Page Size Physical Pages

0 1:104455 32 32

Alternatively, if you intend to keep the same storage space allocated to the same
table for subsequently loaded data, specify the REUSE STORAGE keywords to
prevent the space from being deallocated. The REUSE STORAGE option of
TRUNCATE can make storage management more efficient in applications where
the same table is periodically emptied and reloaded with new rows.

The following example truncates the state table and frees all of its extents except
the first extent:
TRUNCATE TABLE state DROP STORAGE;

The following example truncates the same table but removes only the actual data.
All extents stay the same.
TRUNCATE TABLE state REUSE STORAGE;

Whether you specify DROP STORAGE or REUSE STORAGE, any out-of-row data
values are released for all rows of the table when the TRUNCATE transaction is
committed. Storage occupied by any BLOB or CLOB values that become
unreferenced in the TRUNCATE transaction is also released.

The AM_TRUNCATE Purpose Function
Informix provides built-in am_truncate purpose functions for its primary access
methods that support TRUNCATE operations on columns of permanent and
temporary tables. It also provides a built-in am_truncate purpose function for its
secondary access method for TRUNCATE operations on B-tree indexes.

For the TRUNCATE statement to work correctly in a virtual table interface (VTI)
table requires a valid am_truncate purpose function in the primary access method

2-844 IBM Informix Guide to SQL: Syntax

for the data type of the VTI table. To register a new primary access method in the
database, use the CREATE PRIMARY ACCESS_METHOD statement of SQL:
CREATE PRIMARY ACCESS_METHOD vti(

AM_GETNEXT = vti_getnext
AM_TRUNCATE = vti_truncate
...);

You can also use the ALTER ACCESS_METHOD statement to add a valid
am_truncate purpose function to an existing access method that has no
am_truncate purpose function:
ALTER ACCESS_METHOD abc (ADD AM_TRUNCATE = abc_truncate);

In these examples, the vti_truncate and abc_truncate functions must be routines
that support the functionality of the AM_TRUNCATE purpose option keyword,
and that were previously registered in the database by the CREATE FUNCTION or
CREATE ROUTINE FROM statement.

Performance Advantages of TRUNCATE
The TRUNCATE statement is not equivalent to DROP TABLE. After TRUNCATE
successfully executes, the specified table and all its columns and indexes are still
registered in the database, but with no rows of data. In information management
applications that require replacing all of the records in a table after some time
interval, TRUNCATE requires fewer updates to the system catalog than the
equivalent DROP TABLE, CREATE TABLE, and any additional DDL statements to
redefine any synonyms, views, constraints, triggers, privileges, fragmentation
schemes, and other attributes and associated database objects of the table.

In contexts where no existing rows of a table are needed, the TRUNCATE
statement is typically far more efficient than using the DELETE statement with no
WHERE clause to empty the table, because TRUNCATE requires fewer resources
and less logging overhead than DELETE:
v DELETE FROM table deletes each row as a separately logged operation. If

indexes exist on the table, each index must be updated when a row is deleted,
and this update is also logged for each row. If an enabled Delete trigger is
defined on the table, its triggered actions must also be executed and logged.

v TRUNCATE table performs the removal of all rows and of the B-tree structures
of every index on the table as a single operation, and writes a single entry in the
logical log when the transaction that includes TRUNCATE is committed or
rolled back. The triggered action of any enabled trigger is ignored.

These performance advantages of TRUNCATE over DELETE are reduced when the
table has one or more columns with the following attributes:
v Any simple large object data types stored in blobspaces
v Any BLOB, CLOB, complex, or user-defined types stored in sbspaces
v Any opaque types for which a destroy support function is defined.

Each of these features require the database server to read each row of the table,
substantially reducing the speed of TRUNCATE.

If a table includes one or more UDTs for which you have registered an
am_truncate() purpose function, then the performance difference between
TRUNCATE and DELETE would reflect the relative costs of invoking the
am_truncate interface once for TRUNCATE versus invoking the destroy() support
function for each row.

Chapter 2. SQL statements 2-845

As listed in the next section, certain conditions cause TRUNCATE to fail with an
error. Some of these conditions have no effect on DELETE operations, so in those
cases you can remove all rows more efficiently with a DELETE statement, as in the
following operation on the customer table:
DELETE customer;

The FROM keyword that immediately follows DELETE can be omitted, as in this
example, only if the DELIMIDENT environment variable is set.

Restrictions on the TRUNCATE statement
The TRUNCATE statement fails if any of the following conditions exist:
v The user does not hold the Delete access privilege on the table.
v The table has an enabled Delete trigger, but the user lacks the Alter privilege.
v The specified table or synonym does not exist in the local database.
v The table was defined by the CREATE EXTERNAL TABLE statement.
v The specified synonym does not reference a table in the local database.
v The statement specifies a synonym for a local table, but the USETABLENAME

environment variable is set.
v The statement specifies the name of a view or a synonym for a view.
v The table is a system catalog table or a system-monitoring interface (SMI) table.
v An R-tree index is defined on the table.
v The table is a virtual table (or has a virtual-index interface) for which no valid

am_truncate access method exists in the database.
v An Enterprise Replication replicate that is not a master replicate is defined on

the table. (For more information about replicates, see the IBM Informix Enterprise
Replication Guide.)

v A shared or exclusive lock on the table already exists.
v One or more cursors are open on the table.
v A concurrent session with Dirty Read isolation level is reading the table.
v Another table, with at least one row, has an enabled foreign-key constraint on

the specified table. (An enabled foreign key constraint of another table that has
no rows, however, has no effect on a TRUNCATE operation.)

UNLOAD statement
Use the UNLOAD statement to write the rows retrieved by a SELECT statement to
an operating-system file. The UNLOAD statement is an extension to the ANSI/ISO
standard for SQL.

Syntax

Only DB-Access supports the UNLOAD statement.

�� UNLOAD TO 'filename'
DELIMITER 'delimiter'

(1)
SELECT Statement

variable
��

Notes:

1 See “SELECT statement” on page 2-654

2-846 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

delimiter Quoted string to specify the field
delimiter character in filename file

See “DELIMITER Clause” on page
2-851

“Quoted String” on
page 4-219

filename Operating-system file to receive the
rows. Default pathname is the current
directory.

See “UNLOAD TO File.” “Quoted String” on
page 4-219

variable Host variable that contains the text of
a valid SELECT statement

Must have been declared as a
character data type

Language- specific

Usage

Important: Use the UNLOAD statement only with DB-Access.

The UNLOAD statement copies to a file the rows retrieved by a query. You must
have the Select privilege on all columns specified in the SELECT statement. For
information on database-level and table-level privileges, see “GRANT statement”
on page 2-502.

You can specify a literal SELECT statement or a character variable that contains the
text of a SELECT statement. (See “SELECT statement” on page 2-654.)

The following example unloads rows whose value of customer.customer_num is
greater than or equal to 138, and writes them to a file named cust_file:
UNLOAD TO ’cust_file’ DELIMITER ’!’

SELECT * FROM customer WHERE customer_num> = 138;

The resulting output file, cust_file, contains two rows of data values:
138!Jeffery!Padgett!Wheel Thrills!3450 El Camino!Suite 10!Palo Alto!CA!94306!!
139!Linda!Lane!Palo Alto Bicycles!2344 University!!Palo Alto!CA!94301!

(415)323-5400

Related concepts:

Environment variables (SQL Reference)

Unload data from a database (GLS User's Guide)
Related reference:
“LOAD statement” on page 2-558
“OUTPUT statement” on page 2-588
“SELECT statement” on page 2-654
Related information:

Data migration utilities (Migration Guide)

UNLOAD TO File
The UNLOAD TO file, as specified by the filename parameter, receives the retrieved
rows.

You can use an UNLOAD TO file as input to a LOAD statement.

Chapter 2. SQL statements 2-847

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_179.htm#ids_sqr_179
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_164.htm#ids_gug_164
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.mig.doc/ids_mig_246.htm#ids_mig_246

UNLOAD TO data formats in the default U.S. English locale

In the default locale, data values have these formats in the UNLOAD TO file.

Data Type Output Format

BOOLEAN BOOLEAN values appear as either t for TRUE or f for FALSE.

Character If a character field contains the delimiter, IBM Informix products automatically escape it with a
backslash (\) to prevent interpretation as a special character. In the UNLOAD TO file, a literal
backslash character is represented as two consecutive backslash characters (\\). If you use the
LOAD statement of DB-Access to insert the rows into a table, the backslash escape characters are
automatically stripped from that table.

Collections A collection is unloaded with its values between braces ({ }) and a delimiter between each
element. For more information, see “Unloading Complex Types” on page 2-850.

DATE DATE values are represented as mm/dd/yyyy (or the default format for the database locale), where
mm is the month (January = 1, and so on), dd is the day, and yyyy is the year. If you have set the
GL_DATE or DBDATE environment variable, the UNLOAD statement uses the specified date
format for DATE values.

DATETIME,
INTERVAL

Literal DATETIME and INTERVAL values appear as digits and delimiters, without keyword
qualifiers, in the default format yyyy-mm-dd hh:mi:ss.fff. Time units outside the declared precision
are omitted. If the GL_DATETIME or DBTIME environment variable is set, DATETIME values
appear in the specified format.

DECIMAL,
MONEY

Values are unloaded with no leading currency symbol. In the default locale, comma (,) is the
thousands separator and period (.) is the decimal separator. If DBMONEY is set, UNLOAD uses
its specified separators and currency format for MONEY values.

NULL NULL appears as two delimiters with no characters between them.

Number Values appear as literals, with no leading blanks. For BIGINT, INTEGER, INT8, and SMALLINT
data types, zero appears as 0, For MONEY, FLOAT, SMALLFLOAT, and DECIMAL data types,
zero appears as 0.0.

ROW types
(named and
unnamed)

A ROW type is unloaded with its values enclosed between parentheses and a field delimiter
separating each element. For more information, see “Unloading Complex Types” on page 2-850.

Simple large
objects (TEXT,
BYTE)

TEXT and BYTE columns are unloaded directly into the UNLOAD TO file. BYTE values appear in
ASCII hexadecimal form, with no added white space or newline characters. For more information,
see “Unloading Simple Large Objects” on page 2-849.

Smart large
objects (CLOB,
BLOB)

CLOB and BLOB columns are unloaded into a separate operating-system file (for each column) on
the client computer. The CLOB or BLOB field in the UNLOAD TO file contains the name of this
file. For more information, see “Unloading Smart Large Objects” on page 2-849.

User-defined
data types
(opaque types)

Opaque types must have an export() support function defined. They need special processing to
copy data from the internal format of the opaque data type to the UNLOAD TO file format. An
exportbinary() support function might also be required for data in binary format. The data in the
UNLOAD TO file would correspond to the format that the export() or exportbinary() support
function returns.

UNLOAD TO data formats in nondefault locales

In nondefault locales, DATE, DATETIME, MONEY, and numeric column values
have formats that the locale supports for these data types. For more information,
see the IBM Informix GLS User's Guide. For more information on DBDATE,
DBMONEY, and DBTIME environment variables, refer to the IBM Informix Guide
to SQL: Reference.

In databases that use a nondefault locale, if the GL_DATETIME environment
variable has a nondefault setting, the USE_DTENV environment variable must be

2-848 IBM Informix Guide to SQL: Syntax

set to 1 before the UNLOAD statement can correctly unload localized DATETIME
values from the database table, or from view, or from a table object defined by the
EXTERNAL TABLE statement. For more information on the GL_DATETIME,
GL_DATE, and USE_DTENV environment variables, refer to the IBM Informix GLS
User's Guide.

Unloading Character Columns
In unloading files that contain VARCHAR or NVARCHAR columns, trailing blanks
are retained in VARCHAR, LVARCHAR, or NVARCHAR fields. Trailing blanks are
discarded when CHAR or NCHAR columns are unloaded.

For CHAR, VARCHAR, NCHAR, and NVARCHAR columns, an empty string (a
data string of zero length, containing no characters) appears in the UNLOAD TO
file as the four bytes “|\ |” (delimiter, backslash, blank space, delimiter).

Some earlier releases of Informix database servers used “||” (consecutive
delimiters) to represent the empty string in LOAD and UNLOAD operations. In
this release, however, “||” only represents NULL values in CHAR, VARCHAR,
LVARCHAR, NCHAR, and NVARCHAR columns.

Unloading Simple Large Objects
The database server writes BYTE and TEXT values directly into the UNLOAD TO
file. BYTE values are written in hexadecimal dump format with no added blank
spaces or new line characters. The logical length of an UNLOAD TO file
containing BYTE data can therefore be long and difficult to print or edit.

If you are unloading files that contain simple-large-object data types, do not use
characters that can appear in BYTE or TEXT values as delimiters in the UNLOAD
TO file. See also the section “DELIMITER Clause” on page 2-851.

The database server handles any required code-set conversions for TEXT data. For
more information, see the IBM Informix GLS User's Guide.

If you are unloading files that contain simple-large-object data types, objects
smaller than 10 kilobytes are stored temporarily in memory. You can adjust the
10-kilobyte setting to a larger setting with the DBBLOBBUF environment variable.
BYTE or TEXT values larger than the default or the DBBLOBBUF setting are
stored in a temporary file. For additional information about DBBLOBBUF, see the
IBM Informix Guide to SQL: Reference.
Related reference:

DBBLOBBUF environment variable (SQL Reference)

Unloading Smart Large Objects
The database server unloads smart large objects (from BLOB or CLOB columns)
into a separate operating-system file for each column, in the same directory on the
client computer as the UNLOAD TO file. All the smart blobs in the same column
are stored in a single file. The filename has one of these formats:
v For a BLOB value: blob########
v For a CLOB value: clob########

In the preceding formats, the pound (#) symbols represent the digits of the
unique hexadecimal smart-large-object identifier of the first smart large object in
the file. The maximum number of digits for a smart-large-object identifier is 17.
Most smart large objects, however, would have an identifier with fewer digits.

Chapter 2. SQL statements 2-849

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_208.htm#ids_sqr_208

When the database server unloads the first smart large object, it creates the
appropriate BLOB or CLOB client file with the hexadecimal identifier of the smart
large object. If additional smart-large-object values are present in the same column,
the database server writes their values to the same file, and lists in the UNLOAD
TO file (*.unl) the sbspace, chunk, and page numbers, and smart large object
identifier, for each BLOB or CLOB value in the file.

The following example shows an UNLOAD TO file entry for two smart large
object values from the same column:
Object # 1
Space Chunk Page = [5,6,3] Object ID = 1192071051

Object #2
Space Chunk Page = [5,6,4] Object ID = 1192071050

both rows unloaded

In an UNLOAD TO file, a BLOB or CLOB column value appears in this format:
start_off,length,client_path

Here start_off is the starting offset (in hexadecimal format) of the smart-large-object
value within the client file, length is the length (in hexadecimal) of the BLOB or
CLOB value, and client_path is the pathname for the client file. No blank spaces
can appear between these values. If a CLOB value is 512 bytes long and is at offset
256 in the /usr/apps/clob9ce7.318 file, for example, then the CLOB value appears as
follows in the UNLOAD TO file:
|100,200,/usr/apps/clob9ce7.318|

If a BLOB or CLOB column value occupies an entire client file, the CLOB or BLOB
column value appears as follows in the UNLOAD TO file:
client_path

For example, if a CLOB value occupies the entire file /usr/apps/clob9ce7.318, the
CLOB value appears as follows in the UNLOAD TO file:
|/usr/apps/clob9ce7.318|

For locales that support multibyte code sets, be sure that the declared size (in
bytes) of any column that receives character data is large enough to store the entire
data string. For some locales, this can require up to 4 times the number of logical
characters in the longest data string.

The database server handles any required code-set conversions for CLOB data. For
more information, see the IBM Informix GLS User's Guide.

Unloading Complex Types
In an UNLOAD TO file, values of complex data types appear as follows:
v Collections are introduced with the appropriate constructor (MULTISET, LIST,

SET), with their comma-separated elements enclosed in braces ({ }):
constructor{val1 , val2 , ... }

For example, to unload the SET values {1, 3, 4} from a column of the SET
(INTEGER NOT NULL) data type, the corresponding field of the UNLOAD TO
file appears as follows:
|SET{1 , 3 , 4}|

v ROW types (named and unnamed) are introduced by the ROW constructor and
have their fields enclosed between parentheses and comma-separated:

2-850 IBM Informix Guide to SQL: Syntax

ROW(val1 , val2 , ...)

For example, to unload the ROW values (1, ’abc’), the corresponding field of
the UNLOAD TO file appears as follows:
|ROW(1 , abc)|

DELIMITER Clause
Use the DELIMITER clause to specify the delimiter that separates the data
contained in each column in a row in the output file.

If you omit this clause, then DB-Access checks the setting of the DBDELIMITER
environment variable. If DBDELIMITER has not been set, the default delimiter is
the pipe (|) symbol. You can specify TAB (CTRL-I) or a blank space (ASCII 32) as
the delimiter symbol, but the following characters are not valid in any locale as
delimiter symbols:
v Backslash (\)
v Newline character (CTRL-J)
v Hexadecimal digits (0 to 9, a to f, A to F)

The backslash (\) is not a valid field separator or record delimiter because it is
the default escape character, indicating that the next character is a literal character
in the data, rather than a special character. However, if you change the default
escape character by setting the DEFAULTESCCHAR configuration parameter or the
DEFAULTESCCHAR session environment option, you can use a backslash as a field
separator.

The following UNLOAD statement specifies the semicolon (;) as the delimiter:
UNLOAD TO ’cust.out’ DELIMITER ’;’

SELECT fname, lname, company, city FROM customer;

UNLOCK TABLE statement
Use the UNLOCK TABLE statement in a database that does not support
transaction logging to unlock a table that you previously locked with the LOCK
TABLE statement. The UNLOCK TABLE statement is an extension to the
ANSI/ISO standard for SQL.

Syntax

�� UNLOCK TABLE table
synonym

��

Element Description Restrictions Syntax

synonym Synonym for a table
to unlock

The synonym and the table to which it points must exist “Database Object
Name” on page
5-16

table Table to unlock Must be in a database without transaction logging, and
must be a table that you previously locked

“Database Object
Name” on page
5-16

Usage

Restriction: The UNLOCK TABLE statement is not valid within a transaction.

Chapter 2. SQL statements 2-851

You can lock a table if you own the table or if you have the Select privilege on the
table, either from a direct grant to your user ID or from a grant to PUBLIC. You
can only unlock a table that you locked. You cannot unlock a table that another
process locked. Only one lock can apply to a table at a time.

You must specify the name or synonym of the table that you are unlocking. Do not
specify the name of a view, or a synonym for a view.

To change the lock mode of a table in a database that was created without
transaction logging, use the UNLOCK TABLE statement to unlock the table, then
issue a new LOCK TABLE statement. The following example shows how to change
the lock mode of a table in a database that was created without transaction
logging:
LOCK TABLE items IN EXCLUSIVE MODE;
...
UNLOCK TABLE items;
...
LOCK TABLE items IN SHARE MODE;

The UNLOCK TABLE statement fails if it is issued within a transaction. Table locks
set within a transaction are released automatically when the transaction completes.

If you are using an ANSI-compliant database, do not issue an UNLOCK TABLE
statement. The UNLOCK TABLE statement fails if it is issued within a transaction,
and a transaction is always in effect in an ANSI-compliant database.
Related reference:
“LOCK TABLE statement” on page 2-564
“SET LOCK MODE statement” on page 2-804
“BEGIN WORK statement” on page 2-126
“COMMIT WORK statement” on page 2-133
“ROLLBACK WORK statement” on page 2-646

Concurrency and locks (SQL Tutorial)

UPDATE statement
Use the UPDATE statement to change the values in one or more columns of one or
more existing rows in a table or view.

Syntax

�� UPDATE �

�
(3)

Target SET Clause WHERE Options
(1) (2)

Optimizer Directives
(4) (3)

Collection-Derived Table SET Clause
(5) (6)

WHERE CURRENT OF cursor

��

Target:

2-852 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_283.htm#ids_sqt_283

table
view (1)
synonym alias

AS
(1)

ONLY (table)
synonym

WHERE Options:

(7)
WHERE condition

(5) (6)
WHERE CURRENT OF cursor_id

Notes:

1 Informix extension

2 See “Optimizer Directives” on page 5-35

3 See “SET Clause” on page 2-857

4 See “Collection-Derived Table” on page 5-4

5 ESQL/C and SPL only

6 See “Using the WHERE CURRENT OF Clause (ESQL/C, SPL)” on page 2-865

7 See “WHERE Clause of UPDATE” on page 2-863

Element Description Restrictions Syntax

alias Temporary name that you declare
here for a local or remote table

The AS keyword must precede alias if SET
is the identifier of alias

“Identifier” on
page 5-21

condition Logical criteria that updated rows
must satisfy

Cannot be a UDR nor a correlated
subquery

“Condition” on
page 4-5

cursor Name of a cursor whose current
row is to be updated

Cannot be a host variable. You cannot
update a row that includes aggregates

“Identifier” on
page 5-21

synonym, table,
view

Synonym, table, or view that
contains rows to be updated

The synonym and the table or view to
which it points must exist

“Database Object
Name” on page
5-16

Usage

Use the UPDATE statement to update any of the following types of database
objects or program objects:
v A row in a table: a single row, a group of rows, or all rows in a table
v An element in a column of a collection data type
v In a column of a named or unnamed ROW data type, a field or all fields.

With Informix, you can also use this statement to change the values in one or more
elements in an Informix ESQL/C or SPL collection variable or ROW variable.

For information on how to update elements of a collection variable, see
“Collection-Derived Table” on page 5-4. Sections that follow in this description of
the UPDATE statement describe how to update a row in a table.

Chapter 2. SQL statements 2-853

You must either own the table or have the Update privilege for the table; see
“GRANT statement” on page 2-502. To update data in a view, you must have the
Update privilege, and the view must meet the requirements that are explained in
“Updating Rows Through a View” on page 2-855.

The target of the UPDATE statement cannot be a table object that the CREATE
EXTERNAL TABLE statement defined.

The cursor (as defined in the SELECT ... FOR UPDATE portion of a DECLARE
statement) can contain only column names. If you omit the WHERE clause, all
rows of the target table are updated.

If you are using effective checking and the checking mode is set to IMMEDIATE,
all enabled constraints are checked at the end of each UPDATE statement. If the
checking mode is set to DEFERRED, all enabled constraints are not checked until
the transaction is committed.

In DB-Access, if you omit the WHERE clause and are in interactive mode,
DB-Access does not run the UPDATE statement until you confirm that you want to
change all rows. If the statement is in a command file, however, and you are
running at the command line, the statement executes immediately.

Example

The following example creates and updates view.
CREATE VIEW cust_view AS SELECT * FROM customer;
UPDATE cust_view SET customer_num=10001 WHERE customer_num=101;

Related concepts:

Data manipulation statements (GLS User's Guide)
Related reference:
“DROP SEQUENCE statement” on page 2-444
“ALTER SEQUENCE statement” on page 2-68
“DECLARE statement” on page 2-386
“INSERT statement” on page 2-545
“OPEN statement” on page 2-581
“SELECT statement” on page 2-654
“FOREACH” on page 3-30

Update rows (SQL Tutorial)

Complex data types (ESQL/C Guide)
“Literal Row” on page 4-216
“DELETE statement” on page 2-404
“RENAME SEQUENCE statement” on page 2-614
“Collection-Derived Table” on page 5-4
“MERGE statement” on page 2-568

Using the ONLY Keyword
If you use the UPDATE statement to update rows of a supertable, rows from its
subtables can also be updated. To update rows from the supertable only, use the
ONLY keyword prior to the table name, as this example shows:

2-854 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_159.htm#ids_gug_159
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_232.htm#ids_sqt_232
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0280.htm#ids_esqlc_0280

UPDATE ONLY(am_studies_super)
WHERE advisor = "johnson"

SET advisor = "camarillo";

Note: If you use the UPDATE statement on a supertable without the ONLY
keyword and without a WHERE clause, all rows of the supertable and its subtables
are updated. You cannot use the ONLY keyword if you plan to use the WHERE
CURRENT OF clause to update the current row of the active set of a cursor.

Updating Rows Through a View
You can update data through a single-table view if you have the Update privilege
on the view (see “GRANT statement” on page 2-502). For a view to be updatable,
the query that defines the view must not contain any of the following items:
v Columns in the projection list that are aggregate values
v Columns in the projection list that use the UNIQUE or DISTINCT keyword
v A GROUP BY clause
v A UNION operator

In addition, if a view is built on a table that has a derived value for a column, that
column cannot be updated through the view. Other columns in the view, however,
can be updated. In an updatable view, you can update the values in the underlying
table by inserting values into the view.
CREATE VIEW cust_view AS SELECT * FROM customer;
UPDATE cust_view SET customer_num=10001 WHERE customer_cum=101;

The following statements define a view that includes all the rows in the customer
table and changes the customer_num value to 10001 in any row where the value of
that column is 101:
CREATE VIEW cust_view AS SELECT * FROM customer;
UPDATE cust_view SET customer_num=10001 WHERE customer_num=101;

You can use data-integrity constraints to prevent users from updating values in the
underlying table when the update values do not fit the SELECT statement that
defined the view. For more information, see “WITH CHECK OPTION Keywords”
on page 2-377.

Because duplicate rows can occur in a view even if its base table has unique rows,
be careful when you update a table through a view. For example, if a view is
defined on the items table and contains only the order_num and total_price
columns, and if two items from the same order have the same total price, the view
contains duplicate rows. In this case, if you update one of the two duplicate
total_price values, you have no way to know which item price is updated.

Important: If you are using a view with a check option, you cannot update rows
in a remote table.

An alternative to directly modifying data values in a view with the UPDATE
statement is to create an INSTEAD OF trigger on the view. For more information,
see “INSTEAD OF Triggers on Views” on page 2-362.

Updating Rows in a Database Without Transactions
If you are updating rows in a database without transactions, you must take explicit
action to restore updated rows. For example, if the UPDATE statement fails after

Chapter 2. SQL statements 2-855

updating some rows, the successfully updated rows remain in the table. You
cannot automatically recover from a failed update.

Updating Rows in a Database with Transactions
If you are updating rows in a database with transactions, and you are using
transactions, you can undo the update using the ROLLBACK WORK statement. If
you do not execute a BEGIN WORK statement before the update, and the update
fails, the database server automatically rolls back any database modifications that
were made to the table since the beginning of the update operation.

The CREATE TEMP TABLE statement can include the WITH NO LOG option to
create temporary tables that do not support transaction logging. These tables are
not logged and are not recoverable.

Do not use RAW tables within a transaction. Tables that you create with the
CREATE RAW TABLE statement are not logged. Thus, RAW tables are not
recoverable, even if the database uses logging. RAW tables are intended for the
initial loading and validation of data. After you have loaded the data, use the
ALTER TABLE statement to change the table to type STANDARD, and perform a
level-0 backup before you use the table in a transaction. For more information
about RAW tables, refer to the IBM Informix Administrator's Guide.

In an ANSI-compliant database, transactions are implicit, and all database
modifications take place within a transaction. In this case, if an UPDATE statement
fails, you can use ROLLBACK WORK to undo the update.

If you are within an explicit transaction, and the update fails, the database server
automatically undoes the effects of the update.

Locking Considerations
When a row is selected with the intent to update, the update process acquires an
update lock. Update locks permit other processes to read, or share, a row that is
about to be updated, but they do not allow those processes to update or delete it.
Just before the update occurs, the update process promotes the shared lock to an
exclusive lock. An exclusive lock prevents other processes from reading or
modifying the contents of the row until the lock is released.

An update process can acquire an update lock on a row or on a page that has a
shared lock from another process, but you cannot promote the update lock from
shared to exclusive (and the update cannot occur) until the other process releases
its lock.

If the number of rows that a single update affects is large, you can exceed the
limits placed on the maximum number of simultaneous locks. If this occurs, you
can reduce the number of transactions per UPDATE statement, or you can lock the
page or the entire table before you execute the statement.

Declaring an alias for the target table
You can declare an alias for the target table. The alias can reference the
fully-qualified database object name of a local or remote table, view, or synonym.

The alias is a temporary name that is not registered in the system catalog of the
database, and that persists only while the UPDATE statement is running.

2-856 IBM Informix Guide to SQL: Syntax

If the name that you declare as the alias is also a keyword of the UPDATE
statement, you must use the AS keyword to clarify the syntax:
UPDATE stock AS set

SET unit_price = unit_price * 0.94;

The following UPDATE statement references the qualified name of a table in the
target clause and in two subqueries:
UPDATE nmosdb@wnmserver1:test
SET name=(SELECT name FROM test

WHERE test.id = nmosdb@wnmserver1:test.id)
WHERE EXISTS(
SELECT 1 FROM test WHERE test.id = nmosdb@wnmserver1:test.id
);

The next UPDATE statement is logically equivalent to the previous example, but
declares r_t an alias for the qualified table name:
UPDATE nmosdb@wnmserver1:test r_t
SET name=(SELECT name FROM test

WHERE test.id = r_t.id)
WHERE EXISTS(

SELECT 1 FROM test WHERE test.id = r_t.id
);

Declaring the table alias simplifies the notation of the second example above.

SET Clause
Use the SET clause to identify the columns to update and assign values to each
column. The clause supports the following formats:
v A single-column format, which pairs each column with a single expression
v A multiple-column format, which associates a list of multiple columns with the

values returned by one or more expressions

SET Clause:

SET
(1)

Single-Column Format
(2) (3)

Multiple-Column Format

Notes:

1 See “Single-Column Format”

2 Informix extension

3 See “Multiple-Column Format” on page 2-859

Single-Column Format
Use the single-column format to pair one column with a single expression.

Chapter 2. SQL statements 2-857

Single-Column Format:

�

,

column = expression
(singleton_select)
NULL
collection_var

Element Description Restrictions Syntax

column Column to be updated Cannot be a serial data type “Identifier” on page
5-21

collection_var Host or program variable Must be declared as a collection data type Language specific

expression Returns a value for column Cannot contain aggregate functions “Expression” on
page 4-44

singleton _select Subquery that returns
exactly one row

Returned subquery values must have a 1-to-1
correspondence with column list

“SELECT statement”
on page 2-654

You can use this syntax to update a column that has a ROW data type.

You can include any number of "single column = single expression" terms. The
expression can be an SQL subquery (enclosed between parentheses) that returns a
single row, provided that the corresponding column is of a data type that can store
the value (or the set of values) from the row that the subquery returns.

To specify values of a ROW-type column in a SET clause, see “Updating
ROW-Type Columns” on page 2-860. The following examples illustrate the
single-column format of the SET clause.
UPDATE customer

SET address1 = ’1111 Alder Court’, city = ’Palo Alto’,
zipcode = ’94301’ WHERE customer_num = 103;

UPDATE stock
SET unit_price = unit_price * 1.07;

Using a Subquery to Update a Single Column
You can update the column specified in the SET clause with the value that a
subquery returns.
UPDATE orders

SET ship_charge =
(SELECT SUM(total_price) * .07 FROM items

WHERE orders.order_num = items.order_num)
WHERE orders.order_num = 1001;

If you are updating a supertable in a table hierarchy, the SET clause cannot include
a subquery that references a subtable. If you are updating a subtable in a table
hierarchy, a subquery in the SET clause can reference the supertable if it references
only the supertable. That is, the subquery must use the SELECT ... FROM ONLY
(supertable) syntax.

Updating a Column to NULL
Use the NULL keyword to modify a column value when you use the UPDATE
statement. For example, for a customer whose previous address required two
address lines but now requires only one, you would use the following entry:

2-858 IBM Informix Guide to SQL: Syntax

UPDATE customer
SET address1 = ’123 New Street’,
SET address2 = null,
city = ’Palo Alto’,
zipcode = ’94303’
WHERE customer_num = 134;

Updating the Same Column Twice
You can specify the same column more than once in the SET clause. If you do so,
the column is set to the last value that you specified for the column. In the next
example, the fname column appears twice in the SET clause. For the row where
the customer number is 101, the user sets fname first to gary and then to harry.
After the UPDATE statement executes, the value of fname is harry.
UPDATE customer

SET fname = "gary", fname = "harry"
WHERE customer_num = 101;

Multiple-Column Format
Use the multiple-column format of the SET clause to list multiple columns and set
them equal to corresponding expressions.

Multiple-Column Format:

�

,

(column)
*

= �

�

,

(expression)
,

(singleton_select)
NULL

Element Description Restrictions Syntax

column Name of a column to be
updated

Cannot have a serial or ROW type. The number of
column names must equal the number of values
returned to the right of the = sign.

“Identifier”
on page 5-21

expression Expression that returns a
value for a column

Cannot include aggregate functions “Expression”
on page 4-44

singleton_ select Subquery that returns
exactly one row

Values that the subquery returns must correspond
to columns in the column list

“SELECT
statement” on
page 2-654

SPL function SPL routine that returns one
or more values

Returned values must have a 1-to-1 correspondence
to columns in the column list

“Identifier”
on page 5-21

The multiple-column format of the SET clause offers the following options for
listing a set of columns that you intend to update:
v Explicitly list each column, placing commas between columns and enclosing the

set of columns between parentheses.
v Implicitly list all columns in the table by using an asterisk (*).

You must list each expression explicitly, placing comma (,) separators between
expressions and enclosing the set of expressions between parentheses. The number
of columns must equal the number of values returned by the expression list, unless
the expression list includes an SQL subquery.

The following examples show the multiple-column format of the SET clause:

Chapter 2. SQL statements 2-859

UPDATE customer
SET (fname, lname) = (’John’, ’Doe’) WHERE customer_num = 101;

UPDATE manufact
SET * = (’HNT’, ’Hunter’) WHERE manu_code = ’ANZ’;

Using a Subquery to Update Multiple Column Values
The expression list can include one or more subqueries. Each must return a single
row containing one or more values. The number of columns that the SET clause
explicitly or implicitly specifies must equal the number of values returned by the
expression (or expression list) that follows the equal (=) sign in the
multiple-column SET clause.

The subquery must be enclosed between parentheses. These parentheses are nested
within the parentheses that immediately follow the equal (=) sign. If the
expression list includes multiple subqueries, each subquery must be enclosed
between parentheses, with a comma (,) separating successive subqueries:
UPDATE ... SET ... = ((subqueryA),(subqueryB), ... (subqueryN))

The following examples show the use of subqueries in the SET clause:
UPDATE items

SET (stock_num, manu_code, quantity) =
((SELECT stock_num, manu_code FROM stock

WHERE description = ’baseball’), 2)
WHERE item_num = 1 AND order_num = 1001;

UPDATE table1
SET (col1, col2, col3) =

((SELECT MIN (ship_charge), MAX (ship_charge) FROM orders), ’07/01/2007’)
WHERE col4 = 1001;

If you are updating a supertable in a table hierarchy, the SET clause cannot include
a subquery that references one of its subtables. If you are updating a subtable in a
table hierarchy, a subquery in the SET clause can reference the supertable if it
references only the supertable. That is, the subquery must use the SELECT... FROM
ONLY (supertable) syntax.

Updating ROW-Type Columns
Use the SET clause to update a named or unnamed ROW-type column. For
example, suppose you define the following named ROW type and a table that
contains columns of both named and unnamed ROW types:
CREATE ROW TYPE address_t
(

street CHAR(20), city CHAR(15), state CHAR(2)
);
CREATE TABLE empinfo
(

emp_id INT
name ROW (fname CHAR(20), lname CHAR(20)),
address address_t

);

To update an unnamed ROW type, specify the ROW constructor before the
parenthesized list of field values.

The following statement updates the name column (an unnamed ROW type) of the
empinfo table:
UPDATE empinfo SET name = ROW(’John’,’Williams’) WHERE emp_id =455;

2-860 IBM Informix Guide to SQL: Syntax

To update a named ROW type, specify the ROW constructor before the list (in
parentheses) of field values, and use the cast (::) operator to cast the ROW value
as a named ROW type. The following statement updates the address column (a
named ROW type) of the empinfo table:
UPDATE empinfo

SET address = ROW(’103 Baker St’,’Tracy’,’CA’)::address_t
WHERE emp_id = 3568;

For more information on the syntax for ROW constructors, see “Constructor
Expressions” on page 4-87. See also “Literal Row” on page 4-216.

The ROW-column SET clause can only support literal values for fields. To use an
ESQL/C variable to specify a field value, you must select the ROW data into a row
variable, use host variables for the individual field values, then update the ROW
column with the row variable. For more information, see “Updating a Row
Variable (ESQL/C)” on page 2-867.

You can use Informix ESQL/C host variables to insert non-literal values as:
v An entire row type into a column

Use a row variable as a variable name in the SET clause to update all fields in a
ROW column at one time.

v Individual fields of a ROW type
To insert non-literal values into a ROW-type column, you can first update the
elements in a row variable and then specify the collection variable in the SET
clause of an UPDATE statement.

When you use a row variable in the SET clause, the row variable must contain
values for each field value. For information on how to insert values into a row
variable, see “Updating a Row Variable (ESQL/C)” on page 2-867.

You can use the UPDATE statement to modify only some of the fields in a row:
v Specify the field names with field projection for all fields whose values remain

unchanged.
For example, the following UPDATE statement changes only the street and city
fields of the address column of the empinfo table:
UPDATE empinfo

SET address = ROW(’23 Elm St’, ’Sacramento’, address.state)
WHERE emp_id = 433;

The address.state field remains unchanged.
v Select the row into an ESQL/C row variable and update the desired fields.

For more information, see “Updating a Row Variable (ESQL/C)” on page 2-867.

Updating Collection Columns
You can use the SET clause to update values in a collection column. For more
information, see “Collection Constructors” on page 4-88.

A collection variable can update a collection-type column. With a collection
variable, you can insert one or more individual elements of a collection. For more
information, see “Collection-Derived Table” on page 5-4.

For example, suppose you define the tab1 table as follows:

Chapter 2. SQL statements 2-861

CREATE TABLE tab1
(

int1 INTEGER,
list1 LIST(ROW(a INTEGER, b CHAR(5)) NOT NULL),
dec1 DECIMAL(5,2)

);

The following UPDATE statement updates a row in tab1:
UPDATE tab1

SET list1 = LIST{ROW(2, ’zyxwv’),
ROW(POW(2,6), '=64’),
ROW(ROUND(ROOT(146)), '=12’)},

WHERE int1 = 10;

Collection column list1 in this example has three elements. Each element is an
unnamed ROW type with an INTEGER field and a CHAR(5) field. The first
element includes two literal values: an integer (2) and a quoted string (’zyxwv’).

The second and third elements also use a quoted string to indicate the value for
the second field. They each designate the value for the first field with an
expression, however, rather than with a literal value.

Updating Values in Opaque-Type Columns
Some opaque data types require special processing when they are updated. For
example, if an opaque data type contains spatial or multirepresentational data, it
might provide a choice of how to store the data: inside the internal structure or, for
large objects, in a smart large object.

This processing is accomplished by calling a user-defined support function called
assign(). When you execute UPDATE on a table whose rows contain one of these
opaque types, the database server automatically invokes the assign() function for
the type. This function can make the decision of how to store the data. For more
information about the assign() support function, see IBM Informix User-Defined
Routines and Data Types Developer's Guide.

Data Types in Distributed UPDATE Operations
The UPDATE statement (or any other SQL data-manipulation language statement)
that accesses a database of another Informix instance can reference only the
following data types:
v Built-in data types that are not opaque
v BOOLEAN
v LVARCHAR
v DISTINCT of the built-in data types that are not opaque
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of any DISTINCT data type that appears in this list.

Cross-server distributed UPDATE operations can support these DISTINCT types
only if the DISTINCT types are cast explicitly to built-in types, and all of the
DISTINCT types, their data type hierarchies, and their casts are defined exactly the
same way in each participating database. For additional information about the data
types that Informix supports in cross-server DML operations, see “Data Types in
Cross-Server Transactions” on page 2-665.

2-862 IBM Informix Guide to SQL: Syntax

Cross-database distributed UPDATE operations that access other databases of the
local Informix instance, however, can access the cross-server data types in the
preceding list, and also the following data types:
v Most of the built-in opaque data types, as listed in “Data Types in Cross-Database

Transactions” on page 2-663
v DISTINCT of the built-in types that are referenced in the preceding line
v DISTINCT of any of the data types that are listed in either of the two preceding

lines
v Opaque user-defined data types (UDTs) that are explicitly cast to built-in data

types.

Cross-database UPDATE operations can support these DISTINCT types and
opaque UDTs only if all the opaque UDTs and DISTINCT types are cast explicitly
to built-in types, and all of the opaque UDTs, DISTINCT types, data type
hierarchies, and casts are defined exactly the same way in each of the participating
databases.

Distributed UPDATE transactions cannot access the database of another Informix
instance unless both servers define TCP/IP or IPCSTR connections in their
DBSERVERNAME or DBSERVERALIASES configuration parameters and in the
sqlhosts file or SQLHOSTS registry subkey. The requirement, that both
participating servers support the same type of connection (either TCP/IP or else
IPCSTR), applies to any communication between Informix instances, even if both
reside on the same computer.

WHERE Clause of UPDATE
The WHERE clause lets you specify search criteria to limit the rows to be updated.
If you omit the WHERE clause, every row in the table is updated. For more
information, see the “WHERE Clause of SELECT” on page 2-689.

SQLSTATE Values When Updating an ANSI-Compliant Database
If you update a table in an ANSI-compliant database with an UPDATE statement
that contains the WHERE clause and no rows are found, the database server issues
a warning.

You can detect this warning condition in either of the following ways:
v The GET DIAGNOSTICS statement sets the RETURNED_SQLSTATE field to

the value 02000. In an SQL API application, the SQLSTATE variable contains
this same value.

v In an SQL API application, the sqlca.sqlcode and SQLCODE variables contain
the value 100.

The database server also sets SQLSTATE and SQLCODE to these values if the
UPDATE ... WHERE statement is part of a multistatement PREPARE and the
database server returns no rows.

SQLSTATE Values When Updating a Non-ANSI Database
In a database that is not ANSI compliant, the database server does not return a
warning when it finds no matching rows for the WHERE clause of an UPDATE
statement. The SQLSTATE code is 00000 and the SQLCODE code is zero (0). If the
UPDATE ... WHERE statement is part of a multistatement PREPARE, however, and
no rows are returned, the database server issues a warning, and sets SQLSTATE to
02000 and sets SQLCODE to 100.

Chapter 2. SQL statements 2-863

Client-server communication protocols of Informix, such as SQLI and DRDA,
support SQLSTATE code values. For a list of these codes, and for information
about how to get the message text, see “Using the SQLSTATE Error Status Code”
on page 2-493.

Subqueries in the WHERE Clause of UPDATE
The FROM clause of a subquery in the WHERE clause of the UPDATE statement
can specify as a data source the same table or view that the Table Options clause of
the UPDATE statement specifies. UPDATE operations with subqueries that
reference the same table object are supported only if all of the following conditions
are true:
v The subquery either returns a single row, or else has no correlated column

references.
v The subquery is in the UPDATE statement WHERE clause, using Condition with

Subquery syntax.
v No SPL routine in the subquery can reference the same table that UPDATE is

modifying.

Unless all of these conditions are satisfied, UPDATE statements that include
subqueries that reference the same table or view that the UPDATE statement
modifies return error -360.

The following example updates the stock table by reducing the unit_price value
by 5% for a subset of prices. The WHERE clause specifies which prices to reduce
by applying the IN operator to the rows returned by a subquery that selects only
the rows of the stock table where the unit_price value is greater than 50:
UPDATE stock SET unit_price = unit_price * 0.95

WHERE unit_price IN
(SELECT unit_price FROM stock WHERE unit_price > 50);

This subquery includes only uncorrelated column references, because its only
referenced column is in a table specified in its FROM clause. The requirements
listed above are in effect, because the data source of the subquery is the same
stock table that the Table Options clause of the outer UPDATE statement specifies.

The previous example produces the same results as issuing two separate DML
statements:
v The SELECT statement, to return a temporary table, tmp1, that contains the

same rows from the stock table that the subquery returned.
v The UPDATE statement, to issue a subquery of the temporary table as a

predicate in its WHERE clause to modify every row of the stock table where the
unit_price matches a value in the temporary table:

SELECT unit_price FROM stock WHERE unit_price > 50 INTO TEMP tmp1;
UPDATE stock SET unit_price = unit_price * 0.95

WHERE unit_price IN (SELECT * FROM tmp1);

Here is an example of a more complex UPDATE statement that includes multiple
uncorrelated subqueries in its WHERE clause:
UPDATE t1 SET a = a + 10

WHERE a > ALL (SELECT a FROM t1 WHERE a > 1) AND
a > ANY (SELECT a FROM t1 WHERE a > 10) AND
EXISTS (SELECT a FROM t1 WHERE a > 5);;

If an enabled Select trigger is defined on a table that is the data source of a
subquery in the WHERE clause of an UPDATE statement that modifies the same

2-864 IBM Informix Guide to SQL: Syntax

table, executing that subquery within the UPDATE statement does not activate the
Select trigger. Consider the following program fragment:
CREATE TRIGGER selt11 SELECT ON t1 BEFORE

(UPDATE d1
SET (c1, c2, c3, c4, c5) =

(c1 + 1, c2 + 1, c3 + 1, c4 + 1, c5 + 1));

UPDATE t2 SET c1 = c1 +1
WHERE c1 IN

(SELECT t1.c1 from t1 WHERE t1.c1 > 10);

In the example above, trigger selt11 is not activated as part of the UPDATE
operation on table t2.

A subquery in the WHERE clause of the UPDATE statement can include the
UNION or the UNION ALL operator, as in the following example.
UPDATE t1 SET a = a + 10 WHERE a in (SELECT a FROM t1 WHERE a > 1

UNION SELECT a FROM t1, t2 WHERE a < b);

If the table that the outer UPDATE statement modifies a typed table within a table
hierarchy, Informix supports all of the following operations that use valid
subqueries in the WHERE clause of UPDATE:
v UPDATE on target parent table with subquery (SELECT from parent table)
v UPDATE on target parent table with subquery (SELECT from child table)
v UPDATE on target child table with subquery (SELECT from parent table)
v UPDATE on target child table with subquery (SELECT from child table).

The following program fragment illustrates UPDATE operations with subqueries
on typed tables:
CREATE ROW TYPE r1 (c1 INT, c2 INT);
CREATE ROW TYPE r2 UNDER r1;
CREATE TABLE t1 OF TYPE r1; -- parent table
CREATE TABLE t2 OF TYPE r2 UNDER t1; -- child table

UPDATE t1 SET c1 = c1 + 1 WHERE c1 IN
(SELECT t1.c1 FROM t1 WHERE t1.c1 > 10);

UPDATE t1 SET c1 = c1 + 1 WHERE c1 IN
(SELECT t2.c1 FROM t2 WHERE t2.c1 > 10);

UPDATE t2 SET c1 = c1 + 1 WHERE c1 IN
(SELECT t2.c1 FROM t2 WHERE t2.c1 > 10);

UPDATE t2 SET c1 = c1 + 1 WHERE c1 IN
(SELECT t1.c1 FROM t1 WHERE t1.c1 > 10);

See the “Condition with Subquery” on page 4-18 topic for more information about
how to use subqueries that return multiple rows as predicates in the WHERE
clause of the UPDATE statement.

Using the WHERE CURRENT OF Clause (ESQL/C, SPL)
Use the WHERE CURRENT OF clause to update the current row of a cursor that
was declared FOR UPDATE, or to update the current element of a Collection
cursor.

Here the cursor name cannot be specified as a host variable.

Chapter 2. SQL statements 2-865

The current row is the most recently fetched row. Because the UPDATE statement
does not advance the cursor to the next row, the current row position within the
active set of the cursor is not changed by this operation.

For table hierarchies of Informix, you cannot use this clause if you are selecting
from only one table in a table hierarchy. That is, you cannot use this option if you
use the ONLY keyword.

In ESQL/C routines, to include the WHERE CURRENT OF keywords, you must
have previously used the DECLARE statement to define the cursor with the FOR
UPDATE option. If the DECLARE statement that created the cursor specified one
or more columns in the FOR UPDATE clause, you are restricted to updating only
those columns in a subsequent UPDATE ... WHERE CURRENT OF statement. The
advantage to specifying columns in the FOR UPDATE clause of a DECLARE
statement is speed. The database server can usually perform updates more quickly
if columns are specified in the DECLARE statement.

In SPL routines, you can specify a cursor after the WHERE CURRENT OF
keywords in an UPDATE statement only if you declared the cursor_id in the
FOREACH statement of SPL. You cannot use the DECLARE statement in an SPL
routine to declare the name of a dynamic cursor and to associate that cursor with
the statement identifier of a prepared object that the PREPARE statement has
declared in the same SPL routine.

Note: An Update cursor can perform updates that are not possible with the
UPDATE statement.

The following Informix ESQL/C example illustrates the CURRENT OF form of the
WHERE clause. In this example, updates are performed on a range of customers
who receive 10-percent discounts (assume that a new column, discount, is added
to the customer table). The UPDATE statement is prepared outside the WHILE
loop to ensure that parsing is done only once.
char answer [1] = ’y’;
EXEC SQL BEGIN DECLARE SECTION;

char fname[32],lname[32];
int low,high;

EXEC SQL END DECLARE SECTION;
main()
{

EXEC SQL connect to ’stores_demo’;
EXEC SQL prepare sel_stmt from

’select fname, lname from customer
where cust_num between ? and ? for update’;

EXEC SQL declare x cursor for sel_stmt;
printf("\nEnter lower limit customer number: ");
scanf("%d", &low);
printf("\nEnter upper limit customer number: ");
scanf("%d", &high);
EXEC SQL open x using :low, :high;
EXEC SQL prepare u from

’update customer set discount = 0.1 where current of x’;
while (1)

{
EXEC SQL fetch x into :fname, :lname;
if (SQLCODE == SQLNOTFOUND) break;
}

printf("\nUpdate %.10s %.10s (y/n)?", fname, lname);

2-866 IBM Informix Guide to SQL: Syntax

if (answer = getch() == ’y’)
EXEC SQL execute u;

EXEC SQL close x;
}

Updating a Row Variable (ESQL/C)
The UPDATE statement with the Collection-Derived Table segment allows you to
update fields in a row variable. The Collection-Derived Table segment identifies
the row variable in which to update the fields. For more information, see
“Collection-Derived Table” on page 5-4.

To update fields
1. Create a row variable in your Informix ESQL/C program.
2. Optionally, select a ROW-type column into the row variable with the SELECT

statement (without the Collection-Derived Table segment).
3. Update fields of the row variable with the UPDATE statement and the

Collection-Derived Table segment.
4. After the row variable contains the correct fields, you then use the UPDATE or

INSERT statement on a table or view name to save the row variable in the
ROW column (named or unnamed).

The UPDATE statement and the Collection-Derived Table segment allow you to
update a field or a group of fields in the row variable. Specify the new field values
in the SET clause. For example, the following UPDATE changes the x and y fields
in the myrect Informix ESQL/C row variable:
EXEC SQL BEGIN DECLARE SECTION;

row (x int, y int, length float, width float) myrect;
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL select into :myrect from rectangles where area = 64;
EXEC SQL update table(:myrect) set x=3, y=4;

Suppose that after the SELECT statement, the myrect2 variable has the values x=0,
y=0, length=8, and width=8. After the UPDATE statement, the myrect2 variable has
field values of x=3, y=4, length=8, and width=8. You cannot use a row variable in
the Collection-Derived Table segment of an INSERT statement.

You can, however, use the UPDATE statement and the Collection-Derived Table
segment to insert new field values into a row host variable, if you specify a value
for every field in the row.

For example, the following code fragment inserts new field values into the row
variable myrect and then inserts this row variable into the database:
EXEC SQL update table(:myrect)

set x=3, y=4, length=12, width=6;
EXEC SQL insert into rectangles

values (72, :myrect);

If the row variable is an untyped variable, you must use a SELECT statement before
the UPDATE so that Informix ESQL/C can determine the data types of the fields.
An UPDATE of fields in a row variable cannot include a WHERE clause.

The row variable can store the field values of the row, but it has no intrinsic
connection with a database column. Once the row variable contains the correct
field values, you must then save the variable into the ROW column with one of the
following SQL statements:

Chapter 2. SQL statements 2-867

v To update the ROW column in the table with contents of the row variable, use
an UPDATE statement on a table or view name and specify the row variable in
the SET clause. (For more information, see “Updating ROW-Type Columns” on
page 2-860.)

v To insert a row into a column, use the INSERT statement on a table or view
name and specify the row variable in the VALUES clause. (For more
information, see “Inserting Values into ROW-Type Columns” on page 2-553.)

For examples of SPL ROW variables, see the IBM Informix Guide to SQL: Tutorial.
For more information on using Informix ESQL/C row variables, see the discussion
of complex data types in the IBM Informix ESQL/C Programmer's Manual.

UPDATE STATISTICS statement
Use the UPDATE STATISTICS statement to update system catalog information that
the query optimizer uses for operations on objects in the local database. The
UPDATE STATISTICS statement is an extension to the ANSI/ISO standard for
SQL.

Syntax

�� UPDATE STATISTICS �

�
LOW

Table and Column Scope
DROP DISTRIBUTIONS FORCE

ONLY AUTO
MEDIUM Table and Column Scope
HIGH (1)

Resolution Clause
(2)

Routine Statistics

��

Table and Column Scope:

�

�

FOR TABLE
table

'owner' . synonym ,

(column)
ONLY (table)

'owner' . synonym ,

(column)

Notes:

1 See “Resolution Clause” on page 2-877

2 See “Routine Statistics” on page 2-880

Element Description Restrictions Syntax

column A column in table or synonym Must exist. With MEDIUM or HIGH keywords, the
column cannot be of BYTE or TEXT data type

“Identifier” on
page 5-21

2-868 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

owner The owner of table or
synonym

Must be the owner of table or synonym “Owner name” on
page 5-49

synonym A synonym for a table whose
statistics are to be updated

The synonym and the table to which it points must
exist in the current database

“Identifier” on
page 5-21

table Table for which statistics are
to be updated

Must exist in the current database or be a
temporary table created in the current session

“Identifier” on
page 5-21

Usage

Use the UPDATE STATISTICS statement to perform any of the following tasks:
v Calculate the distribution of column values for tables and table fragments.
v Update system catalog tables that the database server uses to optimize queries.
v Force reoptimization of SPL routines.
v Convert existing indexes when you upgrade the database server.

Run the UPDATE STATISTICS statement in a transaction that does not contain any
other statements.

If you specify no table, no routine, and no Resolution clause, the default scope of
the UPDATE STATISTICS statement is all tables and all routines in the current
database. (See also the topic “Scope of UPDATE STATISTICS.”)

The UPDATE STATISTICS statement is not supported on secondary servers within
a high-availability cluster.

Restriction: You cannot update the statistics for a table or the query plan of a
UDR in any database except the current database. That is, the database server
ignores remote database objects when executing the UPDATE STATISTICS
statement.
Related concepts:
“Overloading the Name of a Function” on page 2-188
“USTLOW_SAMPLE environment option” on page 2-785
“Complete-Connection Level Settings and Output Examples” on page 2-792
Related reference:
“SET OPTIMIZATION statement” on page 2-807

Scope of UPDATE STATISTICS
The scope of UPDATE STATISTICS is restricted by whatever tables, columns, or
SPL routines follow the FOR TABLE keywords or the FOR PROCEDURE
keywords.
v If you include no FOR PROCEDURE specification, no Table and Column Scope

clause, and no Resolution clause, then statistics are updated for every table and
SPL routine in the current database, including the system catalog tables.

v If you use the FOR TABLE keywords without also specifying the name or
synonym of a table, the database server recalculates distributions on all of the
tables in the current database, and on all of the temporary tables in your session.
(UPDATE STATISTICS has no effect, however, on objects defined by the
CREATE EXTERNAL TABLE statement.)

Chapter 2. SQL statements 2-869

v If you specify a table after the FOR TABLE keywords without also specifying a
list of columns, the database server recalculates distributions on all of the
columns of the specified table.

v If you include the FOR PROCEDURE keywords, but do not specify the name of
any SPL routine, the database server reoptimizes the query plans of all SPL
routines in the current database.

Updating Statistics for Tables
Although a change to the database might make information in the systables,
syscolumns, sysindices, sysfragments, sysdistrib, and sysfragdist system catalog
tables obsolete, the database server does not automatically update those tables after
most SQL statements. Issue an appropriate UPDATE STATISTICS statement in the
following situations to ensure that the stored distribution information reflects the
state of the database:
v You perform extensive modifications to a table.
v An application changes the distribution of column values.

The UPDATE STATISTICS statement refreshes the data distribution statistics that
the database server uses to optimize queries on the modified objects.

v You upgrade a database for use with a newer database server.
The UPDATE STATISTICS statement converts the old indexes to conform to the
newer database server index format and implicitly drops the old indexes.
You can convert the indexes table by table or for the entire database at one time.
Follow the conversion guidelines in the IBM Informix Migration Guide.

If your application makes many modifications to the data in a particular table,
update the system catalog for that table routinely with UPDATE STATISTICS to
improve query efficiency. The term many modifications is relative to the resolution of
the distributions. If the data modifications have little effect on the distribution of
column values, you do not need to execute UPDATE STATISTICS.

Distribution Statistics in NLSCASE INSENSITIVE databases

In a database created with the NLSCASE INSENSITIVE property, database server
operations on columns and expressions of NCHAR or NVARCHAR data types
make no distinction between upper case and lower case letters. In data sets that
include strings of the same sequence of letters but with case variants, generating
the data distributions of NCHAR and NVARCHAR columns requires fewer bins
than in a case-sensitive database containing the same records. The database server
identifies all the case-variant values as only a single distinct value, and uses this
result when it generates the column, index, or fragment-level statistics.

For more information about NLSCASE INSENSITIVE databases, see “Duplicate
rows in NLSCASE INSENSITIVE databases” on page 2-663, “Specifying NLSCASE
case sensitivity” on page 2-153, and “NCHAR and NVARCHAR expressions in
case-insensitive databases” on page 4-28.
Related concepts:

Automatic statistics updating (Performance Guide)

Automated Table Statistics Maintenance
To simplify the complex and repetitive task of the DBA in maintaining current
table statistics from which the query plan optimizer can design efficient query
plans, Informix provides a table statistics maintenance system, called Auto Update
Statistics (AUS). This can automate the identification of tables whose statistics are

2-870 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_742.htm#ids_prf_742.dita

stale, and can automate the construction and execution of the corresponding
UPDATE STATISTICS statements to recalculate their column distributions. The
AUS system is provided with built-in criteria for when table statistics should be
updated, but the DBA can modify these criteria to reflect current requirements and
workloads.

For more information, see the description of the Auto Update Statistics
maintenance system in the IBM Informix Performance Guide. See also the description
of the Scheduler, which the DBA can use to specify the policies, resources, and
frequency with which the AUS system recalculates table statistics, in the IBM
Informix Administrator's Guide.

The AUS maintenance system for table statistics is also available in the IBM
OpenAdmin Tool (OAT) for Informix. Refer to the OAT online help for detailed
information on how to configure the AUS maintenance system to provide current
table statistics automatically.

Using the FOR TABLE ONLY Keywords
Use the FOR TABLE ONLY keywords to collect data for a single table within a
hierarchy of typed tables. If you do not include the ONLY keyword immediately
after FOR TABLE when the specified table has subtables, Informix creates
distributions for that table and also for every subtable under it in the hierarchy.

For example, suppose your database has the typed table hierarchy that appears in
Figure 2-3, which shows a supertable named employee that has a subtable named
sales_rep. The sales_rep table, in turn, has a subtable named us_sales_rep.

When the following statement executes, the database server generates statistics on
both the sales_rep and us_sales_rep tables:
UPDATE STATISTICS FOR TABLE sales_rep;

In contrast, the following example generates statistical data for each column in
table sales_rep but does not act on tables employee or us_sales_rep:
UPDATE STATISTICS FOR TABLE ONLY (sales_rep);

If you specify FOR TABLE ONLY, as in this example, the identifier of the table (or
owner.table) must be enclosed between parentheses.

Because neither of the previous examples specified the level at which to update the
statistical data, the database server uses the LOW mode by default.

us_sales_rep

employee

sales_rep

Table Hierarchy

Figure 2-3. Example of Typed Table Hierarchy

Chapter 2. SQL statements 2-871

Updating Statistics for Columns
The Table and Column Scope specification can also include the names of one or
more columns for which you want statistical distributions calculated.

In the following example, this statement calculates the distributions for three
columns of the orders table:
UPDATE STATISTICS FOR TABLE orders (order_num, customer_num, ship_date);

If you include no column name in the FOR TABLE clause, then distributions are
calculated for all columns of the specified table, using the LOW, MEDIUM, or
HIGH mode and the number of bins implied by the specified or default Resolution
clause percentage (for MEDIUM or HIGH mode) that you request.

Distributions are not calculated for BYTE or TEXT columns. See also “Updating
Statistics for Columns of User-Defined Types” for UPDATE STATISTICS restrictions
on columns that store UDTs.

Examining Index Pages
In Informix, when you execute the UPDATE STATISTICS statement in any mode,
the database server reads through index pages to:
v Compute statistics for the query optimizer
v Locate pages that have the delete flag marked as 1

If pages are found with the delete flag marked as 1, the corresponding keys are
removed from the B-tree cleaner list.

This operation is particularly useful if a system failure causes the B-tree cleaner list
(which exists in shared memory) to be lost. To remove the B-tree items that have
been marked as deleted but are not yet removed from the B-tree, run the UPDATE
STATISTICS statement. For information on the B-tree cleaner list, see your IBM
Informix Administrator's Guide.

Updating Statistics for Columns of User-Defined Types
To collect statistics for a column of a user-defined data type, you must specify
either MEDIUM or HIGH mode. The UPDATE STATISTICS statement does not
collect values for the colmin and colmax columns of the syscolumns system
catalog table for columns that hold user-defined data types.

To drop statistics for a column that holds one of these data types, you must
execute UPDATE STATISTICS in LOW mode with the DROP DISTRIBUTIONS
option. When you use this option, the database server deletes the row in the
sysdistrib system catalog table that corresponds to the tableid and colno values
for the column. In addition, the database server removes any large objects that
might have been created to store statistics for the specified opaque column.

Requirements for Statistics on Opaque Columns
UPDATE STATISTICS can collect statistics for columns of user-defined opaque data
types only if support routines for statcollect(), statprint(), and the selectivity
functions are defined for the UDTs. You must also hold Usage privilege on these
routines.

In some cases, UPDATE STATISTICS also requires an sbspace as specified by the
SYSSBSPACENAME configuration parameter. For information about how to
provide statistical data for a column whose data type is a UDT, refer to the IBM

2-872 IBM Informix Guide to SQL: Syntax

Informix DataBlade API Programmer's Guide. For information about
SYSSBSPACENAME, refer to your IBM Informix Administrator's Reference.
Related reference:

SYSSBSPACENAME configuration parameter (Administrator's Reference)

Using the FORCE and AUTO keywords
You can optionally use either the FORCE keyword or the AUTO keyword to
control the mode of the UPDATE STATISTICS statement when it updates the
current distribution statistics of tables and columns in the system catalog. These
keywords affect only table and fragment statistics, and are not valid in operations
on routine statistics.

If you omit both the FORCE keyword and the AUTO keyword, the effect of the
UPDATE STATISTICS statement on table and fragment distribution statistics is
determined by the explicit or default setting of the AUTO_STAT_MODE
configuration parameter, unless the AUTO_STAT_MODE session environment
variable is set to override that configuration parameter for the current session.

Specifying either of these keywords affects only the current UPDATE STATISTICS
operation. The database server issues an exception if you attempt to include both
the FORCE and the AUTO keywords in the same UPDATE STATISTICS statement.

Important: The statistics that the database server collects might require an sbspace
for storage. Create an sbspace by running the onspaces -c -S command and set the
configuration parameter SYSSBSPACENAME to the sbspace name. If the
SYSSBSPACENAME configuration parameter is not set, the database server might
not be able to store the specified statistics, so that the UPDATE STATISTICS
statement fails with error -9814, "Invalid default sbspace name".

The FORCE keyword

The FORCE keyword refreshes the statistics for all tables and columns within the
specified scope. If automatic mode for the UPDATE STATISTICS statement is
enabled, the FORCE keyword overrides automatic mode, so that values of the
STATCHANGE attributes of tables and fragments within the scope of the FOR
TABLE specification are ignored, as if the AUTO_STAT_MODE setting were OFF
for the current UPDATE STATISTICS FORCE operation.

The following statement specifies the FORCE keyword:

UPDATE STATISTICS FORCE;

This statement instructs the database server to take the following actions:
v Recalculate the distribution statistics for every table in the database
v Reoptimize every user-defined routine
v Store the results in the system catalog

Including the FORCE keyword emulates the previous UPDATE STATISTICS
behavior of Informix database servers before version 11.70.

The AUTO keyword

The AUTO keyword causes the database server to run the UPDATE STATISTICS
statement in automatic mode, but only for tables and fragments whose statistics

Chapter 2. SQL statements 2-873

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0174.htm#ids_adr_0174

are missing or stale. The distribution statistics are not refreshed for any tables or
fragments whose STATCHANGE value is below the specified threshold.

The following statement specifies the AUTO keyword:

UPDATE STATISTICS AUTO;

This statement instructs the database server to take the following actions:
v Recalculate the missing or stale data distribution statistics for every table in the

database
v Reoptimize every user-defined routine
v Store the results in the system catalog

When sufficiently accurate existing statistics are already available to the query
optimizer for some tables or table fragments, this option avoids unnecessary
recalculations. In that case, an UPDATE STATISTICS AUTO operation requires less
time, without detriment to query performance, than a corresponding UPDATE
STATISTICS FORCE operation.

Using the LOW mode option
Use the LOW option of the UPDATE STATISTICS statement to generate and
update some of the relevant statistical data regarding table, row, and page count
statistics in the systables system catalog table. If you do not specify any mode, the
LOW mode is the default.

In Informix, the LOW mode also generates and updates some index and column
statistics for specified columns in the syscolumns and the sysindexes system
catalog tables.

The LOW mode generates the least amount of information about the column. If
you want the UPDATE STATISTICS statement to do minimal work, specify a
column that is not part of an index. The colmax and colmin values in syscolumns
are not updated unless there is an index on the column.

The following example updates statistics on the customer_num column of the
customer table:
UPDATE STATISTICS LOW FOR TABLE customer (customer_num);

Because the LOW mode option does not update data in the sysdistrib system
catalog table, all distributions associated with the customer table remain intact,
even those that already exist on the customer_num column.

You can set the USTLOW_SAMPLE configuration parameter or the
USTLOW_SAMPLE option of the SET ENVIRONMENT statement to enable
sampling during the gathering of index statistics for UPDATE STATISTICS
operations in LOW mode.
Related concepts:
“USTLOW_SAMPLE environment option” on page 2-785
“Performance considerations of UPDATE STATISTICS statements” on page 2-883

Data sampling during update statistics operations (Performance Guide)
Related reference:

USTLOW_SAMPLE configuration parameter (Administrator's Reference)

2-874 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_777.htm#ids_prf_777
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1143.htm#ids_adr_1143

Using the DROP DISTRIBUTIONS Option
Use the DROP DISTRIBUTIONS option to force the removal of distribution
information from the sysdistrib system catalog table.

When you specify the DROP DISTRIBUTIONS option, the database server removes
the existing distribution data for the column or columns that you specify. If you do
not specify any columns, the database server removes all the distribution data for
that table.

You must have the DBA privilege or be owner of the table to use this option.

The following example shows how to remove distributions for the customer_num
column in the customer table:
UPDATE STATISTICS LOW

FOR TABLE customer (customer_num) DROP DISTRIBUTIONS;

As the example shows, you drop the distribution data at the same time you update
the statistical data that the LOW mode option generates.

Using the DROP DISTRIBUTIONS ONLY Option
Use the DROP DISTRIBUTIONS ONLY option to remove distribution information
from the sysdistrib table and update the systables.version column in the system
catalog for those tables whose distributions were dropped, without gathering any
LOW mode table and index statistics.

If you specify both the DROP DISTRIBUTIONS ONLY option and the FOR TABLE
clause, Informix removes the existing distribution data for the set of columns of the
table that the FOR TABLE clause specifies (or for all columns, if you provide no
column specification), but does not gather any LOW mode table and index
statistics.

You must have the DBA privilege or be owner of the table to use this option.

The following example removes distributions for the customer_num column in the
customer table:
UPDATE STATISTICS LOW

FOR TABLE customer (customer_num) DROP DISTRIBUTIONS ONLY;

This drops the customer.customer_num distribution data without updating the
statistical information that the LOW mode option generates when the ONLY
keyword does not follow the DROP DISTRIBUTIONS keywords. This example
deletes from the system catalog any row describing customer.customer_num from
the sysdistrib table, and updates the version number for customer in the systables
table. None of the other LOW mode updates are performed on systables, so the
nrow and npused column values are unchanged by this example, and the
syscolumns, sysfragments and sysindexes tables of the system catalog are not
updated. The LOW keyword has no effect in this example, but the DROP
DISTRIBUTIONS ONLY option is not available in MEDIUM or HIGH mode.

Because it specifies no FOR TABLE clause, the next example drops all rows from
the sysdistrib table and updates the systables.version column in the system
catalog for all tables in the database.
UPDATE STATISTICS DROP DISTRIBUTIONS ONLY;

Chapter 2. SQL statements 2-875

Using the MEDIUM mode option
Use the MEDIUM mode option to update the same statistics that you can perform
with the LOW mode option,and also generate statistics about the distribution of
data values for each specified column.

After UPDATE STATISTICS MEDIUM has been run on a table, the query optimizer
typically chooses a more efficient execution plan, compared to the same SELECT
statement when only LOW mode column distribution statistics are available for the
table. column

The database server places distribution information in the sysdistrib system
catalog table, and in other system catalog tables for fragmented tables that use
distributed storage.

If you use the MEDIUM mode option, the database server scans tables at least
once and takes longer to execute on a given table than the LOW mode option.

When you use the MEDIUM mode option, the data distributions are obtained by
sampling a percentage of data rows, using a statistical confidence level that you
specify, or else a default confidence level of 95 percent. You can also specify an
explicit minimum sampling size in the Resolution clause. Because the MEDIUM
sample size is usually much smaller than the actual number of rows, this mode
executes more quickly than the HIGH mode.

In distributions obtained by sampling, the results can vary, because different
samples of rows can have different sampling errors. If the results vary significantly,
you can use the Resolution clause to increase the sampling size, or to lower the
percent, or to increase the confidence level to obtain more consistent results.

If the Resolution clause specifies no percent of sampled rows per bin, the default
average percentage of the sample in each bin is 2.5, which divides the range into
approximately 40 intervals. If you do not specify a value for confidence level, the
default level is 0.95. This value can be roughly interpreted to mean that 95 times
out of 100, the difference between the MEDIUM estimate and the exact value from
HIGH distributions is not statistically significant.

You must have the DBA privilege or be the owner of the table to create MEDIUM
mode distributions. For more information on the MEDIUM and HIGH mode
options, see the “Resolution Clause” on page 2-877.
Related concepts:
“Performance considerations of UPDATE STATISTICS statements” on page 2-883

Using the HIGH mode option
Use the HIGH mode option to update the same statistics that you can calculate
with the MEDIUM mode option. The difference between UPDATE STATISTICS
HIGH and UPDATE STATISTICS MEDIUM is the number of rows sampled.

UPDATE STATISTICS HIGH scans the entire table, while UPDATE STATISTICS
MEDIUM samples only a subset of rows, based on the confidence and resolution
used by the UPDATE STATISTICS statement.

2-876 IBM Informix Guide to SQL: Syntax

For indexed tables that already have MEDIUM mode distribution statistics
available for every column, the query optimizer typically chooses more efficient
execution plans after you run UPDATE STATISTICS HIGH on every column that is
part of an index key.

The database server places distribution information in the sysdistrib system
catalog table, and in other system catalog tables for fragmented tables that use
distributed storage.

If you do not specify a Resolution clause, the default percentage of data distributed
to every bin is 0.5, a value that partitions the range of values for each column into
approximately 200 intervals.

The constructed distribution is exact. Because more information is gathered, this
mode executes more slowly than LOW or MEDIUM modes. If you use the HIGH
mode option of UPDATE STATISTICS, the database server can take considerable
time to gather the information across the database, particularly a database with
large tables. The HIGH mode might scan each table several times for each column.
To minimize processing time, specify a table name and column names within that
table, rather than accept the default scope of all tables.

You must have the DBA privilege or be the owner of the table to create HIGH
mode distributions. For more information on the MEDIUM and HIGH mode
options, see the topic “Resolution Clause.”
Related concepts:
“Performance considerations of UPDATE STATISTICS statements” on page 2-883

Resolution Clause
Use the Resolution clause in MEDIUM or HIGH mode to adjust the size of the
distribution bins, and to avoid calculating data on indexes.

In MEDIUM mode only, you can also use the Resolution clause to specify a lower
limit to the sampling size and to adjust the confidence level.

Resolution Clause:

Resolution Clause for MEDIUM Mode
Resolution Clause for HIGH Mode

Resolution Clause for MEDIUM Mode:

SAMPLING SIZE min
�

�
RESOLUTION percent DISTRIBUTIONS ONLY

confidence

Resolution Clause for HIGH Mode:

RESOLUTION percent DISTRIBUTIONS ONLY

Chapter 2. SQL statements 2-877

Element Description Restrictions Syntax

confidence Estimated likelihood that sampling in MEDIUM
mode produces results equivalent to the exact
HIGH mode. Default level is 0.95.

Must be within the range
from 0.80 (minimum) to 0.99
(maximum)

“Literal
Number”
on page
4-215

percent Average percentage of the sample in each
distribution bin. Default is 2.5 for MEDIUM and
0.5 for HIGH.

Minimum value is 1/nrows,
for nrows the number of rows
in the table

“Literal
Number”
on page
4-215

min The minimum integer number of randomly
selected rows on which to generate the data
distributions

Must be greater than zero but
cannot exceed nrows

“Literal
Number”
on page
4-215

A distribution is a mapping of the data in a column into a set of column values,
ordered by magnitude or by collation. The range of these sample values is
partitioned into disjunct intervals, called bins, each containing an approximately
equal portion of the sample of column values. For example, if one bin holds 2
percent of the data, approximately 50 such intervals hold the entire sample.

Some statistical texts call these bins equivalence categories. Each contains a disjunct
subset of the range of the data values that are sampled from the column.

If you include the RESOLUTION keyword, it must be followed by a literal
number, specifying the percent of values in each bin. In MEDIUM mode, it can be
followed by either one or two literal numbers, with the optional second number
specifying the confidence level, as in this example:
UPDATE STATISTICS MEDIUM FOR TABLE orders

RESOLUTION 4 0.90 DISTRIBUTIONS ONLY;

This specifies 4% of the data per bin, implying approximately 25 bins, and a
confidence level of 90%, and no examination of index data. If the 0.90 value were
omitted, then the default level of confidence would have been in effect. If the
RESOLUTION keyword and both numeric values were omitted, then default
values for percent (2.5%) and for confidence (0.95) would be used.

The query optimizer estimates the selectivity of a WHERE clause by examining, for
each column included in the WHERE clause, the proportional occurrence of the
data values contained in the column.

You cannot create distributions for BYTE or TEXT columns. If you include a BYTE
or TEXT column in an UPDATE STATISTICS statement that specifies MEDIUM or
HIGH distributions, no distributions are created for those columns. Distributions
are constructed for other columns in the list, however, and the statement does not
return an error.

Columns of the VARCHAR data type do not use overflow bins, even when
multiple bins are being used for duplicate values.

You can use the first two parameters of the DBUPSPACE environment variable to
constrain the disk space and memory resources that the UPDATE STATISTICS
statement can use to sort data when it constructs column distributions. These
settings affect performance, because they determine how many times the database
server scans the specified table to construct each distribution. (A third
DBUPSPACE parameter can control whether UPDATE STATISTICS sorts with

2-878 IBM Informix Guide to SQL: Syntax

indexes when calculating column distributions, and whether the explain output
file stores the plan by which the column distributions are calculated.)
Related concepts:
“Default name and location of the explain output file on UNIX” on page 2-788
“Default name and location of the output file on Windows” on page 2-789

Specifying the SAMPLING SIZE
In MEDIUM mode, you can optionally use the SAMPLING SIZE keywords to
specify the minimum number of rows to sample for calculating column
distribution statistics. If the Resolution clause omits the RESOLUTION keyword
and specifies no confidence level and no percent value, then the number of rows that
Informix samples will be the larger of the following two values:
v The min value that you specify immediately after the SAMPLING SIZE

keywords
v The sampling size that is required for the default percent of rows in each bin

(2.5%) and for the minimum confidence level (0.80).

If a sampling size is specified in a Resolution clause that includes explicit values
for both the average percent of sampled rows per bin and for the confidence level,
then the number of sampled rows will be the larger of these two values:
v The min value that you specify immediately after the SAMPLING SIZE

keywords
v The sampling size that is required for the specified percent of rows and for the

specified confidence level.

If a sampling size is specified in a Resolution clause that includes an average
percentage value but sets no confidence level, then the minimum confidence value of
0.80 is used to calculate the actual sampling size for Informix to use if the specified
size is smaller.

For example, the following statement calculates statistics for two columns of the
customer table, without updating index information. At least 200 rows will be
sampled, but the actual size of the sample might be larger than 200 if more rows
are required to provide the default 0.80 confidence level for a sample distribution
that uses approximately 50 equivalence categories, with an average percentage of
2% of the sampled values in each bin.
UPDATE STATISTICS MEDIUM FOR TABLE customer (city, state)

SAMPLING SIZE 200 RESOLUTION 2 DISTRIBUTIONS ONLY;

Whether or not you include an explicit SAMPLING SIZE specification in the
Resolution clause, Informix records in the system catalog the actual sampling size
(as a percentage of the total number of rows in the table) at the time of MEDIUM
mode UPDATE STATISTICS creation.

Using the DISTRIBUTIONS ONLY Option to Suppress Index
Information
In Informix, when you specify the DISTRIBUTIONS ONLY option, you do not
update index information. This option does not affect existing index information.

Use this option to avoid the examination of index information that can consume
considerable processing time.

This option does not affect the recalculation of information on tables, such as the
number of pages used, the number of rows, and fragment information. UPDATE

Chapter 2. SQL statements 2-879

STATISTICS needs this information to construct accurate column distributions and
requires little time and system resources to collect it.

Do not confuse this DISTRIBUTIONS ONLY option with the DROP
DISTRIBUTIONS ONLY option of LOW mode, whose syntax and semantics are not
supported in MEDIUM or HIGH mode. For information on how to suppress the
collection of column distributions, see “Using the DROP DISTRIBUTIONS ONLY
Option” on page 2-875.

Using DBUPSPACE Settings to Suppress Index Information
You can also prevent indexes from being used by UPDATE STATISTICS operations
in sorting rows by setting the third parameter of the DBUPSPACE environment
variable to a value of 1. Refer to Chapter 3 of the IBM Informix Guide to SQL:
Reference for information about the DBSPACETEMP and DBUPSPACE
environment variables, which can restrict the system resources that are available
for UPDATE STATISTICS operations. (The database server uses the storage
locations that DBSPACETEMP specifies only when you use the HIGH option of
UPDATE STATISTICS.)
Related concepts:

Environment variables in Informix products (SQL Reference)

Output for UPDATE STATISTICS from the SET EXPLAIN
Statement
The SET EXPLAIN statement can display the plan that UPDATE STATISTICS uses
to generate column distributions. The following output is based on the default
DBUPSPACE value of 15 megabytes of sort memory, which in this example
requires two passes to sort the 21.9 megabytes of data:
UPDATE STATISTICS:
==================

Table: zelaine.t1
Mode: HIGH
Number of Bins: 267 Bin size 2505
Sort data 21.9 MB Sort memory granted 15.0 MB
Estimated number of table scans 2
PASS #1 b
PASS #2 a
Scan 9 Sort 1 Build 2 Insert 0 Close 0 Total 12
Completed pass 1 in 0 minutes 12 seconds
Scan 5 Sort 2 Build 1 Insert 0 Close 0 Total 8
Completed pass 2 in 0 minutes 8 seconds

Routine Statistics
Before the database server executes a new SPL routine for the first time, it
optimizes the statements in the SPL routine. Optimization makes the code depend
on the structure of tables referenced by the routine. If a DDL operation modifies
the schema of a referenced table after the routine is optimized, but before it is
executed, the routine can fail with an error.

This failure typically does not occur, however, if an index is added or dropped
while automatic recompilation is enabled for routines referencing tables that
ALTER TABLE, CREATE INDEX, or DROP INDEX operations have modified. This
is the default behavior of Informix. For more information about enabling or
disabling automatic reoptimization after changes to the schema of a table, see the
description of the IFX_AUTO_REPREPARE option to the SET ENVIRONMENT
statement.

2-880 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_199.htm#ids_sqr_199

When the AUTO_REPREPARE configuration parameter and the
IFX_AUTO_REPREPARE session environment variable are set to disable
recompilation of SPL routines that reference tables whose schema has been
modified, however, adding or dropping an index to a table that an SPL routine
references indirectly can cause the routine to return error -710. To avoid this error
after DDL operations, or to reoptimize SPL routines after table distributions might
have been modified by DML operations, use the Routine Statistics segment of
UPDATE STATISTICS to update the execution plans of any SPL routines that
reference the table.

Routine Statistics:

FOR PROCEDURE
FUNCTION routine
ROUTINE ()

(1)
Routine Parameter List

(2)
SPECIFIC PROCEDURE Specific Name

FUNCTION
ROUTINE

Notes:

1 See “Routine Parameter List” on page 5-71

2 See “Specific Name” on page 5-77

Element Description Restrictions Syntax

routine Name that a CREATE FUNCTION or
CREATE PROCEDURE statement
declared for an SPL routine

Must exist in the database. In
ANSI-compliant databases, qualify
routine with owner if you are not the
owner.

“Identifier” on
page 5-21

The following table explains the keywords of the Routine Statistics segment.

Keyword
Which Execution Plan is Reoptimized

FUNCTION
The plan for any SPL function with the specified name (and with
parameter types that match routine parameter list, if supplied). If you specify
the FUNCTION keyword, the UPDATE STATISTICS statement fails with
an error unless the specified routine returns a value or values, with or
without the WITH RESUME option.

PROCEDURE
The plan for any SPL procedure with the specified name (and parameter
types that match routine parameter list, if supplied)

ROUTINE
The plan for SPL functions and procedures with the specified name (and
parameter types that match routine parameter list, if supplied)

SPECIFIC
The plan for the SPL routine called specific name. If you include the
SPECIFIC keyword, the immediately following keyword must be either
FUNCTION, PROCEDURE, or ROUTINE.

Chapter 2. SQL statements 2-881

The parentheses symbols are optional if you omit the SPECIFIC keyword and
include no argument list.

If you specify no routine, the execution plans are reoptimized for all SPL routines
in the current database.

The database server keeps a list of tables that the SPL routine references explicitly.
Whenever an explicitly referenced table is modified, the database server
reoptimizes the procedure the next time the procedure is executed.

The sysprocplan system catalog table stores execution plans for SPL routines. Two
actions can update the sysprocplan system catalog table:
v Execution of an SPL routine that uses a modified table
v The UPDATE STATISTICS FOR ROUTINE, FUNCTION, or PROCEDURE

statement.

If you change a table that an SPL routine references, you can run UPDATE
STATISTICS to reoptimize the procedures that reference the table, rather than
waiting until the next time an SPL routine that uses the table executes. If a table
that an SPL routine references is dropped, however, running UPDATE STATISTICS
cannot prevent the SPL routine from failing with an error.

Examples of updating statistics for a specific routine

The following UPDATE STATISTICS FOR SPECIFIC statement instructs the
database server to update statistics for an existing function named Perform_work
that returns one or more values:
UPDATE STATISTICS FOR SPECIFIC FUNCTION Perform_work;

For the same Perform_work function, the effect of the following example is
identical to that of the previous example:
UPDATE STATISTICS FOR SPECIFIC ROUTINE Perform_work;

Similarly, use the keywords SPECIFIC PROCEDURE or SPECIFIC ROUTINE to
update statistics for SPECIFIC procedures that return no value.

Do not include parentheses or a parameter list after the name of the SPECIFIC
routine. Because of the parentheses that follow the name of the Perform_work
function, the following statement fails with an error:
UPDATE STATISTICS FOR SPECIFIC ROUTINE Perform_work();

The database server also issues an error if parentheses enclose arguments to the
SPECIFIC routine, function, or procedure.

Altered Tables that are Referenced Indirectly in SPL Routines
If the SPL routine depends on a table that is referenced only indirectly, however,
the database server cannot detect the need to reoptimize the procedure after that
table is modified. For example, a table can be referenced indirectly if the SPL
routine invokes a trigger. If the schema of a table that is referenced by the trigger
(but not directly by the SPL routine) is changed, the database server does not
know that it should reoptimize the SPL routine before running it. When the
procedure is run after the table has been changed, error -710 can occur.

Each SPL routine is optimized the first time that it is run (not when it is created).
This behavior means that an SPL routine might succeed the first time it is run but

2-882 IBM Informix Guide to SQL: Syntax

fail later under virtually identical circumstances, if the schema of an indirectly
referenced table has been changed. The failure of an SPL routine can also be
intermittent, because failure during one execution forces an internal warning to
reoptimize the procedure before the next execution.

You can use either of two methods to recover from this error:
v Issue UPDATE STATISTICS to force reoptimization of the routine.
v Rerun the routine.

To prevent this error, you can force reoptimization of the SPL routine. To force
reoptimization, execute the following statement:
UPDATE STATISTICS FOR PROCEDURE routine;

You can add this statement to your program in either of the following ways:
v Issue UPDATE STATISTICS after each statement that changes the mode of an

object.
v Issue UPDATE STATISTICS before each invocation of the SPL routine.

For efficiency, you can put the UPDATE STATISTICS statement with the action that
occurs less frequently in the program (change of object mode or execution of the
procedure). In most cases, the action that occurs less frequently in the program is
the change of object mode.

When you follow this method of recovering from this error, you must execute
UPDATE STATISTICS for each procedure that indirectly references the altered
tables unless the procedure also references the tables explicitly.

You can also recover from error -710 after an indirectly referenced table is altered
simply by re-executing the SPL routine. The first time that the stored procedure
fails, the database server marks the procedure as in need of reoptimization. The
next time that you run the procedure, the database server reoptimizes the
procedure before running it. Running the SPL routine twice, however, might be
neither practical nor safe. A safer choice is to use the UPDATE STATISTICS
statement to force reoptimization of the procedure.

Updating Statistics When You Upgrade the Database Server
When you upgrade a database to use with a newer database server, you can use
the UPDATE STATISTICS statement to convert the indexes to the form that the
newer database server uses. You can choose to convert the indexes one table at a
time or for the entire database at one time. Follow the conversion guidelines that
are outlined in the IBM Informix Migration Guide.

When you use the UPDATE STATISTICS statement to convert the indexes to use
with a newer database server, the indexes are implicitly dropped and re-created.
The only time that an UPDATE STATISTICS statement causes table indexes to be
implicitly dropped and re-created is when you upgrade a database for use with a
newer database server.

Performance considerations of UPDATE STATISTICS
statements

The more specific you make the list of objects that the UPDATE STATISTICS
statement examines, the faster it completes execution. Limiting the number of

Chapter 2. SQL statements 2-883

column distributions speeds the update. Similarly, precision affects the speed of the
update. If all other keywords are the same, LOW works fastest, but HIGH
examines the most data.

For version 11.70 and later of the Informix database server, the
AUTO_STAT_MODE setting can improve the efficiency of UPDATE STATISTICS
operations that refresh data distribution statistics. This enables the database server
to selectively recalculate only the table or fragment distributions that have become
stale as a result of DML operations since the statistics were last calculated, as
determined by a change threshold that an explicit or default STATCHANGE table
attribute defines. For information about how to set STATCHANGE and how to
enable the automatic mode of UPDATE STATISTICS for refreshing only stale
distribution statistics, see these topics:
v “Using the FORCE and AUTO keywords” on page 2-873
v “AUTO_STAT_MODE Environment Option” on page 2-766
v “STATCHANGE Environment Option” on page 2-782
v “Statistics options of the CREATE TABLE statement” on page 2-293
v “Statistics options of the ALTER TABLE statement” on page 2-76

The “USTLOW_SAMPLE environment option” on page 2-785 enables sampling
during the gathering of index statistics for UPDATE STATISTICS operations in
LOW mode. For an index with more than 100 K leaf pages, the gathering of
statistics using sampling can increase the speed of the UPDATE STATISTICS
operation.

Examples of UPDATE STATISTICS statements
UPDATE STATISTICS MEDIUM;
UPDATE STATISTICS MEDIUM RESOLUTION 10;
UPDATE STATISTICS MEDIUM RESOLUTION 10 .95;
{ RESOLUTION 10, CONFIDENCE .95}
UPDATE STATISTICS MEDIUM RESOLUTION 10 DISTRIBUTIONS ONLY;
UPDATE STATISTICS MEDIUM RESOLUTION 10 .95 DISTRIBUTIONS ONLY;

UPDATE STATISTICS HIGH;
UPDATE STATISTICS HIGH RESOLUTION 10;
UPDATE STATISTICS HIGH RESOLUTION 10 DISTRIBUTIONS ONLY;

Resolution must be greater than 0.005 and less than or equal to 10.0. Confidence
must be in the range [0.80, 0.99] (inclusive).

Examples that follow are based on the company_proc procedure and
square_w_default function, as defined below:
CREATE PROCEDURE company_proc (no_of_items INT,

itm_quantity SMALLINT, sale_amount MONEY,
customer VARCHAR(50), sales_person VARCHAR(30))

SPECIFIC spec_cmpy

DEFINE salesperson_proc VARCHAR(60);

-- Update the company table
INSERT INTO company_tbl VALUES (no_of_items, itm_quantity,

sale_amount, customer, sales_person);

-- Generate the procedure name for the variable salesperson_proc
LET salesperson_proc = sales_person || "." || "tbl" ||

month(current) || "_" || year(current) || "_proc" ;

-- Execute the SPL procedure that the salesperson_proc
-- variable specifies

2-884 IBM Informix Guide to SQL: Syntax

EXECUTE PROCEDURE salesperson_proc (no_of_items,
itm_quantity, sale_amount, customer);

END PROCEDURE;

CREATE FUNCTION square_w_default
(i INT DEFAULT 0) {Specifies default value of i}

RETURNING INT {Specifies return of INT value}
SPECIFIC spec_square

DEFINE j INT; {Defines routine variable j}
LET j = i * i; {Finds square of i and assigns it to j}
RETURN j; {Returns value of j to calling module}

END FUNCTION;

The UPDATE STATISTICS examples that follow reference the company_proc
procedure and square_w_default function:
UPDATE STATISTICS FOR PROCEDURE;
UPDATE STATISTICS FOR PROCEDURE company_proc1;
UPDATE STATISTICS FOR PROCEDURE

company_proc1(INT,SMALLINT,MONEY,VARCHAR(50), VARCHAR(30));
UPDATE STATISTICS FOR SPECIFIC PROCEDURE spec_cmpy;

UPDATE STATISTICS FOR FUNCTION;
UPDATE STATISTICS FOR FUNCTION square_w_default;
UPDATE STATISTICS FOR FUNCTION square_w_default(INT);
UPDATE STATISTICS FOR SPECIFIC FUNCTION spec_square;

For a discussion of the performance implications of UPDATE STATISTICS, see your
IBM Informix Performance Guide.

For a discussion of how to use the dbschema utility to view distributions created
with UPDATE STATISTICS, see the IBM Informix Migration Guide.
Related concepts:
“Using the LOW mode option” on page 2-874
“USTLOW_SAMPLE environment option” on page 2-785
“Using the HIGH mode option” on page 2-876
“Using the MEDIUM mode option” on page 2-876

Data sampling during update statistics operations (Performance Guide)

Update statistics when they are not generated automatically (Performance
Guide)
Related reference:
“SET ENVIRONMENT statement” on page 2-763
“SET EXPLAIN statement” on page 2-785
“SET OPTIMIZATION statement” on page 2-807

WHENEVER statement
Use the WHENEVER statement to trap exceptions that occur during the execution
of SQL statements. The WHENEVER statement is equivalent to placing an
exception-checking routine after every SQL statement.

Syntax

Chapter 2. SQL statements 2-885

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_777.htm#ids_prf_777
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_631.htm#ids_prf_631
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_631.htm#ids_prf_631

�� WHENEVER SQLERROR
NOT FOUND
(1)

SQLWARNING
(1)

ERROR

CONTINUE
GOTO :label
GO TO (1)

label
CALL routine
STOP

��

Notes:

1 Informix extension

Element Description Restrictions Syntax

label Statement label to which program control
transfers when an exception occurs

Must exist in the same
source-code module.

Language-specific

routine Name of a user-defined routine (UDR) to be
invoked when an exception occurs

No arguments; UDR must exist
at compile time.

“Identifier” on page
5-21

Usage

Important: Use this statement only with Informix ESQL/C.

The following table summarizes the types of exceptions that you can check with
the WHENEVER statement.

Type of exception WHENEVER Keyword For More Information

Errors SQLERROR or ERROR “SQLERROR Keyword”
on page 2-887

Warnings “SQLWARNING Keyword”
on page 2-888

Not Found or End of Data “NOT FOUND Keywords” on
page 2-888

Programs that do not use the WHENEVER statement do not automatically abort
when an exception occurs. Such programs must explicitly check for exceptions and
take whatever corrective action their logic specifies. If you do not check for
exceptions, the program simply continues running. If errors occur, however, the
program might not perform its intended purpose.

The first keyword that follows WHENEVER specifies some type of exceptional
condition; the last part of the statement specifies some action to take when the
exception is encountered (or no action, if CONTINUE is specified). The following
table summarizes possible actions that WHENEVER can specify.

Type of action WHENEVER keyword For more information

Continue program execution “CONTINUE
Keyword” on page
2-888

Stop program execution “STOP Keyword” on
page 2-889

Transfer control to a specified label GOTO GO TO “GOTO Keyword” on
page 2-889

Transfer control to a UDR “CALL Clause” on
page 2-889

2-886 IBM Informix Guide to SQL: Syntax

Related reference:
“BEGIN WORK statement” on page 2-126

The Scope of WHENEVER
WHENEVER is a preprocessor directive, rather than an executable statement. The
Informix ESQL/C preprocessor, not the database server, handles the interpretation
of the WHENEVER statement. When the preprocessor encounters a WHENEVER
statement in an Informix ESQL/C source file, it inserts appropriate code into the
preprocessed code after each SQL statement, based on the exception and the action
that WHENEVER specifies. The scope of the WHENEVER statement begins where
the statement appears in the source module and remains in effect until the
preprocessor encounters one or the other of the following things while sequentially
processing the source module:
v The next WHENEVER statement with the same condition (SQLERROR,

SQLWARNING, or NOT FOUND) in the same source module
v The end of the source module

The following Informix ESQL/C example program has three WHENEVER
statements, two of which are WHENEVER SQLERROR statements. Line 4 uses
STOP with SQLERROR to override the default CONTINUE action for errors.

Line 8 specifies the CONTINUE keyword to return the handling of errors to the
default behavior. For all SQL statements between lines 4 and 8, the preprocessor
inserts code that checks for errors and halts program execution if an error occurs.
Therefore, any errors that the INSERT statement on line 6 generates cause the
program to stop.

After line 8, the preprocessor does not insert code to check for errors after SQL
statements. Therefore, any errors that the INSERT statement (line 10), the SELECT
statement (line 11), and DISCONNECT statement (line 12) generate are ignored.
The SELECT statement, however, does not stop program execution if it does not
locate any rows; the WHENEVER statement on line 7 tells the program to continue
if such an exception occurs:
1 main()
2 {
3 EXEC SQL connect to ’test’;
4 EXEC SQL WHENEVER SQLERROR STOP;
5 printf("\n\nGoing to try first insert\n\n");
6 EXEC SQL insert into test_color values (’green’);
7 EXEC SQL WHENEVER NOT FOUND CONTINUE;
8 EXEC SQL WHENEVER SQLERROR CONTINUE;
9 printf("\n\nGoing to try second insert\n\n");
10 EXEC SQL insert into test_color values (’blue’);
11 EXEC SQL select paint_type from paint where color=’red’;
12 EXEC SQL disconnect all;
13 printf("\n\nProgram over\n\n");
14 }

SQLERROR Keyword
If you use the SQLERROR keyword, any SQL statement that encounters an error is
handled as the WHENEVER SQLERROR statement directs. If an error occurs, the
sqlcode variable (sqlca.sqlcode, SQLCODE) is set to a value less than zero (0) and
the SQLSTATE variable is set to a class code with a value greater than 02.

The next example terminates program execution if an SQL error is detected:

Chapter 2. SQL statements 2-887

WHENEVER SQLERROR STOP

If you do not include any WHENEVER SQLERROR statements in a program, the
default action for WHENEVER SQLERROR is CONTINUE.

ERROR Keyword
Within the WHENEVER statement (and only in this context), the keyword ERROR
is a synonym for the SQLERROR keyword.

SQLWARNING Keyword
If you use the SQLWARNING keyword, any SQL statement that generates a
warning is handled as the WHENEVER SQLWARNING statement directs. If a
warning occurs, the first field (sqlca.sqlwarn.sqlwarn0) of the warning structure in
SQLCA is set to W, and the SQLSTATE variable is set to a class code of 01.

Besides the first field of the warning structure, a warning also sets an additional
field to W. The field that is set indicates what type of warning occurred.

The next statement causes execution to stop if a warning condition exists:
WHENEVER SQLWARNING STOP

If you do not use any WHENEVER SQLWARNING statements in a program, the
default action for WHENEVER SQLWARNING is CONTINUE.

NOT FOUND Keywords
If you use the NOT FOUND keywords, exception handling for SELECT and
FETCH statements (including implicit SELECT and FETCH statements in
FOREACH and UNLOAD statements) is treated differently from other SQL
statements. The NOT FOUND keyword checks for the following cases:
v The End of Data condition: a FETCH statement that attempts to get a row

beyond the first or last row in the active set
v The Not Found condition: a SELECT statement that returns no rows

In each case, the sqlcode variable is set to 100, and the SQLSTATE variable has a
class code of 02. For the name of the sqlcode variable in each IBM Informix
product, see the table in “SQLERROR Keyword” on page 2-887.

The following statement calls the no_rows() function each time the NOT FOUND
condition exists:
WHENEVER NOT FOUND CALL no_rows

If you do not use any WHENEVER NOT FOUND statements in a program, the
default action for WHENEVER NOT FOUND is CONTINUE.

CONTINUE Keyword
Use the CONTINUE keyword to instruct the program to ignore the exception and
to continue execution at the next statement after the SQL statement. The default
action for all exceptions is CONTINUE. You can use this keyword to turn off a
previously specified action for an exceptional condition.

2-888 IBM Informix Guide to SQL: Syntax

STOP Keyword
Use the STOP keyword to instruct the program to stop execution when the
specified exception occurs. The following statement halts execution of an Informix
ESQL/C program each time that an SQL statement generates a warning:
EXEC SQL WHENEVER SQLWARNING STOP;

GOTO Keyword
Use the GOTO clause to transfer control to the statement that the label identifies
when a specified exception occurs. The GOTO and GO TO keywords are
ANSI-compliant syntax for this feature of embedded SQL languages like ESQL/C.
The following Informix ESQL/C code fragment shows a WHENEVER statement
that transfers control to the label missing each time that the NOT FOUND
condition occurs:
query_data()

...
EXEC SQL WHENEVER NOT FOUND GO TO missing;

...
EXEC SQL fetch lname into :lname;
...
missing:

printf("No Customers Found\n");

Within the scope of the WHENEVER GOTO statement, you must define the
labeled statement in each routine that contains SQL statements. If your program
contains more than one user-defined function, you might need to include the
labeled statement and its code in each function.

If the preprocessor encounters an SQL statement within the scope of a
WHENEVER ... GOTO statement, but within a routine that does not have the
specified label, the preprocessor tries to insert the code associated with the labeled
statement, but generates an error when it cannot find the label.

To correct this error, either put a labeled statement with the same label name in
each UDR, or issue another WHENEVER statement to reset the error condition, or
use the CALL clause to call a separate function.

CALL Clause
Use the CALL clause to transfer program control to the specified UDR when the
specified type of exception occurs. Do not include parentheses after the UDR
name. The following WHENEVER statement causes the program to call the
error_recovery() function if the program detects an error:
EXEC SQL WHENEVER SQLERROR CALL error_recovery;

When the UDR returns, execution resumes at the next statement after the line that
is causing the error. If you want to halt execution when an error occurs, include
statements that terminate the program as part of the specified UDR.

Observe the following restrictions on the specified routine:
v The UDR cannot accept arguments nor can it return values. If it needs external

information, use global variables or the WHENEVER ... GOTO option to transfer
program control to a label that calls the UDR.

v You cannot specify the name of an SPL routine in the CALL clause. To call an
SPL routine, use the CALL clause to invoke a UDR that contains the EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement.

Chapter 2. SQL statements 2-889

v Make sure that all functions within the scope of WHENEVER ... CALL
statements can find a declaration of the specified function.

Related Statements

Related statements: “EXECUTE FUNCTION statement” on page 2-462, “EXECUTE
PROCEDURE statement” on page 2-471, and “FETCH statement” on page 2-474

For discussions on exception handling and error checking, see the IBM Informix
ESQL/C Programmer's Manual.

2-890 IBM Informix Guide to SQL: Syntax

Chapter 3. SPL statements

These topics describe Stored Procedure Language (SPL) statements, which you use
to write SPL routines. You can store these routines in the database as user-defined
routines (UDRs).

SPL routines (formerly referred to as stored procedures) are effective tools for
controlling SQL activity. This chapter contains descriptions of the SPL statements.
The description of each statement includes the following information:
v A brief introduction that explains the effect of the statement
v A syntax diagram that shows how to enter the statement correctly
v A syntax table that explains each input parameter in the syntax diagram
v Rules of usage, including examples that illustrate these rules

If a statement is composed of multiple clauses, the statement description provides
information about each clause.

For an overview of the SPL language and task-oriented information about creating
and using SPL routines, see the IBM Informix Guide to SQL: Tutorial.

For an overview with detailed examples of how to create and use prepared objects
and Dynamic SQL in SPL routines, see this IBM developerWorks article: Dynamic
SQL support in Informix Dynamic Server Stored Procedure Language.

Informix can create an SPL function with the CREATE PROCEDURE or CREATE
PROCEDURE FROM statement, but requires the CREATE FUNCTION or CREATE
FUNCTION FROM statement for external functions. It is recommended, however,
that you use the CREATE FUNCTION or CREATE FUNCTION FROM statement to
create new user-defined functions.
Related concepts:
“Overloading the Name of a Function” on page 2-188

Debugging SPL routines
You can use a Routine Debugger client application to identify and analyze logical
errors in an SPL routine.

You can include the TRACE statement in your SPL routine to generate tracing
output while the SPL routine runs. For information about how to produce and
examine TRACE statement output, see the description of “TRACE” on page 3-56.

Current restrictions for debugging SPL routines

The following software products currently support client environments that can be
used for debugging Informix SPL routines:
v Optim Development Studio (ODS)
v IBM Database Add-Ins for Visual Studio (IDAIVS)

Refer to the data type support document for information on which Informix data
types are read-only and which are updateable.

© Copyright IBM Corp. 1996, 2014 3-1

http://www.ibm.com/developerworks/data/library/techarticle/dm-0806mottupalli/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0806mottupalli/index.html

The following restrictions apply to both the Optim Development Studio (ODS) and
IBM Database Add-Ins for Visual Studio (IDAIVS) debugging environments:

Unlogged databases

Informix nontransactional databases do not support SPL debugging. You
cannot use either the ODS or the IDAIVS debugging environments with an
Informix database whose CREATE DATABASE statement omits the WITH
LOG keywords.

Secondary server instances

Secondary servers within a cluster environment do not support 'Step into'
trigger procedure operation for Insert, Delete, or Update triggers.

Data strings delimited by double (") quotation marks

The current interpretation by the ODS or IDAIVS debugging client of
quotation-mark delimiters might conflict with the expected behavior of
some SPL routines.
v Currently, in ODS debugging sessions the DELIMIDENT environment

variable is set to ’y’ by default in the IBM Data Server Driver for JDBC
and SQLJ connection string. The default value of DELIMIDENT is ’n’
for JDBC connection.

v Currently in IDAIVS debugging sessions, the DELIMIDENT
environment variable is set to ’y’ by default in the Informix .NET
provider connection string.

The setting of the DELIMIDENT environment variable affects how the
database server interprets quoted strings:
v ’y’ specifies that strings enclosed by double quotation (") marks are

delimited SQL identifiers. Client applications must use single quotation (
’) marks to delimit character strings, and must use double quote (")
symbols only around delimited SQL identifiers, which can support a
larger character set than is valid in undelimited identifiers. In locales
that support lettercase sensitivity, letters within delimited strings or
within delimited identifiers are case-sensitive. This is the default value
for .NET.

v ’n’ specifies that client applications can use double (") or single (’)
quotation marks to delimit character strings, but not to delimit SQL
identifiers. If the database server encounters a string that is delimited by
double or single quotation marks in a context where an SQL identifier is
required, it issues an error. An owner name that qualifies an SQL
identifier can be delimited by single quotation (’) marks. You must use
a pair of the same quotation mark symbols to delimit a character string.

v If no value for DELIMIDENT is specified on the client system, the
default setting is used. As indicated above, for OCD this default is ’n’
(from the IBM Data Server Driver for JDBC and SQLJ connection string.
For IDAIVS. this default is ’y’ (from the Informix .NET provider
connection string).

Restrictions that only affect ODS debugging sessions

By default, 'AUTOCOMMIT' transaction mode is set to 'TRUE' by the IBM Data
Server Driver for JDBC and SQLJ. This is enabled in ODS debugging session for all
logging databases, including databases that were created WITH LOG MODE ANSI,
and also databases that are not ANSI-compliant.

3-2 IBM Informix Guide to SQL: Syntax

Currently, the Informix server performs an implicit commit operation after every
SQL statement completes in an Optim Development Studio debugging session. If
there is an explicit transaction started inside the Informix SPL procedure, the
database server ignores SQL ERROR -535 and continues the debugging session.

Restrictions that only affect IDAIVS debugging sessions

Currently, SPL function debugging is not supported by IBM Database Add-Ins for
Visual Studio. You can only use the IDAIVS debugging environment with Informix
SPL procedures that do not return any value to the calling context.

Starting an SPL debugging session with Optim Development
Studio

To use Optim Development Studio (ODS) to debug an SPL routine, you must
establish a connection between the Informix database server and the ODS client.

You can examine the runtime behavior of an SPL routine in a client debugging
environment and control the flow of a debugging session, using the standard
debugger interface of Optim Development Studio (ODS). The steps that follow are
also valid for Optim Data Studio.

Note: SPL Routine Debugger support for the Informix database server is available
in ODS 2.2.1.0 and later versions. Earlier ODS versions (like 2.2.0) support the
Informix database server, but do not provide Informix SPL support nor SPL
Routine Debugger support.

To begin an SPL Routine debugging session in ODS, follow these steps:

Informix server instance: start-up and configuration

To configure the Informix database server instance so that SPL routine debugging
is enabled, follow these steps:
1. Install the Informix database server product.
2. Configure and bring up the Informix server with entries in the onconfig and

sqlhosts files to support the DRDA communications protocol:
v onconfig:

DBSERVERNAME ids_spldb

v sqlhosts:
ids_spldb drsoctcp ids_server_machine_name port_number

Note: SPL Routine Debugger support for Informix connects the database server
to the client via the IBM Data Server Driver for JDBC and SQLJ, and requires
an Informix DRDA protocol connection.

3. You must provide an sbspace where the database server can store XML
messages that ODS sends to the server. The setting of the SBSPACENAME
configuration parameter specifies the name of the system default sbspace. You
can create a default sbspace on the database server by using the onspaces
utility with the -Df "LOGGING=ON" option. This sbspace is a requirement for
debugging SPL on ODS.

4. If this is a fresh server instance, create a new database using the CREATE
DATABASE statement. You will later use this database to create a Database
connection in ODS to deploy and debug your SPL routines.

Chapter 3. SPL statements 3-3

Routine debugger session manager start-up (optional)

In most cases, you can use the built-in session manager that ODS provides to
debug your Informix SPL routines. In some situations, however, (for example, if
your server machine is behind a firewall), you might need to start a session
manager on a TCP/IP port that has outbound access either on the server machine
or on a different machine.

To start the session manager manually, follow these steps:
1. To start the session manager manually, use the following command to export

the CLASSPATH environment variable setting:
export CLASSPATH=${INFORMIXDIR}/bin/db2dbgm.jar:$CLASSPATH

2. Using Java 1.5.0 or above and ensuring it is in the PATH environment variable
run the following command, specifying your port number that the session
manager will use and a pathname for the session manager log file:
java com.ibm.db2.psmd.mgr.Daemon -port port_num -log sess_mgr_log_path

Steps in ODS to deploy and debug SPL routines

To configure ODS to deploy and debug Informix SPL routines, , follow these steps:
1. If you are not using the built-in session manager and have started a

stand-alone session manager, use menu commands to configure that option in
ODS (Window > Preferences > Run/Debug > Routine Debugger > DB2
screen) by choosing the "Use an already running Session manager" radio
button, and providing the port number and the machine name.

2. To configure ODS for debugging Informix SPL routines, you need to create a
Database connection in the Data Source Explorer perspective in ODS. Refer to
the Optim Development Studio documentation for details on how to create a
Database connection.

3. Right Click on the Database Connection > New Connection dialog box, choose
Informix, and create a new database connection by choosing the appropriate
version of the IBM Data Server Driver for JDBC and SQLJ for Informix from
the Driver list.

4. In the Edit Driver Definitions dialog box, open the Jar List tab and verify that
it includes db2jcc4.jar. If it does not, replace db2jcc.jar with db2jcc4.jar in the
Driver files: list.

5. Refer to the Optim Development Studio documentation for details on how to
Create, Deploy, and Debug SPL routines.

Now you are ready to create, deploy and debug Informix SPL routines in Optim
Development Studio.

Debugging SPL procedures with IBM Database Add-Ins for
Visual Studio

You can use IBM Database Add-Ins for Visual Studio to debug an Informix SPL
procedure.

You can debug SPL procedures as they run on an Informix server. You can step
through your code, set line or variable breakpoints, view variable values, change
variable values, view call stack information for nested procedures, and switch
between different procedures on the call stack. By stepping through your code
while running the procedure in debug mode and viewing the results, you can
discover problems with your procedure and make the necessary changes.

3-4 IBM Informix Guide to SQL: Syntax

To begin an SPL Routine debugging session in IBM Database Add-Ins for Visual
Studio (IDAIVS), follow these steps:

Starting up and configuring an Informix database server instance

To configure the Informix database server instance so that SPL routine debugging
is enabled, follow these steps:
1. Install the Informix database server product.
2. Configure and bring up the Informix database server with entries in the

onconfig and sqlhosts files to support the DRDA communications protocol:
v onconfig:

DBSERVERNAME ids_spldb

v sqlhosts:
ids_spldb drsoctcp ids_server_machine_name port_number

Note: SPL Routine Debugger support for Informix connects the server to the
client via the IBM Informix .Net provider, and requires an Informix DRDA
protocol connection.

3. You must provide an sbspace where the database server can store XML
messages that IBM Database Add-Ins for Visual Studio sends to the server. The
setting of the SBSPACENAME configuration parameter specifies the name of
the system default sbspace. You can create a default sbspace on the database
server by using the onspaces utility with the -Df "LOGGING=ON" option. This
sbspace is a requirement for debugging SPL on IBM Database Add-Ins for
Visual Studio.

4. If this is a fresh server instance, create a new database using the CREATE
DATABASE statement. You will later use this database to create a Database
connection in IBM Database Add-Ins for Visual Studio to deploy and debug
your SPL routines.

Starting up the routine debugger session manager

To start the session manager, follow these steps:
1. To start the session manager manually, use the following command to export

the CLASSPATH environment variable setting:
export CLASSPATH=${INFORMIXDIR}/bin/db2dbgm.jar:$CLASSPATH

2. Using Java 1.5.0 or above and ensuring it is in the PATH environment variable,
run the following command, specifying your port number that the session
manager will use and a pathname for the session manager log file:
java com.ibm.db2.psmd.mgr.Daemon -port port_num -log sess_mgr_log_path

Note: The session manager must start on a machine on which an Informix instance
is running. This is a requirement for IBM Database Add-Ins for Visual Studio to
connect to the session manager.

Establishing an Informix database server connection

The Add Connection dialog can be accessed from the action (right-click) pop-up
menu on the “Data Connections” node in the Server Explorer by selecting the
“Add Connection...” menu item to create a new connection. The Data source field
should display "IBM DB2, Informix and U2 Servers (IBM DB2, Informix, and U2
Data Provider."

Chapter 3. SPL statements 3-5

1. In the field immediately below the instruction "1. Select or enter server name:"
enter the name of the Informix server instance.

2. In the field immediately below the instruction "2. Enter information to log on
to the server:" enter your user id as the User ID: field, and in the Password:
field enter the password for the informix account on the server.

3. In the field immediately below the instruction "3. Select or enter a database
name:" enter the name of the database where the SPL procedure that you
intend to debug is stored.

4. Click the Test Connection button to test the connection with the Informix
server instance.

5. If the Test connection succeeded dialog appears, you can click the OK button.
You can dismiss the Add Connection dialog, because you have created a
connection between the Informix server and Visual Studio.

Setting up the session manager

Before you can start a debugging session, you need to specify the SPL routine to
debug, and a database server connection and port number for the session manager.
1. From the “Data Connections” node in the Server Explorer, click on a database

of the Informix server to which you are connected.
2. Expand the Procedures heading to display the names of all of the stored

procedures in the database.
3. Click on the name of the SPL routine that you would like to debug.
4. From the Tools tab, select the "Options . . . " menu near the bottom of the Tools

list.
5. From the Options dialog, expand the IBM Database Tools item and click on

the General item to display a list of categories.
6. Use the slider control at the right of the General options list to display the

Session Manager Connection and Session Manager Port number.
7. Click OK to accept these values for the session manager configuration.

Refer to the IBM Database Add-Ins for Visual Studio documentation for details on
how to use the debugging capability of Visual Studio with SPL routines.

Debugging an Informix SPL procedure

These are the steps for debugging an SPL procedure using the IBM Database
Add-Ins for Visual Studio:
1. Enable debugging for the procedure:

a. In the Server Explorer under your data connection, right-click the procedure
that you want to debug, and then click Open Definition on the shortcut
menu.

b. In the Procedure view of the IBM Procedure Designer, select ALLOW in the
Debug mode list.

c. Save the procedure, but leave the Designer open.
2. Set line breakpoints in the IBM Procedure Designer.

a. If the procedure is not open in the Designer, in the Server Explorer under
the data connection, right-click the procedure and then click Open
Definition on the shortcut menu.

b. In the SQL Body section of the Procedure view in the Designer, set line
breakpoints. In

3-6 IBM Informix Guide to SQL: Syntax

c. To set properties for a breakpoint, right-click the breakpoint in the left
margin, select Location, Filter, or When Hit on the shortcut menu, and then
specify the necessary information in the window that opens.

3. Start running the procedure in debug mode.
v If the procedure is open in the IBM Procedure Designer, click Step Into on

the IBM Procedure Designer toolbar.
v If the procedure is not open in the Designer, right-click the procedure in the

Server Explorer, and then click Step Into on the shortcut menu.
4. Run each procedure in debug mode, and use either of the following methods:

v Set variable breakpoints. In the SQL body, right-click a variable name, click
Breakpoints on the shortcut menu, and then select Insert Variable
Breakpoints.

v Modify variable breakpoint values.
5. Continue debugging the Informix SPL procedure until the procedure returns

the expected results.

Debugging Informix SPL procedures in CLR applications

While you develop Windows or ASP.NET applications in C# and Visual Basic, you
can debug the Common Language Runtime (CLR) applications with IBM Database
Add-Ins for Visual Studio. If the applications access Informix database server
instances, you can debug the SPL procedures that are called from the applications
while you debug the applications.

The IBM Unified Debugger, which is the feature that you use to debug SPL
procedures in C# and Visual Basic applications, is available for Informix, starting
with version 11.70.

The IBM Unified Debugger debugs SPL procedures through the IBM Procedure
Designer. If a procedure definition is open in the Designer when you start
debugging an application, as the debugger steps into the procedure, that instance
of the Designer is activated. If the procedure definition is not open in the Designer,
as the debugger steps into the procedure, the debugger opens the procedure
definition in a new instance of the Designer.

Prerequisite: To debug SPL procedures in a CLR application, enable IBM SQL
debugging in the project that contains the application.

To debug SPL procedures in a CLR application, follow these steps:
1. For each SPL procedure in the application:

a. Enable debugging for the procedure:
1) In the Server Explorer under your data connection, right-click the

procedure that you want to debug, and then click Open Definition on
the shortcut menu.

2) In the Procedure view of the IBM Procedure Designer, select ALLOW in
the Debug mode list.

3) Save the procedure, and optionally leave the Designer open to set line
breakpoints.

b. Optional: Set line breakpoints in the IBM Procedure Designer.
1) In the SQL Body section of the Procedure view in the Designer, set line

breakpoints.

Chapter 3. SPL statements 3-7

2) To set properties for a breakpoint, right-click the breakpoint in the left
margin, select Location, Filter, or When Hit on the shortcut menu, and
then specify the necessary information in the window that opens.

3) Leave the Designer open.
2. Start debugging the application.

In the Solution Explorer, right-click the application, select Debug on the
shortcut menu, and then select Start new instance.
Debugging starts and the Debugger Task Status window opens.
The call stack for each procedure that is being debugged is merged with the
call stack for the thread that calls the procedure. You can see where the
procedure is called from the C# or Visual Basic code.

3. Run each procedure in debug mode as it is called.
v If you closed the IBM Procedure Designer in step 1a.iii, in the new instance

of the Designer, set line breakpoints and breakpoint properties for the
procedure in the SQL Body section.

v Set variable breakpoints. In the SQL body, right-click a variable name, click
Breakpoints on the shortcut menu, and then select Insert Variable
Breakpoints.

v Modify variable breakpoint values.
4. To cancel a long-running task, click Cancel in the Debugger Task Status

window.
If you closed the window while you were debugging your application, from
the Tools menu, select Show IBM Debugger Task Status to reopen the
window.

5. Continue debugging the application until all the Informix SPL procedures
return the expected results.

Enabling SQL debugging in CLR applications

If you want to debug Informix SPL procedures in your C# and Visual Basic
Common Language Runtime (CLR) application, you first must enable IBM SQL
debugging for the IBM database project. You need to do this process only once for
a given project. Enabling IBM SQL debugging for a project sets a project property
that persists from session to session in Visual Studio.

When you enable SQL debugging in an application, the IBM Unified Debugger
must close and then reopen the IBM database project that contains the application.
After the project reopens, you must specify the data connection and, optionally, the
port on which to run the debugger session manager. You must also change the
settings of some standard Visual Studio project debug properties.

The add-ins, which is 32-bit application, does not support a 64-bit debugging
process for console applications. On a 64-bit operating system, the default debug
platform is Any CPU, which is a 64-bit debugging process. You must specify a
32-bit debug platform in the project properties.

Prerequisite: To enable IBM SQL debugging in an application, the IBM database
project that contains the application must be open in the Solution Explorer.

To enable IBM SQL debugging in an application, follow these steps:
1. In the Solution Explorer, right-click the IBM database project node, and then

select Enable IBM SQL Debugging on the shortcut menu.

3-8 IBM Informix Guide to SQL: Syntax

A message is displayed that the project must be closed and reopened.
2. Click Yes in the message window to confirm the closing and reopening of the

project.
All unsaved changes are saved, the project closes, and then reopens in the
Solution Explorer.

3. In the Solution Explorer, right-click the IBM database project node, and then
select Properties on the shortcut menu.
The Project Designer opens.

4. In the left box of the Designer, click IBM Unified Debugger.
The IBM Unified Debugger page is displayed.

5. Perform one of the following sets of actions:
v If you have one of the following connections to use for the debugger

session manager:
– Informix Version 12.10 or earlier
– DB2 for Linux, UNIX, and Windows, Version 9.1, or later
– DB2 for z/OS® Version 9.1 or Version 10
– DB2 for i V5R4 or V6R1
a. Select Use an existing connection for session manager.
b. In the list, select the data connection on which to run the debugger

session manager.
v If you are running the debugger session manager manually:

a. Select Use a new host name for session manager.
b. Specify a host name for the debugger session manager.

6. If you are debugging a console application on a 64-bit operating system, in the
Platform list, select x86.

7. Optional: In the Session manager port field, type the port on which to run the
debugger session manager.

8. In the left box of the Project Designer, click Debug.
The Debug page of the Project Designer is displayed.

9. Change the following properties on the Debug page:
v Under Start Options, clear the Use remote machine check box.
v Under Enable Debuggers, clear all three of the following check boxes:

– Enable unmanaged code debugging

– Enable SQL Server debugging

– Enable the Visual Studio hosting process

10. Close the Project Designer.

<< Label >> statement
Use the <<label>> statement of SPL to declare a statement label or a loop label.
v A statement label is an SQL identifier, delimited by double angle-brackets,

immediately preceding a statement within a statement block to which the GOTO
statement of SPL can transfer control of program execution.

v A loop label is an SQL identifier, delimited by double angle-brackets, immediately
preceding a loop statement of SPL. The same label, without double angle-bracket
delimiters, can follow the END LOOP keywords, or END FOR keywords, or

Chapter 3. SPL statements 3-9

END WHILE keywords that terminate the labeled loop. The EXIT label statement
can pass control of program execution to whatever statement immediately
follows the undelimited loop label.

Note that label is not a keyword of the <<label>> statement, but is a placeholder for
some specific user-defined identifier of the statement label or loop label that the
<<label>> statement declares.

Syntax

�� <<label>> ��

Element Description Restrictions Syntax

label Name that you
declare here for
a statement
label or for a
loop label

Must be unique among the identifiers of
statement labels and of loop labels within the
SPL routine

“Identifier”
on page
5-21

Usage

You can use the <<Label>> statement in two ways:
v To declare a statement label before an executable statement to which the GOTO

statement of SPL can transfer control of execution. The SPL statement that
immediately follows the statement label declaration is called a labeled statement.

v To declare a loop label immediately before a LOOP, FOR, or WHILE statement of
SPL. The LOOP, FOR, or WHILE statement that immediately follows the loop
label declaration is called a labeled loop.

The EXIT label or EXIT label WHEN (condition) statement can exit from the labeled
loop, passing control of execution to the statement immediately following an END
LOOP label statement. The label specified in the EXIT statement can match the label
identifier of the labeled loop of the EXIT statement, or if loops are nested, this label
can match the label of an outer labeled loop. In either case, the EXIT label
statement passes control to a statement that follows an END LOOP label statement
that specifies the same loop label. This EXIT label behavior differs from that of the
GOTO label statement, which passes control to the statement that follows the
declaration of the specified statement label.

The following restrictions apply to labels in SPL routines:
v The name of a statement label must be within the scope of reference of the

GOTO statement.
v The GOTO option of the WHENEVER statement of SQL cannot reference an SPL

statement label, because the WHENEVER statement is valid only in ESQL/C
applications.

v The GOTO statement of SPL cannot reference a loop label.
v The GOTO statement cannot reference a statement label within an ON

EXCEPTION statement block.
v A statement label cannot be declared within an ON EXCEPTION statement

block.
v The label name must be unique among statement labels and loop labels within

the SPL routine.

3-10 IBM Informix Guide to SQL: Syntax

Examples of Labels
The following example illustrates a statement label called increment_x within an
SPL routine:
DEFINE x INT;
LET x = 0;
BEGIN

<<increment_x>>
BEGIN

LET x = x + 1;
END;
IF x < 10 THEN

GOTO increment_x;
END IF;

END;
END PROCEDURE;

The following program fragment shows an example of a labeled FOR loop:
<<lb_for>>
FOR i IN 1..5

i := i +1 ;
END FOR lb_for;

The following program fragment illustrates a labeled loop from which an EXIT
label statement can exit:
<<outer>>
LOOP
...
LOOP
...
EXIT outer WHEN ... -- exit from both loops
END LOOP;
...
END LOOP outer;

Related Statements

“EXIT” on page 3-25, “FOR” on page 3-27, “GOTO” on page 3-36, “LOOP” on
page 3-42, “WHILE” on page 3-58

CALL
Use the CALL statement to execute a user-defined routine (UDR) from within an
SPL routine.

Syntax

�� CALL �

Chapter 3. SPL statements 3-11

�

�

�

�

�

procedure ()
,

(1)
Argument

,

function () RETURNING data_var
,

(1)
Argument

routine_var
,

RETURNING data_var

��

Notes:

1 See “Arguments” on page 5-1

Element Description Restrictions Syntax

data_var Variable to receive the
values function returns

The data type of data_var must be appropriate
for the returned value

“Identifier” on page
5-21

function,
procedure

User-defined function or
procedure

The function or procedure must exist “Identifier” on page
5-21

routine_var Variable that contains the
name of a UDR

Must be a character data type that contains the
non-NULL name of an existing UDR

“Identifier” on page
5-21

Usage

The CALL statement invokes a UDR. The CALL statement is identical in behavior
to the EXECUTE PROCEDURE and EXECUTE FUNCTION statements, but you
can only use CALL from within an SPL routine.

You can use CALL in an Informix ESQL/C program or with DB-Access, but only if
the statement is in an SPL routine that the program or DB-Access executes.

When you use CALL to invoke a user-defined function that you specify by its
function identifier or as a routine_var that stores the identifier of the function, the
CALL statement must also include the RETURNING clause.

The CALL statement cannot invoke an iterator TABLE function from a subquery in
the FROM clause of a SELECT statement. For the syntax of iterator TABLE
functions, see “Iterator Functions” on page 2-680.
Related reference:
“EXECUTE FUNCTION statement” on page 2-462
“EXECUTE PROCEDURE statement” on page 2-471
“Arguments” on page 5-1

Specifying Arguments
The argument list of the CALL statement, delimited by parentheses, immediately
follows the name of the UDR. If you include no arguments, empty parentheses
must follow the name of the UDR. If the list includes more arguments than the
UDR expects, you receive an error.

3-12 IBM Informix Guide to SQL: Syntax

If CALL specifies fewer arguments than the UDR expects, the arguments are said
to be missing. The database server initializes missing arguments to their
corresponding default values. (See CREATE PROCEDURE and CREATE
FUNCTION.) This initialization occurs before the first executable statement in the
body of the UDR. If missing arguments do not have default values, they are
initialized to the value of UNDEFINED. An attempt to use any variable of
UNDEFINED value results in an error.

In each UDR call, you have the option of specifying parameter names for the
arguments that you pass to the UDR. Each of the following examples are valid for
a UDR that expects character arguments named t, n, and d, in that order:
CALL add_col (t=’customer’, n = ’newint’, d =’integer’);
CALL add_col(’customer’,’newint’,’integer’);

Both of the CALL statements above have the same effect.

The syntax of the argument list is described in more detail in the topic
“Arguments” on page 5-1.

Receiving input from the called UDR
The RETURNING clause specifies the variable that receives values that the
function returns to its calling context.

The following example shows two UDR calls:
CREATE PROCEDURE not_much()

DEFINE i, j, k INT;
CALL no_args (10,20);
CALL yes_args (5) RETURNING i, j, k;

END PROCEDURE;

The first routine call (no_args) expects no returned values. The second routine call
is to a function (yes_args), which expects three returned values. The not_much()
procedure declares three integer variables (i, j, and k) to receive the returned
values from yes_args.

CONTINUE
Use the CONTINUE statement to start the next iteration of the innermost FOR,
LOOP, WHILE, or FOREACH loop.

Syntax

�� CONTINUE
FOR
FOREACH
LOOP
WHILE

; ��

Usage

When control of execution passes to a CONTINUE statement, the SPL routine skips
the rest of the statements in the innermost loop of the specified type. Execution
continues at the top of the loop with the next iteration.

Chapter 3. SPL statements 3-13

In the following example, the loop_skip function inserts values 3 through 15 into
the table testtable. The function also returns values 3 through 9 and 13 through 15
in the process. The function does not return the value 11 because it encounters the
CONTINUE FOR statement. The CONTINUE FOR statement causes the function to
skip the RETURN WITH RESUME statement:
CREATE FUNCTION loop_skip()

RETURNING INT;
DEFINE i INT;
...
FOR i IN (3 TO 15 STEP 2)

INSERT INTO testtable values(i, null, null);
IF i = 11

CONTINUE FOR;
END IF;
RETURN i WITH RESUME;

END FOR;

END FUNCTION;

Just as with the EXIT statement, (“EXIT” on page 3-25), in FOREACH statements
and in FOR or WHILE statements that do not include the LOOP keyword, the
FOR, WHILE, or FOREACH keyword must immediately follow the CONTINUE
keyword to specify the type of loop. Errors are generated if the specified type of
loop does not match the context in which the CONTINUE statement is issued.

In the LOOP, FOR LOOP, and WHILE LOOP statements, whether labeled or
unlabeled, a keyword indicating the type of loop is optional after the CONTINUE
keyword, but Informix issues an error if you specify a keyword that does not
correspond to the type of loop.

Related Statements

“FOR” on page 3-27, “FOREACH” on page 3-30, “LOOP” on page 3-42, “WHILE”
on page 3-58

DEFINE
Use the DEFINE statement to declare local variables that an SPL routine uses, or to
declare global variables that can be shared by several SPL routines.

Syntax

3-14 IBM Informix Guide to SQL: Syntax

�� DEFINE �

�

,
(1)

GLOBAL SPL_var data_type DEFAULT Default Value
REFERENCES BYTE DEFAULT NULL

TEXT
,

SPL_var data_type
REFERENCES BYTE

TEXT
LIKE view . column

synonym
table

PROCEDURE
BLOB
CLOB

(2)
Subset of Complex Data Types

distinct_type
opaque_type

; ��

Notes:

1 See “Default Value” on page 3-17

2 See “Subset of Complex Data Types” on page 3-20

Element Description Restrictions Syntax

column Column name Must already exist in the table or view “Identifier” on page
5-21

data_type Type of SPL_var See “Declaring Global Variables” on page 3-16 “Data Type” on page
4-23

distinct_type A distinct type Must already be defined in the database “Data Type” on page
4-23

opaque_type An opaque type Must already be defined in the database “Data Type” on page
4-23

SPL_var New SPL variable Must be unique within statement block “Identifier” on page
5-21

synonym, table,
view

Name of a table,
view, or synonym

Synonym and the table or view to which it points
must exist when DEFINE is issued

“Identifier” on page
5-21

Usage

The DEFINE statement is not an executable statement. The DEFINE statement
must appear after the routine header and before any other statements. If you
declare a local variable (by using DEFINE without the GLOBAL keyword), its
scope of reference is the statement block in which it is defined. You can use the
variable within the statement block. Another variable outside the statement block
with a different definition can have the same name.

A variable with the GLOBAL keyword is global in scope and is available outside
the statement block and to other SPL routines. Global variables can be any built-in
data type except BIGSERIAL, BLOB, BYTE, CLOB, SERIAL, SERIAL8, or TEXT.
Local variables can be any built-in data type except BIGSERIAL, BYTE, SERIAL,
SERIAL8, or TEXT. If column is of the BIGSERIAL, SERIAL, or SERIAL8 data type,
declare a BIGINT, INT, or INT8 variable to store its value.

Chapter 3. SPL statements 3-15

Declaring the names of SQL keywords or the identifiers of other database objects
as SPL variables can produce errors or unexpected results in some contexts. For
discussions of some potential problems of name conflicts that involve SPL
variables, see the related concepts below.
Related concepts:
“Using a Host Variable” on page 5-16
“Declaring Keywords or Routine Names as SPL Variables” on page 5-32
“Using NULL and SELECT in a Condition” on page 5-31
“Using CURRENT, DATETIME, INTERVAL, and NULL in INSERT” on page 5-31
Related reference:
“Collection-Derived Table” on page 5-4

Referencing TEXT and BYTE Variables
The REFERENCES keyword lets you use BYTE and TEXT variables. These do not
contain the actual data but are pointers to the data. The REFERENCES keyword
indicates that the SPL variable is just a pointer. You can use BYTE and TEXT
variables exactly as you would use any other variable in SPL.

Redeclaration or Redefinition
If you define the same variable twice in the same statement block, you receive an
error. You can redefine a variable within a nested block, in which case it
temporarily hides the outer declaration. This example produces an error:
CREATE PROCEDURE example1()

DEFINE n INT; DEFINE j INT;
DEFINE n CHAR (1); -- redefinition produces an error

Redeclaration is valid in the following example. Within the nested statement block,
n is a character variable. Outside the block, n is an integer variable.
CREATE PROCEDURE example2()

DEFINE n INT; DEFINE j INT;
...
BEGIN
DEFINE n CHAR (1); -- character n masks global integer variable
...

END;

Declaring Global Variables
Use the following syntax for declaring global variables:

�� DEFINE GLOBAL �

,

SPL_var �

�
(1)

data_type DEFAULT Default Value
REFERENCES BYTE DEFAULT NULL

TEXT

; ��

Notes:

1 See “Default Value” on page 3-17

3-16 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

data_type Type of SPL_var See “Declaring Global Variables” on page 3-16. “Data Type” on page
4-23

SPL_var New SPL variable Must be unique within statement block “Identifier” on page
5-21

The GLOBAL keyword indicates that the variables that follow have a scope of
reference that includes all SPL routines that run in a given DB-Access or SQL
administration API session. The data types of these variables must match the data
types of variables in the global environment. The global environment is the memory
that is used by all the SPL routines that run in a given DB-Access or SQL
administration API session. The values of global variables are stored in memory.

SPL routines that are running in the current session share global variables. Because
the database server does not save global variables in the database, the global
variables do not remain when the current session closes.

The first declaration of a global variable establishes the variable in the global
environment; subsequent global declarations simply bind the variable to the global
environment and establish the value of the variable at that point.

The following example shows two SPL procedures, proc1 and proc2; each has
defined the global variable gl_out:
v SPL procedure proc1

CREATE PROCEDURE proc1()
...
DEFINE GLOBAL gl_out INT DEFAULT 13;
...
LET gl_out = gl_out + 1;

END PROCEDURE;

v SPL procedure proc2
CREATE PROCEDURE proc2()

...
DEFINE GLOBAL gl_out INT DEFAULT 23;
DEFINE tmp INT;
...
LET tmp = gl_out

END PROCEDURE;

If proc1 is called first, gl_out is set to 13 and then incremented to 14. If proc2 is
then called, it sees that gl_out is already defined, so the default value of 23 is not
applied. Then, proc2 assigns the existing value of 14 to tmp. If proc2 had been
called first, gl_out would have been set to 23, and 23 would have been assigned to
tmp. Later calls to proc1 would not apply the default of 13.

Databases of different database server instances do not share global variables, but
all the databases of the same database server instance can share global SPL
variables in a single session. The database server and any application development
tools, however, do not share global variables.

Default Value
Global variables can have literal, NULL, or system constant default values.

Chapter 3. SPL statements 3-17

Default Value:

(1)
Literal Number

(2)
Quoted String

(3)
Literal Interval

(4)
Literal Datetime
CURRENT
SYSDATE (5)

DATETIME Field Qualifier
CURRENT_USER
DBSERVERNAME
SITENAME
TODAY
USER
NULL

Notes:

1 See “Literal Number” on page 4-215

2 See “Quoted String” on page 4-219

3 See “Literal INTERVAL” on page 4-213

4 See “Literal DATETIME” on page 4-210

5 See “DATETIME Field Qualifier” on page 4-42

If you specify a default value, the global variable is initialized with the specified
value.

CURRENT
CURRENT is a valid default only for a DATETIME variable. If the YEAR TO
FRACTION(3) is its declared precision, no qualifier is needed. Otherwise, you must
specify the same DATETIME qualifier when CURRENT is the default, as in the
following example of a DATETIME variable:
DEFINE GLOBAL d_var DATETIME YEAR TO MONTH

DEFAULT CURRENT YEAR TO MONTH;

SYSDATE
SYSDATE is a valid default only for a DATETIME variable. If the YEAR TO
FRACTION(5) is the declared precision of the variable, no qualifier is needed.
Otherwise, you must specify the same DATETIME qualifier when SYSDATE is the
default, as in the following example of a DATETIME variable:
DEFINE GLOBAL dt_var DATETIME YEAR TO DAY

DEFAULT SYSDATE YEAR TO DAY;

USER
If you use the value that USER, or its synonym CURRENT_USER, returns as the
default, the variable must be defined as a CHAR, VARCHAR, NCHAR, or
NVARCHAR data type. It is recommended that the length of the variable be at
least 32 bytes. You risk getting an error message during INSERT and ALTER
TABLE operations if the length of the variable is too small to store the default
value.

3-18 IBM Informix Guide to SQL: Syntax

TODAY
If you use TODAY as the default, the variable must be a DATE value. (See
“Constant Expressions” on page 4-76 for descriptions of TODAY and of the other
system constants that can appear in the Default Value clause.)

BYTE and TEXT
The only default value valid for a BYTE or TEXT variable is NULL. The following
example defines a TEXT global variable that is called l_blob:
CREATE PROCEDURE use_text()

DEFINE i INT;
DEFINE GLOBAL l_blob REFERENCES TEXT DEFAULT NULL;
...

END PROCEDURE

Here the REFERENCES keyword is required, because the DEFINE statement
cannot declare a BYTE or TEXT data type directly; the l_blob variable is a pointer
to a TEXT value that is stored in the global environment.

SITENAME or DBSERVERNAME
If you use the SITENAME or DBSERVERNAME keyword as the default, the
variable must be a CHAR, VARCHAR, NCHAR, NVARCHAR, or LVARCHAR
data type. Its default value is the name of the database server at runtime. It is
recommended that the size of the variable be at least 128 bytes long. You risk
getting an error message during INSERT and ALTER TABLE operations if the
length of the variable is too small to store the default value.

The following example uses the SITENAME keyword to specify a default value.
This example also initializes a global BYTE variable to NULL:
CREATE PROCEDURE gl_def()

DEFINE GLOBAL gl_site CHAR(200) DEFAULT SITENAME;
DEFINE GLOBAL gl_byte REFERENCES BYTE DEFAULT NULL;
...

END PROCEDURE

Declaring Local Variables
A local variable has as its scope of reference the routine in which it is declared. If
you omit the GLOBAL keyword, any variables declared in the DEFINE statement
are local variables, and are not visible in other SPL routines.

For this reason, different SPL routines that declare local variables of the same name
can run without conflict in the same DB-Access or SQL administration API session.

If a local variable and a global variable have the same name, the global variable is
not visible within the SPL routine where the local variable is declared. (In all other
SPL routines, only the global variable is in scope.)

The following DEFINE statement syntax is for declaring local variables:

Chapter 3. SPL statements 3-19

�� DEFINE �

,

SPL_var data_type
REFERENCES BYTE

TEXT
LIKE view . column

synonym
table

PROCEDURE
BLOB
CLOB

(1)
Subset of Complex Data Types

distinct_type
opaque_type

; ��

Notes:

1 See “Subset of Complex Data Types”

Element Description Restrictions Syntax

column Column name Must already exist in the table or view “Identifier” on page
5-21;

data_type Type of SPL_var Cannot be BIGSERIAL, BYTE, SERIAL, SERIAL8, or
TEXT

“Data Type” on page
4-23

distinct_type A distinct type Must already be defined in the database “Identifier” on page
5-21

opaque_type An opaque type Must already be defined in the database “Identifier” on page
5-21

SPL_var New SPL variable Must be unique within statement block “Identifier” on page
5-21;

synonym, table,
view

Name of a table,
view, or synonym

Synonym and the table or view to which it points
must already exist when the statement is issued

“Database Object
Name” on page 5-16

Local variables do not support default values. The following example shows some
typical definitions of local variables:
CREATE PROCEDURE def_ex()

DEFINE i INT;
DEFINE word CHAR(15);
DEFINE b_day DATE;
DEFINE c_name LIKE customer.fname;
DEFINE b_text REFERENCES TEXT;

END PROCEDURE

Subset of Complex Data Types
You can use the following syntax to declare an SPL variable as a typed or generic
collection, or as a named, unnamed, or generic ROW data type.

Complex Data Types (Subset):

3-20 IBM Informix Guide to SQL: Syntax

�

COLLECTION
SET (data_type NOT NULL)
MULTISET SET (data_type NOT NULL)
LIST MULTISET

LIST
row
ROW

,

(field data_type)

Element Description Restrictions Syntax

data_type Type of elements of a
collection or of fields of an
unnamed ROW type

Must match the data type of the values that the
variable will store. Cannot be BIGSERIAL,
BLOB, BYTE, CLOB, SERIAL, SERIAL8, or
TEXT.

“Data Type” on page
4-23

field Field of unnamed ROW Must exist in the database “Identifier” on page
5-21

row Named ROW data type Must exist in the database “Identifier” on page
5-21

Declaring Collection Variables
A local variable of type COLLECTION, SET, MULTISET, or LIST can hold a
collection of values fetched from the database. You cannot define a collection
variable as global (with the GLOBAL keyword) or with a default value.

A variable declared with the keyword COLLECTION is an untyped (or generic)
collection variable that can hold a collection of any data type.

A variable declared as type SET, MULTISET, or LIST is a typed collection variable. It
can hold a collection of its specified data type only.

You must use the NOT NULL keywords when you define the elements of a typed
collection variable, as in the following examples:
DEFINE a SET (INT NOT NULL);

DEFINE b MULTISET (ROW (b1 INT,
b2 CHAR(50)

) NOT NULL);

DEFINE c LIST(SET(INTEGER NOT NULL) NOT NULL);

With variable c, both the INTEGER values in the SET and the SET values in the
LIST are defined as NOT NULL.

You can define collection variables with nested complex types to hold matching
nested complex type data. Any type or depth of nesting is allowed. You can nest
ROW types within collection types, collection types within ROW types, collection
types within collection types, ROW types within collection and ROW types, and so
on.

If you declare a variable as COLLECTION type, the variable acquires varying data
type declarations if it is reassigned within the same statement block, as in the
following example:

Chapter 3. SPL statements 3-21

DEFINE a COLLECTION;
LET a = setB;
...
LET a = listC;

In this example, varA is a generic collection variable that changes its data type to
the data type of the currently assigned collection. The first LET statement makes
varA a SET variable. The second LET statement makes varA a LIST variable.

Declaring ROW Variables
ROW variables hold data from named or unnamed ROW types. You can define a
generic ROW variable, a named ROW variable, or an unnamed ROW variable.

A generic ROW variable, defined with the ROW keyword, can hold data from any
ROW type. A named ROW variable holds data from the named ROW type that
you specified in the declaration of the variable.

The following statements show examples of generic ROW variables and named
ROW variables:
DEFINE d ROW; -- generic ROW variable

DEFINE rectv rectangle_t; -- named ROW variable

A named ROW variable holds named ROW types of the same type in the
declaration of the variable.

To define a variable that will hold data stored in an unnamed ROW type, use the
ROW keyword followed by the fields of the ROW type, as in:
DEFINE area ROW (x int, y char(10));

Unnamed ROW types are type-checked only by structural equivalence. Two
unnamed ROW types are considered equivalent if they have the same number of
fields, and if the fields have the same type definitions. Therefore, you could fetch
either of the following ROW types into the variable area defined above:
ROW (a int, b char(10))
ROW (area int, name char(10))

ROW variables can have fields, just as ROW types have fields. To assign a value to
a field of a ROW variable, use the qualifier notation variableName.fieldName,
followed by an expression, as in the following example:
CREATE ROW TYPE rectangle_t (start point_t, length real, width real);

DEFINE r rectangle_t;
-- Define a variable of a named ROW type

LET r.length = 45.5;
-- Assign a value to a field of the variable

When you assign a value to a ROW variable, you can use any valid expression.

Declaring Opaque-Type Variables
Opaque-type variables hold data retrieved from opaque data types, which you
create with the CREATE OPAQUE TYPE statement. An opaque-type variable can
only hold data of the same opaque type on which it is defined. The following
example defines a variable of the opaque type point, which holds the x and y
coordinates of a two-dimensional point:
DEFINE b point;

3-22 IBM Informix Guide to SQL: Syntax

Declaring Variables LIKE Columns
If you use the LIKE clause, the database server assigns the variable the same data
type as a specified column in a table, synonym, or view.

The data types of variables that are defined as database columns are resolved at
runtime; therefore, column and table do not need to exist at compile time.

You can use the LIKE keyword to declare that a variable is like a serial column.
This declares:
v An INTEGER variable if the column is of the SERIAL data type
v An INT8 variable if the column is of the SERIAL8 data type
v A BIGINT variable if the column is of the BIGSERIAL data type

For example, if the column serialcol in the mytab table has the SERIAL data type,
you can create the following SPL function:
CREATE FUNCTION func1()
DEFINE local_var LIKE mytab.serialcol;
RETURN;
END FUNCTION;

The variable local_var is treated as an INTEGER variable.

Defining Variables with Logical Character Semantics
When the SQL_LOGICAL_CHAR configuration parameter has specified for the
current session) is set to 'ON' or to a value greater than 1, Informix interprets size
declarations as logical characters, rather than as bytes, in declarations of SPL
variables of the following data types:
v CHAR or CHARACTER
v CHARACTER VARYING or VARCHAR
v LVARCHAR
v NCHAR
v NVARCHAR
v DISTINCT types whose base types are built-in character data types
v DISTINCT types whose base types are the previously listed data types
v ROW data type fields of any of the previously listed data types.
v Elements of these data types in LIST, MULTISET, or SET collection data types.

Enabling logical character semantics for the database locale guarantees that
sufficient storage is available for the data type to store the specified number of
logical characters. The resulting size in bytes of the SPL variable is the product of
the declared size of the data type multiplied by the SQL_LOGICAL_CHAR value,
if this is 2, 3, or 4, or (if SQL_LOGICAL_CHAR is set to 'ON') by the number of
bytes of storage that the largest logical character in the code set of the database
locale requires.

If a client session connects to a database in which the SQL_LOGICAL_CHAR
configuration parameter was enabled at the time of database creation, that setting
takes effect at connection time.

DEFINE statements that use the LIKE keyword in datatype declarations create SPL
variables whose data types match the schema of the column that the LIKE

Chapter 3. SPL statements 3-23

specification references. The SQL_LOGICAL_CHAR setting, if any is defined, has
no effect on the size in memory of variables that DEFINE declares with the LIKE
keyword.

For more information about the effect of the SQL_LOGICAL_CHAR setting in
locales that use a multibyte code set, such as UTF-8, where a single logical
character can require more than one byte of storage, see the description of the
SQL_LOGICAL_CHAR configuration parameter in your IBM Informix
Administrator's Reference. For additional information about multibyte locales and
logical characters, see the IBM Informix GLS User's Guide.
Related reference:

SQL_LOGICAL_CHAR configuration parameter (Administrator's Reference)

Declaring Variables as the PROCEDURE Type
The PROCEDURE keyword indicates that in the current scope, the variable is a call
to a UDR.

The DEFINE statement does not support a FUNCTION keyword. Use the
PROCEDURE keyword, whether you are calling a user-defined procedure or a
user-defined function.

Declaring a variable as PROCEDURE type indicates that in the current statement
scope, the variable is not a call to a built-in function. For example, the following
statement defines length as an SPL routine, not as the built-in LENGTH function:
DEFINE length PROCEDURE;
...
LET x = length (a,b,c)

This definition disables the built-in LENGTH function within the scope of the
statement block. You would use such a definition if you had already created a
user-defined routine with the name length.

If you create an SPL routine with the same name as an aggregate function (SUM,
MAX, MIN, AVG, COUNT) or with the name extend, you must qualify the routine
name with the owner name.

Declaring Variables for BYTE and TEXT Data
The keyword REFERENCES indicates that the variable does not contain a BYTE or
TEXT value but is a pointer to the BYTE or TEXT value. Use the variable as
though it holds the data.

The following example defines a local BYTE variable:
CREATE PROCEDURE use_byte()

DEFINE i INT;
DEFINE l_byte REFERENCES BYTE;

END PROCEDURE --use_byte

If you pass a variable of BYTE or TEXT data type to an SPL routine, the data is
passed to the database server and stored in the root dbspace or dbspaces that the
DBSPACETEMP environment variable specifies, if it is set. You do not need to
know the location or name of the file that holds the data. BYTE or TEXT
manipulation requires only the name of the BYTE or TEXT variable as it is defined
in the routine.

3-24 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076

EXIT
The EXIT statement can terminate FOR, FOREACH, LOOP, or WHILE statements.

Syntax

�� EXIT FOREACH

FOR WHEN condition
LOOP label
WHILE

; ��

Element Description Restrictions Syntax

condition Loop terminates
when this evaluates
to TRUE.

If condition evaluates to FALSE, the loop continues. “Condition” on page
4-5

label Label of a loop from
which to exit

Must be the label of a loop statement that includes
the EXIT statement

“Identifier” on page
5-21

Usage

The EXIT statement transfers control of execution from an iterative statement,
causing the innermost loop of the enclosing statement type (FOR, FOREACH,
LOOP, or WHILE) to terminate. If no loop label or WHEN condition is specified,
execution resumes at the first statement that follows the current FOR, FOREACH,
LOOP, or WHILE statement.

EXIT From FOREACH Statements
If the EXIT statement has the FOREACH statement as its innermost enclosing
statement, the FOREACH keyword must immediately follow the EXIT keyword.
The EXIT FOREACH statement unconditionally terminates the FOREACH
statement, or else returns an error, if no FOREACH statement encloses the EXIT
FOREACH statement.

The following program fragment includes the EXIT FOREACH statement:
FOREACH cursor1 FOR

SELECT * INTO a FROM TABLE(b);
IF a = 4 THEN

DELETE FROM TABLE(b)
WHERE CURRENT OF cursor1;4

EXIT FOREACH;
END IF;

END FOREACH;

EXIT From FOR, LOOP, and WHILE Loops
If the EXIT statement is issued outside the FOREACH statement, it returns an error
unless it is issued from the FOR, FOR LOOP, LOOP, WHILE LOOP, or WHILE
statement as its innermost enclosing statement. In FOR or WHILE statements that
do not include the LOOP keyword, the corresponding FOR or WHILE keyword is
required after the EXIT keyword. Execution resumes at the first executable
statement that follows the innermost loop from which the EXIT statement was
issued.

The EXIT statement requires no other keyword when it is issued from the FOR
LOOP, LOOP, or WHILE LOOP statement, with or without a loop label, but if you

Chapter 3. SPL statements 3-25

include the FOR, LOOP, or WHILE keyword after the EXIT keyword, that keyword
must correspond to the type of loop from which the EXIT statement is issued.

If the EXIT keyword is followed by the identifier of a loop label, and no condition
is specified, execution resumes at the first executable statement that follows the
FOR, FOR LOOP, LOOP, WHILE LOOP, or WHILE statement whose label is
specified. This enables the EXIT statement to exit from nested loops, if an outer
loop is labeled.

If a WHEN condition follows the EXIT or EXIT label specification, EXIT has no
effect unless the condition is true. If the condition is true, execution resumes after
the labeled loop, or after the innermost loop, if no label is specified.

If the database server cannot find the specified loop or loop label, the EXIT
statement fails. If EXIT is issued outside any FOR, FOREACH, LOOP, or WHILE
statement, it generates errors.

The following example uses an EXIT FOR statement. In the FOR loop, when j
becomes 6, the IF condition i = 5 in the WHILE loop is true. The FOR loop stops
executing, and the SPL procedure continues at the next statement outside the FOR
loop (in this case, the END PROCEDURE statement). In this example, the
procedure ends when j equals 6:
CREATE PROCEDURE ex_cont_ex()

DEFINE i,s,j, INT;
FOR j = 1 TO 20

IF j > 10 THEN
CONTINUE FOR;

END IF
LET i,s = j,0;
WHILE i > 0

LET i = i -1;
IF i = 5 THEN

EXIT FOR;
END IF

END WHILE
END FOR

END PROCEDURE;

The following program fragment shows two conditional EXIT statements in a
labeled WHILE LOOP statement that is nested within another labeled LOOP
statement:

<<outer>>
LOOP
LET x = x+1;

<<inner>>
WHILE (i >10) LOOP

LET x = x+1;
EXIT inner WHEN x = 2;
EXIT outer WHEN x > 3;
END LOOP inner;

LET x = x+1;
END LOOP outer;

When the x=2 condition is true, the EXIT inner statement transfers control to the
LET statement that follows the loop whose label is inner. When the x>3 condition
is true, the EXIT outer statement terminates execution of the outer loop.

3-26 IBM Informix Guide to SQL: Syntax

Related Statements

“<< Label >> statement” on page 3-9, “FOR,” “FOREACH” on page 3-30, “LOOP”
on page 3-42, “WHILE” on page 3-58

FOR
Use the FOR statement to initiate a controlled (definite) loop when you want to
guarantee termination of the loop. The FOR statement uses expressions or range
operators to specify a finite number of iterations for a loop.

Syntax

�� FOR loop_var
<< label >>

�

�

,

IN (Range)
,

expression
= Range

�

�
(1)

Statement Block END FOR
(2)

label
(1)

LOOP Statement Block END LOOP
(2)

label

;
��

Range:

left_expr TO right_expr
STEP increment_expr

Notes:

1 See “Statement Block” on page 5-78

2 Valid only if <<label>> precedes the first FOR keyword

Element Description Restrictions Syntax

expression Value to compare with loop_var Must match loop_var data type “Expression” on page
4-44

increment_expr Positive or negative value by
which loop_var is incremented.
Default is either 1 (if left_expr <
right_expr), or else -1 (if left_expr >
right_expr).

Must return an integer. Cannot
return 0.

“Expression” on page
4-44

label Name of the loop label for this
loop

Must exist and must be unique
among label names in this SPL
routine

“Identifier” on page
5-21

left_expr Starting expression of a range Value must match SMALLINT or
INT data type of loop_var, but
left_expr must not equal right_expr

“Expression” on page
4-44

Chapter 3. SPL statements 3-27

Element Description Restrictions Syntax

loop_var Variable that determines how
many times the loop executes

Must be defined and in scope
within this statement block

“Identifier” on page
5-21

right_expr Ending expression in the range Same as for left_expr “Expression” on page
4-44

Usage

The database server evaluates all expressions before the FOR statement executes. If
one or more of the expressions are variables whose values change during the loop,
the change has no effect on the iterations of the loop.

You can use the output from a SELECT statement as the expression.

The FOR loop terminates when loop_var is equal to the values of each element in
the expression list or range in succession, or when it encounters an EXIT FOR
statement. An error is issued, however, if an assignment within the body of the
FOR statement attempts to modify the value of loop_var.

The size of right_expr relative to left_expr determine whether the range is stepped
through by positive or by negative increments:
v The increments are positive if left_expr < right_expr.
v The increments are negative if left_expr > right_expr.

If you specify no increment_expr, the default size of each step is 1, with a positive
or negative sign determined by the rules above.

Using the TO Keyword to Define a Range
The TO keyword implies a range operator. The range is defined by left_expression
and right_expression, and the STEP increment_expr option implicitly sets the number
of increments. If you use the TO keyword, loop_var must be an INT or SMALLINT
data type.

The next example shows two equivalent FOR statements. Each uses the TO
keyword to define a range. The first uses the IN keyword, and the second uses an
equal sign (=). Each statement causes the loop to execute five times:
FOR index_var IN (12 TO 21 STEP 2)

-- statement block
END FOR;

FOR index_var = 12 TO 21 STEP 2
-- statement block

END FOR;

If you omit the STEP option, the database server gives increment_expr the value of
-1 if right_expression is less than left_expression, or +1 if right_expression is more than
left_expression. If increment_expr is specified, it must be negative if right_expression is
less than left_expression, or positive if right expression is more than left_expression.

The two statements in the following example are equivalent. In the first statement,
the STEP increment is explicit. In the second statement, the STEP increment is
implicitly 1:

3-28 IBM Informix Guide to SQL: Syntax

FOR index IN (12 TO 21 STEP 1)
-- statement block

END FOR;

FOR index = 12 TO 21
-- statement block

END FOR;

The database server initializes the value of loop_var to the value of left_expression.
In subsequent iterations, the server adds increment_expr to the value of loop_var and
checks increment_expr to determine whether the value of loop_var is still between
left_expression and right_expression. If so, the next iteration occurs. Otherwise, an
exit from the loop takes place. Or, if you specify another range, the variable takes
on the value of the first element in the next range.

Specifying Two or More Ranges in a Single FOR Statement
The following example shows a statement that traverses a loop forward and
backward and uses different increment values for each direction:
FOR index_var IN (15 to 21 STEP 2, 21 to 15 STEP -3)

-- statement body
END FOR;

Using an Expression List as the Range
The database server initializes the value of loop_var to the value of the first
expression specified. In subsequent iterations, loop_var takes on the value of the
next expression. When the database server has evaluated the last expression in the
list and used it, the loop stops.

The expressions in the IN list do not need to be numeric values, as long as you do
not use range operators in the IN list. The following example uses a character
expression list:
FOR c IN (’hello’, (SELECT name FROM t), ’world’, v1, v2)

INSERT INTO t VALUES (c);
END FOR;

The following FOR statement shows the use of a numeric expression list:
FOR index IN (15,16,17,18,19,20,21)

-- statement block
END FOR;

Mixing Range and Expression Lists in the Same FOR
Statement

If loop_var is an INT or SMALLINT value, you can mix ranges and expression lists
in the same FOR statement. The following example shows a mixture that uses an
integer variable. Values in the expression list include the value that is returned
from a SELECT statement, a sum of an integer variable and a constant, the values
that are returned from an SPL function named p_get_int, and integer constants:
CREATE PROCEDURE for_ex ()

DEFINE i, j INT;
LET j = 10;
FOR i IN (1 TO 20, (SELECT c1 FROM tab WHERE id = 1),

j+20 to j-20, p_get_int(99),98,90 to 80 step -2)
INSERT INTO tab VALUES (i);

END FOR;
END PROCEDURE;

Chapter 3. SPL statements 3-29

Specifying a Labelled FOR Loop
To create a labeled FOR loop, declare a loop label before the initial FOR keyword,
and repeat the label after the END FOR keywords, as in this example:
CREATE PROCEDURE ex_cont_ex()

DEFINE i,s,j, INT;
<<for_lab>>
FOR j = 1 TO 20

IF j > 10 THEN
CONTINUE FOR;

END IF
LET i,s = j,0;
WHILE i > 0

LET i = i -1;
IF i = 5 THEN

EXIT for_lab;
END IF

END WHILE
END FOR for_lab

END PROCEDURE;

Here the EXIT for_lab statement has the same effect that the EXIT or EXIT FOR
keywords would have, terminating both the FOR loop and the routine. In this
example, the statement that includes the EXIT for_lab statement has the same
effect that EXIT for_lab WHEN i = 5 would have.

You can also label a LOOP statement that begins with a loop <<label>>
specification that immediately precedes the initial FOR keyword. In this type of
loop, the CONTINUE LOOP, EXIT LOOP, and END LOOP keywords replace the
CONTINUE FOR, EXIT FOR, and END FOR keywords. Both the LOOP and FOR
keywords are optional after the CONTINUE and EXIT keywords, but the END
LOOP keywords are required in SPL loop statements that include the LOOP
keyword.

You can use similar syntax to create an unlabeled loop that omits the <<label>>
specification that immediately precedes the initial FOR keyword. In this case, you
must also omit the undelimited loop label identifier that follows the END LOOP
keywords. See the LOOP statement for a description and examples of these forms
of labeled and unlabeled loop statements that enable you to combine FOR
statement syntax, with a finite number of loop iterations, with the "loop forever"
syntax of the LOOP statement.

Related Statements

“<< Label >> statement” on page 3-9, “CONTINUE” on page 3-13, “EXIT” on page
3-25, “LOOP” on page 3-42, “FOREACH,” “WHILE” on page 3-58

FOREACH
Use the FOREACH statement to declare a direct cursor that can select and
manipulate more than one row from a the result set of a query, or more than one
element from a collection.

Syntax

Direct sequential cursors that the FOREACH statement of SPL can create are
distinct from the dynamic cursors that the DECLARE statement of SQL can create
in SPL routines. (For the syntax and usage of dynamic cursors in SPL routines, see
“Declaring a Dynamic Cursor in an SPL Routine” on page 2-403.)

3-30 IBM Informix Guide to SQL: Syntax

�� FOREACH

�

(1)
SELECT ... INTO Statement

WITH HOLD
cursor FOR

WITH HOLD
Routine Call

,

INTO data_var

�

�
(2)

Statement Block END FOREACH
;

��

Routine Call:

EXECUTE PROCEDURE procedure
SPL_var
function

FUNCTION SPL_var
function

�

()
,

(3)
Argument

Notes:

1 See “Using a SELECT ... INTO Statement” on page 3-33

2 See “Statement Block” on page 5-78

3 See “Arguments” on page 5-1

Element Description Restrictions Syntax

cursor Identifier that you declare here as the
name of this direct cursor

Must be unique among names of
cursors, prepared statements, and
SPL variables in the routine

“Identifier” on page
5-21

data_var SPL variable in the calling routine that
receives the returned values

Data type of data_var must be
appropriate for returned value

“Identifier” on page
5-21

function,
procedure

SPL function or procedure to execute Function or procedure must exist “Database Object
Name” on page 5-16

SPL_var SPL variable that contains the name of a
routine to execute

Must be of type CHAR,
VARCHAR, NCHAR, or
NVARCHAR

“Identifier” on page
5-21

Usage

To execute a FOREACH statement, the database server takes these actions:
1. It declares and implicitly opens a direct sequential cursor.
2. It obtains the first row from the query contained within the FOREACH loop, or

else the first set of values from the called routine.
3. It assigns to each variable in the variable list the value of the corresponding

value from the active set that the SELECT statement or the called routine
creates.

4. It executes the statement block.
5. It fetches the next row from the SELECT statement or called routine on each

iteration, and it repeats steps 3 and 4.

Chapter 3. SPL statements 3-31

6. It terminates the loop when it finds no more rows that satisfy the SELECT
statement or called routine. It closes the direct sequential cursor when the loop
terminates.

Because the statement block can contain additional FOREACH statements, cursors
can be nested. No limit exists on the number of nested cursors.

An SPL routine that returns more than one row, collection element, or set of values
is called a cursor function. An SPL routine that returns only one row or value is
called a noncursor function.

This SPL procedure illustrates FOREACH statements with a SELECT ... INTO
clause, with an explicitly named cursor, and with a procedure call:
CREATE PROCEDURE foreach_ex()

DEFINE i, j INT;
FOREACH SELECT c1 INTO i FROM tab ORDER BY 1

INSERT INTO tab2 VALUES (i);
END FOREACH
FOREACH cur1 FOR SELECT c2, c3 INTO i, j FROM tab

IF j > 100 THEN
DELETE FROM tab WHERE CURRENT OF cur1;
CONTINUE FOREACH;

END IF
UPDATE tab SET c2 = c2 + 10 WHERE CURRENT OF cur1;

END FOREACH
FOREACH EXECUTE PROCEDURE bar(10,20) INTO i

INSERT INTO tab2 VALUES (i);
END FOREACH

END PROCEDURE; -- foreach_ex

A Select cursor is closed when any of the following situations occur:
v The cursor returns no further rows.
v The cursor is a Select cursor without a HOLD specification, and a transaction

completes using the COMMIT or ROLLBACK statement.
v An EXIT statement executes, which transfers control out of the FOREACH

statement.
v An exception occurs that is not trapped inside the body of the FOREACH

statement. (See “ON EXCEPTION” on page 3-46.)
v A cursor in the calling routine that is executing this cursor routine (within a

FOREACH loop) closes for any reason.

Note:
The FOREACH statement cannot define a SCROLL cursor. Each FOREACH cursor
is a sequential cursor, which can fetch only the next row in sequence from the
active set. A cursor that FOREACH defines can read through the active set only
once each time it is opened.
Related reference:
“UPDATE statement” on page 2-852
“EXECUTE FUNCTION statement” on page 2-462
“EXECUTE PROCEDURE statement” on page 2-471
“INSERT statement” on page 2-545
“Collection-Derived Table” on page 5-4
“DECLARE statement” on page 2-386

3-32 IBM Informix Guide to SQL: Syntax

Using a SELECT ... INTO Statement
As indicated in the diagram for “FOREACH” on page 3-30, not all clauses and
options of the SELECT statement are available for you to use in a FOREACH
statement. The SELECT statement in the FOREACH statement must include the
INTO clause. It can also include UNION and ORDER BY clauses, but it cannot use
the INTO TEMP clause. For a complete description of SELECT syntax and usage,
see “SELECT statement” on page 2-654. The data type and count of each variable
in the variable list must match each value that the SELECT ... INTO statement
returns.

The database server issues an error if you include a semicolon (;) within the
FOREACH statement to terminate the SELECT ... INTO specification. The following
program fragment, for example, fails with a syntax error:
CREATE DBA PROCEDURE IF NOT EXISTS shapes()

DEFINE vertexes SET(point NOT NULL);
DEFINE pnt point;

SELECT definition INTO vertexes FROM polygons
WHERE id = 207;

FOREACH cursor1 FOR
SELECT * INTO pnt FROM TABLE(vertexes); -- Semicolon not valid

. . .
END FOREACH

. . .
END PROCEDURE;

In the example above, you can avoid this error by deleting the semicolon that
immediately follows the TABLE(vertexes) specification.

Using the ORDER BY Clause of the SELECT Statement
The ORDER BY clause of the SELECT statement implies that the query returns
more than one row. Unless you use the DECLARE statement of SQL to define a
Select cursor or a Function cursor, the database server issues an error if you specify
the ORDER BY clause outside the context of a FOREACH loop to process the
returned rows individually within an SPL routine.

For the syntax and usage of the DECLARE statement in SPL routines, see
“Declaring a Dynamic Cursor in an SPL Routine” on page 2-403.

Using Hold Cursors
The WITH HOLD keywords specify that the cursor should remain open when a
transaction closes (by being committed or by being rolled back).

Updating or Deleting Rows Identified by Cursor Name
Specify a cursor name in the FOREACH statement if you intend to use the WHERE
CURRENT OF cursor clause in UPDATE or DELETE statements that operate on the
current row of cursor within the FOREACH loop. Although you cannot include the
FOR UPDATE keywords in the SELECT ... INTO segment of the FOREACH
statement, the cursor behaves like a FOR UPDATE cursor.

For a discussion of locking, see the section on “Locking with an Update Cursor”
on page 2-393. For a discussion of isolation levels, see the description of “SET
ISOLATION statement” on page 2-796.

Chapter 3. SPL statements 3-33

Using Collection Variables
The FOREACH statement allows you to declare a cursor for an SPL collection
variable. Such a cursor is called a Collection cursor. Use a collection variable to
access the elements of a collection (SET, MULTISET, LIST) column. Use a cursor
when you want to access one or more elements in a collection variable.

The following excerpt from an SPL routine shows how to fill a collection variable
and then how to use a cursor to access individual elements:
DEFINE a SMALLINT;
DEFINE b SET(SMALLINT NOT NULL);
SELECT numbers INTO b FROM table1 WHERE id = 207;
FOREACH cursor1 FOR

SELECT * INTO a FROM TABLE(b);
...
END FOREACH;

In this example, the SELECT statement selects one element at a time from the
collection variable b into the element variable a. The projection list is an asterisk,
because the collection variable b contains a collection of built-in types. The variable
b is used with the TABLE keyword as a Collection-Derived Table. For more
information, see “Collection-Derived Table” on page 5-4.

The next example also shows how to fill a collection variable and then how to use
a cursor to access individual elements. This example, however, uses a list of
ROW-type fields in its projection list:
DEFINE employees employee_t;
DEFINE n VARCHAR(30);
DEFINE s INTEGER;

SELECT emp_list into employees FROM dept_table
WHERE dept_no = 1057;

FOREACH cursor1 FOR
SELECT name,salary

INTO n,s FROM TABLE(employees) AS e;
...
END FOREACH;

Here the collection variable employees contains a collection of ROW types. Each
ROW type contains the fields name and salary. The collection query selects one
name and salary combination at a time, placing name into n and salary into s. The
AS keyword declares e as an alias for the collection-derived table employees. The
alias exists as long as the SELECT statement executes.

Restrictions on collection cursors
When you use a Collection cursor to fetch individual elements from a collection
variable, the FOREACH statement has the following restrictions:
v It cannot contain the WITH HOLD keywords.
v It must contain a restricted SELECT statement in the FOREACH loop.

In addition, the SELECT statement that you associate with the Collection cursor
has the following restrictions:
v Its general structure is SELECT... INTO ... FROM TABLE. The statement selects

one element at a time from a collection variable specified after the TABLE
keyword into another variable called an element variable.

v It cannot contain an expression in the Projection list.
v It cannot include the following clauses or options: WHERE, GROUP BY, ORDER

BY, HAVING, INTO TEMP, and WITH REOPTIMIZATION.

3-34 IBM Informix Guide to SQL: Syntax

v The data type of the element variable must be the same as the element type of
the collection.

v The data type of the element variable can be any opaque, distinct, or collection
data type, or any built-in data type except BIGSERIAL, BLOB, BYTE, CLOB,
SERIAL, SERIAL8, or TEXT.

v If the collection contains opaque, distinct, built-in, or collection types, the
projection list must be an asterisk (*) symbol.

v If the collection contains ROW types, the projection list can be a list of one or
more field names.

Modifying Elements in a Collection Variable
To update an element of a collection within an SPL routine, you must first declare
a cursor with the FOREACH statement.

Then, within the FOREACH loop, select elements one at a time from the collection
variable, using the collection variable as a collection-derived table in a SELECT
query.

When the cursor is positioned on the element to be updated, you can use the
WHERE CURRENT OF clause, as follows:
v The UPDATE statement with the WHERE CURRENT OF clause updates the

value in the current element of the collection variable.
v The DELETE statement with the WHERE CURRENT OF clause deletes the

current element from the collection variable.

Using Select Cursors with FOREACH
When using the FOREACH statement, if the result set from a query is to be
modified, do not use this result set as an exit criterion for the FOREACH loop. For
example, if the FOREACH statement declares a Select cursor that is expected to
return 30 rows, but DELETE, INSERT, or UPDATE operations within the
FOREACH loop modify the result set of the query, this might cause unexpected
behavior. To ensure that a FOREACH loop works as intended, make sure that any
Select cursor in the FOREACH statement completes its execution before you begin
modifying its result set.

One way to avoid unexpected results from a FOREACH loop that performs DML
operations on the rows returned by a query is to use an ORDER BY clause in the
SELECT statement to materialize the result set.

Calling a UDR in the FOREACH Loop
In general, use these guidelines for calling another UDR from an SPL routine:
v To call a user-defined procedure, use EXECUTE PROCEDURE procedure name.
v To call a user-defined function, use EXECUTE FUNCTION function name (or

EXECUTE PROCEDURE function name if the user-defined function was created
with the CREATE PROCEDURE statement).

If you use EXECUTE PROCEDURE, the database server looks first for a
user-defined procedure of the name you specify. If it finds the procedure, the
database server executes it. If it does not find the procedure, it looks for a
user-defined function of the same name to execute. If the database server finds
neither a function nor a procedure, it issues an error message. If you use EXECUTE

Chapter 3. SPL statements 3-35

FUNCTION, the database server looks for a user-defined function of the name you
specify. If it does not find a function of that name, the database server issues an
error message.

An SPL function can return zero (0) or more values or rows.

The data type and count of each variable in the variable list must match each value
that the function returns.

Related Statements

“CONTINUE” on page 3-13, “EXIT” on page 3-25, “FOR” on page 3-27, “LOOP”
on page 3-42,“WHILE” on page 3-58

GOTO
Use the GOTO statement to transfer control of program execution to the statement
that has a specified statement label.

Syntax

�� GOTO label ; ��

Element Description Restrictions Syntax

label Name of the loop label for this
loop

Must be unique among labels in
this SPL routine

“Identifier” on page
5-21

Usage

The GOTO statement branches to a statement label unconditionally. The statement
label must be unique within its scope and must precede an executable statement.
When successfully executed, the GOTO statement transfers control to the labeled
statement or statement block.

In the following program fragment, the jump_back function transfers control to a
LET statement that has the statement label back if the value of variable j is greater
than 100.
CREATE FUNCTION jump_back()

RETURNING INT;
DEFINE i,j INT;
...
<<back>>
LET j = j + i
FOR i IN (1 TO 52 STEP 5)

IF i < 11 THEN
LET j = j + 3
CONTINUE FOR;

END IF;
IF j > 100 THEN

GOTO back
END IF;
RETURN j WITH RESUME;

END FOR;
END FUNCTION;

The GOTO statement is not valid in an ON EXCEPTION statement block.

3-36 IBM Informix Guide to SQL: Syntax

The identifier of the statement label that the GOTO statement references must exist
in the database, must be unique among statement labels and loop labels the SPL
routine, and must be within a scope that the GOTO statement can reach.

Related Statements

“<< Label >> statement” on page 3-9

IF
Use the IF statement to create a logical branch within an SPL routine.

Syntax

�� IF
(1)

Condition THEN
(2)

IF Statement List

�

�

�
(1)

ELIF Condition THEN
(2)

IF Statement List

�

�
(2)

ELSE IF Statement List

END IF
;

��

Notes:

1 See “Condition” on page 4-5

2 See “IF Statement List” on page 3-39

Usage

The database server processes the IF statement by the following steps:
1. If the condition that follows the IF keyword is true, any statements that follow

the first THEN keyword of the IF statement execute, and the IF statement
terminates.

2. If the result of the initial IF condition is false, but an ELIF clause exists, the
database server evaluates the condition that follows the ELIF keyword.

3. If the result of the ELIF condition is true, any statements that follow the THEN
keyword of the ELIF clause execute, and the IF statement terminates.

4. If the result of the condition in the first ELIF clause is also false, but one or
more additional ELIF clauses exist, the database server evaluates the condition
in the next ELIF clause, and proceeds as in the previous step if it is true. If it is
false, the database server evaluates the condition in successive ELIF clauses,
until it finds a condition that is true, in which case it executes the statement list
that follows the THEN keyword of that ELIF clause, and the IF statement
terminates.

Chapter 3. SPL statements 3-37

5. If no condition in the IF statement is true, but the ELSE clause exists,
statements that follow the ELSE keyword execute, and the IF statement
terminates.

6. If none of the conditions in the IF statement are true, and no ELSE clause
exists, the IF statement terminates without executing any statement list.

ELIF Clause
Use the ELIF clause to specify one or more additional conditions to evaluate. If the
IF condition is false, the ELIF condition is evaluated. If the ELIF condition is true,
the statements that follow the THEN keyword in the ELIF clause execute.

If no statement follows the THEN keyword of the ELIF clause when the ELIF
condition is true, program control passes from the IF statement to the next
statement.

ELSE Clause
The ELSE clause executes if no true previous condition exists in the IF clause or
any of the ELIF clauses.

In the following example, the SPL function uses an IF statement with both an ELIF
clause and an ELSE clause. The IF statement compares two strings.

The function displays 1 to indicate that the first string comes before the second
string alphabetically, or -1 if the first string comes after the second string
alphabetically. If the strings are the same, a zero (0) is returned.
CREATE FUNCTION str_compare (str1 CHAR(20), str2 CHAR(20))

RETURNING INT;
DEFINE result INT;

IF str1 > str2 THEN LET result =1;
ELIF str2 > str1 THEN LET result = -1;
ELSE LET result = 0;

END IF
RETURN result;

END FUNCTION -- str_compare

Conditions in an IF Statement
Just as in the WHILE statement, if any expression in the condition evaluates to
NULL, then the condition cannot be true, unless you are explicitly testing for
NULL using the IS NULL operator. The following rules summarize NULL values
in conditions:
1. If the expression x evaluates to NULL, then x is not true by definition.

Furthermore, NOT (x) is also not true .
2. IS NULL is the only operator that can return true for x. That is, x IS NULL is

true, and x IS NOT NULL is not true.

If an expression in the condition has an UNKNOWN value from an uninitialized
SPL variable, the statement terminates and raises an exception.

You can specify a trigger-type Boolean operator (DELETING, INSERTING,
SELECTING, or UPDATING) as a condition in an IF statement only within a
trigger routine.

3-38 IBM Informix Guide to SQL: Syntax

IF Statement List

IF Statement List:

(1)
BEGIN Statement Block END

(2)
Subset of SPL Statements

(3)
Subset of SQL Statements ;

Notes:

1 See “Statement Block” on page 5-78

2 See “Subset of SPL Statements Allowed in the IF Statement List”

3 See “SQL Statements Not Valid in an IF Statement”

Subset of SPL Statements Allowed in the IF Statement List
You can use any of the following SPL statements in the IF statement list:
v <<Label >>
v CALL
v CASE
v CONTINUE
v EXIT
v FOR
v FOREACH
v GOTO
v IF
v LET
v LOOP
v RAISE EXCEPTION
v RETURN
v SYSTEM
v TRACE
v WHILE

The “Subset of SPL Statements” syntax diagram for the “IF Statement List” refers
to the SPL statements that are listed above.

SQL Statements Not Valid in an IF Statement
The “Subset of SQL Statements” element in the syntax diagram for the “IF
Statement List” refers to all SQL statements, except for the following SQL
statements, which are not valid in the IF statement list.
v ALLOCATE DESCRIPTOR
v CLOSE DATABASE
v CONNECT
v CREATE DATABASE
v CREATE PROCEDURE
v DATABASE

Chapter 3. SPL statements 3-39

v DEALLOCATE DESCRIPTOR
v DESCRIBE
v DISCONNECT
v EXECUTE
v FLUSH
v GET DESCRIPTOR
v GET DIAGNOSTICS
v INFO
v LOAD
v OUTPUT
v PUT
v SET AUTOFREE
v SET CONNECTION
v SET DESCRIPTOR
v UNLOAD
v WHENEVER

You can use a SELECT statement only if you use the INTO TEMP clause to store
the result set of the SELECT statement in a temporary table.

Related Statements

“WHILE” on page 3-58

LET
Use the LET statement to assign values to variables or to call a user-defined SPL
routine and assign the returned value or values to SPL variables.

Syntax

�� LET �

,

SPL_var = �

�

�

�

,

function ()
,

(1)
Argument

,
(2)

Expression
,

(3)
(SELECT Statement)

; ��

Notes:

1 See “Arguments” on page 5-1

2 See “Expression” on page 4-44

3 See “SELECT statement” on page 2-654

3-40 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

function SPL function to be invoked Must exist in the database “Identifier” on page
5-21

SPL_var SPL variable to receive a value that the
function, expression, or query returns

Must be defined and in scope
within the statement block

“Identifier” on page
5-21;

Usage

The LET statement can assign a value returned by an expression, function, or
query to an SPL variable. At runtime, the value to be assigned is calculated first.
The resulting value is cast to the data type of SPL_var, if possible, and the
assignment occurs. If conversion is not possible, an error occurs, and the value of
the variable remains undefined. (A LET operation that assigns a single value to a
single SPL variable is called a simple assignment.)

A compound assignment assigns multiple expressions to multiple SPL variables. The
data types of expressions in the expression list do not need to match the data types
of the corresponding variables in the variable list, because the database server
automatically converts the data types. (For a detailed discussion of casting, see the
IBM Informix Guide to SQL: Reference.)

In multiple-assignment operations, the number of variables to the left of the equal
(=) sign must match the number of values returned by the functions, expressions,
and queries listed on the right of the equal (=) sign. The following example
shows several LET statements that assign values to SPL variables:
LET a = c + d ;
LET a,b = c,d ;
LET expire_dt = end_dt + 7 UNITS DAY;
LET name = ’Brunhilda’;
LET sname = DBSERVERNAME;
LET this_day = TODAY;

You cannot use multiple values to the right of the equal (=) sign to operate on
other values. For example, the following statement is not valid:
LET a,b = (c,d) + (10,15); -- INVALID EXPRESSION

Related reference:
“EXECUTE PROCEDURE statement” on page 2-471

Using a SELECT Statement in a LET Statement
The examples in this section use a SELECT statement in a LET statement. You can
use a SELECT statement to assign values to one or more variables on the left side
of the equals (=) operator, as the following example shows:
LET a,b = (SELECT c1,c2 FROM t WHERE id = 1);
LET a,b,c = (SELECT c1,c2 FROM t WHERE id = 1), 15;

You cannot use a SELECT statement to make multiple values operate on other
values. The following example is invalid:
LET a,b = (SELECT c1,c2 FROM t) + (10,15); -- INVALID CODE

Because a LET statement is equivalent to a SELECT ... INTO statement, the two
statements in the following example have the same results: a=c and b=d:

Chapter 3. SPL statements 3-41

CREATE PROCEDURE proof()
DEFINE a, b, c, d INT;
LET a,b = (SELECT c1,c2 FROM t WHERE id = 1);
SELECT c1, c2 INTO c, d FROM t WHERE id = 1

END PROCEDURE

If the SELECT statement returns more than one row, you must enclose the SELECT
statement in a FOREACH loop.

For a description of SELECT syntax and usage, see “SELECT statement” on page
2-654.

Calling a Function in a LET Statement
You can call a user-defined function in a LET statement and assign the returned
values to an SPL variable that receives the values that the function returns.

An SPL function can return multiple values (that is, values from multiple columns
in the same row) into a list of variable names. In other words, the function can
have multiple values in its RETURN statement and the LET statement can have
multiple variables to receive the returned values.

When you call the function, you must specify all the necessary arguments to the
function unless the arguments of the function have default values. If you specify
the name of one of the parameters in the called function with syntax such as name
= 'smith', you must name all of the parameters.

An SPL function that selects and returns more than one row must be enclosed in a
FOREACH loop.

The following two examples show valid LET statements:
LET a, b, c = func1(name = ’grok’, age = 17);
LET a, b, c = 7, func2(’orange’, ’green’);

The following LET statement is not valid because it tries to add the output of two
functions and then assign the sum to two variables, a and b.
LET a, b = func1() + func2(); -- INVALID CODE

You can easily split this LET statement into two valid LET statements:
LET a = (func1() + func2());
LET b = a; -- VALID CODE

A function called in a LET statement can have an argument of COLLECTION, SET,
MULTISET, or LIST. You can assign the value that the function returns to a
variable, for example:
LET d = function1(collection1);
LET a = function2(set1);

In the first statement, the SPL function function1 accepts collection1 (that is, any
collection data type) as an argument and returns its value to the variable d. In the
second statement, the SPL function function2 accepts set1 as an argument and
returns a value to the variable a.

LOOP
Use the LOOP statement to define a loop with an indeterminate number of
iterations.

3-42 IBM Informix Guide to SQL: Syntax

Syntax

��
<< label >> (1)

WHILE Condition
FOR loop_var IN (Range)

expression
= Range

�

�
(2)

LOOP Statement Block END LOOP
(3)

label
;

��

Range:

left_expression TO right_expression
STEP increment_expr

Notes:

1 See “Condition” on page 4-5

2 See “Statement Block” on page 5-78

3 Valid only if <<label>> precedes the first keyword

Element Description Restrictions Syntax

expression Value to compare with loop_var Must match loop_var data type “Expression” on page
4-44

increment_expr Positive or negative value by
which loop_var is incremented

Must return an integer. Cannot
return 0.

“Expression” on page
4-44

label Name of the loop label for this
loop

Must be unique among labels in
this SPL routine

“Identifier” on page
5-21

left_expression Starting expression of a range Value must match SMALLINT or
INT data type of loop_var

“Expression” on page
4-44

loop_var Variable that determines how
many times the loop executes

Must be defined and in scope
within this statement block

“Identifier” on page
5-21

right_expression Ending expression in the range Same as for left_expression “Expression” on page
4-44

Usage

The LOOP statement is an iterative statement that resembles the FOR and WHILE
statements. Like FOR and WHILE, the LOOP statement can have an optional loop
label, It can include the CONTINUE statement to specify another iteration, and the
EXIT statement to terminate execution of the loop.

Besides resembling FOR and WHILE in its functionality, the LOOP statement can
use the syntax of FOR or WHILE that precedes the statement block. Sections that
follow describe several forms of the LOOP statement, including these:
v Simple LOOP statements that iterate a statement loop indefinitely

Chapter 3. SPL statements 3-43

v FOR LOOP statements, that use FOR statement syntax specify a finite number of
iterations

v WHILE LOOP statements, that iterate while a specified condition is true
v Labeled versions of each of these LOOP statements, which can terminate deeply

nested loops.

Simple LOOP Statements
The following program fragment illustrates a simple form of the LOOP statement.
LOOP
LET i = i + 1;

IF i = 5 THEN EXIT;
ELSE
CONTINUE;
END IF

END LOOP;

In this example the IF statement limits the number of iterations. Here the
CONTINUE and EXIT statements omit the optional LOOP keyword, but the END
LOOP statement is required at the end of the statement loop. A similar FOR or
WHILE keyword would have required the FOR or WHILE keywords, respectively,
in the CONTINUE and EXIT statements.

The next example uses a conditional EXIT statement to terminate the loop:
LOOP
LET i = i + 1;

EXIT WHEN i = 4;
END LOOP;

No keyword identifying the type of loop statement is required after the EXIT
statement, as would be the case for an EXIT statement in a FOR, WHILE, or
FOREACH statement. When the i = 4 condition becomes true, program control
passes from the LOOP statement to whatever statement follows the END LOOP
keywords.

FOR LOOP Statements
The FOR LOOP statement uses FOR statement syntax to specify a variable and a
range of values that the variable can take. The loop iterates until the specified limit
to these values is reached, or until control is transferred outside the loop, as by the
unconditional EXIT statement in the following example:
FOR i IN (1 TO 5) LOOP

IF i = 5 THEN EXIT;
ELSE
CONTINUE;

END LOOP;

In the FOR LOOP statement, the FOR keyword can follow the EXIT or CONTINUE
keyword, but the FOR keyword is not required, as it is in an ordinary FOR
statement.

The following example replaces the IF statement with a functionally equivalent
conditional EXIT statement:
FOR i IN (1 TO 5) LOOP

EXIT WHEN i = 5;
END LOOP;

3-44 IBM Informix Guide to SQL: Syntax

WHILE LOOP Statements
To create a WHILE LOOP statement, loop, you can immediately follow a WHILE
condition specification with a LOOP statement. The resulting loop terminates after
the condition becomes false, or when some other statement transfers program
control from the loop. In the following WHILE LOOP statement, the condition
specifies that the loop terminates after the loop variable i has been incremented to
the value of 6:
WHILE (i < 6) LOOP

LET i = i + 1;
IF i = 5 THEN EXIT;
ELSE
CONTINUE;
END IF

END LOOP;

As in the FOR LOOP statement, the EXIT and CONTINUE keywords do not need
to specify the type of loop statement, but the example would not be affected if
EXIT WHILE and CONTINUE WHILE replaced the EXIT and CONTINUE
keywords. The END LOOP keywords are required, however, because Informix
treats the WHILE LOOP (and FOR LOOP) statements as LOOP statements, despite
their initial FOR and WHILE specifications.

Labeled LOOP Statements
All forms of the LOOP statement, including the FOR LOOP, WHILE LOOP, and
simple LOOP statements can have statement labels. You can create a labeled LOOP
statement in the following steps:
1. Write a valid LOOP, FOR LOOP, or WHILE LOOP statement.
2. Create a statement label by enclosing an SQL identifier (that is not already the

name of a label in the same SPL routine) between angle brackets
(<<loop_label>>) immediately before the first line of the LOOP, FOR LOOP, or
WHILE LOOP statement.

3. Enter the same SQL identifier, but without angle bracket delimiters,
immediately after the END LOOP keywords that terminate the statement,
which is now a labeled loop statement.

One advantage of labeled LOOP statements is that they can be referenced in EXIT
statements. When the EXIT label statement executes, program control passes from
the EXIT statement to the statement that follows the specified loop label.

In the following example, a labeled WHILE LOOP loop, whose loop label identifier
is endo, is part of the statement block of a labeled LOOP statement whose loop
label identifier is voort. If the conditional EXIT statement EXIT endo WHEN x = 7:
detects that its condition is true, program control passes to the LET x = x + 1
statement that follows the END LOOP endostatement. If the conditional EXIT
statement EXIT voort WHEN x > 9: detects that its condition is true, program
control passes to the LET x = x + 1 statement that follows the END LOOP
voortstatement, and the value of x is not incremented by the LET statement,
<<voort>>
LOOP

LET x = x+1;
<<endo>>
WHILE (i < 10) LOOP

LET x = x+1;
EXIT endo WHEN x = 7;

Chapter 3. SPL statements 3-45

EXIT voort WHEN x > 9;
END LOOP endo;

LET x = x+1;
END LOOP voort;

uses FOR statement syntax to specify a variable and a range of values that the
variable can take. The loop iterates until the specified limit to these values is
reached, or until control is transferred outside the loop, as by the unconditional
EXIT statement in the following example:
FOR i IN (1 TO 5) LOOP

IF i = 5 THEN EXIT;
ELSE
CONTINUE;

END LOOP;

In the FOR LOOP statement, the FOR keyword can follow the EXIT or CONTINUE
keyword, but the FOR keyword is not required, as it is in an ordinary FOR
statement.

The following example replaces the IF statement with a functionally equivalent
conditional EXIT statement:
FOR i IN (1 TO 5) LOOP

EXIT WHEN i = 5;
END LOOP;

Related Statements

“<< Label >> statement” on page 3-9, “FOR” on page 3-27, “WHILE” on page 3-58

ON EXCEPTION
Use the ON EXCEPTION statement to specify actions to be taken for any error, or
for a list of one or more specified errors, during execution of a statement block.

Syntax

�� ON EXCEPTION

�

,

IN (error_number)

�

�
SET SQL_error_var

, ISAM_error_var
, error_data_var

(1)
Statement Block �

� END EXCEPTION
WITH RESUME ;

��

Notes:

1 See “Statement Block” on page 5-78

3-46 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

error_data_var SPL variable to receive a string returned
by an SQL error or by a user-defined
exception

Must be a character type to receive
the error information. Must be valid
in current statement block.

“Identifier”
on page 5-21

error_number SQL error number or a number defined
by a RAISE EXCEPTION statement that
is to be trapped

Must be of integer type. Must be
valid in current statement block.

“Literal
Number” on
page 4-215

ISAM_error_var SPL variable that receives the ISAM
error number of the exception raised

Same as for error_number “Identifier”
on page 5-21

SQL_error_var SPL variable that receives the SQL error
number of the exception raised

Same as for ISAM_error_var “Identifier”
on page 5-21

Usage

The ON EXCEPTION statement, together with the RAISE EXCEPTION statement,
provides an error-trapping and error-recovery mechanism for SPL routines. ON
EXCEPTION can specify the errors that you want to trap as the SPL routine
executes, and specifies the action to take if the error occurs within the statement
block. The ON EXCEPTION statement can list one or more specific error numbers
in the IN clause, or it can trap all errors (or any error) if the IN clause is omitted.

A statement block can include more than one ON EXCEPTION statement. The
exceptions that are trapped can be either system-defined or user-defined.

The scope of the ON EXCEPTION statement is the statement block that contains it,
and any statement blocks that are nested within that statement block, unless one of
the nested statement blocks provides an ON EXCEPTION statement that overrides
the outer one.

When an exception is trapped, the error status is cleared.

If you specify a variable to receive an ISAM error, but no accompanying ISAM
error exists, a zero (0) is assigned to the variable. If you specify a variable to
receive the error text, but none exists, the variable stores an empty string.

No ON EXCEPTION Support in Triggered Actions

The ON EXCEPTION statement has no effect when it is issued from an SPL
routine in the following calling contexts:
v in a trigger routine,
v in the Action clause or the Correlated Action clause of a trigger on a table,
v in the Action clause of an INSTEAD OF trigger on a view.

When a UDR includes ON EXCEPTION in any of these contexts, the database
server ignores the ON EXCEPTION statement.

Placement of the ON EXCEPTION statement
The ON EXCEPTION statement is a declarative statement, not an executable
statement. For this reason, ON EXCEPTION must follow immediately after any
DEFINE statements, and must precede any executable statement within the same
SPL statement block.

Chapter 3. SPL statements 3-47

Because the body of the SPL routine is a statement block, the ON EXCEPTION
statement often appears at the top of the routine, and applies to all of the code in
the routine.

The following example positions an ON EXCEPTION statement so that a
FOREACH statement can continue processing rows after an error occurs.
Procedure X() reads customer numbers from table A and inserts them into table B.
Because the INSERT statement is in scope of the ON EXCEPTION statement, any
error during an INSERT operation causes control of execution to move to the next
row of the FOREACH cursor, without terminating the FOREACH loop.
CREATE PROCEDURE X()

DEFINE v_cust_num CHAR(20);

FOREACH cs_insert FOR SELECT cust_num INTO v_cust_num FROM A
BEGIN

ON EXCEPTION
END EXCEPTION WITH RESUME;
INSERT INTO B(cust_num) VALUES(v_cust_num);

END
END FOREACH

END PROCEDURE

In the next example, function add_salesperson() inserts a set of values into a
table. If the table does not exist, it is created, and the values are inserted. The
function also returns the total number of rows in the table after the insert occurs:
CREATE FUNCTION add_salesperson(last CHAR(15), first CHAR(15))

RETURNING INT;
DEFINE x INT;
ON EXCEPTION IN (-206) -- If no table was found, create one

CREATE TABLE emp_list
(lname CHAR(15),fname CHAR(15), tele CHAR(12));

INSERT INTO emp_list VALUES -- and insert values
(last, first, ’800-555-1234’);

END EXCEPTION WITH RESUME;
INSERT INTO emp_list VALUES (last, first, ’800-555-1234’);
SELECT count(*) INTO x FROM emp_list;
RETURN x;

END FUNCTION;

When an error occurs, the database server searches for the last ON EXCEPTION
statement that traps the error code. If the database server finds no pertinent ON
EXCEPTION statement, the error code is passed back to the calling context (the
SPL routine, application, or interactive user), and execution terminates.

In the previous example, the minus sign (-) is required in the IN clause that
specifies error -206; most error codes are negative integers.

The next example uses two ON EXCEPTION statements with the same error
number so that error code 691 can be trapped in two levels of nesting. All of the
DELETE statements except the one that is marked { 6 } are within the scope of
the first ON EXCEPTION statement. The DELETE statements that are marked { 1
} and { 2 } are within the scope of the inner ON EXCEPTION statement:
CREATE PROCEDURE delete_cust (cnum INT)

ON EXCEPTION IN (-691) -- children exist
BEGIN -- Begin-end so no other DELETEs get caught in here.

ON EXCEPTION IN (-691)
DELETE FROM another_child WHERE num = cnum; { 1 }
DELETE FROM orders WHERE customer_num = cnum; { 2 }

3-48 IBM Informix Guide to SQL: Syntax

END EXCEPTION -- for error -691
DELETE FROM orders WHERE customer_num = cnum; { 3 }

END
DELETE FROM cust_calls WHERE customer_num = cnum; { 4 }
DELETE FROM customer WHERE customer_num = cnum; { 5 }

END EXCEPTION
DELETE FROM customer WHERE customer_num = cnum; { 6 }

END PROCEDURE

Using the IN Clause to Trap Specific Exceptions
An error is trapped if the SQL error code or the ISAM error code matches an
exception code in the list of error numbers. The search through the list of errors
begins from the left and stops with the first match. You can use a combination of
an ON EXCEPTION statement without an IN clause and one or more ON
EXCEPTION statements with an IN clause. When an error occurs, the database
server searches for the last declaration of the ON EXCEPTION statement that traps
the particular error code.
CREATE PROCEDURE ex_test()

DEFINE error_num INT;
...
ON EXCEPTION SET error_num
-- action C
END EXCEPTION
ON EXCEPTION IN (-300)
-- action B
END EXCEPTION
ON EXCEPTION IN (-210, -211, -212) SET error_num
-- action A
END EXCEPTION

A summary of the sequence of statements in the previous example would be:
1. Test for an error.
2. If error -210, -211, or -212 occurs, take action A.
3. If error -300 occurs, take action B.
4. If any other error occurs, take action C.

Receiving Error Information in the SET Clause
If you use the SET clause, when an exception occurs, the SQL error code and
(optionally) the ISAM error code are inserted into the variables that are specified in
the SET clause. If you provide an error_data_var, any error text that the database
server returns is put into the error_data_var. Error text includes information such as
the offending table or column name.

Forcing Continuation of the Routine
The first example in “Placement of the ON EXCEPTION statement” on page 3-47
includes the WITH RESUME keyword to specify that if the ON EXCEPTION
statement traps an error, execution of the FOREACH loop resumes on the next row
of the cs_insert cursor, the row immediately following the row on which the error
was raised. If an error is issued on the last row of the active set, the procedure
exits. After procedure X completes execution, table B contains a copy of every
customer number in table A on which no error was issued during the INSERT
operation.

The second example in “Placement of the ON EXCEPTION statement” on page
3-47 uses the WITH RESUME keyword to indicate that after the statement block in
the ON EXCEPTION statement executes, execution is to continue at the SELECT

Chapter 3. SPL statements 3-49

COUNT(*) FROM emp_list statement, which is the line following the line that raised
the error. For this function, the result is that the count of salespeople names occurs
even if the error occurred.

Continuing Execution After an Exception Occurs
If you omit the WITH RESUME keywords, the next statement that executes after
an exception occurs depends on the placement of the ON EXCEPTION statement,
as the following scenarios describe:
v If the ON EXCEPTION statement is inside a statement block with a BEGIN and

an END keyword, execution resumes with the first statement (if any) after that
BEGIN ... END block. That is, it resumes after the scope of the ON EXCEPTION
statement.

v If the ON EXCEPTION statement is inside a loop (FOR, WHILE, FOREACH),
the rest of the loop is skipped, and execution resumes with the next iteration of
the loop.

v If no statement or block, but only the SPL routine, contains the ON EXCEPTION
statement, the routine executes a RETURN statement with no arguments,
returning a successful status and no values.

To prevent an infinite loop, if an error occurs during execution of the statement
block, then the search for another ON EXCEPTION statement to trap the error
does not include the current ON EXCEPTION statement.

Related Statements

“RAISE EXCEPTION”

RAISE EXCEPTION
Use the RAISE EXCEPTION statement to simulate the generation of an error.

Syntax

�� RAISE EXCEPTION SQL_error_var
, ISAM_error

, error_text

; ��

Element Description Restrictions Syntax

error_text SPL variable or expression that
contains error message text for error
-746

Must be a character data type and be
valid in the statement block

“Identifier” on page
5-21; “Expression” on
page 4-44

ISAM_error SPL variable or other expression
that represents an ISAM error
number. The default is 0.

Must return a value in SMALLINT
range. You can specify a unary minus
sign before error number.

“Expression” on page
4-44

SQL_error SPL variable or other expression
that represents an SQL error
number

Same as for ISAM_error “Expression” on page
4-44

Usage

Use the RAISE EXCEPTION statement to simulate an error or to generate an error
with a custom message. An ON EXCEPTION statement can trap the generated
error.

3-50 IBM Informix Guide to SQL: Syntax

If you omit ISAM_error, the database server sets the ISAM error code to zero (0)
when the exception is raised. If you want to specify error_text but not specify a
value for ISAM_error, specify zero (0) as the value of ISAM_error.

The RAISE EXCEPTION statement can raise either system-generated exceptions or
user-generated exceptions. For example, the following statement raises the error
number -208:
RAISE EXCEPTION -208, 0;

Here the minus (-) symbol is required after the EXCEPTION keyword for error
-208; most error codes are negative integers.

Special Error Number -746
The special error number -746 allows you to produce a customized message. For
example, the following statement raises the error number -746 and returns the
quoted text:
RAISE EXCEPTION -746, 0, ’You broke the rules’;

In the following example, a negative value for alpha raises exception -746 and
provides a specific message that describes the problem. The code should contain an
ON EXCEPTION statement that traps for an exception of -746.
FOREACH SELECT c1 INTO alpha FROM sometable
IF alpha < 0 THEN
RAISE EXCEPTION -746, 0, ’a < 0 found’ -- emergency exit
END IF
END FOREACH

When the SPL routine executes and the IF condition is met, the database server
returns the following error:
-746: a < 0 found.

For more information about the scope and compatibility of exceptions, see “ON
EXCEPTION” on page 3-46.

Related Statements

“ON EXCEPTION” on page 3-46

RETURN
Use the RETURN statement to specify what values (if any) the SPL function
returns to the calling context.

Syntax

�� RETURN

�

,
(1)

Expression
WITH RESUME

; ��

Notes:

1 See “Expression” on page 4-44

Chapter 3. SPL statements 3-51

Usage

In Informix, for backward compatibility, you can use the RETURN statement inside
a CREATE PROCEDURE statement to create an SPL function. By only using
RETURN in CREATE FUNCTION statements, however, you can maintain the
convention of using CREATE FUNCTION to define routines that return a value,
and CREATE PROCEDURE for other routines.

All RETURN statements in the SPL function must be consistent with the
RETURNING clause of the CREATE FUNCTION (or CREATE PROCEDURE)
statement that defines the function. Any RETURN list of expressions must match
in cardinality (and be of data types compatible with) the ordered list of data types
in the RETURNING clause of the function definition.

Alternatively, however, the RETURN statement can specify no expressions, even if
the RETURNING clause lists one or more data types. In this case, a RETURN
statement that specifies no expression is equivalent to returning the expected
number of NULL values to the calling context. A RETURN statement without any
expressions exits only if the SPL function is declared as not returning any values.
Otherwise it returns NULL values.

The following SPL function has two valid RETURN statements:
CREATE FUNCTION two_returns (stockno INT) RETURNING CHAR (15);

DEFINE des CHAR(15);
ON EXCEPTION (-272) -- if user does not have select privilege

RETURN; -- return no values.
END EXCEPTION;
SELECT DISTINCT descript INTO des FROM stock

WHERE stock_num = stockno;
RETURN des;

END FUNCTION;

A program that calls the function in the previous example should test whether no
values are returned and act accordingly.

WITH RESUME Keyword
If you use the WITH RESUME keywords, then after the RETURN statement
completes execution, the next invocation of the SPL function (upon the next
FETCH or FOREACH statement) starts from the statement that follows the
RETURN statement. Any function that executes a RETURN WITH RESUME
statement must be invoked within a FOREACH loop, or else in the FROM clause
of a SELECT statement. If an SPL routine executes a RETURN WITH RESUME
statement, a FETCH statement in an Informix ESQL/C application can call the SPL
routine.

The following example shows a cursor function that another UDR can call. After
the RETURN WITH RESUME statement returns each value to the calling UDR or
program, the next line of series executes the next time series is called. If the
variable backwards equals zero (0), no value is returned to the calling UDR or
program, and execution of series stops:
CREATE FUNCTION series (limit INT, backwards INT) RETURNING INT;

DEFINE i INT;
FOR i IN (1 TO limit)

RETURN i WITH RESUME;
END FOR;
IF backwards = 0 THEN

RETURN;
END IF;

3-52 IBM Informix Guide to SQL: Syntax

FOR i IN (limit TO 1 STEP -1)
RETURN i WITH RESUME;

END FOR;
END FUNCTION; -- series

Returning Values from Another Database
If an SPL function uses the Return clause to return values from another database of
the local Informix instance, the following data types are supported as the returned
data type:
v Built-in data types that are not opaque
v Most of the built-in opaque data types, as listed in “Data Types in Cross-Database

Transactions” on page 2-663
v DISTINCT of the built-in types that are referenced in the two lines above
v DISTINCT of any DISTINCT data type in this list
v Any opaque user-defined type (UDT) that is cast explicitly to one of the built-in

data types in this list.

The definitions of the UDF and of the type hierarchies, casts, DISTINCT types, and
UDTs must be exactly the same in each of the participating databases. The same
data-type restrictions apply to a value that an external function returns from
another database of the local Informix instance. For more information about data
types that are supported in distributed operations across two or more databases of
the same database server, see “Data Types in Cross-Database Transactions” on page
2-663.

UDRs can return only the following data types from tables in databases of other
database servers:
v Any non-opaque built-in data type
v BOOLEAN
v LVARCHAR
v DISTINCT of non-opaque built-in types
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of any DISTINCT type that appears in this list.

UDRs can return these DISTINCT types from databases of other Informix instances
only if the DISTINCT types are cast explicitly to built-in types. The definitions of
the DISTINCT data types, their type hierarchies, and their casts must be exactly the
same in all databases that participate in the distributed operations. For queries or
other DML operations in cross-server UDRs that use the data types in the
preceding list as parameters or as returned data types, the UDR must be defined in
each participating database, and the participating Informix instances must support
the data type as a returned value in cross-server operations.

For additional information about the data types that Informix can access in
distributed operations, see “Data Types in Distributed Queries” on page 2-663.

External Functions and Iterator Functions: In an SPL program, you can use a C
or Java language external function as an expression in a RETURN statement,
provided that the external function is not an iterator function. An iterator function is
an external function that returns one or more rows of data (and therefore requires
a cursor to execute).

Chapter 3. SPL statements 3-53

SPL iterator functions must include the RETURN WITH RESUME statement. For
information about using an iterator function with a virtual table interface in the
FROM clause of a query, see “Iterator Functions” on page 2-680.

SYSTEM
Use the SYSTEM statement to issue an operating-system command from within an
SPL routine.

Syntax

�� SYSTEM expression
SPL_var

; ��

Element Description Restrictions Syntax

expression Evaluates to a user-executable
operating-system command

You cannot specify that the
command run in the background

Operating-system
dependent

SPL_var SPL variable containing a command Must be of a character data type “Identifier” on page
5-21;

Usage

If the specified expression is not a character expression, it is converted to a character
expression and passed to the operating system for execution.

The command that SYSTEM specifies cannot run in the background. The database
server waits for the operating system to complete execution of the command before
it continues to the next statement in the SPL routine. The SPL routine cannot use
any returned values from the command.

If the operating-system command fails (that is, returns a nonzero status for the
command), an exception is raised that contains the returned operating-system
status as the ISAM error code and an appropriate SQL error code.

A rollback does not terminate a system call, so a suspended transaction can wait
indefinitely for the call to return. For instructions on recovery from a deadlock
during a long transaction rollback, see the IBM Informix Administrator's Guide.

The dynamic log feature of Informix automatically adds log files until the long
transaction completes or rolls back successfully.

In DBA- and owner-privileged SPL routines that contain SYSTEM statements, the
command runs with the access privileges of the user who executes the routine.

Executing the SYSTEM statement on UNIX
In SPL procedures for UNIX platforms, a specification that evaluates to a valid
UNIX operating system command must immediately follow the SYSTEM keyword.

Both of the program fragments that follow use the SYSTEM statement of SPL to
send a message to the system administrator.
v In the first example, the sensitive_update routine defines an SPL variable called

mailcall to store a character string that specifies the name of the mail utility, and
the user ID of the message recipient, and the message text.

3-54 IBM Informix Guide to SQL: Syntax

v In the second example, the sensitive_update2 routine similarly invokes the mail
utility with a SYSTEM statement. The expression constructs a valid command
line by concatenating three quoted strings and the SPL variables user1 and user2
to send to the system administrator a file called violations_file.

Sending email using the SYSTEM statement
The SYSTEM statement in the following example of an SPL routine causes the
UNIX operating system to send a mail message to the system administrator whose
user ID is headhoncho:
CREATE PROCEDURE sensitive_update()

...
LET mailcall = ’mail headhoncho < alert’;
-- code to execute if user tries to execute a specified
-- command, then sends email to system administrator
SYSTEM mailcall;
...

END PROCEDURE; -- sensitive_update

You can use a double-pipe symbol (||) to concatenate expressions within a
SYSTEM statement, as the following example shows:
CREATE PROCEDURE sensitive_update2()

DEFINE user1 char(15);
DEFINE user2 char(15);
LET user1 = ’joe’;
LET user2 = ’mary’;
...
-- code to execute if user tries to execute a specified
-- command, then sends email to system administrator
SYSTEM ’mail -s violation’ || user1 || ’ ’ || user2

|| ’< violation_file’;
...

END PROCEDURE; --sensitive_update2

In both examples above, blank spaces separate elements of the command line, so
the expression that follows the SYSTEM keyword evaluates to a character string
that conforms to the syntax requirements of the operating system mail utility.

Executing the SYSTEM statement on Windows
On Windows systems, any SYSTEM statements in an SPL routine are executed only
if the current user who is executing the SPL routine has logged on with a
password.

The database server must have the password and login name of the user in order
to execute a command on behalf of that user.

The first SYSTEM statement in the following example of an SPL routine causes
Windows to send an error message to a temporary file and to put the message in a
system log that is sorted alphabetically. The second SYSTEM statement causes the
operating system to delete the temporary file:
CREATE PROCEDURE test_proc()

...
SYSTEM ’type errormess101 > %tmp%tmpfile.txt |

sort >> %SystemRoot%systemlog.txt’;
SYSTEM ’del %tmp%tmpfile.txt’;
...

END PROCEDURE; --test_proc

The expressions that follow the SYSTEM statements in this example contain
variables %tmp% and %SystemRoot% that are defined by Windows.

Chapter 3. SPL statements 3-55

Setting Environment Variables in SYSTEM Commands
When the operating-system command that SYSTEM specifies is executed, no
guarantee exists that any environment variables that the user application sets are
passed to the operating system. If you set an environment variable in a SYSTEM
command, the setting is only valid during that SYSTEM command.

To avoid this potential problem, the following method is recommended to ensure
that any environment variables that the user application requires are carried
forward to the operating system.

To Change Environment Settings for an Operating System Command
1. Create a shell script (on UNIX systems) or a batch file (on Windows platforms)

that sets up the desired environment and then executes the operating system
command.

2. Use the SYSTEM command to execute the shell script or batch file.

This solution has an additional advantage: if you subsequently need to change the
environment, you can modify the shell script or the batch file without needing to
recompile the SPL routine.

For information about operating system commands that set environment variables,
see the IBM Informix Guide to SQL: Reference.

TRACE
Use the TRACE statement to control the generation of debugging output.

Syntax

�� TRACE ON
OFF
PROCEDURE

(1)
Expression

; ��

Notes:

1 See “Expression” on page 4-44

Usage

The TRACE statement generates output that is sent to the file that the SET DEBUG
FILE TO statement specifies. Tracing writes to the debug file the current values of
the following program objects:
v SPL variables
v Routine arguments
v Return values
v SQL error codes
v ISAM error codes

The output of each executed TRACE statement appears on a separate line.

If you use the TRACE statement before you specify a DEBUG file to contain the
output, an error is generated.

3-56 IBM Informix Guide to SQL: Syntax

Any routine that the SPL routine calls inherits the trace state. That is, a called
routine (on the same database server) assumes the same trace state (ON, OFF, or
PROCEDURE) as the calling routine. The called routine can set its own trace state,
but that state is not passed back to the calling routine.

A routine that is executed on a remote database server does not inherit the trace
state.
Related reference:
“SET DEBUG FILE statement” on page 2-750

TRACE ON
If you specify the keyword ON, all statements are traced. The values of variables
(in expressions or otherwise) are printed before they are used. To turn tracing ON
implies tracing both routine calls and statements in the body of the routine.

TRACE OFF
If you specify the keyword OFF, all tracing is turned off.

TRACE PROCEDURE
If you specify the keyword PROCEDURE, only the routine calls and return values,
but not the body of the routine, are traced.

The TRACE statement supports no ROUTINE or FUNCTION keywords. Use the
TRACE PROCEDURE keywords when the SPL routine that you trace is a function.

Displaying Expressions
You can use the TRACE statement with a quoted string or an expression to display
values or comments in the output file. If the expression is not a literal expression,
the expression is evaluated before it is written to the output file.

You can use the TRACE statement with an expression even if you used a TRACE
OFF statement earlier in a routine. You must first, however, use the SET DEBUG
statement to establish a trace output file.

The next example uses a TRACE statement with an expression after using a
TRACE OFF statement. The example uses UNIX file naming conventions:
CREATE PROCEDURE tracing ()

DEFINE i INT;
BEGIN

ON EXCEPTION IN (1)
END EXCEPTION; -- do nothing
SET DEBUG FILE TO ’/tmp/foo.trace’;
TRACE OFF;
TRACE ’Forloop starts’;
FOR i IN (1 TO 1000)

BEGIN
TRACE ’FOREACH starts’;
FOREACH SELECT...INTO a FROM t

IF <some condition> THEN
RAISE EXCEPTION 1 -- emergency exit

END IF
END FOREACH -- return some value

END
END FOR -- do something

END;
END PROCEDURE

Chapter 3. SPL statements 3-57

Example Showing Different Forms of TRACE
The following example shows several different forms of the TRACE statement. The
example uses Windows file naming conventions:
CREATE PROCEDURE testproc()

DEFINE i INT;
SET DEBUG FILE TO ’C:\tmp\test.trace’;
TRACE OFF;
TRACE ’Entering foo’;
TRACE PROCEDURE;
LET i = test2();

TRACE ON;
LET i = i + 1;

TRACE OFF;
TRACE ’i+1 = ’ || i+1;
TRACE ’Exiting testproc’;

SET DEBUG FILE TO ’C:\tmp\test2.trace’;

END PROCEDURE

Looking at the Traced Output
To see the traced output, use a text editor or similar utility to display or read the
contents of the file.

WHILE
Use the WHILE statement to establish a loop with variable end conditions.

Syntax

��
<< label >>

WHILE
(1)

Condition �

�
(2)

Statement Block END WHILE
(3)

label
(2)

LOOP Statement Block END LOOP
(3)

label

;
��

Notes:

1 See “Condition” on page 4-5

2 See “Statement Block” on page 5-78

3 Valid only if <<label>> precedes the first WHILE keyword

Element Description Restrictions Syntax

label Name of the loop label for this
loop

Must be unique among labels in
this SPL routine

“Identifier” on page
5-21

3-58 IBM Informix Guide to SQL: Syntax

Usage

The condition is evaluated before the statement block first runs and before each
subsequent iteration. Iterations continue as long as the condition remains true. The
loop terminates when the condition evaluates to not true.

If any expression within the condition evaluates to NULL, the condition becomes not
true unless you are explicitly testing for NULL with the IS NULL operator.

If an expression within the condition has an UNKNOWN value because it
references uninitialized SPL variables, an immediate error results. In this case, the
loop terminates, raising an exception.

Example of WHILE Loops in an SPL Routine
The following example illustrates the use of WHILE loops in an SPL routine. In the
SPL procedure, simp_while, the first WHILE loop executes a DELETE statement.
The second WHILE loop executes an INSERT statement and increments the value
of an SPL variable.
CREATE PROCEDURE simp_while()

DEFINE i INT;
WHILE EXISTS (SELECT fname FROM customer

WHERE customer_num > 400)
DELETE FROM customer WHERE id_2 = 2;

END WHILE;
LET i = 1;
WHILE i < 10

INSERT INTO tab_2 VALUES (i);
LET i = i + 1;

END WHILE;
END PROCEDURE;

Labeled WHILE Loops
To create a labeled WHILE loop, you can declare a loop label before the initial
WHILE keyword, and repeat the label after the END WHILE keywords, as in the
two WHILE loops of the following example:
CREATE PROCEDURE ex_cont_ex()

DEFINE i,s,j, INT;
<<while_jlab>>
WHILE j < 20

IF j > 10 THEN
CONTINUE WHILE;

END IF
LET i,s = j,0;
<<while_slab>>
WHILE i > 0

LET i = i -1;
IF i = 5 THEN

EXIT while_jlab;
END IF

END WHILE while_slab
END WHILE while_jlab

END PROCEDURE;

Here the EXIT while_jlab statement has the same effect that the EXIT or EXIT FOR
keywords would have, terminating both the outer WHILE loop and the routine. In
this example, the statement that includes the EXIT while_jlab statement has the
same effect that EXIT while_jlab WHEN i = 5 would have.

Chapter 3. SPL statements 3-59

You can also label a LOOP statement that begins with a loop <<label>>
specification that immediately precedes the initial WHILE keyword and condition.
In this type of loop, the CONTINUE LOOP, EXIT LOOP, and END LOOP
keywords replace the CONTINUE WHILE, EXIT WHILE, and END WHILE
keywords. Both the LOOP and WHILE keywords are optional after the
CONTINUE and EXIT keywords, but the END LOOP keywords are required in
SPL loop statements that include the LOOP keyword.

You can use similar syntax to create an unlabeled loop that omits the <<label>>
declaration that immediately precedes the WHILE condition specification. In this
case, you must also omit the undelimited loop label identifier that follows the END
LOOP keywords. See the LOOP statement for a description and examples of these
forms of labeled and unlabeled loop statements that enable you to combine
WHILE statement syntax, with its condition-based number of loop iterations, with
the "loop forever" syntax of the LOOP statement.

Related Statements

“<< Label >> statement” on page 3-9, “CONTINUE” on page 3-13, “EXIT” on page
3-25, “LOOP” on page 3-42

3-60 IBM Informix Guide to SQL: Syntax

Chapter 4. Data types and expressions

These topics describe the data types and expressions that Informixsupports.

These fundamental syntax segments can appear in data definition language (DDL)
and data manipulation language (DML) statements, and in other types of SQL
statements. Some SPL statements can also specify data types or expressions. You
can use these features of a relational or object-relational database in various
contexts, such as to define the schema of a table, to specify the signature and
arguments of a routine, or to represent or calculate specific data values.
Related reference:
“CREATE CAST statement” on page 2-147

Scope of Segment Descriptions
The description of each segment includes the following information:
v A brief introduction that explains the effect of the segment
v A syntax diagram that shows how to enter the segment correctly
v A table that explains the terms in the syntax diagram for which you must

substitute names, values, or other specific information
v Rules of usage, typically including examples that illustrate these rules

If a segment consists of multiple parts, the segment description provides similar
information about each part. Some descriptions conclude with references to related
information in this document and in other documents.

Use of Segment Descriptions
The syntax diagram within each segment description is not a stand-alone diagram.
Rather, it is a subdiagram of the syntax of the SQL statements (in Chapter 2, “SQL
statements,” on page 2-1) or of SPL statements (in Chapter 3, “SPL statements,” on
page 3-1) that can include the segment.

SQL or SPL syntax descriptions can refer to segment descriptions in two ways:
v A subdiagram reference in a syntax diagram can list a segment name and the page

in this document where the segment description begins.
v The Syntax column of the table that immediately follows a syntax diagram can

list a segment name and the page where the segment description begins.

If the syntax diagram for a statement includes a reference to a segment, turn to
that segment description to see the complete syntax for the segment.

For example, if you want to write a CREATE VIEW statement that includes a
database and database server qualifiers of the view name, first look up the syntax
diagram for the “CREATE VIEW statement” on page 2-373. The table beneath that
diagram refers to the Database Object Name segment for the syntax of view. Then
use the Database Object Name segment syntax to enter a valid CREATE VIEW
statement that also specifies the database and database server name for the view. In
the following example, the CREATE VIEW statement defines a view called
name_only in the sales database on the boston database server:

© Copyright IBM Corp. 1996, 2014 4-1

CREATE VIEW sales@boston:name_only AS
SELECT customer_num, fname, lname FROM customer;

Besides the Data Types and Expressions syntax segments that this chapter
documents, Chapter 5, “Other syntax segments,” on page 5-1 provides additional
syntax segments that are referenced in the syntax diagrams of this document.

Data type and expression segments
Data type and expression segments can appear in SQL statements.

Data type and expression segments can include the following items:
v Data Type
v DATETIME Field Qualifier
v INTERVAL Field Qualifier
v Expression
v Aggregate Expression
v AVG, COUNT, MAX, MIN, SUM, RANGE, STDEV, VARIANCE, and

User-Defined Aggregates
v Arithmetic Expressions
v Binary (+, -, *, /) Operators, Operator Functions, and Unary (+, -) Operators
v Cast Expressions
v CAST function and Cast (::) Operator
v Collection Subquery
v Column Expressions
v Column Name, ROWID, and Substring ([...]) Operator
v CONCAT Function and Concatenation (||) Operator
v Condition Segment and Conditional Expressions
v Comparison Condition: AND, OR, NOT, BETWEEN, IS NULL, LIKE, MATCHES,

and Relational Operators
v Condition with Subquery: IN, EXISTS, ALL, ANY, and SOME Operators
v Boolean UDF
v CASE Expressions
v NVL Function
v DECODE Function
v Constant Expressions: CURRENT, SYSDATE, TODAY, DBSERVERNAME,

SITENAME, UNITS, CURRENT_USER, and USER
v Literal Value
v Literal Collection
v Literal DATETIME
v Literal INTERVAL
v Literal Number
v Literal Row
v Quoted String
v Constructor Expressions
v Collection Constructor
v ROW Constructor Function Expressions

4-2 IBM Informix Guide to SQL: Syntax

v Algebraic Functions: ABS, MOD, POW, POWER ROOT, ROUND, SQRT, and
TRUNC Functions

v CARDINALITY Function
v DBINFO Function
v Encryption and Decryption Functions: DECRYPT_BINARY, DECRYPT_CHAR,

ENCRYPT_AES, ENCRYPT_TDES, and GETHINT Functions
v Exponential and Logarithmic Functions: EXP, LOGN, and LOG10 Functions
v HEX Function
v Hierarchical Query Operators and Functions: CONNECT_BY_ROOT, PRIOR, and

SQL_CONNECT_BY_PATH
v IFX_ALLOW_NEWLINE Function
v Length Functions: CHARACTER_LENGTH, CHAR_LENGTH, LENGTH, and

OCTET_LENGTH Functions
v Sequence Operators: CURRVAL, NEXTVAL
v Smart Large Object Functions: FILETOBLOB, FILETOCLOB, LOCOPY, and

LOTOFILE Functions
v String-Manipulation Functions: LPAD, RPAD, TRIM, REPLACE, SUBSTR,

SUBSTRING, INITCAP, LOWER, and UPPER Functions
v Time Functions: DATE, DAY, EXTEND, MDY, MONTH, TO_CHAR, TO_DATE,

WEEKDAY, and YEAR Functions
v Trigger-Type Boolean Operators: DELETING, INSERTING, SELECTING, and

UPDATING
v Trigonometric Functions: ACOS, ASIN, ATAN, ATAN2, COS, SIN, and TAN

Functions
v User-Defined Functions
v Statement-Local Variable Expressions

You can also use host variables or SPL variables as expressions. For an alphabetic
list of expressions with page references, see “List of Expressions” on page 4-46.

Collection Subquery
You can use a Collection Subquery to create a MULTISET collection from the
results of a subquery. This syntax is an extension to the ANSI/ISO standard for
SQL.

Syntax

Collection Subquery:

(1)
MULTISET (subquery)

SELECT ITEM singleton_select

Notes:

1 Informix extension

Element Description Restrictions Syntax

singleton
_select

Subquery returning exactly
one row

Subquery cannot repeat the SELECT keyword, nor
include the ORDER BY clause

“SELECT
statement” on page
2-654

Chapter 4. Data types and expressions 4-3

Element Description Restrictions Syntax

subquery Embedded query Cannot contain the ORDER BY clause “SELECT
statement” on page
2-654

Usage

The MULTISET and SELECT ITEM keywords have the following significance:
v MULTISET specifies a collection of elements that can contain duplicate values,

but that has no specific order of elements.
v SELECT ITEM supports only one expression in the projection list. You cannot

repeat the SELECT keyword in the singleton subquery.

You can use a collection subquery in the following contexts:
v The Projection clause and WHERE clause of the SELECT statement
v The VALUES clause of the INSERT statement
v The SET clause of the UPDATE statement
v Wherever you can use a collection expression (that is, any expression that

evaluates to a single collection)
v As an argument passed to a user-defined routine

The following restrictions apply to a collection subquery:
v The Projection clause cannot contain duplicate column (field) names.
v It cannot contain aliases for table names. (But it can use aliases for column

(field) names, as in some of the examples that follow.)
v It is read-only.
v It cannot be opened twice.
v It cannot contain NULL values.
v It cannot contain syntax that attempts to seek within the subquery.

A collection subquery returns a multiset of unnamed ROW data types. The fields
of this ROW type are elements in the projection list of the subquery. Examples that
follow access the tables and the ROW types that these statements define:
CREATE ROW TYPE rt1 (a INT);
CREATE ROW TYPE rt2 (x int, y rt1);
CREATE TABLE tab1 (col1 rt1, col2 rt2);
CREATE TABLE tab2 OF TYPE rt1;
CREATE TABLE tab3 (a ROW(x INT));

The following examples of collection subqueries return the MULTISET collections
that are listed to the right of the subquery.

Collection Subquery Resulting Collections

MULTISET (SELECT * FROM tab1)... MULTISET(ROW(col1 rt1, col2 rt2))

MULTISET (SELECT col2.y FROM tab1)... MULTISET(ROW(y rt1))

MULTISET (SELECT * FROM tab2)... MULTISET(ROW(a int))

MULTISET(SELECT p FROM tab2 p)... MULTISET(ROW(p rt1))

MULTISET (SELECT * FROM tab3)... MULTISET(ROW(a ROW(x int)))

The following is another collection subquery:

4-4 IBM Informix Guide to SQL: Syntax

SELECT f(MULTISET(SELECT * FROM tab1 WHERE tab1.x = t.y))
FROM t WHERE t.name = ’john doe’;

The following collection subquery includes the UNION operator:
SELECT f(MULTISET(SELECT id FROM tab1
UNION
SELECT id FROM tab2 WHERE tab2.id2 = tab3.id3)) FROM tab3;

Table expressions in the FROM clause
Informix supports ANSI/ISO standard syntax for table expressions in the FROM
clause of SELECT queries and subqueries as a substitute for the Informix-extension
collection subquery syntax. The keywords TABLE and MULTISET are required in
version 10.00 and in earlier releases. These extensions to the ANSI/ISO standard
for SQL are supported but are no longer required for collection subqueries in the
FROM clause of SELECT statements.

The following two queries return the same result set, but only the second query
complies with the ANSI/ISO standard:
SELECT * FROM TABLE(MULTISET(SELECT col1 FROM tab1 WHERE col1 = 100))

AS vtab(c1),
(SELECT col1 FROM tab1 WHERE col1 = 10) AS vtab1(vc1) ORDER BY c1;

SELECT * FROM (SELECT col1 FROM tab1 WHERE col1 = 100) AS vtab(c1),
(SELECT col1 FROM tab1 WHERE col1 = 10) AS vtab1(vc1)
ORDER BY c1;

The same SELECT statement can combine instances of both the Informix-extension
and ANSI/ISO syntax for collection subqueries:
SELECT * FROM (select col1 FROM tab1 WHERE col1 = 100) AS vtab(c1),

TABLE(MULTISET(SELECT col1 FROM tab1 WHERE col1 = 10)) AS vtab1(vc1)
ORDER BY c1;

The collection subquery must be delimited by parentheses in both formats, but the
outer set of parentheses (()) that immediately follows the TABLE keyword and
encloses the MULTISET collection subquery specification is an extension to the
ANSI/ISO syntax. This ANSI/ISO syntax is valid only in the FROM clause of the
SELECT statement. You cannot omit these keywords and parentheses from a
collection subquery specification in any other context.

Condition
Use a condition to test whether data meets certain qualifications. Use this segment
wherever you see a reference to a condition in a syntax diagram.

Syntax

Condition:

�

Logical_Operator
(1)

Comparison Conditions
NOT (2)

Condition with Subquery
(3)

User-Defined Function

Chapter 4. Data types and expressions 4-5

Notes:

1 See “Comparison Conditions (Boolean Expressions)” on page 4-7

2 See “Condition with Subquery” on page 4-18

3 See “User-Defined Functions” on page 4-188

Element Description Restrictions Syntax

Logical
_Operator

Combines two
conditions

Valid options are OR (= logical union) or
AND (= logical intersection)

“Conditions with AND or OR”
on page 4-22

Usage

A condition is a search criterion, optionally connected by the logical operators AND
or OR. Conditions can be classified into the following categories:
v Comparison conditions (also called filters or Boolean expressions)
v Conditions with a subquery
v User-defined functions (Informix only)

A condition can contain an aggregate function only if it is used in the HAVING
clause of a SELECT statement or in the HAVING clause of a subquery.

No aggregate function can appear in a condition in the WHERE clause of a
DELETE, SELECT, or UPDATE statement unless both of the following are TRUE:
v Aggregate is on a correlated column originating from a parent query.
v The WHERE clause appears in a subquery within a HAVING clause.

In Informix, user-defined functions are not valid as conditions in the following
contexts:
v In the HAVING clause of a SELECT statement
v In the definition of a check constraint

SPL routines are not valid as conditions in the following contexts:
v In the definition of a check constraint
v In the ON clause of a SELECT statement
v In the WHERE clause of a DELETE, SELECT, or UPDATE statement

External routines are not valid as conditions in the following contexts:
v In the definition of a check constraint
v In the ON clause of a SELECT statement
v In the WHERE clause of a DELETE, SELECT, or UPDATE statement
v In the WHEN clause of CREATE TRIGGER
v In the IF, CASE, or WHILE statements of SPL
Related concepts:

Collate character data (GLS User's Guide)
Related reference:

Create a comparison condition (SQL Tutorial)

Subqueries in WHERE clauses (SQL Tutorial)

4-6 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_134.htm#ids_gug_134
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_058.htm#ids_sqt_058
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_177.htm#ids_sqt_177

Comparison Conditions (Boolean Expressions)
Comparison conditions are often called Boolean expressions because they return a
TRUE or FALSE result.

Six kinds of Boolean operators can specify a comparison condition:
v Relational operators
v [NOT] BETWEEN ... AND operators
v [NOT] IN operators
v IS [NOT] NULL operators
v Trigger-type operators
v [NOT] LIKE or MATCHES operators

Their syntax is summarized in this diagram and explained in the sections that
follow.

Comparison Conditions:

(1) (2) (1)
Expression Relational Operator Expression

(1) (1) (1)
Expression BETWEEN Expression AND Expression

NOT
(3) (4)

IN Condition
column IS NULL
expression NOT
(5) (6)

Trigger-Type Operator
string LIKE string
column NOT (3) ESCAPE 'char'

MATCHES column

Notes:

1 See “Expression” on page 4-44

2 See “Relational Operator” on page 4-224

3 Informix extension

4 See “IN Condition” on page 4-11

5 SPL trigger routines only

6 See “Trigger-Type Boolean Operator” on page 4-14

Element Description Restrictions Syntax

char An ASCII character to be the escape character in
the quoted string. Single (') and double (")
quotation marks are not valid as char.

See “ESCAPE with LIKE” on
page 4-17 and “ESCAPE with
MATCHES” on page 4-18

“Quoted String”
on page 4-219

column Name of a column (or a field of a ROW-type
column) whose data value is compared to
NULL, to string, or to another column

Can be qualified by the
identifier, synonym, or alias of
a table or view

See “Column
Name” on page
4-8

expression An SQL expression that returns a single value Must return a single value “Expression” on
page 4-44

Chapter 4. Data types and expressions 4-7

Element Description Restrictions Syntax

string A string delimited by single (') or double (")
quotation marks

Both delimiters must be
identical

See “Quoted
String” on page
4-219

The following sections describe the different types of comparison conditions:
v “Relational-Operator Condition” on page 4-9
v “BETWEEN Condition” on page 4-10
v “IN Condition” on page 4-11
v “IS NULL and IS NOT NULL Conditions” on page 4-13
v “LIKE and MATCHES Condition” on page 4-15.

For a discussion of comparison conditions in the context of the SELECT statement,
see “Using a Condition in the WHERE Clause” on page 2-690.

Warning: A literal DATE or DATETIME value in a comparison condition should
specify 4 digits for the year. When you specify a 4-digit year, the DBCENTURY
environment variable has no effect on the result. When you specify a 2-digit year,
DBCENTURY can affect how the database server interprets the comparison
condition, which might not work as you intended. For more information about
DBCENTURY, see the IBM Informix Guide to SQL: Reference.
Related reference:

DBCENTURY environment variable (SQL Reference)

Column Name
The Column Name segment can be an element in comparison conditions. The
name of a column (or of one or more fields within a column of a ROW data type)
is not the subject of the comparison, but the database server uses this SQL
identifier to access the data value in the specified column or field of a row in a
database table or view.

Column Name:

table .
view .
synonym .
alias . �

column
row_column

(1)
.field

Notes:

1 Repeat no more than three times

Element Description Restrictions Syntax

alias Temporary alternative
name for table or view

Must be defined in the FROM clause of the
SELECT statement

“Identifier” on page
5-21

column Name of a column Must exist in the specified table “Identifier” on page
5-21

field A field to compare in a
ROW type column

Must be a component of row-column name or
field name (for nested rows)

“Identifier” on page
5-21

4-8 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_209.htm#ids_sqr_209

Element Description Restrictions Syntax

row_column A column of type ROW Must be an existing named ROW type or
unnamed ROW type

“Identifier” on page
5-21

synonym, table,
view

Name of a synonym,
table, or view

The synonym and the table or view to which it
points must exist in the database

“Identifier” on page
5-21

For more information on the meaning of the column name in these conditions, see
the “IS NULL and IS NOT NULL Conditions” on page 4-13 and the “LIKE and
MATCHES Condition” on page 4-15.

Quotation Marks in Conditions
When you compare a column expression with a constant expression in any
comparison condition, observe the following rules:
v If the column has a numeric data type, do not enclose the constant expression

between quotation marks.
v If the column has a character data type, enclose the constant expression between

quotation marks.
v If the column has a time data type, enclose the constant expression between

quotation marks.

Otherwise, you might get unexpected results.

The following example shows the correct use of quotation marks in comparison
conditions. Here the ship_instruct column has a character data type, the
order_date column has a date data type, and the ship_weight column has a
numeric data type.
SELECT * FROM orders

WHERE ship_instruct = ’express’
AND order_date > ’05/01/98’
AND ship_weight < 30;

Relational-Operator Condition
A relational operator compares two expressions quantitatively.

For a list of the supported relational operators and their descriptions, see
“Relational Operator” on page 4-224.

The following examples show some relational-operator conditions:
city[1,3] = ’San’

o.order_date > ’6/12/98’

WEEKDAY(paid_date) = WEEKDAY(CURRENT- (31 UNITS DAY))

YEAR(ship_date) < YEAR (TODAY)

quantity <= 3

customer_num <> 105

customer_num != 105

Operands in relational operator conditions cannot have UNKNOWN or NULL
values. If an expression within the condition has an UNKNOWN value because it
references an uninitialized variable, the database server raises an exception.

Chapter 4. Data types and expressions 4-9

Conditions testing for NULL values

If any expression within the condition evaluates to NULL, the condition cannot be
true, unless you are explicitly testing for NULL by using the IS NULL operator. For
example, if the paid_date column has a NULL value, then neither of the following
queries can retrieve that row:
SELECT customer_num, order_date FROM orders

WHERE paid_date = ’’;

SELECT customer_num, order_date FROM orders
WHERE NOT (paid_date !=’’);

You must use the IS NULL operator to test for a NULL value, as the next example
shows.
SELECT customer_num, order_date FROM orders

WHERE paid_date IS NULL;

The IS NULL operator and its logical inverse, the IS NOT NULL operator, are
described in “IS NULL and IS NOT NULL Conditions” on page 4-13.

BETWEEN Condition
Use the BETWEEN condition to test whether the value of a numeric, character, or
time expression is within a specified range.

BETWEEN Condition:

(1) (1) (1)
Expression BETWEEN Expression AND Expression

NOT

Notes:

1 See “Expression” on page 4-44

Usage

NULL values cannot satisfy the condition. Neither of the expressions that define
the range can evaluate to NULL.

The three expressions in a BETWEEN condition must satisfy these restrictions:
v All three expressions must evaluate to mutually compatible numeric, time, or

character data types.
v The value of the expression that immediately follows the BETWEEN keyword must

be less than the value of the expression that follows the AND keyword.

Numeric and time expressions in BETWEEN conditions

For number expressions, less than means to the left on the real line.

For DATE and DATETIME expressions, less than means earlier in time.

For INTERVAL expressions, less than means a shorter span of time.

4-10 IBM Informix Guide to SQL: Syntax

Character expressions in BETWEEN conditions

For CHAR, VARCHAR, and LVARCHAR expressions, less than means before in
code-set order.

For NCHAR and NVARCHAR expressions, less than means before in the localized
collation order, if one exists; otherwise, less than means before in code-set order.

Locale-based collation order, if one is defined for the locale, is used for NCHAR
and NVARCHAR expressions. So for NCHAR and NVARCHAR expressions, less
than means before in the locale-based collation order. For more information on
locale-based collation order and the NCHAR and NVARCHAR data types, see the
IBM Informix GLS User's Guide.

For information on how relational operator expressions with NCHAR and
NVARCHAR operands in databases that have the NLCASE INSENSITIVE property
differ from their behavior in databases that are case sensitive, see the topic
“NCHAR and NVARCHAR expressions in case-insensitive databases” on page
4-28.

The NOT keyword in BETWEEN conditions

For a BETWEEN condition to be TRUE depends on whether you include the NOT
keyword.
v If you omit the NOT keyword, the BETWEEN condition is TRUE only if the value

of the expression on the left of the BETWEEN keyword is in the inclusive range of
the values of the two expressions on the right of the BETWEEN keyword.

v If the NOT keyword immediately precedes the BETWEEN keyword, the BETWEEN
condition is TRUE only if the value of the expression on the left of the BETWEEN
keyword is not in the inclusive range of the values of the two expressions on the
right of the BETWEEN keyword.

Otherwise, the BETWEEN condition is FALSE.

Examples of BETWEEN conditions

The following examples illustrate BETWEEN conditions:
order_date BETWEEN ’6/1/97’ and ’9/7/97’

zipcode NOT BETWEEN ’94100’ and ’94199’

EXTEND(call_dtime, DAY TO DAY) BETWEEN
(CURRENT - INTERVAL(7) DAY TO DAY) AND CURRENT

lead_time BETWEEN INTERVAL (1) DAY TO DAY
AND INTERVAL (4) DAY TO DAY

unit_price BETWEEN loprice AND hiprice

IN Condition
The IN condition is satisfied when the expression to the left of the keyword IN is
included in the list of items.

IN Condition:

Chapter 4. Data types and expressions 4-11

(1)
Expression

NOT
IN �

� �

�

,
(2)

(Literal Number)
(3)

Literal DATETIME
(4)

Quoted String
(5)

Literal INTERVAL
USER
CURRENT_USER
TODAY
CURRENT

(6)
DATETIME Field Qualifier

SITENAME
DBSERVERNAME

(6)
Literal Row

collection_col
,

(7)
(Literal Collection)

(7)
Literal Collection

Notes:

1 See “Expression” on page 4-44

2 See “Literal Number” on page 4-215

3 See “Literal DATETIME” on page 4-210

4 See “Quoted String” on page 4-219

5 See “Literal INTERVAL” on page 4-213

6 See “DATETIME Field Qualifier” on page 4-42

7 See “Literal Row” on page 4-216

Element Description Restrictions Syntax

collection_col Name of a collection column that is
used in an IN condition

The column must exist in the
specified table

“Identifier” on page
5-21

If you specify the NOT operator, the IN condition is TRUE when the expression is
not in the list of items. NULL values do not satisfy the IN condition.

The following examples show some IN conditions:
WHERE state IN (’CA’, ’WA’, ’OR’)
WHERE manu_code IN (’HRO’, ’HSK’)
WHERE user_id NOT IN (USER)
WHERE order_date NOT IN (TODAY)

4-12 IBM Informix Guide to SQL: Syntax

In Informix ESQL/C, the built-in TODAY function is evaluated at execution time.
The built-in CURRENT function is evaluated when a cursor opens or when the
query executes, if it is a singleton SELECT statement.

The built-in USER function is case sensitive; for example, it interprets minnie and
Minnie as different values.

Using the IN operator with collection data types
You can use the IN operator to determine if an element is contained in a collection.

The collection can be a simple or nested collection. (In a nested collection type, the
element type of the collection is also a collection type.) When you use IN to search
for an element of a collection, the expression to the left or right of the IN keyword
cannot contain a BYTE or TEXT data type.

Suppose you create the following table that contains two collection columns:
CREATE TABLE tab_coll
(
set_num SET(INT NOT NULL),
list_name LIST(SET(CHAR(10) NOT NULL) NOT NULL)
);

The following statement fragments show how you might use the IN operator for
search conditions on the collection columns of the tab_coll table:
WHERE 5 IN set_num
WHERE 5.0::INT IN set_num
WHERE "5" NOT IN set_num
WHERE set_num IN ("SET{1,2,3}", "SET{7,8,9}")
WHERE "SET{’john’, ’sally’, ’bill’}" IN list_name
WHERE list_name IN ("LIST{""SET{’bill’,’usha’}"",

""SET{’ann’ ’moshi’}""}",
"LIST{""SET{’bob’,’ramesh’}"",

""SET{’bomani’ ’ann’}""}")

In general, when you use the IN operator on a collection data type, the database
server checks whether the value on the left of the IN operator is an element in the
set of values on the right of the IN operator.

IS NULL and IS NOT NULL Conditions
The IS NULL condition is satisfied if the term that immediately precedes the IS
keyword specifies one of the following undefined values:
v The name of a column that contains a null value.
v An expression that evaluates to null.

Conversely, if you use the IS NOT NULL operator, the condition is satisfied when
the column contains a value that is not null, or when the expression that
immediately precedes the IS NOT NULL keywords does not evaluate to null.

Suppose that you wish to perform an arithmetic computation on a column that can
contain NULL values. You can create a table, insert values into the table, and then
perform a query that uses a generic CASE expression that converts null values to 0
for the purpose of arithmetic calculations:
CREATE TABLE employee (emp_id INT, savings_in_401k INT, total_salary INT);

INSERT INTO employee VALUES(1, 5000, 40000);
INSERT INTO employee VALUES(2, 0, 40000);
INSERT INTO employee VALUES(3, NULL, 100000);

Chapter 4. Data types and expressions 4-13

SELECT emp_id, savings_in_401k AS employer_match FROM employee WHERE
CASE WHEN(savings_in_401k IS NULL) THEN 0

ELSE savings_in_401k END * 0.06 > 0;

This example shows that by using IS NULL in the CASE expression, you can
provide a value for the entries that otherwise are not computable because null is
not a valid numeric value.

The IS NULL condition is satisfied if the column contains a null value or if the
expression cannot be evaluated because it contains one or more null values. If you
use the IS NOT NULL operator, the condition is satisfied when the operand is
column value that is not null, or an expression that does not evaluate to null.

Trigger-Type Boolean Operator
The trigger-type Boolean operators of Informix can test at runtime whether the
currently executing triggered action was triggered by the specified type of DML
event. These operators take no operands.

Trigger-Type Boolean Operator:

DELETING
INSERTING
SELECTING
UPDATING

These operators return TRUE ('t') if the triggering event of the currently executing
trigger is the DML operation corresponding to the name of the operator, and they
return FALSE ('f') otherwise. These operators are valid in IF statements, in CASE
expressions, and in other contexts within an SPL trigger routines where a Boolean
condition is valid.

For example, in the following statement fragment, the LET statement in the first
THEN clause is executed only if the currently executing trigger was activated by
an INSERT event, and the LET statement in the second THEN clause is executed
only if the trigger was activated by a DELETE event:
IF (INSERTING = ’t’) THEN

LET square = NEW.X * NEW.X
ELIF (DELETING = ’t’) THEN

LET square = 0

The SELECTING, DELETING, INSERTING, and UPDATING operators are valid
only in trigger UDRs that are invoked in the FOR EACH ROW triggered action of
a trigger on a table, or (for the DELETING, INSERTING, and UPDATING
operators) of an INSTEAD OF trigger on a view. An error is issued if you attempt
to use a trigger-type Boolean operator in any other context.

If a trigger routine is invoked by a Delete, Insert, or Update trigger that the
MERGE statement has activated,
v DELETING returns TRUE while MERGE is deleting a row from the target table.
v INSERTING returns TRUE while MERGE is inserting a row into the target table.
v UPDATING returns TRUE while MERGE is updating a row of the target table.

4-14 IBM Informix Guide to SQL: Syntax

LIKE and MATCHES Condition
A LIKE or MATCHES condition tests for matching character strings.

The condition is TRUE, or satisfied, when either of the following tests is TRUE:
v The value of the column on the left matches the pattern that the quoted string

specifies. You can use wildcard characters in the string. NULL values do not
satisfy the condition.

v The value of the column on the left matches the pattern that the column on the
right specifies. The value of the column on the right serves as the matching
pattern in the condition.

If the quoted string includes literal characters that match any of the wildcard
characters that the LIKE or MATCHES operator recognizes, the ESCAPE clause can
define an ASCII character that you can include in the quoted string. When the
column value on the left is compared to the quoted string, the next character that
immediately follows this escape character is interpreted as a literal character, rather
than as a wildcard, and the escape character is ignored. The LIKE and MATCHES
operators recognize different wildcard characters. For more information about
LIKE and MATCHES escape characters, see “ESCAPE with LIKE” on page 4-17
and “ESCAPE with MATCHES” on page 4-18 topics.

You can use the single quotation mark (’) only with the quoted string to match a
literal single quotation mark; you cannot use the ESCAPE clause. You can use the
single quotation mark character as the escape character in matching any other
pattern if you write it as this: ''''.

Important: Columns that you specify in LIKE or MATCHES conditions should be
simple character data types, like CHAR, LVARCHAR, NCHAR, NVARCHAR, or
VARCHAR. You cannot, for example, specify a complex data type, such as a
ROW-type column, in a LIKE or MATCHES condition. (A ROW-type column is a
column that is declared as a named or unnamed ROW type.) Similarly, the
database server cannot evaluate a condition that uses LIKE or MATCHES with a
simple or smart large object column, such as a CLOB column; a query that
includes this condition fails with error -640.

NOT Operator
The NOT operator makes the search condition successful when the column on the
left has a value that is not NULL and that does not match the pattern that the
quoted string specifies.

For example, the following conditions exclude all rows that begin with the
characters Baxter in the lname column:
WHERE lname NOT LIKE ’Baxter%’
WHERE lname NOT MATCHES ’Baxter*’

LIKE Operator
LIKE is the ANSI/ISO standard operator for comparing a column value to another
column value, or to a quoted string.

The LIKE operator supports these wildcard characters in the quoted string.

Wildcard
Effect

% Matches zero or more characters

_ Matches any single character

Chapter 4. Data types and expressions 4-15

Besides % and _, LIKE supports a third wildcard character when both the
DEFAULTESCCHAR configuration parameter and the DEFAULTESCCHAR session
environment variable are not set:

Wildcard
Effect

\ Removes the special significance of the next character (to match a literal %
or _ or \ by specifying \% or _ or \\)

Using the backslash (\) symbol as the default escape character (when
DEFAULTESCCHAR is not set) is an Informix extension to the ANSI/ISO-standard
for SQL. You can specify backslash (\) symbol or some other ASCII character as
the default escape character by setting the DEFAULTESCCHAR value to that
character. For more information, see “DEFAULTESCCHAR Environment Option”
on page 2-770.

In an ANSI-compliant database, you can only use the LIKE escape character to
escape a percent sign (%), an underscore (_), or the escape character itself.

The following condition tests the description column for the string tennis, alone
or in a longer string, such as tennis ball or table tennis paddle:
WHERE description LIKE ’%tennis%’ ESCAPE ’\’

The next example tests description for rows containing an underscore character.
Here the backslash (\) escape character is necessary because underscore (_) is a
wildcard character.
WHERE description LIKE ’%_%’ ESCAPE ’\’

The LIKE operator has an associated operator function called like(). You can
define a like() function to handle your own user-defined data types. See also IBM
Informix User-Defined Routines and Data Types Developer's Guide.

MATCHES Operator
The MATCHES operator is an Informix extension for comparing a column value to
another column value, or to a quoted string.

The MATCHES operator supports these wildcard characters in the quoted string.

Wildcard
Effect

* Matches any string of zero or more characters

? Matches any single character

[. . .] Matches any of the enclosed characters, including ranges, as in [a-z].
Characters within the brackets cannot be escaped.

^ As first character within the brackets, matches any character that is not
listed. Thus, [^abc] matches any character except a, b, or c.

\ Removes the special significance of the next character (to match a literal \
or any other wildcard by specifying \\ or* or \? and so forth)

The following condition tests for the string tennis, alone or within a longer string,
such as tennis ball or table tennis paddle:
WHERE description MATCHES ’*tennis*’

The following condition is TRUE for the names Frank and frank:

4-16 IBM Informix Guide to SQL: Syntax

WHERE fname MATCHES ’[Ff]rank’

The following condition is TRUE for any name that begins with either F or f:
WHERE fname MATCHES ’[Ff]*’

The next condition is TRUE for any name that ends with the letters a, b, c, or d:
WHERE fname MATCHES ’*[a-d]’

MATCHES has an associated matches() operator function. You can define a
matches() function for your own user-defined data types. For more information,
see IBM Informix User-Defined Routines and Data Types Developer's Guide.

If DB_LOCALE or SET COLLATION specifies a nondefault locale supporting a
localized collation, and you specify a range for the MATCHES operator using
bracket ([. . .]) symbols, the database server uses the localized collating order,
instead of code-set order, to interpret the range and to compare values that have
CHAR, CHARACTER VARYING, LVARCHAR, NCHAR, NVARCHAR, and
VARCHAR data types.

This behavior is an exception to the usual rule that only NCHAR and NVARCHAR
data types can be compared in a localized collating order. For more information on
the GLS aspects of conditions that include the MATCHES or LIKE operators, see
the IBM Informix GLS User's Guide.

In a NLSCASE INSENSITIVE database, comparison operations on NCHAR and
NVARCHAR data disregard lettercase differences, so that the database server treats
case variants among strings composed of same sequence letters as duplicates. All
pairs of the following strings return TRUE as operands of the MATCHES operator:
’beta’ ’Beta’ ’BETA’ ’bETa’ ’betA’ ’BetA’

For more information, see “Duplicate rows in NLSCASE INSENSITIVE databases”
on page 2-663 and “NCHAR and NVARCHAR expressions in case-insensitive
databases” on page 4-28.

ESCAPE with LIKE
The ESCAPE clause can specify an escape character that is different from the
default escape character. The default escape character is set by the
DEFAULTESCCHAR configuration parameter or the DEFAULTESCCHAR session
environment option.

For example, if you specify z in the ESCAPE clause, then a quoted string operand
that included z_ is interpreted as including a literal underscore (_) character,
rather than _ as a wildcard. Similarly, z% is interpreted as a literal percent (%)
sign, rather than % as a wildcard. Finally, the characters zz in a string would be
interpreted as single literal z. The following statement retrieves rows from the
customer table in which the company column includes a literal underscore
character:
SELECT * FROM customer WHERE company LIKE ’%z_%’ ESCAPE ’z’;

You can also use a host variable that contains a single character. The next
statement uses a host variable to specify an escape character:
EXEC SQL BEGIN DECLARE SECTION;

char escp=’z’;
char fname[20];

Chapter 4. Data types and expressions 4-17

EXEC SQL END DECLARE SECTION;
EXEC SQL select fname from customer

into :fname where company like ’%z_%’ escape :escp;

ESCAPE with MATCHES
The ESCAPE clause can specify an escape character that is different from the
default escape character. The default escape character is set by the
DEFAULTESCCHAR configuration parameter or the DEFAULTESCCHAR session
environment option.

Use this as you would the default escape character, the backslash, to include a
question mark (?), an asterisk (*), a caret (^), or a left ([) or right (]) bracket
as a literal character within the quoted string, to prevent them from being
interpreted as special characters. If you choose to use z as the escape character, the
characters z? in a string stand for a literal question mark (?). Similarly, the
characters z* stand for a literal asterisk (*). Finally, the characters zz in the string
stand for the single character z.

The following example retrieves rows from the customer table in which the value
of the company column includes the question mark (?):
SELECT * FROM customer WHERE company MATCHES ’*z?*’ ESCAPE ’z’;

Stand-Alone Condition
A stand-alone condition can be any expression that is not explicitly listed in the
syntax for the comparison condition. Such an expression is valid as a condition
only if it returns a BOOLEAN value. For example, the following example returns a
value of the BOOLEAN data type:
funcname(x)

Condition with Subquery
Include a SELECT statement within a condition specifies a condition with
subquery. You can use a subquery in a SELECT, INSERT, DELETE, or UPDATE
statement to perform tasks like the following:
v Compare an expression to the result of the query.
v Determine if an expression is included in the results of the query.
v Ask whether the query selects any rows.

Condition with Subquery:

(1)
EXISTS Subquery

(2)
IN Subquery

(3)
ALL, ANY, SOME Subquery

Notes:

1 See “EXISTS Subquery condition” on page 4-20

2 See “IN Subquery” on page 4-20

3 See “ALL, ANY, and SOME Subqueries” on page 4-21

4-18 IBM Informix Guide to SQL: Syntax

The subquery can depend on the current row that the outer SELECT statement is
evaluating; in this case, the subquery is called a correlated subquery. (For a
discussion of correlated subqueries and their impact on performance, see the IBM
Informix Guide to SQL: Tutorial.)

The following sections describe subquery conditions and their syntax.
v For a discussion of types of subquery conditions in the context of the SELECT

statement, see “Using a Condition in the WHERE Clause” on page 2-690.
v For a discussion of types of subquery conditions in the context of the INSERT

statement, see “Subset of SELECT Statement” on page 2-556..
v For a discussion of types of subquery conditions in the context of the DELETE

statement, see “Subqueries in the WHERE Clause of DELETE” on page 2-408..
v For a discussion of types of subquery conditions in the context of the UPDATE

statement, see “Subqueries in the WHERE Clause of UPDATE” on page 2-864.

A subquery can return a single value, no value, or a set of values, depending on its
context. If a subquery returns a value, it must select only a single column. If the
subquery simply checks whether a row (or rows) exists, it can select any number
of rows and columns.

A subquery cannot reference BYTE or TEXT columns, nor can it contain an ORDER
BY clause. A subquery that specifies a table expression in the FROM clause,
however, can include the ORDER BY clause.

A subquery and its outer DML statement operate on the same table object if the
FROM clause of the subquery specifies the same table or view that the outer
statement references in one of these clauses:
v in the FROM clause of the DELETE or SELECT statement
v in the INTO clause of the INSERT statement
v in the Table Options or Collection Derived Table specification of the UPDATE

statement.

Subqueries that return more than one row and that operate on the same table or
view as the enclosing DML statement are valid only in the WHERE clause of the
DELETE or UPDATE statement. Even in this context, such subqueries return error
-360 unless all of the following conditions are satisfied:
v The subquery does not reference any column name in its FROM list that is in a

table not specified in the projection list
v The subquery is specified using the Condition with Subquery syntax.
v Any SPL routines within the subquery cannot reference the table that is being

modified.

The following program fragment includes examples of conditions with subqueries
in UPDATE and DELETE statements:
CREATE TABLE t1 (a INT, a1 INT)
CREATE TABLE t2 (b INT, b1 INT) ;
. . .
UPDATE t1 SET a = a + 10 WHERE EXISTS

(SELECT a FROM t1 WHERE a > 1);
UPDATE t1 SET a = a + 10 WHERE a IN

(SELECT a FROM t1, t2 WHERE a > b
AND a IN

(SELECT a FROM t1 WHERE a > 50));
DELETE FROM t1 WHERE EXISTS

(SELECT a FROM t1);

Chapter 4. Data types and expressions 4-19

For more information about subqueries in the DELETE statement, see “Subqueries
in the WHERE Clause of DELETE” on page 2-408.

For more information about subqueries in the UPDATE statement, see “Subqueries
in the WHERE Clause of UPDATE” on page 2-864.

IN Subquery
An IN subquery condition is TRUE if the value of the expression matches one or
more of the values from the subquery. (The subquery must return only one row,
but it can return more than one column.) The keyword IN is equivalent to the
=ANY specification. The keywords NOT IN are equivalent to the !=ALL
specification. See the “ALL, ANY, and SOME Subqueries” on page 4-21.

IN Subquery:

(1)
Expression

NOT
IN (subquery)

Notes:

1 See “Expression” on page 4-44

Element Description Restrictions Syntax

subquery Embedded query Cannot contain the FIRST nor the ORDER BY clause “SELECT
statement” on page
2-654

The following example of an IN subquery finds the order numbers for orders that
do not include baseball gloves (stock_num = 1):
WHERE order_num NOT IN

(SELECT order_num FROM items WHERE stock_num = 1)

Because the IN subquery tests for the presence of rows, duplicate rows in the
subquery results do not affect the results of the main query. Therefore, the
UNIQUE or DISTINCT keyword in the subquery has no effect on the query
results, although not testing duplicates can improve query performance.

EXISTS Subquery condition
An EXISTS subquery condition evaluates to TRUE if the subquery returns a row.
With an EXISTS subquery, one or more columns can be returned. The subquery
always contains a reference to a column of the table in the main query. If you use
an aggregate function in an EXISTS subquery that includes no HAVING clause, at
least one row is always returned.

EXISTS Subquery:

NOT
EXISTS (subquery)

Element Description Restrictions Syntax

subquery Embedded query Cannot contain the FIRST nor the ORDER BY clause “SELECT
statement” on page
2-654

4-20 IBM Informix Guide to SQL: Syntax

The following example of a SELECT statement with an EXISTS subquery returns
the stock number and manufacturer code for every item that has never been
ordered (and is therefore not listed in the items table). You can appropriately use
an EXISTS subquery in this SELECT statement because you use the subquery to
test both stock_num and manu_code in items.
SELECT stock_num, manu_code FROM stock

WHERE NOT EXISTS (SELECT stock_num, manu_code FROM items
WHERE stock.stock_num = items.stock_num AND
stock.manu_code = items.manu_code);

The preceding example works equally well if you use SELECT * in the subquery in
place of the column names, because the existence of the entire row is tested;
specific column values are not tested.

ALL, ANY, and SOME Subqueries
Use the ALL, ANY, and SOME keywords to specify what makes the condition TRUE
or FALSE. A search condition that is TRUE when the ANY keyword is used might
not be TRUE when the ALL keyword is used, and vice versa.

ALL, ANY, SOME Subquery:

(1)
Expression

(2)
Relational Operator

ALL
ANY
SOME

(subquery)

Notes:

1 See “Expression” on page 4-44

2 See “Relational Operator” on page 4-224

Element Description Restrictions Syntax

subquery Embedded query Cannot contain the FIRST or the ORDER BY clause “SELECT
statement” on page
2-654

Using the ALL Keyword: The ALL keyword specifies that the search condition is
TRUE if the comparison is TRUE for every value that the subquery returns. If the
subquery returns no value, the condition is TRUE.

In the following example, the first condition tests whether each total_price is
greater than the total price of every item in order number 1023. The second
condition uses the MAX aggregate function to produce the same results.
total_price > ALL (SELECT total_price FROM items

WHERE order_num = 1023)

total_price > (SELECT MAX(total_price) FROM items
WHERE order_num = 1023)

Using the NOT keyword with an ALL subquery tests whether an expression is not
TRUE for at least one element that the subquery returns. For example, the following
condition is TRUE when the expression total_price is not greater than all the
selected values. That is, it is TRUE when total_price is not greater than the highest
total price in order number 1023.

Chapter 4. Data types and expressions 4-21

NOT total_price > ALL (SELECT total_price FROM items
WHERE order_num = 1023)

Using the ANY or SOME Keywords: The ANY keyword denotes that the search
condition is TRUE if the comparison is TRUE for at least one of the values that is
returned. If the subquery returns no value, the search condition is FALSE. The
SOME keyword is a synonym for ANY.

The following conditions are TRUE when the total price is greater than the total
price of at least one of the items in order number 1023. The first condition uses the
ANY keyword; the second uses the MIN aggregate function:
total_price > ANY (SELECT total_price FROM items

WHERE order_num = 1023)

total_price > (SELECT MIN(total_price) FROM items
WHERE order_num = 1023)

Using the NOT keyword with an ANY subquery tests whether an expression is not
TRUE for all elements that the subquery returns. For example, the following
condition is TRUE when the expression total_price is not greater than any selected
value. That is, it is TRUE when total_price is greater than none of the total prices in
order number 1023.
NOT total_price > ANY (SELECT total_price FROM items

WHERE order_num = 1023)

Omitting the ANY, ALL, or SOME Keywords: You can omit the keywords ANY,
ALL, or SOME in a subquery if you know that the subquery will return exactly
one value. If you omit the ANY, ALL, or SOME keywords, and the subquery
returns more than one value, you receive an error. The subquery in the following
example returns only one row because it uses an aggregate function:
SELECT order_num FROM items

WHERE stock_num = 9 AND quantity =
(SELECT MAX(quantity) FROM items WHERE stock_num = 9);

NOT Operator
If you preface a condition with the keyword NOT, the test is TRUE only if the
condition that NOT qualifies is FALSE. If the condition that NOT qualifies has a
NULL or an UNKNOWN value, the NOT operator has no effect.

The following truth table shows the effect of NOT with 3–valued Boolean
operands. Here T represents a TRUE condition, F represents a FALSE condition, and a
question mark (?) represents an UNKNOWN condition. (An UNKNOWN value can occur
when an operand is NULL).

NOT

T F

F T

? ?

The left column shows the value of the operand of the NOT operator, and the right
column shows the returned value after NOT is applied to the operand.

Conditions with AND or OR
You can combine simple conditions with the logical operators AND or OR to form
complex conditions.

4-22 IBM Informix Guide to SQL: Syntax

The following SELECT statements contain examples of complex conditions in their
WHERE clauses:
SELECT customer_num, order_date FROM orders

WHERE paid_date > ’1/1/97’ OR paid_date IS NULL;
SELECT order_num, total_price FROM items

WHERE total_price > 200.00 AND manu_code LIKE ’H
SELECT lname, customer_num FROM customer

WHERE zipcode BETWEEN ’93500’ AND ’95700’
OR state NOT IN (’CA’, ’WA’, ’OR’);

The following truth tables show the effect of the AND and OR operators. The letter
T represents a TRUE condition, F represents a FALSE condition, and the question
mark (?) represents an UNKNOWN value. An UNKNOWN value can occur when part of an
expression that uses a logical operator is NULL.

OR

T

T

T

F T

? T

F

T

F

?

?

T

?

?

AND

T

T

T

F F

? ?

F

F

F

F

?

?

F

?

The marginal values at the left represent the first operand, and values in the top
row represent the second operand. Values within each 3x3 matrix show the
returned value after the operator is applied to operands of those values.

If the Boolean expression evaluates to UNKNOWN, the condition is not satisfied.

Consider the following example within a WHERE clause:
WHERE ship_charge/ship_weight < 5

AND order_num = 1023

The row where order_num = 1023 is a row where ship_weight is NULL. Because
ship_weight is NULL, ship_charge/ship_weight is also NULL; therefore, the truth
value of ship_charge/ship_weight < 5 is UNKNOWN. Because order_num = 1023 is
TRUE, the AND table states that the truth value of the entire condition is UNKNOWN.
Consequently, that row is not chosen. If the condition used an OR in place of the
AND, the condition would be TRUE.

Data Type
The Data Type segment specifies the data type of a column, of a component of a
collection, of a field within a ROW type, of a routine parameter, or of a value
returned by an expression or by a cast function. Use this segment whenever you
see a reference to a data type in a syntax diagram.

Syntax

Data Type:

(1)
Built-In Data Type
(2) (3)

User-Defined Data Type
(4)

Complex Data Type

Chapter 4. Data types and expressions 4-23

Notes:

1 See “Built-In Data Types”

2 Informix extension

3 See “User-Defined Data Type” on page 4-36

4 See “Complex Data Type” on page 4-38

Usage

Sections that follow summarize these data types. For more information, see the
chapter about data types in the IBM Informix Guide to SQL: Reference.

Built-In Data Types
Built-in data types are data types that are defined by the database server.

Built-In Data Type:

(1)
Character Data Type

(2)
Numeric Data Type
(3) (4)

Large-Object Data Type
(5)

Time Data Type
BOOLEAN
IDSSECURITYLABEL

Notes:

1 See “Character Data Types” on page 4-25

2 See “Numeric Data Types” on page 4-30

3 Informix extension

4 See “Large-Object Data Types” on page 4-33

5 See “Time Data Types” on page 4-35

These are “built into the database server” in the sense that the information and
support functions required to interpret and transfer these data types is part of the
database server software, which supports character, numeric, large-object, and time
categories of built-in data types. These are described in sections that follow.

BOOLEAN and Other Built-In Opaque Data Types
Informix also supports the BOOLEAN data type, which is a built-in opaque data type
that can store true, false, or NULL values. The symbol t represents a literal
BOOLEAN true value, and f represents a literal BOOLEAN false value.

BOOLEAN and LVARCHAR are the only built-in opaque data types that can be
returned by cross-server distributed queries or by other cross-server distributed
DML operations. Column values of other built-in opaque data types cannot be
retrieved by a distributed query (nor modified by INSERT, DELETE, or UPDATE
operations on a remote database) unless all of the tables that the DML operation
accesses are in databases of the local Informix instance.

4-24 IBM Informix Guide to SQL: Syntax

Similarly, in UDRs that perform distributed operations on databases of other
Informix instances, BOOLEAN and LVARCHAR are the only built-in opaque types
that are valid as a parameter or as the returned data type of the UDR, which must
be defined in all participating databases.

Besides the BOOLEAN type, other built-in opaque data types of Informix include
BLOB, CLOB, LVARCHAR, IFX_LO_SPEC, IFX_LO_STAT, INDEXKEYARRAY,
POINTER, RTNPARAMTYPES, SELFUNCARGS, STAT, CLIENTBINVAL, and XID
data types. These twelve built-in opaque types are supported in the local database
and in distributed operations across databases of the same server instance. The first
three of these types are discussed in subsequent sections of this chapter.

Informix also supports the built-in opaque data types LOLIST, IMPEX, IMPEXBIN,
and SENDRECV. These types cannot, however, be accessed in a remote database
by DML operations, nor returned from a remote database by a UDR, because these
data types do not have the required support functions. For more information about
the data types that Informix supports in distributed transactions, see “Data Types
in Distributed Queries” on page 2-663.

Character Data Types
The character data types enable the database server to store text strings.

Character Data Type:

(1)
CHAR (size)
CHARACTER
(1)

NCHAR
(1) , 0

NVARCHAR (max)
VARCHAR , reserve
CHARACTER VARYING

(2048)
LVARCHAR (max)

Notes:

1 Localized Collation

Element Description Restrictions Syntax

max Maximum size in bytes. For
VARCHAR and NVARCHAR,
this is required. LVARCHAR
default is 2048

VARCHAR and NVARCHAR: Integer;
1 ≤ max ≤ 255 (or 1 ≤ max ≤ 254, if
indexed) LVARCHAR: 1 ≤ max ≤
32,739

“Literal Number” on page
4-215

reserve Bytes reserved. Default is 0. Integer; 0 ≤ reserve ≤ max “Literal Number” on page
4-215

size Size in bytes. Default is 1. Integer; 1 ≤ size ≤ 32,767 “Literal Number” on page
4-215

The database server issues an error if the data type declaration includes empty
parentheses, such as LVARCHAR(). To declare a CHAR or LVARCHAR data type
of the default length, simply omit any (size) or (max) specification. The CREATE
TABLE statement of Informix accepts VARCHAR and NVARCHAR column
declarations that have no (max) nor (max, reserve) specifications, using (1, 0) as the
(max, reserve) default values for the column.

Chapter 4. Data types and expressions 4-25

The following table summarizes the built-in character data types.

Data Type Description

CHAR Stores single-byte or multibyte text strings of fixed length (up to 32,767 bytes);
supports code-set order in collation of text data. Default size is 1 byte.

CHARACTER Synonym for CHAR

CHARACTER VARYING ANSI-compliant synonym for VARCHAR

LVARCHAR Stores single-byte or multibyte text strings of varying length (up to 32,739 bytes). The
size of other columns in the same table can further reduce this upper limit. Default
size is 2,048 bytes.

NCHAR Stores single-byte or multibyte text strings of fixed length (up to 32,767 bytes);
supports localized collation of text data.

NVARCHAR Stores single-byte or multibyte text strings of varying length (up to 255 bytes);
supports localized collation of text data.

VARCHAR Stores single-byte or multibyte text strings of varying length (up to 255 bytes);
supports code-set order collation of text data.

Single-byte and multi-byte characters and locales: All built-in character data
types can support single- and multibyte characters in the code set that the
DB_LOCALE setting specifies. Locales for most European and Middle Eastern
languages support only single-byte code sets, but the UTF-8 code set for the
Unicode locale, and code sets for some East Asian locales, such as the Chinese
GB18030-2000 locale, support multibyte logical characters.

When the SQL_LOGICAL_CHAR configuration parameter is enabled, you can
instruct the database server to interpret explicit or default size parameters in
declarations of built-in character data types as specifying the number of logical
characters that can be stored, rather than the number of bytes. These logical
character semantics are also applied to DISTINCT types whose base types are
built-in character types, and to fields of built-in character types in declarations of
named or unnamed ROW data types. This feature does not, however, support
user-defined data types (UDTs) that store character strings. For more information
about this feature, see the IBM Informix Administrator's Reference description of the
SQL_LOGICAL_CHAR configuration parameter.

The TEXT and CLOB data types also support single-byte or multibyte character
data, but most built-in functions for manipulating character strings do not support
TEXT nor CLOB data. For more information, see “Large-Object Data Types” on
page 4-33.
Related reference:

SQL_LOGICAL_CHAR configuration parameter (Administrator's Reference)

Fixed- and Varying-Length Character Data Types: The database server supports
storage of fixed-length and varying-length character data. A fixed-length column
requires the defined number of bytes regardless of the actual size of the data. The
CHAR data type is of fixed-length. For example, a CHAR(25) column requires 25
bytes of storage for all values, so the string “This is a text string” uses 25 bytes
of storage.

A varying-length column size can be the number of bytes occupied by its data.
NVARCHAR, VARCHAR, and the LVARCHAR data types are varying-length
character data types. For example, a VARCHAR(25) column reserves up to 25 bytes
of storage for the column value, but the character string “This is a text string”

4-26 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076

uses only 21 bytes of the reserved 25 bytes. The VARCHAR data type can store up
to 255 bytes of data. For information about the IFX_PAD_VARCHAR environment
variable, whose setting controls how the database server sends and receives
VARCHAR and NVARCHAR data values, see IBM Informix Guide to SQL: Reference.

Because of the maximum row size limit of 32,767 bytes, a single table cannot be
created with more than approximately 195 varying-length or ROW type columns.

Accessing large tables that have varying-length columns

For tables with more than a million rows, queries that use full-table scan or
skip-scan access methods are more efficient if they perform light scans, rather than
bufferpool scans. Light scans are not supported, however, on tables that include
NVARCHAR, VARCHAR, or LVARCHAR data types columns, or columns of
DISTINCT data types whose base types are a varying-length column, unless the
BATCHEDREAD_TABLE configuration parameter (or the BATCHEDREAD_TABLE
session environment option) is set to 1.

Restriction:

This dependency of light scans on BATCHEDREAD_TABLE being enabled also
applies to tables whose schema or storage attributes include any of the following:
v table compression
v columns of any variable-length data type
v rows that occupy more than a single page of storage.

For more information about when the query optimizer can choose execution paths
that perform light scans to access large tables, see your IBM Informix Performance
Guide.
Related reference:

IFX_PAD_VARCHAR environment variable (SQL Reference)

LVARCHAR Data Type:
The LVARCHAR type of Informix can store up to 32,739 bytes of text, but if you
specify no size in an LVARCHAR data type declaration, the default length is 2,048
bytes. LVARCHAR is a built-in opaque data type. Unlike most of the built-in
opaque types, LVARCHAR column values can be accessed in a database of a
non-local Informix instance in a distributed query or other DML operations, and
LVARCHAR can be the data type of a parameter or of a returned value of a UDR
that accesses data outside the local database.

Informix uses the LVARCHAR data type in cross-server I/O operations on opaque
data types. In this context, the maximum size of the LVARCHAR data value is
limited only by the operating system.

Light scans during query execution are not supported on tables that include
LVARCHAR columns, unless the BATCHEDREAD_TABLE configuration parameter
(or the BATCHEDREAD_TABLE session environment option) is set to 1.

NCHAR and NVARCHAR data types:

The character data types NCHAR and NVARCHAR can support a localized order
of collation in some database locales. In databases created with the NLSCASE
INSENSITIVE property, NCHAR and NVARCHAR columns (and string values that
are cast to these data types) can support case-insensitive queries.

Chapter 4. Data types and expressions 4-27

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_252.htm#ids_sqr_252

The character data types CHAR, LVARCHAR, and VARCHAR support code-set
order collation of data. This is the order in which the characters are defined within
in the code set of the database locale that the DB_LOCALE environment variable
specifies. The default (U.S. English) locale is an example of a locale that uses the
code-set order of collation for sorting CHAR, LVARCHAR, and VARCHAR string
values.

For information on how the settings (or default values) of the DB_LOCALE,
CLIENT_LOCALE , and SERVER_LOCALE environment variables determine
which locale is used for collation, see the IBM Informix GLS User's Guide.

Some locales, however, specify an order of collation that is not identical to the
code-set order. To support any locale-specific order of collation, you can use the
NCHAR and NVARCHAR data types. The NCHAR data type is a fixed-length
character data type that supports localized collation. The NVARCHAR data type is
a varying-length character data type that can store up to 255 bytes of text data and
supports localized collation. In locales where the code set defines no localized
order of collation, such as the default locale, there is no difference between the
CHAR and NCHAR data types, nor between the VARCHAR and NVARCHAR
data types, except in case-insensitive databases.

In databases created with the NLSCASE INSENSITIVE property, values of these
data types are stored exactly as they are loaded into the database, but in data
processing operations, including comparison and collation of NVARCHAR and
NCHAR strings, the database server ignores letter case, ordering the data values
without respect to or preference for case. For example, the NCHAR or
NVARCHAR string "PH" might precede or follow "pH" or "ph" in the collated list,
in which these three strings are considered duplicates, depending on the order in
which these values are retrieved. For more information about NCHAR or
NVARCHAR data processing in case-insensitive databases, see “Specifying
NLSCASE case sensitivity” on page 2-153, “Duplicate rows in NLSCASE
INSENSITIVE databases” on page 2-663, and “NCHAR and NVARCHAR
expressions in case-insensitive databases.”

For NCHAR or NVARCHAR values, the SET COLLATION statement of SQL can
override the localized collation order of the current session by specifying another
locale. Indexes on NCHAR or NVARCHAR columns sort values according to the
localized collation order that was in effect when the index was created, if that is
different from the current collation order. For more information about how the SET
COLLATION statement can affect the sorting behavior of indexes, constraints,
cursors, prepared objects, and SPL routines, see “Collation Performed by Database
Objects” on page 2-730.

If you specify no parameters in CREATE TABLE or ALTER TABLE statements that
declare VARCHAR or NVARCHAR columns, then the new columns default to a
max size of 1 byte and a reserve size of zero.

NCHAR and NVARCHAR expressions in case-insensitive databases:

In databases created with the NLSCASE INSENSITIVE property, the database
server makes no distinction between uppercase and lowercase variants of the same
letter in NCHAR and NVARCHAR expressions, regardless of whether a localized
collation order is defined for the locale.

This disregard for letter case can change the values that case-insensitive operations
on NCHAR or NVARCHAR expressions return, compared to the same operations

4-28 IBM Informix Guide to SQL: Syntax

on the same expressions in a case-sensitive database, if letter case variants are the
only differences among the operands of relational operators, or among the
arguments to string functions.

Suppose, for example, that for a record in a table of a database in the default
locale, the NCHAR column lname stores the value McDavid.

In a case-sensitive database, the Boolean expression lname > "MCDAVID" evaluates
as true, because the database server uses the codeset order of the default locale to
compare the two operands. Although both strings begin with uppercase M, the next
character in the column value is lowercase c, the ASCII 99 code point, but the next
character in the quoted string is uppercase C, the ASCII 67 code point. Because 99
is greater than 67, the column value is greater than the quoted string in a
case-sensitive database.

In a case-insensitive database, however, the same expression lname > "MCDAVID"
evaluates as false, because the database server ignores letter case variants when it
compares the two operands. Both strings have the same letters in the same
sequence, so by these criteria, the column value is identical to the quoted string.

Because a database that has the NLSCASE INSENSITIVE property disregards letter
case in comparisons that include an NCHAR or NVARCHAR operand, operations
on NCHAR or NVARCHAR character strings in case-insensitive databases can
produce results that differ from those of a case-sensitive database. Contexts in
which a case-sensitive database and a case-insensitive database might use the same
SQL operations to return different results from the same data set include these:
v sorting and collation
v foreign key and primary key dependencies
v enforcing unique constraints
v clustered indexes
v access-method optimizer directives
v queries with WHERE predicates
v queries with UNIQUE or DISTINCT in the projection clauses
v queries with ORDER BY clauses
v queries with GROUP BY clauses
v cascading DELETE operations
v table or index storage distribution BY EXPRESSION
v table or index storage distribution BY LIST
v data distributions from UPDATE STATISTICS operations.

IDSSECURITYLABEL Data Type
The IDSSECURITYLABEL type of Informix stores a security label in a table that is
protected by a security policy. Only a user who holds the DBSECADM role can
create, alter, or drop a column of this data type. This is a built-in DISTINCT OF
VARCHAR(128) data type, but it is not classified as a character data type because
its use is restricted to label-based access control. A table that has a security policy
can have no more than one IDSSECURITYLABEL column, and a table associated
with no security policy can have none.

The DBSECADM can use the GRANT statement to associate a specific security
label with a user, and the REVOKE statement can cancel a security label that a user
holds. For a given security policy, a user can have no more than one label that
supports both read and write access, or no more than one label for write access

Chapter 4. Data types and expressions 4-29

and no more than one label for read access. For data protected by a security policy,
but for which the user has been granted discretionary access privileges, the
database server determines whether a specific user can access the data by
comparing the security label of the data with the security label of the user, while
also taking into consideration any exemptions to the security policy rules that the
user holds.

For information on how to specify an IDSSECURITYLABEL value, see “Security
Label Support Functions” on page 4-128.

For a discussion of security policies, security components, security labels, and
other concepts of label-based access control (LBAC), see the IBM Informix Security
Guide.

Numeric Data Types
Numeric data types enable the database server to store numbers such as integers
and real numbers in a column.

Numeric Data Type:

(1)
Exact Numeric Data Type

(2)
Approximate Numeric Data Type

Notes:

1 See “Exact Numeric Data Types”

2 See “Approximate Numeric Data Types” on page 4-32

The values of numbers are stored either as exact numeric data types or as
approximate numeric data types.

Exact Numeric Data Types
An exact numeric data type stores numbers of a specified precision and scale.

Exact Numeric Data Type:

DECIMAL
DEC , 0
NUMERIC (precision)

, scale
(1) (16, 2)

MONEY
, 2

(precision)
, scale

BIGINT
INT
INTEGER
(1)

INT8
SMALLINT
(1) (1)

BIGSERIAL
SERIAL (start)
SERIAL8

4-30 IBM Informix Guide to SQL: Syntax

Notes:

1 Informix extension

Element Description Restrictions Syntax

precision Significant digits Must be an integer; 1 ≤ precision ≤ 32 “Literal Number” on page
4-215

scale Digits in fractional
part

Must be an integer; 1 ≤ scale ≤ precision “Literal Number” on page
4-215

start Integer starting
value

For SERIAL: 1 ≤ start ≤ 2,147,483,64; For BIGSERIAL
and SERIAL8: 1 ≤ start ≤ 9,223,372,036,854,775,807

“Literal Number” on page
4-215

The precision of a data type is the number of digits that the data type stores. The
scale is the number of digits to the right of the decimal separator.

The following table summarizes the exact numeric data types available.

Data Type Description

DEC(p,s) Synonym for DECIMAL(p,s)

DECIMAL(p,s) Stores fixed-point decimal values of real numbers, with up to 30
significant digits in the fractional part, or up to 32 significant digits to
the left of the decimal point.

INT Synonym for INTEGER

INTEGER Stores a 4-byte integer value. These values can be in the range from
-(231-1) to 231-1 (from -2,147,483,647 to 2,147,483,647).

BIGINT and INT8 Stores an 8-byte integer value. These values can be in the range from
-(263-1) to 263-1 (the range -9,223,372,036,854,775,807 to
9,223,372,036,854,775,807). BIGINT has storage and processing
advantages over INT8.

MONEY(p,s) Stores fixed-point currency values. These values have same internal
data format as a fixed-point DECIMAL(p,s) value.

NUMERIC(p,s) ANSI-compliant synonym for DECIMAL(p,s)

SERIAL Stores a 4-byte positive integer that the database server generates.
Values can range from 1 to 231-1 (that is, from 1 to 2,147,483,647).

BIGSERIAL and
SERIAL8

Stores an 8-byte positive integer value that the database server
generates. Values can range from 1 to 263-1 (that is, from 1 to
9,223,372,036,854,775,807). BIGSERIAL has storage and processing
advantages over SERIAL8.

SMALLINT Stores a 2-byte integer value. These values can be in the range from
-(215-1) to 215-1 (that is, from -32,767 to 32,767).

DECIMAL(p,s) Data Types:
The p parameter specifies the precision (the total number of digits) and the second
parameter, (s), specifies the scale (the number of digits in the fractional part). If you
provide only one parameter, an ANSI-compliant database interprets it as the
precision of a fixed-point number and the default scale is 0. If you specify no
parameters, and the database is ANSI-compliant, then by default the precision is 16
and the scale is 0.

If the database is not ANSI-compliant, and you specify fewer than 2 parameters,
you declare a floating-point DECIMAL, which is not an exact number data type.
(See instead the section “Approximate Numeric Data Types” on page 4-32.)

Chapter 4. Data types and expressions 4-31

DECIMAL(p, s) values are stored internally with the first byte representing a sign
bit and a 7-bit exponent in excess-65 format. The other bytes express the mantissa
as base-100 digits. This implies that DECIMAL(32, s) data types store only s-1
decimal digits to the right of the decimal point, if s is an odd number.

Serial Data Types:
You can declare columns of SERIAL, BIGSERIAL, or SERIAL8 data types. If
user-defined routines require whole-number values for variables, arguments, or
returned data types, specify INT, BIGINT, or INT8 as the data types, rather than
SERIAL, BIGSERIAL, or SERIAL8. These data types are integer data types that
differ primarily in their names, their range, and their storage requirements.
Columns of serial data types cannot store values less than 1. A table can have no
more than one SERIAL column and no more than one BIGSERIAL or SERIAL8
column. Because the serial values are assigned by the database server, you cannot
use the UPDATE statement to change an existing serial value in the database.

To insert an explicit value into a SERIAL, BIGSERIAL, or SERIAL8 column, specify
any integer greater than zero. For details of an alternative way to generate integer
values, see “CREATE SEQUENCE statement” on page 2-257.

A SERIAL, BIGSERIAL, or SERIAL8 column is unique only if you set a unique
index on the column. (The index can also be in the form of a primary key or a
unique constraint.) With a unique index, values in serial data type columns are
guaranteed to be unique, but successive values are not necessarily contiguous.

Approximate Numeric Data Types
An approximate numeric data type represents numeric values approximately.

Approximate Numeric Data Type:

(1)
(16)

DECIMAL (precision)
DEC
NUMERIC
FLOAT
DOUBLE PRECISION (float_precision)
(1)

SMALLFLOAT
REAL

Notes:

1 Informix extension

Element Description Restrictions Syntax

float_precision The float_precision is ignored, but
is ANSI/ISO compliant.

Must be a positive integer.
Specified value has no effect.

“Literal Number” on page
4-215

precision Significant digits. Default is 16. An integer; 1 ≤ precision ≤ 32 “Literal Number” on page
4-215

Use approximate numeric data types for very large and very small numbers that
can tolerate some degree of rounding during arithmetic operations.

The following table summarizes the built-in approximate numeric data types.

4-32 IBM Informix Guide to SQL: Syntax

Data Type Description

DEC(p) Synonym for DECIMAL(p)

DECIMAL(p)
Stores floating-point decimal values in the approximate range from
1.0E-130 to 9.99E+126

The p parameter specifies the precision. If no precision is specified, the
default is 16. This floating-point data type is available as an approximate
numeric type only in a database that is not ANSI-compliant. In an
ANSI-compliant database, DECIMAL(p) is implemented as a fixed-point
DECIMAL; see “Exact Numeric Data Types” on page 4-30.

DOUBLE
PRECISION

ANSI-compliant synonym for FLOAT. The float_precision term is not
valid when you use this synonym in data type declarations.

FLOAT Stores double-precision floating-point numbers with up to 16 significant
digits. The float-precision parameter is accepted in data-type declarations
for compliance with the ANSI/ISO standard for SQL, but this parameter
has no effect on the actual precision of values that the database server
stores.

NUMERIC(p) ANSI-compliant synonym for DECIMAL(p) In an ANSI-compliant
database, this is implemented as an exact numeric type, with the
specified precision and a scale of zero, rather than an approximate
numeric (floating-point) data type.

REAL ANSI-compliant synonym for SMALLFLOAT

SMALLFLOAT Stores single-precision floating-point numbers with approximately 8
significant digits

The built-in number data types of Informix database servers support real numbers.
They cannot directly store imaginary or complex numbers.

In Informix, you must create a user-defined data type for applications that support
values that can have an imaginary part.

No more than nine arguments to an external UDR can be DECIMAL data types of
SQL that the UDR declares as BigDecimal data types of the Java language.

Large-Object Data Types
Large-object data types can store extremely large column values, such as images
and documents, independently of the column.

Large-Object Data Type:

TEXT
BYTE IN TABLE

blobspace
(1)

family_name
BLOB
CLOB

Notes:

1 Optical Subsystem only

Chapter 4. Data types and expressions 4-33

Element Description Restrictions Syntax

blobspace Name of an existing blobspace Must exist “Identifier” on page 5-21

family_name Family name or variable in the optical family Must exist “Quoted String” on page
4-219.

The large object data types can be classified in two categories:
v Simple large objects: TEXT and BYTE
v Smart large objects: CLOB and BLOB

Simple-large-object data types:

A simple large object data type stores text or binary data in blobspaces.

These are the simple-large-object data types:

TEXT Stores text data of up to 231 bytes

BYTE Stores any digitized data of up to 231 bytes

Do not supply a BYTE value where TEXT is expected. No built-in cast supports
BYTE to TEXT data type conversion.

Because of the maximum row size limit of 32,767 bytes, you cannot create a table
with more than approximately 195 BYTE or TEXT columns. (This restriction also
applies to all varying-length data types and ROW data types.)

For more information about the simple large object data types, see the IBM
Informix Guide to SQL: Reference.

For information on how to create blobspaces, see your IBM Informix Administrator's
Guide.

For information about optical families, see the IBM Informix Optical Subsystem
Guide.

Storing BYTE and TEXT Data:
A simple-large-object data type can store text or binary data in blobspaces or in
tables. The database server can access a BYTE or TEXT value in one piece. When
you specify a BYTE or TEXT data type, you can specify the location in which it is
stored. You can store data with the table or in a separate blobspace.

If you are creating a named ROW data type that has a BYTE or TEXT field, you
cannot use the IN clause to specify a separate storage space.

The following example shows how blobspaces and dbspaces are specified. The user
creates the resume table. The data values are stored in the employ dbspace. The
data in the vita column is stored with the table, but the data associated with the
photo column is stored in a blobspace named photo_space.
CREATE TABLE resume

(
fname CHAR(15),
lname CHAR(15),
phone CHAR(18),
recd_date DATETIME YEAR TO HOUR,
contact_date DATETIME YEAR TO HOUR,
comments VARCHAR(250, 100),

4-34 IBM Informix Guide to SQL: Syntax

vita TEXT IN TABLE,
photo BYTE IN photo_space
)
IN employ;

Smart-large-object data types:

A smart large object data type stores text or binary data in sbspaces.

The database server can provide random access to a smart large object value. That
is, it can access any portion of the smart large object value. These data types are
recoverable. The following list summarizes the smart large object data types that
IBM Informix supports.

BLOB Stores binary data of up to 4 terabytes (4*240 bytes)

CLOB Stores text data of up to 4 terabytes (4*240 bytes)

A smart large object is stored in a single sbspace. The SBSPACENAME
configuration parameter specifies the system default sbspace in which smart large
objects are created, unless you specify another storage area. For information about
how the CREATE TABLE statement can specify nondefault storage locations and
nondefault storage characteristics for BLOB or CLOB columns, see the description
of the “PUT Clause” on page 2-296.

Both of these are built-in opaque data types. Like most opaque types, they cannot
be accessed in a database of a non-local database server by a distributed query or
by other DML operations, nor can they be returned from a database of another
database server by a UDR. For information on accessing BLOB or CLOB values in
other databases of the local server, however, see “BOOLEAN and Other Built-In
Opaque Data Types” on page 4-24.

Smart large object data types are not parallelizable. The PDQ feature of Dynamic
Serve has no effect on operations that load or unload BLOB or CLOB values, or
that process them in queries or in other DML operations.

For more information about the smart large object data types, see the IBM Informix
Guide to SQL: Reference.

For information about how to create sbspaces, see your IBM Informix
Administrator's Guide.

For information about optical families, see the IBM Informix Optical Subsystem
Guide.

For information about the built-in functions that you can use to import, export,
and copy smart large objects, see “Smart-Large-Object Functions” on page 4-131
and the IBM Informix Guide to SQL: Tutorial.
Related concepts:

Blobspaces (Administrator's Guide)

Time Data Types
The time data types store calendar dates, points in time, and intervals of time.

Chapter 4. Data types and expressions 4-35

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_0490.htm#ids_admin_0490

Time Data Types:

DATE
(1)

INTERVAL INTERVAL Field Qualifier
(2) (3)

DATETIME DATETIME Field Qualifier

Notes:

1 See “INTERVAL Field Qualifier” on page 4-206

2 Informix extension

3 See “DATETIME Field Qualifier” on page 4-42

The following table summarizes the built-in time data types.

Data Type
Description

DATE Stores a date value as a Julian date in the range from January 1 of the year
1 up to December 31, 9999.

DATETIME
Stores a point-in-time date (year, month, day) and time-of-day (hour, minute,
second, and fraction of second), in the range of years 1 to 9999. Also
supports contiguous subsets of these time units.

INTERVAL
Stores spans of time, in years and/or months, or in smaller time units (days,
hours, minutes, seconds, and/or fractions of second), with up to 9 digits of
precision in the largest time unit, if this is not FRACTION. Also supports
contiguous subsets of these time units.

For the order of precedence among the Informix environment variables that can
specify the display and data entry format of the built-in time data types, see the
topic “Precedence of DATE and DATETIME format specifications” on page 4-212.

User-Defined Data Type
A user-defined data type is one that a user defines for the database server.
Informix supports two categories of user-defined data types, namely distinct data
types and opaque data types. This is the declaration syntax for user-defined data
types:

User-Defined Data Type:

(1)
Owner Name .

opaque_type
distinct_type

Notes:

1 See “Owner name” on page 5-49

Element Description Restrictions Syntax

distinct_type Distinct data type with same
structure as an existing data type

Must be unique among data type
names in the database

“Identifier” on page
5-21

4-36 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

opaque_type Name of the opaque data type Must be unique among data type
names in the database

“Identifier” on page
5-21

In this document, user-defined data type is usually abbreviated as UDT.

Distinct Data Types
A DISTINCT data type is a user-defined data type that is based on one of the
following data types:
v a built-in type (including built-in opaque types)
v a user-defined opaque type
v a named ROW type
v an existing DISTINCT type.

The base type of a DISTINCT type cannot be any of the following data types:
v an unnamed ROW type
v a LIST, MULTISET, SET, or generic COLLECTION type.

The DISTINCT type inherits the length and the alignment of its base type in
storage. Informix automatically creates explicit casts between the DISTINCT type
and its base type. To create a DISTINCT type, you must use the CREATE
DISTINCT TYPE statement. (For more information, see “CREATE DISTINCT TYPE
statement” on page 2-157.)

DISTINCT Types in Distributed Operations:
DISTINCT column values cannot be retrieved from another database of the same
Informix instance by a distributed query (nor modified by INSERT, DELETE,
MERGE, or UPDATE cross-database distributed operations) unless all of the
following conditions are true:
v The DISTINCT type is defined on one of the following base types:

– a non-opaque built-in data type
– a BOOLEAN or LVARCHAR data type
– a DISTINCT type defined on BOOLEAN, on LVARCHAR, or on a

non-opaque built-in data type.

(This condition also applies recursively to DISTINCT types of DISTINCT types,
where the ultimate base type is BOOLEAN, or LVARCHAR, or a non-opaque
built-in data type.)

v the DISTINCT type is explicitly cast to BOOLEAN, to LVARCHAR, or to a
non-opaque built-in type

v the DISTINCT type, its type hierarchy, and its explicit cast to a built-in type are
defined exactly the same way in all participating databases.

For DISTINCT data types in distributed operations, the data type hierarchy must
have one of these forms, which cannot vary across the participating databases:

��

�

DISTINCT OF

distinct_type DISTINCT OF

BOOLEAN
(2048)

LVARCHAR (max)
built-in_non-opaque_type

��

Important:

Chapter 4. Data types and expressions 4-37

The diagram above shows the generalized logical hierarchy of the base types for
any DISTINCT data type. Using the DISTINCT OF keywords recursively, however,
as in the diagram above, is not valid SQL syntax. The CREATE DISTINCT TYPE
statement must specify exactly one base type for the new DISTINCT type. To
create a hierarchy of DISTINCT data types, you must issue a separate CREATE
DISTINCT TYPE statement for every DISTINCT type in the hierarchy. For the SQL
syntax to define a new DISTINCT data type, see the topic “CREATE DISTINCT
TYPE statement” on page 2-157.

The IDSSECURITYLABEL data type, which stores the security label in rows of
protected tables, is a built-in DISTINCT type that satisfies this requirement,
because its base type is the built-in VARCHAR(128) data type.

A user-defined routine can return to the local database a DISTINCT data type from
another database of the same Informix instance only if all of the conditions listed
above are true, and the UDR is defined in all of the participating databases.

The same rules that apply to DISTINCT data types in distributed operations across
databases of the same Informix instance also apply to DISTINCT data types in
cross-server distributed operations on databases of different Informix instances.

For additional information about the data types that Informix supports in
distributed operations, see “Data Types in Distributed Queries” on page 2-663.

Opaque Data Types
An opaque data type is a user-defined data type that can be used in the same way
as a built-in data type. To create an opaque type, you must use the CREATE
OPAQUE TYPE statement. Because an opaque type is encapsulated, you create
support functions to access the individual components of an opaque type. The
internal storage details of the type are hidden or opaque.

For more information about how to create an opaque data type and its support
functions, see IBM Informix User-Defined Routines and Data Types Developer's Guide.

Because of the maximum row size limit of 32,767 bytes, when you create a new
table, no more than approximately 195 columns can be varying-length opaque or
distinct user-defined data types. (The same restriction applies to BYTE, TEXT,
VARCHAR, LVARCHAR, NVARCHAR, and ROW type columns. See “ROW Data
Types” on page 4-39 for additional information about ROW data types.)

Complex Data Type
Complex data types are ROW types or COLLECTION types that you create from
built-in types, opaque types, distinct types, or other complex types.

Complex Data Type:

(1)
Row Data Types

(2)
Collection Data Types

Notes:

1 See “CREATE ROW TYPE statement” on page 2-241

2 See “Collection Data Types” on page 4-40

4-38 IBM Informix Guide to SQL: Syntax

A single complex data type can include multiple components. When you create a
complex type, you define the components of the complex type. Unlike an opaque
type, however, a complex type is not encapsulated. You can use SQL to access the
individual components of a complex data type. The individual components of a
complex data type are called elements.

Informix supports the following categories of complex data types:
v ROW data types: Named ROW types and unnamed ROW types
v COLLECTION data types: SET, MULTISET, and LIST

The elements of a COLLECTION data type must all be of the same data type. You
can use the keyword COLLECTION in SPL data type declarations to specify an
untyped collection variable. NULL values are not supported in elements of
COLLECTION data types.

The elements of a ROW data type can be of different data types, but the pattern of
data types from the first to the last element cannot vary for a given ROW data
type. NULL values are supported in elements of ROW data types, unless you
specify otherwise in the data type declaration or in a constraint.

ROW Data Types
This is the syntax to define a column as a named or unnamed ROW type.

Row Data Types:

row_type
(1)

Owner Name
(2)

Unnamed Row Types

Unnamed Row Types:

ROW

�

,

(field data_type)

Notes:

1 See “Owner name” on page 5-49

2 See “CREATE ROW TYPE statement” on page 2-241

Element Description Restrictions Syntax

data_type Data type of field Any data type except BYTE or TEXT “Data Type” on page
4-23

field Name of a field within row_type Must be unique among fields of the
same ROW type

“Identifier” on page
5-21

row_type Some ROW data type defined by
CREATE ROW TYPE statement

ROW type must exist in the database “Identifier” on page
5-21; “Data Type” on
page 4-23

You can assign a named ROW type to a table, to a column, or to an SPL variable.
A named ROW type that you use to create a typed table or to define a column

Chapter 4. Data types and expressions 4-39

must already exist. For information on how to create a named ROW data type, see
“CREATE ROW TYPE statement” on page 2-241.

To specify a named ROW data type in an ANSI-compliant database, you must
qualify the row_type with its owner name, if you are not the owner of row_type.

An unnamed ROW data type is identified by its structure, which specifies fields
that you create with its ROW constructor. You can define a column or an SPL
variable as an unnamed ROW data type. For the syntax to specify values for an
unnamed ROW type, see “ROW constructors” on page 4-87.

Because of the maximum row size limit of 32,767 bytes, a single table cannot be
created with more than approximately 195 ROW type columns.

Collection Data Types
This diagram shows the syntax to define a column or an SPL variable as a
collection data type. (A table can include no more than 97 columns of collection
data types.) For the syntax to specify values of collection elements, see “Collection
Constructors” on page 4-88.

Collection Data Type:

COLLECTION
SET (data_type NOT NULL)
MULTISET (data_type NOT NULL)
LIST

Element Description Restrictions Syntax

data_type Data type of each of the elements of
the collection

Can be any data type except BIGSERIAL,
BYTE, SERIAL, or SERIAL8, or TEXT

“Data Type”
on page 4-23

A SET is an unordered collection of elements, each of which has a unique value.
Define a column as a SET data type when you want to store collections whose
elements contain no duplicate values and have no associated order.

A MULTISET is an unordered collection of elements that can have duplicate
values. You can define a column as a MULTISET collection type when you want to
store collections whose elements might not be unique and have no specific order
associated with them.

A LIST is an ordered collection of elements that can include duplicate elements. A
LIST differs from a MULTISET in that each element in a LIST collection has an
ordinal position in the collection. You can define a column as a LIST collection type
when you want to store collections whose elements might not be unique but have
a specific order associated with them.

The keyword COLLECTION can be used in SPL data type declarations to specify
an untyped collection variable.

If you attempt to insert a collection that includes one or more duplicate values into
a SET column, Informix issues no error, but the duplicate values are ignored, and
only the unique values are inserted.

Duplicate Elements in DML Operations on SET Columns: The SET data type
does not allow duplicate element values in the same collection. If you attempt to

4-40 IBM Informix Guide to SQL: Syntax

insert duplicate elements into a SET data type, or to update a SET column or
variable to a value that includes duplicate elements, the database server issues no
error or warning when the INSERT or UPDATE statement executes, but only one
of the duplicate elements is stored in the SET column or variable.

For example, suppose you create table t3 with column a of the SET data type, and
then you insert four rows, some of which include elements that have identical
values:

> CREATE TABLE t3(a SET(INT NOT NULL));

Table created.

> INSERT INTO t3 VALUES(SET{10, 20, 30});

1 row(s) inserted.

> INSERT INTO t3 VALUES(SET{10, 20, 10});

1 row(s) inserted.

> INSERT INTO t3 VALUES(SET{10, 10, 10});

1 row(s) inserted.

> INSERT INTO t3 VALUES(SET{10,10,10});

1 row(s) inserted.

When you look at the data values that were inserted into column t3.a, the four
inserted rows include no duplicate element values:
> SELECT * FROM t3;

a SET{10 ,20 ,30 }
a SET{10 ,20 }
a SET{10 }
a SET{10 }

4 row(s) retrieved.

In this example, Informix silently discarded all but one instance of the duplicated
elements from what the VALUES clause of the INSERT statement specified for each
SET value.

Similar behavior occurs if the SET clause of the UPDATE statement includes
duplicate elements within the same SET value. Declare collection columns of the
MULTISET data type, rather than of the SET data type, if you want the database to
store unordered sets that can include duplicate elements within the same collection

Defining the Element Type:

The element type can be any data type except TEXT, BYTE, SERIAL, SERIAL8, or
BIGSERIAL. You can nest collection types, using elements of a collection type.

Every element must be of the same type. For example, if the element type of a
collection data type is INTEGER, every element must be of type INTEGER.

An exception to this restriction occurs if the database server determines that some
elements of a collection of character strings are VARCHAR data types (whose
length is limited to 255 or fewer bytes) but other elements are longer than 255
bytes. In this case, the collection constructor can assign a CHAR(n) data type to all

Chapter 4. Data types and expressions 4-41

elements, for n the length in bytes of the longest element. If this is undesirable,
you can cast the collection to LVARCHAR, to prevent padding extra length in
elements of the collection, as in this example:
LIST {’first character string longer than 255 bytes . . . ’,

’second character string longer than 255 bytes . . . ’,
’another character string’} ::LIST (LVARCHAR NOT NULL)

See “Collection Constructors” on page 4-88 for additional information.

If the element type of a collection is an unnamed ROW type, the unnamed ROW
type cannot contain fields that hold unnamed ROW types. That is, a collection
cannot contain nested unnamed ROW data types.

The elements of a collection cannot be NULL. When you define a column as a
collection data type, you must use the NOT NULL keywords to specify that the
elements of the collection cannot be NULL.

Privileges on a collection data type are those of the database column. You cannot
specify privileges on individual elements of a collection.
Related concepts:

Data types (SQL Reference)

Character data types (GLS User's Guide)
Related reference:

Select data types (Database Design Guide)

DATETIME Field Qualifier
Use a DATETIME Field Qualifier to specify the largest and smallest unit of time in
a DATETIME column or value. Use this segment whenever you see a reference to a
DATETIME Field Qualifier in a syntax diagram.

Syntax

DATETIME Field Qualifier:

4-42 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_093.htm#ids_sqr_093
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_101.htm#ids_gug_101
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.ddi.doc/ids_ddi_079.htm#ids_ddi_079

YEAR TO YEAR
TO MONTH
TO DAY
TO HOUR
TO MINUTE
TO SECOND
TO FRACTION

(scale)
MONTH TO MONTH

TO DAY
TO HOUR
TO MINUTE
TO SECOND
TO FRACTION)

(scale)
DAY TO DAY

TO HOUR
TO MINUTE
TO SECOND
TO FRACTION

(scale)
HOUR TO HOUR

TO MINUTE
TO SECOND
TO FRACTION

(scale)
MINUTE TO MINUTE

TO SECOND
TO FRACTION

(scale)
SECOND TO SECOND

TO FRACTION
(scale)

FRACTION TO FRACTION
(scale)

Element Description Restrictions Syntax

scale Fraction of a second. Default is 3. Integer (1 ≤ scale ≤ 5) “Literal Number” on page 4-215

Usage

This segment specifies the precision and scale of a DATETIME data type.

Specify, as the first keyword, the largest time unit that the DATETIME column will
store. After the keyword TO, specify the smallest unit as the last keyword. These
can be the same keyword. If they are different, the qualifier implies that any
intermediate time units between the first and last are also recorded by the
DATETIME data type.

The keywords can specify the following time units for the DATETIME column.

Unit of Time
Description

YEAR Specifies a year, in the range from A.D. 1 to 9999

MONTH
Specifies a month, in the range from 1 (January) to 12 (December)

Chapter 4. Data types and expressions 4-43

DAY Specifies a day, in the range from 1 to 28, 29, 30, or 31 (depending on the
specific month)

HOUR
Specifies an hour, in the range from 0 (midnight) to 23

MINUTE
Specifies a minute, in the range from 0 to 59

SECOND
Specifies a second, in the range from 0 to 59

FRACTION
Specifies a fraction of a second, with up to five decimal places

The default scale is three digits (thousandth of a second).

Unlike INTERVAL qualifiers, DATETIME qualifiers cannot specify nondefault
precision (except for FRACTION, when FRACTION is the smallest unit in the
qualifier). Some examples of DATETIME qualifiers follow:
YEAR TO MINUTE MONTH TO MONTH
DAY TO FRACTION(4) MONTH TO DAY

On some platforms, the system clock cannot support precision greater than
FRACTION(3).

An error results if the first keyword represents a smaller time unit than the last, or
if you use the plural form of a keyword (such as MINUTES).

Operations on DATETIME values that do not include YEAR in their qualifier use
values from the system clock-calendar to supply any additional precision. If the
first term in the qualifier is DAY, and the current month has fewer than 31 days,
unexpected results can occur.
Related reference:

DATETIME data type (SQL Reference)

Expression
Data values in SQL statements must be represented as expressions. An expression is
a specification, which can include operators, operands, and parentheses, that the
database server can evaluate to one or more values, or to a reference to some
database object.

Expressions can refer to values already in a table of the database, or to values
derived from such data, but some expressions (such as TODAY, USER, or literal
values) can return values that are independent of the database. You can use
expressions to specify values in data-manipulation statements, to define
fragmentation strategies, and in other contexts. Use the Expression segment
whenever you see a reference to an expression in a syntax diagram.

In most contexts, however, you are restricted to expressions whose returned value
is of some specific data type, or of a data type that can be converted by the
database server to some required data type.

For an alphabetical listing of the built-in operators and functions that are described
in this segment, see “List of Expressions” on page 4-46.

4-44 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_110.htm#ids_sqr_110

Syntax of SQL Expressions
The sections that follow describe SQL expressions, which are specifications that
return one or more values or references to database objects. IBM Informix database
servers support the following categories of expressions:

SQL Expressions:

�

Binary Operators
(1)

Cast Expressions
- (2)
+ Column Expressions

(3)
Conditional Expressions

(4)
Constant Expressions

(5)
Constructor Expressions

(6)
Function Expressions

(7)
Statement-Local Variable Expressions

(8)
Aggregate Expressions

NULL
variable
(9)

SPL_variable
(Expression)

Binary Operators:

+
-
*
/
||

Notes:

1 See “Cast Expressions” on page 4-62

2 See “Column Expressions” on page 4-64

3 See “Conditional Expressions” on page 4-69

4 See “Constant Expressions” on page 4-76

5 See “Constructor Expressions” on page 4-87

6 See “Function Expressions” on page 4-92

7 See “Statement-Local Variable Expressions” on page 4-192

8 See “Aggregate Expressions” on page 4-193

9 Stored Procedure Language only

Chapter 4. Data types and expressions 4-45

Element Description Restrictions Syntax

SPL_variable In an SPL routine, a variable that
contains some expression type that the
syntax diagram shows

Must conform to the rules for
expressions of that type

“Identifier” on page
5-21

variable Host or program variable that contains
some expression type that the syntax
diagram shows

Must conform to the rules for
expressions of that type

Language-specific
rules for names

Related reference:
“Projection Clause” on page 2-658

Usage
The following table lists the types of SQL expressions, as identified in the diagram
for “Expression” on page 4-44, and describes what each type returns.

Expression Type Description

Aggregate functions Returns values from built-in or from user-defined aggregates

Arithmetic operators Supports arithmetic operations on one (unary operators) or two
(binary operators) numeric operands

Concatenation operator Concatenates two string values

Cast operators Explicit casts from one data type to another

Column expressions Column values

Conditional expressions Returns values that depend on conditional tests

Constant expressions Literal values in data manipulation (DML) statements

Constructor expressions Dynamically creates values for complex data types

Function expressions Returns values from built-in or user-defined functions

Statement-Local Variable
expressions

References a statement-local variable (SLV) in the same SQL
statement where it was declared

You can also use host variables or SPL variables as expressions. For a complete list
with page references to this chapter, see the following "“List of Expressions.”"

List of Expressions
Each category of SQL expression includes many individual expressions.

The following table lists all the SQL expressions (and some operators) in
alphabetical order. The columns in this table have the following meanings:
v Name gives the name of each expression.
v Description gives a short description of each expression.
v Syntax lists the page that shows the syntax of the expression.
v Usage shows the page that describes the usage of the expression.

Name Description Syntax Usage

ABS function Returns absolute value of a
numeric argument

“Algebraic Functions” on
page 4-93

“ABS Function” on page 4-95

ACOS function Returns the arc cosine of a
numeric argument

“Trigonometric Functions”
on page 4-150

“ACOS Function” on page
4-153

4-46 IBM Informix Guide to SQL: Syntax

Name Description Syntax Usage

ACOSH function Returns the hyperbolic tangent
of the specified numeric input

“Trigonometric Functions”
on page 4-150

“ACOSH Function” on page
4-153

ADD_MONTHS
function

Adds a specified number of
months

“Time Functions” on page
4-137

“ADD_MONTHS Function”
on page 4-138

Addition (+) operator Returns the sum of two
numeric operands

“Expression” on page 4-44 “Arithmetic Operators” on
page 4-56

ASCII function Returns the ASCII codepoint
of the first character in its
string argument

“String-Manipulation
Functions” on page 4-155

“ASCII Function” on page
4-161

ASIN function Returns the arc sine of a
numeric argument

“Trigonometric Functions”
on page 4-150

“ASIN Function” on page
4-153

ASINH function Returns the arc hyperbolic sine
of the specified numeric input

“Trigonometric Functions”
on page 4-150

“ASINH Function” on page
4-153

ATAN function Returns the arc tangent of
numeric argument

“Trigonometric Functions”
on page 4-150

“ATAN Function” on page
4-153

ATAN2 function Calculates the angular
component of polar coordinate
arguments

“Trigonometric Functions”
on page 4-150

“ATAN2 Function” on page
4-153

ATANH function Returns the hyperbolic tangent
of the specified numeric input

“Trigonometric Functions”
on page 4-150

“ATANH Function” on page
4-153

AVG function Returns the mean of a set of
numeric values

“Aggregate Expressions” on
page 4-193

“AVG Function” on page
4-197

BITAND Returns the bitwise AND of
two arguments

“Bitwise Logical Functions”
on page 4-57

“BITAND Function” on page
4-58

BITANDNOT Returns the bitwise ANDNOT
of two arguments

“Bitwise Logical Functions”
on page 4-57

“BITANDNOT Function” on
page 4-59

BITNOT Returns the bitwise NOT of
two arguments

“Bitwise Logical Functions”
on page 4-57

“BITNOT Function” on page
4-60

BITOR Returns the bitwise OR of two
arguments

“Bitwise Logical Functions”
on page 4-57

“BITOR Function” on page
4-58

BITXOR Returns the bitwise XOR of
two arguments

“Bitwise Logical Functions”
on page 4-57

“BITXOR Function” on page
4-59

CARDINALITY
function

Returns the number of
elements in a collection data
type (SET, MULTISET, or LIST)

“CARDINALITY Function”
on page 4-106

“CARDINALITY Function”
on page 4-106

CASE expression Returns a value that depends
on which of several
conditional tests evaluates to
true

“CASE Expressions” on
page 4-70

“CASE Expressions” on page
4-70

CAST expression Converts an expression to a
specified data type

“Cast Expressions” on page
4-62

“Cast Expressions” on page
4-62

Cast (::) operator See "Double-colon (::) cast
operator"

“Cast Expressions” on page
4-62

“Cast Expressions” on page
4-62

CEIL function Returns the smallest integer
that is greater than or equal to
its single argument

“Algebraic Functions” on
page 4-93

“CEIL Function” on page
4-95

CHARACTER_
LENGTH function

See CHAR_LENGTH function.
(In multibyte locales, this
replaces the LENGTH
function.)

“Length functions” on page
4-127

“CHAR_LENGTH Function”
on page 4-128

Chapter 4. Data types and expressions 4-47

Name Description Syntax Usage

CHAR_LENGTH
function

Returns count of logical
characters in a string argument

“Length functions” on page
4-127

“CHAR_LENGTH Function”
on page 4-128

CHARINDEX function Returns the location of a
substring within a string

“CHARINDEX function” on
page 4-174

“CHARINDEX function” on
page 4-174

CHR Returns a code point in the
range 0 through 255 from the
default code set

“String-Manipulation
Functions” on page 4-155

“CHR Function” on page
4-170

Column expression Column value from a table “Column Expressions” on
page 4-64

“Column Expressions” on
page 4-64

CONCAT operator
function

Concatenates the results of
two expressions

“String-Manipulation
Functions” on page 4-155

“CONCAT Function” on
page 4-156

Concatenation (||)
operator

Concatenates the results of
two expressions

“Expression” on page 4-44 “Concatenation Operator” on
page 4-61

Constant expression Expression with a literal, fixed,
or variant value

“Constant Expressions” on
page 4-76

“Constant Expressions” on
page 4-76

COS function Returns the cosine of a radian
expression

“Trigonometric Functions”
on page 4-150

“COS Function” on page
4-151

COSH function Returns the hyperbolic cosine
of the argument, where the
argument is an angle
expressed in radians

“Trigonometric Functions”
on page 4-150

“COSH function” on page
4-151

COUNT (as a set of
functions)

Functions that return
frequency counts Each form of
the COUNT function is listed
below.

“Aggregate Expressions” on
page 4-193

“Overview of COUNT
Functions” on page 4-197

COUNT (ALL column)
function

See COUNT (column) function. “Aggregate Expressions” on
page 4-193

“COUNT column Function”
on page 4-198

COUNT (column)
function

Returns the number of
non-NULL values in a
specified column

“Aggregate Expressions” on
page 4-193

“COUNT column Function”
on page 4-198

COUNT DISTINCT
function

Returns the number of unique
non-NULL values in a
specified column

“Aggregate Expressions” on
page 4-193

“COUNT DISTINCT and
COUNT UNIQUE functions”
on page 4-198

COUNT UNIQUE
function

See COUNT DISTINCT
function.

“Aggregate Expressions” on
page 4-193

“COUNT DISTINCT and
COUNT UNIQUE functions”
on page 4-198

COUNT (*) function Returns the cardinality of the
set of rows that satisfy a query

“Aggregate Expressions” on
page 4-193

“COUNT(*) function” on
page 4-197

CURRENT operator Returns the current time as a
DATETIME value that consists
of the date and the time of day

“Constant Expressions” on
page 4-76

“CURRENT Operator” on
page 4-81

CURRENT_ROLE
operator

Returns the currently enabled
role of the user

“Constant Expressions” on
page 4-76

“CURRENT_ROLE Operator”
on page 4-79

CURRENT_USER
operator

Returns the authorization
identifier of the user. Synonym
for USER operator.

“Constant Expressions” on
page 4-76

“USER or CURRENT_USER
Operator” on page 4-78

sequence.CURRVAL Returns the current value of
specified sequence

“Constant Expressions” on
page 4-76

“Using CURRVAL” on page
4-85

DATE function Converts a nondate argument
to a DATE value

“Time Functions” on page
4-137

“DATE Function” on page
4-139

4-48 IBM Informix Guide to SQL: Syntax

Name Description Syntax Usage

DAY function Returns the day of the month
as an integer

“Time Functions” on page
4-137

“DAY Function” on page
4-140

DBINFO (option) Functions for retrieving
database and session
information. Each option is
listed below.

“DBINFO Function” on
page 4-107

“DBINFO Options” on page
4-108

DBINFO ('bigserial') Returns most recently inserted
BIGSERIAL value

“DBINFO Function” on
page 4-107

“Using the 'serial8' and
'bigserial' options” on page
4-113

DBINFO ('cdrsession') Shows whether a DML
operation is part of a
replicated transaction

“DBINFO Function” on
page 4-107

“Using the 'cdrsession'
option” on page 4-111

DBINFO ('dbhostname') Returns the host name of the
database server to which a
client application is connected

“DBINFO Function” on
page 4-107

“Using the 'dbhostname'
Option” on page 4-112

DBINFO ('dbname') Returns the identifier of the
database to which a client
application is connected

“DBINFO Function” on
page 4-107

“Using the 'dbname' Option”
on page 4-112

DBINFO ('dbspace',
tblspace_number)

Returns the name of a dbspace
corresponding to a tblspace
number

“DBINFO Function” on
page 4-107

“Using the ('dbspace',
tblspace_num) Option” on
page 4-109

DBINFO ('get_tz') Returns the time zone of the
current session

“DBINFO Function” on
page 4-107

“Using the 'get_tz' Option”
on page 4-114

DBINFO ('serial8') Returns most recently inserted
SERIAL8 value

“DBINFO Function” on
page 4-107

“Using the 'serial8' and
'bigserial' options” on page
4-113

DBINFO ('sessionid') Returns the session ID of the
current session

“DBINFO Function” on
page 4-107

“Using the 'sessionid'
Option” on page 4-111

DBINFO
('sqlca.sqlerrd1')

Returns the last serial value
inserted in a table

“DBINFO Function” on
page 4-107

“Using the 'sqlca.sqlerrd1'
Option” on page 4-110

DBINFO
('sqlca.sqlerrd2')

Returns the number of rows
processed by DML statements,
and by EXECUTE
PROCEDURE and EXECUTE
FUNCTION statements

“DBINFO Function” on
page 4-107

“Using the 'sqlca.sqlerrd2'
Option” on page 4-110

DBINFO ('utc_current') Returns the current
Coordinated Universal Time
(UTC) value.

“DBINFO Function” on
page 4-107

“Using the 'utc_current'
Option” on page 4-114

DBINFO
('utc_to_datetime',
expression)

Returns the DATETIME value
of an integer or column
expression that specifies a UTC
value.

“DBINFO Function” on
page 4-107

“Using the 'utc_to_datetime'
Option” on page 4-115

DBINFO ('version',
parameter)

Returns all or part, as specified
by the parameter, of the exact
version of the database server
to which the client application
is connected.

“DBINFO Function” on
page 4-107

“Using the 'version' Option”
on page 4-112

DBSERVERNAME
function

Returns the name of the
database server

“Constant Expressions” on
page 4-76

“DBSERVERNAME and
SITENAME Operators” on
page 4-80

Chapter 4. Data types and expressions 4-49

Name Description Syntax Usage

DECODE function Evaluates one or more
expression pairs and compares
the when expression in each
pair with a specified value
expression

“DECODE Function” on
page 4-74

“DECODE Function” on page
4-74

DECRYPT_ BINARY
function

Returns a plain-text BLOB data
value after processing an
encrypted BLOB argument

“Encryption and decryption
functions” on page 4-116

“DECRYPT_BINARY
Function” on page 4-122

DECRYPT_CHAR
function

Returns a plain-text string or
CLOB after processing an
encrypted argument

“Encryption and decryption
functions” on page 4-116

“DECRYPT_CHAR Function”
on page 4-121

DEFAULT_ROLE
operator

Returns the default role of the
current user

“Constant Expressions” on
page 4-76

“DEFAULT_ROLE Operator”
on page 4-79

DEGREES function Converts units of radians to
degrees

“Trigonometric Functions”
on page 4-150

“DEGREES function” on
page 4-154

DELETING Boolean
operator

Returns 't' if triggering event is
a DELETE

“Trigger-Type Boolean
Operator” on page 4-14

“Trigger-Type Boolean
Operator” on page 4-14

Division (/) operator Returns the quotient of two
numeric operands

“Expression” on page 4-44 “Arithmetic Operators” on
page 4-56

Double-colon (::) cast
operator

Converts the value of an
expression to a specified data
type

“Cast Expressions” on page
4-62

“Cast Expressions” on page
4-62

Double-pipe (||)
concatenation operator

Returns a string that joins one
string operand to another
string operand

“Expression” on page 4-44 “Concatenation Operator” on
page 4-61

ENCRYPT_AES
function

Returns an encrypted string or
BLOB after processing a
plain-text string, BLOB, or
CLOB

“Encryption and decryption
functions” on page 4-116

“ENCRYPT_AES Function”
on page 4-122

ENCRYPT_TDES
function

Returns an encrypted string or
BLOB after processing a
plain-text string, BLOB, or
CLOB

“Encryption and decryption
functions” on page 4-116

“ENCRYPT_TDES Function”
on page 4-123

EXP function Returns the exponent of a
numeric expression

“Exponential and
Logarithmic Functions” on
page 4-124

“EXP Function” on page
4-125

EXTEND function Resets precision of DATETIME
or DATE value

“Time Functions” on page
4-137

“EXTEND Function” on page
4-143

FILETOBLOB function Creates a BLOB value from
data stored in a specified
operating-system file

“Smart-Large-Object
Functions” on page 4-131

“FILETOBLOB and
FILETOCLOB Functions” on
page 4-132

FILETOCLOB function Creates a CLOB value from
data stored in a specified
operating-system file

“Smart-Large-Object
Functions” on page 4-131

“FILETOBLOB and
FILETOCLOB Functions” on
page 4-132

FLOOR function Returns the largest integer that
is smaller than or equal to its
single argument

“Algebraic Functions” on
page 4-93

“FLOOR Function” on page
4-95

FORMAT_UNITS
function

Returns a character string that
specifies a number and
abbreviated units of memory
or of storage

“FORMAT_UNITS
Function” on page 4-185

“FORMAT_UNITS Function”
on page 4-185

4-50 IBM Informix Guide to SQL: Syntax

Name Description Syntax Usage

GETHINT function Returns a plain-text hint string
after processing an encrypted
data-string argument

“Encryption and decryption
functions” on page 4-116

“GETHINT Function” on
page 4-124

GREATEST function Returns the maximum value in
a set of values

“Algebraic Functions” on
page 4-93

“GREATEST function” on
page 4-95

HEX function Returns the hexadecimal
encoding of a base-10 integer
argument

“HEX Function” on page
4-126

“HEX Function” on page
4-126

Host variable See Variable. “Syntax of SQL
Expressions” on page 4-45

“Syntax of SQL Expressions”
on page 4-45

IFX_ALLOW_
NEWLINE function

Sets a newline session mode
that allows or disallows
newline characters in quoted
strings

“IFX_ALLOW_NEWLINE
Function” on page 4-187

“IFX_ALLOW_NEWLINE
Function” on page 4-187

INITCAP function Converts a string argument to
a string in which only the
initial letter of each word is
uppercase

“Case-Conversion
Functions” on page 4-170

“INITCAP Function” on page
4-172

INSERTING Boolean
operator

Returns 't' if triggering event is
an INSERT

“Trigger-Type Boolean
Operator” on page 4-14

“Trigger-Type Boolean
Operator” on page 4-14

INSTR function Returns position of Nth
occurrence of a substring
within a string

“INSTR function” on page
4-176

“INSTR function” on page
4-176

LAST_DAY function Returns the date of the last
day of the month that its
argument specifies

“Time Functions” on page
4-137

“LAST_DAY Function” on
page 4-142

LEAST function Returns the minimum value in
a set of values

“Algebraic Functions” on
page 4-93

“LEAST function” on page
4-96

LEFT function Returns the leftmost N
characters of a string

“LEFT function” on page
4-177

“LEFT function” on page
4-177

LEN function Synonym for the LENGTH
function

“Length functions” on page
4-127

“LENGTH Function” on page
4-127

LENGTH function Returns the number of bytes in
a character column, not
including trailing blank spaces

“Length functions” on page
4-127

“LENGTH Function” on page
4-127

LIST collection
constructor

Constructor for ordered
collections that can contain
duplicate values

“Collection Constructors”
on page 4-88

“Collection Constructors” on
page 4-88

Literal BOOLEAN Literal representation of a
BOOLEAN value

“Constant Expressions” on
page 4-76

“Constant Expressions” on
page 4-76

Literal collection Represents elements in a
collection data type

“Constant Expressions” on
page 4-76

“Literal Collection” on page
4-86

Literal DATETIME Represents a DATETIME value “Constant Expressions” on
page 4-76

“Literal DATETIME” on page
4-83

Literal INTERVAL Represents an INTERVAL
value

“Constant Expressions” on
page 4-76

“Literal INTERVAL” on page
4-83

Literal number Represents a numeric value “Constant Expressions” on
page 4-76

“Literal Number” on page
4-78

Literal opaque type Represents an opaque data
type

“Constant Expressions” on
page 4-76

“Constant Expressions” on
page 4-76

Chapter 4. Data types and expressions 4-51

Name Description Syntax Usage

Literal row Represents the elements in a
ROW data type

“Constant Expressions” on
page 4-76

“Literal Row” on page 4-86

LN Returns the natural logarithm
of a numeric argument

“Exponential and
Logarithmic Functions” on
page 4-124

“LN function” on page 4-125

LOCOPY function Creates a copy of a smart large
object

“Smart-Large-Object
Functions” on page 4-131

“LOCOPY Function” on page
4-135

LOG10 function Returns the base-10 logarithm
of a numeric argument

“Exponential and
Logarithmic Functions” on
page 4-124

“LOG10 Function” on page
4-125

LOGN function Returns the natural logarithm
of a numeric argument

“Exponential and
Logarithmic Functions” on
page 4-124

“LOGN Function” on page
4-125

LOTOFILE function Copies a BLOB or CLOB object
to a file

“Smart-Large-Object
Functions” on page 4-131

“LOTOFILE Function” on
page 4-134

LOWER function Converts uppercase letters to
lowercase

“Case-Conversion
Functions” on page 4-170

“LOWER Function” on page
4-172

LPAD function Returns a string that is
left-padded by a specified
number of pad characters

“String-Manipulation
Functions” on page 4-155

“LPAD Function” on page
4-168

LTRIM function Removes specified leading pad
characters from a string.

“String-Manipulation
Functions” on page 4-155

“LTRIM Function” on page
4-164

MAX function Returns the largest in a
specified set of values

“Aggregate Expressions” on
page 4-193

“MAX Function” on page
4-201

MDY function Returns a DATE value from
integer arguments

“Time Functions” on page
4-137

“MDY Function” on page
4-144

MIN function Returns the smallest in a
specified set of values

“Aggregate Expressions” on
page 4-193

“MIN Function” on page
4-201

MOD function Returns the modulus (the
integer-division remainder
value) from two numeric
arguments

“Algebraic Functions” on
page 4-93

“MOD Function” on page
4-97

MONTH function Returns the month value from
a DATE or DATETIME
argument

“Time Functions” on page
4-137

“MONTH Function” on page
4-140

MONTHS_ BETWEEN
function

Returns the difference in
months between two time
arguments

“Time Functions” on page
4-137

“MONTHS_BETWEEN
Function” on page 4-140

Multiplication (*)
operator

Returns the product of two
numeric operands

“Expression” on page 4-44 “Arithmetic Operators” on
page 4-56

MULTISET collection
constructor

Constructor for a non-ordered
collection of elements that can
contain duplicate value

“Collection Constructors”
on page 4-88

“Collection Constructors” on
page 4-88

NEXT_DAY function Returns the earliest calendar
date that satisfies both of two
conditions

“Time Functions” on page
4-137

“NEXT_DAY Function” on
page 4-142

sequence.NEXTVAL Increments value of the
specified sequence

“Constant Expressions” on
page 4-76

“Using NEXTVAL” on page
4-85

NULL keyword Unknown, missing, or logically
undefined value

“NULL Keyword” on page
4-90

“NULL Keyword” on page
4-90

4-52 IBM Informix Guide to SQL: Syntax

Name Description Syntax Usage

NULLIF function Returns NULL if both
arguments are equal

“NULLIF Function” on
page 4-74

“NULLIF Function” on page
4-74

NVL function Returns the value of a
not-NULL argument, or a
specified value if the argument
is NULL

“NVL Function” on page
4-73

“NVL Function” on page
4-73

NVL2 function Returns the second argument
when the first argument is not
NULL

“NVL2 Function” on page
4-126

“NVL2 Function” on page
4-126

OCTET_LENGTH
function

Returns the number of bytes in
a character column, including
any trailing blank spaces

“Length functions” on page
4-127

“OCTET_LENGTH Function”
on page 4-128

POW function Raises a base value to a
specified power

“Algebraic Functions” on
page 4-93

“POW Function” on page
4-97

POWER function Synonym for POW function “Algebraic Functions” on
page 4-93

“POW Function” on page
4-97

Procedure-call
expression

See user-defined function. “User-Defined Functions”
on page 4-188

“User-Defined Functions” on
page 4-188

Program variable See variable. “Syntax of SQL
Expressions” on page 4-45

“Syntax of SQL Expressions”
on page 4-45

Quoted string Literal character string “Constant Expressions” on
page 4-76

“Quoted String” on page 4-78

RADIANS function Converts units of degrees to
radians

“Trigonometric Functions”
on page 4-150

“RADIANS function” on
page 4-154

RANGE function Returns the range of a
specified set of values

“Aggregate Expressions” on
page 4-193

“RANGE Function” on page
4-202

REPLACE function Replaces specified characters
in a source string

“String-Manipulation
Functions” on page 4-155

“REPLACE Function” on
page 4-167

REVERSE Reverses the order of
characters in a source string

“String-Manipulation
Functions” on page 4-155

“REVERSE function” on page
4-166

RIGHT function Returns the N rightmost
characters from a source string

“RIGHT function” on page
4-178

“RIGHT function” on page
4-178

ROOT function Returns a real, positive, Nth
root value of a numeric
argument

“Algebraic Functions” on
page 4-93

“ROOT Function” on page
4-97

ROUND function Returns the rounded value of
an argument

“Algebraic Functions” on
page 4-93

“ROUND Function” on page
4-98

ROW constructor Constructor for a named ROW
data type

“Constructor Expressions”
on page 4-87

“ROW constructors” on page
4-87

RPAD function Returns a string right-padded
by a specified number of pad
characters

“String-Manipulation
Functions” on page 4-155

“RPAD Function” on page
4-169

RTRIM function Removes trailing blank pad
characters from a string

“String-Manipulation
Functions” on page 4-155

“RTRIM Function” on page
4-164

SECLABEL_BY_ COMP
function

Returns the security label
whose components are the
arguments

“Security Label Support
Functions” on page 4-128

“SECLABEL_BY_COMP
Function” on page 4-129

SECLABEL_BY_ NAME
function

Returns the security label
whose identifier is the
argument

“Security Label Support
Functions” on page 4-128

“SECLABEL_BY_NAME
Function” on page 4-129

Chapter 4. Data types and expressions 4-53

Name Description Syntax Usage

SECLABEL_TO_ CHAR
function

Returns the security label
whose string format is the
argument

“Security Label Support
Functions” on page 4-128

“SECLABEL_TO_CHAR
Function” on page 4-130

SELECTING Boolean
operator

Returns 't' if triggering event is
a SELECT

“Trigger-Type Boolean
Operator” on page 4-14

“Trigger-Type Boolean
Operator” on page 4-14

SET collection
constructor

Constructor for an unordered
collection of unique elements

“Collection Constructors”
on page 4-88

“Collection Constructors” on
page 4-88

SIGN function Returns an indicator of the
sign of the numeric argument

“SIGN function” on page
4-131

“SIGN function” on page
4-131

SIN function Returns the sine of a radians
argument

“Trigonometric Functions”
on page 4-150

“SIN Function” on page
4-152

SINH function Returns the hyperbolic sine of
a radians argument

“Trigonometric Functions”
on page 4-150

“SINH function” on page
4-152

SITENAME function See DBSERVERNAME
function.

“Constant Expressions” on
page 4-76

“DBSERVERNAME and
SITENAME Operators” on
page 4-80

SLV expression A statement-local variable
(SLV) whose scope is the SQL
statement that declares it

“Statement-Local Variable
Declaration” on page 4-190

“Statement-Local Variable
Expressions” on page 4-192

SPACE function Returns a string of N blank
characters

“String-Manipulation
Functions” on page 4-155

“SPACE function” on page
4-165

SPL routine expression See "User-defined functions" “User-Defined Functions”
on page 4-188

“User-Defined Functions” on
page 4-188

SPL variable SPL variable that stores an
expression

“Syntax of SQL
Expressions” on page 4-45

“Syntax of SQL Expressions”
on page 4-45

SQLCODE function Returns sqlca.sqlcode value to
an SPL UDR

“SQLCODE Function (SPL)”
on page 4-106

“SQLCODE Function (SPL)”
on page 4-106

SQRT function Returns the square root of a
numeric argument

“Algebraic Functions” on
page 4-93

“SQRT Function” on page
4-98

STDEV function Returns the standard deviation
of a data set

“Aggregate Expressions” on
page 4-193

“STDEV Function” on page
4-202

SUBSTR function Returns a substring of a source
string

“SUBSTR function” on page
4-179

“SUBSTR function” on page
4-179

SUBSTRB function Returns a substring of a source
string

“SUBSTRB function” on
page 4-181

“SUBSTRB function” on page
4-181

SUBSTRING function Returns a substring of a source
string

“SUBSTRING function” on
page 4-182

“SUBSTRING function” on
page 4-182

SUBSTRING_INDEX
function

Returns a substring that
includes the Nth occurrence of
a delimiter

“SUBSTRING_INDEX
function” on page 4-184

“SUBSTRING_INDEX
function” on page 4-184

Substring ([x, y])
operator

Returns a substring from a
string operand

“Column Expressions” on
page 4-64

“Using the Substring
Operator” on page 4-68

Subtraction (-)
operator

Returns the difference between
two numbers

“Expression” on page 4-44 “Arithmetic Operators” on
page 4-56

SUM function Returns the sum of a specified
set of values

“Aggregate Expressions” on
page 4-193

“SUM Function” on page
4-201

SYSDATE operator Returns the current
DATETIME value from the
system clock.

“Constant Expressions” on
page 4-76

“SYSDATE Operator” on
page 4-82

4-54 IBM Informix Guide to SQL: Syntax

Name Description Syntax Usage

TAN function Returns the tangent of a
radians expression

“Trigonometric Functions”
on page 4-150

“TAN Function” on page
4-152

TANH function Returns the hyperbolic tangent
of a radians argument

“Trigonometric Functions”
on page 4-150

“TANH Function” on page
4-152

TO_CHAR function Converts a time or number to
a character string

“Time Functions” on page
4-137

“TO_CHAR Function” on
page 4-145

TO_DATE function Converts a character string to
a DATETIME value

“Time Functions” on page
4-137

“TO_DATE Function” on
page 4-149

TO_NUMBER function Converts a number or a
character string to a DECIMAL
value

“TO_NUMBER Function”
on page 4-149

“TO_NUMBER Function” on
page 4-149

TODAY operator Returns the current system
date

“Constant Expressions” on
page 4-76

“TODAY Operator” on page
4-81

TRIM function Drops blank pad characters
from a character string
argument

“String-Manipulation
Functions” on page 4-155

“TRIM Function” on page
4-162

TRUNC function Returns a truncated numeric
or time value

“Algebraic Functions” on
page 4-93

“TRUNC Function” on page
4-102

Unary minus (-) sign Specifies a negative (< 0)
numeric value

“Expression” on page 4-44 “Arithmetic Operators” on
page 4-56

Unary plus (+) sign Specifies a positive (> 0)
numeric value .

“Expression” on page 4-44 “Arithmetic Operators” on
page 4-56

UNITS operator Convert an integer to an
INTERVAL value

“Constant Expressions” on
page 4-76

“UNITS Operator” on page
4-83

UPDATING Boolean
operator

Returns 't' if triggering event is
an UPDATE

“Trigger-Type Boolean
Operator” on page 4-14

“Trigger-Type Boolean
Operator” on page 4-14

UPPER function Converts lowercase letters to
uppercase

“Case-Conversion
Functions” on page 4-170

“UPPER Function” on page
4-172

User-defined aggregate Aggregate that a user defines
(as opposed to a built-in
aggregate)

“User-Defined Aggregates”
on page 4-204

“User-Defined Aggregates”
on page 4-204

User-defined function Function that a user writes (as
opposed to a built-in function)

“User-Defined Functions”
on page 4-188

“User-Defined Functions” on
page 4-188

USER operator Returns the authorization
identifier of the current user

“Constant Expressions” on
page 4-76

“USER or CURRENT_USER
Operator” on page 4-78

Variable Host or program variable that
stores a value

“Syntax of SQL
Expressions” on page 4-45

“Syntax of SQL Expressions”
on page 4-45

VARIANCE function Returns the variance for a set
of numeric values

“Aggregate Expressions” on
page 4-193

“VARIANCE Function” on
page 4-203

WEEKDAY function Returns an integer code for the
day of the week

“Time Functions” on page
4-137

“WEEKDAY Function” on
page 4-140

YEAR function Returns a 4-digit integer
representing a year

“Time Functions” on page
4-137

“YEAR Function” on page
4-140

* symbol See "Multiplication (*)
operator"

“Syntax of SQL
Expressions” on page 4-45

“Arithmetic Operators” on
page 4-56

+ symbol See "Addition" and "Unary
plus (+) sign"

“Syntax of SQL
Expressions” on page 4-45

“Arithmetic Operators” on
page 4-56

- symbol See "Subtraction" and "Unary
minus (-) sign"

“Syntax of SQL
Expressions” on page 4-45

“Arithmetic Operators” on
page 4-56

Chapter 4. Data types and expressions 4-55

Name Description Syntax Usage

/ symbol See "Division operator" “Syntax of SQL
Expressions” on page 4-45

“Arithmetic Operators”

:: symbols See "Double-colon (::) cast
operator"

“Cast Expressions” on page
4-62

“Cast Expressions” on page
4-62

|| symbol See "Double-pipe (||)
concatenation operator"

“Syntax of SQL
Expressions” on page 4-45

“Concatenation Operator” on
page 4-61

[first, last] symbols See "Substring operator" “Column Expressions” on
page 4-64

“Using the Substring
Operator” on page 4-68

Sections that follow describe the syntax and usage of each expression that appears
in the preceding table.

Arithmetic Operators
Binary arithmetic operators can combine expressions that return numbers.

Arithmetic
Operation

Arithmetic
Operator

Operator
Function

Arithmetic
Operation

Arithmetic
Operator

Operator
Function

Addition + plus() Multiplication * times()

Subtraction – minus() Division / divide()

The following examples use binary arithmetic operators:
quantity * total_price
price * 2
COUNT(*) + 2

If you combine a DATETIME value with one or more INTERVAL values, all the
fields of the INTERVAL value must be present in the DATETIME value; no implicit
EXTEND function is performed. In addition, you cannot use YEAR to MONTH
intervals with DAY to SECOND intervals. For additional information about binary
arithmetic operators, see the IBM Informix Guide to SQL: Reference.

The binary arithmetic operators have associated operator functions, as the
preceding table shows. Connecting two expressions with a binary operator is
equivalent to invoking the associated operator function on the expressions. For
example, the following two statements both select the product of the total_price
column and 2. In the first statement, the * operator implicitly invokes the times()
function.
SELECT (total_price * 2) FROM items

WHERE order_num = 1001;
SELECT times(total_price, 2) FROM items

WHERE order_num = 1001;

You cannot use arithmetic operators to combine expressions that use aggregate
functions with column expressions.

The database server provides the operator functions associated with the relational
operators for all built-in data types. You can define new versions of these operator
functions to handle your own user-defined data types.

For more information, see IBM Informix User-Defined Routines and Data Types
Developer's Guide.

4-56 IBM Informix Guide to SQL: Syntax

The database server also supports the following unary arithmetic operators.

Sign of Number Unary Arithmetic Operator Operator Function

Positive + positive()

Negative – negate()

The unary arithmetic operators have the associated operator functions that the
preceding table shows. You can define new versions of these functions to handle
your own user-defined data types. For more information on this topic, see IBM
Informix User-Defined Routines and Data Types Developer's Guide.

If any value that participates in an arithmetic expression is NULL, the value of the
entire expression is NULL, as the following example shows:
SELECT order_num, ship_charge/ship_weight FROM orders

WHERE order_num = 1023;

If either ship_charge or ship_weight is NULL, the value returned for the
expression ship_charge/ship_weight is also NULL. If the NULL expression
ship_charge/ship_weight is used in a condition, its truth value cannot be TRUE,
and the condition is not satisfied (unless the NULL expression is an operand of the
IS NULL operator).

Bitwise Logical Functions
Use the bitwise logical functions to perform named bit operations.

Bitwise Logical Functions:

(1)
BITAND (int8_expr , int8_expr)
BITOR
BITXOR
BITANDNOT

BITNOT (int8_expr)

Notes:

1 Informix extension

Element Description Restrictions Syntax

int8_expr Number expression that can be
converted to an INT8 value

For BITNOT the maximum size is
reduced by 1

“Expression” on page 4-44

The arguments to these functions can be any numeric data type that can be
converted to the INT8 data type.

Except for BITNOT, which takes a single argument, these bitwise logical functions
take two arguments that can be converted to an INT8 value.

If both arguments have the same integer types, the data type of the returned value
is the same type as the arguments. If the two arguments are of different integer
types, the returned value is the integer type with the greater precision. For
example, if the first argument is of type INT, and the second argument is of type
INT8, the returned value is of type INT8.

Chapter 4. Data types and expressions 4-57

If the arguments are any other numeric type, such as DECIMAL, SMALLFLOAT,
FLOAT, or MONEY, or some combination of those types, the returned data type is
DECIMAL(32).

If using host variables, and the data types of the arguments are not known at
prepare time, the data type INTEGER is assumed for both arguments, and the
returned value is INTEGER. If, after prepare, at execution time, a different data
type value is supplied for the host variable, Informix issues a -9750 error. To
prevent such an occurrence, you can specify the host variable data type by using a
cast, as in the following ESQL/C program fragment:
sprintf(query1, “,

bitand(?::int8, ?::int8) from mytab”);
EXEC SQL prepare selectq from :query;
EXEC SQL declare select_cursor cursor for selectq;
EXEC SQL open select_cursor

using :hostvar_int8_input1, :hostvar_int8_input2;

EXEC SQL fetch select_cursor into :var_int8_output;

BITAND Function
The BITAND function takes two arguments. The arguments can be any number
type value that can be converted to an INT8 value.

Fractional values are truncated before the bit operation. The result is the AND for
the two arguments.

If both arguments have the same integer types, the data type of the returned value
is the same type as the arguments. If the arguments are of different integer types
(for example, INT and INT8), the data type with the greater precision is returned.
If the arguments are any other numeric type, such as DECIMAL, SMALLFLOAT,
FLOAT, or MONEY, or some combination of those types, the returned data type is
DECIMAL(32).

The following example illustrates a query that calls the BITAND function:
select task_id, task_status,
decode(bitand(task_status,1), 1, ’ Y’, ’ N’) as task_a,
decode(bitand(task_status,2), 2, ’ Y’, ’ N’) as task_b,
decode(bitand(task_status,4), 4, ’ Y’, ’ N’) as task_c
from tasks;

The following table shows the output of this SELECT statement.

task_id task_status task_a task_b task_c

100 1 Y N N
101 1 Y N N
102 2 N Y N
103 4 N N Y
104 6 N Y Y
105 3 Y Y N
106 5 Y N Y
107 7 Y Y Y

BITOR Function
The BITOR function takes two arguments. The arguments can be any number type
value that can be converted to an INT8 value.

Fractional values are truncated before the bit operation. The result is the bitwise
OR of its two arguments.

4-58 IBM Informix Guide to SQL: Syntax

If both arguments have the same integer types, the data type of the returned value
is the same type as the arguments. If the arguments are of different integer types
(for example, INT and INT8), the returned type is the type with the greater
precision. If the arguments are any other numeric type, such as DECIMAL,
SMALLFLOAT, FLOAT, or MONEY, or some combination of those types, the
returned data type is DECIMAL(32)

The following example illustrates a query that calls the BITOR function:
SELECT BITOR(8, 20) AS bitor FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

bitor

28

BITXOR Function
The BITXOR function takes two arguments. The arguments can be any number
type value that can be converted to an INT8 value.

Fractional values are truncated before the bit operation. The result is the bitwise
XOR of its two arguments.

If both arguments have the same integer types, the data type of the returned value
is the same type as the arguments. If the arguments are of different integer types
(for example, INT and INT8), the returned type is the type with the greater
precision. If the arguments are any other numeric type, such as DECIMAL,
SMALLFLOAT, FLOAT, or MONEY, or some combination of those types, the
returned data type is DECIMAL(32).

The following example illustrates a query that calls the BITXOR function:
SELECT BITXOR(41, 33) AS bitxor FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

bitxor

8

This query calls the BITXOR function with negative arguments:
SELECT BITXOR(-20, -41) AS bitxor FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

bitxor

59

BITANDNOT Function
The BITANDNOT function takes two arguments. The arguments can be any
number type value that can be converted to an INT8 value.

Fractional values are truncated before the bit operation. The result is the same as
BITAND(arg1, BITNOT(arg2)) for the two arguments.

Chapter 4. Data types and expressions 4-59

If both arguments have the same integer types, the data type of the returned value
is the same type as the arguments. If the arguments are of different integer types
(for example, INT and INT8), the returned type is the type with the greater
precision. If the arguments are any other numeric type, such as DECIMAL,
SMALLFLOAT, FLOAT, or MONEY, or some combination of those types, the
returned data type is DECIMAL(32).

The query in the following example calls the BITANDNOT function:
SELECT BITANDNOT(20,-20) AS bitandnot FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

bitandnot

16

The following query calls the equivalent BITAND and BITNOT functions for the
arguments in the previous example:
select bitand(20, bitnot(-20)) as bitandnot from systables

where tabid = 1;

The following table shows the output of this SELECT statement.

bitandnot

16

BITNOT Function
The BITNOT function can take any number type value that is one less than the
maximum INT8 value.

Fractional values are truncated before the bit operation. The result is the bitwise
NOT of its argument.

The returned data type is the same type as the argument if the argument is
SMALLINT, INT, BIGINT, or INT8. Otherwise the returned data type is
DECIMAL(32).

The following query calls the BITNOT function:
SELECT BITNOT(8) AS bitnot FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

bitnot

-9

The next query calls the BITNOT function with a negative argument:
SELECT BITNOT(-20) AS bitnot FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

bitnot

19

4-60 IBM Informix Guide to SQL: Syntax

Concatenation Operator
The concatenation operator is a binary operator, whose syntax is shown in the
general diagram for an SQL “Expression” on page 4-44. You can use the
concatenation operator (||) to concatenate two expressions that evaluate to
character data types or to numeric data types. These examples show some possible
concatenated expression combinations.
v The first example concatenates the zipcode column to the first three letters of the

lname column.
v The second example concatenates the suffix .dbg to the contents of a host

variable called file_variable.
v The third example concatenates the value that the TODAY operator returns to

the string Date.
lname[1,3] || zipcode

:file_variable || ’.dbg’

’Date:’ || TODAY

You cannot use the concatenation operator in the following embedded-language
statements:
v ALLOCATE COLLECTION
v ALLOCATE DESCRIPTOR
v ALLOCATE ROW
v CREATE FUNCTION FROM
v CREATE PROCEDURE FROM
v CREATE ROUTINE FROM
v DEALLOCATE COLLECTION
v DEALLOCATE DESCRIPTOR
v DEALLOCATE ROW DESCRIBE
v DESCRIBE INPUT
v EXECUTE
v FLUSH
v GET DESCRIPTOR
v GET DIAGNOSTICS
v PUT
v SET AUTOFREE
v SET CONNECTION
v SET DESCRIPTOR
v WHENEVER

Except as noted for the DECLARE and PREPARE statement, routines written in
external languages, such as the Informix ESQL/C language, cannot use the
concatenation operator in the following dynamic SQL statements:
v CLOSE
v DECLARE
v EXECUTE IMMEDIATE
v FETCH
v FREE
v OPEN

Chapter 4. Data types and expressions 4-61

v PREPARE

Although input parameters of the DECLARE statement, such as a cursor_id
specification, cannot be expressions that include the concatenation operator,
Informix ESQL/C routines can use this operator in a SELECT, INSERT, EXECUTE
FUNCTION, or EXECUTE PROCEDURE statement within the DECLARE
statement.

Informix ESQL/C routines can use the concatenation operator in the text of the
SQL statement or statements that you pass to the PREPARE statement.

In SPL routines, you can include the concatenation operator in an expression that
specifies the text of the SQL statement that you pass to the EXECUTE IMMEDIATE
statement or to the PREPARE statement, even if the calling context of the SPL
routine is an Informix ESQL/C routine.

You cannot use the concatenation operator directly with user-defined data types,
with complex or large-object data types, nor with operands that are not built-in
character or number data types. You must explicitly cast UDTs or other
unsupported data types to a built-in character or numeric data type before you can
pass the result to the concatenation operator.

The data type of the result of a concatenation operation depends of the data types
of the operands and on the length of the resulting string, using the return type
promotion rules that the section Return Types from the CONCAT Function
describes.

The concatenation operator (||) has an associated operator function called
CONCAT. The CONCAT function cannot be overloaded.

When you define a text-based UDT, you can define a CONCAT function to
concatenate objects of that user-defined data type. For more information, see IBM
Informix User-Defined Routines and Data Types Developer's Guide.

Cast Expressions
You can use the CAST and AS keywords or the double-colon cast operator (::) to
cast an expression to another data type. Both the operator and the keywords
invoke a cast from the data type of the expression to the specified target data type.

To invoke an explicit cast, you can use either the cast operator or the CAST AS
keywords. If you use the cast operator or the CAST and AS keywords, but no
explicit or implicit cast was defined to perform the conversion between two data
types, the statement returns an error.

Cast Expressions:

�

�

(1)
CAST (Expression AS target_data_type)

:: target_data_type

(1)
Expression :: target_data_type

4-62 IBM Informix Guide to SQL: Syntax

Notes:

1 See “Expression” on page 4-44

Element Description Restrictions Syntax

target_data_type Data type returned by cast See "Rules for the Target Data Type" “Data Type” on page
4-23

Rules for the Target Data Type
The following rules restrict the target data type in cast expressions:
v The target data type must be either a built-in type, a user-defined type, or a

named row type in the database.
v The target data type cannot be an unnamed row or a collection type.
v The target data type can be a BLOB data type under the following conditions:

– The source expression (the expression to be cast to another data type) is a
BYTE data type.

– The source expression is a user-defined type and the user has defined a cast
from the user-defined type to the BLOB type.

v The target data type can be a CLOB type under these conditions:
– The source expression is a TEXT data type.
– The source expression is a user-defined type and the user has defined a cast

from the user-defined type to the CLOB type.
v You cannot cast a BLOB data type to a BYTE data type.
v You cannot cast a CLOB data type to a TEXT data type.
v An explicit or implicit cast must exist that can convert the data type of the

source expression to the target data type.

Examples of Cast Expressions
The following examples show two different ways to convert the sum of x and y to
a user-defined data type, user_type. The two methods produce identical results.
Both require the existence of an explicit or implicit cast from the type returned by
(x + y) to the user-defined type:
CAST ((x + y) AS user_type)
(x + y)::user_type

The following examples show two different ways of finding the integer equivalent
of the expression expr. Both require the existence of an implicit or explicit cast
from the data type of expr to the INTEGER data type:
CAST (expr AS INTEGER)
expr::INTEGER

In the following example, the user casts a BYTE column to the BLOB type and
copies the BLOB data to an operating-system file:
SELECT LOTOFILE(mybytecol::blob, ’fname’, ’client’)

FROM mytab
WHERE pkey = 12345;

In the following example, the user casts a TEXT column to a CLOB value and then
updates a CLOB column in the same table to have the CLOB value derived from
the TEXT column:
UPDATE newtab SET myclobcol = mytextcol::clob;

Chapter 4. Data types and expressions 4-63

The Keyword NULL in Cast Expressions
Cast expressions can appear in the projection list, including expressions of the form
NULL::datatype, where datatype is any data type known to the database:
SELECT newtable.col0, null::int FROM newtable;

The keyword NULL has a global scope of reference within expressions. In SQL, the
keyword NULL is the only syntactic mechanism for accessing a NULL value. Any
attempt to redefine or restrict the global scope of the keyword NULL (for example,
declaring an SPL variable called null) disables any cast expression that involves a
NULL value. Make sure that the keyword NULL receives its global scope in all
expression contexts.

Column Expressions
A column expression specifies a data value in a column in the database, or a
substring of the value, or a field within a ROW-type column. This is the syntax for
column expressions.

Column Expressions:

�

�

table. column
view. (1)
synonym. [first, last]
alias. (1)

ROWID
row_column

.*

(2)
. field_name

row_col_expr
.*

(2)
. field_name

Notes:

1 Informix extension

2 Use path no more than three times

Element Description Restrictions Syntax

alias Temporary alternative name for a
table or view, declared in the
FROM clause of a query

Must return a string. Restrictions depend
on the clause of the SELECT statement in
which alias occurs

“Identifier” on
page 5-21

column Name of a column Restrictions depend on the SQL
statement where column occurs

“Identifier” on
page 5-21

field_name Name of a ROW field in the ROW
column or ROW-column expression

Must be a member of the row that
row-column name or row_col_expr or field
name (for nested rows) specifies

“Identifier” on
page 5-21

first, last Integers indicating positions of first
and last characters within column

The column must be of type CHAR,
VARCHAR, NCHAR, NVARCHAR,
BYTE, or TEXT, and 0 < first ≤ last

“Literal Number”
on page 4-215

row_col_expr Expression that returns ROW-type
values

Must return a ROW data type “Expression” on
page 4-44

4-64 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

row_column Name of a ROW-type column Must be a named ROW data type or an
unnamed ROW data type

“Identifier” on
page 5-21

synonym, table,
view

Table, view, or synonym (for the
table or view) that contains column

Synonym and the table or view to which
it points must exist

Database Object
Name, p.
“Database Object
Name” on page
5-16

The following examples show column expressions:
company

items.price

cat_advert [1,15]

You must qualify the column name with a table name or alias whenever it is
necessary to distinguish between columns that have the same name but are in
different tables. The SELECT statements that the following example shows use
customer_num from the customer and orders tables. The first example precedes
the column names with table names. The second example precedes the column
names with table aliases.
SELECT * FROM customer, orders

WHERE customer.customer_num = orders.customer_num;

SELECT * FROM customer c, orders o
WHERE c.customer_num = o.customer_num;

Using Dot Notation
Dot notation (sometimes called the membership operator) allows you to qualify an
SQL identifier with another SQL identifier of which it is a component. You separate
the identifiers with the period (.) symbol. For example, you can qualify a column
name with any of the following SQL identifiers:
v Table name: table_name.column_name

v View name: view_name.column_name

v Synonym name: syn_name.column_name

These forms of dot notation are called column projections.

You can also use dot notation to directly access the fields of a named or unnamed
ROW column, as in the following example:
row-column name.field name

This use of dot notation is called a field projection. For example, suppose you have a
column called rect with the following definition:
CREATE TABLE rectangles
(

area float,
rect ROW(x int, y int, length float, width float)

);

The following SELECT statement uses dot notation to access field length of the
rect column:
SELECT rect.length FROM rectangles

WHERE area = 64;

Chapter 4. Data types and expressions 4-65

Selecting All Fields of a ROW Column with Asterisk Notation: If you want to
select all fields of a column that has a ROW type, you can specify the column
name without using dot notation. For example, you can select all fields of the rect
column as follows:
SELECT rect FROM rectangles

WHERE area = 64;

You can also use asterisk (*) notation to project all the fields of a column that has
a ROW data type. For example, if you want to use asterisk notation to select all
fields of the rect column, you can enter the following statement:
SELECT rect.* FROM rectangles

WHERE area = 64;

Asterisk notation is easier than specifying each field of the rect column
individually:
SELECT rect.x, rect.y, rect.length, rect.width

FROM rectangles
WHERE area = 64;

Asterisk notation for ROW fields is valid in the projection list of a SELECT
statement. It can specify all fields of a ROW-type column or the data that a
ROW-column expression returns.

Asterisk notation is not necessary with ROW-type columns, because you can
specify the column name alone to project all of its fields. Asterisk notation is quite
helpful, however, with ROW-type expressions such as subqueries and user-defined
functions that return ROW-type values. For more information, see “Using Dot
Notation with Row-Type Expressions” on page 4-67.

You can use asterisk notation with columns and expressions of ROW data types in
the projection list of a SELECT statement only. You cannot use asterisk notation
with columns and expressions of ROW type in any other clause of a SELECT
statement.

Selecting Nested Fields: When the ROW type that defines a column itself
contains other ROW types, the column contains nested fields. Use dot notation to
access these nested fields within a column.

For example, assume that the address column of the employee table contains the
fields: street, city, state, and zip. In addition, the zip field contains the nested
fields: z_code and z_suffix. A query on the zip field returns values for the z_code
and z_suffix fields. You can specify, however, that a query returns only specific
nested fields. The following example shows how to use dot notation to construct a
SELECT statement that returns rows for the z_code field of the address column
only:
SELECT address.zip.z_code

FROM employee;

Rules of Precedence: The database server uses the following precedence rules to
interpret dot notation:
1. schema name_a . table name_b . column name_c . field name_d

2. table name_a . column name_b . field name_c . field name_d

3. column name_a . field name_b . field name_c . field name_d

4-66 IBM Informix Guide to SQL: Syntax

When the meaning of an identifier is ambiguous, the database server uses
precedence rules to determine which database object the identifier specifies.
Consider the following two tables:
CREATE TABLE b (c ROW(d INTEGER, e CHAR(2));
CREATE TABLE c (d INTEGER);

In the following SELECT statement, the expression c.d references column d of table
c (rather than field d of column c in table b) because a table identifier has a higher
precedence than a column identifier:
SELECT *

FROM b,c
WHERE c.d = 10;

For more information about precedence rules and how to use dot notation with
ROW columns, see the IBM Informix Guide to SQL: Tutorial.

Using Dot Notation with Row-Type Expressions: Besides specifying a column of
a ROW data type, you can also use dot notation with any expression that evaluates
to a ROW type. In an INSERT statement, for example, you can use dot notation in
a subquery that returns a single row of values. Assume that you created a ROW
type named row_t:
CREATE ROW TYPE row_t (part_id INT, amt INT);

Also assume that you created a typed table named tab1 that is based on the row_t
ROW type:
CREATE TABLE tab1 OF TYPE row_t;

Assume also that you inserted the following values into table tab1:
INSERT INTO tab1 VALUES (ROW(1,7));
INSERT INTO tab1 VALUES (ROW(2,10));

Finally, assume that you created another table named tab2:
CREATE TABLE tab2 (colx INT);

Now you can use dot notation to insert the value from only the part_id column of
table tab1 into the tab2 table:
INSERT INTO tab2

VALUES ((SELECT t FROM tab1 t
WHERE part_id = 1).part_id);

The asterisk form of dot notation is not necessary when you want to select all
fields of a ROW-type column because you can specify the column name alone to
select all of its fields. The asterisk form of dot notation can be quite helpful,
however, when you use a subquery, as in the preceding example, or when you call
a user-defined function to return ROW-type values.

Suppose that a user-defined function named new_row returns ROW-type values,
and you want to call this function to insert the ROW-type values into a table.
Asterisk notation makes it easy to specify that all the ROW-type values that the
new_row() function returns are to be inserted into the table:
INSERT INTO mytab2 SELECT new_row (mycol).* FROM mytab1;

References to the fields of a ROW-type column or a ROW-type expression are not
allowed in fragment expressions. A fragment expression is an expression that
defines a table fragment or an index fragment in SQL statements like CREATE
TABLE, CREATE INDEX, and ALTER FRAGMENT.

Chapter 4. Data types and expressions 4-67

Using the Substring Operator
You can use the substring operator on CHAR, VARCHAR, NCHAR, NVARCHAR,
BYTE, and TEXT columns to define a column substring as the portion of the column
that is specified by the expression.

After the identifier of a character column, when a pair of bracket ([]) symbols
enclose a comma-separated pair of unsigned integers in which the first integer is
greater than zero but not greater than the last integer, Informix interprets the
brackets as the substring operator. The expression returns the first through last
characters of the data value in the column, where first and last define a substring.
For example, in the expression cat_advert [6,15], the returned value is the 6th
through 15th characters of column cat_advert.

In the default locale, if the data value occupies at least 15 bytes, this expression
evaluates to a substring that includes ten bytes of the column value, but in a
multibyte locale this expression returns a string of ten consecutive logical
characters whose storage length might exceed 10 bytes, beginning with the sixth
logical character. For more information on the GLS aspects of column substrings,
see the IBM Informix GLS User's Guide.

In the following example, if a value in the lname column of the customer table is
Greenburg, the following expression evaluates to burg:
lname[6,9]

A conditional expression can include a column expression that uses the substring
operator ([first, last]), as in the following example:
SELECT lname FROM customer WHERE phone[5,7] = ’356’;

Here the quotation marks are required, to prevent the database server from
applying a numeric filter to the digits in the criterion value.

See also the section “String-Manipulation Functions” on page 4-155, which
describes two built-in SQL functions, SUBSTR() and SUBSTRING() that can
specify a substring expression within an SQL statement.

Note: The database server can use substrings defined by the substring operator as
index filters in queries. This is not the case, however, for substrings defined by
SUBSTR() or SUBSTRING(), nor for other built-in string manipulation functions.

Using Rowids
In Informix, you can use the rowid column that is associated with a table row as a
property of the row. The rowid column is essentially a hidden column in
nonfragmented tables and in fragmented tables that were created with the WITH
ROWIDS clause. The rowid column is unique for each row, but it is not necessarily
sequential. It is recommended, however, that you use primary keys as an access
method rather than exploiting the rowid column.

The following examples use the ROWID keyword in a SELECT statement:
SELECT *, ROWID FROM customer;

SELECT fname, ROWID FROM customer ORDER BY ROWID;

SELECT HEX(rowid) FROM customer WHERE customer_num = 106;

The last example shows how to get the page number (the first six digits after 0x)
and the slot number (the last two digits) of the location of your row.

4-68 IBM Informix Guide to SQL: Syntax

You cannot use the ROWID keyword in the select list of the Projection clause of a
query that contains an aggregate function.

Using Smart Large Objects
The SELECT, UPDATE, and INSERT statements do not manipulate the values of
smart large objects directly. Instead, they use a handle value, which is a type of
pointer, to access the BLOB or CLOB value, as follows:
v The SELECT statement returns a handle value to the BLOB or CLOB value that

the projection list specifies. SELECT does not return the actual data for the BLOB
or CLOB column that the projection list specifies. Instead, it returns a handle
value to the column data.

v The INSERT and UPDATE statements do not send the actual data for the BLOB
or CLOB column to the database server. Instead, they accept a handle value to
this data as the value to be inserted or updated.

To access the data of a smart-large-object column, you must use one of the
following application programming interfaces (APIs):
v From within an IBM Informix ESQL/C program, use the Informix ESQL/C

library functions that access smart large objects. For more information, see the
IBM Informix ESQL/C Programmer's Manual.

v From within a C program such as a DataBlade module, use the Client and
Server API. For more information, see your IBM DataBlade Developers Kit User's
Guide.

You cannot use the name of a smart-large-object column in expressions that
involve arithmetic operators. For example, operations such as addition or
subtraction on the smart-large-object handle value have no meaning.

When you select a smart-large-object column, you can assign the handle value to
any number of columns: all columns with the same handle value share the CLOB
or BLOB value. This storage arrangement reduces the amount of disk space that
the CLOB or BLOB value, but when several columns share the same
smart-large-object value, the following conditions result:
v The chance of lock contention on a CLOB or BLOB column increases. If two

columns share the same smart-large-object value, the data might be locked by
either column that needs to access it.

v The CLOB or BLOB value can be updated from a number of points.

To remove these constraints, you can create separate copies of the BLOB or CLOB
data for each column that needs to access it. You can use the LOCOPY function to
create a copy of an existing smart large object.

You can also use the built-in functions LOTOFILE, FILETOCLOB, and
FILETOBLOB to access smart-large-object values, as described in
“Smart-Large-Object Functions” on page 4-131. For more information on the BLOB
and CLOB data types, see the IBM Informix Guide to SQL: Reference.
Related concepts:

Description of Data Types (SQL Reference)

Conditional Expressions
Conditional expressions return values that depend on the outcome of conditional
tests. This diagram shows the syntax for Conditional Expressions.

Chapter 4. Data types and expressions 4-69

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_095.htm#ids_sqr_095

Conditional Expressions:

(1)
CASE Expressions

(2)
NVL Function

(3)
NVL2 Function

(4)
NULLIF Function

(5)
DECODE Function

Notes:

1 See “CASE Expressions”

2 See “NVL Function” on page 4-73

3 See “NVL2 Function” on page 4-126

4 See “NULLIF Function” on page 4-74

5 See “DECODE Function” on page 4-74

CASE Expressions
The CASE expression allows an SQL statement such as the SELECT statement to
return one of several possible results, depending on which of several conditions
evaluates to true.

The CASE expression has two forms: generic CASE expressions and linear CASE
expressions.

CASE Expressions:

(1)
Generic CASE Expression

(2)
Linear CASE Expression

Notes:

1 See “Generic CASE Expressions” on page 4-71

2 See “Linear CASE Expressions” on page 4-72

You must include at least one WHEN clause in the CASE expression. Subsequent
WHEN clauses and the ELSE clause are optional. You can use a generic or linear
CASE expression wherever you can use a column expression in an SQL statement
(for example, in the Projection clause a SELECT statement).

Expressions in the search condition or the result value expression can contain
subqueries, and you can nest a CASE expression in another CASE expression.

When a CASE expression appears in an aggregate expression, you cannot use
aggregate functions in the CASE expression.

You can specify a trigger-type Boolean operator (DELETING, INSERTING,
SELECTING, or UPDATING) as a condition in a CASE expression only within a
trigger routine.

4-70 IBM Informix Guide to SQL: Syntax

CASE expressions data type compatibility:

In a CASE expression, all the results should be of the same data type or be
compatible data types.

If the results in all the WHEN ... THEN branch clauses are not of the same data
type or compatible data types, an error occurs.

The following table shows which character data types are compatible and the data
type that is returned for each combination.

Table 4-1. Data types returned from compatible character data types

Data type
NCHAR
(>255)

NCHAR
(<=255) NVARCHAR CHAR (<=255) CHAR (>255) VARCHAR

LVARCHAR
(>255)

LVARCHAR
(<=255)

NCHAR
(>255)

NCHAR NCHAR NCHAR NCHAR NCHAR NCHAR NCHAR NCHAR

NCHAR
(<=255)

NCHAR NCHAR NVARCHAR NCHAR NCHAR NVARCHAR NCHAR NCHAR

NVARCHAR NCHAR NVARCHAR NVARCHAR NVARCHAR NCHAR NVARCHAR NCHAR NVARCHAR

CHAR (<=255) NCHAR NCHAR NVARCHAR CHAR CHAR VARCHAR CHAR CHAR

CHAR (>255) NCHAR NCHAR NCHAR CHAR CHAR CHAR CHAR CHAR

VARCHAR NCHAR NVARCHAR NVARCHAR VARCHAR CHAR VARCHAR CHAR VARCHAR

LVARCHAR
(>255)

NCHAR NCHAR NCHAR CHAR CHAR CHAR LVARCHAR LVARCHAR

LVARCHAR
(<=255)

NCHAR NCHAR NVARCHAR CHAR CHAR VARCHAR LVARCHAR LVARCHAR

The following table shows which numeric data types are compatible and the data
type that is returned for each combination.

Table 4-2. Data types returned from compatible numeric data types
Data type INTEGER SMALLINT SERIAL DECIMAL FLOAT SMALLFLOAT MONEY BIGINT BIGSERIAL

INTEGER INTEGER INTEGER INTEGER DECIMAL DECIMAL DECIMAL MONEY DECIMAL DECIMAL

SMALLINT INTEGER SMALLINT INTEGER DECIMAL DECIMAL DECIMAL MONEY DECIMAL DECIMAL

SERIAL INTEGER INTEGER SERIAL DECIMAL DECIMAL DECIMAL MONEY DECIMAL DECIMAL

DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL MONEY DECIMAL DECIMAL

FLOAT DECIMAL DECIMAL DECIMAL DECIMAL FLOAT FLOAT MONEY DECIMAL DECIMAL

SMALLFLOAT DECIMAL DECIMAL DECIMAL DECIMAL FLOAT SMALLFLOAT MONEY DECIMAL DECIMAL

MONEY MONEY MONEY MONEY MONEY MONEY MONEY MONEY MONEY MONEY

BIGINT DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL MONEY BIGINT BIGINT

BIGSERIAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL MONEY BIGINT BIGSERIAL

Generic CASE Expressions:

A generic CASE expression tests for a true condition in a WHEN clause. If it finds
a true condition, it returns the result specified in the THEN clause.

Generic CASE Expression:

CASE �
(1)

WHEN Condition THEN expr
NULL ELSE expr

NULL

END

Chapter 4. Data types and expressions 4-71

Notes:

1 See “Condition” on page 4-5

Element Description Restrictions Syntax

expr Expression that returns
some data type

Data type of expr in a THEN clause must be compatible
with data types of expressions in other THEN clauses

“Expression”
on page 4-44

The database server processes the WHEN clauses in the order that they appear in
the statement. If the search condition of a WHEN clause evaluates to TRUE, the
database server uses the value of the corresponding THEN expression as the result,
and stops processing the CASE expression.

If no WHEN condition evaluates to TRUE, the database server uses the ELSE
expression as the overall result. If no WHEN condition evaluates to TRUE, and no
ELSE clause was specified, the returned CASE expression value is NULL. You can
use the IS NULL condition to handle NULL results. For information on how to
handle NULL values, see “IS NULL and IS NOT NULL Conditions” on page 4-13.

The next example shows a generic CASE expression in the Projection clause.

In this example, the user retrieves the name and address of each customer as well
as a calculated number that is based on the number of problems that exist for that
customer:
SELECT cust_name,

CASE
WHEN number_of_problems = 0

THEN 100
WHEN number_of_problems > 0 AND number_of_problems < 4

THEN number_of_problems * 500
WHEN number_of_problems >= 4 and number_of_problems <= 9

THEN number_of_problems * 400
ELSE

(number_of_problems * 300) + 250
END,
cust_address

FROM custtab

In a generic CASE expression, all the results should be of the same data type, or
they should evaluate to a common compatible data type. If the results in all the
WHEN clauses are not of the same data type, or if they do not evaluate to values
of mutually compatible types, an error occurs. For more information on the
compatibility of returned data types, see “CASE expressions data type
compatibility” on page 4-71.

Linear CASE Expressions:
A linear CASE expression compares the value of the expression that follows the
CASE keyword with an expression in a WHEN clause.

Linear CASE Expression:

CASE expr � WHEN expr THEN expr
NULL ELSE expr

NULL

END

4-72 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

expr Expression that
returns a value
of some data
type

Data type of expr that follows the WHEN keyword must be
compatible with data type of the expression that follows the CASE
keyword. Data type of expr in the THEN clause must be compatible
with data types of expressions in other THEN clauses.

“Expression”
on page 4-44

The database server evaluates the expression that follows the CASE keyword, and
then processes the WHEN clauses sequentially. If an expression after the WHEN
keyword returns the same value as the expression that follows the CASE keyword,
the database server uses the value of the expression that follows the THEN
keyword as the overall result of the CASE expression. Then the database server
stops processing the CASE expression.

If none of the WHEN expressions return the same value as the expression that
follows the CASE keyword, the database server uses the expression of the ELSE
clause as the overall result of the CASE expression (or, if no ELSE clause was
specified, the returned value of the CASE expression is NULL).

The next example shows a linear CASE expression in the projection list of the
Projection clause of a SELECT statement. For each movie in a table of movie titles,
the query returns the title, the cost, and the type of the movie. The statement uses
a CASE expression to derive the type of each movie:
SELECT title, CASE movie_type

WHEN 1 THEN ’HORROR’
WHEN 2 THEN ’COMEDY’
WHEN 3 THEN ’ROMANCE’
WHEN 4 THEN ’WESTERN’
ELSE ’UNCLASSIFIED’

END,
our_cost FROM movie_titles;

In linear CASE expressions, the data types of WHEN clause expressions must be
compatible with that of the expression that follows the CASE keyword.

NVL Function
The NVL expression returns different results, depending on whether its first
argument evaluates to NULL.

NVL Function:

NVL (expr1 , expr2)

Element Description Restrictions Syntax

expr1 expr2 Expressions that return values of a
compatible data type

Cannot be a host variable or a BYTE or
TEXT object

“Expression”
on page 4-44

NVL evaluates expression1. If expression1 is not NULL, then NVL returns the value
of expression1. If expression1 is NULL, NVL returns the value of expression2. The
expressions expression1 and expression2 can be of any data type, as long as they can
be cast to a common compatible data type.

Suppose that the addr column of the employees table has NULL values in some
rows, and the user wants to be able to print the label Address unknown for these

Chapter 4. Data types and expressions 4-73

rows. The user enters the following SELECT statement to display the label Address
unknown when the addr column has a NULL value:
SELECT fname, NVL (addr, ’Address unknown’) AS address

FROM employees;

NULLIF Function
The NULLIF expression returns different results, depending on whether its two
arguments are equal.

NULLIF Function:

NULLIF (expr1 , expr2)

Element Description Restrictions Syntax

expr1 expr2 Expressions that return values of a
compatible data type

Cannot be a BYTE or TEXT data type “Expression”
on page 4-44

NULLIF evaluates its two arguments, expr1 and expr2.
v If their values are equal. then NULLIF returns NULL.
v If their values are not equal. then NULLIF returns expr1.

The expr1 and expr2 arguments can be of any data type for which a built-in
comparison function exists, or any two data types that can be cast to a compatible
data type that has a built-in comparison function.

The following example uses the NULLIF function to convert Boolean FALSE values
('f') to NULL values:
SELECT name, answer, NULLIF(answer, ’f’) FROM booktab;

Here the first argument is a Boolean column expression that can have true ('t') or
false ('f') values, and the second Boolean argument is always 'f" (for FALSE). For
rows that have 'f' in the answer column, the value returned by the NULLIF
function will be NULL (because the NULL value is returned when the arguments
are equal). For rows that have 't' as the first argument, however, the value returned
by NULLIF is always 't', because the two arguments cannot be equal when one is
't' and the other is 'f'; the first argument is returned when the two values are not
equal.

DECODE Function
The DECODE expression is similar to the CASE expression in that it can print
different results depending on the values found in a specified column.

DECODE Function:

�

,
, NULL

DECODE (expr , when_expr , then_expr)
NULL , else_expr

Element Description Restrictions Syntax

expr, else_expr,
then_expr, when_expr

Expressions whose
values and data types
can be evaluated

Data types of when_expr and expr must be
compatible, as must then_expr and else_expr.
Value of when_expr cannot be a NULL.

“Expression”
on page 4-44

4-74 IBM Informix Guide to SQL: Syntax

The expressions expr, when_expr, and then_expr are required. DECODE evaluates
expr and compares it to when_expr. If the value of when_expr matches the value of
expr, then DECODE returns then_expr.

The expressions when_expr and then_expr are an expression pair, and you can
specify any number of expression pairs in the DECODE function. In all cases,
DECODE compares the first member of the pair against expr and returns the
second member of the pair if the first member matches expr.

If no expression matches expr, DECODE returns else_expr. If no expression matches
expr and you specified no else_expr, then DECODE returns NULL.

You can specify any data type for the arguments, but two restrictions exist:
v All instances of when_expr must have the same data type, or a common

compatible type must exist. All instances of when_expr must also have the same
(or a compatible) data type as expr.

v All instances of then_expr must have the same data type, or a common
compatible type must exist. All instances of then_expr must also have the same
(or a compatible) data type as else_expr.

The DECODE function uses the same data type compatibility rules as a CASE
expression. For more information on the compatibility of returned data types, see
“CASE expressions data type compatibility” on page 4-71.

Example

Suppose that a user wants to convert descriptive values in the evaluation column
of the students table to numeric values in the output. The following table shows
the contents of the students table.

firstname evaluation firstname evaluation

Edward Great Mary Good

Joe Not done Jim Poor

The user now enters a query with the DECODE function to convert the descriptive
values in the evaluation column to numeric equivalents:
SELECT firstname, DECODE(evaluation,

’Poor’, 0,
’Fair’, 25,
’Good’, 50,
’Very Good’, 75,
’Great’, 100,
-1) as grade

FROM students;

The following table shows the output of this SELECT statement.

firstname evaluation firstname evaluation

Edward 100 Mary 50

Joe -1 Jim 0

Chapter 4. Data types and expressions 4-75

Constant Expressions
Certain expressions that return a fixed value are called constant expressions. These
include variant function operators that read the system clock, but that are valid in
contexts where literal constants are also valid.

Among these expressions are the following operators (or system constants) whose
returned values are determined at runtime:
v CURRENT returns the current time and date from the system clock.
v CURRENT_ROLE returns the name of the role, if any, whose privileges are

enabled for the current user.
v CURRENT_USER is a synonym for USER.
v DEFAULT_ROLE returns the name of the role, if any, that is the default role for

the current user.
v DBSERVERNAME returns the name of the current database server.
v SITENAME is a synonym for DBSERVERNAME.

v SYSDATE reads the DATETIME value from the system clock like the
CURRENT operator, but has a different default precision.

v TODAY returns the current calendar date from the system clock.
v USER returns the login name (also called the authorization identifier) of the

current user.

Besides these operators, the term constant expression can also refer to a quoted
string, to a literal value, or to the UNITS operator with its operands.

The Constant Expression segment has the following syntax.

4-76 IBM Informix Guide to SQL: Syntax

Constant Expressions:

(1)
Quoted String

(2)
Literal Number

USER
CURRENT_USER
(3)

CURRENT_ROLE
DEFAULT_ROLE

(3)
SITENAME
DBSERVERNAME

TODAY
CURRENT
SYSDATE precision

(4)
Literal DATETIME

(5)
Literal INTERVAL

num UNITS time_unit
sequence . CURRVAL

owner . synonym NEXTVAL
(6)

Literal Collection
(7)

Literal Row
literal opaque type
literal BOOLEAN

Notes:

1 See “Quoted String” on page 4-219

2 See “Literal Number” on page 4-215

3 Informix extension

4 See “Literal DATETIME” on page 4-210

5 See “Literal INTERVAL” on page 4-213

6 See “Literal Collection” on page 4-208

7 See “Literal Row” on page 4-216

Element Description Restrictions Syntax

literal Boolean Literal representation of a BOOLEAN
value

Must be either t (TRUE) or f
(FALSE)

“Quoted String” on
page 4-219

literal opaque
type

Literal representation of value of an
opaque data type

Must be recognized by the input
support function of opaque type

Defined by UDT
developer

num How many of specified time units. See
“UNITS Operator” on page 4-83.

If num is not an integer, the
fractional part is truncated

“Literal Number”
on page 4-215

owner Name of the owner of sequence Must own sequence “Owner name” on
page 5-49

precision Precision of the returned DATETIME
expression

On Windows systems the
maximum scale of seconds is
FRACTION(3).

“DATETIME Field
Qualifier” on page
4-42

Chapter 4. Data types and expressions 4-77

Element Description Restrictions Syntax

sequence Name of a sequence Must exist in current database “Identifier” on page
5-21

synonym Synonym for the name of a sequence Must exist in current database “Identifier” on page
5-21

time_unit Keyword to specify time unit: YEAR,
MONTH, DAY, HOUR, MINUTE,
SECOND, or FRACTION

Must be one of the keywords at
left. Case insensitive but cannot be
enclosed within quotes

See the Restrictions
column.

Quoted String
The following examples show quoted strings as expressions:
SELECT ’The first name is ’, fname FROM customer;

INSERT INTO manufact VALUES (’SPS’, ’SuperSport’);

UPDATE cust_calls SET res_dtime = ’2007-1-1 10:45’
WHERE customer_num = 120 AND call_code = ’B’;

For more information, see “Quoted String” on page 4-219.

Literal Number
A literal number specifies a numeric value.

The following examples show literal numbers as expressions:
INSERT INTO items VALUES (4, 35, 52, ’HRO’, 12, 4.00);

INSERT INTO acreage VALUES (4, 5.2e4);

SELECT unit_price + 5 FROM stock;

SELECT -1 * balance FROM accounts;

For more information, see “Literal Number” on page 4-215.

USER or CURRENT_USER Operator
The USER operator returns a string containing the login name (also called the
authorization identifier) of the current user who is running the process. The
CURRENT_USER operator is a synonym of the USER operator.

The following statements show how you might use the USER operator:
INSERT INTO cust_calls VALUES

(221,CURRENT,USER,’B’,’Decimal point off’, NULL, NULL);

SELECT * FROM cust_calls WHERE user_id = USER;

UPDATE cust_calls SET user_id = USER WHERE customer_num = 220;

The USER operator does not change the lettercase of a user ID. If you use USER in
an expression and the current user is Robertm, the USER operator returns
Robertm, not robertm or ROBERTM.

If you specify USER as a default column value, column must be of type CHAR,
VARCHAR, NCHAR, NVARCHAR, or LVARCHAR.

4-78 IBM Informix Guide to SQL: Syntax

If you specify USER as the default value for a column, the size of column should
not be less than 32 bytes. You risk getting an error during operations such as
INSERT or ALTER TABLE if the column length is too small to store the default
value.

In an ANSI-compliant database, if you do not enclose the owner name in quotation
marks, the name of the table owner is stored as uppercase letters. If you use the
USER operator as part of a condition, you must be sure that the way the user
name is stored matches what the USER operator returns with respect to lettercase.

CURRENT_ROLE Operator
The CURRENT_ROLE operator returns a string that contains the name of the
currently enabled role of the user who is running the session. This role was either
set in the session explicitly, using the SET ROLE statement, or else implicitly as a
default role when the current user connected to the database. If the user holds no
role, or if no role that was granted to the user is currently enabled,
CURRENT_ROLE returns a NULL value. If the user has been granted no role
individually, but a default role has been granted to PUBLIC, and this default role
has been explicitly or implicitly enabled, CURRENT_ROLE returns the name of
this default role.

The next statement shows how you might use the CURRENT_ROLE operator:
select CURRENT_ROLE FROM systables WHERE tabid = 1;

The CURRENT_ROLE operator does not change the lettercase of the identifier of a
role. If you use CURRENT_ROLE in an expression and your current role is
Czarina, the CURRENT_ROLE operator returns Czarina, not czarina.

If you specify CURRENT_ROLE as the default value for a column, the column
must have a CHAR, VARCHAR, LVARCHAR, NCHAR, or NVARCHAR data type.
Because the name of a role is an authorization identifier, truncation might occur if
the column length is less than 32 bytes.

DEFAULT_ROLE Operator
The DEFAULT_ROLE operator evaluates to a string that contains the name of the
default role that has been granted to the user who is running the session. This
default role need not be currently enabled, but it must not have been revoked since
the most recent GRANT DEFAULT ROLE statement that referenced the user or
PUBLIC in the TO clause.

If no default role is explicitly defined for the current user, but PUBLIC has a
default role, DEFAULT_ROLE returns the default role of PUBLIC.

If the user has no default role, or if the default role that was most recently granted
to the user explicitly, or as PUBLIC, was subsequently revoked by the REVOKE
DEFAULT ROLE statement, DEFAULT_ROLE returns a NULL value. If the user
has been granted no default role individually, but a default role has been granted
to PUBLIC, the DEFAULT_ROLE operator returns the name of this default role. If
no default role is currently defined for the user nor for PUBLIC, however,
DEFAULT_ROLE returns NULL.

The SET ROLE statement has no effect on the DEFAULT_ROLE operator, but any
access privileges of the default role are not necessarily available to the user if SET
ROLE has activated some other role, or if SET ROLE specified NULL or NONE as
the current role of the user.

Chapter 4. Data types and expressions 4-79

The next statements show how you might use the DEFAULT_ROLE operator:
select DEFAULT_ROLE from systables where tabid = 1;

DEFAULT_ROLE does not change the lettercase of the identifier of a role.

If you specify DEFAULT_ROLE as the default value for a column, the column
must have a CHAR, VARCHAR, LVARCHAR, NCHAR, or NVARCHAR data type.
Because the name of a role is an authorization identifier, truncation might occur if
the column width is less than 32 bytes. (See “Owner name” on page 5-49 for the
syntax of authorization identifiers.)

DBSERVERNAME and SITENAME Operators
The DBSERVERNAME operator returns the SQL identifier of the database server,
as defined by the DBSERVERNAME parameter in the ONCONFIG file for the
Informix instance where the current database resides, or as specified in the
INFORMIXSERVER environment variable. SITENAME is a keyword synonym for
the DBSERVERNAME operator.

You can use the DBSERVERNAME operator to specify the location of a table, to
put information into a table, or to extract information from a table. You can insert
DBSERVERNAME into a simple character field or use it as a default value for a
column.

If you specify DBSERVERNAME as a default column value in the CREATE
TABLE or ALTER TABLE statements, the column must be a CHAR, VARCHAR,
LVARCHAR, NCHAR, or NVARCHAR data type.

If you specify DBSERVERNAME or SITENAME as the default value for a
column, the size of the column should be at least 128 bytes long. You risk getting
an error message during INSERT and ALTER TABLE operations if the length of the
column is too small to store the default value.

The following examples use DBSERVERNAME or SITENAME in DML
statements.
v The first SELECT statement returns the name of the database server instance

where the customer table resides. (Because the query is not restricted by a
WHERE clause, it returns the same DBSERVERNAME value for every row in
the table. If you include the DISTINCT keyword in the projection clause, the
query returns DBSERVERNAME only once.)

v The second statement adds a row that contains the name of the current database
server to a table.

v The third statement returns all rows that have the name of the current database
server in the host_tab.site_col column.

v The last statement changes to the name of the current database server the value
of the customer.company column in the row whose SERIAL value of
customer_num is 120:

SELECT DBSERVERNAME FROM customer;

INSERT INTO host_tab VALUES (’1’, SITENAME);

SELECT * FROM host_tab WHERE site_col = DBSERVERNAME;

UPDATE customer SET company = SITENAME
WHERE customer_num = 120;

4-80 IBM Informix Guide to SQL: Syntax

TODAY Operator
Use the TODAY operator to return the system date as a DATE data type. If you
specify TODAY as a default column value, the column must be a DATE column.

The following examples show how you might use the TODAY operator in an
INSERT, UPDATE, or SELECT statement:
UPDATE orders (order_date) SET order_date = TODAY

WHERE order_num = 1005;

INSERT INTO orders VALUES
(0, TODAY, 120, NULL, N, ’1AUE217’, NULL, NULL, NULL, NULL);

SELECT * FROM orders WHERE ship_date = TODAY;

For code examples of setting non-default time zones, see “CURRENT Operator.”

CURRENT Operator
The CURRENT operator returns a DATETIME value with the date and time of
day, showing the current instant.

If you do not specify a DATETIME qualifier, the default qualifier is YEAR TO
FRACTION(3). The USEOSTIME configuration parameter specifies whether or not
the database server uses subsecond precision when it obtains the current time from
the operating system. For more information on the USEOSTIME configuration
parameter, see your IBM Informix Administrator's Reference.

You can use CURRENT in any context where a literal DATETIME is valid. (See
“Literal DATETIME” on page 4-210). If you specify CURRENT as the default value
for a column, it must be a DATETIME column and the qualifier of CURRENT
must match the column qualifier, as the following example shows:
CREATE TABLE new_acct (col1 INT, col2 DATETIME YEAR TO DAY

DEFAULT CURRENT YEAR TO DAY);

CURRENT is always evaluated in the database server where the current database
is located. If the current database is in a remote database server, the returned value
is from the remote host.

SQL is not a procedural language, and CURRENT might not execute in the lexical
order of its position in a statement. You should not use CURRENT to mark the
start, the end, nor a specific point in the execution of an SQL statement.

If you use the CURRENT operator in more than once in a single statement,
identical values might be returned by each instance of CURRENT. You cannot rely
on CURRENT to return distinct values each time it executes.

The returned value is based on the system clock and is fixed when the SQL
statement that specifies CURRENT starts execution. For example, any call to
CURRENT from inside the SPL function that an EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement invokes returns the value of the system clock
when the SPL function starts.

On UNIX and Linux systems, the precision of the value returned by the CURRENT
operator is determined by its DATETIME Qualifier, which can range from a single
time unit (such as MONTH TO MONTH) up to YEAR TO FRACTION (5). The
system clock on Windows, however, returns only millisecond precision. Even if

Chapter 4. Data types and expressions 4-81

you specify "FRACTION(5)" in the DATETIME Qualifier, the CURRENT operator
on Windows supports no greater than "FRACTION(3)" precision.

If your platform does not provide a system call that returns the current time with
subsecond precision, CURRENT returns a zero for the FRACTION field.

In the following example, the first statement uses CURRENT in a WHERE
condition. The second statement uses CURRENT as an argument to the DAY
function. The last query selects rows whose call_dtime value is within a range
from the beginning of 2007 to the current instant:
DELETE FROM cust_calls WHERE res_dtime < CURRENT YEAR TO MINUTE;

SELECT * FROM orders WHERE DAY(ord_date) < DAY(CURRENT);

SELECT * FROM cust_calls WHERE call_dtime
BETWEEN ’2007-1-1 00:00:00’ AND CURRENT;

For more information, see “DATETIME Field Qualifier” on page 4-42.
Related reference:

USEOSTIME configuration parameter (Administrator's Reference)

SYSDATE Operator
The SYSDATE operator returns the current DATETIME value from the system
clock. SYSDATE is identical to the CURRENT operator, except that the default
precision of SYSDATE is YEAR TO FRACTION(5), while the default precision of
CURRENT is YEAR TO FRACTION(3).

On Windows platforms that do not support a seconds scale greater than
FRACTION(3), SYSDATE is in effect a synonym for the CURRENT operator,

You can use SYSDATE in any context where the CURRENT operator is valid.

The SQL statements in the following example use the SYSDATE operator to
specify the default values for two DATETIME columns of a database table, and to
insert a new row into the table:
CREATE TABLE tab1 (
id SERIAL,
value CHAR(20),
time1 DATETIME YEAR TO FRACTION(5) DEFAULT SYSDATE,
time2 DATETIME YEAR TO SECOND DEFAULT SYSDATE YEAR TO SECOND
);

INSERT INTO tab1 VALUES (0, 'description’, SYSDATE, SYSDATE);

The following query accesses the table that was created in the previous example:
SELECT SYSDATE AS sysdate, * FROM tab1;

The results are sensitive to the date and time when the INSERT and SELECT
statements are issued, but the query could return these values on September 23,
2007:
sysdate 2007-09-23 21:30:23.00000
id 1
value description
time1 2007-09-23 21:29:27.00000
time2 2007-09-23 21:29:27

4-82 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0187.htm#ids_adr_0187

The next query accesses the same table, using SYSDATE in the WHERE clause as
an argument to the DAY function:
SELECT *, DAY(time1) AS day FROM tab1

WHERE DAY(time1) = DAY(SYSDATE);

The query could return these values on September 23, 2007:
id 1
value description
time1 2007-09-23 21:29:27.00000
time2 2007-09-23 21:29:27
day 23

Only Informix supports SYSDATE. Except for its name and its default precision,
the description of the CURRENT operator in this document also describes the
SYSDATE operator.

Literal DATETIME
A literal DATETIME specifies the value of an DATETIME data type, including its
qualifying time-units.

The following examples show literal DATETIME values as expressions:
SELECT DATETIME (2007-12-6) YEAR TO DAY FROM customer;

UPDATE cust_calls SET res_dtime = DATETIME (2008-07-07 10:40)
YEAR TO MINUTE

WHERE customer_num = 110
AND call_dtime = DATETIME (2008-07-07 10:24) YEAR TO MINUTE;

SELECT * FROM cust_calls
WHERE call_dtime
= DATETIME (2008-12-25 00:00:00) YEAR TO SECOND;

For more information, see “Literal DATETIME” on page 4-210.

Literal INTERVAL
A literal INTERVAL specifies the value of an INTERVAL data type, including its
qualifying time-units.

The following examples each use a literal INTERVAL as an expression:
INSERT INTO manufact VALUES (’CAT’, ’Catwalk Sports’,

INTERVAL (16) DAY TO DAY);

SELECT lead_time + INTERVAL (5) DAY TO DAY FROM manufact;

The second example adds five days to each value of lead_time selected from the
manufact table.

For more information, see “Literal INTERVAL” on page 4-213.

UNITS Operator
The UNITS operator specifies an INTERVAL value whose precision includes only
one time unit. You can use UNITS in arithmetic expressions that increase or
decrease one of the time units in an INTERVAL or DATETIME value.

If the num operand is not an integer, it is truncated to the largest whole number
that is the same as (or nearer to zero than) the specified value when the database
server evaluates the expression.

Chapter 4. Data types and expressions 4-83

In the following example, the first SELECT statement uses the UNITS operator to
select all the manufacturer.lead_time values, increased by five days. The second
SELECT statement finds all the calls that were placed more than 30 days ago.

If the expression in the WHERE clause returns a value greater than 99 (maximum
number of days), the query fails. The last statement increases the lead time for the
ANZA manufacturer by two days:
SELECT lead_time + 5 UNITS DAY FROM manufact;

SELECT * FROM cust_calls WHERE (TODAY - call_dtime) > 30 UNITS DAY;

UPDATE manufact SET lead_time = 2 UNITS DAY + lead_time
WHERE manu_code = ’ANZ’;

NEXTVAL and CURRVAL Operators
You can access the value of a sequence using the NEXTVAL or CURRVAL
operators in SQL statements. You must qualify NEXTVAL or CURRVAL with the
name (or synonym) of a sequence object that exists in the same database, using the
format sequence.NEXTVAL or sequence.CURRVAL. An expression can also qualify
sequence by the owner name, as in zelaine.myseq.CURRVAL. You can specify the
SQL identifier of sequence or a valid synonym, if one exists.

In an ANSI-compliant database, you must qualify the name of the sequence with
the name of its owner (owner.sequence) if you are not the owner.

To use NEXTVAL or CURRVAL with a sequence, you must have the Select
privilege on the sequence or have the DBA privilege on the database. For
information about sequence-level privileges, see the “GRANT statement” on page
2-502 statement.

Examples

In the following examples, it is assumed that no other user is concurrently
accessing the sequence and that the user executes the statements consecutively.

These examples are based on the following sequence object and table:
CREATE SEQUENCE seq_2

INCREMENT BY 1 START WITH 1
MAXVALUE 30 MINVALUE 0
NOCYCLE CACHE 10 ORDER;

CREATE TABLE tab1 (col1 int, col2 int);
INSERT INTO tab1 VALUES (0, 0);

You can use NEXTVAL (or CURRVAL) in the Values clause of an INSERT
statement, as the following example shows:
INSERT INTO tab1 (col1, col2)

VALUES (seq_2.NEXTVAL, seq_2.NEXTVAL);

In the previous example, the database server inserts an incremented value (or the
first value of the sequence, which is 1) into the col1 and col2 columns of the table.

You can use NEXTVAL (or CURRVAL) in the SET clause of the UPDATE
statement, as the following example shows:
UPDATE tab1

SET col2 = seq_2.NEXTVAL
WHERE col1 = 1;

4-84 IBM Informix Guide to SQL: Syntax

In the previous example, the incremented value of the seq_2 sequence, which is 2,
replaces the value in col2 where col1 is equal to 1.

The following example shows how you can use NEXTVAL and CURRVAL in the
Projection clause of the SELECT statement:
SELECT seq_2.CURRVAL, seq_2.NEXTVAL FROM tab1;

In the previous example, the database server returns two rows of incremented
values, 3 and 4, from both the CURRVAL and NEXTVAL expressions. For the first
row of tab1, the database server returns the incremented value 3 for CURRVAL
and NEXTVAL; for the second row of tab1, it returns the incremented value 4.
Related reference:
“ALTER SEQUENCE statement” on page 2-68
“CREATE SEQUENCE statement” on page 2-257
“RENAME SEQUENCE statement” on page 2-614

Using NEXTVAL:
To access a sequence for the first time, you must refer to sequence.NEXTVAL before
you can refer to sequence.CURRVAL. The first reference to NEXTVAL returns the
initial value of the sequence. Each subsequent reference to NEXTVAL increments
the value of the sequence by the defined step and returns a new incremented value
of the sequence.

You can increment a given sequence only once within a single SQL statement. Even
if you specify sequence.NEXTVAL more than once within a single statement, the
sequence is incremented only once, so that every occurrence of sequence.NEXTVAL
in the same SQL statement returns the same value.

Except for the case of multiple occurrences within the same statement, every
sequence.NEXTVAL expression increments the sequence, regardless of whether you
subsequently commit or roll back the current transaction.

If you specify sequence.NEXTVAL in a transaction that is ultimately rolled back,
some sequence numbers might be skipped.

Using CURRVAL:
Any reference to CURRVAL returns the current value of the specified sequence,
which is the value that your last reference to NEXTVAL returned. After you
generate a new value with NEXTVAL, you can continue to access that value using
CURRVAL, regardless of whether another user increments the sequence.

If both sequence.CURRVAL and sequence.NEXTVAL occur in an SQL statement, the
sequence is incremented only once. In this case, each sequence.CURRVAL and
sequence.NEXTVAL expression returns the same value, regardless of the order of
sequence.CURRVAL and sequence.NEXTVAL within the statement.

Concurrent Access to a Sequence:
A sequence always generates unique values within a database without perceptible
waiting or locking, even when multiple users refer to the same sequence
concurrently. When multiple users use NEXTVAL to increment the sequence, each
user generates a unique value that other users cannot see.

When multiple users concurrently increment the same sequence, gaps occur
between the values that each user sees. For example, one user might generate a

Chapter 4. Data types and expressions 4-85

series of values, such as 1, 4, 6, and 8, from a sequence, while another user
concurrently generates the values 2, 3, 5, and 7 from the same sequence object.

Restrictions on sequence operators:
NEXTVAL and CURRVAL are valid only in SQL statements, not directly in SPL
statements. (But SQL statements that use NEXTVAL and CURRVAL can be used in
SPL routines.) The following restrictions apply to these operators in SQL
statements:
v You must have Select privilege on the sequence.
v In a CREATE TABLE or ALTER TABLE statement, you cannot specify NEXTVAL

or CURRVAL in the following contexts:
– In the Default clause of a column definition
– In the definition of a check constraint.

v In a SELECT statement, you cannot specify NEXTVAL or CURRVAL in the
following contexts:
– In the projection list when the DISTINCT keyword is used
– In the WHERE, GROUP BY, or ORDER BY clauses
– In a subquery
– When the UNION operator combines SELECT statements.

v You also cannot specify NEXTVAL or CURRVAL in these contexts:
– In fragmentation expressions
– In reference to a remote sequence object in another database.

Literal Row
The syntax for a literal representation of the value of a named or unnamed ROW
data type is described in the section “Literal Row” on page 4-216. The following
examples show literal rows as expressions:
INSERT INTO employee VALUES

(ROW(’103 Baker St’, ’San Francisco’,
’CA’, 94500));

UPDATE rectangles
SET rect = ROW(8, 3, 7, 20)
WHERE area = 140;

EXEC SQL update table(:a_row)
set x=0, y=0, length=10, width=20;

SELECT row_col FROM tab_b
WHERE ROW(17, ’abc’) IN (row_col);

For the syntax of expressions that evaluate to field values of a ROW data type, see
“ROW constructors” on page 4-87.

Literal Collection
Informix supports expressions that are literal representations of the values of
built-in or user-defined collection data types. The following examples show literal
collections as expressions:
INSERT INTO tab_a (set_col) VALUES ("SET{6, 9, 3, 12, 4}");

INSERT INTO TABLE(a_set) VALUES (9765);

UPDATE table1 SET set_col = "LIST{3}";

SELECT set_col FROM table1
WHERE SET{17} IN (set_col);

4-86 IBM Informix Guide to SQL: Syntax

For more information, see “Literal Collection” on page 4-208. For the syntax of
element values, see “Collection Constructors” on page 4-88.

Constructor Expressions
A constructor is a function that the database server uses to create an instance of a
specific data type. The database server supports ROW constructors and collection
constructors.

Constructor Expressions:

�

,
(1)

ROW (Expression)
(2)

Collection Constructors

Notes:

1 See “Expression” on page 4-44

2 See “Collection Constructors” on page 4-88

ROW constructors
You use ROW constructors to generate values for ROW-type columns.

Suppose you create the following named ROW type and a table that contains the
named ROW type row_t and an unnamed ROW type:
CREATE ROW TYPE row_t (x INT, y INT);
CREATE TABLE new_tab
(
col1 row_t,
col2 ROW(a CHAR(2), b INT)
);

When you define a column as a named ROW type or unnamed ROW type, you
must use a ROW constructor to generate values for the ROW-type column. To
create a value for either a named ROW type or unnamed ROW type, you must
complete the following steps:
v Begin the expression with the ROW keyword.
v Specify a value for each field of the ROW type.
v Enclose the comma-separated list of field values within parentheses.

The format of the value for each field must be compatible with the data type of the
ROW field to which it is assigned.

You can use any kind of expression as a value with a ROW constructor, including
literals, functions, and variables. The following examples show the use of different
types of expressions with ROW constructors to specify values:
ROW(5, 6.77, ’HMO’)

ROW(col1.lname, 45000)

ROW(’john davis’, TODAY)

ROW(USER, SITENAME)

Chapter 4. Data types and expressions 4-87

The following statement uses literal numbers and quoted strings with ROW
constructors to insert values into col1 and col2 of the new_tab table:
INSERT INTO new_tab
VALUES
(
ROW(32, 65)::row_t,
ROW(’CA’, 34)
);

When you use a ROW constructor to generate values for a named ROW type, you
must explicitly cast the ROW value to the appropriate named ROW type. The cast
is necessary to generate a value of the named ROW type. To cast the ROW value
as a named ROW type, you can use the cast operator (::) or the CAST AS
keywords, as the following examples show:
ROW(4,5)::row_t
CAST (ROW(3,4) AS row_t)

You can use a ROW constructor to generate ROW type values in INSERT,
UPDATE, and SELECT statements. In the next example, the WHERE clause of a
SELECT statement specifies a ROW type value that is cast as type person_t:
SELECT * FROM person_tab

WHERE col1 = ROW(’charlie’,’hunter’)::person_t;

For more information on using ROW constructors in INSERT and UPDATE
statements, see the INSERT and UPDATE statements in this document. For
information on named ROW types, see the CREATE ROW TYPE statement. For
information on unnamed ROW types, see the discussion of the ROW data type in
the IBM Informix Guide to SQL: Reference. For task-oriented information on named
ROW types and unnamed ROW types, see the IBM Informix Database Design and
Implementation Guide.
Related reference:
“Literal Row” on page 4-216

Collection Constructors
Use a collection constructor to specify values for a collection column.

Collection Constructors:

SET
MULTISET
LIST

�

{ }
,

(1)
Expression

Notes:

1 See “Expression” on page 4-44

You can use collection constructors in the WHERE clause of the SELECT statement
and the VALUES clause of the INSERT statement. You can also pass collection
constructors to UDRs.

This table differentiates the types of collections that you can construct.

4-88 IBM Informix Guide to SQL: Syntax

Keyword Description

SET Indicates a collection of elements with the following qualities:

v The collection must contain unique values.

v Elements have no specific order associated with them.

MULTISET Indicates a collection of elements with the following qualities:

v The collection can contain duplicate values.

v Elements have no specific order associated with them.

LIST Indicates a collection of elements with the following qualities:

v The collection can contain duplicate values.

v Elements have ordered positions.

The element type of the collection can be any built-in or extended data type. You
can use any kind of expression with a collection constructor, including literals,
functions, and variables.

When you use a collection constructor with a list of expressions, the database
server evaluates each expression to its equivalent literal form and uses the literal
values to construct the collection.

You specify an empty collection with a set of empty braces ({ }).

Elements of a collection cannot be NULL. If a collection element evaluates to a
NULL value, the database server returns an error.

The element type of each expression must all be exactly the same data type. To
accomplish this, cast the entire collection constructor expression to a collection
type, or cast individual element expressions to the same type. If the database
server cannot determine that the collection type and the element types are
homogeneous, then the collection constructor returns an error. In the case of host
variables, this determination is made at bind time when the client declares the
element type of the host variable.

An exception to this restriction can occur when some elements of a collection are
VARCHAR data types but others are longer than 255 bytes. Here the collection
constructor can assign a CHAR(n) type to all elements, for n the length in bytes of
the longest element. (But see “Collection Data Types” on page 4-40 for an example
based on this exception, where the user avoids fixed-length CHAR elements by an
explicit cast to the LVARCHAR data type.)

Examples of Collection Constructors:
The following example shows that you can construct a collection with various
expressions, if the resulting values are of the same data type:
CREATE FUNCTION f (a int) RETURNS int;

RETURN a+1;
END FUNCTION;
CREATE TABLE tab1 (x SET(INT NOT NULL));
INSERT INTO tab1 VALUES
(
SET{10,

1+2+3,
f(10)-f(2),
SQRT(100) +POW(2,3),
(SELECT tabid FROM systables WHERE tabname = ’sysusers’),
’T’::BOOLEAN::INT}

);

Chapter 4. Data types and expressions 4-89

SELECT * FROM tab1 WHERE
x=SET{10,

1+2+3,
f(10)-f(2),
SQRT(100) +POW(2,3),

(SELECT tabid FROM systables WHERE tabname = ’sysusers’),
’T’::BOOLEAN::INT}

};

This assumes that a cast from BOOLEAN to INT exists. (For a more restrictive
syntax to specify collection values , see “Literal Collection” on page 4-208.)

NULL Keyword
The NULL keyword is valid in most contexts where you can specify a value. What
it specifies, however, is the absence of any value (or an unknown or missing
value).

NULL Keyword:

NULL

Within SQL, the keyword NULL is the only syntactic mechanism for accessing a
NULL value. NULL is not equivalent to zero, nor to any specific value. In
ascending ORDER BY operations, NULL values precede any non-NULL value; in
descending sorts, NULL values follow any non-NULL value. In GROUP BY
operations, all NULL values are grouped together. (Such groups might in fact be
logically heterogeneous, if they include missing or unknown values.)

The keyword NULL is a global symbol in the syntactic context of expressions,
meaning that its scope of reference is global.

Every data type, whether built-in or user-defined, can represent a NULL value.
IBM Informix supports cast expressions in the projection list. This means that users
can write expressions of the form NULL::datatype, in which datatype is any data
type known to the database server.

IBM Informix supports the typed NULL keyword in general expressions. NULL
alone in these scenarios results in a -201 syntax error. As a result, if null is defined
as a column name or a procedure name, it must be referenced with a table alias.
Otherwise, it returns a -201 syntax error. The behavior is summarized in the
following examples and results:
create table tab1 (a int, null int);
create table tab2 (a int, b int);

Table 4-3. NULL behavior

Statement Result

select null from tab1 where a = 1 -201 syntax error

select * from tab1 where null = a -201 syntax error

select * from tab1 where tab1.null = a Valid syntax

select * from tab1 where a = null -201 syntax error

select * from tab2 where a = null -201 syntax error

select * from tab2 where null = a -201 syntax error

4-90 IBM Informix Guide to SQL: Syntax

Table 4-3. NULL behavior (continued)

Statement Result

select * from tab2 where null = a -201 syntax error

select NULL::int from tab1 Valid syntax

select NULL::int from tab1 Valid syntax

select 1 + NULL::int from tab1 Valid syntax

select 1 + NULL::int from tab2 Valid syntax

select NULL::int + 1 from tab1 Valid syntax

IBM Informix prohibits the redefinition of NULL, because allowing such definition
would restrict the global scope of the NULL keyword. For this reason, any
mechanism that restricts the global scope or redefines the scope of the keyword
NULL will syntactically disable any cast expression involving a NULL value. You
must ensure that the occurrence of the keyword NULL receives its global scope in
all expression contexts.

For example, consider the following SQL code:
CREATE TABLE newtable
(
null int
);

SELECT null, null::int FROM newtable;

The CREATE TABLE statement is valid, because the column identifiers have a
scope of reference that is restricted to the table definition; they can be accessed
only within the scope of a table.

The SELECT statement in the example, however, poses some syntactic ambiguities.
Does the identifier null appearing in the projection list refer to the global keyword
NULL, or does it refer to the column identifier null that was declared in the
CREATE TABLE statement?
v If the identifier null is interpreted as the column name, the global scope of cast

expressions with the NULL keyword will be restricted.
v If the identifier null is interpreted as the NULL keyword, the SELECT statement

must generate a syntactic error for the first occurrence of null because the NULL
keyword can appear only as a cast expression in the projection list.

A SELECT statement of the following form is valid because the NULL column of
newtable is qualified with the table name:
SELECT newtable.null, null::int FROM newtable;

More involved syntactic ambiguities arise in the context of an SPL routine that has
a variable named null. An example follows:
CREATE FUNCTION nulltest() RETURNING INT;

DEFINE a INT;
DEFINE null INT;
DEFINE b INT;
LET a = 5;
LET null = 7;
LET b = null;

Chapter 4. Data types and expressions 4-91

RETURN b;
END FUNCTION;

EXECUTE FUNCTION nulltest();

When the preceding function executes in DB-Access, in the expressions of the LET
statement, the identifier null is treated as the keyword NULL. The function returns
a NULL value instead of 7.

Using null as a variable of an SPL routine would restrict the use of a NULL value
in the body of the SPL routine. Therefore, the preceding SPL code is not valid, and
causes IBM Informix to return the following error:
-947 Declaration of an SPL variable named ’null’ conflicts

with SQL NULL value.

In ESQL/C, you should use an indicator variable if there is the possibility that a
SELECT statement will return a NULL value.

Function Expressions
A function expression can return one or more values from built-in SQL functions
or from user-defined functions, as the following diagram shows.

Function Expressions:

(1) (2)
Algebraic Functions

(3)
CARDINALITY Function

(4)
SQLCODE Function

(5)
DBINFO Function

(6)
Encryption and Decryption Functions

(7)
Exponential and Logarithmic Functions

(8)
HEX Function

(9)
Length Functions

(10)
Security Label Support Functions

(11)
Smart-Large-Object Functions

(12)
Time Functions

(13)
Trigonometric Functions

(14)
String-Manipulation Functions

(15)
IFX_ALLOW_NEWLINE Function

(16)
User-Defined Functions

Notes:

1 Informix extension

4-92 IBM Informix Guide to SQL: Syntax

2 See “Algebraic Functions”

3 See “CARDINALITY Function” on page 4-106

4 See “SQLCODE Function (SPL)” on page 4-106

5 See “DBINFO Function” on page 4-107

6 See “Encryption and decryption functions” on page 4-116

7 See “Exponential and Logarithmic Functions” on page 4-124

8 See “HEX Function” on page 4-126

9 See “Length functions” on page 4-127

10 See “Security Label Support Functions” on page 4-128

11 See “Smart-Large-Object Functions” on page 4-131

12 See “Time Functions” on page 4-137

13 See “Trigonometric Functions” on page 4-150

14 See “String-Manipulation Functions” on page 4-155

15 See “IFX_ALLOW_NEWLINE Function” on page 4-187

16 See “User-Defined Functions” on page 4-188

The following examples show function expressions:
EXTEND (call_dtime, YEAR TO SECOND)

HEX (LENGTH(123))

MDY (12, 7, 1900 + cur_yr)

TAN (radians)

DATE (365/2)

ABS (-32)

LENGTH (’abc’) + LENGTH (pvar)

EXP (3)

HEX (customer_num)

MOD (10,3)

Algebraic Functions
Algebraic functions take one or more arguments of numeric data types. Besides
supporting numeric arguments, the CEIL and FLOOR functions can also take
character string arguments that can be converted to DECIMAL values, and the
ROUND and TRUNC functions can also take DATE or DATETIME arguments.

Algebraic Functions:

Chapter 4. Data types and expressions 4-93

�

�

ABS (num_expression)
CEIL
FLOOR

GREATEST (expression , expression +--)

LEAST (expression , expression +--)
MOD (dividend, divisor)

POW (base, exponent)
POWER

, 2
ROOT (radicand)

, index
, 0

ROUND (num_expression)
TRUNC date_expression , factor
ROUND (date_expression)
TRUNC , ' DD '

DAY
MONTH
YEAR

, 'DD'
ROUND (datetime_expression)
TRUNC , ' MI '

HH
DAY
MONTH
YEAR

SQRT (sqrt_radicand)

Element Description Restrictions Syntax

base Value to be raised to the power
specified in exponent

Must return a real number “Expression” on
page 4-44

date_expression Expression that evaluates to (or is cast
to) a DATE value

Must return a DATE value “Expression” on
page 4-44

datetime_expression Expression that evaluates to (or is cast
to) a DATETIME value

Must return a DATETIME
value

“Expression” on
page 4-44

dividend Value to be divided by divisor A real number “Expression” on
page 4-44

divisor Value by which to divide dividend A nonzero real number “Expression” on
page 4-44

exponent Power to which to raise base A real number “Expression” on
page 4-44

factor Number of significant digits to replace
with zero in the returned value. Default
is to return the rounded or truncated
integer part of the first argument.

Integer in range +32 to -32.
Positive or unsigned values are
applied to the right of the
decimal point, and negative
values are applied to the left.

“Literal Number”
on page 4-215

index Root to extract. The default is 2. A nonzero real number “Expression” on
page 4-44

num_expression Expression that evaluates to (or is cast
to) a numeric value

A real number “Expression” on
page 4-44

4-94 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

radicand Value whose root is to be returned A real number “Expression” on
page 4-44

sqrt_radicand Number with a real square root A nonnegative real number “Expression” on
page 4-44

ABS Function:
The ABS function returns the absolute value of its numeric argument, returning
the same data type as its argument. The query in the following example returns all
orders for which a ship_charge greater than $20 was paid in cash (+) or as store
credit (-).
SELECT order_num, customer_num, ship_charge

FROM orders WHERE ABS(ship_charge) > 20;

CEIL Function:

The CEIL function takes as its argument a numeric expression, or a string that can
be converted to a DECIMAL data type, and returns the DECIMAL(32)
representation of the smallest integer that is greater than or equal to its single
argument.

The following query returns 33 as the smallest integer that is larger than or equal
to the CEIL argument of 32.3:
SELECT CEIL(32.3) FROM systables WHERE tabid = 1;

The next example returns -32 as the smallest integer that is larger than or equal to
the CEIL argument of -32.3 :
SELECT CEIL(-32.3) FROM systables WHERE tabid = 1;

FLOOR Function:

The FLOOR function takes as its argument a numeric expression, or a string that
can be converted to a DECIMAL data type, and returns the DECIMAL(32)
representation of the largest integer that is smaller than or equal to its single
argument.

The following query returns 32 as the largest integer that is smaller than or equal
to the FLOOR argument of 32.3:
SELECT FLOOR(32.3) FROM systables WHERE tabid = 1;

The next example returns -33 as the largest integer that is smaller than or equal to
the FLOOR argument of -32.3 :
SELECT FLOOR(-32.3) FROM systables WHERE tabid = 1;

These examples illustrate how the FLOOR and CEIL functions provide upper and
lower bounds that differ by 1 when they have the same argument that has a
nonzero fractional part. For an integer argument, FLOOR and CEIL return the
same DECIMAL(32) representation of their argument.

GREATEST function:

The GREATEST function returns the maximum value in a list of expressions.

Chapter 4. Data types and expressions 4-95

The arguments to this function must be comma-separated expressions that evaluate
to compatible data types.

This is the syntax of the GREATEST function:

GREATEST Function:

�

,

GREATEST (expression , expression)

Element Description Restrictions Syntax

expression Expression whose value
can be compared

Data type cannot be a collection or a large object. “Expression”
on page 4-44

The arguments must be of compatible data types. Arguments of complex data
types, or BYTE, TEXT, BLOB, CLOB objects, or DISTINCT types based on any of
these data types are not supported. Any user-defined data type that you specify as
an argument to the GREATEST function must implement the greaterthan()
function.

The database server converts the specified expression arguments, if necessary, to the
data type of the returned value. This return data type is determined by all the
operands of the expression, and the compatibility rule is consistent with CASE
expressions.

The return value of the GREATEST function is its largest argument value. If one
or more arguments evaluates to NULL, the result is NULL. If GREATEST is used
to compare DATE or DATETIME values, the return value is the latest date.

Assume that table T1 contains three columns C1, C2, and C3 with values 1, 7, and
4. The following query returns a value of 7:
SELECT GREATEST (C1, C2, C3) FROM T1;

If column C3 has a value of NULL instead of 4, however, the same query returns a
NULL value.

LEAST function:

The LEAST function returns the minimum value in a set of values.

LEAST Function:

�LEAST (, expression expression)

The arguments must be compatible and each argument must be an expression that
returns a value of any data type other than complex types, BYTES, TEXT, BLOB,
CLOB, or a user-defined type based on any of these types. The user-defined type
must implement the support function lessthan() in order to use the LEAST
function. The selected argument is converted, if necessary, to the data type of the
result. The result data type is determined by all the operands and the compatibility
rule is consistent with CASE expression.

4-96 IBM Informix Guide to SQL: Syntax

The result of the function is the smallest argument value. If at least one argument
can be null, the result is null. If LEAST is used to compare dates, the return value
is the earliest date.

Assume that table T1 contains three columns C1, C2, and C3 with values 1, 7, and
4. The query returns a value of 1.
SELECT LEAST (C1, C2, C3) FROM T1

If column C3 has a value of NULL instead of 4, the same query returns a NULL
value.

MOD Function:
The MOD function takes as arguments two real number operands, and returns the
remainder from integer division of the integer part of the first argument (the
dividend) by the integer part of the second argument (the divisor). The value
returned is an INT data type (or INT8 for remainders outside the range of INT).
The quotient and any fractional part of the remainder are discarded. The divisor
cannot be 0. Thus, MOD (x,y) returns y (modulo x). Make sure that any variable
that receives the result is of a data type that can store the returned value.

This example tests to see if the current date is within a 30-day billing cycle:
SELECT MOD(TODAY - MDY(1,1,YEAR(TODAY)),30) FROM orders;

POW Function:

The POW function raises its first numeric argument, the base, to the power of its
second numeric argument, the exponent. The returned value is a FLOAT data type.

The following example returns all rows from the circles table in which the radius
column value implies an area less than 1,000 square units, using an approximation
to pi with a scale of 4:
SELECT * FROM circles WHERE (3.1416 * POW(radius,2)) < 1000;

The function identifier POWER is a synonym for POW.

To use e, the base of natural logarithms, see “EXP Function” on page 4-125.

ROOT Function:

The ROOT function extracts a positive real root value, returned as a FLOAT data
type, from its first numeric expression argument, the radicand.

If you specify a second numeric argument as the index, which cannot be zero, then
the returned value to the power index is equal (within rounding error) to the
radicand argument. If only the radicand argument is supplied, 2 is the default index
value. You cannot specify zero as the value of index.

The first SELECT statement in the following example, which uses the default index
value of 2, returns the positive square root of the literal number 9. The second
example returns the cube root of the literal number 64.
SELECT ROOT(9) FROM angles; -- square root of 9
SELECT ROOT(64,3) FROM angles; -- cube root of 64

Invoking ROOT with only a single argument is equivalent to invoking the SQRT
function.

Chapter 4. Data types and expressions 4-97

SQRT Function:

The SQRT function returns the positive square root of its argument, which must be
a non-negative numeric expression.

The following example returns the square root of 9 for each row of the angles
table:
SELECT SQRT(9) FROM angles;

The SQRT function is equivalent to ROOT(x), where 2 is the default value of the
second argument to the ROOT function, specifying the index.

ROUND Function:

The ROUND function can reduce the precision of its first numeric, MONEY,
DATE, or DATETIME argument, and returns the rounded value. If the first
argument is not a number, a MONEY value, or a point in time, it must be cast to a
numeric, MONEY, DATE, or DATETIME data type.

The following diagram shows the syntax of both the ROUND and TRUNC
algebraic functions, which support the same syntax. Because their semantics differ,
however, they can return different values from the same argument list. Only
ROUND can return an absolute value larger than its first argument.

ROUND and TRUNC algebraic functions:

, 0
ROUND (num_expression)
TRUNC date_expression , factor
ROUND (date_expression)
TRUNC , ' DD '

DAY
MONTH
YEAR

, 'DD'
ROUND (datetime_expression)
TRUNC , ' MI '

HH
DAY
MONTH
YEAR

Element Description Restrictions Syntax

date_expression Expression that evaluates to (or is cast
to) a DATE value

Must return a DATE value “Expression” on
page 4-44

datetime_expression Expression that evaluates to (or is cast
to) a DATETIME value

Must return a DATETIME
value

“Expression” on
page 4-44

factor Number of significant digits to replace
with zero in the returned value. Default
is to return the rounded or truncated
integer part of the first argument.

Integer in range +32 to -32.
Positive or unsigned values are
applied to the right of the
decimal point, and negative
values are applied to the left.

“Literal Number”
on page 4-215

num_expression Expression that evaluates to (or is cast
to) a numeric value

A real number “Expression” on
page 4-44

4-98 IBM Informix Guide to SQL: Syntax

Usage

The ROUND function resembles the TRUNC function, whose syntax is also shown
above.t ROUND differs, however, in how it treats any portion of its first argument
that is smaller than the least significant digit or time unit within the precision that
its explicit or default second argument specifies.
v If the absolute value of this portion is equal to or greater than half of the

smallest unit within the precision, the value of that digit or time unit is
incremented by 1 in the value returned by ROUND. If this portion is less than
half of a unit, however, it is discarded, and only the digits or time units of the
first argument within the specified or default precision are returned.
That is, if the first argument is greater than zero,
– the ROUND function rounds down any portion of its first argument that is

smaller than half a unit of the least significant digit or time unit within the
precision of the second argument,

– but any portion of the first argument that is equal to or greater than half a
unit is rounded up.

For example, ROUND(3.5,0) = 4 and ROUND(3.4,0) = 3.
But if the first argument is less than zero,
– the ROUND function rounds up any portion of its first argument that is

smaller than half a unit of the least significant digit or time unit within the
precision of the second argument,

– but any portion of the first argument that is equal to or greater than half a
unit is rounded down.

For example, ROUND(-3.5,0) = -4 and ROUND(-3.4,0) = -3.
v The TRUNC function, in contrast, replaces with zero any digits less than the

specified precision for numeric expressions. For DATE or DATETIME
expressions, TRUNC freplaces any time units smaller than the specified format
string with 1 for month or day time units, or with zero for time units smaller
than day.

The ROUND function can accept an optional second argument that specifies the
precision of the returned value. The syntax and semantics of the second argument
depend on whether the first argument is a number expression, a DATETIME
expression, or DATE expression.

Rounding numeric and MONEY values

v When the first argument is a numeric expression, the returned value is a
DECIMAL and the second argument can be an integer in the range from -32 to
+32 inclusive, specifying the position (relative to the decimal point) of the last
significant digit of the returned value. If you omit the factor specification when
the first argument is numeric, ROUND returns the integer value of the first
argument rounded to a scale of zero, or to the units place.
Positive-digit values specify rounding to the right of the decimal point;
negative-digit values specify rounding to the left of the decimal point, as
Figure 4-1 on page 4-100 shows:

Chapter 4. Data types and expressions 4-99

The following example uses the ROUND function with a column expression as
its first argument and no second argument, so that the numeric expression is
rounded to a scale of zero. This query returns the order number and rounded
total price of items whose total price (rounded to the default scale of zero
decimal places) is equal to $124.00.
SELECT order_num , ROUND(total_price) FROM items

WHERE ROUND(total_price) = 124.00;

If you use a MONEY data type as the argument for the ROUND function and
you round to an explicit or default scale of zero, the returned value is
represented with .00 as the fractional part. The SELECT statement in the
following example rounds 125.46 and a MONEY column value. The query
returns 125 and a rounded price in the form xxx.00 for each row in the items
table.
SELECT ROUND(125.46), ROUND(total_price) FROM items;

Rounding DATE and DATETIME values

v When the first argument to ROUND is a DATETIME expression, the returned
value is a DATETIME YEAR TO MINUTE data type and the second argument
must be a quoted string that specifies the smallest significant time unit in the
returned value. If you omit the second argument, the default format string is
’DD’, specifying the nearest day, with the hour and minute rounded to 00:00.
The following format strings are valid as the second argument:

Table 4-4. Format strings for DATETIME arguments to the ROUND function

Format String Effect on Returned DATETIME Value

'YEAR' Rounded to the beginning of the nearest year, with dates after
June 30 rounded up to the next year. The month, day, hour, and
minute values round to -01-01 00:00.

'MONTH' Rounded to the beginning of the nearest month. Dates after the
15th are rounded up to the next month. The day, hour, and minute
values round to 01 00:00.

'DD' Rounded to the beginning (00:00 = midnight) of the nearest day.
DATETIME values later than 12:00 noon are rounded up to the
next day.

'DAY' Rounded to the beginning of the nearest Sunday. Dates that fall on
Wednesday, Thursday, Friday, or Saturday are rounded up to the
next Sunday.

'HH' Rounded to the beginning of the nearest hour. Time of day values
with minute:second later than 29:59 are rounded up to the next
hour. Minutes round to zero.

'MI' Rounded to the beginning of the nearest minute. Time of day
values with second later than 30 are rounded up to the next
minute.

2

Expression:

ROUND (24,536.8746, -2) = 24,500.00

ROUND (24,536.8746, 0) = 24,537.00

ROUND (24,536.8746, 2) = 24,536.87
-2

2 4 5 3 6 . 8 7 4 6

0

Figure 4-1. Examples of negative, zero, and positive rounding factors

4-100 IBM Informix Guide to SQL: Syntax

If you omit the format string specification after an initial DATETIME expression
argument, the returned value is the value of the first argument rounded to the
nearest day, as if you had specified 'DD' as the format string.
Examples that follow use the ROUND function with a column expression that
returns a DATETIME YEAR TO FRACTION(5) value in a SELECT statement. In
these queries, table mytab has only a single row, and in that row the value of
mytab.col_dt is 2012-12-07 14:30:12.12300.
The following query specifies ’YEAR’ as the DATETIME format string:
SELECT ROUND(col_dt, ’YEAR’) FROM mytab;

The value returned is 2013-01-01 00:00.
The next query resembles the previous query, but casts the returned value to a
DATE data type:
SELECT ROUND(col_dt, ’YEAR’)::DATE FROM mytab;

The value returned is 01/01/2013.
This example specifies ’MONTH’ as the DATETIME format string:
SELECT ROUND(col_dt, ’MONTH’) FROM mytab;

The value returned is 2012-12-01 00:00.
This example rounds the DATETIME expression to YEAR TO HOUR precision:
SELECT ROUND(col_dt, ’HH’) FROM mytab;

The value returned is 2012-12-07 15:00.
v When the first argument is a DATE expression, the returned value is also a

DATE data type if the second argument is a quoted string that specifies the
smallest time unit in the returned value. These are the same format strings as for
rounding DATETIME values, except that ’HH’ and ’MI’ are not valid for DATE
values. There is no default format string for rounding DATE arguments.
To return formatted DATE values, you must specify one of the following quoted
strings as the second argument to the ROUND function:

Table 4-5. Format strings for DATE arguments to the ROUND function

Format String Effect on Returned DATE Value

'YEAR' Rounded to the beginning of the nearest year. Dates after June 30
are rounded up to the next year. The month and day values each
round to 01.

'MONTH' Rounded to the beginning of the nearest month. Dates after the
15th are rounded up to the next month. The returned day value is
01.

'DD' The DATE value of the first date_expression argument is returned.

'DAY' The value is rounded to the nearest Sunday. If the first argument
is a Sunday, that date is returned. Dates that fall on Wednesday,
Thursday, Friday, or Saturday are rounded up to the next Sunday.

If you specify no format string as the second argument when the first argument is
a DATE data type, no format string takes effect as the default. No error is issued,
but the first argument is treated as numeric expression that evaluates to an integer,
rather than as a DATE value. Informix stores DATE values internally as the integer
count of days since 31 December 1899. For dates in the 21st century, integer
equivalents to DATE values are 5-digit integers, ranging between approximately
37,000 and 74,000.

Chapter 4. Data types and expressions 4-101

For example, the query SELECT ROUND(TODAY) FROM systables provides no format
string for a DATE expression, and returns the integer 40999 if the query is issued
on 1 April 2012.

If you apply a numeric format specification as the second argument, nonnegative
numbers have no effect on DATE values, but the following example rounds the last
two digits of the returned value to zero:
SELECT ROUND(TODAY, -2) FROM systables;

On 1 April 2012, the query above would return the integer value 40900.

On the next day, 2 April 2012, the same query would return the integer value
41000.

For applications where integer-format dates like 41000 are unhelpful, you can use
the 'YEAR', 'MONTH', 'DAY', or 'DD' format strings as the second argument to the
ROUND function to prevent the DATE argument from being processed as if it
were a number expression. On 1 April 2012, the following query returns the DATE
value 04/01/2012 if MDY4/ is the DBDATE environment variable setting:
SELECT ROUND(TODAY, ’DD’) FROM systables WHERE tabid = 1;

In the following example, a query is issued on Tuesday, April 3, 2012:
SELECT ROUND(TODAY, ’DAY’) FROM mytab;

The returned value is 03/31/2012, the current date rounded to the nearest Sunday.

If you are using a host variable to store a rounded point-in-time value in dynamic
SQL, and the data type of the first argument is not known at prepare time,
Informix assumes that a DATETIME data type is the first argument to the ROUND
function and returns a DATETIME YEAR TO MINUTE rounded value. At
execution time, after the statement is prepared, error -9750 is issued if a DATE
value is supplied for the host variable. To prevent this error, you can specify the
data type for the host variable by using a cast, as in this program fragment.
sprintf(query1, ",

"select round(?::date, ’DAY’) from mytab");
EXEC SQL prepare selectq from :query;
EXEC SQL declare select_cursor cursor for selectq;
EXEC SQL open select_cursor using :hostvar_date_input;

EXEC SQL fetch select_cursor into :var_date_output;

For the order of precedence among the Informix environment variables that can
specify the display and data entry formats for the built-in chronological data types,
see the topic “Precedence of DATE and DATETIME format specifications” on page
4-212.

TRUNC Function:

The TRUNC function can reduce the precision of its first numeric, DATE, or
DATETIME argument by returning the truncated value. If the first argument is
neither a number nor a point in time, it must be cast to a numeric, DATE, or
DATETIME data type.

4-102 IBM Informix Guide to SQL: Syntax

The TRUNC function can reduce the precision of its first numeric, DATE, or
DATETIME argument by returning the truncated value. If the first argument is
neither a number nor a point in time, it must be cast to a numeric, DATE, or
DATETIME data type.

The TRUNC function resembles the ROUND function, but truncates (rather than
rounds to the nearest whole number) any portion of its first argument that is
smaller than the least significant digit or time unit within the precision that its
second argument specifies.
v For numeric expressions, TRUNC replaces with zero any digits less than the

specified precision.
v For DATE or DATETIME expressions, TRUNC replaces any time units smaller

than the format specification with 1 for month or day time units, or with 0 for
time units smaller than day.

The TRUNC function can accept an optional second argument that specifies the
precision of the returned value.
v When the first argument is a numeric expression, the second argument must be

an integer in the range from -32 to +32 inclusive, specifying the position (relative
to the decimal point) of the last significant digit of the returned value. If you
omit the factor specification when the first argument is numeric, TRUNC returns
the value of the first argument truncated to a scale of zero, or to the units place.
Positive digit values specify truncation to the right of the decimal point; negative
digit values specify truncation to the left, as Figure 4-2 shows.

The following example calls the TRUNC function with a column expression that
returns a numeric value in a SELECT statement. This statement displays the
order number and truncated total price of items whose total price (truncated to
the default scale of zero decimal places) is equal to $124.00.
SELECT order_num , TRUNC(total_price) FROM items

WHERE TRUNC(total_price) = 124.00;

If a MONEY data type is the argument in a call to the TRUNC function that
specifies a scale of zero, the fractional part becomes .00 in the returned value.
For example, the following SELECT statement truncates 125.46 and a MONEY
column value. It returns 125 and a truncated price in the form xxx.00 for each
row in the items table.
SELECT TRUNC(125.46), TRUNC(total_price) FROM items;

v When the first argument to TRUNC is a DATETIME expression, the second
argument must be a quoted string that specifies the smallest significant time unit
in the returned value. Only the following format strings are valid as the second
argument:

Figure 4-2. Examples of negative, zero, and positive truncation factors

Chapter 4. Data types and expressions 4-103

Table 4-6. Format strings for DATETIME arguments to the TRUNC function

Format String Effect on Returned Value

'YEAR' Truncated to the beginning of the year. The month, day, hour, and
minute values truncate to 01-01 00:00.

'MONTH' Truncated to the beginning of the first day of the month. The hour
and minute values round to 00:00.

'DD' Truncated to the beginning (00:00 = midnight) of the same day.

'DAY' If the first argument is a Sunday, midnight (00:00) on that date is
returned. For any other day of the week, midnight on the previous
Sunday is returned.

'HH' Truncated to the beginning of the hour. The minute value truncates
to zero.

'MI' Truncated to the beginning of the nearest minute. As for all of
these format strings, time units smaller than minute are discarded.

If you omit the format string specification after an initial DATETIME expression
argument, the returned value is the value of the first argument truncated to the
day, as if you had specified ’DD’ as the format string.
Examples that follow invoke the TRUNC function with a column expression that
returns a DATETIME YEAR TO FRACTION(5) value in a SELECT statement. In
these examples, table mytab has only a single row, and in that row the value of
mytab.col_dt is 2006-12-07 14:30:12.12300.
This query specifies ’YEAR’ as the DATETIME format string:
SELECT TRUNC(col_dt, ’YEAR’) FROM mytab;

The value returned is 2006-01-01 00:00.
The next query resembles the previous query, but casts the truncated value to a
DATE data type:
SELECT TRUNC(col_dt, ’YEAR’)::DATE FROM mytab;

The value returned is 01/01/2006.
This example specifies ’MONTH’ as the DATETIME format string:
SELECT TRUNC(col_dt, ’MONTH’) FROM mytab;

The value returned is 2006-12-01 00:00.
The following example truncates the DATETIME expression to YEAR TO HOUR
precision:
SELECT TRUNC(col_dt, ’HH’) FROM mytab;

The value returned is 2006-12-07 14:00.
v When the first argument is a DATE expression, the second argument should

generally be a quoted string that specifies the smallest time unit in the returned
value. These are the same format strings as for truncating DATETIME values,
except that ’HH’ and ’MI’ are not valid for dates, and there is no default format
string for truncating DATE expression arguments.
To return formatted DATE values, you must use one of the following quoted
strings as the second argument to the TRUNC function:

4-104 IBM Informix Guide to SQL: Syntax

Table 4-7. Format strings for DATE arguments to the TRUNC function

Format String Effect on Returned Value

'YEAR' Truncated to the beginning of the year. The month and day values
are each 01.

'MONTH' Truncated to the beginning of the month. The day value is 01.

'DD' The DATE value of the first date_expression argument is returned.

'DAY' If the first argument is a Sunday, that date is returned. For any
other day of the week, the date of the previous Sunday is
returned.

If you specify no format string as the second argument when the first argument is
a DATE data type, no format string takes effect as the default. No error is issued,
but the first argument is treated as numeric expression that evaluates to an integer,
rather than as a DATE value. Informix stores DATE values internally as the integer
count of days since 31 December 1899.

For example, the query SELECT ROUND(TODAY) FROM systables provides no format
string for a DATE expression, and returns the integer 39538 if the query is issued
on 1 April 2008.

If you apply a numeric format specification as the second argument, nonnegative
numbers have no effect on DATE values, but the following example rounds the last
two digits of the returned value to zero:
SELECT TRUNC(TODAY, -2) FROM systables;

For applications where integer dates like 39500 are unhelpful, use the ’YEAR’,
’MONTH’, ’DAY', or ’DD’ format strings as the second argument to the TRUNC
function, to prevent the DATE expression from being processed as if it were a
number expression. On 1 April 2008, the following query returns the DATE value
04/01/2008 if MDY4/ is the setting of the DBDATE environment variable:
SELECT TRUNC(TODAY, ’DD’) FROM systables;

If you are using a host variable to store a truncated point-in-time value in dynamic
SQL, and the data type of the first argument is not known at prepare time,
Informix assumes that a DATETIME data type is the first argument to the TRUNC
function and returns a DATETIME YEAR TO MINUTE truncated value. At
execution time, after the statement is prepared, error -9750 is issued if a DATE
value is supplied for the host variable. To prevent this error, you can specify the
data type for the host variable by using a cast, as in this program fragment.
sprintf(query2, "%s",

"select trunc(?::date, ’DAY’) from mytab");
EXEC SQL prepare selectq from :query2;
EXEC SQL declare select_cursor cursor for selectq;
EXEC SQL open select_cursor using :hostvar_date_input;

EXEC SQL fetch select_cursor into :var_date_output;

For the order of precedence among the Informix environment variables that can
specify the display and data entry formats for the built-in chronological data types,
see the topic “Precedence of DATE and DATETIME format specifications” on page
4-212.

Note that the TRUNC function name is based on a use of the English word
"truncate" that is different from its meaning in the TRUNCATE statement of SQL.

Chapter 4. Data types and expressions 4-105

The TRUNC function replaces the value of its first argument with another value
that has a smaller precision or the same precision. The TRUNCATE statement
deletes all of the rows from a database table, without dropping the table schema.

CARDINALITY Function
The CARDINALITY function returns the number of elements in a collection
column (SET, MULTISET, LIST).

The CARDINALITY function has the following syntax.

CARDINALITY Function:

CARDINALITY (collection_col)
collection_var

Element Description Restrictions Syntax

collection_col An existing collection column Must be declared as a
collection data type

“Identifier” on page
5-21

collection_var Host or program collection variable Must be declared as a
collection data type

Language specific

Suppose that the set_col SET column contains the following value:
{3, 7, 9, 16, 0}

The following SELECT statement returns 5 as the number of elements in the
set_col column:
SELECT CARDINALITY(set_col)

FROM table1;

If the collection contains duplicate elements, CARDINALITY counts each
individual element.

SQLCODE Function (SPL)
The SQLCODE function takes no arguments, but returns to its calling context the
value of sqlca.sqlcode for the most recently executed SQL statement (whether
static or dynamic) that the current SPL routine has executed. Only use SQLCODE
in the context of a cursor.

SQLCODE:

SQLCODE

You can use SQLCODE in expressions within SPL routines to identify the state of
a dynamic cursor. This built-in function is useful in error handling and in contexts
such as determining whether a query or function call has returned no rows, or
when a cursor has reached the last row of the active set, or to identify other
conditions when SPL program control should exit from a loop.

The following SPL program fragment illustrates the use of SQLCODE to detect the
end of the active set of a cursor within a WHILE loop.
CREATE PROCEDURE ...
...
DEFINE myc1 ...
...

4-106 IBM Informix Guide to SQL: Syntax

PREPARE p FOR "SELECT c1 FROM t1";
DECLARE cur FROM s;
OPEN cur;

FETCH cur INTO myc1;
WHILE (SQLCODE != 100)
FETCH cur INTO myc1;

-- process myc1
...
END WHILE;

END PROCEDURE;

The SQLCODE function is not needed in UDRs written in ESQL/C, which have
direct access to the SQL Communications Area (SQLCA) through the GET
DIAGNOSTICS statement of Dynamic SQL and by other mechanisms. The
database server issues an error if the calling context of the built-in SQLCODE
function is not an SPL routine.

DBINFO Function
The following diagram shows the syntax of the DBINFO function.

DBINFO Function:

DBINFO ('dbspace' , tblspace_num)
expression

'sqlca.sqlerrd1'
'sqlca.sqlerrd2'
(1)

'sessionid'
'cdrsession'
'dbname'
'dbhostname'
'serial8'
'bigserial'
'get_tz'
'utc_current'
'utc_to_datetime' , utc_value

table.column
'version' , 'parameter'

Notes:

1 Informix extension

Element Description Restrictions Syntax

column Name of a column in the table Must exist in table “Identifier” on
page 5-21

expression Expression that evaluates to
tblspace_num

Can contain column names, SPL
variables, host variables, or subqueries,
but must return a numeric value

“Expression” on
page 4-44

parameter Quoted string that specifies which
part of the version string to return

For valid parameter values, see “Using the
'version' Option” on page 4-112

See the
Restrictions
column.

table Table for which to display the
dbspace name or containing an
integer column of UTC values.

Must match the name of a table in the
FROM clause of the query

“Identifier” on
page 5-21

Chapter 4. Data types and expressions 4-107

Element Description Restrictions Syntax

tblspace_num Tblspace number (partition
number) of a table

Must exist in the partnum column of the
systables table for the database

“Literal
Number” on
page 4-215

utc_value A UTC value to be converted to the
DATETIME equivalent

Must be a numeric expression that
evaluates to the number of seconds since
1970-01-01 00:00:00+00:00

“Expression” on
page 4-44,
“Literal
Number” on
page 4-215

DBINFO Options:
The DBINFO function is actually a set of functions that return different types of
information about the database. To invoke each function, specify a particular
option after the DBINFO keyword. You can use any DBINFO option anywhere
within SQL statements and within UDRs.

The following table shows the categories of database and database server
information that Informix can retrieve with valid DBINFO options.
v The Arguments column shows the parentheses-delimited argument list of each

valid DBINFO option.
v The Information Returned column shows the type of database information that

the Arguments option retrieves.
v The Page column shows where you can find more information about the

Arguments option.

Arguments Information Returned Page

('dbhostname') The host name of the database
server to which a client
application is connected

“Using the 'dbhostname'
Option” on page 4-112

('dbname') The identifier of the database to
which a client application is
connected

“Using the 'dbname' Option”
on page 4-112

('dbspace' tblspace_num) The name of a dbspace
corresponding to a tblspace
number

“Using the ('dbspace',
tblspace_num) Option” on
page 4-109

('get_tz') The time zone of the session, $TZ,
as specified as a string by the
client.

“Using the 'get_tz' Option” on
page 4-114

('serial8') The last SERIAL8 value inserted in
a table

“Using the 'serial8' and
'bigserial' options” on page
4-113

('bigserial') The last BIGSERIAL value inserted
in a table

“Using the 'serial8' and
'bigserial' options” on page
4-113

('sessionid') The session ID number of the
current session

“Using the 'sessionid' Option”
on page 4-111

('cdrsession') Whether a thread is performing an
Enterprise Replication operation

“Using the 'cdrsession' option”
on page 4-111

('sqlca.sqlerrd1') The last SERIAL value inserted in
a table

“Using the 'sqlca.sqlerrd1'
Option” on page 4-110

4-108 IBM Informix Guide to SQL: Syntax

Arguments Information Returned Page

('sqlca.sqlerrd2') The number of rows processed by
SELECT, INSERT, DELETE,
UPDATE, EXECUTE
PROCEDURE, and EXECUTE
FUNCTION statements

“Using the 'sqlca.sqlerrd2'
Option” on page 4-110

('utc_current') The current UTC time value (as an
integer number of seconds since
1970-01-01 00:00:00+00:00) when
the SQL statement began to
execute.

“Using the 'utc_current'
Option” on page 4-114

('utc_to_datetime',
table.column)

The DATETIME value
corresponding to a specified
integer column containing a UTC
time value (as an integer number
of seconds since 1970-01-01
00:00:00+00:00).

“Using the 'utc_to_datetime'
Option” on page 4-115

('utc_to_datetime',
utc_value)

The DATETIME value
corresponding to a specified UTC
time value (as an integer number
of seconds since 1970-01-01
00:00:00+00:00).

“Using the 'utc_to_datetime'
Option” on page 4-115

('version', 'parameter') Type of the database server and its
release version to which the client
application is connected. (The call
to DBINFO fails with an error if
no parameter specifies a format for
the version information.)

“Using the 'version' Option”
on page 4-112

Using the ('dbspace', tblspace_num) Option: The 'dbspace' option returns a
character string that contains the name of the dbspace that corresponds to a
tblspace number. You must supply an additional parameter, either tblspace_num or
an expression that evaluates to tblspace_num. The following example uses the
'dbspace' option. First, it queries the systables system catalog table to determine
the tblspace_num for the table customer, then it executes the function to determine
the dbspace name.
SELECT tabname, partnum FROM systables

where tabname = ’customer’;

If the query returns a partition number of 1048892, you insert that value into the
second argument to find which dbspace contains the customer table, as the
following example shows:
SELECT DBINFO (’dbspace’, 1048892) FROM systables

where tabname = ’customer’;

If the table for which you want to know the dbspace name is fragmented, you
must query the sysfragments system catalog table to find out the tblspace number
of each table fragment. Then you must supply each tblspace number in a separate
DBINFO query to find out all the dbspaces across which a table is fragmented.

Chapter 4. Data types and expressions 4-109

Using the 'sqlca.sqlerrd1' Option:

The 'sqlca.sqlerrd1' option returns a single integer that provides the last serial
value that is inserted into a table. To ensure valid results, use this option
immediately following a singleton INSERT statement that inserts a single row with
a serial value into a table.

Tip: To obtain the value of the last SERIAL8 value that is inserted into a table, use
the 'serial8' option of DBINFO. For more information, see “Using the 'serial8' and
'bigserial' options” on page 4-113.

The following example uses the 'sqlca.sqlerrd1' option:
EXEC SQL create table fst_tab (ordernum serial, partnum int);
EXEC SQL create table sec_tab (ordernum serial);
EXEC SQL insert into fst_tab VALUES (0,1);
EXEC SQL insert into fst_tab VALUES (0,4);
EXEC SQL insert into fst_tab VALUES (0,6);
EXEC SQL insert into sec_tab values (dbinfo(’sqlca.sqlerrd1’));

This example inserts a row that contains a primary-key serial value into the fst_tab
table, and then uses the DBINFO function to insert the same serial value into the
sec_tab table. The value that the DBINFO function returns is the serial value of
the last row that is inserted into fst_tab.

Because the SQLCA structure does not record serial values that are inserted by
triggers, you cannot call the DBINFO function with the 'sqlca.sqlerrd1', 'bigserial',
or 'serial8' options to return a serial value that a triggered action inserts.

For more information about the SQL Communications Area (SQLCA) data
structure, within which sqlca.sqlerrd1 is a field, see the IBM Informix Guide to SQL:
Tutorial.

Using the 'sqlca.sqlerrd2' Option: The 'sqlca.sqlerrd2' option returns a single
integer that provides the number of rows that SELECT, INSERT, DELETE,
UPDATE, EXECUTE PROCEDURE, and EXECUTE FUNCTION statements
processed. To ensure valid results, use this option after SELECT, EXECUTE
PROCEDURE, and EXECUTE FUNCTION statements have completed executing.
In addition, to ensure valid results when you use this option within cursors, make
sure that all rows are fetched before the cursors are closed.

The following example shows an SPL routine that uses the 'sqlca.sqlerrd2' option
to determine the number of rows that are deleted from a table:
CREATE FUNCTION del_rows (pnumb INT)
RETURNING INT;

DEFINE nrows INT;

DELETE FROM fst_tab WHERE part_number = pnumb;
LET nrows = DBINFO(’sqlca.sqlerrd2’);
RETURN nrows;

END FUNCTION;

For more information about the SQL Communications Area (SQLCA) data
structure, within which sqlca.sqlerrd2 is a field, see the IBM Informix Guide to SQL:
Tutorial.

4-110 IBM Informix Guide to SQL: Syntax

Using the 'sessionid' Option: The 'sessionid' option of the DBINFO function
returns the session ID of your current session. When a client application makes a
connection to the database server, the database server starts a session with the
client and assigns a session ID for the client. The session ID serves as a unique
identifier for a given connection between a client and a database server.

The database server stores the value of the session ID in a data structure in shared
memory that is called the session control block. The session control block for a given
session also includes the user ID, the process ID of the client, the name of the host
computer, and a variety of status flags.

When you specify the 'sessionid' option, the database server retrieves the session
ID of your current session from the session control block and returns this value to
you as an integer. Some of the System-Monitoring Interface (SMI) tables in the
sysmaster database include a column for session IDs, so you can use the session ID
that the DBINFO function obtained to extract information about your own session
from these SMI tables. For further information on the session control block, see the
IBM Informix Administrator's Guide. For further information on the sysmaster
database and the SMI tables, see the IBM Informix Administrator's Reference.

In the following example, the user specifies the DBINFO function in a SELECT
statement to obtain the value of the current session ID. The user poses this query
against the systables system catalog table and uses a WHERE clause to limit the
query result to a single row.
SELECT DBINFO(’sessionid’) AS my_sessionid

FROM systables
WHERE tabname = ’systables’;

In the preceding example, the SELECT statement queries against the systables
system catalog table. You can, however, obtain the session ID of the current session
by querying against any system catalog table or user table in the database. For
example, you can enter the following query to obtain the session ID of your
current session:
SELECT DBINFO(’sessionid’) AS user_sessionid

FROM customer
WHERE customer_num = 101;

You can use the DBINFO 'sessionid' option not only in SQL statements but also in
SPL routines. The following example shows an SPL function that returns the value
of the current session ID to the calling program or routine:
CREATE FUNCTION get_sess()

RETURNING INT;
RETURN DBINFO(’sessionid’);

END FUNCTION;

Using the 'cdrsession' option:

The 'cdrsession' option to the DBINFO() function detects if an INSERT, UPDATE,
or DELETE statement is being performed as part of a replicated transaction.

You might want to design triggers, stored procedures, or user-defined routines to
take different actions depending on whether a transaction is being performed as
part of Enterprise Replication. The 'cdrsession' option of the DBINFO() function
returns 1 if the thread performing the database operation is an Enterprise
Replication apply or sync thread; otherwise, the function returns 0.

Chapter 4. Data types and expressions 4-111

The following example shows an SPL function that uses the 'cdrsession' option to
determine if a thread is performing an Enterprise Replication operation:
CREATE FUNCTION iscdr ()
RETURNING int;

DEFINE iscdrthread int;
SELECT DBINFO(’cdrsession’) into iscdrthread
from systables where tabid = 1;
RETURN iscdrthread;

END FUNCTION

Using the 'dbname' Option: You can use the 'dbname' option to retrieve the
name of the current database. This option returns the identifier of the database to
which the client session is currently connected.

In the following example, the user enters the 'dbname' option of DBINFO in a
SELECT statement to retrieve the name of the database to which DB-Access is
connected:
SELECT DBINFO(’dbname’)

FROM systables
WHERE tabid = 1;

The following table shows the result of this query.

(constant)

stores_demo

Using the 'dbhostname' Option:

You can use the 'dbhostname' option to retrieve the host name of the database
server to which a database client is connected.

This option retrieves the physical computer name of the computer on which the
database server is running.

In the following example, the user enters the 'dbhostname' option of DBINFO in a
SELECT statement to retrieve the host name of the database server to which
DB-Access is connected:
SELECT DBINFO(’dbhostname’)

FROM systables
WHERE tabid = 1;

The following table shows the result of this query.

(constant)

rd_lab1

Using the 'version' Option:

You can use the 'version' option of the DBINFO function to retrieve information
from the message log about the type and release version of the database server
against which the client application is running.

You must include a 'parameter' specification after the 'version' option to indicate
which part of the version string you want to retrieve.

4-112 IBM Informix Guide to SQL: Syntax

If after 'version' you specify 'full' as the parameter value, DBINFO returns the
complete version string, which is the same value that the -V option of the oninit
utility displays. The following table lists all the valid parameter arguments
toDBINFO that can retrieve version information about the database server:
v The Arguments column shows the parentheses-delimited argument list of each

valid DBINFO ('version', 'parameter') combination.
v The Part of Version String Returned column shows which part of the version

string each Arguments list returns.
v The Example of Returned Value column shows gives an example of what is

returned by each value of parameter for the Arguments option.

Each example returns part of the complete version string Informix Version
11.50.UC6.

Arguments Part of Version String Returned Example of Returned Value

('version',
'server-type')

Type of database server Informix

('version', 'major') Major version number of the current database server
version

11

('version', 'minor') Minor version number of the current database server
version

50

('version', 'os') Operating-system identifier within the version string:

T = 32-bit Windows platforms

U = UNIX 32-bit running on a 32-bit operating system

H = UNIX 32-bit running on a 64-bit operating system

F = All 64-bit platforms

U

('version', 'level') Interim release level of the current database server version C6

('version', 'full') Complete version string as it would be returned by oninit
-V

Informix, Version 11.50.UC6

Important: Not all UNIX environments fit the word-length descriptions of
operating- system (os) codes in the preceding table. For example, some U versions
can run on 64-bit operating systems. Similarly, some F versions can run on
operating systems with 32-bit kernels that support 64-bit applications.

The following example shows how to use the 'version' option of DBINFO in a
SELECT statement to retrieve the major version number of the database server that
the DB-Access client is connected to:
SELECT DBINFO(’version’, ’major’)

FROM systables
WHERE tabid = 1;

The following table shows the result of this query.

(constant)

7

Using the 'serial8' and 'bigserial' options:

The 'bigserial' and 'serial8' options respectively return a single integer that
specifies the last SERIAL8 or BIGSERIAL value that was inserted into a table. To

Chapter 4. Data types and expressions 4-113

ensure valid results, use this option immediately following an INSERT statement
that inserts a SERIAL8 or BIGSERIAL value.

Tip: To obtain the value of the last SERIAL value that is inserted into a table, use
the 'sqlca.sqlerrd1' option of DBINFO(). For more information, see “Using the
'sqlca.sqlerrd1' Option” on page 4-110.

The following example uses the 'serial8' option:
EXEC SQL CREATE TABLE fst_tab

(ordernum SERIAL8, partnum INT);
EXEC SQL CREATE TABLE sec_tab (ordernum SERIAL8);

EXEC SQL INSERT INTO fst_tab VALUES (0,1);
EXEC SQL INSERT INTO fst_tab VALUES (0,4);
EXEC SQL INSERT INTO fst_tab VALUES (0,6);

EXEC SQL INSERT INTO sec_tab
SELECT dbinfo(’serial8’)
FROM fst_tab WHERE partnum = 6;

This example inserts a row that contains a primary-key SERIAL8 value into the
fst_tab table and then uses the DBINFO function to insert the same SERIAL8
value into the sec_tab table. The value that the DBINFO function returns is the
SERIAL8 value of the last row that is inserted into fst_tab. The subquery in the
last line contains a WHERE clause so that a single value is returned.

The SQLCA structure does not record serial values that are inserted by triggers.
You cannot call the DBINFO function with the 'bigserial' option to return the most
recent BIGSERIAL value that was inserted directly by the triggered action of a
trigger on a table (nor of an INSTEAD OF trigger on a view). For the same reason,
the DBINFO ('serial8') function cannot return a SERIAL8 value that was inserted
by a trigger on a table, nor by an INSTEAD OF trigger on a view.

Using the 'get_tz' Option:

The 'get_tz' option returns the $TZ string that shows the time zone of the current
session.

The following example uses the 'get_tz' option in a query of the cust_calls table of
the stores_demo database:
EXEC SQL select first call_dtime, dbinfo(’get_tz’)

from cust_calls where customer_num = 106;

This example returns a string value of the session time zone and the first
call_dtime value in the cust_calls table for which the customer_num value is 106.

Using the 'utc_current' Option:

The 'utc_current option returns the current value of Coordinated Universal Time
(UTC) as an integer value that shows the number of seconds that have elapsed
between 1970-01-01 00:00:00+00:00) and when the current SQL statement began to
execute.

Unlike Universal Time (UT), which calculates the duration of seconds from the
earth's rotation, UTC uses seconds of a fixed length, based on high-precision
atomic clocks.

4-114 IBM Informix Guide to SQL: Syntax

Because of variation in the earth's gradually diminishing rotation rate, intercalary
leap seconds are introduced from time to time in UTC to reduce discrepancies with
UT time. By default, Informix ignores leap seconds in DATETIME and INTERVAL
arithmetic. When Informix is supported by an operating system that takes leap
seconds into account, however, the leap seconds are reflected in subsequent
DATETIME and INTERVAL operations after the operating system adjusts the
system clock for leap seconds.

Using the 'utc_to_datetime' Option:

The 'utc_to_datetime' option of the DBINFO function returns the UTC seconds to
DATETIME value that the server would generate if the UNIX time() system call
returned the value of the second parameter, taking into account the time zone of
the database server.

The 'utc_to_datetime' option casts to a DATETIME value its last argument, which
must be a numeric expression representing a Coordinated Universal Time (UTC)
value. If this evaluates to a number with a fractional part, any fractional seconds
are ignored.

In the first example below, the last argument is a UTC value represented as a
literal integer. In the second example, the last argument is a column expression
specifying an integer column that stores UTC values. In both examples, DBINFO
casts the UTC value to a DATETIME value in the time zone of the database server:
DBINFO (’utc_to_datetime’, 1299912999)

DBINFO (’utc_to_datetime’, timesheet.utc_checkin)

If the value of the last argument is negative, the function returns a DATETIME
value from an earlier UNIX epoch, as in the next example:
SELECT DBINFO("utc_to_datetime", -2134567890.91234)

FROM ’sysmaster:"informix".sysdual’;

This query returns the DATETIME value 1902-05-12 08:28:30.

These example times all assume that the server is in a specific time zone. The
following query returns four DATETIME values:
SELECT

DBINFO(’utc_to_datetime’, -32767) AS min_smallint,
DBINFO(’utc_to_datetime’, +32767) AS max_smallint,
DBINFO(’utc_to_datetime’, 1299912999),
DBINFO("utc_to_datetime", -2134567890.91234)

FROM ’sysmaster:"informix".sysdual’;

These are the returned DATETIME values from a server in the United States Pacific
time zone:
1969-12-31 06:53:53 1970-01-01 01:06:07 2011-03-11 22:56:39

1902-05-12 01:28:30
Server running in TZ=US/Pacific

These are the returned DATETIME values from the same query from a server in
the UTC0 time zone:
1969-12-31 14:53:53 1970-01-01 09:06:07 2011-03-12 06:56:39

1902-05-12 08:28:30
Server running in TZ=UTC0

Chapter 4. Data types and expressions 4-115

Note that the DAY component in the third DBINFO result is different for the
United States Pacific time zone and for the UTC0 time zone, because of the 8-hour
offset between those two time zones.

The database server time zone can similarly affect the return value from other
expressions for points in time, such as CURRENT, SYSDATE, and TODAY, whose
DATETIME YEAR TO SECOND or DATE representation depends on the time zone
of the server.

Encryption and decryption functions
Informix supports built-in encryption and decryption functions.

The encryption functions ENCRYPT_AES and ENCRYPT_TDES return an
encrypted_data value that encrypts the data argument. Conversely, decryption
functions DECRYPT_CHAR and DECRYPT_BINARY return a plain-text data value
from the encrypted_data argument. Use this syntax to call these functions:

Encryption and Decryption Functions:

ENCRYPT_AES (data)
ENCRYPT_TDES , password

, hint
DECRYPT_CHAR (encrypted_data)
DECRYPT_BINARY , password

GETHINT (encrypted_data)

Element Description Restrictions Syntax

data A plain text character string, variable, or large object of
type BLOB or CLOB to be encrypted

Must be a character or
BLOB data type

“Expression” on
page 4-44

encrypted
_data

A character string or variable containing output from
ENCRYPT_AES or from ENCRYPT_TDES

Decryption requires the
encryption password

“Expression” on
page 4-44

hint A character string that you define here. Default is the
value from the WITH HINT clause of the SET
ENCRYPTION statement that defined password.

No more than 32 bytes “Quoted String”
on page 4-219

password A character string that the encryption function defines.
Default is the session password value defined by the
SET ENCRYPTION statement

At least 6 bytes, but no
more than 128 bytes

“Quoted String”
on page 4-219

You can invoke these encryption and decryption functions from within DML
statements or with the EXECUTE FUNCTION statement.

For distributed operations over a network, all participating database servers must
support these (or equivalent) functions. If the network is not secure, the DBSA
must enable the encryption communication support module (ENCCSM) to provide data
encryption between the database server and client systems, in order to avoid
transmitting passwords as plain text.

Encryption or decryption calls slow the performance of the SQL statement within
which these functions are invoked, but have no effect on other statements.
However, if you store encrypted data in a column that is an index key, or in a
column on which a constraint is defined, Informix cannot enforce the constraint,
and DML statements cannot use the index.

4-116 IBM Informix Guide to SQL: Syntax

Similarly, do not encrypt a column whose value is referenced in the fragment key
expression of a fragmented table.

You cannot encrypt the security label in a column of type IDSSECURITY label.

Column Level and Cell Level Encryption: The encryption and decryption
functions can support two ways of using data encryption features, namely column
level and cell level encryption.
v Column level encryption means that all values in a given column are encrypted

with the same password (which can be a word or phrase), the same cipher, and
the same cipher mode.
Users of this form of encryption should consider not using the hint feature of
these functions, but instead store a mnemonic hint for remembering the
password in some other location. Otherwise, the same hint will occupy disk
space in every row that contains an encrypted value.

v Cell level encryption means that within a column of encrypted data many
different passwords (or different ciphers or cipher modes) are used.
This use of encryption is also called row-column level or set-column level
encryption. Compared to column-level encryption, this makes the task of data
management more complex, because if different passwords are required for
decrypting different rows of the same table, it is not possible to write a single
SELECT statement to fetch all the decrypted data. In some situations, however,
individual users may need this technique to protect personal data.

To protect data security and confidentiality, the database server does not store
information in the system catalog to indicate whether any table (or any column or
row) includes encrypted data. Similarly, the logical logs of Informix do not record
SET ENCRYPTION statements, nor calls to encryption or decryption functions.
(The Trusted Facility feature for secure auditing, however, can use the 'STEP'
audit-event mnemonic to record execution of the SET ENCRYPTION statement,
and can use the 'CRPT' audit-event mnemonic to record successful or unsuccessful
calls to DECRYPT_CHAR or DECRYPT_BINARY.)

The Password and Hint Specifications: The SET ENCRYPTION statement or an
encryption function can define a password and hint for the current session. The
password must be specified as a character expression that returns at least 6 bytes,
but no more than 128. The optional hint is specified as a character expression that
returns no more than 32 bytes.

The purpose of the hint is to help users to remember the password. When you call
ENCRYPT_AES or ENCRYPT_TDES with a hint argument, it is encrypted and
embedded in the encrypted_data, from which GETHINT can retrieve it. But if you
define hint as NULL, or omit hint when SET ENCRYPTION specified no default
hint for the session password, no hint is embedded in the encrypted_data.

The password used for encryption and decryption is either the password argument to
the function, or if you omit this argument, it is the session password specified in the
last SET ENCRYPTION statement executed before you invoke the function.

The DECRYPT_CHAR, DECRYPT_BINARY, or GETHINT function call fails with
an error if the encrypted_data argument is not in an encrypted format, or if the
password argument to a decryption function is omitted when no session password
value was set by SET ENCRYPTION. An error also results if the password used for
decryption is not the same password used for encryption.

Chapter 4. Data types and expressions 4-117

Encryption key management, which is critical to the secure operation of the
database, is delegated entirely to the application. This implementation means that
the password itself is not stored in the database. Without help from the user
through the application, the database server cannot decrypt the encrypted data.

If you invoke any of these functions from a UDR, you might prefer to set a session
password in the SET ENCRYPTION statement. Otherwise, password will be visible to
users who can view the sysprocbody.data column in the system catalog.

Data Types, Encoding, and Size of Encrypted Values: The data and
corresponding encrypted_data arguments can be of any built-in character type
(CHAR, LVARCHAR, NCHAR, NVARCHAR, or VARCHAR), or can be a smart
large object of type BLOB or CLOB. (Use CLOB in place of TEXT, which these
functions do not support.)

Corresponding data and encrypted_data values that the encryption or decryption
functions return have the same character, BLOB, or CLOB data type, except in
cases where encryption of a VARCHAR or NVARCHAR string would return an
overflow error. For operations on CHAR, LVARCHAR, NCHAR, NVARCHAR, or
VARCHAR data and on encrypted_data values, the encryption and decryption
functions follow the data-type promotion rules of CONCAT and the other SQL
string manipulation functions for the data type of their return value, as in the
following examples.
v If the VARCHAR data argument to ENCRYPT_TDES (with no hint) is a 200 byte

string, then Informix automatically promotes the returned value to an
LVARCHAR data type, because the encrypted value exceeds the 255 byte limit
for VARCHAR objects.

v If the NVARCHAR encrypted_data argument to ENCRYPT_AES (with a hint) is a
string 200 bytes long, then Informix automatically promotes the returned value
to an NCHAR data type, because the encrypted value exceeds the 255 byte limit
for NVARCHAR objects.

For more information about return type promotion for character strings that the
encryption, decryption, and certain other string-manipulation functions return, see
Return Types from the CONCAT Function. The first table in that section describes
data or encrypted_data arguments that are not smart large objects. (For smart large
object arguments, the return type is a BLOB or CLOB object.)

The encryption or decryption function call returns overflow error -881, however, if
the return value exceeds the 32,767-byte limit for CHAR, NCHAR strings, or the
32,739-byte limit for LVARCHAR strings. To avoid this error, use BLOB or CLOB
objects as the data or encrypted_data argument, rather than a character data type,
when the encryption or decryption operation requires an argument or a return
value that might be larger than the (approximately 32Kb) limit for character data
types.

Except for original data of BLOB or CLOB data types, the encrypted_data value is
encoded in BASE64 format. An encrypted value requires more space than the
corresponding plain text, because the database must also store the information
(except for the encryption key) that is needed for decryption. If a hint is used, it
adds to the length of encrypted_data.

The BASE64 encoding scheme stores 6 bits of input data as 8 bits of output. To
encode N bytes of data, BASE64 requires at least ((4N+3)/3) bytes of storage,
where the slash character (/) represents integer division. Padding and headers
can increase BASE64 storage requirements above this ((4N+3)/3) ratio. “Example of

4-118 IBM Informix Guide to SQL: Syntax

Column Level Encryption” lists formulae to estimate the size of data values
encrypted in BASE64 format. It typically requires changes to the schema of an
existing table that will store BASE64 format encrypted data, especially if a hint will
also be stored.

The following table shows how the data type of the input string corresponds to the
data type of the value that ENCRYPT_AES or ENCRYPT_TDES returns:

Table 4-8. Data Types for ENCRYPT_AES and ENCRYPT_TDES Functions

Plain Text Data Type Encrypted Data Type Decryption Function

CHAR CHAR DECRYPT_CHAR

NCHAR NCHAR DECRYPT_CHAR

VARCHAR VARCHAR or CHAR DECRYPT_CHAR

NVARCHAR NVARCHAR or NCHAR DECRYPT_CHAR

LVARCHAR LVARCHAR DECRYPT_CHAR

BLOB BLOB DECRYPT_BINARY

CLOB BLOB DECRYPT_CHAR

Columns of type VARCHAR and NVARCHAR store no more than 255 bytes. If the
data string is too long for these data types to store both the encrypted data and
encryption overhead, then the value returned by the encryption function is
automatically changed from VARCHAR or NVARCHAR into a fixed CHAR or
NCHAR value, with no trailing blanks in the encoded encrypted value.

Encrypted values of type BLOB or CLOB are not in BASE64 encoding format, and
their size increase after encryption is independent of the original data size. For
BLOB or CLOB values, the encrypted size (in bytes) has the following formula,
where N is the original size of the plain text, and H is the size of the unencrypted
hint string, if encryption is performed by ENCRYPT_TDES:
N + H + 24 bytes.

For BLOB or CLOB values that ENCRYPT_AES encrypts, the overhead is larger:
N + H + 32 bytes.

Example of Column Level Encryption:
The following example illustrates how to use the built-in encryption and
decryption functions of Informix to create and use a table that stores encrypted
credit card numbers in a column that has a character data type.

For purposes of this example, assume that the plain text of the values to be
encrypted consists of strings of 16 digits. Because encryption functions support
character data types, these values are stored in a CHAR column rather than in an
INT, BIGINT, or INT8 column.

Calculating storage requirements for encrypted data:
The LENGTH function provides a convenient way to calculate the storage
requirements of encrypted data directly:
EXECUTE FUNCTION LENGTH(ENCRYPT_TDES("1234567890123456", "simple password"));

This returns 55.
EXECUTE FUNCTION LENGTH(ENCRYPT_TDES("1234567890123456", "simple password",
"12345678901234567890123456789012"));

Chapter 4. Data types and expressions 4-119

This returns 107.
EXECUTE FUNCTION LENGTH(ENCRYPT_AES("1234567890123456", "simple password"));

This returns 67.
EXECUTE FUNCTION LENGTH(ENCRYPT_AES("1234567890123456", "simple password",
"12345678901234567890123456789012"));

This returns 119.

The required storage size for encrypted data is sensitive to three factors:
v N, the number of bytes in the plain text
v whether or not a hint is provided
v which encryption function you use (ENCRYPT_TDES or ENCRYPT_TDES)

The following formulae describe the four possible cases, and are not simplified:
v Encryption by ENCRYPT_TDES() with no hint:

Encrypted size = (4 x ((8 x((N + 8)/8) + 10)/3) + 11)

v Encryption by ENCRYPT_AES() with no hint:
Encrypted size = (4 x ((16 x((N + 16)/16) + 10)/3) + 11)

v Encryption by ENCRYPT_TDES() with a hint:
Encrypted size = (4 x ((8 x((N + 8)/8) + 50)/3) + 11)

v Encryption by ENCRYPT_AES() with a hint:
Encrypted size = (4 x ((16 x((N + 16)/16) + 50)/3) + 11)

The integer division (/) returns an integer quotient and discards any remainder.

Based on these formulae, the following table shows the encrypted size (in bytes)
for selected ranges of values of N:

N
ENCRYPT_TDES
No Hint

ENCRYPT_AES
No Hint

ENCRYPT_TDES
With Hint

ENCRYPT_AES
With Hint

1 to 7 35 43 87 99

8 to 15 43 43 99 99

16 to 23 55 67 107 119

24 to 31 67 67 119 119

32 to 39 75 87 131 139

40 to 47 87 87 139 139

100 163 171 215 227

200 299 299 355 355

500 695 707 747 759

If the column size is smaller than the data size returned by encryption functions,
the encrypted value is truncated when it is inserted. In this case, it will not be
possible to decrypt the data, because the header will indicate that the length
should be longer than the data value that the column contains.

These formulae and the values returned by the LENGTH function, however,
indicate that the table schema in the next example can store the encrypted form of
16-digit credit card numbers (with a hint).

Implementing column-level encryption:

4-120 IBM Informix Guide to SQL: Syntax

The following steps create a table from which a user who knows the password can
retrieve rows that include one column of encrypted data.
1. Create a database table containing at least one column of type BLOB, CLOB, or

a character data type of sufficient length to store the encrypted values. For
example, the following statement creates a table called customer in which the
column creditcard can store encrypted credit card numbers:
CREATE TABLE customer (id CHAR(20), creditcard CHAR(107));

2. Specify a password (and optional hint) and insert encrypted data:
SET ENCRYPTION PASSWORD ’credit card number is encrypted’

WITH HINT ’Why is this difficult to read?’;
INSERT INTO customer VALUES (’Alice’,

encrypt_tdes(’1234567890123456’));
INSERT INTO customer VALUES (’Bob’,

encrypt_tdes(’2345678901234567’));

3. Query the encrypted data, using a decryption function:
SELECT id, DECRYPT_CHAR(creditcard,

’credit card number is encrypted’) FROM customer;

The following query calls a decryption function in the WHERE clause, using
the session password default, rather than an explicit password argument:
SELECT id FROM customer

WHERE DECRYPT_CHAR(creditcard) = ’2345678901234567’;

Column level encryption offers the coding convenience of passing the implicit
session password for all rows with encrypted columns, and in multiple encryption
and decryption function calls in the same SQL statement. Confidentiality of the
data, however, requires users who know the password on encrypted columns to
avoid compromising its secrecy. Triggers and UDRs, for example, should always
use the session password, rather than explicit password arguments if they invoke the
encryption or decryption functions.

The DBSA can manage highly confidential data with column level encryption.
Informix does not, however, prevent users with sufficient privileges from entering
data encrypted by some other password into a table whose other rows use the
designated column level encryption password.

DECRYPT_CHAR Function
The DECRYPT_CHAR function accepts as its first argument an encrypted_data
character string that can have any character type (CHAR, LVARCHAR, NCHAR,
NVARCHAR, or VARCHAR). You must specify a password as its second argument,
unless the SET ENCRYPTION statement has specified for this session the same
session password by which the first argument was encrypted.

The DECRYPT_CHAR function also accepts as its first argument an encrypted_data
large object of type BLOB or CLOB. You must specify a password as its second
argument, unless the SET ENCRYPTION statement has specified as the default for
this session the same password by which the first argument was encrypted. If the
call to DECRYPT_CHAR is successful, it returns a CLOB large object that contains
the plain text version of the encrypted_data argument.

If the call to DECRYPT_CHAR with an encrypted string argument is successful, it
returns a character string that contains the plain text version of the encrypted_data
argument. The following example returns a character string containing a decrypted
value from the ssid column of the engineers table for the row whose empno value
is 287:
SELECT DECRYPT_CHAR (ssid) FROM engineers WHERE empno = 287;

Chapter 4. Data types and expressions 4-121

If the first argument to DECRYPT_CHAR is not an encrypted value, or if the
second argument (or the default password specified by SET ENCRYPTION) is not
the password that was used when the first argument was encrypted, Informix issues
an error, and the call to DECRYPT_CHAR fails. (See the description of the
“GETHINT Function” on page 4-124 for one possible action to take when you
cannot remember the password that was used for encryption.)

Do not use DECRYPT_CHAR (or any other decryption function) to create a
functional index on an encrypted column. This would store the decrypted values
as plain text data in the database, defeating the purpose of encryption.

For additional information about using data encryption in column values of
Informix databases, see “Encryption and decryption functions” on page 4-116, and
“SET ENCRYPTION PASSWORD statement” on page 2-760.

DECRYPT_BINARY Function
The DECRYPT_BINARY function accepts as its first argument an encrypted_data
large object of type BLOB or CLOB. You must specify a password as its second
argument, unless the SET ENCRYPTION statement has specified as the default for
this session the same password by which the first argument was encrypted.

If the call to DECRYPT_BINARY is successful, it returns a BLOB or CLOB large
object that contains the plain text version of the encrypted_data argument. The
decrypted BLOB or CLOB object is temporarily stored in the default sbspace that
the SBSPACENAME configuration parameter setting specifies.

If the first argument to DECRYPT_BINARY is an encrypted value of a character
data type, Informix invokes the DECRYPT_CHAR function and attempts to
decrypt the specified value.

If the first argument to DECRYPT_BINARY is not an encrypted value, or if the
second argument (or the default password specified by SET ENCRYPTION) is not
the password that was used when the first argument was encrypted, Informix issues
an error, and the call to DECRYPT_BINARY fails. (See the description of the
“GETHINT Function” on page 4-124 for one possible action to take when you
cannot remember the password that was used for encryption.)

Do not use DECRYPT_BINARY (or any other decryption function) to create a
functional index on an encrypted column. This would store the decrypted values
as plain text data in the database, defeating the purpose of encryption.

For additional information about using data encryption in column values of
Informix databases, see “Encryption and decryption functions” on page 4-116, and
“SET ENCRYPTION PASSWORD statement” on page 2-760.

ENCRYPT_AES Function
The ENCRYPT_AES function returns an encrypted value that it derives by
applying the AES (Advanced Encryption Standard) algorithm to its first argument,
which must be an unencrypted character expression or a smart large object (that is,
a BLOB or CLOB data type). A character argument can have a length of up to
32640 bytes if an explicit or default hint is used, or 32672 bytes if no hint (or a
NULL hint) is specified. Theoretical size limits on BLOB or CLOB arguments are
many orders of magnitude larger, but practical limits might be imposed by your
hardware, or by time required for encryption and decryption. The encrypted BLOB
or CLOB object is temporarily stored in the default sbspace that the
SBSPACENAME configuration parameter specifies.

4-122 IBM Informix Guide to SQL: Syntax

You must specify a password as its second argument, unless a SET ENCRYPTION
statement has specified a session password, which the database server uses by
default if you omit the second argument. If a session password has been set, any
password that you specify overrides the session password for the returned value of
this function call. The explicit or default password will also be required for any
subsequent decryption of the returned encrypted value. A valid password must
have at least 6 bytes but no more than 128.

You can optionally specify a hint as the third argument. If the SET ENCRYPTION
statement specified a default hint for this session, and you specify no hint, that
default hint is stored in an encrypted form within the returned value. Any hint that
you specify overrides the default hint. A valid hint can be no longer than 32 bytes.
You can use consecutive quotation marks ('') to specify a NULL hint. If you
specify an explicit hint, you must also specify an explicit password.

The purpose of the hint is to help users to remember the password. For example, if
the password is "buggy," you might define the hint as "whip." Neither string is
restricted to a single word, but the size of the hint contributes to the size of the
returned value. If you subsequently cannot remember the hint, use the returned
value from ENCRYPT_AES as the argument to GETHINT to retrieve the hint.

The following example calls ENCRYPT_AES from the VALUES clause of an
INSERT statement that stores in tab1 a plain-text string and an encrypted_data value
that ENCRYPT_AES returns from its 12-byte first argument. Here SET
ENCRYPTION defines a session password and hint that are used as default second
and third arguments to the ENCRYPT_AES function:
EXEC SQL SET ENCRYPTION PASSWORD ’CHARYBDIS’ WITH HINT ’messina’;
EXEC SQL INSERT INTO tab1 VALUES ('abcd’, ENCRYPT_AES(“111-222-3333”));

The call to ENCRYPT_AES fails with an error if the password argument is omitted
when no session password has been set, or if the length of an explicit password
argument is shorter than 6 bytes or longer than 128 bytes.

In some contexts, an error is issued if the encrypted returned value is too large to
be stored by the data type that receives it.

For additional information about using data encryption in column values of
Informix databases, see “Encryption and decryption functions” on page 4-116, and
“SET ENCRYPTION PASSWORD statement” on page 2-760.

ENCRYPT_TDES Function
The ENCRYPT_TDES function returns a value that is the result of encrypting a
character expression, or a BLOB or CLOB value, by applying the TDES (Triple Data
Encryption Standard, which is sometimes also called DES3) algorithm to its first
argument. This algorithm is slower than the AES algorithm that is used by the
ENCRYPT_AES function, but is considered somewhat more secure. The disk space
required as encryption overhead resembles that of ENCRYPT_AES, but is
somewhat smaller because of the smaller block size of ENCRYPT_TDES. (See
"Calculating storage requirements for encrypted data" “Calculating storage
requirements for encrypted data” on page 4-119 for a discussion of how to estimate
the size of encrypted character strings.) For BLOB or CLOB values, the encrypted
object is temporarily stored in the default sbspace that the SBSPACENAME
configuration parameter specifies.

Those differences in performance, tamper-resistance, and in the returned
encrypted_data size that the previous paragraph lists are the practical differences

Chapter 4. Data types and expressions 4-123

between the ENCRYPT_TDES and ENCRYPT_AES functions, which otherwise
follow the same rules, defaults, and restrictions that appear in the description of
ENCRYPT_AES on the previous page in regard to the following features:
v The required first argument (the plain text data value to be encrypted)
v The explicit or default second argument (the password string that must also be an

argument to DECRYPT_CHAR or DECRYPT_BINARY to decrypt the returned
encrypted_data value). This must be specified unless a default session password has
been set by the SET ENCRYPTION statement

v The optional third argument (the hint value) that might assist users who forget
the password. If you subsequently cannot remember an explicit or default hint
that was defined for password, you can use the returned value from
ENCRYPT_TDES as the argument to GETHINT to retrieve the hint.

The following example calls ENCRYPT_TDES from the SET clause of an UPDATE
statement. Here the session password is 'PERSEPHONE' and the hint string is
"pomegranate", with column colU of table tabU the data argument. Because the
WHERE clause condition of "1=1" is true for all rows of tabU, the effect of this
statement is to replace every plain text colU value with encrypted strings returned
by the algorithm that ENCRYPT_TDES implements:
EXEC SQL SET ENCRYPTION PASSWORD ’PERSEPHONE’ WITH HINT ’pomegranate’;
EXEC SQL UPDATE tabU SET colU = ENCRYPT_TDES (colU) WHERE 1=1;

This example assumes that the character data type of colU is of sufficient size to
store the new encrypted values without truncation. (A more cautious example
might execute an appropriate ALTER TABLE statement before the UPDATE.)

For additional information about using data encryption in column values of
Informix databases, see “Encryption and decryption functions” on page 4-116, and
“SET ENCRYPTION PASSWORD statement” on page 2-760.

GETHINT Function
The GETHINT function returns a character string that a previously executed SET
ENCRYPTION PASSWORD statement defined for the password that was used when
encrypted_data was encrypted by the ENCRYPT_AES function or by the
ENCRYPT_TDES function. This hint string typically provides information that
helps the user to specify the password needed to return the plain text version of
encrypted_data with the DECRYPT_CHAR or DECRYPT_BINARY decryption
function. The hint string, however, should not be the same as the password. In the
following example, a query returns the hint string into a host variable called
myhint:
EXEC SQL SELECT GETHINT(creditcard) INTO :myhint

FROM customer WHERE id = :myid;

An error is returned, rather than a hint string, if the encrypted_data argument to the
GETHINT function is not an encrypted string or an encrypted large object.

For additional information about using data encryption in column values of
Informix databases, see “Encryption and decryption functions” on page 4-116, and
“SET ENCRYPTION PASSWORD statement” on page 2-760.

Exponential and Logarithmic Functions
Exponential and logarithmic functions take at least one argument and return a
FLOAT data type.

The exponential and logarithmic functions have the following syntax.

4-124 IBM Informix Guide to SQL: Syntax

Exponential and Logarithmic Functions:

EXP (float_expression)
LN (float_expression)
LOGN (float_expression)
LOG10 (float_expression)

Element Description Restrictions Syntax

float_expression An argument to the EXP, LN, LOGN, or LOG10
functions. For the meaning of float_expression in
these functions, see the individual heading for each
function on the pages that follow.

The domain is the set of
real numbers, and the
range is the set of
positive real numbers

“Expression”
on page 4-44

EXP Function:

The EXP function returns the exponent of a numeric expression.

The following example returns the exponent of 3 for each row of the angles table:
SELECT EXP(3) FROM angles;

For this function, the base is always e, the base of natural logarithms, as the
following example shows:
e=exp(1)=2.718281828459

When you want to use the base of natural logarithms as the base value, use the
EXP function. If you want to specify a particular value to raise to a specific power,
see the “POW Function” on page 4-97.

LN function:

The LN function is an alias for the LOGN function, and returns the natural
logarithm of a numeric argument. This value is the inverse of the exponential
value.

LN Function:

LN (float_expression)

The following query returns the natural logarithm of population for each row in
the history table:
SELECT LN(population) FROM history WHERE country=’US’

ORDER BY date;

LOG10 Function:
The LOG10 function returns the log of a value to base 10. The following example
returns the log base 10 of distance for each row of the travel table:
SELECT LOG10(distance) + 1 digits FROM travel;

LOGN Function:

The LOGN function returns the natural logarithm of a numeric argument.

Chapter 4. Data types and expressions 4-125

This return value is the inverse of the exponential value that the EXP function
returns from the same argument.

The following query returns the natural log of population for each row of the
history table:
SELECT LOGN(population) FROM history WHERE country=’US’

ORDER BY date;

NVL2 Function
Returns the second argument when the first argument is not NULL. If the first
argument is NULL, the third argument is returned.

NVL2 Function:

NVL2 (expression , result-expression , else-expression)

The NVL2 function is a synonym for the following code:
CASE WHEN expression IS NOT NULL

THEN result-expression
ELSE else-expression

HEX Function
The HEX function returns the hexadecimal encoding of an integer expression.

HEX Function:

HEX (int_expression)

Element Description Restrictions Syntax

int_expression Expression for which you want the
hexadecimal equivalent

Must be a literal integer or some other
expression that returns an integer

“Expression”
on page 4-44

The next example displays the data type and column length of the columns of the
orders table in hexadecimal format. For MONEY and DECIMAL columns, you can
then determine the precision and scale from the lowest and next-to-the-lowest
bytes. For VARCHAR and NVARCHAR columns, you can determine the minimum
space and maximum space from the lowest and next-to-the-lowest bytes. For more
information about encoded information, see the IBM Informix Guide to SQL:
Reference.
SELECT colname, coltype, HEX(collength)

FROM syscolumns C, systables T
WHERE C.tabid = T.tabid AND T.tabname = ’orders’;

The following example lists the names of all the tables in the current database and
their corresponding tblspace number in hexadecimal format.
SELECT tabname, HEX(partnum) FROM systables;

The two most significant bytes in the hexadecimal number constitute the dbspace
number. They identify the table in oncheck output in Informix.

The HEX function can operate on an expression, as the next example shows:
SELECT HEX(order_num + 1) FROM orders;

4-126 IBM Informix Guide to SQL: Syntax

Length functions
Use length functions to determine the length of a character column, string, or
variable, or of the value returned by a character expression, or (for
CHAR_LENGTH in multibyte locales) the number of logical characters.

Length Functions:

(1)
LENGTH
LEN
CHAR_LENGTH
CHARACTER_LENGTH

OCTET_LENGTH

(2)
(Quoted String)

(3) (4)
variable_name

column
table.

Notes:

1 Informix extension

2 See “Quoted String” on page 4-219

3 ESQL/C

4 SPL Language

Element Description Restrictions Syntax

column Name of a column in table Must have a character data type “Identifier” on page 5-21

table Name of the table in which the
specified column occurs

Must exist “Identifier” on page 5-21

variable Host variable or SPL variable that
contains a character string

Must have a character data type See language-specific rules
for names.

Each of these functions has a distinct purpose:
v LENGTH (also known as LEN)
v OCTET_LENGTH

v CHAR_LENGTH (also known as CHARACTER_LENGTH)

LENGTH Function:

The LENGTH function (also called LEN) returns the number of bytes in a
character column, but excluding any trailing blank spaces.

For BYTE or TEXT columns, LENGTH returns the full number of bytes, including
any trailing blank spaces.

In Informix ESQL/C, LENGTH can also return the length of a character variable.

The following example illustrates the use of the LENGTH function:
SELECT customer_num, LENGTH(fname) + LENGTH(lname),

LENGTH(’How many bytes is this?’)
FROM customer WHERE LENGTH(company) > 10;

The next example calls the function by its other name, LEN;
EXECUTE FUNCTION LEN("www.ibm.com");

The SQL statement above returns the integer value 11.

Chapter 4. Data types and expressions 4-127

See also the discussion of LENGTH in the IBM Informix GLS User's Guide.

OCTET_LENGTH Function:
The OCTET_LENGTH returns the number of bytes in a character column,
including any trailing blank spaces. See also the IBM Informix GLS User's Guide.

CHAR_LENGTH Function:

The CHAR_LENGTH function returns the number of logical characters in its
argument, which can be a character column, a character variable, or a quoted
string. This built-in function can also be invoked as CHARACTER_LENGTH.

In the default U.S. English locale and other single-byte locales, CHAR_LENGTH
behaves exactly like the LENGTH function, and returns the number of bytes in its
argument.

For multibyte code sets, however, which various Unicode, East Asian, and other
nondefault locales support, the return value can be less than the number of bytes
in the argument. For a discussion of this function, see the IBM Informix GLS User's
Guide.

Security Label Support Functions
The security label support functions enable users to manipulate security labels. A
security label can be referenced in three different ways:
v A name, as declared in the CREATE SECURITY LABEL or RENAME SECURITY

LABEL statement.
v A list of values for each component of the security policy of the security label.
v An internal encoded value that the IDSSECURITYLABEL data type stores.

These functions can convert between the various forms of a security label. They are
typically used to specify a label in DML operations on data rows that are secured
by label-based access control (LBAC). In these operations, however, the security
label support functions do not provide any more access to protected data than is
already provided by the security credentials of the user who invokes the function.

Security Label Support Function:

�

�

SECLABEL_TO_CHAR (' policy ' , column)
:

SECLABEL_BY_COMP (' policy ' , ' component ')
,

(element)
SECLABEL_BY_NAME (' policy ' , ' label ')

Element Description Restrictions Syntax

column A column of type
IDSSECURITYLABEL

Must exist and must store a label of the
policy

“Identifier” on
page 5-21

component Value of a component of the policy Must exist and must be a component of
the policy

“Quoted String”
on page 4-219

element Value of an element within a list of
values of the component

Must exist and must be elements of a
single component of the policy

“Quoted String”
on page 4-219

label Identifier of the security label whose
value the function returns

Must exist and must be a label of the
policy

“Quoted String”
on page 4-219

4-128 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

policy The security policy supported by the
security label whose value the
function returns

Must exist and must be the security policy
that secures the table

“Quoted String”
on page 4-219

These functions return a security label of the specified security policy. They can be
used within DML statements that reference a protected database table, but they can
also evaluate to a security label in other calling contexts. Each of these functions
requires a different argument list:
v SECLABEL_TO_CHAR requires the security policy name and an expression that

returns a IDSSECURITYLABEL object, such as the name of a column of that data
type.

v SECLABEL_BY_COMP requires the security policy name and the values of the
individual components of the security label.

v SECLABEL_BY_NAME requires the names of the security policy and of the
security label.

SECLABEL_BY_NAME Function:
The SECLABEL_BY_NAME function enables users to provide a security label
directly by specifying its name.

The following INSERT statement inserts a row into table T1, which is protected by
the security policy called ‘MegaCorp’. The VALUES clause of the INSERT
statement provides the security label ‘mylabel’ for the row to be inserted by using
the SECLABEL_BY_NAME function.
INSERT INTO T1 VALUES (SECLABEL_BY_NAME (’MegaCorp’, ’mylabel’), 1, ’xyz’);

The success of this SECLABEL_BY_NAME function call does not guarantee
success of the INSERT operation in this example, because whether or not the user
has sufficient security credentials to insert the label mylabel into the row is subject
to the IDSLBACWRITE rules of the MegaCorp security policy.

SECLABEL_BY_COMP Function:
The SECLABEL_BY_COMP function returns an IDSSECURITYLABEL object,
which is a security label in its internal encoded string format. This function enables
users to provide a security label directly by specifying its component values.

If a security label component requires multiple values, then such multiple values
can be specified by putting those values between parenthesis as in (value_1,
value_2, ...). When a component in a particular security label needs to be empty,
it can be specified by putting nothing between an opening and a closing
parenthesis, as in (). Because the blank space (ASCII 32) is a valid character in an
element value for a security component, any blank space appearing in the security
label string is treated as part of the element value for that component.

The security label string is limited to a maximum of 32 kilobytes. An error is
returned if the string length exceeds this limit.

The following INSERT statement inserts a row into table T1 which is protected by
the security policy called ‘MegaCorp’ that has three components: 'level',
'compartments', and 'groups'. Here the user provides a security label for the row to
be inserted by specifying the SECLABEL_BY_COMP function. The security label
in this example has the value 'VP' for the level component, the value 'Marketing'
for the compartments component, and the value 'West' for the groups component.

Chapter 4. Data types and expressions 4-129

In the arguments to SECLABEL_BY_COMP. colon symbols separate these security
component element values, and quotation marks delimit the list of component
values of the security label.
INSERT INTO T1

VALUES (SECLABEL_BY_COMP (’MegaCorp’, ’VP:Marketing:West’), 1, ’xyz’;

In the next example, the INSERT statement inserts a row in table T1 which is
protected by the same MegaCorp security policy, which has the same three
components as in the previous example: level, compartments, and groups. The
user provides the security label for the row to be inserted by specifying the policy
name and a list of security component elements as arguments to the
SECLABEL_BY_COMP function. Here the security label has the value 'Director'
for the level component, the values 'HR' and 'Finance' for the compartments
component, and the value 'East' for the groups component.
INSERT INTO T1

VALUES (SECLABEL_BY_COMP (’MegaCorp’, ’Director:(HR,Finance):East’), 1, ’xyz’);

The following example inserts a row into table T1 which is protected by the
MegaCorp security policy, whose three components are level, compartments, and
groups. The SECLABEL_BY_COMP function specifies the security label for the
row to be inserted. The security label in this example has the value 'CEO' for level
component, the empty set for the compartments component, and the value
'EntireRegion' for the groups component.
INSERT INTO T1

VALUES (SECLABEL_BY_COMP (’MegaCorp’, ’CEO:():EntireRegion’), 3, ’abc’);

As in all of these examples, the success of the SECLABEL_BY_COMP function call
does not guarantee the success of the INSERT statement, because the security
credentials of the user are first compared to the security label that protects table
T1, using the IDSLBACRWRITE rules of the MegaCorp security policy, before the
database server allows or denies write access for inserting the new row.

SECLABEL_TO_CHAR Function:
The SECLABEL_TO_CHAR function returns a security label in the security label
string format.

The security credentials of the user executing this function can affect the output of
the function. An element of a security label component is not included in the
output if the user does not have read access to that element. A user has read access
to an element if the security credentials of the user provide read access to data that
is protected by a security label containing only that element and no other elements.

For the rule set IDSLBACRULES, only components of type TREE can contain
elements to which a user does not have read access to a subset of elements. For
other types of component, if any element blocks read access, then the user cannot
read the row at all. Thus, only security components of type TREE can have a
subset of security component elements excluded in this way.

For example, if the TREE type component of the security label of a user is {A} and
the TREE type component of a row security label is {A, B}, then only component A
is returned, and the user is not aware that B existed in the row security label. If the
user holds an exemption on the IDSLBACREADTREE rule, however, the returned
security components are both A and B.

In the next example, the MegaCorp security policy has a security label called
mylabel that consists of a level component whose value is 'Director', and a

4-130 IBM Informix Guide to SQL: Syntax

compartments component with the values 'HR' and 'Finance.' A user to whom
‘mylabel’ was granted has inserted a row with that security label into table T1. In
this context, the security label string returned by the SECLABEL_TO_CHAR
function in the following SELECT statement on T1 is as follows.
SELECT SECLABEL_TO_CHAR (’MegaCorp', C1) FROM T1;

Row returned:

’Director:(HR,Finance)’

The success of this query implies that the SECLABEL_TO_CHAR function
succeeded, and that the security credentials of the user were sufficient, according
to the IDSLBACREAD rules of the MegaCorp security policy, for the database
server to allow read access to the values of the security policy name and of the
security label components."

The security label string is limited to a maximum size of 32 kilobytes. If the length
of the security label string to be returned exceeds this upper limit, a warning is
issued, and a truncated 32 kilobyte string is returned.

SIGN function
The SIGN function returns an indicator of the sign of the argument.

SIGN Function:

SIGN (expression)

If the argument is less than zero, -1 is returned. If the argument equals zero, 0 is
returned. If the argument is greater than zero, 1 is returned. The result returned is
always an integer with one of these values.

Smart-Large-Object Functions
The smart-large-object functions support objects of BLOB and CLOB data types:

The smart-large-object functions have the following syntax:

Smart-Large-Object Functions:

FILETOBLOB ('pathname' , 'file_destination')
FILETOCLOB , 'table' , 'column'

LOTOFILE (BLOB_column , 'pathname' , 'file_destination')
CLOB_column

LOCOPY (BLOB_column)
CLOB_column , 'table' , 'column'

Element Description Restrictions Syntax

BLOB_column,
CLOB_column

A column of type BLOB; a column of
type CLOB

The column data type must be BLOB
or CLOB

“Identifier” on
page 5-21

column Column within table for the copy of
the BLOB or CLOB value

Must have CLOB or BLOB as its data
type

“Quoted String”
on page 4-219

file_destination The system on which to put or get
the smart large object

The only valid values are the strings
’server’ or ’client’

“Quoted String”
on page 4-219

Chapter 4. Data types and expressions 4-131

Element Description Restrictions Syntax

pathname Directory path and filename to locate
the smart large object

No more than 256 bytes. Must exist
on file_destination system. See also
“Pathnames with Commas” on page
4-133.

“Quoted String”
on page 4-219

table Table containing column for the copy
of the BLOB or CLOB value

A comma (not a period) separates the
'table' and 'column' arguments

“Quoted String”
on page 4-219

FILETOBLOB and FILETOCLOB Functions:

The FILETOBLOB function creates a BLOB value for data that is stored in a
specified operating-system file. Similarly, the FILETOCLOB function creates a
CLOB value for a data value that is stored in an operating-system file.

These functions determine the operating-system file to use from the following
parameters:
v The pathname parameter identifies the directory path and name of the source file.
v The file destination parameter identifies the computer, ’client’ or ’server’, on

which this file resides:
– Set file destination to ’client’ to identify the client computer as the location of

the source file. The pathname can be either a full pathname or relative to the
current directory.

– Set file destination to ’server’ to identify the server computer as the location
of the source file. The pathname must be a full pathname.

The table and column parameters are optional:
v If you omit table and column, the FILETOBLOB function creates a BLOB value

with the system-specified storage defaults, and the FILETOCLOB function
creates a CLOB value with the system-specified storage defaults.
These functions obtain the system-specific storage characteristics from either the
ONCONFIG file or the sbspace. For more information on system-specified
storage defaults, see the IBM Informix Administrator's Guide.

v If you specify table and column, the FILETOBLOB and FILETOCLOB functions
use the storage characteristics from the specified column for the BLOB or CLOB
value that they create.

The FILETOBLOB function returns a handle value (a pointer) to the new BLOB
value. Similarly, FILETOCLOB returns a handle value to the new CLOB value.
Neither function actually copies the smart-large-object value into a database
column. You must assign the BLOB or CLOB value to the appropriate column.

The FILETOCLOB function performs any code-set conversion that might be
required when it copies the file from the client or server computer to the database.

The following INSERT statement uses the FILETOCLOB function to create a CLOB
value from the value in the smith.rsm file:
INSERT INTO candidate (cand_num, cand_lname, resume)

VALUES (2, ’Smith’, FILETOCLOB(’smith.rsm’, ’client’));

In the preceding example, the FILETOCLOB function reads the smith.rsm file in
the current directory on the client computer and returns a handle value to a CLOB
value that contains the data in this file. Because the FILETOCLOB function does
not specify a table and column name, this new CLOB value has the

4-132 IBM Informix Guide to SQL: Syntax

system-specified storage characteristics. The INSERT statement then assigns this
CLOB value to the resume column in the candidate table.

The following INSERT statement uses the FILETOBLOB function to create a BLOB
value from the value in the photos.xxx file on the local database server, and insert
that value into the election2008 table of the rdb database, which is another
database of the local database server:
INSERT INTO rdb@:election2008 (cand_pic)

VALUES (FILETOBLOB(’C:\tmp\photos.xxx’, ’server’,
’candidate’, ’cand_photo’));

In the preceding example, the FILETOBLOB function reads the photos.xxx file in
the specified directory on the local database server and returns a handle value to a
BLOB value that contains the data in this file. The INSERT statement then assigns
this BLOB value to the cand_pic column in the election2008 table in the rdb
database of the local database server. This new BLOB value has the storage
characteristics of the cand_photo column in the candidate table in the local
database.

In the following example, the new BLOB value has the storage characteristics of
the cand_pix column in the election96 table in the rdb2 database, where rdb1 and
rdb2 are databases of the local Informix instance:
INSERT INTO rdb1:election2008 (cand_pic)

VALUES (FILETOBLOB(’C:\tmp\photos.xxx’, ’server’,
’rdb2:election96’, ’cand_pix’));

When you qualify the FILETOBLOB or FILETOCLOB function with the name of a
remote database and a remote database server, the pathname and the file destination
become relative to the remote database server.

When you specify server as the file destination, as the following example shows,
the FILETOBLOB function looks for the source file (in this case, photos.xxx) on the
remote database server:
INSERT INTO rdb@rserv:election (cand_pic)

VALUES (rdb@rserv:FILETOBLOB(’C:\tmp\photos.xxx’, ’server’));

When you specify client as the file destination, however, as in the following
example, the FILETOBLOB function looks for the source file (in this case,
photos.xxx) on the local client computer:
INSERT INTO rdb@rserv:election (cand_pic)

VALUES (rdb@rserv:FILETOBLOB(’photos.xxx’, ’client’));

Pathnames with Commas: If a comma (,) symbol is within the pathname of the
function, the database server expects the pathname to have the following format:
"offset, length, pathname"

For pathnames that contain a comma, you must also specify an offset and length,
as in the following example:
FILETOBLOB("0,-1,/tmp/blob,x","server");

The first term in the quoted pathname string is an offset of 0, which instructs the
database server to begin reading at the start of the file.

The second term is a length of -1, which instructs the database server to continue
reading until the end of the entire file.

Chapter 4. Data types and expressions 4-133

The third term is the /tmp/blob,x pathname, specifying which file to read. (Notice the
comma symbol that precedes the x.)

Because the pathname includes a comma, the comma-separated offset and length
specifications are necessary in this example to avoid an error when FILETOBLOB
is called. You do not need to specify offset and length for pathnames that include no
comma, but including 0,-1, as the initial characters of the pathname string avoids
this error for any valid pathname.

LOTOFILE Function:

The LOTOFILE function copies a smart large object to an operating-system file.

The first parameter specifies the BLOB or CLOB column to copy. The function
determines what file to create from the following parameters:
v The pathname identifies the directory path and the source file name.
v The file destination identifies the computer, ’client’ or ’server’, on which this

file resides:
– Set file destination to ’client’ to identify the client computer as the location of

the source file. The pathname can be either a full pathname or a path relative
to the current directory.

– Set file destination to ’server’ to identify the server computer as the location
of the source file. The full pathname is required.

By default, the LOTOFILE function generates a filename of the form:
file.hex_id

In this format, file is the filename you specify in pathname and hex_id is the unique
hexadecimal smart-large-object identifier. The maximum number of digits for a
smart-large-object identifier is 17. Most smart large objects, however, would have
an identifier with fewer digits.

For example, suppose that you specify a UNIX pathname value as follows:
’/tmp/resume’

If the CLOB column has the identifier 203b2, then LOTOFILE creates the file:
/tmp/resume.203b2

For another example, suppose that you specify a Windows pathname value as
follows:
’C:\tmp\resume’

If the CLOB column has an identifier of 203b2, the LOTOFILE function would
create the file:
C:\tmp\resume.203b2

To change the default filename, you can specify the following wildcards in the
filename of the pathname:
v One or more contiguous question mark (?) characters in the filename can

generate a unique filename.
The LOTOFILE function replaces each question mark with a hexadecimal digit
from the identifier of the BLOB or CLOB column.
For example, suppose that you specify a UNIX pathname value as follows:

4-134 IBM Informix Guide to SQL: Syntax

’/tmp/resume??.txt’

The LOTOFILE function puts 2 digits of the hexadecimal identifier into the
name. If the CLOB column has an identifier of 203b2, the LOTOFILE function
would create the file:
/tmp/resume20.txt

If you specify more than 17 question marks, LOTOFILE ignores them.
v An exclamation (!) point at the end of the filename indicates that the filename

does not need to be unique.
For example, suppose that you specify a Windows pathname value as follows:
’C:\tmp\resume.txt!’

The LOTOFILE function does not use the smart-large-object identifier in the
filename, so it generates the following file:
C:\tmp\resume.txt

If the filename that you specify already exists, LOTOFILE returns an error.

The LOTOFILE function performs any code-set conversion that might be required
when it copies a CLOB value from the database to a file on the client or server
computer.

When you qualify LOTOFILE with the name of a remote database and a remote
database server, the BLOB or CLOB column, the pathname, and the file destination
become relative to the remote database server.

When you specify server as the file destination, as in the next example, the
LOTOFILE function copies the smart large object from the remote database server
to a source file in the specified directory on the remote database server:
rdb@rserv:LOTOFILE(blob_col, ’C:\tmp\photo.gif!’, ’server’)

If you specify client as the file destination, as in the following example, the
LOTOFILE function copies the smart large object from the remote database server
to a source file in the specified directory on the local client computer:
rdb@rserv:LOTOFILE(clob_col, ’C:\tmp\essay.txt!’, ’client’)

LOCOPY Function:

The LOCOPY function creates a copy of a smart large object.

The first parameter specifies the BLOB or CLOB column to copy. The table and
column parameters are optional.
v If you omit table and column arguments, the LOCOPY function creates a smart

large object with system-specified storage defaults, and copies the data in the
BLOB or CLOB column into it.
The LOCOPY function obtains the system-specific storage defaults from either
the ONCONFIG file or the sbspace. For more information on system-specified
storage defaults, see the IBM Informix Administrator's Guide.

v When you specify table and column, the LOCOPY function uses the storage
characteristics from the specified column for the BLOB or CLOB value that it
creates.

Chapter 4. Data types and expressions 4-135

The LOCOPY function returns a handle value (a pointer) to the new BLOB or
CLOB value. This function does not actually store the new smart-large-object value
into a column in the database. You must assign the BLOB or CLOB value to the
appropriate column.

The following Informix ESQL/C code fragment copies the CLOB value in the
resume column of the candidate table to the resume column of the interview
table:
/* Insert a new row in the interviews table and get the
* resulting SERIAL value (from sqlca.sqlerrd[1])
*/
EXEC SQL insert into interviews (intrv_num, intrv_time)

values (0, ’09:30’);
intrv_num = sqlca.sqlerrd[1];

/* Update this interviews row with the candidate number
* and resume from the candidate table. Use LOCOPY to
* create a copy of the CLOB value in the resume column
* of the candidate table.
*/
EXEC SQL update interviews

SET (cand_num, resume) =
(SELECT cand_num,

LOCOPY(resume, ’candidate’, ’resume’)
FROM candidate
WHERE cand_lname = ’Haven’)

WHERE intrv_num = :intrv_num;

In the preceding example, the LOCOPY function returns a handle value for the
copy of the CLOB resume column in the candidate table. Because the LOCOPY
function specifies a table and column name, this new CLOB value has the storage
characteristics of this resume column. If you omit the table (candidate) and column
(resume) names, the LOCOPY function uses the system-defined storage defaults
for the new CLOB value. The UPDATE statement then assigns this new CLOB
value to the resume column in the interviews table.

In the following example, the LOCOPY function executes on the local database
and returns a handle value on the local server for the copy of the BLOB cand_pic
column in the election2008 table in rdb, which is another database of the local
database server. The INSERT statement then assigns this new BLOB value to the
cand_photo column in the local candidate table.
INSERT INTO candidate (cand_photo)

SELECT LOCOPY(cand_pic) FROM rdb:election2008;

When the LOCOPY function executes on the same database server as the original
BLOB or CLOB column in a distributed query, it produces two copies of the BLOB
or CLOB value, one in the remote database and the other in the local database, as
the following two examples show.

In the first example, the LOCOPY function executes on the remote rdb database
and returns a handle value in the remote database for the copy of the BLOB
cand_pic column in the remote election2008 table. The INSERT statement then
assigns this new BLOB value to the cand_photo column in the local candidate
table:
INSERT INTO candidate (cand_photo)

SELECT rdb:LOCOPY(cand_pic)
FROM rdb:election2008;

4-136 IBM Informix Guide to SQL: Syntax

In the second example, the LOCOPY function executes on the local database and
returns a handle value on the local database for the copy of the BLOB cand_photo
column in the local candidate table. The INSERT statement then assigns this new
BLOB value to the cand_pic column in the election2008 table in the remote rdb
database:
INSERT INTO rdb:election2008 (cand_pic)

SELECT LOCOPY(cand_photo) FROM candidate;

The BLOB and CLOB arguments of the built-in LOCOPY function are built-in
opaque data types. These can be values returned by cross-database DML
operations or by cross-database function calls, but built-in opaque types do not
support distributed operations across database server instances. If the local
database and the rdb database are databases of different Informix instances, the
INSERT statements in the previous two examples fail with error -999.

Time Functions
The time functions of Informix accept DATE or DATETIME arguments, or
character representation of a DATE or DATETIME value. They typically return
DATE or DATETIME values, or convert information that they extract from DATE
or DATETIME values into character strings.

See also the descriptions of the ROUND and TRUNC functions, which can change
the precision of DATE or DATETIME values, in the section “Algebraic Functions”
on page 4-93.

Time Functions:

DATE (non_date_expr)
DAY (date/dtime_expr)
MONTH
WEEKDAY
YEAR
LAST_DAY

EXTEND (date/dtime_expr)
, first TO last

MDY (month , day , year)
ADD_MONTHS (date/dtime_expr , integer)
MONTHS_BETWEEN (date/dtime_expr , date/dtime_expr)
NEXT_DAY (date/dtime_expr , weekday)

TO_CHAR (date/dtime_expr)
num_expr , format_string

TO_DATE (char_expression

Element Description Restrictions Syntax

char _expression Expression to be converted to a
DATE or DATETIME value

Must be a literal, host variable, expression, or
column of a character data type

“Expression” on
page 4-44

date/dtime _expr Expression that returns a DATE
or DATETIME value

Can be host variable, expression, column, or
constant.

“Expression” on
page 4-44

day Expression that returns the
number of a day of the month

Must return integer > 0 but no greater than
the number of days in the specified month

“Expression” on
page 4-44

first Largest time unit in the result. If
you omit first and last, the
default first is YEAR.

Must be a DATETIME qualifier keyword that
specifies a time unit no smaller than last

“DATETIME
Field Qualifier”
on page 4-42

Chapter 4. Data types and expressions 4-137

Element Description Restrictions Syntax

format_string String that contains a format
mask for the first argument

Must be a character data type that specifies a
valid format. Can be a column, host variable,
expression, or constant

“Quoted String”
on page 4-219

integer Expression that specifies a whole
number of months

Must evaluate to positive or negative integer “Expression” on
page 4-44

last Smallest time unit in the result Must be a DATETIME qualifier keyword that
specifies a time unit no smaller than first

“DATETIME
Field Qualifier”
on page 4-42

month Expression that represents the
number of the month

Must evaluate to an integer in the range from
1 to 12, inclusive

“Expression” on
page 4-44

non _date_expr Expression that represents a
value to be converted to a DATE
data type

Typically an expression that returns a CHAR,
DATETIME, or INTEGER value that can be
converted to a DATE data type

“Expression” on
page 4-44

num_expr Expression that evaluates to a
real number

Must return a numeric data type “Expression” on
page 4-44

weekday Abbreviated name of a day of
the week

A character data type containing a valid
abbreviation for a day of the week

“Quoted String”
on page 4-219

year Number expression that
represents a year

Must evaluate to a 4-digit integer. You cannot
use a 2-digit abbreviation.

“Expression” on
page 4-44

ADD_MONTHS Function:

The ADD_MONTHS function takes a DATETIME or DATE expression as its first
argument, and requires a second integer argument, specifying the number of
months to add to the first argument value. The second argument can be positive or
negative.

The value returned is the sum of the DATE or DATETIME value of the first
argument, as an INTERVAL UNITS MONTH value, based on the number of
months that the second argument specifies.

The returned data type depends on the data type of the first argument:
v If the first argument evaluates to a DATE value, ADD_MONTHS returns a

DATE value.
v If the first argument evaluates to a DATETIME value, ADD_MONTHS returns a

DATETIME YEAR TO FRACTION(5) value, with the same values for time units
smaller than day as in the first argument.

If the day and month time units in the first argument specify the last day of the
month, or if the resulting month has fewer days than the day in the first argument,
then the returned value is the last day of the resulting month. Otherwise, the
returned value has the same day of the month as the first argument.

The returned value can be in a different year, if the resulting month is later than
December (or for negative second arguments, earlier than January) of the year in
the first argument.

The following query calls the ADD_MONTHS function twice in the Projection
clause, using column expressions as arguments. Here the column names indicate
the column data types, and the DBDATE setting is MDY4/:

4-138 IBM Informix Guide to SQL: Syntax

SELECT a_serial, b_date, ADD_MONTHS(b_date, a_serial),
c_datetime, ADD_MONTHS(c_datetime, a_serial)

FROM mytab WHERE a_serial = 7;

In this example ADD_MONTHS returns DATE and DATETIME values:
a_serial 7
b_date 07/06/2007
(expression) 02/06/2008
c_datetime 2007-10-06 16:47:49.00000
(expression) 2008-05-06 16:47:49.00000

If you use a host variable to store the argument to ADD_MONTHS, but the data
type of the argument is not known at prepare time, Informix assumes that the data
type is DATETIME YEAR TO FRACTION(5). If at runtime, after the statement has
been prepared, the user supplies a DATE value for the host variable, the database
server issues error -9750. To prevent this error, specify the data type of the host
variable by using a cast, as in this program fragment:
sprintf(query, “,

“select add_months(?::date, 6) from mytab”);
EXEC SQL prepare selectq from :query;
EXEC SQL declare select_cursor cursor for selectq;
EXEC SQL open select_cursor using :hostvar_date_input;

EXEC SQL fetch select_cursor into :var_date_output;

DATE Function:

The DATE function converts its argument to a DATE value.

Its non-DATE argument can be any expression that can be converted to a DATE
value, usually a CHAR, DATETIME, or INTEGER value. The following WHERE
clause specifies a quoted string as its CHAR argument:
WHERE order_date < DATE(’12/31/07’)

When the DATE function interprets a CHAR non-DATE expression, it expects this
expression to conform to any DATE format that the DBDATE environment
variable specifies. For example, suppose DBDATE is set to Y2MD/ when you
execute the following query:
SELECT DISTINCT DATE(’02/01/2008’) FROM ship_info;

This SELECT statement generates an error, because the DATE function cannot
convert this string expression. The DATE function interprets the first part of the
date string (02) as the year and the second part (01) as the month.

For the third part (2008), the DATE function encounters four digits when it expects
a two-digit day (valid day values must be between 01 and 31). It therefore cannot
convert the value. For the SELECT statement to execute successfully with the Y2MD/
value for DBDATE, the argument would need to be '08/02/01'. For information on
the format of DBDATE, see the IBM Informix Guide to SQL: Reference.

For information on the order of precedence among Informix environment variables
that can specify the display and data entry format of DATE values, see the topic
“Precedence of DATE and DATETIME format specifications” on page 4-212.

When you specify a positive INTEGER value for the non-DATE expression, the
DATE function interprets this as the number of days after December 31, 1899.

Chapter 4. Data types and expressions 4-139

If the integer value is negative, the DATE function interprets the value as the
number of days before December 31, 1899. The following WHERE clause specifies
an INTEGER value for the non-DATE expression:
WHERE order_date < DATE(365)

The database server searches for rows with an order_date value less than
December 31, 1900 (which is 12/31/1899 plus 365 days).
Related reference:

DBDATE environment variable (SQL Reference)

DAY Function:

The DAY function takes a DATE or DATETIME argument and returns the day of
the month as an integer in the range from 1 to the number of days in the current
month.

The following statement fragment calls the DAY function with the CURRENT
function as its argument to compare order_date column values to the current day
of the month:
WHERE DAY(order_date) > DAY(CURRENT)

MONTH Function:
The MONTH function returns an integer corresponding to the month portion of its
DATE or DATETIME argument. The following example returns a number that can
range from 1 through 12 to indicate the month when the order was placed:
SELECT order_num, MONTH(order_date) FROM orders;

WEEKDAY Function:

The WEEKDAY function accepts a DATE or DATETIME argument, and returns an
integer in the range from 0 to 6 that represents the day of the week.

As the return value, zero (0) represents Sunday, one (1) represents Monday, and so
on.

The following query returns all the orders that were paid on the same day of the
week as the current date:
SELECT * FROM orders

WHERE WEEKDAY(paid_date) = WEEKDAY(CURRENT);

YEAR Function:

The YEAR function takes a DATE or DATETIME argument and returns a four-digit
integer that represents the year.

The following example lists orders in which the ship_date is earlier than the
beginning of the current year:
SELECT order_num, customer_num FROM orders

WHERE year(ship_date) < YEAR(TODAY);

Similarly, because a DATE value is a simple calendar date, you cannot add or
subtract a DATE value with an INTERVAL value whose last qualifier is smaller
than DAY. In this case, convert the DATE value to a DATETIME value.

MONTHS_BETWEEN Function:

4-140 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_212.htm#ids_sqr_212

The MONTHS_BETWEEN function requires two arguments, each of which can be
a DATE or DATETIME expression.

The value returned is a DECIMAL data type, representing the difference between
the two arguments, expressed as a DECIMAL value in units based on 31-day
months. If the first argument is a point in time later than the second argument, the
sign of the returned value is positive. If the first argument is earlier than the
second argument, the sign of the returned value is negative

If the dates of the arguments are both the same days of a month or are both the
last days of a months, the result is a whole number. Otherwise, the fractional
portion of the result is calculated, based on a month of 31 days . This fractional
part can also include the difference in hour, minute, and second time units, unless
both arguments are DATE expressions.

The following query calls the MONTHS_BETWEEN function in the Projection
clause, using two DATE values returned by TO_DATE expressions as arguments.
SELECT MONTHS_BETWEEN(TO_DATE(’2-2-2005’, ’%m-%d-%Y’),

TO_DATE(’1-1-2005’, ’%m-%d-%Y’))
AS months FROM systables WHERE tabid = 1;

The value returned by the query expresses the 32-day difference between the two
DATE arguments as a positive number of 31-day months:

months
1.03225806451613

The next example returns the DATETIME column expression arguments to
MONTHS_BETWEEN expressions, and their differences in months for two rows
of a table:
SELECT d_datetime, e_datetime,

MONTHS_BETWEEN(d_datetime, e_datetime) AS months_between
FROM mytab1;

d_datetime 2007-11-01 09:00:00.00000
e_datetime 2007-12-07 14:30:12.12345
months_between -1.2009453405018

d_datetime 2007-12-13 09:40:30.00000
e_datetime 2007-11-13 08:40:30.00000
months_between 1.00000000000000

Here the first MONTHS_BETWEEN result includes differences in time units
smaller than days. The second result has no fractional part, because the day time
units of the arguments had the same value.

The MONTHS_BETWEEN expressions in the next example compares DATE and
DATETIME values:
SELECT col_datetime, col_date,

MONTHS_BETWEEN(col_datetime, col_date) AS months_between
FROM mytab2;

col_datetime 2008-12-13 08:40:30.00000
col_date 11/13/2007
months_between 13.0000000000000

Chapter 4. Data types and expressions 4-141

Because both arguments specify the same day of the month, the result has no
fractional part.

LAST_DAY Function:

The LAST_DAY function requires a DATE or DATETIME expression as its only
argument. It returns the date of the last day of the month that its argument
specifies.

The data type of this returned value is the same data type as the argument. The
difference between the returned value and the argument is the number of days
remaining in that month.

The following query returns the DATE representation of the current date, the date
of the last day in the current month, and the integer number of days (calculated by
subtracting the first DATE value from second) before the last day in the current
month:
SELECT TODAY AS today, LAST_DAY(TODAY) AS last,

LAST_DAY(TODAY) - TODAY AS days_left
FROM systables WHERE tabid = 1;

If the query were issued on 12 April 2008, with MDY4/ as the DBDATE setting for
the default locale, it would return the following information:
today last days_left

03/12/2008 03/31/2008 19

In the SELECT statement of this example, there is no name conflict in the
Projection clause between the TODAY operator and the identifier today, because
the AS keyword indicates to Informix that today is a display label.

If you use a host variable to store the argument to LAST_DAY, but the data type
of the argument is not known at prepare time, Informix assumes that the data type
is DATETIME YEAR TO FRACTION(5). If at runtime, after the statement has been
prepared, the user supplies a DATE value for the host variable, error -9750 is
issued. To prevent this error, specify the data type of the host variable by using a
cast, as in this program fragment:
sprintf(query, “,

“select last_day(?::date) from mytab”);
EXEC SQL prepare selectq from :query;
EXEC SQL declare select_cursor cursor for selectq;
EXEC SQL open select_cursor using :hostvar_date_input;

EXEC SQL fetch select_cursor into :var_date_output;

NEXT_DAY Function:
The NEXT_DAY function requires a DATE or DATETIME expression as its first
argument, and requires a second weekday argument that is a quoted string
representing the abbreviation of the English name for a day of the week. Successful
execution of this function returns the earliest calendar date that satisfies each of
two conditions:
v The date is later than the date specified by the first argument.
v The date falls on the day of the week specified by the second argument.

NEXT_DAY accepts the following abbreviation strings for days of the week:

4-142 IBM Informix Guide to SQL: Syntax

Table 4-9. Weekday abbreviations valid as arguments to NEXT_DAY function

Day of Week Abbreviation Day of Week Abbreviation

Sunday ’SUN’ Wednesday ’WED’

Monday ’MON’ Thursday ’THU’

Tuesday ’TUE’ Friday ’FRI’

Saturday ’SAT’

Any characters that follow the 3rd character of these abbreviation strings are
ignored. For example, both ’MONDAY’ and ’MONTAG’ are valid specification for the
2nd argument, each specifying the next Monday after the date in the first
argument. Informix issues an error, however, if the second argument is a string
such as ’MODNAY’whose first three characters do not match one of the weekday
abbreviations in Table 4-9.

The following query, for example, includes a valid NEXT_DAY expression:
SELECT ship_date, NEXT_DAY(ship_date, ’SAT’) AS next_saturday,

NEXT_DAY(ship_date, ’SAT’) - ship_date AS num_days FROM orders;

The result set of this query might include the following data from the orders table:
ship_date next_saturday num_days

06/01/2006 06/03/2006 2
02/12/2007 02/17/2007 5
05/31/2007 06/02/2007 2
05/23/2007 05/26/2007 3

The value returned by NEXT_DAY has the same data type as the first argument. If
this argument is a DATE type, NEXT_DAY returns a DATE value. If the first
argument is a DATETIME type, NEXT_DAY returns a DATETIME YEAR TO
FRACTION(5) value.

Because ship_date in the preceding example is a DATE column, the returned dates
are formatted as DATE values, rather than in DATETIME format.

If you use a host variable to store the argument to NEXT_DAY, but the data type
of the argument is not known at prepare time, Informix assumes that the data type
is DATETIME YEAR TO FRACTION(5). If at runtime, after the statement has been
prepared, the user supplies a DATE value for the host variable, error -9750 is
issued. To prevent this error, specify the data type of the host variable by using a
cast, as in this program fragment:
sprintf(query, “,

“select next_day(?::date, ’SUN’) from mytab”);
EXEC SQL prepare selectq from :query;
EXEC SQL declare select_cursor cursor for selectq;
EXEC SQL open select_cursor using :hostvar_date_input;

EXEC SQL fetch select_cursor into :var_date_output;

EXTEND Function:

The EXTEND function adjusts the precision of a DATETIME or DATE value.

The DATETIME or DATE expression that is its first argument cannot be a quoted
string representation of a DATE value.

Chapter 4. Data types and expressions 4-143

If you do not specify first and last qualifiers, the default qualifiers are YEAR TO
FRACTION(3).

If the expression contains fields that are not specified by the time-unit qualifiers,
those fields are discarded.

If the first qualifier specifies a larger (that is, more significant) time unit than what
exists in the expression, the new fields are filled in with values returned by the
CURRENT function. If the last qualifier specifies a smaller time unit (that is, less
significant) than what exists in the expression, the new fields are filled in with
constant values. A missing MONTH or DAY field is filled in with 1, and the
missing HOUR to FRACTION fields are filled in with 0.

In the following expression, the EXTEND call returns the call_dtime column value
with YEAR TO SECOND precision:
EXTEND (call_dtime, YEAR TO SECOND)

You can use the EXTEND function to perform addition or subtraction with a
DATETIME value and an INTERVAL value that do not have the same time unit
qualifiers. The next expression expands a literal DATETIME YEAR TO DAY value
to a precision of YEAR TO MINUTE so that an interval YEAR TO MINUTE value
can be subtracted from it:
EXTEND (DATETIME (2009-8-1) YEAR TO DAY, YEAR TO MINUTE)

- INTERVAL (720) MINUTE (3) TO MINUTE

You can use the EXTEND function to selectively update a subset of the time units
in a DATETIME value. The UPDATE statement in the next example updates only
the hour and minute time unit values in a DATETIME YEAR TO MINUTE column.
UPDATE cust_calls SET call_dtime = call_dtime -

(EXTEND(call_dtime, HOUR TO MINUTE) - DATETIME (11:00)
HOUR TO MINUTE) WHERE customer_num = 106;

Subtracting 11:00 from the DATETIME HOUR TO MINUTE value returned by
EXTEND yields a positive or negative INTERVAL HOUR TO MINUTE value.
Subtracting this difference from the original value in the call_dtime column forces
the updated hour and minute time unit values to 11:00 in the cust_calls.call_dtime
column.

MDY Function:
The MDY function takes as its arguments three integer expressions that represent
the month, day, and year, and returns a type DATE value.
v The first argument represents the number of the month (1 to 12).
v The second argument represents the number of the day of the month (1 to 28,

29, 30, or 31, as appropriate for the month)
v The third expression represents the 4-digit year. You cannot use a 2-digit

abbreviation.

The following example finds the paid_date for the order number 8052 and sets its
value to the first day of the current month:
UPDATE orders SET paid_date = MDY(MONTH(TODAY), 1, YEAR(TODAY))

WHERE po_num = ’8052’;

4-144 IBM Informix Guide to SQL: Syntax

TO_CHAR Function:

The TO_CHAR function converts an expression that evaluates to a DATE,
DATETIME, or numeric value to a character string.

The returned character string represents the data value that the first argument
specifies, using a formatting mask that the second argument defines in a
format_string that can include special formatting symbols and literal characters.
v The first argument to this function must be of a DATE, DATETIME, or built-in

numeric data type, or a character string that can be converted to one of these
data types. If the value of the initial DATE, DATETIME, or numeric argument is
NULL, the function returns a NULL value.

v The second argument to this function is a character string that specifies a
formatting mask. What set of special characters is appropriate for the formatting
mask primarily depends on whether the first argument to the TO_CHAR
function represents a point in time or a number.

Formatting DATE and DATETIME expressions

The format_string argument does not need to imply the same time units as the
value in the first argument to the TO_CHAR function. When the precision implied
in the format_string is different from the DATETIME qualifier in the first argument,
the TO_CHAR function extends the DATETIME value as if it had called the
EXTEND function.

In the following example, the user wants to convert the begin_date column of the
tab1 table to a character string. The begin_date column is defined as a DATETIME
YEAR TO SECOND data type. The user uses a SELECT statement with the
TO_CHAR function to perform this conversion:
SELECT TO_CHAR(begin_date, ’%A %B %d, %Y %R’) FROM tab1;

The symbols in the format_string of this example have the following meanings.

Symbol
Meaning

%A Full weekday name, as defined in the locale

%B Full month name, as defined in the locale

%d Day of the month as an integer (01 through 31). A single-digit value is
preceded by a zero (0).

%Y Year as a 4-digit decimal number

%R Time in 24-hour notation (equivalent to %H:%M format, as defined below).

Note that the comma (,) that immediately follows the %d format specification in
the example above is a literal character, rather than a separator of arguments to the
TO_CHAR function. The second argument is the quoted string ’%A %B %d, %Y %R’
that defines the formatting mask for representing the first argument in the value
that TO_CHAR returns.

Applying this format_string to the begin_date column value returns this result:
Wednesday July 25, 2013 18:45

The query in the next example calls TO_CHAR to apply the same format string to
an ADD_MONTHS expression, and shows the results of the query:

Chapter 4. Data types and expressions 4-145

SELECT ship_date, TO_CHAR(ADD_MONTHS(ship_date, 1), ’%A %B %d, %Y’)
AS survey_date FROM orders;

ship_date 03/12/2013
survey_date Thursday April 12, 2013

In the query output above,
v the ship_date value is formatted according to the DB_DATE environment

variable setting,
v and the survey_date value is formatted according to the ’%A %B %d, %Y %R’

formatting string argument to the TO_CHAR function.

Additional symbols that are valid in the format_string argument to the TO_CHAR
function for DATE or DATETIME values include the following.

Symbol
Meaning

%a Abbreviated weekday name, as defined in the locale

%b Abbreviated month name, as defined in the locale

%C The century number (the year divided by 100 and truncated to an integer)
as an integer (00 through 99)

%D The same as the %m/%d/%y format

%e Day of the month as a number (1 through 31). A single-digit value is
preceded by a blank space.

%Fn The value of the fraction of a second, with precision specified by the
unsigned integer n. The default value of n is 2; the range of n is 0 ≤ n ≤ 5.
This value overrides any width or precision that is specified between the %
and F characters.

%h Same as the %b format: abbreviated month name, as defined in the locale

%H Hour as a 2-digit integer (00 through 23) (24-hour clock)

%I Hour as a 2-digit integer (00 through 11) (12-hour clock)

%m Month as an integer (01 through 12). Any single-digit value is preceded by
a zero (0).

%M Minute as a 2-digit integer (00 through 59)

%S Second as a 2-digit integer (00 through 61). The second value can be up to
61 (instead of 59) to allow for the occasional leap second and double leap
second.

%T Time in the %H:%M:%S format

%w Weekday as a number (0 through 6); 0 represents the locale equivalent of
Sunday.

%y Year as a 2-digit decimal number.

For example, suppose that on August 23, 2013, the DB-Access facility issued the
following query:
SELECT TO_CHAR(CURRENT YEAR TO FRACTION(5), "%Y-%m-%d %H:%M:%S.%F")
FROM sysmaster:sysdual;

4-146 IBM Informix Guide to SQL: Syntax

In this example, the format string argument specifies a user format with the
following literal characters as separators between the DATETIME field values:
v ASCII 45 (-) hyphen to separate the year, month, and day values
v ASCII 32 () blank to separate the day from the hour
v ASCII 58 (:) colon to separate the hour, minute, and seconds
v ASCII 46 (.) period to separate the second from the fraction of a second.

This is the returned value in the specified DATETIME user format:
(expression) 2013-08-23 13:15:53.00

If you omit the format_string argument when a DATETIME or DATE expression is
the first argument, the TO_CHAR function uses as a default the setting of the
DBTIME or DBDATE environment variables to format the value represented in the first
argument. In nondefault locales, the default format for DATETIME and DATE
values is specified by environment variables such as GL_DATETIME and GL_DATE.

Important: For DATETIME user formats whose precision includes both SECOND
and FRACTION data values, those fields are concatenated unless a separator
character is explicitly defined between the %S and %F formatting directives. In
version 11.70.xC7 and earlier Informix releases, the %F directive inserted the ASCII
46 character (.) by default between the SECOND and FRACTION field values. In
this release, however, the %F directive implies no default separator.

For the order of precedence among the Informix environment variables that can
specify the display and data entry formats for the built-in chronological data types,
see the topic “Precedence of DATE and DATETIME format specifications” on page
4-212.

Formatting numeric and MONEY expressions

The format_string argument to the TO_CHAR function supports the same numeric
formatting masks that are used for ESQL functions like rfmtdec(), rfmtdouble(),
and rfmtlong(). A detailed description of the Informix numeric-formatting masks
for numeric values (when formatting numeric expressions as strings) is in the IBM
Informix ESQL/C Programmer's Manual. Below is a short summary description of the
numeric formatting masks.

A numeric-formatting mask specifies a format to apply to some numeric value
when formatting a numeric expression as a string. This mask is a combination of
the following formatting characters:

Symbol
Meaning

* This character fills with asterisks any positions in the display field that
would otherwise be blank

& This character fills with zeros any positions in the display field that would
otherwise be blank

This character changes leading zeros to blanks. Use this character to
specify the maximum leftward extent of a field.

< This character left-justifies the numbers in the display field. It changes
leading zeros to a NULL string.

, This character indicates the symbol that separates groups of three digits
(counting leftward from the units position) in the whole-number part of

Chapter 4. Data types and expressions 4-147

the value. By default, this symbol is a comma. You can set the symbol with
the DBMONEY environment variable. In a formatted number, this symbol
appears only if the integer part of the value has four or more digits.

. This character indicates the symbol that separates the integer part of a
money value from the fractional part. By default, this symbol is a period.
You can set the symbol with the DBMONEY environment variable. You can
have only one period in a format string.

- This character is a literal. It appears as a minus sign when expr1 is less
than zero. When you group several minus (-) signs in a row, a single
minus sign floats to the rightmost position that it can occupy; it does not
interfere with the number and its currency symbol.

+ This character is a literal. It appears as a plus sign when expr1 is greater
than or equal to zero, and as a minus sign when expr1 is less than zero.
When you group several plus signs in a row, a single plus or minus sign
floats to the rightmost position that it can occupy; it does not interfere with
the number and its currency symbol.

(This character is a literal. It appears as a left parenthesis (() to the left of
a negative number. It is one of the pair of accounting parentheses that
replace a minus sign for a negative number. When you group several in a
row, a single left parenthesis floats to the rightmost position that it can
occupy; it does not interfere with the number and its currency symbol.

) This is one of the pair of accounting parentheses that replace a minus sign
for a negative value.

$ This character displays the currency symbol that precedes the numeric
value. In the default locale, the currency symbol is the dollar sign ($). You
can set a nondefault currency symbol with the DBMONEY environment
variable. When you group several dollar signs in a row, a single currency
symbol floats to the rightmost position that it can occupy; it does not
interfere with the number.

Any other characters in the formatting mask are reproduced literally in the
formatted value that the TO_CHAR function returns.

In the next three examples, the value of the d_int column expression argument to
the TO_CHAR function is -12344455.

This query specifies no formatting mask in a call to TO_CHAR:
SELECT TO_CHAR(d_int) FROM tab_numbers;

The following table shows the output of this SELECT statement.

(expression)

-12344455

The following query specifies a monetary format mask:
SELECT TO_CHAR(d_int, "$*********.**") FROM tab_numbers;

The following table shows the output of this SELECT statement.

(expression)

$12344455.00

4-148 IBM Informix Guide to SQL: Syntax

SELECT TO_CHAR(d_int, "-$*********.**") FROM tab_numbers;

The query returns - $12344455.00.
SELECT TO_CHAR(12344455,"-$*********.**") FROM tab_numbers;

The following table shows the output of this SELECT statement.

(constant)

$12344455.00

The currency ($) symbol from the formatting mask argument is applied, but the
minus (-) symbol has no effect, because the value of the first argument is greater
than zero.

Note that the TO_CHAR function is a time expression only when its first
argument is a DATE or DATETIME expression, or is a character string that can be
formatted as a DATE or DATETIME expression. When a numeric or monetary
value is its first argument, however, TO_CHAR returns a representation of the
value of that argument as a character string, but it does not return a time
expression.

TO_DATE Function:
The TO_DATE function converts a character string to a DATETIME value. The
function evaluates the char_expression parameter as a date according to the date
format you specify in the format_string parameter and returns the equivalent date.
If char_expression is NULL, then a NULL value is returned.

Any argument to the TO_DATE function must be of a built-in data type.

If you omit the format_string parameter, the TO_DATE function applies the default
DATETIME format to the DATETIME value. The default DATETIME format is
specified by the GL_DATETIME environment variable.

In the following example, the user wants to convert a character string to a
DATETIME value in order to update the begin_date column of the tab1 table with
the converted value. The begin_date column is defined as a DATETIME YEAR TO
SECOND data type. The user uses an UPDATE statement that contains a
TO_DATE function to accomplish this result:
UPDATE tab1

SET begin_date = TO_DATE(’Wednesday July 25, 2007 18:45’,
’%A %B %d, %Y %R’);

The format_string parameter in this example tells the TO_DATE function how to
format the converted character string in the begin_date column. For a table that
shows the meaning of each format symbol in this format string, see “TO_CHAR
Function” on page 4-145.

TO_NUMBER Function
The TO_NUMBER function can convert a number or a character expression
representing a number value to a DECIMAL data type.

The TO_NUMBER function has this syntax:

Chapter 4. Data types and expressions 4-149

TO_NUMBER Function:

TO_NUMBER (char_expr)
num_expr

Element Description Restrictions Syntax

char _expression Expression to be converted to a
DECIMAL value

Must be a literal, host variable, expression, or
column of a character data type

“Expression”
on page 4-44

num_expression Expression that evaluates to a
real number

Must return a numeric data type “Expression”
on page 4-44

The TO_NUMBER function converts its argument to a DECIMAL data type. The
argument can be the character string representation of a number or a numeric
expression.

The following example retrieves a DECIMAL value that the TO_NUMBER
function returns from the literal representation of a MONEY value:
SELECT TO_NUMBER(’$100.00’) from mytab;

The following table shows the output of this SELECT statement.

(expression)

100.000000000000

In this example, the currency symbol is discarded from the ’$100.00’ string.

The TO_NUMBER function is not required in most contexts, because by default,
Informix converts numbers that include a decimal point (and quoted strings in the
format of a literal number that has a decimal point) to a DECIMAL data type. This
function can be useful, however, when you are migrating SQL applications that
were originally written for other database servers, if the application makes calls to
a function of this name that returns a DECIMAL value.

Trigonometric Functions
The built-in trigonometric functions calculate ratios of the lengths of the sides of
right triangles. Two supporting functions, DEGREES and RADIANS, can
respectively convert the units of angular values from radians to degrees, and from
degrees to radians.

The built-in trigonometric functions have the following syntax.

Trigonometric Functions:

4-150 IBM Informix Guide to SQL: Syntax

COS (radian_expr)
COSH
SIN
SINH
TAN
TANH
DEGREES

ASIN (numeric_expr)
ASINH
ACOS
ACOSH
ATAN
ATANH

ATAN2 (y, x)
RADIANS (degree_expr)

Element Description Restrictions Syntax

degree_expr Expression that represents the number of degrees Must return a value that can be
converted to a DECIMAL type

“Expression”
on page 4-44

numeric_expr Expression that serves as the argument to the
ASIN, ACOS, ATAN, ASINH, ACOSH or
ATANH functions

Must return a value between -1
and 1, inclusive

“Expression”
on page 4-44

radian_expr Expression that represents the number of radians Must return a numeric value “Expression”
on page 4-44

x Expression that represents the x coordinate in the
rectangular coordinate pair (x, y)

Must return a numeric value “Expression”
on page 4-44

y Expression that represents the y coordinate in
the rectangular coordinate pair (x, y)

Must return a numeric value “Expression”
on page 4-44

Sections that follow describe each of these built-in trigonometric functions.

COS Function:

The COS function returns the cosine of a radian expression.

The following example returns the cosine of the values of the degrees column in
the anglestbl table. The expression passed to the COS function in this example
converts degrees to radians.
SELECT COS(degrees*180/3.1416) FROM anglestbl;

COSH function:

The COSH function returns the hyperbolic cosine of the required argument, where
the argument is an angle expressed in radians.

COSH function:

COSH (radian_expr)

Element Description Restrictions Syntax

radian_expr Expression that evaluates
to an angular value in
units of radians

Must be of a numeric data type “Expression”
on page 4-44

Chapter 4. Data types and expressions 4-151

The following example returns the hyperbolic cosine of the values in the degrees
column of the anglestbl table. The expression passed to the COSH function
converts the degrees to radians.
SELECT COSH(degrees*180/3.1416) FROM anglestbl;

SIN Function:

The SIN function returns the sine of an angle that you specify as its radian
expression argument.

The following query returns the sines of the values in each row of the radians
column of the anglestbl table:
SELECT SIN(radians) FROM anglestbl;

SINH function:

The SINH function returns the hyperbolic sine of the argument, where the
argument is an angle expressed in radians.

SINH Function:

SINH (radian_expr)

The following example returns the hyperbolic sine of the values in the degrees
column of the anglestbl table. The expression passed to the SINH function
converts the degrees to radians.
SELECT SINH(degrees*180/3.1416) FROM anglestbl;

TAN Function:

The TAN function returns the value of the tangent of its radian expression
argument.

This example returns the tangent of the values in the radians column of the
anglestbl table:
SELECT TAN(radians) FROM anglestbl;

TANH Function:

The TANH function returns the hyperbolic tangent of the argument, where the
argument is an angle expressed in radians.

TANH Function:

TANH (radian_expr)

The following example returns the hyperbolic tangent of the values in the degrees
column of the anglestbl table. The expression passed to the TANH function
converts the degrees to radians.
SELECT TANH(degrees*180/3.1416) FROM anglestbl;

4-152 IBM Informix Guide to SQL: Syntax

ACOS Function:

The ACOS function returns the arc cosine of a numeric expression.

The following example returns the arc cosine of the value (-0.73) in radians:
SELECT ACOS(-0.73) FROM anglestbl;

ACOSH Function:

The ACOSH function returns the hyperbolic tangent of the specified numeric
input.

ACOSH Function:

ACOSH (numeric_expr)

ASIN Function:

The ASIN function returns the arc sine of a numeric expression argument.

The following example returns the arc sine of the value (-0.73) in radians:
SELECT ASIN(-0.73) FROM anglestbl;

ASINH Function:

The ASINH function returns the arc hyperbolic sine of the specified numeric input.

ASINH Function:

ASINH (numeric_expr)

ATAN Function:

The ATAN function returns the arc tangent of a numeric expression.

The following example returns the arc tangent of the value (-0.73) in radians:
SELECT ATAN(-0.73) FROM anglestbl;

ATANH Function:

The ATANH function returns the hyperbolic tangent of the specified numeric
input.

ATANH Function:

ATANH (numeric_expr)

ATAN2 Function:

The ATAN2 function computes the angular component of the polar coordinates (r,
q) associated with (x, y).

The following example compares angles to q for the rectangular coordinates (4, 5):

Chapter 4. Data types and expressions 4-153

WHERE angles > ATAN2(4,5) --determines q for (4,5) and
--compares to angles

You can determine the length of the radial coordinate r using the expression that
the following example shows:
SQRT(POW(x,2) + POW(y,2)) --determines r for (x,y)

You can determine the length of the radial coordinate r for the rectangular
coordinates (4,5) using the expression that the following example shows:
SQRT(POW(4,2) + POW(5,2)) --determines r for (4,5)

DEGREES function:

Use the DEGREES function to convert the value of an expression or host variable
representing a number of radians to the equivalent number of degrees.

The radian_expression or host variable that is the only argument to this function
must be a numeric data type (or a non-numeric data type that can be converted to
a number) that the database server evaluates in units of radians, and converts to
units of degrees.

The return value is a number of type DECIMAL (32, 255).

In both of the examples that follow, the argument to DEGREES evaluates to 6
radians, and the return value is 343.774677078494 degrees:
EXECUTE FUNCTION DEGREES (6);
EXECUTE FUNCTION DEGREES ("6");

The DEGREES function converts radians to degrees according to the following
formula:
(number of radians) * (180/pi) = (number of degrees)

Here pi represents the ratio of the circumference of a circle to its diameter. Results
of arithmetic calculations that use the transcendental number pi as the divisor of a
rational number always include rounding error.

RADIANS function:

Use the RADIANS function to convert an expression or a host variable
representing a number of degrees to the equivalent number of radians.

The return value is a number of type DECIMAL (32, 255).

The degree_expression that is the only argument to this function must have a
numeric data type (or a non-numeric data type that can be converted to a number)
that the database server evaluates in units of degrees, and converts to units of
radians:
EXECUTE FUNCTION RADIANS (100);
EXECUTE FUNCTION RADIANS ("100");

In both of the examples above, the RADIANS argument evaluates to 100 degrees,
and the return value is 1.745328251994 radians. You can use a RADIANS function
expression as the argument to the COS, SIN, or TAN function to return the
respective trigonometric values for that angle:

4-154 IBM Informix Guide to SQL: Syntax

COS(RADIANS (100))
SIN(RADIANS ("100"))
TAN(RADIANS (100))

The RADIANS function converts degrees to radians according to the following
formula:
(number of degrees) * (pi/180) = (number of radians)

Here pi represents the ratio of the circumference of a circle to its diameter. Results
of arithmetic calculations that use the transcendental number pi as the dividend of
a rational number always include rounding error.

String-Manipulation Functions
String-manipulation functions perform various operations on strings of characters.

The string-manipulation functions are identified in the following diagram:

String-Manipulation Functions:

(1)
CONCAT Function

(2)
ASCII Function

(3)
TRIM Function
(4) (5)

LTRIM Function
(4) (6)

RTRIM Function
(7)

SPACE Function
(8)

REVERSE Function
(4) (9)

REPLACE Function
(4) (10)

LPAD Function
(4) (11)

RPAD Function
(12)

CHR Function
(4) (13)

Case-Conversion Functions
(14)

Substring Functions

Notes:

1 See “CONCAT Function” on page 4-156

2 See “ASCII Function” on page 4-161

3 See “TRIM Function” on page 4-162

4 Informix extension

5 See “LTRIM Function” on page 4-164

6 See “RTRIM Function” on page 4-164

7 See “SPACE function” on page 4-165

Chapter 4. Data types and expressions 4-155

8 See “REVERSE function” on page 4-166

9 See “REPLACE Function” on page 4-167

10 See “LPAD Function” on page 4-168

11 See “RPAD Function” on page 4-169

12 See “CHR Function” on page 4-170

13 See “Case-Conversion Functions” on page 4-170

14 See “Substring functions” on page 4-174

Sections that follow describe each of the built-in string manipulation functions.

CONCAT Function:
The CONCAT function accepts two expressions as arguments, and returns a single
character string that appends the string representation of the value returned by its
second argument to the string representation of the value returned by its first
argument.

CONCAT Function:

CONCAT (expr_1 , expr_2)

Element Description Restrictions Syntax

expr_1,
expr_2

Expressions whose string representations
of their values are to be concatenated

Cannot return a complex, user-defined, or
large object type. If a host variable, it must
be long enough to store the resulting
combined strings.

“Expression”
on page 4-44

Each arguments to the CONCAT function can evaluate to a character, number, or
time data type. If either or both of the concatenated arguments is null, the function
returns a NULL value.

Unlike other built-in string manipulation functions of Informix, the CONCAT
function cannot be overloaded.

CONCAT is the operator function of the concatenation (||) operator, For a given
pair of expression arguments, CONCAT returns the same string as that operator
returns from the same expressions as operands. See “Concatenation Operator” on
page 4-61 for additional information about concatenation operations, and for
restrictions on the SQL and Dynamic SQL statements in which you can invoke the
CONCAT function.

Return Types from CONCAT and String Functions:
The data type of the return value from a successful call to the CONCAT function
(or from the concatenation (||) operator, or from a call to other built-in
string-manipulation functions that follow the same rules as CONCAT for
determining their return type) depends on the data types of the arguments and on
the length of the resulting string. The order of the two arguments is not significant
in determining the return type.

Informix applies the following rules for the return type from operations that
concatenate values that arguments of more than one data type specify:

4-156 IBM Informix Guide to SQL: Syntax

v If one of the types is National Language Support (namely NCHAR and
NVARCHAR):
– the return type is NVARCHAR if the resulting length is less than 255 bytes
– the return type is NCHAR otherwise.

v If one of the arguments is VARCHAR or a number type,
– the return type is VARCHAR if the resulting length is less than 255 bytes
– the return type is LVARCHAR otherwise.

v An exception to these rules, however, can occur in certain cross-server
operations in which a remote routine is executed locally, and a concatenation
expression is evaluated locally before its return value is sent to a remote
database server. For remote servers that do not support the LVARCHAR data
type in distributed transactions, the concatenated result is sent as a CHAR data
type if sending the LVARCHAR type returns an error. Informix database server
instances earlier than Version 11.10 require a CHAR return value in this scenario.
(See also “Return String Types in Distributed Transactions” on page 4-160 for the
data types that can be returned from concatenation expressions that are
evaluated by remote Informix database server instances earlier than Version
11.50.xC2.)

In the following table, the rows list the valid data types of the first argument to the
CONCAT function, and the columns list the type of the second argument. The cell
at the intersection of each row and column shows the possible returned type or
types. The row and the column labelled as Other represent arguments that
evaluate to non-character types, such as number or time data types like DECIMAL
or DATE.

Table 4-10. Return Types from Operations on Two Arguments (in Version 11.50.xC2 or Later)

NCHAR NVARCHAR CHAR VARCHAR LVARCHAR Other

NCHAR nchar nvarchar or
nchar

nchar nvarchar or
nchar

nvarchar or
nchar

nvarchar or
nchar

NVARCHAR nvarchar or
nchar

nvarchar or
nchar

nvarchar or
nchar

nvarchar or
nchar

nvarchar or
nchar

nvarchar or
nchar

CHAR nchar nvarchar or
nchar

char varchar or
lvarchar

lvarchar varchar or
lvarchar

VARCHAR nvarchar or
nchar

nvarchar or
nchar

varchar or
lvarchar

varchar or
lvarchar

lvarchar varchar or
lvarchar

LVARCHAR nvarchar or
nchar

nvarchar or
nchar

lvarchar lvarchar lvarchar lvarchar

Other nvarchar or
nchar

nvarchar or
nchar

varchar or
lvarchar

varchar or
lvarchar

lvarchar varchar or
lvarchar

For string manipulation functions other than CONCAT, arguments of DATE,
DATETIME, or MONEY data types always return an NVARCHAR or NCHAR
value, depending on the length of the resulting string.

This table is symmetrical, because the order of arguments has no affect on the
return data type. User-defined data types, large-object types, complex types, and
other extended data types are not valid as arguments to the built-in
string-manipulation functions or operators.

This table also describes the return data types of expressions that use the
concatenation (||) operator.

Chapter 4. Data types and expressions 4-157

Not shown here is the result of concatenation operations in which the sum of the
argument lengths exceeds the approximately 32Kb limit for CHAR, NCHAR, and
LVARCHAR data types. This returns error -881, rather than a concatenated data
value. Because the maximum LVARCHAR size is 32.739 bytes, and the CHAR and
NCHAR limits are both 32,767 bytes, error -881 is usually associated with
VARCHAR and NVARCHAR objects, whose limit is 255 bytes, but automatic
return type promotion can reduce the incidence of this error.

The following string-manipulation functions support the same rules as CONCAT
for return type promotion:
v LPAD

v RPAD

v REPLACE

v SUBSTR

v SUBSTRING

v TRIM

v LTRIM

v RTRIM

The following table summarizes how Informix determines the return type from
these string manipulating functions, based on the argument types:

Table 4-11. String Manipulation Functions that Support Return Type Promotion

Function How the Return Type of the Function is Determined

CONCAT, || Return type is based on both arguments. Refer to Table 4-10 on
page 4-157..

SUBSTR,
SUBSTRING

Return type is the same as the source string type. If source string is a
host variable, the return type is NVARCHAR or NCHAR,
depending on the length of the result.

TRIM, LTRIM,
RTRIM

Return type depends on the source type and the returned length:

v NVARCHAR returns NVARCHAR

v VARCHAR returns VARCHAR

v CHAR returns VARCHAR (if length <= 255 bytes)

v CHAR returns LVARCHAR (if length > 255 bytes)

v NCHAR returns NVARCHAR (if length <= 255 bytes)

v NCHAR returns LVARCHAR (if length > 255 bytes)

v LVARCHAR returns LVARCHAR

LPAD, RPAD Return type is based on the source_string and pad_string arguments.
If pad_string is not specified, the return type is based on the data
type of source_string.

REPLACE Return type is based on the source_string and old_string arguments
(and on the new_string argument, if that is specified). If any
argument is a host variable, the return type is NCHAR.

ENCRYPT_AES,
ENCRYPT_TDES,
DECRYPT_BINARY,
DECRYPT_CHAR,

For arguments that are not BLOB or CLOB variables, the return
type is based on the data types of the data and encrypted_data
arguments. Refer to Table 4-10 on page 4-157.

4-158 IBM Informix Guide to SQL: Syntax

Data-type promotion in NLSCASE INSENSITIVE databases:

In databases that have the NLSCASE INSENSITIVE property, the database server
disregards the lettercase of NCHAR and NVARCHAR values. Expressions in which
functions or operators avoid overflow errors by performing an implicit cast can
produce different results from what a case-sensitive database would return, if the
expression evaluates to an NCHAR or NVARCHAR data type.

When a string function or a string operator on which the database server supports
data-type promotion returns a value that would produce an overflow error for the
default VARCHAR or NVARCHAR data type of the expression, the database
server performs an implicit cast on the return value, as indicated in the first table
of the topic “Return Types from CONCAT and String Functions” on page 4-156:
v If the none of the arguments or operands are NCHAR or NVARCHAR data

types, the expression evaluates to a CHAR, LVARCHAR, or VARCHAR data
type.

v If any argument or operand is an NCHAR or NVARCHAR data type, the
expression evaluates to an NCHAR or NVARCHAR data type.

In databases that have the NLSCASE INSENSITIVE property, operations on CHAR,
LVARCHAR, or VARCHAR data types are case-sensitive, but operations on
NCHAR or NVARCHAR data types are case-insensitive. Data-type promotion also
produces case-insensitive results (rather than case-sensitive) from evaluating an
expression that includes CHAR, LVARCHAR, or VARCHAR components, if the
same expression also includes NCHAR or NVARCHAR character strings.

The following example illustrates this behavior in a NLSCASE INSENSITIVE
database, in which table t1 has a character column of each of the five built-in
character data types. The table stores three rows, in which each column stores the
same lettercase variants of a 3-letter character string:
CREATE DATABASE db NLSCASE INSENSITIVE;
CREATE TABLE t1 (

c1 NCHAR(20),
c2 NVARCHAR(20),
c3 CHAR((20),
c4 VARCHAR(20),
c5 LVARCHAR(20)) ;

INSERT INTO t1 values (’ibm’, ’ibm’, ’ibm’, ’ibm’, ’ibm’);
INSERT INTO t1 values (’Ibm’, ’Ibm’, ’Ibm’, ’Ibm’, ’Ibm’);
INSERT INTO t1 values (’IBM’, ’IBM’, ’IBM’, ’IBM’, ’IBM’);

The following query retrieves the values from an NCHAR column, using an
equality predicate for a literal string whose letters are all lowercase:
SELECT c1 FROM t1 WHERE c1 = ’ibm’;

Because NCHAR values are not case sensitive in this database, the query returns
the column c1 value from every row:
c1

ibm
Ibm
IBM

The following query on the same table returns the same case-insensitive results
from CHAR column c3 that the WHERE clause casts to an NCHAR value:
SELECT c1 FROM t1 WHERE c3 = ’ibm’::NCHAR(10);

Chapter 4. Data types and expressions 4-159

After the cast, the c3 values become case insensitive, so that every row in c3
matches the string ’ibm’, and the WHERE condition is true for every row in c1 :
c1

ibm
Ibm
IBM

Because case-insensitive operations disregard differences in letter case among
strings where the same letters appear in the same sequence, as in the previous
example, care must be taken in databases that have the NLSCASE INSENSITIVE
property to avoid contexts where data type-promotion applies case-insensitive
rules to operations that you expected to be case sensitive.

See also the section “Duplicate rows in NLSCASE INSENSITIVE databases” on
page 2-663.

Return String Types in Distributed Transactions:
In cross-database distributed queries that access tables in different databases of the
same InformixInformix instance, the same types are returned by CONCAT (and by
other built-in string manipulation functions that follow the same rules for return
type promotion) that the section Return Types from the CONCAT Function
describes.

The same types are also returned in cross-server distributed queries, if every
participating Informix instance that evaluates these string-manipulation function
expressions is no earlier than Version 11.50.xC2.

For cross-server distributed operations in which the return value is evaluated on a
remote Informix instance earlier than Version 11.50.xC2, the following table (in the
same format as the table for Version 11.50.xC2 and later) lists the possible return
data types (or -881 overflow error) for the specified data types of arguments to the
string-manipulation function (or for operands of the concatenation (||) operator:

Table 4-12. Return Types from Distributed Operations (in Version 11.50.xC1 and earlier)

NCHAR NVARCHAR CHAR VARCHAR LVARCHAR Other

NCHAR nchar nvarchar or
EM -881

nchar nchar nchar nchar

NVARCHAR nchar or EM
-881

nvarchar or
EM -881

nvarchar or
EM -881

nvarchar or
EM -881

nvarchar or
EM -881

nvarchar or
EM -881

CHAR nchar nvarchar or
EM -881

char varchar or EM
-881

char char

VARCHAR nchar nvarchar or
EM -881

varchar or EM
-881

varchar or EM
-881

varchar or EM
-881

varchar or EM
-881

LVARCHAR nchar nvarchar or
EM -881

char varchar or EM
-881

char char

Other nchar nvarchar or
EM -881

char varchar or EM
-881

char char

The following are among the differences between the return values in this release
and what Informix versions earlier than 11.50.xC2 return:
v Earlier releases accept LVARCHAR arguments, but cannot return LVARCHAR

values.

4-160 IBM Informix Guide to SQL: Syntax

v If the result is longer than the maximum size of the argument of the longest data
type, earlier releases do not support data-type promotion, but issue error -881.
(This is typically with VARCHAR or NVARCHAR arguments, if the length of
the resulting string would be greater than 255 bytes.)

For all versions of Informix, error -881 is issued if the length of a returned string
exceeds 32Kb.

ASCII Function:
The ASCII function returns the decimal representation of the first character in a
character string, based on its codepoint in the ASCII character set.

ASCII Function:

ASCII (char_expr)

Element Description Restrictions Syntax

char_expr Expression that evaluates to a character
data type

Must be of type CHAR, LVARCHAR,
NCHAR, NVARCHAR, or VARCHAR

“Identifier”
on page 5-21

The ASCII function takes a single argument of any character data type. It returns
an integer value, based on the first character of the argument, corresponding to the
decimal representation of the codepoint of that character within the ASCII
character set.

If the argument is NULL, or if the argument is an empty string, the ASCII
function returns a NULL value.

The following query returns the ASCII value of uppercase H:
SELECT ASCII("HELLO") FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

(constant)

72

The following query returns the ASCII value of lowercase h:
SELECT ASCII("hello") FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

(constant)

104

The following query returns the ASCII output from an empty string argument:
SELECT ASCII("") FROM systables WHERE tabid = 1;

The following table shows the NULL output of this SELECT statement.

(constant)

Chapter 4. Data types and expressions 4-161

The following query returns the ASCII output from a NULL argument:
SELECT ASCII(NULL) FROM systables WHERE tabid = 1;

The following table shows the NULL output of this SELECT statement.

(constant)

The ASCII function interprets this argument as a NULL expression, rather than as
a value that begins with uppercase N.

For a table of the numeric values of the codepoints in the ASCII character set, see
“Collating Order for U.S. English Data” on page 4-226.

TRIM Function:
The TRIM function removes specified leading or trailing pad characters from a
string. (See also the descriptions of the LTRIM and RTRIM functions, which
provide similar functionality, but support a different syntax.)

TRIM Function:

TRIM (source_expression)
BOTH
TRAILING FROM
LEADING pad_char

Element Description Restrictions Syntax

pad_char Expression that evaluates to a single character or
NULL. The default is a blank space (= ASCII 32).

Must be a character
expression

“Expression” on
page 4-44

source
_expression

Character expression, including a character column
name, or a call to another TRIM function

Cannot be a DISTINCT
data type

“Expression” on
page 4-44

The TRIM function returns a character string identical to its source_expression
argument, except that any leading or trailing pad characters, as specified by the
LEADING, TRAILING, or BOTH keywords, are deleted. If no trim qualifier
(LEADING, TRAILING, or BOTH) is specified, BOTH is the default. If no pad_char
is specified, a single blank space (the ASCII 32 character) is the default, and
leading or trailing blank spaces, as specified by the qualifying keyword, are
deleted from the returned value.

If either the pad_char or the source_expression evaluates to NULL, the result of the
TRIM function is NULL.

The data type of the returned value depends on the source_expression argument:
v

If the argument is longer than 255 bytes, the returned value is of type
LVARCHAR.

v If the argument has 255 bytes or fewer, the data type of the returned value
depends on the data type of the argument:
– If the argument is of type CHAR or VARCHAR, a VARCHAR value is

returned.
– If the argument is of type NCHAR or NVARCHAR, an NVARCHAR value is

returned.

4-162 IBM Informix Guide to SQL: Syntax

– If the argument is of type LVARCHAR, an LVARCHAR value is returned.

The length of the returned value is 255 bytes or fewer for VARCHAR or
NVARCHAR source_expression arguments, and no more than 32,739 bytes for
CHAR, NCHAR, or LVARCHAR arguments.

The following example shows some generic uses for the TRIM function:
SELECT TRIM (c1) FROM tab;
SELECT TRIM (TRAILING ’#’ FROM c1) FROM tab;
SELECT TRIM (LEADING FROM c1) FROM tab;
UPDATE c1=’xyz’ FROM tab WHERE LENGTH(TRIM(c1))=5;
SELECT c1, TRIM(LEADING ’#’ FROM TRIM(TRAILING ’%’ FROM

’###abc%%%’)) FROM tab;

In Dynamic SQL, when you use the DESCRIBE statement with a SELECT
statement that calls the TRIM function in the Projection list, the data type of the
trimmed column that DESCRIBE returns depends on the data type of the
source_expression, for SQL data type constants defined in the sqltypes.h header file
of the Informix ESQL/C source file. For further information on the GLS aspects of
the TRIM function in Informix ESQL/C, see the IBM Informix GLS User's Guide.

Fixed Character Columns:
The TRIM function can be specified on fixed-length character columns. If the
length of the string is not completely filled, the unused characters are padded with
blank space. Figure 4-3 shows this concept for the column entry '##A2T##', where
the column is defined as CHAR(10).

If you want to trim the sharp sign (#) pad_char from the column, you need to
consider the blank padded spaces as well as the actual characters.

For example, if you specify the keyword BOTH, the result from the trim operation
is A2T##, because the TRIM function does not match the blank padded space that
follows the string. In this case, the only sharp signs (#) trimmed are those that
precede the other characters. The SELECT statement is shown, followed by
Figure 4-4, which presents the result.
SELECT TRIM(LEADING ’#’ FROM col1) FROM taba;

2 T #A## #

Blank paddedCharacters

21 3 4 5 6 7 8 9 10

Figure 4-3. Column Entry in a Fixed-Length Character Column

#T2A

Blank paddedCharacters

21 3 4 5 6 7 8 9 10

Figure 4-4. Result of TRIM Operation

Chapter 4. Data types and expressions 4-163

This SELECT statement removes all occurrences of the sharp (#) sign:
SELECT TRIM(BOTH ’#’ FROM TRIM(TRAILING ’ ’ FROM col1)) FROM taba;

LTRIM Function:
The LTRIM function removes specified leading pad characters from a string.

LTRIM Function:

LTRIM (source_string)
, pad_string

Element Description Restrictions Syntax

pad_string Expression that specifies one or
more characters to delete from
source_string

Must be a character expression “Expression”
on page 4-44

source_string Expression that specifies a character
string from which characters in
pad_string are deleted

Pad characters to the right of any character
not in pad_string are not deleted

“Expression”
on page 4-44

The first argument to the LTRIM function must be a character expression from
which to delete leading pad characters. The optional second argument is a
character expression that evaluates to a string of pad characters. If no second
argument is provided, only blank characters are regarded as pad characters.

The return data type of the LTRIM function is based on its source_string
argument, using the return type promotion rules that the section Return Types
from the CONCAT Function describes.

The value returned contains a substring of source_string, but from which any
leading pad characters to the left of the first non-pad character have been removed.
If a host variable is used, an LVARCHAR data type is returned.

The LTRIM function scans a copy of the source_string from the left, deleting any
leading characters that appear in the pad_string. If no pad_string argument is
specified, only leading blanks are deleted from the returned value. When the first
non-pad character is encountered, the function returns its result string and
terminates.

In the following example, the pad_string is ’Hello’:
SELECT LTRIM(’Hellohello world!’, ’Hello’) FROM mytab;

The following table shows the output of this SELECT statement.

(constant)

hello world!

Here the first five characters of the source_string were dropped because they
matched characters in the pad_string , but the function terminated after it
encountered the lowercase h character, which preserved the trailing ’ello’ pad
characters to its right.

RTRIM Function:
The RTRIM function removes specified trailing pad characters from a string.

4-164 IBM Informix Guide to SQL: Syntax

RTRIM Function:

RTRIM (source_string)
, pad_string

Element Description Restrictions Syntax

pad_string Expression that specifies one or
more characters to delete from
source_string

Must be a character expression “Expression”
on page 4-44

source_string Expression that specifies a character
string from which characters in
pad_string are deleted

Pad characters to the left of any character
not in pad_string are not deleted

“Expression”
on page 4-44

The first argument to the RTRIM function must be a character expression from
which to delete trailing pad characters. The optional second argument is a
character expression that evaluates to a string of pad characters. If no second
argument is provided, only blank characters are regarded as pad characters.

The return data type of the LTRIM function is based on its source_string argument,
using the return type promotion rules that the section Return Types from the
CONCAT Function describes.

The value returned contains a substring of source_string, but from which any
trailing pad characters to the right of the first non-pad character have been
removed. If a host variable is used, an LVARCHAR data type is returned.

The RTRIM function scans a copy of the source_string from the right, deleting any
trailing characters that appear in the pad_string. If no pad_string argument is
specified, only trailing blanks are deleted from the returned value. When the first
non-pad character is encountered, the function returns its result string and
terminates.

In the following example, the pad_string is ’ theend!*#?’:
SELECT RTRIM(’good night... *!#?theend ’, ’ theend!*#?’) AS closing FROM mytab;

The following table shows the output of this SELECT statement.

(constant)

good night...

Here the last fifteen characters of the source_string were dropped because they
matched characters in the pad_string, but the function terminated after it
encountered the period (.) characters, which preserved the leading ’thn’ pad
characters to the left.

SPACE function:

The SPACE function creates a character string of a specified number of blank
spaces. The maximum length of the returned string value can be 32,739 blank
characters.

The function has this syntax:

Chapter 4. Data types and expressions 4-165

SPACE Function:

SPACE (expression)

Element Description Restrictions Syntax

expression Expression that evaluates to a
non-negative whole number < 256

Must be an expression, constant, column, or
host variable of a built-in integer type, or
one that can be converted to an integer

“Expression”
on page 4-44

The argument to the SPACE function must be of a built-in data type.

The SPACE function returns an LVARCHAR string of the specified number of
blank (ASCII 32) characters.

If the argument evaluates to a NULL value, or to a number less than 1, this
function returns a NULL value, rather than an empty string.

In the following example, the SPACE function returns a single-character blank
string:
SELECT SPACE(1) FROM tabula_rasa;

The following table shows the output from this SELECT statement, which is a
single blank character:

(constant)

REVERSE function:

The REVERSE function accepts a character expression as its argument, and returns
a string of the same length, but with the ordinal positions of every logical
character reversed.

This is the syntax of the REVERSE function:

REVERSE Function:

REVERSE (source_string)

Element Description Restrictions Syntax

source_string Expression that evaluates to a
character string

Must be an expression, constant, column, or
host variable of a type that can be converted
to a character type

“Expression”
on page 4-44

The argument to the REVERSE function cannot have a user-defined data type. The
built-in CHAR, LVARCHAR, NCHAR, NVARCHAR, and VARCHAR types are
valid.

The REVERSE function returns a string of the same data type as its source_string
argument.

4-166 IBM Informix Guide to SQL: Syntax

If the expression that you specify as the argument evaluates to NULL, the return
value is NULL.

For an argument that evaluates to string of N characters, the ordinal position p of
each character in the source_string becomes (N + 1 - p) in the returned string. This
inverts the sequence of characters from their original order in the source_string, so
that the return value begins with the last character of the source_string, and ends
with the first character of the source_string.

For example, the function expression REVERSE(’Mood’) returns the string dooM from
the quoted-string argument. In both single-byte and multibyte code sets, only the
ordinal positions are reversed, not the characters themselves. In the function
expression above, 'd' does not become 'b', and each logical character in a multibyte
code set (for example, utf8, or GB2312-80) is repositioned as a single logical unit.

If the argument evaluates to a single-character or to an empty source_string, the
return value and the source_string are identical, as if the REVERSE function had no
effect. For strings that include multiple characters, this equality is true only when
the source_string is a palindrome. For character strings where MOD(N,2) = 1, the
character in ordinal position (N+1)/2 has the same middle position in both the
source_string and in the returned string.

In the following example, the REVERSE function reverses a quoted string
argument:
SELECT REVERSE(’Able was I ere I saw Elba.’) FROM Mirror_Table;

The following table shows the output of this SELECT statement.

(constant)

.ablE was I ere I saw elbA

REPLACE Function:
The REPLACE function replaces specified characters within a source string with
different characters.

REPLACE Function:

REPLACE (source_string , old_string)
, new_string

Element Description Restrictions Syntax

new_string Character or characters that replace
old_string in the return string

Must be an expression, constant, column, or
host variable of a data type that can be
converted to a character data type

“Expression”
on page 4-44

old_string Character or characters in
source_string that are to be replaced
by new_string

Must be an expression, constant, column, or
host variable of a data type that can be
converted to a character data type

“Expression”
on page 4-44

source_string String of characters argument to
the REPLACE function

Must be an expression, constant, column, or
host variable of a data type that can be
converted to a character data type

“Expression”
on page 4-44

Any argument to the REPLACE function must be of a built-in data type.

Chapter 4. Data types and expressions 4-167

The REPLACE function returns a copy of source_string in which every occurrence
of old_string is replaced by new_string. If you omit the new_string option, every
occurrence of old_string is omitted from the return string.

The return data type is its source_string argument. If a host variable is the source,
the return value is either NVARCHAR or NCHAR, according to the length of the
returned string, using the return type promotion rules that the section Return
Types from the CONCAT Function describes.

In the following example, the REPLACE function replaces every occurrence of xz
in the source string with t:
SELECT REPLACE(’Mighxzy xzime’, ’xz’, ’t’)

FROM mytable;

The following table shows the output of this SELECT statement.

(constant)

Mighty time

LPAD Function:
The LPAD function returns a copy of source_string that is left-padded to the total
number of bytes specified by length.

LPAD Function:

LPAD (source_string , length)
, pad_string

Element Description Restrictions Syntax

length Integer value that specifies
total number of bytes in the
returned string

Must be an expression, constant, column, or host
variable of a data type that can be converted to an
integer data type

“Literal
Number” on
page 4-215

pad_string String that specifies the pad
character or characters

Must be an expression, constant, column, or host
variable of a data type that can be converted to a
character data type

“Expression”
on page 4-44

source_string String that serves as input to
the LPAD function

Must be an expression, constant, column, or host
variable of a data type that can be converted to a
character data type

“Expression”
on page 4-44

Any argument to the LPAD function must be of a built-in data type.

The pad_string parameter specifies the character or characters to be used for
padding the source string. The sequence of pad characters occurs as many times as
necessary to make the return string the storage length specified by length.

The series of pad characters in pad_string is truncated if it is too long to fit into
length. If you specify no pad_string, the default value is a single blank (ASCII 32)
character.

The return data type is based on the three arguments, using the return type
promotion rules that the section Return Types from the CONCAT Function
describes.

4-168 IBM Informix Guide to SQL: Syntax

In the following example, the user specifies that the source string is to be
left-padded to a total length of 16 bytes. The user also specifies that the pad
characters are a series consisting of a hyphen and an underscore (-_).
SELECT LPAD(’Here we are’, 16, ’-_’) FROM mytable;

The following table shows the output of this SELECT statement.

(constant)

-_-_-Here we are

RPAD Function:
The RPAD function returns a copy of source_string that is right-padded to the total
number of bytes that the length argument specifies.

RPAD Function:

RPAD (source_string , length)
, pad_string

Element Description Restrictions Syntax

length The toyal number of bytes in
the returned string

Must be an expression, constant, column, or
host variable that returns an integer

“Literal Number”
on page 4-215

pad_string String that specifies the pad
character or characters

Must be an expression, column, constant, or
host variable of a data type that can be
converted to a character data type

“Expression” on
page 4-44

source_string String that serves as input to
the RPAD function

Same as for pad_string “Expression” on
page 4-44

Any argument to the RPAD function must be of a built-in data type.

The pad_string parameter specifies the pad character or characters to be used to
pad the source string.

The series of pad characters occurs as many times as necessary to make the return
string reach the length that length specifies. The series of pad characters in
pad_string is truncated if it is too long to fit into length. If you omit the pad_string
parameter, the default value is a single blank space (the ASCII 32 character).

The return data type is based on the source_string and pad_string arguments, if both
are specified. If a host variable is the source, the return value is either NVARCHAR
or NCHAR, according to the length of the returned string, using the return type
promotion rules that the section Return Types from the CONCAT Function
describes.

The UNLOAD feature of DB-Access truncates trailing blanks in CHAR or NCHAR
columns, even if the RPAD function has appended blank characters to the data
value. You must explicitly cast the CHAR or NCHAR value to a VARCHAR,
LVARCHAR, or NVARCHAR data type if you need UNLOAD to preserve trailing
blank characters or nonprintable characters in a value that RPAD returns.

Chapter 4. Data types and expressions 4-169

In the following example, the user specifies that the source string is to be
right-padded to a total length of 18 characters. The user also specifies that the pad
characters to be used are a sequence consisting of a question mark and an
exclamation point (?!)
SELECT RPAD(’Where are you’, 18, ’?!’)

FROM mytable;

The following table shows the output of this SELECT statement.

(constant)

Where are you?!?!?

CHR Function:

This function accepts an unsigned integer argument, and returns a single logical
character.

The CHR function has this syntax:

CHR Function:

CHR (expression)

Element Description Restrictions Syntax

expression Expression that evaluates to a
nonnegative whole number less
than 256

Must be an integer in the range 0 through
255 (inclusive)

“Expression”
on page 4-44

The data type of the return value is VARCHAR(1).

The argument can be SMALLINT, INTEGER, SERIAL, INT8, SERIAL8, BIGINT, or
BIGSERIAL. The argument must evaluate to a whole number in the range 0
through 255.

If the argument is an integer in the range 0 through 127, the return value is the
corresponding single-byte ASCII code point. For a listing of the characters
corresponding to the ASCII code points 0 through 127, see “Collating Order for
U.S. English Data” on page 4-226.

If the argument is an integer in the range 128 through 255, the return value is the
corresponding 2-byte code point in the default code set.
v On UNIX platforms, the default code set is ISO8859-1.
v On Windows platforms, the default code set is Microsoft 1252.

Case-Conversion Functions
The case-conversion functions perform lettercase conversion on alphabetic
characters. In the default locale, only the ASCII characters in the ranges A - Z
and a - z can be modified by these functions, which enable you to perform
case-insensitive searches in your queries and to specify the format of the output.

The case-conversion functions are UPPER, LOWER, and INITCAP. The following
diagram shows the syntax of these case-conversion functions.

4-170 IBM Informix Guide to SQL: Syntax

Case-Conversion Functions:

UPPER
LOWER
INITCAP

(expression)

Element Description Restrictions Syntax

expression Expression returning a
character string

Must be a built-in character type. If a host variable, its
length must be long enough to store the converted string.

“Expression”
on page 4-44

The expression must return a character data type. When a column expression is
specified, the column data type returned by the database server is that of
expression. For example, if the input type is CHAR, the output type is also CHAR.

Argument to these functions must be of the built-in data types.

In all locales, the byte length returned from the description of a column with a
case-conversion function is the input byte length of the source string. If you use a
case-conversion function with a multibyte expression argument, the conversion
might increase or decrease the length of the string. If the byte length of the result
string exceeds the byte length expression, the database server truncates the result
string to fit into the byte length of expression.

Only characters designated as ALPHA class in the locale file are converted, and
this occurs only if the locale recognizes the construct of lettercase.

If expression evaluates to NULL, the result of a case-conversion function is also
NULL.

The database server treats a case-conversion function as an SPL routine in the
following instances:
v If it has no argument
v If it has one argument, and that argument is a named argument
v If it has more than one argument
v If it appears in the Projection list with a host variable as an argument

If none of the conditions in the preceding list are met, the database server treats a
case-conversion function as a system function.

The following example uses all the case-conversion functions in the same query to
specify multiple output formats for the same value:
Input value:

SAN Jose

Query:

SELECT City, LOWER(City), LOWER("City"),
UPPER (City), INITCAP(City)

FROM Weather;

Query output:

SAN Jose san jose city SAN JOSE San Jose

Chapter 4. Data types and expressions 4-171

UPPER Function:
The UPPER function accepts an expression argument and returns a character string
in which every lowercase alphabetical character in the expression is replaced by a
corresponding uppercase alphabetic character.

The following example uses the UPPER function to perform a case-insensitive
search on the lname column for all employees with the last name of Curran:
SELECT title, INITCAP(fname), INITCAP(lname) FROM employees

WHERE UPPER (lname) = "CURRAN"

Because the INITCAP function is specified in the projection list, the database
server returns the results in a mixed-case format. For example, the output of one
matching row might read: accountant James Curran.

LOWER Function:
The LOWER function accepts an expression argument and returns a character string
in which every uppercase alphabetic character in the expression is replaced by a
corresponding lowercase alphabetic character.

The following example shows how to use the LOWER function to perform a
case-insensitive search on the City column. This statement directs the database
server to replace all instances (that is, any variation) of the words san jose, with
the mixed-case format, San Jose.
UPDATE Weather SET City = "San Jose"

WHERE LOWER (City) = "san jose";

INITCAP Function:
The INITCAP function returns a copy of the expression in which every word in the
expression begins with an uppercase letter. With this function, a word begins after
any character other than a letter. Thus, in addition to a blank space, symbols such
as commas, periods, colons, and so on, introduce a new word.

For an example of the INITCAP function, see “UPPER Function.”

Case-conversion functions in NLSCASE INSENSITIVE databases:

The UPPER and LOWER, case-conversion functions were designed to support
case-insensitive queries in a case-sensitive database. They are less often needed in
databases that have the NLSCASE INSENSITIVE attribute, because the NCHAR
and NVARCHAR data types can support case-insensitive queries without calling
these functions. You can invoke the case-conversion functions in NLSCASE
INSENSITIVE databases, where their effects on CHAR, LVARCHAR, and
VARCHAR data types are the same as in case-sensitive databases.

In a database created with the NLSCASE INSENSITIVE option, the database server
disregards the lettercase of NCHAR and NVARCHAR values. Expressions that call
case-conversion functions can return different results from what a case-sensitive
database would return, if the expression references NCHAR or NVARCHAR
objects, or if the database server evaluates the expression with an explicit or
implicit cast to an NCHAR or NVARCHAR data type.

When the UPPER , LOWER, or INITCAP function is used in evaluating a string
expression in a database with the NLSCASE INSENSITIVE property, the database
server invokes the function, and applies to its return value the data-type
promotion rules that are summarized in the topic “Return Types from CONCAT
and String Functions” on page 4-156.

4-172 IBM Informix Guide to SQL: Syntax

v If the expression evaluates to a CHAR, LVARCHAR, or VARCHAR data type,
the database server can use that result in case-sensitive operations, if those
operations do not involve NCHAR or NVARCHAR objects.

v If the expression evaluates to an NCHAR or NVARCHAR value after the
UPPER, LOWER, or INITCAP function has executed, the case of letters in this
result is disregarded in subsequent operations that use this return value from the
expression.

The following example illustrates this behavior in an NLSCASE INSENSITIVE
database, in which table t1 has a character column of each of the five built-in
character data types. The table stores three rows, in which each column stores the
same lettercase variants of a 3-letter character string:
CREATE DATABASE db NLSCASE INSENSITIVE;
CREATE TABLE t1 (

c1 NCHAR(20),
c2 NVARCHAR(20),
c3 CHAR(20),
c4 VARCHAR(20),
c5 LVARCHAR(20)) ;

INSERT INTO t1 values (’ibm’, ’ibm’, ’ibm’, ’ibm’, ’ibm’);
INSERT INTO t1 values (’Ibm’, ’Ibm’, ’Ibm’, ’Ibm’, ’Ibm’);
INSERT INTO t1 values (’IBM’, ’IBM’, ’IBM’, ’IBM’, ’IBM’);

In the following example, the database server applies the UPPER function to the
NCHAR column c1 and then applies a case-insensitive rule to return all values in
that column that match the ’IBM’ string constant.
SELECT c1 FROM t1 WHERE UPPER(c1) = ’IBM’;

Because NCHAR values are not case sensitive in this database, the query returns
the column c1 value from every row in the table, because in each row the sequence
of letters matches the string constant, using a case-insensitive rule that ignores the
letter case of the column values:
c1

ibm
Ibm
IBM

The same result set (namely ’ibm’, ’Ibm’, and ’IBM’) would be also returned by
the following modifications to the same query on the same table:
v If the projection clause specified any other column, rather than c1, because every

column stores the same values, and the NCHAR value that UPPER returns
makes the WHERE clause true for all lettercase variants of the string ’IBM’ in
this database.

v If the ’IBM’ string in the WHERE clause were any other lettercase variant of the
same sequence of letters, because NCHAR data types are not processed by
case-sensitive rules in this database.

v If the NVARCHAR column c2, rather than NCHAR column c1, were the
argument to the case-conversion function, because both NCHAR or NVARCHAR
are case-insensitive data types in this database.

v If the case-conversion function LOWER or INITCAP, rather than UPPER, were
applied to column c1, because every (case-variant) value that NCHAR column
matches ’IBM’ in this database.

Chapter 4. Data types and expressions 4-173

v If no case-conversion function were called, but the WHERE condition instead
specified c1 = ’IBM’, because case-conversion functions have no effect as query
filters on NCHAR or NVARCHAR arguments in this NLSCASE INSENSITIVE
database.

Substring functions
The built-in SQL substring functions return substrings from character string
arguments, or return positional information for operations on substrings.

Substring Functions:

(1) (2)
CHARINDEX function

(1) (3)
INSTR function

(4)
LEFT function

(5)
RIGHT function

(6)
SUBSTR function

(7)
SUBSTRB function

(8)
SUBSTRING function

(9)
SUBSTRING_INDEX function

Notes:

1 Informix extension

2 See “CHARINDEX function”

3 See “INSTR function” on page 4-176

4 See “LEFT function” on page 4-177

5 See “RIGHT function” on page 4-178

6 See “SUBSTR function” on page 4-179

7 See “SUBSTRB function” on page 4-181

8 See “SUBSTRING function” on page 4-182

9 See “SUBSTRING_INDEX function” on page 4-184

Sections that follow describe the syntax and usage of these substring functions.

CHARINDEX function:

The CHARINDEX function searches a character string for the first occurrence of a
target substring, where the search begins at a specified or default character
position within the source string.

The CHARINDEX function has this syntax:

CHARINDEX function:

4-174 IBM Informix Guide to SQL: Syntax

CHARINDEX (substring , source)
, start_position

Element Description Restrictions Syntax

source_ string Expression that evaluates to a
character string

Must be an expression, constant, column, or
host variable of a built-in character type, or a
type that can be converted to a character
type

“Expression”
on page 4-44

start_ position Ordinal position to begin the search
in source, where 1 is the first logical
character

Must be an expression, constant, column, or
host variable of a built-in integer type, or
that can be converted to an integer

“Expression”
on page 4-44

substring Expression that evaluates to a
character string

Must be an expression, constant, column, or
host variable of a built-in character data
type, or that can be converted to a character
type

“Expression”
on page 4-44

Arguments to CHARINDEX cannot be user-defined data types.

If either source or the substring is NULL, this function returns NULL.

If the optional start_position value is less than 1, or if you omit this argument, none,
the search for substring begins at the first logical character in the source, as if you
had specified 1 as the starting position.

If no expression matching the substring is found, CHARINDEX returns zero (0).
Otherwise it returns the ordinal position of the first logical character in the first
occurrence of substring.

If you specify a start_position greater than 1, any substring that begins before
start_position is ignored, and the function returns one of the following values:
v either the position of the first logical character in the first matching substring

whose ordinal position is equal to or greater than start_position,
v or else zero (0), if no occurrence of substring in source begins at or follows

start_position, or if start_position is greater than the number of logical characters
in source.

In locales that support multibyte character sets, the return value is the ordinal
value among logical characters in the source. In single-byte locales, such as the
default locale, the return value is equivalent to the byte position, where the first
byte is in position 1.

In databases created with the NLSCASE INSENSITIVE option, if either source or
substring is an NCHAR or NVARCHAR data type, the database server ignores
variants in letter case in determining whether a given substring of source matches
the target substring.

The following function expression returns 9:
CHARINDEX(’com’,’www.ibm.com’)

In the example above, CHARINDEX begins its search at the default starting
position of 1.

The following function expression returns 2:

Chapter 4. Data types and expressions 4-175

CHARINDEX(’w’,’www.ibm.com’,2)

In the example above, because the last argument begins the search at position 2,
CHARINDEX ignores two other matching substrings:
v ’w’ in position 1, because the search begins at 2,
v and ’w’ in position 3, because the function returns the position of only the first

occurrence of a matching substring.

INSTR function:

The INSTR function searches a character string for a specified substring, and
returns the character position in that string where an occurrence of that a substring
ends, based on a count of substring occurrences.

The INSTR function has this syntax:

INSTR function:

INSTR (source_string , substring)
, start

, count

Element Description Restrictions Syntax

count Expression that evaluates to an
integer > 0

Must be an expression, constant, column, or
host variable of a built-in integer type, or
that can be converted to an integer.

“Expression”
on page 4-44

source_ string Expression that evaluates to a
character string

Must be an expression, constant, column, or
host variable of a built-in character data
type, or that can be converted to a character
type

“Expression”
on page 4-44

start Ordinal position to begin the search
in source_string, where 1 is the first
logical character

Must be an expression, constant, column, or
host variable of a built-in integer type, or
that can be converted to a positive or
negative integer

“Expression”
on page 4-44

substring Expression that evaluates to a
character string

Must be an expression, constant, column, or
host variable of a built-in character data
type, or that can be converted to a character
type

“Expression”
on page 4-44

Arguments to INSTR cannot be user-defined data types.

The function returns NULL in each of these cases:
v count is less than or equal to zero (0).
v source_string is NULL or of zero length.
v substring is NULL or of zero length.

The return value is zero (0) in each of the following cases:
v if no occurrences of substring are found in source_string,
v if start is greater than the length of source_string.
v If fewer than count occurrences of substring are in the source_string,

If you omit the optional count argument, the default count value is 1.

4-176 IBM Informix Guide to SQL: Syntax

In locales that support multibyte character sets, the return value is the ordinal
value among logical characters in the source_string. In single-byte locales, such as
the default locale, the return value is equivalent to the byte position, where the
first byte is in position 1.

The start position

If start is omitted or is specified as zero, the search for substring begins at character
position 1. If start is negative, the search for occurrences of substring begins at the
end of source_string, and proceeds towards the beginning.
v In a left-to-right locale, a negative start value specifies a right-to-left search.
v In a right-to-left locale, a negative start value specifies a left-to-right search.

In both types of locales, however, the search begins at the logical character position
within source_string that corresponds to the absolute value of start.

In a right-to-left locale, a negative start value specifies a left-to-right search.

Examples of INSTR function expressions

The following expressions are all based on the same source_string and substring.
This example returns 3, as the character position of the first ’er’ substring:
INSTR("wwerw.ibm.cerom", "er")

In the example above, both start and count default to 1.

The nest example starts the search at the 2nd character position, with a default
count of 1:
INSTR("wwerw.ibm.cerom", "er", 2)

The expression above returns 3, the position of the first character in the first ’er’
substring that a left-to-right search encounters.

The next example specifies a count of 2, starting the search in the first character of
the source_string:
INSTR("wwerw.ibm.cerom", "er", 1, 2)

The expression above returns 12, the character position where the second ’er’
begins.

The following example specifies -5 as the starting position, and the count specifies
the first occurrence of "er" between the 5th position and the beginning of the
source_string:
INSTR("wwerw.ibm.cerom", "er", -5, 1)

This returns 3, corresponding to the occurrence of the "er" substring that begins in
that position. The negative start argument specifies a right-to-left search, but the
return value is 3, because the reading direction of strings and substrings in the
default locale is left-to-right.

LEFT function:

The LEFT function returns a substring consisting of the leftmost N characters from
a string argument.

Chapter 4. Data types and expressions 4-177

The function has this syntax:

LEFT function:

LEFT (source_string , position)

Element Description Restrictions Syntax

position Ordinal position (from the left) in
the string; this character and all to
the left are to be returned

Must be an expression, constant, column, or
host variable of a built-in integer type, or
that can be converted to an integer

“Expression”
on page 4-44

source_string Expression that evaluates to a
character string

Must be an expression, constant, column, or
host variable of a data type that can be
converted to a character type

“Expression”
on page 4-44

The arguments to the LEFT function cannot be user-defined data types.

In left-to-right locales, such as the default U.S. English locale, this function returns
a substring of leading characters from the source_string. In locales for right-to-left
languages, such as Arabic, Farsi, or Hebrew, this function returns a substring of
trailing characters from the source_string.

What the LEFT function returns depends on the number of logical characters in
source_string and on the value of position:
v If source_string evaluates to a string with more than position characters, the return

value is a substring of source_string, consisting of all characters to the left of the
specified position.

v If source_string evaluates to a string with no more than position characters, the
return value is the entire source_string.

v If source_string evaluates to NULL, or if position is zero or negative, then NULL
is returned.

v If no position argument is specified, no string value is returned, and an exception
is issued.

The return data type is the same as its source_string argument. If a host variable is
the source, the return value is either NVARCHAR or NCHAR, according to the
length of the returned string, using the return type promotion rules that the section
Return Types from the CONCAT Function describes.

The following function expression requests the first five characters of a quoted
string:
LEFT(’www.ibm.com’,5)

In this example, the LEFT function returns the substring www.i

RIGHT function:

The RIGHT function returns a substring consisting of the rightmost N characters
from a string argument.

The function has this syntax:

4-178 IBM Informix Guide to SQL: Syntax

RIGHT function:

RIGHT (source_string , position)

Element Description Restrictions Syntax

position Ordinal position (from the right) in
the string; this character and all to
the right are to be returned

Must be an expression, constant, column, or
host variable of a built-in integer type, or
that can be converted to an integer

“Expression”
on page 4-44

source_string Expression that evaluates to a
character string

Must be an expression, constant, column, or
host variable of a data type that can be
converted to a character type

“Expression”
on page 4-44

The arguments to the RIGHT function cannot be user-defined data types.

In left-to-right locales, such as the default U.S. English locale, this function returns
a substring of trailing characters from the source_string. In locales for right-to-left
languages, such as Arabic, Farsi, or Hebrew, this function returns a substring of
leading characters from the source_string.

What the RIGHT function returns depends on the number of logical characters in
source_string and on the value of position:
v If source_string evaluates to a string with more than position characters, the return

value is a substring of source_string, consisting of all characters to the right of the
specified position.

v If source_string evaluates to a string with no more than position characters, the
return value is the entire source_string.

v If source_string evaluates to NULL, or if position is zero or negative, then NULL
is returned.

v If no position argument is specified, no string value is returned, and an exception
is issued.

The return data type is the same as its source_string argument. If a host variable is
the source, the return value is either NVARCHAR or NCHAR, according to the
length of the returned string, using the return type promotion rules that the section
Return Types from the CONCAT Function describes.

The following function expression requests the last five characters of a quoted
string:
RIGHT(’www.ibm.com’,5)

In this example, the RIGHT function returns the substring m.com

SUBSTR function:
The SUBSTR function has the same purpose as the SUBSTRING function (to
return a subset of a source string), but it uses different syntax.

SUBSTR Function:

SUBSTR (source_string , start_position)
, length

Chapter 4. Data types and expressions 4-179

Element Description Restrictions Syntax

length Number of characters to be
returned from source_string

Must be an expression, literal, column, or
host variable that returns an integer

“Expression”
on page 4-44

source_string String that serves as input to the
SUBSTR function

Must be an expression, literal, column, or
host variable of a data type that can be
converted to a character data type

“Expression”
on page 4-44

start_position Column position in source_string
where the SUBSTR function starts
to return characters

Must be an integer expression, literal,
column, or host variable. Can have a plus
sign (+), a minus sign (-), or no sign.

“Literal
Number” on
page 4-215

Any argument to the SUBSTR function must be of a built-in data type.

The SUBSTR function returns a subset of source_string. The subset begins at the
column position that start_position specifies. The following table shows how the
database server determines the starting position of the returned subset based on
the input value of the start_position.

Value of
Start_Position

How the Database Server Determines the Starting Position of the
Returned Subset

Positive Counts forward from the first character in source_string

Zero (0) Counts forward from the first character in source_string (that is, treats a
start_position of 0 as equivalent to 1)

Negative Counts backward from an origin that immediately follows the last
character in source_string. A value of -1 returns the last character in
source_string.

The length parameter specifies the number of logical characters (not the number of
bytes) in the subset. If you omit the length parameter, the SUBSTR function returns
the entire portion of source_string that begins at start_position.

If you specify a negative start_position whose absolute value is greater than the
number of characters in source_string, or if length is greater than the number of
characters from start_position to the end of source_string, SUBSTR returns NULL.
(In this case, the behavior of SUBSTR is different from that of the SUBSTRING
function, which returns all the characters from start_position to the last character of
source_string, rather than returning NULL.)

The return data type is that of the source_string argument. If a host variable is the
source, the return value is either NVARCHAR or NCHAR, according to the length
of the returned string, using the return type promotion rules that the section
Return Types from the CONCAT Function describes.

The following example specifies that the string of characters to be returned begins
at a starting position 3 characters before the end of a 7-character source_string. This
implies that the starting position is the fifth character of source_string. Because the
user does not specify a value for length, the database server returns a string that
includes all characters from character-position 5 to the end of source_string.
SELECT SUBSTR(’ABCDEFG’, -3)

FROM mytable;

The following table shows the output of this SELECT statement.

4-180 IBM Informix Guide to SQL: Syntax

(constant)

EFG

SUBSTRB function:

Returns a substring of a string, beginning at a specified position in the string.

SUBSTRB Function:

SUBSTRB (source_string , starting_position
, length

Element Description

length An expression that specifies the length of the result in bytes. If specified, the expression must
return a value that is a built-in numeric, CHAR, or VARCHAR data type. If the value is not of
type INTEGER, it is implicitly cast to INTEGER before the function is evaluated.

If the value of length is greater than the number of bytes from the starting position to the end of
the string, the length of the result is equal to is the length of the first argument minus the
starting position, plus one.

If the value of length is less than or equal to zero, the result of SUBSTRB is a NULL string.

The default for length is the number of bytes from the position specified by starting_position to
the last byte of the string.

When length is specified, the length of the result string is truncated to the value of length. In the
following example, where my_string is a 10-byte string, the result string is limited to 5 bytes:

substrB(my_string, 3, 5)

If, in the preceding example, my_string is a 4-byte string and the starting position is the third
byte, a 2-byte string is returned.

If length is not specified, the length of the result is the length of source_string beginning from the
starting_position. In the following example, where my_string is a 10-byte string, an 8-byte string
is returned:

substrB(my_string, 3)

source_string An expression that specifies the string from which the result is derived. The expression must
return a value that is a built-in string, numeric, or datetime data type. If the value is not a
string data type, it is implicitly cast to NVARCHAR before the function is evaluated. A NULL
value is returned for a zero length result.

Chapter 4. Data types and expressions 4-181

Element Description

starting_position An expression that specifies the starting position in string of the beginning of the result
substring. The expression must return a value that is a built-in numeric, CHAR, or VARCHAR
data type. If the value is not of type INTEGER, it is implicitly cast to an INTEGER before the
function is evaluated.

If starting_position is positive, then the starting position is calculated from the beginning of the
string. If starting_position is greater than the length of string, then a null string is returned. If
starting_position is negative, then the starting position is calculated from the end of the string
and by counting backwards the number of bytes. If the absolute value of starting_position is
greater than the length of source_string, then a null string is returned. If starting_position is 0, then
a starting position of 1 is used.
Note: All units of length and starting_position are expressed in terms of bytes, even for strings
encoded in multibyte code sets. SUBSTR uses the logical character size for multibyte strings. For
example, if starting_position is 2 in the legacy SUBSTR and the first character of a multibyte
string requires 3 bytes of storage, the 2 represents the fourth byte in the string. In SUBSTRB, the
2 represents the second byte in the string.

If source_string is a CHAR or VARCHAR data type, the result of the function is a
VARCHAR data type. Informix does not support multiple code pages; instead,
Informix JDBC or ODBC translates the code page to the database.

If any argument is null, the result is the null value.

In dynamic SQL, source_string, starting_position, and length can be represented by a
host variable. If a host variable is used for source_string, the data type of the
operand is VARCHAR, and the operand can be nullable.

Though not explicitly stated in the result definitions above, the semantics imply
that if source_string is a multi-byte character string, the result might contain
fragments of multi-byte characters, depending on the values of starting_position and
length. For example, the result could possibly begin with the second byte of a
multi-byte character, or end with the first byte of a multi-byte character. The
SUBSTRB function detects these partial characters and replaces each byte of an
incomplete character with a single blank character. SUBSTRB returns a fixed
number of bytes; with SUBSTR, the number of returned varies according to the
multibyte string.

SUBSTRING function:
The SUBSTRING function returns a subset of a character string.

SUBSTRING Function:

SUBSTRING (source_string FROM start_position)
FOR length

Element Description Restrictions Syntax

length Number of characters to
return from source_string

Must be an expression, constant, column, or
host variable that returns an integer

“Literal Number”
on page 4-215

source_string String argument to the
SUBSTRING function

Must be an expression, constant, column, or
host variable whose value can be converted
to a character data type

“Expression” on
page 4-44

start_position Position in source_string of
first returned character

Must be an expression, constant, column, or
host variable that returns an integer

“Literal Number”
on page 4-215

4-182 IBM Informix Guide to SQL: Syntax

Any argument to the SUBSTRING function must be of a built-in data type.

The return data type is that of the source_string argument. If a host variable is the
source, the return value is either NVARCHAR or NCHAR, according to the length
of the returned string, using the return type promotion rules that the section
Return Types from the CONCAT Function describes.

The subset begins at the column position that start_position specifies. The following
table shows how the database server determines the starting position of the
returned subset based on the input value of the start_position.

Value of
Start_Position

How the Database Server Determines the Starting Position of the
Return Subset

Positive
Counts forward from the first character in source_string

For example, if start_position = 1, the first character in the source_string is
the first character in the returned subset.

Zero (0)
Counts from one position before (that is, to the left of) the first character
in source_string

For example, if start_position = 0 and length = 1, the database server
returns NULL, whereas if length = 2, the database server returns the first
character in source_string.

Negative
Counts backward from one position after (that is, to the right of) the last
character in source_string

For example, if start_position = -1, the starting position of the returned
subset is the last character in source_string.

In locales for languages with a right-to-left writing direction, such as Arabic, Farsi,
or Hebrew, right should replace left in the preceding table.

The size of the subset is specified by length. The length parameter refers to the
number of logical characters, rather than to the number of bytes. If you omit the
length parameter, or if you specify a length that is greater than the number of
characters from start_position to the end of source_string, the SUBSTRING function
returns the entire portion of source_ string that begins at start_position. The
following example specifies that the subset of the source string that begins in
column position 3 and is two characters long should be returned:
SELECT SUBSTRING(’ABCDEFG’ FROM 3 FOR 2) FROM mytable;

The following table shows the output of this SELECT statement.

(constant)

CD

In the following example, the user specifies a negative start_position for the return
subset:
SELECT SUBSTRING(’ABCDEFG’ FROM -3 FOR 7)

FROM mytable;

Chapter 4. Data types and expressions 4-183

The database server starts at the -3 position (four positions before the first
character) and counts forward for 7 characters. The following table shows the
output of this SELECT statement.

(constant)

ABC

SUBSTRING_INDEX function:

The SUBSTRING_INDEX function searches a character string for a specified
delimiter character, and returns a substring of the leading or trailing characters,
based on a count of a delimiter that you specify as an argument to the function.

The SUBSTRING_INDEX function has this syntax:

SUBSTRING_INDEX function:

SUBSTRING_INDEX (source_string , delimiter , count)

Element Description Restrictions Syntax

source_ string Expression that evaluates to a
character string

Must be an expression, constant, column, or
host variable of a built-in character data
type, or that can be converted to a character
type

“Expression”
on page 4-44

count Expression that evaluates to a
positive or negative integer

Must be an expression, constant, column, or
host variable of a built-in integer type, or
that can be converted to an integer.

“Expression”
on page 4-44

delimiter Expression that evaluates to a
character string

Must be an expression, constant, column, or
host variable of a built-in character data
type, or that can be converted to a character
type

“Expression”
on page 4-44

Arguments to SUBSTRING_INDEX cannot be user-defined data types.

This function returns NULL in each of the following cases:
v source_string is NULL
v delimiter is NULL
v count = zero (0).

If the search finds fewer than count delimiters in the source_string, the return value
is the entire source_string.

The return value has the same data type as the source_string.

For source_string, the sign of count determines whether the returned value is a
substring of the leading characters or of the trailing characters in source_string:
v The last character in the returned substring immediately precedes the Nth

occurrence of that delimiter in a substring of leading characters, for N = count.
For example, the function expression
SUBSTRING_INDEX("www.ibm.com", ".", 2)

returns the leading characters www.ibm because count > 0.

4-184 IBM Informix Guide to SQL: Syntax

v The first character in the returned substring immediately precedes the Nth
occurrence of that delimiter in a substring of trailing characters, for N = count <
0.
For example, the function expression
SUBSTRING_INDEX("www.ibm.com", ".", -2)

returns the trailing characters ibm.com because count < 0.

The examples above apply to left-to-right locales, such as the default U.S. English
locale, in which a negative value of count causes this function to return a substring
of trailing characters from the source_string, and a positive value of count causes
this function to return a substring of leading characters from the source_string,

In locales for right-to-left languages such as Arabic, Farsi, or Hebrew, the opposite
is true. This function returns a substring of leading characters from the
source_string if count has a negative value, and returns a substring of trailing
characters if count has a positive value.

In locales that support multibyte character sets, the return value is the ordinal
value among logical characters in the source_string. In single-byte locales, such as
the default locale, the return value is equivalent to the byte position, where the
first byte is in position 1.

FORMAT_UNITS Function
The FORMAT_UNITS function can interpret strings that specify a number and the
abbreviated names of units of memory or of mass storage.

This built-in function can accept one, two, or three quoted string arguments. You
can invoke FORMAT_UNITS in SQL statements that process size specifications
expressed by standard abbreviations for bytes or for larger units (such as kilobytes,
megabytes, gigabytes, and so forth) of memory or of mass storage.

The FORMAT_UNITS function can also be called internally in the sysadmin
database by the SQL administration API ADMIN and TASK functions, which are
described in the IBM Informix Administrator's Reference.

FORMAT_UNITS Function:

FORMAT_UNITS (' number units ')
' number ' , ' units '
number , ' precision '

precision

Element Description Restrictions Syntax

number Expression that evaluates to the
number of storage or memory units

Must be a literal number or a quoted string
specifying a number that can be converted
to FLOAT

“Expression” on
page 4-44

precision Integer number of significant digits
to return from number

Must be a literal number or a quoted string
specifying an integer

“Expression” on
page 4-44

units Abbreviation of a unit of storage or
memory; the default is 'B' (for
bytes)

Must begin with 'B', 'K', 'M', 'G', 'T', 'P', or
'PB' (or the lowercase forms of these
letters). Any trailing characters are ignored.

“Quoted String” on
page 4-219

Chapter 4. Data types and expressions 4-185

This built-in function can accept one, two, or three arguments. The returned value
is a character string that shows the specified number and an appropriate format
label that shows the storage units. If you specify a precision as the last argument,
the number is returned with that precision. Otherwise, the number is formatted to
precision 3 (%3.3lf) by default.

The same notation also applies to arguments to all SQL administration API
ADMIN and TASK commands (except for commands that emulate the Enterprise
Replication cdr utility) that specify sizes of memory, of disk storage, or of address
offsets:

Notation
Corresponding Units

'B' or 'b'
Bytes (= 2 to the power 0)

'K' or 'k'
Kilobytes (= 2 to the power 10)

'M' or 'm'
Megabytes (= 2 to the power 20)

'G' or 'g'
Gigabytes (= 2 to the power 30)

'T' or 't'
Terabytes (= 2 to the power 40)

'PB' Petabytes (= 2 to the power 50)

'P' Pages (= 2 kilobytes or 4 kilobytes, depending on the base page size of the
system)

The initial letter in the unit specification (’B’, ’K’, ’M’, ’G’ or 'T’) determines the
units of measure, and any trailing characters are ignored. An exception, however, is
if the initial letter ’P’ (or ’p’) is immediately followed by 'B' or 'b' in the string,
because in this case the string is interpreted as petabytes. Any other string starting
with "P" (such as "PA", "pc", "PhD", "papyrus" and so forth) is interpreted as
specifying pages, rather than petabytes.

If one argument provides both the number and units specifications, Informix
ignores any whitespace that separates the number specification from the units
specification within the same argument to the FORMAT_UNITS, or SQL
administration API ADMIN or TASK functions. For example, the specifications
’128M’ and ’128 m’ are both interpreted as 128 megabytes.

The following examples invoke the FORMAT_UNITS function with a single
argument:
EXECUTE FUNCTION FORMAT_UNITS(’1024 M’);

The following character string value is returned.

(expression)

1.00 GB

SELECT FORMAT_UNITS(’1024 k’) FROM systables WHERE tabid=1;

The following character string value is returned.

4-186 IBM Informix Guide to SQL: Syntax

(expression)

1.00 MB

SELECT FORMAT_UNITS(tabid || ’M’) FROM systables WHERE tabid=100;

The following character string value is returned.

(expression)

100 MB

The following examples show calls to the FORMAT_UNITS function with two
arguments:
EXECUTE FUNCTION FORMAT_UNITS(1024, ’k’);

The following character string value is returned.

(expression)

1.00 MB

SELECT FORMAT_UNITS(SUM(chksize), ’P’) SIZE,
FORMAT_UNITS(SUM(nfree), ’p’) FREE FROM syschunks;

size 117 MB
free 8.05 MB

This query returns the string values size 117 MB and free 8.05 MB.

The following examples show calls to the FORMAT_UNITS function with three
arguments:
EXECUTE FUNCTION FORMAT_UNITS(1024, ’k’, 4);

The following character string value is returned.

(expression)

1.000 MB

SELECT FORMAT_UNITS(SUM(chksize), ’P’, 4), SIZE,
FORMAT_UNITS(SUM(nfree), ’p’, 4) FREE FROM syschunks;

size 117.2 MB
free 8.049 MB

This query returns the string values size 117.2 MB and free 8.047 MB. These
results differ from the previous example of a query only in their non-default
precision, which the last argument to FORMAT_UNITS specifies.

IFX_ALLOW_NEWLINE Function
The IFX_ALLOW_NEWLINE function sets a newline mode that allows newline
characters in quoted strings or disallows newline characters in quoted strings
within the current session.

The IFX_ALLOW_NEWLINE function has the following syntax.

Chapter 4. Data types and expressions 4-187

IFX_ALLOW_NEWLINE Function:

IFX_ALLOW_NEWLINE (' t ')
' f '

If you enter ’t’ as the argument of this function, you enable newline characters in
quoted strings in the session. If you enter ’f’ as the argument, you disallow
newline characters in quoted strings in the session.

You can set the newline mode for all sessions by setting the ALLOW_NEWLINE
parameter in the ONCONFIG file to a value of 0 (newline characters not allowed)
or to a value of 1 (newline characters allowed). If you do not set this configuration
parameter, the default value is 0. Each time you start a session, the new session
inherits the newline mode set in the ONCONFIG file. To change the newline mode
for the session, execute the IFX_ALLOW_NEWLINE function. Once you have set
the newline mode for a session, the mode remains in effect until the end of the
session or until you execute the IFX_ALLOW_NEWLINE function again within the
session.

In the following example, assume that you did not specify any value for the
ALLOW_NEWLINE parameter in the ONCONFIG file, so, by default, newline
characters are not allowed in quoted strings in any session. After you start a new
session, you can enable newline characters in quoted strings in that session by
executing the IFX_ALLOW_NEWLINE function:
EXECUTE PROCEDURE IFX_ALLOW_NEWLINE(’t’);

In ESQL/C, the newline mode that is set by the ALLOW_NEWLINE parameter in
the ONCONFIG file or by the execution of the IFX_ALLOW_NEWLINE function
in a session applies only to quoted-string literals in SQL statements. The newline
mode does not apply to quoted strings contained in host variables in SQL
statements. Host variables can contain newline characters within string data
regardless of the newline mode currently in effect.

For example, you can use a host variable to insert data that contains newline
characters into a column even if the ALLOW_NEWLINE parameter in the
ONCONFIG file is set to 0.

For further information on how the IFX_ALLOW_NEWLINE function affects
quoted strings, see “Quoted String” on page 4-219. For further information on the
ALLOW_NEWLINE parameter in the ONCONFIG file, see the IBM Informix
Administrator's Reference.
Related reference:

ALLOW_NEWLINE configuration parameter (Administrator's Reference)

User-Defined Functions
A user-defined function (UDF) is a routine that you write in SPL or in a language
external to the database, such as C or Java, and that returns a value to its calling
context.

A UDF as an expression has the following syntax:

4-188 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0021.htm#ids_adr_0021

User-Defined Functions:

function (�

,

(1)
Expression

parameter =

�

�
(2)

, Statement-Local Variable Declaration

)

Notes:

1 See “Expression” on page 4-44

2 See “Statement-Local Variable Declaration” on page 4-190

Element Description Restrictions Syntax

function Name of the function Function must exist “Database Object
Name” on page
5-16

parameter Name of an argument that was
declared in a CREATE FUNCTION
statement

If you use the parameter = option for any
argument in the called function, you must
use it for all arguments

“Identifier” on page
5-21

You can call user-defined functions within SQL statements. Unlike built-in
functions, user-defined functions can be invoked only by the creator of the
function, and by the DBA, and by users who have been granted the Execute
privilege on the function. For more information, see “Routine-Level Privileges” on
page 2-513.

The following examples show some user-defined function expressions. The first
example omits the parameter option when it lists the function argument:
read_address(’Miller’)

This second example uses the parameter option to specify the argument value:
read_address(lastname = ’Miller’)

When you use the parameter option, the parameter name must match the name of
the corresponding parameter in the function registration. For example, the
preceding example assumes that the read_address() function was registered as
follows:
CREATE FUNCTION read_address(lastname CHAR(20))

RETURNING address_t ... ;

A statement-local variable (SLV) enables an application to transmit a value from a
user-defined function call to another part of the same SQL statement.

To use an SLV with a call to a user-defined function

1. Write one or more OUT parameters (and for UDRs written in the Java or in the
SPL language, INOUT parameters) for the user-defined function.

Chapter 4. Data types and expressions 4-189

For information about how to write a UDR with OUT or INOUT parameters,
see IBM Informix User-Defined Routines and Data Types Developer's Guide.

2. When you register the user-defined function, specify the OUT keyword before
each OUT parameter, and the INOUT keyword before each INOUT parameter.
For more information, see “Specifying INOUT Parameters for a User-Defined
Routine” on page 5-74, and “Specifying OUT Parameters for User-Defined
Routines” on page 5-73.

3. Declare the SLV in a function expression that calls the user-defined function
with each OUT and INOUT parameter.
The call to the user-defined function must be made within a WHERE clause.
For information about the syntax to declare the SLV, see “Statement-Local
Variable Declaration.”

4. Use the SLV that the user-defined function has initialized within the SQL
statement.
After the call to the user-defined function has initialized the SLV, you can use
this value in other parts of the same SQL statement in which the SLV was
declared, including subqueries of the query whose WHERE clause includes the
SLV declaration. For information about the use of an SLV within the SELECT
statement, see “Statement-Local Variable Expressions” on page 4-192.

Besides using a SLV to retrieve a value from an OUT or INOUT parameter, you
can also use a local variable or a parameter of an SPL routine to retrieve values
from an SPL or C routine that has OUT or INOUT parameters.

Statement-Local Variable Declaration:

The Statement-Local Variable Declaration declares a statement-local variable (SLV)
in a call to a user-defined function that defines one or more OUT or INOUT
parameters.

A Statement-Local Variable Declaration has this syntax:

Statement-Local Variable Declaration:

slv_name #
(1)

Built-In Data Type
opaque_data_type
distinct_data_type

(2)
Complex Data Type

Notes:

1 See “Built-In Data Types” on page 4-24

2 See “Complex Data Type” on page 4-38

Element Description Restrictions Syntax

distinct_data_type Name of a distinct data type The distinct data type must already exist
in the database

“Identifier”
on page 5-21

opaque_data_type Name of an opaque data type The opaque data type must already exist
in the database

“Identifier”
on page 5-21

slv_name Name of a statement local variable
you are defining

The slv_name is valid only for the life of
the statement, and must be unique within
the statement

“Identifier”
on page 5-21

4-190 IBM Informix Guide to SQL: Syntax

You can declare an SLV in a call to a user-defined function if both of the following
conditions are true:
v The UDF has one or more OUT or INOUT parameters
v The SLV is declared when the UDF is invoked in the WHERE clause of a query.

The SLV declaration in the WHERE clause assigns the value of an OUT or INOUT
parameter to the SLV, with the sharp (#) symbol between the identifier of the SLV
and its declared data type. The UDF can be written in the SPL, C, or Java
language. For example, if you register a function with the following CREATE
FUNCTION statement, you can assign the value of its y parameter, which is an
OUT parameter, to an SLV in a WHERE clause:
CREATE FUNCTION find_location(a FLOAT, b FLOAT, OUT y INTEGER)

RETURNING VARCHAR(20)
EXTERNAL NAME "/usr/lib/local/find.so"

LANGUAGE C;

In this example, find_location() accepts two FLOAT values that represent a
latitude and a longitude and return the name of the nearest city with an extra
value of type INTEGER that represents the population rank of the city.

You can now call find_location() in a WHERE clause:
SELECT zip_code_t FROM address

WHERE address.city = find_location(32.1, 35.7, rank # INT)
AND rank < 101;

The function expression passes two FLOAT values to find_location() and declares
an SLV named rank of type INT. In this case, find_location() will return the name
of the city nearest latitude 32.1 and longitude 35.7 (which might be a heavily
populated area) whose population rank is between 1 and 100. The statement then
returns the zip code that corresponds to that city.

The SLV can be declared only in a call to the UDF in the WHERE clause of the
SELECT statement. The scope of reference of the SLV includes other parts of the
same SELECT statement. The following SELECT statement, however, is invalid
because the SLV declaration is in the projection list of the Projection clause, rather
than in the WHERE clause:
-- invalid SELECT statement
SELECT title, contains(body, ’dog and cat’, rank # INT), rank

FROM documents;

The data type that you specify when you declare the SLV must be the same data
type as the corresponding OUT or INOUT parameter in the CREATE FUNCTION
statement. If you use different but compatible data types, such as INTEGER and
FLOAT, the database server automatically performs the cast between the data
types.

SLVs share the name space with UDR variables and the column names of the table
involved in the SQL statement. Therefore, the database uses the following
descending order of precedence to resolve name conflicts among the following
objects:
v UDR variables
v Column names
v SLVs

Chapter 4. Data types and expressions 4-191

After the call to the UDF assigns the value of an OUT or INOUT parameter to the
SLV, you can reference the SLV in other parts of the same query. For more
information, see “Statement-Local Variable Expressions.”

Statement-Local Variable Expressions
The Statement-Local Variable Expression specifies a statement-local variable (SLV)
that you can use elsewhere in the same SELECT statement.

Statement-Local Variable Expressions:

SLV_variable

Element Description Restrictions Syntax

SLV_variable Statement-local variable (SLV) assigned
in a call to a user-defined function in
the same query

The SLV_variable exists only while the
query is executing. Its name must be
unique within the query

“Identifier” on
page 5-21

You define an SLV in the call to a user-defined function in the WHERE clause of
the SELECT statement. This user-defined function must be defined with one or
more OUT or INOUT parameters. The call to the user-defined function assigns the
value of the OUT or INOUT parameters to the SLVs. For more information, see
“Statement-Local Variable Declaration” on page 4-190.

Once the user-defined function assigns its OUT or INOUT parameters to the SLVs,
you can use these values in other parts of the same SELECT statement, subject to
the following scope-of-reference rules:
v The SLV is read-only throughout the query (or subquery) in which it is defined.
v The scope of an SLV extends from the query in which the SLV is defined down

into all nested subqueries.
v In nested queries, the scope of an SLV does not extend upwards.

In other words, if a query contains one or more subqueries, an SLV that is
defined in the query is also visible to all the subqueries of that query. But if the
SLV is defined in the subquery, it is not visible to the parent query.

v In queries that include the UNION operator, the SLV is only visible in the query
in which it is defined.
The SLV is not visible to any other queries specified in the UNION.

v For INSERT, DELETE, and UPDATE statements, an SLV is not visible outside the
SELECT portion of the statement.
Within this SELECT portion of a DML statement, all the above scoping rules
apply.

Important: A statement-local variable is in scope only for the duration of a single
SQL statement.

The following SELECT statement calls the find_location() function in a WHERE
clause and defines the rank SLV. Here find_location() accepts two values that
represent a latitude and a longitude and return the name of the nearest city with
an extra value of type INTEGER that represents the population rank of the city.
SELECT zip_code_t FROM address

WHERE address.city = find_location(32.1, 35.7, rank # INT)
AND rank < 101;

4-192 IBM Informix Guide to SQL: Syntax

When execution of the find_location() function completes successfully, the function
has initialized the rank SLV. The SELECT then uses this rank value in a second
WHERE clause condition. In this example, the Statement-Local Variable Expression
is the variable rank in the second WHERE clause condition:
rank < 101

The number of OUT and INOUT parameters and SLVs that a UDF can have is not
restricted. (Releases of Informix earlier than Version 9.4 restricted user-defined
functions to a single OUT parameter and no INOUT parameters, thereby restricting
the number of SLVs to no more than one.)

If the user-defined function that initializes the SLVs is not executed in an iteration
of the statement, the SLVs each have a value of NULL. Values of SLVs do not
persist across iterations of the statement. At the start of each iteration, the database
server sets the SLV values to NULL.

The following partial statement calls two user-defined functions with OUT
parameters, whose values are referenced with the SLV names out1 and out2:
SELECT...

WHERE func_2(x, out1 # INTEGER) < 100
AND (out1 = 12 OR out1 = 13)
AND func_3(a, out2 # FLOAT) = "SAN FRANCISCO"
AND out2 = 3.1416;

If a function assigns one or more OUT or INOUT parameter values from another
database of the local database server to SLVs, the values must be of built-in data
types, or DISTINCT data types whose base types are built-in data types (and that
you cast explicitly to built-in data types), or must be opaque UDTs that you cast
explicitly to built-in data types. All the opaque UDTs, DISTINCT types, type
hierarchies, and casts must be defined exactly the same way in all of the
participating databases.

For more information on how to write a user-defined function with OUT or
INOUT parameters, see IBM Informix User-Defined Routines and Data Types
Developer's Guide.

Aggregate Expressions
An aggregate expression uses an aggregate function to summarize selected
database data. The built-in aggregate functions have the following syntax.

Aggregate Expressions:

COUNT(*)
AVG (
COUNT Aggregate Scope Qualifiers)
MAX ALL (1)
MIN Subset of Expression)
SUM
RANGE
STDEV
VARIANCE

(2)
User-Defined Aggregates

Chapter 4. Data types and expressions 4-193

Aggregate Scope Qualifiers:

ALL
column

DISTINCT table .
UNIQUE alias .

view .
synonym .

Notes:

1 See “Subset of Expressions Valid in an Aggregate Expression” on page 4-195

2 See “User-Defined Aggregates” on page 4-195

Element Description Restrictions Syntax

column Column to which aggregate function
is applied

See headings for individual
keywords on pages that follow

“Identifier” on page 5-21

alias,
synonym,
table, view

Synonym, table, view, or alias that
contains column

Synonym and the table or view to
which it points must exist

“Identifier” on page 5-21

You cannot use an aggregate expression in a condition that is part of a WHERE
clause unless you use the aggregate expression within a subquery. You cannot
apply an aggregate function to a BYTE or TEXT column. For other general
restrictions, see “Subset of Expressions Valid in an Aggregate Expression” on page
4-195.

An aggregate function returns one value for a set of queried rows. The following
examples show aggregate functions in SELECT statements:
SELECT SUM(total_price) FROM items WHERE order_num = 1013;

SELECT COUNT(*) FROM orders WHERE order_num = 1001;

SELECT MAX(LENGTH(fname) + LENGTH(lname)) FROM customer;

If you use an aggregate function and one or more columns in the projection list of
the Projection clause, you must include all the column names that are not used as
part of an aggregate or time expression in the GROUP BY clause.
Related reference:

Functions in SELECT statements (SQL Tutorial)

Handle character data (GLS User's Guide)

Types of Aggregate Expressions
SQL statements can include built-in aggregates and user-defined aggregates. The
built-in aggregates include all the aggregates shown in the syntax diagram in
“Aggregate Expressions” on page 4-193 except for the “User-Defined Aggregates”
category. User-defined aggregates are any new aggregates that the user creates
with the CREATE AGGREGATE statement.

Built-in Aggregates: Built-in aggregates are aggregate functions that are defined
by the database server, such as AVG, SUM, and COUNT. These aggregates work
only with built-in data types, such as INTEGER and FLOAT. You can extend these
built-in aggregates to work with extended data types. To extend built-in
aggregates, you must create UDRs that overload several binary operators.

4-194 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_111.htm#ids_sqt_111
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_121.htm#ids_gug_121

After you overload the binary operators for a built-in aggregate, you can use that
aggregate with an extended data type in an SQL statement. For example, if you
have overloaded the plus operator for the SUM aggregate to work with a specified
row type and assigned this row type to the complex column of the complex_tab
table, you can apply the SUM aggregate to the complex column:
SELECT SUM(complex) FROM complex_tab;

For more information on how to extend built-in aggregates, see IBM Informix
User-Defined Routines and Data Types Developer's Guide. For information on how to
invoke built-in aggregates, see the descriptions of individual built-in aggregates in
the following pages.

User-Defined Aggregates: A user-defined aggregate is an aggregate that you
define to perform an aggregate computation that the database server does not
provide. For example, you can create a user-defined aggregate named SUMSQ that
returns the sum of the squared values of a specified column. User-defined
aggregates can work with built-in data types or extended data types or both,
depending on how you define the support functions for the user-defined
aggregate.

To create a user-defined aggregate, use the CREATE AGGREGATE statement. In
this statement you name the new aggregate and specify the support functions for
the aggregate. Once you create the new aggregate and its support functions, you
can use the aggregate in SQL statements. For example, if you created the SUMSQ
aggregate and specified that it works with the FLOAT data type, you can apply the
SUMSQ aggregate to a FLOAT column named digits in the test table:
SELECT SUMSQ(digits) FROM test;

For more information on how to create user-defined aggregates, see “CREATE
AGGREGATE statement” on page 2-144 and the discussion of user-defined
aggregates in IBM Informix User-Defined Routines and Data Types Developer's Guide.
For information on how to invoke user-defined aggregates, see “User-Defined
Aggregates” on page 4-204.
Related reference:
“CREATE AGGREGATE statement” on page 2-144

Subset of Expressions Valid in an Aggregate Expression
As indicated in the diagrams for “Aggregate Expressions” on page 4-193 and
“User-Defined Aggregates” on page 4-204, not all expressions are available when
you use an aggregate expression. The argument of an aggregate function, for
example, cannot itself contain an aggregate function. You cannot use aggregate
functions in the following contexts:
v In a WHERE clause, but with these two exceptions:

– unless the aggregate is specified in the Projection clause of a subquery within
the WHERE clause,

– or unless the aggregate is on a correlated column from a parent query, and
the WHERE clause is in a subquery within a HAVING clause.

v As an argument to an aggregate function.
The following nested aggregate expression is not valid:
MAX (AVG (order_num))

v On a column of any of the following data types:
– Large object (BLOB, BYTE, CLOB, TEXT)
– Collection data types (LIST, MULTISET, SET)

Chapter 4. Data types and expressions 4-195

– ROW data types (named or unnamed)
– OPAQUE data types (except with user-defined aggregate functions that

support opaque types).

You cannot use a column that is a collection data type as an argument to the
following aggregate functions:
v AVG

v SUM

v MIN

v MAX

Expression or column arguments to built-in aggregates (except for COUNT, MAX,
MIN, and RANGE) must return numeric or INTERVAL data types, but RANGE
also accepts DATE and DATETIME arguments.

For SUM and AVG, you cannot use the difference between two DATE values
directly as the argument to an aggregate, but you can use DATE differences as
operands within arithmetic expression arguments. For example:
SELECT . . . AVG(ship_date - order_date);

returns error -1201, but the following equivalent expression is valid:
SELECT . . . AVG((ship_date - order_date)*1);

Including or excluding duplicates in the result set
You can use the ALL, DISTINCT, or UNIQUE keywords to qualify the scope of an
aggregate function.

If you include an aggregate scope qualifier, it must be the first item in the
argument list.

The ALL keyword specifies that all values selected from the column or expression,
including any duplicate values, are used in the calculation. Because ALL is the
default scope for aggregate functions, the following two aggregate expressions are
equivalent, and their return value is based on the value of all qualifying rows in
the ship_weight column:
AVG(ship_weight)
AVG(ALL ship_weight)

Including the DISTINCT keyword as the first argument to the aggregate function
restricts its subsequent arguments to unique values from the specified column. The
UNIQUE and DISTINCT keywords are synonyms in this context. The following
two aggregate expressions are equivalent, and their return value is based on the set
of unique values in qualifying rows of the ship_weight column:
AVG(DISTINCT ship_weight)
AVG(UNIQUE ship_weight)

If several qualifying rows have the same ship_weight value, only one instance of
that value is included in calculating the value of the aggregate.

If a query includes the DISTINCT or UNIQUE keyword (rather than the ALL
keyword or no keyword) in the Projection clause whose Select list also includes an
aggregate function whose argument list begins with the DISTINCT or UNIQUE
keyword, the database server issues an error, as in the following example: .

4-196 IBM Informix Guide to SQL: Syntax

SELECT DISTINCT AVG(DISTINCT ship_weight)
FROM orders;

That is, it is not valid in the same query for both the Projection clause and for an
aggregate function to restrict the result set to unique values.
SELECT AVG(UNIQUE ship_weight), COUNT (DISTINCT customer_num)

FROM orders;

AVG Function
The AVG function returns the average of all values in the specified column or
expression.

You can apply the AVG function only to number columns. The query in the
following example finds the average price of a helmet:
SELECT AVG(unit_price) FROM stock WHERE stock_num = 110;

The return value is calculated by dividing the sum of unit_price values by the
cardinality of the qualifying rows.

If you use the DISTINCT or UNIQUE keyword as the first argument, the average
(meaning the mean) is calculated from only the distinct values in the specified
column or expression. In the following example, only one instance of any duplicate
values is included when the sum and the cardinality are calculated:
SELECT AVG(DISTINCT unit_price) FROM stock WHERE stock_num = 110;

If the data set included no duplicate values, both examples above return the same
AVG value.

NULL values are ignored unless every value in the column or expression is NULL.
If every value is NULL, the AVG function returns NULL for that column or
expression.

Overview of COUNT Functions
The COUNT function is actually a set of functions that enable you to count
column values in different ways, according to arguments after the COUNT
keyword.

Each form of the COUNT function is explained in the following subsections. For a
comparison of the different forms of the COUNT function, see “Arguments to the
COUNT Functions” on page 4-198.

COUNT(*) function
The COUNT (*) function returns the number of rows that satisfy the WHERE
clause of a SELECT statement.

The following example finds how many rows in the stock table have the value HRO
in the manu_code column:
SELECT COUNT(*) FROM stock WHERE manu_code = ’HRO’;

The following example queries one of the System Monitoring Interface (SMI) tables
to find the number of extents in the customer table:
SELECT COUNT(*) FROM sysextents WHERE dbs_name = ’stores’ AND tabname = customer";

Chapter 4. Data types and expressions 4-197

You can use COUNT(*) as the Projection clause in queries of this general format to
obtain information from the SMI tables. For information about sysextents and
other SMI tables, see the IBM Informix Administrator's Reference chapter that
describes the sysmaster database.

If the SELECT statement does not have a WHERE clause, the COUNT (*) function
returns the total number of rows in the table. The following example finds how
many rows are in the stock table:
SELECT COUNT(*) FROM stock;

If the SELECT statement contains a GROUP BY clause, the COUNT (*) function
reflects the number of values in each group. The following example is grouped by
the first name; the rows are selected if the database server finds more than one
occurrence of the same name:
SELECT fname, COUNT(*) FROM customer GROUP BY fname

HAVING COUNT(*) > 1;

If the value of one or more rows is NULL, the COUNT (*) function includes the
NULL columns in the count unless the WHERE clause explicitly omits them.

COUNT DISTINCT and COUNT UNIQUE functions
The COUNT DISTINCT and COUNT UNIQUE functions return unique values.

The COUNT DISTINCT function returns the number of unique values in the
column or expression, as the following example shows.
SELECT COUNT (DISTINCT item_num) FROM items;

If the COUNT DISTINCT function encounters NULL values, it ignores them
unless every value in the specified column is NULL. If every column value is
NULL, the COUNT DISTINCT function returns zero (0).

The UNIQUE keyword has the same meaning as the DISTINCT keyword in
COUNT functions. The UNIQUE keyword instructs the database server to return
the number of unique non-NULL values in the column or expression. The
following example calls the COUNT UNIQUE function, but it is equivalent to the
preceding example that calls the COUNT DISTINCT function:
SELECT COUNT (UNIQUE item_num) FROM items;

SELECT COUNT (UNIQUE item_num), COUNT (DISTINCT order_num) FROM items;

COUNT column Function
The COUNT column function returns the total number of non-NULL values in the
column or expression, as the following example shows:
SELECT COUNT (item_num) FROM items;

The ALL keyword can precede the specified column name for clarity, but the query
result is the same whether you include the ALL keyword or omit it.

The following example shows how to include the ALL keyword in the COUNT
column function:
SELECT COUNT (ALL item_num) FROM items;

Arguments to the COUNT Functions
The COUNT function accepts as its argument the same expressions that are
allowed in the argument list of other built-in aggregate functions, as well as the

4-198 IBM Informix Guide to SQL: Syntax

asterisk (*) notation that only COUNT supports. The following categories of
built-in expressions are supported as the argument to COUNT, as illustrated in the
following examples:
v Arithmetic Expressions

COUNT(times(informix.sysfragments.evalpos,2))

SELECT COUNT(a+1), COUNT(2*a), COUNT(5/a), COUNT(times(a, 2)) FROM myTable;

v Bitwise Logical Functions
COUNT(BITAND(informix.systables.flags,1))

SELECT COUNT(BITAND(a,1)), COUNT(BITOR(8, 20)), COUNT(BITXOR(41, 33)),
COUNT(BITANDNOT(20,-20)), COUNT(BITNOT(8)) FROM myTable;

v Cast Expressions
COUNT(NULL::int)

v Conditional Expressions
COUNT(CASE WHEN stock.description = "baseball gloves" THEN 1 ELSE NULL END)

SELECT COUNT(CASE WHEN s=14 THEN 1 ELSE NULL END) AS cnt14 FROM all_types;
SELECT COUNT(NVL (ch, ’Addr unk’)) FROM all_types;
SELECT COUNT(NULLIF(ch, NULL)) FROM all_types;

v Constant Expressions
COUNT(CURRENT_ROLE)
COUNT(DATETIME (2007-12-6) YEAR TO DAY)

SELECT COUNT("XX"), COUNT(99),COUNT("t") FROM sysmaster:sysdual;
SELECT COUNT(SET{6, 9, 9, 4}) FROM sysmaster:sysdual;
SELECT COUNT("ROW(7, 3, 6.0, 2.0)") FROM sysmaster:sysdual;
SELECT COUNT(USER), COUNT(CURRENT), COUNT(SYSDATE) from sysmaster:sysdual;
SELECT COUNT(CURRENT_ROLE), COUNT(DEFAULT_ROLE) from sysmaster:sysdual;
SELECT COUNT(DBSERVERNAME), COUNT(TODAY), COUNT(CURRENT) from sysmaster:sysdual;
SELECT COUNT(DATETIME (2007-12-6) YEAR TO DAY) from sysmaster:sysdual;
SELECT COUNT(INTERVAL (16) DAY TO DAY) FROM sysmaster:sysdual;
SELECT COUNT(5 UNITS DAY) FROM sysmaster:sysdual;

v Function Expressions
COUNT(LENGTH (’abc’) + LENGTH (stock.description}
COUNT(DBINFO(’sessionid’))
COUNT(user_proc()) --> Here proc() is a user-defined routine.

v Column Expressions
COUNT(informix.sysfragauth.fragment)

You can also use the asterisk (*) character, or a column name, or a column name
with the ALL, DISTINCT, or UNIQUE aggregate scope qualifiers as the argument
to the COUNT function to retrieve different types of information about a table.
The table below summarizes the meaning of each of the following forms of the
COUNT function with an asterisk or column name argument.

COUNT Function Description

COUNT (*) Returns the number of rows that satisfy the query. If you do not
specify a WHERE clause, this function returns the total number
of rows in the table.

COUNT (DISTINCT) or
COUNT (UNIQUE)

Returns the number of unique non-NULL values in the specified
column

COUNT (column) or
COUNT (ALL column)

Returns the total number of non-NULL values in the specified
column

Chapter 4. Data types and expressions 4-199

Some examples can help to show the differences among the various forms of the
COUNT function that reference a column. Most of the following examples query
against the ship_instruct column of the orders table in the stores_demo
demonstration database. For information on the schema of the orders table and the
data values in the ship_instruct column, see the description of the demonstration
database in the IBM Informix Guide to SQL: Reference.

Examples of the COUNT(*) Function:
In the following example, the user wants to know the total number of rows in the
orders table. So the user calls the COUNT(*) function in a SELECT statement
without a WHERE clause:
SELECT COUNT(*) AS total_rows FROM orders;

The following table shows the result of this query.

total_rows

23

In the following example, the user wants to know how many rows in the orders
table have a NULL value in the ship_instruct column. The user calls the
COUNT(*) function in a SELECT statement with a WHERE clause, and specifies
the IS NULL condition in the WHERE clause:
SELECT COUNT (*) AS no_ship_instruct FROM orders

WHERE ship_instruct IS NULL;

The following table shows the result of this query.

no_ship_instruct

2

In the following example, the user wants to know how many rows in the orders
table have the value express in the ship_instruct column. So the user calls the
COUNT(*) function in the projection list and specifies the equals (=) relational
operator in the WHERE clause.
SELECT COUNT (*) AS ship_express FROM ORDERS

WHERE ship_instruct = ’express’;

The following table shows the result of this query.

ship_express

6

Examples of the COUNT DISTINCT Function:
In the next example, the user wants to know how many unique non-NULL values
are in the ship_instruct column of the orders table. The user calls the COUNT
DISTINCT function in the projection list of the SELECT statement:
SELECT COUNT(DISTINCT ship_instruct) AS unique_notnulls

FROM orders;

The following table shows the result of this query.

4-200 IBM Informix Guide to SQL: Syntax

unique_notnulls

16

Examples of the COUNT column Function:
In the following example the user wants to know how many non-NULL values are
in the ship_instruct column of the orders table. The user invokes the
COUNT(column) function in the Projection list of the SELECT statement:
SELECT COUNT(ship_instruct) AS total_notnulls FROM orders;

The following table shows the result of this query.

total_notnulls

21

A similar query for non-NULL values in the ship_instruct column can include the
ALL keyword in the parentheses that follow the COUNT keyword:
SELECT COUNT(ALL ship_instruct) AS all_notnulls FROM orders;

The following table shows that the query result is the same whether you include or
omit the ALL keyword (because ALL is the default).

all_notnulls

21

MAX Function
The MAX function returns the largest value in the specified column or expression.

Using the DISTINCT keyword does not change the results. The query in the
following example finds the most expensive item that is in stock but has not been
ordered:
SELECT MAX(unit_price) FROM stock

WHERE NOT EXISTS (SELECT * FROM items
WHERE stock.stock_num = items.stock_num AND
stock.manu_code = items.manu_code);

NULLs are ignored unless every value in the column is NULL. If every column
value is NULL, the MAX function returns a NULL for that column.

MIN Function
The MIN function returns the lowest value in the column or expression. Using the
DISTINCT keyword does not change the results. The following example finds the
least expensive item in the stock table:
SELECT MIN(unit_price) FROM stock;

NULL values are ignored unless every value in the column is NULL. If every
column value is NULL, the MIN function returns a NULL for that column.

SUM Function
The SUM function returns the sum of all the values in the specified column or
expression, as the following example shows:
SELECT SUM(total_price) FROM items WHERE order_num = 1013;

Chapter 4. Data types and expressions 4-201

If you include the DISTINCT or UNIQUE keyword, the returned sum is for only
distinct values in the column or expression:
SELECT SUM(DISTINCT total_price) FROM items WHERE order_num = 1013;

NULL values are ignored unless every value in the column is NULL. If every
column value is NULL, the SUM function returns a NULL for that column. You
cannot use the SUM function with a non-numeric column.

RANGE Function
The RANGE function returns the range of values for a numeric column expression
argument.

It calculates the difference between the maximum and the minimum values, as
follows:
range(expr) = max(expr) - min(expr);

You can apply the RANGE function only to numeric columns. The following query
finds the range of ages for a population:
SELECT RANGE(age) FROM u_pop;

As with other aggregates, the RANGE function applies to the rows of a group
when the query includes a GROUP BY clause, as the next example shows:
SELECT RANGE(age) FROM u_pop GROUP BY birth;

Because DATE values are stored internally as integers, you can use the RANGE
function on DATE columns. With a DATE column, the return value is the number
of days between the earliest and latest dates in the column.

NULL values are ignored unless every value in the column is NULL. If every
column value is NULL, the RANGE function returns a NULL for that column.

Important: All computations for the RANGE function are performed in 32-digit
precision, which should be sufficient for many sets of input data. The computation,
however, loses precision or returns incorrect results when all of the input data
values have 16 or more digits of precision.

STDEV Function
The STDEV function computes the standard deviation of a data set, which is the
square root of the VARIANCE function. You can apply the STDEV function only
to numeric columns. The next query finds the standard deviation:
SELECT STDEV(age) FROM u_pop WHERE u_pop.age > 0;

As with the other aggregates, the STDEV function applies to the rows of a group
when the query includes a GROUP BY clause, as this example shows:
SELECT STDEV(age) FROM u_pop GROUP BY birth WHERE STDEV(age) > 0;

NULL values are ignored unless every value in the specified column is NULL. If
every column value is NULL, STDEV returns a NULL for that column.

Important: All computations for the STDEV function are performed in 32-digit
precision, which should be sufficient for many sets of input data. The computation,
however, loses precision or returns incorrect results when all of the input data
values have 16 or more digits of precision.

You cannot use this function on columns of type DATE.

4-202 IBM Informix Guide to SQL: Syntax

Within a SELECT Statement with GROUP BY clause, STDEV returns a zero
variance for a count of 1. You can omit this special case through appropriate query
construction (for example, "HAVING COUNT(*) > 1"). Otherwise, a data set that has
only a few cases might block the rest of the query result.

VARIANCE Function
The VARIANCE function returns an estimate of the population variance, as the
standard deviation squared.

VARIANCE calculates the following value:
(SUM(Xi

2) - (SUM(Xi)
2)/N)/(N - 1)

In this formula,
v Xi is each value in the column,
v and N is the total number of non-NULL values in the column (unless all values

are NULL, in which case the variance is logically undefined, and the
VARIANCE function returns NULL).

You can apply the VARIANCE function only to numeric columns.

The following query estimates the variance of age values for a population:
SELECT VARIANCE(age) FROM u_pop WHERE u_pop.age > 0;

As with the other aggregates, the VARIANCE function applies to the rows of a
group when the query includes a GROUP BY clause, as in this example:
SELECT VARIANCE(age) FROM u_pop GROUP BY birth

WHERE VARIANCE(age) > 0;

As previously noted, VARIANCE ignores NULL values unless every qualified row
is NULL for a specified column. If every value is NULL, then VARIANCE returns
a NULL result for that column. (This typically indicates missing data, and is not
necessarily a good estimate of underlying population variance.)

If N, the total number of qualifying non-NULL column values, equals 1, then the
VARIANCE function returns zero (another implausible estimate of the true
population variance). To omit this special case, you can modify the query. For
example, you might include a HAVING COUNT(*) > 1 clause.

Important: All calculations for the VARIANCE function are performed in 32-digit
precision, which should be sufficient for many sets of input data. The calculation,
however, loses precision or returns incorrect results when all of the input data
values have 16 or more digits of precision.

Although DATE values are stored internally as an integer, you cannot use the
VARIANCE function on columns of data type DATE.

Error Checking in ESQL/C
Aggregate functions always return exactly one row. If no rows are selected, the
function returns a NULL. You can use the COUNT (*) function to determine
whether any rows were selected, and you can use an indicator variable to
determine whether any selected rows were empty. Fetching a row with a cursor
that is associated with an aggregate function always returns one row; hence, 100
for end of data is never returned into the sqlcode variable for a first FETCH
attempt.

Chapter 4. Data types and expressions 4-203

You can also use the GET DIAGNOSTICS statement for error checking.

Summary of Aggregate Function Behavior
An example can help to summarize the behavior of the aggregate functions.
Assume that the testtable table has a single INTEGER column that is named num.
The contents of this table are as follows.

num

2

2

2

3

3

4

(NULL)

You can use aggregate functions to obtain information about the num column and
the testtable table. The following query uses the AVG function to obtain the
average of all the non-NULL values in the num column:
SELECT AVG(num) AS average_number FROM testtable;

The following table shows the result of this query.

average_number

2.66666666666667

You can use the other aggregate functions in SELECT statements that are similar to
the preceding example. If you enter a series of SELECT statements that have
different aggregate functions in the projection list and do not include a WHERE
clause, you receive the results that the following table shows.

Function Results Function Results

COUNT (*) 7 MAX 4

COUNT (DISTINCT) 3 MAX(DISTINCT) 4

COUNT (ALL num) 6 MIN 2

COUNT (num) 6 MIN(DISTINCT) 2

AVG 2.66666666666667 RANGE 2

AVG (DISTINCT) 3.00000000000000 SUM 16

STDEV 0.74535599249993 SUM(DISTINCT) 9

VARIANCE 0.55555555555556

User-Defined Aggregates
You can create your own aggregate expressions with the CREATE AGGREGATE
statement and then invoke these aggregates wherever you can invoke the built-in
aggregates.

The following diagram shows the syntax for invoking a user-defined aggregate.

4-204 IBM Informix Guide to SQL: Syntax

User-Defined Aggregates:

aggregate (
ALL

column
DISTINCT table.
UNIQUE view.

synonym.
ALL (1)

Subset of Expression

, setup_expr
�

�)

Notes:

1 See “Subset of Expressions Valid in an Aggregate Expression” on page 4-195

Element Description Restrictions Syntax

aggregate Name of the user-defined
aggregate to invoke

The aggregate and the support functions
defined for aggregate must exist

“Identifier” on page
5-21

column Name of a column within table Must exist and have a numeric data type “Quoted String” on
page 4-219

setup_expr Set-up expression that
customizes aggregate for a
specific invocation

Cannot be a lone host variable. Any
columns referenced in setup_expr must be in
the GROUP BY clause of the query

“Expression” on
page 4-44

synonym, table,
view

Synonym, table, or view in
which column occurs

The synonym and the table or view to which
it points must exist

“Identifier” on page
5-21

Use the DISTINCT or UNIQUE keywords to specify that the user-defined
aggregate is to be applied only to unique values in the named column or
expression. Use the ALL keyword to specify that the aggregate is to be applied to
all values in the named column or expression.

If you omit the DISTINCT, UNIQUE, and ALL keywords, ALL is the default. For
further information on the DISTINCT, UNIQUE, and ALL keywords, see
“Including or excluding duplicates in the result set” on page 4-196.

When you specify a setup expression, this value is passed to the INIT support
function that was defined for the user-defined aggregate in the CREATE
AGGREGATE statement.

In the following example, you apply the user-defined aggregate named my_avg to
all values of the quantity column in the items table:
SELECT my_avg(quantity) FROM items

In the following example, you apply the user-defined aggregate named my_sum to
unique values of the quantity column in the items table. You also supply the value
5 as a setup expression. This value might specify that the initial value of the sum
that my_avg will compute is 5.
SELECT my_sum(DISTINCT quantity, 5) FROM items

In the following example, you apply the user-defined aggregate named my_max to
all values of the quantity column in the remote items table:
SELECT my_max(remote.quantity) FROM rdb@rserv:items remote

Chapter 4. Data types and expressions 4-205

If the my_max aggregate is defined as EXECUTEANYWHERE, then the distributed
query can be pushed to the remote database server, rserv, for execution. If the
my_max aggregate is not defined as EXECUTEANYWHERE, then the distributed
query scans the remote items table and computes the my_max aggregate on the
local database server.

You cannot qualify a user-defined aggregate with the name of a remote database
server, as the following example shows. In this case, the database server returns an
error:
SELECT rdb@rserv:my_max(remote.quantity)

FROM rdb@rserv:items remote

For further information on user-defined aggregates, see “CREATE AGGREGATE
statement” on page 2-144 and the discussion of user-defined aggregates in IBM
Informix User-Defined Routines and Data Types Developer's Guide.

INTERVAL Field Qualifier
The INTERVAL field qualifier specifies the precision, in time units, for an
INTERVAL value. Use the INTERVAL Field Qualifier segment whenever you see a
reference to an INTERVAL field qualifier in a syntax diagram.

Syntax

INTERVAL Field Qualifier:

DAY TO DAY
(precision) TO HOUR

TO MINUTE
TO SECOND
TO FRACTION

(scale)
HOUR TO HOUR

(precision) TO MINUTE
TO SECOND
TO FRACTION

(scale)
MINUTE TO MINUTE

(precision) TO SECOND
TO FRACTION

(scale)
SECOND TO SECOND

(precision) TO FRACTION
FRACTION TO FRACTION

(scale)
YEAR TO YEAR

(precision) TO MONTH
MONTH TO MONTH

(precision)

Element Description Restrictions Syntax

scale Integer number of digits in FRACTION field. Default is 3. Must be in the
range from 1 to 5

“Literal Number”
on page 4-215

precision Integer number of digits in the largest time unit that the
INTERVAL includes. For YEAR, the default is 4. For all
other time units except FRACTION, the default is 2.

Must be in the
range from 1 to 9

“Literal Number”
on page 4-215

4-206 IBM Informix Guide to SQL: Syntax

Usage

This segment specifies the precision and scale of an INTERVAL data type.

A keyword specifying the largest time unit must be the first keyword, and a
keyword specifying the smallest time unit must follow the TO keyword. These can
be the same keyword. This segment resembles the syntax of a “DATETIME Field
Qualifier” on page 4-42, but with these exceptions:
v If the largest time unit keyword is YEAR or MONTH, the smallest time unit

keyword cannot specify a time unit smaller than MONTH.
v You can specify up to 9-digit precision after the first time unit, unless FRACTION

is the first time unit (in which case no precision is valid after the first FRACTION
keyword, but you can specify up to 5 digits of scale after the second FRACTION
keyword).

Because year and month are not fixed-length units of time, the database server
treats INTERVAL data types that include the YEAR or MONTH keywords in their
qualifiers as incompatible with INTERVAL data types whose qualifiers are time
units smaller than MONTH. The database server supports no implicit casts
between these two categories of INTERVAL data types.

The next two examples show YEAR TO MONTH qualifiers of INTERVAL data
types. The first example can hold an interval of up to 999 years and 11 months,
because it gives 3 as the precision of the YEAR field. The second example uses the
default precision on the YEAR field, so it can hold an interval of up to 9,999 years
and 11 months.
YEAR (3) TO MONTH

YEAR TO MONTH

When you want a value to specify only one kind of time unit, the first and last
qualifiers are the same. For example, an interval of whole years is qualified as
YEAR TO YEAR or YEAR (5) TO YEAR, for an interval of up to 99,999 years.

The following examples show several forms of INTERVAL field qualifiers:
YEAR(5) TO MONTH

DAY (5) TO FRACTION(2)

DAY TO DAY

FRACTION TO FRACTION (4)

For information about how to specify INTERVAL field qualifiers and how to use
INTERVAL data in arithmetic and relational operations, see the related reference,
INTERVAL data type.
Related concepts:
“Precedence of DATE and DATETIME format specifications” on page 4-212
Related reference:

INTERVAL data type (SQL Reference)
“INTERVAL Field Qualifier” on page 4-206

Chapter 4. Data types and expressions 4-207

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_123.htm#ids_sqr_123

Literal Collection
Use the Literal Collection segment to specify values for a collection data type. For
the syntax of expressions that return values of individual elements within a
collection, see “Collection Constructors” on page 4-88.

Syntax

Literal Collection:

SET { Literal Data }
MULTISET
LIST

Literal Data:

�

,
(1)

Element Literal Value
(2) (2)

Nested Quotation Marks Literal Collection Nested Quotation Marks

Notes:

1 See “Element Literal Value”

2 See “Nested Quotation Marks” on page 4-209

Usage

You can specify literal collection values for SET, MULTISET, or LIST data types.

To specify a single literal-collection value, specify the collection type and the literal
values. The following SQL statement inserts four integer values into a column
called set_col that was declared as SET(INT NOT NULL):
INSERT INTO table1 (set_col) VALUES (SET{6, 9, 9, 4});

Specify an empty collection with an empty pair of braces ({ }) symbols. This
example inserts an empty list into a column list_col that was declared as LIST(INT
NOT NULL):

INSERT INTO table2 (list_col) VALUES (’LIST{}’);

A pair of single (') or double (") quotation marks can delimit the collection.
Double quotation marks are not valid, however, in databases where delimited
identifiers are enabled, except to delimit SQL identifiers.

If you are passing a literal collection as an argument to an SPL routine, make sure
that there is a blank space between the parentheses that surround the arguments
and quotation marks that indicate the beginning and end of the literal collection.
Related reference:
“Literal Row” on page 4-216

Element Literal Value
The diagram for “Literal Collection” refers to this section. Elements of a collection
can be literal values for the following data types.

4-208 IBM Informix Guide to SQL: Syntax

For a Collection of Type Literal Value Syntax

BOOLEAN t or f, representing TRUE or FALSE as a quoted string

CHAR, VARCHAR, NCHAR,
NVARCHAR, CHARACTER
VARYING, LVARCHAR, DATE

“Quoted String” on page 4-219

DATETIME “Literal DATETIME” on page 4-210

DECIMAL, MONEY, FLOAT,
INTEGER, INT8, SMALLFLOAT,
SMALLINT

“Literal Number” on page 4-215

INTERVAL “Literal INTERVAL” on page 4-213

Opaque data types “Quoted String” on page 4-219. The string literal must
be recognized by the input support function for the
associated opaque type.

Row Type “Literal Row” on page 4-216. When the collection
element type is a named ROW type, you do not need
to cast the inserted values to the named ROW type.

Important: You cannot specify the simple-large-object data types (BYTE and TEXT)
as the element type for a collection.

Quoted strings must be specified with a different type of quotation mark than the
quotation marks that encompass the collection, so that the database server can
parse the quoted strings. Thus, if you use double (") quotation marks to specify
the collection, use single (') quotation marks to specify individual, quoted-string
elements. (In databases where delimited identifiers are enabled, however, double
quotation marks are not valid, except to delimit SQL identifiers.)

Nested Quotation Marks
The diagram for “Literal Collection” on page 4-208 refers to this section.

A nested collection is a collection that is the element type for another collection.

Whenever you nest collection literals, use nested quotation marks. In these cases,
you must follow the rule for nesting quotation marks. Otherwise, the database
server cannot correctly parse the strings.

The general rule is that you must double the number of quotation marks for each
new level of nesting. For example, if you use double (") quotation marks for the
first level, you must use two double quotation marks for the second level, four
double quotation marks for the third level, eight for the fourth level, sixteen for the
fifth level, and so on.

Likewise, if you use single (') quotation marks for the first level, you must use
two single quotation marks for the second level and four single quotation marks
for the third level. There is no limit to the number of levels you can nest, as long
as you follow this rule.

The following examples illustrate the case for two levels of nested collection
literals, using double (") quotation marks. Here table tab5 is a single-column table
whose only column, set_col, is a nested collection type.

The following statement creates the tab5 table:

Chapter 4. Data types and expressions 4-209

CREATE TABLE tab5 (set_col SET(SET(INT NOT NULL) NOT NULL));

The following statement inserts values into the table tab5:
INSERT INTO tab5 VALUES ("SET{""SET{34, 56, 23, 33}""}");

For each literal value, the opening quotation mark and the closing quotation mark
must match. Thus, if you open a literal with two double quotation marks, you
must close that literal with two double quotation marks (""a literal value"").

To specify nested quotation marks within an SQL statement in an Informix
ESQL/C program, use the C escape character for every double quotation mark
inside a string that is delimited by single quotation marks. Otherwise, the Informix
ESQL/C preprocessor cannot correctly interpret the literal collection value. For
example, the preceding INSERT statement on the tab5 table would appear in an
Informix ESQL/C program as follows:
EXEC SQL insert into tab5

values (’set{\"set{34, 56, 23, 33}\"}’);

For more information, see the chapter on complex data types in the IBM Informix
ESQL/C Programmer's Manual.

If the collection is a nested collection, you must include the collection-constructor
syntax for each level of collection type. Suppose you define the following column:
nest_col SET(MULTISET (INT NOT NULL) NOT NULL);

The following statement inserts three elements into the nest_col column:
INSERT INTO tabx (nest_col)

VALUES ("SET{’MULTISET{1, 2, 3}’}");

Literal DATETIME
The Literal DATETIME segment specifies a DATETIME value

Use this segment when you see a reference to a literal DATETIME in a syntax
diagram.

Syntax

Literal DATETIME:

(1)
DATETIME (Numeric Date and Time) DATETIME Field Qualifier

Numeric Date and Time:

4-210 IBM Informix Guide to SQL: Syntax

yyyy
- mo

- dd
space hh

: mi
: ss

. fffff
mo

- dd
space hh

: mi
: ss

. fffff
dd

space hh
: mi

: ss
. fffff

hh
: mi

: ss
. fffff

mi
: ss

. fffff
ss

. fffff
fffff

Notes:

1 See “DATETIME Field Qualifier” on page 4-42

Element Description Restrictions Syntax

dd Day of month, expressed in digits 1 ≤ dd ≤ 28, 29, 30, or 31 “Literal Number” on page
4-215

fffff Fraction of a second, expressed in
digits

0 ≤ fffff ≤ 99999 “Literal Number” on page
4-215

hh Hour of day, expressed in digits 0 ≤ hh ≤ 23 “Literal Number” on page
4-215

mi Minute of hour, expressed in digits 0 ≤ mi ≤ 59 “Literal Number” on page
4-215

mo Month of year, expressed in digits 1 ≤ mo ≤ 12 “Literal Number” on page
4-215

space Blank space (ASCII 32) Exactly 1 blank character Literal blank space

ss Second of minute, in digits 0 ≤ ss ≤ 59 “Literal Number” on page
4-215

yyyy Year, expressed in digits No more than 4 digits “Literal Number” on page
4-215

Usage

You must specify both a numeric date and a DATETIME field qualifier for this
date in the Literal DATETIME segment. The DATETIME field qualifier must
correspond to the numeric date you specify. For example, if you specify a numeric

Chapter 4. Data types and expressions 4-211

date that includes a year as the largest unit and a minute as the smallest unit, you
must also specify YEAR TO MINUTE as the DATETIME field qualifier.

If you specify two digits for the year, the database server uses the setting of the
DBCENTURY environment variable to expand the abbreviated year value to four
digits. If the DBCENTURY is not set, the first two digits of the current year are
used to expand the abbreviated year value.

The following examples show literal DATETIME values:
DATETIME (07-3-6) YEAR TO DAY

DATETIME (09:55:30.825) HOUR TO FRACTION

DATETIME (07-5) YEAR TO MONTH

The following example shows a literal DATETIME value used with the EXTEND
function:
EXTEND (DATETIME (2007-8-1) YEAR TO DAY, YEAR TO MINUTE)

- INTERVAL (720) MINUTE (3) TO MINUTE

Related reference:

DATETIME data type (SQL Reference)

DBCENTURY environment variable (SQL Reference)

The GL_DATETIME environment variable (GLS User's Guide)

Precedence of DATE and DATETIME format specifications
The Informix environment variables whose settings can specify the display and
data entry formats for values of DATE data types have the following order of
precedence, if different settings are in conflict, or if no format is specified:
1. DBDATE

2. GL_DATE

3. Information defined in the client locale (if CLIENT_LOCALE is set)
4. Default date format is %m/%d/%iy (if DBDATE and GL_DATE are not set, and no

locale is specified)

Informix environment variables can specify the display and data entry formats for
values of DATETIME data types. Their explicit or default settings have the
following descending order of precedence (from highest to lowest), if different
settings are in conflict, or if no format is specified:
1. DBDATE and DBTIME

2. GL_DATETIME

3. Information defined in the client locale (if CLIENT_LOCALE is set)
4. Default DATETIME format is %iY-%m-%d %H:%M:%S (if CLIENT_LOCALE, DBTIME

and GL_DATETIME are not set).

If GL_DATETIME is set to a nondefault value, you must also set the USE_DTENV
environment variable to 1 before you can process localized DATETIME values
correctly in the following contexts:
v dbexport utility
v dbimport utility
v LOAD statement of DB-Access
v UNLOAD statement of DB-Access

4-212 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_110.htm#ids_sqr_110
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_209.htm#ids_sqr_209
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_085.htm#ids_gug_085

v DML operations on objects defined by the CREATE EXTERNAL TABLE
statement.

For details of how you can set these environment variables to define formats for
chronological data values, see the IBM Informix GLS User's Guide and IBM Informix
Guide to SQL: Reference.
Related reference:
“INTERVAL Field Qualifier” on page 4-206

Casting Numeric Date and Time Strings to DATE Data Types
The database server provides a built-in cast to convert DATETIME values to DATE
values, as in the following SPL program fragment:
DEFINE my_date DATE;
DEFINE my_dt DATETIME YEAR TO SECOND;
. . .
LET my_date = CURRENT;

Here the DATETIME value that CURRENT returns is implicitly cast to DATE. You
can also cast DATETIME to DATE explicitly:
LET my_date = CURRENT::DATE;

Both of these LET statements assign the year, month, and day information from the
DATETIME value to the local SPL variable my_date of type DATE.

Similarly, you can cast explicitly a string that has the format of the Numeric Date
and Time segment, as defined in the “Literal DATETIME” on page 4-210 syntax
diagram, to a DATETIME data type, as in the following example:
LET my_dt =

(’2008-02-22 05:58:44.000’)::DATETIME YEAR TO SECOND;

There is neither an implicit nor an explicit built-in cast, however, for directly
converting a character string that has the Numeric Date and Time format to a
DATE value. Both of the following statements, for example, fail with error -1218:
LET my_date = (’2008-02-22 05:58:44.000’);
LET my_date = (’2008-02-22 05:58:44.000’)::DATE;

To convert a character string that specifies a valid numeric date and time value to
a DATE data type, you must first cast the string to DATETIME, and then cast the
resulting DATETIME value to DATE, as in this example:
LET my_date =

(’2008-02-22 05:58:44.000’)::DATETIME YEAR TO SECOND::DATE;

A direct string-to-DATE cast can succeed only if the string specifies a valid DATE
value.

Literal INTERVAL
The Literal INTERVAL segment specifies a literal INTERVAL value. Use this
whenever you see a reference to a literal INTERVAL in a syntax diagram.

Chapter 4. Data types and expressions 4-213

Syntax

Literal INTERVAL:

(1)
INTERVAL (Numeric Time Span) INTERVAL Field Qualifier

Numeric Time Span:

+
- dd

space hh
: mi

: ss
. fffff

hh
: mi

: ss
. fffff

mi
: ss

. fffff
ss

. fffff
. fffff

+
- yyyy

- mo
mo

Notes:

1 See “INTERVAL Field Qualifier” on page 4-206

Element Description Restrictions Syntax

dd Number of days -10**10 < dd < 10**10 “Literal Number” on page
4-215

fffff Fractions of a second 0 ≤ fffff ≤ 9999 “Literal Number” on page
4-215

hh Number of hours If not first, 0 ≤ hh ≤ 23 “Literal Number” on page
4-215

mi Number of minutes If not first, 0 ≤ mi ≤ 59 “Literal Number” on page
4-215

mo Number of months If not first, 0 ≤ mo ≤ 11 “Literal Number” on page
4-215

space Blank space (ASCII 32) Exactly 1 blank character is required Literal blank space

ss Number of seconds If not first, 0 ≤ ss ≤ 59 “Literal Number” on page
4-215

yyyy Number of years -10**10 < yyyy < 10**10 “Literal Number” on page
4-215

4-214 IBM Informix Guide to SQL: Syntax

Usage

Unlike DATETIME literals, INTERVAL literals can include the unary plus (+) or
unary minus (-) sign. If you specify no sign, the default is plus.

The precision of the first time unit can be specified by the INTERVAL qualifier.
Except for FRACTION, which can have no more than 5 digits of precision, the first
time unit can have up to 9 digits of precision, if you specified a nondefault
precision in the declaration of the INTERVAL column or variable.

The following examples show literal INTERVAL values:
INTERVAL (3-6) YEAR TO MONTH
INTERVAL (09:55:30.825) HOUR TO FRACTION
INTERVAL (40 5) DAY TO HOUR
INTERVAL (299995.2567) SECOND(6) TO FRACTION(4)

Only the last of these examples has nondefault precision. For the syntax of
declaring the precision of INTERVAL data types and the default values for each
time unit, refer to “INTERVAL Field Qualifier” on page 4-206.
Related reference:

INTERVAL data type (SQL Reference)

Literal Number
A literal number is the base-10 representation of a real number as an integer, as a
fixed-point decimal number, or in exponential notation. Use the Literal Number
segment whenever you see a reference to a literal number in a syntax diagram.

Syntax

Literal Number:

+
- �

�

�

digit
.

. digit

. digit

�
+

e - digit
E

Element Description Restrictions Syntax

digit Integer in range 0 through 9 Must be an ASCII digit Literal entered from the keyboard.

Usage

You cannot include comma (,) or blank (ASCII 32) character. The unary plus (+)
or minus (-) sign can precede a literal number, mantissa, or exponent.

You cannot include non-ASCII digits in literal numbers, such as the Hindi numbers
that some nondefault locales support.
Related reference:

Chapter 4. Data types and expressions 4-215

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_123.htm#ids_sqr_123

DECIMAL (SQL Reference)

FLOAT(n) (SQL Reference)

INTEGER data type (SQL Reference)

MONEY(p,s) data type (SQL Reference)

Integer Literals
An integer has no fractional part and cannot include a decimal point. Built-in data
types of SQL that can be exactly represented as literal integers include BIGINT,
BIGSERIAL, DECIMAL(p, 0), INT, INT8, SERIAL, SERIAL8, and SMALLINT.

If you use the representation of a number in a base other than 10 (such as a binary,
octal, or hexadecimal) in any context where a literal integer is valid, the database
server will attempt to interpret the value as a base-10 literal integer. For most data
values, the result will be incorrect.

The following examples show some valid literal integers:
10 -27 +25567

Thousands separators (such as comma symbols) are not valid in literal integers,
nor in any other literal number.

Fixed-Point Decimal Literals
Fixed-point decimal literals can exactly represent DECIMAL(p,s) and MONEY
values. These can include a decimal point:
-123.456 00123456 +123456.0

The digits to the right of the decimal point in these examples are the fractional
portions of the numbers.

Floating-Point Decimal Literals
Floating-point literals can exactly represent FLOAT, SMALLFLOAT, and
DECIMAL(p) values, using a decimal point or exponential notation, or both. They
can approximately represent real numbers in exponential notation. The next
examples show floating point numbers:
-123.45E6 1.23456E2 123456.0E-3

The E in the previous examples is the symbol for exponential notation. The digit
that follows E is the value of the exponent. For example, the number 3E5 (or 3E+5)
means 3 multiplied by 10 to the fifth power, and the number 3E-5 means 3
multiplied by the reciprocal of 10 to the fifth power.

Literal Numbers and the MONEY Data Type
When you use a literal number as a MONEY value, do not include a currency
symbol or include commas. The DBMONEY environment variable or the locale file
can format how MONEY values are displayed in output.

Literal Row
The Literal Row segment specifies the syntax for literal values of named and
unnamed ROW data types.

4-216 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_112.htm#ids_sqr_112
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_118.htm#ids_sqr_118
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_122.htm#ids_sqr_122
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_126.htm#ids_sqr_126

For expressions that evaluate to field values within a ROW data type, see “ROW
constructors” on page 4-87.

Syntax

Literal Row:

�

�

,

' ROW (Field Literal Value) '
,

ROW (Field Literal Value)

Field Literal Value:

(1)
Quoted String

(2)
Literal Number

USER
(3)

Literal DATETIME
(4)

Literal INTERVAL
(5)

Literal Collection
literal_opaque_type
'literal_BOOLEAN'
ROW(Literal Row)

Notes:

1 See “Quoted String” on page 4-219

2 See “Literal Number” on page 4-215

3 See “Literal DATETIME” on page 4-210

4 See “Literal INTERVAL” on page 4-213

5 See “Literal Collection” on page 4-208

Element Description Restrictions Syntax

literal_opaque_type Literal representation for
an opaque data type

Must be a literal that is recognized by the
input support function for the associated
opaque data type

Defined by the
developer of the
opaque data type

literal_BOOLEAN Literal representation of a
BOOLEAN value

Must be either ’t’ (= TRUE) or ’f’ (=
FALSE) specified as a quoted string

“Quoted String” on
page 4-219

Usage

You can specify literal values for named ROW and unnamed ROW data types. A
ROW constructor introduces a literal ROW value, which can optionally be enclosed
between quotation marks.

The format of the value for each field of the ROW type must be compatible with
the data type of the corresponding field.

Chapter 4. Data types and expressions 4-217

Important: You cannot specify simple-large-object data types (BYTE or TEXT) as
the field type for a row.

Fields of a row can be literal values for the data types in the following table.

For a Field of Type Literal Value Syntax

BOOLEAN t or f, representing TRUE or FALSE

CHAR, VARCHAR, LVARCHAR,
NCHAR, NVARCHAR, CHARACTER
VARYING, DATE

“Quoted String” on page 4-219

DATETIME “Literal DATETIME” on page 4-210

DECIMAL, MONEY, FLOAT, INTEGER,
INT8, SMALLFLOAT, SMALLINT

“Literal Number” on page 4-215

INTERVAL “Literal INTERVAL” on page 4-213

Opaque data types “Quoted String” on page 4-219

The string must be a literal that is recognized by
the input support function for the associated
opaque type.

Collection type (SET, MULTISET, LIST)
“Literal Collection” on page 4-208

For information on literal collection values as
variable or column values, see “Nested Quotation
Marks” on page 4-209. For information on literal
collection values for a ROW type, see “Literals for
Nested Rows” on page 4-219.

Another ROW type (named or
unnamed)

For information on ROW type values, see
“Literals for Nested Rows” on page 4-219.

Related reference:
“CREATE ROW TYPE statement” on page 2-241
“INSERT statement” on page 2-545
“UPDATE statement” on page 2-852
“SELECT statement” on page 2-654
“ROW constructors” on page 4-87
“Literal Collection” on page 4-208

Literals of an Unnamed Row Type
To specify a literal value for an unnamed ROW type, introduce the literal row with
the ROW constructor; you must enclose the values between parentheses. For
example, suppose that you define the rectangles table as follows:
CREATE TABLE rectangles
(

area FLOAT,
rect ROW(x INTEGER, y INTEGER, length FLOAT, width FLOAT),

)

The following INSERT statement inserts values into the rect column of the
rectangles table:
INSERT INTO rectangles (rect)

VALUES ("ROW(7, 3, 6.0, 2.0)")

4-218 IBM Informix Guide to SQL: Syntax

Literals of a Named Row Type
To specify a literal value for a named ROW type, introduce the literal row with the
ROW type constructor and enclose the literal values for each field in parentheses.
In addition, you can cast the row literal to the appropriate named ROW type to
ensure that the row value is generated as a named ROW type. The following
statements create the named ROW type address_t and the employee table:
CREATE ROW TYPE address_t
(
street CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(9)
);

CREATE TABLE employee
(

name CHAR(30),
address address_t

);

The following INSERT statement inserts values into the address column of the
employee table:
INSERT INTO employee (address)
VALUES (
"ROW(’103 Baker St’, ’Tracy’,’CA’, 94060)"::address_t)

Literals for Nested Rows
If the literal value is for a nested row, specify the ROW type constructor for each
row level. If you include quotation marks as delimiters, they should enclose the
outermost row. For example, suppose that you create the emp_tab table:
CREATE TABLE emp_tab
(

emp_name CHAR(10),
emp_info ROW(stats ROW(x INT, y INT, z FLOAT))

);

The following INSERT statement adds a row to the emp_tab table:
INSERT INTO emp_tab VALUES (’joe boyd’, "ROW(ROW(8,1,12.0))");

Similarly, if the row-string literal contains a nested collection, only the outermost
literal row can be enclosed between quotation marks. Do not put quotation marks
around an inner, nested collection type.

Quoted String
A quoted string is a string literal between quotation marks. Use this segment
whenever you see a reference to a quoted string in a syntax diagram.

Syntax

Quoted String:

Chapter 4. Data types and expressions 4-219

�

�

' '

character
''

(1)
" "

character
""

Notes:

1 Informix extension

Element Description Restrictions Syntax

character Code set element within
quoted string

Cannot enclose between double quotation marks
if the DELIMIDENT environment variable is set

Literal value from the
keyboard

Usage

Use quoted strings to specify string literals in data-manipulation statements and
other SQL statements. For example, you can use a quoted string in an INSERT
statement to insert a value into a column of a character data type.
Related reference:

DELIMIDENT environment variable (SQL Reference)

Specify quoted strings (GLS User's Guide)

Restrictions on Specifying Characters in Quoted Strings
You must observe the following restrictions on character in quoted strings:
v If you are using the ASCII code set, you can specify any printable ASCII

character, including a single (') quotation mark or double (") quotation mark.
For restrictions that apply to using quotation marks in quoted strings, see
“Using Quotation Marks in Strings” on page 4-222.

v In some locales, you can specify non-ASCII characters, including multibyte
characters, that the locale supports. See the discussion of quoted strings in the
IBM Informix GLS User's Guide.

v If you enable newline characters for quoted strings, you can embed newline
characters in quoted strings. For further information, see “Newline Characters in
Quoted Strings” on page 4-221.

v You can enter DATETIME and INTERVAL data values as quoted strings. For the
restrictions that apply to entering DATETIME and INTERVAL data in
quoted-string format, see “DATETIME and INTERVAL Values as Strings” on
page 4-222.

v Quoted strings that are used with the LIKE or MATCHES keyword in a search
condition can include wildcard characters that have a special meaning in the
search condition. For further information, see “LIKE and MATCHES in a
Condition” on page 4-223.

v When you insert a value that is a quoted string, you must observe a number of
restrictions. For further information, see “Inserting Values as Quoted Strings” on
page 4-223.

4-220 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_233.htm#ids_sqr_233
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_122.htm#ids_gug_122

The DELIMIDENT Environment Variable
If the DELIMIDENT environment variable is set on the database server, you
cannot use double quotation marks (") to delimit literal strings. If DELIMIDENT
is set, the database server interprets strings enclosed in double quotation marks as
SQL identifiers, not as literal strings. If DELIMIDENT is not set, a string between
double quotation marks is interpreted as a literal string, not an identifier. For
further information, see “Using Quotation Marks in Strings” on page 4-222, and
the description of DELIMIDENT in IBM Informix Guide to SQL: Reference.

DELIMIDENT is also supported on client systems, where it can be set to y, to n,
or to no setting.
v y specifies that client applications must use single quotation mark (') symbols

to delimit literal strings, and must use double quotation mark (") symbols only
around delimited SQL identifiers. Delimited identifiers can support a larger
character set than is valid for undelimited identifiers. Letters within delimited
strings or delimited identifiers are case-sensitive.

v n specifies that client applications can use double quotation mark (") or single
quotation mark (') symbols to delimit character strings, but not to delimit SQL
identifiers. If the database server encounters a string delimited by double or
single quotation mark symbols in a context where an SQL identifier is required,
it issues an error. An owner name, however, that qualifies an SQL identifier can
be delimited by single quotation mark (') symbols. You must use a pair of the
same quotation mark symbols to delimit a character string.

v Specifying DELIMIDENT with no value on the client system requires client
applications to use the DELIMIDENT setting that is the default for their
application programming interface (API).

Client APIs of Informix use the following default DELIMIDENT settings:
v For OLE DB and .NET, the default DELIMIDENT setting is y

v For ESQL/C, JDBC, and ODBC, the default DELIMIDENT setting is n

v APIs that have ESQL/C as an underlying layer, such as Informix 4GL, the
DataBlade API (LIBDMI), and the C++ API, behave as ESQL/C, and use 'n' as
the default if no value for DELIMIDENT is specified on the client system.

Even if DELIMIDENT is set, you can use single quotation mark (') symbols to
delimit authorization identifiers as the owner name component of a database object
name, as in the following example:
RENAME COLUMN ’Owner’.table2.collum3 TO column3;

The general rule, however, is that when DELIMIDENT is set, the SQL parser
interprets strings delimited by single quotation marks as string literals, and
interprets character strings delimited by double quotation marks (") as SQL
identifiers.
Related reference:

DELIMIDENT environment variable (SQL Reference)

Newline Characters in Quoted Strings
By default, the string constant must be written on a single line. That is, you cannot
use embedded newline characters in a quoted string. You can, however, override
this default behavior in one of two ways:
v To enable newline characters in quoted strings in all sessions, set the

ALLOW_NEWLINE parameter to 1 in the ONCONFIG file.

Chapter 4. Data types and expressions 4-221

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_233.htm#ids_sqr_233

v To enable newline characters in quoted strings for the current session, execute
the built-in function IFX_ALLOW_NEWLINE.

This enables newline characters in quoted strings for the current session:
EXECUTE PROCEDURE IFX_ALLOW_NEWLINE(’T’);

If newline characters in quoted strings are not enabled for a session, the following
statement is invalid and returns an error:
SELECT ’The quick brown fox

jumped over the old gray fence’
FROM customer
WHERE customer_num = 101;

If you enable newline characters in quoted strings for the session, however, the
statement in the preceding example is valid and executes successfully.

For more information on the IFX_ALLOW_NEWLINE function, see
“IFX_ALLOW_NEWLINE Function” on page 4-187. For more information on the
ALLOW_NEWLINE parameter in the ONCONFIG file, see your IBM Informix
Administrator's Reference.
Related reference:

ALLOW_NEWLINE configuration parameter (Administrator's Reference)

Using Quotation Marks in Strings
The single quotation mark (') has no special significance in string literals
delimited by double quotation marks. Conversely, double quotation mark (") has
no special significance in strings delimited by single quotation marks. For example,
these strings are valid:
"Nancy’s puppy jumped the fence"
’Billy told his kitten, "No!" ’

A string delimited by double quotation marks can include a double quotation
mark character by preceding it with another double quotation mark, as the
following string shows:
"Enter ""y"" to select this row"

When the DELIMIDENT environment variable is set, double quotation marks can
only delimit SQL identifiers, not strings. For more information on delimited
identifiers, see “Delimited Identifiers” on page 5-23.

DATETIME and INTERVAL Values as Strings
You can enter DATETIME and INTERVAL data in the literal forms described in the
“Literal DATETIME” on page 4-210 and “Literal INTERVAL” on page 4-213, or you
can enter them as quoted strings.

Valid literals that are entered as character strings are converted automatically into
DATETIME or INTERVAL values.

These statements enter INTERVAL and DATETIME values as quoted strings:
INSERT INTO cust_calls(call_dtime) VALUES (’2007-5-4 10:12:11’);
INSERT INTO manufact(lead_time) VALUES (’14’);

The format of the value in the quoted string must exactly match the format
specified by the INTERVAL or DATETIME qualifiers of the column. For the first

4-222 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0021.htm#ids_adr_0021

INSERT in the preceding example, the call_dtime column must be defined with
the qualifiers YEAR TO SECOND for the INSERT statement to be valid.

LIKE and MATCHES in a Condition
Quoted strings with the LIKE or MATCHES keyword in a condition can include
wildcard characters. For a complete description of how to use wildcard characters,
see “Condition” on page 4-5.

Inserting Values as Quoted Strings
In the default locale, if you are inserting a value that is a quoted string, you must
adhere to the following restrictions:
v Enclose CHAR, VARCHAR, NCHAR, NVARCHAR, DATE, DATETIME,

INTERVAL, and LVARCHAR values in quotation marks.
v Specify DATE values in the mm/dd/yyyy format (or in the format that the

DBDATE or GL_DATE environment variable specifies, if set).
v You cannot insert strings longer than 32 kilobytes.
v Numbers with decimal values must include a decimal separator. Comma (,) is

not valid as a decimal separator in the default locale.
v MONEY values cannot include a dollar sign ($) or commas.
v You can enter NULL in a column only if it accepts null values.

Numeric Operations on Character Columns
Avoid comparing number literals to character columns. It requires that all of the
strings compared be converted to numbers, which takes much longer than
comparing two strings.

For example, suppose that you wish to find all customers within the 356 telephone
exchange code:
SELECT lname FROM customer WHERE phone [5,7] = ’356’;

Notice that the operand whose value is 356 is enclosed in quotes. The quotes
indicate that the database server must handle the filter as a character string. By
contrast, when the operand is not in quotes, the server treats each retrieved value
as a number, and must implicitly cast each value retrieved from the table to a
numeric data type.

The following example causes implicit data type conversion of the phone
substrings:
SELECT lname FROM customer WHERE phone [5,7] = 356;

If the UPDATE STATISTICS MEDIUM or UPDATE STATISTICS HIGH statement
has been run on this column, the query optimizer tries to determine the selectivity
of the predicate by matching the constant in the query with a substring of values
saved in the distribution bin. Requiring data type conversion of every row in a
character column so that it can be compared to a numeric filter needlessly
increases the cost of the query that omits quotation mark delimiters around 356,
compared to cost of the query in the first example.

Queries that compare character strings to numbers can fail with EM -1213 if the
database server cannot convert the string. If you cannot avoid applying numeric
filters to character values, only attempt such operations on character columns
whose characters are restricted to digits in the range ASCII 0x30 through 0x39, and
decimal point (ASCII 0x2e). This range is also known as seminumeric.

Chapter 4. Data types and expressions 4-223

The database server does not use an index when DML statements compare a
character column with a noncharacter value that is not equal in length to the
character column.

Relational Operator
A relational operator compares two expressions quantitatively. Use the Relational
Operator segment whenever you see a reference to a relational operator in a syntax
diagram.

Syntax

Relational Operator:

<
<=
>

=
==

>=
<>
(1)

!=

Notes:

1 Informix extension

Usage

The relational operators of SQL have the following meanings.

Relational Operator
Meaning

< Less than

<= Less than or equal to

> Greater than

= or ==
Equal to

>= Greater than or equal to

<> or !=
Not equal to

Usage

For number expressions, greater than means to the right on the real line.

For DATE and DATETIME expressions, greater than means later in time.

For INTERVAL expressions, greater than means a longer span of time.

For CHAR, VARCHAR, and LVARCHAR expressions, greater than means after in
code-set order.

4-224 IBM Informix Guide to SQL: Syntax

For NCHAR and NVARCHAR expressions, greater than means after in the localized
collation order, if one exists; otherwise, greater than means after in code-set order.

Locale-based collation order, if one is defined for the locale, is used for NCHAR
and NVARCHAR expressions. So for NCHAR and NVARCHAR expressions,
greater than means after in the locale-based collation order. For more information on
locale-based collation order and the NCHAR and NVARCHAR data types, see the
IBM Informix GLS User's Guide.

For information on how relational operator expressions with NCHAR and
NVARCHAR operands in databases that have the NLCASE INSENSITIVE property
differ from their behavior in databases that are case sensitive, see the topic
“NCHAR and NVARCHAR expressions in case-insensitive databases” on page
4-28.
Related reference:

Create a comparison condition (SQL Tutorial)

Relational-operator conditions (GLS User's Guide)

Using Operator Functions in Place of Relational Operators
Each relational operator is bound to a particular operator function, as the table
shows. The operator function accepts two values and returns a boolean value of
true, false, or unknown.

Relational Operator
Associated Operator Function

< lessthan()

<= lessthanorequal()

> greaterthan()

>= greaterthanorequal()

= or ==
equal()

<> or !=
notequal()

Connecting two expressions with a relational operator is equivalent to invoking the
operator function on the expressions. For example, the next two statements both
select orders with a shipping charge of $18.00 or more.

The >= operator in the first statement implicitly invokes the greaterthanorequal()
operator function:
SELECT order_num FROM orders

WHERE ship_charge >= 18.00;

SELECT order_num FROM orders
WHERE greaterthanorequal(ship_charge, 18.00);

The database server provides the operator functions associated with the relational
operators for all built-in data types. When you develop a user-defined data type,
you must define the operator functions for that type for users to be able to use the
relational operator on the type.

Chapter 4. Data types and expressions 4-225

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_058.htm#ids_sqt_058
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_139.htm#ids_gug_139

If you define lessthan(), greaterthan(), and the other operator functions for a
user-defined type, then you should also define compare(). Similarly, if you define
compare(), then you should also define lessthan(), greaterthan(), and the other
operator functions. All of these functions must be defined in a consistent manner,
to avoid the possibility of incorrect query results when UDT values are compared
in the WHERE clause of a SELECT.

Collating Order for U.S. English Data
If you are using the default locale (U.S. English), the database server uses the
code-set order of the default code set when it compares the character expressions
that precede and follow the relational operator.

On UNIX, the default code set is the ISO8859-1 code set, which consists of the
following sets of characters:
v The ASCII characters have code points in the range of 0 to 127.

This range contains control characters, punctuation symbols, English-language
characters, and numerals.

v The 8-bit characters have code points in the range 128 to 255.
This range includes many non-English-language characters (such as é, â, ö, and
ñ) and symbols (such as £, ©, and ¿).

In Windows, the default code set is Microsoft 1252. This code set includes both the
ASCII code set and a set of 8-bit characters.

This table lists the ASCII code set. The Num columns show ASCII code point
numbers, and the Char columns display corresponding ASCII characters. In the
default locale, ASCII characters are sorted according to their code-set order. Thus,
lowercase letters follow uppercase letters, and both follow digits. In this table,
ASCII 32 is the blank character, and the caret symbol (^) stands for the CTRL key.
For example, ^X means CONTROL-X.

Num Char Num Char Num Char Num Char Num Char Num Char Num Char

0 ^@ 20 ^T 40 (60 < 80 P 100 d 120 x

1 ^A 21 ^U 41) 61 = 81 Q 101 e 121 y

2 ^B 22 ^V 42 * 62 > 82 R 102 f 122 z

3 ^C 23 ^W 43 + 63 ? 83 S 103 g 123 {

4 ^D 24 ^X 44 , 64 @ 84 T 104 h 124 |

5 ^E 25 ^Y 45 - 65 A 85 U 105 i 125 }

6 ^F 26 ^Z 46 . 66 B 86 V 106 j 126 ~

7 ^G 27 esc 47 / 67 C 87 W 107 k 127 del

8 ^H 28 ^\ 48 0 68 D 88 X 108 l

9 ^I 29 ^] 49 1 69 E 89 Y 109 m

10 ^J 30 ^^ 50 2 70 F 90 Z 110 n

11 ^K 31 ^_ 51 3 71 G 91 [111 o

12 ^L 32 52 4 72 H 92 \ 112 p

13 ^M 33 ! 53 5 73 I 93] 113 q

14 ^N 34 " 54 6 74 J 94 ^ 114 r

15 ^O 35 # 55 7 75 K 95 _ 115 s

16 ^P 36 $ 56 8 76 L 96 ` 116 t

4-226 IBM Informix Guide to SQL: Syntax

Num Char Num Char Num Char Num Char Num Char Num Char Num Char

17 ^Q 37 % 57 9 77 M 97 a 117 u

18 ^R 38 & 58 : 78 N 98 b 118 v

19 ^S 39 ' 59 ; 79 O 99 c 119 w

Support for ASCII Characters in Nondefault Code Sets (GLS)
Most code sets for nondefault locales (called nondefault code sets) support the ASCII
characters. In a nondefault locale, the database server uses ASCII code-set order for
ASCII data in CHAR and VARCHAR expressions, if the code set supports these
ASCII characters. If the current collation (as specified by DB_LOCALE or by SET
COLLATION) supports a localized collating order, however, that localized order is
used when the database server sorts NCHAR or NVARCHAR values.

Literal Numbers as Operands
You might obtain unexpected results if a literal number that you specify as an
operand is not in a format that can exactly represent the data type of another value
with which it is compared by a relational operator. Because of rounding errors, for
example, a relational operator like = or the equals() operator function generally
cannot return TRUE if one operand returns a FLOAT value and the other an
INTEGER. For information about which of the built-in data types store values that
can be exactly represented as literal numbers, see the section “Literal Number” on
page 4-215.

Chapter 4. Data types and expressions 4-227

4-228 IBM Informix Guide to SQL: Syntax

Chapter 5. Other syntax segments

These topics describe syntax segments, which are language elements, such as
database object names or optimizer directives, that appear as a subdiagram
reference in the syntax diagrams of some SQL or SPL statements.

Most segments that can occur in only one statement are described in Chapter 2,
“SQL statements,” on page 2-1 or Chapter 3, “SPL statements,” on page 3-1 within
the description of the statement. For the sake of clarity, ease of use, and
comprehensive treatment, however, most segments that can occur in various SQL
or SPL statements, and that are not data types nor expressions, are discussed
separately here.

The previous chapter described the syntax segments that specify data types and
expressions. This chapter describes additional syntax segments that are neither
data types, expressions, nor complete SQL statements or SPL statements. These
segments are referenced in various syntax diagrams that appear in Chapter 2, “SQL
statements,” on page 2-1 and in other chapters of this document.

Arguments
Use the Argument segment to pass a specific value as input to a routine. Use this
segment wherever you see a reference to an argument in a syntax diagram.

Syntax

Argument:

parameter =

(1)
Subset of Expression

NULL
(singleton_select)

Notes:

1 See “Subset of Expressions Valid as an Argument” on page 5-3

Element Description Restrictions Syntax

parameter A parameter whose value
you specify

Must match a name that CREATE FUNCTION or
CREATE PROCEDURE statement declared

“Identifier” on
page 5-21

singleton
_select

Embedded query that
returns a single value

Must return exactly one value of a data type and
length compatible with parameter

“SELECT
statement” on
page 2-654

Usage

The CREATE PROCEDURE or CREATE FUNCTION statement can define a
parameter list for a UDR. If the parameter list is not empty, you must enter
arguments when you invoke the UDR. An argument is a specific value whose data
type is compatible with that of the corresponding UDR parameter.

When you execute a UDR, you can enter arguments in either of two ways:

© Copyright IBM Corp. 1996, 2014 5-1

v With a parameter name (in the form parameter name = expression), even if the
arguments are not in the same order as the parameters

v By position, with no parameter name, where each expression is in the same order
as the parameter to which the argument corresponds. (This is sometimes called
ordinal format.)

You cannot mix these two ways of specifying arguments within a single invocation
of a routine. If you specify a parameter name for one argument, for example, you
must use parameter names for all the arguments.

In the following example, both statements are valid for a user-defined procedure
that expects three character arguments, t, d, and n:
EXECUTE PROCEDURE add_col (t =’customer’, d =’integer’,

n =’newint’);

EXECUTE PROCEDURE add_col (’customer’,’newint’,’integer’) ;

Related reference:
“ALTER FUNCTION statement” on page 2-57
“ALTER PROCEDURE statement” on page 2-60
“ALTER ROUTINE statement” on page 2-62
“CALL” on page 3-11
“CREATE FUNCTION statement” on page 2-183
“CREATE FUNCTION FROM statement” on page 2-193
“CREATE PROCEDURE FROM statement” on page 2-236
“EXECUTE FUNCTION statement” on page 2-462
“EXECUTE PROCEDURE statement” on page 2-471
“Routine Parameter List” on page 5-71

Comparing Arguments to the Parameter List
When you create or register a UDR with CREATE PROCEDURE or CREATE
FUNCTION, you declare a parameter list with the names and data types of the
parameters that the UDR expects. (Parameter names are optional for external
routines written in the C or Java languages.) See “Routine Parameter List” on page
5-71 for details of declaring parameters.

User-defined routines can be overloaded, if different routines have the same
identifier, but have different numbers of declared parameters. For more
information about overloading, see “Routine Overloading and Routine Signatures”
on page 5-19.

If you attempt to execute a UDR with more arguments than the UDR expects, you
receive an error.

If you invoke a UDR with fewer arguments than the UDR expects, the omitted
arguments are said to be missing. The database server initializes missing arguments
to their corresponding default values. This initialization occurs before the first
executable statement in the body of the UDR.

If missing arguments have no default values, Informix issues an error.

Named parameters cannot be used to invoke UDRs that overload data types in
their routine signatures. Named parameters are valid in resolving non-unique
routine names only if the signatures have different numbers of parameters:

5-2 IBM Informix Guide to SQL: Syntax

func(x::integer, y); -- VALID if only these 2 routines
func(x::integer, y, z); -- have the same ’func’ identifier

func(x::integer, y); -- NOT VALID if both routines have
func(x::float, y ; -- same identifier and 2 parameters

For both ordinal and named parameters, the routine with the fewest parameters is
executed if two or more UDR signatures have multiple numbers of defaults:

func(x, y default 1)
func(x, y default 1, z default 2)

If two registered UDRs that are both called func have the signatures shown above,
then the statement EXECUTE func(100) invokes func(100,1).

You cannot supply a subset of default values using named parameters unless they
are in the positional order of the routine signature. That is, you cannot skip a few
arguments and rely on the database server to supply their default values.

For example, given the signature:
func(x, y default 1, z default 2)

you can execute:
func(x=1, y=3)

but you cannot execute:
func(x=1, z=3)

Subset of Expressions Valid as an Argument
The diagram for “Arguments” on page 5-1 refers to this section.

You can use any expression as an argument, except an aggregate function. If you
use a subquery or function call as an argument, the subquery or function must
return a single value of the appropriate data type and size. For the syntax and
usage of SQL expressions, see “Expression” on page 4-44.

Arguments to UDRs in Remote Databases
UDRs are valid in cross-database and in cross-server distributed operations in most
contexts where a UDR is valid in the local database, but every participating
database must have the same logging mode.

Excluding BIGSERIAL, BYTE, SERIAL, SERIAL8, and TEXT, the data types that are
valid as arguments to cross-server UDRs include the built-in SQL data types that
are not opaque, as listed in “Data Types in Distributed Queries” on page 2-663,
and these additional built-in opaque and DISTINCT data types:
v BOOLEAN
v LVARCHAR
v DISTINCT of built-in types that are not opaque
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of the DISTINCT types listed above.

These data types can be arguments to SPL, C, or Java language UDRs, if the UDRs
are defined in all the participating databases. Any implicit or explicit casts defined
over these data types must be duplicated across all the participating Informix

Chapter 5. Other syntax segments 5-3

instances. The DISTINCT data types must have exactly the same data type
hierarchy defined in all databases that participate in the distributed query.

The same data types are valid as arguments in calls to UDRs in other databases of
the same Informix instance, as well as arguments of the following additional types:
v BLOB
v CLOB
v UDTs that you cast explicitly to built-in types

All the UDRs, UDTs, DISTINCT data types, DISTINCT type hierarchies, casts, and
cast functions must be registered in all of the participating databases. For more
information on DISTINCT types in distributed operations, see “DISTINCT Types in
Distributed Operations” on page 4-37.

Collection-Derived Table
A collection-derived table is a virtual table in which the values in the rows of the
table are equivalent to elements of a collection. Use this segment where you see a
reference to Collection-Derived Table in a syntax diagram. This syntax is an
extension to the ANSI/ISO standard for SQL.

Syntax

Collection-Derived Table:

(1)
TABLE (�

�

�

collection_expr)
(1) ,

AS alias
alias (derived_column)

(2) (3)
collection_var)

(3)
row_var

Notes:

1 Informix extension

2 Stored Procedure Language

3 ESQL/C

Element Description Restrictions Syntax

alias Temporary name for a
collection-derived table whose scope
is a SELECT statement. The default
is implementation dependent.

If potentially ambiguous, you
must precede alias with the AS
keyword. See “The AS
Keyword” on page 2-673.

“Identifier” on page 5-21

collection_expr Any expression that evaluates to the
elements of a single collection

See “Restrictions with the
Collection-Expression Format”
on page 5-7.

“Expression” on page
4-44

5-4 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

collection_var,
row_var

Name of a typed or untyped
collection variable, or an Informix
ESQL/C row variable that holds the
collection-derived table

Must have been declared in an
Informix ESQL/C program or
(for collection_var) in an SPL
routine

See the IBM Informix
ESQL/C Programmer's
Manual or “DEFINE” on
page 3-14.

derived _column Temporary name for a derived
column in a table

If the underlying collection is
not of a ROW data type, you
can specify only one
derived-column name

“Identifier” on page 5-21

Usage

A collection-derived table can appear where a table name is valid in the UPDATE
statement, in the FROM clause of the SELECT or DELETE statement, or in the
INTO clause of an INSERT statement.

Use the collection-derived-table segment to accomplish these tasks:
v Access the elements of a collection as you would the rows of a table.
v Specify a collection variable to access, instead of a table name.
v Specify an ESQL/C row variable to access, instead of a table name.

The TABLE keyword converts a collection into a virtual table. You can use the
collection expression format to query a collection column, or you can use the
collection variable or row variable format to manipulate the data in a collection
column.
Related reference:
“DECLARE statement” on page 2-386
“DELETE statement” on page 2-404
“DESCRIBE statement” on page 2-412
“FETCH statement” on page 2-474
“INSERT statement” on page 2-545
“PUT statement” on page 2-601
“SELECT statement” on page 2-654
“UPDATE statement” on page 2-852
“DEFINE” on page 3-14
“FOREACH” on page 3-30

Handle collections (SQL Tutorial)

Complex data types (ESQL/C Guide)

Accessing a Collection Through a Virtual Table
When you use the collection expression format of the collection-derived table
segment to access the elements of a collection, you can select elements of the
collection directly through a virtual table. You can use this format in the FROM
clause of a SELECT statement. The FROM clause can be in either a query or a
subquery.

Chapter 5. Other syntax segments 5-5

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlt.doc/ids_sqt_469.htm#ids_sqt_469
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.esqlc.doc/ids_esqlc_0280.htm#ids_esqlc_0280

With this format you can use joins, aggregates, the WHERE clause, expressions, the
ORDER BY clause, and other operations that are not available when you use the
collection-variable format. This format reduces the need for multiple cursors and
temporary tables.

Examples of possible collection expressions include column references, scalar
subquery, dotted expression, functions, operators (through overloading), collection
subqueries, literal collections, collection constructors, cast functions, and so on.

The following example uses a SELECT statement in the FROM clause whose result
set defines a virtual table consisting of the fifty-first through seventieth qualifying
rows, ordered by the employee_id column value.
SELECT * FROM TABLE(MULTISET(SELECT SKIP 50 FIRST 20 * FROM employees

ORDER BY employee_id)) vt(x,y), tab2 WHERE tab2.id = vt.x;

The following example uses a join query to create a virtual table of no more than
twenty rows (beginning with the 41st row), ordered by value in the salary column
of the collection-derived table:
SELECT emp_id, emp_name, emp_salary

FROM TABLE(MULTISET(SELECT SKIP 40 LIMIT 20 id, name, salary
FROM e1, e2
WHERE e1.id = e2.id ORDER BY salary))

AS etab(emp_id, emp_name, emp_salary);

Table Expressions in the FROM Clause
Informix supports ANSI/ISO standard syntax for table expressions in the FROM
clause of SELECT queries and subqueries as a substitute for the Informix-extension
collection-derived table syntax. The keywords TABLE and MULTISET were
required in version 10.00 and in earlier releases. These extensions to the ANSI/ISO
standard for SQL are supported but no longer required for collection-derived table
specifications in the FROM clause of SELECT statements.

The following two queries return the same result set, but only the second query
complies with the ANSI/ISO standard:
SELECT * FROM TABLE(MULTISET(SELECT col1 FROM tab1 WHERE col1 = 100))

AS vtab(c1),
(SELECT col1 FROM tab1 WHERE col1 = 10) AS vtab1(vc1) ORDER BY c1;

SELECT * FROM (SELECT col1 FROM tab1 WHERE col1 = 100) AS vtab(c1),
(SELECT col1 FROM tab1 WHERE col1 = 10) AS vtab1(vc1)

ORDER BY c1;

The same SELECT statement can combine instances of both the Informix-extension
and ANSI/ISO syntax for derived tables:
SELECT * FROM (SELECT col1 FROM tab1 WHERE col1 = 100) AS vtab(c1),

TABLE(MULTISET(SELECT col1 FROM tab1 WHERE col1 = 10)) AS vtab1(vc1)
ORDER BY c1;

The subquery must be delimited by parentheses in both formats, but the outer set
of parentheses (()) that immediately follows the TABLE keyword and encloses
the MULTISET collection subquery specification is an extension to the ANSI/ISO
syntax. This ANSI/ISO syntax is valid only in the FROM clause of the SELECT
statement. You cannot omit these keywords and parentheses from a collection
subquery specification in any other context.

5-6 IBM Informix Guide to SQL: Syntax

Restrictions with the Collection-Expression Format
When you use the collection-expression format, certain restrictions apply:
v A collection-derived table is read-only.

– It cannot be the target of INSERT, UPDATE, or DELETE statements.
To perform insert, update, and delete operations, you must use the
collection-variable format.

– It cannot be the underlying table of an updatable cursor or view.
v In the FROM clause of the SELECT statement, the CALL keyword of SPL cannot

precede the TABLE keyword of a table expression.
v If the collection is a LIST data type, the resulting collection-derived table does

not preserve the order of the elements in the LIST.
v The underlying collection expression cannot evaluate to NULL.
v The collection expression cannot contain a reference to a collection on a remote

database server.
v The collection expression cannot contain column references to tables that appear

in the same FROM clause. That is, the collection-derived table must be
independent of other tables in the FROM clause.
For example, the following statement returns an error because the
collection-derived table, TABLE (parents.children), refers to the parents table,
which is also referenced in the FROM clause:
SELECT COUNT(*)

FROM parents, TABLE(parents.children) c_table
WHERE parents.id = 1001;

To counter this restriction, you might write a query that contains a subquery in
the Projection clause:
SELECT (SELECT COUNT(*)

FROM TABLE(parents.children) c_table)
FROM parents WHERE parents.id = 1001;

Additional Restrictions That Apply to ESQL/C
In addition to the previously described restrictions, the following restrictions also
apply when you use the collection-expression format with Informix ESQL/C:
v You cannot specify an untyped COLLECTION as the host-variable data type.
v You cannot use the format TABLE(?).

The data type of the underlying collection variable must be determined
statically. To counter this restriction, you can explicitly cast the variable to a
typed collection data type (SET, MULTISET, or LIST) that the database server
recognizes. For example,
TABLE(CAST(? AS type))

v You cannot use the format TABLE(:hostvar).

To counter this restriction, you must explicitly cast the variable to a typed
collection data type (SET, MULTISET, or LIST) that the database server
recognizes. For example,
TABLE(CAST(:hostvar AS type))

Row Type of the Resulting Collection-Derived Table
If you do not specify a derived-column name, the behavior of the database server
depends on the data types of the elements in the underlying collection.

Chapter 5. Other syntax segments 5-7

Although a collection-derived table appears to contain columns of individual data
types, these columns are, in fact, the fields of a ROW data type. The data type of
the ROW type as well as the column name depend on several factors.

If the data type of the elements of the underlying collection expression is type, the
database server determines the ROW type of the collection-derived table by the
following rules:
v If type is a ROW data type, and no derived-column list is specified, then the

ROW type of the collection-derived table is type.
v If type is a ROW data type and a derived column list is specified, then the ROW

type of the collection-derived table is an unnamed ROW type whose column
data types are the same as those of type and whose column names are taken
from the derived column list.

v If type is not a ROW data type, the ROW type of the collection-derived table is
an unnamed ROW type that contains one column of type and whose name is
specified in the derived column list. If no name is specified, the database server
assigns an implementation-dependent name to the column.

The extended examples that the following table shows illustrate these rules. The
table uses the following schema for its examples:
CREATE ROW TYPE person (name CHAR(255), id INT);
CREATE TABLE parents

(
name CHAR(255),
id INT,
children LIST (person NOT NULL)
);

CREATE TABLE parents2
(
name CHAR(255),
id INT,
children_ids LIST (INT NOT NULL)
);

ROW
Type

Explicit
Derived-
Column List

Resulting ROW Type of the
Collection-Derived Table Code Example

Yes No Type
SELECT (SELECT c_table.name FROM
TABLE(parents.children) c_table WHERE c_table.id =
1002) FROM parents WHERE parents.id = 1001;

In this example, the ROW type of c_table is parents.

Yes Yes Unnamed ROW type of
which the column type is
Type and the column name is
the name in the
derived-column list

SELECT (SELECT c_table.c_name FROM
TABLE(parents.children) c_table(c._name, c_id) WHERE
c_table.c_id = 1002) FROM parents WHERE parents.id =
1001;

In this example, the ROW type of c_table is ROW(c_name
CHAR(255), c_id INT).

No No Unnamed ROW that contains
one column of Type that is
assigned an
implementation-dependent
name

In the following example, if you do not specify c_id, the
database server assigns a name to the derived column. In
this case, the ROW type of c_table is
ROW(server_defined_name INT).

5-8 IBM Informix Guide to SQL: Syntax

ROW
Type

Explicit
Derived-
Column List

Resulting ROW Type of the
Collection-Derived Table Code Example

No Yes Unnamed ROW type that
contains one column of Type
whose name is in the
derived-column list

SELECT(SELECT c_table.c_id FROM
TABLE(parents2.child_ids) c_table (c_id) WHERE
c_table.c_id = 1002) FROM parents WHERE parents.id =
1001;

Here the ROW type of c_table is ROW(c_id INT).

The following program fragment creates a collection-derived table using an SPL
function that returns a single value:
CREATE TABLE wanted(person_id int);
CREATE FUNCTION

wanted_person_count (person_set SET(person NOT NULL))
RETURNS INT;
RETURN(SELECT COUNT (*)

FROM TABLE (person_set) c_table, wanted
WHERE c_tabel.id = wanted.person_id);

END FUNCTION;

The next program fragment shows the more general case of creating a
collection-derived table using an SPL function that returns multiple values:
-- Table of categories and child categories,
-- allowing any number of levels of subcategories
CREATE TABLE CategoryChild (

categoryId INTEGER,
childCategoryId SMALLINT

);

INSERT INTO CategoryChild VALUES (1, 2);
INSERT INTO CategoryChild VALUES (1, 3);
INSERT INTO CategoryChild VALUES (1, 4);
INSERT INTO CategoryChild VALUES (2, 5);
INSERT INTO CategoryChild VALUES (2, 6);
INSERT INTO CategoryChild VALUES (5, 7);
INSERT INTO CategoryChild VALUES (7, 8);
INSERT INTO CategoryChild VALUES (7, 9);
INSERT INTO CategoryChild VALUES (4, 10);

-- "R" == ROW type
CREATE ROW TYPE categoryLevelR (

categoryId INTEGER,
level SMALLINT);

-- DROP FUNCTION categoryDescendants (
-- INTEGER, SMALLINT);
CREATE FUNCTION categoryDescendants (

pCategoryId INTEGER,
pLevel SMALLINT DEFAULT 0)

RETURNS MULTISET (categoryLevelR NOT NULL)

-- "p" == Prefix for Parameter names
-- "l" == Prefix for Local variable names
DEFINE lCategoryId LIKE CategoryChild.categoryId;
DEFINE lRetSet MULTISET (categoryLevelR NOT NULL);
DEFINE lCatRow categoryLevelR;

-- TRACE ON;
-- Must initialize collection before inserting rows
LET lRetSet = ’MULTISET{}’ :: MULTISET (categoryLevelR NOT NULL);

Chapter 5. Other syntax segments 5-9

FOREACH
SELECT childCategoryId INTO lCategoryId

FROM CategoryChild WHERE categoryId = pCategoryId;
INSERT INTO TABLE (lRetSet)

VALUES (ROW (lCategoryId, pLevel+1)::categoryLevelR);

-- INSERT INTO TABLE (lRetSet);
-- EXECUTE FUNCTION categoryDescendantsR (lCategoryId,
-- pLevel+1);
-- Need to iterate over results and insert into SET.
-- See the SQL Tutorial, pg. 10-52:
-- "Tip: You can only insert one value at a time
-- into a simple collection."

FOREACH
EXECUTE FUNCTION categoryDescendantsR (lCategoryId, pLevel+1)

INTO lCatRow;
INSERT INTO TABLE (lRetSet)

VALUES (lCatRow);
END FOREACH;

END FOREACH;

RETURN lRetSet;
END FUNCTION
;
-- "R" == recursive
-- DROP FUNCTION categoryDescendantsR (INTEGER, SMALLINT);
CREATE FUNCTION categoryDescendantsR (

pCategoryId INTEGER,
pLevel SMALLINT DEFAULT 0

)
RETURNS categoryLevelR;
DEFINE lCategoryId LIKE CategoryChild.categoryId;
DEFINE lCatRow categoryLevelR;

FOREACH
SELECT childCategoryId
INTO lCategoryId
FROM CategoryChild
WHERE categoryId = pCategoryId
RETURN ROW (lCategoryId, pLevel+1)::categoryLevelR WITH RESUME;

FOREACH
EXECUTE FUNCTION categoryDescendantsR (lCategoryId, pLevel+1)

INTO lCatRow
RETURN lCatRow WITH RESUME;

END FOREACH;
END FOREACH;
END FUNCTION;

-- Test the functions:
SELECT lev, col
FROM TABLE ((

categoryDescendants (1, 0)
)) AS CD (col, lev);

Accessing a Collection Through a Collection Variable
When you use the collection-variable format of the collection-derived table
segment, you use a host or program variable to access and manipulate the
elements of a collection. This format allows you to modify the contents of a
variable as you would a table in the database, and then update the actual table
with the contents of the collection variable.

5-10 IBM Informix Guide to SQL: Syntax

You can use the collection-variable format (the TABLE keyword preceding a
collection variable) in place of the name of a table, synonym, or view in the
following SQL statements (or in the FOREACH statement of SPL):
v The FROM clause of the SELECT statement to access an element of the

collection variable
v The INTO clause of the INSERT statement to add a new element to the

collection variable
v The DELETE statement to remove an element from the collection variable
v The UPDATE statement to modify an existing element in the collection variable
v The DECLARE statement to declare a Select or Insert cursor to access multiple

elements of an Informix ESQL/C collection host variable
v The FETCH statement to retrieve a single element from a collection host

variable that is associated with a Select cursor
v The PUT statement to retrieve a single element from a collection host variable

that is associated with an Insert cursor
v The FOREACH statement to declare a cursor to access multiple elements of an

SPL collection variable and to retrieve a single element from this collection
variable

Using a Collection Variable to Manipulate Collection Elements
When you use data manipulation statements (SELECT, INSERT, UPDATE, or
DELETE) of Informix in conjunction with a collection variable, you can modify
one or more elements in a collection.

To modify elements in a collection

1. Create a collection variable in your SPL routine or Informix ESQL/C program.
For information on how to declare a collection variable in Informix ESQL/C,
see the IBM Informix ESQL/C Programmer's Manual. For information on how to
define a COLLECTION variable in SPL, see “DEFINE” on page 3-14.

2. In Informix ESQL/C, allocate memory for the collection; see “ALLOCATE
COLLECTION statement” on page 2-1.

3. Optionally, use a SELECT statement to select a COLLECTION column into the
collection variable. If the variable is an untyped COLLECTION variable, you
must perform a SELECT from the COLLECTION column before you use the
variable in the collection-derived table segment. The SELECT statement allows
the database server to obtain the collection data type.

4. Use the appropriate data manipulation statement with the collection-derived
table segment to add, delete, or update elements in the collection variable. To
insert more than one element or to update or delete a specific element of a
collection, you must use a cursor for the collection variable.
v For more information on how to use an update cursor with ESQL/C, see

“DECLARE statement” on page 2-386.
v For more information on how to use an update cursor with SPL, see

“FOREACH” on page 3-30.
5. After the collection variable contains the correct elements, use an INSERT or

UPDATE statement on the table or view that holds the actual collection column
to save the changes that the collection variable holds.
v With UPDATE, specify the collection variable in the SET clause.
v With INSERT, specify the collection variable in the VALUES clause.

Chapter 5. Other syntax segments 5-11

The collection variable stores the elements of the collection. It has no intrinsic
connection, however, with a database column. Once the collection variable contains
the correct elements, you must then save the variable into the actual collection
column of the table with either an INSERT or an UPDATE statement.

Example of Deleting from a Collection in ESQL/C
Suppose that the set_col column of a row in the table1 table is defined as a SET
and for one row contains the values {1,8,4,5,2}. The following Informix ESQL/C
code fragment uses an update cursor and a DELETE statement with a WHERE
CURRENT OF clause to delete the element whose value is 4:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(smallint not null) a_set;
int an_int;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL allocate collection :a_set;
EXEC SQL select set_col into :a_set from table1 where int_col = 6;
EXEC SQL declare set_curs cursor for

select * from table(:a_set) for update;

EXEC SQL open set_curs;
while (i<coll_size)
{

EXEC SQL fetch set_curs into :an_int;
if (an_int = 4)
{

EXEC SQL delete from table(:a_set) where current of set_curs;
break;

}
i++;

}

EXEC SQL update table1 set set_col = :a_set
where int_col = 6;

EXEC SQL deallocate collection :a_set;
EXEC SQL close set_curs;
EXEC SQL free set_curs;

After the DELETE statement executes, this collection variable contains the elements
{1,8,5,2}. The UPDATE statement at the end of this code fragment saves the
modified collection into the set_col column. Without this UPDATE statement,
element 4 of the collection column is not deleted.

Example of Deleting from a Collection
Suppose that the set_col column of a row in the table1 table is defined as a SET
and one row contains the values {1,8,4,5,2}. The following SPL code fragment
uses a FOREACH loop and a DELETE statement with a WHERE CURRENT OF
clause to delete the element whose value is 4:
CREATE_PROCEDURE test6()

DEFINE a SMALLINT;
DEFINE b SET(SMALLINT NOT NULL);
SELECT set_col INTO b FROM table1

WHERE id = 6;
-- Select the set in one row from the table
-- into a collection variable

FOREACH cursor1 FOR
SELECT * INTO a FROM TABLE(b);

-- Select each element one at a time from
-- the collection derived table b into a

IF a = 4 THEN
DELETE FROM TABLE(b)

WHERE CURRENT OF cursor1;

5-12 IBM Informix Guide to SQL: Syntax

-- Delete the element if it has the value 4
EXIT FOREACH;

END IF;
END FOREACH;

UPDATE table1 SET set_col = b
WHERE id = 6;
-- Update the base table with the new collection

END PROCEDURE;

This SPL routine declares two SET variables, a and b, each to hold a set of
SMALLINT values. The first SELECT statement copies a SET column from one row
of table1 into variable b. The routine then declares a cursor called cursor1 that
copies one element at a time from b into SET variable a. When the cursor is
positioned on the element whose value is 4, the DELETE statement removes that
element from SET variable b. Finally, the UPDATE statement replaces the row of
table1 with the new collection that is stored in variable b.

For information on how to use collection variables in an SPL routine, see the IBM
Informix Guide to SQL: Tutorial.

Example of Updating a Collection
Suppose that the set_col column of a table called table1 is defined as a SET and
that it contains the values {1,8,4,5,2}. The following Informix ESQL/C program
changes the element whose value is 4 to a value of 10:
main
{

EXEC SQL BEGIN DECLARE SECTION;
int a;
collection b;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :b;
EXEC SQL select set_col into :b from table1

where int_col = 6;

EXEC SQL declare set_curs cursor for
select * from table(:b) for update;

EXEC SQL open set_curs;
while (SQLCODE != SQLNOTFOUND)
{

EXEC SQL fetch set_curs into :a;
if (a = 4)
{

EXEC SQL update table(:b)(x)
set x = 10 where current of set_curs;

break;
}

}
EXEC SQL update table1 set set_col = :b

where int_col = 6;
EXEC SQL deallocate collection :b;
EXEC SQL close set_curs;
EXEC SQL free set_curs;

}

After you execute this Informix ESQL/C program, the set_col column in table1
contains the values {1,8,10,5,2}.

This Informix ESQL/C program defines two collection variables, a and b, and
selects a SET from table1 into b. The WHERE clause ensures that only one row is

Chapter 5. Other syntax segments 5-13

returned. Then the program defines a Collection cursor, which selects elements one
at a time from b into a. When the program locates the element with the value 4,
the first UPDATE statement changes that element value to 10 and exits the loop.

In the first UPDATE statement, x is a derived-column name used to update the
current element in the collection-derived table. The second UPDATE statement
updates the base table table1 with the new collection.

For information on how to use collection host variables in an Informix ESQL/C
program, see the discussion of complex data types in the IBM Informix ESQL/C
Programmer's Manual.

Example of Inserting a Value into a Multiset Collection
Suppose the Informix ESQL/C host variable a_multiset has the following
declaration:
EXEC SQL BEGIN DECLARE SECTION;

client collection multiset(integer not null) a_multiset;
EXEC SQL END DECLARE SECTION;

The following INSERT statement adds a new MULTISET element of 142,323 to
a_multiset:
EXEC SQL allocate collection :a_multiset;
EXEC SQL select multiset_col into :a_multiset from table1

where id = 107;
EXEC SQL insert into table(:a_multiset) values (142323);
EXEC SQL update table1 set multiset_col = :a_multiset

where id = 107;

EXEC SQL deallocate collection :a_multiset;

When you insert elements into a client-collection variable, you cannot specify a
SELECT statement or an EXECUTE FUNCTION statement in the VALUES clause
of the INSERT. When you insert elements into a server-collection variable,
however, the SELECT and EXECUTE FUNCTION statements are valid in the
VALUES clause. For more information on client- and server-collection variables,
see the IBM Informix ESQL/C Programmer's Manual.

Accessing a Nested Collection
If the element of the collection is itself a complex type (collection or row type), the
collection is a nested collection. For example, suppose the Informix ESQL/C
collection variable, a_set, is a nested collection that is defined as follows:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(list(integer not null)) a_set;
client collection list(integer not null) a_list;
int an_int;

EXEC SQL END DECLARE SECTION;

To access the elements (or fields) of a nested collection, use a collection or row
variable that matches the element type (a_list and an_int in the preceding code
fragment) and a Select cursor.

Accessing a Row Variable
The TABLE keyword can make an Informix ESQL/C row variable a
collection-derived table. That is, a row appears as a table in an SQL statement. For
a row variable, think of the collection-derived table as a table of one row, with
each field of the row type being a column of the row. Use the TABLE keyword in
place of the name of a table, synonym, or view in these SQL statements:

5-14 IBM Informix Guide to SQL: Syntax

v The FROM clause of the SELECT statement to access a field of the row variable
v The UPDATE statement to modify an existing field in the row variable

The DELETE and INSERT statements do not support a row variable in the
collection-derived-table segment.

For example, suppose an ESQL/C host variable a_row has the following
declaration:
EXEC SQL BEGIN DECLARE SECTION;

row(x int, y int, length float, width float) a_row;
EXEC SQL END DECLARE SECTION;

The following ESQL/C code fragment adds the fields in the a_row variable to the
row_col column of the tab_row table:
EXEC SQL update table(:a_row)

set x=0, y=0, length=10, width=20;
EXEC SQL update rectangles set rect = :a_row;

Database Name
Use the Database Name segment to specify the name of a database. Use this
segment when you see a reference to a database name in a syntax diagram.

Syntax

Database Name:

dbname
@dbservername

'//dbservername/ dbname'
(1)

db_var

Notes:

1 ESQL/C only

Element Description Restrictions Syntax

dbname Database name (with no pathname
nor database server name)

Must be unique among the names of
databases of the database server

“Identifier”
on page 5-21

dbservername Database server on which the
database dbname resides

Must exist. No blank space can separate @
from dbservername.

“Identifier”
on page 5-21

db_var Host variable whose value specifies a
database environment

Variable must be a fixed-length character
data type

Language
specific

Usage

Database names are not case sensitive. You cannot use delimited identifiers for a
database name.

The identifiers dbname and dbservername can each have a maximum of 128 bytes.

If the name of a database server is a delimited identifier or if it includes uppercase
letters, that database server cannot participate in cross-server distributed DML

Chapter 5. Other syntax segments 5-15

operations. To avoid this restriction, use only undelimited names that include no
uppercase letters when you declare the name or the alias of a database server.

In a nondefault locale, dbname can include alphabetic characters from the code set
of the locale. In a locale that supports a multibyte code set, keep in mind that the
maximum length of the database name refers to the number of bytes, not the
number of characters. For more information on the GLS aspects of naming
databases, see the IBM Informix GLS User's Guide.

Using Keywords as Table Names
You can choose a database on another database server as your current database by
specifying a database server name. The database server that dbservername specifies
must match the name of a database server that is listed in your sqlhosts
information.

Using the @ Symbol
The @ symbol is a literal character. If you specify a database server name, blank
spaces are not valid between the @ symbol and the database server name. Either
put a blank space between dbname and the @ symbol, or omit the blank space.

The following examples show valid database specifications, qualified by the
database server name:
empinfo@personnel
empinfo @personnel

In these examples, empinfo is the name of the database and personnel is the name
of the database server.

Using a Path-Type Naming Notation
If you specify a pathname, do not put blank spaces between the quotation marks,
slashes, and names. The following example specifies a valid UNIX pathname:
’//personnel/empinfo’

Here empinfo is the dbname and personnel is the name of the database server.

Using a Host Variable
You can use a host variable within an Informix ESQL/C application to store a
value that represents a database environment.
Related reference:
“DEFINE” on page 3-14

Database Object Name
Use the Database Object Name segment to specify the name of a database object,
such as a column, table, view, or user-defined routine. Use this segment whenever
you see a reference to a database object name.

Syntax

Database Object Name:

(1)
database :

@dbservername

(2)
Owner Name .

�

5-16 IBM Informix Guide to SQL: Syntax

� object
. object

Notes:

1 Informix extension

2 See “Owner name” on page 5-49

Element Description Restrictions Syntax

database Database where object resides Must exist. “Database Name” on page 5-15

dbservername Database server of database Must exist. No space after @. “Identifier” on page 5-21

object Name of a database object See “Usage.” “Identifier” on page 5-21

Usage

A database object name can include qualifiers and separator symbols to specify a
database, a server, an owner, and (for some objects) another object of which the
current database object is a component. For example, this expression specifies the
unit-price column of the stock table, owned by user informix, in the stores_demo
database of a database server called butler:
stores_demo@butler:informix.stock.unit_price

If you are creating or renaming a database object, the new name that you declare
must be unique among objects of the same type in the database. Thus, the name of
a new view must be unique among the names and synonyms of tables, views, and
sequence objects that already exist in the same database. (But a view can have the
same name as a view in a different database of the same server, or the same name
as a trigger, for example, because these are different types of objects.)

In an ANSI-compliant database, the owner.object combination must be unique in the
database for the type of object. A database object specification must include the
owner name for a database object that you do not own. For example, if you specify
a table that you do not own, you must also specify the owner of the table. The
owner of all the system catalog tables is informix.

In Informix, the uniqueness requirement does not apply to the name of a user
defined routine (UDR). For more information, see “Routine Overloading and
Routine Signatures” on page 5-19.

Characters from the code set of your database locale are valid in database object
names. For more information, see IBM Informix GLS User's Guide.

Specifying a Database Object in an External Database
Besides objects in the local database to which you are currently connected, you can
also specify a database object in another database of the local database server, or in
a database of a remote database server.

Specifying a Database Object in a Cross-Database Query
To specify an object in another database of the local database server, you must
qualify the identifier of the object with the name of the database (and of the owner,
if the external database is ANSI compliant), as in this example:
corp_db:hrdirector.executives

Chapter 5. Other syntax segments 5-17

In this example, the name of the external database is corp_db. The name of the
owner of the table is hrdirector. The name of the table is executives. Here the
colon (:) separator is required after the database qualifier.

In Informix, queries and other data manipulation language (DML) operations on
other databases of the local database server can access most of the built-in opaque
data types, as listed in “Data Types in Cross-Database Transactions” on page 2-663.
DML operations can also access user-defined data types (UDTs) that can be cast to
built-in types, as well as DISTINCT types that are based on built-in types, if each
DISTINCT types and UDT is cast explicitly to a built-in type, and if all the
DISTINCT types, UDTs, and casts are defined in all of the participating databases.
The same data-type restrictions also apply to the arguments and to the returned
values of a user-defined routine (UDR) that accesses other databases of the local
Informix instance, if the UDR is defined in all of the participating databases.

Specifying a Database Object in a Cross-Server Query
To specify an object in a database of a remote database server, you must use a
fully-qualified identifier that specifies the database, database server, and owner (if the
external database is ANSI compliant) in addition to the database object name. For
example, hr_db@remoteoffice:hrmanager.employees is a fully-qualified table
name.

Here the database is hr_db, the database server is remoteoffice, the table owner is
hrmanager, and the table name is employees. The at (@) separator, with no blank
spaces, is required between the database and database server qualifiers. Cross-server
queries can access columns of built-in data types that are not opaque data types,
but they cannot access UDTs nor complex data types. (For a list of the DISTINCT
and built-in OPAQUE data types that Informix supports in cross-server operations,
see “Data Types in Cross-Server Transactions” on page 2-665.)

In Informix, if a UDR exists on a remote database server, you must specify a
fully-qualified identifier for the UDR. Like cross-server DML operations, a remote
UDR is limited to built-in data types for its arguments, parameters, and returned
values. (For a list of the data types that Informix supports in cross-database
operations, see “Data Types in Cross-Database Transactions” on page 2-663.)

You can refer to a remote database object in the following statements only. For
information on the support in these statements across databases of the local server,
or across database servers, refer to the IBM Informix Guide to SQL: Tutorial.
v CREATE DATABASE
v CREATE SYNONYM
v CREATE VIEW
v DATABASE
v DELETE
v EXECUTE FUNCTION
v EXECUTE PROCEDURE
v INFO
v INSERT
v LOAD
v LOCK TABLE
v SELECT
v UNLOAD
v UNLOCK TABLE

5-18 IBM Informix Guide to SQL: Syntax

v UPDATE

If the name of a database server is a delimited identifier or if it includes uppercase
letters, that database server cannot participate in distributed DML operations. To
avoid this restriction, use only undelimited names that include no uppercase letters
when you declare the name or the alias of a database server.

Routine Overloading and Routine Signatures
Because of routine overloading, the name of a user-defined routine does not need
to be unique to the database. You can define more than one UDR with the same
name, provided that the routine signature for each UDR is different.

UDRs are uniquely identified by their signatures. The signature of a UDR includes
the following items of information:
v The type of routine (function or procedure)
v The identifier of the routine
v The cardinality, data type, and order of the parameters
v In an ANSI-compliant database, the owner name

For any given UDR, at least one item in the routine signature must be unique
among all the UDRs registered in the database.

In a database that is not ANSI-compliant, two routines that have different owners
cannot have the same signature, except in the special cases of the sysdbopen() and
sysdbclose() routines. For information about the effects of these session
configuration routines when their owners connect to or disconnect from a database
where these routines are defined, see “IFX_REPLACE_MODULE Function” on
page 6-15.

Specifying an Existing UDR
To reference an existing UDR by a name that does not uniquely identify the UDR,
you must also specify the parameter data types after the UDR name, in the same
order that they were declared when the UDR was created. Informix then uses
routine resolution rules to identify the instance of the UDR to alter, drop, or
execute. As an alternative, you can specify its specific name, if one was declared
when the UDR was created. Specific names are described in the section “Specific
Name” on page 5-77. For more details of routine resolution, see “Comparing
Arguments to the Parameter List” on page 5-2, and IBM Informix User-Defined
Routines and Data Types Developer's Guide.

Owners of Objects Created by UDRs
When a DDL statement within an owner-privileged UDR creates a new database
object, the owner of the routine (rather than the user who executes it, if that user is
not the owner of the routine) becomes the owner of the new database object. For a
DBA-privileged UDR, however, the user who executes the routine (and who must
hold DBA privilege) becomes the owner of any objects that the UDR creates.

External Routine Reference
Include the External Routine Reference clause when you write an external routine.
This option is not available for SPL routines.

Chapter 5. Other syntax segments 5-19

Syntax

External Routine Reference:

EXTERNAL NAME
(1)

Shared-Object Filename LANGUAGE C
JAVA

�

�
INFORMIX

PARAMETER STYLE
(2) (3) VARIANT

NOT VARIANT

Notes:

1 See “Shared-Object Filename” on page 5-74

2 C

3 Java

Usage

If the IFX_EXTEND_ROLE configuration parameter is set to ON or to 1,
authorization to use this segment is available only to the Database Server
Administrator (DBSA), and to users whom the DBSA has granted the EXTEND
role. By default, the DBSA is user informix. In addition, you cannot create an
external routine unless you hold the Resource or DBA privilege on the database,
and also hold the Usage privilege on the external programming language in which
the routine is written. For the syntax of the GRANT USAGE ON LANGUAGE C
and GRANT USAGE ON LANGUAGE JAVA statements of SQL, see
“Language-Level Privileges” on page 2-516.

This segment specifies the following information about an external routine:
v Pathname to the executable object code, stored in a shared-object file

For C routines, this file is either a DLL or a shared library, depending on your
operating system.
For Java routines, this file is a jar file. Before you can create a UDR written in
the Java language, you must assign a jar identifier to the external jar file with
the sqlj.install_jar procedure. For more information, see “sqlj.install_jar” on
page 6-19.

v The name of the programming language in which the UDR is written
v The parameter style of the UDR

By default, the parameter style is INFORMIX. (This implies that if you specify
OUT or INOUT parameters, the OUT or INOUT values are passed by reference.)

v The VARIANT or NOT VARIANT option. If you specify neither, the default is
VARIANT. If the routine includes any statement of SQL it is a VARIANT
routine. If a DDL statement that includes the External Routine Reference clause
also includes the Routine Modifier clause, do not classify the same UDR as
VARIANT in one of these clauses and as NOT VARIANT in the other.

Example

The following example includes an external routine reference for a Java language
UDR. You must first register demo_jarusing the procedure install_jar(<absolute
path><jar file name>,<internal registered name>).

5-20 IBM Informix Guide to SQL: Syntax

CREATE FUNCTION delete_order(int) RETURNING int
EXTERNAL NAME ’informix.demo_jar:delete_order.delete_order()’
LANGUAGE JAVA;

Related reference:
“Shared-Object Filename” on page 5-74

VARIANT or NOT VARIANT Option
A function is variant if it can return different results when it is invoked with the
same arguments or if it modifies the state of a database or of a variable. For
example, a function that returns the current date or time is a variant function.

By default, user-defined functions are variant. If you specify NOT VARIANT when
you create or modify a function, it cannot contain any SQL statements.

If the function is nonvariant, the database server might cache the return variant
functions. For more information on functional indexes, see “CREATE INDEX
statement” on page 2-194.

To register a nonvariant function, add the NOT VARIANT option in this clause or
in the Routine Modifier clause that is discussed in “Routine modifier” on page
5-63. If you specify the modifier in both contexts, however, you must use the same
modifier (either VARIANT or NOT VARIANT) in both clauses.

Example of a C User-Defined Function
The next example registers an external function named equal() that takes two
point data type values as arguments. In this example, point is an opaque data type
that specifies the x and y coordinates of a two-dimensional point.
CREATE FUNCTION equal(a point, b point) RETURNING BOOLEAN;

EXTERNAL NAME "/usr/lib/point/lib/libbtype1.so(point1_equal)"
LANGUAGE C

END FUNCTION;

The function returns a single value of type BOOLEAN. The external name specifies
the path to the C shared-object file where the object code of the function is stored.
The external name indicates that the library contains another function,
point1_equal(), which is invoked while equal() executes.

Identifier
An identifier specifies the unqualified name of a database object, such as an access
method, aggregate, alias, blobspace, cast, column, constraint, correlation, data type,
index, operator class, partition, procedure, table, trigger, sequence, synonym, or
view. Use the Identifier segment whenever you see a reference to an identifier in a
syntax diagram.

Syntax

Identifier:

Chapter 5. Other syntax segments 5-21

�

letter
underscore

letter
digit
underscore
dollar_sign

(1)
Delimited Identifier

Notes:

1 See “Delimited Identifiers” on page 5-23

Element Description Restrictions Syntax

digit Integer in range 0 to 9 Cannot be the first character “Literal Number” on page
4-215

dollar_sign Dollar ($) symbol Cannot be the first character Literal symbol entered from
the keyboard.

letter Upper- or lowercase
letter of the alphabet

In the default locale, must be an ASCII
character in the range A to Z or a to z

Literal symbol entered from
the keyboard.

underscore Underscore (_) character Cannot substitute a space, hyphen, or other
non-alphanumeric character

Literal symbol entered from
the keyboard.

Usage

This is a logical subset of “Database Object Name” on page 5-16, a segment that
can specify the owner, database, and database server of external objects.

To include other non-alphanumeric symbols, such as a blank space (ASCII 32), in
an identifier, you must use a delimited identifier. It is recommended that you do
not use the dollar sign ($) in identifiers, because this symbol is a special character
whose inclusion in an identifier might cause conflicts with other syntax elements.
For more information, see “Delimited Identifiers” on page 5-23.

An identifier must have a length of at least 1 byte, but no more than 128 bytes. For
example, employee_information is valid as a table name. If you are using a
multibyte code set, keep in mind that the maximum length of an identifier refers to
the number of bytes, not to the number of logical characters.

For letter characters in nondefault locales, see “Support for Non-ASCII Characters
in Identifiers” on page 5-23. For further information on the GLS aspects of
identifiers, see Chapter 3 of the IBM Informix GLS User's Guide.

When you use ESQL/C with Informix , the database server checks the internal
version number of the client application and the setting of the IFX_LONGID
environment variable to determine whether a client application supports long
identifiers (up to 128 bytes in length). For more information, see the IBM Informix
Guide to SQL: Reference.

When the database server uses long identifiers, you might encounter error
messages, warning messages, or other messages that truncate trailing characters in
SQL identifiers or elsewhere in the message text. Truncation can usually be
avoided, however, if identifiers have 18 or fewer bytes. Your code might be

5-22 IBM Informix Guide to SQL: Syntax

difficult to read or to maintain if identifiers of different SQL objects are identical in
their first 18 characters.
Related reference:

Non-ASCII characters in identifiers (GLS User's Guide)

Use of Uppercase Characters
You can specify the name of a database object with uppercase characters, but the
database server shifts these to lowercase characters unless the DELIMIDENT
environment variable is set and the identifier of the database object is enclosed
between double (") quotation marks. In this case, the database server treats the
name of the database object as a delimited identifier and preserves the uppercase
characters in the name, as described in “Delimited Identifiers.”

If the name of a database server includes uppercase letters, that database server
cannot participate in distributed DML operations. To avoid this restriction, use
only undelimited names that include no uppercase letters when you declare the
name or the alias of a database server.

Use of Keywords as Identifiers
Although you can use almost any word as an identifier, syntactic ambiguities can
result from using keywords as identifiers in SQL statements. The statement might
fail or might not produce the expected results. For a discussion of the syntactic
ambiguities that can result from using keywords as identifiers and an explanation
of workarounds for these problems, see “Potential Ambiguities and Syntax Errors”
on page 5-26.

Delimited identifiers provide the easiest and safest way to use a keyword as an
identifier without syntactic ambiguities. No workarounds are necessary for a
keyword as a delimited identifier. For the syntax and usage of delimited
identifiers, see “Delimited Identifiers.” Delimited identifiers require, however, that
your code always use single (') quotation marks, rather than double (")
quotation marks, to delimit character-string literals.

For the keywords of the implementation of SQL in Informix, see Appendix A,
“Keywords of SQL for IBM Informix,” on page A-1.

Tip: If an error message seems unrelated to the statement that caused the error,
check to see if the statement uses a keyword as an undelimited identifier.

Support for Non-ASCII Characters in Identifiers
In a nondefault locale, you can use any alphabetic character that your locale
recognizes as a letter in an SQL identifier. This feature enables you to use
non-ASCII characters in the names of some database objects. For objects that
support non-ASCII characters, see the IBM Informix GLS User's Guide.

Delimited Identifiers
By default, the character set of a valid SQL identifier is restricted to letters, digits,
underscore, and dollar-sign symbols. If you set the DELIMIDENT environment
variable, however, SQL identifiers can also include additional characters from the
code set implied by the setting of the DB_LOCALE environment variable.

Chapter 5. Other syntax segments 5-23

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.glsug.doc/ids_gug_095.htm#ids_gug_095

Delimited Identifier:

" � letter
digit
underscore
other_character

"

Element Description Restrictions Syntax

digit Integer in the range 0 to 9 Cannot be the first character “Literal Number” on page 4-215

letter Letter that forms part of the
delimited identifier

Letters in delimited identifiers are
case-sensitive

Literal value entered from the
keyboard.

other
_character

Nonalphanumeric character,
such as #, $, or blank space

Must be an element in the code
set of the database locale

Literal value entered from the
keyboard.

underscore Underscore (_) symbol in the
delimited identifier

Cannot include more than 128 Literal value entered from the
keyboard.

If the database supports delimited identifiers, any double quotation marks (")
enclose an SQL identifier in your code, and only single (’) quotation marks,
rather than double (") quotation marks, delimit character-string literals.

Delimited identifiers enable you to declare names that are otherwise identical to
SQL keywords, such as TABLE, WHERE, DECLARE, and so on. The only type of
object for which you cannot specify a delimited identifier is a database name.

Letters in delimited identifiers are case sensitive. If you are using the default
locale, letter must be an upper- or lowercase character in the range a to z or A to Z
(in the ASCII code set). If you are using a nondefault locale, letter must be an
alphabetic character that the locale supports. For more information, see “Support
for Non-ASCII Characters in Delimited Identifiers (GLS)” on page 5-25.

Delimited identifiers are compliant with the ANSI/ISO standard for SQL.

When you create a database object, avoid including leading blank spaces or other
white-space characters between the first delimiting quotation mark and the first
nonblank character of the delimited identifier. (Otherwise, you might not be able to
reference the object in some contexts.)

If the name of a database server is a delimited identifier or if it includes uppercase
letters, that database server cannot participate in distributed DML operations. To
avoid this restriction, use only undelimited names that include no uppercase letters
when you declare the name or the alias of a database server.

Support for Nonalphanumeric Characters
By default, ASCII letters, digits, and the underscore (ASCII 95) character are
supported in SQL identifiers and in storage object identifiers for all locales. To
include additional characters from the codeset implied by the DB_LOCALE setting
in the names of database objects, you must use delimited identifiers.

You cannot , however, use delimited identifiers, however, to specify characters that
are not letters, digits, or the underscore (_) character when you declare or
reference the names of storage objects, such as dbspaces, partitions, blobspaces, or
sbspaces.

5-24 IBM Informix Guide to SQL: Syntax

Support for Non-ASCII Characters in Delimited Identifiers (GLS)
When you are using a nondefault locale whose code set supports non-ASCII
characters, you can specify those non-ASCII characters in most delimited
identifiers. The rule is that if you can specify non-ASCII characters in the
undelimited form of the identifier, you can also specify non-ASCII characters in the
delimited form of the same identifier. For a list of identifiers that support
non-ASCII characters and for information on non-ASCII characters in delimited
identifiers, see the IBM Informix GLS User's Guide.

Enabling Delimited Identifiers
To use delimited identifiers, you must set the DELIMIDENT environment variable.
While DELIMIDENTis set, strings enclosed in double quotation marks (") are
treated as identifiers of database objects, and strings enclosed in single quotation
marks (') are treated as literal strings. If the DELIMIDENT environment variable
is not set, however, strings enclosed in double quotation marks are also treated as
literal strings.

If DELIMIDENT is set, the SELECT statement in the following example must be in
single quotation marks in order to be treated as a quoted string:
PREPARE ... FROM ’SELECT * FROM customer’;

If a delimited identifier is used in the SELECT statement that defines a view, then
the DELIMIDENT environment variable must be set in order for the view to be
accessed, even if the view name itself contains no special characters.

On UNIX and Linux systems, you can set DELIMIDENT by the procedures for
setting environment variables that are described in IBM Informix Guide to SQL:
Reference.

On Windows systems, you can set DELIMIDENT in various ways, which
generally have the following descending order of precedence:
1. The setting of DELIMIDENT in the connection string when connecting
2. The setting of the SQL_INFX_ATTR_DELIMIDENT connection attribute before

connecting
3. The setting of DELIMIDENT in setnet32 with the Use my settings box selected
4. The setting of DELIMIDENT in setnet32 with the Use my settings box cleared
5. The setting of DELIMIDENT on the command line before running the

application
6. The setting of DELIMIDENT in Windows as a user variable
7. The setting of DELIMIDENT in Windows as a system variable
8. The default value (of no support for delimited identifiers).

This general order of precedence for Windows clients is sensitive, however, to the
API through which you connect to the database, which can also affect the meaning
of the setting and the default value. Refer to the documentation of your specific
API for more information about the DELIMIDENT setting in Windows.

Examples of Delimited Identifiers
The next example shows how to create a table with a case-sensitive name:
CREATE TABLE "Proper_Ranger" (...);

The following example creates a table whose name includes a white-space
character. If the table name were not enclosed by double (") quotation marks, and
if DELIMIDENT were not set, you could not use a blank space in the identifier.

Chapter 5. Other syntax segments 5-25

CREATE TABLE "My Customers" (...);

The next example creates a table that has a keyword as the table name:
CREATE TABLE "TABLE" (...);

The following example for Informix shows how to delete all the rows from a table
that is named FROM when you omit the keyword FROM in the DELETE
statement:
DELETE “FROM”;

Using Double Quotation Marks in a Delimited Identifier
To include a double quotation mark (") character within a delimited identifier,
you must precede the double quotation mark (") with another double quotation
mark ("). The following statement fragment specifies My "Good" Data as a table
name:
CREATE TABLE "My ""Good"" Data" (...);

Potential Ambiguities and Syntax Errors
IBM does not recommend using any keyword of SQL as an identifier, because to
do so tends to make your code more difficult to read and to maintain. If you
ignore this potential problem for human readers, however, you can use almost any
keyword as an SQL identifier, but various syntactic ambiguities can occur. An
ambiguous statement might not produce the desired results. The following sections
identify some potential ambiguities and workarounds when keywords are declared
as identifiers, or when different database objects have the same identifier.

Using the Names of Built-In Functions as Column Names
The following two examples show a workaround for using a built-in function as a
column name in a SELECT statement. This workaround applies to the built-in
aggregate functions (AVG, COUNT, MAX, MIN, SUM) as well as the function
expressions (algebraic, exponential and logarithmic, time, HEX, length, DBINFO,
trigonometric, and TRIM functions).

Using avg as a column name causes the next example to fail because the database
server interprets avg as an aggregate function rather than as a column name:
SELECT avg FROM mytab; -- fails

If the DELIMIDENT environment variable is set, you could use avg as a column
name as the following example shows:
SELECT "avg" from mytab; -- successful

The workaround in the following example removes ambiguity by including a table
name with the column name:
SELECT mytab.avg FROM mytab;

If you use the keyword TODAY, CURRENT, SYSDATE, or USER as a column
name, ambiguity can occur, as the following example shows:
CREATE TABLE mytab (user char(10),

CURRENT DATETIME HOUR TO SECOND,TODAY DATE);

INSERT INTO mytab VALUES(’josh’,’11:30:30’,’1/22/2008’);

SELECT user,current,today FROM mytab;

5-26 IBM Informix Guide to SQL: Syntax

The database server interprets user, current, and today in the SELECT statement as
the built-in functions USER, CURRENT, and TODAY. Thus, instead of returning
josh, 11:30:30,1/22/2008, the SELECT statement returns the current user name, the
current time, and the current date. The SYSDATE keyword has a similar effect in
databases of Informix.

If you want to select the actual columns of the table, you must write the SELECT
statement in one of the following ways:
SELECT mytab.user, mytab.current, mytab.today FROM mytab;

EXEC SQL select * from mytab;

Using Keywords as Column Names
Specific workarounds exist for using a keyword as a column name in a SELECT
statement or other SQL statement. In some cases, more than one suitable
workaround might be available.

Using ALL, DISTINCT, or UNIQUE as a Column Name
If you want to use the ALL, DISTINCT, or UNIQUE keywords as column names in
a SELECT statement, you can take advantage of a workaround.

First, consider what happens when you try to use one of these keywords without a
workaround. In the following example, using all as a column name causes the
SELECT statement to fail because the database server interprets all as a keyword
rather than as a column name:
SELECT all FROM mytab -- fails;

You must use a workaround to make this SELECT statement execute successfully.
If the DELIMIDENT environment variable is set, you can use all as a column
name by enclosing all in double quotation marks. In the following example, the
SELECT statement executes successfully because the database server interprets all
as a column name:
SELECT "all" from mytab; -- successful

The workaround in the following example uses the keyword ALL with the column
name all:
SELECT ALL all FROM mytab;

The examples that follow show workarounds for using the keywords UNIQUE or
DISTINCT as a column name in a CREATE TABLE statement.

The next example fails to declare a column named unique because the database
server interprets unique as a keyword rather than as a column name:
CREATE TABLE mytab (unique INTEGER); -- fails

The following workaround uses two SQL statements. The first statement creates
the column mycol; the second statement renames the column mycol to unique:
CREATE TABLE mytab (mycol INTEGER);

RENAME COLUMN mytab.mycol TO unique;

The workaround in the following example also uses two SQL statements. The first
statement creates the column mycol; the second alters the table, adds the column
unique, and drops the column mycol:

Chapter 5. Other syntax segments 5-27

CREATE TABLE mytab (mycol INTEGER);

ALTER TABLE mytab
ADD (unique INTEGER),
DROP (mycol);

Using INTERVAL or DATETIME as a Column Name
The examples in this section show workarounds for using the keyword INTERVAL
(or DATETIME) as a column name in a SELECT statement.

Using interval as a column name causes the following example to fail because the
database server interprets interval as a keyword and expects it to be followed by
an INTERVAL qualifier:
SELECT interval FROM mytab; -- fails

If the DELIMIDENT environment variable is set, you could use interval as a
column name, as the following example shows:
SELECT "interval" from mytab; -- successful

The workaround in the following example removes ambiguity by specifying a table
name with the column name:
SELECT mytab.interval FROM mytab;

The workaround in the following example includes an owner name with the table
name:
SELECT josh.mytab.interval FROM josh.mytab;

Using rowid as a Column Name
Every nonfragmented table has a virtual column named rowid. To avoid
ambiguity, you cannot use rowid as a column name. Performing the following
actions causes an error:
v Creating a table or view with a column named rowid

v Altering a table by adding a column named rowid

v Renaming a column to rowid

You can, however, use the term rowid as a table name.
CREATE TABLE rowid (column INTEGER, date DATE, char CHAR(20));

Important: It is recommended that you use primary keys as an access method,
rather than exploiting the rowid column.

Using Keywords as Table Names
Examples in this section show workarounds that involve owner naming when the
keyword STATISTICS or OUTER is a table name. (This workaround also applies to
STATISTICS or OUTER as a view name or synonym.)

Using statistics as a table name causes the following example to fail because the
database server interprets it as part of the UPDATE STATISTICS syntax rather than
as a table name in an UPDATE statement:
UPDATE statistics SET mycol = 10;

The workaround in the following example specifies an owner name with the table
name, to avoid ambiguity:

5-28 IBM Informix Guide to SQL: Syntax

UPDATE josh.statistics SET mycol = 10;

Using outer as a table name causes the following example to fail because the
database server interprets outer as a keyword for performing an outer join:
SELECT mycol FROM outer; -- fails

The following successful example uses owner naming to avoid ambiguity:
SELECT mycol FROM josh.outer;

Workarounds that Use the Keyword AS
In some cases, although a statement is not ambiguous and the syntax is correct, the
database server returns a syntax error. The preceding pages show existing syntactic
workarounds for several situations. You can use the AS keyword to provide a
workaround for the exceptions.

You can use the AS keyword in front of column labels or table aliases.

The following example uses the AS keyword with a column label:
SELECT column_name AS display_label FROM table_name;

The following example uses the AS keyword with a table alias:
SELECT select_list FROM table_name AS table_alias;

Using AS with Column Labels
The examples in this section show workarounds that use the AS keyword with a
column label. The first two examples show how you can use the keyword UNITS
(or YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, or FRACTION) as a
column label.

Using units as a column label causes the next example to fail because the database
server interprets it as part of an INTERVAL expression in which the mycol column
is the operand of the UNITS operator:
SELECT mycol units FROM mytab;

The workaround in the following example includes the AS keyword:
SELECT mycol AS units FROM mytab;

The following example uses the AS or FROM keyword as a column label.

Using as as a column label causes the following example to fail because the
database server interprets as as identifying from as a column label and thus finds
no required FROM clause:
SELECT mycol as from mytab; -- fails

The following successful example repeats the AS keyword:
SELECT mycol AS as from mytab;

Using from as a column label causes the following example to fail because the
database server expects a table name to follow the first from:
SELECT mycol from FROM mytab; -- fails

This example uses the AS keyword to identify the first from as a column label:
SELECT mycol AS from FROM mytab;

Chapter 5. Other syntax segments 5-29

Using AS with Table Aliases
Examples in this section show workarounds that use the AS keyword with a table
alias. The first pair shows how to use the ORDER, FOR, GROUP, HAVING, INTO,
UNION, WITH, CREATE, GRANT, or WHERE keyword as a table alias.

Using order as a table alias causes the following example to fail because the
database server interprets order as part of an ORDER BY clause:
SELECT * FROM mytab order; -- fails

The workaround in the following example uses the keyword AS to identify order
as a table alias:
SELECT * FROM mytab AS order;

The next two examples show how to use the keyword WITH as a table alias.

Using with as a table alias causes the next example to fail because the database
server interprets with as part of the WITH CHECK OPTION syntax:
EXEC SQL select * from mytab with; -- fails

The workaround in the following example uses the keyword AS to identify with as
a table alias:
EXEC SQL select * from mytab as with; -- succeeds

The next two examples use the keyword CREATE as a table alias. Using create as a
table alias causes the next example to fail because the database server interprets
the keyword as part of the syntax to create a new database object, such as a table,
synonym, or view:
EXEC SQL select * from mytab create; -- fails

EXEC SQL select * from mytab as create; -- succeeds

The workaround uses the keyword AS to identify create as a table alias. (Using
grant as an alias would similarly fail, but is valid after the AS keyword.)

Fetching Cursors that have Keywords as Names
In a few situations, no workaround exists for the syntactic ambiguity that occurs
when a keyword is used as an identifier in an SQL program.

In the following example, the FETCH statement specifies a cursor named next. The
FETCH statement generates a syntax error because the preprocessor interprets next
as a keyword, signifying the next row in the active set and expects a cursor name
to follow next. This occurs whenever the keyword NEXT, PREVIOUS, PRIOR,
FIRST, LAST, CURRENT, RELATIVE, or ABSOLUTE is used as a cursor name:
/* This code fragment fails */
EXEC SQL declare next cursor for

select customer_num, lname from customer;
EXEC SQL open next;
EXEC SQL fetch next into :cnum, :lname;

Fetching Cursors that have Keywords as Names
If you use any of the following keywords as identifiers for variables in a
user-defined routine (UDR), you can create ambiguous syntax:
v CURRENT
v DATETIME
v GLOBAL

5-30 IBM Informix Guide to SQL: Syntax

v INTERVAL
v NULL
v OFF
v OUT
v PROCEDURE
v SELECT
v SYSDATE

Using CURRENT, DATETIME, INTERVAL, and NULL in INSERT
A UDR cannot insert a variable that was declared using the CURRENT,
DATETIME, INTERVAL, or NULL keywords as the name. For example, if you
declare a variable called null, when you try to insert the value null into a column,
you receive a syntax error, as the following example shows:
CREATE PROCEDURE problem()
. . .
DEFINE null INT;
LET null = 3;
INSERT INTO tab VALUES (null); -- error, inserts NULL, not 3

Related reference:
“DEFINE” on page 3-14

Using NULL and SELECT in a Condition
If you declare a variable with the name null or select, including it in a condition
that uses the IN keyword is ambiguous. The following example shows three
conditions that cause problems: in an IF statement, in a WHERE clause of a
SELECT statement, and in a WHILE condition:
CREATE PROCEDURE problem()
. . .
DEFINE x,y,select, null, INT;
DEFINE pfname CHAR[15];
LET x = 3; LET select = 300;
LET null = 1;
IF x IN (select, 10, 12) THEN LET y = 1; -- problem if

IF x IN (1, 2, 4) THEN
SELECT customer_num, fname INTO y, pfname FROM customer

WHERE customer IN (select , 301 , 302, 303); -- problem in

WHILE x IN (null, 2) -- problem while
. . .
END WHILE;

You can use the variable select in an IN list if you ensure it is not the first element
in the list. The workaround in the following example corrects the IF statement that
the preceding example shows:
IF x IN (10, select, 12) THEN LET y = 1; -- problem if

No workaround exists to using null as a variable name and attempting to use that
variable in an IN condition.
Related reference:
“DEFINE” on page 3-14

Chapter 5. Other syntax segments 5-31

Declaring Keywords or Routine Names as SPL Variables
If you declare a variable with the same name as a keyword or as the name of a
routine, ambiguities can occur. Informix uses the following rules for resolving
name conflicts among SPL variables, UDR names, and built-in SQL function
names.
v Variable names that are declared in DEFINE statements take the highest

precedence.
v User-defined routines defined in CREATE PROCEDURE or CREATE

FUNCTION statements take precedence over built-in SQL functions.
v Procedures declared with the PROCEDURE keyword in the DEFINE statement

take precedence over built-in SQL functions.
v Built-in SQL functions take precedence over SPL procedures that exist in the

database but that are not explicitly identified as procedures in the DEFINE
statement.

Do not use the name of a built-in SQL function as an SPL variable if you might
need to invoke the SQL function. For example, do not declare a variable with the
name count or max, if you might also need to call those aggregate functions.
Related reference:
“DEFINE” on page 3-14

Variables that Conflict with Column Names
If you use the same identifier for an SPL variable and a column name, then within
the scope of reference of the variable, the database server interprets any instance of
the unqualified identifier as a variable. To use the identifier to specify a column
name, use table.column notation to qualify the column name with the table name. In
the following example, the procedure variable lname is the same as the column
name. In the following SELECT statement, customer.lname is a column in the
database and lname is an SPL variable:
CREATE PROCEDURE table_test()
DEFINE lname CHAR(15);
LET lname = "Miller";
SELECT customer.lname FROM customer INTO lname

WHERE customer_num = 502;

This example is valid, but relying on the rules of precedence of Informix to resolve
name conflicts between SPL variables and column names might make your code
difficult for human readers to interpret and to maintain. An alternative to reusing
the same identifier as a variable and as a column name is for the DEFINE
statement to declare some prefix to the identifier, such as v_lname in this example,
to indicate that this variable stores the value of the column lname.

Using ON, OFF, or PROCEDURE with TRACE
If you define an SPL variable called on, off, or procedure, and you attempt to use
it in a TRACE statement, the value of the variable is not traced. Instead, the
TRACE ON, TRACE OFF, or TRACE PROCEDURE statements execute. You can
trace the value of the variable by specifying the variable in a more complex
expression.

The following example shows both the ambiguous syntax and workarounds that
use arithmetic or string expressions that evaluate to the variable:
DEFINE on, off, procedure INT;

TRACE on; --ambiguous
TRACE 0+ on; --ok
TRACE off; --ambiguous

5-32 IBM Informix Guide to SQL: Syntax

TRACE ’’||off;--ok

TRACE procedure; --ambiguous
TRACE 0+procedure;--ok

Using GLOBAL as the Name of a Variable
If you attempt to define a variable with the name global, the define operation fails.
The syntax that the following example shows conflicts with the syntax for defining
global variables:
DEFINE global INT; -- fails;

If the DELIMIDENT environment variable is set, you could use global as a
variable name, as the following example shows:
DEFINE "global" INT; -- successful

Important: Although workarounds that the preceding sections show can avoid
compilation or runtime syntax conflicts from keywords used as identifiers, keep in
mind that such identifiers tend to make code more difficult to understand and to
maintain.

Using EXECUTE, SELECT, or WITH as Cursor Names
Do not use an EXECUTE, SELECT, or WITH keyword as the name of a cursor. If
you try to use one of these keywords as the name of a cursor in a FOREACH
statement, the cursor name is interpreted as a keyword in the FOREACH
statement. No workaround exists.

The following example does not work:
DEFINE execute INT;
FOREACH execute FOR SELECT col1 -- error, looks to parser like

INTO var1 FROM tab1; -- ’FOREACH EXECUTE PROCEDURE’

SELECT Statements in WHILE and FOR Statements
If you use a SELECT statement in a WHILE or FOR loop, and if you need to
enclose it in parentheses, enclose the entire SELECT statement in a BEGIN...END
statement block. The SELECT statement in the first WHILE statement in the
following example is interpreted as a call to the procedure var1; the second WHILE
statement is interpreted correctly:
DEFINE var1, var2 INT;
WHILE var2 = var1

SELECT col1 INTO var3 FROM TAB -- error, interpreted as call var1()
UNION
SELECT co2 FROM tab2;

END WHILE;

WHILE var2 = var1
BEGIN

SELECT col1 INTO var3 FROM TAB -- ok syntax
UNION
SELECT co2 FROM tab2;

END
END WHILE;

SET Keyword in the ON EXCEPTION Statement
If you use a statement that begins with the keyword SET in ON EXCEPTION, you
must enclose it in a BEGIN ... END statement block. The following list shows some
of the SQL statements that begin with the keyword SET:
v SET AUTOFREE
v SET CONNECTION

Chapter 5. Other syntax segments 5-33

v SET CONSTRAINTS
v SET DATASKIP
v SET DEBUG FILE
v SET DEFERRED_PREPARE
v SET DESCRIPTOR
v SET ENCRYPTION
v SET ENVIRONMENT
v SET EXPLAIN
v SET INDEXES
v SET ISOLATION
v SET LOCK MODE
v SET LOG
v SET OPTIMIZATION
v SET PDQPRIORITY
v SET PLOAD FILE
v SET ROLE
v SET STATEMENT CACHE
v SET TABLE
v SET TRANSACTION
v SET TRIGGERS

The following examples show the incorrect and correct use of a SET LOCK MODE
statement inside an ON EXCEPTION statement.

The following ON EXCEPTION statement returns an error because the SET LOCK
MODE statement is not enclosed in a BEGIN ... END statement block:
ON EXCEPTION IN (-107)

SET LOCK MODE TO WAIT; -- error, value expected, not ’lock’
END EXCEPTION;

The following ON EXCEPTION statement executes successfully because the SET
LOCK MODE statement is enclosed in a BEGIN ... END statement block:
ON EXCEPTION IN (-107)

BEGIN
SET LOCK MODE TO WAIT; -- ok
END

END EXCEPTION;

Jar Name
Use the Jar Name segment to specify the name of a jar ID. Use this segment
whenever you see a reference to Jar Name in a syntax diagram.

Syntax

Jar Name:

package .
database .

jar_id

5-34 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

database Database in which to install or access
jar_id. Default is the current database.

Fully qualified database.package.jar_id
identifier must not exceed 255 bytes

“Database Name”
on page 5-15

jar_id The .jar file that contains the Java class
to be accessed

File must exist in database.package “Identifier” on page
5-21

package Name of the package Package must exist in database “Identifier” on page
5-21

If a jar name is specified as a character string argument to the sqlj.install_jar,
sqlj.replace_jar, or sqlj.remove_jar procedures, then any identifiers in the jar name
that are delimited identifiers will include the surrounding double quotation mark
characters. For descriptions of the these procedures, see related concept SQLJ
Driver Built-In Procedures.

Before you can access a jar_id in any way (including its use in a CREATE
FUNCTION or CREATE PROCEDURE statement), it must be defined in the
current database with the install_jar() procedure. For more information, see
“EXECUTE PROCEDURE statement” on page 2-471.
Related concepts:
“SQLJ Driver Built-In Procedures” on page 6-18
Related reference:

Update JAR file names (J/Foundation Guide)

Optimizer Directives
The Optimizer Directives segment specifies keywords that you can use to partially
or fully specify the query plan of the optimizer. Use this segment whenever you
see a reference to Optimizer Directives in a syntax diagram.

Syntax

Optimizer Directives:

--+
{+
/*+

�

,
(1)

Access-Method Directives
(2)

Join-Order Directive
(3)

Join-Method Directives
(4)

Star-Join Directives
(5)

Optimization-Goal Directives
(6)

Explain-Mode Directives

}
*/

Notes:

1 See “Access-Method Directives” on page 5-37

2 See “Join-Order Directive” on page 5-42

3 See “Join-Method Directives” on page 5-43

Chapter 5. Other syntax segments 5-35

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.jfoun.doc/ids_jfoun_050.htm#ids_jfoun_050

4 See “Star-Join Directives” on page 5-45

5 See “Optimization-Goal Directives” on page 5-47

6 See “Explain-Mode Directives” on page 5-47

Usage

Use one or more optimizer directives to partially or fully specify the query plan of
the optimizer. The scope of the directive is the current query only.

Directives are enabled by default. To obtain information about how specified
directives are processed, view the output of the SET EXPLAIN statement. To
disable directives, set the IFX_DIRECTIVES environment variable to 0, or set the
DIRECTIVES parameter in the ONCONFIG file to 0.

The syntax diagram above is simplified, and does not show that the closing
comment indicator must follow the same comment style as the opening comment
indicator. For more information, see “Optimizer Directives as Comments.”
Related concepts:

Optimizer directives (Performance Guide)
Related reference:
“SET OPTIMIZATION statement” on page 2-807
“SET STATEMENT CACHE statement” on page 2-817

Environment variable portal (SQL Reference)
“SAVE EXTERNAL DIRECTIVES statement” on page 2-649

IFX_DIRECTIVES environment variable (SQL Reference)

IFX_EXTDIRECTIVES environment variable (SQL Reference)

EXT_DIRECTIVES configuration parameter (Administrator's Reference)

DIRECTIVES configuration parameter (Administrator's Reference)

Optimizer Directives as Comments
Optimizer directives require valid comment indicators as delimiters.

The closing delimiter you use depends on the opening delimiter:
v If { is the opening delimiter, you must use } as the closing delimiter.
v If /* are the opening delimiters, you must use */ as the closing delimiters.
v If -- are the opening delimiters, then no closing delimiter is needed.

An optimizer directive or a list of optimizer directives immediately follows the
DELETE, SELECT, or UPDATE keyword in the form of a comment. After the
comment symbol, the first character in an optimizer directive is always a plus (+)
sign. No blank space or other white-space character is allowed between the
comment indicator and the plus sign.

You can use any of the following comment indicators:
v A double hyphen (--) delimiter

The double hyphen needs no closing symbol because it specifies only the
remainder of the current line as comment. When you use this style, include the
optimizer directive on only the current line.

5-36 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_554.htm#ids_prf_554
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_312.htm#ids_sqr_312
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_243.htm#ids_sqr_243
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.sqlr.doc/ids_sqr_244.htm#ids_sqr_244
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0082.htm#ids_adr_0082
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0053.htm#ids_adr_0053

v Braces ({ . . . }) delimiters
The comment extends from the left brace ({) until the next right (}) brace; this
can be in the same line or in some subsequent line.

v C-language style slash and asterisk (/* . . . */) delimiters
The comment extends from the initial slash-asterisk (/*) pair until the next
asterisk-slash (*/) characters in the same line or in some subsequent line.
In Informix ESQL/C, the -keepccomment command option to the esql compiler
must be specified when you use C-style comments.

For additional information, see “How to Enter SQL Comments” on page 1-3.

If you specify multiple directives in the same query, you must separate them with
a blank space, a comma, or by any character that you choose. It is recommended
that you separate successive directives with a comma.

If the query declares an alias for a table, use the alias (rather than the actual table
name) in the optimizer directive specification. Because system-generated index
names begin with a blank character, use quotation marks to delimit such names.

Syntax errors in an optimizer directive do not cause a valid query to fail. You can
use the SET EXPLAIN statement to obtain information related to such errors.

In distributed queries, optimizer directives can reference objects in other databases
of the same server instance by using the database:table or database:owner.table
notation to qualify the name of a table in another database of the local database
server.

Restrictions on Optimizer Directives
You can specify optimizer directives for any query in a DELETE, SELECT, or
UPDATE statement, unless it includes any of the following syntax elements:
v A query accessing a table in a database of a remote database server instance
v In Informix ESQL/C, a statement with the WHERE CURRENT OF cursor clause

For queries that use ANSI/ISO-compliant syntax to specify a join, the query
optimizer does not follow some directives:
v The join-method directives (USE_NL, AVOID_NL, USE_HASH, AVOID_HASH,

/BUILD, and /PROBE) are ignored, except in cases where the optimizer rewrites
the query so that it is no longer uses the ANSI/ISO syntax.

v The join-order directive (ORDERED) is ignored in ANSI-compliant joined queries
that specify the RIGHT OUTER JOIN or FULL OUTER JOIN keywords.

Access-Method Directives
Use the access-method directives to specify the manner in which the optimizer
should search the tables.

Access-Method Directives:

Chapter 5. Other syntax segments 5-37

�

�

INDEX_ALL (Table Reference
MULTI_INDEX ,

INDEX
index
"index"

,

AVOID_INDEX (Table Reference index
AVOID_INDEX_SJ "index"
INDEX_SJ
FULL (Table Reference
AVOID_FULL
AVOID_MULTI_INDEX

)
comments

Table Reference:

alias
synonym
table

Element Description Restrictions Syntax

alias Temporary alternative table name
declared in the FROM clause

If an alias is declared, it must be used
(rather than table or synonym)

“Identifier” on page
5-21

comments Optional text that documents the
directive

Must be outside the parentheses but
inside the comment symbols

Character string

index Index for which to specify the directive Must exist. With AVOID_INDEX,
AVOID_INDEX_SJ, and INDEX_SJ, at
least one index is required

“Identifier” on page
5-21

synonym,
table

Name or synonym of a table to which
the directive applies

Synonym and the table to which it
points must exist

“Identifier” on page
5-21

Use commas or blank spaces to separate elements within the parentheses.

The following table describes each of the access-method directives and indicates
how it affects the query plan of the optimizer.

Keywords Effect Optimizer Action

AVOID_FULL No full-table scan on the listed table The optimizer considers the various indexes it
can scan. If no index exists, the optimizer
performs a full-table scan.

AVOID_INDEX Does not use any of the specified
indexes

The optimizer considers the remaining indexes
and a full-table scan. If all indexes for a table
are specified, optimizer uses a full-table scan to
access the table.

AVOID_INDEX_SJ Does not use an index self-join path
for the specified indexes

The optimizer does not consider the specified
index for scanning the table in an index self-join
path.

AVOID_MULTI_INDEX Does not use a multi-index scan
path for the specified table

The optimizer does not consider a multi-index
scan path for the specified table.

FULL Performs a full-table scan Even if an index exists on a column, the
optimizer uses a full-table scan to access the
table.

5-38 IBM Informix Guide to SQL: Syntax

Keywords Effect Optimizer Action

INDEX Uses the index specified to access
the table

If more than one index is specified, the
optimizer chooses the index that yields the least
cost. If no indexes are specified, then all the
available indexes are considered.

INDEX_ALL or
MULTI_INDEX

Access the table using the specified
indexes (Multi-index scan)

These keywords are synonyms. For usage
information, see "Multi-index scans" below.

INDEX_SJ Use the specified index to scan the
table in an index self-join path.

The optimizer is forced to scan the table using
an index self-join path with the specified index
(or to choose the least costly index in a list of
indexes for an index self-join path).

Both the AVOID_FULL and INDEX keywords specify that the optimizer should
avoid a full scan of a table. It is recommended, however, that you use the
AVOID_FULL keyword to specify the intent to avoid a full scan on the table.

The AVOID_MULTI_INDEX directive does not accept a list of indexes as its
argument. This is because the AVOID_INDEX directive also prevents the specified
index from being used in a multi-index scan execution path.

Multi-index scans

Up to sixteen (16) indexes can be defined on a table. A search path based on an
access method that uses more than one index on the same table is called a
multi-index scan. The MULTI_INDEX or INDEX_ALL directive forces the query
optimizer to consider a multi-index scan to search the specified table for qualifying
rows. The argument list for the MULTI_INDEX or INDEX_ALL directive has these
semantics:
v If you specify a table as the only argument to the directive, the optimizer

considers all of the available indexes on that table, and uses all of them (or a
subset) when it searches the table for qualifying rows.

v If you specify a table and only a single index, the optimizer considers using only
that index to scan the table.

v If you specify a table and more than one index, the optimizer considers a search
path that uses all of the specified indexes.

Multi-index scan with skip-scan access methods

A multi-index scan path accesses a table by a skip-scan access method, using a
sorted list of ROWIDs. The sorted list is typically generated from a multi-index
scan access method, using all of the indexes that the INDEX_ALL or
MULTI_INDEX directive specifies.

For example, if the query predicates specify col1 <= 10 and col2 BETWEEN 15 AND
25, then the execution plan can use two indexes: the first index on col1, and the
second index on col2. Each index scan returns all ROWIDs that satisfy the search
condition for the respective index. The logical intersection of the two lists of
ROWIDs includes only the rows that satisfy both search conditions. The database
server then sorts the combined ROWID list, and uses this sorted list to scan the
table for the result set of the query.

If the query includes predicates on more than two indexed columns, the list of
ROWIDs that each index scan returns must be combined to produce a sorted
ROWID list of all the qualifying rows.

Chapter 5. Other syntax segments 5-39

Because each ROWID represents the physical location of a row (on which page and
in which slot), the execution path simply accesses that physical location to retrieve
the row. As the term "skip-scan" suggests, there are typically gaps from one
ROWID to the next in the sorted list, so that the database server "skips" from one
qualifying row to the next qualifying row of the result set.

The list of sorted ROWIDs can be generated from multiple index scans, as
described above, or from a single index scan. In the case of a single index, the
skip-scan execution path takes these actions:
1. The single index scan creates an unsorted list of the ROWIDs of all qualifying

rows.
2. This unsorted list is sorted by ROWID value.
3. The database server then retrieves the qualifying rows in the order of their

ROWIDs.

A skip-scan access method resembles a sequential scan, but can sometimes be more
efficient. A sequential scan retrieves every row in the table, but a skip-scan only
retrieves the rows that have qualifying ROWIDs.

Restrictions on multi-index scan paths for query execution

The transaction isolation level affects whether the MULTI_INDEX or INDEX_ALL
directive can force a multi-index scan execution path, which is not available while
the isolation level is Cursor Stability, or is Committed Read with the LAST
COMMITTED option. (This directive is supported, however, in the Dirty Read and
Repeatable Read isolation levels, and in Committed Read without the LAST
COMMITTED option.)

The following additional restrictions apply to multi-index scan access paths:
v The indexes must be B-tree indexes. These can be attached or detached indexes.
v These directives are ignored for R-tree indexes, functional indexes, and indexes

based on the Virtual Index Interface (VII).
v The table cannot be a remote table, a pseudo-table, a system catalog table, an

external table, or a hierarchical table.
v A multi-index scan cannot support join predicates as index filters in the

underlying index scans.
v A multi-index scan ignores all columns of a composite index except the leading

column.
v DML statements that perform cascade deletes or declare statement local

variables (SLVs) cannot use a multi-index scan.
v Update queries that activate a FOR EACH ROW triggered action cannot use a

multi-index scan.
v In ANSI-compliant databases, the MULTI_INDEX or INDEX_ALL directive is not

followed for a SELECT statement that has no ORDER BY clause, no GROUP BY
clause, and no FOR READ ONLY clause, if the FROM clause specifies only a
single table. (In this special case, the query has implicit cursor behavior that
conflicts with a multi-index scan access path.)

Combinations of access method directives

In general, you can specify only one access-method directive per table. Only the
following combinations of access-method directives are valid for the same table in
the same query:

5-40 IBM Informix Guide to SQL: Syntax

v INDEX, AVOID_INDEX_SJ
v AVOID_FULL, AVOID_INDEX
v AVOID_FULL, AVOID_INDEX_SJ
v AVOID_INDEX, AVOID_INDEX_SJ
v AVOID_FULL, AVOID_INDEX, AVOID_INDEX_SJ
v AVOID_FULL, AVOID_MULTI_INDEX
v AVOID_INDEX, AVOID_MULTI_INDEX
v AVOID_INDEX_SJ, AVOID_MULTI_INDEX
v AVOID_FULL, AVOID_INDEX_SJ, AVOID_MULTI_INDEX
v AVOID_INDEX, AVOID_INDEX_SJ, AVOID_MULTI_INDEX

When you specify both the AVOID_FULL and AVOID_INDEX access-method
directives, the optimizer avoids performing a full scan of the table and it avoids
using the specified index or indexes. This combination of negative directives allows
the optimizer to use indexes that are created after the access-method directives are
specified.

Because the optimizer automatically considers the index self-join path if you
specify the INDEX or AVOID_FULL directive, use the INDEX_SJ directive only to
force an index self-join path using the specified index (or choosing the least costly
index in a comma-separated list of indexes). The INDEX_SJ directive can improve
performance when a multicolumn index includes columns that provide only low
selectivity as index key filters.

Specifying the INDEX_SJ directive circumvents the usual optimizer requirement for
data distribution statistics on the lead keys of the index. This directive causes the
optimizer to consider an index self-join path, even if data distribution statistics are
not available for the leading index key columns. In this case, the optimizer only
includes the minimum number of index key columns as lead keys to satisfy the
directive.

For example, if an index is defined on columns c1, c2, c3, c4, and the query
specifies filters on all four of these columns but no data distributions are available
on any column, then specifying INDEX_SJ on this index will result in column c1
being used as the lead key in an index self-join path. If you want the optimizer to
use an index but not to consider the index self-join path, then you must specify an
INDEX or AVOID_FULL directive to choose the index, and you must also specify
an AVOID_INDEX_SJ directive to prevent the optimizer from considering any
other index self-join path.

If AVOID_INDEX_SJ is used together with the INDEX directive, either as an
explicit INDEX directive or as the equivalent AVOID_FULL and AVOID_INDEX
combination, the indexes specified in the AVOID_INDEX_SJ directive must be a
subset of the indexes specified in the INDEX directive. For more information about
the effects of the INDEX_SJ and AVOID_INDEX_SJ directives, see the chapter of
theIBM Informix Performance Guide that describes optimizer directives.

Specifying the MULTI_INDEX or INDEX_ALL directive circumvents the usual
optimizer requirement for statistics on the specified table. The optimizer normally
requires at least low level statistics on the table before considering multi-index scan
path on the table.

Chapter 5. Other syntax segments 5-41

Examples of Access Method Directives

Suppose that you have a table named emp that contains the columns emp_no,
dept_no, and job_no, and for which the following indexes ids_dept_no index is
defined on the dept_no column, and the idx_job_no index is defined on the
job_no column. When you perform a SELECT that includes the emp table in the
FROM clause, you might direct the optimizer to access the table in one of the
following ways:
v Example using a positive directive:

SELECT {+INDEX(emp idx_dept_no)} ...

In the example above, the access-method directive forces the optimizer to
consider an execution path that scans the idx_dept_no index on the dept_no
column.
In the following example the access-method directive forces the optimizer to
consider using a multi-index scan, based on the combined results of scanning
both the idx_dept_no index on the dept_no column and the idx_job_no index
on the job_no column.
SELECT {+MULTI_INDEX(emp idx_dept_no ids_job_no)} ...

v Example using negative directives:
SELECT {+AVOID_INDEX(emp idx_loc_no, idx_job_no), AVOID_FULL(emp)} ...

This example includes multiple access-method directives. These directives force a
scan of the idx_dept_no index on the dept_no column by instructing the
optimizer not to scan the idx_loc_no and idx_job_no indexes, and not to
perform a full scan of the emp table. If a new idx_emp_no index, however, is
created for table emp, these directives do not prevent the optimizer from
considering it.

Note also that the term negative directive refers to the string "AVOID_" in an access
method directive, and has nothing to do with the + symbol following the comment
indicator that begins every optimizer directive.
Related concepts:

Optimizer directives (Performance Guide)

Join-Order Directive
Use the ORDERED join-order directive to force the optimizer to join tables or
views in the order in which they are referenced in the FROM clause of the query.

Join-Order Directive:

ORDERED
comments

Element Description Restrictions Syntax

comments Text to document the directive Must appear between comment symbols Character string

For example, the following query forces the database server to join the dept and
job tables and then join the result with the emp table:
SELECT --+ ORDERED

name, title, salary, dname
FROM dept, job, emp WHERE title = ’clerk’ AND loc = ’Palo Alto’
AND emp.dno = dept.dno
AND emp.job= job.job;

5-42 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_554.htm#ids_prf_554

Because no predicates occur between the dept table and the job table, this query
forces the database server to construct a Cartesian product.

When your query involves a view, the placement of the ORDERED join-order
directive determines whether you are specifying a partial- or total-join order.
v Specifying partial-join order when you create a view

If you use the ORDERED directive when you create a view, the base tables are
joined contiguously in the order of the view definition.
For all subsequent queries on the view, the database server joins the base tables
contiguously in the order specified in the view definition. When used in a view,
the ORDERED directive does not affect the join order of other tables named in
the FROM clause in a query.

v Specifying total-join order when you query a view
When you specify the ORDERED join-order directive in a query that uses a
view, all tables are joined in the order specified, even those tables that form
views. If a view is included in the query, the base tables are joined contiguously
in the order of the view definition. For examples of ORDERED with views, refer
to your IBM Informix Performance Guide.

Because of ordering requirements for OUTER joins, in ANSI-compliant joined
queries that specify the RIGHT OUTER JOIN or FULL OUTER JOIN keywords, the
ORDERED join-order directive is ignored, but it is listed under Directives Not
Followed in the explain output file.
Related concepts:
“Default name and location of the explain output file on UNIX” on page 2-788
“Default name and location of the output file on Windows” on page 2-789

Join-Method Directives
Use join-method directives to influence how tables are joined in an
Informix-extension joined query.

Join-Method Directives:

�

�

,
(1)

USE_NL (Table Reference
AVOID_NL

,
(1)

AVOID_HASH (Table Reference
USE_HASH /BUILD

/PROBE

)
comments

Notes:

1 See “Access-Method Directives” on page 5-37

Element Description Restrictions Syntax

comments Text to documents the directive Must appear between comment symbols Character string

Use commas or blank spaces to separate the elements within the parentheses.

The following table describes each of the join-method directives.

Chapter 5. Other syntax segments 5-43

Keyword
Effect

USE_NL
Uses the specified tables as the inner table in a nested-loop join

If n tables are specified in the FROM clause, then at most (n-1) tables can
be specified in the USE_NL join-method directive.

USE_HASH
Uses a hash join to access the specified table

You can also choose whether the table will be used to create the hash table
or to probe the hash table.

AVOID_NL
Does not use the specified table as inner table in a nested loop join

A table listed with this directive can still participate in a nested loop join
as the outer table.

AVOID_HASH
Does not access the specified table using a hash join

You can optionally use a hash join, but impose restrictions on the role of
the table within the hash join.

A join-method directive takes precedence over the join method forced by the
OPTCOMPIND configuration parameter.

When you specify the USE_HASH or AVOID_HASH directives (to use or avoid a
hash join, respectively), you can also specify the role of each table:
v /BUILD

With the USE_HASH directive, this keyword indicates that the specified table be
used to construct a hash table. With the AVOID_HASH directive, this keyword
indicates that the specified table not be used to construct a hash table.

v /PROBE
With the USE_HASH directive, this keyword indicates that the specified table be
used to probe the hash table. With the AVOID_HASH directive, this keyword
indicates that the specified table not be used to probe the hash table. You can
specify multiple probe tables as long as there is at least one table for which you
do not specify PROBE.

For the optimizer to find an efficient join query plan, you must at least run
UPDATE STATISTICS LOW for every table that is involved in the join, so as to
provide appropriate cost estimates. Otherwise, the optimizer might choose to
broadcast the entire table to all instances, even if the table is large.

If neither the /BUILD nor the /PROBE keyword is specified, the optimizer uses
cost estimates to determine the role of the table.

In this example, the USE_HASH directive forces the optimizer to construct a hash
table on the dept table and consider only the hash table to join dept with the other
tables. Because no other directives are specified, the optimizer can choose the least
expensive join methods for the other joins in the query.

5-44 IBM Informix Guide to SQL: Syntax

SELECT /*+ USE_HASH (dept /BUILD)
The optimizer must use dept to construct a hash table */
name, title, salary, dname
FROM emp, dept, job WHERE loc = ’Phoenix’

AND emp.dno = dept.dno AND emp.job = job.job;

Join-method optimizer directives that you specify for an ANSI-compliant joined
query are ignored, but they are listed under Directives Not Followed in the explain
output file.
Related concepts:
“Default name and location of the explain output file on UNIX” on page 2-788
“Default name and location of the output file on Windows” on page 2-789

Star-Join Directives
Use the star-join directives to specify the manner in which the optimizer should
join tables that have a star schema.

Star-Join Directives:

�

,

AVOID_FACT (Table Reference)
FACT (Table Reference)
STAR_JOIN
AVOID_STAR_JOIN

comments

Table Reference:

alias
synonym
table

Element Description Restrictions Syntax

alias Temporary alternative table name
declared in the FROM clause

If an alias is declared, it must be used
(rather than table or synonym)

“Identifier” on page
5-21

comments Optional text that documents the
directive

Must be outside the parentheses but
inside the comment symbols

Character string

synonym,
table

Name or synonym of a table to which
the directive applies

Synonym and the table to which it
points must exist

“Identifier” on page
5-21

In AVOID_FACT directives that specify more than one table, use a comma or blank
space to separate consecutive elements within the parentheses.

The following table describes each of the star-join directives and indicates how it
affects the query plan of the optimizer.

Keywords Effect Optimizer Action

AVOID_FACT At least one table must be
specified. Do not use the
table (or any table in the list
of tables) as a fact table in
star-join optimization.

The optimizer does not consider a star-join execution
plan that treats the specified table (or any of the tables
in the list of tables) as a fact table.

Chapter 5. Other syntax segments 5-45

Keywords Effect Optimizer Action

AVOID_STAR_JOIN The optimizer does not
consider a star-join execution
plan.

The optimizer chooses a query execution plan that is
not a star-join plan.

FACT Exactly one table must be
specified. Only consider the
specified table as a fact table
in the star-join execution
plan.

These optimizer considers a query plan in which the
specified table is a fact table in a star-join execution
plan.

STAR_JOIN Favor a star-join plan, if one
is possible.

The optimizer favors a star-join execution plan, if
available.

The star-join directives require that the parallel database query feature (PDQ) be
enabled. Star join query optimization is disabled when PDQ is off.

The star-join directives require that all tables in the query have at least low level
statistics. If table statistics are not available for any table in the query, star-join
query optimization is disabled.

The SET OPTIMIZATION ENVIRONMENT STAR_JOIN DISABLED statement of
SQL disables star-join optimization in the current session. (For additional
information about optimization environment settings, see “ENVIRONMENT
Options” on page 2-809.)

Specifying the FACT directive alone does not automatically favor a star-join
execution plan. You can direct the optimizer to prefer a star-join execution plan
with a specific fact table by specifying a combination of a STAR_JOIN directive
and a FACT directive.

You can view the star join optimization path of a query in the output file of the
SET EXPLAIN statement, or by using IBM Data Studio to obtain Visual Explain
output.

In cluster environments, the star-join optimizer directives are valid on these types
of secondary servers:
v Shared disk secondary servers (SDS)
v Remote standalone secondary servers (RSS)
v High-availability data replication secondary servers (HDR).

Restrictions on star-join directives

The following restrictions apply to queries that attempt to join tables that have
star-schema dependencies:
v The parallel database query (PDQ) feature must be enabled for star-join

directives to be valid.
v All tables in the query must have at least low level statistics.
v Star-join directives do not support joins of more than one fact table.
v Star-join directives are not valid while the transaction isolation level is

Committed Read Last Committed or Cursor Stability. (All other transaction
isolation levels are supported.)

5-46 IBM Informix Guide to SQL: Syntax

Optimization-Goal Directives
Use optimization-goal directives to specify the measure that is used to determine
the performance of a query result.

Optimization-Goal Directives:

ALL_ROWS
FIRST_ROWS comments

Element Description Restrictions Syntax

comments Text documenting the directive Must appear between comment symbols Character string

The two optimization-goal directives are:
v FIRST_ROWS

This tells the optimizer to choose a plan that optimizes the process of finding
only the first screenful of rows that satisfies the query. Use this option to
decrease initial response time for queries that use an interactive mode or that
require the return of only a few rows.

v ALL_ROWS
This directive tells the optimizer to choose a plan that optimizes the process of
finding all rows that satisfy the query.
This form of optimization is the default.

An optimization-goal directive takes precedence over the OPT_GOAL environment
variable setting and over the OPT_GOAL configuration parameter.

For information about how to set the optimization goal for an entire session, see
the SET OPTIMIZATION statement.

You cannot use an optimization-goal directive in the following contexts:
v In a view definition
v In a subquery

The following query returns the names of the employees who earned the top fifty
bonuses. The optimization-goal directive directs the optimizer to return the first
screenful of rows as fast as possible.
SELECT {+FIRST_ROWS

Return the first screenful of rows as fast as possible}
LIMIT 50 fname, lname FROM employees ORDER BY bonus DESC;

Explain-Mode Directives
Use the explain-mode directives to test and debug query plans and to print
information about the query plan to the explain output file.

Explain-Mode Directives:

EXPLAIN
AVOID_EXECUTE

,
comments

Chapter 5. Other syntax segments 5-47

Element Description Restrictions Syntax

comments Text documenting the directive Must appear between comment symbols Character string

The following table lists the effect of each explain-mode directive.

Keyword
Effect

EXPLAIN
Turns SET EXPLAIN ON for the specified query

AVOID_EXECUTE
Prevents the data manipulation statement from executing; instead, the
query plan is printed to the explain output file

The EXPLAIN directive is primarily useful for testing and debugging query plans.
It is redundant when SET EXPLAIN ON is already in effect. It is not valid in a
view definition or in a subquery.

The next query executes and prints the query plan to the explain output file:
SELECT {+EXPLAIN}

c.customer_num, c.lname, o.order_date
FROM customer c, orders o WHERE c.customer_num = o.customer_num;

The AVOID_EXECUTE directive prevents execution of a query on either the local
or remote site, if a remote table is part of the query. This directive does not prevent
nonvariant functions in a query from being evaluated.

The next query does returns no data, but writes its query plan to the explain
output file:
SELECT {+EXPLAIN, AVOID_EXECUTE} c.customer_num, c.lname, o.order_date

FROM customer c, orders o WHERE c.customer_num = o.customer_num;

You must use both the EXPLAIN and AVOID_EXECUTE directives to see the
query plan of the optimizer (in the explain output file) without executing the
query. The comma (,) separating these two directives is optional.

If you omit the EXPLAIN directive when you specify the AVOID_EXECUTE
directive, no error is issued, but no query plan is written to the explain output file
and no DML statement is executed.

You cannot use the explain-mode directives in the following contexts:
v In a view definition
v In a trigger
v In a subquery

They are valid, however, in a SELECT statement within an INSERT statement.
Related concepts:
“Default name and location of the explain output file on UNIX” on page 2-788
“Default name and location of the output file on Windows” on page 2-789
“Complete-Connection Level Settings and Output Examples” on page 2-792

5-48 IBM Informix Guide to SQL: Syntax

External Directives
You can use the SAVE EXTERNAL DIRECTIVES statement to store optimizer
directives in the sysdirectives table of the system catalog. Informix applies these
external directives automatically to subsequent queries and subqueries that match
a specified SELECT statement.

The EXT_DIRECTIVES configuration parameter and the IFX_EXTDIRECTIVES
environment variable can be set to control whether external directives are enabled
or disabled for the database server instance or for the session. Setting either of
these to zero disables external directives; setting both to 1 enables external
directives.

You can also use the EXTDIRECTIVES option of the SET ENVIRONMENT
statement to enable or disable external directives during a session. For more
information, see “Enabling or disabling external directives for a session” on page
2-650.
Related concepts:
“Default name and location of the explain output file on UNIX” on page 2-788
“Default name and location of the output file on Windows” on page 2-789

Owner name
The owner name specifies the owner of a database object. Use this segment
whenever you see a reference to Owner Name in a syntax diagram.

Syntax

Owner Name:

"owner"
owner
(1)

'owner'

Notes:

1 Informix extension

Element Description Restrictions Syntax

owner User name of the owner of an
object in a database

Maximum length is 32 bytes Must conform to the rules of your
operating system.

Usage

In an ANSI-compliant database, you must specify the owner of any database object
that you do not own. In reference to the owner of database objects, the ANSI/ISO
synonym for owner name is authorization identifier. (In reference to schema objects,
however, the ANSI/ISO term for what the Informix documentation calls an owner
name is schema name.)

In databases that are not ANSI-compliant, the owner name is optional. You do not
need to specify owner when you create database objects or use data access
statements. If you do not specify owner when you create a database object, the
database server assigns your login name as the owner of the object, in most cases.

Chapter 5. Other syntax segments 5-49

For exceptions to this rule, see “Ownership of Created Database Objects” on page
2-192 in the CREATE FUNCTION statement description, and “Ownership of
Created Database Objects” on page 2-235 in the CREATE PROCEDURE statement
description. When a DDL statement in an owner-privileged UDR creates a new
database object, the owner of the routine (rather than the user who executes it, if
that user is not the owner of the routine) becomes the owner of the new database
object.

If you specify owner in data-access statements, the database server checks it for
correctness. Without quotation marks, owner is case insensitive. The following four
queries all can access data from the table kaths.tab1:
SELECT * FROM tab1;
SELECT * FROM kaths.tab1;
SELECT * FROM KATHS.tab1;
SELECT * FROM Kaths.tab1;

In an ANSI-compliant database, only the owner of the table, user kaths, can issue
the first of these example queries, which specifies an unqualified table name, but
any user who holds the Select privilege on tab1 can issue that query in a database
that is not ANSI-compliant. For more information about owner names in
ANSI-compliant databases, see “ANSI-Compliant Database Restrictions and Case
Sensitivity” on page 5-51.

A role that the CREATE ROLE statement declares is an authorization identifier, and
is therefore subject to the syntax restrictions on owner names, but a role cannot be
the owner of a database object. Similarly, the keyword PUBLIC, which specifies the
group of all users, cannot be the owner of a database object, except in the special
cases of the sysdbopen() and sysdbclose() procedures. For more information
about these built-in session configuration UDRs, see “Session Configuration
Procedures” on page 6-5.

Using Quotation Marks
Within quotation marks, owner is case sensitive. Quotation marks instruct the
database server to read or store the name exactly as typed when you create or
access a database object. For example, suppose that you have a table whose owner
is Sam. You can use either one of the following two statements to access data in the
table:
SELECT * FROM table1;
SELECT * FROM ’Sam’.table1;

The first query succeeds because the owner name is not required. The second
query succeeds because the specified owner name matches the owner name as it is
stored in the database.

Referencing Tables Owned by User informix
If you use the owner name as one of the selection criteria to access database object
information from one of the system catalog tables, the owner name is case
sensitive. To preserve lettercase, you must enclose owner in single or double
quotation marks, and you must type the owner name exactly as it is stored in the
system catalog table. Of the following two examples, only the second successfully
accesses information on the table Kaths.table1.
SELECT * FROM systables WHERE tabname = ’tab1’ AND owner = ’kaths’;
SELECT * FROM systables WHERE tabname = ’tab1’ AND owner = ’Kaths’;

5-50 IBM Informix Guide to SQL: Syntax

User informix is the owner of the system catalog tables, and in an ANSI-compliant
database you must specify informix as a qualifier when SQL statements reference
system catalog tables, unless you are user informix:
SELECT * FROM "informix".systables WHERE tabname = ’tab1’ AND owner = ’Kaths’;

Informix accepts any of the following notations to specify a system catalog table of
an ANSI-compliant database:
v "informix".system_table

v informix.system_table

v ’informix’.system_table

Of these three formats, however, only the first, where the owner is specified as a
delimited identifier, is directly interoperable with most other database servers. For
the format with no delimiters, the ANSI/ISO standard for SQL upshifts the
lowercase letters to INFORMIX, and the same standard does not support single (')
quotation marks as valid delimiters for owner names or for schema names.

In contrast, Informix treats the name informix as a special case, and preserves
lowercase letters when informix is specified, with or without delimiters, whether
or not the database is ANSI-compliant. To write SQL code that is portable to
non-Informix database servers, however, you should always delimit the owner
names of database objects between double (") quotation marks.

The following SQL examples use undelimited owner names:
CREATE TABLE informix.t1(i SERIAL NOT NULL);
CREATE TABLE someone.t1(i SERIAL NOT NULL);

If these statements execute successfully, the first table has informix registered in
systables as the owner, and the second has SOMEONE registered as the owner. When
the owner name is delimited by quotation marks in SQL statements, the specified
lettercase of owner is preserved, but the lettercase does not matter when the owner
name is undelimited, because Informix upshifts most undelimited owner names,
but downshifts the undelimited informix (or INFORMIX) owner name to
informix.

For example, suppose that after the previous two CREATE TABLE statements
execute successfully, user informix issues the following statement:
CREATE TABLE INFORMIX.t1(i SERIAL NOT NULL);

This statement fails, because the combination of owner name and table name is not
unique, if the previously registered table t1 that is owned by informix already
exists in the database.

Tip: The USER operator returns the login name of the current user exactly as it is
stored on the system. If the owner name is stored differently from the login name
(for example, a mixed-case owner name and an all lowercase login name), the
owner = USER syntax fails.

ANSI-Compliant Database Restrictions and Case Sensitivity
The following table describes how the database server reads and stores owner when
you create, rename, or access a database object.

Chapter 5. Other syntax segments 5-51

Owner Name
Specification What the ANSI-Compliant Database Server Does

Omitted Reads or stores owner exactly as the login name is stored in the
system, but returns an error if the user is not the owner.

Specified without
quotation marks

Reads or stores owner in uppercase letters

Enclosed between
quotation marks

Reads or stores owner exactly as entered. See also “Using Quotation
Marks” on page 5-50 and “Referencing Tables Owned by User
informix” on page 5-50.

If you specify the owner name when you create or rename a database object in an
ANSI-compliant database, you must include the owner name in data access
statements. You must include the owner name when you access a database object
that you do not own.

Because the database server automatically shifts owner to uppercase letters if not
between quotation marks, case-sensitive errors can cause queries to fail. For
example, if you are user nancy and you use the following statement, the resulting
view has the name nancy.njcust:
CREATE VIEW ’nancy’.njcust AS

SELECT fname, lname FROM customer WHERE state = ’NJ’;

The following SELECT statement fails because it tries to match the name
NANCY.njcust to the actual owner and table name of nancy.njcust:
SELECT * FROM nancy.njcust;

In an Informix distributed query, if the owner name is not between quotation
marks, the remote database follows the lettercase convention of the local database.
If the local database is ANSI-compliant, then the remote database processes the
owner name in uppercase. If the local database is not ANSI compliant, then the
remote database processes the owner name in lowercase.

Tip: When you use the owner name as one of the selection criteria in a query (for
example, WHERE owner = ’kaths’), make sure that the quoted string matches the
owner name exactly as it is stored in the database. If the database server cannot
find the database object or database, you might need to modify the query so that
the quoted string uses uppercase letters (for example, WHERE owner = ’KATHS’).

Because owner name is an authorization identifier, rather than an SQL identifier,
you can enclose owner between single-quotation marks (') in SQL statements of a
database where the DELIMIDENT environment variable specifies support for
delimited identifiers, thereby requiring double-quotation marks (") around SQL
identifiers.

Setting ANSIOWNER for an ANSI-Compliant Database
The default behavior of an ANSI-compliant database is to replace any lowercase
letters with uppercase letters in any owner specification that is not enclosed in
quotation marks. You can prevent this by setting the ANSIOWNER environment
variable to 1 before the database server is initialized. This preserves whatever
lettercase you use when you specify the owner string without quotation marks.

5-52 IBM Informix Guide to SQL: Syntax

Default Owner Names
If you create a database object without explicitly specifying an owner name in a
database that is not ANSI-compliant, your authorization identifier (as the default
owner of the object) is stored in the system catalog of the database as if you had
specified your authorization identifier within quotation marks (that is, preserving
the lettercase).

If you create a database object without explicitly specifying an owner name in a
database that is ANSI-compliant, any lowercase letters in your authorization
identifier (as the default owner of the object) are stored in the system catalog of the
database in uppercase characters, unless the ANSIOWNER environment variable
was set to 1 before the database server was initialized. If ANSIOWNER was set to
1, however, the database stores the default owner of the object as your
authorization identifier, with its lettercase preserved.

Summary of Lettercase Rules for Owner Names
To create a database object, such as a table called mytab, a user whose login name
is Otho can declare the name of the new database object in any of the following
ways:
1. CREATE TABLE mytab . . .

2. CREATE TABLE Otho.mytab . . .

3. CREATE TABLE "Otho".mytab . . .

The format in which an undelimited owner name (as in the second example) is
stored in the owner column of the systables system catalog table is dependent on
whether or not the local database is an ANSI-compliant database.
v In case 1, no owner name is specified. The implicit owner of the table is Otho,

the user who created the table, and that owner name is stored in the systables
table in the same format (Otho) as the user ID of the owner, independent of the
ANSI-compliance status of the database.

v In case 2, an undelimited owner name is specified. The systables table stores all
letters in the owner name in lowercase (here as otho) for databases that are not
ANSI-compliant databases. For ANSI-compliant databases in which
ANSIOWNER is not set to 1, systables table stores all owner name letters in
uppercase (here as OTHO). If ANSIOWNER is set to 1, however, the name is
stored in the same lettercase as specified in the DDL statement (here as Otho).

v In case 3, the delimited owner name is stored in the systables table in the same
format in which it was specified (here as Otho), independent of the
ANSI-compliance status of the database.

Note that user identifiers are case sensitive, but database object names are case
insensitive. Therefore, the same user cannot own both a table tab and a table TAB.

In addition to the CREATE TABLE statement in these examples, all SQL statements
and SPL statements follow these rules where a table name can be specified. For
example, when using DROP TABLE, the format in which owner name appears
while the statement is being processed is dependent upon the same conditions:
v whether an explicit owner name is specified.
v if an explicit owner name is specified, whether quotation marks delimit the

owner name.
v if an explicit owner name is not delimited by quotation marks, whether or not

the database is ANSI compliant.

Chapter 5. Other syntax segments 5-53

v if the database is ANSI compliant, whether or not ANSIOWNER was set to 1
before the database was initialized.

Purpose Options
The CREATE ACCESS_METHOD, CREATE XADATASOURCE TYPE, and ALTER
ACCESS_METHOD statements of Informix can specify purpose options for
user-defined routines with the following syntax.

Syntax

Purpose Options:

task = external_routine
value = string_value

numeric_value
flag

Element Description Restrictions Syntax

external
_routine

User-defined routine that
performs a task

Must be registered in the database “Database Object Name”
on page 5-16

flag Keyword indicating which
feature a flag enables

The interface specifies flag names Flag Purpose Category in
the table in “Purpose
Functions, Flags, and
Values” on page 5-55.

numeric
_value

A value of a real number Must be within the range of a numeric data
type

“Literal Number” on page
4-215

string
_value

A value that is expressed as
one or more characters

Characters must be from the code set of the
database

“Quoted String” on page
4-219.

task Keyword that identifies a
purpose function

Keywords to which you can assign a
function (whose name cannot match the
keyword)

Task Purpose Category in
the table in “Purpose
Functions, Flags, and
Values” on page 5-55.

value Keyword that identifies
configuration information

Predefined configuration keywords to
which you can assign values

Value Purpose Category in
the table in “Purpose
Functions, Flags, and
Values” on page 5-55.

Usage

Informix supports purpose options in two contexts:
v Defining or modifying primary and secondary access methods for local or

remote tables, views, and indexes
v Defining access methods for XA-compliant external data sources.
Related reference:
“ALTER ACCESS_METHOD statement” on page 2-5
“CREATE ACCESS_METHOD statement” on page 2-143
“CREATE XADATASOURCE TYPE statement” on page 2-380
“CREATE OPCLASS statement” on page 2-222

Purpose-function reference (Virtual-Table Interface Guide)

Develop an access method (Virtual-Table Interface Guide)

5-54 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.vti.doc/ids_vti_115.htm#ids_vti_115
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.vti.doc/ids_vti_030.htm#ids_vti_030

Purpose-function reference (Virtual-Index Interface Guide)

Develop an access method (Virtual-Index Interface Guide)

Purpose Options for Access Methods
A registered access method is a set of attributes, including a name and options
called purpose options, that you can use to accomplish the following tasks:
v Specify which functions perform data access and manipulation tasks, such as

opening, reading, and closing a data source.
v Set configuration options, such as a storage-space type.
v Set flags, such as enabling rowid interpretation.

You specify purpose options when you create an access method with the CREATE
ACCESS_METHOD statement. To change the purpose options of an access method,
use the ALTER ACCESS_METHOD statement.

Each task, value, or flag keyword corresponds to a column name in the sysams
system catalog table. The keywords let you set the following attributes:
v Purpose function

A purpose-function attribute maps the name of a user-defined function or method
to a task keyword, such as am_create, am_beginscan, or am_getnext. For a
complete list of these keywords, see the “Task” category in the table in “Purpose
Functions, Flags, and Values.” The external_routine specifies the corresponding
function (C) that you supply for the access method. Example setting:
am_create = FS_create

v Purpose flag
A purpose flag indicates whether an access method supports a given SQL
statement or keyword. Example setting:
am_rowids

v Purpose value
These string, character, or numeric values provide configuration information that
a flag cannot supply. Example setting:
am_sptype = ’X’

To enable a user-defined function or method as a purpose function, you must first
register the C function or Java method that performs the appropriate tasks, using
the CREATE FUNCTION statement, and then set the purpose keyword equal to
the registered function or method name. This creates a new access method. An
example on page “ALTER ACCESS_METHOD statement” on page 2-5 adds a
purpose method to an existing access method.

To enable a purpose flag, specify the name without a corresponding value.

To clear a purpose-option setting in the sysams table, use the DROP clause of the
ALTER ACCESS_METHOD statement.

Purpose Functions, Flags, and Values
Purpose functions, methods, and flags defined the attributes of access methods.

The following table describes the possible settings for the sysams columns that
contain purpose functions or methods, flags, and values. The entries appear in the
same order as the corresponding sysams columns.

Chapter 5. Other syntax segments 5-55

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.vii.doc/ids_vii_109.htm#ids_vii_109
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.vii.doc/ids_vii_031.htm#ids_vii_031

Table 5-1. Purpose functions, purpose flags, and purpose values

Keyword Explanation Category Default

am_sptype A character that specifies from what type of storage space a
primary or secondary-access method can access data. The
am_sptype character can have any of the following settings:

v 'X' indicates the method accesses only extspaces.

v 'S ' indicates the method accesses only sbspaces.

v 'A' indicates the method can access extspaces and sbspaces.

Valid only for a new access method. You cannot change or
add an am_sptype value with ALTER ACCESS_METHOD.
Do not set am_sptype to 'D' or attempt to store a virtual table
in a dbspace.

Value Virtual-
Table
Interface
(C): 'A'

am_defopclass The default operator class for a secondary-access method. The
access method must exist before you can define its operator
class, so you set this value in the ALTER ACCESS_METHOD
statement.

Value None

am_keyscan A flag that, if set, indicates that am_getnext returns rows of
index keys for a secondary-access method. If a query selects
only the columns in the index key, the database server uses
the row of index keys that the secondary-access method puts
in shared memory, without reading the table.

Flag Not set

am_unique A flag to set if a secondary-access method checks for unique
keys

Flag Not set

am_cluster A flag that you set if a primary- or secondary-access method
supports clustering of tables

Flag Not set

am_rowids A flag that you set if a primary-access method can retrieve a
row from a specified address

Flag Not set

am_readwrite A flag to set if a primary-access method supports data
changes. The default setting, not set, indicates that the virtual
data is read-only. For the C Virtual-Table Interface, set this
flag if your application writes data, to avoid the following
problems:

v An INSERT, DELETE, UPDATE, or ALTER FRAGMENT
statement causes an SQL error.

v Function am_insert, am_delete, or am_update is not run.

Flag Not set

am_parallel A flag that the database server sets to indicate which purpose
functions or methods can run in parallel in a primary or
secondary-access method. If set, the hexadecimal am_parallel
bitmap contains one or more of the following bit settings:

v The 1 bit is set for parallelizable scan.

v The 2 bit is set for parallelizable delete.

v The 4 bit is set for parallelizable update.

v The 8 bit is set for parallelizable insert.

Insertions, deletions, and updates are not supported in the
Java Virtual-Table Interface.

Flag Not set

am_costfactor A value by which the database server multiplies the cost that
the am_scancost purpose function or method returns for a
primary or secondary-access method. An am_costfactor value
from 0.1 to 0.9 reduces the cost to a fraction of the value that
am_scancost calculates. An am_costfactor value of 1.1 or
greater increases the am_scancost value.

Value 1.0

5-56 IBM Informix Guide to SQL: Syntax

Table 5-1. Purpose functions, purpose flags, and purpose values (continued)

Keyword Explanation Category Default

am_create A keyword that you associate with a user-defined function or
method (UDR) name that creates a virtual table or virtual
index

Task None

am_drop A keyword that you associate with the name of a UDR that
drops a virtual table or virtual index

Task None

am_open A keyword that you associate with the name of a UDR that
makes a fragment, extspace, or sbspace available

Task None

am_close A keyword that you associate with the name of a UDR that
reverses the initialization that am_open performs

Task None

am_insert A keyword that you associate with the name of a UDR that
inserts a row or an index entry

Task None

am_delete A keyword that you associate with the name of a UDR that
deletes a row or an index entry

Task None

am_update A keyword that you associate with the name of a UDR that
changes the values in a row or key

Task None

am_stats A keyword that you associate with the name of a UDR that
builds statistics based on the distribution of values in storage
spaces

Task None

am_scancost A keyword that you associate with the name of a UDR that
calculates the cost of qualifying and retrieving data

Task None

am_check A keyword that you associate with the name of a UDR that
tests the physical structure of a table or performs an integrity
check on an index

Task None

am_beginscan A keyword that you associate with the name of a UDR that
sets up a scan

Task None

am_endscan A keyword that you associate with the name of a UDR that
reverses the setup that am_beginscan initializes

Task None

am_rescan A keyword that you associate with the name of a UDR that
scans for the next item from a previous scan to complete a
join or subquery

Task None

am_getnext A keyword that you associate with the name of the required
UDR that scans for the next item that satisfies a query

Task None

am_getbyid A keyword that you associate with the name of a UDR that
fetches data from a specific physical address; am_getbyid is
available only for primary-access methods

Task None

am_truncate A keyword that you associate with the name of a UDR that
deletes all rows of a virtual table (primary-access method) or
that deletes all corresponding keys in a virtual index
(secondary-access method)

Task None

The following rules apply to the purpose-option specifications in the CREATE
ACCESS_METHOD and ALTER ACCESS_METHOD statements:
v To specify multiple purpose options in one statement, separate them with

commas.
v The CREATE ACCESS_METHOD statement must specify a user-defined function

or method name that corresponds to the am_getnext keyword.
The ALTER ACCESS_METHOD statement cannot drop the function or method
name that corresponds to am_getnext but can modify it.

Chapter 5. Other syntax segments 5-57

v The ALTER ACCESS_METHOD statement cannot add, drop, or modify the
am_sptype value.

v You can specify the am_defopclass value only with the ALTER
ACCESS_METHOD statement.
You must first register a secondary-access method with the CREATE
ACCESS_METHOD statement before you can assign a default operator class.

Purpose Options for XA Data Source Types
The CREATE XADATASOURCE TYPE statement specifies purpose functions that
provide access to data from external data sources that comply with the X/Open
XA standards. These functions also enable external data to be processed in
accordance with the transactional semantics of Informix. Only databases that use
transaction logging, such as ANSI-compliant databases and Informix databases that
support explicit transactions, can support transaction coordination.

The following statement creates a new XA data source type called MQSeries®,
owned by user informix.
CREATE XADATASOURCE TYPE ’informix’.MQSeries(

xa_flags = 1,
xa_version = 0,
xa_open = informix.mqseries_open,
xa_close = informix.mqseries_close,
xa_start = informix.mqseries_start,
xa_end = informix.mqseries_end,
xa_rollback = informix.mqseries_rollback,
xa_prepare = informix.mqseries_prepare,
xa_commit = informix.mqseries_commit,
xa_recover = informix.mqseries_recover,
xa_forget = informix.mqseries_forget,

xa_complete = informix.mqseries_complete);

These values represent the fields in the XA Switch Structure, as listed in the file
$INFORMIXDIR/incl/public/xa.h. The order of specifications in this example
follows the order of column names in the sysxasourcetypes system catalog table,
but they can be listed in any order, provided that no item is repeated. The xa_flags
and xa_version values must be numbers; the rest must be names of UDRs that the
Transaction Manager can invoke. These UDRs must already exist in the database
before you can issue a CREATE XADATASOURCE TYPE statement that references
them among its purpose option specifications.

The DROP FUNCTION or DROP ROUTINE statement cannot drop a UDR that is
listed among the purpose options of a CREATE XADATASOURCE TYPE statement
until all of the XA datasource types that were defined using the UDR are dropped.

For information about how to use the UDRs in the previous example to coordinate
transactions with external XA data sources, see the IBM Informix DataBlade API
Programmer's Guide.

For information about the MQDataBlade module, see the IBM Informix Database
Extensions User's Guide.

Return Clause
The Return clause specifies the data type of a value or values that a user-defined
function returns. You can use this segment in UDR definitions.

5-58 IBM Informix Guide to SQL: Syntax

Syntax

Return Clause:

RETURNING
RETURNS

�

(1)
Subset of SQL Data Types

REFERENCES BYTE AS parameter
TEXT

,
(2) (1)

Subset of SQL Data Types
REFERENCES BYTE AS parameter

TEXT

Notes:

1 See “Subset of SQL Data Types”

2 Stored Procedure Language only

Element Description Restrictions Syntax

parameter Name that you declare here for a
returned parameter of the UDR

Must be unique among returned parameter names
of the UDR. If any returned value of the UDR
has a name, then all must have names.

“Identifier”
on page 5-21

Usage

For compatibility with earlier Informix releases, you can create SPL functions with
the CREATE PROCEDURE statement. (That is, you can include a Return clause in
CREATE PROCEDURE statements.) Use CREATE FUNCTION, however, to create
new SPL routines that return one or more values.

After the Return clause has indicated what data types are to be returned, you can
use the RETURN statement of SPL at any point in the statement block to return
SPL variables that correspond to the values in the Return clause.

Limits on Returned Values
An SPL function can specify more than one data type in the Return clause.

An external function (a function written in the C or the Java language) can specify
only one data type in the Return clause, but an external function can return more
than one row of data if it is an iterator function. For more information, see
“ITERATOR” on page 5-67.

Subset of SQL Data Types
The built-in SQL data types that a user-defined function (UDF) can return are
language-dependent.

For more information, see the table that follows. See also “Data Type” on page
4-23.

UDFs written in a given language can return values of any built-in data type
except the types that are marked with an X in the following table.

Chapter 5. Other syntax segments 5-59

Data Type C Java SPL

BIGSERIAL X X X

BLOB X

CLOB X

BYTE X X

TEXT X X

COLLECTION X

LIST X

MULTISET X

ROW X

SET X

SERIAL X X X

SERIAL8 X X X

In Informix, if you use a complex data type in the Return clause, the calling
user-defined routine must define variables of the appropriate complex types to
hold the values that the C or SPL user-defined function returns.

User-defined functions can return a value of opaque or distinct data types that are
defined in the database.

The default precision of a DECIMAL value that an SPL function returns is 16
digits. For a function to return a DECIMAL with a different number of significant
digits, you must specify the returned precision explicitly in the data type
specification of the Return clause.

Using the REFERENCES Clause to Point to a Simple Large
Object

A user-defined function cannot return a BYTE or TEXT value (collectively called
simple large objects) directly. A user-defined function can, however, use the
REFERENCES keyword to return a descriptor that contains a pointer to a BYTE or
TEXT object. The following example shows how to select a TEXT column within an
SPL routine and then return the value:
CREATE FUNCTION sel_text()

RETURNING REFERENCES text;
DEFINE blob_var REFERENCES text;
SELECT blob_col INTO blob_var

FROM blob_table WHERE key_col = 10;
RETURN blob_var;

END FUNCTION;

For simple large objects that are column values from the Projection list of a query,
as in this example, the pointer in the returned descriptor references the
sysblobs.spacename value from the system catalog, based on the BYTE or TEXT
column definition.

For simple large objects that do not correspond to columns of permanent tables,
however, the pointer references the dbspace of the database in which the UDR is
defined. This is the default storage location for a BYTE or TEXT object that a UDR
returns, when no location from the sysblobs table is known to the database server.

5-60 IBM Informix Guide to SQL: Syntax

The DB-Access session in the following example creates two routines, udr1 and
udr2, that each return the descriptor of a TEXT object:
CREATE DATABASE db WITH LOG;

CREATE TABLE t (c2 TEXT);
CREATE TABLE t1 (c2 TEXT);
LOAD FROM "t.unl" INSERT INTO t;

CREATE FUNCTION udr1 (param_1
REFERENCES TEXT DEFAULT NULL)
RETURNING REFERENCES TEXT

WITH (NOT VARIANT)
DEFINE var1 REFERENCES TEXT;
ON EXCEPTION

RETURN param_1;
END EXCEPTION;
SELECT t.c2 udr1_col1

INTO var1 FROM t;
RETURN var1;

END FUNCTION;

CREATE PROCEDURE udr2 (OUT param_1
REFERENCES TEXT DEFAULT NULL)

RETURNING INT;
SELECT t.c2 udr1_col1

INTO param_1 FROM t;
RETURN 1;

END PROCEDURE;

SELECT udr1(t.c2) query_1_col1 FROM t
INTO TEMP mytemp;

SELECT c2, slv1 FROM t1
WHERE udr2(slv1#TEXT) > 0
INTO TEMP mytemp;

In the SELECT statements that call these UDRs, the TEXT object that each query
returns to the mytemp temporary table are stored in the dbspace of the db
database.

Returning a Value from Another Database
For UDRs that access tables or views outside the local database, only the following
data types are valid as return values:

��

�

built-in_non-opaque
(1)

opaque_UDT
BLOB
CLOB

BOOLEAN
(2048)

LVARCHAR (max)
DISTINCT OF BOOLEAN

(2048)
LVARCHAR (max)
built-in_non-opaque

DISTINCT OF

��

Notes:

1 Not valid in cross-server operations

Chapter 5. Other syntax segments 5-61

Element Description Restrictions Syntax

built-in _
non-opaque

Name of a built-in data type that is
not opaque

Cannot be BIGSERIAL, BYTE, SERIAL,
SERIAL8, or TEXT

“Data Type” on page
4-23

max Maximum size in bytes. Default is
2048.

Must be an integer, where 1 ≤ max ≤
32,739

“Literal Number” on
page 4-215

opaque_UDT Name of a user-defined opaque data
type

Must be cast explicitly to a built-in type
by a cast defined in every participating
database

“Identifier” on page
5-21

If the Return clause to return a value (or multiple values, in the case of an SPL
function) from another database of the local Informix instance, the following data
types are supported as the returned data type:
v Built-in data types that are not opaque
v Most of the built-in opaque data types, as listed in “Data Types in Cross-Database

Transactions” on page 2-663
v Any DISTINCT type based on one of the built-in types that are identified in this

list
v Any DISTINCT type based on one of the DISTINCT types in this list
v Any user-defined type (UDT) that is cast explicitly to one of the data types in

this list.

The UDF and all of the DISTINCT types, opaque UDTs, data type hierarchies, and
casts must have exactly the same definitions in each of the participating databases.
The same data-type restrictions apply to a value that an external function returns
from another database of the local Informix instance. For more information about
data types that are supported in distributed operations across two or more
databases of the same database server, see “Data Types in Cross-Database
Transactions” on page 2-663. For the data type hierarchies that are valid for
DISTINCT data types in distributed transactions, see “DISTINCT Types in
Distributed Operations” on page 4-37.

From databases of other Informix instances, however, UDFs can specify only the
following as a parameter or as a returned data type:
v Built-in data types that are not opaque
v BOOLEAN
v LVARCHAR
v DISTINCT of built-in types that are not opaque
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of the DISTINCT types in this list.

The definitions of the UDF and of any data type hierarchies, casts, and DISTINCT
types must be exactly the same in each of the participating databases. Except for
the BOOLEAN, DISTINCT, and LVARCHAR data types that are identified in the
previous list, UDFs cannot return any other built-in opaque data type or opaque
UDTs in cross-server function calls.

For more information about data types that are supported in distributed operations
across two or more Informix instances, see “Data Types in Cross-Server
Transactions” on page 2-665. For the data type hierarchies that are valid for
DISTINCT data types in distributed transactions, see “DISTINCT Types in
Distributed Operations” on page 4-37.

5-62 IBM Informix Guide to SQL: Syntax

Named Return Parameters
You can declare names for the returned parameters of an SPL routine, or a name
for the single value that an external function can return.

If an SPL routine returns more than one value, you must either declare names for
all of the returned parameters, or else none of them can have names. The names
must be unique. Here is an example of named parameters:
CREATE PROCEDURE p (inval INT DEFAULT 0)
RETURNING INT AS serial_num,

CHAR(10) AS name,
INT AS points;

RETURN (inval + 1002), “Newton”, 100;
END PROCEDURE;

Executing this UDR would return:
serial_num name points
1002 Newton 100

There is no relationship between the names of returned parameters and the names
of any variables in the body of the routine. For example, you can define a function
to return an INTEGER as xval, but in the body of the same function, a variable
declared as xval could be of the data type INTERVAL YEAR TO MONTH.

Cursor and Noncursor Functions
A cursor function can fetch returned values one by one by iterating the generated
result set of returned values. Such a function is an implicitly iterated function.

A function that returns only one set of values (such as one or more columns from a
single row of a table) is a noncursor function.

The Return clause is valid in a cursor function or in a noncursor function. In the
following example, the Return clause can return zero (0) or one value in a
noncursor function. In a cursor function, however, it returns more than one row
from a table, and each returned row contains zero or one value:
RETURNING INT;

In the following example, the Return clause can return zero (0) or two values if it
occurs in a noncursor function. In a cursor function, however, it returns more than
one row from a table, and each returned row contains zero or two values:
RETURNING INT, INT;

In both of the preceding examples, the receiving function or program must be
written appropriately to accept the information that the function returns.

Routine modifier
A routine modifier specifies characteristics of how a user-defined routine (UDR)
behaves.

Syntax

(1)
Adding or Modifying a Routine Modifier
Dropping a Routine Modifier

Chapter 5. Other syntax segments 5-63

Dropping a Routine Modifier:

(2) (3)
VARIANT

NOT
NEGATOR
(4)

CLASS
ITERATOR
PARALLELIZABLE

(2)
HANDLESNULLS
INTERNAL

COSTFUNC
PERCALL_COST
SELFUNC
SELCONST

STACK

Notes:

1 See “Adding or Modifying a Routine Modifier” on page 5-65

2 C routines

3 SPL routines

4 External routines only

Element Description Restrictions Syntax

parameter Name that you declare here for a
returned parameter of the UDR

Must be unique among returned parameters of
UDRs. If any returned value of the UDR has a
name, then all must have names.

“Identifier”
on page 5-21

Usage

If you drop an existing modifier in an ALTER FUNCTION, ALTER PROCEDURE,
or ALTER ROUTINE statement, the database server sets the value of the modifier
to the default value, if a default exists.

Some modifiers are available only with user-defined functions. For information
about whether a specific routine modifier applies only to user-defined functions
(that is, if it does not apply to user-defined procedures), see the description of the
modifier in the sections that follow. In these sections, as elsewhere in this
document, external refers to UDRs written in the C or Java languages. Features
valid for only one language are so designated in the previous diagrams.

Except for VARIANT and NOT VARIANT modifiers, none of the options in this
segment are valid for SPL routines.

Example

The following statement includes an external routine reference for a Java language
UDR. You must first register demo_jar using the procedure install_jar(<absolute
path><jar file name>,<internal registered name>).

5-64 IBM Informix Guide to SQL: Syntax

CREATE FUNCTION delete_order(int) RETURNING int
WITH (NOT VARIANT)
EXTERNAL NAME ’informix.demo_jar:delete_order.delete_order()’
LANGUAGE JAVA;

Related concepts:

User-Defined Routines and Data Types Developer's Guide (UDR and Data
Type Guide)

Optimize queries for user-defined data types (Performance Guide)
Related reference:

Create user-defined routines (DataBlade API Guide)

Adding or Modifying a Routine Modifier
Use this segment in the ALTER FUNCTION, ALTER PROCEDURE, or ALTER
ROUTINE statement to add or modify values for routine modifiers of a UDR.

Adding or Modifying a Routine Modifier:

(1) (2)

VARIANT
NOT

NEGATOR =neg_func

(3)
CLASS =class_name
ITERATOR
PARALLELIZABLE
(1)

HANDLESNULLS
INTERNAL

0
PERCALL_COST = cost
COSTFUNC =cost_func
SELFUNC =sel_func
SELCONST =selectivity

STACK =stack_size

Notes:

1 C language

2 Stored Procedure Language

3 External routines only

Element Description Restrictions Syntax

class_name Virtual processor (VP) class in which to
run the external routine

Any C UDR must run in the CPU VP
or in a user-defined VP class

“Quoted String”
on page 4-219.

cost CPU use cost for each invocation of a
C-language UDR. Default is 0.

Integer; 1 ≤ cost ≤ 231-1 (highest cost). “Literal Number”
on page 4-215

cost_func Name of a companion user-defined cost
function to run

Must have same owner as the UDR.
Execute privilege is needed to run.

“Identifier” on
page 5-21

neg_func Negator function that can be invoked
instead of the UDR

Must have same owner as the UDR.
Execute privilege is needed to run.

“Identifier” on
page 5-21

Chapter 5. Other syntax segments 5-65

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/udr.htm#udr
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.udr.doc/udr.htm#udr
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.perf.doc/ids_prf_667.htm#ids_prf_667
http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.dapip.doc/ids_dapip_0568.htm#ids_dapip_0568

Element Description Restrictions Syntax

sel_func Name of a companion user-defined
selectivity function to invoke

Must have same owner as the UDR.
Execute privilege is needed to run.

“Identifier” on
page 5-21

selectivity CPU use cost for each invocation of a
C-language UDR. Default is 0.

See “Concept of Selectivity” on page
5-69.

“Literal Number”
on page 4-215

stack_size Size (in bytes) of stack of the thread
that runs the C-language UDR

Must be a positive integer “Literal Number”
on page 4-215

You can add these modifiers in any order. If you list the same modifier more than
once, the last setting overrides any previous values.

Modifier Descriptions
The following sections describe the modifiers that you can use to help the database
server optimally execute a UDR.

CLASS
Use the CLASS modifier to specify the name of a virtual-processor (VP) class in
which to run an external routine. A user-defined VP class must be defined before
the UDR can be invoked.

You can execute C UDRs in the following types of VP classes:
v The CPU virtual-processor class (CPU VP)
v A user-defined virtual-processor class.

If you omit the CLASS modifier to specify a VP class for a UDR written in C, the
UDR runs in the CPU VP. User-defined VP classes protect the database server from
ill-behaved C UDRs. An ill-behaved C UDR has at least one of the following
characteristics:
v It runs in the CPU VP for a long time without yielding.
v It is not thread safe.
v It calls an unsafe operating-system routine.

A well-behaved C UDR has none of these characteristics. Execute only
well-behaved C UDRs in the CPU VP.

Warning: Execution of an ill-behaved C UDR in the CPU VP can cause serious
interference with the operation of the database server, and the UDR might not
produce correct results. For a discussion of ill-behaved UDRs, see the IBM Informix
DataBlade API Programmer's Guide.

By default, a UDR written in Java runs in a Java virtual processor class (JVP).
Therefore, the CLASS modifier is optional for a UDR written in Java. However, use
the CLASS modifier when you register a UDR written in Java to improve
readability of your SQL statements.

COSTFUNC (C)
Use the COSTFUNC modifier to specify the cost of a UDR. The cost of the UDR is
an estimate of the time required to execute it.

Occasionally, the cost of a UDR depends on its inputs. In that case, you can use a
user-defined function to calculate a cost that depends on input values.

5-66 IBM Informix Guide to SQL: Syntax

To execute cost_func, you must have Execute privilege on it and on the UDR.

HANDLESNULLS
Use the HANDLESNULLS modifier to specify that a C UDR can handle NULL
values that are passed to it as arguments. If you do not specify HANDLESNULLS
for a C language UDR, and if you pass to it an argument that has a NULL value,
the UDR does not execute and returns a NULL value.

By default, a C language UDR does not handle NULL values.

The HANDLESNULLS modifier is not available for SPL routines because SPL
routines handle NULL values by default.

INTERNAL
Use the INTERNAL modifier with an external routine to specify that an SQL or
SPL statement cannot call the external routine. An external routine that is specified
as INTERNAL is not considered during routine resolution. Use the INTERNAL
modifier for external routines that define access methods, language managers, and
so on.

By default, an external routine is not internal; that is, an SQL or SPL statement can
call the routine.

ITERATOR
Use the ITERATOR modifier with external functions to specify that the function is
an iterator function. An iterator function is a function that returns a single element
per function call to return a set of data; that is, it is called with an initial call and
zero or more subsequent calls until the set is complete.

By default, an external C or Java language function is not an iterator function.

An SPL iterator function requires the RETURN WITH RESUME statement, rather
than the ITERATOR modifier.

In ESQL/C, an iterator function requires a cursor. The cursor allows the client
application to retrieve the values one at a time with the FETCH statement.

For more information on how to write iterator functions, see IBM Informix
User-Defined Routines and Data Types Developer's Guide and the IBM Informix
DataBlade API Programmer's Guide.

For information about using an iterator function with a virtual table interface in
the FROM clause of a query, see “Iterator Functions” on page 2-680.

NEGATOR
Use the NEGATOR modifier with UDRs that return Boolean values.

The NEGATOR modifier designates another user-defined function, called a negator
function, as a companion to the current function. A negator function takes the same
arguments as its companion function, in the same order, but returns the Boolean
complement.

That is, if a function returns TRUE for a given set of arguments, its negator function
returns FALSE when passed the same arguments, in the same order. For example,
the following functions are negator functions:

Chapter 5. Other syntax segments 5-67

equal(a,b)
notequal(a,b)

Both functions take the same arguments, in the same order, but return
complementary Boolean values. When it is more efficient to do so, the query
optimizer can use the negator function instead of the function that you specify.

To invoke a user-defined function that has a negator function, you must have the
Execute privilege on both functions. In addition, the function must have the same
owner as its negator function.

PARALLELIZABLE
Use the PARALLELIZABLE modifier to indicate that an external routine can be
executed in parallel in the context of a parallelizable data query (PDQ).

By default, an external routine is non-parallelizable; that is, it executes in sequence.

If your UDR has a complex or smart large object data type as either a parameter or
a returned value, you cannot use the PARALLELIZABLE modifier.

If you specify the PARALLELIZABLE modifier for an external routine that cannot
be parallelizable, the database server returns a runtime error.

A C language UDR that calls only PDQ thread-safe DataBlade API functions is
parallelizable. These categories of DataBlade API functions are PDQ thread safe:
v Data handling

An exception in this category is that collection manipulation functions
(mi_collection_*) are not PDQ thread safe.

v Session, thread, and transaction management
v Function execution
v Memory management
v Exception handling
v Callbacks
v Miscellaneous

For details of the DataBlade API functions that are included in each category, see
the IBM Informix DataBlade API Function Reference.

If your C language UDR calls a function that is not included in one of these
categories, it is not PDQ thread safe and is therefore not parallelizable.

To parallelize Java language UDR calls, the database server must have multiple
instances of JVPs. UDRs written in the Java language and that open a JDBC
connection are not parallelizable.

PERCALL_COST (C)
Use the PERCALL_COST modifier to specify the approximate CPU usage cost that
a UDR incurs each time it executes.

The optimizer uses the cost you specify to determine the order in which to
evaluate SQL predicates in the UDR for best performance. For example, the
following query has two predicates joined by a logical AND:
SELECT * FROM tab1 WHERE func1() = 10 AND func2() = ’abc’;

5-68 IBM Informix Guide to SQL: Syntax

In this example, if one predicate returns FALSE, the optimizer need not evaluate the
other predicate.

The optimizer uses the specified cost to order the predicates so that the least
expensive predicate is evaluated first. The CPU usage cost must be an integer
between 1 and 231-1, with 1 the lowest cost and 231-1 the most expensive.

To calculate an approximate cost per call, add the following two figures:
v The number of lines of code executed each time the UDR is called
v The number of predicates that require an I/O access

The default cost per execution is 0. When you drop the PERCALL_COST modifier,
the cost per execution returns to 0.

SELCONST (C)
Use the SELCONST modifier to specify the selectivity of a UDR. The selectivity of
the UDR is an estimate of the fraction of the rows that the query will select.

The value of selectivity constant, selconst, is a floating-point number between 0
and 1 that represents the fraction of the rows for which you expect the UDR to
return TRUE.

SELFUNC (C)
Use the SELFUNC modifier with a C UDR to name a companion user-defined
function, called a selectivity function, to the current UDR. The selectivity function
provides selectivity information about the current UDR to the optimizer.

The selectivity of a UDR is an estimate of the fraction of the rows that the query
will select. That is, it is an estimate of the number of times the UDR will execute.

To execute sel_func, you must have Execute privilege on it and on the UDR.

Concept of Selectivity: Selectivity is an attribute of queries that performs a search
based on an equality condition. The selectivity of the query depends inversely on
the proportion of qualifying rows. The smaller the proportion of qualifying rows
among all the rows in FROM clause table objects, the more selective is the query.

For example, the following query has a search condition based on the
customer_num column in the customer table:
SELECT * FROM customer WHERE customer_num = 102;

Because each row in the table has a different customer number, this query is highly
selective. In contrast, the following query has low selectivity:
SELECT * FROM customer WHERE state = ’CA’;

Because most of the rows in the customer table are for customers in California,
more than half of the rows in the table would be returned.

Restrictions on the SELFUNC Modifier:

The selectivity function that you specify with the SELFUNC modifier has specific
requirements.

The selectivity function that you specify must satisfy the following criteria:
v It must take the same number of arguments as the current UDR.

Chapter 5. Other syntax segments 5-69

v The data type of each argument must be SELFUNCARGS.
v It must return a value of type FLOAT between 0 and 1, which represents the

percentage of selectivity of the function. (1 is highly selective; 0 is not at all
selective.)

v It can be written in any language that the database server supports.

A user who invokes the UDR must have the Execute privilege both on that UDR
and on the selectivity function that the SELFUNC modifier specifies.

Both the UDR and the selectivity function must have the same owner.

For information on how to use the mi_funcarg* functions to extract information
about the arguments of a selectivity function, see the IBM Informix DataBlade API
Programmer's Guide.

STACK (C)
Use the STACK modifier with a C UDR to override the default stack size that the
STACKSIZE configuration parameter specifies.

The STACK modifier specifies the size (in bytes) of the thread stack, which a user
thread that executes the UDR uses to hold information such as routine arguments
and returned values from functions.

A UDR needs to have enough stack space for all its local variables. For a particular
UDR, you might need to specify a stack size larger than the default size to prevent
stack overflow.

When a UDR that includes the STACK modifier executes, the database server
allocates a thread-stack size of the specified number of bytes. Once the UDR
completes execution, subsequent UDRs execute in threads with a stack size that the
STACKSIZE configuration parameter specifies (unless any of these subsequent
UDRs have also specified the STACK modifier).

For more information about the thread stack, see your IBM Informix Administrator's
Guide and the IBM Informix DataBlade API Function Reference.
Related concepts:

Stacks (Administrator's Guide)

VARIANT and NOT VARIANT
Use the VARIANT and NOT VARIANT modifiers with C user-defined functions
and SPL functions. A function is variant if it returns different results when it is
invoked with the same arguments or if it modifies a database or variable state. For
example, a function that returns the current date or time is a variant function.

By default, user-defined functions are variant. If you specify NOT VARIANT when
you create or modify a user-defined function, the function cannot contain any SQL
statements.

If the user-defined function is nonvariant, the database server might cache the
returned values of expensive functions. You can create functional indexes only on
nonvariant functions. For more information on functional indexes, see “CREATE
INDEX statement” on page 2-194.

In ESQL/C, you can specify VARIANT or NOT VARIANT in this clause or in the
EXTERNAL Routine Reference. For more information, see “External Routine

5-70 IBM Informix Guide to SQL: Syntax

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.admin.doc/ids_admin_0380.htm#ids_admin_0380

Reference” on page 5-19. If you specify the modifier in both places, however, you
must use the same modifier in both clauses.

Routine Parameter List
Use the appropriate part of the Routine Parameter List segment whenever you see
a reference to a Routine Parameter List in a syntax diagram.

Syntax

Routine Parameter List:

�

,
IN

Parameter
OUT
INOUT

Parameter:

parameter
(1)

(2)
Subset of SQL Data Type

LIKE table . column DEFAULT value
REFERENCES BYTE

TEXT DEFAULT NULL

Notes:

1 External routines only

2 See “Subset of SQL Data Types” on page 5-72

Element Description Restrictions Syntax

column Name of a column whose data type
is declared for parameter

Must exist in the specified table “Database Object
Name” on page 5-16

parameter Name of a parameter of the UDR Name is required for SPL routines “Identifier” on page
5-21

table Table that contains column The table must exist in the database “Identifier” on page
5-21

value Default used if UDR is called with
no value for parameter

Must be a literal, of the same data type
as parameter. For opaque types, an input
function must be defined

“Literal Number” on
page 4-215

Usage

A parameter is a formal argument in the declaration of a UDR. (When you
subsequently invoke a UDR that has parameters, you must substitute a specific
argument value for the parameter, unless the parameter has a default value.)

The name of the parameter is optional for external routines of IBM Informix.

When you create a UDR, you declare a name and data type for each parameter. You
can specify the data type directly, or use the LIKE or REFERENCES clause to
specify the data type. You can optionally specify a default value.

Chapter 5. Other syntax segments 5-71

You can define any number of SPL routine parameters, but the total length of all
parameters passed to an SPL routine must be less than 2 gigabytes.

No more than nine arguments to a UDR written in the Java language can be
DECIMAL data types of SQL that the UDR declares as BigDecimal data types of
the Java language.

Any C language UDR that returns an opaque data type must specify opaque_type
in the var binary declaration of the C host variable.
Related reference:
“Arguments” on page 5-1

Subset of SQL Data Types
Serial and large-object data types are not valid as parameters. A UDR can declare a
parameter of any other data type defined in the database, including any built-in
data types except BIGSERIAL, BLOB, BYTE, CLOB, SERIAL, SERIAL8, or TEXT.

On Informix, a parameter can also be a complex data type or a UDT, but complex
data types are not valid for parameters of external UDRs written in the Java
language.

For information about the data types of Informix that are valid as parameters or
return values of routines that access tables or views outside the local database, see
“Returning a Value from Another Database” on page 5-61.

Using the LIKE Clause
Use the LIKE clause to specify that the data type of a parameter is the same as a
column defined in the database. If the ALTER TABLE statement changes the data
type of the column, the data type of the parameter also changes.

In Informix, if you use the LIKE clause to declare any parameter, you cannot
overload the UDR. For example, suppose you create the following user-defined
procedure:
CREATE PROCEDURE cost (a LIKE tableX.colY, b INT)
. . .
END PROCEDURE;

You cannot create another procedure named cost() in the same Informix database
with two arguments. You can, however, create a procedure named cost() with a
number of arguments other than two. (Another way to circumvent this restriction
on the LIKE clause is through user-defined data types.)

Using the REFERENCES Clause
Use the REFERENCES clause to specify that a parameter contains BYTE or TEXT
data. The REFERENCES keyword allows you to use a pointer to a BYTE or TEXT
object as a parameter. If you use the DEFAULT NULL option in the REFERENCES
clause, and you call the UDR without a parameter, a NULL value is used as the
default value.

Using the DEFAULT Clause
Use the DEFAULT keyword followed by an expression to specify a default value
for a parameter. If you provide a default value for a parameter, and the UDR is
called with fewer arguments than were defined for that UDR, the default value is

5-72 IBM Informix Guide to SQL: Syntax

used. If you do not provide a default value for a parameter, and the UDR is called
with fewer arguments than were defined for that UDR, the calling application
receives an error.

The following example shows a CREATE FUNCTION statement that specifies a
default value for a parameter. This function finds the square of the i parameter. If
the function is called without specifying the argument for the i parameter, the
database server uses the default value 0 for the i parameter.
CREATE FUNCTION square_w_default

(i INT DEFAULT 0) {Specifies default value of i}
RETURNING INT; {Specifies return of INT value}
DEFINE j INT; {Defines routine variable j}
LET j = i * i; {Finds square of i and assigns it to j}
RETURN j; {Returns value of j to calling module}

END FUNCTION;

Warning: When you specify a date value as the default value for a parameter,
make sure to specify 4 digits instead of 2 digits for the year. When you specify a
2-digit year, the DBCENTURY environment variable setting can affect how the
database server interprets the date value, so the UDR might not use the default
value that you intended. For more information, see the IBM Informix Guide to SQL:
Reference.

Specifying OUT Parameters for User-Defined Routines
When you register a user-defined routine of Informix, you can use the OUT
keyword to specify that any parameter in the list is an OUT parameter. Each OUT
parameter corresponds to a value the routine returns indirectly, through a pointer.
The value that the routine returns through the pointer is an extra value, in addition
to any values that it returns explicitly.

After you have registered a user-defined function that has one or more OUT
parameters, you can use the function with a statement-local variable (SLV) in a
SELECT statement. (For information about statement-local variables, see
“Statement-Local Variable Expressions” on page 4-192.)

If you specify any OUT parameters, and you use Informix-style parameters, the
arguments are passed to the OUT parameters by reference. The OUT parameters
are not significant in determining the routine signature.

For example, the following declaration of a C user-defined function allows you to
return an extra value through the y parameter:
int my_func(int x, int *y);

Register the C function with a CREATE FUNCTION statement similar to this:
CREATE FUNCTION my_func(x INT, OUT y INT)

RETURNING INT
EXTERNAL NAME "/usr/lib/local_site.so"
LANGUAGE C

END FUNCTION;

In the next example, this Java method returns an extra value by passing an array:
public static String allVarchar(String arg1, String[] arg2)
throws SQLException
{
arg2[0] = arg1;
return arg1;
}

Chapter 5. Other syntax segments 5-73

To register this as a UDF, use a statement similar to the following example:
CREATE FUNCTION all_varchar(VARCHAR(10), OUT VARCHAR(7))

RETURNING VARCHAR(7)
WITH (class = "jvp")
EXTERNAL NAME ’informix.testclasses.jlm.Param.allVarchar(java.lang.String,
java.lang.String[])’
LANGUAGE JAVA;

Specifying INOUT Parameters for a User-Defined Routine
UDRs that are written in the SPL, C, or Java languages can also support INOUT
parameters. When the UDR is invoked, a value for each INOUT parameter is
passed by reference as an argument to the UDR.

When the UDR completes execution, it can return a modified value for the INOUT
parameter to the calling context. The INOUT parameter can be of any data type
that Informix supports, including user-defined and complex data types, with the
following exceptions:
v Serial types (BIGSERIAL, SERIAL, and SERIAL8)
v Simple large object types (BYTE and TEXT).

In the following example, the CREATE PROCEDURE statement registers a C
routine that has a single INOUT parameter:
CREATE PROCEDURE CALC (INOUT param1 float)

EXTERNAL NAME "$INFORMIXDIR/etc/myudr.so(calc)"
LANGUAGE C;

An SPL routine can invoke other UDRs that have OUT or INOUT parameters, if
those UDRs are written in the SPL or C language. An SPL routine cannot, however,
invoke a Java UDR whose arguments include OUT or INOUT parameters.

Support for invoking UDRs that have named or unnamed ROW arguments from
an SPL routine has the following dependencies on the parameter type of the ROW
argument, and on the programming language of the invoked UDR:
v SPL routines can invoke C UDRs that have ROW arguments that are IN

parameters, but cannot invoke C UDRs that have ROW arguments that are OUT
or INOUT parameters.

v SPL routines can invoke SPL UDRs that have ROW arguments of any parameter
type, including IN, OUT, and INOUT.

You can assign INOUT parameters to statement-local variables (SLVs), which the
section “Statement-Local Variable Expressions” on page 4-192 describes.

Shared-Object Filename
Use a shared-object filename to specify a pathname to an executable object file
when you register or alter an external routine.

Syntax

Shared-Object File:

(1) (2)
C Shared-Object File

(3) (4)
Java Shared-Object File

5-74 IBM Informix Guide to SQL: Syntax

Notes:

1 C only

2 See “C Shared-Object File”

3 Java only

4 See “Java Shared-Object File” on page 5-76

Usage

If the IFX_EXTEND_ROLE configuration parameter is set to 1 or to ON, only users
to whom the DBSA has granted the built-in EXTEND role are authorized to use
this segment. (Whether or not IFX_EXTEND_ROLE is enabled, you must hold the
Resource privilege or the DBA privilege on the database, and you must also hold
the Usage privilege on the external programming language in which the UDR is
written, before you can create, drop, or alter an external UDR.)

The Database Server Administrator should include in the DB_LIBRARY_PATH
configuration parameter settings every file system where the security policy
authorizes DataBlade modules and UDRs to reside. Unless DB_LIBRARY_PATH is
absent or has no setting, the database server cannot access a file that this segment
specifies unless its pathname begins with a string that exactly matches one of the
values of DB_LIBRARY_PATH.

For example, if "$INFORMIXDIR/extend" is one of the DB_LIBRARY_PATH
values on a Linux system, then shared-object files can have pathnames within the
$INFORMIXDIR/extend file system or its subdirectories. (This is also the file
system where built-in DataBlade modules reside, and the default location where
the DataBlade Developers Kit creates user-defined DataBlade modules.)

The syntax by which you specify a shared-object filename depends on whether the
external routine is written in the C language or in the Java language. Sections that
follow describe each of these external languages.

For more information about the context in which a shared-object filename appears
within EXTERNAL NAME clause of the ALTER FUNCTION, ALTER
PROCEDURE, ALTER ROUTINE, CREATE FUNCTION, and CREATE
PROCEDURE statements, see the related reference, External Routine Reference.
Related reference:
“External Routine Reference” on page 5-19

DB_LIBRARY_PATH configuration parameter (Administrator's Reference)

C Shared-Object File
To specify the location of a C shared-object file, specify the path to the dynamically
loaded executable file within a quoted pathname or as a variable.

C Shared-Object File:

quote pathname quote
$environment_var (symbol)
/
.

$variable

Chapter 5. Other syntax segments 5-75

http://pic.dhe.ibm.com/infocenter/idshelp/v117/topic/com.ibm.adref.doc/ids_adr_0043.htm#ids_adr_0043

Element Description Restrictions Syntax

environment_var Platform-independent indicator Must begin with a dollar sign ($) “Identifier” on page
5-21

pathname Pathname to the file See notes that follow this table Must conform to
operating system
conventions

quote Either single (') or double ('')
quotation mark symbol

Opening and closing quotation
mark symbols must match

Literal symbol
(either ' or '')

symbol Entry point to the file Must be enclosed in parentheses Must conform to
operating system
conventions

variable Platform-independent indicator Must begin with a dollar sign ($) Must conform to C
language
conventions

The following rules affect pathname and filename specifications in C:
v A filename (with no pathname) can specify an internal function.
v You can omit the period (.) symbol if pathname is relative to the current

directory when the CREATE or ALTER statement is run.
v On UNIX, an absolute pathname must begin with a slash (/) symbol, and each

directory name must end with a slash (/) symbol.
v On Windows, an absolute pathname must begin with a backslash (\) symbol,

and each directory name must end with a backslash (\) symbol.
v The filename at the end of pathname must have the .so file extension and must

refer to an executable file in a shared object library.
v Use a symbol only if the entry point to the dynamically loadable executable

object file has a different name from the UDR that you are registering with
CREATE FUNCTION or CREATE PROCEDURE.

v If you specify a variable, it must contain the full pathname to the executable file.
v You can include white-space characters, such as blank spaces or tab characters,

within a quoted pathname.

Java Shared-Object File
To specify the name of a Java shared-object file, specify the name of the static Java
method to which the UDR corresponds and the location of the Java binary that
defines the method.

Java Shared-Object File:

quote
(1)

Jar Name : �

package_id .
class_id . method_id �

5-76 IBM Informix Guide to SQL: Syntax

�

�

,

() RETURNS java_type
java_type

quote

Notes:

1 See “Jar Name” on page 5-34

Element Description Restrictions Syntax

class_id Java class whose method
implements the UDR

Class must exist in the .jar file that
Jar Name identifies

Must conform to rules for
Java identifiers

java_type Java data type for a parameter in
the Java-method signature

Must be defined in a JDBC class or
by an SQL-to-Java mapping

Must conform to rules for
Java identifiers

method_id Name of the Java method that
implements the UDR

Must exist in the Java class that
java_class_name specifies

Must conform to rules for
Java identifiers

package_id Name of package that contains the
Java class

Must exist Must conform to rules for
Java identifiers

quote Single (') or double ('')
quotation mark delimiters

Opening and closing quotation
marks must match

Literal symbol (' or '')
entered at the keyboard

Before you can create a UDR written in the Java language, you must assign a jar
identifier to the external jar file with the sqlj.install_jar procedure. (For more
information, see “sqlj.install_jar” on page 6-19.) You can include the Java signature
of the method that implements the UDR in the shared-object filename.
v If you do not specify the Java signature, the routine manager determines the

implicit Java signature from the SQL signature in the CREATE FUNCTION or
CREATE PROCEDURE statement.
It maps SQL data types to the corresponding Java data types with the JDBC and
SQL-to-Java mappings. For information on mapping user-defined data types to
Java data types, see “sqlj.setUDTextName” on page 6-23.

v If you do specify the Java signature, the routine manager uses this explicit Java
signature as the name of the Java method to use.

For example, if the Java method explosiveReaction() implements the Java UDR
sql_explosive_reaction() as discussed in “sqlj.install_jar” on page 6-19, its
shared-object filename could be:
course_jar:Chemistry.explosiveReaction

The preceding shared-object filename provides an implicit Java signature. The
following shared-object filename is the equivalent with an explicit Java signature:
course_jar:Chemistry.explosiveReaction(int)

Specific Name
Use a specific name to declare an identifier for a UDR that is unique in the
database or name space. Use the Specific Name segment whenever you see a
reference to a specific name in a syntax diagram.

Chapter 5. Other syntax segments 5-77

Syntax

Specific Name:

owner .
specific_id

Element Description Restrictions Syntax

owner Owner of the
UDR

No more than 32 bytes. Must be same as owner of function or
procedure name of this UDR. See also “Restrictions on the Owner
Name.”

“Owner name”
on page 5-49

specific_id Unique name
of the UDR

Must be no more than 128 bytes long. See also “Restrictions on the
Specific Name.”

“Identifier” on
page 5-21

Usage

A specific name is a unique identifier that the CREATE PROCEDURE or CREATE
FUNCTION statement declares as an alternative name for a UDR.

Because you can overload routines, a database can have more than one UDR with
the same name and different parameter lists. You can assign a UDR a specific
name that uniquely identifies the specific UDR.

If you declare a specific name when you create the UDR, you can later use that
name when you alter, drop, grant, or revoke privileges, or update statistics on that
UDR. Otherwise, you need to include the parameter data types with the UDR
name, if the name alone does not uniquely identify the UDR.

Restrictions on the Owner Name
When you declare a specific name, the owner must be the same authorization
identifier that qualifies the function name or procedure name of the UDR that you
create. That is, whether or not you specify the owner name to qualify either the
UDR name or the specific name or both, the names of the owner must match.

When you specify no owner name in the DDL statement that creates a UDR,
Informix uses the login name of the user who creates the UDR. Therefore, if you
specify the owner name in one location and not the other, the owner name that
you specify must match your user ID.

Restrictions on the Specific Name
In a database that is not ANSI-compliant, specific_id must be unique among routine
names within the database. Two UDRs cannot have the same specific_id, even if
they have different owners.

In an ANSI-compliant database, the combination owner.specific_id must be unique.
That is, the specific name must be unique among UDRs that have the same owner.

Statement Block
Use a statement block to specify SPL and SQL operations to take place when an
SPL statement that includes this segment is executed.

5-78 IBM Informix Guide to SQL: Syntax

Syntax

Statement Block:

�

(1)
DEFINE Statement

�

(2)
ON EXCEPTION Statement

�

� �

(3)
EXECUTE FUNCTION Statement

(4)
EXECUTE PROCEDURE Statement

(5)
Subset of SPL Statements

(6)
Subset of SQL Statements ;

BEGIN Statement Block END

Notes:

1 See “DEFINE” on page 3-14

2 See “ON EXCEPTION” on page 3-46 and “Identifier” on page 5-21

3 See “EXECUTE FUNCTION statement” on page 2-462

4 See “EXECUTE PROCEDURE statement” on page 2-471

5 See “Subset of SPL Statements Valid in the Statement Block”

6 See “SQL Statements Valid in SPL Statement Blocks” on page 5-80

Usage

SPL and SQL statements can appear in a statement block, a set of zero or more
statements that can define the scope of a variable or of the ON EXCEPTION
statement. If a statement block is empty, no operation takes place when control of
execution within the SPL routine passes to the empty SPL statement block.

Subset of SPL Statements Valid in the Statement Block
The diagram for the “Statement Block” on page 5-78 refers to this section. You can
use any of the following SPL statements in the statement block:
v <<Label >>
v CALL
v CASE
v CONTINUE
v EXIT
v FOR
v FOREACH
v GOTO
v IF
v LET

Chapter 5. Other syntax segments 5-79

v LOOP
v RAISE EXCEPTION
v RETURN
v SYSTEM
v TRACE
v WHILE

GOTO and << Label >>, however, are not valid in ON EXCEPTION statement
blocks.

SQL Statements Valid in SPL Statement Blocks
The diagram for the “Statement Block” on page 5-78 refers to this section. Most
SQL statements are valid in SPL statement blocks, except for the statements that
are listed below. The following SQL statements are not valid in an SPL statement
block:
v CLOSE DATABASE
v CONNECT
v CREATE DATABASE
v CREATE FUNCTION
v CREATE FUNCTION FROM
v CREATE PROCEDURE
v CREATE PROCEDURE FROM
v CREATE ROUTINE FROM DATABASE
v DISCONNECT
v EXECUTE
v FLUSH
v INFO
v LOAD
v OUTPUT
v PUT
v RENAME DATABASE
v SET AUTOFREE
v SET CONNECTION
v UNLOAD
v UPDATE STATISTICS

For example, you cannot close the current database or connect to a new database
within an SPL routine. Similarly, you cannot drop the current SPL routine within
the same routine. You can, however, drop another SPL routine.

Only two forms of the SELECT statement are valid in queries within SPL routines:
v You can use the INTO TEMP clause to put the results of the SELECT statement

into a temporary table.
v You can use the SELECT ... INTO form of the SELECT statement to put the

resulting values into SPL variables.

When you include the ORDER BY clause in the SELECT ... INTO TEMP or the
SELECT ... INTO variable statement, you imply that the query returns more than

5-80 IBM Informix Guide to SQL: Syntax

one row. The database server issues an error if you specify the ORDER BY clause
without a FOREACH loop to process the returned rows individually within the
SPL routine.

If an SPL routine is called as part of a data-manipulation language (DML)
statement, additional restrictions exist. For more information, see “Restrictions on
SPL Routines in Data-Manipulation Statements” on page 5-82.

Nested Statement Blocks
You can use the BEGIN and END keywords to delimit a statement block that is
nested within another statement block.

Scope of Reference of SPL Variables and Exception Handlers
The BEGIN and END keywords can limit the scope of SPL variables and exception
handlers. Declarations of variables and definitions of exception handlers inside a
BEGIN and END statement block are local to that statement block and are not
visible from outside the statement block. The following code uses a BEGIN and
END statement block to delimit the scope of reference of variables:
CREATE DATABASE demo;
CREATE TABLE tracker (

who_submitted CHAR(80), -- Show what code was running.
value INT, -- Show value of the variable.
sequential_order SERIAL -- Show order of statement execution.
);

CREATE PROCEDURE demo_local_var()
DEFINE var1, var2 INT;

LET var1 = 1;
LET var2 = 2;
INSERT INTO tracker (who_submitted, value)
VALUES (’var1 param before sub-block’, var1);

BEGIN
DEFINE var1 INT; -- same name as global parameter.
LET var1 = var2;
INSERT INTO tracker (who_submitted, value)
VALUES (’var1 var defined inside the "IF/BEGIN".’, var1);

END
INSERT INTO tracker (who_submitted, value)

VALUES (’var1 param after sub-block (unchanged!)’, var1);
END PROCEDURE;
EXECUTE PROCEDURE demo_local_var();
SELECT sequential_order, who_submitted, value FROM tracker
ORDER BY sequential_order;

This example declares three variables, two of which are named var1. (Name
conflicts are created here to illustrate which variables are visible. Using the same
name for different variables is generally not recommended, because conflicting
names of variables can make your code more difficult to read and to maintain.)

Because of the statement block, only one var1 variable is in scope at a time.

The var1 variable that is declared inside the statement block is the only var1
variable that can be referenced from within the statement block.

The var1 variable that is declared outside the statement block is not visible within
the statement block. Because it is out of scope, it is unaffected by the change in
value to the var1 variable that takes place inside the statement block. After all the
statements run, the outer var1 still has a value of 1.

Chapter 5. Other syntax segments 5-81

The var2 variable is visible within the statement block because it was not
superseded by a name conflict with a block-specific variable.

Restrictions on SPL Routines in Data-Manipulation Statements
If you call the SPL routine in a SQL statement that is not a data-manipulation
language (DML) statement (namely EXECUTE FUNCTION or EXECUTE
PROCEDURE), the SPL routine can execute any statement that is not listed in the
section “SQL Statements Valid in SPL Statement Blocks” on page 5-80.

If you call the SPL routine as part of a DML statement (namely, an INSERT,
UPDATE, DELETE, MERGE, or SELECT statement), the routine cannot execute any
of the following SQL statements:
v ALTER ACCESS_METHOD
v ALTER FRAGMENT
v ALTER INDEX
v ALTER OPTICAL CLUSTER
v ALTER SEQUENCE
v ALTER TABLE
v BEGIN WORK
v COMMIT WORK
v CREATE ACCESS_METHOD
v CREATE AGGREGATE
v CREATE DISTINCT TYPE
v CREATE OPAQUE TYPE
v CREATE OPCLASS
v CREATE ROLE
v CREATE ROW TYPE
v CREATE SEQUENCE
v CREATE TRIGGER
v DELETE
v DROP ACCESS_METHOD
v DROP AGGREGATE
v DROP INDEX
v DROP OPCLASS
v DROP OPTICAL CLUSTER
v DROP ROLE
v DROP ROW TYPE
v DROP SEQUENCE
v DROP SYNONYM
v DROP TABLE
v DROP TRIGGER
v DROP TYPE
v DROP VIEW
v INSERT
v MERGE
v RENAME COLUMN
v RENAME DATABASE

5-82 IBM Informix Guide to SQL: Syntax

v RENAME SEQUENCE
v RENAME TABLE
v ROLLBACK WORK
v SET CONSTRAINTS
v TRUNCATE
v UPDATE

IBM Informix issues error -675 if an SPL routine whose calling context is a DML
statement attempts to execute any of the SQL statements listed above.

These restrictions do not apply to an SPL routine that is invoked by a trigger,
because in this case the SPL routine is not called by the DML statement, and
therefore can include any SQL statement, such as UPDATE, INSERT and DELETE,
that is not listed among the “SQL Statements Valid in SPL Statement Blocks” on
page 5-80.

Transactions in SPL Routines
In a database that is not ANSI-compliant, you can use the BEGIN WORK and
COMMIT WORK statements in an SPL statement block to start a transaction, to
finish a transaction, or start and finish a transaction in the same SPL routine. If you
start a transaction in a routine that is executed remotely, you must finish the
transaction before the routine exits.

As previously noted, however, the ROLLBACK WORK statement is not valid in an
SPL statement block.

Support for roles and user identity
You can use roles with SPL routines. You can execute role-related SQL statements
(CREATE ROLE, DROP ROLE, GRANT, REVOKE, and SET ROLE) and a user who
holds the SETSESSIONAUTH privilege can issue SET SESSION AUTHORIZATION
statements in an SPL routine. Within an SPL routine, you can also use the GRANT
statement
v to grant discretionary access privileges to roles,
v or grant label-based access credentials (LBAC) to roles,
v or grant other roles to roles.

An SPL routine can also use the REVOKE statement to cancel the access privileges,
the LBAC credentials, or the roles that a role holds.

Access privileges, roles, and LBAC credentials that a user has acquired in an SPL
routine by enabling a role or by a SET SESSION AUTHORIZATION statement are
not automatically relinquished after the SPL routine that granted the privilege, role,
or LBAC credential completes execution. What was granted persists until a
subsequent REVOKE operation cancels the effect of the GRANT operation.

For further information about roles, see the “CREATE ROLE statement” on page
2-237, “DROP ROLE statement” on page 2-437, “GRANT statement” on page 2-502,
“REVOKE statement” on page 2-618, and “SET ROLE statement” on page 2-812 in
Chapter 2.

Chapter 5. Other syntax segments 5-83

5-84 IBM Informix Guide to SQL: Syntax

Chapter 6. Built-in routines

These topics describe routines whose identifiers are known to the database server
when a database is created, but whose usage differs in various ways from the
built-in SQL functions that Chapter 4 describes.

These built-in routines can be classified according to the tasks that they perform:
v Session configuration procedures

– SYSDbClose()

– SYSDbOpen()

v DataBlade module management functions
– SYSBldPrepare()

– SYSBldRelease()

v Visual Explain output generation function
– Explain_SQL()

v UDR definition routines
– ifx_Replace_Module()

– ifx_Unload_Module()

– jvpControl()

– sqlj.Alter_Java_Path()

– sqlj.Install_jar()

– sqlj.Remove_jar()

– sqlj.Replace_jar()

– sqlj.SetUDTExtName()

– sqlj.UnsetUDTExtName()

– sysibm.Metadata()

– sysibm.sqlcaMessage()

The Metadata and sqlcaMessage routines are created automatically if the database
server is configured to support the DRDA protocol. The SYSDbOpen and
SYSDbClose routines can be defined in every Informix database.

Sections that follow describe these categories and the individual routines within
each category.

Interval functions
Use interval functions to specify an interval value when you fragment a table or
index by an interval.

Interval functions convert a number or a string to an INTERVAL DAY TO
SECOND or INTERVAL YEAR TO MONTH literal.

TO_DSINTERVAL() function
The TO_DSINTERVAL() function converts a number or a string to an INTERVAL
DAY TO SECOND literal. .

© Copyright IBM Corp. 1996, 2014 6-1

You can use this function (or its synonym, NUMTODSINTERVAL()) to specify
interval range values when you are defining a range interval storage distribution
strategy to fragment a table or an index.

Syntax

Numeric to INTERVAL:

TO_DSINTERVAL (number , ' DAY ')
NUMTODSINTERVAL ' HOUR '

' MINUTE '
' SECOND '

String to INTERVAL:

TO_DSINTERVAL (' DD HH:MM:SS ')

Element Description Restrictions Syntax

DD One or two digits
specifying the number of
days in the interval

Must be one of the following
data types:

v CHAR

v NCHAR

v VARCHAR

v NVARCHAR

v LVARCHAR

Literal
string

HH:MM:SS Three groups of two digits,
separated by colon (:)
symbols, specifying the
numbers of hours, of
minutes, and of seconds in
the interval

Must be one of the following
data types:

v CHAR

v NCHAR

v VARCHAR

v NVARCHAR

v LVARCHAR

Literal
string

number A number specifying the
number of days, hours,
minutes, or seconds in the
interval.

This can be an expression,
including a column
expression, that resolves (or
can be cast) to one of the
valid data types.

Must be one of the following
data types:

v INT

v BIGINT

v SMALLINT

v INT8

v DECIMAL

v REAL

v FLOAT

v SERIAL

v SERIAL8

v BIGSERIAL

Literal
number

Usage

Use the TO_DSINTERVAL() function to specify an interval value when you
fragment a table or index by an interval. The TO_DSINTERVAL() function is
valid in any context that a built-in routine is allowed. The NUMTODSINTERVAL(

6-2 IBM Informix Guide to SQL: Syntax

) function is a synonym to the TO_DSINTERVAL() function for converting
numeric values.

Examples

The following examples show how different values for the TO_DSINTERVAL()
function are interpreted.

The following examples specify an interval of one day:
TO_DSINTERVAL(’1 00:00:00’)
TO_DSINTERVAL(1,’DAY’)
NUMTODSINTERVAL(1,’DAY’)

The following examples specify an interval of one hour:
TO_DSINTERVAL(’0 01:00:00’)
TO_DSINTERVAL(1,’HOUR’)
NUMTODSINTERVAL(1,’HOUR’)

The following examples specify an interval of one minute and 30 seconds:
TO_DSINTERVAL(’0 00:01:30’)
TO_DSINTERVAL(1.5,’MINUTE’)
NUMTODSINTERVAL(1.5,’MINUTE’)

The following example shows how to use an expression as a numeric value:
TO_DSINTERVAL(10+10+100,’DAY’)

Related reference:
“Interval Fragment clause” on page 2-308

TO_YMINTERVAL() function
The TO_YMINTERVAL() function converts a number or a string to an INTERVAL
YEAR TO MONTH literal.

You can use this function (or its synonym, NUMTOYMINTERVAL()) to specify
interval range values when you are defining a range interval storage distribution
strategy to fragment a table or an index.

Syntax

Numeric to INTERVAL:

TO_YMINTERVAL (number , ' YEAR ')
NUMTOYMINTERVAL ' MONTH '

String to INTERVAL:

TO_YMINTERVAL (' YY -MM ')

Chapter 6. Built-in routines 6-3

Element Description Restrictions Syntax

number The number of years or months
in the interval.

This can be an expression,
including a column expression,
that resolves (or can be cast) to
one of the valid data types.

Must be one of the following
data types:

v INT

v BIGINT

v SMALLINT

v INT8

v DECIMAL

v REAL

v FLOAT

v SERIAL

v SERIAL8

v BIGSERIAL

Literal
number

MM Two digits specifying the
number of months in the
interval. A hyphen (-) must
precede the first digit.

Must be one of the following
data types:

v CHAR

v NCHAR

v VARCHAR

v NVARCHAR

v LVARCHAR

Literal
string

YY Two digits specifying the
number of years in the interval.

Must be one of the following
data types:

v CHAR

v NCHAR

v VARCHAR

v NVARCHAR

v LVARCHAR

Literal
string

Usage

Use the TO_YMINTERVAL() function to specify an interval value when you
fragment a table or index by an interval. The TO_YMINTERVAL() function is
valid in any context that a built-in routine is allowed. The
NUMTOYMINTERVAL() function is a synonym to the TO_YMINTERVAL()
function for converting numeric values.

Examples

The following examples show how different values for the TO_YMINTERVAL()
function are interpreted.

The following examples specify an interval of one year:
TO_YMINTERVAL(’01-00’)
TO_YMINTERVAL(1,’YEAR’)
NUMTOYMINTERVAL(1,’YEAR’)

The following examples specify an interval of one month:
TO_YMINTERVAL(’00-01’)
TO_YMINTERVAL(1,’MONTH’)
NUMTOYMINTERVAL(1,’MONTH’)

The following examples specify an interval of one year and six months:
6-4 IBM Informix Guide to SQL: Syntax

TO_YMINTERVAL(’01-06’)
TO_YMINTERVAL(1.5,’YEAR’)
NUMTOYMINTERVAL(1.5,’YEAR’)

The following example shows how to use an expression as a numeric value:
TO_YMINTERVAL(10+10+100,’YEAR’)

The following example defines table t2 with a range interval fragmentation scheme. Here DATETIME
column dt1 is the fragmentation key, and the return value from NUMTOYMINTERVAL defines the
interval size as 25 years. Rows with dt1 values for years later than 2005 but earlier than 2031 will be
stored in the range fragment p1:
CREATE TABLE t2 (c1 int, d1 date, dt1 DATETIME YEAR TO FRACTION)

FRAGMENT BY RANGE (dt1) INTERVAL (NUMTOYMINTERVAL (25,’YEAR’))
PARTITION p1 VALUES <

DATETIME(2006-01-01 00:00:00.00000) YEAR TO FRACTION(5) IN dbs1;

If a row is inserted in which the YEAR value in dt1 is less than 2006 or greater than 2030, the database
server will automatically create a new interval fragment, where the size of its range is 25 years. For more
information about the syntax and semantics of range interval fragmentation, see “Interval Fragment
clause” on page 2-308.
Related reference:
“Interval Fragment clause” on page 2-308

Session Configuration Procedures
These built-in SPL procedures enable the Database Administrator to execute SQL
and SPL statements automatically when a user connects to or disconnects from the
database.

These routines are called "built-in" procedures in this document because the
database server recognizes their names and treats them differently from how it
treats other routines, but the database server does not create these routines
automatically. To use their features, the DBA must issue the CREATE PROCEDURE
statement or the CREATE PROCEDURE FROM statement to define the actions of
these routines and to register them in the database. Only the DBA or user informix
can create, alter, or drop these routines.

If the DBA specifies the login ID of a user as the owner of one of these procedures,
the database server executes it when the specified user connects to or disconnects
from the database. If the DBA specifies PUBLIC as the owner, that routine is
automatically executed when a user who is not the owner of any of these built-in
session configuration procedures connects to or disconnects from the database.
Different databases of the same database server instance can specify either the
same or different session configuration procedures for individual users or for
PUBLIC. These built-in procedures are useful in setting the session environment or
activating a role for users of applications whose code cannot easily be modified.

These are the built-in session configuration procedures:
v sysdbclose

v sysdbopen

Chapter 6. Built-in routines 6-5

Using SYSDBOPEN and SYSDBCLOSE Procedures
To set the initial environment for one or more sessions, create and install the
sysdbopen() SPL procedure. The typical effect of this procedure is to initialize the
properties of a session without requiring the properties to be explicitly defined
within the session.

Setting the initial environment for one or more sessions is useful if users access
databases through client applications that cannot modify application code or set
environment options or environment variables.

The sysdbopen procedure is executed whenever users successfully issue the
DATABASE or CONNECT statement to explicitly connect to a database where the
procedures are installed. (But when a user who is connected to the local database
calls a remote UDR or performs a distributed DML operation that references a
remote database object by using the database:object or database@server:object notation,
no sysdbopen procedure is invoked in the remote database.)

These procedures are exceptions to the general rule that Informix ignores the name
of the owner of a UDR when a routine is invoked in a database that is not
ANSI-compliant. For UDRs other than sysdbopen and sysdbclose, multiple
versions of UDRs that have the same SQL identifier but that have different owner
names cannot be registered in the same database unless the CREATE DATABASE
statement that created the database also included the WITH LOG MODE ANSI
keywords.

You can also create the sysdbclose SPL procedure, which is executed when a user
issues the CLOSE DATABASE or DISCONNECT statement to disconnect from the
database. If a PUBLIC.sysdbclose procedure is registered in the database, and no
user.sysdbclose procedure is registered for the current user, then the
PUBLIC.sysdbclose procedure is executed automatically when that user
disconnects from the database.

You can include valid SQL or SPL language statements that are appropriate when a
database is opened or closed. The general restrictions on SQL statements that are
valid in SPL procedures also apply to these routines. See the following sections for
restrictions on SQL and SPL statements within SPL routines:
v “Subset of SPL Statements Valid in the Statement Block” on page 5-79.
v “SQL Statements Valid in SPL Statement Blocks” on page 5-80.
v “Restrictions on SPL Routines in Data-Manipulation Statements” on page 5-82.

Important: The sysdbopen and sysdbclose procedures are exceptions to the scope
rule for stored procedures. In ordinary UDR procedures, the scope of variables and
statements is local. SET PDQPRIORITY and SET ENVIRONMENT statement
settings do not persist when these SPL procedures exit. In sysdbopen and
sysdbclose procedures, however, statements that set the session environment
remain in effect until another statement resets the options, or the session ends.

For example, the following procedure sets the transaction isolation level to
Repeatable Read, and sets the OPTCOMPIND environment variable to instruct the
query optimizer to prefer nested-loop joins. When a user who owns no
user.sysdbopen procedure connects to the database, this routine will be executed:
CREATE PROCEDURE public.sysdbopen()

SET ISOLATION TO REPEATABLE READ;
SET ENVIRONMENT OPTCOMPIND ’1’;

END PROCEDURE;

6-6 IBM Informix Guide to SQL: Syntax

Procedures do not accept arguments or return values. The sysdbopen and
sysdbclose procedures must be registered in each database in which you want to
execute them. The DBA can create the following four categories of sysdbopen and
sysdbclose procedures.

Procedure Name
Description

user.sysdbopen
This procedure is executed when the specified user opens the database as
the current database.

public.sysdbopen
If no user.sysdbopen procedure applies, this procedure is executed when
any user opens the database as the current database. To avoid duplicating
SPL code, you can call this procedure from a user-specific procedure.

user.sysdbclose
This procedure is executed when the specified user closes the database,
disconnects from the database server, or the user session ends. If
user.sysdbclose did not exist when the session opened the database,
however, the procedure is not executed when the session closes the
database.

public.sysdbclose
If no user.sysdbclose procedure applies, this procedure is executed when
the user closes or disconnects from the database server, or when the
session ends. If public.sysdbopen did not exist when the session opened
the database, however, the procedure is not executed when the session
closes the database.

The database server calls user.sysdbclose procedure, if it exists in the database, or
public.sysdbclose if this exists and no version owned by user exists, when the
CLOSE DATABASE or DISCONNECT statement explicitly terminates the
connection. If the application terminates without issuing the CLOSE DATABASE or
DISCONNECT statement, the database server forces an implicit close of the
database and executes the sysdbclose procedure, if a UDR with that name is
owned by the user or by PUBLIC.

Make sure that you set file access permissions appropriately to allow intended
users to execute the SPL procedure statements. For example, if the SPL procedure
executes a command that writes output to a local directory, permissions must be
set to allow users to write to this directory. If you want the procedure to continue
if permission failures occur, include an ON EXCEPTION error handler for this
condition.

For more information about the SQL statements that can appear in SPL routines,
and about SPL support for transactions and for roles, see the section “Statement
Block” on page 5-78.

Warning: If a sysdbclose procedure fails, the failure is ignored. If a sysdbopen
procedure fails, however, the database cannot be opened.

To avoid situations in which a database cannot be opened, take the following
precaution while you are writing and debugging a sysdbopen procedure:
v Set the IFX_NODBPROC environment variable before you connect to the

database. When IFX_NODBPROC is set, the procedure is not executed, and
failures cannot prevent the database from opening.

Chapter 6. Built-in routines 6-7

Failures from these procedures can be generated by the system or simulated within
the procedures by the RAISE EXCEPTION statement of SPL. If the sysdbopen
routine that is invoked for a user at connection time includes this statement, that
user cannot connect to the database. For more information, refer to the description
of “RAISE EXCEPTION” on page 3-50.

For security reasons, non-DBAs cannot prevent execution of these procedures. For
some applications, however, such as ad hoc query applications, users can execute
commands and SQL statements that subsequently change the environment.

A default role defined in the sysdbopen procedure take precedence over any other
role that the user holds when a user establishes a connection to a database in
which sysdbopen successfully specifies a default role for that user.

Any database objects that are created by DDL statements in a user.sysdbopen or
user.sysdbclose procedure are owned by the connected user, and any object created
within PUBLIC.sysdbopen or within PUBLIC.sysdbclose is owned by the PUBLIC
userid, unless the object name is fully qualified by some other owner name when
the object name is declared in the DDL statement.

For ANSI-compliant databases, an explicit COMMIT WORK statement is required
at the end of the sysdbopen or sysdbclose definition in the CREATE PROCEDURE
statement, to prevent any implicit transactions of SQL statements that the
sysdbopen or sysdbclose procedure executes from being rolled back when the
procedure terminates. (Omitting the COMMIT WORK statement does not cause the
connection to fail, but does waste resources in opening and then rolling back the
transactions.)

For a list of SQL statements that are not valid in these procedures, see “SQL
Statements Valid in SPL Statement Blocks” on page 5-80. For a list of the SPL
statements that are valid in these procedures, see “Subset of SPL Statements Valid
in the Statement Block” on page 5-79.

For general information about how to write and install SPL procedures, refer to the
section about SPL routines in IBM Informix Guide to SQL: Tutorial.

Configure session properties at connection or access time
You can use a sysdbopen() procedure to change the properties of a database
server session at connection or access time without changing the application that
the session runs. This is useful if you cannot modify the source code of an
application to set environment options or session variables, or to include
session-related SQL statements, for example, because the SQL statements contain
vendor-acquired code.

To change the properties of a session, design custom sysdbopen() and sysdbclose(
) procedures for various databases to support the applications of specific users or
of the PUBLIC group. The sysdbopen() and sysdbclose() procedures can contain
a sequence of SET, SET ENVIRONMENT, SQL, or SPL statements that the database
server executes for the user or for the PUBLIC group when the database opens or
closes.

For example, for user1, you can define procedures that contain SET PDQPRIORITY,
SET ISOLATION LEVEL, SET LOCK MODE, SET ROLE, or SET EXPLAIN ON
statements that execute whenever user1 opens the database with a DATABASE or
CONNECT TO statement.

6-8 IBM Informix Guide to SQL: Syntax

Any settings of the session environment variables PDQPRIORITY and
OPTCOMPIND that are specified by SET ENVIRONMENT statements within
sysdbopen() procedures persist for the duration of the session. SET
PDQPRIORITY and SET ENVIRONMENT OPTCOMPIND statements, which are
not persistent for regular procedures, are persistent when sysdbopen() procedures
contain them.

The user.sysdbclose() procedure runs when the user who is the owner of the
procedure disconnects from the database (or else when PUBLIC.sysdbclose() runs,
if it exists and no sysdbclose() procedure is owned by the current user).

In custom sysdbopen() and sysdbclose() procedures, IBM Informix does not
ignore the name of the owner of a UDR when a routine is invoked in a database
that is not ANSI-compliant.

Configuring session properties
Only a DBA or user informix can create or alter sysdbopen() or sysdbclose() in
the ALTER PROCEDURE, ALTER ROUTINE, CREATE PROCEDURE, CREATE
PROCEDURE FROM, CREATE ROUTINE FROM, DROP PROCEDURE, or DROP
ROUTINE statements of SQL.

You can set up sysdbopen() procedures that change the properties of a session at
connection or access time without changing the application that the session runs.
This is useful if you cannot modify the source code of an application to set
environment options or environment variables or to include session-related SQL
statements, for example, because the SQL statements contain vendor-acquired code.

Follow these steps to set up a sysdbopen() and sysdbclose() procedure to
configure session properties:
1. Set the IFX_NODBPROC environment variable to any value, including 0, to cause

the database server to bypass and prevent the execution of the sysdbopen() or
sysdbclose() procedure.

2. Write the CREATE PROCEDURE or CREATE PROCEDURE FROM statement to
define the procedure for a particular user or the PUBLIC group.

3. Test the procedure, for example, by using sysdbclose() in an EXECUTE
PROCEDURE statement.

4. Unset the IFX_NODBPROC environment variable to enable the database server to
run the sysdbopen() or sysdbclose() procedure.

Examples of SYSDBOPEN procedures

The following procedure sets the role and the PDQ priority for a specific user, and
enables the NOVALIDATE session environment variable:
CREATE PROCEDURE oltp_user.sysdbopen()

SET ROLE TO oltp;
SET PDQPRIORITY 5;
SET ENVIRONMENT NOVALIDATE ’1’;

END PROCEDURE;

The following procedure sets the role and the PDQ priority for the PUBLIC group,
and sets the RETAINUPDATELOCKS session environment variable to CURSOR
STABILITY:

Chapter 6. Built-in routines 6-9

CREATE PROCEDURE PUBLIC.sysdbopen()
SET ROLE TO others;
SET PDQPRIORITY 1;
SET ENVIRONMENT

RETAINUPDATELOCKS ’CURSOR STABILITY’;
END PROCEDURE

DataBlade Module Management Functions
From sessions connected to Informix databases that support explicit transaction
logging, you can register or unregister DataBlade modules by issuing SQL
statements that call the built-in SYSBldPrepare() function. Another built-in
function, SYSBldRelease(), returns the version string of the SYSBldPrepare()
function in the local database.

Registration and unregistration of DataBlade modules through SQL function calls
is an alternative to using the BladeManager utility of the DataBlade Developer's
Kit (DBDK). The BladeManager utility can perform various DataBlade module
tasks that include registering, unregistering, and displaying information about
DataBlade modules. This utility supports both a command-line interface and a
graphical user interface. For more information about using the BladeManager
utility, see your IBM Informix DataBlade Module Installation and Registration
Guide.

The SYSBldPrepare Function
SYSBldPrepare() is a function signature that Informix defines in all databases. You
can use it to register or to unregister DataBlade modules, as an alternative to using
the BladeManager utility.

The SYSBldPrepare() function has this definition:
CREATE FUNCTION informix.sysbldprepare (CHAR(64), CHAR(18))

RETURNS INTEGER
EXTERNAL NAME ’$INFORMIXDIR/extend/ifxmngr/ifxmngr.bld(SYSBldCustomPrepare)’
LANGUAGE C;

The returned integer shows whether the function call succeeded (0) or failed (
nonzero).

The following restrictions apply to the database in which you invoke this built-in
function:
v The minimum STACKSIZE in the configuration file of the Informix instance

should be at least 64K. (On some systems, the default stack size is 32K, but 64K
is recommended for databases that use the SYSBldPrepare() function.

v The function call cannot reference a remote database. You can only register or
unregister a DataBlade module in the local database to which you are currently
connected.

v The database must support explicit transactions. You cannot invoke this function
in an ANSI/ISO-compliant database, or in a database that does not support
transaction logging.

v In an Enterprise Replication cluster environment, the Informix instance that
supports the database cannot be a remote secondary server, because such servers
cannot directly support DDL operations, like those that this function performs. If
a DataBlade module needs to be registered or unregistered on a secondary
server, you must register or unregister that module on the primary server that
the secondary server replicates.

6-10 IBM Informix Guide to SQL: Syntax

.

This is the calling syntax of SYSBldPrepare():

SYSBldPrepare Function

�� EXECUTE FUNCTION SYSBLDPREPARE (' Module Reference ' , ' CREATE
file
builtin
Module Reference ' , ' DROP

') ; ��

Module Reference:

module . major . minor . os_code C interim
. major . minor . os_code C *
. major . minor . os_code *
. major . minor . *
. major . minor *
. major . *
. major *
. *
*

Element Description Restrictions Syntax

module Name of a DataBlade module to register
or unregister

For ‘CREATE' module must be installed in
$INFORMIXDIR/extend. For ‘DROP' it
must be registered in the current database.

String literal

file Name of a file that lists one or more
DataBlade modules, each in Module
Reference format

Must exist in directory
$INFORMIXDIR/extend/ifxmngr

Character string
with no suffix

major Integer specifying a major Informix
release version

Must match the major version of an
installed or registered DataBlade module
or wildcard

Literal number

minor Integer specifying a minor Informix
release version

Must match the minor version of an
installed or registered DataBlade module
or wildcard

Literal number

os_code Uppercase letter code for a supported
operating system

Valid options are F, H, T, or U. These codes
are described in Chapter 1 of DataBlade
Module Installation and Registration Guide.

Literal character

interim Integer specifying an interim Informix
release version

Must match the interim version of an
installed or registered DataBlade module
or wildcard

Literal number

You can invoke this function with the EXECUTE FUNCTION statement of SQL, or
with the CALL statement of SPL. .

The first argument to SYSBldPrepare() specifies what DataBlade module or file to
process. The second argument specifies whether to register ('CREATE') or to
unregister (‘DROP') what the first argument specifies. If ‘DROP' is the second
argument, the first argument must specify a DataBlade module, not a file.

Chapter 6. Built-in routines 6-11

Specifying a File as the First Argument

If ‘CREATE' is the second argument, the first argument must be either a single
module reference or the name of a text file that specifies a list of one or more
module references, each in the format of the Module Reference syntax segment in
the syntax diagram above. (The text file cannot, however, list the name of another
text file that lists module references.) By specifying a valid file as the first
argument, you can register a set of DataBlade modules by a single call to the
SYSBldPrepare() function.

The file can be one that you created, or it can be the builtin file that the database
server creates. The builtin file includes a list of DataBlade modules that Informix
classifies as built-in. These built-in DataBlade modules are distributed with
Informix and are installed in the $INFORMIXDIR/extend file system, but they
cannot be accessed until they are registered in the database. Updates by users to
this builtin file, which the database server maintains, are not supported.

Version Strings and Asterisk (*) Notation in Module References

When the first argument begins with the name of a DataBlade module, you can
also specify the complete version string after a period (.) separator. A complete
version string has in the same format as the return value of the DBINFO('version
full') function of SQL or of the oninit -V utility, but is based on DataBlade module
release versions.

The DataBlade module name or version string can be truncated with the asterisk (
*) wildcard. How SYSBldPrepare() interprets the asterisk symbol depends on the
second argument:
v If 'CREATE' is the second argument, the asterisk matches the highest installed

version of the specified module.
v If 'DROP' is the second argument, the asterisk matches the registered version of

the module among the DataBlade modules that are registered in the local
database. No more than one version of a given DataBlade module can be
registered in the database, so an asterisk that replaces the version string specifies
the version that is registered.

Any asterisk symbol in a Module Reference that is not the last character is
interpreted as a literal character, rather than as a wildcard.

Where SYSBldPrepare() searches for a module that the first argument specifies
depends on the second argument:
v If 'CREATE' is the second argument, the function searches among the modules

that are installed in the $INFORMIXDIR/extend directory.
v If 'DROP' is the second argument, the function searches for the specified version

of the module among the DataBlade modules that are registered in the local
database. Because no more than one version of a given DataBlade module can be
registered in the database, an asterisk that replaces the version string specifies
the version that is registered.

Registering and Unregistering DataBlade Modules

The second argument to this function must be either 'CREATE' or 'DROP':
v Use 'CREATE' to register the installed DataBlade module (or the set of installed

DataBlade modules listed in a file) that the first argument specifies.

6-12 IBM Informix Guide to SQL: Syntax

v Use 'DROP' to unregister the registered DataBlade module that the first
argument specifies. The 'DROP' option cannot unregister more than one
DataBlade module in a single call to SYSBldPrepare().

Successful invocation of the SYSBldPrepare() function with ‘CREATE' as its
second argument also registers any DataBlade modules on which the module
specified in the first argument is dependent. For example, the following SQL
statement registers version 8.21.FC2 of the Spatial DataBlade module, and
implicitly registers in the current database the most recent installed version of the
R-tree DataBlade module on which the Spatial Datablade module has a
dependency, if the R-tree DataBlade module is not already registered in the
database:
EXECUTE FUNCTION sysbldprepare (’spatial.8.21.FC2’, ’create’);

If a different release version of the same DataBlade module is already registered in
the database, however, SYSBldPrepare() performs an upgrade if ‘CREATE' is its
second argument. The function call above, for example, would upgrade version
8.20.FC1 of the Spatial DataBlade module to version 8.21.FC2, if version 8.20.FC1
was already registered in the same database when you called SYSBldPrepare(),
but the R-tree DataBlade module would not be implicitly upgraded.

The following SQL statement uses asterisk notation to unregister the highest
version of the Node DataBlade module that is registered in the database:
EXECUTE FUNCTION sysbldprepare (’Node.*’, ’drop’);

Unlike registration operations, a call to SYSBldPrepare() that specifies 'DROP' as
the second argument has no automatic effect on any DataBlade module that the
first argument does not specify. The 'DROP' argument does not implicitly
unregister other DataBlade modules that have dependency relationships with the
module specified by the first argument.

Using SYSBldPrepare() in Transactions

The SYSBldPrepare()function internally uses explicit transactions. If you issue the
BEGIN WORK statement to begin a transaction in which you invoke
SYSBldPrepare(), the status of any changes to the database by DML or DDL
statements in the same transaction, but before the call to SYSBldPrepare(), is
unpredictable. Changes from your DML or DDL operations might be committed
when the internal transaction of SYSBldPrepare() is committed, thereby depriving
you of any opportunity to roll back these changes by error-handling logic that
follows the function call in the lexical order of SQL statements. To avoid this
situation, do not invoke SYSBldPrepare() within transactions that you begin
explicitly.

Exceptions in Calls to SYSBldPrepare()

The SYSBldPrepare() function issues an error if you attempt to use the 'DROP'
option to unregister a DataBlade module on which another DataBlade module that
is currently registered in the database depends. For example, you cannot use this
function to unregister the R-tree DataBlade module while the Spatial DataBlade
module is still registered.

Informix also issues an error if SYSBldPrepare() attempts to unregister a
DataBlade module that is not registered in the database.

Chapter 6. Built-in routines 6-13

The next example shows an attempt to register a DataBlade module that is not
installed and the resulting error message:
EXECUTE FUNCTION sysbldprepare (’node.2.33’, ’create’);

(U0001) - registerBlade - Unable to register node.2.33
– DataBlade module not found
- check online log and sysblderrorlog table for more information

If the IFX_EXTEND_ROLE configuration parameter is set to ON, authorization to
invoke this routine is available only to the Database Server Administrator (DBSA),
and others to whom the DBSA has granted the EXTEND role. By default, the
DBSA is user informix.

Exceptions that occur while this function is executing can result in diagnostic error
messages from SYSBldPrepare() that are not Informix error messages. Refer to the
IBM Informix DataBlade Module Installation and Registration Guide for information
about error messages that SYSBldPrepare() can issue.

The SYSBldRelease Function
SYSBldRelease() is a function signature that Informix defines in all databases of
the server instance. You can invoke this function with the EXECUTE FUNCTION
statement of SQL or with the CALL statement of SPL to return the version string of
the SYSBldPrepare() function.

The SYSBldRelease() function has this definition:
CREATE FUNCTION informix.sysbldrelease()

RETURNS LVARCHAR
EXTERNAL NAME

’$INFORMIXDIR/extend/%SYSBLDDIR%/ifxmngr.bld(MackRelease)’
LANGUAGE C NOT VARIANT;

GRANT EXECUTE ON FUNCTION SYSBldRelease() TO PUBLIC;

This function takes no arguments. It returns the version string and compilation
date of the SYSBldPrepare() function. The returned version string has this format:
major.minor.os_codeCinterim

Here C is a literal character, and the major, minor, os_code, and interim version string
elements have the same semantics that these terms have in the Module Reference
segment of the SYSBldPrepare() function, but with no asterisk (*) wildcard
notation.

SYSBldRelease() is useful when you contact IBM Support with SYSBldPrepare()
issues.

The SYSBldPrepare() function needs to have been called at least once in the same
database before SYSBldRelease() can return the correct version string of
SYSBldPrepare(). The call to SYSBldPrepare() does not need to be in the same
session as the call to SYSBldRelease().

The EXPLAIN_SQL Routine
The IBM Data Studio Administration Edition can use the EXPLAIN_SQL routine to
obtain a query plan in XML format, interpret the XML, and render the plan
visually.

6-14 IBM Informix Guide to SQL: Syntax

IBM Data Studio consists of a set of tools to use for administration, data modeling,
and building queries from data that comes from data servers. The EXPLAIN_SQL
routine prepares a query and returns a query plan in XML.

If you plan to use IBM Data Studio to obtain Visual Explain output, you must
create and specify a default sbspace name for the SBSPACENAME configuration
parameter in your ONCONFIG file. The EXPLAIN_SQL routine creates BLOB
objects in this sbspace.

For information on using IBM Data Studio, see the IBM Data Studio
documentation.

UDR Definition Routines
The UDR definition routines are built-in routines that enable users to perform
various tasks for developing or modifying external user-defined routines of
Informix, or for enabling IBM Data Server Driver for JDBC and SQL procedures to
access Informix and DB2 databases through the Distributed Relational Database
Architecture (DRDA) protocol.

These are the built-in UDR definition routines:
v ifx_replace_module()

v ifx_unload_module()

v jvpcontrol()

v sqlj.alter_java_path()

v sqlj.install_jar()

v sqlj.remove_jar()

v sqlj.replace_jar()

v sqlj.setUDTextName()

v sqlj.unsetUDTextName()

v sysibm.Metadata()

v sysibm.SQLCAMessage()

Authorization to Use UDR Definition Routines

If the IFX_EXTEND_ROLE configuration parameter is set to ’On’ or 1,
authorization to use the built-in routines that manipulate shared objects is available
only to the Database Server Administrator, and to users to whom the DBSA has
granted the EXTEND role. For Informix 10.00.xC4 and later releases,
IFX_EXTEND_ROLE is enabled by default.

For databases in which this security feature is not needed, see the description of
IFX_EXTEND_ROLE in your IBM Informix Administrator's Reference for information
on how the DBSA can disable this configuration parameter by resetting it. For the
syntax of granting the EXTEND role to individual users or to the PUBLIC group,
see the topic “Granting the EXTEND Role” on page 2-521.

IFX_REPLACE_MODULE Function
The IFX_REPLACE_MODULE function replaces a loaded shared-object file of a
UDR written in the C language with a new version that has a different name or
location. If the IFX_EXTEND_ROLE configuration parameter is set to ’On’ or 1,

Chapter 6. Built-in routines 6-15

authorization to use this function is available only to the Database Server
Administrator (DBSA), and to users whom the DBSA has granted the EXTEND
role.

IFX_REPLACE_MODULE Function:

IFX_REPLACE_MODULE (old_module , new_module , "C")

Argument Description Restrictions Syntax

new_module Full pathname of the new shared-object
file to replace the shared-object file that
old_module specifies

The shared-object file must exist with the
specified pathname, which can be no more
than 255 bytes long

“Quoted
String” on
page 4-219

old_module Full pathname of the shared-object file to
replace with the shared-object file that
new_module specifies

The shared-object file must exist with the
specified pathname, which can be no more
than 255 bytes long

“Quoted
String” on
page 4-219

The IFX_REPLACE_MODULE function is a DBA-privileged function that returns
an integer value to indicate the status of the shared-object-file replacement
operation:
v Zero (0) to indicate success
v A negative integer to indicate an error.

Do not use the IFX_REPLACE_MODULE function to reload a module of the same
name. If the full names of the old and new modules that you send to
IFX_REPLACE_MODULE are the same, then unpredictable results can occur.

After IFX_REPLACE_MODULE completes execution, the database server ages out
the old_module shared-object file; that is, all statements subsequent to the
IFX_REPLACE_MODULE function will use UDRs in the new_module shared-object
file, and the old module will be unloaded when any statements that were using it
are complete. Thus, for a brief time, both the old_module and the new_module
shared-object files could be resident in memory. If this aging out behavior is
undesirable, use the IFX_UNLOAD_MODULE function to unload the
shared-object file completely.

On UNIX, for example, suppose you want to replace the circle.so shared library,
which contains UDRs written in the C language. If the old version of this library
resides in the /usr/apps/opaque_types directory and the new version in the
/usr/apps/shared_libs directory, then the following EXECUTE FUNCTION
statement executes the IFX_REPLACE_MODULE function:
EXECUTE FUNCTION ifx_replace_module(

"/usr/apps/opaque_types/circle.so",
"/usr/apps/shared_libs/circle.so", "C");

On Windows, for another example, suppose you want to replace the circle.dll
dynamic link library, which contains C UDRs. If the old version of this library
resides in the C:\usr\apps\opaque_types directory and the new version in the
C:\usr\apps\DLLs directory, then the following EXECUTE FUNCTION statement
executes the IFX_REPLACE_MODULE function:
EXECUTE FUNCTION ifx_replace_module(

"C:\usr\apps\opaque_types\circle.dll",
"C:\usr\apps\DLLs\circle.dll", "C");

6-16 IBM Informix Guide to SQL: Syntax

To execute the IFX_REPLACE_MODULE function in an IBM Informix ESQL/C
application, you must associate the function with a cursor.

For more information on how to use IFX_REPLACE_MODULE to replace a
shared-object file, see the chapter on how to design a UDR in IBM Informix
User-Defined Routines and Data Types Developer's Guide. For information on how to
use the IFX_UNLOAD_MODULE function, see the section
“IFX_UNLOAD_MODULE Function.”

IFX_UNLOAD_MODULE Function
The IFX_UNLOAD_MODULE function unloads the shared-object file of a UDR
written in the C language from shared memory.

IFX_UNLOAD_MODULE Function:

IFX_UNLOAD_MODULE (module_name , "C")

Argument Description Restrictions Syntax

module_name Full pathname of file
to unload

Shared-object file must exist and be unused. Pathname
can be up to 255 bytes long.

“Quoted String”
on page 4-219

The IFX_UNLOAD_MODULE function is an owner-privileged function whose
owner is user informix. It returns an integer value to indicate the status of the
shared-object-file unload operation:
v Zero (0) to indicate success
v A negative integer to indicate an error.

The IFX_UNLOAD_MODULE function can only unload an unused shared-object
file; that is, when no executing SQL statements (in any database) are using any
UDRs in the specified shared-object file. If any UDR in the shared-object file is
currently in use, then IFX_UNLOAD_MODULE raises an error.

On UNIX, for example, suppose you want to unload the circle.so shared library,
which contains C UDRs. If this library resides in the /usr/apps/opaque_types
directory, you can use the following EXECUTE FUNCTION statement to execute
the IFX_UNLOAD_MODULE function:
EXECUTE FUNCTION ifx_unload_module

(“/usr/apps/opaque_types/circle.so”, “C”);

On Windows, for example, suppose you want to unload the circle.dll dynamic link
library, which contains C UDRs. If this library is in the C:\usr\apps\opaque_types
directory, you can use the following EXECUTE FUNCTION statement to execute
the IFX_UNLOAD_MODULE function:
EXECUTE FUNCTION ifx_unload_module

(“C:\usr\apps\opaque_types\circle.dll”, “C”);

For more information about using the built-in IFX_REPLACE_MODULE() and
IFX_UNLOAD_MODULE() UDR definition routines, see the IBM Informix
User-Defined Routines and Data Types Developer's Guide and the IBM Informix
DataBlade API Programmer's Guide.

Chapter 6. Built-in routines 6-17

jvpcontrol Function
The jvpcontrol() function is a built-in iterative function that you can use to obtain
information about a Java Virtual Processor (JVP) class.

The jvpcontrol Function:

informix.jvpcontrol (" MEMORY jvp_id ")
THREADS

Argument Description Restrictions Syntax

jvp_id Name of the Java Virtual Processor (JVP) class about
which you seek information

The specified Java Virtual
Processor class must exist

“Identifier”
on page 5-21

You must associate this function with the equivalent of a cursor in the Java
language.

Using the MEMORY Keyword
When you specify the MEMORY keyword, the jvpcontrol function returns the
memory usage on the JVP class that you specify. The following example requests
information about the memory usage of the JVP class named 4:
EXECUTE FUNCTION INFORMIX.JVPCONTROL ("MEMORY 4");

Using the THREADS Keyword
When you specify the THREADS keyword, the jvpcontrol function returns a list of
the threads running on the JVP class that you specify. The following example
requests information about the threads running on the JVP class named 4:
EXECUTE FUNCTION INFORMIX.JVPCONTROL ("THREADS 4");

For more information about using jvpcontrol() and the built-in sqlj routines, see
the J/Foundation Developer's GuideJ/Foundation Developer's Guide.

SQLJ Driver Built-In Procedures
Use the SQLJ Driver built-in procedures for one of the following tasks:
v To install, replace, or remove a set of Java classes
v To specify a path for Java class resolution for Java classes that are included in a

JAR file
v To map or remove the mapping between a user-defined type and the Java type

to which it corresponds

SQLJ Driver Built-In Procedures:

6-18 IBM Informix Guide to SQL: Syntax

(1)
sqlj.install_JAR

(2)
sqlj.replace_JAR

(3)
sqlj.remove_JAR

(4)
sqlj.alter_java_path

(5)
sqlj.SetUDTextName

(6)
sqlj.unsetUDTextName

Notes:

1 See “sqlj.install_jar”

2 See “sqlj.replace_jar” on page 6-20

3 See “sqlj.remove_jar” on page 6-21

4 See “sqlj.alter_java_path” on page 6-22

5 See “sqlj.setUDTextName” on page 6-23

6 See “sqlj.unsetUDTextName” on page 6-24

A client application must specify the 'sqli' owner name to invoke these functions
from an ANSI-compliant database.

The SQLJ built-in procedures are stored in the sysprocedures system catalog table.
They are grouped under the sqlj schema.

Tip: For any Java static method, the first built-in procedure that you execute must
be the sqlj.install_jar() procedure. You must install the JAR file before you can
create a UDR or map a user-defined data type to a Java type. Similarly, you cannot
use any of the other SQLJ built-in procedures until you have used sqlj.install_jar(
).
Related reference:
“Jar Name” on page 5-34

sqlj.install_jar
Use the sqlj.install_jar() procedure to install a JAR file in the current database and
assign to it a JAR identifier.

sqlj.install_jar:

sqlj.install_jar
(1) 0

(jar_file , Jar Name , deploy)

Notes:

1 See “Jar Name” on page 5-34

Argument Description Restrictions Syntax

deploy Integer that causes the procedure to search for
deployment descriptor files in the JAR file

None “Literal Number” on
page 4-215

Chapter 6. Built-in routines 6-19

Argument Description Restrictions Syntax

jar_file URL of the JAR file that contains the Java language
UDR

Maximum length of the
URL is 255 bytes

“Quoted String” on
page 4-219

For example, consider a Java class Chemistry that contains the following static
method explosiveReaction():
public static int explosiveReaction(int ingredient)

Here the Chemistry class resides in this JAR file on the server computer:
/students/data/Courses.jar

You can install all classes in the Courses.jar file in the current database with the
following call to the sqlj.install_jar() procedure:
EXECUTE PROCEDURE

sqlj.install_jar("file://students/data/Courses.jar", "course_jar");

The sqlj.install_jar() procedure assigns the JAR ID, course_jar, to the Courses.jar
file that it has installed in the current database.

After you define a JAR ID in the database, you can use that JAR ID when you
create and execute a UDR written in the Java language. (You must hold the
Resource privilege or the DBA privilege on the database, and also hold the Usage
privilege on the Java language, before you can create or drop a Java UDR.)

When you specify a nonzero number for the third argument, the database server
searches through any included deployment descriptor files. For example, you
might want to include descriptor files that include SQL statements to register and
grant privileges on UDRs in the JAR file.

If the IFX_EXTEND_ROLE configuration parameter is enabled (which is its default
setting), only the DBSA or users who hold the EXTEND role are able to execute the
sqlj.install_jar() procedure. When IFX_EXTEND_ROLE is disabled, any user can
execute sqlj.install_jar().

File Permissions on Jar Files
Aftersqlj.install_jar() installs a JAR file in the database and declares a JAR ID for
the file, Informix can access that JAR file only if the user who installed the
Informix instance (typically, user 'informix') has permission to read the directory
where the JAR file resides. On UNIX systems, for example, this implies that an
attempt to read a JAR file that has 600 permissions fails with a FILENOTFOUND
exception. The same operation can succeed, however, after the chmod utility sets
the permissions to 660 (rw-rw----).

You must hold the Resource privilege or the DBA privilege on the database, and
also hold the Usage privilege on the Java language, before you can create or drop a
Java UDR.

sqlj.replace_jar
Use the sqlj.replace_jar() procedure to replace a previously installed JAR file with
a new version. When you use this syntax, you provide only the new JAR file and
assign to it the JAR ID for which you want to replace the file.

6-20 IBM Informix Guide to SQL: Syntax

sqlj.replace_jar:

sqlj.replace_jar
(1)

(jar_file , Jar Name)

Notes:

1 See “Jar Name” on page 5-34

Argument Description Restrictions Syntax

jar_file URL of the JAR file that contains the
UDR written in Java

The maximum length of the URL is 255
bytes

“Quoted String” on
page 4-219

If you attempt to replace a JAR file that is referenced by one or more UDRs, the
database server generates an error. You must drop the referencing UDRs before
replacing the JAR file.

For example, the following call replaces the Courses.jar file, which had previously
been installed for the course_jar identifier, with the Subjects.jar file:
EXECUTE PROCEDURE

sqlj.replace_jar("file://students/data/Subjects.jar",
"course_jar");

Before you replace the Course.jar file, you must drop the user-defined function
sql_explosive_reaction() with the DROP FUNCTION (or DROP ROUTINE)
statement. (You must hold the Resource privilege or the DBA privilege on the
database, and also hold the Usage privilege on the Java language, before you can
create or drop a Java UDR.)

If the IFX_EXTEND_ROLE configuration parameter is enabled (which is its default
setting), only the DBSA or users who hold the EXTEND role are able to execute the
sqlj.replace_jar() procedure. When IFX_EXTEND_ROLE is disabled, any user can
execute sqlj.replace_jar().

sqlj.remove_jar
Use the sqlj.remove_jar() procedure to remove a previously installed JAR file
from the current database. You must hold the Resource privilege or the DBA
privilege on the database, and also hold the Usage privilege on the Java language,
before you can create or drop a Java UDR.

sqlj.remove_jar:

sqlj.remove_jar
(1) 0

(Jar Name , deploy)

Notes:

1 See “Jar Name” on page 5-34

Argument Description Restrictions Syntax

deploy Integer that causes the procedure to search for deployment
descriptor files in the JAR file

None “Literal Number” on
page 4-215

Chapter 6. Built-in routines 6-21

If you attempt to remove a JAR file that is referenced by one or more UDRs, the
database server generates a 46003 error. You must drop the referencing UDRs
before you replace the JAR file. An invalid JAR file name generates a 46002 error.

For example, the following SQL statements remove the JAR file that is associated
with the course_jar JAR ID:
DROP FUNCTION sql_explosive_reaction;
EXECUTE PROCEDURE sqlj.remove_jar("course_jar");

When you specify a nonzero number for the second argument, the database server
searches through any included deployment descriptor files. For example, you
might want to include descriptor files that include SQL statements to revoke
privileges on UDRs in the associated JAR file and drop them from the database.

If the IFX_EXTEND_ROLE configuration parameter is enabled (which is its default
setting), only the DBSA or users who hold the EXTEND role are able to run the
sqlj.remove_jar() procedure. When IFX_EXTEND_ROLE is disabled, any user can
run sqlj.remove_jar().

sqlj.alter_java_path
Use sqlj.alter_java_path() to specify the jar-file path to use when the routine
manager resolves related Java classes for the JAR file of a UDR written in the Java
language.

sqlj.alter_java_path:

sqlj.alter_java_path �

� �
(1) (1)

(Jar Name (package_id. * , Jar Name))
class_id

Notes:

1 See “Jar Name” on page 5-34

Argument Description Restrictions Syntax

class_id Java class that contains method to
implement the UDR

Java class must exist in the JAR file that jar_id
specifies. Identifier must not exceed 255 bytes.

Language
specific

package_id Name of the package that contains
the Java class

The fully qualified identifier of package_id.class_id
must not exceed 255 bytes

Language
specific

The JAR IDs that you specify, namely the JAR ID for which you are altering the
JAR-file path and the resolution JAR ID, must both have been installed with the
sqlj.install_jar procedure. When you invoke a UDR written in the Java language,
the routine manager attempts to load the Java class in which the UDR resides. At
this time, it must resolve the references that this Java class makes to other Java
classes.

The three types of such class references are these:
1. References to Java classes that the JVPCLASSPATH configuration parameter

specifies (such as Java system classes like java.util.Vector)

6-22 IBM Informix Guide to SQL: Syntax

2. References to classes that are in the same JAR file as the UDR
3. References to classes that are outside the JAR file that contains the UDR.

The routine manager implicitly resolves classes of type 1 and 2 in the preceding
list. To resolve type 3 references, it examines all the JAR files in the JAR file path
that the latest call to sqlj.alter_java_path() specified.

The routine manager issues an exception if it cannot resolve a class reference. The
routine manager checks the JAR file path for class references after it performs the
implicit type 1 and type 2 resolutions.

If you want a Java class to be loaded from the JAR file that the JAR file path
specifies, make sure the Java class is not present in the JVPCLASSPATH
configuration parameter. Otherwise, the system loader picks up that Java class first,
which might result in a different class being loaded than what you expect.

Suppose that the sqlj.install_jar() procedure and CREATE FUNCTION have been
executed as the preceding sections describe. The following SQL statement invokes
sql_explosive_reaction() function in the course_jar JAR file:
EXECUTE PROCEDURE alter_java_path("course_jar",

"(professor/*, prof_jar)");
EXECUTE FUNCTION sql_explosive_reaction(10000);

The routine manager attempts to load the class Chemistry. It uses the path that the
call to sqlj.alter_java_path() specifies to resolve any class references. Therefore, it
checks the classes that are in the professor package of the JAR file that prof_jar
identifies.

If the IFX_EXTEND_ROLE configuration parameter is enabled (which is its default
setting), only the DBSA or users who hold the EXTEND role are able to execute the
sqlj.alter_java_path() procedure. When IFX_EXTEND_ROLE is disabled, any user
can execute sqlj.alter_java_path(). (But regardless of the IFX_EXTEND_ROLE
setting, you must hold the Resource privilege or the DBA privilege on the
database, and also hold the Usage privilege on the Java language, before you can
create or drop a Java UDR.)

sqlj.setUDTextName
Use the sqlj.setUDTextName() procedure to define the mapping between a
user-defined data type and a Java class.

sqlj.SetUDTextName:

sqlj.SetUDTextName �(data_type , class_id)
package_id,

Argument Description Restrictions Syntax

class_id Java class that contains the
Java data type

Qualified name package_id.class_id must
not exceed 255 bytes

Language-specific rules for
Java identifiers

data_type User-defined type for which to
create a mapping

Name must not exceed 255 bytes “Identifier” on page 5-21

package_id Name of package that contains
the class_id Java class

Same length restrictions as class_id Language-specific rules for
Java identifiers

Chapter 6. Built-in routines 6-23

You must have registered the user-defined data type in the CREATE DISTINCT
TYPE, CREATE OPAQUE TYPE, or CREATE ROW TYPE statement.

To look up the Java class for a user-defined data type, the database server searches
in the JAR-file path, which the sqlj.alter_java_path() procedure has specified. For
more information on the JAR-file path, see “sqlj.alter_java_path” on page 6-22.

The SQLJ Driver looks in the path that CLASSPATH specifies in the client
environment before it asks the database server for the name of the Java class.

The setUDTextName() routine is an extension to the SQLJ:SQL Routines Using the
Java Programming Language specification.

If the IFX_EXTEND_ROLE configuration parameter is enabled (which is its default
setting), only the DBSA or users who hold the EXTEND role are able to execute the
setUDTextName() procedure. When IFX_EXTEND_ROLE is disabled, any user can
execute setUDTextName(). (But regardless of the IFX_EXTEND_ROLE setting, you
must hold the Resource privilege or the DBA privilege on the database, and also
hold the Usage privilege on the Java language, before you can create or drop a
Java UDR.)

sqlj.unsetUDTextName
Use the sqlj.unsetUDTextName() routine to remove the mapping from a
user-defined data type to a Java class.

sqlj.unsetUDTextName:

sqlj.unsetUDTextName (data_type)

Argument Description Restrictions Syntax

data_type User-defined data type for which to remove the mapping Must exist “Identifier” on page
5-21

This routine removes the SQL-to-Java mapping and consequently removes any
cached copy of the Java class from shared memory of the database server.

The unsetUDTextName() routine is an extension to the SQLJ:SQL Routines Using
the Java Programming Language specification.

If the IFX_EXTEND_ROLE configuration parameter is enabled (which is its default
setting), only the DBSA or users who hold the EXTEND role are able to execute the
unsetUDTextName() procedure. When IFX_EXTEND_ROLE is disabled, any user
can execute unsetUDTextName(). (But regardless of the IFX_EXTEND_ROLE
setting, you must hold the Resource privilege or the DBA privilege on the
database, and also hold the Usage privilege on the Java language, before you can
create or drop a Java UDR.)

6-24 IBM Informix Guide to SQL: Syntax

DRDA Support Functions
Informix provides built-in functions that support the Distributed Relational
Database Architecture (DRDA) protocol when the Informix instance is configured
as a DRDA application server. (This is accomplished by setting
DBSERVERALIASES to DRDA in the configuration file.)
v The sysibm.Metadata function provides database metadata information to IBM

Data Server Driver for JDBC and SQL client applications.
v The sysibm.SCLCAMessage function supports DRDA error handling.

The Informix implementation of these functions conforms to the DR Level 5
SQLAM 7 standard

Metadata Function
The sysibm.Metadata function is an SPL routine that can be called by IBM Data
Server Driver for JDBC and SQL applications to dynamically retrieve database
metadata. The Metadata routine is automatically created in every database of
Informix instances that are configured as DRDA application servers. The client
application must specify the 'sysibm' owner name to invoke this function from an
ANSI-compliant database.

It has the following routine definition:
create procedure sysibm.METADATA() returning

integer as allProceduresAreCallable,
integer as allTablesAreSelectable,
integer as nullsAreSortedHigh,
integer as nullsAreSortedLow,
integer as nullsAreSortedAtStart,
integer as nullsAreSortedAtEnd,
integer as usesLocalFiles,
integer as usesLocalFilePerTable,
integer as storesUpperCaseIdentifiers,
integer as storesLowerCaseIdentifiers,
integer as storesMixedCaseIdentifiers,
integer as storesLowerCaseQuotedIdentifiers,
integer as storesMixedCaseQuotedIdentifiers,
lvarchar(4096) as getSQLKeywords,
varchar(100) as getNumericFunctions,
varchar(100) as getStringFunctions,
varchar(100) as getSystemFunctions,
varchar(100) as getTimeDateFunctions,
varchar(25) as getSearchStringEscape,
varchar(25) as getExtraNameCharacters,
integer as supportsAlterTableWithAddColumn,
integer as supportsAlterTableWithDropColumn,
integer as supportsConvert,
varchar(255) as supportsConvertType,
integer as supportsDifferentTableCorrelationNames,
integer as supportsExpressionsInOrderBy,
integer as supportsOrderByUnrelated,
integer as supportsGroupBy,
integer as supportsGroupByUnrelated,
integer as supportsGroupByBeyondSelect,
integer as supportsMultipleResultSets,
integer as supportsMultipleTransactions,
integer as supportsCoreSQLGrammar,
integer as supportsExtendedSQLGrammar,
integer as supportsANSI92IntermediateSQL,
integer as supportsANSI92FullSQL,
integer as supportsIntegrityEnhancementFacility,
integer as supportsOuterJoins,
integer as supportsFullOuterJoins,

Chapter 6. Built-in routines 6-25

integer as supportsLimitedOuterJoins,
varchar(50) as getSchemaTerm,
varchar(50) as getProcedureTerm,
varchar(50) as getCatalogTerm,
integer as isCatalogAtStart,
varchar(50) as getCatalogSeparator,
integer as supportsSchemasInDataManipulation,
integer as supportsSchemasInProcedureCalls,
integer as supportsSchemasInTableDefinitions,
integer as supportsSchemasInIndexDefinitions,
integer as supportsSchemasInPrivilegeDefinitions,
integer as supportsCatalogsInDataManipulation,
integer as supportsCatalogsInProcedureCalls,
integer as supportsCatalogsInTableDefinitions,
integer as supportsCatalogsInIndexDefinitions,
integer as supportsCatalogsInPrivilegeDefinitions,
integer as supportsPositionedDelete,
integer as supportsPositionedUpdate,
integer as supportsSelectForUpdate,
integer as supportsStoredProcedures,
integer as supportsSubqueriesInComparisons,
integer as supportsUnion,
integer as supportsUnionAll,
integer as supportsOpenCursorsAcrossCommit,
integer as supportsOpenCursorsAcrossRollback,
integer as supportsOpenStatementsAcrossCommit,
integer as supportsOpenStatementsAcrossRollback,
integer as getMaxBinaryLiteralLength,
integer as getMaxCharLiteralLength,
integer as getMaxColumnNameLength,
integer as getMaxColumnsInGroupBy,
integer as getMaxColumnsInIndex,
integer as getMaxColumnsInOrderBy,
integer as getMaxColumnsInSelect,
integer as getMaxColumnsInTable,
integer as getMaxConnections,
integer as getMaxCursorNameLength,
integer as getMaxIndexLength,
integer as getMaxSchemaNameLength,
integer as getMaxProcedureNameLength,
integer as getMaxCatalogNameLength,
integer as getMaxRowSize,
integer as doesMaxRowSizeIncludeBlobs,
integer as getMaxStatementLength,
integer as getMaxStatements,
integer as getMaxTableNameLength,
integer as getMaxTablesInSelect,
integer as getMaxUserNameLength,
integer as getDefaultTransactionIsolation,
integer as supportsTransactions,
varchar(50) as supportsTransactionIsolationLevel,
integer as supportsDataDefinitionAndDataManipulationTransactions,
integer as supportsDataManipulationTransactionsOnly,
integer as dataDefinitionCausesTransactionCommit,
integer as dataDefinitionIgnoredInTransactions,
varchar(100) as supportsResultSetType,
varchar(100) as supportsResultSetConcurrency,
varchar(100) as ownUpdatesAreVisible,
varchar(100) as ownDeletesAreVisible,
varchar(100) as ownInsertsAreVisible,
varchar(100) as othersUpdatesAreVisible,
varchar(100) as othersDeletesAreVisible,
varchar(100) as othersInsertsAreVisible,
varchar(100) as updatesAreDetected,
varchar(100) as deletesAreDetected,

6-26 IBM Informix Guide to SQL: Syntax

varchar(100) as insertsAreDetected,
integer as supportsBatchUpdates,
integer as supportsSavepoints,
integer as supportsGetGeneratedKeys

sysibm.SQLCAMessage Function
By default, IBM Data Server Driver for JDBC and SQL for Informix does not return
localized error messages. Detailed and localized error messages from the server are
expected, however, when property
“retrieveMessagesFromServerOnGetMessage=true” is set in the connection URL.

The SQLCAMessage function is an SPL routine that supports the retrieval of
detailed error message text from remote DB2 or Informix database servers to client
applications that use the Distributed Relational Database Architecture (DRDA)
protocol. The SQLCAMessage routine is automatically created in every database of
Informix instances that are configured as DRDA application servers. The IBM Data
Server Driver for JDBC and SQL client application must specify the 'sysibm' owner
name to invoke this function from an ANSI-compliant database.

The SQLCAMessage function retrieves localized error messages, based on the
SQLSTATE code in the SQL Communications Area (SQLCA).

The definition of this function uses IN, OUT, and INOUT parameters:
CREATE function sysibm.SQLCAMessage (

IN SQLCode INTEGER,
IN SQLErrml SMALLINT,
IN SQLErrmc VARCHAR(70),
IN SQLErrp CHAR(8),
IN SQLErrd0 INTEGER,
IN SQLErrd1 INTEGER,
IN SQLErrd2 INTEGER,
IN SQLErrd3 INTEGER,
IN SQLErrd4 INTEGER,
IN SQLErrd5 INTEGER,
IN SQLWarn CHAR(11),
IN SQLState CHAR(5),
IN MessageFileName VARCHAR(20),
INOUT Locale VARCHAR(33),
OUT Message LVARCHAR(4096),
OUT Rcode INTEGER)
RETURNING INTEGER
EXTERNAL NAME '(SQLCAMessage)’
LANGUAGE C

To invoke the function, you can use this syntax:

sysibm.SQLCAMessage:

'sysibm'.SQLCAMessage (error_code , input_locale , message_ file)

Argument Description Restrictions Syntax

error_number The SQLCODE value of the error, Must exist “Expression” on
page 4-44

input_locale Name of the input locale for receiving the message.
Default is the U.S. English locale (en_us).

Must exist “Identifier” on page
5-21

message_file Name of the message file Must exist Pathname

Chapter 6. Built-in routines 6-27

The function retrieves the text from the specified message_file for the specified
SQLCODE and input_locale. The return code indicates the success or failure of the
call to execute the SQLCAMessage routine.

The Informix DRDA application server attempts to retrieve the error message text
using the specified input parameters:
v SQLCODE

v input_locale, and
v message_file

The Informix DRDA application server attempts to retrieve the error message text
using the specified input parameters: The default message file (errmsgtxt) is used
if the MessageFileName argument message_file is NULL. The default locale (en_us)
is used to retrieve the error message if retrieval using the specified input_locale is
unsuccessful. The token array is used to replace the tokens in the retrieved
message text, if applicable.

If the retrieval is successful,
v SQLCODE is removed from the error message,
v the error message is copied to the OUT parameter ‘Message'
v the locale used for retrieving the message is copied to INOUT parameter

‘Locale'.

If the retrieval is unsuccessful, the error message text "Message not found" is
copied to the Message parameter.

For both cases, the OUT parameter Rcod is set to the return code for executing this
SPL routine.

Detailed message for ISAM errors are supplied from the SQLERRD[0] value.
ISAM error messages are concatenated to actual error message string and returned
to the application.

For the codes of SQLSTATE values for which the SQLCAMessage function can
return the corresponding error message text, see “List of SQLSTATE Codes” on
page 2-494.

6-28 IBM Informix Guide to SQL: Syntax

Appendix A. Keywords of SQL for IBM Informix

This appendix lists the keywords in the IBM Informix implementation of SQL for
Informix.

The ISO standard SQL language has many keywords. Some are designated as
reserved words and others as non-reserved words. In ISO SQL, reserved words cannot
be used as identifiers for database objects, such as tables, columns, and so on. To
use a reserved word as a name in a valid SQL statement requires a delimited
identifier (“Delimited Identifiers” on page 5-23) that you enclose between double
(" ") quotation marks.

In contrast, the dialect of SQL that IBM Informix database servers implement has
few reserved words in the sense of a character string that obeys the rules for
identifiers (“Identifier” on page 5-21) but always produces a compilation error or
runtime error when used as an identifier. Your application might encounter
restricted functionality, however, or unexpected results, if you define an SPL
routine that has the same name as a built-in SQL function, expression, or operator.

Do not declare any of the keywords in this appendix as SQL identifiers. If you do,
errors or syntactic ambiguities can occur if the identifier appears in a context
where the keyword is valid. In addition, your code will be more difficult to read
and to maintain. Informix reserves the prefixes ifx_ and sys for built-in routines
and database objects. Do not use keywords of C or C++ (or of any other
programming language that you will be using in an embedded mode) in your
database structures. The notations IFX_* and SYS* (where * is a wildcard character
for "any string") in the alphabetized lists that follow. These indicate that those
prefixes should be avoided in user-defined identifiers of database objects.
(Keywords of SQL that begin with those suffixes are not listed in this appendix,
whose goal is to assist IBM Informix users in avoiding names that are used
internally by the database server.)

If you receive an error message that seems unrelated to the SQL statement that
caused the error, review this appendix to see whether a keyword is used as an
identifier.

To avoid using a keyword as an identifier, you can qualify the identifier with an
owner name or modify the identifier. For example, rather than name a database
object CURRENT, you might name it o_current or juanita.current. For a
discussion of potential problems in using keywords as identifiers, and of additional
workarounds for specific keywords, see “Use of Keywords as Identifiers” on page
5-23. See also IBM Informix Guide to SQL: Tutorial for more information about using
keywords as identifiers in SQL applications.

A
AAO
ABS
ABSOLUTE
ACCESS
ACCESS_METHOD
ACCOUNT

© Copyright IBM Corp. 1996, 2014 A-1

ACOS
ACOSH
ACTIVE
ADD
ADDRESS
ADD_MONTHS
ADMIN
AFTER
AGGREGATE
ALIGNMENT
ALL
ALL_ROWS
ALLOCATE
ALTER
AND
ANSI
ANY
APPEND
ARRAY
AS
ASC
ASCII
ASIN
ASINH
ASYNC
AT
ATAN
ATAN2
ATANH
ATTACH
ATTRIBUTES
AUDIT
AUTHENTICATION
AUTHID
AUTHORIZATION
AUTHORIZED
AUTO
AUTOFREE
AUTO_READAHEAD
AUTO_REPREPARE
AUTO_STAT_MODE
AVG
AVOID_EXECUTE
AVOID_FACT
AVOID_FULL

A-2 IBM Informix Guide to SQL: Syntax

AVOID_HASH
AVOID_INDEX
AVOID_INDEX_SJ
AVOID_MULTI_INDEX
AVOID_NL
AVOID_STAR_JOIN

B
BARGROUP
BASED
BEFORE
BEGIN
BETWEEN
BIGINT
BIGSERIAL
BINARY
BITAND
BITANDNOT
BITNOT
BITOR
BITXOR
BLOB
BLOBDIR
BOOLEAN
BOTH
BOUND_IMPL_PDQ
BUCKETS
BUFFERED
BUILTIN
BY
BYTE

C
CACHE
CALL
CANNOTHASH
CARDINALITY
CASCADE
CASE
CAST
CEIL
CHAR
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHECK

Appendix A. Keywords of SQL for IBM Informix A-3

CHR
CLASS
CLASS_ORIGIN
CLIENT
CLOB
CLOBDIR
CLOSE
CLUSTER
COBOL
CODESET
COLLATION
COLLECTION
COLUMN
COLUMNS
COMMIT
COMMITTED
COMMUTATOR
COMPONENT
COMPONENTS
CONCAT
CONCURRENT
CONNECT
CONNECTION
CONNECTION_NAME
CONNECT_BY_ISCYCLE
CONNECT_BY_ISLEAF
CONNECT_BY_ROOT
CONST
CONSTRAINT
CONSTRAINTS
CONSTRUCTOR
CONTEXT
CONTINUE
COPY
COS
COSH
COSTFUNC
COUNT
CRCOLS
CREATE
CROSS
CURRENT
CURRENT_ROLE
CURRENT_USER
CURRVAL

A-4 IBM Informix Guide to SQL: Syntax

CURSOR
CYCLE

D
DATA
DATABASE
DATAFILES
DATASKIP
DATE
DATETIME
DAY
DBA
DBDATE
DBINFO
DBPASSWORD
DBSA
DBSERVERNAME
DBSECADM
DBSSO
DEALLOCATE
DEBUG
DEBUGMODE
DEBUG_ENV
DEC
DECIMAL
DECLARE
DECODE
DECRYPT_BINARY
DECRYPT_CHAR
DEC_T
DEFAULT
DEFAULTESCCHAR
DEFAULT_ROLE
DEFAULT_USER
DEFERRED
DEFERRED_PREPARE
DEFINE
DEGREES
DELAY
DELETE
DELETING
DELIMITED
DELIMITER
DELUXE
DESC

Appendix A. Keywords of SQL for IBM Informix A-5

DESCRIBE
DESCRIPTOR
DETACH
DIAGNOSTICS
DIRECTIVES
DIRTY
DISABLE
DISABLED
DISCONNECT
DISK
DISTINCT
DISTRIBUTEBINARY
DISTRIBUTESREFERENCES
DISTRIBUTIONS
DOCUMENT
DOMAIN
DONOTDISTRIBUTE
DORMANT
DOUBLE
DROP
DTIME_T

E
EACH
ELIF
ELSE
ENABLE
ENABLED
ENCRYPT_AES
ENCRYPT_TDES
ENCRYPTION
END
ENUM
ENVIRONMENT
ERKEY
ERROR
ESCAPE
EXCEPTION
EXCLUSIVE
EXEC
EXECUTE
EXECUTEANYWHERE
EXEMPTION
EXISTS
EXIT

A-6 IBM Informix Guide to SQL: Syntax

EXP
EXPLAIN
EXPLICIT
EXPRESS
EXPRESSION
EXTDIRECTIVES
EXTEND
EXTENT
EXTERNAL
EXTYPEID
EXTYPELENGTH
EXTYPENAME
EXTYPEOWNERLENGTH
EXTYPEOWNERNAME

F
FACT
FALSE
FAR
FETCH
FILE
FILETOBLOB
FILETOCLOB
FILLFACTOR
FILTERING
FINAL
FIRST
FIRST_ROWS
FIXCHAR
FIXED
FLOAT
FLOOR
FLUSH
FOR
FORCE
FORCED
FORCE_DDL_EXEC
FOREACH
FOREIGN
FORMAT
FORMAT_UNITS
FORTRAN
FOUND
FRACTION

Appendix A. Keywords of SQL for IBM Informix A-7

FRAGMENT
FRAGMENTS
FREE
FROM
FULL
FUNCTION

G
GENERAL
GET
GETHINT
GLOBAL
GO
GOTO
GRANT
GREATERTHAN
GREATERTHANOREQUAL
GROUP

H
HANDLESNULLS
HASH
HAVING
HDR
HDR_TXN_SCOPE
HEX
HIGH
HINT
HOLD
HOME
HOUR

I
IDATA
IDSLBACREADARRAY
IDSLBACREADSET
IDSLBACREADTREE
IDSLBACRULES
IDSLBACWRITEARRAY
IDSLBACWRITESET
IDSLBACWRITETREE
IDSSECURITYLABEL
IF
IFX_*
ILENGTH
IMMEDIATE

A-8 IBM Informix Guide to SQL: Syntax

IMPLICIT
IMPLICIT_PDQ
IN
INACTIVE
INCREMENT
INDEX
INDEXES
INDEX_ALL
INDEX_SJ
INDICATOR
INFORMIX
INFORMIXCONRETRY
INFORMIXCONTIME
INIT
INITCAP
INLINE
INNER
INOUT
INSENSITIVE
INSERT
INSERTING
INSTEAD
INSTR
INT
INT8
INTEG
INTEGER
INTERNAL
INTERNALLENGTH
INTERVAL
INTO
INTRVL_T
IS
ISCANONICAL
ISOLATION
ITEM
ITERATOR
ITYPE

J - K
JAVA
JOIN
K
KB
KEEP

Appendix A. Keywords of SQL for IBM Informix A-9

KEY
KIB

L
LABEL
LABELEQ
LABELGE
LABELGLB
LABELGT
LABELLE
LABELLT
LABELLUB
LABELTOSTRING
LANGUAGE
LAST
LAST_DAY
LEADING
LEFT
LEN
LENGTH
LESSTHAN
LESSTHANOREQUAL
LET
LEVEL
LIKE
LIMIT
LIST
LISTING
LOAD
LOCAL
LOCATOR
LOCK
LOCKS
LOCOPY
LOC_T
LOG
LOG10
LOGN
LONG
LOOP
LOTOFILE
LOW
LOWER
LPAD
LTRIM

A-10 IBM Informix Guide to SQL: Syntax

LVARCHAR

M
MATCHED
MATCHES
MAX
MAXERRORS
MAXLEN
MAXVALUE
MDY
MEDIAN
MEDIUM
MEMORY
MEMORY_RESIDENT
MERGE
MESSAGE_LENGTH
MESSAGE_TEXT
MIDDLE
MIN
MINUTE
MINVALUE
MOD
MODE
MODERATE
MODIFY
MODULE
MONEY
MONTH
MONTHS_BETWEEN
MORE
MULTISET
MULTI_INDEX

N
NAME
NCHAR
NEAR_SYNC
NEGATOR
NEW
NEXT
NEXT_DAY
NEXTVAL
NLSCASE
NO
NOCACHE
NOCYCLE

Appendix A. Keywords of SQL for IBM Informix A-11

NOMAXVALUE
NOMIGRATE
NOMINVALUE
NONE
NON_RESIDENT
NON_DIM
NOORDER
NORMAL
NOT
NOTEMPLATEARG
NOTEQUAL|
NOVALIDATE
NULL
NULLABLE
NULLIF
NUMBER
NUMERIC
NUMROWS
NUMTODSINTERVAL
NUMTOYMINTERVAL
NVARCHAR
NVL

O
OCTET_LENGTH
OF
OFF
OLD
ON
ONLINE
ONLY
OPAQUE
OPCLASS
OPEN
OPTCOMPIND
OPTIMIZATION
OPTION
OR
ORDER
ORDERED
OUT
OUTER
OUTPUT
OVERRIDE

A-12 IBM Informix Guide to SQL: Syntax

P
PAGE
PARALLELIZABLE
PARAMETER
PARTITION
PASCAL
PASSEDBYVALUE
PASSWORD
PDQPRIORITY
PERCALL_COST
PIPE
PLI
PLOAD
POLICY
POW
POWER
PRECISION
PREPARE
PREVIOUS
PRIMARY
PRIOR
PRIVATE
PRIVILEGES
PROCEDURE
PROPERTIES
PUBLIC
PUT

R
RADIANS
RAISE
RANGE
RAW
READ
REAL
RECORDEND
REFERENCES
REFERENCING
REGISTER
REJECTFILE
RELATIVE
RELEASE
REMAINDER
RENAME
REOPTIMIZATION

Appendix A. Keywords of SQL for IBM Informix A-13

REPEATABLE
REPLACE
REPLICATION
RESOLUTION
RESOURCE
RESTART
RESTRICT
RESUME
RETAIN
RETAINUPDATELOCKS
RETURN
RETURNED_SQLSTATE
RETURNING
RETURNS
REUSE
REVERSE
REVOKE
RIGHT
ROBIN
ROLE
ROLLBACK
ROLLFORWARD
ROOT
ROUND
ROUTINE
ROW
ROWID
ROWIDS
ROWS
ROW_COUNT
RPAD
RTRIM
RULE

S
SAMEAS
SAMPLES
SAMPLING
SAVE
SAVEPOINT
SCHEMA
SCALE
SCROLL
SECLABEL_BY_COMP
SECLABEL_BY_NAME

A-14 IBM Informix Guide to SQL: Syntax

SECLABEL_TO_CHAR
SECOND
SECONDARY
SECURED
SECURITY
SECTION
SELCONST
SELECT
SELECTING
SELFUNC
SELFUNCARGS
SENSITIVE
SEQUENCE
SERIAL
SERIAL8
SERIALIZABLE
SERVER
SERVER_NAME
SERVERUUID
SESSION
SET
SETSESSIONAUTH
SHARE
SHORT
SIBLINGS
SIGNED
SIN
SITENAME
SIZE
SKIP
SMALLFLOAT
SMALLINT
SOME
SOURCEID
SOURCETYPE
SPACE
SPECIFIC
SQL
SQLCODE
SQLCONTEXT
SQLERROR
SQLSTATE
SQLWARNING
SQRT
STABILITY

Appendix A. Keywords of SQL for IBM Informix A-15

STACK
STANDARD
START
STAR_JOIN
STATCHANGE
STATEMENT
STATIC
STATISTICS
STATLEVEL
STATUS
STDEV
STEP
STOP
STORAGE
STORE
STRATEGIES
STRING
STRINGTOLABEL
STRUCT
STYLE
SUBCLASS_ORIGIN
SUBSTR
SUBSTRING
SUBSTRING_INDEX
SUM
SUPPORT
SYNC
SYNONYM
SYS*

T
TABLE
TABLES
TAN
TASK
TEMP
TEMPLATE
TEST
TEXT
THEN
TIME
TO
TODAY
TO_CHAR
TO_DATE

A-16 IBM Informix Guide to SQL: Syntax

TO_DSINTERVAL
TO_NUMBER
TO_YMINTERVAL
TRACE
TRAILING
TRANSACTION
TRANSITION
TREE
TRIGGER
TRIGGERS
TRIM
TRUE
TRUNC
TRUNCATE
TRUSTED
TYPE
TYPEDEF
TYPEID
TYPENAME
TYPEOF

U
UID
UNCOMMITTED
UNDER
UNION
UNIQUE
UNITS
UNKNOWN
UNLOAD
UNLOCK
UNSIGNED
UPDATE
UPDATING
UPON
UPPER
USAGE
USE
USELASTCOMMITTED
USER
USE_HASH
USE_NL
USING
USTLOW_SAMPLE

Appendix A. Keywords of SQL for IBM Informix A-17

V
VALUE
VALUES
VAR
VARCHAR
VARIABLE
VARIANCE
VARIANT
VARYING
VERCOLS
VIEW
VIOLATIONS
VOID
VOLATILE

W - Z
WAIT
WARNING
WEEKDAY
WHEN
WHENEVER
WHERE
WHILE
WITH
WITHOUT
WORK
WRITE
WRITEDOWN
WRITEUP
XADATASOURCE
XID
XLOAD
XUNLOAD
YEAR

A-18 IBM Informix Guide to SQL: Syntax

Appendix B. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility
For more information about the IBM commitment to accessibility, see the IBM
Accessibility Center at http://www.ibm.com/able.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 1996, 2014 B-1

http://www.ibm.com/able

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string that follows the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

B-2 IBM Informix Guide to SQL: Syntax

repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix B. Accessibility B-3

B-4 IBM Informix Guide to SQL: Syntax

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1996, 2014 C-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

C-2 IBM Informix Guide to SQL: Syntax

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Notices C-3

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

C-4 IBM Informix Guide to SQL: Syntax

Index

Special characters
.jar filename extension 2-191
([]), brackets

array subscripts 2-671
range delimiters 4-16
substring operator 2-714, 4-68

(@), at symbol 5-18
(>) greater than symbol 4-224
(<) less than symbol 4-224
(|), pipe character 2-164, 2-558, 2-722, 2-851
(||), concatenation operator 4-44, 4-61
({ }), braces

collection delimiters 4-208
comment indicators 1-3, 5-36
specifying empty collection 4-88

(_), underscore
in SQL identifiers 5-23

(--), double hyphen, comment indicator 1-3
(-), hyphen symbol

DATETIME separator 4-210
INTERVAL separator 4-214

(-), minus sign
binary operator 4-44
INTERVAL literals 4-214
unary operator 4-214

(::), cast operator 4-62
(:), colon symbol

DATETIME separator 4-210
INTERVAL separator 4-214

(!), exclamation point 4-224
in smart-large-object filename 4-134

(?), question mark
as placeholder in PREPARE 2-585, 2-589
as wildcard 4-16
dynamic parameters 2-419
generating unique large-object filename 4-134
variables in PUT 2-604

(/), slash symbol
arithmetic operator 4-44
UNIX path separator 5-75

(/* */), slash and asterisk
comment indicator 1-3, 2-592, 5-36

(.), decimal point
DATETIME separator 4-210
INTERVAL separator 4-206
literal numbers 4-215, 4-223

(.), period symbol
DATETIME separator 4-210
DECIMAL values 4-216
dot notation 4-65
INTERVAL separator 4-214
MONEY values 4-216

($) dollar sign
in numeric formatting masks 4-145

($), dollar sign
in SQL identifiers 5-23

(*) asterisk
in numeric formatting masks 4-145

(*), asterisk
all columns of a table 2-658, 2-859
all fields of a collection variable 3-34

(*), asterisk (continued)
all fields of a ROW column 2-668, 4-66
all fields of a ROW variable 2-679
all labels of a security policy 2-639
argument to COUNT 4-198
argument to the COUNT function 4-197
arithmetic operator 4-44
in Projection clause 2-658
wildcard character 4-16

(\), backslash
as escape character 2-851
as wildcard character 4-15

(’), single quotation marks
literal in a quoted string 4-222

(%) percent sign
(&) ampersand

in numeric formatting masks 4-145
in formatting masks 4-145

(%), percent sign
as wildcard 4-15

(+), plus sign
binary operator 4-44
in optimizer directives 5-36
unary operator 4-214, 4-215

(=), equal sign
assignment operator 2-860
relational operator 4-224, 4-225

('), single quotation marks
quoted string delimiter 4-219

("), double quotation marks
delimiting SQL identifiers 4-221
literal in a quoted string 4-222
quoted string delimiter 4-219, 4-222
with delimited identifiers 5-25, 5-26

(^), caret
as wildcard character 4-16

<<label>> statement 3-9

A
A keyword

in SELECT statement 2-672
AAO keyword

in ALTER USER statement 2-122
in CREATE DEFAULT USER statement 2-156
in CREATE USER statement 2-368

ABS function 4-93, 4-95
ABSOLUTE keyword, in FETCH statement 2-474
ACCESS keyword

in ALTER TABLE statement 2-101
in CREATE TABLE statement 2-296
in GRANT statement 2-528
in INFO statement 2-544
in REVOKE statement 2-621, 2-639

Access method
attributes 5-55
configuring 5-55
default operator class, assigning 5-55
defined 5-55
directives 5-37
for INTO TEMP clause (RSAM) 2-721

© Copyright IBM Corp. 1996, 2014 X-1

Access method (continued)
index 2-194
modifying 2-5
primary 2-316
privileges to alter 2-5
privileges to create 2-143
privileges to drop 2-425
purpose options 5-55
registering 2-143
secondary 2-194
skip-scan 5-37
specifying for a table 2-316
sysams system catalog table settings 5-55

Access mode for transactions 2-824
ACCESS TO keywords

in ALTER USER statement 2-122
in GRANT statement 2-533

ACCESS_METHOD keyword
in ALTER ACCESS_METHOD statement 2-5
in CREATE ACCESS_METHOD statement 2-143
in DROP ACCESS_METHOD statement 2-424

Accessibility B-1
dotted decimal format of syntax diagrams B-1
keyboard B-1
shortcut keys B-1
syntax diagrams, reading in a screen reader B-1

ACCOUNT keyword
in CREATE USER statement 2-368

ACCOUNT LOCK keywords
in CREATE USER statement 2-368

ACCOUNT UNLOCK keywords
in CREATE USER statement 2-368

ACOS function 4-150, 4-153
ACOSH function 4-153
Action clause, in CREATE TRIGGER statement

action list 2-348
syntax 2-343

Active connection 2-423, 2-733
ACTIVE keyword, in SAVE EXTERNAL DIRECTIVES

statement 2-649
Active set

constructing with OPEN statement 2-583
empty 2-482
retrieving with FETCH 2-476
sequential cursor 2-395

ADD CONSTRAINT keywords
in ALTER TABLE statement 2-103

ADD CRCOLS keywords
in ALTER TABLE statement 2-79

ADD ERKEY keywords
in ALTER TABLE statement 2-79

ADD keyword
in ALTER ACCESS_METHOD statement 2-5
in ALTER FRAGMENT statement 2-30
in ALTER FUNCTION statement 2-57
in ALTER PROCEDURE statement 2-60
in ALTER ROUTINE statement 2-62
in ALTER SECURITY LABEL COMPONENT

statement 2-64
in ALTER TABLE statement 2-79, 2-80, 2-81, 2-117
in ALTER TRUSTED CONTEXT statement 2-118
in ALTER USER statement 2-122

ADD REPLCHECK keywords
in ALTER TABLE statement 2-79

ADD ROWIDS keywords
in ALTER TABLE statement 2-80

ADD TYPE keywords
in ALTER TABLE statement 2-117

ADD USE FOR keywords
in ALTER TRUSTED CONTEXT statement 2-118

ADD VERCOLS keywords
in ALTER TABLE statement 2-80

ADD_MONTHS function 4-137, 4-138
Adding end-of-line character 2-179
ADDRESS keyword

in CREATE TRUSTED CONTEXT statement 2-366
ADDRESS keywords

in ALTER TRUSTED CONTEXT statement 2-118
ADMIN function 4-185
Advanced Encryption Standard (AES) 4-122
AES (Advanced Encryption Standard) 4-122
AFTER keyword

in ALTER FRAGMENT statement 2-11, 2-30
in ALTER SECURITY LABEL COMPONENT

statement 2-64
in CREATE TRIGGER statement 2-343, 2-348

Aggregate functions
ALL, DISTINCT, and UNIQUE scope qualifiers 4-198
arguments 4-195
arguments to COUNT 4-198
as arguments 5-3
AVG 4-193, 4-197
COUNT 4-193, 4-197
in ESQL 4-203
in EXISTS subquery 4-20
in expressions 2-667
in GROUP BY Clause 2-709
in ORDER BY clause 2-713
in SELECT statement 2-667
MAX 4-193, 4-201
MIN 4-193, 4-201
RANGE 4-202
STDEV 4-202
SUM 4-193, 4-201
summary 4-204
syntax of built-in aggregates 4-193
using DISTINCT 4-196
using UNIQUE 4-196
VARIANCE 4-203

AGGREGATE keyword
in CREATE AGGREGATE statement 2-144
in DROP AGGREGATE statement 2-425

Algebraic functions
ABS 4-95
CEIL 4-95
FLOOR 4-95
MOD 4-97
POW 4-97
POWER 4-97
ROOT 4-97
ROUND 4-98
SQRT 4-98
TRUNC 4-103

Alias
for a collection in SELECT statement 3-34
for a table in SELECT statement 2-673, 5-4
in optimizer directives 5-36

Aliases for column names 2-709
ALIGNMENT keyword, in CREATE OPAQUE TYPE

statement 2-220
ALL keyword 2-539

aggregate scope qualifier 4-198
beginning a subquery 2-693

X-2 IBM Informix Guide to SQL: Syntax

ALL keyword (continued)
in Condition segment 4-21
in CREATE VIEW statements 2-376
in DISCONNECT statement 2-421
in Expression segment 4-193, 4-204
in GRANT statement 2-518, 2-526, 2-528
in REVOKE FRAGMENT statement 2-644
in REVOKE statement 2-623, 2-630, 2-637, 2-639
in SELECT statement 2-662
in SET CONSTRAINTS statement 2-735
in SET ENVIRONMENT statement 2-763, 2-780, 2-783
in SET Transaction Mode statement 2-825
with UNION operator 2-724, 2-725

ALL_ROWS keyword
in optimizer directives 5-47
in SET OPTIMIZATION statement 2-807

ALLOCATE COLLECTION statement 2-1
ALLOCATE DESCRIPTOR statement 2-2
ALLOCATE ROW statement 2-4
Allocating memory

for a collection variable 2-1
for system-descriptor area 2-2

ALLOW_NEWLINE configuration parameter 4-221
allowed.surrogates file 2-122, 2-368
Allowing newline characters in quoted strings 4-221
ALPHA class 4-170
ALTER ACCESS_METHOD statement 2-5
ALTER FRAGMENT statement

am_readwrite purpose flag 5-55
INIT clause 2-23
privileges required 2-6
restrictions 2-9
reverting to nonfragmented table

with DETACH 2-23
with INIT 2-25

syntax 2-6
when FORCE_DDL_EXEC is enabled 2-771
with generalized-key index 2-23

ALTER FUNCTION statement 2-57
ALTER INDEX statement

reclustering a table 2-59
ALTER keyword

in GRANT statement 2-507, 2-517
in REVOKE statement 2-623, 2-630

ALTER privilege 2-507, 2-517, 2-623
ALTER PROCEDURE statement 2-60
ALTER ROUTINE statement 2-62
ALTER SECURITY LABEL COMPONENT statement 2-64
ALTER SEQUENCE statement 2-69
ALTER TABLE statement

changing column data type 2-95
dropping a column 2-93
privileges needed 2-72
restrictions

ADD clause 2-81
DROP Column clause 2-93
general 2-72
MODIFY clause 2-95

statistics options 2-76
ALTER TRUSTED CONTEXT statement 2-118
am_beginscan purpose task 5-55
am_check purpose task 5-55
am_close purpose task 5-55
am_cluster purpose flag 5-55
am_create purpose task 5-55
am_defopclass purpose value 5-55
am_delete purpose task 5-55

am_drop purpose task 5-55
am_endscan purpose task 5-55
am_expr_pushdown purpose flag 5-55
am_getbyid purpose task 5-55
am_getnext purpose task 5-55
am_insert purpose task 5-55
am_keyscan purpose flag 5-55
am_open purpose task 5-55
am_parallel purpose flag 5-55
am_readwrite purpose flag 5-55
am_rescan purpose task 5-55
am_rowids purpose flag 5-55
am_scancost purpose task 5-55
am_sptype purpose value 5-55
am_stats purpose task 5-55
am_truncate access method 2-845
am_truncate purpose task 5-55
am_unique purpose flag 5-55
am_update purpose task 5-55
Ambiguities in non-unique identifiers 5-26
AND bitwise logical operation 4-58
AND keyword

in BETWEEN condition 4-10
in Condition segment 4-5, 4-7, 4-23
with BETWEEN keyword 2-691

ANDNOT bitwise logical operation 4-59
Angle bracket (<< ,,, >>) symbols

loop label delimiters 3-9
statement label delimiters 3-9

ANSI compliance
-ansi compilation flag 2-386
-ansi flag 2-247, 2-265, 2-321
comment symbols 1-3
creating views 2-373
list of SQL statements 1-11
privileges on UDRs 2-513
renaming a table 2-615
table privileges 2-540
unbuffered logging 2-806

ansi flag 2-152
ANSI keyword

in CREATE DATABASE statement 2-150
in SELECT statement 2-685, 2-686

ANSI-compliance
escape character 4-15
implicit transactions 2-817
isolation level 2-481, 2-824
owner names 5-16
SQLSTATE codes 2-494
update cursors 2-391, 2-392, 2-410
warning after DELETE 2-412

ANSI-compliant database
creating 2-152
database object naming 5-51
fixed-point DECIMAL values 2-152
implicit transactions 2-405
opaque-type naming 2-219
procedure name 2-880
table privileges 2-320
upshifting owner names 5-52
warning after opening 2-382
with BEGIN WORK 2-127

ANSIOWNER environment variable 1-1, 2-152, 2-644, 5-52
ANY keyword

in Condition segment 4-21
in SELECT statement 2-693

Index X-3

APPEND keyword
in SET DEBUG FILE statement 2-750

Application
comment indicators 1-3
single-threaded 2-733
thread-safe 2-423, 2-733, 2-734

Argument segment 5-1
Arguments 5-1
Arithmetic operators

binary 4-56
syntax 4-44
unary 4-56

ARRAY keyword
in ALTER SECURITY LABEL COMPONENT

statement 2-64
in CREATE SECURITY LABEL COMPONENT

statement 2-250
Array, with FETCH 2-479
AS keyword 2-658, 5-4

Alias
for a table in DELETE statement 2-409
for a table in UPDATE statement 2-856

AS keyword
with column aliases 2-669

in ALTER FRAGMENT statement 2-11
in CONNECT statement 2-135
in CREATE CAST statement 2-147
in CREATE DISTINCT TYPE statement 2-157
in CREATE TRIGGER statement 2-331

Delete triggers 2-345
Insert triggers 2-346
Select triggers 2-347
Update triggers 2-347
view column values 2-362

in CREATE VIEW statement 2-373
in DELETE statement 2-405
in DELETE statements 2-409
in DROP CAST statement 2-425
in explicit casts 4-62
in GRANT FRAGMENT statement 2-538
in GRANT statement 2-523
in Iterator segment 2-680
in MERGE statement 2-568
in Return Clause segment 5-58
in REVOKE FRAGMENT statement 2-643
in REVOKE statement 2-619, 2-634
in SELECT statement

ANSI table reference 2-683
FROM clause 2-673
in Iterator segment 2-680

in UPDATE statement 2-852
in UPDATE statements 2-856
with display labels 2-668, 2-669
with table aliases 2-673

AS PARTITION keywords, in ALTER FRAGMENT
statement 2-11

AS REMAINDER keywords, in ALTER FRAGMENT
statement 2-11

ASC keyword
in CREATE INDEX statement 2-198
in SELECT statement 2-711, 2-714
order with nulls 2-714

Ascending sequence 2-71, 2-260
ASCII code points 4-170
ASCII code set 4-226
ASCII function 4-161

ASCII keyword
DELIMITED keyword

in SELECT statement 2-722
in SELECT statement 2-722
INFORMIX keyword

in SELECT statement 2-722
ASIN function 4-150, 4-153
ASINH function 4-153
ASP.NET applications 3-4
Assign support function 2-220, 2-552, 2-559, 2-563, 2-862
Associated statement 2-728
Asterisk (*)

argument to COUNT function 4-197
arithmetic operator 4-44
in C-style comment indicators 1-3
Projection clause 2-658, 3-34
wildcard character 4-16

ASYNC
SET ENVIRONMENT statement 2-763

ASYNC keyword, in SET ENVIRONMENT HDR_TXN_SCOPE
statement 2-772

AT keyword, in INSERT statement 2-546
At symbol (@) 5-16
ATAN function 4-150, 4-153
ATAN2 function 4-150, 4-153
ATANH function 4-153
ATTACH keyword, in ALTER FRAGMENT statement 2-11
Attach list 2-14
Attached indexes 2-211, 2-730
ATTRIBUTES keyword

in ALTER TRUSTED CONTEXT statement 2-118
in CREATE TRUSTED CONTEXT statement 2-366

AUDIT keyword
in CREATE TABLE statement 2-265, 2-289, 2-290

Audit-event mnemonics 4-117
Auditing

selective row-level 2-290
AUTHENTICATION keyword

in ALTER TRUSTED CONTEXT statement 2-118
in CREATE TRUSTED CONTEXT statement 2-366

AUTHID keyword
in CREATE TRUSTED CONTEXT statement 2-366

Authorization identifier 2-237, 2-437, 2-814, 4-78, 5-49
AUTHORIZATION keyword

in ALTER USER statement 2-122
in CREATE DEFAULT USER statement 2-156
in CREATE SCHEMA statement 2-245
in CREATE USER statement 2-368
in GRANT statement 2-533
in SET SESSION AUTHORIZATION statement 2-814

AUTHORIZED keyword
in CREATE SECURITY POLICY statement 2-254

AUTO keyword
in ALTER TABLE statement 2-76
in CREATE TABLE statement 2-293
in UPDATE STATISTICS statement 2-868, 2-873

Auto Update Statistics (AUS) 2-870
AUTO_READAHEAD environment option 2-766
AUTO_READAHEAD keyword, in SET ENVIRONMENT

statement 2-766
AUTO_REPREPARE configuration parameter 2-10, 2-587,

2-600, 2-880
AUTO_STAT_MODE configuration parameter 2-766, 2-782,

2-873
AUTO_STAT_MODE keyword, in SET ENVIRONMENT

statement 2-766
AUTO_STAT_MODE session environment setting 2-873

X-4 IBM Informix Guide to SQL: Syntax

Autofree feature, in SET AUTOFREE 2-726
Automatic recompilation after table schema changes 2-766,

2-773
AVG function 4-193, 4-197
AVOID_EXECUTE keyword

in optimizer directives 5-47
in SET EXPLAIN statement 2-785

AVOID_FACT keyword
in SET OPTIMIZATION statement 2-809

AVOID_FACT keyword, in optimizer directives 5-45
AVOID_FULL keyword, in optimizer directives 5-37
AVOID_HASH keyword, in optimizer directives 5-43
AVOID_INDEX keyword, in optimizer directives 5-37
AVOID_INDEX_SJ keyword, in optimizer directives 5-37
AVOID_MULTI_INDEX keyword, in optimizer

directives 5-37
AVOID_NL keyword, in optimizer directives 5-43
AVOID_STAR_JOIN keyword, in optimizer directives 5-45

B
B abbreviation for byte 4-185
B-tree cleaner list 2-872
B-tree index

btree_ops operator class 2-226
default operator class 2-226
enforcing constraints 2-85
uses 2-205

B-tree secondary-access method 2-205, 2-222
B18030-2000 code set 2-730
Background mode 3-54
Backslash (\)

as escape character 2-164, 2-851, 4-16
BARGROUP keyword

in ALTER USER statement 2-122
in CREATE DEFAULT USER statement 2-156
in CREATE USER statement 2-368

Base-100 format 4-31
BASE64 encoding of encrypted data 2-761, 4-118
BASED keyword

in CREATE TRUSTED CONTEXT statement 2-366
Batch file 3-56
BATCHEDREAD_TABLE configuration parameter 4-27
BATCHEDREAD_TABLE session environment option 4-27
BEFORE keyword

in ALTER FRAGMENT statement 2-11, 2-30
in ALTER SECURITY LABEL COMPONENT

statement 2-64
in ALTER TABLE statement 2-81, 2-83
in CREATE TRIGGER statement 2-343, 2-348

BEGIN keyword 3-38
in Statement Block segment 5-78

BEGIN WORK statement 2-126
BETWEEN keyword

in Condition segment 4-7, 4-10
BigDecimal data type of Java 4-32, 5-71
BIGINT data type 4-30
BIGSERIAL data type

inserting values 2-551
invalid default 2-272
last inserted value 4-114
value range 4-30

Binary operator 2-146, 4-56
Bit-hashing function 2-709
BITAND function 4-57, 4-58
BITANDNOT function 4-57, 4-59
BITNOT function 4-57, 4-60

BITOR function 4-57, 4-58
Bitwise functions 4-57
BITXOR function 4-57, 4-59
BladeManager utility 6-10
Blank characters

DATETIME separator 4-210
in index names 2-431
in literal numbers 4-215
in WHERE clause string literals 2-690
INTERVAL separator 4-214
SPACE function 4-165

BLOB data type 4-33
copying to a file 4-134
copying to a smart large object 4-135
creating from a file 4-132
default value 2-273
handle values 4-69
size limit 4-35
storing 2-101, 2-296
unloading 2-847, 2-849
unreferenced 2-844

BLOB keyword
in Data Type segment 4-33

Blobspace 2-23
BOOLEAN data type

defined 4-24
literal values 2-273
unloading 2-847

Boolean expression 4-5
BOTH keyword, in TRIM expressions 4-162
BOUND_IMPL_PDQ keyword

in SET ENVIRONMENT statement 2-768
Braces ({ })

collection delimiters 4-208
comment indicator 1-3, 5-36
specifying empty collection 4-88

Brackets ([])
range delimiters 4-16

bts index
uses 2-205

BTS secondary-access method 2-205
BUCKETS keyword

in CREATE INDEX statement 2-206
BUFFERED keyword

in CREATE DATABASE statement 2-150
in SET LOG statement 2-806

BUFFERED LOG keyword
in CREATE DATABASE 2-152

Buffered logging 2-806
Build table for hash joins 2-789
Built-in aggregates

contrasted with user-defined 2-146
defined 4-194
extending 2-146

Built-in data types
opaque 4-24
owner 2-157
privileges on 2-512
syntax 4-24

Built-in roles
DBSECADM 2-524, 2-636
EXTEND 2-521

Built-in routines
ALTER_JAVA_PATH 6-22
EXPLAIN_SQL 6-15
IFX_REPLACE_MODULE 6-15
IFX_UNLOAD_MODULE 6-17

Index X-5

Built-in routines (continued)
INSTALL_JAR 6-19
JVPCONTROL 6-18
METADATA 6-25
REMOVE_JAR 6-21
REPLACE_JAR 6-20
SETUDTEXTNAME 6-23
SQLCAMESSAGE 6-27
SYSBldPrepare 6-10
SYSBldRelease 6-14
SYSDBCLOSE 6-5, 6-8, 6-9
SYSDBOPEEN 6-8
SYSDBOPEN 6-5, 6-9
UNSETUDTEXTNAME 6-24

Built-in secondary-access method 2-205
BY keyword

in ALTER FRAGMENT statement 2-25, 2-28
in ALTER SEQUENCE statement 2-71
in CREATE INDEX statement 2-212
in CREATE SEQUENCE statement 2-260
in CREATE TABLE statement 2-300
in CREATE TEMP TABLE statement 2-327
in SELECT statement 2-701, 2-708, 2-711

BYTE and TEXT columns, fragment storage 2-23
BYTE column

changing the data type 2-97
distribution statistics 2-872

BYTE data
effect of isolation on retrieval 2-803, 2-824
loading 2-559
storage location 4-34
unloading 2-847, 2-849

BYTE data type
declaration syntax 4-34
default value 2-273
with SET DESCRIPTOR 2-760
with SPL routines 3-16, 3-24

BYTE keyword
in Data Type segment 4-33
in Return Clause segment 5-58

C
C keyword

in GRANT statement 2-516
in REVOKE statement 2-629

C keyword, in External Routine Reference segment 5-20
C++ API 4-221
Cache cohesion 2-819
CACHE keyword

in ALTER SEQUENCE statement 2-71
in CREATE SEQUENCE statement 2-261
in SET STATEMENT CACHE statement 2-817

Calculated expression
restrictions with GROUP BY 2-709

Calendar 4-76
CALL keyword, in WHENEVER statement 2-885
CALL statement 3-11
Callbacks 5-68
CANNOTHASH keyword, in CREATE OPAQUE TYPE

statement 2-220
CANNOTHASH modifier 2-709
CARDINALITY function 4-106
Caret (^)

as wildcard character 4-16
use with brackets 4-16

Cartesian produc 2-686

Cartesian product 2-681, 5-42
CASCADE keyword

in ALTER TABLE statement 2-87, 2-89
in CREATE TABLE statement 2-278
in DROP SECURITY POLICY statement 2-442
in DROP TABLE statement 2-446
in DROP VIEW statement 2-452
in REVOKE statement 2-619

Cascading deletes
enabling in CREATE TABLE statement 2-89
locking associated with 2-407
logging 2-407
multiple child tables 2-407

Cascading triggers
and triggering table 2-355
triggered actions 2-344

Case conversion
functions

INITCAP 4-170
LOWER 4-170
UPPER 4-170

CASE expressions data type compatibility 4-71
Case insensitive databases 4-28
CASE keyword

in Expression segment 4-71, 4-72
Case sensitivity 2-153
Case-insensitive databases 4-28
CAST keyword

in CREATE CAST statement 2-147
in DROP CAST statement 2-425
in explicit casts 4-62

Casts
built-in 2-149, 2-425
creating 2-147
dropping 2-425
explicit 2-149, 4-62
function for 2-150
implicit 2-149, 4-62
operator (::) 2-149, 4-62
privileges 2-147
registering 2-147
symbol 4-62

cdrserver shadow column 2-79
cdrserver, replication column name 2-290
cdrsession

DBINFO function 4-111
cdrtime shadow column 2-79
cdrtime, replication column name 2-290
CEIL function 4-93, 4-95
Chaining synonyms 2-264
CHAR data type

defined 4-24
in INSERT 4-223
syntax 4-25

CHAR keyword
in CREATE EXTERNAL TABLE statement 2-161

CHAR_LENGTH function 4-127, 4-128
CHARACTER data type

syntax 4-25
Character data types

changing a column length or data type 2-98
fixed and varying length 4-24, 4-26
localized collation 4-28
multibyte characters 4-26
syntax 4-25

CHARACTER VARYING data type
syntax 4-25

X-6 IBM Informix Guide to SQL: Syntax

CHARACTER_LENGTH function 4-127, 4-128
CHARINDEX function 4-174
Check constraints

defining 2-281
reject files 2-169

CHECK keyword
in ALTER TABLE statement 2-90
in CREATE TABLE statement 2-281
in CREATE VIEW statement 2-373, 2-377

Child table 2-89, 2-107, 2-568
chmod utility 6-20
CHR function 4-170
CLASS keyword, in Routine Modifier segment 5-65
CLASS_ORIGIN keyword, in GET DIAGNOSTICS

statement 2-498
CLASSPATH environment variable 3-4, 6-23
Client APIs 4-221
CLIENT_LOCALE environment variable 4-212
CLIENT_LOCALE environment variables 4-28
CLIENT_TZ keyword

in SET ENVIRONMENT statement 4-81
CLIENTBINVAL data type 2-663, 4-24
CLOB data type

copying to a file 4-134
copying to a smart large object 4-135
creating from a file 4-132
default value 2-273
handle values 4-69
size limit 4-35
storing 2-101, 2-296
unloading 2-847, 2-849
unreferenced 2-844

CLOB keyword
in Data Type segment 4-33

CLOSE DATABASE statement 2-132
CLOSE statement

closing a collection cursor 2-131
closing a select cursor 2-130
closing an insert cursor 2-131
cursors affected by transaction end 2-132
syntax 2-129

CLUSTER keyword
in ALTER INDEX statement 2-59
in CREATE INDEX statement 2-197
in SET ENVIRONMENT statement 2-763

Cluster transaction scope 2-769
CLUSTER_TXN_SCOPE configuration parameter 2-769
CLUSTER_TXN_SCOPE environment option 2-769
CLUSTER_TXN_SCOPE keyword of SET ENVIRONMENT

statement 2-769
Clustered index 2-59, 2-197
Clustering, specifying support for 5-55
Code points, ASCII 4-226
Code set 2-730, 4-26
Code sets xxi
CODESET keyword

in SELECT statement 2-722
Collation

code-set order 4-28
in NLSCASE INSENSITIVE databases 4-28
localized 2-728, 4-28
with relational operators 4-226

COLLATION keyword, in SET COLLATION statement 2-728
Collection constructors

example 4-88, 4-89
restrictions 4-88

Collection cursor
closing 2-131
DECLARE for ESQL/C variable 2-399
declaring 3-34
defined 2-399
in SPL 3-34
inserting into 2-481, 2-605
INTO clause 2-481
opening 2-585

Collection data type 4-40
allocating memory 2-1
defining a column 4-40
deleting 2-410
element, searching for with IN 4-13
IN operator 4-13
LIST 4-40
loading 2-563
MULTISET 4-40
returning number of elements 4-106
selecting from 2-678
SET 4-40
unloading 2-847
updating 5-11

COLLECTION keyword
in ALLOCATE COLLECTION statement 2-1
in DEALLOCATE COLLECTION statement 2-383
untyped collection variable 2-678

Collection Subquery segment 4-3
Collection variable

accessing 5-10
accessing values 5-10
associating cursor with 2-399
cursor for 2-481
deallocating memory for 2-383
in SELECT statement 2-678
manipulating values 5-11
opening a cursor 2-585
selecting from 2-678
selecting, inserting elements 2-399
untyped 2-1, 2-383
updating 2-481, 5-11
with DESCRIBE INPUT statement 2-420
with DESCRIBE statement 2-416

Collection variable)
cursor for 3-34

Collection-derived table 5-4
collection cursor 2-401, 2-481, 2-605
collection variables with 5-10
FOREACH statement 3-35
in SELECT statement 5-10
INSERT statement with 2-401, 2-557
ROW data types

selecting fields 2-679
row types in 5-7
row variables with 5-14
SELECT statement with 2-678

fields from row variable 2-679
TABLE keyword 5-4, 5-10, 5-14
UPDATE statement with 2-867, 5-10, 5-14
where allowed 5-14

Collection-Derived Table segment 5-4
Collections

accessing a nested collection 5-14
accessing elements 5-5
allocating memory 2-1
constructors 4-88
deleting elements from 2-410

Index X-7

Collections (continued)
example of deleting elements 5-12
example of inserting elements 5-14
example of updating 5-13
generating values for 4-88
inserting values into 2-552
nested 4-209
restrictions when accessing elements 5-7
restrictions when defining 4-41
restrictions with inserting null values 2-552
selecting from 2-678
specifying literal values 4-208
untyped 2-1
updating 2-861

Colon symbol (:)
cast operator (::) 4-62
DATETIME separator 4-210
INTERVAL separator 4-214
with database qualifier 5-17

Column alias
in Projection clause 2-669
in SELECT statement 2-669

Column definition clause 2-270, 2-272
Column expression 2-720
COLUMN keyword

in ALTER TABLE statement 2-91, 2-100
in CREATE TABLE statement 2-270

COLUMN keyword, in RENAME COLUMN statement 2-610
Column name

alias 2-709
alias in FROM clause of SELECT 2-672
dot notation 4-65
using functions as names 5-26, 5-27
using keywords as names 5-27

Column substring 4-68
Column-level encryption 2-762, 4-117
Columns

adding 2-81
adding a NOT NULL constraint 2-99
adding a PRIMARY KEY constraint 2-99
changing the data type 2-99
check constraints 2-281
defining as primary key 2-277
distribution statistics 2-872
dropping 2-93, 2-94
expression 2-666, 4-64
inserting into 2-547
modifying with ALTER TABLE 2-95
number, effect on triggers 2-338
order in Projection list 2-658
primary or foreign key 2-277
privileges 2-507
projection 4-65
referenced and referencing 2-278
removing a NOT NULL constraint 2-99
renaming 2-610
shadow columns 2-79
specifying a subscript 2-714, 4-68
virtual 2-376

COLUMNS keyword, in INFO statement 2-544
COMBINE keyword

in CREATE AGGREGATE statement 2-144
Comma (,) symbol in pathnames 4-133
Command file 1-3
Comment symbol

braces ({ }) 1-3
double hyphen (--) 1-3

Comment symbol (continued)
in application programs 1-3
in optimizer directives 5-36
in prepared statements 2-592
slash and asterisk (/* */) 1-3

COMMIT WORK statement
in ANSI-compliant databases 2-135
in non-ANSI databases 2-134
syntax 2-133

COMMITTED keyword
in SET ENVIRONMENT statement 2-763, 2-780, 2-783
in SET ISOLATION statement 2-796, 2-799
in SET TRANSACTION statement 2-823

Committed Read isolation level 2-780, 2-783, 2-799
COMMITTED READ keywords

in SET ENVIRONMENT statement 2-763, 2-780, 2-783
in SET ISOLATION statement 2-796

COMMITTED READ setting, of USELASTCOMMITTED
configuration parameter 2-799

Common Language Runtime (CLR) application 3-4
Compacted index 2-208
Companion functions 2-464, 5-67
Compare support function 2-220
Complete-connection level settings

of SET EXPLAIN 2-792
of SET ISOLATION 2-798
of SET LOCK MODE 2-805

Complex data type
invalid in distributed queries 2-663
loading element values 2-563
unloading 2-850

Complex numbers 4-32
Complex table expression 2-674
Complex view 2-357
compliance with standards xxxv
COMPONENT keyword

in ALTER SECURITY LABEL COMPONENT
statement 2-64

in CREATE SECURITY LABEL COMPONENT
statement 2-250

in CREATE SECURITY LABEL statement 2-248
in DROP SECURITY statement 2-442
in RENAME SECURITY statement 2-613

COMPONENTS keyword
in CREATE SECURITY POLICY statement 2-254

Composite key 2-288
Compound assignment 3-40
CONCAT function 4-156
CONCAT() operator function 4-61
Concatenation operator (||) 4-44, 4-61
Concurrency

with CREATE INDEX 2-216
with DROP INDEX 2-433
with SET ENVIRONMENT statement 2-780, 2-783
with SET ISOLATION 2-796
with SET TRANSACTION 2-824
with START VIOLATIONS TABLE 2-830

CONCURRENT keyword, in CONNECT statement 2-135
Condition segment

BETWEEN keyword 4-10
DELETING 4-14
INSERTING 4-14
IS NOT NULL 4-13
IS NULL 4-13
join conditions 2-694
keywords

ALL 4-21

X-8 IBM Informix Guide to SQL: Syntax

Condition segment (continued)
keywords (continued)

ANY 4-21
EXISTS 4-20
LIKE 4-15
MATCHES 4-15
NOT 4-15
SOME 4-21

null values 4-22
SELECTING 4-14
subquery in SELECT 4-18
syntax 4-5
UPDATING 4-14

Conditional expressions
CASE 4-69
DECODE 4-69
NVL 4-69

Conditions
comparison 4-7, 4-8
IN operator 4-11
NOT IN operator 4-11

Configuration parameters
ALLOW_NEWLINE 4-221
AUTO_READAHEAD 2-766
AUTO_REPREPARE 2-10, 2-587, 2-600, 2-880
AUTO_STAT_MODE 2-782, 2-873
AUTO_STAT_MODEr 2-766
CLUSTER_TXN_SCOPE 2-769
DATASKIP 2-748
DB_LIBRARY_PATH 5-74
DBCREATE_PERMISSION 2-150
DBSERVERALIASES 2-135, 2-411, 2-554, 2-665, 2-862, 6-25
DBSERVERNAME 2-411, 2-554, 2-665, 2-862, 4-80
DBSPACETEMP 2-327, 2-721
DEADLOCK_TIMEOUT 2-433
DEF_TABLE_LOCKMODE 2-116, 2-318, 2-568, 2-799
DEFAULTESCCHAR 2-164, 2-770
DELAY_APPLY 2-769
DELAY_APPLY configuration parameter 2-769
DIRECTIVES 5-35
DRINTERVAL 2-772
DS_MAX_QUERIES 2-775
DS_NONPDQ_QUERY_MEM 2-713
DS_TOTAL_MEMORY configuration parameter 2-775
EXPLAIN_STAT 2-789
EXT_DIRECTIVES 2-650, 2-770, 5-49
FILLFACTOR 2-208
HDR_TXN_SCOPE 2-772
IFX_EXTEND_ROLE 2-183, 2-193, 2-516, 2-521, 2-629,

2-633, 6-10, 6-15
JVPCLASSPATH 6-22
LOCKS 2-427, 2-567
MAX_PDQPRIORITY 2-775, 2-811
OPT_GOAL 5-47
OPTCOMPIND 2-818, 5-43
PN_STAGEBLOB_THRESHOLD 2-301
SBSPACENAME 2-296, 3-1, 3-3, 3-4, 4-122, 4-123, 6-15
SEQ_CACHE_SIZE 2-71, 2-261
SQL_LOGICAL_CHAR 2-82, 2-98, 3-23
STACKSIZE 5-70, 6-10
STATCHANGE 2-766, 2-782
STMT_CACHE 2-818
STMT_CACHE_HITS 2-820
STMT_CACHE_NOLIMIT 2-820
STMT_CACHE_SIZE 2-820
STOP_APPLY 2-769, 2-803
STOP_APPLY configuration parameter 2-769

Configuration parameters (continued)
SYSSBSPACENAME 2-76, 2-293, 2-872
TEMPTAB_NOLOG 2-326
UPDATABLE_SECONDARY 2-803
USELASTCOMMITTED 2-566, 2-783, 2-799, 2-823
USEOSTIME 4-81
USERMAPPING 2-122, 2-156, 2-533
USTLOW_SAMPLE 2-785

Conflict resolution 2-79
CONNECT BY clause

Hierarchical clause 2-696
in SELECT statement 2-701

CONNECT keyword 2-505
in REVOKE statement 2-621
in SELECT statement 2-701

Connect privilege
granting 2-505
revoking 2-621

CONNECT statement 2-135, 2-776
CONNECT_BY_ISLEAF keyword

in SELECT statement 2-703
CONNECT_BY_ROOT operator 2-703
CONNECTION keyword

in CREATE TRUSTED CONTEXT statement 2-366
CONNECTION keyword, in SET CONNECTION

statement 2-731
Connection URL 6-27
CONNECTION_NAME keyword, in GET DIAGNOSTICS

statement 2-498
Connections

active 2-423, 2-733
closing 2-132
context 2-421, 2-732
current 2-135, 2-423, 2-734
default 2-140, 2-422, 2-734
dormant 2-135, 2-421, 2-732
explicit 2-141, 2-427
implicit 2-132, 2-141, 2-150, 2-381, 2-422, 2-734
INFORMIXCONRETRY environment variable 2-776
INFORMIXCONTIME environment variable 2-776
returning connection names 2-500
setting session properties 6-8
single-threaded applications 2-733
specifying connection names 2-139, 2-734

considerations for MERGE 2-577
Consistency checking 2-79
Constant expression 4-76

in SELECT 2-667
inserting with PUT 2-603

CONSTRAINT keyword
in ALTER TABLE statement 2-86, 2-103, 2-104, 2-113
in CREATE TABLE statement 2-283

Constraints
adding foreign key 2-107
adding primary-key 2-113
adding referential 2-113
adding to a column with data 2-100
adding unique 2-113
adding with ALTER TABLE 2-103, 2-104
affected by dropping a column from table 2-94
checking 2-359, 2-568, 2-825
detached checking 2-289
disabled 2-103, 2-284, 2-746
dropping 2-113
enabled 2-103, 2-284
encountering violations while adding 2-113
filtering 2-284

Index X-9

Constraints (continued)
filtering to violations table 2-746
foreign key 2-110, 2-278, 2-634
limit on size 2-285
mode 2-110, 2-284
modifying columns that have constraints 2-95
multiple-column 2-285
name 2-283
NOT NULL 2-275
NOT NULLy 2-277
number of columns allowed 2-285
primary key 2-277
privileges needed to create 2-113
referential 2-107, 2-110, 2-278, 2-837
renaming 2-612
restrictions 2-86
single-column 2-274
suspending validation 2-110
system catalog tables 2-283
transaction mode 2-825
validating 2-106, 2-743

CONSTRAINTS keyword
in SET CONSTRAINTS statement 2-735
in SET Database Object Mode statement 2-739, 2-740
in SET Transaction Mode statement 2-825

constrid column 2-23
Constructors

functions
collections 4-88
row 4-87

CONTEXT keyword
in CREATE TRUSTED CONTEXT statement 2-366
in RENAME TRUSTED CONTEXT statement 2-616

CONTEXT keywords
in ALTER TRUSTED CONTEXT statement 2-118

CONTINUE keyword
in WHENEVER statement 2-885

CONTINUE statement 3-13
Coordinated Universal Time (UTC) 4-114, 4-115
Correlated subquery 2-674

defined 4-18
Correlation name 2-673

declaring 2-187, 2-231, 2-345
in routines 2-356
qualifying values 2-353
scope of reference 2-352

COS function 4-150, 4-151
COSH function 4-151
COSTFUNC keyword, in Routine Modifier segment 5-63,

5-65
COUNT DISTINCT function 4-198
COUNT field

in ALLOCATE DESCRIPTOR statement 2-3
with DESCRIBE INPUT statement 2-419
with DESCRIBE statement 2-415

COUNT function
defined 4-197
restriction with CREATE TRIGGER statement 2-352
syntax 4-193

COUNT keyword
in GET DESCRIPTOR statement 2-488
in SET DESCRIPTOR statement 2-753

COUNT UNIQUE function 4-198
CPU usage cost 5-68
CPU VP class 5-65, 5-66
CRCOLS keyword

in ALTER TABLE statement 2-79

CRCOLS keyword (continued)
in CREATE TABLE statement 2-265, 2-289, 2-290

CREATE ACCESS_METHOD statement 2-143
CREATE AGGREGATE statement 2-144
CREATE CAST statement 2-147
CREATE DATABASE statement

ANSI compliance 2-152
NLSCASE case sensitivity 2-153
syntax 2-150
using with PREPARE 2-150

CREATE DEFAULT USER statement 2-156
CREATE DISTINCT TYPE statement 2-157
CREATE EXTERNAL TABLE statement 2-160

adding a newline 2-180
adding an end-of-line character 2-179
delimited format example 2-173, 2-175
fixed format example 2-176
refreshing a data warehouse table 2-177

CREATE FUNCTION FROM statement 2-193
CREATE FUNCTION statement 2-183
CREATE INDEX statement

cluster with fragments 2-197
composite indexes 2-201
disabled indexes 2-216
index-type options 2-197
sort order 2-202
specifying object modes 2-214
storage options 2-209

CREATE OPAQUE TYPE statement 2-218
CREATE OPCLASS statement 2-222
CREATE PROCEDURE FROM statement 2-236
CREATE PROCEDURE statement 2-226
CREATE ROLE statement 2-237
CREATE ROUTINE FROM statement 2-239
CREATE ROW TYPE statement 2-241
CREATE SCHEMA statement 2-245
CREATE SECURITY LABEL COMPONENT statement 2-250
CREATE SECURITY LABEL statement 2-248
CREATE SECURITY POLICY statement 2-254
CREATE SEQUENCE statement 2-257
CREATE SYNONYM statement 2-261
CREATE TABLE statement

access-method option 2-316
column definition clause 2-270
constraints

check 2-281
composite keys 2-285, 2-288
defining 2-274
distinct 2-276
example 2-287
NOT NULL 2-273
NULL 2-276
restrictions 2-275
unique 2-276

creating composite columns 2-285
defining constraints 2-285
fragmenting

by expression 2-301
round-robin 2-301

locking options 2-317
newline example 2-180
PUT clause 2-296
specifying cascading deletes 2-281
specifying column-default values 2-272
specifying storage location 2-295
statistics options 2-293
syntax 2-265

X-10 IBM Informix Guide to SQL: Syntax

CREATE TABLE statement (continued)
WITH ROWIDS keywords 2-301

CREATE TEMP TABLE statement 2-321
column-level constraints 2-324

CREATE TRIGGER statement 2-329
CREATE TRUSTED CONTEXT statement 2-366
CREATE USER statement 2-368
CREATE VIEW statement 2-373, 2-674
CREATE XADATASOURCE statement 2-378
CREATE XADATASOURCE TYPE statement 2-380
Creation-time settings of environment variables 2-349
Cross joins 2-681
CROSS keyword in SELECT statement 2-684, 2-685
Cross-database DML operations 2-360, 2-411, 2-554, 2-577,

2-665, 2-862
Cross-server DML operations 2-360, 2-862
CRPT audit-event mnemonic 4-117
CSN encryption 4-116
CTRL-J

newline
preserving in quoted strings 4-221

Culture-specific conventions xxi
Current database, name returned by DBINFO 4-112
Current database, specifying with DATABASE 2-381
Current date 4-81
CURRENT DORMANT keywords, in SET CONNECTION

statement 2-731
CURRENT function

as an argument 4-81
as constant expression 4-76
in ALTER TABLE statement 2-83
in Condition segment 4-11
in CREATE TABLE statement 2-272
in DEFINE statement 3-17
in INSERT statement 2-554
in WHERE condition 4-81

CURRENT keyword
in DELETE statement 2-405
in DISCONNECT statement 2-423
in FETCH statement 2-474
in SET CONNECTION statement 2-731
in UPDATE statement 2-865

CURRENT_ROLE operator
defined 4-79
syntax 4-76
usage 4-79

CURRENT_USER function
in ALTER TABLE statement 2-83
in DEFINE statement 3-17
in INSERT statement 2-554

CURRENT_USER operator
syntax 4-76

CURRVAL operator 2-257, 4-84, 4-85
Cursor

activating with OPEN 2-581
affected by transaction end 2-132
characteristics 2-395
closing 2-129
closing with ROLLBACK WORK 2-646
declaring 2-386
direct 2-131
for update

restricted statements 2-398
using in ANSI-mode databases 2-398
using in non-ANSI databases 2-398

freeing automatically with SET AUTOFREE 2-726
implicit 3-30

Cursor (continued)
manipulation statements 1-8
opening 2-582, 2-583
prepared statement with 2-399
read-only

restricted statements 2-398
using in ANSI-mode databases 2-398
using in non-ANSI databases 2-398
where required 2-719

retrieving values with FETCH 2-474
sequence of program operations 2-390
sequential 3-30
sqlca.sqlcode value 4-106
stability 2-821
statement identifier with 2-399
types of 2-581
with INTO keyword in SELECT 2-670
with transactions 2-402

Cursor function 3-30, 5-63
CURSOR keyword

in DECLARE statement 2-386, 2-403
in SET ENVIRONMENT statement 2-763
in SET ISOLATION statement 2-796

Cursor Stability isolation level 2-780, 2-801
CURSOR STABILITY keywords

in SET ENVIRONMENT statement 2-763, 2-780
in SET ISOLATION statement 2-796

CYCLE keyword
in ALTER SEQUENCE statement 2-71
in CREATE SEQUENCE statement 2-260

D
Dangling child records 2-407
Data

access statements 1-9
confidentiality 2-760
data definition statements 1-6
data manipulation statements 1-8
encryption 4-116
inserting with LOAD 2-558
integrity statements 1-8

Data buffering 2-484
data column of sysprocbody table 4-117
Data distributions

confidence level 2-876
on temporary tables 2-869
refreshing only stale statistics 2-76, 2-293, 2-782, 2-873
STATCHANGE threshold for selectively updating 2-76,

2-293, 2-782, 2-873
DATA field

in SET DESCRIPTOR statement 2-755
with DESCRIBE INPUT statement 2-419
with DESCRIBE statement 2-415

DATA keyword
in GET DESCRIPTOR statement 2-488

Data replication 2-79
Data type segment 4-23
Data types 2-577, 4-23

alignment 2-159
casting 2-147, 4-62
changing with ALTER TABLE 2-99
collection 4-40
complex 4-38
considerations for INSERT 2-551, 4-223
conversion costs 4-223
distinct 4-37

Index X-11

Data types (continued)
NLS types (NCHAR and NVARCHAR) 4-28
opaque 2-218
promotion 4-118
representation 2-159
returned by UDFs 5-59
simple large object 4-34, 5-60
smart large object 4-35
specifying with CREATE VIEW 2-373
varying-length 4-26

Data warehouse tables
initial load 2-177
loading from other database servers 2-178
refreshing tables

periodically 2-177
Data-integrity violations 2-828, 2-840
Data-type promotion 4-156, 4-172
Database administrator 2-505
Database administrator (DBA)

granting privileges 2-502
revoking privileges 2-621

DATABASE keyword
in CLOSE DATABASE statement 2-132
in CREATE DATABASE statement 2-150
in DATABASE statement 2-381
in DROP DATABASE statement 2-427
in RENAME DATABASE statement 2-611

Database object
naming 5-16
owner 5-49

Database object mode
for referential constraints 2-777
for triggers 2-334, 2-744
privileges required 2-739
specifying 2-737

Database Object Name segment 5-16
Database Server Administrator 5-20
Database Server Administrator (DBSA) 2-183, 2-237, 2-431,

2-436, 2-440, 2-521, 2-522, 2-633
Database servers

returning the SQL identifier 4-80
DATABASE statement

determining database type 2-382
exclusive mode 2-383
specifying current database 2-381
SQLWARN after 2-382
syntax 2-381

Database statements 2-141
database-level 2-505
Database-level privilege 2-522

not available for roles 2-621
revoking 2-621

Databases
ANSI-compliant 2-382
closing with CLOSE DATABASE 2-132
data warehousing 2-269
default isolation levels 2-801, 2-824
dropping 2-427
external 5-17
global variables 3-16
isolation level 2-820
lock 2-383
naming conventions 5-15
nonlogging 2-824
nonlogging database 2-358
OLTP 2-269
opening in exclusive mode 2-383

Databases (continued)
optimizing queries 2-869
read-only mode 2-719
remote 5-16
renaming 2-611
running in secondary mode 2-382

DataBlade API 5-68
DataBlade API (LIBDMI) 4-221
DataBlade Developers Kit 5-74
DataBlade Module Developer's Kit (DBDK) 6-10
DataBlade module management functions 6-10
DataBlade module registration 6-10
DataBlade modules 2-226
DATAFILES keyword

in CREATE EXTERNAL TABLE statement 2-163
in SELECT statement 2-720

DATASKIP configuration parameter 2-748
DATASKIP keyword

in SET DATASKIP statement 2-748
DATE data type

declaration syntax 4-36
functions 4-137
literal DATE values 2-273
precedence of environment variables 4-212
precedence of user format specifications 4-212

DATE function 4-137, 4-139
DATETIME data type 4-42, 4-210

as quoted string 4-222
cast to Coordinated Universal Time (UTC) 4-115
declaration syntax 4-36
functions 4-137
in INSERT 4-223
literal values 4-83
precedence of user format specifications 4-212

DATETIME data types 4-210
DATETIME Field Qualifier segment 4-42
DATETIME keyword, in Literal DATETIME 4-210
datetime.h header file 2-758
DAY function 4-137, 4-140
DAY keyword 4-42, 4-206

for INTERVAL 4-214
in DATETIME Field Qualifier 4-42
in Literal DATETIME 4-210

Day of the week 4-140
DB_LIBRARY_PATH configuration parameter 5-74
DB_LOCALE environment variable 2-153, 2-382, 2-728, 2-789,

5-23
DB_LOCALE environment variables 4-28
DBA keyword 2-505

in CREATE FUNCTION statement 2-183
in CREATE PROCEDURE statement 2-226
in REVOKE statement 2-621

DBA privilege
with CREATE ACCESS_METHOD statement 2-143
with CREATE SCHEMA 2-245
with DROP DATABASE 2-427
with DROP TRIGGER statement 2-449
with REVOKE statement 2-621

DBA-privileged UDR 2-186, 2-230
DBA. 2-505
DBACCNOIGN environment variable 2-127
DBANSIWARN environment variable 2-152, 2-247, 2-265,

2-321, 2-373
DBBLOBBUF environment variable 2-561, 2-849
DBCENTURY environment variable 2-19, 2-349, 2-559, 4-210
DBCREATE_PERMISSION configuration parameter 2-150

X-12 IBM Informix Guide to SQL: Syntax

DBDATE
environment variable 4-145

DBDATE environment variable 2-273, 2-847, 4-98, 4-212,
4-223

DBDATE keyword
in CREATE EXTERNAL TABLE statement 2-164

DBDELIMITER environment variable 2-563, 2-851
dbexport utility 2-308, 2-803
dbhostname option of DBINFO 4-112
DBINFO function 4-107, 4-111
DBMONEY environment variable 2-559, 2-847, 4-216
DBMONEY keyword

in CREATE EXTERNAL TABLE statement 2-164
dbname option of DBINFO 4-112
DBPATH environment variable 2-138, 2-141
DBSA group 2-522
DBSA keyword

in ALTER USER statement 2-122
in CREATE DEFAULT USER statement 2-156
in CREATE USER statement 2-368

DBSA. 2-521
dbschema utility 2-71, 2-308
DBSECADM keyword

in GRANT statement 2-524
in REVOKE statement 2-636

DBSECADM role 2-23, 2-366, 2-814
dbsendrecv data type 2-220
DBSERVERALIASES configuration parameter 2-135, 2-411,

2-554, 2-665, 2-862, 6-25
DBSERVERNAME configuration parameter 2-411, 2-554,

2-665, 2-862
DBSERVERNAME function

constant expression 4-80
in ALTER TABLE statement 2-83
in Condition segment 4-11
in CREATE TABLE statement 2-272
in DEFINE statement 3-17

dbspace
renaming with onspaces 2-6
the database dbspace 5-60

dbspaces
number 4-126
skipping if unavailable 2-748

DBSPACETEMP configuration parameter 2-327, 2-721
DBSPACETEMP environment variable 2-213, 2-327, 2-721,

2-880, 3-24
DBSSO keyword

in ALTER USER statement 2-122
in CREATE DEFAULT USER statement 2-156
in CREATE USER statement 2-368

DBTIME
environment variable 4-145

DBTIME environment variable 2-559, 2-847, 4-212
DBUPSPACE environment variable 2-877, 2-880
DDL (Data Definition Language) statements

listed 1-6
Deadlock 2-481
Deadlock detection 2-805
DEADLOCK_TIMEOUT configuration parameter 2-433
DEADLOCK_TIMEOUT setting in ONCONFIG 2-805
DEALLOCATE COLLECTION statement 2-383
DEALLOCATE DESCRIPTOR statement 2-385
DEALLOCATE ROW statement 2-386
DEBUG environment variable 6-6
DEBUG keyword

in SET DEBUG FILE statement 2-750
Debugging SPL procedures 3-4

Debugging SPL routines 3-1, 3-3
Debugging sysdbopen() routines 6-6
DECIMAL data type 4-30, 4-32

literal values 4-216
Decimal point (.)

DATETIME separator 4-210
INTERVAL separator 4-206
literal numbers 4-215, 4-223

declaration syntax 4-33
Declarative statements 3-48
DECLARE statement

Cursor
select hold examples 2-396

cursor characteristics 2-395
CURSOR keyword 2-395
cursors with prepared statements 2-399
cursors with transactions 2-402
FOR UPDATE keywords 2-391
function cursor 2-390
insert cursor 2-394, 2-397
restrictions with SELECT with ORDER BY 2-715
SCROLL keyword 2-396
select cursor 2-390
syntax in ESQL/C routines 2-386
syntax in SPL routines 2-403
updating specified columns 2-392
WHERE CURRENT OF clause 2-391
WITH HOLD keywords 2-396
with SELECT statement 2-671

DECODE function 4-74
DECRYPT_BINARY function 4-122
DECRYPT_CHAR function 4-121
DEF_TABLE_LOCKMODE configuration parameter 2-116,

2-568, 2-799
Default code set 4-170
Default connection 2-140, 2-422
Default database server 2-140, 2-422, 2-500
Default escape character 2-770, 2-851
Default isolation level 2-824
DEFAULT keyword

in ALTER TABLE statement 2-83
in ALTER TRUSTED CONTEXT statement 2-118
in CONNECT statement 2-135
in CREATE DEFAULT USER statement 2-156
in CREATE EXTERNAL TABLE statement 2-164
in CREATE TABLE statement 2-272
in CREATE TRUSTED CONTEXT statement 2-366
in CREATE USER statement 2-368
in DISCONNECT statement 2-422
in GRANT statement 2-520
in REVOKE statement 2-619, 2-632
in SET CONNECTION statement 2-731, 2-734
in SET ENVIRONMENT statement 2-763, 2-770, 2-779
in SET OPTIMIZATION statement 2-809
in SET PDQPRIORITY statement 2-811
in SET ROLE statement 2-814

Default locale xxi
Default role 2-237, 2-520, 2-632
DEFAULT ROLE keywords

in ALTER TRUSTED CONTEXT statement 2-118
in CREATE TRUSTED CONTEXT statement 2-366

Default user ID 2-140
DEFAULT_ATTACH environment variable 2-211
DEFAULT_ROLE operator

defined 4-79
syntax 4-76
usage 4-79

Index X-13

DEFAULTESCCHAR configuration parameter 2-164, 2-770
DEFAULTESCCHAR keyword in SET ENVIRONMENT

statement 2-770
Deferred extent allocation 2-316
DEFERRED keyword

in SET CONSTRAINTS statement 2-735
WITH ERROR keywords

in SET CONSTRAINTS statement 2-735
WITHOUT ERROR keywords

in SET CONSTRAINTS statement 2-735
DEFERRED keyword, in SET Transaction Mode

statement 2-825
DEFERRED_PREPARE keyword

in SET DEFERRED_PREPARE statement 2-751
Deferred-Prepare feature 2-751
DEFINE keyword, in Statement Block segment 5-78
DEFINE statement

default value clause 3-17
syntax 3-14

Degrees
converting degrees to radians 4-154
converting radians to degrees 4-154

DEGREES function 4-150
DELETE CASCADE keywords

in ALTER TABLE statement 2-89
Delete clause in MERGE statement 2-568
DELETE keyword 2-539

in CREATE TABLE statement 2-278
in CREATE TRIGGER statement 2-337, 2-362
in GRANT statement 2-507
in MERGE statement 2-568
in REVOKE FRAGMENT statement 2-644
in REVOKE statement 2-623

Delete privilege 2-507, 2-623
DELETE statements

and triggers 2-350
cascading 2-407
collection columns with 2-410
cursor with 2-391
distributed 2-411
OUT parameter 4-192
syntax 2-405
with SELECT . . . FOR UPDATE 2-717
with update cursor 2-410
within a transaction 2-405

Delete trigger 2-335, 2-362
Deleting from a specific table in a table hierarchy 2-407
DELETING operator 2-187, 4-14
DELIMIDENT environment variable 2-137, 2-405, 2-845, 3-1,

4-221, 4-222, 5-23, 5-25
Delimited format

loading 2-175
unloading 2-179

Delimited identifiers
in database server names 5-18
multibyte characters 5-25
non-ASCII characters 5-25

DELIMITED keyword
in CREATE EXTERNAL TABLE statement 2-164

Delimiter
for LOAD input file 2-563
specifying with UNLOAD 2-851

DELIMITER keyword
in CREATE EXTERNAL TABLE statement 2-164
in LOAD statement 2-558
in SELECT statement 2-722
in UNLOAD statement 2-846

DELUXE keyword
in CREATE EXTERNAL TABLE statement 2-164

DELUXE mode load 2-174
DES3 (Triple Data Encryption Standard) 4-123
DESC keyword

in CREATE INDEX statement 2-198
in SELECT statement 2-711, 2-714
order with nulls 2-714

Descending sequence 2-71, 2-260
DESCRIBE INPUT statement 2-417
DESCRIBE statement

collection variable with 2-416
distinct data type with 2-492
opaque data type with 2-492
relation to GET DESCRIPTOR 2-490
syntax 2-412
with SET DESCRIPTOR 2-760

DESCRIPTOR keyword
in ALLOCATE DESCRIPTOR statement 2-2
in DEALLOCATE DESCRIPTOR statement 2-385
in DESCRIBE INPUT statement 2-419
in DESCRIBE statement 2-415
in EXECUTE statement 2-456, 2-460, 2-462
in FETCH statement 2-474
in GET DESCRIPTOR statement 2-488
in OPEN statement 2-581
in PUT statement 2-601

Descriptors of simple large objects 5-60
destroy() support function 2-220, 2-410, 2-448, 2-845
DETACH keyword, in ALTER FRAGMENT statement 2-20
Detached index 2-29, 2-212
Detached statement 2-728
Diagnostics area 2-493
DIAGNOSTICS keyword, in GET DIAGNOSTICS

statement 2-493
Diagnostics table

creating 2-828
declaring a name 2-830
default name 2-830
examples 2-841
filtering mode 2-746
how to stop 2-840
relationship to target table 2-833
relationship to violations table 2-833
restriction on dropping 2-448
schema 2-837

Direct cursor 2-131
DIRECTIVES configuration parameter 5-35
DIRECTIVES keyword, in SAVE EXTERNAL DIRECTIVES

statement 2-649
Dirty Read isolation level 2-216, 2-431, 2-433, 2-780, 2-783,

2-798
DIRTY READ keywords

in SET ENVIRONMENT statement 2-763, 2-780, 2-783
in SET ISOLATION statement 2-796

DIRTY READ setting, of USELASTCOMMITTED configuration
parameter 2-799

Disabilities, visual
reading syntax diagrams B-1

Disability B-1
DISABLE keyword

in ALTER TRUSTED CONTEXT statement 2-118
in CREATE TRUSTED CONTEXT statement 2-366

DISABLED keyword
in ALTER FRAGMENT statement 2-34
in ALTER TABLE statement 2-86, 2-104, 2-107
in CREATE INDEX statement 2-214

X-14 IBM Informix Guide to SQL: Syntax

DISABLED keyword (continued)
in CREATE TABLE statement 2-283, 2-284
in CREATE TRIGGER statement 2-334, 2-362
in SET AUTOFREE statement 2-726
in SET CONSTRAINTS statement 2-735
in SET Database Object Mode statement 2-741, 2-744
in SET DEFERRED_PREPARE statement 2-751
in SET INDEXES statement 2-795

DISCONNECT statement 2-421
DISK keyword

in CREATE EXTERNAL TABLE statement 2-163
Display labels

in CREATE VIEW statement 2-376
in Projection clause 2-668
in SELECT statement 2-668, 2-720

Distinct data types 4-37
base types 4-37
casting 2-159
casts and DROP TYPE 2-450
creating with CREATE DISTINCT TYPE 2-157
DESCRIBE with 2-492
distributed queries 2-663, 2-665, 4-37
dropping 2-450
dynamic SQL with 2-492
GET DESCRIPTOR with 2-492
in dynamic SQL 2-759
privileges 2-157, 2-512, 2-626
restrictions on source type 2-157
source data type 2-492, 2-759
Usage privilege 2-512
with SET DESCRIPTOR 2-759

DISTINCT keyword
aggregate scope qualifier 4-198
in ALTER TABLE statement 2-85, 2-104
in CREATE DISTINCT TYPE statement 2-157
in CREATE INDEX statement 2-197
in CREATE TABLE statement 2-274, 2-285
in CREATE TEMP TABLE statement 2-324, 2-325
in Expression segment 4-193, 4-204
in SELECT statement 2-662
in subquery 4-20

Distributed DML operations 2-411, 2-554, 2-862
Distributed queries 2-663, 2-665

cross-database queries 2-663
cross-server queries 2-665

Distributed Relational Database Architecture (DRDA) 6-25
Distribution bins 2-877
Distributions 2-877

dropping 2-875
privileges required to create 2-876

DISTRIBUTIONS keyword, in UPDATE STATISTICS
statement 2-868, 2-877

divide() operator function 4-56
Division (/) symbol, arithmetic operator 4-44
DML (Data Manipulation Language) statements 1-8
DOCUMENT keyword

in CREATE FUNCTION statement 2-183
in CREATE PROCEDURE statement 2-226

Dollar ($) symbol
in SQL identifiers 5-23
White space characters

delimited identifiers 5-23
Dollar ($) symbol

in MONEY values 4-145, 4-223
in prepared statements 2-592
in SQL identifiers 5-21
prefix for C variables 5-75

Dollar ($) symbol (continued)
prefix in pathnames 5-75

Dominant table 2-681
DORMANT keyword, in SET CONNECTION

statement 2-731
Dot notation 4-65
Dotted decimal format of syntax diagrams B-1
Double hyphen (--) comment indicator 1-3, 5-36
DOUBLE PRECISION data type 4-32
Double quotation marks (")

delimiting SQL identifiers 4-221
literal in a quoted string 4-222
quoted string delimiter 4-219, 4-222

DRDA application server 6-25, 6-27
DRDA client-server communication protocol 2-494, 2-577, 3-4
DROP ACCESS_METHOD statement 2-424
DROP AGGREGATE statement 2-425
DROP CAST statement 2-425
DROP CONSTRAINT keywords, in ALTER TABLE

statement 2-113
DROP CRCOLS keywords

in ALTER TABLE statement 2-79
DROP DATABASE statement 2-427
DROP DISTRIBUTIONS keywords, in UPDATE STATISTICS

statement 2-868
DROP ERKEY keywords

in ALTER TABLE statement 2-79
DROP FUNCTION statement 2-428
DROP INDEX statement 2-431
DROP keyword

in ALTER ACCESS_METHOD statement 2-5
in ALTER FRAGMENT statement 2-32
in ALTER FUNCTION statement 2-57
in ALTER PROCEDURE statement 2-60
in ALTER ROUTINE statement 2-62
in ALTER TABLE statement 2-79, 2-80, 2-81, 2-93, 2-100
in ALTER TRUSTED CONTEXT statement 2-118
in ALTER USER statement 2-122
in TRUNCATE statement 2-842
in UPDATE STATISTICS statement 2-868

DROP OPCLASS statement 2-434
DROP PARTITION keywords, in ALTER FRAGMENT

statement 2-32
DROP PROCEDURE statement 2-435
DROP REPLCHECK keywords

in ALTER TABLE statement 2-79
DROP ROLE statement 2-437
DROP ROUTINE statement 2-438
DROP ROW TYPE statement 2-440
DROP ROWIDS keywords

in ALTER TABLE statement 2-80
DROP SECURITY LABEL COMPONENT statement 2-442
DROP SECURITY LABEL statement 2-442
DROP SECURITY POLICY statement 2-442
DROP SECURITY statement 2-442
DROP SEQUENCE statement 2-444
DROP SPECIFIC FUNCTION statement 2-428
DROP SPECIFIC PROCEDURE statement 2-435
DROP STORAGE keywords, in TRUNCATE statement 2-844
DROP SYNONYM statement 2-445
DROP TABLE statement 2-446
DROP TRIGGER statement 2-449
DROP TRUSTED CONTEXT statement 2-450
DROP TYPE statement 2-450
DROP USE FOR keywords

in ALTER TRUSTED CONTEXT statement 2-118
DROP USER statement 2-451

Index X-15

DROP VERCOLS keywords
in ALTER TABLE statement 2-81

DROP VIEW statement 2-452
DROP XADATASOURCE statement 2-453
DROP XADATASOURCE TYPE statement 2-454
DS_MAX_QUERIES configuration parameter 2-775
DS_NONPDQ_QUERY_MEM configuration parameter 2-713
DS_TOTAL_MEMORY configuration parameter 2-775
Duplicate values

allowing or excluding 2-662, 2-724, 2-725
in a UNION ALL query 2-724, 2-725
in case-insensitive databases 2-663

Dynamic cursor names 2-386
Dynamic link library 5-20
Dynamic log feature 3-54
Dynamic management statement 1-9
Dynamic parameters 2-419
Dynamic routine-name specification 2-467

of SPL functions 2-467
of SPL procedures 2-474

E
EACH keyword, in CREATE TRIGGER statement 2-343,

2-348
East Asian locales 4-128
EBCDIC keyword

in SELECT statement 2-722
Element variable 3-34
ELIF keyword, in IF statement 3-37
ELSE keyword

in Expression segment 4-71, 4-72
in IF statement 3-37

Empty strings 2-690
ENABLE keyword

in ALTER TRUSTED CONTEXT statement 2-118
ENABLE keyword, in CREATE TRUSTED CONTEXT

statement 2-366
ENABLED keyword

CASCADE keyword
in ALTER TABLE statement 2-86

DELETE keyword
in ALTER TABLE statement 2-86

in ALTER FRAGMENT statement 2-34
in ALTER TABLE statement 2-86
in CREATE INDEX statement 2-214
in CREATE TABLE statement 2-283, 2-284
in CREATE TRIGGER statement 2-334, 2-362
in SET AUTOFREE statement 2-726
in SET CONSTRAINTS statement 2-735, 2-743
in SET Database Object Mode statement 2-741, 2-743,

2-744
in SET DEFERRED_PREPARE statement 2-751
in SET INDEXES statement 2-795
ON keyword

in ALTER TABLE statement 2-86
ENABLED NOVALIDATE mode 2-745
ENCRYPT_AES function 4-122
ENCRYPT_TDES function 4-123
Encrypted data 2-273, 4-116, 4-118
Encryption and decryption functions

DECRYPT_BINARY 4-122
DECRYPT_CHAR 4-121
ENCRYPT_AES 4-122
ENCRYPT_TDES 4-123
GETHINT 4-124
syntax 4-116

Encryption communication support module 2-760
Encryption communication support module (ENCCSM) 4-116
ENCRYPTION keyword

in SET ENCRYPTION PASSWORD statement 2-760
END EXCEPTION keywords, in ON EXCEPTION

statement 3-46
END FOR keywords, in FOR statement 3-27
END FOREACH keywords, in FOREACH statement 3-30
END FUNCTION keyword

in CREATE FUNCTION statement 2-183
END IF keywords, in IF statement 3-37
END keyword

in Expression segment 4-71, 4-72
in Statement Block segment 5-78

END PROCEDURE keywords
in CREATE PROCEDURE statement 2-226

END WHILE keywords, in WHILE statement 3-42, 3-58
Enterprise Replication

creating shadow columns 2-290, 2-291
ENVIRONMENT keyword

in SET ENVIRONMENT statement 2-763
in SET OPTIMIZATION statement 2-807, 2-809

Environment variable
DBCENTURY 4-210

Environment variables 4-81
ANSIOWNER 1-1, 2-644, 5-52
CLASSPATH 3-4, 6-23
CLIENT_LOCALE 4-28, 4-212
DB_LOCALE 2-153, 2-252, 2-382, 2-728, 4-28, 5-23
DBACCNOIGN 2-127
DBANSIWARN 2-152, 2-247, 2-373, 2-386
DBBLOBBUF 2-561, 2-849
DBCENTURY 2-19, 2-349, 2-559, 4-210
DBDATE 2-273, 2-559, 2-847, 4-98, 4-145, 4-212, 4-223
DBDELIMITER 2-563, 2-851
DBMONEY 2-559, 2-847, 4-145
DBPATH 2-141
DBSPACETEMP 2-213, 2-327, 2-721, 2-880
DBTIME 2-559, 2-847, 4-145
DBUPSPACE 2-877, 2-880
DEBUG 6-6
DEFAULT_ATTACH 2-211
DELIMIDENT 2-137, 2-405, 2-845, 4-221, 5-23, 5-25, 5-33
GL_DATE 2-273, 2-559, 2-847, 4-145, 4-212, 4-223
GL_DATETIME 2-551, 2-558, 2-559, 2-847, 4-145, 4-212,

4-213
GL_USEGLU 2-730
IFX_DEF_TABLE_LOCKMODE 2-116, 2-318, 2-799
IFX_DIRECTIVES 5-35
IFX_DIRTY_WAIT 2-566, 2-843
IFX_EXTDIRECTIVES 2-650, 2-770, 5-49
IFX_LONGID 5-21
IFX_MULTIPREPSTMT 2-721
IFX_NODBPROC 6-6
IFX_PAD_VARCHAR 4-26
IFX_TABLE_LOCKMODE 2-568
IFX_UPDDESC 2-414, 2-417
INFORMIXCONCSMCFG 2-763
INFORMIXCONRETRY 2-776
INFORMIXCONTIME 2-776
INFORMIXSERVER 2-140, 2-141, 4-80
NODBPROC 6-9
NODEFDAC 2-186, 2-230, 2-627
OPT_GOAL 5-47
OPTCOMPIND 2-763, 2-779, 2-818, 6-6
PATH 3-4
PDQPRIORITY 2-768, 2-811, 2-818

X-16 IBM Informix Guide to SQL: Syntax

Environment variables (continued)
SERVER_LOCALE 4-28
setting with SYSTEM statement 3-56
STMT_CACHE 2-818
USE_DTENV 2-551, 2-558, 4-212
USETABLENAME 2-72, 2-446, 2-447, 2-843

Environment variablesDB_LOCALE
DB_LOCALE 2-789

Equal sign (=)
assignment operator 2-860
relational operator 4-224, 4-225

equal() operator function 2-276, 4-225
ERKEY keyword

in ALTER TABLE statement 2-79
in CREATE TABLE statement 2-265, 2-291

Error checking
continuing after error in SPL routine 3-49
Deadlock 3-54
error status with ON EXCEPTION 3-46
Long transaction rollback 3-54
with SYSTEM 3-54
with WHENEVER 2-887

ERROR keyword
in ALTER TABLE statement 2-86
in CREATE INDEX statement 2-214
in CREATE TABLE statement 2-283, 2-284
in SET CONSTRAINTS statement 2-735
in SET Database Object Mode statement 2-741
in SET INDEXES statement 2-795
in WHENEVER statement 2-885
synonym for SQLERROR 2-888

ESCAPE keyword
in Condition segment 4-7, 4-15
in CREATE EXTERNAL TABLE statement 2-164
in SELECT statement 2-722
with LIKE keyword 2-692, 4-17
with MATCHES keyword 2-692, 4-18

esql compiler 5-36
ESQL/C

collection cursor with FETCH 2-481
collection cursor with PUT 2-605
cursor example 2-396
deallocating collection-variable memory 2-383
deallocating row-variable memory 2-386
error checking for aggregate functions 4-203
inserting collection variables with 2-552
inserting row variables 2-553, 2-554
SQL statements valid only in ESQL/C 4-61
statements valid only in ESQL/C 4-61

ESQL/C API 4-221
EXCEPT operator

in SELECT statement 2-724
Exception handler 5-81
EXCEPTION keyword

in GET DIAGNOSTICS statement 2-498
in ON EXCEPTION statement 3-46
in RAISE EXCEPTION statement 3-50

Excess-65 format 4-31
Exclamation point (!) 4-224

in smart-large-object filename 4-134
EXCLUSIVE keyword

in DATABASE statement 2-381
in LOCK TABLE statement 2-564

Exclusive lock mode 2-194, 2-216, 2-433, 2-564, 2-780, 2-783,
2-799

Executable file location 5-74
Executable statements 3-48

EXECUTE FUNCTION keywords 3-30
in DECLARE statement 2-386
in INSERT statement 2-556
in Statement Block segment 5-78

EXECUTE FUNCTION statement 2-464
and triggers 2-350
how it works 2-464
preparing 2-466
syntax 2-462

EXECUTE IMMEDIATE statement 2-467
restricted statement types 2-468

EXECUTE ON keywords
in GRANT statement 2-513, 2-515
in REVOKE statement 2-627

Execute privilege 2-515
EXECUTE PROCEDURE keywords 3-30

in DECLARE statement 2-386
in INSERT statement 2-556
in Statement Block segment 5-78

EXECUTE PROCEDURE statement 3-30
in triggered action 2-350
syntax 2-471

EXECUTE statement
INTO clause 2-456
INTO SQL DESCRIPTOR clause 2-458
parameterizing a statement 2-460
returned SQLCODE values 2-460
syntax 2-455
USING DESCRIPTOR clause 2-462
with USING keyword 2-460

EXEMPTION keyword
in GRANT statement 2-526
in REVOKE statement 2-637

EXISTS keyword
beginning a subquery 2-693
in Condition segment 4-20
in Condition subquery 4-20

EXIT statement 3-25
EXP function 4-125
EXPLAIN keyword

in optimizer directives 5-47
SET EXPLAIN statement 2-785

explain out location 2-789
explain output 2-788
Explain output 2-792
explain output file 2-686, 2-787, 2-789
EXPLAIN_SQL routine 6-15
EXPLAIN_STAT configuration parameter 2-789
EXPLICIT keyword

in CREATE CAST statement 2-147
Exponential function 4-125
Exponential number 4-216
Export support function 2-220
export() support function 2-847
Exportbinary support function 2-220
exportbinary() support function 2-847
EXPRESS keyword

in CREATE EXTERNAL TABLE statement 2-164
Express-mode load

procedure 2-173
Expression

Boolean 4-7, 4-8
casting 4-62
constant 4-76
list of 4-46
ordering by 2-715
smart large objects in 4-69

Index X-17

Expression Fragment Clause 2-314
EXPRESSION keyword

in ALTER FRAGMENT statement 2-25, 2-28
in CREATE INDEX statement 2-212
in CREATE TABLE statement 2-300

Expression segment
aggregate expressions 4-193
cast expressions 4-62
column expressions 4-64
combined expressions 4-56
list of expressions 4-46
syntax 4-44

EXT_DIRECTIVES configuration parameter 2-650, 2-770, 5-49
EXTDIRECTIVES keyword, in SET ENVIRONMENT

statement 2-650, 2-770, 5-49
EXTEND function 4-137, 4-143
EXTEND keyword

in GRANT statement 2-521
in REVOKE statement 2-633

EXTEND role 2-183, 2-193, 2-234, 2-236, 2-237, 2-239, 2-431,
2-436, 2-437, 2-440

EXTENT keyword
in ALTER TABLE statement 2-101, 2-114
in CREATE TEMP TABLE statement 2-327

EXTENT SIZE clause
in CREATE TABLE statement 2-295

EXTENT SIZE keywords
in ALTER TABLE statement 2-101
in CREATE INDEX statement 2-209
in CREATE TABLE statement 2-296, 2-314

Extents
counting how many in a table 4-197
default INTO TEMP clause size 2-721
default size 2-314
freeing or reusing in TRUNCATE statement 2-844

External function
as operator-class support function 2-225
CREATE FUNCTION 2-191
dropping 2-431
executing 2-462, 2-594
limits on return values 5-59
non-variant 5-21
OUT parameter 4-192
registering 2-191
strategy functions 2-224
variant 5-21

EXTERNAL keyword
in CREATE EXTERNAL TABLE statement 2-160, 2-161
in External Routine Reference segment 5-20
in SAVE EXTERNAL DIRECTIVES statement 2-649
in SELECT statement 2-720

External language 2-191
EXTERNAL NAME keywords

in ALTER FUNCTION statement 2-57
in ALTER PROCEDURE statement 2-60
in ALTER ROUTINE statement 2-62
in CREATE FUNCTION statement 2-183
in CREATE PROCEDURE statement 2-226

External optimizer directives 2-649
External procedure

creating body of 2-234
dropping 2-436
executing 2-594
EXTEND role 2-234

External Routine Reference segment 5-20
External routines

as triggered action 2-350

External routines (continued)
built-in routines for defining 6-15
CREATE PROCEDURE FROM statement in 2-236
creating a function in 2-193
defined 2-229
dropping 2-440
EXTEND role 2-633
pathname syntax 5-74
preparing 2-594
referencing 5-20

External synonym 2-447
External tables 2-794

adding end-of-line character 2-179
adding newline character 2-180
creating 2-160
loading

from a delimited file 2-175
tables with the same schema 2-176
to a fixed text file 2-176

NULL values 2-163
restrictions in joins and subqueries 2-678
restrictions on calculating statistics 2-868
restrictions on optimizer directives 5-37
unloading

to a delimited file 2-179
to a fixed text file 2-179
to Informix internal format 2-179

with SELECT statement 2-722
External users 2-156, 2-533
EXTYPEID field

in SET DESCRIPTOR statement 2-755
with DESCRIBE INPUT statement 2-419
with DESCRIBE statement 2-415

EXTYPEID keyword
in GET DESCRIPTOR statement 2-488

EXTYPELENGTH field
in SET DESCRIPTOR statement 2-755
with DESCRIBE INPUT statement 2-419
with DESCRIBE statement 2-415

EXTYPELENGTH keyword
in GET DESCRIPTOR statement 2-488

EXTYPENAME field
in SET DESCRIPTOR statement 2-755
with DESCRIBE INPUT statement 2-419
with DESCRIBE statement 2-415

EXTYPENAME keyword
in GET DESCRIPTOR statement 2-488

EXTYPEOWNERLENGTH field
in SET DESCRIPTOR statement 2-755
with DESCRIBE INPUT statement 2-419
with DESCRIBE statement 2-415

EXTYPEOWNERLENGTH keyword
in GET DESCRIPTOR statement 2-488

EXTYPEOWNERNAME field
in SET DESCRIPTOR statement 2-755
with DESCRIBE INPUT statement 2-419
with DESCRIBE statement 2-415

EXTYPEOWNERNAME keyword
in GET DESCRIPTOR statement 2-488

F
FACT keyword

in optimizer directives 5-45
in SET OPTIMIZATION statement 2-809

FETCH statement 2-474
Field projection 2-860, 4-65

X-18 IBM Informix Guide to SQL: Syntax

Field qualifier 4-42, 4-206
for INTERVAL 4-214

field qualifiers 4-42
FILE keyword

in SET DEBUG FILE statement 2-750
FILE TO Clause 2-787
FILE TO keywords

in SET DEBUG FILE statement 2-751
in SET EXPLAIN statement 2-785

Files
for LOAD input 2-847
in FIXED format 2-163
saving output from UNLOAD 2-847
saving output from UPDATE STATISTICS 2-877
saving query plans in sqexplain.out 2-788
sending output with the OUTPUT statement 2-589

FILETOBLOB function 4-131, 4-132
FILETOCLOB function 4-131, 4-132
FILLFACTOR configuration parameter 2-208
FILLFACTOR keyword

in CREATE INDEX statement 2-208
FILTERING keyword

in ALTER TABLE ADD CONSTRAINT statement 2-110
in ALTER TABLE statement 2-86
in CREATE INDEX statement 2-214
in CREATE TABLE statement 2-283, 2-284
in SET CONSTRAINTS statement 2-735
in SET Database Object Mode statement 2-741
in SET INDEXES statement 2-795
Violations table

relationship to diagnostics table 2-284
with diagnostics tables 2-839

FINAL keyword
in CREATE AGGREGATE statement 2-144

FIRST keyword
in FETCH statement 2-474
in SELECT statement 2-660, 2-661
invalid in INSERT 2-556

FIRST_ROWS keyword
in optimizer directives 5-47
in SET OPTIMIZATION statement 2-807

FIXED keyword
in CREATE EXTERNAL TABLE statement 2-164

Fixed text files
unloading 2-176, 2-179

Fixed-length opaque data type 2-219
Fixed-point numbers 4-216
Fixed-text files

adding end-of-line character 2-179
FLOAT data type 4-32

literal values 4-216
systems not supporting 2-382

Floating-point numbers 4-216
FLOOR function 4-93, 4-95
FLUSH statement 2-484
Flushing an insert buffer 2-607
for DATETIME 4-42
FOR EACH ROW keywords, in CREATE TRIGGER

statement 2-343, 2-348
for INTERVAL 4-206
FOR keyword 3-30

in ALTER TRUSTED CONTEXT statement 2-118
in CONTINUE statement 3-13
in CREATE FUNCTION statement 2-183
in CREATE OPCLASS statement 2-222
in CREATE PROCEDURE statement 2-226
in CREATE SYNONYM statement 2-261

FOR keyword (continued)
in CREATE TRIGGER statement 2-343, 2-348
in CREATE TRUSTED CONTEXT statement 2-366
in DECLARE statement 2-386, 2-403
in EXIT statement 3-25
in GRANT statement 2-526, 2-528
in INFO statement 2-544
in REVOKE statement 2-637, 2-639
in SAVE EXTERNAL DIRECTIVES statement 2-649
in SELECT statement 2-717, 2-719
in SET AUTOFREE statement 2-726
in SET CONSTRAINTS statement 2-735
in SET Database Object Mode statement 2-740
in SET INDEXES statement 2-795
in SET TRIGGERS statement 2-827
in START VIOLATIONS TABLE statement 2-828
in STOP VIOLATIONS TABLE statement 2-840
in UPDATE STATISTICS statement 2-868, 2-880

FOR READ ONLY keywords
in DECLARE statement 2-386
in SELECT statement 2-719

FOR statement 3-27
FOR TABLE keywords, in UPDATE STATISTICS

statement 2-868
FOR UPDATE keywords

in DECLARE statement 2-386
in SELECT statement 2-655, 2-717
with column list 2-392

FORCE keyword
in UPDATE STATISTICS statement 2-868, 2-873

FORCE_DDL_EXEC Environment Option 2-771
FORCED keyword

in SET OPTIMIZATION statement 2-809
FOREACH keyword

in CONTINUE statement 3-13
in EXIT statement 3-25

FOREACH statement
syntax 3-30

Foreign key
adding 2-107
dropping 2-113
establishing 2-87, 2-278
examples 2-89, 2-288
multiple columns 2-285
not validating when creating 2-777
not validating when enabling 2-777
validating when enabling 2-106, 2-743

Foreign key constraint 2-89, 2-110, 2-287, 2-634
FOREIGN KEY keywords

in ALTER TABLE statement 2-104
in CREATE TABLE statement 2-285, 2-318

Foreign-key constraint
defining 2-278

Foreign-key constraints 2-280
Forest of trees indexes

HASH ON clause 2-206
FORMAT keyword

in CREATE EXTERNAL TABLE statement 2-164
in SELECT statement 2-720, 2-722

FORMAT_UNITS function 4-185
Formatting mask 4-145
FRACTION keyword 4-206

as DATETIME field qualifier 4-210
as INTERVAL field qualifier 4-214
in DATETIME Field Qualifier segment 4-42

FRAGMENT BY keywords
in ALTER FRAGMENT statement 2-25, 2-28

Index X-19

FRAGMENT BY keywords (continued)
in CREATE INDEX statement 2-212
in CREATE TABLE statement 2-295, 2-300
in CREATE TEMP TABLE statement 2-327

Fragment key 2-303
FRAGMENT keyword

in ALTER FRAGMENT statement 2-6, 2-25
in ALTER TABLE statement 2-76
in CREATE TABLE statement 2-293
in GRANT FRAGMENT statement 2-538
in REVOKE FRAGMENT statement 2-643

Fragment-level privilege
granting 2-538
revoking 2-643

Fragmentation
adding a fragment 2-30
adding rowids 2-79, 2-80
altering fragments 2-6
arbitrary rule 2-301
by expression 2-19, 2-34
by list 2-11, 2-34, 2-313
by range interval 2-11, 2-34, 2-305
by range intervals 2-308
combining tables 2-11
Dataskip feature 2-748
detaching a table fragment 2-20
dropping an existing fragment 2-32
dropping rowids 2-80
insufficient log space or disk space 2-9
list of dbspaces 2-748
modifying an existing fragment expression 2-34
nonremainder fragment 2-34
number of rows in fragment 2-9
of indexes 2-212
of tables 2-300
of temporary tables 2-327
range interval 2-10, 2-15, 2-21, 2-43
reinitializing strategy 2-28
remainder 2-32
reverting to nonfragmented 2-25
round-robin 2-19
rowid 2-24
rowid columns with 2-301
strategy

by expression 2-301, 2-749
by round-robin 2-301, 2-749
range rule 2-301

system-generated fragments 2-308
TEXT and BYTE data types 2-18

Fragmentation strategy, modifying 2-23
Fragmenting by interval

NUMTODSINTERVAL() function 6-2
NUMTOYMINTERVAL() function 6-3
TO_DSINTERVAL() function 6-2
TO_YMINTERVAL() function 6-3

Fragmenting by list 2-303
FRAGMENTS keyword, in INFO statement 2-544
FREE statement 2-486
FROM keyword

in CREATE ROUTINE FROM statement 2-239
in DELETE statement 2-405
in LOAD statement 2-558
in PREPARE statement 2-589
in PUT statement 2-601
in REVOKE FRAGMENT statement 2-643
in REVOKE statement 2-619, 2-636, 2-637, 2-639, 2-642
in SELECT statement 2-672

FROM keyword (continued)
in TRIM expressions 4-162

FULL keyword
in optimizer directives 5-37
in SELECT statement 2-684, 2-686

Full outer joins 2-681
FULL_SYNC

SET ENVIRONMENT statement 2-763
FULL_SYNC keyword, in SET ENVIRONMENT

HDR_TXN_SCOPE statement 2-772
Function

companion 2-464
negator 2-464
selectivity 5-69

Function cursor
defined 3-30
opening 2-583
reopening 2-583

Function expressions 4-92
FUNCTION keyword

in ALTER FUNCTION statement 2-57
in DECLARE statement 2-386
in DROP FUNCTION statement 2-428
in EXECUTE FUNCTION statement 2-462
in GRANT statement 2-513
in REVOKE statement 2-627
in SELECT statement 2-680
in UPDATE STATISTICS statement 2-880

Functional index 2-198, 2-200, 2-201, 2-216, 2-763
Functions

casting 2-150
collection manipulation 5-68
creating indirectly from a stored file 2-193
creating with CREATE FUNCTION 2-183
creating with CREATE FUNCTION FROM 2-193
cursor 3-30
distributed transactions 3-53, 5-61
dropping with DROP ROUTINE 2-438
modifying

path to executable file 2-58
modifying routine modifiers 2-58
negator 2-513
noncursor 3-30
nonvariant 5-21
NUMTODSINTERVAL() 6-2
NUMTOYMINTERVAL() 6-3
protected 2-428, 2-439
returned data types 5-59
smart large object 4-131
specific name 5-77
system catalog tables 2-191
thread-safe 5-68
TO_DSINTERVAL() 6-2
TO_YMINTERVAL() 6-3
trigger 2-187
unregistering with DROP FUNCTION 2-428
user-defined

defined 2-229
variant 5-21

Functions,
security label support 4-128

Functions, SQL
ABS 4-95
ACOS 4-153
ACOSH 4-153
ADD_MONTHS 4-138
ASCII 4-161

X-20 IBM Informix Guide to SQL: Syntax

Functions, SQL (continued)
ASIN 4-153
ASINH 4-153
ATAN 4-153
ATAN2 4-153
ATANH 4-153
AVG 4-197
BITAND 4-57
BITANDNOT 4-57
BITNOT 4-57
BITOR 4-57
BITXOR 4-57
CARDINALITY 4-106
CASE 4-70
CAST 4-62
CEIL 4-95
CHAR_LENGTH 4-128
CHARACTER_LENGTH 4-128
CHARINDEXT 4-174
CHR 4-170
CONCAT 4-156
COS 4-151
COSH 4-151
COUNT 4-197
CURRENT 4-81
CURRENT_ROLE 4-79
CURRENT_USER 4-78
CURRVAL 4-85
DATE 4-139
DAY 4-140
DBINFO 4-107, 4-111
DECODE 4-74
DECRYPT_BINARY 4-122
DECRYPT_CHAR 4-121
DEFAULT_ROLE 4-79
ENCRYPT_AES 4-122
ENCRYPT_TDES 4-123
Encryption and decryption 4-116
EXP 4-125
Exponential 4-124
EXTEND 4-143
FILETOBLOB 4-132
FILETOCLOB 4-132
FLOOR 4-95
FORMAT_UNITS 4-185
GETHINT 4-124
GREATEST 4-96
HEX 4-126
IFX_REPLACE_MODULE 6-15
INITCAP 4-170
INSTR 4-176
LAST_DAY 4-142
LEAST 4-96
LEFT 4-178
LEN 4-127
LENGTH 4-127
LN 4-125
LOCOPY 4-135
LOG10 4-125
Logarithmic 4-124
LOGN 4-126
LOTOFILE 4-134
LOWER 4-170
LPAD 4-168
LTRIM 4-164
MAX 4-201
MDY 4-144

Functions, SQL (continued)
MIN 4-201
MOD 4-97
MONTH 4-140
MONTHS_BETWEEN 4-140
Natural logarithms 4-125
NEXT_DAY 4-142
NEXTVAL 4-85
NULLIF 4-74
NVL 4-73
NVL2 4-126
OCTET_LENGTH 4-128
POW 4-97
POWER 4-97
RANGE 4-202
REPLACE 4-167
REVERSE 4-166
RIGHT 4-178
ROOT 4-97
ROUND 4-98
RPAD 4-169
RTRIM 4-164
SECLABEL_BY_COMP 4-129
SECLABEL_BY_NAME 4-129
SECLABEL_TO_CHAR 4-130
SIGN 4-131
SIN 4-152
SINH 4-152
SPACE 4-165
SQLCODE 4-106
SQRT 4-98
STDEV 4-202
SUBSTR 4-179
SUBSTRB 4-181
SUBSTRING 4-182
SUBSTRING_INDEXT 4-184
SUM 4-201
SYS_CONNECT_BY_PATH 2-703
SYSDATE 4-82
TAN 4-152
TANH 4-152
Time 4-137
TO_CHAR 4-145
TO_DATE 4-149
TO_NUMBER 4-149
TODAY 4-81
TRIM 4-162
TRUNC 4-103
UPPER 4-170
USER 4-78
VARIANCE 4-203
WEEKDAY 4-140
YEAR 4-140

Fuzzy index 2-225

G
G abbreviation for gigabyte 4-185
GB18030-2000 locale 4-26
Generalized-key index

no renamed table 2-615
Generic B-tree index 2-205
Generic CASE expressions 4-71
GET DESCRIPTOR statement

use with FETCH statement 2-479
GET DIAGNOSTICS statement

SQLSTATE codes 2-494

Index X-21

GET DIAGNOSTICS statement (continued)
syntax 2-493

GET keyword
in GET DESCRIPTOR statement 2-488
in GET DIAGNOSTICS statement 2-493

GET_TZ option of DBINFO 4-114
GETHINT function 4-124
GL_DATE

environment variable 4-145
GL_DATE environment variable 2-273, 2-559, 2-847, 4-212,

4-223
GL_DATETIME

environment variable 4-145
GL_DATETIME environment variable 2-551, 2-558, 2-559,

2-847, 4-213
precedence of 4-212

GL_USEGLU environment variable 2-730
Global environment 3-16
Global Language Support (GLS) xxi
Global variables 3-16
GO TO keywords, in WHENEVER statement 2-885
GOTO keyword, in WHENEVER statement 2-889
GOTO statement 3-36
GRANT FRAGMENT statement 2-538
GRANT keyword

in GRANT FRAGMENT statement 2-538
GRANT statement 2-502, 2-515
Greater than (>) symbol 4-224
greaterthan() operator function 4-225
greaterthanorequal() operator function 4-225
GREATEST function 4-93, 4-96
GROUP BY keywords, in SELECT statement 2-708
GROUP keyword

in ALTER USER statement 2-122
in CREATE DEFAULT USER statement 2-156
in CREATE USER statement 2-368
in GRANT statement 2-533

H
Handle value 4-69, 4-132
HANDLESNULLS keyword

in CREATE AGGREGATE statement 2-144
in Routine Modifier segment 5-65

Hash join 2-779, 2-789, 5-43
HASH keyword

in CREATE INDEX statement 2-206
HASH ON keywords in CREATE INDEX statement 2-206
HAVING keyword

in SELECT statement 2-711
HDR synchronization mode 2-772
HDR_TXN_SCOPE configuration parameter 2-772
HDR_TXN_SCOPE environment option 2-772
HDR_TXN_SCOPE keyword, in SET ENVIRONMENT

statement 2-772
HEADINGS keyword, in OUTPUT statement 2-588
HEX function 4-68, 4-126
Hexadecimal digits 2-851
Hexadecimal dump format 2-849
Hexadecimal smart-large-object identifier 2-849, 4-134
Hierarchical clause 2-696
Hierarchical queries

ORDER SIBLINGS BY clause 2-716
HIGH INTEG keywords

in ALTER TABLE statement 2-101
in CREATE TABLE statement 2-296

HIGH keyword
in SET OPTIMIZATION statement 2-807
in SET PDQPRIORITY statement 2-811
in UPDATE STATISTICS statement 2-868

High-availability data replication server (HDR) 2-326, 2-803
High-Performance Loader 2-220, 2-719
HINT keyword

in SET ENCRYPTION PASSWORD statement 2-760
Hold cursor

defined 2-395
insert cursor with hold 2-397
update cursor with hold 2-393

HOLD keyword 3-30
in DECLARE statement 2-386, 2-403

Home directory 2-122, 2-156, 2-368, 2-533
HOME keyword

in ALTER USER statement 2-122
in CREATE DEFAULT USER statement 2-156
in CREATE USER statement 2-368
in GRANT statement 2-533

hosts.equiv file 2-140
HOUR keyword 4-42, 4-206

as DATETIME field qualifier 4-210
as INTERVAL field qualifier 4-214

Hyphen symbol (-)
DATETIME separator 4-210
INTERVAL separator 4-214

I
IBM Data Server Driver for JDBC and SQL 6-25, 6-27
IBM Data Server Driver for JDBC and SQLJ 3-1, 3-3
IBM Data Studio 6-15
IBM Database Add-Ins for Visual Studio 3-4
IBM Informix .Net 3-4
IBM OpenAdmin Tool (OAT) for Informix 2-870
IBM Procedure Designer 3-4
IBM Unified Debugger 3-4
IDATA field

in SET DESCRIPTOR statement 2-755
with X/Open programs 2-490

IDATA keyword
in GET DESCRIPTOR statement 2-488

Identifier
column names 5-29
connection name 2-139
cursor name 5-30, 5-33
defined 5-21
delimited identifiers 5-25
multibyte characters 5-23
non-ASCII characters 5-23
non-unique 5-26
routines 5-30
storage objects 5-24
syntax 5-21
table names 5-28, 5-30
undelimited identifiers 5-23
uppercase characters 5-23
using keywords 5-23
using keywords as column names 5-27
variable name 5-33

IDSLBACREADARRAY keyword
in GRANT statement 2-526
in REVOKE statement 2-637

IDSLBACREADSET keyword
in GRANT statement 2-526
in REVOKE statement 2-637

X-22 IBM Informix Guide to SQL: Syntax

IDSLBACREADTREE keyword
in GRANT statement 2-526
in REVOKE statement 2-637

IDSLBACRULES
granting exemptions 2-527, 2-638
in distributed queries 2-665

IDSLBACRULES keyword
in CREATE SECURITY POLICY statement 2-254

IDSLBACWRITEARRAY keyword
in GRANT statement 2-526
in REVOKE statement 2-637

IDSLBACWRITESET keyword
in GRANT statement 2-526
in REVOKE statement 2-637

IDSLBACWRITETREE keyword
in GRANT statement 2-526
in REVOKE statement 2-637

IDSSECURITYLABEL data type
in distributed queries 2-527, 2-638, 2-665

IF NOT EXISTSI keywords
in CREATE DATABASE statement 2-150

IF statement 3-37
IFX_ AUTO_REPREPARE session environment variable 2-10
IFX_ALLOW_NEWLINE function

effect on quoted strings 4-221
syntax 4-187

IFX_AUTO_REPREPARE keyword, in SET ENVIRONMENT
statement 2-773

IFX_AUTO_REPREPARE session environment variable 2-587,
2-600, 2-880

IFX_BATCHEDREAD_INDEX environment option 2-774
IFX_BATCHEDREAD_TABLE environment option 2-774
IFX_DEF_TABLE_LOCKMODE environment variable 2-116,

2-318, 2-799
IFX_DIRECTIVES environment variable 5-35
IFX_DIRTY_WAIT environment variable 2-566, 2-843
ifx_erkey_1 replication column 2-291
ifx_erkey_1 shadow column 2-79
ifx_erkey_2 replication column 2-291
ifx_erkey_2 shadow column 2-79
ifx_erkey_3 replication column 2-291
ifx_erkey_3 shadow column 2-79
IFX_EXTDIRECTIVES environment variable 2-650, 2-770, 5-49
IFX_EXTEND_ROLE configuration parameter 2-58, 2-60, 2-63,

2-183, 2-193, 2-234, 2-236, 2-239, 2-516, 2-521, 2-629, 2-633,
5-74, 6-10, 6-15

ifx_insert_checksum shadow column 2-80
IFX_LO_SPEC data type 2-663, 4-24
IFX_LO_STAT data type 2-663, 4-24
IFX_LONGID environment variable 5-21
IFX_MULTIPREPSTMT environment variable 2-720, 2-721
IFX_NODBPROC environment variable 6-6, 6-9
IFX_PAD_VARCHAR environment variables 4-26
IFX_REPLACE_MODULE function 6-15
ifx_replcheck replication column 2-291
ifx_replcheck shadow column 2-79
ifx_row_version shadow column 2-80
IFX_TABLE_LOCKMODE environment variable 2-568
IFX_UPDDESC environment variable 2-414, 2-417
ILENGTH field

in SET DESCRIPTOR statement 2-755
with X/Open programs 2-490

ILENGTH keyword
in GET DESCRIPTOR statement 2-488

Ill-behaved C UDR 5-66
Imaginary numbers 4-32

IMMEDIATE keyword
in EXECUTE IMMEDIATE statement 2-467
in SET CONSTRAINTS statement 2-735
in SET Transaction Mode statement 2-825

IMPEX data type 2-663, 4-24
IMPEXBIN data type 2-663, 4-24
Implicit connection 2-141

closing 2-132
Implicit cursor 3-30, 5-37
Implicit inner join 2-685
IMPLICIT keyword

in CREATE CAST statement 2-147
Implicit transactions 2-817
IMPLICIT_PDQ keyword

in SET ENVIRONMENT statement 2-775
Import support function 2-220, 2-559
Importbinary support function 2-220, 2-559
in != relational operator 4-224
in Collection Subquery segment 4-3
in Collection-Derived Table segment 5-4
in Collection-Subquery segment 4-3
in CREATE TABLE statement

ON DELETE CASCADE keywords 2-89
in DATETIME data type 4-42
in DATETIME Field Qualifier 4-42
in DATETIME Field Qualifier segment 4-42
in EXECUTE FUNCTION statement 2-464
in FOR statement 3-27
in FOREACH 3-30
in FOREACH statement 3-30
in GRANT FRAGMENT statement 2-539
in GRANT statement 2-505
in IF statement 3-38
in INTERVAL field qualifier 4-206
in INTERVAL Field Qualifier 4-206
IN keyword 3-27

as a condition 4-20
in ALTER FRAGMENT statement 2-25, 2-28, 2-30, 2-32,

2-34
in ALTER TABLE statement 2-101
in Condition segment 4-7, 4-11, 4-20
in CREATE DATABASE statement 2-150
in CREATE FUNCTION statement 2-183
in CREATE INDEX statement 2-209, 2-211, 2-212, 2-313
in CREATE PROCEDURE statement 2-226
in CREATE TABLE statement 2-295, 2-296, 2-300, 2-308
in CREATE TEMP TABLE statement 2-327
in Data Type segment 4-33
in LOCK TABLE statement 2-564
in ON EXCEPTION statement 3-46
in SELECT statement 2-691

in Literal Row segment 4-216
in relational operators 4-224
in SELECT statement 2-658
in SET EXPLAIN output 2-794
IN TABLE keywords, in CREATE INDEX statement 2-211
INACTIVE keyword, in SAVE EXTERNAL DIRECTIVES

statement 2-649
INCREMENT keyword

in ALTER SEQUENCE statement 2-71
in CREATE SEQUENCE statement 2-260

Index
access method 2-222
altering table fragmentation 2-17
attached 2-10, 2-15, 2-21, 2-34, 2-211
B-tree 2-200
bidirectional traversal 2-202

Index X-23

Index (continued)
clustered fragments 2-197
compacted 2-208
composite 2-201, 2-285
converting during upgrade 2-868, 2-883
creating 2-194
delete flag 2-872
detached 2-10, 2-15, 2-21, 2-29, 2-212
disabled 2-216, 2-746
displaying index information 2-544
dropping with ALTER FRAGMENT ONLINE

ATTACH 2-10, 2-15
dropping with ALTER TABLE . . . DROP

CONSTRAINT 2-431
dropping with DROP INDEX 2-431
extent size 2-209
filtering to violations table 2-746
forest of trees 2-206
fragmented 2-6, 2-212, 2-289
functional 2-200, 2-216
fuzzy 2-225
internal 2-289
key filter 2-789
leaf pages 2-785
LIST keyword

in CREATE INDEX statement 2-212
maximum key size 2-198, 2-201
multilingual index 2-730
nonfragmented 2-25
on ORDER BY columns 2-715
on temporary tables 2-721
online 2-216
privilege 2-6
provide for expansion 2-208
R-Tree 2-200
renaming 2-612
Restrictions on index keys 2-200
ROOT argument 4-97
self-join keys 2-789
self-join path 5-37
shared 2-85, 2-89, 2-113
side-effect 2-225
system-generated 2-289, 5-36
unique 2-215

restrictions 2-29
unique keys 5-55
virtual 2-216, 2-433

INDEX DISABLED keywords
in ALTER TABLE statement 2-107

INDEX DISABLED keywords in ALTER TABLE
statement 2-104

INDEX keyword
in ALTER FRAGMENT statement 2-6
in ALTER INDEX statement 2-59
in CREATE INDEX statement 2-194
in DROP INDEX statement 2-431
in GRANT statement 2-507
in optimizer directives 5-37
in RENAME INDEX statement 2-612
in REVOKE statement 2-623

INDEX optimizer directive 5-37
Index privilege 2-507, 2-623
INDEX_SJ keyword, in optimizer directives 5-37
Index-key algorithm 2-106, 2-743
INDEXES keyword

in INFO statement 2-544
in SET Database Object Mode statement 2-739, 2-740

INDEXES keyword (continued)
in SET INDEXES statement 2-795

INDEXKEYARRAY data type 2-663, 4-24
INDICATOR field

in SET DESCRIPTOR statement 2-755
INDICATOR keyword 2-464

in EXECUTE statement 2-456, 2-460
in FETCH statement 2-474
in GET DESCRIPTOR statement 2-488
in PUT statement 2-601
in SELECT statement 2-670

Indicator variable
in expression 4-203

Indirect typing 3-23
industry standards xxxv
INFO statement 2-544
Informix 4GL 4-221
Informix internal format

unloading 2-179
INFORMIX keyword

in CREATE EXTERNAL TABLE statement 2-164
in External Routine Reference segment 5-20

INFORMIX parameter style 5-20
informix user name 2-427, 2-505, 5-16
INFORMIX_SQLCODE keyword, in GET DIAGNOSTICS

statement 2-498
Informix-Admin group 2-524
INFORMIX.JVPCONTROL function 6-18
INFORMIXCONCSMCFG environment variable 2-763
INFORMIXCONRETRY

SET ENVIRONMENT statement 2-776
INFORMIXCONRETRY environment variable 2-776
INFORMIXCONTIME

SET ENVIRONMENT statement 2-776
INFORMIXCONTIME environment variable 2-776
INFORMIXSERVER environment variable 2-138, 2-140, 2-141,

4-80
Inheritance hierarchy

dropping tables 2-448
named ROW types 2-243, 2-440

INIT keyword
in ALTER FRAGMENT statement 2-23
in CREATE AGGREGATE statement 2-144

INITCAP function 4-170
Initial-cap characters, converting to 4-170
Inner joins 2-681
INNER keyword in SELECT statement 2-685
INOUT parameter

with a statement-local variable 4-188
INOUT parameters 5-20, 5-74
Input support function 2-220
INSENSITIVE keyword in CREATE DATABASE

statement 2-150
Insert buffer 2-607

filling with constant values 2-603
inserting rows

with a cursor 2-549
storing rows with PUT 2-601
triggering flushing 2-607

Insert clause in MERGE statement 2-568
Insert cursor 2-394

benefits 2-394
closing 2-131
declaring 2-390
in INSERT 2-549
in PUT 2-603
opening 2-584

X-24 IBM Informix Guide to SQL: Syntax

Insert cursor (continued)
reopening 2-585
result of CLOSE in SQLCA 2-131
with hold 2-397

INSERT INTO keywords
in LOAD 2-564

INSERT keyword 2-539
in CREATE TRIGGER statement 2-337, 2-362
in DECLARE statement 2-386
in GRANT statement 2-507
in LOAD statement 2-558
in MERGE statement 2-568
in REVOKE FRAGMENT statement 2-644
in REVOKE statement 2-623

Insert privilege 2-507, 2-623
INSERT statement 2-546
INSERT statements

and triggers 2-350
AT clause 2-548
collection-column values 2-552
collection-derived table, with 2-557
effect of transactions 2-549
ESQL/C 2-552, 2-553, 2-554
filling insert buffer with PUT 2-601
in dynamic SQL 2-558
insert cursor compared with 2-394
insert triggers 2-335
inserting

rows through a view 2-548
rows with a cursor 2-549

into collection cursor 2-605
nulls 2-555
OUT parameter and SLVs 4-192
protected tables 2-555
row type field values 2-553
row variables 2-557
SERIAL and SERIAL8 columns 2-551
smart large objects with 4-69
specifying values to insert 2-550
using functions 2-554
VALUES clause, expressions with 2-554
with DECLARE statement 2-386
with insert cursor 2-394
with SELECT statement 2-556

Insert trigger 2-335, 2-362
INSERTING operator 2-187, 4-14
install_jar() procedure 2-191, 2-234
INSTEAD OF keywords, in CREATE TRIGGER

statement 2-329
INSTEAD OF trigger 2-362
INSTR function 4-176
INT8 data type 4-30
INTEG keyword

in ALTER TABLE statement 2-101
in CREATE TABLE statement 2-296

INTEGER data type 4-30
literal values 4-215

Intent-exclusive locks 2-10
INTERNAL keyword, in Routine Modifier segment 5-65
Internal users 2-122, 2-368
INTERNALLENGTH keyword, in CREATE OPAQUE TYPE

statement 2-218
INTERSECT operator

in SELECT statement 2-724
INTERVAL data type 4-214

as quoted string 4-222
declaration syntax 4-36

INTERVAL data type (continued)
field qualifier 4-206
in expression 4-83
in INSERT 4-223
literal 4-214
loading 2-559
precision 4-206

Interval fragment 2-10, 2-15, 2-21, 2-37, 2-43
Interval Fragment clause 2-308
INTERVAL FRAGMENT clause

of CREATE TABLE statement 2-308
INTERVAL keyword

in ALTER FRAGMENT statement 2-25, 2-32, 2-34
in CREATE TABLE statement 2-300, 2-308

INTERVAL keyword, in literal INTERVAL 4-214
INTERVAL TRANSITION keywords in ALTER FRAGMENT

statement 2-34, 2-39
INTO clause 2-464
INTO DESCRIPTOR keywords, in EXECUTE 2-459
INTO EXTERNAL keywords

in SELECT statement 2-722
INTO keyword 2-464, 3-30

in DESCRIBE INPUT statement 2-417
in DESCRIBE statement 2-412
in EXECUTE FUNCTION statement 2-462
in EXECUTE PROCEDURE statement 2-471
in EXECUTE statement 2-456
in FETCH statement 2-474
in INSERT statement 2-546
in LOAD statement 2-558
in MERGE statement 2-568
in SELECT statement 2-669, 2-720, 2-721

INTO SQL DESCRIPTOR keywords, in EXECUTE
statement 2-458

INTO TEMP clause
in SELECT statement 2-721
invalid in INSERT 2-556
with UNION operator 2-724

IPCSTR connection 2-411, 2-554, 2-665, 2-862
IS keyword

in Condition segment 4-7
in WHERE clause 2-692

IS NOT NULL keywords
Condition segment 4-13
in WHERE clause of a query 2-692

IS NULL keywords
Condition segment 4-13
in ALTER FRAGMENT statement 2-11, 2-25, 2-30, 2-34
in CREATE INDEX statement 2-313
in CREATE TABLE statement 2-308, 2-313
in WHERE clause of a query 2-692

ISAM error code 3-46, 3-50, 3-54
ISOLATION keyword

in SET ISOLATION statement 2-796
in SET TRANSACTION statement 2-820

Isolation level
defined 2-798, 2-822
with FETCH statement 2-481

Item descriptor 2-2
ITEM keyword 4-3
ITER keyword

in CREATE AGGREGATE 2-144
Iterator functions 2-680, 3-53, 5-67
Iterator functions functions 2-789
ITERATOR keyword, in Routine Modifier segment 5-65
ITYPE field

in SET DESCRIPTOR statement 2-755

Index X-25

ITYPE field (continued)
with X/Open programs 2-490

ITYPE keyword
in GET DESCRIPTOR statement 2-488

J
Jagged rows 2-318
Jar files

installing in the database 6-20
name of a jar ID 5-34
read permissions 6-20
renaming 2-611

Java class
installing 6-19
jar file where defined 5-34
mapping to a UDT 6-23
package where defined 5-76
removing a jar file 6-21
replacing a jar file 6-20

JAVA keyword
in GRANT statement 2-516
in REVOKE statement 2-629

JAVA keyword, in External Routine Reference segment 5-20
Java UDRs 6-19, 6-21, 6-22

access privileges to create 2-521
CLASS routine modifier 5-63
data types of return value 5-59
EXTEND role 2-521
getting JVP memory information 6-18
Getting JVP thread information 6-18
installing a Jar file 6-19
Java signature 5-76
jvpcontrol function 6-18
shared-object file 5-76
sqlj.alter_java_path procedure 6-22
sqlj.replace_jar procedure 6-20
sqlj.setUDTextName procedure 6-23
sqlj.unsetUDTextName procedure 6-24
static method 5-76
unmapping a user-defined type 6-24

Java Virtual Processor Class
CLASS modifier 5-66
getting memory information 6-18
getting thread information 6-18

Java Virtual-Table Interface 2-143
JDBC API 4-221
JDBC connection 5-68
JDBC Driver built-in function 6-18
Join

condition 2-681
hash join 2-779, 2-789, 5-43
in Condition segment 2-694
in MERGE statement 2-568
in UPDATE statement 2-863
index self-join path 5-37
multiple-table join 2-681, 2-695, 5-42
nested loop join 5-43
nested-loop join 2-779, 2-789
outer 2-688
outer, Informix extension syntax 2-695
self-join 2-695
sort-merge join 2-779
star-join path 5-45

Join filter 2-568, 2-686
JOIN keyword

in SELECT statement 2-681, 2-684

Join-method directive 2-686, 5-43
Join-order directive 5-42
JVPCLASSPATH configuration parameter 6-22
jvpcontrol function 6-18

K
K abbreviation for kilobyte 4-185
KEEP ACCESS TIME keywords

in ALTER TABLE statement 2-101
in CREATE TABLE statement 2-296

KEEP keyword
in CREATE TABLE statement 2-296

keepccomment option of esqlc 5-36
KEY keyword

CREATE TABLE statement 2-318
in ALTER TABLE statement 2-85, 2-104
in CREATE TABLE statement 2-274, 2-285
in CREATE TEMP TABLE statement 2-324, 2-325
KEY keyword

in CREATE TEMP TABLE statement 2-325
Key management for encrypted data 4-117
Key Only index scan method 2-789
Keywords

as identifiers 2-351, 5-23
list for Informix A-1

L
Label

column security label 2-272
data security label 2-248, 2-442
loop label 3-9
statement label 3-9, 3-36
user security label 2-248, 2-442, 2-528, 2-639

LABEL COMPONENT keywords
in DROP SECURITY statement 2-442
in RENAME SECURITY statement 2-613

LABEL keyword
in ALTER SECURITY LABEL COMPONENT

statement 2-64
in CREATE SECURITY LABEL COMPONENT

statement 2-250
in CREATE SECURITY LABEL statement 2-248
in CREATE SECURITY POLICY statement 2-254
in DROP SECURITY statement 2-442
in GRANT statement 2-528
in RENAME SECURITY statement 2-613
in REVOKE statement 2-639

Language
external 2-191
privileges on 2-513, 2-516, 2-629

LANGUAGE keyword
in External Routine Reference segment 5-20
in GRANT statement 2-513, 2-516
in REVOKE statement 2-629

Large objects 4-33
constraints 2-275, 2-287
debugging 3-4
distributed storage and staging 2-301
pointer structure 2-220

LAST COMMITTED keywords, in SET ISOLATION
statement 2-796, 5-37

LAST keyword
in FETCH statement 2-474
in SET ISOLATION statement 2-799

X-26 IBM Informix Guide to SQL: Syntax

LAST_DAY function 4-137, 4-142
LATERAL keyword

in FROM clause of SELECT statement 2-676
LEADING keyword, in TRIM expressions 4-162
Leap second 4-114
LEAST function 4-93, 4-96
LEFT function 4-178
LEFT keyword in SELECT statement 2-684, 2-685
Left outer joins 2-681
LEN function 4-127
LENGTH field

in SET DESCRIPTOR statement 2-755
with DATETIME and INTERVAL types 2-758
with DECIMAL and MONEY types 2-758
with DESCRIBE INPUT statement 2-419
with DESCRIBE statement 2-415

LENGTH function 2-667, 4-127
LENGTH keyword

in GET DESCRIPTOR statement 2-488
Less than (<) symbol 4-224
lessthan() operator function 4-225
lessthanorequal() operator function 4-225
LET statement 3-40
Lettercase conversion 4-170
LEVEL keyword

in SELECT statement 2-703
in SET TRANSACTION statement 2-820

Level-0 backup 2-269, 2-719
Light scans 4-27
LIKE keyword

in Condition segment 4-7, 4-15
in Routine Parameter List segment 5-72
in SELECT statement 2-692
wildcard characters 2-692

like() operator function 4-15
LIMIT keywords

invalid in INSERT 2-556
LIST data type

columns, generating values for 4-88
defined 4-88
deleting elements from 2-410
unloading 2-847
updating elements 2-867

List fragment 2-303
List fragment clause 2-313
LIST keyword

in ALTER FRAGMENT statement 2-25
in CREATE TABLE statement 2-300
in DEFINE statement 3-20
in Expression segment 4-88
in Literal Collection 4-208

LISTING keyword
in CREATE FUNCTION statement 2-183
in CREATE PROCEDURE statement 2-226

Literal
BOOLEAN 2-273
DATE 2-273
DATETIME 4-210

in ALTER TABLE statement 2-83
in INSERT statement 2-550
with IN keyword 2-691

INTERVAL 4-214
in expression 4-83
in INSERT statement 2-550

nested row 4-219
number 4-78
Number 4-215

Literal (continued)
in INSERT 2-550
with IN keyword 4-11

Literal collection
nested 4-209

Literal number, exponential notation 4-216
Literal Row segment 4-216
literal values 4-210
Literal values, specifying as default values 2-273
LN function 4-125
LOAD statement 2-558
Loading data with external tables

data warehouse table
initial load 2-177
refreshing periodically 2-177

DELUXE mode 2-174
express-mode procedure 2-173
from a delimited file 2-175
serial columns 2-176
tables with the same schema 2-176
to a fixed text file 2-176

local option to esqlc command 2-386, 2-456
Local variable 3-19
Locales xxi
Localized collation order 2-713, 2-728, 4-16, 4-227
LOCK keyword

in ALTER TABLE statement 2-116
in CREATE USER statement 2-368
in SET LOCK MODE statement 2-804

LOCK MODE keywords
in ALTER TABLE statement 2-116
in CREATE TABLE statement 2-317

Lock table overflow 2-393
LOCK TABLE statement

syntax 2-564
Locking

blobspaces 2-23
during

inserts 2-549
updates 2-393, 2-856

effect of FORCE_DDL_EXEC setting 2-6
exclusive locks 2-6, 2-10, 2-15, 2-21, 2-43, 2-393, 2-564,

2-780, 2-783, 2-799
granularity 2-116, 2-317, 2-568, 2-780, 2-783
in transactions 2-126
intent exclusive locks 2-10, 2-15, 2-21, 2-43
intent-exclusive 2-10
overriding row-level 2-567
promotable lock 2-393
releasing with COMMIT WORK statement 2-133, 2-393
releasing with ROLLBACK WORK statement 2-646
shared locks 2-564
types of locks 2-317
update cursors effect on 2-393
update locks 2-780, 2-802, 2-856
waiting period 2-804
when creating a referential constraint 2-90, 2-279
with

SET LOCK MODE statement 2-804
UNLOCK TABLE statement 2-851

with FETCH statement 2-481
with SET ISOLATION statement 2-796
with SET TRANSACTION statement 2-820
write lock 2-393

Locking granularity 2-568, 2-799
LOCKS configuration parameter 2-427, 2-567
LOCKS keyword, in SET ISOLATION statement 2-802

Index X-27

LOCOPY function 4-131, 4-135
LOG keyword

in ALTER TABLE statement 2-101
in CREATE DATABASE statement 2-150
in CREATE TABLE statement 2-296
in CREATE TEMP TABLE statement 2-321
in SELECT statement 2-720, 2-721
in SET LOG statement 2-806

LOG10 function 4-124
Logarithmic functions

LN function 4-124
LOG10 function 4-124
LOGN function 4-126

Logging
buffered versus unbuffered 2-806
cascading deletes 2-407
changing mode with SET LOG 2-806
in CREATE DATABASE statement 2-150
log space requirements 2-9
table type options 2-269
temporary tables 2-329
with triggers 2-361

Logical character semantics 2-270, 3-23
Logical operator, in Condition segment 4-23
LOGN function 4-124
Lohandles support function 2-220
LOLIST data type 2-663, 4-24
Loop

controlled 3-27
indefinite with WHILE 3-42, 3-58

LOOP keyword 3-27
in CONTINUE statement 3-13
in EXIT statement 3-25

LOOP statement 3-42
LOTOFILE function 4-131, 4-134
LOW keyword

in SET OPTIMIZATION statement 2-807
in SET PDQPRIORITY statement 2-811
in UPDATE STATISTICS statement 2-868

LOWER function 4-170
Lower index filter 2-789
Lowercase characters, converting to 4-170
LPAD function 4-168
LTRIM function 4-164
LVARCHAR data type 4-24, 4-27

syntax 4-25

M
M abbreviation for megabyte 4-185
mail utility, accessing from an SPL routine 3-54
Mail, sending from SPL routines 3-54
Mantissa 4-215
Mapped User 2-788
MATCHED keyword in MERGE statement 2-568
MATCHES keyword

in Condition segment 4-7, 4-15
in SELECT statement 2-692
wildcard characters 2-692

matches() operator function 4-16
Materialized table expression 2-674
Materialized view 2-373
MAX function 4-193, 4-201
MAX keyword

in ALLOCATE DESCRIPTOR statement 2-2
in START VIOLATIONS TABLE statement 2-828

MAX ROWS keywords, in START VIOLATIONS TABLE
statement 2-828

MAX_PDQPRIORITY configuration parameter 2-775, 2-811
MAXERRORS keyword

in CREATE EXTERNAL TABLE statement 2-164
MAXLEN keyword, in CREATE OPAQUE TYPE

statement 2-220
MAXVALUE keyword

in ALTER SEQUENCE statement 2-71
in CREATE SEQUENCE statement 2-260

MDY function 4-137, 4-144
MEDIUM keyword, in UPDATE STATISTICS statement 2-868
MEDIUM mode 2-877
Membership (.) operator 4-65
Memory

allocating for collection variable 2-1
allocating for query 2-768
allocating for ROW variable 2-4
deallocating cursors 2-486
deallocating for collection variable 2-383
deallocating for cursors 2-726
deallocating for row variable 2-386
deallocating prepared objects 2-486, 2-728

MEMORY keyword, in EXECUTE FUNCTION
statement 6-18

MERGE statement 2-568
MESSAGE_LENGTH keyword, in GET DIAGNOSTICS

statement 2-498
MESSAGE_TEXT keyword, in GET DIAGNOSTICS

statement 2-498
Metadata function 6-25
mi_collection* functions 5-68
mi_trigger*() functions 2-350
MIN function 4-193, 4-201
Minus (-) sign

binary operator 4-44
MINUS operator

in SELECT statement 2-724
Minus sign (-)

INTERVAL literals 4-214
unary operator 4-214

minus() operator function 4-56
MINUTE keyword 4-42, 4-206
MINVALUE keyword

in ALTER SEQUENCE statement 2-71
in CREATE SEQUENCE statement 2-260

Missing arguments 5-2
Mixed-case characters, converting to 4-170
MOD function 4-93, 4-97
MODE keyword

in ALTER TABLE statement 2-116
in CREATE DATABASE statement 2-150
in CREATE TABLE statement 2-317
in LOCK TABLE statement 2-564
in SET LOCK MODE statement 2-804

MODERATE INTEG keywords
in ALTER TABLE statement 2-101, 2-296

MODIFY EXTENT SIZE keyword
in ALTER TABLE statement 2-114

MODIFY EXTERNAL NAME keywords
in ALTER FUNCTION statement 2-58
in ALTER PROCEDURE statement 2-60
in ALTER ROUTINE statement 2-63

MODIFY keyword
in ALTER ACCESS_METHOD statement 2-5
in ALTER FRAGMENT statement 2-34
in ALTER FUNCTION statement 2-57

X-28 IBM Informix Guide to SQL: Syntax

MODIFY keyword (continued)
in ALTER PROCEDURE statement 2-60
in ALTER ROUTINE statement 2-62
in ALTER TABLE statement 2-95
in ALTER USER statement 2-122

MODIFY NEXT SIZE keyword
in ALTER TABLE statement 2-115

Modifying routine modifiers
with ALTER FUNCTION statement 2-58
with ALTER PROCEDURE statement 2-60
with ALTER ROUTINE statement 2-62

Modulus 4-97
MONEY data type

literal values 4-216
loading 2-559
syntax 4-30

MONTH function 4-137, 4-140
MONTH keyword 4-42, 4-206
MONTHS_BETWEEN function 4-137, 4-140
MORE keyword, in GET DIAGNOSTICS statement 2-497
MQ DataBlade module 5-58
Multi-index scan 5-37
Multi-index scan path 5-37
Multibyte characters 4-26
Multibyte code set 2-82, 2-98
Multibyte locales 4-128
Multilingual index 2-730
Multiple triggers

example 2-338
preventing overriding 2-360

Multiple-column constraints
in ALTER TABLE statement 2-104
in CREATE TABLE statement 2-285
KEY keyword

in CREATE TABLE statement 2-285
Multiplication sign (*), arithmetic operator 4-44
Multirepresentational data 2-448, 2-552, 2-862
Multirow query 2-478
MULTISET columns, generating values for 4-88
MULTISET data type

collection subqueries 4-3
defined 4-88
deleting elements from 2-410
unloading 2-847
updating elements 2-867

MULTISET keyword 4-3
in DEFINE statement 3-20
in Expression segment 4-88
in FROM clause of SELECT statement 4-5
in Literal Collection 4-208

N
NAME field

in SET DESCRIPTOR statement 2-755
with DESCRIBE INPUT statement 2-419
with DESCRIBE statement 2-415

NAME keyword
External Routine Reference segment 5-20
in ALTER FUNCTION statement 2-57
in ALTER PROCEDURE statement 2-60
in ALTER ROUTINE statement 2-62
in CREATE FUNCTION statement 2-183
in CREATE PROCEDURE statement 2-226
in GET DESCRIPTOR statement 2-488

Named row type
assigning with ALTER TABLE 2-117

Named row type (continued)
associating with a column 4-39
creating with CREATE ROW TYPE 2-241
dropping with DROP ROW TYPE 2-440
inheritance 2-243
privileges on 2-512
Under privilege 2-634
unloading 2-847, 2-850
updating fields 2-867

Naming convention
database 5-15
database objects 5-16

National Language Support (NLS) 4-156
National Language Support (NLS) data types 2-153
NCHAR data type 4-28

in case insensitive databases 4-28
syntax 4-25

NEAR_SYNC
SET ENVIRONMENT statement 2-763

NEAR_SYNC keyword, in SET ENVIRONMENT
HDR_TXN_SCOPE statement 2-772

negate() operator function 4-56
Negator functions 2-186, 2-464, 2-513, 2-627, 5-67
NEGATOR keyword

Routine Modifier segment 5-65, 5-67
Nested loop join 2-779, 2-789, 5-43
Nested ordering

in SELECT statement 2-715
NET API 4-221
NEW keyword

in CREATE FUNCTION statement 2-187
in CREATE PROCEDURE statement 2-231
in CREATE TRIGGER statement 2-347, 2-362

Insert triggers 2-346
Update triggers 2-347

in SET USER PASSWORD statement 2-828
NEW keyword, in CREATE TRIGGER statement 2-345
Newline character

adding 2-180
Newline characters in quoted strings 4-221
NEXT keyword

in ALTER TABLE statement 2-115
in CREATE INDEX statement 2-209
in CREATE TABLE statement 2-314
in CREATE TEMP TABLE statement 2-327
in FETCH statement 2-474

NEXT SIZE keywords
Extents

revising the size 2-115
in ALTER TABLE statement 2-115
in CREATE INDEX statement 2-209
in CREATE TABLE statement 2-314

NEXT_DAY function 4-137, 4-142
NEXTVAL operator 2-257, 4-84
NLCASE INSENSITIVE database 4-159
NLS data types 2-153
NLSCASE database attribute 2-153
NLSCASE INSENSITIVE database 4-172
NLSCASE INSENSITIVE database property 2-663, 4-28
NLSCASE INSENSITIVE keywords in CREATE DATABASE

statement 2-150
NLSCASE SENSITIVE keywords in CREATE DATABASE

statement 2-150
NO DEFAULT ROLE keywords

in ALTER TRUSTED CONTEXT statement 2-118
in CREATE TRUSTED CONTEXT statement 2-366

Index X-29

NO KEEP ACCESS TIME keywords
in ALTER TABLE statement 2-101
in CREATE TABLE statement 2-296

NO keyword
in CREATE TEMP TABLE statement 2-321
in SELECT statement 2-720
in SET COLLATION statement 2-728

NO LOG keywords
in ALTER TABLE statement 2-101
in CREATE TABLE statement 2-296
in CREATE TEMP TABLE statement 2-326
in SELECT statement 2-720

NOCACHE keyword
in ALTER SEQUENCE statement 2-71
in CREATE SEQUENCE statement 2-261

NOCYCLE keyword
in ALTER SEQUENCE statement 2-71
in CREATE SEQUENCE statement 2-260
in SELECT statement 2-701, 2-703

NODBPROC setting of DEBUG environment variable 6-6
NODEFDAC environment variable 2-186, 2-230, 2-510, 2-627

effects on new routine 2-186, 2-230
effects on new table 2-320
GRANT statement with 2-513

NOMAXVALUE keyword
in ALTER SEQUENCE statement 2-71
in CREATE SEQUENCE statement 2-260

NOMINVALUE keyword
in ALTER SEQUENCE statement 2-71
in CREATE SEQUENCE statement 2-260

NON_DIM keyword in SET OPTIMIZATION statement 2-809
Non-reserved words A-1
Nonalphanumeric characters 5-24
Noncursor function 5-63
Nondefault code sets 4-227
NONE keyword

in SET ENVIRONMENT statement 2-763, 2-770, 2-780,
2-783

in SET ROLE statement 2-812
NONE role 2-237, 2-437
Nonexclusive access errors 2-21
Nonlogging temporary tables

creating 2-326
duration 2-329

Nonvariant functions 5-21
NOORDER keyword

in ALTER SEQUENCE statement 2-72
in CREATE SEQUENCE statement 2-261

NOT AUTHORIZED keywords
in CREATE SECURITY POLICY statement 2-254

NOT bitwise logical operation 4-60
NOT FOUND keywords, in WHENEVER statement 2-885
NOT keyword

External Routine Reference segment 5-20
in ALTER INDEX statement 2-59, 2-60
in BETWEEN condition 4-10
in Condition segment 4-5, 4-7, 4-11, 4-15, 4-20
in MERGE statement 2-568
in SELECT statement 2-690, 2-692
in SET LOCK MODE statement 2-804
Routine Modifier segment 5-65
with BETWEEN keyword 2-691
with IN keyword 2-693

NOT NULL keywords
in ALTER TABLE statement 2-85, 2-104
in collection data type declarations 4-41
in CREATE ROW TYPE statement 2-244

NOT NULL keywords (continued)
in CREATE TABLE statement 2-274
in CREATE TEMP TABLE statement 2-324
in DEFINE statement 3-20
in SELECT statement 2-690

NOT VARIANT keywords, in External Routine Reference
segment 5-20

NOT WAIT keywords in SET LOCK MODE 2-804
notequal() operator function 4-225
NOVALIDATE keyword

in ALTER TABLE ADD CONSTRAINT statement 2-110
in ALTER TABLE statement 2-86
in SET CONSTRAINTS ENABLED statement 2-735
in SET Database Object Mode statement 2-741
in SET ENVIRONMENT statement 2-777

NULL keyword 5-1
ambiguous as a routine variable 5-31
in ALTER FRAGMENT statement 2-11, 2-30, 2-34
in ALTER TABLE statement 2-83, 2-85, 2-104
in Condition segment 4-7, 4-9
in CREATE INDEX statement 2-313
in CREATE ROW TYPE statement 2-244
in CREATE TABLE statement 2-272, 2-274, 2-308, 2-313
in CREATE TEMP TABLE statement 2-324
in Expression segment 4-71, 4-72, 4-74
in INSERT statement 2-550
in SELECT statement 2-690
in SET ROLE statement 2-812
in UPDATE statement 2-857, 2-858

Null values
checking for in SELECT statement 2-456, 2-460
in IF statement 3-38
inserting with the VALUES clause 2-555
invalid for collection types 4-41
loading 2-559
returned implicitly by SPL function 3-51
updating a column 2-858
used in Condition with NOT operator 4-22
used in the ORDER BY clause 2-714
WHILE statement 3-58
with AND and OR keywords 4-22
with NULLIF function 4-74
with NVL function 4-73

NULLABLE field
in SET DESCRIPTOR statement 2-755
with DESCRIBE INPUT statement 2-419
with DESCRIBE statement 2-415

NULLABLE keyword
in GET DESCRIPTOR statement 2-488

NULLIF function 4-74
NUMBER keyword, in GET DIAGNOSTICS statement 2-497
Numeric data types 4-30
NUMROWS keyword

in CREATE EXTERNAL TABLE statement 2-164
NUMTODSINTERVAL() function 6-2
NUMTOYMINTERVAL() function 6-3
NVARCHAR data type 4-28

in case insensitive databases 4-28
syntax 4-25

NVL function 4-73
NVL2 function 4-126

O
Object-List format, in SET Database Object Mode

statement 2-739
Octal numbers 2-722

X-30 IBM Informix Guide to SQL: Syntax

OCTET_LENGTH function 4-127, 4-128
ODBC API 4-221
OF keyword

in CREATE TRIGGER statement 2-329, 2-339, 2-362
in CREATE VIEW statement 2-373
in DECLARE statement 2-386
in DELETE statement 2-405
in SELECT statement 2-717
in UPDATE statement 2-852

OF TYPE keywords
in CREATE TABLE statement 2-318
in CREATE VIEW statement 2-373

OFF keyword
in CREATE EXTERNAL TABLE statement 2-164
in SET ENVIRONMENT statement 2-763, 2-766, 2-773,

2-777
in SET EXPLAIN statement 2-785
in SET PDQPRIORITY statement 2-811
in SET STATEMENT CACHE statement 2-817
in TRACE statement 3-56

OLAP aggregation functions 2-667
OLD keyword

in CREATE FUNCTION statement 2-187
in CREATE PROCEDURE statement 2-231
in CREATE TRIGGER statement 2-362

Delete triggers 2-345
Select triggers 2-347
Update triggers 2-347

in SET USER PASSWORD statement 2-828
OLEDB API 4-221
OLTP 2-431
OLTP (on-line transaction processing) 2-269
ON DELETE CASCADE keywords

in ALTER TABLE statement 2-87
in CREATE TABLE statement 2-278
restrictions with triggers 2-335

ON EXCEPTION keywords
in Statement Block segment 5-78

ON EXCEPTION statement 3-46
ON keyword

in ALTER FRAGMENT statement 2-6
in CREATE EXTERNAL TABLE statement 2-164
in CREATE INDEX statement 2-194, 2-206
in CREATE TABLE statement 2-278, 2-281
in CREATE TRIGGER statement 2-331, 2-337, 2-339, 2-362
in GRANT FRAGMENT statement 2-538
in GRANT statement 2-511, 2-513, 2-516, 2-517, 2-526,

2-532
in MERGE statement 2-568
in ON EXCEPTION statement 3-46
in REVOKE FRAGMENT statement 2-643
in REVOKE statement 2-623, 2-626, 2-627, 2-629, 2-637,

2-642
in SET ENVIRONMENT statement 2-763, 2-766, 2-773,

2-777
in SET EXPLAIN statement 2-785
in SET STATEMENT CACHE statement 2-817
in TRACE statement 3-56

on triggering view 2-364
oncheck utility 2-220, 2-844, 4-126
ONCONFIG parameters

AUTO_READAHEAD 2-766
AUTO_REPREPARE 2-10, 2-587, 2-600, 2-880
AUTO_STAT_MODE 2-782
AUTO_STAT_MODEr 2-766
DATASKIP 2-748
DBCREATE_PERMISSION 2-150

ONCONFIG parameters (continued)
DBSERVERALIASES 2-135, 2-411, 2-554, 2-665, 2-862, 6-25
DBSERVERNAME 2-411, 2-554, 2-665, 2-862
DBSPACETEMP 2-721
DEADLOCK_TIMEOUT 2-805
DEF_TABLE_LOCKMODE 2-116, 2-318, 2-568, 2-799
DEFAULTESCCHAR 2-770
DIRECTIVES 5-35
DS_NONPDQ_QUERY_MEM 2-713
DS_TOTAL_MEMORY 2-775
EXPLAIN_STAT 2-789
EXT_DIRECTIVES 2-650, 2-770, 5-49
FILLFACTOR configuration parameter 2-208
IFX_EXTEND_ROLE 2-633, 6-10, 6-15
JVPCLASSPATH 6-22
LOCKS 2-427, 2-567
MAX_PDQPRIORITY 2-775, 2-811
OPT_GOAL 5-47
OPTCOMPIND 2-818, 5-43
PN_STAGEBLOB_THRESHOLD 2-301
SBSPACENAME 2-296, 3-1, 3-3, 4-122, 4-123, 6-15
SQL_LOGICAL_CHAR 3-23
STACKSIZE 5-70, 6-10
STATCHANGE 2-766, 2-782
STMT_CACHE 2-818
STMT_CACHE_HITS 2-820
STMT_CACHE_NOLIMIT 2-820
STMT_CACHE_NUMPOOL 2-817
STMT_CACHE_SIZE 2-820
SYSSBSPACENAME 2-76, 2-293, 2-872
TEMPTAB_NOLOG 2-326
UPDATABLE_SECONDARY 2-803
USELASTCOMMITTED 2-566, 2-783, 2-799, 2-823
USEOSTIME 4-81
USERMAPPING 2-122, 2-533
USTLOW_SAMPLE 2-785

ondblog utility 2-806
oninit utility 4-112
ONLINE keyword

in ALTER FRAGMENT statement 2-10, 2-15, 2-21, 2-43
in CREATE INDEX statement 2-216
in DROP INDEX statement 2-431, 2-433

Online transaction processing 2-431
ONLY keyword

in DECLARE statement 2-386
in DELETE statement 2-405, 2-407
in SAVE EXTERNAL DIRECTIVES statement 2-649
in SELECT statement 2-672, 2-678
in SET TRANSACTION statement 2-820
in UPDATE statement 2-852, 2-854
in UPDATE STATISTICS statement 2-868, 2-875, 2-877

onmode -Y 2-788, 2-789
onmode utility 2-818
onspaces utility 2-6, 2-209, 2-541, 2-644
onstat utility 2-748
onutil utility 4-126
Opaque data types

alignment of 2-220
as argument 2-220
associating with a column 4-38
creating 2-218
DESCRIBE with 2-492
dropping 2-450
extended identifier 2-492, 2-759
GET DESCRIPTOR with 2-492
in DELETE 2-410
in DROP TABLE 2-448

Index X-31

Opaque data types (continued)
in dynamic SQL 2-759
in INSERT 2-552
in LOAD 2-563
in UPDATE 2-862
loading 2-559, 2-563
modifiers 2-220
name of 2-492, 2-759
naming 2-219
owner name 2-492, 2-759
support functions 2-220
unloading 2-847
Varying-length opaque data type 2-220
with SET DESCRIPTOR 2-759

OPEN statement 2-581
Open-Fetch-Close Optimization 2-753
Operator class

btree_ops 2-226
creating 2-222
default 2-226, 5-55
default for B-Tree 2-226
defined 2-204, 2-222
dropping with DROP OPCLASS 2-434
rtree_ops 2-226
specifying with CREATE INDEX 2-198, 2-204

Operator function
concat() 4-61, 4-156
divide() 4-56
equal() 4-225
greaterthan() 4-225
greaterthanorequal() 4-225
lessthan() 4-225
lessthanorequal() 4-225
like() 4-15
matches() 4-16
minus() 4-56
negate() 4-56
notequal() 4-225
plus() 4-56
positive() 4-56
times() 4-56

OPT_GOAL configuration parameter 5-47
OPT_GOAL environment variable 5-47
OPTCOMPIND configuration parameter 5-43
OPTCOMPIND environment variable 2-763, 2-779, 2-818, 6-6
OPTCOMPIND keyword, in SET ENVIRONMENT

statement 2-779
Optical Subsystem

list of statements 1-10
Optim Data Studio 3-1, 3-3
Optim Development Studio 3-1, 3-3
Optimization

specifying a high or low level 2-807
OPTIMIZATION keyword

in SET OPTIMIZATION statement 2-807
Optimizer

and SAVE EXTERNAL DIRECTIVES statement 2-649
and SET OPTIMIZATION statement 2-807
Optimizer Directives segment 5-35
strategy functions 2-224
with UPDATE STATISTICS 2-880

Optimizer directives
/BROADCAST 5-43
/BUILD 5-43
/PROBE 5-43
access-method 5-37
ALL_ROWS 5-47

Optimizer directives (continued)
AVOID_EXECUTE 5-47
AVOID_FACT 5-45
AVOID_FULL 5-37
AVOID_HASH 5-43
AVOID_INDEX 5-37
AVOID_INDEX_SJ 5-37
AVOID_MULTI_INDEX 5-37
AVOID_NL 5-43
AVOID_STAR_JOIN 5-45
comment symbols 5-36
EXPLAIN 5-47
explain-mode 5-47
external 2-649
FACT 5-45
FIRST_ROWS 5-47
FULL 5-37
INDEX 5-37
INDEX_ALL 5-37
INDEX_SJ 5-37
inline 2-649
join-method 5-43
join-order 5-42
MULTI_INDEX 5-37
negative 5-37
not followed 2-686
optimization-goal 5-47
ORDERED 5-42
positive 5-37
restrictions 5-37, 5-45
segment 5-35
STAR_JOIN 5-45
star-join 5-45
USE_HASH 5-43
USE_NL 5-43

Optimizer environment settings
FACT 2-809
NON_DIM 2-809
Optimizer environment settings

AVOID_FACT 2-809
STAR_JOIN 2-809

Optimizing
a database server 2-807
a query 2-649, 2-785
across a network 2-807

OPTION keyword
in CREATE TRIGGER statement 2-373
in CREATE VIEW statement 2-377
in GRANT FRAGMENT statement 2-538
in GRANT statement 2-502
OPTION keyword 2-502

OR bitwise logical operation 4-58
OR keyword

defined 4-23
in Condition segment 4-5

ORDER BY keywords
in SELECT statement 2-711

ORDER BY SIBLINGS keywords
in SELECT statement 2-716

ORDER keyword
in ALTER SEQUENCE statement 2-72
in CREATE SEQUENCE statement 2-261

ORDERED keyword, in optimizer directives 5-42
OUT keyword 5-71
OUT parameter

default parameter style 5-20
user-defined function 5-73

X-32 IBM Informix Guide to SQL: Syntax

OUT parameter (continued)
with a statement-local variable 4-188, 4-192

OUTER keyword
in SELECT statement 2-685, 2-686, 2-688

OUTER keyword in SELECT statement 2-684
OUTPUT statement 2-588
Output support function 2-220
Overflow bin 2-877
Overloaded routine 5-2, 5-19
OVERRIDE keyword

in CREATE SECURITY POLICY statement 2-254
Owner 5-16

ANSI-compliant database 5-51
case-sensitivity 2-541, 2-619, 2-631, 2-644, 5-50
Database Object Name segment 5-49
in ANSI-compliant database 2-541, 2-619, 2-631, 2-644
in CREATE SYNONYM 2-263
in DROP SEQUENCE 2-444
in RENAME TABLE statement 2-615
in system catalog table 2-113
Owner Name segment 5-49

Owner Name segment 5-49
Owner-privileged UDR 2-186, 2-230

P
P abbreviation for page 4-185
Package, jar name component 5-34
PAGE keyword

DEF_TABLE_LOCKMODE setting 2-799
IFX_DEF_TABLE_LOCKMODE setting 2-799
in ALTER TABLE statement 2-116
in CREATE TABLE statement 2-317

Page number 4-68
Page-level locking

in ALTER TABLE statement 2-116
in CREATE TABLE statement 2-317

Parallel database query (PDQ) 5-45
Parallel distributed queries

SET ENVIRONMENT BOUND_IMPL_PDQ
statement 2-768

SET ENVIRONMENT IMPLICIT_PDQ statement 2-775
SET PDQPRIORITY statement 2-811

Parallelizable data query 5-68
PARALLELIZABLE keyword, in Routine Modifier

segment 5-65, 5-66
Parameter

BYTE or TEXT in SPL 3-24
dynamic 2-419
Java method 5-76
UDRs 5-1

PARAMETER keyword
External Routine Reference segment 5-20

Parameterizing
prepared statements 2-460

Parameterizing a statement, with SQL identifiers 2-596
Parent table 2-89, 2-107
Parent-child relationship 2-278, 2-568
PARTITION BY keywords

in ALTER FRAGMENT statement 2-25
in CREATE TABLE statement 2-300
in CREATE TEMP TABLE statement 2-327

PARTITION keyword
in ALTER FRAGMENT statement 2-11, 2-20, 2-25, 2-28,

2-30, 2-34
in CREATE INDEX statement 2-212, 2-313
in CREATE TABLE statement 2-300, 2-308

Partition number 4-109
Partitioning key 2-303
Partitions 2-541, 2-644
PASSEDBYVALUE keyword, in CREATE OPAQUE TYPE

statement 2-220
passwd file 2-139
PASSWORD keyword

in ALTER USER statement 2-122
in CREATE USER statement 2-368
in SET ENCRYPTION PASSWORD statement 2-760
in SET USER PASSWORD statement 2-828

PATH environment variable 3-4
Pathnames with commas 4-133
PB abbreviation for petabyte 4-185
PDQ

SET ENVIRONMENT statement 2-763
SET PDQPRIORITY statement 2-811

PDQ thread safe functions 5-68
PDQPRIORITY environment variable 2-768, 2-775, 2-811,

2-818
PDQPRIORITY keyword

in SET PDQPRIORITY statement 2-811
PERCALL_COST keyword, Routine Modifier segment 5-63,

5-65
Percent (%) sign

as wildcard 4-15
Period symbol (.)

DATETIME separator 4-210
DECIMAL values 4-216
INTERVAL separator 4-214
membership operator 4-65
MONEY values 4-216

Phantom row 2-798, 2-823
Pipe character (|) 2-164, 2-558, 2-722, 2-851
PIPE keyword

in CREATE EXTERNAL TABLE statement 2-163
in OUTPUT statement 2-588

Pluggable authentication module (PAM) 2-122, 2-533
Plus (+) sign

arithmetic operator 4-44
Plus operator (+)

unary 4-214, 4-215
Plus sign (+)

in optimizer directives 5-36
unary operator 4-214, 4-215

plus() operator function 4-56
PN_STAGEBLOB_THRESHOLD configuration

parameter 2-301
POINTER data type 2-663, 4-24
Pointer to a BYTE or TEXT object 5-60
Polar coordinates 4-153
POLICY keyword

in ALTER TABLE statement 2-91
in CREATE SECURITY POLICY statement 2-254
in CREATE TABLE statement 2-293
in DROP SECURITY statement 2-442
in RENAME SECURITY statement 2-613

positive() operator function 4-56
POW function 4-93, 4-97
POWER function 4-93, 4-97
Precedence in dot notation 4-66
PRECISION field

in SET DESCRIPTOR statement 2-755
with DESCRIBE INPUT statement 2-419
with DESCRIBE statement 2-415

PRECISION keyword
in GET DESCRIPTOR statement 2-488

Index X-33

PREPARE statement
deferring 2-751
for collection variables 2-592
increasing efficiency 2-600
multistatement text 2-468, 2-598
parameterizing a statement 2-596
parameterizing for SQL identifiers 2-596
question (?) mark as placeholder 2-589
releasing resources with FREE 2-486
restrictions with SELECT 2-592
statement identifier 2-399
statement identifier use 2-591
syntax 2-589
valid statement text 2-592
with external routines 2-594
with SPL routines 2-594

Prepared statement
comment symbols in 2-592
DESCRIBE statement with 2-412
executing 2-455
parameterizing 2-460
prepared object limit 2-386, 2-591
setting PDQ priority 2-811
valid statement text 2-592
with DESCRIBE INPUT statement 2-417
with SPL routines 2-593

Preserving newline characters in quoted strings 4-221
PREVIOUS keyword, in FETCH statement 2-474
Primary access methods

modifying 2-5
Primary key column, no NULL default 2-273
PRIMARY KEY keywords

in ALTER TABLE statement 2-85, 2-104
in CREATE TABLE statement 2-274, 2-285, 2-318
in CREATE TEMP TABLE statement 2-324, 2-325

PRIMARY keyword
in CREATE ACCESS_METHOD statement 2-143

Primary server 2-780
Primary-key constraint

cascading deletes 2-89
data type conversion 2-99
defining column as 2-277
dropping 2-113
requirements for 2-85, 2-277
rules of use 2-278
using 2-277

PRIOR keyword
in SELECT statement 2-703

PRIOR keyword, in FETCH statement 2-474
PRIVATE keyword

in CREATE SYNONYM statement 2-261
Privilege 2-505

Alter 2-507
chaining grantors 2-633
column-specific 2-625
Connect 2-505
database-level 2-621
DBA 2-505, 2-621
effect of NODEFDAC 2-510
Execute 2-513, 2-515, 2-627
for triggered action 2-357
fragment-level 2-538

revoking 2-643
granting 2-502
in system calls 3-54
needed to create a cast 2-147
on a synonym 2-261

Privilege (continued)
on a view 2-373
on languages 2-513, 2-516, 2-629
on named row type 2-512
on remote objects 2-812
on sequences 2-517, 2-629
on table fragments 2-538
on UDRs called by a trigger 2-357
Resource 2-505
table-level 2-623

ANSI-compliant 2-510
column-specific 2-507
effect on view 2-511

Usage 2-516, 2-626, 2-629
PRIVILEGES keyword

in GRANT statement 2-507
in INFO statement 2-544
in REVOKE statement 2-623

Procedural language 4-81
Procedure

creating from file 2-236
DELETING operator 2-231
dropping with DROP PROCEDURE 2-435
dropping with DROP ROUTINE 2-438
external 2-234
INSERTING operator 2-231
modifying path to executable file 2-60
modifying routine modifiers 2-60
modifying with ALTER PROCEDURE 2-60
privileges 2-230, 2-234
protected 2-435, 2-439
SELECTING operator 2-231
specific name 5-77
system catalog tables for 2-234
trigger 2-231
UPDATING operator 2-231
user-defined, definition 2-229

Procedure cursor
opening 2-583

PROCEDURE keyword
in ALTER PROCEDURE statement 2-60
in CREATE PROCEDURE statement 2-226
in DECLARE statement 2-386
in DROP PROCEDURE statement 2-435
in EXECUTE PROCEDURE statement 2-471
in GRANT statement 2-513
in REVOKE statement 2-627
in SELECT statement 2-680
in TRACE statement 3-56
in UPDATE STATISTICS statement 2-880

Projection
clause 2-658
column with dot notation 4-65
field projection 4-65

Projection clause 2-658
Projection list 2-658, 4-66
Promotable lock 2-393
PROPERTIES keyword

in ALTER USER statement 2-122
in CREATE USER statement 2-156, 2-368
in GRANT statement 2-533

Protected routines 2-428, 2-435, 2-439
Protection granularity 2-91
Pseudo-table 2-574
Pseudo-users 2-634
PUBLIC keyword

in ALTER TRUSTED CONTEXT statement 2-118

X-34 IBM Informix Guide to SQL: Syntax

PUBLIC keyword (continued)
in ALTER USER statement 2-122
in CREATE SYNONYM statement 2-261
in CREATE TRUSTED CONTEXT statement 2-366
in GRANT FRAGMENT statement 2-541
in GRANT statement 2-518, 2-532, 2-533
in REVOKE FRAGMENT statement 2-644
in REVOKE statement 2-619, 2-630, 2-642

Purpose flags
adding and deleting 2-5
list 5-55

Purpose functions
adding, changing, and dropping 2-5
for access methods 2-844, 5-55
for XA data source types 5-58
parallel-execution indicator 5-55

Purpose options
specifying 5-55
valid settings 5-55

Purpose values
adding, changing, and dropping 2-5

PUT clause
in CREATE TABLE statement 2-295

PUT keyword
in ALTER TABLE statement 2-101
in CREATE TABLE statement 2-296
in CREATE TEMP TABLE statement 2-327

PUT statement
FLUSH with 2-601
source of row values 2-603
syntax 2-601
use in transactions 2-601

Q
Qualifier, field 4-42, 4-206

for DATETIME 4-210
for INTERVAL 4-214

Qualifying rows 2-655
Queries

case-insensitive 4-159
Query

case-insensitive 4-172
distributed 2-663, 2-665, 2-760, 4-24, 4-37, 5-17
execution path 5-37, 5-45
external databases 5-17
external directives 2-651
optimizer directives 5-35
optimizing prepared statements 2-820
optimizing with SAVE EXTERNAL DIRECTIVES 2-649
optimizing with SET OPTIMIZATION 2-807
piping results to another program 2-589
priority level 2-811
qualifying rows 2-655
remote databases 5-18
result set 2-655
sending results to an operating-system file 2-589
sending results to another program 2-589
statistics 2-789

Query optimizer
external directives 2-649
recalculating distributions 2-868

Query optimizer directive 5-35
Question mark (?)

as placeholder in PREPARE 2-403, 2-589
as wildcard 4-16
dynamic parameters 2-419

Question mark (?) (continued)
generating unique large-object filename 4-134
naming variables in PUT 2-604

Question Mark (?)
placeholder in PREPARE 2-585

Quotation marks
delimited identifiers 5-25
double 5-26
effects of DELIMIDENT environment variable 5-25
literal in a quoted string 4-222
literal nested collection 4-209
owner name 5-50
quoted string delimiter 4-219, 4-222
single 5-25
with delimited identifiers 5-23

Quoted Pathname segment 5-74
Quoted string 4-219

as constant expression 4-78
DATETIME values as strings 4-222
effects of DELIMIDENT environment variable 5-25
in INSERT 2-550, 4-223
INTERVAL values as strings 4-222
maximum length 4-223
newline characters 4-187
newline characters in 4-221
wildcards 4-223
with LIKE keywords 2-692

R
R-tree index

creating 2-205, 2-216
default operator class 2-226
dropping 2-433
rtree_ops operator class 2-226
uses 2-205

R-tree secondary-access method 2-205, 2-222
Radians

converting degrees to radians 4-154
converting radians to degrees 4-154

RADIANS function 4-150
Radicand 4-97
Radix-64 encryption format 2-761
RAISE EXCEPTION statement 3-50
Range fragment 2-10, 2-15, 2-21, 2-37, 2-43
Range fragmentation 2-72
RANGE function 4-193, 4-202
RANGE keyword

in ALTER FRAGMENT statement 2-25
in CREATE INDEX statement 2-212
in CREATE TABLE statement 2-300

RAW keyword
in ALTER TABLE statement 2-75
in CREATE TABLE statement 2-265, 2-269
in SELECT statement 2-720

RAW table
express-mode loads 2-173, 2-177
loading from another database server 2-178

Read Committed isolation level 2-783, 2-823
READ COMMITTED keywords, in SET TRANSACTION

statement 2-820
READ keyword

in GRANT statement 2-528
in REVOKE statement 2-639
in SET ENVIRONMENT statement 2-763, 2-780, 2-783
in SET ISOLATION statement 2-798, 2-799
in SET TRANSACTION statement 2-820

Index X-35

READ ONLY keywords
in DECLARE statement 2-386
in SELECT statement 2-719
in SET TRANSACTION statement 2-820

Read permission 6-20
Read Uncommitted isolation level 2-783, 2-822
READ UNCOMMITTED keywords, in SET TRANSACTION

statement 2-820
READ WRITE keywords, in SET TRANSACTION

statement 2-820
REAL data type 4-32
Real numbers 4-32
Receive support function 2-220
RECORDEND environment variable 2-722
RECORDEND keyword 2-175

in CREATE EXTERNAL TABLE statement 2-164
in SELECT statement 2-722

REFERENCES keyword
in ALTER TABLE ADD CONSTRAINT statement 2-106
in ALTER TABLE MODIFY statement 2-106
in ALTER TABLE statement 2-87
in CREATE TABLE statement 2-278
in EXECUTE FUNCTION statement 2-462
in EXECUTE PROCEDURE statement 2-471
in GRANT statement 2-507
in INFO statement 2-544
in Return Clause segment 5-58
in REVOKE statement 2-623

References privilege
defined 2-507
displaying 2-544
revoking 2-623

REFERENCING keyword
in CREATE FUNCTION statement 2-187
in CREATE PROCEDURE statement 2-231
in CREATE TRIGGER statement 2-362

Delete triggers 2-345
Insert triggers 2-346
Select triggers 2-347
Update triggers 2-347
view column values 2-362

Referential constraint
cascading deletes 2-89
database object mode 2-777
Dataskip feature 2-749
defining 2-278
delete triggers 2-335
dropping 2-113
locking 2-279
NOVALIDATE attribute 2-777

Referential integrity 2-407
Registering DataBlade modules 6-10
REJECTFILE keyword

in CREATE EXTERNAL TABLE statement 2-164
Relational operators 4-224

in Condition segment 4-9
with WHERE keyword in SELECT 2-690

RELATIVE keyword, in FETCH statement 2-474
RELEASE keyword

in RELEASE SAVEPOINT statement 2-608
RELEASE SAVEPOINT statement 2-608
REMAINDER IN keywords

in ALTER FRAGMENT statement 2-25, 2-28, 2-30, 2-34
in CREATE INDEX statement 2-212, 2-313
in CREATE TABLE statement 2-300

REMAINDER keyword
in ALTER FRAGMENT statement 2-11

Remote procedure
restrictions on optimizing 2-868

Remote query 2-663, 2-665
Remote standalone secondary server (RSS) 2-803
RENAME COLUMN statement 2-610
RENAME DATABASE statement 2-611
RENAME INDEX statement 2-612
RENAME SECURITY LABEL COMPONENT statement 2-613
RENAME SECURITY LABEL statement 2-613
RENAME SECURITY POLICY statement 2-613
RENAME SECURITY statement 2-613
RENAME SEQUENCE statement 2-614
RENAME TABLE statement 2-615
RENAME TRUSTED CONTEXT statement 2-616
RENAME USER statement 2-617
REOPTIMIZATION keyword in OPEN statement 2-581
Reoptimizing query plans 2-869
Repeatable Read isolation level 2-152, 2-779, 2-801, 2-823
Repeatable Read isolation level, emulating during

update 2-481
REPEATABLE READ keywords

in SET ISOLATION statement 2-796
in SET TRANSACTION statement 2-820

REPLACE function 4-167
REPLACE keyword

in ALTER TRUSTED CONTEXT statement 2-118
REPLACE USE FOR keywords

in ALTER TRUSTED CONTEXT statement 2-118
REPLCHECK keyword

in ALTER TABLE statement 2-79
in CREATE TABLE statement 2-265, 2-289, 2-291

REPLICATION keyword
in BEGIN WORK statement 2-126

Reserved words
delimited identifiers 5-23
identifiers 5-23
of SQL A-1

RESOLUTION keyword, in UPDATE STATISTICS
statement 2-877

RESOURCE keyword 2-505
in REVOKE statement 2-621

Resource privilege 2-505
with CREATE ACCESS_METHOD statement 2-143

RESTART keyword, in ALTER SEQUENCE statement 2-71
RESTRICT keyword

in CREATE SECURITY POLICY statement 2-254
in DROP ACCESS_METHOD statement 2-424
in DROP OPCLASS statement 2-434
in DROP ROW TYPE statement 2-440
in DROP SECURITY statement 2-442
in DROP TABLE statement 2-446
in DROP TYPE statement 2-450
in DROP VIEW statement 2-452
in DROP XADATASOURCE statement 2-453
in DROP XADATASOURCE TYPE statement 2-454
in REVOKE statement 2-619

RESTRICTED mode of UDRs 2-814
Restrictions

external tables 2-181
Result sets 2-655, 2-680
RESUME keyword

in ON EXCEPTION statement 3-46
in RETURN statement 3-51

RETAIN UPDATE LOCKS keywords
in SET ISOLATION statement 2-796

RETAINUPDATELOCKS keyword, in SET ENVIRONMENT
statement 2-780

X-36 IBM Informix Guide to SQL: Syntax

Return Clause segment 5-58
RETURN statement 3-51
Return value

declaring in CREATE FUNCTION 5-58
REFERENCES keyword 5-60

RETURNED_SQLSTATE field 2-412, 2-482
RETURNED_SQLSTATE keyword, in GET DIAGNOSTICS

statement 2-498
RETURNING keyword

example 2-192
in CALL statement 3-11
in Return Clause Segment 5-58

RETURNS keyword
in Java Shared-Object-File segment 5-76
in Return Clause segment 5-58

REUSE keyword
in TRUNCATE statement 2-842

REUSE keyword, in TRUNCATE statement 2-844
REVERSE function 4-166
REVOKE FRAGMENT statement 2-643
REVOKE statement 2-515, 2-619
RIGHT function 4-178
RIGHT keyword

in ANSI Joined Tables segment 2-684
in SELECT statement 2-685

Right outer joins 2-681
ROBIN keyword

in ALTER FRAGMENT statement 2-25
in CREATE TABLE statement 2-300

Role
activating with SET ROLE 2-812
built-in 2-237, 2-437
case-sensitivity 2-502
creating with CREATE ROLE 2-237
currently enabled 4-76
default 2-520, 2-632, 4-76
default roles 2-814
definition 2-237
dropping with DROP ROLE statement 2-437
enabling with SET ROLE 2-812
establishing with CREATE, GRANT, SET 2-519
EXTEND 2-521, 2-633
granting privileges with GRANT 2-520
granting role with GRANT 2-519
revoking privileges 2-631
scope of 2-812

ROLE keyword
in ALTER TRUSTED CONTEXT statement 2-118
in CREATE ROLE statement 2-237
in CREATE TRUSTED CONTEXT statement 2-366
in DROP ROLE statement 2-437
in GRANT statement 2-520, 2-532
in REVOKE statement 2-619, 2-632, 2-642
in SET ROLE statement 2-812

ROLLBACK WORK statement 2-126, 2-646
with WHENEVER 2-132

root dbspace 2-150
ROOT function 4-93, 4-97
ROOT keyword

in CREATE SECURITY LABEL COMPONENT
statement 2-250

ROUND function 4-93, 4-98
ROUND ROBIN keywords

in ALTER FRAGMENT statement 2-25
in CREATE TABLE statement 2-300

Rounding error 4-227

ROUTINE keyword
in ALTER ROUTINE statement 2-62
in CREATE ROUTINE FROM statement 2-239
in DROP ROUTINE statement 2-438
in GRANT statement 2-513, 2-515
in REVOKE statement 2-627
in UPDATE STATISTICS statement 2-880

Routine manager 6-22
Routine modifier

CLASS 5-63
COSTFUNC 5-66
HANDLESNULLS 5-67
INTERNAL 5-67
ITERATOR 5-67
NEGATOR 5-67
NOT VARIANT 5-70
PARALLELIZABLE 5-68
PERCALL_COST 5-68
SELCONST 5-69
SELFUNC 5-69
STACK 5-70
VARIANT 5-70

Routine Parameter List segment 5-71
Routine signature 5-19, 5-73
Routines

altering with ALTER ROUTINE 2-62
built-in 6-1
checking references 2-356
creating with CREATE ROUTINE FROM 2-239
dropping with DROP ROUTINE 2-438
modifying

path to executable file 2-60
routine modifiers 2-62

modifying path to executable file 2-63
overloading 5-19
privileges 2-230
protected 2-428, 2-435, 2-439
restrictions in triggered action 2-356
specific name 5-77
trigger 2-187, 2-231

ROW constructor, in Expression segment 4-87
ROW data types

collection-derived tables 5-7
constructor syntax 4-87
dot notation 4-65
loading field values 2-559, 2-563
nested 4-219
privileges 2-512
selecting fields 2-668
selecting from 2-679
unloading 2-847, 2-850
updating 2-860, 2-867

ROW keyword 4-216
in ALLOCATE ROW statement 2-4
in ALTER TABLE statement 2-116
in CREATE ROW TYPE statement 2-241
in CREATE TABLE statement 2-317
in CREATE TRIGGER statement 2-343, 2-348
in DROP ROW TYPE statement 2-440
in Expression segment 4-87

Row variable
accessing 5-14
allocating memory 2-4
deallocating memory for 2-386
inserting 2-553
inserting into 2-557
selecting from 2-679

Index X-37

Row variable (continued)
updating 2-867

ROW_COUNT keyword, in GET DIAGNOSTICS
statement 2-497

Row-column level encryption 4-117
Row-level locking

in ALTER TABLE statement 2-116
in CREATE TABLE statement 2-317
in SET ENVIRONMENT RETAINUPDATELOCKS

statement 2-780
in SET ENVIRONMENT USELASTCOMMITTED

statement 2-783
Row-type columns, generating values for 4-87
ROWID

adding column with INIT clause 2-24
adding with ALTER TABLE 2-80
dropping from fragmented tables 2-80
specifying support 5-55
use in a column expression 4-68
use in fragmented tables 2-24
used as column name 5-28, 5-29

rowid column 2-24, 2-301, 2-715
ROWID keyword, in Expression segment 4-64
ROWIDS keyword

in ALTER FRAGMENT statement 2-24
in ALTER TABLE statement 2-80
in CREATE TABLE statement 2-300

Rows
deleting 2-405
finding location 4-68
inserting

through a view 2-548
with a cursor 2-549

order of qualifying rows 2-659
phantom row 2-798
retrieving with FETCH 2-476
rowid defined 2-476
uncommitted row 2-798
updating through a view 2-855
waiting for a locked row 2-804
writing buffered rows with FLUSH 2-484

ROWS keyword, in START VIOLATIONS TABLE
statement 2-828

RPAD function 4-169
RSAM access method 2-721
RTNPARAMS data type 2-663
RTNPARAMTYPES data type 4-24
RTRIM function 4-164
RULE keyword

in GRANT statement 2-526
in REVOKE statement 2-637

S
SAMEAS keyword

in CREATE EXTERNAL TABLE statement 2-161
SAMPLING keyword, in UPDATE STATISTICS

statement 2-877
SAVE EXTERNAL DIRECTIVES statement 2-649
SAVEPOINT keyword

in RELEASE SAVEPOINT statement 2-608
in ROLLBACK WORK statement 2-647
in SAVEPOINT statement 2-652

SAVEPOINT statement 2-652
Savepoints

destroying 2-608
setting 2-652

SBSPACENAME configuration parameter 2-296, 3-1, 3-3, 3-4,
4-35, 4-122, 4-123, 6-15

sbspaces
specifying in ALTER TABLE 2-101
specifying in CREATE TABLE 2-296

SCALE field, with DESCRIBE INPUT statement 2-419
SCALE field, with DESCRIBE statement 2-415
SCALE keyword

in GET DESCRIPTOR statement 2-488
in SET DESCRIPTOR statement 2-755

Scan cost 2-5
Schema name 5-49
Scope of reference

global 2-386, 2-456, 3-16
in subqueries with UNION 2-726
local 3-19
module 2-386, 2-456
static 2-352

Screen reader
reading syntax diagrams B-1

Scroll cursors
defined 2-395
with FETCH 2-476
WITH HOLD 2-803

SCROLL keyword, in DECLARE statement 2-386
SECLABEL_BY_COMP function 4-129
SECLABEL_BY_NAME function 4-129
SECLABEL_TO_CHAR function 4-130
SECOND keyword 4-42, 4-206
Secondary access methods

altering 2-5
user-defined 2-5

Secondary data replication server 2-803
SECONDARY keyword

in CREATE ACCESS_METHOD statement 2-143
Secondary server 2-269, 2-780
Secondary-access methods

B-tree 2-205, 2-222
bts 2-205
default operator class 2-226
defined 2-194, 2-222
R-Tree 2-222
R–tree 2-205
registering 2-143
USING clause 2-205

Secure auditing 2-568, 4-117
SECURED WITH keywords

in ALTER TABLE statement 2-91, 2-100
in CREATE TABLE statement 2-272

SECURITY keyword
in ALTER SECURITY LABEL COMPONENT

statement 2-64
in ALTER TABLE statement 2-91, 2-100
in CREATE SECURITY LABEL COMPONENT

statement 2-250
in CREATE SECURITY LABEL statement 2-248
in CREATE SECURITY POLICY statement 2-254
in CREATE TABLE statement 2-293
in DROP SECURITY statement 2-442
in GRANT statement 2-528
in RENAME SECURITY statement 2-613
in REVOKE statement 2-639

Security label
assigning to a column 2-91, 2-100, 2-272
creating 2-248
dropping from a column 2-100
identifier 4-129

X-38 IBM Informix Guide to SQL: Syntax

Security label (continued)
in DML operations 2-568
renaming 2-442, 2-613
string format 4-130

Security label component
for a security policy 2-254
renaming 2-442, 2-613

SECURITY LABEL COMPONENT keywords
in DROP SECURITY statement 2-442
in RENAME SECURITY statement 2-613

Security label components
creating 2-250

SECURITY LABEL keywords
in ALTER SECURITY LABEL COMPONENT

statement 2-64
in CREATE SECURITY LABEL COMPONENT

statement 2-250
in CREATE SECURITY LABEL statement 2-248
in CREATE SECURITY POLICY statement 2-254
in DROP SECURITY statement 2-442
in GRANT statement 2-528
in RENAME SECURITY statement 2-613
in REVOKE statement 2-639

Security label support functions
SECLABEL_BY_COMP 4-129
SECLABEL_BY_NAME 4-129
SECLABEL_TO_CHAR 4-130
syntax 4-128

Security policy
associating with an existing table 2-91
creating 2-254
renaming 2-442, 2-613

SECURITY POLICY keywords
in ALTER TABLE statement 2-91
in CREATE SECURITY POLICY statement 2-254
in CREATE TABLE statement 2-293
in DROP SECURITY statement 2-442
in RENAME SECURITY statement 2-613

Segment
defined 5-1

SELCONST keyword routine modifier 5-63, 5-65
Select cursor

declaring 2-390
opening 2-582, 2-583
reopening 2-583

SELECT INTO clause
no table expressions 2-674

SELECT ITEM keywords, in Collection-Subquery
segment 4-3

SELECT keyword 4-3
ambiguous use as routine variable 5-31
in Condition segment 4-20, 4-21
in CREATE TRIGGER statement 2-339
in CREATE VIEW statement 2-376
in DECLARE statement 2-386
in GRANT statement 2-518
in LET statement 3-40
in OUTPUT statement 2-588
in REVOKE statement 2-623, 2-630
in UNLOAD statement 2-846

Select list 2-658
Select privilege 2-507, 2-518, 2-623, 2-629
SELECT statements 3-30

aggregate functions in 4-193
BETWEEN condition 2-691
collection with 2-678
column numbers 2-715

SELECT statements (continued)
cursor for 2-717, 2-719
FIRST clause 2-660, 2-661
FOR READ ONLY clause 2-719
FOR UPDATE clause 2-717
FROM clause 2-672
GROUP BY clause 2-708
HAVING clause 2-711
IN condition 2-691
in FOR EACH ROW trigger 2-344
in INSERT 2-556
indicator variables 2-466
INTO clause with ESQL 2-669
INTO EXTERNAL clause 2-722
INTO TEMP clause 2-721
IS NULL condition 2-692
joining tables in WHERE clause 2-694
LIKE or MATCHES condition 2-692
null values in the ORDER BY clause 2-714
ORDER BY clause 2-711
outer join 2-688
Projection clause 2-658
relational-operator condition 2-690
restrictions in SPL routines 5-80
restrictions with INTO clause 2-592
row type 2-668, 2-679
ROWID keyword 4-68
select numbers 2-715
singleton 2-669
SKIP option 2-660
smart large objects with 4-69
SPL routine in 2-667
subquery with WHERE keyword 2-690
syntax 2-655
typed tables in the FROM clause 2-678
UNION operator 2-725
use of expressions 2-666
user-defined routine in 2-667
with DECLARE 2-386
with LET 3-41
writing rows retrieved to an ASCII file 2-846

Select triggers 2-339
SELECTING operator 2-187, 4-14
Selective row-level auditing 2-290
Selectivity

functions 5-69
of the WHERE clause 2-877

Selectivity functions 2-872
Selectivity of an index key 5-37
Self-join

defined 2-695
path 2-789
with aliases 2-673

Self-referencing foreign key 2-106, 2-743
SELFUNC keyword routine modifier 5-63, 5-65
SELFUNCARGS data type 2-663, 4-24, 5-69
Semantic integrity 2-334, 2-556
Semicolon (;)

SPL statement block delimiter 2-234
statement terminator 2-245

Seminumeric data values 4-223
Send support function 2-220
SENDRECV data type 2-663, 4-24
SEQ_CACHE_SIZE configuration parameter 2-71, 2-261
Sequence

cache 2-261
creating a synonym for 2-261

Index X-39

Sequence (continued)
dropping a synonym 2-445
generator 2-257
privileges on 2-517, 2-629

SEQUENCE keyword
in ALTER SEQUENCE statement 2-69
in CREATE SEQUENCE statement 2-257
in DROP SEQUENCE statement 2-444
in RENAME SEQUENCE statement 2-614

Sequential cursor
with DECLARE 2-395
with FETCH 2-476

SERIAL columns
resetting counter 2-97

Serial columns, loading 2-176
SERIAL data type

inserting values 2-551
invalid default 2-272
last inserted value 4-114
length 4-30
resetting counter 2-97, 2-551
value range 4-30

Serial key 2-749
SERIAL8 data type

inserting values 2-551
invalid default 2-272
last inserted value 4-114
value range 4-30

SERIALIZABLE keyword, in SET TRANSACTION
statement 2-820

SERVER keyword
in SET ENVIRONMENT statement 2-763

SERVER_LOCALE environment variables 4-28
SERVER_NAME keyword, in GET DIAGNOSTICS

statement 2-498
Session

automatically configuring 6-8
get the client time zone 4-114
set initial environment for 6-6

Session control block 4-111
Session coordination 2-769, 2-772
Session ID 4-111
SESSION keyword

in SET ENVIRONMENT statement 2-763
SESSION keyword, in SET SESSION AUTHORIZATION

statement 2-814
Session password 2-760
Session properties

automatically configuring 6-9
SET AUTOFREE statement 2-726
SET COLLATION statement 2-728
SET columns, generating values for 4-88
SET CONNECTION statement 2-731
SET CONSTRAINTS statements 2-735
SET data type

defined 4-88
deleting elements from 2-410
unloading 2-847
updating elements 2-867

SET Database Object Mode statement
syntax 2-737
with

CREATE TRIGGER statement 2-359
SET DATASKIP statement 2-748
SET DEBUG FILE statement

syntax 2-750
with TRACE statement 3-56

SET DEFERRED_PREPARE statement 2-751
SET DESCRIPTOR statement 2-753
SET ENCRYPTION PASSWORD statement

audit-event mnemonic 4-117
syntax 2-760

SET ENVIRONMENT statement 2-763
SET EXPLAIN 2-788
SET EXPLAIN FILE TO statement 2-787
SET EXPLAIN ON 2-789
SET EXPLAIN output 2-789
SET EXPLAIN statement

output 2-794
SET INDEXES statement 2-795
SET ISOLATION statement

isolation levels defined 2-822
similarities to SET TRANSACTION statement 2-821

SET keyword
in ALTER SECURITY LABEL COMPONENT

statement 2-64
in CREATE SECURITY LABEL COMPONENT

statement 2-250
in DEFINE statement 3-20
in Expression segment 4-88
in Literal Collection 4-208
in MERGE statement 2-568
in ON EXCEPTION statement 3-46
in SET Database Object Mode statement 2-737
in UPDATE statement 2-857

SET LOCK MODE statement 2-771, 2-804
SET LOG statement 2-806
Set operators

UNION ALL 2-724, 2-725
SET OPTIMIZATION statement

ALL_ROWS option 2-809
FIRST_ROWS option 2-809
HIGH option 2-808
LOW option 2-808
syntax 2-807

SET PDQPRIORITY statement 2-811
SET ROLE statement 2-812
SET SESSION AUTHORIZATION statement 2-814
SET STATEMENT CACHE statement 2-817
SET Transaction Mode statement 2-825
SET TRANSACTION statement 2-820

default database levels 2-824
effects of isolation 2-824
similarities to SET ISOLATION statement 2-821

SET TRIGGERS statement 2-827
SET USER PASSWORD statement 2-828
Set-column level encryption 4-117
setenv utility 2-138
setnet32 utility 2-137
SETSESSIONAUTH access privilege 2-814
SETSESSIONAUTH keyword

in GRANT statement 2-532
in REVOKE statement 2-642

SETSESSIONAUTH privilege 2-814
SETUDTEXTNAME procedure 6-23
setUDTextName() procedure 2-191
setUDTExtName() procedure 2-234
Shadow columns 2-72, 2-79, 2-80, 2-290, 2-291, 2-292
SHARE keyword, in LOCK TABLE statement 2-564
Shared library functions 2-521, 5-20
Shared lock mode 2-564
Shared-disk secondary server (SDS) 2-803
Shared-object files 2-191, 5-20
Shell script 3-56

X-40 IBM Informix Guide to SQL: Syntax

Shortcut keys
keyboard B-1

SIBLINGS keyword
in SELECT statement 2-716

SIBLINGS keyword, in SELECT statement 2-711
Side-effect index 2-225
SIGN function 4-131
Signatures 5-19
Simple assignment 3-40
Simple join 2-681
Simple large object data types 4-34
Simple large objects 4-33

distribution statistics 2-872
loading 2-559, 2-561
unloading 2-847, 2-849

Simple table expression 2-674
Simple view 2-365
SIN function 4-150, 4-152
Single quotation marks

literal in a quoted string 4-222
quoted string delimiter 4-219

Single-byte characters 4-26
Single-threaded application 2-733
Singleton SELECT statement 2-660, 2-669, 2-859
SINH function 4-152
SITENAME function

constant expression 4-80
in ALTER TABLE statement 2-83
in Condition segment 4-11
in CREATE TABLE statement 2-272
in DEFINE statement 3-17

SIZE keyword
in ALTER TABLE statement 2-101, 2-114, 2-115
in CREATE EXTERNAL TABLE statement 2-164
in CREATE INDEX statement 2-209
in CREATE TABLE statement 2-296, 2-314
in CREATE TEMP TABLE statement 2-327
in SELECT statement 2-720
in UPDATE STATISTICS statement 2-877

Size specifications 4-185
SKIP keyword in SELECT statement 2-660
Skip-scan access method 5-37
Slash and asterisk (/* */) comment indicator 1-3, 2-592, 5-36
Slot number 4-68
SLV. 4-190
SMALLFLOAT data type 4-32

literal values 4-216
systems not supporting 2-382

SMALLINT data type, literal values 4-215
Smart large object data types 4-35
Smart large objects

accessing column data 4-69
copying to a file 4-134
copying to a smart large object 4-135
creating from a file 4-131, 4-132, 6-15
data integrity 2-296
expressions with 4-69
extent size 2-296
functions for copying 4-131
generating filename for 4-134
handle values 4-69
loading values 2-559, 2-562
logging 2-296
storing 2-101, 2-296, 3-1, 3-3
unloading 2-847, 2-849

SMI. 4-111

SOME keyword
beginning a subquery 2-693
in Condition segment 4-21

Sort-merge join 2-779
Sorting

ascending or descending order 2-198
in a combined query 2-724
in SELECT 2-711

SOURCEID field
in SET DESCRIPTOR statement 2-755

SOURCEID keyword
in GET DESCRIPTOR statement 2-488

SOURCETYPE field
in SET DESCRIPTOR statement 2-755

SOURCETYPE keyword
in GET DESCRIPTOR statement 2-488

SPACE function 4-165
Spatial data 2-448, 2-862
SPECIFIC FUNCTION keywords

in ALTER FUNCTION statement 2-57
in GRANT statement 2-513
in REVOKE statement 2-627
in UPDATE STATISTICS statement 2-880

SPECIFIC keyword
EXTERNAL keyword

in ALTER FUNCTION statement 2-57
Functions

altering with ALTER FUNCTION 2-57
in ALTER FUNCTION statement 2-57
in ALTER PROCEDURE statement 2-60
in ALTER ROUTINE statement 2-62
in CREATE FUNCTION statement 2-183
in CREATE PROCEDURE statement 2-226
in DROP FUNCTION statement 2-428
in DROP PROCEDURE statement 2-435
in DROP ROUTINE statement 2-438
in GRANT statement 2-513
in REVOKE statement 2-627
in UPDATE STATISTICS statement 2-880

Specific Name segment 5-77
SPECIFIC PROCEDURE keywords

in ALTER PROCEDURE statement 2-60
in GRANT statement 2-513
in REVOKE statement 2-627
in UPDATE STATISTICS statement 2-880

SPECIFIC ROUTINE keywords
in ALTER ROUTINE statement 2-62
in GRANT statement 2-513
in REVOKE statement 2-627
in UPDATE STATISTICS statement 2-880

SPL function
CREATE FUNCTION 2-191
cursors 3-30
data types of return values 5-59
dropping 2-428
dynamic routine-name specification 2-467
executing 2-462, 2-594
optimization 2-191
registering 2-191
registering from inside an external routine 2-193

SPL functions
debugging 3-1, 3-3

SPL keyword
in GRANT statement 2-513, 2-516
in REVOKE statement 2-629

SPL procedure
creating with CREATE PROCEDURE 2-234

Index X-41

SPL procedure (continued)
dynamic routine-name specification 2-474
executing 2-594
optimization 2-234, 2-869
registering with CREATE PROCEDURE 2-234
sysdbclose() 6-6
sysdbopen() 6-6

SPL procedures
debugging 3-1, 3-3, 3-4

SPL Routine Debugger 3-1, 3-3, 3-4
SPL routines

as triggered action 2-350
BYTE and TEXT data types 3-24
comment indicators 1-3
debugging 3-1, 3-3, 3-4, 3-56
defined 3-1
definition 2-229
dropping with DROP PROCEDURE 2-435
executing operating-system commands 3-54
handling multiple rows 3-52
header 3-14
in SELECT statement 2-667
limits on parameters 5-71
output file for TRACE statement 2-750
ownership of created objects 2-235
preparing 2-594
receiving data from SELECT 2-669
reoptimizing 2-869
restrictions when used with DML statements 5-82
sending mail 3-54
setting environment variables 3-56
simulating errors 3-50
SQL statements not supported 5-80

SPL statements, defined 3-1
sqexplain.out file 2-651, 2-788, 2-880, 5-47
SQL

comments 1-3
compliance of statements with ANSI standard 1-11
reserved words A-1
statement types 1-5

SQL administration API 4-185
SQL Communications area

sqlca.sqlcode 4-106
SQL Communications Area 2-131

result after CLOSE 2-131
result after DATABASE 2-382
result after DATASKIP event 2-748
result after DELETE 2-412, 4-110
result after DESCRIBE 2-414
result after DESCRIBE INPUT 2-418
result after EXECUTE 2-460, 2-598
result after FETCH 2-482
result after FLUSH 2-485
result after INSERT 2-333, 4-110
result after OPEN 2-584
result after PUT 2-607
result after SELECT 2-671, 4-110
result after UPDATE 4-110
sqlca.sqlerrd1 4-110
sqlca.sqlerrd2 4-110
sysibm.SQLCAMessage function 6-27

SQL DESCRIPTOR keywords
in DESCRIBE INPUT statement 2-417
in DESCRIBE statement 2-412
in EXECUTE statement 2-456, 2-460
in FETCH statement 2-474
in OPEN statement 2-581

SQL DESCRIPTOR keywords (continued)
in PUT statement 2-601

SQL Function. 4-95
SQL keyword

in DESCRIBE INPUT statement 2-419
in DESCRIBE statement 2-415
in EXECUTE statement 2-462
in OPEN statement 2-581

SQL statement cache
disabling 2-819
enabling 2-818
prepared statements 2-820
qualifying criteria 2-819

SQL statements
restrictions within SPL routines 5-80

SQL_INFX_ATTR_DELIMIDENT connection attribute 5-25
SQL_LOGICAL_CHAR configuration parameter 2-82, 2-98
SQL-99 standard 1-3
SQLCA. 2-382, 4-114
sqlca.sqlerrd1 2-333, 2-365
SQLCAMessage function 6-27
SQLCODE function 4-106
SQLCODE variable 2-131, 2-412, 2-482, 2-485, 2-584, 2-887
sqld value 2-480
sqlda structure

in DESCRIBE 2-412, 2-414
in DESCRIBE INPUT 2-417
in EXECUTE 2-458
in EXECUTE ... INTO 2-459
in FETCH 2-480
in OPEN 2-456, 2-460, 2-581, 2-601, 2-603
in OPEN...USING DESCRIPTOR 2-586

SQLERRD array
last inserted BIGSERIAL value 4-114
last inserted SERIAL8 value 4-114
number of inserted rows 2-485

SQLERROR keyword, in WHENEVER statement 2-885
sqlhosts file 2-137, 2-411, 2-665
SQLHOSTS registry key 2-665
SQLI client-server communication protocol 2-494
SQLJ driver built-in procedures

ALTER_JAVA_PATH 6-22
JVPCONTROL 6-18
REMOVE_JAR 6-21
REPLACE_JAR 6-20
SETUDTEXTNAME 6-23
SQLJ.INSTALL_JAR 6-19
UNSETUDTEXTNAME 6-24

sqlj schema 6-18
SQLJ.ALTER_JAVA_PATH procedure 6-22
SQLJ.INSTALL_JAR procedure 5-20, 5-76, 6-19
SQLJ.REMOVE_JAR procedure 6-21
SQLJ.REPLACE_JAR procedure 6-20
SQLNOTFOUND

error conditions with EXECUTE statement 2-460
with INSERT statement 2-556

SQLNOTFOUND value 2-721
SQLSTATE

after FETCH 2-482
after FLUSH 2-485
after REVOKE 2-625
list of codes 2-494
not found condition 2-412, 2-482, 2-888
runtime errors 2-887
warnings 2-888

sqlstypes.h header file 2-414, 2-418
sqltypes.h file 2-492

X-42 IBM Informix Guide to SQL: Syntax

sqltypes.h header file 2-756, 4-162
SQLUNKNOWN data type 2-419
sqlvar structures 2-480
SQLWARNING keyword, in WHENEVER statement 2-885
sqlxtype.h header file 2-758
SQRT function 4-93, 4-98
srvsendrecv data type 2-220
STABILITY keyword

in SET ENVIRONMENT statement 2-763, 2-780
STABILITY keyword, in SET ISOLATION statement 2-801
STACK keyword

Routine Modifier segment 5-63, 5-65
STACKSIZE configuration parameter 5-70, 6-10
STANDARD keyword

in ALTER TABLE statement 2-75
in CREATE TABLE statement 2-265, 2-269
in SELECT statement 2-720

STANDARD table
DELUXE mode load 2-174
deluxe-mode load 2-173
loading data 2-177

standards xxxv
Star join

directives 5-45
STAR_JOIN keyword

in optimizer directives 5-45
in SET OPTIMIZATION statement 2-809

Star-join execution plan 2-809
START keyword

in CREATE SEQUENCE statement 2-260
in SELECT statement 2-700

START VIOLATIONS TABLE statement 2-828
START WITH clause

Hierarchical clause 2-696
in SELECT statement 2-700

STAT data type 2-663, 4-24
STATCHANGE configuration parameter 2-766, 2-782
STATCHANGE keyword

in ALTER TABLE statement 2-76
in CREATE TABLE statement 2-293

STATCHANGE keyword, in SET ENVIRONMENT
statement 2-782

STATCHANGE table attribute 2-76, 2-293
statcollect() function 2-872
Statement block segment 5-78
Statement identifier

cursor for 2-399
defined 2-591
in DECLARE 2-386
in FREE 2-486
in PREPARE 2-591
releasing 2-592

STATEMENT keyword, in SET STATEMENT CACHE
statement 2-817

Statement Local Variables
data type of 4-190
declaration 4-190
expression 4-192
INOUT parameter 4-188
name space of 4-190
OUT parameter 4-188, 5-73
precedence of 4-190
scope of 4-192
using 4-192

Statements
SQL

ANSI-compliant 1-11

Statements (continued)
SQL (continued)

entering 1-1
extensions to ANSI standard 1-12

Statements of SQL
CONNECT 2-776

Statements, SQL
valid only in ESQL/C 4-61

STATIC table
loading data 2-177

STATISTICS keyword
UPDATE STATISTICS statement 2-868

STATLEVEL keyword
in ALTER TABLE statement 2-76
in CREATE TABLE statement 2-293

STATLEVEL table attribute 2-76, 2-293
statprint() function 2-872
STATUS keyword, in INFO statement 2-544
Status, displaying with INFO statement 2-544
STDEV function 4-193, 4-202
STEP keyword 3-27

audit-event mnemonic 4-117
STMT_CACHE configuration parameter 2-818
STMT_CACHE environment variable 2-818
STMT_CACHE_HITS configuration parameter 2-820
STMT_CACHE_NOLIMIT configuration parameter 2-820
STMT_CACHE_SIZE configuration parameter 2-820
STOP keyword, in WHENEVER statement 2-885
STOP VIOLATIONS TABLE statement 2-840
STOP_APPLY configuration parameter 2-803
STORAGE keyword

in TRUNCATE statement 2-842
Storage options, CREATE TEMP TABLE 2-327
STORE IN keywords

in ALTER FRAGMENT statement 2-25, 2-32, 2-34
in CREATE TABLE statement 2-308

STORE keyword
in CREATE TABLE statement 2-300

Stored Procedure Language 3-1
Storing smart large objects 2-296
STRATEGIES keyword, in CREATE OPCLASS

statement 2-224
Strategy functions 2-224
Stream pipe connection 2-665, 2-862
String-manipulation functions 4-155
Structured Query Language

UPDATE STATISTICS statement
LOW mode 2-874

STYLE keyword
External Routine Reference segment 5-20

SUBCLASS_ORIGIN keyword, in GET DIAGNOSTICS
statement 2-498

Subdiagram reference 4-1
Subordinate table 2-681
Subquery 4-3

beginning with ALL, ANY, SOME keywords 2-693
beginning with EXISTS keyword 2-693, 4-20
beginning with IN keyword 2-693, 4-20
correlated 4-18
defined 2-690
estimated cost 2-789
in a table hierarchy 2-860
in Condition segment 4-18
in WHERE clause of UPDATE statement 2-864
no FIRST keyword 2-660
updating a column 2-858
updating multiple columns 2-860

Index X-43

Subquery (continued)
with DISTINCT keyword 2-662
with UNION or UNION ALL 2-726

Subscripting character columns 2-714, 4-68
Subsecond precision 4-81
SUBSTR function 4-179
SUBSTRB function 4-181
Substring

in ORDER BY clause of SELECT 2-714
operator in column expression 4-68

SUBSTRING function 4-182
Substring functions 4-174
SUBSTRING_INDEX function 4-184
Subtable

excluding from query results 2-678
inherited properties 2-319
restrictions 2-245

Subtype
creating 2-243
dropping 2-440

SUM function 4-193, 4-201
Supertable

querying 2-678
updating 2-860

Supertype
creating 2-243
dropping 2-440

Support functions
assigning 2-220, 2-552, 2-563, 2-862
comparing 2-220
defined 2-225
defining 2-220
destroy 2-220, 2-410, 2-448
export 2-220
export() 2-847
exportbinary 2-220
exportbinary() 2-847
import 2-220
importbinary 2-220
input 2-220
lohandles 2-220
output 2-220
receive 2-220
send 2-220
specifying in CREATE OPCLASS 2-225

SUPPORT keyword, in CREATE OPCLASS statement 2-222
Surrogate user properties

granting 2-122, 2-533
modifying 2-122
revoking 2-621

Synonym
chaining 2-264, 2-445
creating 2-261
difference from alias 2-261
dropping 2-445
external 2-447

SYNONYM keyword
in DROP SYNONYM statement 2-445

syntax 4-214, 4-224
Syntax diagrams

reading in a screen reader B-1
syntax for views 2-364
SYS_CONNECT_BY_PATH function 2-703
sysadmin database 4-185
sysaggregates system catalog table 2-144, 2-425
sysams system catalog table 2-5, 2-143, 2-205, 2-424

columns 5-55

SYSBldPrepare function 6-10
SYSBldRelease function 6-14
sysblobs system catalog table 2-321, 5-60
syscasts system catalog table 2-147, 2-425
syschecks system catalog table 2-610
syscolattribs system catalog table 2-296
syscolauth system catalog table 2-241
syscolumns system catalog table 2-321, 2-441, 2-547, 2-756,

2-870
sysconstraints system catalog table 2-86, 2-103, 2-280, 2-431,

2-612
SYSDATE function

as constant expression 4-76
in ALTER TABLE statement 2-83
in CREATE TABLE statement 2-272
in DEFINE statement 3-17
in INSERT statement 2-554

SYSDATE operator
defined 4-82

sysdbclose() procedure 6-6
sysdbopen() procedure 2-780
sysdbopen() procedure 2-811, 6-6
sysdirectives system catalog table 2-649, 2-651, 5-49
sysdistrib system catalog table 2-217, 2-870, 2-872
sysecpolicies system catalog table 2-254, 2-442, 2-613
sysextcols system catalog table 2-321
sysextdfiles system catalog table 2-321
sysexternal system catalog table 2-321
sysfragauth system catalog table 2-237, 2-540, 2-543
sysfragdist system catalog table 2-76
sysfragments system catalog table 2-9, 2-10, 2-15, 2-19, 2-107,

2-321, 2-612, 4-109
sysindexes system catalog table 2-283, 2-431, 2-612
sysindices system catalog table 2-209, 2-283, 2-870
sysinherits system catalog table 2-321, 2-441
sysmaster database 2-321, 4-111, 4-197
sysobjstate system catalog table 2-86, 2-107, 2-280, 2-284,

2-612, 2-737, 2-745, 2-777
sysprocauth system catalog table 2-191, 2-234, 2-237, 2-321
sysprocbody system catalog table 2-191, 2-233, 4-117
sysprocedures system catalog table 2-191, 2-234, 2-435, 2-439,

2-814, 6-18
sysprocplan system catalog table 2-191, 2-234, 2-880
Sysrem catalog tables

sysconstraintst 2-103
sysroleauth system catalog table 2-237
SYSSBSPACENAME configuration parameter 2-76, 2-293,

2-873
SYSSBSPACENAME onconfig parameter 2-872
sysseclabelauth system catalog table 2-531, 2-641
sysseclabelcomponentelements system catalog table 2-252
sysseclabelcomponents system catalog table 2-64, 2-252,

2-442, 2-613
sysseclabels system catalog table 2-248, 2-442, 2-613
syssecpolicycomponentrules system catalog table 2-254
syssequences system catalog table 2-69, 2-71, 2-257, 2-444
syssynonyms system catalog table 2-445
syssyntable system catalog table 2-445
systabauth system catalog table 2-237, 2-242, 2-540
systables system catalog table 2-321, 2-431, 2-445, 2-626,

2-870, 2-874, 4-109
SYSTEM AUTHID keywords

in ALTER TRUSTED CONTEXT statement 2-118
in CREATE TRUSTED CONTEXT statement 2-366

System catalog tables
owner informix 5-16
sysaggregates 2-144

X-44 IBM Informix Guide to SQL: Syntax

System catalog tables (continued)
sysams 2-5, 2-143
sysams s 2-5
sysblobs 5-60
syscasts 2-147, 2-425
syschecks 2-610
syscolauth 2-237
syscolumns 2-441, 2-870
sysconstraints 2-86, 2-280, 2-283, 2-431, 2-612
sysdepend 2-452
sysdirectives 2-649, 5-49
sysdistrib 2-217, 2-870
sysecpolicies 2-254, 2-442, 2-613
sysextcols 2-321
sysextdfiles 2-321
sysexternal 2-321
sysfragauth 2-237, 2-540, 2-543
sysfragdist 2-870
sysfragments 2-9, 2-10, 2-15, 2-107, 2-321, 2-612
sysfragmentst 2-870
sysindexes 2-283, 2-612, 2-870
sysindices 2-209, 2-283
sysinherits 2-441
sysobjstate 2-86, 2-107, 2-280, 2-612, 2-737, 2-777
sysprocauth 2-191, 2-234, 2-237
sysprocbody 2-191, 2-234, 4-117
sysprocedures 2-191, 2-234, 2-435, 2-439, 2-814
sysprocplan 2-191, 2-234, 2-880
sysroleauth 2-237
sysseclabelauth 2-531, 2-641
sysseclabelcomponentelements 2-64, 2-252
sysseclabelcomponents 2-64, 2-252, 2-442, 2-613
sysseclabels 2-248, 2-442, 2-613
syssecpolicycomponentrules 2-254
syssequences 2-69, 2-71, 2-257, 2-444
syssynonyms 2-445
syssyntable 2-445
systabauth 2-237, 2-242, 2-523, 2-540
systables 2-431, 2-441, 2-445, 2-626, 2-870
systriggers 2-334, 2-449
sysusers 2-237, 2-244
sysviews 2-373, 2-610, 2-615
sysviolations 2-828, 2-841
sysxadatasources 2-378, 2-453
sysxasourcetypes 2-380, 2-454
sysxtdtypeauth 2-218, 2-237, 2-242, 2-321, 2-511
sysxtdtypes 2-218, 2-242, 2-440, 2-492, 2-511

System catalogs
creating 2-150
dropping tables 2-448

System clock 4-76
System constants 4-76
System index 2-10, 2-15, 2-21, 2-213, 5-36
System name

database qualifier 5-16
SYSTEM statement 3-54
System-descriptor area

assigning values 2-753
creating 2-2
deallocating 2-385
item descriptors 2-2
OPEN using 2-460, 2-586, 2-605
resizing 2-755
use with EXECUTE statement 2-462
with ALLOCATE DESCRIPTOR 2-2
with DESCRIBE 2-415
with DESCRIBE INPUT 2-419

System-descriptor area (continued)
with EXECUTE ... INTO 2-458

System-descriptor area (SDA) 2-488
System-diagnostics area 2-482
System-monitoring interface tables 2-846, 4-111, 4-197
systriggers system catalog table 2-334, 2-449
sysusers system catalog table 2-237, 2-244, 2-321, 2-544
sysviews system catalog table 2-373, 2-610, 2-615
sysviolations system catalog table 2-828, 2-841
sysxadatasources system catalog table 2-378, 2-453
sysxasourcetypes system catalog table 2-380, 2-454
sysxtdtypeauth system catalog table 2-159, 2-218, 2-237,

2-242, 2-321, 2-511
sysxtdtypes system catalog table 2-159, 2-218, 2-242, 2-244,

2-321, 2-440, 2-450, 2-492, 2-511, 2-759
DESCRIBE and GET DESCRIPTOR with 2-492

T
T abbreviation for terabyte 4-185
tabid column 2-23
Table

adding a constraint 2-103, 2-104
adding a constraint to a column with data 2-100
alias in DELETE 2-409
alias in SELECT 2-672
alias in UPDATE 2-856
build 2-789
child 2-278
consumed 2-10, 2-15
creating 2-265
creating a synonym for 2-261
default privileges 2-540
defining fragmentation strategy 2-300
deleting all rows 2-842
derived 2-674, 4-5, 5-6
diagnostics 2-333, 2-568, 2-837
diagnostics table 2-840
dominant 2-681
dropping 2-446
dropping a synonym 2-445
dropping a system table 2-448
external 2-160, 2-181, 2-333, 2-722, 5-37
fragmented 2-6
hash 2-789
inheritance 2-334, 2-341
inheritance hierarchy 2-318, 2-854
isolating 2-296
joins in Condition segment 2-694
loading data with the LOAD statement 2-558
locking

with ALTER INDEX 2-59
with LOCK TABLE 2-564

nonfragmented 2-25
nonlogging 2-326
parent 2-278
permanent 2-328
privileges

granting 2-507
privileges on 2-320, 2-623
protected 2-23, 2-555
qualifiers 5-18
raw 2-856
renaming 2-615
static 2-822
subordinate 2-681
surviving 2-10, 2-15

Index X-45

Table (continued)
system catalog 2-333
target 2-828, 2-833, 2-840
temporary 2-321, 2-333, 2-721, 2-869
temporary table name 2-323
typed 2-241, 2-319, 2-871
unlocking 2-851
untyped 2-319
updating statistics 2-869
violations 2-333, 2-568, 2-831
violations table 2-840
virtual 5-4
waiting for a locked table 2-804

Table expression 2-674, 4-5, 5-6
Table format, in SET Database Object Mode statement 2-740
TABLE keyword 5-4

in ALTER FRAGMENT statement 2-6
in ALTER TABLE statement 2-76, 2-116
in CREATE EXTERNAL TABLE statement 2-160
in CREATE INDEX statement 2-211
in CREATE TABLE statement 2-293
in CREATE TEMP TABLE statement 2-321
in Data Type segment 4-33
in DROP TABLE statement 2-446
in LOCK TABLE statement 2-564
in RENAME TABLE statement 2-615
in SELECT statement 2-680
in START VIOLATIONS TABLE statement 2-828
in STOP VIOLATIONS TABLE statement 2-840
in TRUNCATE statement 2-842
in UNLOCK TABLE statement 2-851
in UPDATE STATISTICS statement 2-868

Table-level privileges 2-522
TABLES keyword, in INFO statement 2-544
TAN function 4-150, 4-152
TANH function 4-152
Target table

relationship to diagnostics table 2-833, 2-840
relationship to violations table 2-833, 2-840

TASK function 4-185
TCP/IP connection 2-411, 2-554, 2-665, 2-862
TDES (Triple Data Encryption Standard) 4-123
TEMP keyword

in CREATE TEMP TABLE statement 2-321
in SELECT statement 2-720

Temporary dbspace 2-327
Temporary tables

and fragmentation 2-327
constraints allowed 2-324
creating 2-321
creating constraints for 2-324
defining columns 2-323
differences from permanent tables 2-328
duration 2-329
INFO statement restrictions 2-328
logging 2-326
storage 2-327
updating statistics 2-869
when deleted 2-329

TEMPTAB_NOLOG configuration parameter 2-326
TEST keyword, in SAVE EXTERNAL DIRECTIVES

statement 2-649
TEXT column

changing the data type 2-97
distribution statistics 2-872

TEXT data type
declaration syntax 4-34

TEXT data type (continued)
default value 2-273
loading 2-559
SPL routines 3-16, 3-24
storage location 4-34
unloading 2-847, 2-849
with SET DESCRIPTOR 2-760

TEXT keyword
in Data Type segment 4-33
in Return Clause segment 5-58

THEN keyword
in Expression segment 4-71, 4-72
in IF statement 3-37
in MERGE statement 2-568

Thread-safe application
defined 2-423, 2-733, 2-734

THREADS keyword, in EXECUTE FUNCTION
statement 6-18

Time and date, getting current 4-81
Time data types 4-36
Time data values

precedence of user format specifications 4-212
Time function

restrictions with GROUP BY 2-709
use in Function Expressions 4-137
use in SELECT 2-667

TIME keyword
in ALTER TABLE statement 2-101
in CREATE TABLE statement 2-296

Time unit 4-210
INTERVAL data types 4-206

Time zone
of DBINFO function 4-114, 4-115
of TODAY operator 4-81

times() operator function 4-56
TO CLUSTER keywords, in ALTER INDEX statement 2-59
TO keyword 3-27

in ALTER FRAGMENT statement 2-34
in ALTER INDEX statement 2-59
in ALTER USER statement 2-122
in CONNECT statement 2-135
in CREATE SECURITY POLICY statement 2-254
in DATETIME field qualifier 4-42
in EXTEND function 4-137
in GRANT FRAGMENT statement 2-538
in GRANT statement 2-524, 2-526, 2-528, 2-532, 2-533
in INTERVAL Field Qualifier segment 4-206
in OUTPUT statement 2-588
in RENAME COLUMN statement 2-610
in RENAME DATABASE statement 2-611
in RENAME INDEX statement 2-612
in RENAME SECURITY statement 2-613
in RENAME SEQUENCE statement 2-614
in RENAME TABLE statement 2-615
in RENAME TRUSTED CONEXT statement 2-616
in ROLLBACK WORK statement 2-647
in SET DEBUG FILE statement 2-750
in SET EXPLAIN statement 2-785
in SET ISOLATION statement 2-796
in SET LOCK MODE statement 2-804
in SET SESSION AUTHORIZATION statement 2-814
in UNLOAD statement 2-846
in WHENEVER statement 2-889

TO_CHAR function 4-137, 4-145
TO_DATE function 4-137, 4-149
TO_DSINTERVAL() function 6-2
TO_NUMBER function 4-149

X-46 IBM Informix Guide to SQL: Syntax

TO_YMINTERVAL() function 6-3
TODAY function

as expression 4-76
in ALTER TABLE statement 2-83
in Condition segment 4-11
in CREATE TABLE statement 2-272
in DEFINE statement 3-17
in INSERT 2-550, 2-554

TRACE statement 3-56
specifying the output file 2-750

TRAILING keyword, in TRIM expressions 4-162
TRANSACTION keyword

in CONNECT statement 2-135
in SET TRANSACTION statement 2-820

Transaction mode
constraints 2-825

Transactions
access mode 2-824
example 2-396
logging 2-326
partial rollback 2-647
read-only 2-824
rollback 2-646
statements that initiate 2-817
using cursors in 2-402
without error handling 2-127

Transition fragment 2-10, 2-15, 2-21, 2-37, 2-43
TRANSITION keyword in ALTER FRAGMENT

statement 2-34, 2-39
Transition value 2-37
Transition value of a table fragmented by interval 2-39
TREE keyword

in ALTER SECURITY LABEL COMPONENT
statement 2-64

in CREATE SECURITY LABEL COMPONENT
statement 2-250

Trigger
inherited 2-334, 2-341
overriding 2-341

Trigger action 2-329
Trigger event 2-329

DELETE 2-337, 2-362
INSERT 2-337, 2-346, 2-362
privileges on 2-336
SELECT 2-339, 2-365
UPDATE 2-337, 2-362

Trigger functions 2-187
TRIGGER keyword

in DROP TRIGGER statement 2-449
in EXECUTE FUNCTION statement 2-462
in EXECUTE PROCEDURE statement 2-471

Trigger procedures 2-231
Trigger routines 2-187, 2-231
Trigger UDR 2-187, 2-231
Trigger-type Boolean operator 4-14
Triggered action 2-364

action statements 2-350
cascading 2-344
correlation names 2-356
effect of cursors 2-336
for multiple triggers 2-344, 2-365
list of actions 2-349
WHEN condition 2-349

Triggering statement
consistent results 2-350
performance 2-336
UPDATE 2-338

Triggering view 2-362
Triggers

affected by dropping a column from table 2-94
affected by modifying a column 2-101
enabling or disabling 2-744
overriding 2-360

TRIGGERS keyword, in SET Database Object Mode
statement 2-739, 2-740, 2-827

Trigonometric function
ACOS function 4-153
ASIN function 4-153
ATAN function 4-153
ATAN2 function 4-153
COS function 4-151
SIN function 4-152
TAN function 4-152

TRIM function 4-162
Triple Data Encryption Standard (TDES or DES3) 4-123
TRUNC function 4-93
TRUNCATE statement 2-842
TRUSTED CONTEXT keywords

in ALTER TRUSTED CONTEXT statement 2-118
in CREATE TRUSTED CONTEXT statement 2-366

Trusted contexts
renaming 2-616
switching user ID 2-814

Trusted Facility feature 4-117
TRUSTED keyword

in CONNECT statement 2-135, 2-143
in RENAME TRUSTED CONTEXT statement 2-616

Two-phase commit operations 2-378
TYPE field

changing from BYTE or TEXT 2-760
in SET DESCRIPTOR statement 2-755
setting in X/Open programs 2-758
with DESCRIBE INPUT statement 2-419
with DESCRIBE statement 2-415
with X/Open programs 2-490

Type hierarchy 2-243
TYPE keyword

in ALTER TABLE statement 2-75, 2-117
in CREATE DISTINCT TYPE statement 2-157
in CREATE ROW TYPE statement 2-241
in CREATE TABLE statement 2-318
in CREATE VIEW statement 2-373
in CREATE XADATASOURCE TYPE statement 2-380
in DROP ROW TYPE statement 2-440
in DROP TYPE statement 2-450
in DROP XADATASOURCE TYPE statement 2-454
in GET DESCRIPTOR statement 2-488
in GRANT statement 2-511
in REVOKE statement 2-626

Typed collection variable 2-1, 3-21
Typed table

ADD TYPE clause 2-117
altering 2-117
altering serial columns 2-98, 2-245
in FROM clause of SELECT statement 2-678
inheritance 2-319
NOT NULL constraint 2-244

Typed view 2-375

U
U.S. English format conventions xxi
UDR Definition Procedures

ALTER_JAVA_PATH 6-15

Index X-47

UDR Definition Procedures (continued)
INSTALL_JAR 6-15
REMOVE_JAR 6-15
REPLACE_JAR 6-15
SETUDTEXTNAME 6-15
UNSETUDTEXTNAME 6-15

UDR definition routines
IFX_REPLACE_MODULE 6-15
JVPCONTROL 6-18

UDR Definition Routines
IFX_UNLOAD_MODULE 6-17

UID keyword
in ALTER USER statement 2-122
in CREATE DEFAULT USER statement 2-156
in CREATE USER statement 2-368
in GRANT statement 2-533

Unary CONNECT_BY_ROOT operator 2-703
Unary minus operator (-) 4-214, 4-215
Unary plus operator (+) 4-214, 4-215
Unary PRIOR operator 2-703
Unbuffered logging 2-806
UNCOMMITTED keyword

in SET TRANSACTION statement 2-822
Uncommitted row 2-798
Uncorrelated subquery 2-674
UNDEFINED parameter value 5-2
UNDER keyword

in ALTER SECURITY LABEL COMPONENT
statement 2-64

in CREATE ROW TYPE statement 2-241
in CREATE SECURITY LABEL COMPONENT

statement 2-250
in CREATE TABLE statement 2-318
in GRANT statement 2-511
in REVOKE statement 2-623, 2-626

UNDER ON TYPE keywords
in GRANT statement 2-511
in REVOKE statement 2-626

Under privilege 2-507, 2-512, 2-623, 2-626
Underscore (_)

in SQL identifiers 5-21, 5-23
in storage object identifiers 5-24

Unicode 2-273, 2-730, 4-26
Uninitialized variables 4-9
UNION operator

in collection subquery 4-3
in SELECT statement 2-655, 2-725
OUT parameter and 4-192
restrictions on use 2-556, 2-724

UNION subquery 2-724
Union view 2-376
Unique constraint

dropping 2-113
rules of use 2-276

UNIQUE keyword
aggregate scope qualifier 4-198
in ALTER TABLE statement 2-85, 2-104
in CREATE INDEX statement 2-197
in CREATE TABLE statement 2-274, 2-285
in CREATE TEMP TABLE statement 2-324, 2-325
in Expression segment 4-193, 4-204
in SAVEPOINT statement 2-652
in SELECT statement 2-662
in subquery 4-20

Units of storage size 4-185
Units of time, INTERVAL values 4-214
UNITS operator 4-76

Universal Time (UT) 4-114
UNIX operating system

chmod utility 6-20
epochs 4-115
home directory 2-190
mail utility 3-54
shell script 3-56

UNKNOWN truth values 4-22
UNLOAD statement 2-846
UNLOAD TO file 2-847
Unloading data

from a fixed-text file 2-179
to a delimited file 2-179
to an Informix file 2-179

UNLOCK keyword
in CREATE USER statement 2-368

UNLOCK TABLE statement 2-851
Unnamed row data types

field definition 4-39
unloading 2-847, 2-850
updating fields 2-867

Unregistering DataBlade modules 6-10
UNSETUDTEXTNAME procedure 6-24
Untyped collection variable 2-1, 2-383, 2-678, 4-40, 5-7, 5-11
Untyped row variable 2-4
Untyped view 2-373
Updatable view 2-378
UPDATABLE_SECONDARY configuration parameter 2-803
Update clause in MERGE statement 2-568
Update cursor

locking considerations 2-393
opening 2-582
restricted statements 2-398
use in DELETE 2-410
use in UPDATE 2-865

UPDATE keyword 2-539
in CREATE TRIGGER statement 2-337, 2-362
in DECLARE statement 2-386
in GRANT statement 2-507
in MERGE statement 2-568
in REVOKE FRAGMENT statement 2-644
in REVOKE statement 2-623
in SELECT statement 2-655, 2-717
in SET ISOLATION statement 2-802
in UPDATE statement 2-852
in UPDATE STATISTICS statement 2-868

Update locks 2-780, 2-802
Update privilege 2-507, 2-623
Update privilege, with a view 2-855
UPDATE statement 2-852
UPDATE statements

and triggers 2-350
collection variables 5-11
cursor with 2-391
distributed 2-554, 2-862
OUT parameter and SLVs 4-192
SET clause 2-857
single-column SET clause 2-857
smart large objects with 4-69
update triggers 2-335
updating through a view 2-855
with FETCH 2-481
with SELECT . . . FOR UPDATE 2-717

UPDATE STATISTICS statement 2-868
dropping data distributions 2-875
examining index pages 2-872
LOW mode 2-874

X-48 IBM Informix Guide to SQL: Syntax

UPDATE STATISTICS statement (continued)
specifying distributions only 2-879
upgrading the database server 2-883

Update trigger 2-337, 2-362
Updating a specific table in a table hierarchy 2-854
UPDATING operator 2-187, 4-14
Upgrading the database server 2-870, 2-883
UPON keyword

in CREATE TRUSTED CONTEXT statement 2-366
UPPER function 4-170
Upper index filter 2-789
Uppercase characters

converting from lowercase 4-170
in database server names 2-137, 5-18

USAGE keyword
in GRANT statement 2-511, 2-513, 2-516
in REVOKE statement 2-626, 2-629

USAGE ON LANGUAGE keywords
in GRANT statement 2-513, 2-516
in REVOKE statement 2-629

USAGE ON TYPE keywords
in GRANT statement 2-511
in REVOKE statement 2-626

USE keyword
in ALTER TRUSTED CONTEXT statement 2-118
in CREATE TRUSTED CONTEXT statement 2-366

USE_DTENV environment variable 2-551, 2-558, 4-212
USE_HASH keyword, in optimizer directives 5-43
USE_NL keyword, in optimizer directives 5-43
USELASTCOMMITTED configuration parameter 2-566, 2-783,

2-799
USELASTCOMMITTED configuration parameters 2-823
USELASTCOMMITTED environment option 2-799, 2-803,

2-805, 2-823
USELASTCOMMITTED keyword, in SET ENVIRONMENT

statement 2-566, 2-783
USEOSTIME configuration parameter 4-81
USER function

as constant expression 4-76
defined 4-78
in ALTER TABLE statement 2-83
in Condition segment 4-11
in CREATE TABLE statement 2-272
in DEFINE statement 3-17
in INSERT statement 2-550, 2-554
in Literal Row segment 4-216

User informix 2-157, 2-425, 2-521, 5-50
as DBSA 2-633
privileges associated with 2-505

USER keyword
in CONNECT statement 2-139
in CREATE DEFAULT USER statement 2-156
in CREATE TRUSTED CONTEXT statement 2-366
in CREATE USER statement 2-368
in DROP USER statement 2-451
in GRANT statement 2-524, 2-526, 2-528, 2-532
in RENAME USER statement 2-617
in REVOKE statement 2-636, 2-637, 2-639, 2-642
in SET USER PASSWORD statement 2-828

User name
case-sensitivity 2-502, 2-814
mapping to properties 2-122, 2-156, 2-368, 2-533
unauthorized external users 2-122, 2-533
using another name 2-814

User properties 2-122, 2-156, 2-368, 2-533
User-defined access method

creating 2-143

User-defined access method (continued)
modifying 2-5

User-defined aggregates
creating 2-144
defined 4-195
dropping 2-425
invoking 4-204

User-defined data types 4-36
maximum in one row 2-270, 4-38
privileges 2-511, 2-512, 2-626

User-defined function 4-188
arguments 5-1
cursor 2-466
data types of return value 5-59
inserting data with 2-556
iterator 5-67
negator 2-464, 5-67
noncursor 2-464
OUT parameter 4-192
selectivity 5-69
USAGE ON LANGUAGE privileges 2-516, 2-629
variant 5-21, 5-70

User-defined routine
USAGE ON LANGUAGE privileges 2-516, 2-629

User-defined routines
arguments 2-220, 5-1
defined 2-229
dropping with DROP ROUTINE 2-438
EXTEND role 2-521, 2-633
ill-behaved 5-66
in SELECT statements 2-667
inserting data with 2-556
ownership of created objects 2-192, 5-19
privileges 2-513, 2-627
REFERENCES keyword with BYTE or TEXT data

type 3-24
reoptimization 2-880
RESTRICTED mode 2-814
return values 5-58
VP class 5-65

User-defined VP class 5-65, 5-66
USERMAPPING configuration parameter 2-122, 2-156, 2-533
USETABLENAME environment variable 2-72, 2-446, 2-447,

2-843
USING DESCRIPTOR keywords

in EXECUTE 2-460
in FETCH 2-480
in OPEN 2-581
in PUT 2-462

USING keyword
in CONNECT statement 2-139
in CREATE EXTERNAL TABLE statement 2-160
in CREATE INDEX statement 2-194, 2-205
in CREATE TABLE statement 2-316
in CREATE TRUSTED CONTEXT statement 2-366
in CREATE XADATASOURCE statement 2-378
in DELETE statement 2-405
in DESCRIBE INPUT statement 2-419
in DESCRIBE statement 2-415
in EXECUTE statement 2-456, 2-460, 2-462
in FETCH statement 2-474
in INTO EXTERNAL clause 2-720
in MERGE statement 2-568
in OPEN statement 2-581, 2-585
in PUT statement 2-601
in START VIOLATIONS TABLE statement 2-828

Index X-49

USING SQL DESCRIPTOR keywords
in DESCRIBE INPUT statement 2-417, 2-419
in DESCRIBE statement 2-412, 2-415
in EXECUTE statement 2-462

USTLOW_SAMPLE configuration parameter 2-785
USTLOW_SAMPLE keyword of SET ENVIRONMENT 2-785
UT (Universal Time) 4-114
UTC (Coordinated Universal Time) 4-114
UTC_CURRENT option of DBINFO 4-114
UTC_TO_DATETIME option of DBINFO 4-115
UTF-8 code set 2-730
UTF-8 locale 2-273, 4-26, 4-128
Utilities

cdr 2-79
chmod 6-20
dbexport 2-308, 2-803
dbschema 2-71, 2-308
oncheck 2-220, 4-126
ondblog 2-806
oninit 4-112
onmode 2-817
onspaces 2-6, 2-209, 2-541, 2-644
onstat 2-748, 2-817
onutil 4-126
setenv 2-138
setnet32 2-137

V
V option of oninit 4-112
VALUE clause

after null value is fetched 2-491
relation to FETCH 2-491
use in GET DESCRIPTOR 2-490
use in SET DESCRIPTOR 2-755

VALUE keyword
in GET DESCRIPTOR statement 2-488
in SET DESCRIPTOR statement 2-753

VALUES clause
effect with PUT 2-603
in INSERT statement 2-550
in MERGE statement 2-568

VALUES IS NULL keywords
in CREATE TABLE statement 2-308

VALUES keyword
in ALTER FRAGMENT statement 2-11, 2-25, 2-30, 2-34
in CREATE INDEX statement 2-313
in CREATE TABLE statement 2-308, 2-313
in MERGE statement 2-568

VALUES keyword, in INSERT statement 2-550
VARCHAR data type 4-24, 4-26

in LOAD statement 2-559
in UNLOAD statement 2-849
syntax 4-25

VARIABLE keyword, in CREATE OPAQUE TYPE
statement 2-218

Variable-length UDT 2-270, 4-38
Variables

BLOB keyword
in DEFINE statement 3-14

BYTE keyword
in DEFINE statement 3-14

CLOB keyword
in DEFINE statement 3-14

COLLECTION keyword
in DEFINE statement 3-14

declaring in SPL 3-14

Variables (continued)
DEFAULT keyword

in DEFINE statement 3-14
default values in SPL 3-17, 3-19
global 3-16
GLOBAL keyword, in DEFINE statement 3-14
LIKE keyword

in DEFINE statement 3-14
local 3-14, 3-19
NULL keyword

in DEFINE statement 3-14
PROCEDURE keyword

DEFINE statement 3-14
PROCEDURE type 3-24
REFERENCES keyword

in DEFINE statement 3-14
TEXT keyword

in DEFINE statement 3-14
uninitialized 3-58, 4-9
unknown values in IF 3-38

VARIANCE function 4-193, 4-203
Variant constant expressions 2-273
Variant function 2-90, 5-21, 5-70
VARIANT keyword

External Routine Reference segment 5-20
Routine Modifier segment 5-65

Varying-length opaque data type 2-219
VERCOLS keyword

in ALTER TABLE statement 2-80, 2-81
in CREATE TABLE statement 2-265, 2-289, 2-292

version option of DBINFO 4-112
Version string

of SYSBldRelease 6-14
View

affected by dropping a column 2-95
affected by modifying a column 2-101
creating a synonym for 2-261
creating a view 2-373
dependent 2-452
dropped by ALTER FRAGMENT statement 2-18
dropping 2-452
dropping a synonym 2-445
materialized 2-373
privileges 2-511
typed 2-241, 2-375
union 2-376
untyped 2-373
updatable 2-378
updating 2-855

VIEW keyword
in CREATE VIEW statement 2-373
in DROP VIEW statement 2-452

VIOLATIONS keyword
in START VIOLATIONS TABLE statement 2-828
in STOP VIOLATIONS TABLE statement 2-840

Violations table
creating 2-828
declaring a name 2-830
default name 2-830
effect on transactions 2-830
examples 2-835, 2-841
how to stop 2-840
privileges 2-833
relationship to diagnostics table 2-833
relationship to target table 2-833
restriction on dropping 2-448
schema 2-831

X-50 IBM Informix Guide to SQL: Syntax

Violations table (continued)
security label protection 2-831

Virtual column 2-376
Virtual index 2-143
Virtual table 5-4
Virtual-processor class 5-66
Visual disabilities

reading syntax diagrams B-1
Visual Explain output 6-15
Visual Studio hosting process 3-4

W
WAIT keyword, in SET LOCK MODE statement 2-804
WARNING keyword

in SET ISOLATION statement 2-798
Weekday argument to ADD_MONTHS function 4-138, 4-140
Weekday argument to NEXT_DAY function 4-142
WEEKDAY function 4-137
Well-behaved C UDRs 5-66
WHEN keyword

in CREATE TRIGGER statement 2-350
in EXIT statement 3-25
in Expression segment 4-71, 4-72
in MERGE statement 2-568

WHENEVER statement
syntax and use 2-885

WHERE clause
estimated selectivity 2-877
in SELECT statement 2-655
in system-descriptor area 2-2
joining tables 2-694
with a subquery 2-690
with ALL keyword 2-693
with ANY keyword 2-693
with BETWEEN keyword 2-691
with IN keyword 2-691
with IS keyword 2-692
with relational operator 2-690
with SOME keyword 2-693
with string literals 2-690

WHERE CURRENT OF keywords
in DELETE statement 2-405
in UPDATE statement 2-852, 2-865
optimizer directives 5-37

WHERE keyword
in DELETE statement 2-405
in UPDATE statement 2-852

WHILE keyword
in CONTINUE statement 3-13
in EXIT statement 3-25

WHILE statement 3-58
White space characters

in delimited identifiers 5-23
SQL statements 1-1

Wildcard character
asterisk (*) 4-16
backslash (\) 4-15, 4-16
brackets ([]) 4-16
caret (^) 4-16
percent sign (%) 4-15
question mark (?) 4-16
with LIKE 2-692, 4-15
with LIKE or MATCHES 4-223
with MATCHES 2-692, 4-16

Windows
batch file 3-56

Windows (continued)
sqlhosts subkey 2-137
system commands 3-55

WITH APPEND keywords
in SET DEBUG FILE statement 2-750

WITH AUDIT keywords
in CREATE TABLE statement 2-290

WITH BUFFERED LOG keywords
in CREATE DATABASE statement 2-150

WITH CHECK OPTION keywords, in CREATE VIEW
statement 2-373, 2-377

WITH CONCURRENT TRANSACTION keywords
in CONNECT statement 2-141

WITH CRCOLS keywords
in CREATE TABLE statement 2-290

WITH ERKEY keywords
in CREATE TABLE statement 2-291

WITH ERROR keyword
in SET INDEXES statement 2-795

WITH ERROR keywords
in ALTER TABLE statement 2-86
in CREATE INDEX statement 2-214
in CREATE TABLE statement 2-283, 2-284
in SET Database Object Mode statement 2-741

with FOREACH 3-30
WITH GRANT OPTION keywords

in GRANT FRAGMENT statement 2-538
in GRANT statement 2-502

WITH HOLD keywords 3-30
in DECLARE statement 2-386, 2-403

WITH IDSLBACRULES keywords
in CREATE SECURITY POLICY statement 2-254

WITH keyword
in ALLOCATE DESCRIPTOR statement 2-2, 2-3
in ALTER FRAGMENT statement 2-24
in ALTER FUNCTION statement 2-57
in ALTER PROCEDURE statement 2-60
in ALTER ROUTINE statement 2-62
in ALTER SEQUENCE statement 2-71
in ALTER TABLE statement 2-91, 2-100
in ALTER TRUSTED CONTEXT statement 2-118
in ALTER USER statement 2-122
in CONNECT statement 2-135
in CREATE AGGREGATE statement 2-144
in CREATE CAST statement 2-147
in CREATE DATABASE statement 2-150
in CREATE DEFAULT USER statement 2-156
in CREATE FUNCTION statement 2-183
in CREATE INDEX statement 2-206, 2-214
in CREATE PROCEDURE statement 2-226
in CREATE SECURITY POLICY statement 2-254
in CREATE SEQUENCE statement 2-260
in CREATE TABLE statement 2-265, 2-270, 2-272, 2-289,

2-290, 2-291, 2-292
in CREATE TRUSTED CONTEXT statement 2-366
in CREATE USER statement 2-368
in CREATE VIEW statement 2-373, 2-377
in DECLARE statement 2-386, 2-403
in EXECUTE FUNCTION statement 2-462
in EXECUTE PROCEDURE statement 2-471
in GRANT FRAGMENT statement 2-538
in GRANT statement 2-502
in OPEN statement 2-581
in SELECT statement 2-700, 2-721
in SET CONSTRAINTS statement 2-735
in SET Database Object Mode statement 2-741
in SET DEBUG FILE statement 2-750

Index X-51

WITH keyword (continued)
in SET ENCRYPTION PASSWORD statement 2-760
in SET ISOLATION statement 2-798

WITH LISTING IN keywords
in CREATE FUNCTION statement 2-183
in CREATE PROCEDURE statement 2-226

WITH LOG keyword
in CREATE DATABASE statement 2-150

WITH LOG MODE ANSI keywords
in CREATE DATABASE statement 2-150

WITH MAX keywords
in ALLOCATE DESCRIPTOR statement 2-2

WITH NO LOG keywords
in CREATE TEMP TABLE statement 2-321
in SELECT statement 2-720, 2-721

WITH REOPTIMIZATION keywords in OPEN
statement 2-581

WITH REPLCHECK keywords
in CREATE TABLE statement 2-291

WITH RESUME keywords
in ON EXCEPTION statement 3-46
in RETURN statement 3-51

WITH ROWIDS keywords
in ALTER FRAGMENT statement 2-24
in CREATE TABLE statement 2-300

WITH TRIGGER REFERENCES keywords
in EXECUTE FUNCTION statement 2-462
in EXECUTE PROCEDURE statement 2-471

WITH USE FOR keywords
in CREATE TRUSTED CONTEXT statement 2-366

WITH VERCOLS keywords
in CREATE TABLE statement 2-292

WITH WARNING keywords
in SET ISOLATION statement 2-798

WITHOUT AUTHENTICATION keywords
in ALTER TRUSTED CONTEXT statement 2-118
in CREATE TRUSTED CONTEXT statement 2-366

WITHOUT ERROR keywords
in ALTER TABLE statement 2-86
in CREATE INDEX statement 2-214
in CREATE TABLE statement 2-283, 2-284
in SET Database Object Mode statement 2-741
ON DELETE CASCADE keywords

in ALTER TABLE statement 2-86
WITHOUT ERROR keywords keyword

in SET INDEXES statement 2-795
WITHOUT HEADINGS keywords

in OUTPUT statement 2-588
WITHOUT keyword

in ALTER TABLE statement 2-86
in ALTER TRUSTED CONTEXT statement 2-118
in BEGIN WORK statement 2-126
in CREATE INDEX statement 2-214
in CREATE TABLE statement 2-283
in CREATE TRUSTED CONTEXT statement 2-366
in OUTPUT statement 2-588
in SET CONSTRAINTS statement 2-735
in SET Database Object Mode statement 2-741

Word length (32-bit or 64-bit) 4-112
WORK keyword

in BEGIN WORK statement 2-126
in COMMIT WORK statement 2-133
in ROLLBACK WORK statement 2-647

WORK WITHOUT REPLICATION keywords, in BEGIN
WORK statement 2-126

WRITE keyword
in CREATE SECURITY POLICY statement 2-254

WRITE keyword (continued)
in GRANT statement 2-528
in REVOKE statement 2-639
in SET TRANSACTION statement 2-820

Write lock 2-393
Write-access rules for label-based access 2-254
WRITEDOWN keyword

in GRANT statement 2-526
in REVOKE statement 2-637

WRITEUP keyword
in GRANT statement 2-526
in REVOKE statement 2-637

Writing direction 4-182

X
X for storage in an extent space 2-143, 5-55
X/Open DTP XA standard 2-378, 2-380
X/Open mode

CONNECT statement 2-140
FETCH statement 2-474
GET DESCRIPTOR statement 2-490
OPEN statement 2-586
SET DESCRIPTOR statement 2-758

XA data source
privileges to create 2-378
privileges to drop 2-453

XA data source type
creating 2-380
dropping 2-454

XA Switch Structure 5-58
xa.h file 5-58
XADATASOURCE keyword

in CREATE XADATASOURCE statement 2-378
in CREATE XADATASOURCE TYPE statement 2-380
in DROP XADATASOURCE statement 2-453
in DROP XADATASOURCE TYPE statement 2-454

XID data type 2-663, 4-24
XML format query optimizer plans 6-15
XML messages 3-1, 3-3, 3-4
xopen compiler option 2-758
XOR bitwise logical operation 4-59

Y
Y

value of MORE field 2-497
YEAR function 4-140
YEAR keyword 4-42, 4-206

as DATETIME field qualifier 4-210
as INTERVAL field qualifier 4-214

YES
NODEFDAC setting 2-510

Z
Zero

AUTO_REPREPARE setting 2-773
AUTO_STAT_MODE setting 2-766
DIRECTIVES setting 5-35
displaying a blank character as zero 4-145
displaying as a blank character 4-145
EXT_DIRECTIVES setting 2-650
fextsize or nextsize default value 2-209
IFX_AUTO_REPREPARE setting 2-773
IFX_EXTDIRECTIVES setting 2-650

X-52 IBM Informix Guide to SQL: Syntax

Zero (continued)
IFX_EXTEND_ROLE setting 2-633
in UNLOAD file 2-847
invalid divisor 2-494
OPTCOMPIND setting 2-779
prohibited MOD divisor 4-97
returned IFX_REPLACE_MODULE value 6-15
returned IFX_UNLOAD_MODULE value 6-17
scale and ROUND function 4-98
scale and TRUNC function 4-103
setting of STMT_CACHE_NOLIMIT 2-820
sqlca value after INSERT 2-556
sqlcode value after ALLOCATE COLLECTION 2-1
subseconds and CURRENT function 4-81
Sunday and WEEKDAY function 4-140
sysdirectives.active value 2-651
time unit value returned by EXTEND 4-143
to specify next serial value 2-551
variance and STDEV function 4-202
variance and VARIANCE function 4-203

Index X-53

X-54 IBM Informix Guide to SQL: Syntax

����

Printed in USA

SC27-3532-06

Sp
in
e
in
fo
rm
at
io
n:

In
fo

rm
ix

Pr
od

uc
tF

am
ily

In
fo

rm
ix

Ve
rs

io
n

11
.7

0
IB

M
In

fo
rm

ix
Gu

id
e

to
SQ

L:
Sy

nt
ax

�
�

�

	Contents
	Introduction
	In This Introduction
	About This Publication
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	What's new in SQL Syntax for Informix, Version 11.70
	Example code conventions
	Additional documentation
	Compliance with industry standards
	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback

	Chapter 1. Overview of SQL syntax
	How to Enter SQL Statements
	Using Syntax Diagrams and Syntax Tables
	Using Examples
	Using Related Information

	How to Enter SQL Comments
	Examples of SQL Comments
	Non-ASCII Characters in SQL Comments

	Categories of SQL Statements
	Data Definition Language Statements
	Data Manipulation Language Statements
	Data Integrity Statements
	Cursor Manipulation Statements
	Dynamic Management Statements
	Data Access Statements
	Optimization Statements
	Routine Definition Statements
	Auxiliary Statements
	Client/Server Connection Statements
	Optical Subsystem Statements

	ANSI/ISO Compliance and Extensions
	ANSI/ISO-Compliant Statements
	ANSI/ISO-Compliant Statements with Informix Extensions
	Statements that are Extensions to the ANSI/ISO Standard

	Chapter 2. SQL statements
	ALLOCATE COLLECTION statement
	ALLOCATE DESCRIPTOR statement
	WITH MAX Clause

	ALLOCATE ROW statement
	ALTER ACCESS_METHOD statement
	ALTER FRAGMENT statement
	Restrictions on the ALTER FRAGMENT Statement
	ALTER FRAGMENT and Transaction Logging
	Determining the Number of Rows in the Fragment
	The ONLINE keyword in ALTER FRAGMENT operations
	Automatic renaming of interval fragment identifiers

	ATTACH Clause
	General Restrictions for the ATTACH Clause
	Using the BEFORE, AFTER, and REMAINDER options
	Combining Nonfragmented Tables to Create a Fragmented Table
	Attaching a Table to a Fragmented Table
	Using the ONLINE keyword in ATTACH operations
	Effect of the ATTACH Clause

	DETACH Clause
	Using the ONLINE keyword in DETACH operations
	Detach with BYTE and TEXT Columns
	Detach from a Protected Table
	Detach That Results in a Nonfragmented Table

	INIT Clause
	WITH ROWIDS Option
	Converting a Fragmented Table to a Nonfragmented Table
	FRAGMENT BY Clause for Tables
	FRAGMENT BY clause for indexes

	ADD Clause
	Adding a New Dbspace to a Round-Robin Distribution Scheme
	Adding a New Named Fragment to a Round-Robin Distribution Scheme
	Adding an expression-based fragment
	Using the BEFORE and AFTER Options
	Using the REMAINDER Option

	DROP Clause
	MODIFY Clause
	Restrictions on the MODIFY clause for range interval fragments
	Using the MODIFY INTERVAL TRANSITION option
	Using the ONLINE keyword in MODIFY operations
	Examples of the MODIFY clause with interval fragments
	Examples of the MODIFY clause for list fragments

	Examples of ALTER FRAGMENT ON INDEX statements

	ALTER FUNCTION statement
	Keywords That Introduce Modifications

	ALTER INDEX statement
	TO CLUSTER Option
	TO NOT CLUSTER Option

	ALTER PROCEDURE statement
	ALTER ROUTINE statement
	Restrictions
	Keywords That Introduce Modifications
	Example of Altering Routine Modifiers

	ALTER SECURITY LABEL COMPONENT statement
	The ADD ARRAY Clause
	The ADD SET Clause
	The ADD TREE Clause

	ALTER SEQUENCE statement
	INCREMENT BY Option
	RESTART WITH Option
	MAXVALUE or NOMAXVALUE Option
	MINVALUE or NOMINVALUE Option
	CYCLE or NOCYCLE Option
	CACHE or NOCACHE Option
	ORDER or NOORDER Option

	ALTER TABLE statement
	Logging TYPE Options
	Statistics options of the ALTER TABLE statement
	Restrictions on the table
	Enterprise Replication shadow columns
	Using the ADD ROWIDS Keywords
	Using the DROP ROWIDS Keywords
	Using the ADD VERCOLS Keywords
	Using the DROP VERCOLS Keywords
	ADD Column Clause
	Logical Character Support in Character Columns
	BEFORE Clause
	DEFAULT Clause
	Single-Column Constraint Format

	ADD AUDIT Clause
	SECURITY POLICY Clause
	DROP Column Clause
	How Dropping a Column Affects Constraints
	How Dropping a Column Affects Triggers
	How Dropping a Column Affects Views

	DROP AUDIT Clause
	MODIFY Clause
	Using the MODIFY Clause
	Altering BYTE and TEXT Column data types
	Altering the Next Serial Value
	Altering character columns
	Altering the Structure of Tables
	Modifying Tables for NULL Values
	Adding a Constraint on a Non-Opaque Column
	Modify Column Security
	Adding a Constraint That Existing Rows Violate
	How Modifying a Column Affects Triggers
	How Modifying a Column Affects Views
	PUT Clause

	ADD CONSTRAINT Clause
	Multiple-Column Constraint Format
	Creating foreign-key constraints when an index exists on the referenced table
	Using the INDEX DISABLED keywords in a foreign key definition
	Creating foreign-key constraints in NOVALIDATE modes
	Adding a Primary-Key or Unique Constraint
	Recovery from Constraint Violations

	DROP CONSTRAINT Clause
	MODIFY EXTENT SIZE
	MODIFY NEXT SIZE clause
	LOCK MODE Clause
	Precedence and Default Behavior

	ADD TYPE Clause
	Options Valid on Typed Tables

	ALTER TRUSTED CONTEXT statement
	ALTER USER statement (UNIX, Linux)
	BEGIN WORK statement
	BEGIN WORK and ANSI-Compliant Databases
	BEGIN WORK WITHOUT REPLICATION (ESQL/C)
	Example of BEGIN WORK

	CLOSE statement
	Closing a Select or Function Cursor
	Closing an Insert Cursor
	Closing a Collection Cursor
	Using End of Transaction to Close a Cursor

	CLOSE DATABASE statement
	COMMIT WORK statement
	Issuing COMMIT WORK in a Database That Is Not ANSI Compliant
	Explicit DB-Access Transactions

	Issuing COMMIT WORK in an ANSI-Compliant Database

	CONNECT statement
	Privileges for Executing the CONNECT Statement
	Connection Context
	Database Environment
	Restrictions on dbservername
	Specifying the Database Environment

	Declaring a Connection Name
	Connection Identifiers

	USER Authentication Clause
	Restrictions on the Validation Variable Parameter
	Restrictions on the User Identifier Parameter
	Use of the Default User ID

	The DEFAULT Connection Specification
	The Implicit Connection with DATABASE Statements

	WITH CONCURRENT TRANSACTION Option
	TRUSTED clause

	CREATE ACCESS_METHOD statement
	CREATE AGGREGATE statement
	Extending the Functionality of Aggregates
	Example of Creating a User-Defined Aggregate

	Parallel Execution

	CREATE CAST statement
	Source and Target Data Types
	Explicit and Implicit Casts
	Explicit Casts
	Implicit Casts

	WITH Clause

	CREATE DATABASE statement
	Logging Options
	Specifying Buffered Logging
	ANSI-Compliant Databases
	Specifying NLSCASE case sensitivity

	CREATE DEFAULT USER statement (UNIX, Linux)
	CREATE DISTINCT TYPE statement
	Privileges on Distinct Types
	Support Functions and Casts
	Manipulating Distinct Types

	CREATE EXTERNAL TABLE Statement
	Column Definition
	Using the SAMEAS Clause
	Using the EXTERNAL Keyword
	Manipulating Data in Fixed Format Files

	DATAFILES Clause
	Using Formatting Characters with External Tables

	Table options
	Reject Files
	External Table Examples
	Loading Data from External Tables into Informix
	Unloading Data to External Tables from Informix

	Restrictions on External Tables

	CREATE FUNCTION statement
	Privileges necessary for using CREATE FUNCTION
	DBA keyword and Execute privilege on the created function
	The REFERENCING and FOR Clauses
	Overloading the Name of a Function
	Using the SPECIFIC Clause to Specify a Specific Name

	DOCUMENT Clause
	WITH LISTING IN Clause
	SPL Functions
	External Procedures
	Example of Registering a C User-Defined Function
	Example of Registering a UDR Written in the Java Language
	Ownership of Created Database Objects

	CREATE FUNCTION FROM statement
	CREATE INDEX statement
	Index-type options
	How indexes affect primary-key, unique, and referential constraints

	Index-key specification
	Restrictions on columns as index keys
	Using the return value of a function as an index key
	Creating Composite Indexes
	Using the ASC and DESC Sort-Order Options
	Effects of Unique Constraints on Sort Order Options
	Bidirectional Traversal of Indexes
	Restrictions on the Number of Indexes on a Set of Columns

	Using an Operator Class
	USING access-method clause
	HASH ON clause
	FILLFACTOR Option
	Providing a Low Percentage Value
	Providing a High Percentage Value

	Storage options
	Extent Size Options
	IN Clause
	Storing an Index in a dbspace
	Storing an Index Fragment in a Named Partition
	Storing Data in an extspace
	Creating an Index with the IN TABLE Keywords

	FRAGMENT BY Clause for Indexes
	Restrictions on fragmentation expressions
	Fragmentation of System Indexes
	Fragmentation of Unique Indexes
	Fragmentation of Indexes on Temporary Tables
	Index modes
	Specifying Modes for Unique Indexes
	Specifying Modes for Duplicate Indexes

	How the Database Server Treats Disabled Indexes
	The ONLINE keyword of CREATE INDEX
	Automatic Calculation of Distribution Statistics

	CREATE OPAQUE TYPE statement
	Declaring a Name for an Opaque Type
	INTERNALLENGTH Modifier
	Fixed-Length Opaque Types
	Varying-Length Opaque Types

	Opaque-Type Modifier
	Defining an Opaque Type

	CREATE OPCLASS statement
	STRATEGIES Clause
	Strategy Specification
	Indexes on Side-Effect Data
	SUPPORT Clause
	Default Operator Classes

	CREATE PROCEDURE statement
	Using CREATE PROCEDURE Versus CREATE FUNCTION
	Relationship Between Routines, Functions, and Procedures
	Privileges Necessary for Using CREATE PROCEDURE
	DBA Keyword and Privileges on the Procedure
	The REFERENCING and FOR Clauses
	Procedure names in Informix
	Using the SPECIFIC Clause to Specify a Specific Name

	DOCUMENT Clause
	Using the WITH LISTING IN Option
	SPL Procedures
	External Procedures
	Registering a User-Defined Procedure
	Ownership of Created Database Objects

	CREATE PROCEDURE FROM statement
	Default Directory That Holds the File

	CREATE ROLE statement
	CREATE ROUTINE FROM statement
	CREATE ROW TYPE statement
	Privileges on named ROW data types
	Inheritance and Named ROW Types
	Creating a Subtype
	Type Hierarchies
	Procedure for Creating a Subtype
	Field Definition
	Restrictions on Serial and Simple-Large-Object Data Types

	CREATE SCHEMA statement
	Creating Database Objects Within CREATE SCHEMA

	CREATE SECURITY LABEL statement
	Components and Elements of a Security Label

	CREATE SECURITY LABEL COMPONENT statement
	Types and Elements of Security Label Components
	ARRAY Components
	SET Components
	TREE Components

	CREATE SECURITY POLICY statement
	Security Label Components of a Security Policy
	Rules Associated with a Security Policy

	CREATE SEQUENCE statement
	INCREMENT BY Option
	START WITH Option
	MAXVALUE or NOMAXVALUE Option
	MINVALUE or NOMINVALUE Option
	CYCLE or NOCYCLE Option
	CACHE or NOCACHE Option
	ORDER or NOORDER Option

	CREATE SYNONYM statement
	Synonyms for objects outside the current database
	PUBLIC and PRIVATE Synonyms
	Synonyms with the Same Name
	Chaining Synonyms

	CREATE TABLE statement
	Logging Options
	Column definition
	Column security clause

	DEFAULT Clause
	Using NULL as a Default Value
	Using a Literal as a Default Value
	Using a Constant Expression as a Default Value

	Single-Column Constraint Format
	Restrictions on Using the Single-Column Constraint Format
	Using the NOT NULL Constraint
	Using the NULL Constraint
	Using UNIQUE or DISTINCT Constraints
	Differences Between a Unique Constraint and a Unique Index
	Using the PRIMARY KEY Constraint

	REFERENCES Clause
	Restrictions on Referential Constraints
	Default Values for the Referenced Column
	Referential Relationships Within a Table
	Locking Implications of Creating a Referential Constraint
	Examples of the Single-Column Constraint format
	Using the ON DELETE CASCADE Option

	CHECK Clause
	Using a Search Condition
	Restrictions When Using the Single-Column Constraint Format

	Constraint Definition
	Declaring a Constraint Name
	Choosing a Constraint-Mode Option

	Multiple-Column Constraint Format
	Restrictions with the Multiple-Column Constraint Format
	Using the FOREIGN KEY Constraint
	Examples of the Multiple-Column Constraint Format
	Default Index Creation Strategy for Constraints

	Options clauses
	Using the WITH AUDIT Clause
	Using the WITH CRCOLS Option
	Using the WITH ERKEY Keywords
	Using the WITH REPLCHECK Keywords
	Using the WITH VERCOLS Option
	SECURITY POLICY Clause
	Statistics options of the CREATE TABLE statement

	Storage options
	Using the IN Clause
	PUT Clause
	FRAGMENT BY clause
	Interval Fragment clause
	List fragment clause
	Expression Fragment Clause
	EXTENT SIZE Options

	Deferred extent storage allocation
	USING Access-Method Clause
	LOCK MODE Options
	Precedence and Default Behavior

	OF TYPE Clause
	Using Large-Object Data in Typed Tables
	Using the UNDER Clause
	Access Privileges on Tables
	System Catalog Information

	CREATE TEMP TABLE statement
	Declaring a name for a temporary table
	Column definition
	Single-Column Constraint Format
	Multiple-Column Constraint Format
	Using the WITH NO LOG option
	Storage options for temporary tables
	Where temporary tables are stored

	Differences between temporary and permanent tables
	Duration of temporary tables

	CREATE TRIGGER statement
	Defining a Trigger Event and Action
	Restrictions on Triggers
	Trigger Modes
	Trigger Inheritance in a Table Hierarchy
	Triggers and SPL Routines
	Trigger Events
	Trigger Events with Cursors
	Privileges on the Trigger Event
	Performance Impact of Triggers

	INSERT Events and DELETE Events
	UPDATE Event
	Defining Multiple Update Triggers
	SELECT Event
	Circumstances When a Select Trigger Is Activated
	Stand-alone SELECT Statements
	SELECT Statements Within UDRs in the Select List
	UDRs That EXECUTE PROCEDURE and EXECUTE FUNCTION Call
	Subqueries in the Select List
	Subqueries in the FROM Clause of SELECT
	Subqueries in the WHERE Clause of DELETE or UPDATE
	Select Triggers in Table Hierarchies
	Circumstances When a Select Trigger Is Not Activated
	Action Clause
	BEFORE Actions
	FOR EACH ROW Actions
	AFTER Actions
	Actions of Multiple Triggers

	Guaranteeing Row-Order Independence
	REFERENCING Clauses
	REFERENCING Clause for Delete
	REFERENCING Clause for Insert
	REFERENCING Clause for Update
	REFERENCING Clause for Select

	Correlated Table Action
	Triggered Action
	WHEN Condition
	Action Statements

	Using Correlation Names in Triggered Actions
	When to Use Correlation Names
	Qualified Versus Unqualified Value

	Re-Entrancy of Triggers
	Re-Entrancy and Cascading Triggers

	Rules for SPL Routines
	Privileges to Execute Trigger Actions
	Creating a Trigger Action That Anyone Can Use

	Cascading Triggers
	Constraint Checking
	Preventing Triggers from Overriding Each Other

	Tables in Remote Databases
	Logging and Recovery
	INSTEAD OF Triggers on Views
	The Action Clause of INSTEAD OF Triggers
	Restrictions on INSTEAD OF Triggers on Views
	Updating Views

	CREATE TRUSTED CONTEXT statement
	CREATE USER statement (UNIX, Linux)
	CREATE VIEW statement
	Typed Views
	Subset of SELECT statements valid in view definitions
	Union Views
	Naming View Columns
	Using a View in the SELECT Statement
	WITH CHECK OPTION Keywords
	Updating Through Views

	CREATE XADATASOURCE statement
	CREATE XADATASOURCE TYPE statement
	DATABASE statement
	SQLCA.SQLWARN Settings Immediately after DATABASE Executes (ESQL/C)
	EXCLUSIVE keyword

	DEALLOCATE COLLECTION statement
	DEALLOCATE DESCRIPTOR statement
	DEALLOCATE ROW statement
	DECLARE statement
	Overview of Cursor Types
	Select Cursor or Function Cursor
	Using the FOR READ ONLY Option
	Using the FOR UPDATE Option
	Subset of INSERT Statement with a Sequential Cursor
	Insert Cursor

	Cursor Characteristics
	Creating a Sequential Cursor by Default
	Using the SCROLL Keyword to Create a Scroll Cursor
	Using the WITH HOLD Keywords to Create a Hold Cursor
	Subset of SELECT statements associated with cursors
	Examples of Cursors in Non-ANSI Compliant Databases
	Examples of Cursors in ANSI-Compliant Databases

	Associating a Cursor with a Prepared Statement
	Select with a Collection-Derived Table
	Insert with a Collection-Derived Table

	Using Cursors with Transactions
	Declaring a Dynamic Cursor in an SPL Routine

	DELETE statement
	Using the ONLY Keyword
	Considerations When Tables Have Cascading Deletes
	Restrictions on DELETE When Tables Have Cascading Deletes
	Locking and Logging Implications of Cascading Deletes

	Using the WHERE Keyword to Specify a Condition
	Subqueries in the WHERE Clause of DELETE
	Declaring an alias for the table
	Using the WHERE CURRENT OF Keywords (ESQL/C, SPL)
	Deleting Rows That Contain Opaque Data Types
	Deleting Rows That Contain Collection Data Types
	Data Types in Distributed DELETE Operations
	SQLSTATE Values in an ANSI-Compliant Database
	SQLSTATE Values in a Database That Is Not ANSI-Compliant

	DESCRIBE statement
	The OUTPUT Keyword
	Describing the Statement Type
	Checking for the Existence of a WHERE Clause
	Describing a Statement with Runtime Parameters
	Using the SQL DESCRIPTOR Keywords
	Using the INTO sqlda Pointer Clause
	Describing a Collection Variable

	DESCRIBE INPUT statement
	Describing the Statement Type
	Checking for Existence of a WHERE Clause
	Describing a Statement with Dynamic Runtime Parameters
	Using the SQL DESCRIPTOR Keywords
	Using the INTO sqlda Pointer Clause
	Describing a Collection Variable

	DISCONNECT statement
	DEFAULT Option
	Specifying the CURRENT Keyword
	When a Transaction is Active
	Disconnecting in a Thread-Safe Environment
	Specifying the ALL Option

	DROP ACCESS_METHOD statement
	DROP AGGREGATE statement
	DROP CAST statement
	DROP DATABASE statement
	DROP FUNCTION statement
	Dropping External Functions

	DROP INDEX statement
	The ONLINE keyword of DROP INDEX

	DROP OPCLASS statement
	DROP PROCEDURE statement
	Dropping an External Procedure

	DROP ROLE statement
	DROP ROUTINE statement
	Restrictions
	Dropping an External Routine

	DROP ROW TYPE statement
	The RESTRICT Keyword

	DROP SECURITY statement
	Dropping security objects in RESTRICT mode or in CASCADE mode

	DROP SEQUENCE statement
	DROP SYNONYM statement
	DROP TABLE statement
	Effects of the DROP TABLE Statement
	Specifying CASCADE Mode
	Specifying RESTRICT Mode
	Dropping a Table That Contains Opaque Data Types
	Tables That Cannot Be Dropped

	DROP TRIGGER statement
	DROP TRUSTED CONTEXT statement
	DROP TYPE statement
	DROP USER statement (UNIX, Linux)
	DROP VIEW statement
	DROP XADATASOURCE statement
	DROP XADATASOURCE TYPE statement
	EXECUTE statement
	Scope of Statement Identifiers
	Restrictions with the INTO Clause
	Replacing Placeholders with Parameters
	Saving Values In Host or Program Variables
	Saving Values in a System-Descriptor Area
	Saving Values in an sqlda Structure (ESQL/C)
	The sqlca Record and EXECUTE
	Returned SQLCODE Values with EXECUTE
	Supplying Parameters Through Host or Program Variables
	Supplying Parameters Through a System Descriptor
	Supplying Parameters Through an sqlda Structure (ESQL/C)

	EXECUTE FUNCTION statement
	Negator Functions and Their Companions
	How the EXECUTE FUNCTION Statement Works
	Data Variables
	INTO Clause with Indicator Variables (ESQL/C)
	INTO Clause with Cursors
	Alternatives to PREPARE ... EXECUTE FUNCTION ... INTO
	Dynamic Routine-Name Specification of SPL Functions

	EXECUTE IMMEDIATE statement
	EXECUTE IMMEDIATE and Restricted Statements
	Restrictions on Valid Statements
	Handling Exceptions from EXECUTE IMMEDIATE Statements
	Examples of the EXECUTE IMMEDIATE Statement

	EXECUTE PROCEDURE statement
	Causes of Errors
	Using the INTO Clause
	The WITH TRIGGER REFERENCES Keywords
	Example of Invoking a Trigger Procedure

	Dynamic Routine-Name Specification of SPL Procedures

	FETCH statement
	FETCH with a Sequential Cursor
	FETCH with a Scroll Cursor
	How the Database Server Implements Scroll Cursors
	Specifying Where Values Go in Memory
	Using the INTO Clause
	Using Indicator Variables
	When the INTO Clause of FETCH is Required
	Using a System-Descriptor Area (X/Open)
	Using sqlda Structures
	Fetching a Row for Update
	Fetching from a Collection Cursor
	Checking the Result of FETCH

	FLUSH statement
	Error Checking FLUSH Statements

	FREE statement
	GET DESCRIPTOR statement
	Using the COUNT Keyword
	Using the VALUE Clause
	Using the VALUE Clause After a DESCRIBE
	Using the VALUE Clause After a FETCH
	Fetching a NULL Value

	Using LENGTH or ILENGTH
	Describing an Opaque-Type Column
	Describing a Distinct-Type Column

	GET DIAGNOSTICS statement
	Using the SQLSTATE Error Status Code
	Class and Subclass Codes
	SQLSTATE Support for the ANSI/ISO Standard for SQL
	List of SQLSTATE Codes
	Using SQLSTATE in Applications

	Statement Clause
	Using the MORE Keyword
	Using the ROW_COUNT Keyword
	Using the NUMBER Keyword

	EXCEPTION Clause
	Using the RETURNED_SQLSTATE Keyword
	Using the INFORMIX_SQLCODE Keyword
	Using the CLASS_ORIGIN Keyword
	Using the SUBCLASS_ORIGIN Keyword
	Using the MESSAGE_TEXT Keyword
	Using the MESSAGE_LENGTH Keyword
	Using the SERVER_NAME Keyword

	The Contents of the SERVER_NAME Field
	Using the CONNECTION_NAME Keyword
	When the CONNECTION_NAME Keyword Is Updated
	When the CONNECTION_NAME Is Not Updated

	The Contents of the CONNECTION_NAME Field
	Using GET DIAGNOSTICS for Error Checking

	GRANT statement
	Database-Level Privileges
	Table-Level Privileges
	Effect of the ALL Keyword

	Table Reference
	Privileges on Tables and Synonyms
	Privileges on a View

	Type-Level Privileges
	USAGE Privilege
	UNDER Privilege

	Routine-Level Privileges
	Granting the Execute privilege to PUBLIC
	Revoking the Execute privilege from PUBLIC

	Language-Level Privileges
	Usage Privilege in Stored Procedure Language

	Sequence-Level Privileges
	Alter Privilege
	Select Privilege
	ALL Keyword
	The User List

	Role Name
	Granting a Role to a User or to Another Role
	Granting privileges to a role
	Granting a Default Role
	Granting the EXTEND Role

	WITH GRANT OPTION keywords
	AS grantor clause
	Security Administration Options
	DBSECADM Clause
	EXEMPTION Clause
	SECURITY LABEL Clause
	SETSESSIONAUTH Clause

	Surrogate user properties (UNIX, Linux)

	GRANT FRAGMENT statement
	Fragment-Level Privileges
	Definition of Fragment-Level Authorization
	Effect of Fragment-Level Authorization in Statement Validation
	Duration of Fragment-Level Privileges
	Specifying Fragments
	The TO Clause

	Granting Privileges to One User or a List of Users
	Granting One Privilege or a List of Privileges
	WITH GRANT OPTION Clause
	AS grantor Clause
	Omitting the AS grantor Clause

	INFO statement
	INSERT statement
	Specifying Columns
	Using the AT Clause (ESQL/C, SPL)
	Inserting Rows Through a View
	Inserting Rows with a Cursor
	Inserting Rows into a Database Without Transactions
	Inserting Rows into a Database with Transactions
	VALUES Clause
	Considering Data Types
	Inserting Values into Serial Columns
	Inserting Values into Opaque-Type Columns
	Inserting Values into Collection Columns
	Inserting Values into ROW-Type Columns
	Data Types in Distributed INSERT Operations
	Using Expressions in the VALUES Clause
	Inserting NULL Values
	Inserting Values into Protected Tables
	Truncated CHAR Values
	Subset of SELECT Statement

	Execute Routine Clause
	Number of Values Returned by SPL, C, and Java Functions
	Inserting into a Row Variable (ESQL/C, SPL)
	Using INSERT as a Dynamic Management Statement

	LOAD statement
	LOAD FROM File
	Loading Simple Large Objects
	Loading Smart Large Objects
	Loading Complex Data Types
	Loading Opaque-Type Columns
	DELIMITER Clause
	INSERT INTO Clause

	LOCK TABLE statement
	Concurrent Access to Tables with Shared Locks
	Concurrent Access to Tables with Exclusive Locks
	Databases with transaction logging
	Databases without transaction logging
	Locking Granularity

	MERGE statement
	Restrictions on Source and Target Tables
	Handling Duplicate Rows
	Examples of MERGE Statements

	OPEN statement
	Opening a Select Cursor
	Opening an Update Cursor Inside a Transaction
	Opening a Function Cursor
	Reopening a Select or Function Cursor
	Errors Associated with Select and Function Cursors
	Opening an Insert Cursor (ESQL/C)
	Example of Opening an Insert Cursor
	Reopening an Insert Cursor

	Opening a Collection Cursor (ESQL/C)
	USING Clause
	Specifying a System Descriptor Area (ESQL/C)
	Specifying a Pointer to an sqlda Structure (ESQL/C)
	Example of Specifying a Pointer to an sqlda Structure

	Using the WITH REOPTIMIZATION Option (ESQL/C)
	Relationship Between OPEN and FREE
	DDL Operations on Tables Referenced by Cursors

	OUTPUT statement
	Sending Query Results to a File
	Displaying Query Results Without Column Headings
	Sending Query Results to Another Program

	PREPARE statement
	Restrictions
	Declaring a Statement Identifier
	Scope of Statement Identifiers

	Releasing a Statement Identifier
	Statement Text
	Example of a PREPARE statement in an SPL routine

	Preparing and Executing User-Defined Routines
	Restricted Statements in Single-Statement Prepares
	Preparing Statements When Parameters Are Known
	Preparing Statements That Receive Parameters
	Preparing Statements with SQL Identifiers
	Obtaining SQL Identifiers from User Input

	Preparing Multiple SQL Statements
	Restricted Statements in Multistatement Prepared Objects

	Using Prepared Statements for Efficiency
	DDL Operations on Tables Referenced in Prepared Objects

	PUT statement
	Supplying Inserted Values
	Using Constant Values in INSERT
	Naming Program Variables in INSERT
	Naming Program Variables in PUT

	Using the USING Clause
	Specifying a System-Descriptor Area
	Specifying an sqlda Structure

	Inserting into a Collection Cursor
	Writing Buffered Rows
	Error Checking

	RELEASE SAVEPOINT statement
	RENAME COLUMN statement
	How Views and Check Constraints Are Affected
	How Triggers Are Affected

	RENAME DATABASE statement
	RENAME INDEX statement
	RENAME SECURITY statement
	RENAME SEQUENCE statement
	RENAME TABLE statement
	RENAME TRUSTED CONTEXT statement
	RENAME USER statement (UNIX, Linux)
	REVOKE statement
	Revoking database server access from mapped users (UNIX, Linux)
	Database-level privileges
	Table-Level Privileges
	When to Use REVOKE Before GRANT
	Effect of the ALL Keyword

	Effect of Uncommitted Transactions
	Type-Level Privileges
	Usage Privilege
	Under Privilege

	Routine-Level Privileges
	Language-Level Privileges
	Sequence-Level Privileges
	Alter Privilege
	Select Privilege
	ALL Keyword

	User List
	Role Name
	Revoking a Default Role
	Revoking the EXTEND Role

	Revoking privileges granted WITH GRANT OPTION
	The AS Clause
	Effect of CASCADE Keyword on UNDER Privileges

	Controlling the Scope of REVOKE with the RESTRICT Option
	Security Administration Options
	DBSECADM Clause
	EXEMPTION Clause
	SECURITY LABEL Clause
	SETSESSIONAUTH Clause

	REVOKE FRAGMENT statement
	Specifying Fragments
	The FROM Clause
	Fragment-Level Privileges
	The AS Clause
	Examples of the REVOKE FRAGMENT Statement
	Revoking Privileges on One Fragment
	Revoking Privileges on More Than One Fragment
	Revoking Privileges from More Than One User
	Revoking Privileges Without Specifying Fragments

	ROLLBACK WORK statement
	WORK Keyword
	TO SAVEPOINT Clause

	SAVE EXTERNAL DIRECTIVES statement
	External optimizer directives
	Enabling or disabling external directives for a session
	The directive Specification
	The ACTIVE, INACTIVE, and TEST ONLY Keywords
	The query Specification

	SAVEPOINT statement
	SELECT statement
	Projection Clause
	The Order of Qualifying Rows
	Using the SKIP Option
	Using the FIRST Option
	The LIMIT Keyword
	Using SKIP, FIRST, LIMIT, or MIDDLE as a Column Name
	Using the SKIP Option with the FIRST Option
	Allowing Duplicates
	Duplicate rows in NLSCASE INSENSITIVE databases
	Data Types in Distributed Queries
	Expressions in the Select List
	Declaring a Display Label
	Declaring a Column Alias

	INTO Clause
	INTO Clause with Indicator Variables
	INTO Clause with Cursors
	Preparing a SELECT ... INTO Query
	Using Array Variables with the INTO Clause
	Error Checking

	FROM Clause
	Aliases for Tables or Views
	Table expressions
	Restrictions on External Tables in Joins and Subqueries
	The ONLY Keyword
	Selecting from a Collection Variable
	Selecting from a Row Variable (ESQL/C)
	Iterator Functions
	Queries that Join Tables
	ANSI-Compliant Joins
	Informix-Extension Outer Joins

	WHERE Clause of SELECT
	Using a Condition in the WHERE Clause
	Specifying a Join in the WHERE Clause

	Hierarchical Clause
	START WITH Clause
	CONNECT BY Clause
	Conditions in the CONNECT BY Clause
	Dependency patterns that are not a simple graph

	GROUP BY Clause
	Dependencies between the GROUP BY and Projection clauses
	NULL Values in the GROUP BY Clause
	Using Select Numbers

	HAVING Clause
	ORDER BY Clause
	Ordering by a Column or by an Expression
	Ordering by a Substring
	Ascending and Descending Orders
	Nested Ordering
	Using Select Numbers
	Ordering by Rowids
	ORDER BY Clause with DECLARE
	Placing Indexes on ORDER BY Columns
	ORDER SIBLINGS BY Clause

	FOR UPDATE Clause
	Syntax incompatible with the FOR UPDATE clause

	FOR READ ONLY Clause
	Using the FOR READ ONLY Clause in Read-Only Mode
	Syntax That Is Incompatible with the FOR READ ONLY Clause

	INTO table clauses
	INTO TEMP clause
	INTO EXTERNAL clause

	Set operators in combined queries
	Restrictions on a Combined SELECT
	UNION Operator

	SET AUTOFREE statement
	Globally Affecting Cursors with SET AUTOFREE
	Using the FOR Clause to Specify a Specific Cursor
	Associated and Detached Statements
	Closing Cursors Implicitly

	SET COLLATION statement
	Specifying a Collating Order with SET COLLATION
	Restrictions on SET COLLATION
	Collation Performed by Database Objects

	SET CONNECTION statement
	Making a dormant connection as the current connection
	Making a current connection as the dormant connection
	Dormant Connections in a Single-Threaded Environment
	Dormant Connections in a Thread-Safe Environment
	Identifying the Connection
	DEFAULT Option
	CURRENT Keyword
	When a Transaction is Active

	SET CONSTRAINTS statement
	SET Database Object Mode statement
	Privileges Required for Changing Database Object Modes
	Object-List Format
	Table Format
	Modes for constraints and unique indexes
	Enabling foreign-key constraints when an index exists on the referenced table

	Modes for Triggers and Duplicate Indexes
	Definitions of Database Object Modes
	Enabled Mode
	Disabled Mode
	Filtering Modes

	SET DATASKIP statement
	Circumstances When a Dbspace Cannot Be Skipped

	SET DEBUG FILE statement
	Using the WITH APPEND Option
	Closing the Output File
	Redirecting Trace Output
	Location of the Output File

	SET DEFERRED_PREPARE statement
	Example of SET DEFERRED_PREPARE
	Using Deferred-Prepare with OPTOFC

	SET DESCRIPTOR statement
	Using the COUNT Clause
	Using the VALUE Clause
	Item Descriptor
	Setting the TYPE or ITYPE Field
	Setting the DATA or IDATA Field
	Setting the LENGTH or ILENGTH Field
	Setting the INDICATOR Field
	Setting Opaque-Type Fields
	Setting Distinct-Type Fields

	Modifying Values Set by the DESCRIBE Statement

	SET ENCRYPTION PASSWORD statement
	Storage Requirements for Encryption
	Specifying a Session Password and Hint
	Levels of Encryption
	Protecting Passwords

	SET ENVIRONMENT statement
	AUTO_READAHEAD environment option
	AUTO_STAT_MODE Environment Option
	BOUND_IMPL_PDQ environment option
	CLUSTER_TXN_SCOPE environment option
	DEFAULTESCCHAR Environment Option
	EXTDIRECTIVES Environment Option
	FORCE_DDL_EXEC Environment Option
	HDR_TXN_SCOPE environment option
	IFX_AUTO_REPREPARE Environment Option
	IFX_BATCHEDREAD_INDEX environment option
	IFX_BATCHEDREAD_TABLE environment option
	IMPLICIT_PDQ environment option
	INFORMIXCONRETRY environment option
	INFORMIXCONTIME environment option
	NOVALIDATE evironment option
	OPTCOMPIND Environment Option
	RETAINUPDATELOCKS Environment Option
	STATCHANGE Environment Option
	USELASTCOMMITTED Environment Option
	USTLOW_SAMPLE environment option

	SET EXPLAIN statement
	Using the AVOID_EXECUTE Option
	Using the FILE TO option
	Default name and location of the explain output file on UNIX
	Default name and location of the output file on Windows
	SET EXPLAIN output
	Complete-Connection Level Settings and Output Examples
	External Table Operations in SET EXPLAIN Output

	SET INDEXES statement
	SET ISOLATION statement
	Complete-Connection Level Settings
	Informix Isolation Levels
	Using the Dirty Read Isolation Level
	Using the Committed Read Isolation Level
	Using the Cursor Stability Isolation Level
	Using the Repeatable Read Isolation Level
	Default Isolation Levels
	Using the RETAIN UPDATE LOCKS Option

	Effects of Isolation Levels
	Isolation Levels for Secondary Data Replication Servers

	SET LOCK MODE statement
	WAIT Clause
	Complete-Connection Level Settings

	SET LOG statement
	SET OPTIMIZATION statement
	HIGH and LOW Options
	FIRST_ROWS and ALL_ROWS Options
	Optimizing SPL Routines
	ENVIRONMENT Options

	SET PDQPRIORITY statement
	Allocating Database Server Resources

	SET ROLE statement
	Setting the Default Role

	SET SESSION AUTHORIZATION statement
	SET SESSION AUTHORIZATION and Transactions

	SET STATEMENT CACHE statement
	Precedence and Default Behavior
	Turning the Cache ON
	Restrictions on Matching Entries in the SQL Statement Cache

	Turning the Cache OFF
	SQL statement cache qualifying criteria
	Requiring Re-Execution Before Cache Insertion
	Enabling or Disabling Insertions After Size Exceeds Configured Limit
	Prepared Statements and the Statement Cache

	SET TRANSACTION statement
	Comparing SET TRANSACTION with SET ISOLATION
	Informix Isolation Levels
	Using the Read Uncommitted Option
	Using the Read Committed Option
	Using the Repeatable Read and Serializable Options

	Default Isolation Levels
	Access Modes
	Effects of Isolation Levels

	SET Transaction Mode statement
	Statement-Level Checking
	Transaction-Level Checking
	Duration of Transaction Modes
	Specifying All Constraints or a List of Constraints
	Specifying Remote Constraints
	Examples of Setting the Transaction Mode for Constraints

	SET TRIGGERS statement
	SET USER PASSWORD statement (UNIX, Linux)
	START VIOLATIONS TABLE statement
	Relationship to the SET Database Object Mode statement
	Effect on concurrent transactions
	Stopping the Violations and Diagnostics Tables
	USING Clause
	Using the MAX ROWS clause
	Specifying the maximum number of rows in the diagnostics table
	Privileges required for starting violations or diagnostics tables
	Structure of the violations table
	Examples of START VIOLATIONS TABLE Statements
	Violations and Diagnostics Tables with Default Names
	Violations and Diagnostics Tables with Explicit Names

	Relationships Among the Target, Violations, and Diagnostics Tables
	Initial Privileges on the Violations Table
	Example of Privileges on the Violations Table
	Using the Violations Table
	Example of a Violations Table
	Structure of the diagnostics table
	Initial privileges on the diagnostics table
	Using the Diagnostics Table

	STOP VIOLATIONS TABLE statement
	Example of Stopping the Violations and Diagnostics Tables
	Example of Dropping the Violations and Diagnostics Tables
	Privileges Required for Stopping a Violations Table

	TRUNCATE statement
	The TABLE Keyword
	The Table Specification
	The STORAGE specification
	The AM_TRUNCATE Purpose Function
	Performance Advantages of TRUNCATE
	Restrictions on the TRUNCATE statement

	UNLOAD statement
	UNLOAD TO File
	Unloading Character Columns
	Unloading Simple Large Objects
	Unloading Smart Large Objects
	Unloading Complex Types

	DELIMITER Clause

	UNLOCK TABLE statement
	UPDATE statement
	Using the ONLY Keyword
	Updating Rows Through a View
	Updating Rows in a Database Without Transactions
	Updating Rows in a Database with Transactions
	Locking Considerations
	Declaring an alias for the target table
	SET Clause
	Single-Column Format
	Using a Subquery to Update a Single Column
	Updating a Column to NULL
	Updating the Same Column Twice
	Multiple-Column Format
	Using a Subquery to Update Multiple Column Values
	Updating ROW-Type Columns
	Updating Collection Columns

	Updating Values in Opaque-Type Columns
	Data Types in Distributed UPDATE Operations
	WHERE Clause of UPDATE
	SQLSTATE Values When Updating an ANSI-Compliant Database
	SQLSTATE Values When Updating a Non-ANSI Database
	Subqueries in the WHERE Clause of UPDATE
	Using the WHERE CURRENT OF Clause (ESQL/C, SPL)

	Updating a Row Variable (ESQL/C)

	UPDATE STATISTICS statement
	Scope of UPDATE STATISTICS
	Updating Statistics for Tables
	Automated Table Statistics Maintenance
	Using the FOR TABLE ONLY Keywords
	Updating Statistics for Columns
	Examining Index Pages

	Updating Statistics for Columns of User-Defined Types
	Requirements for Statistics on Opaque Columns

	Using the FORCE and AUTO keywords
	Using the LOW mode option
	Using the DROP DISTRIBUTIONS Option
	Using the DROP DISTRIBUTIONS ONLY Option

	Using the MEDIUM mode option
	Using the HIGH mode option
	Resolution Clause
	Specifying the SAMPLING SIZE
	Using the DISTRIBUTIONS ONLY Option to Suppress Index Information
	Using DBUPSPACE Settings to Suppress Index Information
	Output for UPDATE STATISTICS from the SET EXPLAIN Statement

	Routine Statistics
	Altered Tables that are Referenced Indirectly in SPL Routines

	Updating Statistics When You Upgrade the Database Server
	Performance considerations of UPDATE STATISTICS statements

	WHENEVER statement
	The Scope of WHENEVER
	SQLERROR Keyword
	ERROR Keyword
	SQLWARNING Keyword
	NOT FOUND Keywords
	CONTINUE Keyword
	STOP Keyword
	GOTO Keyword
	CALL Clause

	Chapter 3. SPL statements
	Debugging SPL routines
	Starting an SPL debugging session with Optim Development Studio
	Debugging SPL procedures with IBM Database Add-Ins for Visual Studio

	<< Label >> statement
	Examples of Labels

	CALL
	Specifying Arguments
	Receiving input from the called UDR

	CONTINUE
	DEFINE
	Referencing TEXT and BYTE Variables
	Redeclaration or Redefinition
	Declaring Global Variables
	Default Value
	CURRENT
	SYSDATE
	USER
	TODAY
	BYTE and TEXT
	SITENAME or DBSERVERNAME

	Declaring Local Variables
	Subset of Complex Data Types
	Declaring Collection Variables
	Declaring ROW Variables
	Declaring Opaque-Type Variables
	Declaring Variables LIKE Columns
	Defining Variables with Logical Character Semantics
	Declaring Variables as the PROCEDURE Type
	Declaring Variables for BYTE and TEXT Data

	EXIT
	EXIT From FOREACH Statements
	EXIT From FOR, LOOP, and WHILE Loops

	FOR
	Using the TO Keyword to Define a Range
	Specifying Two or More Ranges in a Single FOR Statement

	Using an Expression List as the Range
	Mixing Range and Expression Lists in the Same FOR Statement
	Specifying a Labelled FOR Loop

	FOREACH
	Using a SELECT ... INTO Statement
	Using the ORDER BY Clause of the SELECT Statement
	Using Hold Cursors
	Updating or Deleting Rows Identified by Cursor Name
	Using Collection Variables
	Restrictions on collection cursors
	Modifying Elements in a Collection Variable

	Using Select Cursors with FOREACH
	Calling a UDR in the FOREACH Loop

	GOTO
	IF
	ELIF Clause
	ELSE Clause
	Conditions in an IF Statement
	Subset of SPL Statements Allowed in the IF Statement List
	SQL Statements Not Valid in an IF Statement

	LET
	Using a SELECT Statement in a LET Statement
	Calling a Function in a LET Statement

	LOOP
	Simple LOOP Statements
	FOR LOOP Statements
	WHILE LOOP Statements
	Labeled LOOP Statements

	ON EXCEPTION
	Placement of the ON EXCEPTION statement
	Using the IN Clause to Trap Specific Exceptions
	Receiving Error Information in the SET Clause
	Forcing Continuation of the Routine
	Continuing Execution After an Exception Occurs

	RAISE EXCEPTION
	Special Error Number -746

	RETURN
	WITH RESUME Keyword
	Returning Values from Another Database

	SYSTEM
	Executing the SYSTEM statement on UNIX
	Sending email using the SYSTEM statement

	Executing the SYSTEM statement on Windows
	Setting Environment Variables in SYSTEM Commands

	TRACE
	TRACE ON
	TRACE OFF
	TRACE PROCEDURE
	Displaying Expressions
	Example Showing Different Forms of TRACE
	Looking at the Traced Output

	WHILE
	Example of WHILE Loops in an SPL Routine
	Labeled WHILE Loops

	Chapter 4. Data types and expressions
	Scope of Segment Descriptions
	Use of Segment Descriptions
	Data type and expression segments
	Collection Subquery
	Table expressions in the FROM clause

	Condition
	Comparison Conditions (Boolean Expressions)
	Column Name
	Quotation Marks in Conditions
	Relational-Operator Condition
	BETWEEN Condition
	IN Condition
	Using the IN operator with collection data types

	IS NULL and IS NOT NULL Conditions
	Trigger-Type Boolean Operator
	LIKE and MATCHES Condition
	NOT Operator
	LIKE Operator
	MATCHES Operator
	ESCAPE with LIKE
	ESCAPE with MATCHES

	Stand-Alone Condition
	Condition with Subquery
	IN Subquery
	EXISTS Subquery condition
	ALL, ANY, and SOME Subqueries

	NOT Operator
	Conditions with AND or OR

	Data Type
	Built-In Data Types
	BOOLEAN and Other Built-In Opaque Data Types
	Character Data Types
	IDSSECURITYLABEL Data Type
	Numeric Data Types
	Exact Numeric Data Types
	Approximate Numeric Data Types
	Large-Object Data Types
	Time Data Types

	User-Defined Data Type
	Distinct Data Types
	Opaque Data Types

	Complex Data Type
	ROW Data Types
	Collection Data Types

	DATETIME Field Qualifier
	Expression
	Syntax of SQL Expressions
	Usage
	List of Expressions
	Arithmetic Operators
	Bitwise Logical Functions
	BITAND Function
	BITOR Function
	BITXOR Function
	BITANDNOT Function
	BITNOT Function

	Concatenation Operator
	Cast Expressions
	Rules for the Target Data Type
	Examples of Cast Expressions
	The Keyword NULL in Cast Expressions

	Column Expressions
	Using Dot Notation
	Using the Substring Operator
	Using Rowids
	Using Smart Large Objects

	Conditional Expressions
	CASE Expressions
	NVL Function
	NULLIF Function
	DECODE Function

	Constant Expressions
	Quoted String
	Literal Number
	USER or CURRENT_USER Operator
	CURRENT_ROLE Operator
	DEFAULT_ROLE Operator
	DBSERVERNAME and SITENAME Operators
	TODAY Operator
	CURRENT Operator
	SYSDATE Operator
	Literal DATETIME
	Literal INTERVAL
	UNITS Operator
	NEXTVAL and CURRVAL Operators
	Literal Row
	Literal Collection

	Constructor Expressions
	ROW constructors
	Collection Constructors

	NULL Keyword
	Function Expressions
	Algebraic Functions
	CARDINALITY Function
	SQLCODE Function (SPL)
	DBINFO Function
	Encryption and decryption functions
	DECRYPT_CHAR Function
	DECRYPT_BINARY Function
	ENCRYPT_AES Function
	ENCRYPT_TDES Function
	GETHINT Function
	Exponential and Logarithmic Functions
	NVL2 Function
	HEX Function
	Length functions
	Security Label Support Functions
	SIGN function
	Smart-Large-Object Functions
	Time Functions
	TO_NUMBER Function
	Trigonometric Functions
	String-Manipulation Functions
	Case-Conversion Functions
	Substring functions
	FORMAT_UNITS Function
	IFX_ALLOW_NEWLINE Function
	User-Defined Functions

	Statement-Local Variable Expressions
	Aggregate Expressions
	Types of Aggregate Expressions
	Subset of Expressions Valid in an Aggregate Expression
	Including or excluding duplicates in the result set
	AVG Function
	Overview of COUNT Functions
	COUNT(*) function
	COUNT DISTINCT and COUNT UNIQUE functions
	COUNT column Function
	Arguments to the COUNT Functions
	MAX Function
	MIN Function
	SUM Function
	RANGE Function
	STDEV Function
	VARIANCE Function
	Error Checking in ESQL/C
	Summary of Aggregate Function Behavior
	User-Defined Aggregates

	INTERVAL Field Qualifier
	Literal Collection
	Element Literal Value
	Nested Quotation Marks

	Literal DATETIME
	Precedence of DATE and DATETIME format specifications
	Casting Numeric Date and Time Strings to DATE Data Types

	Literal INTERVAL
	Literal Number
	Integer Literals
	Fixed-Point Decimal Literals
	Floating-Point Decimal Literals
	Literal Numbers and the MONEY Data Type

	Literal Row
	Literals of an Unnamed Row Type
	Literals of a Named Row Type
	Literals for Nested Rows

	Quoted String
	Restrictions on Specifying Characters in Quoted Strings
	The DELIMIDENT Environment Variable
	Newline Characters in Quoted Strings
	Using Quotation Marks in Strings
	DATETIME and INTERVAL Values as Strings
	LIKE and MATCHES in a Condition
	Inserting Values as Quoted Strings
	Numeric Operations on Character Columns

	Relational Operator
	Using Operator Functions in Place of Relational Operators
	Collating Order for U.S. English Data
	Support for ASCII Characters in Nondefault Code Sets (GLS)
	Literal Numbers as Operands

	Chapter 5. Other syntax segments
	Arguments
	Comparing Arguments to the Parameter List
	Subset of Expressions Valid as an Argument
	Arguments to UDRs in Remote Databases

	Collection-Derived Table
	Accessing a Collection Through a Virtual Table
	Table Expressions in the FROM Clause
	Restrictions with the Collection-Expression Format
	Additional Restrictions That Apply to ESQL/C

	Row Type of the Resulting Collection-Derived Table
	Accessing a Collection Through a Collection Variable
	Using a Collection Variable to Manipulate Collection Elements
	Example of Deleting from a Collection in ESQL/C
	Example of Deleting from a Collection
	Example of Updating a Collection
	Example of Inserting a Value into a Multiset Collection

	Accessing a Nested Collection
	Accessing a Row Variable

	Database Name
	Using Keywords as Table Names
	Using the @ Symbol
	Using a Path-Type Naming Notation
	Using a Host Variable

	Database Object Name
	Specifying a Database Object in an External Database
	Specifying a Database Object in a Cross-Database Query
	Specifying a Database Object in a Cross-Server Query

	Routine Overloading and Routine Signatures
	Specifying an Existing UDR

	Owners of Objects Created by UDRs

	External Routine Reference
	VARIANT or NOT VARIANT Option
	Example of a C User-Defined Function

	Identifier
	Use of Uppercase Characters
	Use of Keywords as Identifiers
	Support for Non-ASCII Characters in Identifiers
	Delimited Identifiers
	Support for Nonalphanumeric Characters
	Support for Non-ASCII Characters in Delimited Identifiers (GLS)

	Enabling Delimited Identifiers
	Examples of Delimited Identifiers
	Using Double Quotation Marks in a Delimited Identifier

	Potential Ambiguities and Syntax Errors
	Using the Names of Built-In Functions as Column Names
	Using Keywords as Column Names
	Using ALL, DISTINCT, or UNIQUE as a Column Name
	Using INTERVAL or DATETIME as a Column Name
	Using rowid as a Column Name
	Using Keywords as Table Names
	Workarounds that Use the Keyword AS
	Using AS with Column Labels
	Using AS with Table Aliases
	Fetching Cursors that have Keywords as Names
	Fetching Cursors that have Keywords as Names
	Using CURRENT, DATETIME, INTERVAL, and NULL in INSERT
	Using NULL and SELECT in a Condition
	Declaring Keywords or Routine Names as SPL Variables
	Variables that Conflict with Column Names
	Using ON, OFF, or PROCEDURE with TRACE
	Using GLOBAL as the Name of a Variable
	Using EXECUTE, SELECT, or WITH as Cursor Names
	SELECT Statements in WHILE and FOR Statements
	SET Keyword in the ON EXCEPTION Statement

	Jar Name
	Optimizer Directives
	Optimizer Directives as Comments
	Restrictions on Optimizer Directives
	Access-Method Directives
	Join-Order Directive
	Join-Method Directives
	Star-Join Directives
	Optimization-Goal Directives
	Explain-Mode Directives
	External Directives

	Owner name
	Using Quotation Marks
	Referencing Tables Owned by User informix
	ANSI-Compliant Database Restrictions and Case Sensitivity
	Setting ANSIOWNER for an ANSI-Compliant Database
	Default Owner Names
	Summary of Lettercase Rules for Owner Names

	Purpose Options
	Purpose Options for Access Methods
	Purpose Functions, Flags, and Values
	Purpose Options for XA Data Source Types

	Return Clause
	Limits on Returned Values
	Subset of SQL Data Types
	Using the REFERENCES Clause to Point to a Simple Large Object
	Returning a Value from Another Database
	Named Return Parameters
	Cursor and Noncursor Functions

	Routine modifier
	Adding or Modifying a Routine Modifier
	Modifier Descriptions
	CLASS
	COSTFUNC (C)
	HANDLESNULLS
	INTERNAL
	ITERATOR
	NEGATOR
	PARALLELIZABLE
	PERCALL_COST (C)
	SELCONST (C)
	SELFUNC (C)
	STACK (C)
	VARIANT and NOT VARIANT

	Routine Parameter List
	Subset of SQL Data Types
	Using the LIKE Clause
	Using the REFERENCES Clause
	Using the DEFAULT Clause
	Specifying OUT Parameters for User-Defined Routines
	Specifying INOUT Parameters for a User-Defined Routine

	Shared-Object Filename
	C Shared-Object File
	Java Shared-Object File

	Specific Name
	Restrictions on the Owner Name
	Restrictions on the Specific Name

	Statement Block
	Subset of SPL Statements Valid in the Statement Block
	SQL Statements Valid in SPL Statement Blocks
	Nested Statement Blocks
	Scope of Reference of SPL Variables and Exception Handlers

	Restrictions on SPL Routines in Data-Manipulation Statements
	Transactions in SPL Routines
	Support for roles and user identity

	Chapter 6. Built-in routines
	Interval functions
	TO_DSINTERVAL() function
	TO_YMINTERVAL() function

	Session Configuration Procedures
	Using SYSDBOPEN and SYSDBCLOSE Procedures
	Configure session properties at connection or access time
	Configuring session properties

	DataBlade Module Management Functions
	The SYSBldPrepare Function
	The SYSBldRelease Function

	The EXPLAIN_SQL Routine
	UDR Definition Routines
	IFX_REPLACE_MODULE Function
	IFX_UNLOAD_MODULE Function

	jvpcontrol Function
	Using the MEMORY Keyword
	Using the THREADS Keyword

	SQLJ Driver Built-In Procedures
	sqlj.install_jar
	File Permissions on Jar Files

	sqlj.replace_jar
	sqlj.remove_jar
	sqlj.alter_java_path
	sqlj.setUDTextName
	sqlj.unsetUDTextName

	DRDA Support Functions
	Metadata Function
	sysibm.SQLCAMessage Function

	Appendix A. Keywords of SQL for IBM Informix
	Appendix B. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

