
Informix Product Family
Informix
Version 12.10

IBM Informix Enterprise Replication
Guide

SC27-4520-05

IBM

Informix Product Family
Informix
Version 12.10

IBM Informix Enterprise Replication
Guide

SC27-4520-05

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page K-1.

Edition

This edition replaces SC27-4520-03.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction .. xiii
About this publication .. xiii

Types of Users .. xiii
Assumptions about your locale .. xiii
Demonstration Databases .. xiv

What's New in Enterprise Replication for Informix, Version 12.10 xiv
Example code conventions .. xx
Additional documentation .. xxi
Compliance with industry standards. .. xxi
How to read the syntax diagrams. .. xxi
How to provide documentation feedback .. xxiii

Part 1. About Enterprise Replication

Chapter 1. IBM Informix Enterprise Replication technical overview 1-1
Enterprise Replication Terminology .. 1-1
Asynchronous Data Replication .. 1-3
Log-Based Data Capture .. 1-4
High Performance .. 1-4
High Availability .. 1-5
Consistent Information Delivery .. 1-5
Repair and Initial Data Synchronization. .. 1-5
Flexible Architecture .. 1-6
Centralized Administration .. 1-6
Ease of Implementation .. 1-7
Network Encryption .. 1-7

Chapter 2. How Enterprise Replication Replicates Data 2-1
Data Capture .. 2-2

Row Images .. 2-2
Evaluate rows for updates .. 2-3
Send queues and receive queues .. 2-4
Data Evaluation Examples .. 2-5

Data Transport .. 2-7
Applying replicated data .. 2-7

Part 2. Planning and designing for Enterprise Replication

Chapter 3. Plan for Enterprise Replication 3-1
Enterprise Replication Server administrator .. 3-1
Asynchronous propagation conflicts .. 3-1
Back up and restore of replication servers .. 3-2
Compression of replicated data .. 3-2
Transaction processing impact .. 3-2
SQL statements and replication .. 3-3
Global language support for replication. .. 3-5
Replication between multiple server versions .. 3-5

Chapter 4. Schema design for Enterprise Replication 4-1
Unbuffered Logging .. 4-1
Table Types .. 4-1
Label-based access control .. 4-2
Out-of-Row Data .. 4-2

© Copyright IBM Corp. 1996, 2015 iii

Shadow columns .. 4-2
Unique key for replication .. 4-3
Cascading Deletes .. 4-3
Triggers .. 4-4
Constraint and replication .. 4-4
Sequence Objects .. 4-5
The NLSCASE database property .. 4-5
Replicating Table Hierarchies .. 4-6
Replication and data types .. 4-6

Replicating on Heterogeneous Hardware .. 4-6
Serial data types and replication keys .. 4-6
Replication of TimeSeries data types .. 4-7
Replication of large objects .. 4-8
Replication of opaque user-defined data types .. 4-10

Chapter 5. Replication system design .. 5-1
Primary-Target Replication System .. 5-1

Primary-Target Data Dissemination .. 5-1
Data consolidation .. 5-2
Workload Partitioning .. 5-3
Workflow Replication .. 5-4
Primary-Target Considerations .. 5-4

Update-Anywhere Replication System .. 5-5
Conflict Resolution .. 5-6

Conflict resolution rule .. 5-6
Conflict Resolution Scope .. 5-15

Choosing a Replication Network Topology .. 5-16
Fully Connected Topology .. 5-16
Hierarchical Routing Topology Terminology .. 5-16
Hierarchical Tree Topology .. 5-17
Forest of trees topology. .. 5-18

Part 3. Setting up and managing Enterprise Replication

Chapter 6. Preparing the Replication Environment. 6-1
Preparing the Network Environment. .. 6-1

Configuring hosts information for replication servers 6-2
Configuring ports and service names for replication servers 6-2
Creating sqlhost group entries for replication servers 6-3
Configuring secure ports for connections between replication servers 6-4
Configuring network encryption for replication servers 6-6
Testing the replication network .. 6-6
Testing the password file .. 6-7

Preparing the Disk. .. 6-7
Logical Log Configuration Disk Space .. 6-8
Logical Log Configuration Guidelines .. 6-8
Disk Space for Delete Tables .. 6-9
Shadow column disk space .. 6-9
Setting Up Send and Receive Queue Spool Areas .. 6-10
Setting Up the Grouper Paging File .. 6-14
Creating ATS and RIS directories .. 6-14

Preparing the Database Server Environment .. 6-15
Setting Database Server Environment Variables .. 6-15
Set configuration parameters for replication .. 6-15
Time synchronization .. 6-17

Preparing Data for Replication .. 6-17
Preparing Consistent Data .. 6-18
Blocking Replication .. 6-18
Preparing to Replicate User-Defined Types .. 6-19
Preparing to Replicate User-Defined Routines .. 6-19

iv IBM Informix Enterprise Replication Guide

Preparing Tables for Conflict Resolution .. 6-19
Preparing Tables for a Consistency Check Index .. 6-20
Preparing tables without primary keys .. 6-20
Preparing Logging Databases .. 6-22
Preparing for Role Separation (UNIX) .. 6-22

Load and unload data .. 6-23
High-Performance Loader .. 6-24
onunload and onload Utilities .. 6-25
dbexport and dbimport Utilities .. 6-25
UNLOAD and LOAD Statements .. 6-25

Data Preparation Example .. 6-26
Using the cdr start replicate Command .. 6-26
Using LOAD, UNLOAD, and BEGIN WORK WITHOUT REPLICATION 6-26

Chapter 7. Using High-Availability Clusters with Enterprise Replication 7-1
High-availability replication systems .. 7-1

High-Availability Clusters in a Hierarchical Tree Topology 7-2
Using high-availability clusters in a forest of trees topology 7-2
Setting Up Database Server Groups for High-Availability Cluster Servers 7-3

Managing Enterprise Replication with High-Availability Clusters 7-4
Failover for High-availability clusters in an Enterprise Replication environment 7-4
Replication latency for secondary servers .. 7-6

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-1
Starting Database Servers .. 8-1
Defining Replication Servers .. 8-1

Creating a new domain by cloning a server .. 8-2
Adding a server to the domain by cloning a server .. 8-5
Customizing the Replication Server Definition .. 8-6

Define a replicate .. 8-7
Participant definitions .. 8-7
Replicate types .. 8-8
Defining Shadow Replicates .. 8-9
Specifying Conflict Resolution Rules and Scope. .. 8-10
Specifying Replication Frequency .. 8-11
Setting Up Failed Transaction Logging .. 8-11
Replicate only changed columns .. 8-11
Using the IEEE Floating Point or Canonical Format 8-12
Enabling Triggers .. 8-13
Enabling code set conversion between replicates .. 8-13

Define replicate sets .. 8-18
Exclusive Replicate Sets. .. 8-18
Non-Exclusive Replicate Sets .. 8-19
Customizing the Replicate Set Definition .. 8-19

Initially Synchronizing Data Among Database Servers 8-20
Set up replication through templates .. 8-21

Defining Templates .. 8-21
Realizing Templates .. 8-21

Chapter 9. Grid setup and management .. 9-1
Example of setting up a replication system with a grid 9-2
Example of rolling out schema changes in a grid .. 9-5
Creating a grid .. 9-6
Grid maintenance .. 9-6

Viewing grid information .. 9-7
Adding replication servers to a grid .. 9-8

Adding a replication server to a grid by running cdr change grid 9-8
Adding a replication server to a grid by cloning .. 9-8

Adding an externally created replicate into a grid replicate set. 9-10
Adding an existing replicate to a grid replicate set by using cdr change replicateset 9-10

Contents v

Adding an existing replicate to a grid replicate set by altering a table 9-10
Creating replicated tables through a grid .. 9-11
Enabling replication within a grid transaction .. 9-12
Propagating updates to data .. 9-13
Administering servers in the grid with the SQL administration API 9-14
Propagating database object changes .. 9-15
Propagating external files through a grid .. 9-16
Rerunning failed grid routines .. 9-17
Connection management for client connections to participants in a grid 9-19
Grid queries .. 9-19

Defining tables for grid queries .. 9-20
Configuring secure connections for grid queries .. 9-21
Examples of grid queries .. 9-22

Chapter 10. Shard cluster setup .. 10-1
Creating a shard cluster .. 10-1

Shard cluster definitions .. 10-2
Sharded queries .. 10-3
Shard cluster management and monitoring .. 10-5

Chapter 11. Managing Replication Servers and Replicates 11-1
Managing Replication Servers. .. 11-1

Modify server attributes .. 11-1
Dynamically Modifying Configuration Parameters for a Replication Server 11-1
Viewing Replication Server Attributes .. 11-3
Connect to another replication server .. 11-3
Temporarily stopping replication on a server. .. 11-3
Restarting Replication on a Server .. 11-4
Suspending Replication for a Server .. 11-4
Resuming a Suspended Replication Server .. 11-5
Deleting a Replication Server .. 11-5

Managing Replicates .. 11-6
Modify replicates .. 11-6
Viewing Replicate Properties .. 11-7
Starting a Replicate .. 11-8
Stopping a Replicate .. 11-8
Suspending a Replicate .. 11-9
Resuming a Suspended Replicate .. 11-9
Deleting a Replicate .. 11-9

Managing Replicate Sets .. 11-10
Connection management for client connections to participants in a replicate set 11-10
Modifying Replicate Sets .. 11-10
Viewing Replicate Sets .. 11-11
Starting a Replicate Set .. 11-11
Stopping a Replicate Set .. 11-12
Suspending a Replicate Set .. 11-12
Resuming a Replicate Set .. 11-12
Deleting a Replicate Set .. 11-12

Managing Templates .. 11-13
Viewing Template Definitions .. 11-13
Deleting Templates .. 11-13

Managing Replication Server Network Connections .. 11-13
Viewing Network Connection Status .. 11-13
Dropping the Network Connection .. 11-14
Reestablishing the Network Connection .. 11-14

Resynchronizing Data among Replication Servers. .. 11-14
Performing Direct Synchronization .. 11-15
Checking Consistency and Repairing Inconsistent Rows 11-16
Repairing Failed Transactions with ATS and RIS Files 11-22
Resynchronize data manually .. 11-23

vi IBM Informix Enterprise Replication Guide

Alter, rename, or truncate operations during replication 11-23
Altering multiple tables in a replicate set .. 11-25
Adding a Replicated Column .. 11-26
Removing replicated columns .. 11-26
Modifying the data type or size of a replicated column 11-26
Changing the Name of a Replicated Column, Table, or Database. 11-28
Changing or re-creating primary key columns .. 11-28
Attaching a New Fragment to a Replicated Table .. 11-28
Remastering a Replicate .. 11-29

Recapture replicated transactions .. 11-29

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-1
Solve Replication Processing Problems. .. 12-1
Failed Transaction (ATS and RIS) Files .. 12-3

Enabling ATS and RIS File Generation .. 12-4
ATS and RIS File Names .. 12-5
ATS and RIS File Formats .. 12-6
Disabling ATS and RIS File Generation .. 12-13
Suppressing Data Sync Errors and Warnings .. 12-14

Preventing Memory Queues from Overflowing .. 12-14
Handle potential log wrapping .. 12-15
Monitoring Disk Usage for Send and Receive Queue Spool 12-16
Increasing the Sizes or Numbers of Storage Spaces 12-17
Recovering when Storage Spaces Fill .. 12-17

Common configuration problems .. 12-17
Troubleshooting Tips for Alter Operations .. 12-18
Enterprise Replication Event Alarms .. 12-21

Enabling or Disabling Enterprise Replication Event Alarms 12-40

Part 4. Appendixes

Appendix A. The cdr utility .. A-1
Interpret the cdr utility syntax .. A-1

Command Abbreviations .. A-1
Option Abbreviations .. A-2
Option Order .. A-2
Long Command-Line Examples .. A-3
Long Identifiers .. A-3
Connect Option .. A-3
Participant and participant modifier. .. A-4
Return Codes for the cdr Utility .. A-8
Frequency Options .. A-27

cdr add onconfig. .. A-29
cdr alter. .. A-30
cdr autoconfig serv .. A-31
cdr change grid .. A-35
cdr change gridtable .. A-36
cdr change onconfig. .. A-38
cdr change replicate. .. A-39
cdr change replicateset .. A-42
cdr change shardCollection .. A-43
cdr check queue .. A-47
cdr check replicate .. A-50
cdr check replicateset .. A-61
cdr check sec2er .. A-69
cdr cleanstart .. A-71
cdr connect server .. A-72
cdr define grid .. A-73
cdr define qod .. A-74
cdr define region. .. A-76

Contents vii

cdr define replicate .. A-77
cdr define replicateset .. A-87
cdr define server .. A-90
cdr define shardCollection .. A-93
cdr define template .. A-98
cdr delete grid .. A-103
cdr delete region .. A-104
cdr delete replicate. .. A-105
cdr delete replicateset .. A-106
cdr delete server .. A-108
cdr delete shardCollection .. A-110
cdr delete template. .. A-112
cdr disable grid .. A-112
cdr disable server .. A-114
cdr disconnect server .. A-115
cdr enable grid .. A-116
cdr enable server .. A-118
cdr error .. A-119
cdr finderr .. A-121
cdr list grid .. A-121
cdr list replicate. .. A-125
cdr list replicateset .. A-130
cdr list server .. A-131
cdr list shardCollection .. A-135
cdr list template .. A-137
cdr modify grid .. A-139
cdr modify replicate .. A-140
cdr modify replicateset .. A-145
cdr modify server .. A-146
cdr realize template .. A-148
cdr remaster .. A-153
cdr remaster gridtable .. A-156
cdr remaster replicateset .. A-157
cdr remove onconfig .. A-159
cdr repair .. A-160
cdr reset qod. .. A-162
cdr resume replicate .. A-164
cdr resume replicateset .. A-165
cdr resume server .. A-167
cdr start .. A-168
cdr start qod .. A-169
cdr start replicate .. A-170
cdr start replicateset .. A-173
cdr start sec2er .. A-176
cdr stats rqm. .. A-178
cdr stats recv .. A-181
cdr stats check .. A-182
cdr stats sync .. A-185
cdr stop .. A-189
cdr stop qod .. A-190
cdr stop replicate .. A-191
cdr stop replicateset .. A-193
cdr suspend replicate .. A-194
cdr suspend replicateset .. A-195
cdr suspend server. .. A-197
cdr swap shadow .. A-198
cdr sync replicate .. A-200
cdr sync replicateset .. A-204
cdr -V .. A-208
cdr view .. A-209

viii IBM Informix Enterprise Replication Guide

Appendix B. Enterprise Replication configuration parameter and environment variable
reference .. B-1
CDR_APPLY Configuration Parameter .. B-1
CDR_AUTO_DISCOVER configuration parameter .. B-1
CDR_DBSPACE Configuration Parameter .. B-2
CDR_DELAY_PURGE_DTC configuration parameter .. B-3
CDR_DSLOCKWAIT Configuration Parameter .. B-4
CDR_ENV Configuration Parameter .. B-4
CDR_EVALTHREADS Configuration Parameter .. B-5
CDR_LOG_LAG_ACTION configuration parameter .. B-6
CDR_LOG_STAGING_MAXSIZE Configuration Parameter B-9
CDR_MAX_DYNAMIC_LOGS Configuration Parameter. B-10
CDR_MAX_FLUSH_SIZE configuration parameter .. B-11
CDR_MEM configuration parameter .. B-11
CDR_NIFCOMPRESS Configuration Parameter. .. B-12
CDR_QDATA_SBSPACE Configuration Parameter .. B-13
CDR_QUEUEMEM Configuration Parameter .. B-14
CDR_SERIAL Configuration Parameter .. B-15
CDR_SUPPRESS_ATSRISWARN Configuration Parameter B-16
CDR_TSINSTANCEID configuration parameter. .. B-16
ENCRYPT_CDR Configuration Parameter .. B-17
GRIDCOPY_DIR Configuration Parameter .. B-18
SHARD_ID configuration parameter .. B-18
SHARD_MEM configuration parameter .. B-19
CDR_ALARMS Environment Variable .. B-20
CDR_ATSRISNAME_DELIM Environment Variable .. B-20
CDR_DISABLE_SPOOL Environment Variable .. B-21
CDR_LOGDELTA Environment Variable .. B-21
CDR_PERFLOG Environment Variable .. B-21
CDR_RMSCALEFACT Environment Variable .. B-22
CDR_ROUTER Environment Variable .. B-22
CDRSITES_10X Environment Variable .. B-23
CDRSITES_731 Environment Variable .. B-24
CDRSITES_92X Environment Variable .. B-24

Appendix C. Grid routines .. C-1
ifx_get_erstate() function .. C-1
ifx_grid_connect() procedure .. C-1
ifx_grid_copy() procedure .. C-5
ifx_grid_disconnect() procedure .. C-6
ifx_grid_execute() procedure .. C-7
ifx_grid_function() function .. C-8
ifx_grid_procedure() procedure .. C-9
ifx_grid_redo() procedure .. C-10
ifx_grid_release() function .. C-11
ifx_grid_remove() function .. C-12
ifx_grid_purge() procedure .. C-13
ifx_gridquery_skipped_nodes() function .. C-15
ifx_gridquery_skipped_node_count() function .. C-16
ifx_node_id() function .. C-16
ifx_node_name() function .. C-17

Appendix D. Enterprise Replication routines D-1
ifx_get_erstate() function .. D-1
ifx_set_erstate() procedure .. D-1

Appendix E. onstat -g commands for Enterprise Replication E-1
Threads shown by the onstat -g ath command .. E-1
onstat -g cat: Print ER global catalog information .. E-2
onstat -g cdr: Print ER statistics .. E-4

Contents ix

onstat -g cdr config: Print ER settings .. E-4
onstat -g ddr: Print status of ER log reader .. E-6
onstat -g dss: Print statistics for data sync threads .. E-7
onstat -g dtc: Print statistics about delete table cleaner .. E-8
onstat -g grp: Print grouper statistics .. E-8
onstat -g nif: Print statistics about the network interface E-13
onstat -g que: Print statistics for all ER queues .. E-14
onstat -g rcv: Print statistics about the receive manager E-15
onstat -g rep: Prints the schedule manager queue .. E-17
onstat -g rqm: Prints statistics for RQM queues. .. E-18
onstat -g sync: Print statistics about synchronization .. E-21

Appendix F. syscdr Tables .. F-1
The replcheck_stat Table .. F-1
The replcheck_stat_node Table .. F-2

Appendix G. SMI Tables for Enterprise Replication Reference G-1
The syscdr_ats Table .. G-1
The syscdr_atsdir Table .. G-1
The syscdr_ddr Table. .. G-2
The syscdr_nif Table .. G-3
The syscdr_rcv Table .. G-4
The syscdr_ris Table .. G-5
The syscdr_risdir Table .. G-6
The syscdr_rqm Table .. G-6
The syscdr_rqmhandle Table .. G-7
The syscdr_rqmstamp Table .. G-7
The syscdr_state Table .. G-8
The syscdrack_buf Table .. G-8
The syscdrack_txn Table. .. G-8
The syscdrctrl_buf Table. .. G-9
The syscdrctrl_txn Table. .. G-9
The syscdrerror Table .. G-9
The syscdrlatency Table .. G-9
The syscdrpart Table .. G-10
The syscdrprog Table .. G-10
The syscdrq Table .. G-11
The syscdrqueued Table .. G-11
The syscdrrecv_buf Table .. G-11
The syscdrrecv_stats Table .. G-12
The syscdrrecv_txn Table .. G-12
The syscdrrepl Table .. G-12
The syscdrreplset Table .. G-13
The syscdrs Table .. G-14
The syscdrsend_buf Table .. G-15
The syscdrsend_txn Table .. G-15
The syscdrserver Table .. G-15
The syscdrsync_buf Table .. G-16
The syscdrsync_txn Table .. G-16
The syscdrtsapply table .. G-16
The syscdrtx Table .. G-17
Enterprise Replication Queues .. G-17

Columns of the Transaction Tables .. G-18
Columns of the Buffer Tables. .. G-18

Appendix H. Replication Examples .. H-1
Replication Example Environment .. H-1
Primary-Target Example .. H-2
Update-Anywhere Example .. H-4
Hierarchy Example .. H-6

x IBM Informix Enterprise Replication Guide

Appendix I. Data sync warning and error messages I-1

Appendix J. Accessibility .. J-1
Accessibility features for IBM Informix products .. J-1

Accessibility features .. J-1
Keyboard navigation .. J-1
Related accessibility information .. J-1
IBM and accessibility .. J-1

Dotted decimal syntax diagrams .. J-1

Notices .. K-1
Privacy policy considerations .. K-3
Trademarks .. K-3

Index .. X-1

Contents xi

xii IBM Informix Enterprise Replication Guide

Introduction

About this publication
This publication describes IBM® Informix® Enterprise Replication and the concepts
of data replication. This publication explains how to design your replication
system, as well as administer and manage data replication throughout your
enterprise.

This section discusses the intended audience and the associated software products
that you must have to use Enterprise Replication.

Types of Users
This publication is for database server administrators and assumes that you have
the following background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational databases or exposure to database

concepts
v Some experience with database server administration, operating- system

administration, and network administration

Assumptions about your locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
GL_DATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as é and ñ.

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

© Copyright IBM Corp. 1996, 2015 xiii

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration Databases
The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB–Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX platforms and in the
%INFORMIXDIR%\bin directory in Windows environments.

What's New in Enterprise Replication for Informix, Version 12.10
This publication includes information about new features and changes in existing
functionality.

For a complete list of what's new in this release, go to http://www.ibm.com/
support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm.

xiv IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm

Table 1. What's New in IBM Informix Enterprise Replication Guide for 12.10.xC6

Overview Reference

Parallel sharded queries

You can now run SELECT statements in sharded queries
in parallel instead of serially on each shard. Parallel
sharded queries return results faster, but also have the
following benefits:

v Reduced memory consumption: Table consistency is
enforced on the shard servers, which eliminates the
processing of data dictionary information among the
shard servers.

v Reduced network traffic: Client connections are
multiplexed over a common pipe instead of being
created individual connections between each client and
every shard server. Client connections are authenticated
on only one shard server instead of on every shard
server. Network traffic to check table consistency is
eliminated.

To enable parallel sharded queries, set the new
SHARD_ID configuration parameter in the onconfig file
to a unique value on each shard server in the shard
cluster. Also set the new
sharding.parallel.query.enable=true and
sharding.enable=true parameters in the wire listener
configuration file for each shard server. You can
customize how shared memory is allocated for parallel
sharded queries on each shard server by setting the new
SHARD_MEM configuration parameter. You can reduce
latency between shard servers by increasing the number
of pipes for SMX connections with the new
SMX_NUMPIPES configuration parameter.

If you plan to upgrade your existing shard cluster from a
previous version of Informix 12.10, upgrade and set the
SHARD_ID configuration parameter on all the shard
servers to enable parallel sharded queries.

Chapter 10, “Shard cluster setup,” on page 10-1

“SHARD_ID configuration parameter” on page B-18

“SHARD_MEM configuration parameter” on page B-19

Table 2. What's New in IBM Informix Enterprise Replication Guide for 12.10.xC4

Overview Reference

Replicate hertz and compressed time series data

You can now replicate hertz and compressed time series
data with Enterprise Replication.

“Replication of TimeSeries data types” on page 4-7

Enhancements to the Enterprise Replication apply process
and memory pool allocation

You can now specify two new methods of memory pool
allocation for Enterprise Replication. Set the new
CDR_MEM configuration parameter to specify that
Enterprise Replication allocates memory pools for CPU
virtual processors or to use a fixed-block memory pool
allocation strategy.

Transaction apply performance for large-scale grid
environments is faster.

“CDR_MEM configuration parameter” on page B-11

Introduction xv

Table 2. What's New in IBM Informix Enterprise Replication Guide for 12.10.xC4 (continued)

Overview Reference

New event alarm for blocked replication transactions

The new event alarm 33003 appears if Enterprise
Replication transactions are being blocked because a table
is in alter mode.

“Enterprise Replication Event Alarms” on page 12-21

Table 3. What's New in IBM Informix Enterprise Replication Guide for 12.10.xC3

Overview Reference

Shard data across Enterprise Replication servers

Using Enterprise Replication, Informix can now
horizontally partition (shard) a table or collection across
multiple database servers. When you create a sharding
definition through the cdr utility, rows from a table or
documents from a collection can be distributed across the
nodes of an Enterprise Replication system, reducing the
number of rows or documents and the size of the index
on each node. When you distribute data across database
servers, you also distribute performance across hardware.
As your database grows in size, you can scale up by
adding more database servers.

Chapter 10, “Shard cluster setup,” on page 10-1

Easier configuration and cloning of a server for
replication

If you create a server during installation, you can easily
create an Enterprise Replication domain or a
high-availability cluster. Previously, you had to configure
connectivity manually on each server.

Run the cdr autoconfig serv command to configure
connectivity and start Enterprise Replication.

“cdr autoconfig serv” on page A-31

Table 4. What's New in IBM Informix Enterprise Replication Guide for 12.10.xC2

Overview Reference

Set up and query time series data through a grid

If you plan to replicate time series data, you can set up
time series through a grid. You can run the commands to
set up time series on one grid server and propagate the
commands to the other grid servers.

You can query time series data in the context of a grid.
However, you can run a grid query only on a virtual
table that is based on a table that has a TimeSeries
column.

“Replication of TimeSeries data types” on page 4-7

xvi IBM Informix Enterprise Replication Guide

Table 4. What's New in IBM Informix Enterprise Replication Guide for 12.10.xC2 (continued)

Overview Reference

Simplified schema changes for replicated tables

If you make many changes to the schema of replicated
tables that belong to a replicate set, you can easily update
the replicate definitions to reflect the schema changes.
After you alter replicated tables, run the cdr define
replicateset command with the --needRemaster option to
derive a replicate set that consists of only the replicates
that are affected by the alter operations. You remaster the
derived replicate set by running the cdr remaster
replicateset command. You do not need to update or
remaster every replicate individually.

If you want to only drop multiple columns from multiple
replicated tables, you can run the cdr remaster command
with the --remove option.

“Altering multiple tables in a replicate set” on page 11-25

“Removing replicated columns” on page 11-26

“Example of rolling out schema changes in a grid” on
page 9-5

Control the replication of large objects

By default, when any column in a replicate row is
changed, Enterprise Replication replicates the entire row.
However, to improve performance, columns that contain
a large object are replicated only when the content of the
large object changes. You can force the replication of large
objects by including the --alwaysRepLOBs=y option with
the cdr define replicate, cdr modify replicate, or cdr
define template command. Always including large object
columns in replicated rows can be useful if you have a
workflow replication system.

“Controlling the replication of large objects” on page 8-17

Custom checksum function for consistency checking

When you check the consistency of replicated rows, a
checksum is generated for each row on each server and
then the corresponding checksums are compared. You can
write your own checksum function instead of using the
checksum function that is supplied with the database
server.

“Implementing a custom checksum function” on page
11-21

Shard tables across database servers

You can now shard, or horizontally partition, a table
across multiple database servers. Rows from a table can
be distributed across a cluster of database servers, which
reduces the number of rows and the size of the index for
the database of each server. When you distribute data
across database servers, you also distribute performance
across hardware, which can result in significant
performance improvements. As your database grows in
size, you can scale up by adding more database servers.

“cdr define shardCollection” on page A-93

Introduction xvii

Table 5. What's New in IBM Informix Enterprise Replication Guide for 12.10.xC1

Overview Reference

Automatic space management for Enterprise Replication

If you have a storage pool, storage spaces are created
automatically if needed when you define a replication
server. Also, the CDR_DBSPACE and
CDR_QDATA_SBSPACE configuration parameters are set
automatically in the onconfig file. In earlier versions of
Informix, you had to create the required spaces and set
the configuration parameters before you could define a
replication server.

“cdr define server” on page A-90

“CDR_QDATA_SBSPACE Configuration Parameter” on
page B-13

“CDR_DBSPACE Configuration Parameter” on page B-2

Managing server connections on Windows operating
systems

On Windows operating systems, you now configure
connectivity information for Informix servers by using the
sqlhosts file, not the Windows registry. The file is
installed in %INFORMIXDIR%\etc\sqlhosts.
%INFORMIXSERVER%, and it uses the same format as the
sqlhosts file on UNIX operating systems. The
sync_registry Scheduler task automatically converts the
connection information between the sqlhosts file format
and the Windows registry format. The task runs every 15
minutes. You can manually convert the connection
information between the sqlhosts file format and the
Windows registry format by running the syncsqlhosts
utility.

“Preparing the Network Environment” on page 6-1

Reduce replication latency between Enterprise Replication
and shared-disk secondary servers

If an Enterprise Replication server is a primary server for
shared-disk secondary servers, you can reduce replication
latency by reducing the number of transactions that are
applied before the logs are flushed to disk. By default, the
logs are flushed after 50 transactions are applied, or 5
seconds elapse. You can set the CDR_MAX_FLUSH_SIZE
configuration parameter to 1 to flush the logs after every
transaction and reduce replication latency.

“CDR_MAX_FLUSH_SIZE configuration parameter” on
page B-11

Apply transactions for a replicate serially

You can specify to apply replicated transactions for a
specific replicate serially. By default, replicated
transactions are applied in parallel. If Enterprise
Replication detects deadlock conditions, it automatically
reduces the parallelism for the replication system until
the problem is resolved. If you have a replicate that
consistently reduces parallelism or your application
requires serial processing, include the --serial option
when you define or modify a replicate. By isolating a
problematic replicate, you can improve the performance
of the rest of the replication system. The onstat -g rcv full
command displays the number of concurrent transactions
and whether any replicate is preventing parallel
processing.

“cdr define replicate” on page A-77

xviii IBM Informix Enterprise Replication Guide

Table 5. What's New in IBM Informix Enterprise Replication Guide for 12.10.xC1 (continued)

Overview Reference

Replicate tables without primary keys or ERKEY columns

Enterprise Replication requires a unique key to replicate
data. Previously, Enterprise Replication required that the
replicated table definition included a primary key or the
ERKEY shadow columns. ERKEY columns require extra
storage space. You can now specify the columns in a
unique index as the replication key with the --key option,
or allow Enterprise Replication to assign a primary key,
ERKEY columns, or a unique index as the replication key
with the --anyUniqueKey option.

“Unique key for replication” on page 4-3

“cdr define replicate” on page A-77

“cdr define template” on page A-98

Replicate time-series data

You can replicate time-series data with Enterprise
Replication. For example, if you collect time-series data in
multiple locations, you can consolidate the data to a
central server.

“Replication of TimeSeries data types” on page 4-7

Grid queries for consolidating data from multiple grid
servers

You can write a grid query to select data from multiple
servers in a grid. Use the new GRID clause in the
SELECT statement to specify the servers on which to run
the query. After the query is run, the results that are
returned from each of the servers are consolidated.

“Grid queries” on page 9-19

Defer the propagation of DDL statements in a grid

You can run DDL statements in a grid context on a local
server but defer the propagation of the DDL statements to
the other grid servers. After you test the effects of the
DDL statement, you can propagate the deferred DDL
statements or remove them. You specify whether to defer
the propagation of DDL statements in the
ifx_grid_connect() procedure, and whether to enable
Enterprise Replication for the deferred DDL statements.

“ifx_grid_connect() procedure” on page C-1

Replicates are mastered by default

By default, Enterprise Replication replicates are master
replicates. If you do not specify a master server with the
--master option, the master replicate is based on the first
participant. A master replicate uses saved dictionary
information about the attributes of replicated columns to
verify that participants conform to the specified schema.
To create a classic replicate, which does not verify the
schemas of participants, include the --classic option in the
cdr define replicate command.

“cdr define replicate” on page A-77

Introduction xix

Table 5. What's New in IBM Informix Enterprise Replication Guide for 12.10.xC1 (continued)

Overview Reference

Simplified setup of a data consolidation system

In a data consolidation system, multiple primary servers
that contain different data replicate to one target server.
The target server does not replicate any data. You can
easily set up a data consolidation replication system by
defining a replicate and specifying that the primary
servers are participants that send only data. Previously,
you would configure this type of data consolidation
system by defining a different replicate for each primary
server.

“Data consolidation” on page 5-2

“Participant and participant modifier” on page A-4

Enterprise Replication supported among non-root servers

You can replicate data among database servers that have
non-root installations and that do not have a user
informix account. The servers must have the same owner.
Previously, Enterprise Replication required servers to
connect as user informix.

“Enterprise Replication Server administrator” on page 3-1

Easily propagate external files through a grid

You can propagate external files that are in a specific
directory to other servers in the grid by running the
ifx_grid_copy() procedure. For example, if a grid has 50
servers, you can copy an executable file from one server
to the other 49 servers by running one procedure.

“Propagating external files through a grid” on page 9-16

Monitor the status of Enterprise Replication queues

You can check the status of Enterprise Replication queues
by using the cdr check queue command. Check the
queue status before you run a command that might have
a dependency on a previously run command.

“cdr check queue” on page A-47

Replicate light-append operations

Unlogged changes to a table, such as when data is added
by a light append, can be replicated through Enterprise
Replication. For example, you can use the express-load
operation of the Informix High-Performance Loader
(HPL).

“Load and unload data” on page 6-23

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

xx IBM Informix Enterprise Replication Guide

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http://www.ibm.com/software/data/sw-library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

How to read the syntax diagrams
Syntax diagrams use special components to describe the syntax for SQL statements
and commands.

Read the syntax diagrams from left to right and top to bottom, following the path
of the line.

The double right arrowhead and line symbol ►►── indicates the beginning of a
syntax diagram.

The line and single right arrowhead symbol ──► indicates that the syntax is
continued on the next line.

The right arrowhead and line symbol ►── indicates that the syntax is continued
from the previous line.

The line, right arrowhead, and left arrowhead symbol ──►◄ symbol indicates the
end of a syntax diagram.

Syntax fragments start with the pipe and line symbol |── and end with the ──|
line and pipe symbol.

Required items appear on the horizontal line (the main path).

Introduction xxi

http://www.ibm.com/software/data/sw-library/

►► required_item ►◄

Optional items appear below the main path.

►► required_item
optional_item

►◄

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

►► required_item required_choice1
required_choice2

►◄

If choosing one of the items is optional, the entire stack appears below the main
path.

►► required_item
optional_choice1
optional_choice2

►◄

If one of the items is the default, it will appear above the main path, and the
remaining choices will be shown below.

►► required_item
default_choice

optional_choice
optional_choice

►◄

An arrow returning to the left, above the main line, indicates an item that can be
repeated. In this case, repeated items must be separated by one or more blanks.

►► required_item ▼ repeatable_item ►◄

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

►► required_item ▼

,

repeatable_item ►◄

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items or repeat a single choice.

xxii IBM Informix Enterprise Replication Guide

SQL keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in lowercase (for example, column-name). They
represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Sometimes a single variable represents a syntax segment. For example, in the
following diagram, the variable parameter-block represents the syntax segment
that is labeled parameter-block:

►► required_item parameter-block ►◄

parameter-block:

parameter1
parameter2 parameter3

parameter4

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix product
documentation.

Add comments about documentation to topics directly in IBM Knowledge Center
and read comments that were added by other users. Share information about the
product documentation, participate in discussions with other users, rate topics, and
more!

Feedback is monitored by the team that maintains the user documentation. The
comments are reserved for reporting errors and omissions in the documentation.
For immediate help with a technical problem, contact IBM Software Support at
http://www.ibm.com/planetwide/.

We appreciate your suggestions.

Introduction xxiii

http://www.ibm.com/planetwide/

xxiv IBM Informix Enterprise Replication Guide

Part 1. About Enterprise Replication

IBM Informix Enterprise Replication generates and manages multiple copies of
data at one or more sites, which allows an enterprise to share corporate data
throughout its organization.

These topics provide an overview of IBM Informix Enterprise Replication and how
to administer it.

© Copyright IBM Corp. 1996, 2015

IBM Informix Enterprise Replication Guide

Chapter 1. IBM Informix Enterprise Replication technical
overview

IBM Informix Enterprise Replication is an asynchronous, log-based tool for
replicating data between IBM Informix database servers. Enterprise Replication on
the source server captures transactions to be replicated by reading the logical log,
storing the transactions, and reliably transmitting each transaction as replication
data to the target servers.

At each target server, Enterprise Replication receives and applies each transaction
contained in the replication data to the appropriate databases and tables as a
normal, logged transaction.

Enterprise Replication Terminology
You must understand Enterprise Replication terminology.

The following terms define the data in an Enterprise Replication system and how it
is treated:
v Enterprise Replication server
v Shard server
v Replication key
v Replicate
v Master Replicate
v Shadow Replicate
v Participant
v Replicate Set
v Template
v Global Catalog
v Grid

Enterprise Replication server

An Enterprise Replication server, or replication server, is the IBM Informix database
server that participates in data replication.

The replication server maintains information about the replication environment,
which columns are replicated, and the conditions under which the data is
replicated. This information is stored in a database, syscdr, that the database server
creates when it is initialized. Multiple database servers can be on the same physical
computer, and each database server can participate in Enterprise Replication.

Shard server

A shard server is a database server that participates in data replication and receives
horizontally partitioned (sharded) data. A shard cluster is the group of database
servers over which a table or collection is partitioned.

© Copyright IBM Corp. 1996, 2015 1-1

Replication key

A replication key consists of one or more columns that uniquely identifies each
replicated row. The replication key must be the same on all servers that participate
in the replicate. Typically, the replication key is a primary key constraint.
Otherwise, you can specify ERKEY shadow columns or another unique index as
the replication key.

The replication key for a shard cluster consists of a single column, and is called a
shard key.

Replicate

A replicate defines the replication participants and various attributes of how to
replicate the data, such as frequency and how to handle any conflicts during
replication.

For more information, see “Define a replicate” on page 8-7 and “cdr define
replicate” on page A-77.

Master replicate

A master replicate is a replicate that guarantees data integrity by verifying that
replicated tables on different servers have consistent column attributes. Master
replicates also support alter operations on replicated tables.

Shadow replicate

A shadow replicate is a copy of an existing (primary) replicate. Shadow replicates
allow Enterprise Replication to manage alter and repair operations on replicated
tables.

Participant

A participant specifies the data (database, table, and columns) to replicate and the
database servers to which the data replicates.

Replicate set

A replicate set combines several replicates to form a set that can be administered
together as a unit.

Template

A template provides a mechanism to set up and deploy replication for a group of
tables on one or more servers. A template is especially useful if you have many
tables to replicate between many servers. A template defines a group of master
replicates and a replicate set for a specified group of tables that are based on
attributes such as database, tables, columns, and primary keys from the master
node.

You create a template by running the cdr define template command and then
instantiate, or realize, it on servers with the cdr realize template command.

1-2 IBM Informix Enterprise Replication Guide

Global catalog

Each database server that participates in Enterprise Replication maintains tables in
the syscdr database to track Enterprise Replication configuration information and
state. For all root and nonroot replication servers, this catalog is a global catalog that
maintains a global inventory of Enterprise Replication configuration information.
The global catalog is created when you define the server for replication.

The global catalog includes the following information:
v Enterprise Replication server definitions and state
v Routing and connectivity information
v Replicate definitions and state
v Participant definitions and state
v Replicate set definitions and state
v Conflict detection and resolution rules and any associated SPL routines

Grid

A grid is a set of replication servers that you can administer as a unit. When you
run SQL data definition statements from within a grid context on one server in the
grid, they are propagated to all other servers in the grid. You can run SQL data
manipulation statements and routines through grid routines. You can propagate
external files to other servers in the grid. You can run grid queries to consolidate
data from multiple grid servers.
Related concepts:
“Connect Option” on page A-3
Related tasks:
“Customizing the Replication Server Definition” on page 8-6
“Connect to another replication server” on page 11-3

Asynchronous Data Replication
Enterprise Replication uses asynchronous data replication to update the databases
that reside at a replicated site after the primary database has committed a change.

With asynchronous replication, the delay to update the replicated-site databases
can vary depending on the business application and user requirements. However,
the data eventually synchronizes to the same value at all sites. The major benefit of
this type of data replication is that if a particular database server fails, the
replication process can continue and all transactions in the replication system will
be committed.

In contrast to this, synchronous data replication replicates data immediately when
the source data is updated. Synchronous data replication uses the two-phase commit
technology to protect data integrity. In a two-phase commit, a transaction is
applied only if all interconnected distributed sites agree to accept the transaction.
Synchronous data replication is appropriate for applications that require immediate
data synchronization. However, synchronous data replication requires that all
hardware components and networks in the replication system be available at all
times. For more information about synchronous replication, refer to the discussion
of two-phase commit in your IBM Informix Administrator's Guide.

Chapter 1. IBM Informix Enterprise Replication technical overview 1-3

Asynchronous replication is often preferred because it allows for system and
network failures.

Asynchronous replication allows the following replication models:
v Primary-target (“Primary-Target Replication System” on page 5-1)

All database changes originate at the primary database and are replicated to the
target databases. Changes at the target databases are not replicated to the
primary.

v Update-anywhere (“Update-Anywhere Replication System” on page 5-5)
All databases have read and write capabilities. Updates are applied at all
databases.

The update-anywhere model provides the greater challenge in asynchronous
replication. For example, if a replication system contains three replication sites that
all have read and write capabilities, conflicts occur when the sites try to update the
same data at the same time. Conflicts must be detected and resolved so that the
data elements eventually have the same value at every site. For more information,
see “Conflict Resolution” on page 5-6.

Log-Based Data Capture
Enterprise Replication uses log-based data capture to gather data for replication.
Enterprise Replication reads the logical log to obtain the row images for tables that
participate in replication and then evaluates the row images.

Log-based data capture takes changes from the logical log and does not compete
with transactions for access to production tables. Log-based data-capture systems
operate as part of the normal database-logging process and thus add minimal
overhead to the system.

Two other methods of data capture, which Enterprise Replication does not support,
include:
v Trigger-based data capture

A trigger is code in the database that is associated with a piece of data. When
the data changes, the trigger activates the replication process.

v Trigger-based transaction capture
A trigger is associated with a table. Data changes are grouped into transactions
and a single transaction might trigger several replications if it modifies several
tables. The trigger receives the whole transaction, but the procedure that
captures the data runs as a part of the original transaction, thus slowing down
the original transaction.

High Performance
Enterprise Replication provides high performance by not overly burdening the
data source and by using networks and all other resources efficiently.

Because Enterprise Replication captures changes from the logical log instead of
competing with transactions that access production tables, Enterprise Replication
minimizes the effect on transaction performance. Because the capture mechanism is
internal to the database, the database server implements this capture mechanism
efficiently. For more information, see “Log-Based Data Capture.”

1-4 IBM Informix Enterprise Replication Guide

All Enterprise Replication operations are performed in parallel, which further
extends the performance of Enterprise Replication.

High Availability
Because Enterprise Replication implements asynchronous data replication, network
and target database server outages are tolerated. In the event of a database server
or network failure, the local database server continues to service local users. The
local database server stores replicated transactions in persistent storage until the
remote server becomes available.

If high availability is critical, you can use high-availability clusters in conjunction
with Enterprise Replication. High-availability clusters support synchronous data
replication between database servers: a primary server, which can participate in
Enterprise Replication, and one or more secondary servers, which do not
participate in Enterprise Replication. If a primary server in a high-availability
cluster fails, a secondary server can take over the role of the primary server,
allowing it to participate in Enterprise Replication. Client connections to the
original primary server can be automatically switched to the new standard server.

For more information on using high-availability clusters with Enterprise
Replication, see Chapter 7, “Using High-Availability Clusters with Enterprise
Replication,” on page 7-1.

Consistent Information Delivery
IBM Informix Enterprise Replication protects data integrity. All IBM Informix
Enterprise Replication transactions are stored in a reliable queue to maintain the
consistency of transactions.

IBM Informix Enterprise Replication uses a data-synchronization process to ensure
that transactions are applied at the target database servers in any order equivalent
to the order that they were committed on the source database server. If Enterprise
Replication can preserve the consistency of the database, Enterprise Replication
might commit transactions in a slightly different order on the target database.

If update conflicts occur, IBM Informix Enterprise Replication provides built-in
automatic conflict detection and resolution. You can configure the way conflict
resolution behaves to meet the needs of your enterprise. For more information, see
“Conflict Resolution” on page 5-6.

Repair and Initial Data Synchronization
Enterprise Replication provides initial data synchronization and multiple methods
to repair replicated data.

You can easily bring a new table up-to-date with replication when you start a new
replicate, or when you add a new participant to an existing replicate, by specifying
an initial synchronization. Initial synchronization can be run online while
replication is active.

If replication has failed for some reason, you can repair replicated data by running
the cdr sync replicate or cdr sync replicateset command to resynchronize data and
correct data mismatches between replicated tables. You can repair data while
replication is active.

Chapter 1. IBM Informix Enterprise Replication technical overview 1-5

You can also repair data after replication has failed by using ATS and RIS
files.Enterprise Replication examines the specified ATS or RIS file and attempts to
reconcile the rows that failed to be applied.
Related concepts:
“Resynchronizing Data among Replication Servers” on page 11-14
Related tasks:
“Initially Synchronizing Data Among Database Servers” on page 8-20
“Repairing Failed Transactions with ATS and RIS Files” on page 11-22

Flexible Architecture
Enterprise Replication allows replications based on specific business and
application requirements and does not impose model or methodology restrictions
on the enterprise.

Enterprise Replication supports both primary-target and update-anywhere
replication models.

Enterprise Replication supports the following network topologies:
v Fully connected

Continuous connectivity between all participating database servers.
v Hierarchical tree

A parent-child configuration that supports continuous and intermittent
connectivity.

v Forest of trees
Multiple hierarchical trees that connect at the root database servers.

You can add High-Availability Data Replication to any of these topologies.

Enterprise Replication supports all built-in IBM Informix data types, as well as
extended and user-defined data types.

Enterprise Replication operates in LAN, WAN, and combined LAN/WAN
configurations across a range of network transport protocols.

Enterprise Replication supports the Global Language Support (GLS) feature, which
allows IBM Informix products to handle different languages, regional conventions,
and code sets.
Related concepts:
“Primary-Target Replication System” on page 5-1
“Update-Anywhere Replication System” on page 5-5
“Choosing a Replication Network Topology” on page 5-16
“Replication and data types” on page 4-6
“Global language support for replication” on page 3-5

Centralized Administration
Enterprise Replication allows administrators to easily manage all the distributed
components of the replication system from a single point of control.

1-6 IBM Informix Enterprise Replication Guide

You can use the command-line utility (CLU) to administer the replication system
from your system command prompt and connect to other servers involved in
replication, as necessary. For information, see Appendix A, “The cdr utility,” on
page A-1.

Ease of Implementation
Enterprise Replication provides templates to allow easy set up and deployment of
replication for clients with large numbers of tables to replicate. Administrators of
Enterprise Replication can use templates to develop scripts and with only a few
commands can set up replication over a large number of server nodes. Without
using templates, many individual commands must be run. Using templates, you
can also easily add a new server into your replication environment and optionally
create and populate new database tables.

First, you create a template using the cdr define template command. This defines
the database, tables, and columns and the characteristics of the replicates that will
be created. You can view information about a template by using the cdr list
template command from a non-leaf node.

Second, you instantiate the template on the servers where you want to replicate
this data by running the cdr realize template command. If the table already exists
on a node, Enterprise Replication verifies it matches the template definition. If the
table does not exist on a node, Enterprise Replication can optionally create the
table. Enterprise Replication can also optionally perform an initial data
synchronization on all servers where you realize the template.

You can delete templates that you no longer need using the cdr delete template
command.

See “Set up replication through templates” on page 8-21 for more information. All
replication commands mentioned in this section are described in detail in
Appendix A, “The cdr utility,” on page A-1.

Network Encryption
Enterprise Replication supports the same network encryption options that you can
use with communications between server and clients to provide complete data
encryption.

You can use the Secure Sockets Layer (SSL) protocol, a communication protocol
that ensures privacy and integrity of data transmitted over the network, for
connections between Enterprise Replication servers. For information on using the
SSL protocol, see Secure sockets layer protocol.

You can use encryption configuration parameters to provide data encryption with
a standard cryptography library. A message authentication code (MAC) is
transmitted as part of the encrypted data transmission to ensure data integrity.
This is the same type of encryption provided by the ENCCSM communications
support module for non-replication communication. Enterprise Replication shares
the same ENCRYPT_CIPHERS, ENCRYPT_MAC, ENCRYPT_MACFILE, and
ENCRYPT_SWITCH configuration parameters with high availability clusters.
Enterprise Replication encryption configuration parameters are documented in
Appendix B, “Enterprise Replication configuration parameter and environment
variable reference,” on page B-1.

Chapter 1. IBM Informix Enterprise Replication technical overview 1-7

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sec.doc/ids_ssl_001.htm

Enterprise Replication cannot accept a connection that is configured with a
communications support module. To combine client/server network encryption
with Enterprise Replication encryption, configure two network connections for
each database server, one with CSM and one without. For more information, see
“Configuring network encryption for replication servers” on page 6-6.

1-8 IBM Informix Enterprise Replication Guide

Chapter 2. How Enterprise Replication Replicates Data

Before you can replicate data, you must declare a database server for replication
and define the replicates (the data to replicate and the database servers that
participate in replication). To declare a database server for replication, see
“Defining Replication Servers” on page 8-1. To define replicates, see “Define a
replicate” on page 8-7. Appendix H, “Replication Examples,” on page H-1, has
simple examples of declaring replication servers and defining replicates.

After you define the servers and replicates, Enterprise Replication replicates data in
three phases:
1. “Data Capture” on page 2-2
2. “Data Transport” on page 2-7
3. “Applying replicated data” on page 2-7

The following diagram shows these three phases of replication and the Enterprise
Replication components that perform each task.

As shown in the diagram, the following process describes how Enterprise
Replication replicates a transaction:
1. A client application performs a transaction in a database that is defined as a

replicate.
2. The transaction is put into the logical log.
3. The log capture component, also known as the snoopy component, reads the

logical log and passes the log records onto the grouper component.
4. The grouper component evaluates the log records for replication and groups

them into a message that describe the operations that were in the original
transaction.

Source Server

ApplyTransportCapture

Network2. Logical Log

Spool 5. Send Queue 7. Receive Queue

Database

Target Server

4. Grouper

8. Data Sync

9. Ack Queue

3. Snoopy

Database

1. Client
application

6

10

Figure 2-1. The Life Cycle of a Replicated Transaction

© Copyright IBM Corp. 1996, 2015 2-1

5. The grouper component places the message in the send queue. Under certain
situations, the send queue spools messages to disk for temporary storage.

6. The send queue transports the replication message across the Enterprise
Replication network to the target server.

7. The replication message is placed in the receive queue at the target server.
8. The data sync component applies the transaction in the target database. If

necessary, the data sync component performs conflict resolution.
9. An acknowledgment that the message was successfully applied is placed in

the acknowledgment queue.
10. The acknowledgment message is sent back to the source server.

Data Capture
As the database server writes rows to the logical log, it marks rows that should be
replicated. Later, Enterprise Replication reads the logical log to obtain the row
images for tables that participate in replication.

IBM Informix database servers manage the logical log in a circular fashion; the
most recent logical-log entries write over the oldest entries. Enterprise Replication
must read the logical log quickly enough to prevent new logical-log entries from
overwriting the logs Enterprise Replication has not yet processed.

If the database server comes close to overwriting a logical log that Enterprise
Replication has not yet processed, by default, user transactions are blocked until
Enterprise Replication advances. You can specify other responses to the potential
for overwriting the Enterprise Replication replay position.

The row images that participate in replication are passed to Enterprise Replication
for further evaluation.

Row Images
Enterprise Replication evaluates the initial and final images of a row and any
changes that occur between the two row images to determine which rows to
replicate. Each row image contains the data in the row and the action that is
performed on that row.

A row might change more than once in a particular transaction. For example, a
transaction might insert and then update a row before committing. Enterprise
Replication evaluates the net effect (final state) of a transaction based on the row
buffers in the log. Enterprise Replication then determines what must be replicated,
based on the net effect, the initial state of the row, and whether the replicate
definition (in particular, the WHERE clause) applies to the initial and final state.
Enterprise Replication evaluates the row-image type (INSERT, UPDATE, DELETE),
the results of evaluating the replicate WHERE clause for both the initial and final
image, and whether the replication key changes as a result of the transaction.

The following table shows the logic that determines which rows are candidates for
replication. The source and destination tables are assumed to be initially
synchronized (identical before replication begins). If the tables were not
synchronized, anomalous behavior might result.

2-2 IBM Informix Enterprise Replication Guide

Table 2-1. Enterprise Replication Evaluation Logic

Initial
Image

Replicate
Evaluates Final Image

Replicate
Evaluates

Replication-
Key
Changed?

Send to
Destination
Database Server Comments

INSERT T or F DELETE T or F Yes or no Nothing Net change of
transaction results in no
replication

INSERT T or F UPDATE T Yes or no INSERT with final
row image

Inserts final data of
transaction

INSERT T or F UPDATE F Yes or no Nothing Final evaluation
determines no
replication

UPDATE T DELETE T or F Yes or no DELETE with
initial row image

Net result of transaction
is delete

UPDATE F DELETE T or F Yes or no Nothing Net change of
transaction results in no
replication

UPDATE T UPDATE T Yes DELETE with
initial row image
and INSERT with
final row image

Ensures old replication
key does not replicate

UPDATE T UPDATE T No UPDATE with
final row image

Simple update

UPDATE T UPDATE F Yes or no DELETE with
initial row image

Row no longer matches
replicate definition

UPDATE F UPDATE T Yes or no INSERT with final
row image

Row now matches
replicate definition

UPDATE F UPDATE F Yes or no Nothing No match exists, and
therefore, no replication

The following rules apply to the information in the table:
v The initial image is the before image of the transaction in the logical log.
v The replicate evaluates to T (true) or F (false).
v The final image is the image of the transaction that is replicated.

After Enterprise Replication identifies transactions that qualify for replication,
Enterprise Replication transfers the transaction data to a queue.

Evaluate rows for updates
Enterprise Replication evaluates rows for replication-key updates, for
WHERE-clause column updates, and for multiple updates to the same row.

The following list describes an occurrence in a transaction and the Enterprise
Replication action:
v Replication-key updates

Enterprise Replication translates an update of the replication key into a delete of
the original rows and an insert of the row images with the new replication key.
If triggers are enabled on the target system, insert triggers are run.

v WHERE-clause column updates

Chapter 2. How Enterprise Replication Replicates Data 2-3

If a replicate includes a WHERE clause in its data selection, the WHERE clause
imposes selection criteria for rows in the replicated table.
– If an update changes a row so that it no longer passes the selection criteria on

the source, it is deleted from the target table. Enterprise Replication translates
the update into a delete and sends it to the target.

– If an update changes a row so that it passes the selection criteria on the
source, it is inserted into the target table. Enterprise Replication translates the
update into an insert and sends it to the target.

v Multiple-row images in a transaction
Enterprise Replication compresses multiple-row images and only sends the net
change to the target. Because of this, triggers might not execute on the target
database. For more information, see “Triggers” on page 4-4.

Enterprise Replication supports the replication of BYTE and TEXT data types
(simple large objects) and BLOB and CLOB data types (smart large objects), and
opaque user-defined data types, as well as all built-in IBM Informix data types.
However, Enterprise Replication implements the replication of these types of data
somewhat differently from the replication of other data types. For more
information, see “Replication of large objects” on page 4-8, and “Replication of
opaque user-defined data types” on page 4-10.

Send queues and receive queues
Enterprise Replication uses send and receive queues to receive and deliver
replication data to and from database servers that participate in a replicate.

Send queue
Enterprise Replication stores replication data in memory to be delivered to
target database servers that participate in a replicate. If the send queue
fills, Enterprise Replication spools the send-queue transaction records to a
dbspace and the send-queue row data to an sbspace.

Receive queue
Enterprise Replication stores replication data in memory at the target
database server until the target database server acknowledges receipt of the
data. If the receive queue fills as a result of a large transaction, Enterprise
Replication spools the receive queue transaction header and replicate
records to a dbspace and the receive queue row data to an sbspace.

The data contains the filtered log records for a single transaction. Enterprise
Replication stores the replication data in a stable (recoverable) send queue on the
source database server. Target sites acknowledge receipt of data when it is applied
to or rejected from the target database.

If a target database server is unreachable, the replication data remains in a stable
queue at the source database server. Temporary failures are common, and no
immediate action is taken by the source database server; it continues to queue
transactions. When the target database server becomes available again, queued
transactions are transmitted and applied.

If the target database server is unavailable for an extended period, the send queue
on the source database server might use excessive resources. In this situation, you
might not want to save all transactions for the target database server. To prevent
unlimited transaction accumulation, you can remove the unavailable target

2-4 IBM Informix Enterprise Replication Guide

database server from the replicate. Before the database server that is removed
rejoins any replicate, however, you must synchronize (bring tables to consistency)
with the other database servers.
Related concepts:
“Transaction processing impact” on page 3-2
“Setting Up Send and Receive Queue Spool Areas” on page 6-10
“Applying replicated data” on page 2-7
Related tasks:
“Preventing Memory Queues from Overflowing” on page 12-14

Data Evaluation Examples
Figure 2-2, Figure 2-3 on page 2-6, and Figure 2-4 on page 2-6 show three examples
of how Enterprise Replication uses logic to evaluate transactions for potential
replication.

Figure 2-2 shows a transaction that takes place at the Dallas office. Enterprise
Replication uses the logic in Table 2-2 to evaluate whether any information is sent
to the destination database server at the Phoenix office.

Table 2-2. Insert Followed by a Delete Evaluation Logic

Initial Image
Replicate
Evaluates

Final
Image

Replicate
Evaluates

Primary-Key
Changed?

Send to
Destination
Database Server

INSERT T or F DELETE T or F Yes or no Nothing

Enterprise Replication determines that the insert followed by a delete results in no
replication operation; therefore, no replication data is sent.

In Figure 2-3 on page 2-6, Enterprise Replication uses the logic in Table 2-3 on page
2-6 to evaluate whether any information is sent to the destination database server.

dallas_office

BEGIN WORK;

COMMIT WORK;

phoenix_office

Replicate SQL=SELECT emp_id, salary FROM employee WHERE exempt = "N";

INSERT
VALUES (927, "Smith"...

INTO employee

DELETE FROM employee
WHERE emp_id=927

Figure 2-2. Insert Followed by a Delete

Chapter 2. How Enterprise Replication Replicates Data 2-5

Table 2-3. Insert Followed by An Update Evaluation Logic

Initial
Image

Replicate
Evaluates

Final
Image

Replicate
Evaluates

Primary-Key
Changed?

Send to Destination
Database Server

INSERT T or F UPDATE T Yes or no INSERT with final row
image

The replicate WHERE clause imposes the restriction that only rows are replicated
where the exempt column contains a value of "N." Enterprise Replication evaluates
the transaction (an insert followed by an update) and converts it to an insert to
propagate the updated (final) image.

In Figure 2-4, Enterprise Replication uses the logic in Table 2-4 on page 2-7 to
evaluate whether any information is sent to the destination database server.

BEGIN WORK;

COMMIT WORK;

Replicate SQL=SELECT emp_id, salary FROM employee WHERE exempt = "N";

BEGIN WORK;

COMMIT WORK;

dallas_office phoenix_office

INSERT INTO employee
VALUES (927, "Smith", "N" ...

UPDATE employee
SET lname = "Jones"
WHERE emp_id = 927

INSERT INTO employee
VALUES (927, "Jones" ...

Figure 2-3. Insert Followed by an Update

dallas_office

BEGIN WORK;

COMMIT WORK;

phoenix_office

Replicate SQL=SELECT emp_id, salary FROM employee WHERE exempt = "N";

BEGIN WORK;

COMMIT WORK;

INSERT INTO employee

VALUES (927, "Jones", ...

UPDATE employee
SET EXEMPT = "N"
WHERE emp_id = 927

Figure 2-4. Update; Not Selected to Selected

2-6 IBM Informix Enterprise Replication Guide

Table 2-4. Update; Not Selected to Selected Evaluation Logic

Initial Image
Replicate
Evaluates Final Image

Replicate
Evaluates

Primary-Key
Changed?

Send to Destination Database
Server

UPDATE F UPDATE T Yes or no INSERT with final row image

The example shows a replicate WHERE clause column update. A row that does not
meet the WHERE clause selection criteria is updated to meet the criteria.
Enterprise Replication replicates the updated row image and converts the update
to an insert.

Data Transport
Enterprise Replication ensures that all data reaches the appropriate server,
regardless of a network or system failure. In the event of a failure, Enterprise
Replication stores data until the network or system is operational. Enterprise
Replication replicates data efficiently with a minimum of data copying and
sending.

Applying replicated data
IBM Informix Enterprise Replication uses a data-synchronization process to apply
the replicated data to target database servers.

The target database servers acknowledge receipt of data when the data is applied
to the target database. Data modifications that results from synchronization,
including modifications that result from trigger invocation, are not replicated. The
data-synchronization process ensures that transactions are applied at the target
database servers in an order equivalent to the order that they were committed on
the source database server. If consistency can be preserved, Enterprise Replication
might commit transactions out of order on the target database.

When Enterprise Replication applies replication data, it checks to make sure that
no collisions exist. A collision occurs when two database servers update the same
data simultaneously. Enterprise Replication reviews the data one row at a time to
detect a collision.

If Enterprise Replication finds a collision, it must resolve the conflict before
applying the replication data to the target database server.

Chapter 2. How Enterprise Replication Replicates Data 2-7

The previous illustration shows a situation that yields a conflict. Pakistan updates
the row two seconds before Bangkok updates the same row. The Bangkok update
arrives at the India site first, and the Pakistan update follows. The Pakistan time is
earlier than the Bangkok time. Because both updates involve the same data and a
time discrepancy exists, Enterprise Replication detects a collision.

For more information, see “Conflict Resolution” on page 5-6.

Enterprise Replication scans to see if the same replication key exists in the target
table or in the associated delete table, or if a replication order error is detected. A
delete table stores the row images of deleted rows. A replication order error is the
result of replication data that arrives from different database servers with one of
the following illogical results:
v A replicated DELETE that finds no row to DELETE on the target
v An UPDATE that finds no row to UPDATE on the target
v An INSERT that finds a row that exists on the target
Related concepts:
“Send queues and receive queues” on page 2-4

Column Column
...
field value field value
field value
field value
...

Products (in inventory)

Time= 12:29:25

Time= 12:29:27

India

Bangkok

Pakistan

Bangkok

Pakistan

Figure 2-5. Collision Example

2-8 IBM Informix Enterprise Replication Guide

Part 2. Planning and designing for Enterprise Replication

Before you set up your replication system, plan how to include Enterprise
Replication into your database server environment, design your database schema
by following Enterprise Replication requirements, and then design your replication
system between database servers.

© Copyright IBM Corp. 1996, 2015

IBM Informix Enterprise Replication Guide

Chapter 3. Plan for Enterprise Replication

Before you design a replication system, you must understand how Enterprise
Replication interacts with the database server and the other requirements of
Enterprise Replication. Many aspects of the Informix database server can affect
how you deploy Enterprise Replication.

Enterprise Replication Server administrator
You need special privileges to run most Enterprise Replication commands.

To configure and manage Enterprise Replication, you must have one of the
following roles or privileges:
v Be the owner of a non-root server
v Have the Database Server Administrator (DBSA) privilege
v Be user informix (UNIX) or a be a member of the Informix-Admin group

(Windows)

All servers in the replication domain must have the same owner.
Related concepts:
“Interpret the cdr utility syntax” on page A-1
Related tasks:
“Defining Replication Servers” on page 8-1
Related information:
grant admin argument: Grant privileges to run SQL administration API commands

Asynchronous propagation conflicts
Enterprise Replication asynchronously propagates many control operations through
the Enterprise Replication network. Avoid operations that might conflict during
propagation.

When you perform administrative functions using Enterprise Replication, the
status that returns from those operations indicates the success or failure of the
operation at the database server to which you are directly connected. The
operation might still be propagating through the other Enterprise Replication
database servers in the network at that time. It might take a significant amount of
time before the operation is propagated to database servers that are not connected
to the Enterprise Replication network at all times.

Due to this asynchronous propagation, avoid performing control operations in
quick succession that might directly conflict with one another without verifying
that the first operation was successfully propagated through the entire enterprise
network. Specifically, avoid deleting Enterprise Replication objects such as
replicates, replicate sets, and Enterprise Replication servers, and immediately
recreating those objects with the same name. Doing so can cause failures in the
Enterprise Replication system at the time of the operation or later. These failures
might manifest themselves in ways that do not directly indicate the source of the
problem.

© Copyright IBM Corp. 1996, 2015 3-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_145.htm

If you must recreate a deleted definition with the same name, run the cdr check
queue command to make sure that the command is complete on all servers before
recreating the definition.

You can also use a different name for the new object (for example, delete replicate
a.001 and recreate it as a.002) or wait until the delete action was successfully
propagated through the entire Enterprise Replication system before you recreate
the object.

Back up and restore of replication servers
You can back up and restore database servers that participate in Enterprise
Replication.

Do not stop Enterprise Replication before performing a backup on database servers
that participate in replication.

Warm restores are not permitted. You must perform a cold restore up to the
current log of all relevant dbspaces on Enterprise Replication servers before
resuming replication.

If the restore did not include all the log files from the replay position, or the
system was not restored to the current log file, you must advance the log file
unique ID past the latest log file unique ID prior to the restore, and then run the
cdr cleanstart command followed by the cdr sync replicate command to
synchronize the server.

Compression of replicated data
You can compress and uncompress data in replicated tables to reduce the amount
of needed disk space.

You can also consolidate free space in a table or fragment and you can return this
free space to the dbspace. Performing these operations on one Enterprise
Replication server does not affect the data on any other Enterprise Replication
server.

Attention: After you uncompress data on one server, do not remove any
compression dictionaries that another Enterprise Replication server needs.
Related information:
Compression

Transaction processing impact
Many variables affect the impact that replicating data has on your transaction
processing.

Replication volume
To determine replication volume, you must estimate how many data rows
change per day. For example, an application issues a simple INSERT
statement that inserts 100 rows. If this table is replicated, Enterprise
Replication must propagate and analyze these 100 rows before applying
them to the targets.

3-2 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1230.htm

Distributed transactions
A distributed transaction is a transaction that commits data in a single
transaction over two or more database servers.

Outside of the replication environment, Informix uses a two-phase commit
protocol to ensure that the transaction is either committed completely
across all servers involved or is not committed on any server. For more
information about the two-phase commit protocol, see the IBM Informix
Administrator's Guide.

In a replication environment, when a distributed transaction is committed
across the source servers, each part of the transaction that applies to the
local server is written to the local logical logs. When Enterprise Replication
retrieves the transaction from the logical logs and forms its transaction
data, it is unable to identify the separate transaction data as the original
single transaction.

This situation might result in Enterprise Replication applying one
transaction successfully while aborting another. Another result might be a
time lapse between the application of one transaction and another
(depending on how much transaction data is in each server's send queue
and the state of the server).

Large transactions
While Enterprise Replication is able to handle large transactions, it is
optimized for small transactions. For best performance, avoid replicating
large transactions.

Large transactions are handled with a grouper paging file in temporary
smart large objects. Enterprise Replication can process transactions up to 4
TB in size. For more information, see “Setting Up the Grouper Paging File”
on page 6-14. You can view Enterprise Replication grouper paging statistics
with the onstat -g grp pager command (see “onstat -g grp: Print grouper
statistics” on page E-8).

Instead of using Enterprise Replication to perform a batch job, use BEGIN
WORK WITHOUT REPLICATION to run the batch job locally on each
database server. For more information, see “Blocking Replication” on page
6-18.

Related concepts:
“Send queues and receive queues” on page 2-4
Related tasks:
“Preventing Memory Queues from Overflowing” on page 12-14

SQL statements and replication
You can run most SQL statements while replication is active. For some statements,
however, you must set alter mode or stop replication.

You can run the following SQL statements with no limitations while Enterprise
Replication is active:
v ADD INDEX
v ALTER INDEX . . . TO CLUSTER
v ALTER FRAGMENT
v ALTER INDEX
v ALTER TABLE (except for the replication key)

Chapter 3. Plan for Enterprise Replication 3-3

v CREATE CLUSTER INDEX
v CREATE SYNONYM
v CREATE TRIGGER
v CREATE VIEW
v DROP INDEX
v DROP SYNONYM
v DROP TRIGGER
v DROP VIEW
v RENAME COLUMN
v RENAME DATABASE
v RENAME TABLE
v SET object mode (no disabling of replication key constraint)
v START VIOLATIONS TABLE
v STOP VIOLATIONS TABLE
v TRUNCATE TABLE

After you define Enterprise Replication on a table by including that table as a
participant in a replicate, you cannot exclusively lock a database that is involved in
replication (or perform operations that require an exclusive lock). However, you
can exclusively lock a table in a database.

You can rename both dbspaces and sbspaces while IBM Informix Enterprise
Replication is active.

You cannot use the DROP TABLE SQL statement against a table that is included in
a replicate.

You must first set alter mode with the cdr alter command before you can make
these changes:
v Add shadow columns:

– ALTER TABLE ... ADD CRCOLS;
– ALTER TABLE ... ADD REPLCHECK;
– ALTER TABLE ... ADD ERKEY

v Remove or disable the replication key constraint.
v Modify the replication key columns. For example, alter a column to add default

values or other integrity constraints.
v Change the replication key from one or more columns to others. For example, if

a replication key is defined on col1, you can change the replication key to col2.

You must stop replication before you make these changes:
v Drop conflict resolution shadow columns with ALTER TABLE ... DROP

CRCOLS.
v Add or drop rowids.

SQL statements are limited to a maximum of 15000 bytes.
Related concepts:
“Preparing Tables for a Consistency Check Index” on page 6-20
“Preparing Tables for Conflict Resolution” on page 6-19
“Alter, rename, or truncate operations during replication” on page 11-23

3-4 IBM Informix Enterprise Replication Guide

Related tasks:
“Changing or re-creating primary key columns” on page 11-28
“Preparing tables without primary keys” on page 6-20
Related reference:
“cdr alter” on page A-30
Related information:
Enterprise Replication shadow columns

Global language support for replication
You can replicate data in non-default locales.

An Enterprise Replication system can include databases in different locales, with
the following restrictions:
v When you define a database server for Enterprise Replication, that server must

be running in the U. S. English locale.
The syscdr database on every Enterprise Replication server must be in the
English locale.

v Replicate names can be in the locale of the database.

Code-set conversion with the GLS library requires only those code-set conversion
files found in the $INFORMIXDIR/gls/cv9 directory.
v For U.S. English, locales are handled automatically by the IBM Informix Client

Software Development Kit (Client SDK) installation and setup.
v For non-U.S. English locales, you might need to explicitly provide the locale and

conversion files.

For information about how to specify a nondefault locale and other considerations
related to GLS locales, see the IBM Informix GLS User's Guide.
Related concepts:
“Flexible Architecture” on page 1-6
Related tasks:
“Enabling code set conversion between replicates” on page 8-13

Replication between multiple server versions
You can set up Enterprise Replication across servers of different version levels.

Enterprise Replication stores an internal version number that it communicates to
other servers on initiating a connection with them. Each Enterprise Replication
server instance can only use the features supported by its version level. Attempts
to use features from later releases with previous versions of Enterprise Replication
raise errors.

Chapter 3. Plan for Enterprise Replication 3-5

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2069.htm

3-6 IBM Informix Enterprise Replication Guide

Chapter 4. Schema design for Enterprise Replication

When you design the database and tables for replication, you must follow the
requirements and restrictions for Enterprise Replication.

Unbuffered Logging
Databases on all server instances involved in replication must be created with
logging.

Enterprise Replication evaluates the logical log for transactions that modify tables
defined for replication. If a table defined for replication resides in a database that
uses buffered logging, the transactions are not immediately written to the logical
log, but are instead buffered and then written to the logical log in a block of logical
records. When this occurs, IBM Informix Enterprise Replication evaluates the
buffer of logical-log records all at once. Buffered logging can require more time to
flush the logs to disk. When you define a table for replication in a database created
with unbuffered logging, Enterprise Replication can evaluate the transactions as
they are produced.

Unlogged changes to a table, such as when data is added by a light append, can
be replicated to other tables.

To create a database with unbuffered logging, use:
CREATE DATABASE db_name WITH LOG

To minimize impact on the system, IBM Informix Enterprise Replication uses
buffered logging whenever possible, even if the database is defined as unbuffered.
For more information, see the section on CREATE DATABASE in the IBM Informix
Database Design and Implementation Guide.

Table Types
Enterprise Replication has restrictions on the types of tables that can participate in
replication.

The following table types are not supported by Enterprise Replication:
v RAW tables
v Temporary tables

Because the database server deletes temporary tables when an application
terminates or closes the database, do not include these tables in your replication
environment.

Enterprise Replication imposes the following operational limitations:
v Replication is restricted to base tables. That is, you cannot define a replicate on a

view or synonym. A view is a synthetic table, a synthesis of data that exists in
real tables and other views. A synonym is an alternative name for a table or a
view. For more information about views and synonyms, see the IBM Informix
Database Design and Implementation Guide.

v Replication is not inherited by any child tables in a typed hierarchy.

© Copyright IBM Corp. 1996, 2015 4-1

For more information about table types, see IBM Informix Database Design and
Implementation Guide.

Label-based access control
You cannot apply label-based access control (LBAC) to a table participating in
Enterprise Replication. Nor can you define an Enterprise Replication replicate on a
table that is protected by LBAC.

Out-of-Row Data
Enterprise Replication collects out-of-row data for transmission after the user
transaction has committed. Due to activity on the replicated row, the data might
not exist at the time Enterprise Replication collects it for replication. In such cases,
Enterprise Replication normally applies a NULL on the target system, unless the
data is a smart large object. Therefore, you should avoid placing a NOT NULL
constraint on any replicated column that includes out-of-row data.

If a column has smart large objects and the smart large object data does not exist
when Enterprise Replication collects it for replication, then Enterprise Replication
creates smart large objects with no data and zero size.

Shadow columns
Shadow columns are hidden columns on replicated tables that contain values that
are supplied by the database server. The database server uses shadow columns to
perform internal operations.

You can add shadow columns to your replicated tables with the CREATE TABLE
or ALTER TABLE statement. To view the contents of shadow columns, you must
explicitly specify the columns in the projection list of a SELECT statement; shadow
columns are not included in the results of SELECT * statements.

The CRCOLS shadow columns, cdrserver and cdrtime, support conflict resolution.
These two columns are hidden shadow columns because they cannot be indexed
and cannot be viewed in the system catalog tables. In an update-anywhere
replication environment, you must provide for conflict resolution using a conflict
resolution rule. When you create a table that uses the time stamp, time stamp plus
SPL, or delete wins conflict resolution rule, you must define the shadow columns,
cdrserver and cdrtime on both the source and target replication servers. If you
plan to use only the ignore or always-apply conflict resolution rule, you do not
need to define the cdrserver and cdrtime shadow columns for conflict resolution.

The REPLCHECK shadow column, ifx_replcheck, supports faster consistency
checking. This column is a visible shadow column because it can be indexed and
can be viewed in the system catalog table. If you want to improve the performance
of the cdr check replicate or cdr check replicateset commands, you can add the
ifx_replcheck shadow column to the replicate table, and then create an index that
includes the ifx_replcheck shadow column and your replication key columns.

The ERKEY shadow columns, ifx_erkey1, ifx_erkey2, and ifx_erkey3, are used as
the replication key on replicated tables. If you create replicated tables through a
grid, these ERKEY columns are automatically added.
Related concepts:
“Conflict Resolution” on page 5-6

4-2 IBM Informix Enterprise Replication Guide

“Preparing Tables for Conflict Resolution” on page 6-19
“Shadow column disk space” on page 6-9
“Preparing Tables for a Consistency Check Index” on page 6-20
“Load and unload data” on page 6-23

Unique key for replication
All tables that are replicated must have a replication key that is composed of one
or more columns that uniquely identifies each row. The replication key must be the
same on all servers that participate in the replicate. Typically, the replication key is
a primary key constraint.

Replicated tables must use a primary key constraint, a unique index or constraint,
or the ERKEY shadow columns as the replication key. If your table does not have a
primary key or you want to change primary key values while replication is active,
you can specify a different key as the replication key. Specify an existing unique
index or constraint, or the ERKEY shadow columns as the replication key when
you create a replicate. A unique index and a unique constraint are equivalent as
replication keys.

If you specify ERKEY columns as the replication key, Enterprise Replication creates
a unique index and a unique constraint on the ERKEY columns. The ERKEY
columns require storage space.

Important: Because primary key updates are sent as DELETE and INSERT
statement pairs, avoid changing the primary key and updating data in the same
transaction.
Related tasks:
“Preparing tables without primary keys” on page 6-20
“Changing the replication key of a replicate” on page 11-7

Cascading Deletes
If a table includes a cascading delete, when a parent row is deleted, the children
are also deleted. If both the parent and child tables participate in replication, the
deletes for both the parent and child are replicated to the target servers.

If the same table definition exists on the target database, Enterprise Replication
attempts to delete the child rows twice. Enterprise Replication usually processes
deletions on the parent tables first and then the children tables. When Enterprise
Replication processes deletions on the children, an error might result, because the
rows were already deleted when the parent was deleted. The table in Table 4-1
indicates how IBM Informix Enterprise Replication resolves cascading deletes with
conflict resolution scopes and rules.

For more information on cascading deletes, see the ON DELETE CASCADE section
in the IBM Informix Guide to SQL: Syntax.

Table 4-1. Resolving Cascade Deletes

Conflict-Resolution Rule Conflict-Resolution Scope Actions on Delete Errors

Time stamp Row-by-row or transaction Continue processing rest of
the transaction

Chapter 4. Schema design for Enterprise Replication 4-3

Table 4-1. Resolving Cascade Deletes (continued)

Conflict-Resolution Rule Conflict-Resolution Scope Actions on Delete Errors

Delete wins Row-by-row or transaction Continue processing rest of
the transaction

Ignore Transaction Abort entire transaction

Ignore Row-by-row Continue processing rest of
the transaction

Triggers
A trigger is a database object that automatically sets off a specified set of SQL
statements when a specified event occurs.

If the --firetrigger option is enabled on a replicate, any triggers defined on a table
that participates in replication are invoked when transactions are processed on the
target server. However, because Enterprise Replication only replicates the final
result of a transaction, triggers execute only once on the target regardless of how
many triggers execute on the source. In cases where the final evaluation of the
transaction results in no replication (for example, an INSERT where the final row
image is a DELETE, as shown in Table 2-2 on page 2-5), no triggers execute on the
target database.

If the same triggers are defined on both the source and target tables, any insert,
update, or delete operation that the triggers generate are also sent to the target
database server. For example, the target table might receive replicate data caused
by a trigger that also executes locally. Depending on the conflict-resolution rule
and scope, these operations can result in errors. To avoid this problem, define the
replicate to not fire triggers on the target table.

You might want to design your triggers to take different actions depending on
whether a transaction is being performed as part of Enterprise Replication. Use the
'cdrsession' option of the DBINFO() function to determine if the transaction is a
replicated transaction. The DBINFO('cdrsession') function returns 1 if the thread
performing the database operation is an Enterprise Replication apply or sync
thread; otherwise, the function returns 0.

For more information on triggers, see “Enabling Triggers” on page 8-13 and the
CREATE TRIGGER section in IBM Informix Guide to SQL: Syntax.
Related information:
DBINFO Function

Constraint and replication
When you use constraints, ensure that the constraints you add at the target server
are not more restrictive than the constraints at the source server. Discrepancies
between constraints at the source and target servers can cause some rows to fail to
be replicated.

If your replicated tables that have referential integrity constraints between them,
synchronization the data through the replicate set. For replicate sets, Enterprise
Replication synchronizes tables in an order that preserves referential integrity
constraints (for example, child tables are synchronized after parent tables).

4-4 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1484.htm

When you synchronize data, rows that fail to be repaired due to discrepancies
between constraints are recorded in the ATS and RIS files.

Sequence Objects
In bi-directional Enterprise Replication, if you replicate tables using sequence
objects for update, insert, or delete operations, the same sequence values might be
generated on different servers at the same time, leading to conflicts.

To avoid this problem, define sequence objects on each server so that the ranges of
generated sequence values are distinct. For more information about the CREATE
SEQUENCE and ALTER SEQUENCE statements of SQL, see the IBM Informix
Guide to SQL: Syntax.

The NLSCASE database property
Enterprise Replication supports both case-sensitive databases and NLSCASE
INSENSITIVE databases. (Databases created with the NLSCASE INSENSITIVE
option ignore letter case in operations on NCHAR and NVARCHAR strings, and
on strings of other character data types that are cast explicitly or implicitly to
NCHAR or NVARCHAR data types.)

The database server does not prevent a case-sensitive database from being
replicated by a database that has the NLSCASE INSENSITIVE property, nor the
replication of an NLSCASE INSENSITIVE database by a case-sensitive database.
No warning or exception is issued by the database server in either of these cases
when you define replication participants.

These two types of database behave differently, however, in operations that classify
NCHAR and NVARCHAR strings as duplicates or as distinct values, if the
character strings that are being compared differ only in letter case. It is the user's
responsibility to make sure that replication participants with different NLSCASE
attributes will not cause exceptions or unexpected behavior when replicating the
results of operations like the following on NCHAR or NVARCHAR data:
v sorting and collation
v foreign key and primary key dependencies
v enforcing unique constraints
v clustered indexes
v access-method optimizer directives
v queries with WHERE predicates
v queries with UNIQUE or DISTINCT specifications in the projection clause
v queries with ORDER BY clauses
v queries with GROUP BY clauses
v cascading DELETE operations
v table or index storage fragmentation BY EXPRESSION
v table or index storage fragmentation BY LIST
v data distributions from UPDATE STATISTICS operations

To avoid the risk of consistency problems that can result from differences in
case-sensitivity, the following policy might be useful when you define replication
pairs:
v Replicate case-sensitive databases only with case-sensitive databases.

Chapter 4. Schema design for Enterprise Replication 4-5

v Replicate NLSCASE INSENSITIVE databases only with NLSCASE INSENSITIVE
databases.

Related information:
Duplicate rows in NLSCASE INSENSITIVE databases

Replicating Table Hierarchies
To replicate tables that form a hierarchy, you must define a separate replicate for
each table.

If you define a replicate on a super table, Enterprise Replication does not
automatically create implicit replicate definitions on the subordinate tables.

Tip: Enterprise Replication does not require that the table hierarchies be identical
on the source and target servers.

You must use conflict resolution uniformly for all tables in the hierarchy. In other
words, either no conflict resolution for all tables or conflict resolution for all tables.

Replication and data types
Enterprise Replication supports built-in data types and user-defined data types,
including row types and collection types.

If you use SERIAL, SERIAL8, or BIGSERIAL data types, you must be careful when
defining serial columns.

For non-master replicates, Enterprise Replication does not verify the data types of
columns in tables that participate in replication. The replicated column in a table
on the source database server must have the same data type as the corresponding
column on the target server. The exception to this rule is cross-replication between
simple large objects and smart large objects. By using master replicates, you can
verify that all participants in a replicate have columns with matching data types.
Master replicates also allow verification that each participant contains all replicated
columns, and optionally that column names are the same on each participant.
Related concepts:
“Flexible Architecture” on page 1-6
“Serial data types and replication keys”

Replicating on Heterogeneous Hardware
Enterprise Replication supports all primitive data types across heterogeneous
hardware. If you define a replicate that includes non-primitive data types (for
example, BYTE and TEXT data), the application must resolve data-representation
issues that are architecture dependent.

If you use floating-point data types with heterogeneous hardware, you might need
to use IEEE floating point or canonical format for the data transfers. For more
information, see “Using the IEEE Floating Point or Canonical Format” on page
8-12.

Serial data types and replication keys
You can use a serial data type as a replication key, but you must ensure that the
values are unique across all replication servers.

4-6 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1826.htm

If you plan to use serial data types (SERIAL, SERIAL8, or BIGSERIAL) as the
replication key for a table, the same serial value might be generated on two servers
at the same time. Use the CDR_SERIAL configuration parameter to generate
non-overlapping values for serial columns across all database servers in your
replication environment. Set CDR_SERIAL in the onconfig file for each primary
source database server in the replication system.

You do not need to set the CDR_SERIAL configuration parameter if your
replication key has multiple columns and the other columns identify the server on
which each row is created.
Related concepts:
“Replication and data types” on page 4-6
Related reference:
“Set configuration parameters for replication” on page 6-15
“CDR_SERIAL Configuration Parameter” on page B-15

Replication of TimeSeries data types
You can replicate tables that have columns with TimeSeries data types. You must
prepare all replication servers and create time series instances before you create
replicates that include TimeSeries columns.

Server preparation

All database servers must run Informix version 12.10 or later.

Before you create a replicate, do the following tasks on all replication servers that
will participate in replicating time series data:
1. Set the CDR_TSINSTANCEID configuration parameter to a different value on

every replication server to ensure that time series instance IDs do not overlap.
You cannot replicate time series instances that were created before you set the
CDR_TSINSTANCEID configuration parameter.

2. Create containers that have the same names on all replication servers. You
cannot use containers that are created automatically or rolling window
containers. If you add containers after replication is set up, add containers with
the same names on all replication servers at the same time. The containers can
be in different locations on each server.

3. Create the same time series calendars that have the same names on all
replication servers.

4. Create time series tables on all replication servers. You cannot use the option to
automatically create replicated tables when you define a replicate or template.
You cannot nest a TimeSeries data type within a TimeSeries data type.

5. Create time series instances. You must specify the container name.

Tip: You can quickly set up your replication servers by doing all but the first of
these steps through a grid, however, all grid servers must be running Informix
version 12.10 or later.

Rules for defining a replicate

You must follow these rules when you define a replicate for a table that contains a
TimeSeries column:
v The replicate must be a mastered replicate.

Chapter 4. Schema design for Enterprise Replication 4-7

v The Projection list in the participant definition must include all columns in the
table.

v The WHERE clause in the participant definition cannot include a TimeSeries
column.

v You cannot define a participant as send-only.
v The conflict resolution rule must be always-apply.
v The replication key cannot include an opaque data type.
v You cannot enable conversion to and from UTF-8 (Unicode) when you replicate

data between servers that use different code sets.
v You cannot use the --autocreate option to create tables that have TimeSeries

columns. You must create time series tables on all servers before you define
replicates.

v You cannot generate ATS or RIS files in XML format. ATS and RIS files must be
in text format.

Restrictions

You cannot run a shared query on a table that includes a TimeSeries column. You
can, however, run grid queries on a virtual table that is based on a table that has a
TimeSeries column.

You cannot use the following commands on replicates that include TimeSeries
columns:
v cdr alter

v cdr remaster

v cdr start sec2er

v cdr swap shadow

You cannot use the following options when you check or repair inconsistencies on
a replicate that includes a TimeSeries column:
v The --deletewins option in the cdr check replicate or cdr check replicateset

command
v The --extratargetrows=merge option in the cdr sync replicate, cdr sync

replicateset, cdr check replicate, or cdr check replicateset command
v The --since option in the cdr check replicate or cdr check replicateset command
v The --timestamp option in the cdr check replicate or cdr check replicateset

command
v The --where option with a TimeSeries column in the WHERE clause in the cdr

check replicate command

Although you can add and index an ifx_replcheck column on a replicated table
that includes a TimeSeries column, the speed of consistency checking is not
affected.
Related reference:
“cdr define replicate” on page A-77

Replication of large objects
How Enterprise Replication handles simple and smart large objects depends on
how the objects are stored.

Enterprise Replication replicates the following types of large objects:

4-8 IBM Informix Enterprise Replication Guide

v Simple large object data types (TEXT and BYTE)
You can store simple large objects either in the tblspace with the rest of the table
columns (in a dbspace) or in a blobspace. Simple large objects in tblspaces are
logged in the logical log and therefore, Enterprise Replication can evaluate the
data for replication directly.

v Smart large object data types (BLOB and CLOB)
You must store smart large objects in sbspaces. Enterprise Replication cannot
evaluate large object data that is stored in a blobspace or sbspace; instead,
Enterprise Replication uses information about the large object that is stored in
the row to evaluate whether the objects need to be replicated.

By default, Enterprise Replication does not include columns that contain
unchanged large objects in replicated rows.

Enterprise Replication allows cross-replication between simple large objects and
smart large objects. For example, you can replicate a simple large object on the
source database server to a smart large object on the target server or vice versa.

If Enterprise Replication processes a row and discovers undeliverable large object
columns, the following actions can occur:
v Any undeliverable columns are set to NULL if the replication operation is an

INSERT and the row does not already exist at the target.
v The old value of the local row is retained if the replication operation is an

UPDATE or if the row already exists on the target.

Replicating Simple Large Objects from Tblspaces
Enterprise Replication evaluates simple large object data that is stored in a tblspace
independently from the rest of its row.

Simple large object data that is stored in tblspaces (rather than in blobspaces) is
placed in the logical log. Enterprise Replication reads the logical log to capture and
evaluate the data for potential replication.

By default, Enterprise Replication performs time stamp and delete wins conflict
detection and resolution at the row level. However, in some cases, simple large
object data that is stored in a tblspace (rather than in a blobspace) is accepted by
the target server even if the row is rejected.

For simple large objects, if the column on the target database server is also stored
in a tblspace, Enterprise Replication evaluates the values of the shadow columns,
cdrserver and cdrtime, in the source and target columns and uses the following
logic to determine if the data is to be applied:
v If the column of the replicated data has a time stamp that is greater than the

time stamp of the column on the local row, the data for the column is accepted
for replication.

v If the server ID and time stamp of the replicated column are equal to the server
ID and time stamp on the column on the local row, the data for the column is
accepted for replication.

v If there is no SPL conflict-resolution rule and the time stamps are equal, then
Enterprise Replication applies the data to the row with the lowest CDR server
ID.

If you use the SPL conflict resolution, simple large objects that are stored in
tblspaces are handled differently than large objects in blobspaces.

Chapter 4. Schema design for Enterprise Replication 4-9

Related concepts:
“Delete wins conflict resolution rule” on page 5-12
“Time stamp conflict resolution rule” on page 5-7
“SPL Conflict Resolution for Large Objects” on page 5-11

Replication of large objects from blobspaces or sbspaces
Enterprise Replication retrieves the large object data directly from the blobspace or
sbspace and then sends the data to the target database server.

It is possible that a transaction subsequent to the transaction that is being
replicated can modify or delete a simple or smart large object that Enterprise
Replication is trying to retrieve. If Enterprise Replication encounters a row whose
large object (simple or smart) was modified or deleted by a subsequent transaction,
Enterprise Replication does not send the data in the large object. In most cases, the
subsequent transaction that modified or deleted the large object is also replicated,
so the data again becomes consistent when that transaction is replicated. The data
in the large object is inconsistent for only a short time.

The following conditions apply to replicating large objects that are stored in
blobspaces or sbspaces:
v Enterprise Replication does not support replication of large object updates

performed outside of a row update.
v After you update a large object that is referenced explicitly in the table schema,

you must update the referencing row before Enterprise Replication can replicate
the updated smart large object. For example:
UPDATE table_name SET large_object_column = x

v Enterprise Replication replicates updates to in-place smart large objects by
sending a new copy of the entire smart large object. Enterprise Replication does
not send only the logged changes to update smart large objects.

v Enterprise Replication does not support sharing out-of-row data (multiple
references to a large object) during replication. If you try to replicate multiple
references to the same large object on the source database server, Enterprise
Replication does not re-create those references on the target database server.
Instead, Enterprise Replication creates multiple large objects on the target
database server.

Related concepts:
“SPL Conflict Resolution for Large Objects” on page 5-11

Replication of opaque user-defined data types
Opaque data types can be replicated, but have certain restrictions.

You must install and register UDTs and their associated support routines on all
database servers that participate in Enterprise Replication before starting
replication. If you combine Enterprise Replication with high-availability clusters,
you must install UDTs on both the primary and secondary database servers, but
only register them on the primary database server.

UDT support functions

If you plan to replicate opaque UDTs, the UDT designer must provide the
following types of support functions:
v The streamwrite() and streamread() functions

4-10 IBM Informix Enterprise Replication Guide

The purpose of these functions is similar to the existing send() and receive()
functions provided for client/server transmissions. For information about
writing these support functions, see the section on Enterprise Replication stream
support functions in the IBM Informix DataBlade API Programmer's Guide.
When a row that includes any UDT columns to queue to the target system is
prepared for replication, Enterprise Replication calls the streamwrite() function
on each UDT column. The function converts the UDT column data from the
in-server representation to a representation that can be sent over the network.
Enterprise Replication replicates the column without understanding the internal
representation of the UDT.
On the target server, Enterprise Replication calls the streamread() function for
each UDT column that it transmitted by the streamwrite() function.

v The compare() function and its supporting greaterthan(), lessthan(), and equal()
functions
Enterprise Replication uses comparison functions to determine whether a
replicated column is altered. For example, the comparison functions are used
when the replicate definition specifies to replicate only changed columns instead
of full rows.
When you define a compare() function, you must also define the greaterthan(),
lessthan(), equal(), or other functions that use the compare() function.
For more information about writing these support functions, see the IBM
Informix User-Defined Routines and Data Types Developer's Guide.

Requirements during replication

The following requirements apply to replicating opaque data types:
v The WHERE clause of the SELECT statement of the participant modifier can

reference an opaque UDT if the UDT is always stored in row.
v Any UDRs in a WHERE clause can use only parameters whose values can be

extracted fully from the logged row images, plus any optional constants.
v All of the columns in the SELECT statement of each participant definition must

be actual columns in that table. Enterprise Replication does not support virtual
columns (results of UDRs on table columns).

v You cannot use SPL routines for conflict resolution if the replicate includes any
UDTs in the SELECT statement or if the replicate is defined to replicate only
changed columns.

v You can define replicates on tables that contain one or more UDT columns as the
replication key.

Chapter 4. Schema design for Enterprise Replication 4-11

4-12 IBM Informix Enterprise Replication Guide

Chapter 5. Replication system design

When you design a replication system, you make three main decisions: how the
information flows between servers, how to resolve conflicts between replicated
data, and the topology of the network of servers.

Primary-Target Replication System
In the primary-target replication system, the flow of information is in one
direction.

In primary-target replication, all database changes originate at the primary
database and are replicated to the target databases. Changes at the target databases
are not replicated to the primary.

A primary-target replication system can provide one-to-many or many-to-one
replication:
v One-to-many replication

In one-to-many (distribution) replication, all changes to a primary database server
are replicated to many target database servers. Use this replication model when
information gathered at a central site must be disseminated to many scattered
sites.

v Many-to-one replication
In many-to-one (consolidation) replication, many primary servers send
information to a single target server. Use this replication model when many sites
are gathering information (for example, local field studies for an environmental
study) that needs to be centralized for final processing.

Related concepts:
“Flexible Architecture” on page 1-6
“Participant definitions” on page 8-7
Related reference:
“Participant and participant modifier” on page A-4

Primary-Target Data Dissemination
Data dissemination supports business needs where data is updated in a central
location and then replicated to servers that only receive data and do not update
data.

This method of distribution can be useful for online transaction processing (OLTP)
systems where data is required at several sites, but because of the large amounts of
data, read/write capabilities at all sites would slow the performance of the
application. The following figure illustrates data dissemination.

© Copyright IBM Corp. 1996, 2015 5-1

You specify that a server only receives information when you define the participant
for the server as part of the replicate definition. You can specify that all replicates
on a server only receive information when you modify the server definition.
Related reference:
“cdr modify server” on page A-146
“Participant and participant modifier” on page A-4

Data consolidation
Businesses can choose to consolidate data into one or more central database
servers.

Data consolidation allows the migration of data from several database servers to a
central database server. For example, several retail stores can replicate inventory
and sales information to headquarters. The retail stores do not need information
from other stores but headquarters needs the total inventory and sales of all stores.

In the following figure, the remote locations only send data while a single central
database server only receives data.

You can also use data consolidation to replicate data from many database servers
to more than one central database server. For example, a retail chain has two
central database servers, one for the eastern half of the United States, and one for

Primary

(Receive-only)

Target

TargetTarget

Target

Database
server

Database
server

Database
server

Database
server

Database
server

(Receive-only)

(Receive-only) (Receive-only)

Figure 5-1. Data Dissemination in a Primary-Target Replication System

Primary

Target

Database
server

Database
server

Database
server

Database
server

Database
server

Primary Primary

Primary

(Send-only)

(Receive-only)

(Send-only)

(Send-only)

(Send-only)

Figure 5-2. Data Consolidation in a Primary-Target Replication System

5-2 IBM Informix Enterprise Replication Guide

the western half of the United States. The retail stores replicate data to their
designated central server and the two central servers replicate data to each other.
In this configuration, the replication servers in the retail stores only send data to
the central servers, but the central servers both send and receive data.

Businesses can use data consolidation to replicate OLTP data to a dedicated
computer for decision support (DSS) analysis. For example, data from several
OLTP systems can be replicated to a DSS system for read-only analysis.

The replication key for every replicated row must be unique among the multiple
primary database servers.

You specify that a server only sends information when you define the participant
for the server as part of the replicate definition. You can specify that all replicates
on a server only send information when you modify the server definition.
Related reference:
“cdr modify server” on page A-146
“Participant and participant modifier” on page A-4

Workload Partitioning
Workload partitioning gives businesses the flexibility of assigning data ownership
at the table-partition level, rather than within an application.

The following figure illustrates workload partitioning.

The replication model matches the partition model for the employee tables. The
Asia-Pacific database server owns the partition and can therefore update, insert,
and delete employee records for personnel in its region. The changes are then
propagated to the US and European regions. The Asia-Pacific database server can

Figure 5-3. Workload Partitioning in a Primary-Target Replication System

Chapter 5. Replication system design 5-3

query or read the other partitions locally, but cannot update those partitions
locally. This strategy applies to other regions as well.

Workflow Replication
Unlike the data dissemination model, in a workflow-replication system, the data
moves from site to site. Each site processes or approves the data before sending it
on to the next site.

Figure 5-4 illustrates an order-processing system. Order processing typically
follows a well-ordered series of steps: orders are entered, approved by accounting,
inventory is reconciled, and the order is finally shipped.

In a workflow-replication system, application modules can be distributed across
multiple sites and databases. Data can also be replicated to sites that need
read-only access to the data (for example, if order-entry sites want to monitor the
progress of an order).

A workflow-replication system, like the primary-target replication system, allows
only unidirectional updates. Many facts that you need to consider for a
primary-target replication system should also be considered for the
workflow-replication system.

However, unlike the primary-target replication system, availability can become an
issue if a database server goes down. The database servers in the
workflow-replication system rely on the data updated at a previous site. Consider
this fact when you select a workflow-replication system.
Related concepts:
“Controlling the replication of large objects” on page 8-17

Primary-Target Considerations
Consider the following factors when you select a primary-target replication system:
v Administration

Primary-target replication systems are the easiest to administer because all
updates are unidirectional and therefore, no data update conflicts occur.
Primary-target replication systems use the ignore conflict-resolution rule. See
“Conflict resolution rule” on page 5-6.

v Capacity planning
All replication systems require you to plan for capacity changes. For more
information, see “Preparing Data for Replication” on page 6-17.

v High-availability planning

Order entry ShipAccounting

Inventory
management

Order
processing

Order
processing

Order
processing

Order
processing

custno custname

1234 XYZLTD

1235 XSPORTS

custno custname

1234 XYZLTD

1235 XSPORTS

custno custname

1234 XYZLTD

1235 XSPORTS

custno custname

1234 XYZLTD

1235 XSPORTS

Figure 5-4. A Workflow-Replication System Where Update Authority Moves From Site to Site

5-4 IBM Informix Enterprise Replication Guide

In the primary-target replication system, if a target database server or network
connection goes down, Enterprise Replication continues to log information for
the database server until it becomes available again. If a database server is
unavailable for some time, you might want to remove the database server from
the replication system. If the unavailable database server is the read-write
database server, you must plan a course of action to change read-write
capabilities on another database server.
If you require a fail-safe replication system, you should select a high-availability
replication system. For more information, see “High-availability replication
systems” on page 7-1.

Update-Anywhere Replication System
In update-anywhere replication, changes made on any participating database
server are replicated to all other participating database servers. This capability
allows users to function autonomously even when other systems or networks in
the replication system are not available.

The following figure illustrates an update-anywhere replication system where the
service centers in Washington, New York, and Los Angeles each replicate changes
to the other two servers.

Because each service center can update a copy of the data, conflicts can occur
when the data is replicated to the other sites. To resolve update conflicts,
Enterprise Replication uses conflict resolution.

Review the following information before you select your update-anywhere
replication system:
v Administration

Update-anywhere replication systems allow peer-to-peer updates, and therefore
require conflict-resolution. Update-anywhere replication systems require more
administration than primary-target replication systems.

v Information consistency
Some risk is associated with delivering consistent information in an
update-anywhere replication system. You determine the amount of risk based on
the type of conflict-resolution rules and routines you choose for resolving
conflicts. You can configure an update-anywhere replication system where no

Update

Update

Update

Washington
service center

Los Angeles
service center

New York
service center

Database
server

Database
server

Database
server

Figure 5-5. Update-Anywhere Replication System

Chapter 5. Replication system design 5-5

data is ever lost; however, you might find that other factors (for example,
performance) outweigh your need for a fail-safe mechanism to deliver consistent
information.

v Capacity Planning
All replication systems require you to plan for capacity changes and prepare the
data for replication. If you choose a time-based conflict resolution rule, you need
to provide space for delete tables and add shadow columns to replicated tables.

v High Availability
If any of your database servers are critical, consider using high-availability
clusters to provide backup servers.

Related concepts:
“Disk Space for Delete Tables” on page 6-9
“Shadow column disk space” on page 6-9
“Preparing Data for Replication” on page 6-17
“High-availability replication systems” on page 7-1
“Flexible Architecture” on page 1-6
Related tasks:
“Specifying Conflict Resolution Rules and Scope” on page 8-10

Conflict Resolution
When multiple database servers try to update the same row simultaneously (the
time stamp for both updates is the same GMT time), a collision occurs. For more
information, see “Applying replicated data” on page 2-7. Enterprise Replication
must determine which new data to replicate. To solve conflict resolution, you must
specify the following for each replicate:
v A conflict-resolution rule
v The scope of the rule
Related concepts:
“Shadow columns” on page 4-2
“Time synchronization” on page 6-17
Related reference:
“Replicate only changed columns” on page 8-11
“cdr define replicate” on page A-77

Conflict resolution rule
The conflict resolution rule determines how conflicts between replicated
transactions are resolved.

Enterprise Replication supports the following conflict resolution rules.

Conflict Resolution Rule Effect

Ignore Enterprise Replication does not attempt to resolve
conflicts.

Time stamp The row or transaction with the most recent time
stamp is applied.

SPL routine Enterprise Replication uses a routine written in SPL
(Stored Procedure Language) that you provide to
determine which data is applied.

5-6 IBM Informix Enterprise Replication Guide

Conflict Resolution Rule Effect

Time stamp with SPL routine If the time stamps are identical, Enterprise
Replication uses an SPL routine that you provide to
resolve the conflict.

Delete wins DELETE and INSERT operations win over UPDATE
operations; otherwise the row or transaction with
the most recent time stamp is applied.

Always-apply Enterprise Replication does not attempt to resolve
conflicts. You must use the always-apply rule when
you replicate TimeSeries data types.

Related tasks:
“Specifying Conflict Resolution Rules and Scope” on page 8-10
“Creating replicated tables through a grid” on page 9-11

Ignore Conflict-Resolution Rule
The ignore conflict-resolution rule does not attempt to detect or resolve conflicts.

A row or transaction either applies successfully or it fails. A row might fail to
replicate because of standard database reasons, such as a deadlock situation, when
an application locks rows. Use the ignore conflict-resolution rule only with a
primary-target replication system. If you use ignore with an update-anywhere
replication system, your data might become inconsistent.

The ignore conflict-resolution rule can be used only as a primary conflict-
resolution rule and can have either a transaction or a row scope (as described in
“Conflict Resolution Scope” on page 5-15).

The following table describes how the ignore conflict resolution rule handles
INSERT, UPDATE, and DELETE operations.

Table 5-1. Ignore Conflict-Resolution Rule

Row Exists in Target? INSERT UPDATE DELETE

No Apply row Discard row Discard row

Yes Discard row Apply row Apply row

When a replication message fails to apply to a target, you can spool the
information to one or both of the following directories:
v Aborted-transaction spooling (ATS)

If selected, all buffers in a failed replication message that compose a transaction
are written to this directory.

v Row-information spooling (RIS)
If selected, the replication message for a row that cannot be applied to a target is
written to this directory.

For more information, see “Failed Transaction (ATS and RIS) Files” on page 12-3.

Time stamp conflict resolution rule
The time stamp rule evaluates the latest time stamp of the replication against the
target and determines how to resolve any conflict.

Chapter 5. Replication system design 5-7

All time stamps and internal computations are performed in Greenwich mean time
(GMT). The time stamp conflict resolution rule assumes time synchronization
between cooperating Enterprise Replication servers.

The time stamp resolution rule behaves differently depending on which scope is in
effect:
v Row scope

Enterprise Replication evaluates one row at a time. The row with the most
recent time stamp wins the conflict and is applied to the target database servers.
If an SPL routine is defined as a secondary conflict-resolution rule, the routine
resolves the conflict when the row times are equal.

v Transaction scope
Enterprise Replication evaluates the most recent row-update time among all the
rows in the replicated transaction. This time is compared to the time stamp of
the appropriate target row. If the time stamp of the replicated row is more recent
than the target, the entire replicated transaction is applied. If a routine is defined
as a secondary conflict resolution rule, it is used to resolve the conflict when the
time stamps are equal.

A secondary routine is run only if Enterprise Replication evaluates rows and
discovers equal time stamps.

If no secondary conflict-resolution rule is defined and the time stamps are equal,
the transaction from the database server with the lower value in the cdrserver
shadow column wins the conflict.

The following table shows how a conflict is resolved based on the latest time
stamp with row scope. The time stamp Tlast_update (the time of the last update)
represents the row on the target database server with the last (most recent) update.
The time stamp Trepl (the time when replication occurs) represents the time stamp
on the incoming row.

Enterprise Replication first checks to see whether a row with the same replication
key exists in either the target table or its corresponding delete table.

If the row exists, Enterprise Replication uses the latest time stamp to resolve the
conflict.

The following table describes how the time stamp conflict resolution rule handles
INSERT, UPDATE, and DELETE operations.

Table 5-2. Conflict Resolution Based on the Time Stamp

Row Exists on
Target? Time Stamp INSERT UPDATE DELETE

No n/a Apply row Apply row (Convert
UPDATE to INSERT)

Apply row (INSERT into
Enterprise Replication
delete table)

Yes Tlast_update < Trepl Apply row (Convert
INSERT to UPDATE)

Apply row Apply row

Yes Tlast_update > Trepl Discard row Discard row Discard row

5-8 IBM Informix Enterprise Replication Guide

Table 5-2. Conflict Resolution Based on the Time Stamp (continued)

Row Exists on
Target? Time Stamp INSERT UPDATE DELETE

Yes Tlast_update = Trepl Apply row if no
routine is defined as
a secondary conflict
resolution rule.
Otherwise, run the
routine.

Apply row if no
routine is defined as a
secondary conflict
resolution rule.
Otherwise, run the
routine.

Apply row if no routine
is defined as a secondary
conflict resolution rule.
Otherwise, run the
routine.

Important: Do not remove the delete tables that are created by Enterprise
Replication. The delete table is automatically removed when the last replicate
defined with conflict resolution is deleted.

To use time stamp conflict resolution for repairing inconsistencies with the cdr
check replicate or cdr check replicateset command, include the --timestamp
option with the --repair option. If you temporarily stop replication on a server
whose replicates use the time stamp conflict resolution rule, disable the replication
server with the cdr disable server command. When you disable a server,
information about deleted rows is kept in the delete tables to be used during the
time stamp repair after the server is enabled.
Related concepts:
“Conflict Resolution Scope” on page 5-15
“Time synchronization” on page 6-17
“Delete wins conflict resolution rule” on page 5-12
“Replicating Simple Large Objects from Tblspaces” on page 4-9
“Repair inconsistencies by time stamp” on page 11-20
Related reference:
“cdr disable server” on page A-114

SPL Conflict Resolution Rule
You can write an SPL routine as a primary conflict resolution rule or as secondary
conflict resolution rule to the time stamp conflict resolution rule.

You have complete flexibility to determine which row prevails in the database
when you create an SPL routine for conflict resolution. However, for most users,
the time stamp conflict resolution rule provides sufficient conflict resolution. You
can also use SPL routine to save information about the transactions that were
discarded during conflict resolution.

SPL routines must follow the following guidelines:
v The owner of an SPL routine that is used for conflict resolution must be the

same as the owner of the replicated table.
v Routines for conflict resolution must be in SPL. Enterprise Replication does not

allow user-defined routines in C or in Java™.
v You cannot use an SPL routine or a time stamp with an SPL routine if the

replicate is defined to replicate only changed columns or the replicated table
contains any extensible data types. See “Replicate only changed columns” on
page 8-11.

Enterprise Replication passes the following information to an SPL routine as
arguments.

Chapter 5. Replication system design 5-9

Argument Description

Server name [CHAR(18)] From the local target row NULL if local target
row does not exist

Time stamp (DATETIME YEAR TO
SECOND)

From the local target row NULL if local target
row does not exist

Local delete-table indicator [CHAR(1)]
or Local key delete-row indicator
[CHAR(1)]

Y indicates that the origin of the row is the delete
table. K indicates that the origin of the row is the
replicate-key delete row.

If a conflict occurs while a replication key row is
being deleted, because the local row with the old
key no longer exists, the received key delete row
is passed as the local row (using the seventh
argument, local row data). The received key insert
row is passed to the stored procedure as the
replicated row using the eighth argument.

Server name [CHAR(18)] Of the replicate source

Time stamp (DATETIME YEAR TO
SECOND)

From the replicated row

Replicate action type [CHAR(1)] I - insert

D - delete

U - update

Local row data that is returned in
regular SQL format

Where the regular SQL format is taken from the
SELECT clause of the participant list

Replicate row data after-image that is
returned in regular SQL format

Where the regular SQL format is taken from the
SELECT clause of the participant list

The routine must set the following arguments before the routine can be applied to
the replication message.

Argument Description

An indicator of the database operation
to be performed [CHAR(1)]

Same as the replicate action codes with the
following additional codes

v A - Accept the replicated row and apply the
column values returned by the SPL routine.

For example, if Enterprise Replication receives an
insert and the row exists locally, the insert is
converted to an update

v S - Accept the replicated row and apply the
column values as received from the other site.

For example, if Enterprise Replication receives an
insert and the row exists locally, the insert fails at
the time Enterprise Replication tries to apply the
transaction to the database, and the transaction
aborts with an SQL error.

v O - Discard the replicated row.

v X - Abort the transaction.

A non-zero integer value to request
logging of the conflict resolution and the
integer value in the spooling files
(INTEGER)

Logging value takes effect only if logging is
configured for this replicate.

5-10 IBM Informix Enterprise Replication Guide

Argument Description

The columns of the row to be applied to
the target table replicate action type in
regular SQL format

This list of column values is not parsed if the
routine returns one of the following replicate
action types: S, O, or X.

You can use the arguments to develop application-specific routines. For example,
you can create a routine in which a database server always wins a conflict
regardless of the time stamp.

The following list includes some items to consider when you use an SPL routine
for conflict resolution:
v Any action that a routine takes as a result of replication does not replicate.
v You cannot use an SPL routine to start another transaction.
v Frequent use of routines might affect performance.

In addition, you must determine when the SPL routine runs:
v An optimized SPL routine is called only when a collision is detected and the

row to be replicated fails to meet one of the following two conditions:
– It is from the same database server that last updated the local row on the

target table.
– It has a time stamp greater than or equal to that of the local row.

v A nonoptimized SPL routine runs every time Enterprise Replication detects a
collision. By default, SPL routines are nonoptimized.

For information on specifying that the SPL routine is optimized, see “Conflict
Options” on page A-80.

Tip: Do not assign a routine that is not optimized as a primary conflict resolution
rule for applications that usually insert rows successfully.

SPL Conflict Resolution for Large Objects:

If the replicate is defined with an SPL conflict-resolution rule, the SPL routine must
return the desired action for each smart large object (BLOB or CLOB) and simple
large object (BYTE or TEXT) column.

When the routine is invoked, information about each large object column is passed
to the routine as five separate fields. The following table describes the fields.

Argument Description

Column size (INTEGER) The size of the column (if data exists for this column).
NULL if the column is NULL.

BLOB flag [CHAR(1)] For the local row, the field is always NULL.

For the replicated row:

v D indicates that the large object data is sent from the
source database server.

v U indicates that the large object data is unchanged on
the source database server.

Chapter 5. Replication system design 5-11

Argument Description

Column type [CHAR(1)] v P indicates tblspace data.

v B indicates blobspace data.

v S indicates sbspace data.

ID of last update server
[CHAR(18)]

The ID of the database server that last updated this
column for tblspace data.

For blobspace data: NULL

For sbspace data: NULL

Last update time (DATETIME
YEAR TO SECOND)

For tblspace data: The date and time when the data
was last updated.

For blobspace data: NULL

For sbspace data: NULL

If the routine returns an action code of A, D, I, or U, the routine parses the return
values of the replicated columns. Each large object column can return a
two-character field.

The first character defines the desired option for the large object column, as the
following table shows.

Value Function

C Performs a time-stamp check for this column as used by the time-stamp
rule.

N Sets the replicate column to NULL.

R Accepts the replicated data as it is received.

L Retains the local data.

The second character defines the desired option for blobspace or sbspace data if
the data is found to be undeliverable, as the following table shows.

Value Function

N Sets the replicated column to NULL.

L Retains the local data (default).

O Aborts the row.

X Aborts the transaction.

Related concepts:
“Replicating Simple Large Objects from Tblspaces” on page 4-9
“Replication of large objects from blobspaces or sbspaces” on page 4-10

Delete wins conflict resolution rule
The delete wins rule ensures that DELETE and INSERT operations win over
UPDATE operations and that all other conflicts are resolved by comparing time
stamps.

5-12 IBM Informix Enterprise Replication Guide

All time stamps and internal computations are performed in Greenwich mean time
(GMT). The delete wins conflict-resolution rule assumes time synchronization
between cooperating Enterprise Replication servers.

The delete wins rule is similar to the time stamp rule except that it prevents upsert
operations and does not use a secondary conflict resolution rule. The delete wins
rule prevents upsert operations that results from an UPDATE operation that is
converted to an INSERT operation because the row to update was not found on
the target server. An upsert operation can occur if a row is deleted from a target
server before an UPDATE operation is processed on that target server or if an
UPDATE operation was processed by the target server before the INSERT
operation for that row. Depending on your business logic, upsert operations might
violate referential integrity.

The delete wins rule prevents upsert operations in the following ways:
v If a row is deleted on a replication server, that row is deleted on all other

replication servers, regardless of whether an UPDATE operation to that row
occurred after the delete.

v If an UPDATE operation to a row is received before its INSERT operation, the
UPDATE operation fails and generates and ATS or RIS file. The INSERT
operation succeeds, but results in data inconsistency. To repair the inconsistency,
run the cdr check replicate command with the --repair option.

The delete wins rule handles time stamp conflicts differently depending on which
scope is in effect:
v Row scope

Enterprise Replication evaluates one row at a time. The row with the most
recent time stamp wins the conflict and is applied to the target database servers.

v Transaction scope
Enterprise Replication evaluates the most recent row-update time among all the
rows in the replicated transaction. This time is compared to the time stamp of
the appropriate target row. If the time stamp of the replicated row is more recent
than the target, the entire replicated transaction is applied.

If the time stamps are equal, the transaction from the database server with the
lower value in the cdrserver shadow column wins the conflict.

The following table shows how a conflict is resolved with the delete wins rule with
row scope. The time stamp Tlast_update (the time of the last update) represents the
row on the target database server with the last (most recent) update. The time
stamp Trepl (the time when replication occurs) represents the time stamp on the
incoming row.

Enterprise Replication first checks to see if a row with the same replication key
exists in either the target table or its corresponding delete table. If the row exists,
Enterprise Replication uses the latest time stamp to resolve the conflict.

The following table describes how the delete wins conflict resolution rule handles
INSERT, UPDATE, and DELETE operations that are performed on the source
server.

Chapter 5. Replication system design 5-13

Table 5-3. Conflict Resolution Based on the Time Stamp

Row Exists on
Target? Time Stamp INSERT UPDATE DELETE

No n/a Apply row Discard row and
generate and ATS or
RIS file

Apply row (INSERT into
Enterprise Replication
delete table)

Yes Tlast_update < Trepl Apply row (Convert
INSERT to UPDATE)

Apply row Apply row

Yes Tlast_update > Trepl Discard row Discard row Apply row

Yes Tlast_update = Trepl The server with the
lower value in the
cdrserver shadow
column wins the
conflict.

The server with the
lower value in the
cdrserver shadow
column wins the
conflict.

The server with the
lower value in the
cdrserver shadow
column wins the conflict.

Important: Do not remove the delete tables that are created by Enterprise
Replication. The delete table is automatically removed when the last replicate
defined with conflict resolution is deleted.

To use delete wins conflict resolution for repairing inconsistencies with the cdr
check replicate or cdr check replicateset command, include the --timestamp and
--deletewins options with the --repair option. Also set the
CDR_DELAY_PURGE_DTC configuration parameter to the maximum age of
modifications to rows that are being actively updated. If you temporarily stop
replication on a server whose replicates use the delete wins conflict resolution rule,
disable the replication server with the cdr disable server command. When you
disable a server, information about deleted rows is kept in the delete tables to be
used during the time stamp repair after the server is enabled.
Related concepts:
“Replicating Simple Large Objects from Tblspaces” on page 4-9
“Time synchronization” on page 6-17
“Time stamp conflict resolution rule” on page 5-7
“Repair inconsistencies by time stamp” on page 11-20
Related reference:
“cdr disable server” on page A-114
“CDR_DELAY_PURGE_DTC configuration parameter” on page B-3

Always-Apply Conflict-Resolution Rule
The always-apply conflict-resolution rule does not attempt to detect or resolve
conflicts.

Unlike with the ignore conflict-resolution rule, replicated changes are applied even
if the operations are not the same on the source and target servers. If a conflict
occurs, the current row on the target is deleted and replaced with the replicated
row from the source. Use the always-apply conflict-resolution rule only with a
primary-target replication system. If you use always-apply with an
update-anywhere replication system, your data might become inconsistent.

The following table describes how the always-apply conflict-resolution rule
handles INSERT, UPDATE, and DELETE operations.

5-14 IBM Informix Enterprise Replication Guide

Table 5-4. Always-Apply Conflict-Resolution Rule

Row exists in target? INSERT UPDATE DELETE

No Apply row Apply row
(convert UPDATE
to INSERT)

Apply row (no
error returned)

Yes Apply as an
UPDATE
(overwrite the
existing row)

Apply row Deletes the row

Conflict Resolution Scope
Each conflict-resolution rule behaves differently depending on the scope.

Enterprise Replication uses the following scopes:
v Row scope

When you choose a row scope, Enterprise Replication evaluates one row at a
time. Only replicated rows that win the conflict resolution with the target rows
are applied. If an entire replicated transaction receives row-by-row evaluation,
some replicated rows are applied while other replicated rows might not be
applied. Row scope can result in fewer failures than transaction scope.

v Transaction scope
When you choose a transaction scope, Enterprise Replication applies the entire
transaction if the replicated transaction wins the conflict resolution. If the target
wins the conflict (or other database errors are present), the entire replicated
transaction is not applied.
A transaction scope for conflict resolution guarantees transactional integrity.

Enterprise Replication defers some constraint checking on the target tables until the
transaction commits. If a unique constraint or foreign-key constraint violation is
found on any row of the transaction at commit time, the entire transaction is
rejected (regardless of the scope) and, if you have ATS set up, written to the ATS
directory.

Transaction and row scopes are only applicable for apply failure related to conflict
resolution, such as missing rows or newer local rows. For other errors, such as lock
timeouts, constraint problems, lack of disk space, and so on, the whole incoming
transaction is aborted, rolled back, and spooled to ATS or RIS files if so configured,
regardless of whether row scope is defined.
Related concepts:
“Failed Transaction (ATS and RIS) Files” on page 12-3
“Time stamp conflict resolution rule” on page 5-7
Related tasks:
“Specifying Conflict Resolution Rules and Scope” on page 8-10
Related reference:
“cdr define replicate” on page A-77

Chapter 5. Replication system design 5-15

Choosing a Replication Network Topology
Enterprise replication topology describes connections that replication servers make
to interact with each other. This topology is the route of replication data (message)
transfer from server to server over the network. The replication topology is not
synonymous with the physical network topology. Replication server definitions
create the replication topology, whereas replicate definitions determine data to be
replicated and the sources and destinations within the topology.

The topology that you choose influences the types of replication that you can use.
These topics describe the topologies that Enterprise Replication supports.
Related concepts:
“Flexible Architecture” on page 1-6
Related tasks:
“Defining Replication Servers” on page 8-1
“Customizing the Replication Server Definition” on page 8-6

Fully Connected Topology
Fully connected replication topology indicates that all database servers connect to
each other and that Enterprise Replication establishes and manages the
connections. Replication messages are sent directly from one database server to
another. No additional routing is necessary to deliver replication messages.
Figure 5-6 shows a fully connected replication topology. Each database server
connects directly to every other database server in the replication environment.

If necessary, you can also add high-availability clusters and a backup server to any
server to provide high availability. For more information, see “High-availability
replication systems” on page 7-1.

Hierarchical Routing Topology Terminology
Enterprise Replication uses the terms in the Table 5-5 on page 5-17 to describe
Hierarchical Routing topology.

Germany

France

Italy

Europe

Figure 5-6. Fully Connected Topology

5-16 IBM Informix Enterprise Replication Guide

Table 5-5. Replication Topology Terms

Term Definition

Root server An Enterprise Replication server that is the uppermost level in
a hierarchically organized set of information

The root is the point from which database servers branch into a
logical sequence. All root database servers within Enterprise
Replication must be fully interconnected.

Nonroot server An Enterprise Replication server that is not a root database
server but has a complete global catalog and is connected to its
parent and to its children

Tree A data structure that contains database servers that are linked
in a hierarchical manner

The topmost node is called the root. The root can have zero or
more child database servers; the root is the parent database
server to its children.

Parent-child A relationship between database servers in a tree data structure
in which the parent is one step closer to the root than the child.

Leaf server A database server that has a limited catalog and no children.

A root server is fully connected to all other root servers. It has information about
all other replication servers in its replication environment. Figure 5-6 on page 5-16
shows an environment with four root servers.

A nonroot server is similar to a root server except that it forwards all replicated
messages for other root servers (and their children) through its parent. All nonroot
servers are known to all root and other nonroot servers. A nonroot server might or
might not have children. All root and nonroot servers are aware of all other servers
in the replication environment.

Important: In Hierarchical Routing topologies, Enterprise Replication specifies the
synchronization server as the new server's parent in the current topology. For more
information, see “Customizing the Replication Server Definition” on page 8-6 and
“cdr define server” on page A-90.
Related concepts:
“Creating sqlhost group entries for replication servers” on page 6-3
Related reference:
“The syscdrs Table” on page G-14

Hierarchical Tree Topology
A hierarchical tree consists of a root database server and one or more database
servers organized into a tree topology.

The tree contains only one root, which has no parent. Each database server within
the tree references its parent. A database server that is not a parent is a leaf.
Figure 5-7 on page 5-18 illustrates a replication tree.

Chapter 5. Replication system design 5-17

In Figure 5-7, the parent-child relationship within the tree is as follows:
v Asia is the parent of China and Japan.
v China is the child of Asia and the parent of Beijing, Shanghai, and Guangzhou.
v Guangzhou is the child of China and the parent of Chengdu.

Asia is the root database server. Japan, China, and Guangzhou are nonroot
database servers. You can define Beijing, Shanghai, and Chengdu as either
nonroot database servers or leaf database servers, depending on how you plan to
use them. The dashed connection from China to Shanghai indicates that Shanghai
is a leaf server.

You can define a replicate that replicates data exclusively between Shanghai and
Japan. However, the transaction data would must go through China and Asia. If
either China or Asia is offline replication is suspended. Similarly, a replicate
defined between Japan and China would require Asia to be functioning, even
though both Japan and China, as nonroot servers, have entries in their sqlhosts
files for each other.

Parent servers are good candidates for using high-availability clusters to provide
backup servers.

Forest of trees topology
A forest of trees consists of several hierarchical trees whose root database servers are
fully connected. Each hierarchical tree starts with a root database server. The root
database servers transfer replication messages to the other root servers for delivery
to its child database servers. Figure 5-8 on page 5-19 shows a forest of trees.

China

Bejing

Japan

Asia

Shanghai

Guangzhou

Chengdu

Figure 5-7. Hierarchical Tree Topology

5-18 IBM Informix Enterprise Replication Guide

In Figure 5-8, North America, Asia, and Europe are root database servers. That is,
they are fully connected with each other. France and Germany are in a tree whose
root is Europe. Asia is the root for the six database servers in its tree.

In a forest of trees, all replication messages from one tree to another must pass
through their roots. For example, a replication message from Beijing to France
must pass through China, Asia, and Europe.

Organizing the database servers in a hierarchical tree or a forest of trees greatly
reduces the number of physical connections that are required to make a replication
system. If all the database servers in Figure 5-8 were fully connected, instead of
being organized in trees, 55 connections would be required.

To ensure that all servers retain access to the replication system, use
high-availability clusters on parent servers. For more information, see “Using
high-availability clusters in a forest of trees topology” on page 7-2.

China

Guangzhou

Japan

Beijing

Shanghai

Asia

Germany

France

Europe

North America

Chengdu

Figure 5-8. Forest-of-Trees Topology

Chapter 5. Replication system design 5-19

5-20 IBM Informix Enterprise Replication Guide

Part 3. Setting up and managing Enterprise Replication

After you design your replication system, you define it and start replication.

To set up replication:
1. Select the Enterprise Replication system and network topology to use for your

replication environment.
2. Prepare the replication environment.
3. Define database servers for replication.
4. Define a grid and create replicated tables.

After you define and start your replication system, you can monitor and maintain
it.

Instead of creating a grid, you can create a replicate set by defining and realizing a
template, or you can define replicates and participants and then create a replicate
set and start replication.

© Copyright IBM Corp. 1996, 2015

IBM Informix Enterprise Replication Guide

Chapter 6. Preparing the Replication Environment

The following topics explain the steps that are required for setting up Enterprise
Replication.

The cdr autoconfig serve command can auto-configure Enterprise Replication for a
database server that has a configured storage pool, and propagate connectivity
information between the database servers in an Enterprise Replication domain.
Complete the following steps to auto-configure Enterprise Replication:
1. Verify that the CDR_AUTO_DISCOVER configuration parameter is set to 1 on

all database servers.
2. Verify that the storage pool is configured on any database server that you are

adding to the Enterprise Replication Domain.
3. Choose a database server to be your source server for propagating

configuration changes to other servers, and for replicating date to a newly
added replication server.

4. On the source server, set trusted-host information for all database servers by
running the admin() or task() function with the cdr add trustedhost argument.

5. Verify that all replication servers are active.
6. On the source server, run the cdr autoconfig serve command. Alternatively,

you can run the cdr autoconfig serve command on a different database server,
but you must specify the source server's information in the command.

Related tasks:
“Creating a new domain by cloning a server” on page 8-2
Related information:
Trusted-host information
cdr autoconfig serv argument: Autoconfigure connectivity and replication (SQL
administration API)

Preparing the Network Environment
You must prepare the network environment for each database server in an
Enterprise Replication domain.

The following files are involved in configuring the replication network:
v sqlhosts: Specifies replication connectivity, including server groups, connection

security, and network security.
v hosts: Specifies hosts names if you are not using Domain Name Service (DNS).
v services: Specifies the service name that is associated with a port number.
v The trusted-hosts file. You specify this file by setting the

REMOTE_SERVER_CFG configuration parameter. This file specifies the host
names for trusted replication servers.

v If you use Connection Managers for managing connectivity, you must create a
Connection Manager configuration file.

You can manually specify sqlhost and trusted-host file information to each
database server, or you can run the admin() or task() function with the cdr add
trustedhost argument to add entries to the trusted host files, and then run the cdr

© Copyright IBM Corp. 1996, 2015 6-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1407.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_162.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_162.htm

autoconfig serv command to propagate sqlhost and trusted-host file entries to
other database servers in an Enterprise Replication domain.

To prepare your network environment, configure the following for each replication
server:
1. If you are not using DNS, configure replication-server host information in the

hosts file.
2. Configure port information in the services files and the sqlhosts files.
3. Create group entries for each replication servers in the sqlhosts file.
4. If necessary, configure secure ports for replication servers in the sqlhosts file.
5. If necessary, configure network security for client/server communications in the

sqlhosts files.
6. Create a trusted-host file and add entries for each trusted hosts.
Related concepts:
Appendix H, “Replication Examples,” on page H-1
Related reference:
“cdr autoconfig serv” on page A-31
“CDR_AUTO_DISCOVER configuration parameter” on page B-1
Related information:
The syncsqlhosts utility
Client/server communication
Trusted-host information
cdr autoconfig serv argument: Autoconfigure connectivity and replication (SQL
administration API)

Configuring hosts information for replication servers
If you are not using Domain Name Service (DNS) to identify IP addresses and
system names, you do need to configure the hosts file on each replication server to
add the IP addresses and system names for all other replication servers in the
domain.

The hosts file is in the following location.

Operating System File

UNIX /etc/hosts

Windows %WINDIR%\system32\drivers\etc\hosts

Important: Leave a blank line at the end of the hosts file on Windows.

For example, your hosts file might look like the following:
192.168.0.1 ny.usa.com
192.168.0.2 tokyo.japan.com
192.168.0.3 rome.italy.com
192.168.0.4 perth.australia.com

Configuring ports and service names for replication servers
Replication servers must know the port numbers for each of the other replication
servers in the domain.

Configure port numbers for replication servers in one of the following ways:

6-2 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.embed.doc/ids_emb_072.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0123.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1407.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_162.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_162.htm

v Specify the port numbers in the sqlhosts file. This method risks conflicting with
port numbers being used by other applications.

v Specify the service names in the sqlhosts file and specify the port numbers for
each service name in the services file.

The services file is in the following location.

Operating System File

UNIX /etc/services

Windows %WINDIR%\system32\drivers\etc\services

Important: Leave a blank line at the end of the services file on Windows.

For example, your services file might look like the following:
sydney 5327/tcp
melbourne 5327/tcp

If the database servers reside on the same system, you must provide unique port
numbers for each.
Related reference:
“cdr start sec2er” on page A-176

Creating sqlhost group entries for replication servers
The sqlhosts file on the host of each replication server must specify a group entry
for each replication server in an Enterprise Replication domain. You can manually
specify sqlhost file information, or run the cdr autoconfig serv command to add
entries to a database server's sqlhost file, and then propagate the entries to other
database servers in an Enterprise Replication domain. However, if you are
configuring secure ports, you cannot use the cdr autoconfig serv command.

Typically, a server group includes only one database server. However, if the
computer has multiple network protocols or network interface cards, the server
group includes all aliases for the database server. Enterprise Replication treats the
server group as one object, whether it includes one or several database server
names.

The following example shows sqlhosts file entries for four Enterprise Replication
servers:
v serv1

v serv2

v serv3

v serv4
#dbservername nettype hostname servicename options
g_serv1 group - - i=143
serv1 ontlitcp ny.usa.com 1230 g=g_serv1

g_serv2 group - - i=144
serv2 ontlitcp tokyo.japan.com 1231 g=g_serv2

g_serv3 group - - i=145
serv3 ontlitcp rome.italy.com 1232 g=g_serv3

g_serv4 group - - i=146
serv4 ontlitcp perth.australia.com 1233 g=g_serv4

Chapter 6. Preparing the Replication Environment 6-3

Each server has two entries of information:
v A group definition, which specifies a group name and unique ID for the

replication server
v Connectivity information for the database server

All Enterprise Replication commands and options use the name of the database
server group or the more familiar database server name (that is, the name that is
specified by the INFORMIXSERVER environment variable) for all references to
database servers. The exception is the --connect option, which can use either a
server name or a group name.

Leaf servers in hierarchical routing topologies do not require connectivity
information for all replication servers. A leaf server requires connectivity
information for only itself and its parent.
Related concepts:
“Connect Option” on page A-3
“Hierarchical Routing Topology Terminology” on page 5-16
“Setting Up Database Server Groups for High-Availability Cluster Servers” on page
7-3
Related reference:
“cdr autoconfig serv” on page A-31
Related information:
The sqlhosts information
sqlhosts connectivity information
The syncsqlhosts utility

Configuring secure ports for connections between replication
servers

If database servers in your Enterprise Replication environment are on a network
that is not trusted, you can configure secure ports and an encrypted password file
to enable secure connections.

The secure ports that are listed in the sqlhosts files can be used only for
communication between database servers. You must configure a separate port for
local client/server communications.

To configure a secure port for replication:
1. In the sqlhosts file on each server, create a group entry with two connections

for the local server:
a. Create one connection entry without the s=6 option to configure local

communication with utilities, such as the cdr utility and Connection
Managers.

b. Create one connection entry with the s=6 option to configure
communication between servers.

In the following example, the value of the DBSERVERNAME configuration
parameter is serv1:
#dbservername nettype hostname servicename options
serv1 ontlitcp ny.usa.com ertest1
g_serv1 group - - i=143
serv1_s6 ontlitcp ny.usa.com ertest10 g=g_serv1,s=6

6-4 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0158.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0161.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.embed.doc/ids_emb_072.htm

Note: Do not use the cdr autoconfig serv command if you configure secure
ports. sqlhosts file entries must be manually added if any entries include the
s=6 option.

2. In the sqlhosts file on each server's host, add entries for each of the other
servers in the domain. Use the server names that are associated with the s=6
options.

3. Create a trusted-host file that includes the host names of the other replication
servers in the domain, each on a separate line. You can manually create the
trusted-host file in $INFORMIXDIR/etc, and then set the REMOTE_SERVER_CFG
configuration parameter to the name of the trusted-host file. Alternatively, you
can run the admin() or task() function with the cdr add trustedhost argument
to set a replication server's REMOTE_SERVER_CFG configuration parameter
and add entries to the server's trusted-host file. If the replication server is part
of a high-availability cluster, running the admin() or task() function with the
cdr add trustedhost argument propagates trusted-host entries to other database
servers in a high-availability cluster.

Note: You cannot use the hosts.equiv trusted-host file when you configure
secure ports.
The following example trusted-host file has entries for three hosts, and specifies
both host names and domain names:
#hostname
tokyo.japan.com
tokyo

rome.italy.com
rome

perth.australia.com
perth

A database server on a listed host connects to the local database server instance
through the sqlhosts file entry with the s=6 option.

4. Set the S6_USE_REMOTE_SERVER_CFG configuration parameter to 1 in the
onconfig file.

5. Using a text editor, create and save a password file. The password file includes
the host name, alternative server name, user ID, and password for each server
and the server group. For example, if the user ID for server serv1 is informix,
the alias for the database server that uses a secure port is serv1_s6, and the
password was informix_pw, use the following password file entries:
serv1_s6 serv1 informix informix_pw
g_serv1 serv1 informix informix_pw

6. Encrypt the password file by running the onpassword utility. For example, if
you named the text file in step 5 $INFORMIXDIR/etc/server_passwords, and you
wanted the file encrypted with a key called access_key, use the following
command:
onpassword -k access_key -e $INFORMIXDIR/etc/server_passwords

The encrypted file is saved as: $INFORMIXDIR/etc/passwd_file.

Important: To prevent unauthorized access to the server passwords, remove
the unencrypted password file, $INFORMIXDIR/etc/server_passwords after you
create the encrypted file.

If you do not configure a password file, you must run the cdr utility on the local
computer, for example:

Chapter 6. Preparing the Replication Environment 6-5

cdr list server --connect=serv1

Because secure ports can be used only for replication communication, you cannot
test the connections until you start replication.
Related tasks:
“Testing the replication network”
“Configuring secure connections for grid queries” on page 9-21
Related information:
S6_USE_REMOTE_SERVER_CFG configuration parameter
The onpassword utility
The sqlhosts file and the SQLHOSTS registry key
DBSERVERALIASES configuration parameter
REMOTE_SERVER_CFG configuration parameter

Configuring network encryption for replication servers
You encrypt client/server network communication by specifying the ENCCSM
module with the communications support module (CSM) option in the sqlhosts
file. You encrypt Enterprise Replication communication by setting encryption
configuration parameters. The ENCRYPT_CDR configuration parameter must be
set to 1 or 2 to allow encryption.

You cannot configure an Enterprise Replication connection with a CSM.

To combine client/server network encryption with Enterprise Replication
encryption, configure two network connections for each database server. The
configuration in the SQLHOSTS file would look like the following example.
#dbservername nettype hostname servicename options
gserv1 group - - i=143
serv1 ontlitcp ny.usa.com ertest1 g=gserv1
c_serv1 ontlitcp ny.usa.com ertest10 csm=(ENCCSM)

In this example, serv1 and c_serv1 are two connection ports on the same database
server. Encrypted client/server communication uses the c_serv1 port, while
encrypted Enterprise Replication uses the serv1 port.

For more information on encrypting client/server network communications, see
the IBM Informix Administrator's Guide.
Related reference:
“Set configuration parameters for replication” on page 6-15
Appendix B, “Enterprise Replication configuration parameter and environment
variable reference,” on page B-1

Testing the replication network
After you set up the network environment, test the connections between the
replication servers. You cannot test a connection that uses the s=6 option in the
sqlhosts file.

To test the network environment:
1. Verify the network connection. Use the ping command to test the connection

between two systems. For example, from ny.usa.com, test the connection to
tokyo.japan.com:
ping tokyo.japan.com

6-6 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1141.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0620.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0152.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0044.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1123.htm

2. Test the trusted environment:
a. Run dbaccess as user informix or as the owner if it is a non-root server.
b. Select the Connection menu option.
c. Select the Connect menu option.
d. Connect to the server group name and the server name of the other hosts.

For example, if you are running dbaccess on ny.usa.com, and you are
testing the connection to a database server on tokyo.japan.com, select serv2
and g_serv2.

e. When prompted for the USER NAME, press Enter.
If you can connect to the host database server, the host server trusts the
connection from the remote host as user informix or as the owner if the remote
host is a non-root server.
For more information, see the IBM Informix DB-Access User's Guide.

Related tasks:
“Configuring secure ports for connections between replication servers” on page 6-4

Testing the password file
You create and encrypt a password file to allow the CDR utility to access to a
secure network environment. Use these steps to test that the encrypted password
file is correctly configured.

To test the password file configuration:

Use the cdr view state -c remote_server_group_name command to verify that the
password file supplies the correct password to the CDR command. For example, if
your remote server group was named g_serv2, specify the following command:
cdr view state -c g_serv2

The state of all configured enterprise replication servers is returned. If enterprise
replication is not defined, but the password file is set up correctly, the following
message is returned:
ERROR:ER not defined on g_serv2

If the CDR utility is unable to connect to the server or if the following error is
returned then verify that $INFORMIXDIR/etc/passwd_file is correctly configured.
25539: Invalid connection-type

The following is an example of command output returned when Enterprise
Replication and the password file are correctly configured:
$ cdr view state -c g_serv2
STATE
Source ER Capture Network Apply

State State State State

g_serv2 Active Running Running Running
g_serv1 Active Running Running Running

Preparing the Disk
These topics describe how to prepare your disk for Enterprise Replication.

Chapter 6. Preparing the Replication Environment 6-7

Logical Log Configuration Disk Space
The database server uses the logical log to store a record of changes to the data
since the last archive. Enterprise Replication requires the logical log to contain
entire row images for updated rows, including deleted rows.

The database server normally logs only columns that have changed. This behavior
is called the logical-log record reduction option. Enterprise Replication deactivates
this option for tables that participate in replication. (The logical-log record
reduction option remains enabled for tables that do not participate in Enterprise
Replication.) Enterprise Replication logs all columns, not only the columns that
have changed, which increases the size of your logical log.

To determine the size of your logical log, examine your data activity for normal
operations and for the replication system you defined. Keep in mind that defining
replication on a table causes Enterprise Replication to deactivate log reduction for
that table, and that your transactions might log more data.

Important: Enterprise Replication performs internal cleanup tasks based on how
often the log files switch. If the log files switch too frequently, Enterprise
Replication might perform excessive cleanup work.

Logical Log Configuration Guidelines
Logical logs must be configured correctly for Enterprise Replication.

Use the following guidelines when configuring your logical log files:
v Make sure that all logical log files are approximately the same size.
v Make the size of the logical log files large enough so that the database server

switches log files no more than once every 15 minutes during normal
processing.

v Plan to have sufficient logical-log space to hold at least four times the maximum
transaction size.

v Set LTXEHWM (long-transaction, exclusive-access, high-watermark) 30 percent
larger than LTXHWM (long-transaction high-watermark).

Important: If you specify that the database server allocate logical log files
dynamically (DYNAMIC_LOGS), it is recommended that you set LTXEHWM to no
higher than 70 when using Enterprise Replication.

For more information about logical logs and these configuration parameters, see
IBM Informix Administrator's Reference and IBM Informix Administrator's Guide.

The database server can add logs dynamically when Enterprise Replication
approaches a potential log wrap situation if the CDR_MAX_DYNAMIC_LOGS
configuration parameter is set to a non-zero integer.
Related concepts:
“Handle potential log wrapping” on page 12-15
Related tasks:
“Preventing Memory Queues from Overflowing” on page 12-14

6-8 IBM Informix Enterprise Replication Guide

Disk Space for Delete Tables
If you use the time stamp, time stamp and SPL routine, or delete wins conflict
resolution rules, you must provide enough disk space for the delete tables that
Enterprise Replication creates to keep track of modified rows for conflict
resolution.

Delete tables handle conflicts such as when a DELETE or UPDATE operation finds
no corresponding row on the target. The DTCleaner thread removes a row from
the delete tables after all the servers have progressed beyond that row. Enterprise
Replication does not create delete tables for tables that have replicates defined with
a conflict resolution rule of ignore or always-apply.

Delete tables are created on the database server where the data originates and on
all the database servers to which data gets replicated. Delete tables are stored in
the same dbspaces, using the same fragmentation strategy, as their base tables.

To determine the disk space requirements to accommodate delete tables, estimate
how many rows will be deleted or modified. For example, if the base table has 100
megabytes of data, but only half the rows might be deleted or modified, then 50
megabytes is a reasonable estimate for the size of the delete table.

Important: Do not remove the delete tables created by Enterprise Replication. The
delete table is automatically removed when the last replicate defined with conflict
resolution is deleted.
Related concepts:
“Update-Anywhere Replication System” on page 5-5
Related reference:
“Replicate only changed columns” on page 8-11

Shadow column disk space
If you plan to use shadow columns, make sure to allow additional disk space for
their values.

If you plan to use any conflict-resolution rule except ignore or always-apply, you
must allow for an additional 8 bytes for the CRCOLS shadow columns, cdrserver
and cdrtime, which store the server and time stamp information that Enterprise
Replication uses for conflict resolution.

If you want to speed consistency checking by indexing the REPLCHECK shadow
column, you must allow for an additional 8 bytes for the ifx_replcheck shadow
column.

If you want to use ERKEY shadow columns as the replication key, or you create
your replicated tables through a grid, you must allow of an additional 10 bytes for
the ERKEY shadow columns, ifx_erkey_1, ifx_erkey_2, and ifx_erkey_3. When you
create replicated tables through a grid, these ERKEY columns are automatically
added.ERKEY columns also require disk space for the index that is created on
them. In addition to the standard partition and page overhead, for each row in the
table the ERKEY index uses 14 bytes for non-fragmented tables and 18 bytes for
fragmented tables for each row in the table.

The following table shows the amount of space used by each shadow column.

Chapter 6. Preparing the Replication Environment 6-9

Table 6-1. Shadow column size

Shadow column name Data type Size

cdrserver INTEGER 4 bytes

cdrtime INTEGER 4 bytes

ifx_replcheck BIGINT 8 bytes

ifx_erkey_1 INTEGER 4 bytes

ifx_erkey_2 INTEGER 4 bytes

ifx_erkey_3 SMALLINT 2 bytes

The shadow columns claim disk space immediately, except when CRCOLS and
ERKEY columns are added to an existing table.
Related concepts:
“Update-Anywhere Replication System” on page 5-5
“Shadow columns” on page 4-2
“Preparing Tables for Conflict Resolution” on page 6-19
“Preparing Tables for a Consistency Check Index” on page 6-20

Setting Up Send and Receive Queue Spool Areas
The term data queue refers to both the send queue and the receive queue. Enterprise
Replication collects information from the logical logs and places the data to be
transferred in the send queue. Then Enterprise Replication transfers the contents of
the send queue to the receive queue on the target server. Enterprise Replication on
the target reads the data from the receive queue and applies the changes to the
tables on the target server.

The send and receive queues reside in memory and are managed by the Reliable
Queue Manager (RQM). The CDR_QUEUEMEM configuration parameter
(“CDR_QUEUEMEM Configuration Parameter” on page B-14) specifies the amount
of memory space that is available for the data queues.

When a queue in memory fills (for the receive queue, this only occurs with large
transactions), the transaction buffers are written (spooled) to disk. Spooled
transactions consist of transaction records (headers that contain internal information
for Enterprise Replication), replicate information (summaries of the replication
information for each transaction), and row data (the actual replicated data). Spooled
transaction records and replication records are stored in transaction tables and
replication tables in a single dbspace. Spooled row data is stored in one or more
sbspaces.

Important: To prevent the send and receive queues from spooling to disk, see
“Preventing Memory Queues from Overflowing” on page 12-14.
Related concepts:
“Send queues and receive queues” on page 2-4
Related tasks:
“Preventing Memory Queues from Overflowing” on page 12-14

Row Data sbspaces
Replicated data might include UDT and CLOB or BLOB data types. Therefore, the
spooled row data is stored as smart large objects in one or more sbspaces.

6-10 IBM Informix Enterprise Replication Guide

The CDR_QDATA_SBSPACE configuration parameter accepts multiple sbspaces,
up to a maximum of 32 sbspaces. Enterprise Replication can support a combination
of logging and non-logging sbspaces for storing spooled row data. If
CDR_QDATA_SBSPACE is configured for multiple sbspaces, then Enterprise
Replication uses all appropriate sbspaces in round-robin order.

You can have Enterprise Replication automatically configure disk space from the
storage pool and set the CDR_QDATA_SBSPACE configuration parameter when
defining a replication server. If the CDR_QDATA_SBSPACE configuration
parameter is not set and the database server has a storage pool with sufficient
space, the cdr define command performs the following tasks:
v Creates a new sbspace using one or more new chunks from the storage pool
v Sets the CDR_QDATA_SBSPACE configuration parameter both in memory and

in the onconfig file to the newly defined sbspace.

For clusters, the cdr define command creates new sbspaces and sets the
CDR_QDATA_SBSPACE configuration parameters in all secondary database
servers, as well.

Note: A database server's storage pool must have 500 MB of free space for
sbspaces, and chunk sizes of 100 MB or greater for the database server to use
automatic storage provisioning.
Related tasks:
“Defining Replication Servers” on page 8-1
Related reference:
“Set configuration parameters for replication” on page 6-15

Creating sbspaces for Spooled Row Data:

You must create dedicated sbspaces for spooled row data.

Follow these guidelines when creating sbspaces for spooled row data:
v Create all the sbspaces of same default log mode type with the same size.
v Do not use Enterprise Replication row data sbspaces for non-Enterprise

Replication activity.
v Ensure that the sbspaces are sufficiently large.

To determine the size of your spooled row data sbspaces, determine your log
usage and then consider how much data you can collect if your network goes
down. For example, assume that you usually log 40 megabytes of data each day,
but only 10 percent of that is replicated data. If your network is down for 24
hours and you estimate that 4 MB of replicated data are logged each day, the
size of the sbspaces you identify for the spooled row data must be a total of at
least 4 MB.

Windows Only
On Windows, increase the resulting size of the sbspace by approximately
a factor of two. (The default page size, the way that data maps onto a
page, and the number of pages written to disk differs on Windows.)

Important: When the row data sbspaces fill, Enterprise Replication hangs until you
either resolve the problem that is causing Enterprise Replication to spool or
allocate additional disk space to the sbspaces. For more information, see
“Preventing Memory Queues from Overflowing” on page 12-14.

Chapter 6. Preparing the Replication Environment 6-11

To create row data sbspaces, use the onspaces -c utility. For example, to create a
4-megabyte sbspace, called er_sbspace, using raw disk space on UNIX with an
offset of 0, enter:
onspaces -c -S er_sbspace -p /dev/rdsk/c0t1d0s4 -o 0 -s 4000\

-m /dev/rdsk2/c0t1d0s4 0 \
-Df "AVG_LO_SIZE=2,LOGGING=OFF"

The path name for an sbspace cannot be longer than 256 bytes.

The -m option specifies the location and offset of the sbspace mirror. The -Df
option specifies default behavior of the smart large objects stored in the sbspace:
v AVG_LO_SIZE (average large object size)

Set this parameter to the expected average transaction size (in KB). The database
server uses this value to calculate the metadata size. The minimum value for
AVG_LO_SIZE is 2 KB, which is appropriate for Enterprise Replication in most
cases. (The default value of AVG_LO_SIZE is 32 KB.) If you set AVG_LO_SIZE
to larger than the expected transaction size, you might run out of metadata
space. If you set AVG_LO_SIZE too small, you might waste space on metadata.

v LOGGING
Set this parameter to OFF to create an sbspace without logging. Set this
parameter to ON to create an sbspace with logging. Use a combination of
logging and non-logging sbspaces for Enterprise Replication. For more
information, see “Logging Mode for sbspaces.”

Set the CDR_QDATA_SBSPACE configuration parameter in the ONCONFIG file to
the location of the row data sbspace (er_sbspace, in this example). For more
information, see “CDR_QDATA_SBSPACE Configuration Parameter” on page B-13.

Logging Mode for sbspaces:
Enterprise Replication uses the default log mode that the sbspace was created with
for spooling row data.

Create sbspaces with a default logging mode of ON or OFF according to the types
of transactions Enterprise Replication replicates:
v LOGGING=ON

Create sbspaces with LOGGING set to ON to support these situations:
– Replicated systems with high-availability clusters

Enterprise Replication must use logging sbspaces for transactions involved in
high-availability clusters.

– Small transactions
Enterprise Replication uses logging sbspaces for transactions that are less than
a page size (2K or 4K) of replicated data.

For logging sbspaces, performance might be enhanced because logging mode
enables asynchronous IO. However, a logging sbspace consumes additional
logical-log space.

v LOGGING=OFF

Create sbspaces with LOGGING set to OFF to support replication of large
transactions (greater than a page size of replicated data).
It is recommended that you mirror non-logging sbspaces. For more information,
see the chapter on managing disk space in the IBM Informix Administrator's Guide
and the IBM Informix Administrator's Reference.

6-12 IBM Informix Enterprise Replication Guide

For non-logging sbspaces, performance is enhanced on the database server when
Enterprise Replication spools to disk because Enterprise Replication writes less
data to disk.

Important: Do not change the Enterprise Replication sbspace default log mode
while Enterprise Replication is running. To change the default log mode, follow the
procedure below.

You can change the default logging mode of the row data sbspace if you have
more than one sbspace specified by the CDR_QDATA_SBSPACE configuration
parameter.

To change the default logging mode of a row data sbspace:
1. Shut down the database server.
2. Remove the sbspace from the CDR_QDATA_SBSPACE configuration parameter

value list.
3. Start the database server in recovery mode.
4. Wait for all the smart large objects to get deleted from the sbspace. Use the

onstat -g smb lod command to check for smart large objects stored in an
sbspace.

5. Change the default logging mode for the sbspace.
6. Add the sbspace name to the CDR_QDATA_SBSPACE configuration parameter

value list.
7. Shut down and restart the database server using the onmode -ky and oninit

commands.

Dropping a Spooled Row Data sbspace:

Important: Do not drop an Enterprise Replication row data sbspace using the
onspaces -d -f (force) command.

You can drop a row data sbspace if you have more than one sbspace specified by
the CDR_QDATA_SBSPACE configuration parameter.

To drop a row data sbspace
1. Shutdown the database server.
2. Remove the sbspace from the CDR_QDATA_SBSPACE configuration parameter

value list.
3. Start the database server in recovery mode.
4. Wait for all the smart large objects to get deleted from the sbspace. Use the

onstat -g smb lod command to check for smart large objects stored in a
sbspace.

5. If the sbspace was added from the storage pool, use the drop sbspace to
storagepool argument with the admin() or task() function to return the empty
sbspace to the storage pool.

Related information:
drop sbspace to storagepool argument: Return space from an empty sbspace to the
storage pool (SQL administration API)

Chapter 6. Preparing the Replication Environment 6-13

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_119.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_119.htm

Setting Up the Grouper Paging File
Enterprise Replication uses a grouper paging mechanism for evaluating large
transactions. A transaction is large if the portion to be replicated meets at least one
of the following conditions:
v It has greater than 5,000 log records.
v It exceeds one fifth the size of the value of the CDR_QUEUEMEM ONCONFIG

variable.
v It exceeds one tenth the size of the value of the SHMVIRTSIZE configuration

variable.

The location of the sbspace used for the paging file is determined by the first of
the following ONCONFIG configuration parameters that is set:
v SBSPACETEMP
v SBSPACENAME
v CDR_QDATA_SBSPACE

The best solution is to set up an unlogged sbspace, as specified by the
SBSPACETEMP configuration parameter. All updates to the paging files are
unlogged.

The size of the paging sbspace should be at least three times the size of the largest
transaction to be processed. This sbspace is also used by the database server for
other tasks; consider its overall usage when determining size requirements.

Important: If the paging sbspace fills, Enterprise Replication hangs until you
allocate additional disk space to the sbspace. If additional space is unavailable, use
the cdr stop command to stop replication.

Creating ATS and RIS directories
You can create directories for Aborted Transactions Spooling (ATS) and Row
Information Spooling (RIS) files instead of using the default directories.

ATS and RIS files contain information about failed transactions and aborted rows.
You can repair data after a replicated transaction fails by applying ATS and RIS
files. Enterprise Replication examines the specified ATS or RIS file and attempts to
reconcile the rows that failed to be applied. ATS and RIS files are relevant only if
you specify a conflict resolution role other than ignore or always-apply.

The default location for ATS and RIS directories is /tmp (UNIX) or \tmp (Windows).

If you want to use non-default directories, create the ATS or RIS directories before
you define the server for replication. The path names for the ATS and RIS
directories cannot be longer than 256 characters.
v Create RIS directories on all replication servers in the domain.
v Create ATS directories on all replication servers in the domain, if you are using

update-anywhere replication.
v Create the ATS directory on the target system, if you are using primary-target

replication.
Related concepts:
“Failed Transaction (ATS and RIS) Files” on page 12-3
Related tasks:
“Enabling ATS and RIS File Generation” on page 12-4

6-14 IBM Informix Enterprise Replication Guide

“Customizing the Replication Server Definition” on page 8-6
“Setting Up Failed Transaction Logging” on page 8-11

Preparing the Database Server Environment
To prepare the database server environment, set database server environment
variables and configuration parameters, and synchronize the operating system time
on all participating database servers.

If you are using high-availability clusters with Enterprise Replication, set up your
servers according to the instructions in “Setting Up Database Server Groups for
High-Availability Cluster Servers” on page 7-3.

Setting Database Server Environment Variables
Certain environment variables must be set in a replication environment.

To configure the database server environment, verify that the following
environment variables are set correctly:
v INFORMIXDIR is set to the full path of the IBM Informix directory.
v INFORMIXSERVER is set to the name of the default database server.
v INFORMIXSQLHOSTS is set to the full path to the SQLHOSTS file.
v DELIMIDENT is not set or set to n. Enterprise Replication does not allow

delimited identifiers.

Set configuration parameters for replication
You must set certain configuration parameters before you start Enterprise
Replication. You can set other configuration parameters to customize the behavior
of Enterprise Replication.

Parameters to set before you start replication

Set the following configuration parameters in the onconfig file on each database
server that you want to include in the replication domain before you start
replication:
v DBSERVERNAME specifies the name of the database server. If you use both the

DBSERVERNAME and DBSERVERALIASES configuration parameters, set the
DBSERVERNAME configuration parameter to the TCP connection and not to a
shared-memory connection.

v CDR_QUEUEMEM specifies the maximum amount of memory to be used for
the send and receive queues.

v CDR_SERIAL specifies how to generate non-overlapping (unique) values for
serial columns across all database servers in the replication domain.

v CDR_TSINSTANCEID specifies how to generate unique identifiers for time
series instances across all database servers in the replication domain.

Logging parameters

By default, if Enterprise Replication detects the potential for a log wrap situation
when replication log processing lags behind the current log position, user
transactions are blocked. You can configure Enterprise Replication to prevent the
blocking of user transactions. Depending on the solutions you need, you might set
the following configuration parameters in the onconfig file for each database
server:

Chapter 6. Preparing the Replication Environment 6-15

v CDR_LOG_LAG_ACTION specifies the actions that Enterprise Replication
during a potential log wrap situation.

v LOG_STAGING_DIR specifies a directory in which compressed log files are
staged.

v CDR_LOG_STAGING_MAXSIZE specifies the maximum size that Enterprise
Replication can use to stage log files.

v CDR_MAX_DYNAMIC_LOGS specifies the number of dynamic log file requests
that Enterprise Replication can make in one server session.

v DYNAMIC_LOGS specifies that logical logs can be added dynamically.

Encryption parameters

If you want to encrypt network communications, set the following configuration
parameters in the onconfig file for each database server:
v ENCRYPT_CDR specifies whether to enable encryption. The default value is 0,

which prevents encryption.
v ENCRYPT_CIPHERS specifies which ciphers and cipher modes are used for

encryption.
v ENCRYPT_MAC controls the level of Message Authentication Code (MAC) used

to ensure message integrity.
v ENCRYPT_MACFILE specifies the full path and file names of the MAC files.
v ENCRYPT_SWITCH specifies the number of minutes between automatic

renegotiations of ciphers and keys. (The cipher is the encryption methodology.
The secret key is the key that is used to build the encrypted data using the
cipher.)

Other parameters

Set the following optional configuration parameters to customize your replication
environment:
v CDR_DSLOCKWAIT specifies the number of seconds the data sync component

waits for the database locks to be released. When replication is active on an
instance, you can increase the amount of time to wait for lock resources to
accommodate transactions on replicated tables.

v CDR_SUPPRESS_ATSRISWARN suppresses certain data sync error and warning
codes from appearing in ATS and RIS files.

v CDR_DELAY_PURGE_DTC specifies how long to retain rows in delete tables to
support the delete wins conflict resolution rule.

v GRIDCOPY_DIR specifies the default directory that is used by the ifx_grid_copy
procedure.

v CDR_MAX_FLUSH_SIZE specifies the number of replicated transactions that are
applied before the logs are flushed to disk.

Related concepts:
“Row Data sbspaces” on page 6-10
“Serial data types and replication keys” on page 4-6
“Configuring network encryption for replication servers” on page 6-6
Related tasks:
“Managing Replication Servers” on page 11-1
“Adding a server to the domain by cloning a server” on page 8-5
Related reference:

6-16 IBM Informix Enterprise Replication Guide

Appendix B, “Enterprise Replication configuration parameter and environment
variable reference,” on page B-1
Related information:
DBSERVERNAME configuration parameter
DBSERVERALIASES configuration parameter

Time synchronization
Whenever you use replication that requires time stamp, time stamp with a stored
procedure, or delete wins conflict resolution, you must synchronize the operating
system times of the database servers that participate in the replicate.

All timestamps and internal computations are performed in Greenwich Mean Time
(GMT) and have an accuracy of plus or minus one second.

Important: Enterprise Replication does not manage clock synchronization between
database servers that participate in a replicate. You should use a product that
supplies a network time protocol to ensure that times remain synchronized. For
information on tools for synchronizing the times, refer to your operating system
documentation.

To synchronize the time on one database server with the time on another database
server, use one of the following commands, where hostname or servername is the
name of the remote database server computer.

UNIX rdate hostname

Windows
net time \\servername /set

net time /domain:servername /set

Important: These commands do not guarantee the times will remain synchronized.
If the operating system times of the database servers do become out of sync or if
their times move backward, time stamp or stored procedure conflict resolution
might produce failures caused by incorrect time stamps.
Related concepts:
“Conflict Resolution” on page 5-6
“Delete wins conflict resolution rule” on page 5-12
“Time stamp conflict resolution rule” on page 5-7
Related tasks:
“Adding a server to the domain by cloning a server” on page 8-5

Preparing Data for Replication
The goal of data replication is to provide identical, or at least consistent, data on
multiple database servers. This section describes how to prepare the information in
your databases for replication.

When you define a new replicate on tables with existing data on different database
servers, the data might not be consistent. Similarly, if you add a participant to an
existing replicate, you must ensure that all the databases in the replicate have
consistent values.

For more information, see “Data Preparation Example” on page 6-26.

Chapter 6. Preparing the Replication Environment 6-17

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0045.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0044.htm

Related concepts:
“Update-Anywhere Replication System” on page 5-5

Preparing Consistent Data
In most cases, preparing consistent data simply requires that you decide which of
your databases has the most accurate data and then that you copy that data onto
the target database. If the target database already has data, for data consistency,
you must remove that data before adding the copied data. For information on
loading the data, see “Load and unload data” on page 6-23.

Blocking Replication
You might need to block replication so that you can put data into a database that
you do not want replicated, perhaps for a new server or because you had to drop
and re-create a table.

To block replication while you prepare a table, use the BEGIN WORK WITHOUT
REPLICATION statement. This starts a transaction that does not replicate to other
database servers.

The following code fragment shows how you might use this statement:
BEGIN WORK WITHOUT REPLICATION
LOCK TABLE office
DELETE FROM office WHERE description = ’portlandR_D’
COMMIT WORK

Related concepts:
“Load and unload data” on page 6-23

Using DB-Access to Begin Work Without Replication
The following example shows how to use DB-Access to begin work without
replication:
DATABASE adatabase;
BEGIN WORK WITHOUT REPLICATION
insert into mytable (col1, col2,)

values (value1, value2,);
COMMIT WORK

Using ESQL/C to Begin Work Without Replication
The following example shows how to use Informix ESQL/C to begin work without
replication as well as update the Enterprise Replication shadow columns cdrserver
and cdrtime:
MAIN (argc, argv)

INT argc;
CHAR *argv[];

{
EXEC SQL CHAR stmt[256];
EXEC SQL database mydatabase;

sprintf(stmt, “BEGIN WORK WITHOUT REPLICATION”);
EXEC SQL execute immediate :stmt;

EXEC SQL insert into mytable (col1, col2, ...)
values (value1, value2, ...);

EXEC SQL commit work;
}

6-18 IBM Informix Enterprise Replication Guide

Important: You must use the following syntax when you issue the BEGIN WORK
WITHOUT REPLICATION statement from Informix ESQL/C programs. Do not use
the ‘$' syntax.
sprintf(stmt, “BEGIN WORK WITHOUT REPLICATION”);
EXEC SQL execute immediate :stmt;

Preparing to Replicate User-Defined Types
You must install and register user-defined types on all database servers prior to
starting replication.

For Enterprise Replication to be able to replicate opaque user-defined types
(UDTs), the UDT designer must provide two support functions, streamwrite() and
streamread(). For more information, see “Replication of opaque user-defined data
types” on page 4-10.

Preparing to Replicate User-Defined Routines
You must install and register user-defined routines on all database servers prior to
starting replication.

Preparing Tables for Conflict Resolution
To use any conflict-resolution rule other than ignore or always-apply, you must
define the shadow columns, cdrserver and cdrtime in the tables on both the source
and target servers involved in replication.

To define the cdrserver and cdrtime shadow columns when you create a new
table, use the WITH CRCOLS clause. For example, the following statement creates
a new table named customer with a data column named id and the two shadow
columns:
CREATE TABLE customer(id int) WITH CRCOLS;

To add the cdrserver and cdrtime shadow columns to an existing replicated table:
1. Set alter mode on the table by running the cdr alter --on command.
2. Alter the table using the ADD CRCOLS clause.
3. Unset alter mode on the table by running the cdr alter --off command.

Adding CRCOLS columns to an existing table can result in a slow alter operation
if any of the table columns have data types that require a slow alter. If a slow alter
operation is necessary, make sure you have disk space at least twice the size of the
original table, plus extra log space.

For example, the following statement adds the shadow columns to an existing
table named customer:
ALTER TABLE customer ADD CRCOLS;

You cannot drop conflict resolution shadow columns while replication is active. To
drop the cdrserver and cdrtime shadow columns, stop replication and then use the
DROP CRCOLS clause with the ALTER TABLE statement. For example, the
following statement drops the two shadow columns from a table named customer:
ALTER TABLE customer DROP CRCOLS;

Related concepts:
“Shadow columns” on page 4-2
“Shadow column disk space” on page 6-9

Chapter 6. Preparing the Replication Environment 6-19

“SQL statements and replication” on page 3-3
Related information:
Enterprise Replication shadow columns
Using the WITH CRCOLS Option

Preparing Tables for a Consistency Check Index
To improve the speed of consistency checking with an index, you must define the
ifx_replcheck shadow column in the tables on both the source and target servers
involved in replication.

To define the ifx_replcheck shadow column when you create a new table, use the
WITH REPLCHECK clause. For example, the following statement creates a new
table named customer with a data column named id and the ifx_replcheck
shadow column:
CREATE TABLE customer(id int) WITH REPLCHECK;

To add the ifx_replcheck shadow column to an existing replicated table:
1. Set alter mode on the table by running the cdr alter --on command.
2. Alter the table using the ADD REPLCHECK clause.
3. Unset alter mode on the table by running the cdr alter --off command.

Because altering a table to add the ifx_replcheck shadow column is a slow alter
operation, make sure you have disk space at least twice the size of the original
table plus log space.

For example, the following statements add the ifx_replcheck shadow column to an
existing table named customer:
ALTER TABLE customer ADD REPLCHECK;

To drop the ifx_replcheck shadow column, use the DROP REPLCHECK clause
with the ALTER TABLE statement. For example, the following statements drop the
ifx_replcheck shadow column from a table named customer:
ALTER TABLE customer DROP REPLCHECK;

For more information on the CREATE TABLE and ALTER TABLE statements, see
the sections in the IBM Informix Guide to SQL: Syntax.
Related concepts:
“Shadow column disk space” on page 6-9
“Shadow columns” on page 4-2
“SQL statements and replication” on page 3-3
Related tasks:
“Indexing the ifx_replcheck Column” on page 11-19
Related information:
Enterprise Replication shadow columns
Using the WITH REPLCHECK Keywords

Preparing tables without primary keys
The data columns in your table might not need a primary key. To replicate tables
that do not have primary keys, you can specify a unique index or add the ERKEY
shadow columns.

6-20 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2069.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_0537.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2069.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2070.htm

You can specify an existing unique index or unique constraint as the replication
key when you define the replicate. Use the --key or --anyUniqueKey option with
the cdr define replicate or cdr define template commands.

If you create a replicated table through a grid, the ERKEY shadow columns are
automatically created and included in the replicate definition.

To add ERKEY shadow columns:
1. Add the ERKEY shadow columns when you create at table by using the WITH

ERKEY keywords with the CREATE TABLE statement. For example, the
following statement adds the ERKEY shadow columns to a table named
customer:
CREATE TABLE customer (id int) WITH ERKEY;

The ERKEY shadow columns are named ifx_erkey_1, ifx_erkey_2, and
ifx_erkey_3.

2. Define the replicate. If you define a replicate by using the cdr define replicate
command, include the --erkey option. If you define a template by using the cdr
define template command, the ERKEY columns are included in the replicate
definition automatically.

To add the ERKEY shadow columns to an existing table that you want to start
replicating:
1. Run the ALTER TABLE statement with the ADD ERKEY clause. For example,

the following statement adds the ERKEY shadow columns to an existing table
named customer:

ALTER TABLE customer ADD ERKEY;

Occasionally, you might need to drop the ERKEY shadow columns; for example, if
you are reverting to an earlier version of the database server.

To drop the ERKEY shadow columns from a replicated table:
1. Run the cdr remaster command without the --erkey option.
2. Run the DROP ERKEY clause with the ALTER TABLE statement.

For example, the following statement drops the ERKEY shadow columns from a
table named customer:
ALTER TABLE customer DROP ERKEY;

Related concepts:
“Unique key for replication” on page 4-3
“SQL statements and replication” on page 3-3
Related tasks:
“Creating replicated tables through a grid” on page 9-11
“Attaching a New Fragment to a Replicated Table” on page 11-28
Related reference:
“cdr define replicate” on page A-77
“cdr remaster” on page A-153
“cdr change replicate” on page A-39
“cdr define template” on page A-98
Related information:
Using the WITH ERKEY Keywords

Chapter 6. Preparing the Replication Environment 6-21

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2102.htm

Enterprise Replication shadow columns

Preparing Logging Databases
Databases on all server instances involved in replication must be created with
logging. For best results, use unbuffered logging. For more information, see
“Unbuffered Logging” on page 4-1.
Related reference:
“cdr start sec2er” on page A-176

Preparing for Role Separation (UNIX)
You can use role separation to allow members of the DBSA group to run Enterprise
Replication commands, in addition to the user informix. For some Enterprise
Replication commands, you must grant the DBSA user additional permissions on
tables or files. For non-root servers, role separation is not supported. Only the
owner of a non-root server is allowed to run the Enterprise Replication commands
that require additional permissions for a DBSA.

The DBSA user who runs Enterprise Replication commands must be a member of
the DBSA group on all of the replication servers in the domain.

The following table describes the permissions that are needed for each command.

Table 6-2. Permissions for the DBSA user

Command Type of Permission Tables, Files, or Database

cdr check replicate

cdr check replicateset

cdr define replicate

cdr define replicateset

cdr define template

cdr realize template

cdr sync replicate

cdr sync replicateset

INSERT

UPDATE

DELETE

The tables that participate in
replication. Must be granted
on all replication servers in
the domain.

The following commands
with the --background
option:

v cdr check replicate

v cdr check replicateset

v cdr sync replicate

v cdr sync replicateset

CONNECT or INSERT,
depending on the object

sysadmin database:
CONNECT

ph_task table in the
sysadmin database: INSERT

Must be granted on the
database server from which
the command is run.

6-22 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2069.htm

Table 6-2. Permissions for the DBSA user (continued)

Command Type of Permission Tables, Files, or Database

cdr define repair

cdr start repair

cdr stop repair

cdr delete repair

The following commands
with the --syncdatasource
option:

v cdr realize template

v cdr start replicate

v cdr start replicateset

INSERT, UPDATE, or
DELETE, depending on the
table

The following syscdr tables:

v rsncjobdef_tab: INSERT,
UPDATE, DELETE

v rsncjobdef: UPDATE

v rsncprocnames_tab:
INSERT

v rsncjobdeps: INSERT

Must be granted on all
replication servers in the
domain.

cdr repair

cdr view atsdir

cdr view risdir

read ATS and RIS files

Must be granted on the
database server on which the
files are located.

To update the permissions on a table or database, use the GRANT statement. For
example, the following statement grants INSERT and UPDATE permissions on the
rsncjobdef_tab table to the DBSA member with the user name of carlo:
GRANT INSERT, UPDATE ON rsncjobdef_tab TO carlo;

For more information about the GRANT statement, see the IBM Informix Guide to
SQL: Syntax.

To update the permissions on ATS and RIS files, use an operating system
command, such as the chown UNIX command.
Related reference:
“cdr check replicate” on page A-50
“cdr check replicateset” on page A-61
“cdr sync replicate” on page A-200
“cdr sync replicateset” on page A-204
“cdr repair” on page A-160
“cdr view” on page A-209
“cdr realize template” on page A-148
“cdr define replicate” on page A-77
“cdr define replicateset” on page A-87
“cdr start replicate” on page A-170
“cdr start replicateset” on page A-173
“cdr define template” on page A-98

Load and unload data
You can load data into or unload data out of tables in your replication
environment in various ways, depending on your circumstances.

Chapter 6. Preparing the Replication Environment 6-23

If you have not yet set up your replication environment, for loading data, you can
use the following tools:
v High-Performance Loader
v onunload and onload Utilities
v dbexport and dbimport utilities
v UNLOAD and LOAD statements
v External tables

When you unload and load data, you must use the same type of utility for both
the unload and load operations. For example, you cannot unload data with the
onunload utility and then load the data with a LOAD statement.

Existing replication environment

If you are adding a table to your already existing replication environment,
Enterprise Replication provides an initial synchronization feature that allows you
to easily bring a new table up-to-date with replication. You can synchronize the
new table with data on the source server you specify when you start the new
replicate, or when you add a new participant to an existing replicate. You do not
need to suspend any servers that are replicating data while you add the new
replicate and synchronize it.

If you want to use load and unload tools on tables that are already being
replicated, you should block replication while you prepare the table. Unlogged
changes to a table, such as data added by a light append, can be replicated to
other tables.

If a table that you plan to replicate includes the CRCOLS or REPLCHECK shadow
columns, the statements that you use for unloading the data must explicitly name
the shadow columns. If you use the SELECT statement with * FROM table_name to
the data to unload, the data from the shadow columns is not unloaded. To include
the shadow columns in the unloaded data, explicitly name them. For example, use
a statement like the following:
SELECT cdrserver, cdrtime, ifx_replcheck, * FROM table_name

If a table that you plan to replicate includes ERKEY shadow columns, you cannot
unload and then load the data from these columns and preserve the original
values. If you need to preserve the values of the ERKEY shadow columns, use
synchronization to propagate the values.
Related concepts:
“Blocking Replication” on page 6-18
“Setting Up Database Server Groups for High-Availability Cluster Servers” on page
7-3
“Shadow columns” on page 4-2
Related tasks:
“Initially Synchronizing Data Among Database Servers” on page 8-20
Related information:
Moving data with external tables

High-Performance Loader
The High-Performance Loader (HPL) provides a high-speed tool for moving data
between databases.

6-24 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1332.dita#ids_admin_1332.htm

How you use the HPL depends on how you defined the tables to replicate.

If the table contains shadow columns, you must:
v Include all the shadow column names in your map when you load the data.
v Use express mode to load data that contains shadow columns. You must

perform a level-0 archive after completion.

You can also use deluxe mode without replication to load data. After a deluxe
mode load, you do not need to perform a level-0 archive. Deluxe mode also allows
you to load TEXT and BYTE data and opaque user-defined types.

For information about HPL, refer to the IBM Informix High-Performance Loader
User's Guide.

onunload and onload Utilities
You can use the onunload and onload utilities to unload and load an entire table.

If you want to unload selected columns of a table, you must use either the
UNLOAD statement or the HPL.

Restriction: You can only use the onunload and onload utilities in identical
(homogeneous) environments.

If you use the onload utility while replication is active, you must synchronize the
data after you finish loading the data.
Related information:
The onunload and onload utilities

dbexport and dbimport Utilities
If you need to copy an entire database for replication, you can use the dbexport
and dbimport utilities. These utilities unload an entire database, including its
schema, and then re-create the database. If you want to move selected tables or
selected columns of a table, you must use some other utility.
Related information:
The dbexport and dbimport utilities

UNLOAD and LOAD Statements
The UNLOAD and LOAD statements allow you to move data within the context of
an SQL program.

If the table contains shadow columns, you must:
v Include all shadow columns in your map when you unload the data.
v List the columns that you want to load in the INSERT statement and explicitly

include the shadow columns in the list when you load your data.

For more information about the UNLOAD and LOAD statements, see the IBM
Informix Guide to SQL: Syntax.

Chapter 6. Preparing the Replication Environment 6-25

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.mig.doc/ids_mig_191.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.mig.doc/ids_mig_113.htm

Data Preparation Example
The following examples show how to add a new participant (delta) to an existing
replicate by two different methods:
v Using the cdr start replicate command

This method is simple and can be done while replication is online.
v Using the LOAD, UNLOAD, and BEGIN WORK WITHOUT REPLICATION

statements.
If you use HPL, this method can be faster for a large table.

Replicate zebra replicates data from table table1 for the following database servers:
alpha, beta, and gamma.

The servers alpha, beta, and gamma belong to the server groups g_alpha, g_beta,
and g_gamma, respectively. Assume that alpha is the database server from which
you want to get the initial copy of the data.

Using the cdr start replicate Command
To add a new participant to an existing replicate
1. Declare server delta to Enterprise Replication. For example:

cdr def ser -c delta -I -S g_alpha g_delta

At the end of this step, all servers in the replication environment include
information in the syscdr database about delta, and delta has information
about all other servers.

2. Add delta as a participant to replicate zebra. For example:
cdr cha rep -a zebra "dbname@g_delta:owner.table1"

This step updates the replication catalog. The servers alpha, beta, and gamma
do not queue any qualifying replication data for delta because the replicate on
delta, although defined, has not been started.

3. Start replication for replicate zebra on delta.
cdr sta rep zebra g_delta -S g_alpha -e delete

The -S g_alpha option specifies that the server alpha be used as the source for
data synchronization.
The -e delete option indicates that if there are rows on the target server, delta,
that are not present on the synchronization data server (alpha) then those rows
are deleted
Do not run any transactions on delta that affect table table1 until you finish the
synchronization process.

Using LOAD, UNLOAD, and BEGIN WORK WITHOUT
REPLICATION

When you add a new participant to an existing replicate, you can unload and load
data without replication.

To add a new participant to an existing replicate
1. Add the server delta to the Enterprise Replication domain. For example:

cdr def ser -c delta -I -S g_alpha g_delta

At the end of this step, all servers in the replication environment include
information in the syscdr database about delta, and delta has information
about all other servers.

6-26 IBM Informix Enterprise Replication Guide

2. Add delta as a participant to replicate zebra. For example:
cdr cha rep -a zebra "P dbname@g_delta:owner.table1" \
"select * from table1"

This step updates the replication catalog. The servers alpha, beta, and gamma
do not queue any qualifying replication data for delta because the replicate on
delta, although defined, has not been started.

3. Suspend server delta on alpha, beta, and gamma.
cdr sus ser g_delta g_alpha g_beta g_gamma

As a result of this step, replication data is queued for delta, but no data is
delivered.

4. Start replication for replicate zebra on delta.
cdr sta rep zebra g_delta

This step causes servers alpha, beta, and gamma to start queuing data for
delta. No data is delivered to delta because delta is suspended. Then, delta
queues and delivers qualifying data (if any) to the other servers.
Do not run any transactions on delta that affect table table1 until you finish the
synchronization process.

5. Unload data from table table1 using the UNLOAD statement or the unload
utility on HPL.

6. Copy the unloaded data to delta.
7. Start transactions with BEGIN WORK WITHOUT REPLICATION, load the data

using the LOAD statement, and commit the transactions. If you used the HPL
to unload the data in step 5, then use the HPL Deluxe load without replication
to load the data into table1 on delta.

8. Resume server delta on alpha, beta, and gamma.
cdr res ser g_delta g_alpha g_beta g_gamma

This step starts the flow of data from alpha, beta, and gamma to delta.
At this point, you might see some transactions aborted because of conflict.
Transactions can abort because alpha, beta, and gamma started queuing data
from delta in step 4. However, those same transactions might have been moved
in steps 5 and 7.

You must declare replication on server delta and then immediately suspend
replication because, while you are preparing the replicates and unloading and
loading files, the other servers in the replicate (alpha, beta, and gamma) might be
collecting information that needs to be replicated. After you finish loading the
initial data to delta and resume replication, the information that was generated
during the loading process can be replicated.

Chapter 6. Preparing the Replication Environment 6-27

6-28 IBM Informix Enterprise Replication Guide

Chapter 7. Using High-Availability Clusters with Enterprise
Replication

In This Chapter

This chapter covers how to include other data replication solutions, such as
high-availability data replication, in your Enterprise Replication system. The
following topics are covered:
v The design of a high-availability cluster replication system
v Preparing a high-availability cluster database server
v Managing Enterprise Replication with a high-availability cluster

For a complete description of data replication, see the IBM Informix Administrator's
Guide.

High-availability replication systems
You can combine IBM Informix Enterprise Replication and high-availability clusters
to create a high-availability replication system.

A high-availability cluster consists of two types of database servers:
v A primary database server, which receives updates, and can participate in

Enterprise Replication.
v Secondary servers, which mirror the primary server and are perpetually

applying logical-log records from the primary server, and cannot participate in
Enterprise Replication.

A minimal high-availability cluster consists of a primary server and a HDR
secondary server that are tightly coupled. Transactions on the primary server are
not committed until the log records containing the transactions are sent to the
HDR secondary server.

High-availability clusters can also contain shared-disk (SD) secondary servers and
remote standalone (RS) secondary servers. A SD secondary server does not
maintain a copy of the physical database on its own disk space; it shares disks
with the primary server. An RS secondary servers maintains a copy of the physical
database on its own disk space.

If the primary server in a high-availability cluster becomes unavailable, one of the
secondary servers takes over the role of the primary server. In a high-availability
replication system, if the primary server fails, a secondary database is promoted to
primary server, and Enterprise Replication can continue with the new primary
server.

You can configure Connection Managers to direct client requests to replication
servers, and to control which secondary server takes over if the primary server
becomes unavailable.

A high-availability replication system is effective when you use a hierarchical or a
forest of trees topology.
Related concepts:

© Copyright IBM Corp. 1996, 2015 7-1

“Update-Anywhere Replication System” on page 5-5
Related information:
The sqlhosts information

High-Availability Clusters in a Hierarchical Tree Topology
With a hierarchical tree topology, parent servers are good candidates for using
high-availability clusters to provide backup servers.

The following example is based on the example in Figure 5-7 on page 5-18.

If China fails, then Beijing and Shanghai can no longer replicate with other
servers in the replication system; Guangzhou and Chengdu can replicate only with
each other. However, if China was part of a high-availability cluster, when it failed,
the secondary server would replace it and replication would continue, as
illustrated in Figure 7-1.

In this example, Asia and Guangzhou, which are also parent servers, might also
benefit from using a high-availability cluster to ensure high availability.

Using high-availability clusters in a forest of trees topology
Use a high-availability cluster to ensure that all servers retain access to the
replication system in a forest of trees topology.

For example, in Figure 5-8 on page 5-19, Asia, Europe, China, and Guangzhou
should use high-availability clusters to provide backup servers, as illustrated in
Figure 7-2 on page 7-3.

China (offline)

Guangzhou

Chengdu

Japan

Beijing

Shanghai

Asia China

primary

secondary

Figure 7-1. Hierarchical Tree Topology with HDR

7-2 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0158.htm

Setting Up Database Server Groups for High-Availability
Cluster Servers

When defining a high-availability cluster within Enterprise Replication, the cluster
must appear to be a single logical entity within the replication domain. Define the
servers within the same database server group in the sqlhosts file.

For example, Figure 7-3 on page 7-4 illustrates two Enterprise Replication nodes,
one of which is an HDR pair.

China

Guangzhou

Japan

Beijing

Shanghai

Asia

Germany

France

Europe

North America

Asia

Europe

China

Guangzhou

secondary

secondary

High-Availability
Cluster

High-Availability
Cluster

High-Availability
Cluster

High-Availability Cluster

secondary

secondary

primary

primary

primary

primary

Chengdu

Figure 7-2. High-Availability Clusters in a Forest-of-Trees Topology

Chapter 7. Using High-Availability Clusters with Enterprise Replication 7-3

In this example, the HDR pair consists of the primary server, serv1, and the
secondary server, serv1_sec. These two servers belong to the same database server
group, g_serv1. The non-HDR server, serv2, belongs to the database server group
g_serv2. The following example displays the sqlhosts file for this configuration:
#dbservername nettype hostname servicename options
g_serv1 group - - i=1
serv1 ontlitcp machine1pri port1 g=g_serv1
serv1_sec ontlitcp machine1sec port1 g=g_serv1
g_serv2 group - - i=2
serv2 ontlitcp machine2 port1 g=g_serv2

Important: If you use the g=server option in the group member definition, you
can put the definition anywhere in the sqlhosts file.

Either HDR or Enterprise Replication can be set up first on the HDR pair serv1
and serv1_sec, but Enterprise Replication cdr commands must be run only on the
primary server. If any cdr commands are attempted on the secondary server, a –117
error is returned: Attempting to process a cdr command on an HDR secondary
server.
Related concepts:
“Load and unload data” on page 6-23
“Creating sqlhost group entries for replication servers” on page 6-3
Related information:
sqlhosts connectivity information

Managing Enterprise Replication with High-Availability Clusters
This section describes how to manage Enterprise Replication with HDR in the
following areas:
v Failure of the primary server in a high-availability cluster
v Performance considerations

Failover for High-availability clusters in an Enterprise
Replication environment

If you configure connection management for failover, Connection Managers can
promote a secondary server to the primary-server if the primary server fails. If

HDR

ER

g_serv1 g_serv2

serv1

serv1_sec

serv2

Figure 7-3. Database Server Groups for Enterprise Replication with HDR

7-4 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0161.htm

connection management is not configured to control failover, the onmode -d make
primary command can promote a secondary server to the primary-server role. In
either of these cases, Enterprise Replication automatically connects to the new
primary server.

If the primary server fails, and you manually change a secondary server to a
standard server, you must complete the following steps to prevent Enterprise
Replication from starting on all servers in cluster.

Run the following commands on the secondary server:
1. onmode -s

2. onmode -d standard

3. cdr start

If Enterprise Replication is running on the secondary server, and you want to
restart the server that was the primary server, but without Enterprise Replication
and high-availability cluster replication, run the oninit -D command. You can then
stop Enterprise Replication on the standard server and reestablish the primary
server.

First, run the following commands on the standard server:
1. cdr stop

2. onmode -d secondary primary_ha_alias

Second, run the following commands on the primary server:
1. oninit

2. cdr start

To split an active cluster into two standalone servers, you must restart the database
servers with the oninit -D command to prevent Enterprise Replication from
starting on either server after they are split.

To remove a server from a cluster, run the cdr delete server –force ha_alias
command, where ha_alias is an Enterprise Replication group name, to remove
Enterprise Replication from that server. For example, the two HDR servers are
being split and the secondary server is to be used for reporting purposes. After the
report processing is complete, HDR can be reestablished. “cdr delete server” on
page A-108 shows how to remove a secondary server from a high-availability
cluster and Enterprise Replication.

Table 7-1. Removing the Secondary Server from a cluster and ER

Step On the Primary On the Secondary

1. onmode -d standard secondary_ha_alias

2. Run onmode -d standard

3. Run cdr delete server -f ha_alias

If the HDR primary server has problems communicating to its secondary server,
Enterprise Replication is in a suspended state until one of the following actions is
taken:
v Resolve the connection problem between HDR pairs.
v Convert the primary server to standard mode.
Related reference:

Chapter 7. Using High-Availability Clusters with Enterprise Replication 7-5

“cdr delete server” on page A-108
Related information:
Connection management through the Connection Manager

Replication latency for secondary servers
When you combine Enterprise Replication with high-availability clusters,
replication latency can increase.

When Enterprise Replication is running on a high-availability cluster, some
operations cannot be performed until the logs are shipped to the secondary server.
By default, the logs are shipped to secondary servers after 50 replicated
transactions are applied, or 5 seconds elapse. This delay prevents possible
inconsistency within the Enterprise Replication domain during a failover to a
secondary server.

You can control replication latency for high-availability data replication (HDR)
servers in one of the following ways
v Set HDR replication to fully synchronous, nearly synchronous, or asynchronous

mode.
v Set HDR replication to HDR SYNC.
v Adjust the DRINTERVAL configuration parameter to specify a different interval

between flushing the high-availability data-replication buffer.

If you combine Enterprise Replication with shared-disk secondary servers, you can
reduce replication latency by setting the CDR_MAX_FLUSH_SIZE configuration
parameter to 1 to flush the logs after each replicated transaction.
Related reference:
“CDR_MAX_FLUSH_SIZE configuration parameter” on page B-11
Related information:
DRINTERVAL configuration parameter
HDR_TXN_SCOPE configuration parameter
Replication of primary-server data to secondary servers
Fully synchronous mode for HDR replication
Nearly synchronous mode for HDR replication

7-6 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1176.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0058.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1175.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0863.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0868.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1417.htm

Chapter 8. Defining Replication Servers, Replicates,
Participants, and Replicate Sets

These topics describe the steps defining and starting Enterprise Replication.

To define and start replication:
1. Initialize the database server.
2. Create a replication domain by defining replication servers.
3. Configure replication by defining replicates, and optionally grouping replicates

into a replicate set. The replicate definition includes information about the
participants, replication options, frequency, and conflict-resolution rules and
scope.

4. Specify the data to replicate by defining participants. A participant definition
specifies the data (database, table, and columns) that should be replicated.

5. Synchronize the data among the replicates.

Starting Database Servers
The database server must be online before you can define it as a replication server.

To bring the server from offline to online, issue the following command for your
operating system.

Operating System Command

UNIX oninit

Windows start dbservername

To bring the server from quiescent mode to online on either UNIX or Windows,
enter onmode -m.

For more information on initializing the database server, see the chapter on
database server operating modes in the IBM Informix Administrator's Guide.

Defining Replication Servers
You must define a replication server to create a replication domain or to add a
server to an existing domain.

The database server must be online.

You must be the Enterprise Replication server administrator to define the
replication server.

You can define replication servers using two different methods:
v The cdr utility
v Cloning

To define the replication server in a new domain by using the cdr utility, use the
cdr define server command to connect to the database server and specify the

© Copyright IBM Corp. 1996, 2015 8-1

database server group name. For example, the following command connects to a
server called stan and creates a domain containing the database server group
g_stan:
cdr define server --connect=stan --init g_stan

The --init option specifies the database server group to add to the replication
domain. If the INFORMIXSERVER environment variable is not set to the server
that you are defining, specify the --connect=server_name option. You can also
configure replication attributes for the server.

To define a replication server in an existing domain by using the cdr utility,
include the --sync=sync_server option with the cdr define server command to
synchronize the global catalog with an existing server. For example, the following
command adds a server group named g_oliver to the domain created in the
previous command, using g_stan as the synchronization server:
cdr define server --connect=oliver --init g_oliver --sync=g_stan

You can specify any existing server in the domain, however, if you define a server
as a nonroot or a leaf server, then the synchronization server becomes the parent of
the new server. For example, if you add a server kauai as a leaf server and want
its parent to be hawaii, then specify hawaii with the --sync option.

You can have Enterprise Replication automatically configure disk space from the
storage pool and set the appropriate configuration parameters when defining a
replication server. If the CDR_QDATA_SBSPACE or the CDR_DBSPACE
configuration parameter is not set and the server has a storage pool with sufficient
space, the cdr define server command automatically creates the necessary disk
space and sets the configuration parameters to appropriate values.
Related concepts:
“Row Data sbspaces” on page 6-10
“Choosing a Replication Network Topology” on page 5-16
“Enterprise Replication Server administrator” on page 3-1
“Modify server attributes” on page 11-1
Related tasks:
“Setting Up Failed Transaction Logging” on page 8-11
Related reference:
“cdr define server” on page A-90
“cdr define replicate” on page A-77

Creating a new domain by cloning a server
You can create a new replication domain by cloning a server and then converting
the two Informix database servers to replication servers. Use cloning and
conversion if you want to set up replication based on the data on a source server
that is not yet running Enterprise Replication.

Because the source server does not have Enterprise Replication defined, you use
the ifxclone utility to create a cluster containing a primary server and remote
stand-alone (RS) secondary server. The conversion process converts the cluster to a
pair of replication servers in a new domain.

To create a new domain with two replication servers:

8-2 IBM Informix Enterprise Replication Guide

1. On the source server, prepare the server environment for Enterprise
Replication, such as configuring sqlhosts information and setting the necessary
configuration parameters.

2. On both servers, complete the ifxclone prerequisites for all servers, such as
setting the required configuration parameters and environment variables.

3. On the target server, complete the ifxclone prerequisites for an RS secondary
server, such as creating all of the chunks that exist on the source server. You
can use the --createchunkfile option (-k) of the ifxclone utility to automatically
create cooked chunks on the target server.

4. On the target server, run the ifxclone command with the --disposition=RSS
option to clone the data and the configuration of the source server onto the
target server. Do not include the --useLocal option.

5. On the source server, run the cdr check sec2er command to determine if
conversion to replication servers is possible.

6. Solve any error conditions identified by the cdr check sec2er command and
rerun it until its output indicates that conversion will be successful. You can
also solve warning conditions.

7. On the source server, run the cdr start sec2er command to convert both servers
to replication servers and create a new replication domain.

To add other servers to the domain, you can clone a replication server.
Related concepts:
Chapter 6, “Preparing the Replication Environment,” on page 6-1
Related tasks:
“Adding a server to the domain by cloning a server” on page 8-5
Related information:
The ifxclone utility

Example of creating a new replication domain by cloning
This is an example of creating a new replication domain based on the data and
configuration on a source database server that does not have replication defined.
The three additional replication servers in the domain are added by cloning the
source server.

This example creates a replication domain and grid that contain four replication
servers: serv1, serv2, serv3, serv4. Each server computer has the Informix database
server installed. The source server contains the stores_demo database.
1. On the serv1 server, set the CDR_QDATA_SBSPACE configuration parameter.
2. On the serv1 server, set the value of the ENABLE_SNAPSHOT_CLONE

configuration parameter to 1 in the onconfig file.
3. On the serv1 server, add the following sqlhosts information about serv1 and

serv2:
gserv1 group - - i=143
serv1 ontlitcp ny.usa.com 1230 g=gserv1
gserv2 group - - i=144
serv2 ontlitcp tokyo.japan.com 1231 g=gserv2

4. On both the serv1 and serv2 servers, complete the ifxclone prerequisites for
all servers, such as setting the required configuration parameters and
environment variables.
Set these environment variables:
v INFORMIXDIR

v INFORMIXSERVER

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-3

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1093.htm

v INFORMIXSQLHOSTS

v ONCONFIG

Set these configuration parameters to the same values on both servers:
v DRAUTO
v DRINTERVAL
v DRTIMEOUT
v LOGBUFF
v LOGFILES
v LOGSIZE
v LTAPEBLK
v LTAPESIZE
v ROOTNAME
v ROOTSIZE
v PHYSBUFF
v PHYSFILE
v STACKSIZE
v TAPEBLK
v TAPESIZE

5. On the serv2 server, create all of the chunks that exist on the serv1 server. You
can use the --createchunkfile option (-k) of the ifxclone utility to
automatically create cooked chunks on the target server.

6. On the serv2 server, run the ifxclone command with the --disposition=RSS
option to clone the data and the configuration of the serv1 server onto the
serv2 server:
ifxclone --trusted --source=serv1 --sourceIP=192.168.0.1
--sourcePort=1230 --target=serv2 --targetIP=192.168.0.2
--targetPort=1231 --disposition=RSS --createchunkfile

7. On the serv1 server, run the cdr check sec2er command to determine if
conversion to replication servers is possible:
$cdr check sec2er -c gserv1 gserv2
Secondary conversion to ER is possible.

8. On the serv1 server, run the cdr start sec2er command to convert both servers
to replication servers, create a new replication domain, create and start
replicates based on all the tables on the serv1 server:
cdr start sec2er -c gserv1 gserv2

9. On the serv3 and serv4 servers, provision chunk paths and other storage to
the same paths and at least the same sizes as on the serv1 server.

10. On the serv3 server, run the ifxclone command with the --disposition=ER
option to clone the data and the configuration of the serv1 server onto the
serv3 server:
ifxclone --trusted --source=serv1 --sourceIP=192.168.0.1
--sourcePort=1230 --target=serv3 --targetIP=192.168.0.3
--targetPort=1232 --disposition=ER

11. On the serv4 server, run the ifxclone command with the --disposition=ER
option to clone the data and the configuration of the serv1 server onto the
serv4 server:
ifxclone --trusted --source=serv1 --sourceIP=192.168.0.1
--sourcePort=1230 --target=serv4 --targetIP=192.168.0.4
--targetPort=1233 --disposition=ER

8-4 IBM Informix Enterprise Replication Guide

12. Edit the sqlhosts files on all four servers so that they each have the following
information:
gserv1 group - - i=143
serv1 ontlitcp ny.usa.com 1230 g=gserv1
gserv2 group - - i=144
serv2 ontlitcp tokyo.japan.com 1231 g=gserv2
gserv3 group - - i=145
serv3 ontlitcp rome.italy.com 1232 g=gserv3
gserv4 group - - i=146
serv4 ontlitcp perth.australia.com 1233 g=gserv4

Related reference:
“cdr start sec2er” on page A-176
“cdr check sec2er” on page A-69
Related information:
The ifxclone utility

Adding a server to the domain by cloning a server
You can add a replication server to an existing replication domain by using the
ifxclone utility to clone an existing replication server onto a target database server.

Enterprise Replication must be active on the source server. The source server
should not have any stopped or suspended replicates or any shadow replicates
defined.

You must be user informix or member of the informix group to run the ifxclone
utility.

IBM Informix database software must be installed on the target server.

Cloning a server defines replication on the target server, copies the data, and adds
the target server to all replicates in which the source server participates. The
onconfig file and the sqlhosts file are copied from the source server to the target
server and updated with the target server information.

To clone a replication server by using the ifxclone utility:
1. On the source server, set the value of the ENABLE_SNAPSHOT_COPY

configuration parameter to 1 in the onconfig file.
2. On the target server, create the following directories, if they exist on the source

server. The directories must be the same on both servers:
v ATS and RIS directories
v Log staging directory

3. On the target server, synchronize the system clock with the source server.
4. On the target server, provision chunk paths and other storage to the same paths

and at least the same sizes as on the source server. Ensure that the target server
has at least as much memory and disk space resources as the source server. You
can use the --createchunkfile option (-k) of the ifxclone utility to automatically
create cooked chunks on the target server.

5. On the target server, run the ifxclone command. You must provide the
following information to the ifxclone utility:
v Source server name
v Source IP address
v Source port

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-5

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1093.htm

v Target server name
v Target IP address
v Target port
Include the --disposition=ER option.
Optional: Include the --createchunkfile option.
If the source server replicates serial columns, use the --configParam option to
set the value of the CDR_SERIAL configuration parameter to ensure that serial
values do not conflict between replication servers. The ifxclone utility has the
following format for cloning a replication server:
ifxclone --source=source_name --sourceIP=source_IP
--sourcePort=source_port --target=target_name
--targetIP=target_IP --targetPort=target_port

--disposition=ER --createchunkfile

6. On all other replication servers in the domain, edit the sqlhosts file to add
entries for the new replication server.

Related concepts:
“Time synchronization” on page 6-17
Related tasks:
“Creating a new domain by cloning a server” on page 8-2
“Adding a replication server to a grid by cloning” on page 9-8
Related reference:
“Set configuration parameters for replication” on page 6-15
Related information:
The ifxclone utility

Customizing the Replication Server Definition
You can specify replication attributes of a server when you define it.

When you define a replication server, you can specify the following attributes in
the cdr define server command:
v Set the idle timeout.

To specify the time (in minutes) that you want to allow the connection between
two Enterprise Replication servers to remain idle before disconnecting, use the
--idle=timeout option.
You can later change the values of this attribute with the cdr modify server
command.

v Specify the location of the ATS and RIS directories.
To use ATS, specify the directory for the Aborted Transaction Spooling (ATS)
files for the server using --ats=dir or--ris=dir . To prevent either ATS or RIS file
generation, set the directory to /dev/null (UNIX) or NUL (Windows).
You can later change the values of these attributes with the cdr modify server
command.

v Specify the format of the ATS and RIS files.
Use the –atsrisformat=type option to specify whether the ATS and RIS files are
generated in text format, XML format, or both formats.
You can later change the values of this attribute with the cdr modify server
command.

v Specify the type of server if you are using hierarchical replication:
– To specify the server as a nonroot server, use the --nonroot option.

8-6 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1093.htm

– To specify the server as a leaf server, use the --leaf option.
If neither --leaf nor --nonroot is specified, the server is defined as a root server.
The parent server is the server specified by the --sync=sync_server option.

Related concepts:
“Choosing a Replication Network Topology” on page 5-16
“Enterprise Replication Terminology” on page 1-1
Related tasks:
“Creating ATS and RIS directories” on page 6-14
Related reference:
“cdr define server” on page A-90
“cdr modify server” on page A-146

Define a replicate
To define a replicate, use the cdr define replicate command.

You can provide the following information in the replicate definition:
v Participants
v Create as a master replicate
v Conflict resolution rules and scope
v Replication frequency
v Error logging
v Replicate full rows or only changed columns
v IEEE or canonical message formats
v Database triggers
v Code set conversion between replicates
v Replication key
v Serial or parallel processing

After you define the replicate and participants, you must manually start the
replicate by running the cdr start replicate command.

Participant definitions
You must define a participant for each server that is involved in the replicate
definition by running the cdr define replicate command. Each participant in a
replicate must specify a different database server.

Each participant definition includes the following information:
v Database server group name
v Database in which the table to be replicated resides
v Table name
v Table owner
v Participant type

For a primary-target replication system, you can specify the participant type as
primary, receive-only, or send-only. If you do not specify the participant type,
Enterprise Replication defines the participant as update-anywhere, by default.

v SELECT statement and optional WHERE clause

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-7

Restriction: Do not create more than one participant definition for each row and
column to replicate. If the participant is the same, Enterprise Replication attempts
to insert or update duplicate values during replication. For example, if one
participant modifier includes WHERE x < 50 and another includes WHERE x <
100, Enterprise Replication sends the data for when x is between 50 and 100 twice.
Related concepts:
“Primary-Target Replication System” on page 5-1
Related reference:
“Participant and participant modifier” on page A-4

Defining Replicates on Table Hierarchies
When you define replicates on inherited table hierarchies, use the following
guidelines to replicate operations:
v For both the parent and child tables, define a replicate on each table.
v For only the parent table (not the child table), define a replicate on the parent

table only.
v For only the child table (not the parent table), define a replicate on the child

table only.

Replicate types
You can choose a replicate type depending on whether you want the schema
definitions on all participants to be the same. A master replicate enforces
consistency between the schema definitions of the participants and the schema
definition on a designated server. A classic replicate does not check the schema
definitions of the participants.

By default, replicates are master replicates. If you do not specify a master server,
the master replicate is based on the first participant. Dictionary information is then
stored about replicated column attributes for the participant you specify. Enterprise
Replication checks for consistency between the master definition and local
participant definitions. Checks are run when the replicate is defined and each time
a new participant is added to the replicate, thus avoiding runtime errors.
Verification also occurs each time that the master replicate is started on a server.

If you do not want to verify the schema, create a classic replicate. For example, if
you want to create a data consolidation system in which one server only receives
data from other servers that only send data, create a classic replicate.

Defining a replicate as a master replicate provides several advantages:
v Ensures data integrity by verifying that all participants in the replicate have

table and replicated column attributes that match the master replicate definition.
v Provides automatic table generation on participants that do not already contain

the table that is specified in the master replicate. However, Enterprise
Replication cannot create tables with user-defined data types.

v Allows alter operations on the replicated tables.

When you define a master replicate, you can specify a participant that is on the
server for which you are running the command. By default, the first participant
that you list in the cdr define replicate command is the used to create the
dictionary information for the master replicate. The additional participants in the
cdr define replicate command are verified against the master definition and added
to the replicate if they pass validation. If any participant fails validation, the cdr
define replicate command fails and that participant is disabled.

8-8 IBM Informix Enterprise Replication Guide

Related reference:
“cdr define template” on page A-98
“cdr define replicate” on page A-77

Master Replicate Verification
Enterprise Replication verifies the following information about a participant when
the participant is added to the master replicate:
v The participant contains all replicated columns.
v The replicated columns in the participant have the correct data types. For

columns that are user-defined data types, only the names of the data types are
verified.

v Optionally, the replicated columns in the participant have the same column
names as the master replicate.

Creating Strict Master Replicates
You can create a strict master replicate in which all participants have the same
replicated column names by using the --name=y option. This option specifies that
when the master replicate verification is done for a new participant, that the
column names on the participant must be identical to the column names of the
master replicate. Strict master replicates allow you to perform the following tasks:
v Alter operations on replicated tables. For more information, see “Alter, rename,

or truncate operations during replication” on page 11-23.
v Remastering by using the cdr remaster command. For more information, see

“Remastering a Replicate” on page 11-29.

You can modify an existing master replicate to remove name verification by using
the --name=n option of the cdr modify replicate command.
Related reference:
“cdr modify replicate” on page A-140

Creating Empty Master Replicates
You can create an empty master replicate by using the --empty option. This option
allows you to specify a participant as the basis of the master replicate but not
include that participant in the replicate. Creating an empty replicate can be
convenient in large environments in which you later add all participants using
scripts.

When you define an empty master replicate, you must specify only one participant
in the cdr define replicate command. This participant is used to create the master
dictionary information but is not added to the replicate.

The --empty option is only supported for master replicates, you cannot use it
without the --master option.

Defining Shadow Replicates
A shadow replicate is a copy of an existing, or primary, replicate. Enterprise
Replication uses shadow replicates to manage alter and repair operations on
replicated tables. You must create a shadow replicate to perform a manual
remastering of a replicate that was defined with the -n option. See “Resynchronize
data manually” on page 11-23 for information about how you can repair, or
remaster, your replicated data. After creating the shadow replicate, the next step in
manual remastering is to switch the primary replicate and the shadow replicate
using the cdr swap shadow command.

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-9

You create a shadow replicate using the cdr define replicate command with the
--mirrors option, as described in “cdr define replicate” on page A-77.

When you define a shadow replicate, its state is always set to the same state as the
primary replicate. If you change the state of the primary replicate, all its shadow
replicates’ states are also changed to the same state.

You cannot delete a primary replicate if it has any shadow replicates defined. You
must first delete the shadow replicates, and then the primary replicate.

You cannot modify a primary replicate (using the cdr modify replicate command)
if it has any shadow replicates defined. Also, you cannot modify shadow replicates
directly.

You cannot suspend or resume a primary replicate (using the cdr suspend
replicate or cdr resume replicate command) if it has any shadow replicates
defined. Also, you cannot suspend or resume shadow replicates directly. If the
primary replicate and its shadow replicates are part of an exclusive replicate set,
you can suspend or resume the entire replicate set using the cdr suspend replicate
or cdr resume replicate command.

You cannot add a participant to a shadow replicate:
v If the participant is not part of the primary replicate’s definition
v After remastering the replicate

If the primary replicate is part of an exclusive replicate set, any shadow replicates
you define are automatically added to that replicate set.

If you add a primary replicate to an exclusive replicate set, all its shadow
replicates are also automatically added. If you delete a primary replicate from an
exclusive replicate set, all its shadow replicates are also automatically deleted.

Specifying Conflict Resolution Rules and Scope
You specify the conflict resolution rule in the replicate definition.

For update-anywhere replication systems, you must specify the conflict-resolution
rules in the replicate definition using the --conflict=rule option to the cdr define
replicate command. The conflict resolution rule option names are:
v always

v deletewins

v ignore

v timestamp

v routine_name

If you use an SPL routine for your conflict-resolution rule, you can also use the
--optimize option to specify that the routine is optimized.

You can also specify the scope using the --scope=scope option:
v transaction (default)
v row

Related concepts:
“Update-Anywhere Replication System” on page 5-5
“Conflict resolution rule” on page 5-6

8-10 IBM Informix Enterprise Replication Guide

“Conflict Resolution Scope” on page 5-15
Related reference:
“cdr define replicate” on page A-77

Specifying Replication Frequency
The replication frequency options allow you to specify the interval between
replications, or the time of day when an action should occur. If you do not specify
the frequency, the default action is that replication always occurs immediately
when data arrives.

The frequency options are:
v --immed

v --every=interval

v --at=time

For more information, see “Frequency Options” on page A-27.

Important: If you use time-based replication and two tables have referential
constraints, the replicates must belong to the same exclusive replicate set. For more
information, see “Exclusive Replicate Sets” on page 8-18.

Setting Up Failed Transaction Logging
The Aborted Transaction Spooling (ATS) files and Row Information Spooling (RIS)
files contain information about failed transactions and aborted rows. You can use
this information to help you diagnose problems that arise during replication.

To configure your replicate to use ATS and RIS
1. Set up the ATS and RIS directories.
2. Specify the location of the ATS and RIS directories when you define your

server.
3. Specify that the replicate use ATS and RIS when you define the replicate by

including the --ats and --ris options in the replicate definition.

Tip: Until you become thoroughly familiar with the behavior of the replication
system, select both ATS and RIS options.
Related concepts:
Chapter 12, “Monitor and troubleshooting Enterprise Replication,” on page 12-1
Related tasks:
“Creating ATS and RIS directories” on page 6-14
“Defining Replication Servers” on page 8-1
Related reference:
“Replicate only changed columns”
“cdr define replicate” on page A-77

Replicate only changed columns
You can choose to replicate only those columns that have changes instead of entire
rows.

By default, even if only one column changes, Enterprise Replication replicates the
entire row, except columns that contain unchanged large objects.

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-11

You can change the default behavior to replicate only the columns that changed. To
replicate only changed columns, include the --fullrow=n option in the replicate
definition. Enterprise Replication always sends the replication key columns, even if
you specify to replicate only changed columns.

Replicating only the columns that changed has the following advantages:
v Sends less data, because only the modified data is sent
v Uses less Enterprise Replication resources, such as memory

If Enterprise Replication replicates an entire row from the source, and the
corresponding row does not exist on the target, Enterprise Replication applies the
update as an insert, also known as an upsert, on the target (unless you are using
the delete wins conflict resolution rule). By replicating the entire row, Enterprise
Replication corrects any errors during replication. If any errors occur in an update
of the target database server (for example, a large object is deleted before
Enterprise Replication can send the data), the next update from the source
database server (a complete row image) corrects the data on the target server.

Replicating only the columns that changed has the following disadvantages:
v Enterprise Replication does not apply upserts.

If the row to replicate does not exist on the target, Enterprise Replication does
not apply it. If you set up error logging, Enterprise Replication logs this
information as a failed operation.

v You cannot use the SPL routine or time stamp with SPL routine
conflict-resolution rules.

v You cannot use update-anywhere replication; doing so can result in inconsistent
conflict resolution.

Enterprise Replication logs bitmap information about the updated columns in the
logical-log file. For more information, see the CDR record type in the logical-logs
chapter in the IBM Informix Administrator's Reference.
Related concepts:
“Controlling the replication of large objects” on page 8-17
“Conflict Resolution” on page 5-6
“Disk Space for Delete Tables” on page 6-9
Related tasks:
“Setting Up Failed Transaction Logging” on page 8-11
Related reference:
“cdr define replicate” on page A-77

Using the IEEE Floating Point or Canonical Format
You can specify how the FLOAT and SMALLFLOAT data types are handled,
depending on your platform.

You can specify sending this data in either IEEE floating point format or
machine-independent decimal representation:
v Enable IEEE floating point format to send all floating point values in either

32-bit (for SMALLFLOAT) or 64-bit (for FLOAT) IEEE floating point format.
To use IEEE floating point format, include the --floatieee option in your replicate
definition.
It is recommended that you define all new replicates with the --floatieee option.

8-12 IBM Informix Enterprise Replication Guide

v Enable canonical format to send floating-point values in a machine-independent
decimal representation when you replicate data between dissimilar hardware
platforms.
To use canonical format, include the --floatcanon option in your replicate
definition. The --floatcanon option is provided for backward compatibility only;
it is recommended that you use the --floatieee option when defining new
replicates.

v If you specify neither IEEE or canonical formats, Enterprise Replication sends
FLOAT and SMALLFLOAT data types as a straight copy of machine
representation. If you are replicating across different platforms, replicated
floating-point numbers will be incorrect.

For more information, see “Special Options” on page A-82.

Important: You cannot modify the replicate to change the --floatieee or
--floatcanon options.
Related reference:
“cdr define replicate” on page A-77

Enabling Triggers
By default, when a replicate causes an insert, update, or delete on a target table,
triggers associated with the table are not executed. However, you can specify that
triggers are executed when the replicate data is applied by enabling triggers in the
replicate definition.

To enable triggers, include the --firetrigger option in your replicate definition.

When you design your triggers, you can use the 'cdrsession' option of the
DBINFO() function to determine if the transaction is a replicated transaction.

For information, refer to “Triggers” on page 4-4 and “Special Options” on page
A-82.
Related reference:
“cdr define replicate” on page A-77

Enabling code set conversion between replicates
You can enable code set conversion to allow replication of data between servers
that use different code sets.

Prerequisites:

The table and column names must contain ASCII characters to convert a
non-master replicate to a master replicate.

The servers must have UTF-8 code set transaction support enabled to replicate
between server versions.

The target schema must allow for expansion due to code set conversion. For
example, a CHAR(10) column in one code set might require 40 bytes in the
converted code set.

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-13

When code set conversion is enabled, character columns of the following data
types are converted to UTF-8 (Unicode) when the row is copied into the
transmission queue.
v CHAR
v VARCHAR
v NCHAR
v NVARCHAR
v LVARCHAR
v TEXT
v CLOB

When the replicated row is applied on the target server, the data is converted from
UTF-8 to the code set that is used on the target server. No attempt is made to
convert character data contained within opaque data types, such as TimeSeries
data types, user-defined data types, or DataBlade® module data types.

To enable code set conversion between replicates, include the --UTF8=y option in
your replicate definition.

To use the latest version of the Unicode library, set the GL_USEGLU environment
variable in your server environment. The GL_USEGLU environment variable must
be set to a value of 1 (one) in the database server environment before the server is
started, and before the database is created.

If your table names or column names contain non-ASCII characters, you must
manually create a shadow replicate and then swap the shadow replicate with the
primary replicate using the cdr swap shadow command.

The autocreate option is not supported for replicates defined with --UTF8=y option
when using the cdr realize template or cdr change replicate commands.

Code set conversion with the GLS library requires only those code set conversion
files found in the INFORMIXDIR/gls/cv9 directory.
v For US English, locales are handled automatically by the IBM Informix Client

Software Development Kit installation and setup.
v For other locales, you might need to explicitly provide the locale and conversion

files.
Related concepts:
“Global language support for replication” on page 3-5
Related reference:
“cdr swap shadow” on page A-198
Related information:
GL_USEGLU environment variable

Configuring code set conversion between replicates
The examples in this topic show how to create replicate and template definitions
while replicating data between databases that use different code sets.

When non-English characters are used for database, table, column, or owner
names, each server must be added to the UTF-8 realize template definition by
connecting to the server locally. Only one server at a time should be added to the
replicate definition using the change replicate command. You cannot add multiple

8-14 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_090.htm

servers to a replication definition using the define repl command unless the
database code set number is the same for all servers. The CLIENT_LOCALE
environment variable must be set unless the database locale is en_us.819. Replicate
and template names must be in English.

This example shows how to create and realize a template on two servers, named
node_1 and node_2. For this example, assume that node_1 uses de_de.819 locale and
node_2 uses de_de.utf8 locale:
1. On node_1, run the following commands:

export DB_LOCALE=de_de.819
export CLIENT_LOCALE=de_de.819
cdr define template set1 -C always -M g_node1 -S row -d testdb -a -A -R --UTF8=y
cdr realize template set1 g_node1

2. On node_1 run the following command and wait for the Txns in queue count
to go to zero.
onstat -g rqm cntrlq

3. On node_2, run the following commands:
export DB_LOCALE=de_de.utf8
export CLIENT_LOCALE=de_de.utf8
cdr realize template set1 g_node2

The following steps show how to define a replicate when non-ASCII characters are
used for table, column, owner, or database names. Before starting, ensure that the
replicate name uses English ASCII characters and that the DB_LOCALE
environment variable on the server is set to the same value as the locale of the
participant being added.
1. Define the replicate with the first participant and then connect to the

participant.
2. Add and connect to each additional participant, one participant at a time.
3. When all of the participants have been added, ensure that the control queue is

empty and start the replicate definition.
You can check the control queue message count using the onstat -g rqm cntrlq.
Wait for the Txns in queue count to go zero.

The following example shows how to create a replicate definition between two
servers to replicate data between de_de.819 and de_de.utf8 databases:
1. On server node_1, run the following commands:

export DB_LOCALE=de_de.819
export CLIENT_LOCALE=de_de.819
cdr define repl german_repl -M g_node1 -C always -S transaction

-A -R -I --UTF8=y "testdb@g_node1:user1.table1" "select * from table1"

2. On node_1 run the following command and wait for the Txns in queue count
to go to zero.
onstat -g rqm cntrlq

3. On node_2, run the following commands:
export DB_LOCALE=de_de.utf8
export CLIENT_LOCALE=de_de.utf8
cdr change repl -c node2 -a german_repl

"testdb@g_node2:user1.table1" "select * from table1"

4. On node_2 run the following command and wait for the Txns in queue count
to go to zero.
onstat -g rqm cntrlq

5. Run the following command on either server:
cdr start repl german_repl

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-15

Code set conversion errors
You can use the ATS and RIS files to identify problems that occur during code set
conversion.

To specify which warnings and errors to suppress, use the
CDR_SUPPRESS_ATSRISWARN configuration parameter. For more information,
see “CDR_SUPPRESS_ATSRISWARN Configuration Parameter” on page B-16

Each column in the RIS file begins with (W) if substitute characters were added to
the column data or (E) if data was rejected because of a UTF-8 conversion failure.

Examples of conversion errors:

On the source server, a row of data fails conversion to UTF-8 code set.
Data sync error 63 is stored in an RIS file on the source server. The RIS file
contains the row that failed to convert; the failed row is not converted and
is not replicated on the target server. A list of column names that failed to
convert is also stored in the RIS file. Example RIS file:
TXH Source ID:0 / Name:*UNKNOWN* / CommitTime:
TXH Target ID:1 / Name:utm_group_1 / ReceiveTime:11-05-10 13:35:22

RRH Row:1 / Replicate Id: 65540 / Table: testdb@usr1.utf8tab / DbOp:Update
RRH CDR:63 (Error while converting data from local database codeset to

UTF8.) / SQL:0 / ISAM:0
LRH Failed column list: charcol (W), ncharcol (E)
LRD 3|Lkqy|jvdHj@ifcjuWg|biLs|uk|RwvCZOpfpqruLAA|JloY|<27, TEXT,

PB 1 (utm_group_1) 1305051204 (11/05/10 13:13:24)>|<4, TEXT, BB>|
<18, CLOB, SB 1305051204 (11/05/10 13:13:24)>

RRD ||||||||
==========
TXH Transaction committed
TXH Total number of rows in transaction:1

On the source server, conversion from the local code set to UTF-8 resulted in the
substitution of one or more characters in the row.

Data sync error 65 is stored in an RIS file on the source server, and the row
is replicated. A list of column names that failed to convert is also stored in
the RIS file. Example RIS file:
TXH Source ID:0 / Name:*UNKNOWN* / CommitTime:
TXH Target ID:1 / Name:utm_group_1 / ReceiveTime:11-05-10 13:32:14

RRH Row:1 / Replicate Id: 65540 / Table: testdb@usr1.utf8tab / DbOp:Update
RRH CDR:65 (Substitute characters added while converting data from local

database codeset to UTF8.) / SQL:0 / ISAM:0
LRH Failed column list: charcol (W), ncharcol (W), vchar (W), nvchar (W),

lvchar (W)
LRD 2|iU\VoJMZ|axhGRxKmDW|e@Xv|biLs|pyqasjUpAc{wCu|efM@}Vd|<22, TEXT,

PB 1 (utm_group_1) 1305051204 (11/05/10 13:13:24)>|<36, TEXT, BB>
|<15, CLOB, SB 1305051204 (11/05/10 13:13:24)>

RRD ||||||||
==========
TXH Transaction committed
TXH Total number of rows in transaction:1

On the target server, a row of data failed to convert from UTF-8 format to the
local database code set.

Data sync error 64 is stored in an ATS/RIS file on the target server, and the
row or transaction is aborted depending on the replicate scope. A list of
column names that failed to convert is also stored in the RIS file. Example
RIS file:

8-16 IBM Informix Enterprise Replication Guide

TXH Source ID:1 / Name:utm_group_1 / CommitTime:11-05-10 13:40:19
TXH Target ID:3 / Name:utm_group_3 / ReceiveTime:11-05-10 13:40:19

RRH Row:1 / Replicate Id: 65540 / Table: testdb@usr1.utf8tab / DbOp:Update
RRH CDR:64 (Error while converting data from UTF8 to local database

codeset.) / SQL:0 / ISAM:0
RRH Failed column list: vchar (E)
RRD 3||jdicW|?|?|?|?|?|?
==========
TXH Transaction aborted
TXH ATS file:/usr4/nagaraju/utm/tmp/ats.utm_group_3.utm_group_1.D_3

.110510_13:40:19.2 has also been created for this transaction

On the target server, conversion from UTF-8 to the local server code set resulted
in the substitution of one or more characters in the row.

Data sync error 66 is stored in a warning RIS file on the target server, and
the row is applied. A list of column names that failed to convert is also
stored in the RIS file. Example RIS file:
TXH Source ID:3 / Name:utm_group_3 / CommitTime:11-05-10 13:13:58
TXH Target ID:1 / Name:utm_group_1 / ReceiveTime:11-05-10 13:13:58

RRH Row:1 / Replicate Id: 65540 / Table: testdb@usr1.utf8tab / DbOp:Insert
RRH CDR:66 (Substitute characters added while converting data

from UTF8 to local database codeset.) / SQL:0 / ISAM:0
RRH Failed column list: charcol (W), ncharcol (W), vchar (W),

nvchar (W), lvchar (W), textcol (W), textbcol (W), clobcol (W)
RRD 99||keI||m||<46, TEXT, PB 3 (utm_group_3) 1305051238

(11/05/10 13:13:58)>|<68, TEXT, BB>|<13, CLOB, SB>
==========
TXH Transaction committed
TXH Total number of rows in transaction:1

Text and CLOB data conversion failures
If the conversion of text or CLOB data to UTF-8 fails on the source server
then the blob buffer is marked with the appropriate error and the target
servers create ATS/RIS files for these blob data conversion failures.
Example text column conversion error:
TXH Source ID:1 / Name:utm_group_1 / CommitTime:11-05-10 12:26:30
TXH Target ID:3 / Name:utm_group_3 / ReceiveTime:11-05-10 12:28:15

RRH Row:1 / Replicate Id: 65540 / Table: testdb@usr1.utf8tab / DbOp:Update
RRH CDR:65 (Substitute characters added while converting data from local

database codeset to UTF8.) / SQL:0 / ISAM:0
RRH Failed column list: textcol (W)
LRD 2|<46, TEXT, PB 1 (utm_group_1) 1305048215 (11/05/10 12:23:35)

>|<40, CLOB, SB 1305048215 (11/05/10 12:23:35)>
RRD 2|<44, TEXT, PB 1 (utm_group_1) 1305048390 (11/05/10

12:26:30)>|<0(NoChange), CLOB, SB>
==========
TXH Transaction committed
TXH Total number of rows in transaction:1

Controlling the replication of large objects
You can control whether columns that contain unchanged large objects are always
included in replicated rows.

By default, columns that contain unchanged large objects are not included in
replicated rows. Large object columns are transmitted only when the data is
changed.

You can specify to replicate columns that contain unchanged large objects by
including the --alwaysRepLOBS=y option in the replicate definition. For example,

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-17

if your replication system is designed for as a workflow, you must replicate all
columns when you move data to the next site in the workflow.

If you want to change how large objects are replicated for an existing replicate, you
must delete the replicate and then re-create the replicate.
Related concepts:
“Workflow Replication” on page 5-4
Related reference:
“Replicate only changed columns” on page 8-11

Define replicate sets
When you define a replicate set, you specify the type of replicate set, the replicates
that belong to the replicate set, and the frequency of replication for the member
replicates.

To create a replicate set, use the cdr define replicateset command.

Enterprise Replication supports these types of replicate sets:

exclusive
Replicates can belong to only one replicate set. Include the --exclusive
option in the cdr define replicateset command.

non-exclusive
Default. Replicates can belong to one or more non-exclusive replicate sets.

derived
A replicate set that is derived from an existing replicate set. For example,
you can create a derived replicate set that contains replicates that must be
remastered.

Related reference:
“cdr define replicateset” on page A-87

Exclusive Replicate Sets
If your replicated tables use referential integrity and are defined with time-based
replication, you must create an exclusive replicate set. If your replicates use
referential integrity and you plan to stop and start the replicate set, use an
exclusive replicate set.

An exclusive replicate set has the following characteristics:
v All replicates in an exclusive replicate set have the same state and frequency

settings. For more information, see “cdr list replicateset” on page A-130.
v When you create the replicate set, Enterprise Replication sets the initial state of

the replicate set to active.
v You can manage the replicates in an exclusive replicate set only as part of the

set. Enterprise Replication does not support the following actions for the
individual replicates in an exclusive replicate set:
– “Starting a Replicate” on page 11-8
– “Stopping a Replicate” on page 11-8
– “Suspending a Replicate” on page 11-9
– “Resuming a Suspended Replicate” on page 11-9

8-18 IBM Informix Enterprise Replication Guide

v Replicates that belong to an exclusive replicate set cannot belong to any other
replicate sets.

To create an exclusive replicate set, use the --exclusive option with cdr define
replicateset.

Important: You cannot change an exclusive replicate set to non-exclusive.
Related reference:
“cdr define replicateset” on page A-87
“cdr define template” on page A-98
“cdr resume replicate” on page A-164

Non-Exclusive Replicate Sets
By default, the cdr define replicateset command creates non-exclusive replicate sets.

A non-exclusive replicate set has the following characteristics:
v You can manage replicates that belong to a non-exclusive replicate set both

individually and as part of the set.
v Because individual replicates in a non-exclusive replicate set can have different

states, the non-exclusive replicate set itself has no state.
v You should not use non-exclusive replicate sets for replicates that include tables

that have referential constraints placed on columns.
v A replicate can belong to more than one non-exclusive replicate set.

Important: You cannot change a non-exclusive replicate set to exclusive.

Use non-exclusive replicate sets if you want to add a replicate to more than one
replicate set. For example, you might want to create replicate sets to manage
replicates on the target server, table, or entire database. To do this, create three
non-exclusive replicate sets:
v A set that contains the replicates that replicate to the target server
v A set that contains the replicates on a particular table
v A set that contains all the replicates

In this scenario, each replicate belongs to three non-exclusive replicate sets.

Customizing the Replicate Set Definition
You can specify the replication frequency (“Specifying Replication Frequency” on
page 8-11) for all the replicates when you define the replicate set. For example, to
define the non-exclusive replicate set sales_set with the replicates sales_fiji and
sales_tahiti and specify that the members of sales_set replicate at 4:00 a.m. every
day, enter:
cdr define replicateset --at 4:00 sales_set sales_fiji \

sales_tahiti

To define the exclusive replicate set dev_set with the replicates dev_pdx and
dev_lenexa and specify that the members of dev_set replicate at 5:00 p.m. every
day, enter:
cdr define replicateset -X --at 17:00 dev_set dev_pdx\

dev_lenexa

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-19

Important: For replicates that belong to an exclusive replicate set, you cannot
specify the frequency individually for replicates in the set.

For more information, see “cdr define replicateset” on page A-87.

Initially Synchronizing Data Among Database Servers
Enterprise Replication provides an initial synchronization feature that allows you
to easily bring a new table up-to-date with replication when you start a new
replicate, or when you add a new participant to an existing replicate.

You do not need to suspend any servers that are replicating data while you add
the new replicate and synchronize it.

The cdr start replicate and cdr start replicateset commands provide options to
perform an initial synchronization for the replicates you are starting. All of the
rows that match the replication criteria will be transferred from the source server
to the target servers. If you are starting a replicate set, Enterprise Replication
synchronizes tables in an order that preserves referential integrity constraints (for
example, child tables are synchronized after parent tables).

Use the --syncdatasource (-S) option of the cdr start replicate or cdr start
replicateset command to specify the source server for synchronization. Any
existing rows in the specified replicates are deleted from the remote tables and
replaced by the data from the node you specify using -S.

The --extratargetrows option of the cdr start replicate or cdr start replicateset
commands specifies how to handle rows found on the target servers that are not
present on the source server. You can specify to remove rows from the target, keep
extra rows on the target, or replicate extra rows from the target to other
participants.

If you use the cdr start replicate or cdr start replicateset command to specify a
subset of servers on which to start the replicate (or replicate set), that replicate (or
replicate set) must already be active on the source server. The source server is the
server you specify with the -S option. For example, for the following command,
repl1 must already be active on serv1:
cdr start repl repl1 ... -S serv1 serv2 serv3

When you start a replicate (or replicate set) for participants on all servers, the
replicate does not need to be active on the source server. So, for the following
command, repl1 does not need to be active:
cdr start repl1 ... -S serv1

When Enterprise Replication performs initial data synchronization, it keeps track of
discrepancies between the constraints set up on source and target server tables.
Rows that fail to be repaired due to these discrepancies are recorded in the ATS
and RIS files.

If replication fails for some reason and data becomes inconsistent, there are
different ways to correct data mismatches between replicated tables while
replication is active. The recommended method is direct synchronization. You can
also repair data based on an ATS or RIS file. Both of these methods are described
in “Resynchronizing Data among Replication Servers” on page 11-14.
Related concepts:

8-20 IBM Informix Enterprise Replication Guide

“Repair and Initial Data Synchronization” on page 1-5
“Load and unload data” on page 6-23

Set up replication through templates
Enterprise Replication provides templates to allow easy setup and deployment of
replication for clients with large numbers of tables to replicate. A template uses
schema information about a database, a group of tables, columns, and replication
keys to define a group of master replicates and a replicate set.

Do not use a template if you want to use time-based replication.

You create a template by running the cdr define template command and then you
instantiate the template on the servers where you want to replicate data by
running the cdr realize template command.

Templates set up replication for all the columns in the table. Templates are useful
for setting up large-scale replication environments. If you want a participant to
contain a partial row (just some columns in the table), you can either set up
replication manually, or, after you realize a template you can run the cdr remaster
command to restrict the query.

Defining Templates
You define a template using the cdr define template command, with which you
can specify which tables to use, the database and server they are located in, and
whether to create an exclusive or non-exclusive replicate set. Table names can be
listed on the command line or accessed from a file using the --file option, or all
tables in a database can be selected.

Important: A template cannot define tables from more than one database.

Specify that the replicate set is exclusive if you have referential constraints on the
replicated columns. Also, if you create an exclusive replicate set using a template,
you do not need to stop the replicate set to add replicates. For more information
about exclusive replicate sets, see “Define replicate sets” on page 8-18.

A template defines a group of master replicates and a replicate set.

You can use the cdr list template command from a non-leaf node to view details
about the template, including the internally generated names of the master
replicates. These are unique names based on the template, the server, and table
names.

Realizing Templates
After you define a template using the cdr define template command, use the cdr
realize template command to instantiate the template on your Enterprise
Replication database servers. The cdr realize template command first verifies that
the tables on each node match the master definition used to create the template.
Then, on each node, it adds the tables defined in the template as participants to
master replicates created by the template.

If a table on a server has additional columns to those defined in the template,
those columns are not considered part of the replicate.

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-21

If a table does not already exist on a server where you realize the template, you
can choose to create it, and it is also added to the replicate.

Also, at realization time, you can also choose to synchronize data among all
servers.

Verifying Participants without Applying the Template
The --verify option allows you to check that a template’s schema information is
correct on all servers before actually instantiating the template.

Synchronizing Data Among Database Servers
Use the --syncdatasource option to specify a server to act as the source for data
synchronization on all servers where you are realizing the template. The server
listed with this option must either be listed as one of the servers on which to
realize the template, or it must already have the template.

Improve Performance During Synchronization:

You can speed up a synchronization operation by temporarily increasing the size of
the send queue.

Enterprise Replication uses the value of the CDR_QUEUEMEM configuration
parameter as the size of the send queue during a synchronization operation. To
increase the size of the send queue during a particular synchronization operation,
use the --memadjust option.

In addition to controlling memory during initial synchronization, you can also
control memory consumption when you realize a template and perform a direct
synchronization.

Create tables automatically
You automatically create tables in the template definition if they do not exist on a
server.

Include the --autocreate option in the cdr realize template command to
automatically create tables. You cannot use the --autocreate option for tables that
contain user-defined data types.

Use the --dbspace option to specify a dbspace for table creation.

Note: Tables that are created by --autocreate option do not automatically include
non-replicate key indexes, defaults, constraints (including foreign constraints),
triggers, or permissions. You must manually create these objects.

Other synchronization options
Several other options to the cdr realize template command can affect how
synchronization occurs.

You can use the --applyasowner option to realize a table by its owner rather than
the user informix.

The --extratargetrows option specifies whether to delete, keep, or merge rows
found on target servers that are not present on the source server during the
synchronization operation.

The --mode option defines whether servers only receive or only send data.

8-22 IBM Informix Enterprise Replication Guide

Changing Templates
You cannot update a template. To adjust a template, you must delete it with the
cdr delete template command and then re-create it with the cdr define template
command.

Template Example
This example illustrates a scenario in which one template is created, and then a
second template is added and realized on the same servers. The replicates in both
templates are consolidated into the first template for ease of maintenance, and the
second template is then deleted.

The first template Replicateset1 is defined on three tables in the college database:
staff, students, and schedule. The template is realized on the servers g_cdr_ol_1
and g_cdr_ol_2.

The second template Replicateset2 is defined on three tables in the bank database:
account, teller, and transaction. This template is realized on the same servers as
the first template: g_cdr_ol_1 and g_cdr_ol_2.

The replicates in both templates exist on the same servers, and would be
administered (for example, stopped and started) at the same time. Thus, the
replicates defined as part of Replicateset2 can be moved into Replicateset1, after
which the Replicateset2 template can then be deleted.

This procedure is performed as follows:
1. Define the template Replicateset1 on the staff, students, and schedule tables of

the college database:
cdr define template -c g_cdr_ol_1 Replicateset1 -M g_cdr_ol_1\
-C "timestamp" -A -R -d college testadm.staff testadm.students\
testadm.schedule

This command also creates the replicate set Replicateset1.
2. Realize the template on the server g_cdr_ol_1:

cdr realize template -c g_cdr_ol_1 Replicateset1 "college@g_cdr_ol_1"

3. Realize the template on server g_cdr_ol_2 and synchronize the data with server
g_cdr_ol_1:
cdr realize template -c g_cdr_ol_2 -u -S g_cdr_ol_1 \
Replicateset1 "university@g_cdr_ol_2"

4. Define the template Replicateset2 on the account, teller, transaction, and
customer tables of the bank database:
cdr define template -c g_cdr_qa_1 Replicateset2 -M g_cdr_ol_1\

-C "timestamp" -A -R -d bank testadm.account testadm.teller\
testadm.transactions testadm.customer

Obtaining dictionary for bank@g_cdr_ol_1:’testadm’.account
Obtaining dictionary for bank@g_cdr_ol_1:’testadm’.teller
Obtaining dictionary for bank@g_cdr_ol_1:’testadm’.transactions
Obtaining dictionary for bank@g_cdr_ol_1:’testadm’.customer
Creating mastered replicate Replicateset2_g_cdr_ol_1_1_1_account

for table ’testadm’.account
Creating mastered replicate Replicateset2_g_cdr_ol_1_1_2_teller

for table ’testadm’.teller
Creating mastered replicate Replicateset2_g_cdr_ol_1_1_3_transactions

for table ’testadm’.transactions
Creating mastered replicate Replicateset2_g_cdr_ol_1_1_4_customer

for table ’testadm’.customer

This command also creates the replicate set Replicateset2.
5. Realize the template Replicateset2 on g_cdr_ol_1:

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-23

cdr realize template -c g_cdr_ol_1 Replicateset2 "bank@g_cdr_ol_1"

6. Realize the template on server g_cdr_ol_2 and synchronize the data with server
g_cdr_ol_1:
cdr realize template -c g_cdr_ol_1 -u -S g_cdr_ol_1 \
Replicateset2 "bank@g_cdr_ol_2"

7. Add the replicates created as part of Replicateset2 to Replicateset1. (Use the
cdr list replset Replicateset2 command to list the replicates in Replicateset2.):
cdr change replset -c g_cdr_ol_1 -a Replicateset1\

Replicateset2_g_cdr_ol_1_1_1_account \
Replicateset2_g_cdr_ol_1_1_2_teller \
Replicateset2_g_cdr_ol_1_1_3_transactions \

Replicateset2_g_cdr_ol_1_1_4_customer

8. Delete the replicate set Replicateset2:
cdr delete template Replicateset2

9. Realize all the replicates on a new server g_cdr_ol_3. Then realize the template
Replicateset1 on the server g_cdr_ol_3:
cdr realize template -c g_cdr_ol_1 -u -S g_cdr_ol_1\

Replicateset1 "bank@g_cdr_ol_3"

This command adds g_cdr_ol_3 as a participant to all the replicates in
Replicateset1, including the replicates that were created as part of the template
Replicateset2: Replicateset2_g_cdr_ol_1_1_1_account,
Replicateset2_g_cdr_ol_1_1_2_teller,
Replicateset2_g_cdr_ol_1_1_3_transactions, and
Replicateset2_g_cdr_ol_1_1_4_customer.

8-24 IBM Informix Enterprise Replication Guide

Chapter 9. Grid setup and management

A grid is a set of replication servers that are configured to simplify administration.
When you run SQL data definition statements from within a grid context on a grid
server, the statements propagate to all servers in the grid. You can run SQL data
manipulation statements and routines through grid routines. You can choose to set
up replication automatically when you create a table through a grid. You can
propagate external files to other servers in the grid.

SQL statements are not replicated by Enterprise Replication. Enterprise Replication
replicates the row images that are the results from SQL statements. The grid
propagates SQL statements, but does not, by default, propagate the results of
propagated SQL statements. The following illustration shows three replication
servers, named Cdr1, Cdr2, and Cdr3, that replicate row images between each
other, while the grid propagates SQL statements and administration commands.

A grid can be useful if you have multiple replication servers and you often
perform the same tasks on every replication server. The following types of tasks
can be run through the grid:
v Creating replicated tables. When you create a replicated table through a grid, the

other tasks for setting up replication are completed automatically: a replicate is
created for the table, participants are defined for each replication server, and the
replicate is added to the grid replicate set.

v Administering servers, for example, adding chunks, removing logical logs, or
changing configuration parameter settings

v Updating the database schema, for example, altering, adding, or removing tables
v Running or creating stored procedures or user-defined routines
v Updating data, for example, purging old data or updating values that are based

on conditions
v Altering a replicate definition when you alter a replicated table
v Copying external files to grid servers

Cdr1

Cdr2

Cdr3

Row images

SQL statements
External filesAdministration

Replication

Grid

Figure 9-1. Replication of rows as a grid propagates SQL statements to each server.

© Copyright IBM Corp. 1996, 2015 9-1

For example, suppose that you have 100 replication servers and must create a
table. You must fragment the table into two new dbspaces. You also must create a
new stored procedure to run on the table. With a grid, you would run four
commands to perform these tasks on all 100 replication servers, instead of running
400 commands. The command to create the table can also specify that the data in
that table is replicated.

You can control the security of the grid by authorizing which users can run grid
routines on which servers. You can monitor the results of grid routines and rerun
any failed routines on the appropriate servers.

You can configure Connection Managers to route client connection requests to the
replication servers of a grid, based on one of the following redirection policies:
v FAILURE: Connection requests are directed to the replication server that has the

fewest apply failures.
v LATENCY: Connection requests are directed to the replication server that has the

lowest transaction latency.
v ROUNDROBIN: Connection requests are directed in a repeating, ordered fashion

(round-robin) to a group of replication servers.
v WORKLOAD: Connection requests are directed to the replication server that has

the lowest workload.
Related information:
Connection management through the Connection Manager

Example of setting up a replication system with a grid
This comprehensive example sets up a replication domain, creating a grid, creating
a database, creating a replicated table, and loading data.

This example creates a replication domain and grid that contain four replication
servers: serv1, serv2, serv3, serv4. Each server computer has the Informix database
server installed, but no databases defined.
1. On all servers, set the CDR_QDATA_SBSPACE configuration parameter.
2. Edit the sqlhosts files on all four servers so that they each have the following

information:
#dbservername nettype hostname servicename options
gserv1 group - - i=143
serv1 ontlitcp ny.usa.com 1230 g=gserv1
gserv2 group - - i=144
serv2 ontlitcp tokyo.japan.com 1231 g=gserv2
gserv3 group - - i=145
serv3 ontlitcp rome.italy.com 1232 g=gserv3
gserv4 group - - i=146
serv4 ontlitcp perth.australia.com 1233 g=gserv4

3. Define each server as a replication server by running the cdr define server
command:
cdr define server -c gserv1 -I gserv1
cdr define server -c gserv2 -S gserv1 -I gserv2
cdr define server -c gserv3 -S gserv1 -I gserv3
cdr define server -c gserv4 -S gserv1 -I gserv4

4. Create a grid that includes all replication servers in the domain as members of
the grid:
cdr define grid grid1 --all

9-2 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1176.htm

5. Authorize the user bill to run commands on the grid and designate the server
gserv1 as the source server from which grid commands can be run:
cdr enable grid --grid=grid1 --user=bill --node=gserv1

Tip: User informix does not have permission to run grid operations unless
you include it in the user list.

6. Run cdr list grid to see the grid configuration:
Grid Node User
------------------ ------------------ ----------------
grid1 gserv1* bill

gserv2
gserv3
gserv4

The asterisk indicates that gserv1 is the source server for the grid.
7. Run the cdr list replicateset command to see the grid replicate set

information:
Ex T REPLSET PARTICIPANTS

Y Y grid1

The replicate set has the same name as the grid. It does not yet contain any
participants.

8. Create two dbspaces named dbsp2 and dbsp3 in which to fragment a table:
database sysmaster;

EXECUTE FUNCTION ifx_grid_function(’grid1’,
’task("create dbspace","dbsp2",

"/db/chunks/dbsp2","2G","0")’);

EXECUTE FUNCTION ifx_grid_function(’grid1’,
’task("create dbspace","dbsp3",

"/db/chunks/dbsp3","8G","0")’);

The dbspaces are created on all four servers.
9. Create database named retail and a table named special_offers with

replication enabled:
database sysmaster;

EXECUTE PROCEDURE ifx_grid_connect(’grid1’, 1);

CREATE DATABASE retail WITH LOG;

CREATE TABLE special_offers(
offer_description varchar(255),
offer_startdate date,
offer_enddate date,
offer_rules lvarchar,
offer_type char(16))
WITH CRCOLS

FRAGMENT BY EXPRESSION
offer_type = "GOLD" IN dbsp2,
REMAINDER IN dbsp3;

EXECUTE PROCEDURE ifx_grid_disconnect();

10. Run the cdr list grid --verbose grid1 command to see information about the
statements on each server:

Chapter 9. Grid setup and management 9-3

Grid Node User
------------------ ------------------ ----------------
grid1 gserv1* bill

gserv2
gserv3
gserv4

Details for grid grid1

Node:gserv1 Stmtid:1 User:bill Database:retail 2010-05-27 15:21:57
CREATE DATABASE retail WITH LOG;
ACK gserv1 2010-05-27 15:21:57
ACK gserv2 2010-05-27 15:21:58
ACK gserv3 2010-05-27 15:21:59
ACK gserv4 2010-05-27 15:21:59

Node:gserv1 Stmtid:1 User:bill Database:retail 2010-05-27 15:21:57
CREATE TABLE special_offers(

offer_description varchar(255),
offer_startdate date,
offer_enddate date,
offer_rules lvarchar
offer_type char(16))
WITH CRCOLS

FRAGMENT BY EXPRESSION
offer_type = "GOLD" IN dbsp2
REMAINDER IN dbsp3;

ACK gserv1 2010-05-27 15:21:57
ACK gserv2 2010-05-27 15:21:58
ACK gserv3 2010-05-27 15:21:59
ACK gserv4 2010-05-27 15:21:59

Both statements succeeded on all four servers.
11. Run cdr list replicate to see the replicate information:

CURRENTLY DEFINED REPLICATES

REPLICATE: gserv1_1
STATE: Active
CONFLICT: Timestamp
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: retail:bill.special_offers
OPTIONS:
REPLTYPE: Master,Grid

The replicate was created and is active.
12. Run the cdr list replicate brief gserv1_1 command to see the participants:

REPLICATE TABLE SELECT
--
gserv1_1 retail@gserv1:bill.special_offers select * from

bill.special_offers
gserv1_1 retail@gserv2:bill.special_offers select * from

bill.special_offers
gserv1_1 retail@gserv2:bill.special_offers select * from

bill.special_offers
gserv1_1 retail@gserv2:bill.special_offers select * from

bill.special_offers

13. Load data onto one of the replication servers and Enterprise Replication
replicates the data to the other servers. For more information, see “Load and
unload data” on page 6-23.

Related concepts:
“Connection management for client connections to participants in a grid” on page
9-19

9-4 IBM Informix Enterprise Replication Guide

Related tasks:
“Adding a replication server to a grid by cloning” on page 9-8
Related reference:
“cdr enable grid” on page A-116
“cdr list grid” on page A-121
“cdr list replicateset” on page A-130
Related information:
sqlhosts connectivity information

Example of rolling out schema changes in a grid
You can roll out schema changes to replicated tables through a grid without
shutting down your applications.

Suppose that you have a grid replicate set named gridset that contains 12
replicates, each of which represents a different table. You want to alter the data
types of columns in five tables. The grid contains four servers.

To roll out schema changes without application downtime:
1. Change any connections from the original application to the replication server

named cdr1 to connect to the replication server named cdr2.
2. On the cdr1 server, connect to the stores_demo database, connect to the grid,

and alter the five tables:
dbaccess stores_demo -
EXECUTE PROCEDURE ifx_grid_connect(’grid1’, ’gridset’, 4);
SET LOCK MODE TO WAIT 120;
ALTER TABLE customer ADD prefix (char15);
ALTER TABLE items MODIFY order_num (bigint);
ALTER TABLE stock MODIFY description (lvarchar);
ALTER TABLE cust_calls ADD call_descr2 (lvarchar);
ALTER TABLE manufact MODIFY manu_name (char32);

The ifx_grid_connect() procedure changes the tables on cdr1 but delays the
propagation of the changes to the other replication servers.

3. Update the application to reflect the new schema for the five tables and connect
to the server cdr1.

4. Close the connections from the original application.
5. On the server cdr1, propagate schema changes to the other replication servers

by running the following statement:
EXECUTE FUNCTION ifx_grid_release(’grid1’, ’gridset’);

6. On the server cdr1, create a derived replicate set named alterSet that contains
the altered tables by running the following command:
cdr define replicateset --needRemaster=gridset alterSet

7. From the server cdr1, remaster the altered tables on all replication servers by
running the following command:
cdr remaster replicateset --master=cdr1 alterSet

8. From the server cdr1, synchronize the data on all replication servers by running
the following command:
cdr check replicateset --replset=alterSet --repair --master=cdr1 --all

9. On the server cdr1, drop the derived replicate set by running the following
command:
cdr delete replicateset alterSet

Related tasks:

Chapter 9. Grid setup and management 9-5

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0161.htm

“Altering multiple tables in a replicate set” on page 11-25
“Propagating database object changes” on page 9-15

Creating a grid
You can create a grid based on an existing replication domain. You must authorize
users who can run grid routines, and designate a server from which to run grid
routines.

You must be connected to a replication server in the domain that contains the
servers that you want to include in the grid.

To create a grid:
1. Specify a name for the grid and the servers to include in the grid by running

the cdr define grid command. For example, the following command creates a
grid named grid1 and adds all replication servers in the domain as members of
the grid:
cdr define grid grid1 --all

2. Authorize users to run commands on the grid and designate a server from
which grid commands can be run by running the cdr enable grid command.
For example, the following command authorizes the user bill to run commands
on the server gserv1:
cdr enable grid --grid=grid1 --user=bill --node=gserv1

Only authorized users can run grid routines on authorized servers. User
informix does not have permission to perform grid operations unless you
include it in the user list.

Related reference:
“cdr define grid” on page A-73
“cdr enable grid” on page A-116

Grid maintenance
You can adjust grid membership, change user or server authorization to run grid
routines, and delete grid-routine history from the syscdr database.

To see information about the grid, such as, which servers can run grid routines and
the status of routines that are run on the grid servers, run the cdr list grid
command.

If you remove a server from your replication domain, remove the server from your
grid. The following example removes a replication server named gserv1 from the
grid grid_1:
cdr change grid grid_1 --delete gserv1

You cannot drop a replicated column through a grid. To drop a replicated column,
you must manually remaster the replicate and then drop the column.

You cannot rename a replicated database. You must manually rename the database
on each participant server by using the cdr remaster command.

To change which users can run routines on the grid or which servers are
authorized to run grid routines, run the cdr enable grid and cdr disable grid

9-6 IBM Informix Enterprise Replication Guide

commands. For example, to change the authorized server from gserv1 to gserv2
and authorize the user srini, run the following commands:
cdr disable grid --grid=grid1 --node=gserv1
cdr enable grid --grid=grid1 --node=gserv2 --user=srini

To delete the history of grid routines, run the ifx_grid_purge() procedure. You
must occasionally purge information about completed grid routines to prevent the
syscdr database from growing too large.
Related reference:
“cdr change grid” on page A-35
“cdr disable grid” on page A-112
“cdr enable grid” on page A-116
“cdr list grid” on page A-121
“ifx_grid_purge() procedure” on page C-13

Viewing grid information
You can view information about a grid and whether a replicate or replicate set
belongs to a grid.

To view information about a grid:

Run the cdr list grid command. For example, the following command shows the
servers and authorized users for a grid named grid1:
cdr list grid grid1

The output for this command might be:
Grid Node User
------------------ ------------------ ----------------
grid1 gserv1* bill

gserv2
gserv3
gserv4

The user bill is authorized to run grid commands on the server gserv1.

You can see whether a replicate is a member of a grid replicate set by running the
cdr list replicate command or the onstat -g cat repls command. You can also query
the syscdrrepl SMI table. The following example output of the cdr list replicate
command shows that the replicate is a master replicate and a member of a grid
replicate set:
CURRENTLY DEFINED REPLICATES

REPLICATE: grid_6553604_100_3
STATE: Active ON:g_delhi
CONFLICT: Always Apply
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: tdb:nagaraju.t1
OPTIONS: row,ris,fullrow
REPLID: 6553605 / 0x640005
REPLMODE: PRIMARY ON:gserv1
APPLY-AS: INFORMIX ON:gserv1
REPLTYPE: Master,Grid

Related reference:
“cdr list replicateset” on page A-130
“cdr list replicate” on page A-125

Chapter 9. Grid setup and management 9-7

“onstat -g cat: Print ER global catalog information” on page E-2
“The syscdrrepl Table” on page G-12

Adding replication servers to a grid
There are multiple ways to add a replication server to a grid.

You can add a replication server to a grid in the following ways:
v Run the cdr change grid command.
v Clone an existing replication server in the grid.

Adding a replication server to a grid by running cdr change
grid

You can add a replication server to a grid by running the cdr change grid
command.

To add a replication server to a grid:

Run the cdr change grid command. For example, to add a replication server
named gserv3 to the grid grid1, run the following command:
cdr change grid grid1 --add=gserv3

To see information about the grid, such as, which servers can run grid routines and
the status of routines that are run on the grid servers, run the cdr list grid
command.
Related reference:
“cdr change grid” on page A-35

Adding a replication server to a grid by cloning
You can add a new server to a grid by cloning an existing replication server in the
grid.

The server you are adding to the grid must have the same hardware and operating
system as the source server that you are cloning.

To add a server to a grid:

Clone an existing replication server in the grid by using the ifxclone utility with
the --disposition=ER option. This process is described in “Adding a server to the
domain by cloning a server” on page 8-5.

The following example adds a fifth server, named serv5, to an existing replication
domain and to a grid named grid1. The server serv1 is used as the source server.
1. On the serv1 server, set the value of the ENABLE_SNAPSHOT_COPY

configuration parameter to 1 in the onconfig file.
2. On the serv5 servers, complete the ifxclone prerequisites for all servers, such as

setting the required configuration parameters and environment variables.
Set these environment variables:
v INFORMIXDIR

v INFORMIXSERVER

v INFORMIXSQLHOSTS

9-8 IBM Informix Enterprise Replication Guide

v ONCONFIG

Set these configuration parameters to the same values on the serv5 server as on
the serv1 server:
v DRAUTO
v DRINTERVAL
v DRTIMEOUT
v LOGBUFF
v LOGFILES
v LOGSIZE
v LTAPEBLK
v LTAPESIZE
v ROOTNAME
v ROOTSIZE
v PHYSBUFF
v PHYSFILE
v STACKSIZE
v TAPEBLK
v TAPESIZE

3. On the serv5 server, run the ifxclone command with the --disposition=ER
option to clone the data and the configuration of the serv1 server onto the
serv5 server and the --createchunkfile command to create the necessary
chunks:
ifxclone --trusted --source=serv1 --sourceIP=111.222.333.444
--sourcePort=1230 --target=serv5 --targetIP=111.222.333.777
--targetPort=1234 --disposition=ER --createchunkfile

4. Edit the sqlhosts files on all five servers in the domain so that they each have
the following information:
#dbservername nettype hostname servicename options
gserv1 group - - i=143
serv1 ontlitcp ny.usa.com 1230 g=gserv1
gserv2 group - - i=144
serv2 ontlitcp tokyo.japan.com 1231 g=gserv2
gserv3 group - - i=145
serv3 ontlitcp rome.italy.com 1232 g=gserv3
gserv4 group - - i=146
serv4 ontlitcp perth.australia.com 1233 g=gserv4
gserv5 group - - i=147
serv5 ontlitcp helsinki.finland.com 1234 g=gserv5

The server serv5 is automatically added to the grid grid1.
Related concepts:
“Example of setting up a replication system with a grid” on page 9-2
Related tasks:
“Adding a server to the domain by cloning a server” on page 8-5
Related reference:
“cdr change grid” on page A-35
Related information:
onconfig Portal: Configuration parameters by functional category
ENABLE_SNAPSHOT_COPY configuration parameter
The ifxclone utility

Chapter 9. Grid setup and management 9-9

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1072.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1114.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1093.htm

Adding an externally created replicate into a grid replicate set
If a replicate is created external to a grid, it can still be added to a grid replicate
set.

You can add an existing replicate to a grid replicate set in the following ways:
v Run the cdr change replicateset command.
v Alter a replicate through a grid.

Adding an existing replicate to a grid replicate set by using
cdr change replicateset

You can use the cdr change replicateset command to add replicates created outside
of a grid environment to a grid replicate set.

Before you begin, you must verify the following items:
v All the replicate participants are members of the grid. Replicate participants

must include every member node of the grid, and no additional participants.
v Each replicate participant's information refers to the same database, owner, table

name and SELECT statement.
v The replicated table schema is the same among all participants.
v The replicate does not belong to an exclusive replicate set.

To add a replicate to a grid replicate set by using the cdr remaster command:
1. Use the cdr remaster command to convert the replicate to a mastered replicate.
2. Run the cdr change replicateset command with the --add option and specifying

the grid replicate set. For example, the following command adds a replicate
named vendors to the grid1 grid replicate set:
cdr change replicateset --add grid1 vendors

When you run the cdr list replicate command, the REPLTYPE field shows Grid.
Related tasks:
“Adding an existing replicate to a grid replicate set by altering a table”
Related reference:
“cdr change replicateset” on page A-42
“cdr list replicate” on page A-125
Related information:
sqlhosts connectivity information

Adding an existing replicate to a grid replicate set by altering
a table

You can alter replicated tables through a grid even if the replicate was not created
through a grid. Altering a replicated table through a grid adds the replicate to the
grid replicate set.

Before you begin, you must verify the following items:
v All the replicate participants are members of the grid. Replicate participants

must include every member node of the grid, and no additional participants.
v Each replicate participant's information refers to the same database, owner, table

name and SELECT statement.
v The replicated table schema is the same among all participants.

9-10 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0161.htm

v The replicate does not belong to an exclusive replicate set.

To alter a replicated table through a grid:
1. Connect to the grid by running the ifx_grid_connect() procedure with the

ER_enable argument set to 1.
2. Run an ALTER TABLE statement.
3. Disconnect from the grid by running the ifx_grid_disconnect() procedure.

The replicate is automatically remastered.

The following example adds a new column to the special_offers table and
remasters the replicate on all participants that are members of the grid:
EXECUTE PROCEDURE ifx_grid_connect(’grid1’, 1);

ALTER TABLE special_offers ADD (
offer_exceptions varchar(255));

EXECUTE PROCEDURE ifx_grid_disconnect();

Related tasks:
“Removing replicated columns” on page 11-26
“Adding an existing replicate to a grid replicate set by using cdr change
replicateset” on page 9-10
Related reference:
“ifx_grid_connect() procedure” on page C-1

Creating replicated tables through a grid
You can automatically create a replicate and start replication when you create a
table through the grid.

If the table you are creating is a typed table, you must define a primary key.

If you plan to create a table with a TimeSeries column, all grid servers must be
running Informix version 12.10 or later.

When you enable replication while creating a table through a grid, replication is
set up in the following way:
v A replicate is created for the table. The replicate name is based on the name of

the source server. Use the cdr list replicate command to see the name.
v All servers that are members of the grid are included as participants in the

replicate.
v The replicate is included in a replicate set that has the same name as the grid.
v The conflict resolution rule for the replicate is time stamp if you include the

WITH CRCOLS clause. Otherwise, the conflict resolution rule is always apply.
v The ERKEY shadow columns are automatically added to the table.
v All other replicate properties are the same as the default properties of a replicate

created through a template.

To set up replication:
1. Connect to the grid by running the ifx_grid_connect() procedure with the

ER_enable argument set to 1.
2. Run a CREATE TABLE statement. Include the WITH CRCOLS clause if you

want time stamp conflict resolution.

Chapter 9. Grid setup and management 9-11

3. Disconnect from the grid by running the ifx_grid_disconnect() procedure.

The following example creates a table with replication enabled that uses the time
stamp conflict resolution rule:
EXECUTE PROCEDURE ifx_grid_connect(’grid1’, 1);

CREATE TABLE special_offers(
offer_description varchar(255),
offer_startdate date,
offer_enddate date,
offer_rules lvarchar)
WITH CRCOLS;

EXECUTE PROCEDURE ifx_grid_disconnect();

If you need to alter or delete a database object that you created through a grid,
perform those operation from within a grid context. For example, do not create a
table from within a grid and then delete the table on one of the replication servers
outside of a grid context. Instead, delete the table through the grid.
Related concepts:
“Conflict resolution rule” on page 5-6
Related tasks:
“Preparing tables without primary keys” on page 6-20
Related reference:
“ifx_grid_connect() procedure” on page C-1
“cdr define template” on page A-98

Enabling replication within a grid transaction
You can enable replication within a transaction that is run in the context of the
grid.

By default, the results of transactions run in the context of the grid are not also
replicated by Enterprise Replication. In certain situations you might want to both
propagate a transaction to the servers in the grid and replicate the results of the
transaction.

To enable replication within a transaction:
1. Connect to the grid with the ifx_grid_connect() procedure.
2. Create a procedure that performs the following tasks:

a. Defines a data variable for the Enterprise Replication state information.
b. Runs the ifx_get_erstate() function and save its result in the data variable.
c. Enables replication by running the ifx_set_erstate() procedure with an

argument of 1.
d. Runs the statements that you want to replicate.
e. Resets the replication state to the previous value by running the

ifx_set_erstate() procedure with the name of the data variable.
3. Disconnect from the grid with the ifx_grid_disconnect() procedure.
4. Run the newly-defined procedure by using the ifx_grid_procedure() procedure.

9-12 IBM Informix Enterprise Replication Guide

Example

Suppose that a retail chain wants to run a procedure to create a report that
populates a summary table of each store's current inventory and then replicates
that summary information to a central server. A stored procedure named
low_inventory() that creates a low inventory report exists on all the servers in the
grid named grid1. The following example creates a new procedure named
xqt_low_inventory() that enables replication for the low_inventory() procedure,
and then runs the low_inventory() procedure:
EXECUTE PROCEDURE ifx_grid_connect(’grid1’);
CREATE PROCEDURE xqt_low_inventory()
DEFINE curstate integer;
EXECUTE FUNCTION ifx_get_erstate() INTO curstate;
EXECUTE PROCEDURE ifx_set_erstate(1);
EXECUTE PROCEDURE low_inventory();
EXECUTE PROCEDURE ifx_set_erstate(curstate);

END PROCEDURE;
EXECUTE PROCEDURE ifx_grid_disconnect();
EXECUTE PROCEDURE ifx_grid_procedure(’grid1’, ’xqt_low_inventory()’);

The following events occur in this example:
1. The ifx_grid_connect() procedure connects to the grid1 grid so that the

xqt_low_inventory() procedure is propagated to all the servers in the grid1
grid.

2. The xqt_low_inventory() procedure defines a data variable called curstate to
hold the Enterprise Replication state information.

3. The ifx_get_erstate() function obtains the Enterprise Replication state and stores
it in the curstate variable. The ifx_set_state() procedure enables replication.

4. The low_inventory() procedure is run.
5. The replication state is reset back to its original value.
6. The connection to the grid is closed by the ifx_grid_disconnect() procedure.
7. The ifx_grid_procedure() procedure runs the xqt_low_inventory() procedure on

all the servers in the grid and the result of the low_inventory() procedure is
replicated like any normal updating activity.

Related reference:
“ifx_set_erstate() procedure” on page D-1
“ifx_get_erstate() function” on page C-1

Propagating updates to data
You can change your data through a grid routine and propagate the changes to all
the servers in the grid.

You can propagate updates to data on servers in the grid. By default, changes to
data that are propagated through the grid are treated the same as changes to data
that are made by Enterprise Replication apply threads: they are not replicated
again. For example, if you propagate a DELETE statement through the grid to
remove old data, you would not want the resulting deleted rows to be replicated
as well. Although you can use the grid to run a DML statement, in general, use
Enterprise Replication to replicate changes to replicated data.

The grid must exist and you must run the grid routines as an authorized user from
an authorized server.

Chapter 9. Grid setup and management 9-13

To propagate an SQL statement or a stored procedure that updates data, run the
ifx_grid_execute() procedure with the DML statements or the stored procedure as
the second argument.

Examples

Example 1: Reduce the price of products with low sales

In the following example, the ifx_grid_execute() procedure runs SQL statements
that reduce the price of wool overcoats in stores that did not sell an overcoat in the
last week:
EXECUTE PROCEDURE ifx_grid_execute(’grid1’,

’UPDATE price_table SET price = price * 0.75
WHERE item =
(SELECT item FROM inventory i, sales s

WHERE i.description = "Wool Overcoat"
AND i.item = s.item
AND s.recent_sale_date <

extend (current – Interval(7) DAY))’);

Example 2: Purge old data

The following example purges all sales records before 2010:
Database retail_db;
EXECUTE PROCEDURE ifx_grid_execute(’grid1’,

’DELETE FROM sales WHERE sales_year < 2010’);

Example 3: Run a low inventory report

The following example runs an existing stored procedure named low_inventory():
EXECUTE PROCEDURE ifx_grid_procedure(’grid1’, ’low_inventory()’);

Related reference:
“ifx_grid_execute() procedure” on page C-7

Administering servers in the grid with the SQL administration API
You can run SQL administration API commands in grid routines to perform
administrative tasks on all servers in the grid.

The grid must exist and you must run the grid routines as an authorized user from
an authorized server and while connected to the sysadmin database.

To propagate an SQL administration API command:
1. Run the ifx_grid_function() function with the SQL administration API

command as the second argument.
2. Check the return code of the SQL administration API command to determine if

it succeeded by running the cdr list grid command. The cdr list grid command
shows the return code. The status of the ifx_grid_function() function can be
ACK, which indicates success, even if the SQL administration API command
failed.

Examples

The following examples must be run in the sysadmin database.

Example 1: Change a configuration parameter setting

9-14 IBM Informix Enterprise Replication Guide

The following example sets the maximum size of the log staging directory to 100
KB on all the servers in the grid:
EXECUTE FUNCTION ifx_grid_function(’grid1’,

’admin("set onconfig permanent",
"CDR_LOG_STAGING_MAXSIZE","100")’);

The output of the cdr list grid command shows that the admin() function
succeeded because the return codes are positive numbers:
Grid Node User
------------------ ------------------ ----------------
grid1 cdr1* bill

cdr2
cdr3

Details for grid grid1

Node:cdr1 Stmtid:1 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
admin("set onconfig permanent",

"CDR_LOG_STAGING_MAXSIZE","100")
ACK cdr1 2010-05-27 15:21:57

’110’
ACK cdr2 2010-05-27 15:21:58

’111’
ACK cdr3 2010-05-27 15:21:58

’112’

Example 2: Create a new dbspace

The following example creates a new dbspace on all the servers in the grid1 grid:
EXECUTE FUNCTION ifx_grid_function(’grid1’,

’task("create dbspace","dbsp2",
"/db/chunks/dbsp2","2G","0")’);

The output of the cdr list grid command shows that the task() function failed:
Grid Node User
------------------ ------------------ ----------------
grid1 cdr1* bill

cdr2
cdr3

Details for grid grid1

Node:cdr1 Stmtid:1 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
task("create dbspace","dbsp2",

"/db/chunks/dbsp2","2G","0"
ACK cdr1 2010-05-27 15:21:57

’Unable to create file /db/chunks/dbsp2’
ACK cdr2 2010-05-27 15:21:58

’Unable to create file /db/chunks/dbsp2’
ACK cdr3 2010-05-27 15:21:58

’Unable to create file /db/chunks/dbsp2’

Related reference:
“ifx_grid_function() function” on page C-8
“ifx_grid_execute() procedure” on page C-7

Propagating database object changes
You can create or alter database objects by running DDL statements while
connected to the grid and propagate the changes to all the servers in the grid.

Chapter 9. Grid setup and management 9-15

You can propagate creating, altering, and dropping database objects to servers in
the grid. For example, you can create a database or table or alter an existing
database or table. You can also create stored procedures and user-defined routines.

You can choose to run the DDL statements on the local server and defer the
propagation of the DDL statements to the other grid servers. Deferred propagation
of DDL statements can be useful when you are rolling out schema changes or
performing a rolling upgrade.

The grid must exist and you must run the grid routines as an authorized user from
an authorized server.

To propagate DDL statements:
1. Connect to the grid by running the ifx_grid_connect() procedure.
2. Run one or more SQL DDL statements.
3. Disconnect from the grid by running the ifx_grid_disconnect() procedure.

If you deferred the propagation of DDL statements, you can propagate them by
running the ifx_grid_release() function, or remove them by running the
ifx_grid_remove() function.

Example

Suppose that you have a retail shop with a website. You replicate your data to
several other locations for web applications. You want to be able to quickly and
easily create, drop, and update tables. You create a grid named grid1, from which
you can update the database schema for all servers in one step. The following
example creates a table for special offers in the prod_db database:
Database prod_db;

EXECUTE PROCEDURE ifx_grid_connect(’grid1’);

CREATE TABLE special_offers(
offer_description varchar(255),
offer_startdate date,
offer_enddate date,
offer_rules lvarchar);

EXECUTE PROCEDURE ifx_grid_disconnect();

Related reference:
“Example of rolling out schema changes in a grid” on page 9-5
“ifx_grid_connect() procedure” on page C-1
“ifx_grid_disconnect() procedure” on page C-6

Propagating external files through a grid
You can copy non-database, external files to the servers within a grid.

The ifx_grid_copy() procedure copies files from a directory on the source server to
a specified destination on all servers in a grid. You specify the source directory on
the source server by setting the GRIDCOPY_DIR configuration parameter to the
location of the file to copy. You also set the GRIDCOPY_DIR configuration
parameters on each of the destination servers to specify the directory to which the
file is copied. The source directory can be different than the destination directory.

9-16 IBM Informix Enterprise Replication Guide

The file is copied to all of the servers within the grid with the same permissions,
owner, and group. The names of the group and owner are transmitted along with
the file rather than the group ID and User ID because user and group names might
have different group ID and User ID values on different servers.

The grid must exist and you must run the grid routines as an authorized user from
an authorized server. Wildcard characters in file names are not supported.
1. On the source server, set the GRIDCOPY_DIR configuration parameter to the

location of the file to copy.
2. On the destination servers, set the GRIDCOPY_DIR configuration parameter to

the location of the destination of the file to copy.
3. Run the ifx_grid_copy() procedure specifying the grid name, the name of the

file to send, and, optionally, the file destination.

Examples

Example 1: Copy a file to servers in a grid

The following example copies the file $INFORMIXDIR/tmp/myfile to the other nodes
within grid grid1.
EXECUTE PROCEDURE ifx_grid_copy("grid1", "tmp/myfile")

Example 2: Copy a file to servers in a grid and change the name on the
destination servers

In the following example, assume that the GRIDCOPY_DIR configuration
parameter is set to $INFORMIXDIR/tmp on the source server and on the
destination server. The following example copies the file $INFORMIXDIR/tmp/
bin/sales-010512.exe on the source server to $INFORMIXDIR/tmp/bin/sales.exe
on all servers within the grid mygrid.
EXECUTE PROCEDURE ifx_grid_copy ("mygrid", "bin/sales-010512.exe", "bin/sales.exe");

Related reference:
“ifx_grid_copy() procedure” on page C-5
“GRIDCOPY_DIR Configuration Parameter” on page B-18

Rerunning failed grid routines
You can rerun a grid routine that failed on one or more servers in the grid.

If a grid routine failed on one or more servers in the grid, you can run the cdr list
grid command with the --nacks option to see the details of why it failed. If a
server in the grid is offline or is not connected to the network, then a grid routine
will be pending on that server and will be run when the server is reconnected to
the grid.

In some cases, you should not rerun a failed routine, because the failure is
expected. For example, if a server already has the database object that a grid
routine is creating, then that routine fails on that server. If a command failed on all
grid servers, you can run the original command again instead of running the
ifx_grid_redo() procedure.

The grid must exist and you must run the grid routine as an authorized user from
an authorized server.

Chapter 9. Grid setup and management 9-17

To rerun a grid routine, run the ifx_grid_redo() procedure.
If you run the ifx_grid_redo() procedure without additional arguments besides the
grid name, all routines that failed are re-attempted on all the servers on which they
failed. You can specify on which server to rerun routines and which routines to
rerun.

Example

Suppose you have a grid, named grid1, that contains the servers gserv_1 and
gserv_2, which have a database named db1.

You create a dbspace named dbsp2 on the server gserv_1 and then create a table in
that dbspace in a grid context with the following commands:
$ dbaccess db1 -
execute procedure ifx_grid_connect(’grid1’);
create table t100 (c1 int primary key) in dbsp2;
execute procedure ifx_grid_disconnect();

The cdr list grid command shows that the command failed on the server gserv_2:
$ cdr list grid grid1 --nack
Grid Node User
------------------------ ------------------------ ------------------------
grid1 gserv_1* user1

gserv_2
Details for grid grid1

Node:gserv_1 Stmtid:4 User:user1 Database:db1 2011-02-24 09:27:44
create table t100 (c1 int primary key) in dbsp2
NACK gserv_2 2011-02-24 09:27:45 SQLERR:-261 ISAMERR:-130

Grid Apply Transaction Failure

The error indicates that the table could not be created because the specified
dbspace does not exist.

You create a dbspace named dbsp2 on the server gserv_2 and run the
ifx_grid_redo() procedure to rerun the original command on gserv_2:
$ dbaccess db1 –
execute procedure ifx_grid_redo(’grid1’);

The output of the cdr list grid command shows that the command succeeded on
both servers:
$ cdr list grid grid1 -v
Grid Node User
------------------------ ------------------------ ------------------------
grid1 gserv_1* user1

gserv_2
Details for grid grid1
...
Node:gserv_1 Stmtid:4 User:user1 Database:db1 2011-02-24 09:27:44
create table t100 (c1 int primary key) in dbsp2
ACK gserv_1 2011-02-24 09:27:44
ACK gserv_2 2011-02-24 09:31:09

Related reference:
“ifx_grid_redo() procedure” on page C-10
“cdr list grid” on page A-121

9-18 IBM Informix Enterprise Replication Guide

Connection management for client connections to participants in a
grid

You can configure Connection Managers to route connection requests from clients
to the replication servers of a grid.

Connection requests can be directed to replication servers based on Connection
Manager service-level agreements (SLAs). You can configure Connection Manager
SLAs to redirect connection requests based on various redirection policies.
Connection Managers support the following redirection policies:
v FAILURE: Connection requests are directed to the replication server that has the

fewest apply failures.
v LATENCY: Connection requests are directed to the replication server that has the

lowest transaction latency.
v ROUNDROBIN: Connection requests are directed in a repeating, ordered fashion

(round-robin) to a group of replication servers.
v WORKLOAD: Connection requests are directed to the replication server that has

the lowest workload.
Related concepts:
“Example of setting up a replication system with a grid” on page 9-2
Related information:
Connection management through the Connection Manager
Example of configuring connection management for a grid or replicate set

Grid queries
If you have a table that is the same on multiple servers in a grid, but whose data is
not replicated, you can run a grid query to return the consolidated data from the
multiple servers.

For example, suppose that you have a chain of retail stores. Each store has a
database with the same schema. The database contains tables for inventory,
customer data, and sales transactions. You set up a grid because you want to
replicate the inventory tables to a central server. You want the tables for sales
transactions to be the same on every server, but you do not want to replicate all
the sales transactions to the central server. You do, however, want a monthly report
that shows the total sales per store. You run a grid query on the central server that
aggregates the sales data for the last month for each store and returns results that
are grouped by store.

To run a grid query, you include the GRID clause in the SELECT statement. The
GRID clause specifies the grid, or subset of the grid, on which to run the query.
The GRID clause has requirements and restrictions for the tables and other SQL
constructs that you can include in the query.

Before you can run a grid query, you must define the table that you want to query
as a grid table. If you use secure connections between your grid servers, you must
configure secure connections on the grid server from which you want to run grid
queries.

Planning for grid queries

Consider the following options when you plan grid queries.

Chapter 9. Grid setup and management 9-19

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1176.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1434.htm

Before you run a grid query, you can configure the following options for the
queries:
v Whether to run the grid query on all the servers in the grid or a subset of grid

servers. To define subsets of grid servers, create regions by running the cdr
define region command. You can create as many grid regions as you need. Grid
regions can overlap or be divided into smaller grid regions. A grid server can be
a member of multiple grid regions.

v Whether to make all SELECT statements that are run in the current session run
as grid queries by default. Run the SET ENVIRONMENT SELECT_GRID or the
SET ENVIRONMENT SELECT_GRID_ALL statements to specify the grid or
region name for every query. Leave the GRID clause out of SELECT statements.

v Whether to skip grid servers that are not available when you run the grid query.
By default, the grid query runs only if all servers are available. Run the SET
ENVIRONMENT GRID_NODE_SKIP ON statement to run the query on the
available servers and skip the unavailable servers.

While you run a grid query, besides choosing the tables and the grid or region to
include in the query, you can include the following options:
v Whether to return all qualifying rows, including duplicate rows. By default, grid

queries return only unique rows. Include the ALL keyword in the GRID clause
to return all rows.

v Whether to return information about which server the results are from. Include
the ifx_node_id() or ifx_node_name() function to return a column that identifies
the grid server from which each row originates. You can use the server ID or
name to group the results.

After you run a grid query, you can find out which servers were skipped for a grid
query, if the GRID_NODE_SKIP option was set to ON. Run the
ifx_gridquery_skipped_node_count() and ifx_gridquery_skipped_nodes()
functions to return the grid servers that were unavailable during the grid query.
Related reference:
“ifx_grid_connect() procedure” on page C-1
“cdr define region” on page A-76
“cdr delete region” on page A-104
“cdr change gridtable” on page A-36
“cdr remaster gridtable” on page A-156
“ifx_node_id() function” on page C-16
“ifx_node_name() function” on page C-17
“ifx_gridquery_skipped_nodes() function” on page C-15
“ifx_gridquery_skipped_node_count() function” on page C-16
“ifx_grid_release() function” on page C-11
“ifx_grid_remove() function” on page C-12
Related information:
SELECT_GRID session environment option
SELECT_GRID_ALL session environment option
GRID_NODE_SKIP session environment option
GRID clause

Defining tables for grid queries
Define the tables that you want to include in grid queries as grid tables.

9-20 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2599.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2600.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2601.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

The only prerequisite for defining a table as a grid table is that the table must have
the same name, column names, and data types on multiple grid servers. However,
the GRID clause has other restrictions and requirements for running grid queries.

You can include system catalog and sysmaster databases tables in grid queries
without defining them as grid tables.

To define a table as a grid table, run the cdr change gridtable command. The cdr
change gridtable command verifies that the tables have matching column names
and data types across the grid.

For example, the following command defines the items, orders, and customer
tables in the stores_demo database for the grid named grid1:
cdr change gridtable -–grid=grid1 -–database=stores_demo -–add items orders customer

If you want to alter a grid table, you must run the alter operation through the grid.
You cannot run a grid query on the table during an alter operation. After the alter
operation is complete, the database server verifies that the table is consistent across
grid servers.
Related reference:
“cdr change gridtable” on page A-36
“cdr remaster gridtable” on page A-156
Related information:
GRID clause

Configuring secure connections for grid queries
If the sqlhosts files on the grid servers include the s=6 option, you must define
alternate connections for grid queries. On the grid server from which you want to
run grid queries, create a grid.servers file that lists the server group names and
aliases for the other grid servers.

You do not need to encrypt the file. Authentication is done through normal
authentication methods.

To configure secure connections for grid queries:

On the grid server from which you want to run grid queries, create a text file
named grid.servers in the INFORMIXDIR/etc directory. List each grid server group
name and alias on a separate line.

For example, the following sqlhosts file for a grid uses the s=6 option for secure
connections:
#dbservers nettype hostname servicename options

g_ca_sf group - - i=100
san_francisco ontlitcp computer1 sf_alt g=g_ca_sf,s=6

g_ca_sj group - - i=200
san_jose ontlitcp computer2 sj_alt g=g_ca_sj,s=6

g_ca_okl group - - i=300
oakland ontlitcp computer3 okl_alt g=g_ca_okl,s=6

g_ca_yk group - - i=400
yreka ontlitcp computer4 yk_alt g=g_ca_yk,s=6

Chapter 9. Grid setup and management 9-21

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

g_ca_sac group - - i=500
sacramento ontlitcp computer5 sac_alt g=g_ca_sac,s=6

g_ca_stk group - - i=600
stockton ontlitcp computer6 stk_alt g=g_ca_stk,s=6

The corresponding grid.servers file has the following contents:
#group alias
g_ca_sf sf_alt
g_ca_sj sj_alt
g_ca_okl okl_alt
g_ca_yk yk_alt
g_ca_sac sac_alt
g_ca_stk stk_alt

Related tasks:
“Configuring secure ports for connections between replication servers” on page 6-4

Related reference:
“ifx_grid_connect() procedure” on page C-1
“ifx_grid_release() function” on page C-11
“ifx_grid_remove() function” on page C-12
Related information:
GRID clause

Examples of grid queries
These examples show some of the options that you have when you run grid
queries.

The following examples are based on the stores_demo database. A grid named
grid1 has eight servers, named store1 through store8. The examples assume that
you defined the items, orders, and customer tables as grid tables.

Example 1: Return chunk information about grid servers

Suppose you want to know about the chunks on all your grid servers. You want to
know the number of chunks, which dbspaces each chunk is in, the total size of
each chunk, and the amount of free space in each chunk.

You run the following grid query to return chunk information for each grid server.
The tables in the sysmaster database are grid tables by default.
database sysmaster;

SELECT ifx_node_name()::char(12) AS node, chknum, dbsnum, nfree, chksize
FROM syschunks GRID ALL ’grid1’;

The grid query returns the following results:
node chknum dbsnum nfree chksize

store1 1 1 1777275 2000000
store1 2 2 5025 100000
store1 3 3 24974 100000
store2 1 1 1775579 2000000
store2 2 2 5025 100000
store2 3 3 24974 100000
store3 1 1 1769260 2000000

9-22 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

store3 2 2 5025 100000
store3 3 3 24974 100000

. . .

Example 2: Aggregate results by server and find skipped servers

Suppose you want a list of the orders by customer for each store in the grid named
grid1. A store is represented by its grid server name. You want to return all results,
including duplicate rows. You do not want the query to fail if any of the grid
servers are unavailable, but you want to know which servers were skipped.

Before you run the grid query, you run the following statement to run the query
on available grid servers and skip any unavailable grid servers:
SET ENVIRONMENT GRID_NODE_SKIP ON;

You run the following grid query to return the outstanding orders by customer for
each store:
SELECT c.fname, c.lname, ifx_node_name() AS node

SUM(i.total_price) AS tot_amt, SUM(i.quantity) AS tot_cnt
FROM items i, orders o, customer c GRID ALL ’grid1’
WHERE i.order_num = o.order_num
AND o.customer_num = c.customer_num
GROUP BY 1,2
ORDER BY 2,1,3;

The grid query returns the following results:
fname Alfred
lname Grant
node store1
tot_amt $84.00
tot_cnt 2

fname Alfred
lname Grant
node store2
tot_amt $84.00
tot_cnt 4

. . .

You run the following statement to find how many grid servers were skipped:
EXECUTE FUNCTION ifx_gridquery_skipped_node_count();

2

Two servers were skipped. You run the ifx_gridquery_skipped_nodes() statement
for each of the skipped servers:
EXECUTE FUNCTION ifx_gridquery_skipped_nodes();

store5

EXECUTE FUNCTION ifx_gridquery_skipped_nodes();

store8

Chapter 9. Grid setup and management 9-23

Example 3: Query a region of the grid

Suppose you want to know the total sales and number of sales per person for each
store in Kansas. Kansas has two stores whose grid servers are named store3 and
store4. You want all queries during your database session to be run as grid queries
for the Kansas stores.

You run the following command to define a grid region named region1 that
contains the servers store3 and store4:
cdr define region --grid=grid1 region1 store3 store4

You run the following statement to set all SELECT statements during the session as
grid queries for the region region1:
SET ENVIRONMENT SELECT_GRID_ALL region1

You run the following statement to return the total sales and number of sales per
person for each store. The GRID clause is not necessary because you set the
SELECT_GRID_ALL option.
SELECT fname[1,10], lname[1,10], ifx_node_id() AS storenum,

SUM(quantity) AS tot_cnt, SUM(total_price) AS tot_amt
FROM items i, orders o, customer c
WHERE i.order_num = o.order_num
AND o.customer_num = c.customer_num
GROUP BY 2,1
ORDER BY 2,1,3;

The query returns the following results:
fname lname storenum tot_cnt tot_amt

Alfred Grant 3 8 $84.00
Alfred Grant 4 6 $84.00
Marvin Hanlon 3 12 $438.00
Marvin Hanlon 4 10 $438.00
Anthony Higgins 3 45 $1451.80
Anthony Higgins 4 36 $1451.80
Roy Jaeger 3 16 $1390.00
Roy Jaeger 4 13 $1390.00
Fred Jewell 3 16 $584.00
Fred Jewell 4 13 $584.00
Frances Keyes 3 4 $450.00
Frances Keyes 4 3 $450.00

. . .

Example 4: Use a grid query as a subquery

Suppose you want the total sales and number of sales for each customer across all
stores. You use the same query that you use in example 2 as the subquery to
return information by grid server. The main query aggregates the results of the
subquery.

You run the following statement to return the total sales and number of sales per
person:
SELECT fname, lname,

SUM(tot_amt) AS amt_by_person, SUM(tot_cnt) AS tot_by_person
FROM

(
SELECT c.fname, c.lname, ifx_node_name() AS node,

SUM(i.total_price) AS tot_amt, SUM(i.quantity) AS tot_cnt
FROM items i, orders o, customer c GRID ALL ’grid1’

9-24 IBM Informix Enterprise Replication Guide

WHERE i.order_num = o.order_num
AND o.customer_num = c.customer_num
GROUP BY 1,2

)
GROUP BY fname, lname
ORDER BY 2, 1;

The query returns the following results:
fname lname amt_by_person tot_by_person

Alfred Grant $336.00 20
Marvin Hanlon $1752.00 40
Anthony Higgins $5807.20 135
Roy Jaeger $5560.00 50
Fred Jewell $2336.00 50
Frances Keyes $1800.00 10
Margaret Lawson $1792.00 110

. . .

Related reference:
“ifx_grid_connect() procedure” on page C-1
“cdr define region” on page A-76
“cdr delete region” on page A-104
“cdr change gridtable” on page A-36
“cdr remaster gridtable” on page A-156
“ifx_node_id() function” on page C-16
“ifx_node_name() function” on page C-17
“ifx_gridquery_skipped_nodes() function” on page C-15
“ifx_gridquery_skipped_node_count() function” on page C-16
“ifx_grid_release() function” on page C-11
“ifx_grid_remove() function” on page C-12
Related information:
SELECT_GRID session environment option
SELECT_GRID_ALL session environment option
GRID_NODE_SKIP session environment option
GRID clause

Chapter 9. Grid setup and management 9-25

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2599.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2600.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2601.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

9-26 IBM Informix Enterprise Replication Guide

Chapter 10. Shard cluster setup

Sharding is a way to horizontally partition a single table across multiple database
servers in a shard cluster. Enterprise Replication moves the data from the source
server to the appropriate target server as specified by the sharding method. You
query a sharded table as if the entire table is on the local server. You do not need
to know where the data is. Queries that are performed on one shard server retrieve
the relevant data from other servers in a shard cluster. Sharding reduces the index
size on each shard server and distributes performance across hardware. You can
add shard servers to the shard cluster as your data grows.

Prerequisites

Before you create a shard cluster, the following system must be in place:
v You must have an Enterprise Replication domain that is composed of two or

more nodes.
v On one of the Enterprise Replication nodes, you must have a table or collection

to shard that conforms to the following requirements:
– The table must have a dedicated column or field for tracking row or

document versions.
– The table cannot include data types that are not supported in sharded

queries.
– The databases on all shard servers must have same locale type.

Shard cluster architecture

Shard servers are uniquely identified by the SHARD_ID configuration parameter
that you must set on each shard server. Because shard servers have unique IDs,
Enterprise Replication can efficiently communicate between shard servers:
v Client connections are multiplexed over a common pipe and authenticated only

on the local shard server.
v Sharded queries are run in parallel on all shard servers and their

high-availability secondary servers.
v The consistency of the sharded table is enforced on all shard servers. Shard

servers do not need to transfer table information between each other. Data
definition language statements that you run on a sharded table are propagated
to all shard servers.

Related information:
JSON data sharding
Components supporting high availability and scalability

Creating a shard cluster
To create a shard cluster, prepare the shard servers and specify the sharding
definition.

All shard servers must belong to the same Enterprise Replication domain.

To create a shard cluster:

© Copyright IBM Corp. 1996, 2015 10-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_011.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1387.htm

1. On each shard server, set the SHARD_ID configuration parameter to a positive
integer value that is unique in the shard cluster by running the following
command:
onmode -wf SHARD_ID=unique_positive_integer

If the SHARD_ID configuration parameter is already set to a positive integer,
you can change the value by editing the onconfig file and then restarting the
database server. You can also set the SHARD_MEM configuration parameter to
customize the number of memory pools that are used during shard queries.

2. On the shard server that contains the table to shard, run the cdr define
shardCollection command.

Related reference:
“cdr define shardCollection” on page A-93
“SHARD_ID configuration parameter” on page B-18
Related information:
onmode -wf, -wm: Dynamically change certain configuration parameters

Shard cluster definitions
The definition for a shard cluster includes information about the shard servers, the
data to shard, and the sharding method.

To run the cdr define shardCollection command, which creates a sharding
definition for partitioning your table data, you must specify the following
information:
v A name for the sharding definition
v The name of the database that contains the table that is being sharded
v The name of the user that owns the table that is being sharded
v The sqlhosts file group name for each database server in the shard cluster
v The column that is used as a shard key
v Which sharding method the database server uses for determining where rows

are distributed to:
– With hash-based sharding, the data is automatically divided between shard

servers.
– With expression-based sharding, you specify how the data is divided between

shard servers. You must also specify the shard server to receive the data that
is outside the scope of the expression.

v How you want to distribute the data:
– Insert rows on any shard server, replicate the rows to the appropriate shard

server, and then delete duplicate rows from the original server. The delete
method is the default method and is the same behavior as when you define
sharding with MongoDB commands.

– Insert rows on any shard server, replicate the rows to the appropriate shard
server, but then keep duplicate rows on the original server. The keep method
is similar to a data dissemination system.

– Insert rows on the appropriate shard server and do not replicate rows. The
informational method is useful if you want to query across multiple servers
that have the same table, but you do not need to shard the data during
loading. For example, you have a different database server for each of your
three stores. The data from each store is always inserted in the appropriate
server. You set up the sharding definition with an expression that matches

10-2 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0439.htm

database servers with their store identifiers. Then you can run sharded
queries to aggregate data from all three stores.

v The table column or collection field for tracking row updates

Hash-based sharding

When you create a hash-based sharding definition, IBM Informix uses a hash value
of a specific column or field to distributes data to the servers of a shard cluster. For
example, the following command creates a hashed index that is based on shard
key values, and then the Enterprise Replication determines where rows with
specific hashed index values are distributed to:
cdr define shardCollection collection_1 db_1:john.customers

--type=delete --key=state --strategy=hash --versionCol=version
g_shard_server_A g_shard_server_B g_shard_server_C g_shard_server_D

Expression-based sharding

When you create an expression-based sharding definition, IBM Informix uses
WHERE-clause syntax on a specific column or field to distributes data to the
servers of a shard cluster. For example, the following command sends rows with a
shard-key value of NV to g_shard_server_B:
cdr define shardCollection collection_1 db_1:joe.clients)
--type=delete --key=state --strategy=expression –-versionCol=version

g_shard_server_A "IN (’WA’,’OR’,’ID’)"
g_shard_server_B "IN (’CA’,’NV’,’UT’,’AZ’)"
g_shard_server_C "IN (’TX’,’OK’,’NM’,’AR’,’LA’)"
g_shard_server_D REMAINDER

Sharding definitions must include the REMAINDER expression for rows or documents
that have values which are not accounted for by the other expressions. For
example, the previous sharding definition sends rows with a shard-key value of
’NY’ to g_shard_server_D.

Expressions that are used for sharding data cannot overlap. For example, a
sharding definition that is created with the following command is not valid
because rows or documents with shard key values 40 to 60 would be sent to both
g_shard_server_A and g_shard_server_B.
cdr define shardCollection collection_1 db_1:joe.clients)
--type=delete --key=age --strategy=expression –-versionCol=version

g_shard_server_A "BETWEEN 0 AND 60"
g_shard_server_B "BETWEEN 40 AND 100"
g_shard_server_C REMAINDER

Sharded queries
You can query a sharded table as if it is a single table on one database server.
However, restrictions for distributed queries between database servers and
restrictions specific to sharded queries apply.

When you run a sharded query, do not include server name qualifications for
remote servers.

If the SHARD_ID configuration parameter is set to unique values on each shard
server in the shard cluster, sharded queries are run in parallel on each shard server.

Sharded queries have eventual consistency.

Chapter 10. Shard cluster setup 10-3

If your shard servers have high-availability secondary servers, you can run
sharded queries from the secondary servers.

Data types

A sharded query can return the following data types: non-opaque atomic built-in
data types, LVARCHAR, Boolean, BSON, and JSON. Sharded queries cannot return
distinct data types.

To run sharded queries on time series data in a TimeSeries data type, shard a
virtual table that is based on the time series table.

Restrictions

You can include only one sharded table in a query block.

You cannot include the following SQL syntax elements in a query that includes a
sharded table:
v DataBlade API routines
v Java user-defined routines
v Triggers
v A FOR UPDATE clause in a SELECT statement

You cannot run an EXECUTE FUNCTION or EXECUTE PROCEDURE statement
for a routine to operate on a sharded table.

You cannot run a statement that contains an update to a shard key that requires
the row to move to another shard server. To update the shard key of a row, delete
the row and then insert it with the new values.

You cannot shard data in an XA environment.

Performance tips

You can improve the speed of sharded queries by customizing how shared
memory for sharded queries is allocated. You can control shared memory
allocation by setting the SHARD_MEM configuration parameter on each shard
server.

If your sharded queries frequently include joins to another table, replicate that
table to all the shard servers to improve query performance.

If your sharded queries included stored routines as a filter, define the routines on
all the shard servers. Queries run faster when the data is filtered on each shard
server before being returned.

If the SHARD_ID configuration parameter is set on all shard servers, the shard
servers use server multiplexer group (SMX) connections. You can reduce latency
between shard servers by increasing the number of pipes that are used for the
SMX connections. Set the SMX_NUMPIPES configuration parameter to the number
of pipes.
Related reference:
“SHARD_MEM configuration parameter” on page B-19

10-4 IBM Informix Enterprise Replication Guide

Shard cluster management and monitoring
You can scale out a shard cluster by adding new shard servers. You can also
change the shard cluster's definition to change where rows or documents are
distributed to.

Modifying a shard-cluster and adding or removing shard servers

To modify the servers in a shard cluster, run the cdr change shardCollection
command on one of the shard servers. The cdr change shardCollection command
performs the following actions:
1. A new sharding definition is created.
2. Using the new sharding definition, existing data is distributed across the shard

servers.
3. The original sharding definition is deleted.

Note: You can add new servers, remove existing servers, or modify the sharding
definition, but you cannot change the type of sharding definition. A hash-based
sharding definition cannot change to an expression-based sharding definition, and
an expression-based sharding definition cannot change to a hash-based sharding
definition.

The following example shows how to add capacity to a shard cluster that uses a
hash-based sharding definition. The original shard cluster was defined with the
following command:
cdr define shardCollection collection_1 db_1:john.customers

--type=delete --key=identifier --strategy=hash --versionCol=version
g_shard_server_1
g_shard_server_2

Run the following command to add g_shard_server_3 to the shard cluster:
cdr change shardCollection collection_1 --add g_shard_server_3

The following example shows how to add a new region-specific server to a shard
cluster that uses an expression-based sharding definition. The original shard cluster
was created with the following command:
cdr define shardCollection collection_2 db_2:john.clients

--type=delete --key=state --strategy=expression –-versionCol=version
g_shard_server_1 "IN (’WA’,’OR’)"
g_shard_server_2 "IN (’CA’,’NV’)"
g_shard_server_3 remainder

Run the following command to add g_shard_server_4 to the shard cluster:
cdr change shardCollection collection_2 --add

g_shard_server_4 "IN (’UT’,’ID’)"

A new sharding definition is created. Any rows or documents that have a shard
key of UT or ID are moved from g_shard_server_3 to g_shard_server_4, and all
future inserts are distributed according to the new sharding definition.

You can remove servers from a shard cluster using the --drop option or entirely
replace a sharding definition with the --replace option.

Chapter 10. Shard cluster setup 10-5

Monitoring a shard cluster

To see the current definition for a shard cluster, you can run the cdr list
shardCollection command on one of the shard servers, and specify the definition's
name. For example:
cdr list shardCollection my_collection

To see information on the shard cache, run the onstat -g shard command on one of
the shard servers.

Stopping data distribution and deleting a sharding definition

To stop data distribution and delete the sharding definition, run the cdr delete
shardCollection on one of the shard servers, and specify the definition's name. For
example:
cdr delete shardCollection my_collection

Related reference:
“cdr change shardCollection” on page A-43
“cdr delete shardCollection” on page A-110
“cdr list shardCollection” on page A-135
Related information:
onstat -g shard command: Print information about the shard cache

10-6 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1177.htm

Chapter 11. Managing Replication Servers and Replicates

These topics cover how to manage your Enterprise Replication system, including
managing replication servers, replicates and participants, replicate sets, templates,
replication server network connections, and resynchronizing data, and performing
alter operations on replicated tables.

Managing Replication Servers
You manage replication servers with the cdr commands.

The state of the server refers to the relationship between the source server and the
target server. To determine the current state of the server, use the cdr list server
server_name command. For more information about the possible server states, see
“cdr list server” on page A-131.

Note: When switching a server to administration mode to perform administrative
tasks, be aware that any Enterprise Replication on the server will be started (or
continue to run normally if already started). In this situation data on which you
might be relying may change as other users modify it, and concurrency problems
may arise as others access the same data. To avoid this problem, launch the server
using the oninit -Dj command; if the server is already running, use the cdr stop
command to shut down any currently running replications.
Related reference:
“Set configuration parameters for replication” on page 6-15

Modify server attributes
You modify replication server attributes by running the cdr modify server
command.

You can change the following attributes of the server:
v Idle timeout
v Whether Aborted Transaction Spooling (ATS) files or Row Information Spooling

(RIS) files are generated
v Location of the directory for the ATS or RIS files
v The format of the ATS files: text, XML, or both
v The mode of all the participants on the server: primary, receive-only, or

send-only
Related tasks:
“Defining Replication Servers” on page 8-1
Related reference:
“cdr modify server” on page A-146

Dynamically Modifying Configuration Parameters for a
Replication Server

You can alter the settings for Enterprise Replication configuration parameters and
environment variables on a replication server while replication is active.

© Copyright IBM Corp. 1996, 2015 11-1

Use the following commands to dynamically update values of most Enterprise
Replication configuration parameters:

cdr add onconfig
Adds a value. This option is available only for configuration parameters
and environment variables that allow multiple values.

cdr change onconfig
Replaces the existing value. This option is available for all Enterprise
Replication configuration parameters and environment variables.

cdr remove onconfig
Removes a specific value. This option is available only for configuration
parameters and environment variables that allow multiple values.

The commands change configuration parameters in the onconfig file. To update
environment variables, use the CDR_ENV configuration parameter.

To dynamically update the value of the CDR_DELAY_PURGE_DTC configuration
parameter, use the onmode -wf command.

The following table shows which changes are valid for Enterprise Replication
configuration parameters.

Table 11-1. Options for dynamically updating Enterprise Replication configuration
parameters

Configuration Parameter
cdr add
onconfig

cdr change
onconfig

cdr remove
onconfig

CDR_APPLY No No No

CDR_DBSPACE No Yes No

CDR_DSLOCKWAIT No Yes No

CDR_ENV CDR_ALARMS No No No

CDR_ENV CDR_LOGDELTA No Yes No

CDR_ENV CDR_PERFLOG No Yes No

CDR_ENV CDR_RMSCALEFACT No Yes No

CDR_ENV CDR_ROUTER No Yes No

CDR_ENV CDRSITES_731 Yes Yes Yes

CDR_ENV CDRSITES_92X Yes Yes Yes

CDR_ENV CDRSITES_10X Yes Yes Yes

CDR_EVALTHREADS No Yes No

CDR_LOG_LAG_ACTION Yes Yes Yes

CDR_LOG_STAGING_MAXSIZE Yes Yes Yes

CDR_MAC_DYNAMIC_LOGS No Yes No

CDR_NIFCOMPRESS No Yes No

CDR_QDATA_SBSPACE Yes Yes Yes

CDR_QUEUEMEM No Yes No

CDR_SERIAL No Yes No

CDR_SUPPRESS_ATSRISWARN Yes Yes Yes

ENCRYPT_CDR No Yes No

ENCRYPT_CIPHERS No Yes No

11-2 IBM Informix Enterprise Replication Guide

Table 11-1. Options for dynamically updating Enterprise Replication configuration
parameters (continued)

Configuration Parameter
cdr add
onconfig

cdr change
onconfig

cdr remove
onconfig

ENCRYPT_MAC Yes Yes Yes

ENCRYPT_MACFILE Yes Yes Yes

ENCRYPT_SWITCH No Yes No

You can view the setting of Enterprise Replication configuration parameters and
environment variables with the onstat -g cdr config command.
Related reference:
“onstat -g cdr config: Print ER settings” on page E-4
“cdr add onconfig” on page A-29
“cdr change onconfig” on page A-38
“cdr remove onconfig” on page A-159
Appendix B, “Enterprise Replication configuration parameter and environment
variable reference,” on page B-1

Viewing Replication Server Attributes
After you define a server for replication, you can view information about the
server using the cdr list server command. If you do not specify the name of a
defined server on the command line, Enterprise Replication lists all the servers that
are visible to the current server. If you specify a server name, Enterprise
Replication displays information about the current server, including server ID,
server state, and attributes.

For more information, see “cdr list server” on page A-131.

Connect to another replication server
By default, when you view information about a server, Enterprise Replication
connects to the global catalog of the database server specified by the
INFORMIXSERVER environment variable. You can connect to the global catalog of
another database server by using the --connect option.

For example, to connect to the global catalog of the database server idaho, enter:
cdr list server --connect=idaho

Related concepts:
“Enterprise Replication Terminology” on page 1-1
“Connect Option” on page A-3

Temporarily stopping replication on a server
You can temporarily stop replication on a server to perform maintenance tasks in
several different ways.

You can stop Enterprise Replication on a server by shutting down the database
server. Replication begins again when you restart the database server.

However, you might want to temporarily stop the Enterprise Replication threads
without stopping the database server.

Chapter 11. Managing Replication Servers and Replicates 11-3

You can temporarily stop replication by running the cdr stop command. The
stopped server does not capture data to be replicated. Other replication servers in
the domain continue to queue replicated data for the stopped server in their send
queues. Replication threads remain stopped (even if the database server is stopped
and restarted) until you run the cdr start command. When you restart replication
on the server, it receives and applies the replicated data from the other replication
servers. However, if replication is stopped for long enough, the replay position on
the logical log on the stopped server can be overrun and the send queues on the
active replication servers can fill up. If either of these situations happens, you must
synchronize the server that was stopped.

If your replicates use time stamp or delete wins conflict resolution rules, you
should temporarily stop replication on the server by using the cdr disable server
command. Disabling a replication server is also appropriate if you do not have
enough disk space to avoid overrunning the replay position. Replication servers do
not queue replicated transactions for the disabled replication server, nor does the
disabled replication server queue its transactions. Therefore, you must synchronize
the replication server that was disabled after you enable replication on it by using
the cdr check replicateset command. However, because information about deleted
rows on the disabled replication server is saved in delete tables, you can take
advantage of a time stamp repair.
Related reference:
“cdr stop” on page A-189
“cdr disable server” on page A-114

Restarting Replication on a Server
You can restart replication after Enterprise Replication was temporarily stopped.

If replication was stopped by the cdr disable server command, you can restart it
by running the cdr check replicateset command with the --repair and the --enable
options or by running the cdr enable server command. If you use the cdr enable
server command, you must subsequently synchronize the server.

If replication stopped due to an error, you can restart replication by shutting down
and restarting the database server or by running the cdr start command.

If replication was stopped by the cdr stop command, restart replication by running
the cdr start command.

When you run the cdr start command, Enterprise Replication resumes evaluating
the logical logs at the replay position (where Enterprise Replication stopped
evaluating the logical log when the server was stopped). If the replay position was
overwritten in the logical log, replication cannot restart and event alarm 75 is
raised. In this situation, run the cdr cleanstart command to restart Enterprise
Replication and then synchronize the data.
Related reference:
“cdr start” on page A-168
“cdr enable server” on page A-118

Suspending Replication for a Server
If you do not want to completely shut down the Enterprise Replication threads,
you can suspend replication of data to the server using the cdr suspend server
command. When replication is suspended to the server, the source server queues

11-4 IBM Informix Enterprise Replication Guide

replicated data but suspends delivery of replicated data to the target server. Note
that this command does not affect the network connection to the suspended server.
The source server continues to send other messages, such as acknowledgment and
control messages.

For example, to suspend replication of data to the server group g_papeete from the
server group g_raratonga, enter: cdr suspend server g_papeete g_raratonga

To suspend replication to g_papeete from all servers in the enterprise, enter:
cdr suspend server g_papeete

Important: When you suspend replication on a server, you must ensure that the
send queues on the other Enterprise Replication servers participating in replication
do not fill.

For more information, see “cdr suspend server” on page A-197.

Resuming a Suspended Replication Server
To resume replication to a suspended server, use the cdr resume server command,
specifying which server you want to resume. When you resume the server, the
queued data is delivered.

For example, to resume replication to the g_papeete server group, enter:
cdr resume server g_papeete

For more information, see “cdr resume server” on page A-167.

Deleting a Replication Server
You can remove Enterprise Replication from a database server and then remove
the database server from an Enterprise Replication domain.

Run the cdr delete server command two times to remove Enterprise Replication
from a database server, and then remove the database server from an Enterprise
Replication domain. The first time, run the command on the server you want to
remove Enterprise Replication from. The second time, connect to a different server
in the Enterprise Replication domain and run the command, specifying the server
you ran the first command on.

To remove Enterprise Replication from an inactive database server, use the cdr
delete server command with the --force option.

To restart Enterprise Replication on a disabled database server, define the server
again with the cdr define server command and then synchronize data. Row
history is deleted when a server has Enterprise Replication removed, so the history
is not recoverable if Enterprise Replication is restarted.

Important: If you are creating a replicate to replace the one you deleted, use the
cdr check queue --qname=ctrlq command to make sure that the delete operation
propagated to all the servers.

Examples

To remove Enterprise Replication from local database server reynolds, and then
remove database server reynolds from the Enterprise Replication domain it shares
with database server stimpson, run the following commands:

Chapter 11. Managing Replication Servers and Replicates 11-5

cdr delete server reynolds
cdr delete server --connect=stimpson reynolds

The first command removes Enterprise Replication from the local database server,
reynolds. The second command connects to database server stimpson, which is
another server in the Enterprise Replication domain, and then removes database
server reynolds from the shared domain.
Related reference:
“cdr delete server” on page A-108
“cdr check queue” on page A-47

Managing Replicates
You can perform the following tasks on existing replicates:
v Modify replicate attributes or participants
v View replicate properties and state
v Change the state of a replicate (whether replication is being performed)
v Delete a replicate

Modify replicates
You can modify replicates while replication is active to add or remove participants,
or to change some replicate attributes.

To change other attributes of replicates, you create a new replicate and then delete
the original replicate.

Adding or Deleting Participants
To be useful, a replicate must include at least two participants. You can define a
replicate that has fewer than two participants, but before you can use that
replicate, you must add more participants.

To add a participant to an existing replicate, use the cdr change replicate --add
command. For example, to add two participants to the sales_data replicate, enter:
cdr change replicate --add sales_data \

"db1@hawaii:jane.table1" "select * from table1" \
"db2@maui:john.table2" "select * from table2"

To delete a participant from the replicate, use the cdr change replicate --delete
command.

For example, to delete these two participants from the replicate, enter:
cdr change replicate --delete sales_data \

"db1@hawaii:jane.table1" "db2@maui:john.table2"

For more information, see “cdr change replicate” on page A-39.

Change replicate attributes
You can change many replicate attributes by running the cdr modify replicate
command.

You can change the following attributes of a replicate:
v Conflict-resolution rules and scope
v Replication frequency

11-6 IBM Informix Enterprise Replication Guide

v Error logging
v Replication of full rows or only changed columns
v Database triggers
v Participant type
v Code set conversion
v Serial processing
v Replication of unchanged large objects

You cannot change the conflict resolution from ignore to a non-ignore option (time
stamp, SPL routine, or time stamp and SPL routine). You cannot change a
non-ignore conflict resolution option to ignore.

For example, to change the replication frequency for the sales_data replicate to
every Sunday at noon, enter:
cdr modify replicate sales_data Sunday.12:00

Related reference:
“cdr modify replicate” on page A-140

Changing the replication key of a replicate
You can change the replication key of a replicate from the primary key, a unique
index or constraint, or the ERKEY shadow columns to another unique index or
constraint on your table.

To change the replication key of a replicate:
1. Define a new replicate by running the cdr define replicate command. Include

the --key option to specify the new replication key. Do not include the --erkey
option.

2. Start the new replicate by running the cdr start replicate command.
3. Stop the original replicate by running the cdr stop replicate command.
4. Delete the original replicate by running the cdr delete replicate command.
Related concepts:
“Unique key for replication” on page 4-3
Related tasks:
“Changing or re-creating primary key columns” on page 11-28
Related reference:
“cdr define replicate” on page A-77

Viewing Replicate Properties
After you define a replicate, you can view the properties of the replicate using the
cdr list replicate command. If you do not specify the name of a defined replicate
on the command line, Enterprise Replication lists detailed information on all the
replicates defined on the current server. If you use the brief option, Enterprise
Replication lists participant information about all the replicates. If you specify a
replicate name, Enterprise Replication displays participant information about the
replicate.

For information about this command, see “cdr list replicate” on page A-125.

Chapter 11. Managing Replication Servers and Replicates 11-7

Starting a Replicate
When you define a replicate, the replicate does not begin until you explicitly
change its state to active. When a replicate is active, Enterprise Replication captures
data from the logical log and transmits it to the active participants. At least two
participants must be active for data replication to occur.

Important: You cannot start replicates that have no participants.

To change the replicate state to active, use the cdr start replicate command. For
example, to start the replicate sales_data on the servers server1 and server23,
enter:
sales_data server1 server23

This command causes server1 and server23 to start sending data for the sales_data
replicate.

If you omit the server names, this command starts the replicate on all servers that
are included in that replicate.

When you start a replicate, you can choose to perform an initial data
synchronization, as described in “Initially Synchronizing Data Among Database
Servers” on page 8-20.

Warning: Run the cdr start replicate command on an idle system (no transactions
are occurring) or use the BEGIN WORK WITHOUT REPLICATION statement until
after you successfully start the replicate.

When replication is active on an instance, you may need to double the amount of
lock resources, to accommodate transactions on replicated tables.

If a replicate belongs to an exclusive replicate set, you must start the replicate set
to which the replicate belongs. For more information, see “Starting a Replicate.”

For more information, see “cdr start replicate” on page A-170.

Stopping a Replicate
You can temporarily stop replication for administrative purposes.

To stop the replicate, use the cdr stop replicate command. This command changes
the replicate state to inactive and deletes any data in the send queue for that
replicate. When a replicate is inactive, Enterprise Replication does not transmit or
process any database changes.

In general, you should only stop replication when no replication activity is likely
to occur for that table or on the advice of IBM Software Support. If database
activity does occur while replication is stopped for a prolonged period of time, the
replay position in the logical log might be overrun. If a message that the replay
position is overrun appears in the message log, you must resynchronize the data
on the replication servers. For more information on resynchronizing data, see
“Resynchronizing Data among Replication Servers” on page 11-14.

You cannot stop replicates that have no participants.

For example, to stop the sales_data replicate on the servers server1 and server23,
enter:

11-8 IBM Informix Enterprise Replication Guide

cdr stop replicate sales_data server1 server23

This command causes server1 and server23 to purge any data in the send queue
for the sales_data replicate and stops sending data for that replicate. Any servers
not listed on the command line continue to capture and send data for the
sales_data replicate (even to server1 and server23).

If you omit the server names, this command stops the replicate on all servers that
are included in that replicate.

If a replicate belongs to an exclusive replicate set, you must stop the replicate set
to which the replicate belongs. For more information, see “Exclusive Replicate
Sets” on page 8-18 and “Stopping a Replicate Set” on page 11-12.

Stopping a replicate set also stops any direct synchronization or consistency
checking that are in progress. To complete synchronization or consistency checking,
you must rerun the cdr sync replicateset or cdr check replicateset command.

For more information, see “cdr stop replicate” on page A-191.

Suspending a Replicate
If you do not want to completely halt all processing for a replicate, you can
suspend a replicate using the cdr suspend replicate command. When a replicate is
in a suspended state, the replicate captures and accumulates changes to the source
database, but does not transmit the captured data to the target database.

Warning: Enterprise Replication does not support referential integrity if a replicate
is suspended. Instead, you should suspend a server. For more information, see
“Suspending Replication for a Server” on page 11-4.

For example, to suspend the sales_data replicate, enter:
cdr suspend replicate sales_data

If a replicate belongs to an exclusive replicate set, you must suspend the replicate
set to which the replicate belongs. For more information, see “Exclusive Replicate
Sets” on page 8-18 and “Suspending a Replicate Set” on page 11-12.

For more information, see “cdr suspend replicate” on page A-194.

Resuming a Suspended Replicate
To return the state of a suspended replicate to active, use the cdr resume replicate
command. For example:
cdr resume replicate sales_data

If a replicate belongs to an exclusive replicate set, you must resume the replicate
set to which the replicate belongs. For more information, see “Exclusive Replicate
Sets” on page 8-18 and “Resuming a Replicate Set” on page 11-12.

For more information, see “cdr resume replicate” on page A-164.

Deleting a Replicate
To delete a replicate from the global catalog, use the cdr delete replicate command.

Chapter 11. Managing Replication Servers and Replicates 11-9

When you delete a replicate, Enterprise Replication purges all replication data for
the replicate from the send queue at all participating database servers.

For example, to delete the sales_data replicate from the global catalog, enter:
cdr delete replicate sales_data

Important: If you are creating a replicate to replace the one you deleted, use the
cdr check queue --qname=ctrlq command to make sure that the delete operation
propagated to all the servers.
Related reference:
“cdr check queue” on page A-47
“cdr delete replicate” on page A-105

Managing Replicate Sets
When you create a replicate set, you can manage the replicates that belong to that
set together or individually. If the replicate set is exclusive, you can only manage
the individual replicates as part of the set.

Performing an operation on a replicate set (except cdr delete replicateset) is
equivalent to performing the operation on each replicate in the replicate set
individually.

For more information, see “Managing Replicates” on page 11-6.

Connection management for client connections to participants
in a replicate set

You can configure Connection Managers to route connection requests from clients
to the replication servers of a replicate set.

Connection requests can be directed to replication servers based on Connection
Manager service-level agreements (SLAs). You can configure Connection Manager
SLAs to redirect connection requests based on various redirection policies.
Connection Managers support the following redirection policies:
v FAILURE: Connection requests are directed to the replication server that has the

fewest apply failures.
v LATENCY: Connection requests are directed to the replication server that has the

lowest transaction latency.
v ROUNDROBIN: Connection requests are directed in a repeating, ordered fashion

(round-robin) to a group of replication servers.
v WORKLOAD: Connection requests are directed to the replication server that has

the lowest workload.
Related information:
Connection management through the Connection Manager
Example of configuring connection management for a grid or replicate set

Modifying Replicate Sets
You can modify replicate sets in two ways:
v Add or Delete Replicates
v Change Replication Frequency

11-10 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1176.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1434.htm

Adding or Deleting Replicates From a Replicate Set
To add a replicate to an existing replicate set, use the command cdr change
replicateset --add. For example, to add two replicates to sales_set, enter:
cdr change replicateset --add sales_set sales_kauai \

sales_moorea

The state of the replicate when you add it to a replicate set depends on the type of
replicate set:
v For a non-exclusive replicate set, the state of the new replicate remains as it was

when you added it to the set. To bring all the replicates in the non-exclusive set
to the same state, use one of the commands described in “Managing Replicate
Sets” on page 11-10.

v For an exclusive replicate set, Enterprise Replication changes the existing state
and replication frequency settings of the replicate to the current properties of the
exclusive replicate set.

To delete a replicate from the replicate set, use cdr change replicate --delete.

For example, to delete the two replicates, sales_kauai and sales_moorea, from the
replicate set, enter:
cdr change replicateset --delete sales_set sales_kauai\

sales_moorea

When you add or remove a replicate from an exclusive replicate set that is
suspended or that is defined with a frequency interval, Enterprise Replication
transmits all the data in the queue for the replicates in the replicate set up to the
point when you added or removed the replicate. For more information, see
“Suspending a Replicate Set” on page 11-12 and “Frequency Options” on page
A-27.

For more information, see “cdr change replicateset” on page A-42.

Changing Replication Frequency For the Replicate Set
You can change the replication frequency for the replicates in an exclusive or
non-exclusive replicate set using the cdr modify replicateset command. For more
information, see “Specifying Replication Frequency” on page 8-11.

For example, to change the replication frequency for each of the replicates in the
sales_set to every Monday at midnight, enter:
cdr modify replicateset sales_set Monday.24:00

For more information, see “cdr change replicateset” on page A-42.

Viewing Replicate Sets
To view the properties of the replicate set, use the cdr list replicateset command.
The cdr list replicateset command displays the replicate set name and a list of the
replicates that are members of the set. To find out more about each replicate in the
replicate set, see “Viewing Replicate Properties” on page 11-7.

For more information, see “cdr list replicateset” on page A-130.

Starting a Replicate Set
To change the state of all the replicates in the replicate set to active, use the cdr
start replicateset command. For example, to start the replicate set sales_set, enter:

Chapter 11. Managing Replication Servers and Replicates 11-11

set sales_set

When you start a replicate set, you can choose to perform an initial data
synchronization, as described in “Initially Synchronizing Data Among Database
Servers” on page 8-20.

Warning: Run the cdr start replicateset command on an idle system (when no
transactions are occurring) or use the BEGIN WORK WITHOUT REPLICATION
statement after you successfully start the replicate.

For more information, see “cdr start replicateset” on page A-173 and “cdr start
replicate” on page A-170.

Stopping a Replicate Set
To stop the replicates in the replicate set, use the cdr stop replicateset command.
This command changes the state of all the replicates in the set to inactive.

For example, to stop the sales_set replicate set, enter:
cdr stop replicateset sales_set

Stopping a replicate set also stops any direct synchronization or consistency
checking that are in progress. To complete synchronization or consistency checking,
you must rerun the cdr sync replicateset or cdr check replicateset command.

For more information, see “cdr stop replicateset” on page A-193 and “cdr stop
replicate” on page A-191.

Suspending a Replicate Set
If you do not want to completely halt all processing for the replicates in a replicate
set, you can suspend the replicates in the set using the cdr suspend replicateset
command.

For example, to suspend the sales_set replicate set, enter:
cdr suspend replicateset sales_set

For more information, see “cdr suspend replicateset” on page A-195 and “cdr
suspend replicate” on page A-194.
Related reference:
“cdr change replicateset” on page A-42

Resuming a Replicate Set
To return the suspended replicates in the replicate set to active, use the cdr resume
replicateset command. For example:
cdr resume replicateset sales_set

For more information, see “cdr resume replicateset” on page A-165 and “cdr
resume replicate” on page A-164.

Deleting a Replicate Set
To delete a replicate set, use the cdr delete replicateset command.

11-12 IBM Informix Enterprise Replication Guide

Tip: When you delete a replicate set, Enterprise Replication does not delete the
replicates that are members of the replicate set. The replicates remain in the state
they were in when the set was deleted.

For example, you can connect to the default database server specified by the
INFORMIXSERVER environment variable and delete the sales_set replicate set by
using running the following command:
cdr delete replicateset sales_set

Important: If you are creating a replicate to replace the one you deleted, use the
cdr check queue --qname=ctrlq command to make sure that the delete operation
propagated to all the servers.
Related reference:
“cdr check queue” on page A-47
“cdr delete replicateset” on page A-106

Managing Templates
You can use the cdr list template and cdr delete template commands to view
information about your templates and to clean up obsolete templates. The
commands are described in detail, including examples and sample output, in
Appendix A, “The cdr utility,” on page A-1.

You cannot update a template. To modify a template, you must delete it with the
cdr delete template command and then re-create it with the cdr define template
command.

Viewing Template Definitions
Use the cdr list template command to view detailed information about the
template and the servers, databases and tables for which the template defines
replication.

Deleting Templates
Use the cdr delete template command to delete any templates that you no longer
want to use to set up replication. The command also deletes any replicate sets
associated with the template which exist if the template has been realized.

Important: Deleting a template does not delete replicates that have been created
by realizing a template.

Managing Replication Server Network Connections
This section explains how you can view network connections status, drop network
connections, and reestablish dropped network connections.

Viewing Network Connection Status
To determine the current status of the network connection to each of the servers
participating in replication, use the cdr list server command and look at the
STATUS column of the output.

For more information, see “cdr list server” on page A-131.

Chapter 11. Managing Replication Servers and Replicates 11-13

Dropping the Network Connection
To drop the Enterprise Replication network connection for a server, use the cdr
disconnect server command. When you drop the connection, Enterprise
Replication continues to function and queue transactions. For example, to
disconnect the network connection between the current replication server and the
server g_papeete, enter:
cdr disconnect server g_papeete

Warning: When you disconnect a server from Enterprise Replication, you must
ensure that the send queues on all other Enterprise Replication servers
participating in replication do not fill.

For more information, see “cdr disconnect server” on page A-115.

Reestablishing the Network Connection

To reestablish a dropped network connection, use the cdr connect server
command.

For example, to reestablish the network connection between the current replication
server and the server g_papeete, enter:
cdr connect server g_papeete

The following conditions can cause reestablishing a network connection to fail:
v A network outage
v A server is offline
v The cdr stop, cdr disconnect server, or cdr delete server commands were run on

a server
v The system clock times on the servers differ by more than 900 seconds

For more information, see “cdr connect server” on page A-72.

Resynchronizing Data among Replication Servers
If replication has failed for some reason and data is not synchronized, there are
different ways to correct data mismatches between replicated tables.

The following table compares each of the methods. All methods except manual
table unloading and reloading can be performed while replication is active.

Table 11-2. Resynchronization methods

Method Description

Direct synchronization v Replicates all rows from the specified
reference server to all specified target
servers for a replicate or replicate set.

v Runs as a foreground process by default,
but can run as a background process.

v Populates tables in a new participant.

v Quickly synchronizes significantly
inconsistent tables when used with the
TRUNCATE statement.

11-14 IBM Informix Enterprise Replication Guide

Table 11-2. Resynchronization methods (continued)

Method Description

Checking consistency and then repairing
inconsistent rows

v Compares all rows from the specified
target servers with the rows on the
reference server, prepares a consistency
report, and optionally repairs inconsistent
rows.

v Runs as a foreground process by default,
but can run as a background process.

ATS or RIS file repairs v Used to repair rows that other
synchronization methods could not repair.

v Repairs a single transaction at a time.

v Replicates or replication server must have
been configured with the ATS or RIS
option.

Manual table unloading and reloading v Manual process of unloading the target
table, copying the reference table, and
then loading the reference table into the
target database.

v Requires that replication be suspended.

Related concepts:
“Repair and Initial Data Synchronization” on page 1-5
Related reference:
“cdr stop” on page A-189
“cdr stop replicate” on page A-191

Performing Direct Synchronization
Direct synchronization replicates every row in the specified replicate or replicate
set from the reference server to all the specified target servers. You can use direct
synchronization to populate a new target server, or an existing target server that
has become severely inconsistent.
v The Enterprise Replication network connection must be active between the

Connect server, reference server and the target servers while performing direct
synchronization.

v The replicate must not be in a suspended or stopped state during direct
synchronization.

v The replicate must not be set up for time based replication.

You can synchronize a single replicate or a replicate set. When you synchronize a
replicate set, Enterprise Replication synchronizes tables in an order that preserves
referential integrity constraints (for example, child tables are synchronized after
parent tables). You can choose how to handle extra target rows and whether to
enable trigger firing on target servers.

Important: Running direct synchronization can consume a large amount of space
in your log files. Ensure you have sufficient space before running this command.

To perform direct synchronization, use the cdr sync replicate or cdr sync
replicateset command.

Chapter 11. Managing Replication Servers and Replicates 11-15

You can monitor the progress of a synchronization operation with the cdr stats
sync command if you provide a progress report task name in the cdr sync
replicate or cdr sync replicateset command.

You can run a synchronization operation as a background operation as an SQL
administration API command if you include the --background option. This option
is useful if you want to schedule regular synchronization operations with the
Scheduler. If you run a synchronization operation in the background, you should
provide a name for the progress report task by using the --name option so that you
can monitor the operation with the cdr stats sync command. You can also view the
command and its results in the command_history table in the sysadmin database.

You can significantly improve the performance of synchronizing a replicate set by
synchronizing the member replicates in parallel. You specify the number of parallel
processes with the --process option. For best performance, specify the same
number of processes as the number of replicates in the replicate set. However,
replicates with referential integrity constraints cannot be processed in parallel.

If direct synchronization cannot repair a row, the inconsistent row is recorded in an
ATS or RIS file.
Related tasks:
“Repairing Failed Transactions with ATS and RIS Files” on page 11-22
Related reference:
“cdr sync replicate” on page A-200
“cdr sync replicateset” on page A-204
“cdr stats sync” on page A-185

Synchronizing Significantly Inconsistent Tables
If your target tables are significantly inconsistent, you can speed the
synchronization process by truncating the target tables before you perform direct
synchronization.

When you truncate a table by using the TRUNCATE statement, you remove all
rows from the table while replication is active. After the tables on the target servers
are empty, direct synchronization efficiently applies data from the source server to
the target servers.

If you use the TRUNCATE statement on the supertable in a hierarchy, by default,
rows in all the subtables are deleted as well. You can use the ONLY keyword to
limit the truncate operation to the supertable. For more information on the
TRUNCATE statement, see the IBM Informix Guide to SQL: Syntax.

To synchronize tables in conjunction with truncation:
1. Run the TRUNCATE statement on the tables to be synchronized on the target

servers.
2. Run the cdr sync replicate or cdr sync replicateset command.

For the syntax of these commands, see “cdr sync replicate” on page A-200 and
“cdr sync replicateset” on page A-204.

Checking Consistency and Repairing Inconsistent Rows
A consistency check compares the data between a reference server and one or more
target servers and then generates a report that describes any inconsistencies. You
can choose to repair inconsistent rows during a consistency check.

11-16 IBM Informix Enterprise Replication Guide

The following conditions apply when you check consistency:
v Running a consistency check can consume a large amount of space in your log

files. Ensure you have sufficient space before checking consistency.
v The Enterprise Replication network connection must be active between the

Connect server, reference server and the target servers while performing
consistency checking and repair.

v The replicate must not be in a suspended or stopped state during consistency
checking.

v The replicate must not be set up for time based replication.

You can perform a consistency check and optional synchronization on a single
replicate or a replicate set. When you synchronize a replicate set, Enterprise
Replication synchronizes tables in an order that preserves referential integrity
constraints (for example, child tables are synchronized after parent tables). You can
choose how to handle extra target rows and whether to enable trigger firing on
target servers.

To perform a consistency check, use the cdr check replicate or cdr check
replicateset command. Use the --repair option to repair the inconsistent rows. A
consistency report is displayed for your review.

You can monitor the progress of a consistency check with the cdr stats check
command if you provide a progress report task name in the cdr check replicate or
cdr check replicateset command.

You can run a consistency check as a background operation as an SQL
administration API command if you include the --background option. This option
is useful if you want to schedule regular consistency checks with the Scheduler. If
you run a consistency check in the background, provide a name for the progress
report task by using the --name option so that you can monitor the check with the
cdr stats check command. You can also view the command and its results in the
command_history table in the sysadmin database. If you use the --background
option as a DBSA, you must have CONNECT privilege on the sysadmin database
and INSERT privilege on the ph_task table.

If synchronization during a consistency check cannot repair a row, the inconsistent
row is recorded in an ATS or RIS file.
Related tasks:
“Repairing Failed Transactions with ATS and RIS Files” on page 11-22
“Indexing the ifx_replcheck Column” on page 11-19
Related reference:
“cdr check replicate” on page A-50
“cdr check replicateset” on page A-61
“cdr stats check” on page A-182

Interpreting the Consistency Report
The consistency report displays information about differences in replicated data
within the replicate or replicate set.

Inconsistencies listed in the consistency report do not necessarily indicate a failure
of replication. Data on different database servers is inconsistent while replicated
transactions are in progress. For example, the following consistency report
indicates that two rows are missing on the server g_serv2:

Chapter 11. Managing Replication Servers and Replicates 11-17

Jan 17 2009 15:46:45 ------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 67 0 0 0 0
g_serv2 65 0 2 0 0

WARNING: replicate is not in sync

Jan 17 2009 15:46:50 ------ Table scan for repl1 end ---------

The missing rows could be in the process of being replicated from g_serv1 to
g_serv2.

If you choose to repair inconsistent rows during a consistency check, the report
shows the condition of the replicate at the time of the check, plus the actions taken
to make the replicate consistent. For example, the following report shows two
missing rows on g_serv2 and that two rows were replicated from g_serv1 to
correct this inconsistency:
Jan 17 2009 15:46:45 ------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 67 0 0 0 2
g_serv2 65 0 2 0 0

Validation of repaired rows failed.
WARNING: replicate is not in sync

Jan 17 2009 15:46:50 ------ Table scan for repl1 end ---------

The warning indicates that inconsistencies were discovered.

The report indicates whether the replicate became consistent after the repair
process. In this example, the Validation of repaired rows failed. message
indicates that the replicate is not consistent. This might occur because some
replicated transactions were still being replicated. Use the --inprogress option to
extend the validation time.

The verbose form of the consistency report also displays the differing values for
each inconsistent row.

For more information about the contents of the consistency report, see “cdr check
replicate” on page A-50.
Related reference:
“cdr check replicate” on page A-50

Increase the speed of consistency checking
You can increase the speed of checking the consistency of replicates or replicate
sets with the cdr check replicate or cdr check replicateset commands in several
ways.

To increase the speed of consistency checking of replicate sets by checking the
member replicates in parallel, use the --process option to set the number of parallel
processes equal to the number of replicates.

11-18 IBM Informix Enterprise Replication Guide

To increase the speed of consistency checking by limiting the amount of data that
is checked, use one or more of the following options:
v Skip the checking of large objects with the --skipLOB option. If you find that

your large objects do not change as much as other types of data, then skipping
them can make a consistency check quicker.

v Check from a specific time with the --since option. If the replicate uses the time
stamp or delete wins conflict resolution rule and you regularly check
consistency, you can limit the data that is checked to the data that was updated
since the last consistency check.

v When checking a replicate, you can check a subset of the data with the --where
option.

If you have large tables, you can index the ifx_replcheck shadow column.
Related reference:
“cdr check replicateset” on page A-61
“cdr check replicate” on page A-50

Indexing the ifx_replcheck Column:

You can index the ifx_replcheck shadow column to increase the speed of
consistency checking.

If you have a large replicated table, you can add the ifx_replcheck shadow column
and then create a new unique index on that column and the existing replication
key columns. The index on the ifx_replcheck shadow column allows the database
server to determine whether rows in different tables have different values without
comparing the values in those rows. You must create the index on the table in each
database server that participates in the replicate.

Before you can create an index on the ifx_replcheck shadow column and the
replication key columns, you must prepare the replicated table by adding the
ifx_replcheck shadow column. You can add the ifx_replcheck shadow column
when you create the table with the WITH REPLCHECK clause, or you can alter an
existing table to add the ifx_replcheck shadow column with the ADD
REPLCHECK clause.

You can create the index while replication is active.

To index the ifx_replcheck shadow column, create a unique index based on the
existing replication key columns and the ifx_replcheck column. The ifx_replcheck
shadow column must be the last column in the index.

For example, the following statement creates an index on a table named customer
on the primary key column id and ifx_replcheck:
CREATE UNIQUE INDEX customer_index ON customer(id, ifx_replcheck);

Related concepts:
“Preparing Tables for a Consistency Check Index” on page 6-20
Related tasks:
“Checking Consistency and Repairing Inconsistent Rows” on page 11-16
Related reference:
“cdr check replicate” on page A-50
“cdr check replicateset” on page A-61

Chapter 11. Managing Replication Servers and Replicates 11-19

Repair inconsistencies by time stamp
You can repair inconsistencies based on the latest time stamps among the
participants instead of specifying a master server.

If your replicates use the time stamp or delete wins conflict resolution rule, you
can repair inconsistencies between the participants based on the latest time stamp
on any participant. If you run a time stamp repair, you do not specify a master
server whose data is considered correct and to which all the other participants are
matched.

To ensure that a time stamp repair is accurate, follow these guidelines:
v When you need to temporarily stop replication on a server, disable it with the

cdr disable server command instead of stopping it with cdr stop command.
v If you are using the delete wins conflict resolution rule, set the

CDR_DELAY_PURGE_DTC configuration parameter on all replication servers to
the maximum age of modifications to rows that are being actively updated.

To run a time stamp repair, use the cdr check replicate or cdr check replicateset
command with the --repair and --timestamp options. If your replicates use the
delete wins conflict resolution rule, also include the --deletewins option.

If a time stamp repair finds an extra row on any participant, the result depends on
the conflict resolution rule and the last transaction for that row:
v If the conflict rule is time stamp and the most recent time stamp for the row is a

delete transaction, the row will be deleted on all servers.
v If the conflict rule is time stamp and a participant has a deleted row but the

most recent time stamp for that row is an update transaction, the updated row is
replicated to all servers.

v If the conflict rule is delete wins and any participant has deleted that row, the
row is deleted from all servers, regardless of any later update transactions.

If a time stamp repair finds mismatched rows on different servers, then the most
recent update transaction for that row is replicated to the other server.
Related concepts:
“Time stamp conflict resolution rule” on page 5-7
“Delete wins conflict resolution rule” on page 5-12
Related reference:
“CDR_DELAY_PURGE_DTC configuration parameter” on page B-3

Repairing inconsistencies while enabling a replication server
If a replication server is in disabled mode, you can enable it and repair
inconsistencies with the cdr check replicateset command.

The server must have been put in disabled mode with the cdr disable server
command.

To enable a disabled server and synchronize it, run the cdr check replicateset
command with the --repair and --enable options.

By default, the enable process times out after 128 seconds if the disabled
replication server cannot be enabled and repaired during that time. You can specify
a shorter time out period by setting the --timeout option to a value less than or
equal to 60 seconds.

11-20 IBM Informix Enterprise Replication Guide

To repair all replicate sets on the disabled server, also include the --allrepl option
and omit the --replset option.
Related reference:
“cdr check replicateset” on page A-61

Implementing a custom checksum function
You can implement a custom checksum function for consistency checking if you do
not want to use the checksum function that is included with the database server.

The $INFORMIXDIR/extend/checksum directory contains sample checksum function
code and registration statements.

To implement a custom checksum function:
1. Using the idschecksum.c file in the $INFORMIXDIR/demo/checksum directory as a

template, write a C language function that creates a checksum. Overload the
function for each of the supported data types.

2. Compile the function code into a shared object file.
3. Save a copy of the shared object file in the $INFORMIXDIR/extend/checksum

directory on all replication servers.
4. To register the function:

a. Modify the idschecksum.sql file in the $INFORMIXDIR/demo/checksum
directory to include the name of your function.

b. Run the SQL statements on each replication server.

Specify your checksum function name with the --checksum option when you run
the cdr check replicate or cdr check replicateset command.

If the cdr check replicate or cdr check replicateset command fails with return code
172, your checksum function is not installed and registered on all replication
servers.

Rules for custom checksum functions:

The idschecksum.c file in the $INFORMIXDIR/demo/checksum directory contains code
that you can use for your checksum functions. You can replace the checksum
generation portion of the code with your custom code.

A checksum function summarizes the data in a replicated row. During consistency
checking, the checksum values of corresponding rows on different replication
servers are compared to determine whether the rows are consistent.

A checksum function runs recursively through every column in the replicated table
to generate a checksum value for a replicated row. A checksum value is generated
for the last column in the table. The checksum value is used to calculate the
checksum value for the previous column, and so on. The checksum value that is
calculated for the first column in the table is based on the accumulated checksum
value of all the other columns.

Custom checksum functions must conform to the following rules:
v The first parameter of the function is the data type of a column.
v The second parameter of the function is an integer that is the checksum value of

the previous column.
v The function returns an integer.

Chapter 11. Managing Replication Servers and Replicates 11-21

v The function is a DBA function.
v The function attributes include NOT VARIANT, HANDLESNULLS, and

PARALLELIZABLE.

You must register a checksum function for each of the following data types,
regardless of whether the data types are used in your replicated tables. All other
data types are ignored by checksum functions.
v BLOB
v BYTE
v CLOB
v DATE
v DATETIME YEAR TO FRACTION
v DATETIME YEAR TO MONTH
v DECIMAL
v FLOAT
v INT8
v INTEGER
v LIST
v LVARCHAR (includes all character data types)
v MONEY
v MULTISET
v REAL
v ROW
v SET
v SMALLINT
v TEXT

However, if you do not want to create a checksum value for certain data types,
you can provide non-operative function definitions. For example, you might not
want to create checksum values for BLOB columns. The following statement
registers a checksum function for the BLOB data type that returns the previous
checksum value instead of calculating an accumulated checksum value:
CREATE DBA FUNCTION ercheck_checksum(p1 blob, p2 integer)

RETURNS integer;
RETURN p2;
END FUNCTION;

Repairing Failed Transactions with ATS and RIS Files
You can repair failed or inconsistent transactions using an ATS or RIS file if you
defined the replicate or replication server with the –ats or –ris option and the ATS
or RIS files are being generated in text format.

A repair using an ATS or RIS file repairs the rows associated with the single
transaction that is recorded in the specified ATS or RIS file. To apply repairs based
on an ATS or RIS file, use the cdr repair command.

Note: The cdr repair command is not supported for replicates that are defined
with the --UTF8=y option. For replicates that are defined with the --UTF8=y option,
use the cdr check replicate --repair or cdr check replicateset --repair command to
repair data.

11-22 IBM Informix Enterprise Replication Guide

The cdr repair command processes one ATS or RIS file each time you specify the
command. The following table shows how failed operations are handled.

Failed Operation Action Taken

Delete Delete on the target server

Insert or Update v If the row is found on the source server, does an update

v If the row is not found on the source server, but is found on
the target server, does a delete on the target server. If the
row is not found on either server, performs no action.

Each operation is displayed to stderr, unless you use the –quiet option with the
cdr repair command. You can preview the operations without performing them by
using the –check option with the cdr repair command.
Related concepts:
“Failed Transaction (ATS and RIS) Files” on page 12-3
Appendix A, “The cdr utility,” on page A-1
“Repair and Initial Data Synchronization” on page 1-5
Related tasks:
“Performing Direct Synchronization” on page 11-15
“Checking Consistency and Repairing Inconsistent Rows” on page 11-16

Resynchronize data manually
Manual resynchronization involves replacing the inconsistent table in the target
database with a copy of the correct table from the reference database.

Important: Manual resynchronization is not recommended for repairing your
replicated tables because you must suspend replication to avoid producing further
inconsistencies.

The following example shows how to manually resynchronize two replication
database servers.

To synchronize the replication server g_papeete with the server g_raratonga:
1. Suspend replication to the replication server group g_papeete.

See “Suspending Replication for a Server” on page 11-4.
2. Unload the table from the server group g_raratonga.

See “Load and unload data” on page 6-23.
3. Load the table on g_papeete and specify BEGIN WORK WITHOUT

REPLICATION.
See “Load and unload data” on page 6-23 and “Blocking Replication” on page
6-18.

4. Resume replication to g_papeete.
See “Resuming a Suspended Replication Server” on page 11-5.

Alter, rename, or truncate operations during replication
When Enterprise Replication is active and data replication is in progress, you can
perform many types of alter, rename, or truncate operations on replicated tables
and databases.

Chapter 11. Managing Replication Servers and Replicates 11-23

Most of the supported operations do not require any special steps when performed
on replicated tables or databases; some, however, do require special steps. None of
the supported alter, rename, or truncate operations are replicated. You must
perform these operations on each replicate participant.

You can run the alter, rename, and truncate operations that are listed in the
following table on active, replicated tables or databases without performing extra
steps.

Table 11-3. Requirements for operations on replicated tables

Operation Requirements

Add or drop default values and SQL checks None

Add or drop fragments Requires mastered replicate to be defined

Add or drop unique, distinct, and foreign keys None

Alter the locking granularity None

Alter the next extent size None

Change an existing fragment expression on an
existing dbspace

Requires mastered replicate to be defined

Convert a fragmented table to a
non-fragmented table

Requires mastered replicate to be defined

Convert a non-fragmented table to a
fragmented table

Requires mastered replicate to be defined

Convert from one fragmentation strategy to
another

Requires mastered replicate to be defined

Create a clustered index Requires mastered replicate to be defined

Modify the data type of a replicated column Requires mastered replicate to be defined

Modify the data type of a replicated column in
a multiple-column replication key

Requires mastered replicate to be defined

Move a fragment expression from one dbspace
to another dbspace

Requires mastered replicate to be defined

Move a non-fragmented table from one dbspace
to another dbspace

Requires mastered replicate to be defined

Recluster an existing index Requires mastered replicate to be defined

Rename a database None

Rename a replicated column Requires non-strict mastered replicate to
be defined

Rename a table Requires non-strict mastered replicate to
be defined

Truncate a replicated table Requires mastered replicate to be defined

You can perform the following alter operations on active, replicated tables, but you
must perform extra steps, which are described in following sections:
v Add a column to a replicated table
v Remove a column from replication
v Attach a fragment to a replicated table
v Change or recreate a replication key

Enterprise Replication uses shadow replicates to manage alter operations on
replicated tables without causing any interruption to replication. By using shadow

11-24 IBM Informix Enterprise Replication Guide

replicates, the replicate participants SELECT clause can be modified while
replication is active. For example, a new column can be brought into the replicate
definition, an existing replicated column can be removed from the replicate
definition and the data type or size of a replicated column can be changed without
interrupting replication. See “Defining Shadow Replicates” on page 8-9 for more
information about shadow replicates.

Before altering a replicated table, ensure that you have sufficient log space
allocated for long transactions, a sufficient number of locks available, and sufficient
space available for the queue sbspace.

When you issue a command to alter a replicated table, Enterprise Replication
places the table in alter mode before performing the alter operation. Alter mode is
a state in which only DDL (data-definition language) and SELECT operations are
allowed but DML (data-manipulation language) operations are not allowed. After
the transaction that initiated the alter operation completes, Enterprise Replication
unsets alter mode. Any schema changes are automatically applied to any delete
tables.

The following restrictions apply when you use alter operations on replicated tables.
v Enterprise Replication must be in an active state, unless you are only adding or

dropping check constraints and default values.
v Tables must have a master replicate defined.
v The DROP TABLE statement is not supported.

Recommendation: If you need to perform more than one alter operation, enclose
them in a single transaction so that alter mode only needs to be set and unset one
time.

For a list of common alter operation problems and how to solve them, see
“Troubleshooting Tips for Alter Operations” on page 12-18.
Related concepts:
“SQL statements and replication” on page 3-3
Related reference:
“cdr alter” on page A-30

Altering multiple tables in a replicate set
You can alter multiple replicated tables for replicates that belong to the same
replicate set and then remaster those tables as a group.

Instead of remastering the replicates individually for each table that you alter, you
create a derived replicate set that contains only the replicates that must be
remastered. You do not specify the names of the replicates. The server identifies
which replicates have tables that must be remastered and adds them to the derived
set for you. After you remaster and synchronize the derived replicate set, you
delete it.

To alter replicated tables in a replicate set:
1. Run the ALTER operation on the tables on all replication servers. If the

replicate set is included in a grid, you can alter the tables on one server and
propagate the changes to all other servers.

2. Create a derived replicate set by running the cdr define replicateset command
with the --needRemaster option.

Chapter 11. Managing Replication Servers and Replicates 11-25

3. Remaster the tables in the derived replicate set by running the cdr remaster
replicateset command. The replicate definitions are updated in the global
catalogs of the replication servers.

4. Synchronize the derived replicate set by running the cdr check replicateset
with the --repair option or by running the cdr sync replicateset command.

5. Drop the derived replicate set by running the cdr delete replicateset command.
Related reference:
“Example of rolling out schema changes in a grid” on page 9-5
“cdr define replicateset” on page A-87
“cdr check replicateset” on page A-61
“cdr sync replicateset” on page A-204
“cdr remaster replicateset” on page A-157
“cdr delete replicateset” on page A-106

Adding a Replicated Column
You can alter a replicated table to add a new column to be replicated. The replicate
must be a master replicate.

To add a new replicated column
1. Use the ALTER TABLE statement to add the column to the replicated table at

all participating nodes.
2. Remaster the replicate to include the newly added column in the replicate

definition, as described in “Remastering a Replicate” on page 11-29.

Removing replicated columns
You can alter replicated tables to remove columns from replication.

The replicates must be master replicates.

To remove one or more replicated columns from one or more replicates, run the
cdr remaster command with the --remove option. You specify the database, table,
and column names instead of the replicate names.

After you remove columns from replication, you can drop the columns.
Related tasks:
“Adding an existing replicate to a grid replicate set by altering a table” on page
9-10
Related reference:
“cdr remaster” on page A-153

Modifying the data type or size of a replicated column
You can modify the size or type of a replicated column for all basic data types and
for the BOOLEAN and LVARCHAR extended types. Modifying the data type or
size of columns of other extended types is not supported. The replicate must be a
master replicate.

When you modify a replicated column, do not insert data into the modified
column that does not fit into the old column definition until all participants are
altered, because the data might be truncated or data conversion to and from the
master dictionary format to the local dictionary format might fail. Enterprise
Replication handles the data type mismatch by having the source server convert

11-26 IBM Informix Enterprise Replication Guide

data that is in the local dictionary format to the master dictionary format, and the
target server convert data from the master dictionary format to the local dictionary
format. If Enterprise Replication detects a mismatch in data type or size between
the master replicate definition and the local table definition, a warning is printed
in the log file.

If Enterprise Replication is not able to convert the replicated row data into the
master dictionary format on the source server while queuing replicated data into
the send queue, the replicate is stopped for the local participant. If the replicate is
stopped, you must correct the problem and then restart the replicate from the local
participant with the --syncdatasource option. If the correction is to delete the
problematic row data, delete the row by running the BEGIN WORK WITHOUT
REPLICATION statement. Otherwise, the deleted row is moved from the replicated
table to the associated delete table, which might cause problems for the subsequent
alter operation on the replicated table.

If Enterprise Replication cannot convert row data from the master dictionary
format to local table dictionary format at the target server after receiving replicated
data, the replicated transaction is spooled to ATS and RIS files. For example, if you
modify a SMALLINT column to an INTEGER column, make sure that you do not
insert data that is too large for the SMALLINT data type until the alter operation is
performed at all replicate participants, and remastering is performed so that the
master dictionary reflects the INTEGER data type.

Important: While modifying a replicated column, sometimes it is possible that the
alter operation on the base table succeeds, but the delete table modification might
fail when Enterprise Replication unsets alter mode. If the delete modification fails,
you see a message similar to the following in the server message log file:

CDRGC: cannot populate data into the new delete table
SQL error=-1226, ISAM error=0

This situation can happen while modifying a replicated column from a data type
larger in length or size to a data type smaller in length or size, for example, from
an INTEGER column to a SMALLINT column, and if the delete table has data
which cannot fit in the new type column.

To avoid this situation, do not convert between data types that cause data
truncation or produce cases where data cannot fit into the new type. If the above
situation has already occurred, carefully update or delete the problematic rows
from the delete table and attempt to unset alter mode manually by using the cdr
alter command. If you cannot resolve the problem, contact IBM Software Support.

To modify a replicated column:
1. Issue the alter command to modify the replicated column.
2. Perform the alter operation at all the replicate participants.
3. Optionally remaster the replicate to update the column definition in the

replicate definition, as described in “Remastering a Replicate” on page 11-29.

After an alter operation, the master dictionary no longer matches the replicated
table dictionary. Because data transfer is always done in master dictionary format,
data conversion between the local dictionary format and the master dictionary
format is performed. Data conversion can slow the performance of your replication
system. The remastering process changes the master dictionary to match the
altered replicated table dictionary. Therefore, after remastering, data conversion is
not necessary.

Chapter 11. Managing Replication Servers and Replicates 11-27

Replication keys have special considerations. For more information, see “Changing
or re-creating primary key columns.”

Changing the Name of a Replicated Column, Table, or
Database

You can change the name of a replicated column, table, or database while
replication is active. The replicate must be a master replicate.

To change the name of a replicated column, table, or database, run the SQL
statement RENAME COLUMN, RENAME TABLE, or RENAME DATABASE on all
participants in the replicate.
Related information:
RENAME TABLE statement
RENAME COLUMN statement
RENAME DATABASE statement

Changing or re-creating primary key columns
You can change or re-create the primary key columns definition of a replicated
table while replication is active.

You can change the primary key columns without restriction if either of the
following conditions are true:
v The table uses ERKEY shadow columns or another unique index or constraint as

the replication key.
v The primary key contains multiple columns. The column modification implicitly

re-creates the primary key.

To change a primary key column if the primary key is a single column, enclose the
primary key column modification and the primary key recreation operations in a
single transaction. If you frequently update a primary key that is a single column,
consider changing the replication key to another unique index or constraint.

To drop and re-create a primary key:
1. Set alter mode by running the cdr alter on command.
2. Drop the primary key columns.
3. Create the new primary key columns.
4. Unset alter mode by running the cdr alter off command.
Related concepts:
“SQL statements and replication” on page 3-3
Related tasks:
“Changing the replication key of a replicate” on page 11-7

Attaching a New Fragment to a Replicated Table
You can attach a new fragment to a replication table while replication is active.

Enterprise Replication cannot automatically set alter mode for this operation
because of an SQL restriction that requires attaching a fragment to be performed in
multiple steps.

To attach a new fragment to a replicated table:

11-28 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_0944.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_0939.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_0940.htm

1. Set alter mode on the replicate by running the cdr alter on command.
2. Drop the replication key of the table.
3. Attach the new fragment.
4. Re-create the replication key.
5. Unset alter mode by running the cdr alter off command.
Related tasks:
“Preparing tables without primary keys” on page 6-20

Remastering a Replicate
You must remaster a replicate if you add a replicated column, drop a replicated
column, or change a classic replicate into a mastered replicate. If you modify a
replicated column, you can remaster, but remastering is not mandatory.

To redefine an existing master replicate that is defined with name verification, or
turn an existing classic replicate into a master replicate, run the cdr remaster
command.

If the master replicate does not include name verification, you manually remaster
the replicate.
Related reference:
“cdr remaster” on page A-153

Remastering replicates without name verification
You manually remaster replicates if the participants to not have matching column
names and replicate has name verification turned off by the --name=n option of
the cdr define replicate command.

To manually remaster a replicate:
1. Use the cdr define replicate command to create a shadow replicate with the

same attributes as the primary replicate and with the --mirrors option, but with
a SELECT statement that is correct for the table after the alter operation. The
SELECT statement can include newly added columns or omit newly dropped
columns.

2. Use the cdr swap shadow command to exchange the existing primary replicate
and the newly created shadow replicate.

While performing the cdr swap shadow operation, Enterprise Replication stores
the BEGIN WORK position of the last known transaction sent to the grouper as a
swap log position for the current swap operation. Any transaction that is begun
before the swap log position uses the original replicate definition. Any transaction
that is begun after the swap log position uses the new replicate definition.

The old replicate definition is deleted automatically after the replicate definition is
no longer required by Enterprise Replication.
Related reference:
“cdr swap shadow” on page A-198

Recapture replicated transactions
If you want a transaction to continue to be replicated after it reaches the target
replication servers, you can use the ifx_set_erstate() procedure.

Chapter 11. Managing Replication Servers and Replicates 11-29

By default, when Enterprise Replication reads the logical logs to capture
transactions, replicated transactions are ignored. For example, if a transaction is
replicated from serv1 to serv2, that transaction is not captured for replication on
serv2 because it has already been replicated. Replication stops when transactions
reach target servers, but you can configure a transaction to be recaptured and
continue to be replicated. You must reset the replication state back to the default at
the end of the transaction or replication loops indefinitely.

Example

Suppose that a retail chain wants to run a procedure to create a report that
populates a summary table of each store's current inventory and then replicates
that summary information to a central server. A stored procedure named
low_inventory() that creates a low inventory report exists on all replications
servers. The following example creates a new procedure named
xqt_low_inventory() that enables replication for the low_inventory() procedure,
and then runs the low_inventory() procedure:
CREATE PROCEDURE xqt_low_inventory()
DEFINE curstate integer;
EXECUTE FUNCTION ifx_get_erstate() INTO curstate;
EXECUTE PROCEDURE ifx_set_erstate(1);
EXECUTE PROCEDURE low_inventory();
EXECUTE PROCEDURE ifx_set_erstate(curstate);

END PROCEDURE;

The following events occur in this procedure:
1. The xqt_low_inventory() procedure defines a data variable called curstate to

hold the Enterprise Replication state information.
2. The ifx_get_erstate() function obtains the Enterprise Replication state and stores

it in the curstate variable. The ifx_set_state() procedure enables replication.
3. The low_inventory() procedure is run.
4. The replication state is reset back to its original value.

When a transaction runs the xqt_low_inventory() procedure, the execution of the
procedure is replicated to all replication servers and the result of the
low_inventory() procedure is then replicated like any normal updating activity.
Related reference:
“ifx_set_erstate() procedure” on page D-1
“ifx_get_erstate() function” on page C-1

11-30 IBM Informix Enterprise Replication Guide

Chapter 12. Monitor and troubleshooting Enterprise
Replication

You can monitor and diagnose problems with the Enterprise Replication system by
using several different methods, depending on your needs.

You can monitor the status of Enterprise Replication servers in the following ways:
v Use the cdr view command. Specify one or more subcommands, depending on

what information you want to monitor.
v Use the IBM OpenAdmin Tool (OAT) for Informix with the Replication plug-in.
v Use SQL queries on the system monitoring tables.
v Run onstat commands to view local server information.
v Run the cdr check queue --qname=cntrlq command to determine whether the

operation is finished propagating to all servers.
v Run the DBINFO(’cdrsession’) function to determine if a session thread is

performing an Enterprise Replication apply or sync operation.

Set the ALARMPROGRAM script to capture event alarms for the following
situations:
v Enterprise Replication errors
v The Aborted Transaction Spooling (ATS) and Row Information Spooling (RIS)

files
v Dropped connections between replication servers
v Replication state changes caused by Enterprise Replication commands, if state

change event alarms are enabled
Related tasks:
“Setting Up Failed Transaction Logging” on page 8-11
Related reference:
“cdr view” on page A-209
Appendix G, “SMI Tables for Enterprise Replication Reference,” on page G-1
Appendix E, “onstat -g commands for Enterprise Replication,” on page E-1
“Enterprise Replication Event Alarms” on page 12-21
“cdr check queue” on page A-47
“cdr define server” on page A-90
“cdr modify server” on page A-146
Related information:
DBINFO Function

Solve Replication Processing Problems
Diagnose, monitor, and solve possible problems that can occur while Enterprise
Replication is running.

You should understand the typical behavior of your Enterprise Replication system.
There are many factors that contribute to the performance and other behaviors,
including: hardware configuration, network load and speed, type of replication,
and number of replicated transactions.

© Copyright IBM Corp. 1996, 2015 12-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1484.htm

Use the cdr view command or the SMI tables to understand the typical behavior of
your system, establish benchmarks, and track trends. Deviations from typical
behavior do not necessarily indicate a problem. For example, transactions might
take longer to replicate during peak usage times or during end-of-month
processing.

The following table describes some replication processing problems that might
occur.

Table 12-1. Potential Replication Problems and Solutions

Problem How to diagnose How to solve

Enterprise Replication is not
running

v Run the cdr view state
command

v Query the syscdr_state
SMI table

v Examine event alarms
captured by the alarm
program

Start replication with the cdr
start command.

One or more Enterprise
Replication servers are not
running or connected to the
network

v Run the cdr view servers
command

v Run the cdr view nif
command

v Query the syscdr_nif SMI
table

v Examine event alarms
captured by the alarm
program

Start the database server or
fix the connection problem.

Replicated transactions failed Determine if there are ATS or
RIS files:

v Look at the ATS and RIS
directories on the local
server for the existence of
ATS or RIS files

v Run the cdr view atsdir
risdir command to see the
number of ATS and RIS
files for each server

v Query the syscdr_atsdir or
syscdr_risdir SMI table for
a specific server

v Examine event alarms
captured by the alarm
program

Run one of the following
commands:

v cdr repair

v cdr check replicate
--repair

v cdr check replicateset
--repair

See “cdr repair” on page
A-160, “cdr check replicate”
on page A-50, and “cdr
check replicateset” on page
A-61.

12-2 IBM Informix Enterprise Replication Guide

Table 12-1. Potential Replication Problems and Solutions (continued)

Problem How to diagnose How to solve

Transactions are spooling to
disk

Determine how much spool
memory is being used:

v Run the cdr view profile
command to see the status
of all queues on all servers

v Run the cdr view sendq
command to see the status
of the send queue on all
servers

v Run the cdr view rcv
command to see the status
of the receive queue on all
servers

See “Increasing the Sizes or
Numbers of Storage Spaces”
on page 12-17.

Potential log wrap situation Determine how many log
pages must be used before
Enterprise Replication reacts
a potential log wrap
situation:

v Run the cdr view ddr
command to see the
number of unused log
pages for all servers

v Query the syscdr_ddr SMI
table to see the number of
unused log pages for a
specific server

See “Handle potential log
wrapping” on page 12-15.

If you do need to call IBM Software Support, find the version of the database
server that is running Enterprise Replication with the cdr -V command.

Failed Transaction (ATS and RIS) Files
Aborted Transaction Spooling (ATS) and Row Information Spooling (RIS) files can
be generated when replicated transactions fail.

You can use the ATS and RIS files to identify problems or as input to the cdr
repair command or custom utilities that extract or reapply the aborted rows.

When ATS or RIS file generation is enabled for a replicate, all failed replication
transactions are recorded in ATS or RIS files. Each ATS file contains all the
information pertinent to a single failed transaction, while each RIS file contains
information about a single failed row. If a replicated transaction fails for any
reason (constraint violation, duplication, and so forth), all the buffers in the
replication message that compose the transaction are written to a local file.

ATS file generation occurs if the entire transaction is aborted. Transactions defined
with row scope that have aborted rows but are successfully committed on the
target tables are not logged. All rows that fail conflict resolution for a transaction
that has row scope defined are also written to the RIS file, if RIS is enabled.

RIS files can contain the following types of information:
v Individual aborted row errors

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-3

v Replication exceptions (such as when a row is converted by Enterprise
Replication from insert to update, or from update to insert, and so forth)

v Special SPL routine return codes, as defined by the application (if an SPL routine
is called to resolve a conflict)

In some cases, such as with long transactions, the database server itself aborts
transactions. In these cases, Enterprise Replication does not generate an ATS or RIS
file.

ATS and RIS files can be generated under the following circumstances:
v ATS or RIS generation is enabled for a replicate, the replicate uses a conflict

resolution rule other than ignore or always-apply, and a conflict is detected on a
target server.

v Under some error conditions, ATS or RIS files can be generated on a source
server, regardless if ATS or RIS generation is enabled or the conflict resolution
rule.

When an ATS or RIS file is generated, an event alarm with a class ID for 48 is also
generated. You can use event alarms to send notifications to a database
administrator.
Related concepts:
“Conflict Resolution Scope” on page 5-15
Related tasks:
“Creating ATS and RIS directories” on page 6-14
“Repairing Failed Transactions with ATS and RIS Files” on page 11-22
Related reference:
“cdr view” on page A-209
“CDR_DISABLE_SPOOL Environment Variable” on page B-21
“cdr define replicate” on page A-77

Enabling ATS and RIS File Generation
You can enable the generation of ATS and RIS files when you define a replicate.

Failed transactions are not automatically recorded in ATS and RIS files. You can
choose to generate either ATS or RIS files, or both.

You should create a separate directory to store ATS and RIS files. If you do not
create a separate directory and specify it when you define the replication server,
Enterprise Replication stores the ATS and RIS files in the /tmp directory on UNIX
and the %INFORMIXDIR%\tmp directory on Windows.

To collect ATS and RIS information
1. Create a directory for Enterprise Replication to store ATS and RIS files. You can

create two directories if you want to generate both types of file and store them
in separate directories.
v If you are using primary-target replication, create the directory on the target

system.
v If you are using update-anywhere replication and have a conflict resolution

rule other than ignore or always-apply enabled, create the directory on all
participating replication systems.

12-4 IBM Informix Enterprise Replication Guide

2. When you define or modify a replication server, specify the location of the ATS
and RIS directory by using the --ats and --ris options of the cdr define server
command or the cdr modify server command.

3. When you define or modify a replicate, specify that ATS and RIS file generation
is enabled by using the --ats and --ris options of the cdr define replicate
command or the cdr modify replicate command.

Related tasks:
“Creating ATS and RIS directories” on page 6-14
Related reference:
“cdr define server” on page A-90
“cdr define replicate” on page A-77
“cdr modify server” on page A-146
“cdr modify replicate” on page A-140

ATS and RIS File Names
Each ATS and RIS file has a unique name based on the conditions under which it
was generated.

The following table provides the naming convention for ATS and RIS files:
type.target.source.threadID.timestamp.sequence.extension

Table 12-2. ATS and RIS file naming conventions

Name Description

type The format of the file: ats or ris.

target The name of the database server receiving this replicate transaction.

source The name of the database server that originated the transaction.

threadID The identifier of the thread that processed this transaction.

timestamp The value of the internal time stamp at the time that this ATS or RIS file
was generated.

sequence A unique integer, incremented each time an ATS or RIS file is generated.

extension The file type. No extension indicates a text file; xml indicates an XML file.

The naming convention ensures that all ATS and RIS file names that are generated
are unique. However, when an ATS or RIS file is opened for writing, any previous
file contents are overwritten. (Enterprise Replication does not append to a spool
file; if a name collision does occur with an existing file, the original contents of the
file are lost.)

The default delimiter for the timestamp portion of text file names is a colon (:) on
UNIX and a period (.) on Windows. You can define the delimiter between the
hour, minute, and second values with the CDR_ATSRISNAME_DELIM
environment variable. XML files always use a period (.) delimiter between the
hour, minute, and second values.

The following is an example of a name of an ATS file in text format on UNIX for a
transaction sent by server g_amsterdam to server g_beijing:
ats.g_beijing.g_amsterdam.D_2.000529_23:27:16.6

The following is an example of the same ATS file name in XML format:
ats.g_beijing.g_amsterdam.D_2.000529_23.27.16.6.xml

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-5

The following is an example of a similar RIS file name in XML format:
ris.g_beijing.g_amsterdam.D_2.000529_23.27.16.5.xml

Related reference:
“CDR_ATSRISNAME_DELIM Environment Variable” on page B-20

ATS and RIS File Formats
You can choose to generate ATS and RIS files in text format, XML format, or both
formats.

The format of ATS and RIS files is part of the server definition that you create with
the cdr define server command:

Text (Default)
ATS and RIS files are generated as text files that Enterprise Replication can
process during a repair operation. Text format is useful if you intend to use
the cdr repair command to repair inconsistencies.

XML ATS and RIS files are generated as XML files that you can use if you write
your own custom repair scripts. You cannot use ATS or RIS files in XML
format with the cdr repair command.

Both ATS and RIS files are generated in both text and XML format so that you
can choose how to process failed transactions.

Enterprise Replication raises event alarms when ATS and RIS files are generated
regardless of format.

XML File Format
The information in ATS and RIS files that are in XML format is organized in
specific XML tags.

The XML format uses an XML schema that is stored in the INFORMIXDIR/etc
directory.

Data in XML files uses the UTF-8 encoding format.

Columns that appear empty could contain a null value or an empty string. The
XML format differentiates between null data and empty strings by setting the
isNull="true" attribute of the COLUMN tag for null data.

Data Types That are Not Shown

The values of the following data types are not shown in XML files:
v Smart large objects
v Simple large objects
v User-defined data types

For these data types, the following attributes are set for the COLUMN tag:
v isLOBorUDT="true"
v dataExists="false"

Special Symbols

The following symbols are replaced if they exist in row data:
v < is replaced by <

12-6 IBM Informix Enterprise Replication Guide

v > is replaced by >
v & is replaced by &
v " is replaced by "
v ' is replaced by '

Example

The following example shows an ATS file displaying a transaction with two failed
insert operations. The third column in each row contains a data type that is not
shown.

<?xml version="1.0" encoding="UTF-8"?>
<ERFILE version="1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="/usr/informix/etc/idser.xsd">
<ATS version="1">
<TRANSACTION RISFile="/tmp/ris.g_cdr_ol_3.g_cdr_ol_2.D_5.080411_14.08.57.3.xml"

generateRISFile="true" processedRows="2">
<SOURCE id="20" name="g_cdr_ol_2" commitTime="2008-04-11T14:08:57"/>
<TARGET id="30" name="g_cdr_ol_3" receiveTime="2008-04-11T14:08:57"/>
<MESSAGE>All rows in a transaction defined with row scope were rejected</MESSAGE>

</TRANSACTION>
<ATSROWS>
<ATSROW num="1" replicateID="655362" database="bank" owner="testadm" table="customer"

operation="Insert">
<REPLICATED>
<SHADOWCOLUMNS serverID="20" serverName="g_cdr_ol_2" cdrTimeInt="1207940937"

cdrTimeString="2008-04-11T14:08:57"/>
<DATA>
<COLUMN name="col1" dataExists="true" isHex="false" isLOBorUDT="false"

isNull="false">261</COLUMN>
<COLUMN name="col2" dataExists="true" isHex="false" isLOBorUDT="false"

isNull="false">cdr_ol_2</COLUMN>
<COLUMN name="col3" dataExists="false" isHex="false" isLOBorUDT="true"

isNull="false"></COLUMN>
</DATA>

</REPLICATED>
</ATSROW>
<ATSROW num="2" replicateID="655362" database="bank" owner="testadm" table="customer"

operation="Insert">
<REPLICATED>
<SHADOWCOLUMNS serverID="20" serverName="g_cdr_ol_2" cdrTimeInt="1207940937"

cdrTimeString="2008-04-11T14:08:57"/>
<DATA>
<COLUMN name="col1" dataExists="true" isHex="false" isLOBorUDT="false"

isNull="false">262</COLUMN>
<COLUMN name="col2" dataExists="true" isHex="false" isLOBorUDT="false"

isNull="false">cdr_ol_2</COLUMN>
<COLUMN name="col3" dataExists="false" isHex="false" isLOBorUDT="true"

isNull="false"></COLUMN>
</DATA>

</REPLICATED>
</ATSROW>

</ATSROWS>
</ATS>

</ERFILE>

The following example shows the corresponding RIS file for the failed transaction
shown in the ATS example.

<?xml version="1.0" encoding="UTF-8"?>
<ERFILE version="1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="/usr/informix/etc/idser.xsd">
<RIS version="1">

<SOURCE id="20" name="g_cdr_ol_2" commitTime="2008-04-11T14:08:57"/>
<TARGET id="30" name="g_cdr_ol_3" receiveTime="2008-04-11T14:08:57"/>

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-7

<RISROWS>
<RISROW num="1" replicateID="655362" database="bank" owner="testadm" table="customer"

operation="Insert">
<CDRERROR num="0"/>
<SQLERROR num="-668"/>
<ISAMERROR num="-1"/>
<SPLCODE num="63"/>
<LOCAL>
<SHADOWCOLUMNS serverID="20" serverName="g_cdr_ol_2" cdrTimeInt="1206852121"

cdrTimeString="2008-04-11T12:08:57"/>
<DATA>
<COLUMN name="col1" dataExists="true" isHex="false" isLOBorUDT="false"

isNull="false">261</COLUMN>
<COLUMN name="col2" dataExists="true" isHex="false" isLOBorUDT="false"

isNull="false">cdr_ol_2</COLUMN>
<COLUMN name="col3" dataExists="false" isHex="false" isLOBorUDT="true"

isNull="false"></COLUMN>
</DATA>

</LOCAL>
<REPLICATED>
<SHADOWCOLUMNS serverID="20" serverName="g_cdr_ol_2" cdrTimeInt="1207940937"

cdrTimeString="2008-04-11T14:08:57"/>
<DATA>
<COLUMN name="col1" dataExists="true" isHex="false" isLOBorUDT="false"

isNull="false">261</COLUMN>
<COLUMN name="col2" dataExists="true" isHex="false" isLOBorUDT="false"

isNull="false">cdr_ol_2</COLUMN>
<COLUMN name="col3" dataExists="false" isHex="false" isLOBorUDT="true"

isNull="false"></COLUMN>
</DATA>

</REPLICATED>
</RISROW>

</RISROWS>
<TXNABORTED ATSFile="/tmp/ats.g_cdr_ol_3.g_cdr_ol_2.D_5.080411_14.08.57.4.xml"

generateATSFile="true"/>
</RIS>

</ERFILE>

XML Tags:

XML tags are used in ATS and RIS files that are generated in XML format.

Table 12-3. XML tags in ATS and RIS files

Tag name Description Attributes Parent tag Child tags

ERFILE Top level tag for ATS
and RIS files

version: XML file format
version number.

None ATS

RIS

ATS Parent tag for ATS files version: ATS file format
version number.

ERFILE TRANSACTION

ATSROWS

RIS Parent tag for RIS files v version: RIS file format
version number.

v fromSource: Set to true if
the RIS file is generated
at the source server.

ERFILE SOURCE

TARGET

RISROWS

TXNABORTED

TXNCOMMITTED

12-8 IBM Informix Enterprise Replication Guide

Table 12-3. XML tags in ATS and RIS files (continued)

Tag name Description Attributes Parent tag Child tags

TRANSACTION Contains the name of
the RIS file (if it exists)
and the number of rows
processed before the
transaction was aborted.

v RISFile: The name of the
RIS file, if it was created.

v generateRISFile: Set to
true if an RIS file exists
for this aborted
transaction.

v processedRows: Number
of rows processed before
the transaction was
aborted.

ATS SOURCE

TARGET

MESSAGE

CDRERROR

SQLERROR

ISAMERROR

SPLCODE

ATSROWS Contains the replicated
aborted rows

None ATS ATSROW

SOURCE Contains source server
information

v id: Server ID.

v name: Server group name.

v commitTime: Transaction
commit time.

TRANSACTION

RIS

None

TARGET Contains target server
information

v id: Server ID.

v name: Server group name.

v receiveTime: Transaction
receive time.

TRANSACTION

RIS

None

SQLERROR Contains the SQL error
code

num: Error number. TRANSACTION

RISROW

None

ISAMERROR Contains the ISAM error
code

num: Error number. TRANSACTION

RISROW

None

CDRERROR Contains the data sync
error code

v num: Error number.

v description: Error
description.

TRANSACTION

RISROW

None

MESSAGE Contains the notification
message

None TRANSACTION

RISROW

None

SPLCODE Contains the SPL code
number if a stored
procedure conflict rule
is being used

num: SPL code number. TRANSACTION

RISROW

None

RISROWS Contains the local and
replicated aborted rows

None RIS RISROW

RISROW Contains information
about local or replicated
row data for one
aborted row

v num: Row sequence
number.

v replicateID: Replicate
ID.

v database: Database
name.

v owner: Table owner
name.

v table: Table name.

v operation: DML
operation type.

RISROWS MESSAGE

CDRERROR

SQLERROR

ISAMERROR

SPLCODE

MESSAGE

LOCAL

REPLICATED

LOCAL Contains the local row
data for an aborted row

None RISROW SHADOWCOLUMNS

DATA

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-9

Table 12-3. XML tags in ATS and RIS files (continued)

Tag name Description Attributes Parent tag Child tags

REPLICATED Contains replicated row
data for an aborted row

None ATSROW

RISROW

SHADOWCOLUMNS

DATA

ATSROW Contains information for
one replicated aborted
row

v num: Row sequence
number.

v replicateID: Replicate
ID.

v database: Database
name.

v owner: Table owner
name.

v table: Table name.

v operation: DML
operation type.

ATSROWS REPLICATED

SHADOWCOLUMNS Optional shadow
column values for local
and replicated rows

v serverID: Server ID.

v serverName: Server group
name.

v cdrTimeInt: The cdrtime
column value in integer
format (GMT time).

v cdrTimeString: Time in
string format. For
example:
2008-11-08T20:16:25.

LOCAL

REPLICATED

None

DATA Contains aborted row
data

dataExists: Identifies
whether data exists for this
row or not.

ATSROW

RISROW

COLUMN

COLUMN Contains column data
for an aborted row

v name: The column name.

v dataExists: Identifies
whether data is
displayed for this
column or not.

v isLOBorUDT: Set to true if
the column is of type
UDT, smart large object
or simple large object. If
set to true, data for the
column is skipped and
the dataExists value is
set to false.

v isHex: Set to true if
column data is displayed
in hex format because
Enterprise Replication
does not have enough
information to interpret
the row data.

v isNull: Set to true if the
column value is NULL.
Set to false if the
column has a valid value
or an empty string.

DATA None

12-10 IBM Informix Enterprise Replication Guide

Table 12-3. XML tags in ATS and RIS files (continued)

Tag name Description Attributes Parent tag Child tags

TXNABORTED Indicates that the
replicated transaction
was aborted

v ATSFile: The name of the
ATS file if the transaction
was aborted and an ATS
file was created for this
aborted row.

v generateATSFile: Set to
true if an ATS file was
created.

v TxnErr: Error description
for the aborted
transaction.

RIS None

TXNCOMMITTED Indicates that the
replicated transaction
was committed

totalRows: Total number of
rows processed.

RIS None

ATS and RIS Text File Contents
The information about failed replicated transactions that are shown in ATS and RIS
text files is listed in rows that are prefaced by information labels.

The first three characters in each line of the ATS and RIS file describe the type of
information for the line, as the following table defines. The first four labels apply
to both ATS and RIS files. The last three labels apply to only RIS files.

Table 12-4. Information labels

Label Name Description

TXH Transaction
heading

This line contains information from the transaction header,
including the sending server ID and the commit time, the
receiving server ID and the received time, and any Enterprise
Replication, SQL, or ISAM error information for the
transaction.

RRH Replicated row
heading

This line contains header information from the replicated
rows, including the row number within the transaction, the
group ID, the replicate ID (same as replicate group ID if
replicate is not part of any replicate group), the database,
owner, table name, and the database operation.

RRS Replicated row
shadow columns

This line contains shadow column information from replicated
rows, including the source server ID and the time when the
row was updated on the source server. This line is printed
only if the replicate is defined with a conflict-resolution rule.

RRD Replicated row
data

This line contains the list of replicated columns in the same
order as in the SELECT statement in the cdr define replicate
command. Each column is separated by a pipe character (|)
and displayed in ASCII format. When the spooling program
encounters severe errors (for example: cannot retrieve the
replicate ID for the replicated row; unable to determine the
replicated column type, size, or length), it displays this row
data in hexadecimal format. The spooling program also
displays the row data in hexadecimal format if a row includes
replicated UDT columns.

LRH Local-row header RIS only. Indicates if the local row is found in the delete table
and not in the target table

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-11

Table 12-4. Information labels (continued)

Label Name Description

LRS Local-row
shadow columns

RIS only. Contains the server ID and the time when the row
was updated on the target server This line is printed only if
the replicate is defined with a conflict resolution rule.

LRD Local-row data RIS only. Contains the list of replicated columns extracted
from the local row and displayed in the same order as the
replicated row data. Similar to the replicated row data, each
column is separated by a ‘|' and written in ASCII format.
When the spooling program encounters severe errors (for
example: cannot retrieve the replicate ID for the replicated
row; unable to determine the replicated column type, size, or
length) or the table includes UDT columns (whether defined
for replication or not), it displays the replicated row data in
hexadecimal format. In this case, the local row data is not
spooled.

Changed Column Information

If you define a replicate to only replicate columns that changed, the RRD entry in
the ATS and RIS file shows a ? for the value of any columns that are not available.
For example:
RRD 427|amsterdam|?|?|?|?|?|?|?|?|?|?|?

For more information, see “Replicate only changed columns” on page 8-11.

BLOB and CLOB Information

If a replicate includes one or more BLOB or CLOB columns, the RRD entry in the
ATS and RIS file displays the smart large object metadata (the in-row descriptor of
the data), not the smart large object itself, in hexadecimal format.

BYTE and TEXT Information

When the information recorded in the ATS or RIS file includes BYTE or TEXT data,
the replicated row data (RRD) information is reported, as the following examples
show.

Example 1
<1200, TEXT, PB 877(necromsv) 840338515(00/08/17 20:21:55)>

In this example:
v 1200 is the size of the data.
v TEXT is the data type (it is either BYTE or TEXT).
v PB is the storage type (PB when the BYTE or TEXT is stored in the tblspace, BB

for blobspace storage).
v The next two fields are the server identifier and the time stamp for the column if

the conflict-resolution rule is defined for this replicate and the column is stored
in a tblspace.

<500 (NoChange), TEXT, PB 877(necromsv) 840338478(00/08/17 20:21:18)>

Example 2

12-12 IBM Informix Enterprise Replication Guide

In this example, 500 (NoChange) indicates that the TEXT data has a size of 500, but
the data is not changed on the source server. Therefore, the data is not sent from
the source server.

Example 3
<(Keep local blob),75400, BYTE, PB 877(necromsv) 840338515(00/08/17 20:21:55)>”)

In this example, (Keep local blob) indicates that the replicated data for this
column is not applied on the target table, but instead the local BYTE data was
kept. This usually happens when time stamp conflict resolution is defined and the
local column has a time stamp greater than the replicated column.

UDT Information

If a replicate includes one or more UDT columns, the RRD entry in the ATS and
RIS files displays the row data in delimited format as usual, except the string
<skipped> is put in place of UDT column values. For example, the following row
shows information about a table with columns of type INTEGER, UDT, CHAR(10),
and UDT:
RRD 334|<skipped>|amsterdam|<skipped>

TimeSeries information

If a replicate includes a TimeSeries column, an RTS row displays the time series
instance ID and the timestamp of the element. If the failed replicated transaction
includes a TimeSeries routine that affects a range of elements, both the starting and
ending timestamps are shown. The following example shows three failed
replication transactions that include a TimeSeries column:

TXH Source ID:100 / Name:g_delhi / CommitTime:12-01-27 12:27:39
TXH Target ID:200 / Name:g_bombay / ReceiveTime:12-01-27 12:27:39

RRH Row:1 / Replicate Id: 6553638 / Table: test@tstr1.tpk / DbOp:TSInsert
RRH CDR:2 (ERROR DESCRIPTION) / SQL:0 / ISAM:0
RTS Instance id=100, Timestamp=12-01-27 12:27:39

RRH Row:2 / Replicate Id: 6553638 / Table: test@tstr1.tpk / DbOp:TSDelete
RRH CDR:2 (ERROR DESCRIPTION) / SQL:0 / ISAM:0
RTS Instance id=100, Timestamp=12-01-27 12:27:39

RRH Row:2 / Replicate Id: 6553638 / Table: test@tstr1.tpk / DbOp:TSDelRange
RRH CDR:2 (ERROR DESCRIPTION) / SQL:0 / ISAM:0
RTS Instance id=100, Begin Timestamp=12-01-27 12:27:39, End Timestamp=12-01-27 12:27:39
==========
TXH Transaction committed
TXH Total number of rows in transaction:1

Disabling ATS and RIS File Generation
You can prevent the generation of ATS or RIS files, or both.

To prevent the generation of both ATS and RIS files, set the
CDR_DISABLE_SPOOL environment variable to 1.

To prevent the generation of either ATS or RIS files, set the ATS or RIS directory to
/dev/null (UNIX) or NUL (Windows) with the cdr define server or cdr modify
server commands.
Related reference:
“cdr modify server” on page A-146

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-13

“cdr define server” on page A-90
“CDR_DISABLE_SPOOL Environment Variable” on page B-21

Suppressing Data Sync Errors and Warnings
You prevent certain data sync errors and warnings from appearing in ATS and RIS
files by using the CDR_SUPPRESS_ATSRISWARN configuration parameter.

For more information on the CDR_SUPPRESS_ATSRISWARN configuration
parameter, see “CDR_SUPPRESS_ATSRISWARN Configuration Parameter” on page
B-16.

For a list of error and warning messages that you can suppress, see Appendix I,
“Data sync warning and error messages,” on page I-1.

Preventing Memory Queues from Overflowing
In a well-tuned Enterprise Replication system, the send queue and receive queue
do not regularly overflow from memory to disk. However, if the queues in
memory fill, the transaction buffers are written (spooled) to disk. Spooled
transactions consist of transaction records, replicate information, and row data.
Spooled transaction records and replicate information are stored in the transaction
tables and the replicate information tables in a single dbspace. Spooled row data is
stored in one or more sbspaces.

The following situations can cause Enterprise Replication to spool to disk:
v Receiving server is down or suspended.
v Network connection is down.

If the receiving server or network connection is down or suspended, Enterprise
Replication might spool transaction buffers to disk.
To check for a down server or network connection, run cdr list server on a root
server. This command shows all servers and their connection status and state.

v Replicate is suspended.
If a replicate is suspended, Enterprise Replication might spool transaction
buffers to disk.
To check for a suspended replicate, run cdr list replicate. This command shows
all replicates and their state.

v Enterprise Replication is replicating large transactions.
Enterprise Replication is optimized to handle small transactions efficiently. Very
large transactions or batch jobs force Enterprise Replication into an exceptional
processing path that results in spooling. For best results, avoid replicating these
types of transactions.

v Logical log files are too small or too few.
If the logical log files are too small or the number of logical log files is too few,
Enterprise Replication is more likely to spool transaction buffers to disk.

v Server is overloaded.
If a server is low on resources, Enterprise Replication might not be able to hold
all transactions that are replicating from a source server in memory during
processing, and the transactions spool to disk.
If transactions spool to disk, check the system resources; in particular, check disk
speed, RAM, and CPU resources.

Related concepts:

12-14 IBM Informix Enterprise Replication Guide

“Send queues and receive queues” on page 2-4
“Setting Up Send and Receive Queue Spool Areas” on page 6-10
“Transaction processing impact” on page 3-2
“Logical Log Configuration Guidelines” on page 6-8
Related reference:
“cdr list server” on page A-131
“cdr list replicate” on page A-125

Handle potential log wrapping
The potential for log wrap occurs when Enterprise Replication log processing lags
behind the current log and the Enterprise Replication replay position is in danger
of being overrun.

There are two log positions you should be aware of: the snoopy log position,
which is the log position that keeps track of transactions being captured for
replication, and the log replay position, which is the log position that keeps track
of which transactions have been applied.

A potential log wrap situation is usually caused by the logical logs being
misconfigured for the current transaction activity or by the Enterprise Replication
system having to spool more than usual. More-than-usual spooling could be
caused by one of the following situations:
v A one-time job might be larger than normal and thus require more log space.
v One of the target servers is currently unavailable and more spooling of

replicated transactions is required.
v The spool file or paging space could be full and needs to be expanded.

You can configure how Enterprise Replication responds to a potential log wrap
situation by specifying one or more of the following solutions, in order of priority,
with the CDR_LOG_LAG_ACTION configuration parameter:
v Block user transactions until Enterprise Replication log processing advances far

enough that the danger of log wrapping is diminished. Blocking user
transactions prevents the current log position from advancing. This solution
increases user response time. When user transactions are blocked, event alarm 30
unique ID 30002 is raised and the following message appears in the online log:
DDR Log Snooping - DDRBLOCK phase started, userthreads blocked

v Compress the logical logs and save them to a log staging directory. Log files in
the staging directory are deleted after they are no longer required by Enterprise
Replication. You must specify the location and maximum size of the log staging
directory. This solution uses very little additional disk space to temporarily save
log files until the danger of log wrapping is over. The staged log files are
deleted after advancing the log replay position.
If log staging is configured, Enterprise Replication monitors the log lag state and
stages log files even when Enterprise Replication is inactive.

v Dynamically add logical logs. This solution requires enough free space to be
available in the logical log dbspace to add dynamic logs. You can specify how
many dynamic logical logs to add. You must manually drop the dynamic log
files when the danger for log wrapping is over.

v Ignore the potential for log wrap. This solution shuts down Enterprise
Replication when an overrun of the snoopy log replay position is detected.
Enterprise Replication continues to function if the log replay position is overrun.

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-15

If the snoopy replay position is overrun, Enterprise Replication is stopped, event
alarm 47 is raised, and the following message appears in the message log file:
WARNING: The replay position was overrun, data may not be replicated.

If the replay position is overrun, restart Enterprise Replication with the cdr
cleanstart command to reset replay position to current log position and
synchronize the data.

v Stop Enterprise Replication on the affected server as soon as it is detected that
the log replay position is running behind. When you are ready to restart
Enterprise Replication it is necessary to run the cdr cleanstart command only if
the log replay position was overrun.

For example, you can specify that during a potential log wrap situation, Enterprise
Replication stages compressed logical logs. If the log staging directory reaches its
maximum size, then logical logs are added. If the maximum number of logical logs
are added, then Enterprise Replication blocks user transactions. Not all options can
be combined together in every possible priority order. For example, specifying to
stop Enterprise Replication, to ignore the potential for log wrap, or to block user
actions must always be either the only option or the last option in the list.
Related concepts:
“Logical Log Configuration Guidelines” on page 6-8
Related reference:
“CDR_LOG_LAG_ACTION configuration parameter” on page B-6
“CDR_LOG_STAGING_MAXSIZE Configuration Parameter” on page B-9
“CDR_MAX_DYNAMIC_LOGS Configuration Parameter” on page B-10

Monitoring Disk Usage for Send and Receive Queue Spool
Periodically monitor disk usage for the dbspace.

The sbspace that Enterprise Replication uses to spool the queues to disk is
specified by the CDR_QDATA_SBSPACE configuration parameter.

To check disk usage for the spooling sbspace, run one or more of the following
commands:
v onstat -g rqm SBSPACES

v onstat -d

Tip: When you use the onstat -d command to monitor disk usage, the S flag in
the Flags column indicates an sbspace. For each sbspace chunk, the first row
displays information about the whole sbspace and user-data area. The second
row displays information about the metadata area.

v The oncheck command with the -cs,-cS, -ce, -pe, -ps, and -pS options
Related reference:
“onstat -g rqm: Prints statistics for RQM queues” on page E-18
“CDR_QDATA_SBSPACE Configuration Parameter” on page B-13
Related information:
Manage sbspaces
onstat -d command: Print chunk information
The oncheck Utility

12-16 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0583.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0504.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0369.htm

Increasing the Sizes or Numbers of Storage Spaces
If you notice that the Enterprise Replication dbspace or sbspace is running out of
disk space, you can increase the size of the space by adding chunks to the space.
You can also add additional sbspaces for Enterprise Replication.

To add a chunk to a dbspace, use onspaces -a. For example, to add a 110 kilobyte
chunk with an offset of 0 to the er_dbspace dbspace, enter:
onspaces -a er_dbspace -p /dev/raw_dev2 -o 0 -s 110

To add a chunk to an sbspace, use the same onspaces command above, however
you can specify more information about the chunk that you are adding. After you
add a chunk to the sbspace, you must perform a level-0 backup of the root
dbspace and the sbspace.

See the sections on adding chunks to dbspaces and sbspaces in the IBM Informix
Administrator's Guide and the IBM Informix Administrator's Reference for more
information.

To increase the number of sbspaces that can be used for Enterprise Replication,
create new sbspaces with the onspaces -c -S command and then add their names
to the CDR_QDATA_SBSPACE configuration parameter with the cdr add onconfig
command. For more information, see “cdr add onconfig” on page A-29.

Recovering when Storage Spaces Fill
When the Enterprise Replication dbspace runs out of disk space, Enterprise
Replication raises an alarm and writes a message to the log. When the sbspace
runs out of disk space, Enterprise Replication hangs. In either case, you must
resolve the problem that is causing Enterprise Replication to spool (“Preventing
Memory Queues from Overflowing” on page 12-14) or you must allocate
additional disk space (“Increasing the Sizes or Numbers of Storage Spaces”) before
you can continue replication.

Common configuration problems
If you experience problems setting up Enterprise Replication, check the
configuration of your environment and database.

To solve configuration problems:
v Make sure that you created an sbspace for the row data and set the

CDR_QDATA_SBSPACE in the onconfig file.
For more information, see “Setting Up Send and Receive Queue Spool Areas” on
page 6-10 and “CDR_QDATA_SBSPACE Configuration Parameter” on page B-13.

v Verify that the trusted environment is set up correctly.
For more information, see “Configuring secure ports for connections between
replication servers” on page 6-4.

v Verify that your sqlhosts file is set up properly on each server that participates
in replication. You must set up database server groups in the sqlhosts file.
For more information, see “Creating sqlhost group entries for replication
servers” on page 6-3.

v Verify the format of the sqlhosts file.
The network connection (not the shared memory connection) entry must be
immediately after the database server group definition. If the network

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-17

connection entry is not immediately after the database server group definition,
you might see the following error when you run cdr define server:
command failed -- unable to connect to server specified (5)

You might also see a message like the following in the message log for the target
server:
Reason: ASF connect error (-25592)

v Make sure that the unique identifier for each database server (i= in the options
field of the sqlhosts information) is consistent across all nodes in the domain.
For more information, see “Creating sqlhost group entries for replication
servers” on page 6-3.

v Verify that the operating system times of the database servers that participate in
the replicate are synchronized.
For more information, see “Time synchronization” on page 6-17.

v Make sure that the database server has adequate logical log disk space. If the
database server does not have enough logical log space at initialization, you see
the following error:
command failed -- fatal server error (100)

v Check the files in the $INFORMIXDIR directory to see if a problem occurred when
the database server built the SMI tables.

v Make sure that the databases on all database server instances that are involved
in replication are set to logging (unbuffered logging is recommended).
For more information, see “Unbuffered Logging” on page 4-1.

v For replicates that use any conflict-resolution rule except ignore and
always-apply, make sure that you define shadow columns (CRCOLS) for each
table that is involved in replication.
For more information, see “Preparing Tables for Conflict Resolution” on page
6-19.

v If you defined a participant using SELECT * from table_name statement, make
sure that the tables are identical on all database servers that are defined for the
replicate.
For more information, see “Participant definitions” on page 8-7 and “Participant
and participant modifier” on page A-4.

v Verify that each replicated column in a table on the source database server has
the same data type as the corresponding column on the target server.
Enterprise Replication does not support replicating a column with one data type
to a column on another database server with a different data type.
The exception to this rule is cross-replication between simple large objects and
smart large objects.
For more information, see “Replication and data types” on page 4-6.

v Verify that all tables defined in a replicate have a replication key.
For more information, see “Unique key for replication” on page 4-3.

v If high-availability clusters are also in use in the domain, then all row data
sbspaces must be created with logging by using the -Df "LOGGING=ON"
option of the onspaces command.
For more information, see “Row Data sbspaces” on page 6-10 and the IBM
Informix Administrator's Guide.

Troubleshooting Tips for Alter Operations
Alter operations on replicated tables might result in errors.

12-18 IBM Informix Enterprise Replication Guide

The following problems illustrate common issues with performing alter operations
on replicated tables:
v Problem: You receive an error that the replicate is not defined after running the

following command:
cdr alter -o test:tab
Error:Replicate(s) not defined on table test:.tab

The owner name is missing from the table name, test:tab.
Solution: Include the table owner name, for example:
cdr alter -o test:user1.tab

v Problem: You receive an error that the replicated table is in alter mode after
running the following command:
> insert into tab values(1,1);

19992: Cannot perform insert/delete/update operations on a replicated table
while the table is in alter mode
Error in line 1 Near character position 27
>

The table (tab) is in alter mode. DML operations cannot be performed while the
table is in alter mode.
Solution: Wait for the table to be altered and then issue the DML operation. If
no alter statement is in progress against the table, then unset alter mode on the
table using the cdr alter --off command. For example:
cdr alter --off test:user1.tab

You can check the alter mode status using the oncheck -pt command. For
example:
$ oncheck -pt db1:user1.t1

TBLspace Report for db1:user1.t1

Physical Address 1:63392
Creation date 02/01/2011 16:02:00
TBLspace Flags 400809 Page Locking

TBLspace flagged for replication
TBLspace flagged for CDR alter mode
TBLspace use 4 bit bit-maps

Maximum row size 4
...

v Problem: How can you tell if a replicate is a mastered replicate?
Solution: You can check the alter mode status using the oncheck -pt command.
For example:
oncheck -pt test:nagaraju.tab

v Problem: How can you tell if a replicate is a mastered replicate?
Solution: When you execute the cdr list repl command, it shows that the
REPLTYPE is Master for master replicates. For example:
$cdr list repl
CURRENTLY DEFINED REPLICATES

REPLICATE: rep2
STATE: Active ON:delhi
CONFLICT: Timestamp
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: test:nagaraju.tab12
OPTIONS: transaction,ris,ats,fullrow
REPLTYPE: Master

REPLICATE: rep1

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-19

STATE: Active ON:delhi
CONFLICT: Timestamp
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: test:nagaraju.tab
OPTIONS: transaction,ris,ats,fullrow

In the above output, rep1 is defined as a non-master replicate and rep2 is
defined as master replicate.

v Problem: An alter operation on a replicated table fails.
For example:
$dbaccess test -

Database selected.

> alter table tab add col4 int;

19995: Enterprise Replication error encountered while setting alter mode. See
message log file to get the Enterprise Replication error code
Error in line 1Near character position 27
>

The message log output is:
12:36:09 CDRGC: Classic replicate rep1 found on the table test:nagaraju.tab
12:36:09 CDRGC:Set alter mode for replicate rep1
12:36:09 GC operation alter mode set operation on a replicated table failed:
Classic replicate(s) (no mastered dictionary) found on the table.

Solution: The above message shows that there is a classic replicate, rep1,
defined on the table (tab). Adding a new column to a replicated table is allowed
when only master replicates are defined for the table.
To perform the above alter operation, first convert the classic replicate to a
master replicate. You can convert the replicate definition of rep1 to a master
replicate by issuing the following command:
cdr remaster -M g_delhi rep1 "select * from tab"

Now look at the cdr list repl output:
$cdr list repl
CURRENTLY DEFINED REPLICATES

REPLICATE: rep1
STATE: Active ON:delhi
CONFLICT: Timestamp
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: test:nagaraju.tab
OPTIONS: transaction,ris,ats,fullrow
REPLTYPE: Master

REPLICATE: rep2
STATE: Active ON:delhi
CONFLICT: Timestamp
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: test:nagaraju.tab12
OPTIONS: transaction,ris,ats,fullrow
REPLTYPE: Master

REPLICATE: Shadow_4_rep1_GMT1112381058_GID100_PID29935
STATE: Active ON:delhi
CONFLICT: Timestamp
FREQUENCY: immediate
QUEUE SIZE: 0

12-20 IBM Informix Enterprise Replication Guide

PARTICIPANT: test:nagaraju.tab
OPTIONS: transaction,ris,ats,fullrow
REPLTYPE: Shadow
PARENT REPLICATE: rep1

You can see that repl1 has been converted to a master replicate. You can also see
that a new replicate definition,
Shadow_4_rep1_GMT1112381058_GID100_PID29935, was also created against
the table (tab1). Notice the last two fields of the output for
Shadow_4_rep1_GMT1112381058_GID100_PID29935:
REPLTYPE: Shadow
PARENT REPLICATE: rep1

The Shadow attribute indicates that this replicate is a shadow replicate, and
PARENT REPLICATE: rep1 shows that this is a shadow replicate for the primary
replicate rep1. Notice that the Master attribute is not present for this replicate
definition. This shadow replicate is actually the old non-master replicate. The cdr
remaster command created a new master replicate, rep1, for the table tab and
converted the old non-master replicate (rep1) to a shadow replicate for the new
master replicate.
This table is not yet ready to be altered because there is still a non-master
replicate, Shadow_4_rep1_GMT1112381058_GID100_PID29935, defined for the
table, tab. You must wait for
Shadow_4_rep1_GMT1112381058_GID100_PID29935 to be deleted automatically
by Enterprise Replication after all the data queued for this shadow replicate is
applied at all the replicate participants. This process can take some time.
Alternatively, if you are sure that there is no data pending for this old
non-master replicate, then you can issue the cdr delete repl command against
Shadow_4_rep1_GMT1112381058_GID100_PID29935.
After making sure that Shadow_4_rep1_GMT1112381058_GID100_PID29935 no
longer exists, you can attempt the ALTER TABLE tab add col4 int; statement
against the table.

Enterprise Replication Event Alarms
Certain Enterprise Replication errors and other actions generate event alarms. You
can use event alarms specific to Enterprise Replication to automate many
administrative tasks.

You can set your alarm program script to capture Enterprise Replication class IDs
and messages and initiate corrective actions or notifications for each event. For
example, you can add a chunk to the queue data sbspace or dbspace if you detect
(using class ID 31) that the storage space is full.

Most event alarms operate in the background. For events that operate in the
foreground, the session that triggered the alarm is suspended until the alarm
program execution completes. For information on setting alarm program scripts to
capture events, see Event Alarms.

Many Enterprise Replication event alarms are enabled by default, but most state
change event alarms are disabled by default. You can control which Enterprise
Replication event alarms are enabled with the CDR_ALARMS environments
variable.

The following table lists the information about Enterprise Replication event alarms:
v The class ID is an integer value identifying the category of the event.

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-21

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0668.htm

v The event ID is a unique identifier for the specific message.
v The class message provides general information about the event.
v The specific message provides detailed information about the event.
v The severity describes the seriousness of the event on a scale from 1 to 5, where

5 is the most serious.
v Whether the event operates in the foreground and explanations for the events.
v Whether the event is disabled by default.

Table 12-5. Enterprise Replication Event Alarms

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

30

Event ID:

30002

Class message:

DDR subsystem notification

Specific message:

DDR Log Snooping - Catchup
phase started, userthreads blocked

3 User transactions are being blocked to prevent the
database server from overwriting a logical log that
Enterprise Replication has not yet processed.

Online log: The following message appears in the
online log:

DDR Log Snooping - DDRBLOCK phase started,
userthreads blocked

ER state: Active and replicating data. User
transactions are temporarily blocked.

User action: None.

For information about preventing this situation, see
“Handle potential log wrapping” on page 12-15.

Class ID:

30

Event ID:

30003

Class message:

DDR subsystem notification

Specific message:

DDR Log Snooping - Catchup
phase completed, userthreads
unblocked

3 User transactions are no longer blocked.

Online log: The specific message also appears in the
online log.

ER state: Active and replicating data.

User action: None.

Class ID:

30

Event ID:

30004

Class message:

DDR subsystem failure

Specific message:

WARNING: The replay position
was overrun, data may not be
replicated.

4 The log replay position was overwritten.

Online log: The following message appears in the
online log:

WARNING: The replay position was overrun, data
may not be replicated.

ER state: Active and replicating data. Enterprise
Replication shuts down if the log read position also
gets overwritten. If Enterprise Replication shuts
down, event alarm 47 is raised.

User action: For information about preventing this
situation, see “Handle potential log wrapping” on
page 12-15.

12-22 IBM Informix Enterprise Replication Guide

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

30

Event ID:

30005

Class message:

DDR Subsystem notification

Specific message:

CDR DDR: Log staging disk space
usage reached its allowed
configured maximum size size (KB).
Temporarily disabling log staging.

3 The disk space where logs are stored reached its
maximum size.

Online log: The following message appears in the
online log:

CDR DDR: Log staging disk space usage reached
its allowed configured maximum size size (KB).
Temporarily disabling log staging.

ER state: Active and running. Enterprise Replication
uses the next configured logical log lag action to
protect the replay position. If no other log lag action
is configured, the replay position can be overrun. If
Enterprise Replication shuts down due to replay
position being overrun, restart Enterprise
Replication using cdr cleanstart command and
resynchronize the data.

User action: Consider increasing the maximum disk
space configured for log staging using the
CDR_LOG_STAGING_MAXSIZE configuration
parameter. The value for the
CDR_LOG_STAGING_MAXSIZE configuration
parameter can be updated while the server is active
using the following command:

onmode -wf CDR_LOG_STAGING_MAXSIZE=size

Class ID:

30

Event ID:

30006

Class message:

DDR Subsystem notification

Specific message:

CDR: Created staging file filename
for log unique id unique_log_id

3 The log staging file was created.

Online log: The following message appears in the
online log:

CDR: Created staging file filename for log
unique id uniqui_log_id

ER state: Enterprise Replication is active and
staging log files because a log lag state was
detected.

User action: If high-availability secondary servers
are configured, consider copying log files to the
secondary server. See “Transferring log files to a
high-availability cluster secondary server when
using ER” on page B-8.

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-23

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

30

Event ID:

30007

Class message:

DDR Subsystem notification

Specific message:

CDR: Completed processing log
unique id unique_log_id. Deleted
log staging file filename

2 A log staging file was deleted.

Online log: The following message appears in the
online log:

CDR: Completed processing log unique id
unique_log_id. Deleted log staging file
filename

ER state: Active and replicating data.

User action: If staged log files are being copied to
high-availability secondary servers, consider
deleting the log staged log file name specified in the
alarm message and the related token log file. See
“Transferring log files to a high-availability cluster
secondary server when using ER” on page B-8.

Class ID:

30

Event ID:

30008

Class message:

DDR Subsystem notification

Specific message:

CDR: Deleted all staging files from
log staging directory.

2 The staging files were deleted from the log staging
directory.

Online log: The following message appears in the
online log:

CDR: Deleted all staging files from log staging
directory.

ER state: Active or deleted. Enterprise Replication
deletes all files in the log staging directory when
they are no longer required. The log files are deleted
when any of the following occur:

v Enterprise Replication is deleted on the local
server.

v After the cdr cleanstart command is run.

v When the value of the LOG_STAGING_DIR
configuration parameter is changed (any log files
that exist in the previous directory are also
deleted).

v When Enterprise Replication is defined.

User action: If staged log files are being manually
copied to high-availability secondary server then
delete all staged log files on the secondary servers.
See “Transferring log files to a high-availability
cluster secondary server when using ER” on page
B-8.

12-24 IBM Informix Enterprise Replication Guide

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

31

Event ID:

31001

Class message:

ER stable storage pager sbspace is
full

Specific message:

CDR Pager: Paging File full:
Waiting for additional space in
sbspace_name

4 This event runs in the foreground.

The grouper paging sbspace ran out of space.

ER state: Active and waiting for the space to be
added to the sbspace name specified in
alarm-specific message.

User action: Add a chunk to the specified sbspace.

For information about preventing this situation, see
“Increasing the Sizes or Numbers of Storage Spaces”
on page 12-17.

Class ID:

31

Event ID:

31002

Class message:

ER stable storage queue sbspace is
full

Specific message:

CDR QUEUER: Send Queue space
is FULL - waiting for space in
sbspace_name.

CDR QUEUER: Send Queue space
is FULL - waiting for space in
CDR_QDATA_SBSPACE

4 This event runs in the foreground.

The storage space of a queue is full.

Online log: The specific message also appears in the
online log.

ER state: Active and waiting for space to be added
to the sbspace listed.

User action: Add a chunk to the specified sbspace.
If the message specifies CDR_QDATA_SBSPACE,
add a chunk to one or more of the sbspaces
specified by the CDR_QDATA_SBSPACE
configuration parameter.

For information about preventing this situation, see
“Recovering when Storage Spaces Fill” on page
12-17.

Class ID:

31

Event ID:

31003

Class message:

ER stable storage queue dbspace is
full

Specific message:

CDR QUEUER: Send Queue space
is FULL - waiting for space in
CDR_QHDR_DBSPACE..

4 This event runs in the foreground.

The storage space of a queue is full.

Online log: The specific message also appears in the
online log.

ER state: Active and waiting for space to be added
to the dbspace specified by the CDR_DBSPACE
configuration parameter.

User action: Add a chunk to the dbspace specified
by the CDR_DBSPACE configuration parameter.

For information about preventing this situation, see
“Recovering when Storage Spaces Fill” on page
12-17.

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-25

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

32

Event ID:

32002

Class message:

ER: error detected in grouper sub
component

Specific message:

CDR Grouper Fanout thread is
aborting.

4 The grouper fanout thread is quitting.

ER state: Enterprise Replication was shut down
internally. Event alarm 47 is also raised.

User action: Restart Enterprise Replication using the
cdr start command.

Class ID:

32

Event ID:

32003

Class message:

ER: error detected in grouper sub
component

Specific message:

CDR Grouper Evaluator thread is
aborting.

4 The grouper evaluator thread is quitting.

ER state: Active and replicating transactions.

User action: Stop Enterprise Replication with the
cdr stop command and restart it using the cdr start
command.

Class ID:

32

Event ID:

32004

Class message:

ER: error detected in grouper sub
component

Specific message:

CDR: Could not copy transaction at
log id log_unique_id position
log_position. Skipped.

4 The grouper subcomponent cannot copy the
transaction into the send queue.

ER state: Active and replicating transactions.

User action: Shut down Enterprise Replication by
running the cdr stop command, clear the receive
queue and restart replication by running the cdr
cleanstart command, and then synchronize the data
by running the cdr check replicateset command
with the --repair option.

Class ID:

32

Event ID:

32005

Class message:

ER: error detected in grouper sub
component

Specific message:

CDR: Paging error detected.

4 The grouper subcomponent detected a paging error.

ER state: Inactive.

User action: Restart Enterprise Replication by
running the cdr start command.

12-26 IBM Informix Enterprise Replication Guide

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

32

Event ID:

32006

Class message:

ER: error detected in grouper sub
component

Specific message:

CDR Grouper: Local participant
(participant_name) stopped for the
replicate replicate_name (or
exclusive replicate set), table
(database:owner.table). Data may be
out of sync. If replicated column
definition was modified then
please perform the alter operation
at all the replicate participants,
remaster the replicate definition
then restart the replicate (or
exclusive replicate set) definition
for the local participant with the
data sync option (-S).

4 If the grouper subcomponent is not able to convert
the replicated row data from the local dictionary
format to the master dictionary format, the grouper
stops the local participant from the corresponding
replicate (or exclusive replicate set) definition and
invokes this event alarm.

Class ID:

32

Event ID:

32007

Class message:

ER: error detected in grouper sub
component

Specific message:

CDR CDR_subcomponent_name:
Could not apply undo properly.
SKIPPING TRANSACTION.

TX Begin Time: datetime

TX Restart Log Id: log_id

TX Restart Log Position:
log_position

TX Commit Time: datetime

TX End Log Id: log_id

TX End Log Position: log_position

3 The grouper subcomponent did not roll back a
transaction to a savepoint.

ER state: Active and replicating transactions.

User action: Run the cdr check replicateset
command with the --repair option to make sure that
the data is consistent.

Class ID:

33

Event ID:

33001

Class message:

ER: error detected in data sync sub
component

Specific message:

Received aborted transaction, no
data to spool.

2 Data sync received a transaction that was aborted in
the first buffer, so the transaction cannot be spooled
to an ATS or RIS file.

ER state: Active and replicating transactions.

User action: Run the cdr check replicateset
command with the --repair option to make sure that
the data is consistent.

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-27

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

33

Event ID:

33002

Class message:

ER: error detected in data sync sub
component

Specific message:

CDR DS thread_name thread is
aborting.

4 The data sync thread is quitting.

ER state: Active and replicating transactions.

User action: Run the cdr check replicateset
command with the --repair option to make sure that
the data is consistent.

Class ID:

33

Event ID:

33002

Class message:

ER: error detected in data sync sub
component

Specific message:

Table in alter mode is blocking
application of transactions. Table:
dbname:'owner'.tabname.

3 A table in alter mode is blocking the application of
transactions. While the table is in alter mode,
Enterprise Replication cannot apply transactions
that involve this table or are in a referential
relationship with this table. Enterprise Replication
also cannot apply subsequent transactions from the
site where the failed transaction originated.

User action: Run cdr alter --off
dbname:owner.tabname.

Class ID:

34

Event ID:

34001

Class message:

ER: error detected in queue
management sub component

Specific message:

CDR CDR_subcomponent_name: bad
replicate ID replicate_id

3 This event runs in the foreground.

RQM cannot find the replicate in the global catalog
for which it has a transaction.

ER state: Active and replicating transactions.

User action: Run the cdr check replicateset
command with the --repair option to make sure that
the data is consistent.

Class ID:

35

Event ID:

35001

Class message:

ER: error detected in global catalog
sub component

Specific message:

CDR GC peer request failed:
command: command_string, error
error_code, CDR server
CDR_server_ID

3 Execution of the control command requested by the
peer server failed at the local server.

ER state: Active and replicating transactions.

User action: Correct the problem identified by the
error code. Make sure that the replicate object is the
same across all participating servers.

Class ID:

35

Event ID:

35002

Class message:

ER: error detected in global catalog
sub component

Specific message:

CDR GC peer processing failed:
command: command_string, error
error_code, CDR server
CDR_server_ID

3 Control command execution at the peer server
failed.

ER state: Active and replicating transactions.

User action: Correct the problem identified by the
error code. Make sure that the replicate object is the
same across all participating servers.

12-28 IBM Informix Enterprise Replication Guide

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

35

Event ID:

35004

Class message:

ER: error detected in global catalog
sub component

Specific message:

CDR: Could not drop delete table.
SQL code sql_error_code, ISAM code
isam_error_code. Table 'database:table'.
Please drop the table manually.

3 The delete table was not dropped while the replicate
was being deleted from the local participant.

ER state: Active and replicating transactions.

User action: Manually drop the delete table.

Class ID:

36

Event ID:

36001

Class message:

ER: enterprise replication network
interface sub component
notification

Specific message:

Enterprise Replication: Connection
to servergroupname closed. Reason:
connection request received from
an unknown server.

3 Enterprise Replication received a reconnect
connection request from an unknown server.

ER state: Active.

User action: Check the connection requester server
definition in the local server. If the definition is not
available on the local server, the remote server
definition was probably deleted on the local server
by running the cdr delete server command, but the
cdr delete server command was not run on the
remote server. In this case, run the cdr delete server
command on the remote server and, if necessary,
redefine the server.

Class ID:

37

Event ID:

37001

Class message:

ER: error detected while recovering
Enterprise Replication

Specific message:

CDR CDR_subcomponent_name: bad
replicate ID replicate_id

3 This event runs in the foreground; Enterprise
Replication is blocked until this issue is resolved.

ER state: Active and replicating transactions.

User action: If the replicate ID is still valid and
exists in syscdr catalog tables, run the cdr check
replicateset command with the --repair option to
make sure that the data is consistent.

Class ID:

38

Event ID:

38001

Class message:

ER: resource allocation problem
detected

Specific message:

CDR CDR_subcomponent_name
memory allocation failed (reason).

2 The specified Enterprise Replication component did
not allocate memory.

ER state: Active.

User action: Perform these actions:

1. Correct the resource issue.

2. Stop replication by running the cdr stop
command.

3. Restart replication by running the cdr start
command.

4. Make sure that the data is consistent by running
the cdr check replicateset command with the
--repair option.

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-29

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

39

Event ID:

39001

Class message:

Please notify IBM Informix
Technical Support

Specific message:

Log corruption detected or read
error occurred while snooping logs.

4 A logical log is corrupted and cannot be processed
by the log capture component. Event alarm 47 is
also raised in this situation.

Online log: The following message appears in the
online log:

Log corruption detected while snooping logs,
logid=log_unique_id logpos=log_position.

ER state: Inactive.

User action: Clear the receive queue and restart
replication by running the cdr cleanstart command,
and then synchronize the data by running the cdr
check replicateset command with the --repair
option.

Class ID:

39

Event ID:

39002

Class message:

Please notify IBM Informix
Technical Support

Specific message:

CDR: Unexpected log record type
record_type for subsystem subsystem
passed to DDR.

4 A log record of unexpected type was passed to the
log capture component.

ER state: Active and replicating transactions.

User action: Contact IBM Software Support.

Class ID:

47

Event ID:

47001

Class message:

CDR is shutting down due to
internal error: failure

Specific message:

CDR is shutting down due to
internal error: Memory allocation
failed

4 Data sync threads encountered a memory allocation
error while replaying replicated transactions and
replication is stopped.

Online Log: When the memory allocation error is
discovered, the following message appears in the
online log:

CDR DS processes is aborting. Signaling CDR
system to shutdown as it is low on resources.

When Enterprise Replication is shutting down and
the event alarm is being raised, the following
message appears in the online log:

CDR is shutting down due to internal error:
Memory allocation failed

ER State: No replicated transactions are lost while
replication is stopped.

User Action: To resume replication, solve the
memory issue and run the cdr start command or
shut down and restart the database server.

If the replay position was overrun while replication
was stopped, event alarm 75 is raised.

12-30 IBM Informix Enterprise Replication Guide

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

47

Event ID:

47005

Class message:

CDR is shutting down due to
internal error: failure

Specific message:

CDR is shutting down due to an
internal error.

4 Enterprise Replication stopped.

ER state: Inactive.

User action: Try restarting Enterprise Replication
using the cdr start command. If replay position
overrun is detected and the cdr start command fails
with error code 214 and raises alarm class ID 75,
restart Enterprise Replication using the cdr
cleanstart command and synchronize the data.

Class ID:

47

Event ID:

47006

Class message:

CDR is shutting down due to
internal error: log lag state

Specific message:

CDR DDR: Shutting down ER to
avoid a DDRBLOCK situation.

4 Enterprise Replication stopped.

ER state: Inactive.

User action: If replay position overrun was detected
then restart Enterprise Replication using cdr
cleanstart command and synchronize the data. If the
replay position was not overrun then restart
Enterprise Replication using cdr start command;
there is no need to synchronize the data. If replay
position overrun is detected and the cdr start
command fails with error code 214 and raises alarm
class ID 75, restart Enterprise Replication using the
cdr cleanstart command and synchronize the data.

Class ID:

48

Event ID:

48001

Class message:

ATS and/or RIS files spooled to
disk.

Specific message:

file name|file name.

3 One or more failed transactions caused the
generation of one or more ATS or RIS files. The
generated file names are listed in the specific
message, separated with a pipe (|) character.

ER State: Replication is continuing normally.

User Action: To process the failed transactions, run
the cdr repair command for each file, or run the cdr
check replicateset command with the --repair
option.

Class ID:

49

Event ID:

49001

Class message:

A replication state change event
has happened.

Specific message:

Enterprise Replication is started on
server server_name.

3
This event alarm is disabled by default.

The cdr start command was run.

Class ID:

50

Event ID:

50001

Class message:

A replication state change event
has happened.

Specific message:

Enterprise Replication is stopped
on server server_name.

3 The cdr stop command was run.

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-31

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

51

Event ID:

51001

Class message:

A replication state change event
has happened.

Specific message:

Enterprise Replication is suspended
on server server_name.

3
This event alarm is disabled by default.

The cdr suspend server command was run.

Class ID:

52

Event ID:

52001

Class message:

A replication state change event
has happened.

Specific message:

Enterprise Replication is resumed
on server server_name.

3
This event alarm is disabled by default.

The cdr resume server command was run.

Class ID:

53

Event ID:

53001

Class message:

A replication state change event
has happened.

Specific message:

Server server_name is connected.

3
This event alarm is disabled by default.

The cdr connect server command was run.

Class ID:

54

Event ID:

54001

Class message:

A replication state change event
has happened.

Specific message:

Server server_name is disconnected.

3
This event alarm is disabled by default.

The cdr disconnect server command was run.

Class ID:

55

Event ID:

55001

Class message:

A replication state change event
has happened.

Specific message:

Replication is suspended on
replicate replicate_name on server
server_name.

3
This event alarm is disabled by default.

The cdr suspend replicate command was run.

Class ID:

56

Event ID:

56001

Class message:

A replication state change event
has happened.

Specific message:

Replication is suspended on
replicate set replicateset_name on
server server_name.

3
This event alarm is disabled by default.

The cdr suspend replicateset command was run.

12-32 IBM Informix Enterprise Replication Guide

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

57

Event ID:

57001

Class message:

A replication state change event
has happened.

Specific message:

Replication is resumed on replicate
replicate_name on server
server_name.

3
This event alarm is disabled by default.

The cdr resume replicate command was run.

Class ID:

58

Event ID:

58001

Class message:

A replication state change event
has happened.

Specific message:

Replication is resumed on replicate
set replicateset_name on server
server_name.

3
This event alarm is disabled by default.

The cdr resume replicateset command was run.

Class ID:

59

Event ID:

59001

Class message:

A replication state change event
has happened.

Specific message:

Replication is started on replicate
replicate_name on server
server_name.

3
This event alarm is disabled by default.

The cdr start replicate command was run.

Class ID:

60

Event ID:

60001

Class message:

A replication state change event
has happened.

Specific message:

Replication is started on replicate
set replicateset_name on server
server_name.

3
This event alarm is disabled by default.

The cdr start replicateset command was run.

Class ID:

61

Event ID:

61001

Class message:

A replication state change event
has happened.

Specific message:

Replication is stopped on replicate
replicate_name on server
server_name.

3
This event alarm is disabled by default.

The cdr stop replicate command was run.

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-33

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

62

Event ID:

62001

Class message:

A replication state change event
has happened.

Specific message:

Replication is stopped on replicate
set replicateset_name on server
server_name.

3
This event alarm is disabled by default.

The cdr stop replicateset command was run.

Class ID:

63

Event ID:

63001

Class message:

A replication state change event
has happened.

Specific message:

Replication attribute is modified on
replicate replicate_name on server
server_name.

3
This event alarm is disabled by default.

The cdr modify replicate command was run.

Class ID:

64

Event ID:

64001

Class message:

A replication state change event
has happened.

Specific message:

Replication attribute is modified on
replicate set replicateset_name on
server server_name.

3
This event alarm is disabled by default.

The cdr modify replicateset command was run.

Class ID:

65

Event ID:

65001

Class message:

A replication state change event
has happened.

Specific message:

Change in replicate replicate_name
on server server_name: operation
action, node[s] participant_name.

3
This event alarm is disabled by default.

The cdr change replicate command was run to add
or delete one or more participants.

Class ID:

66

Event ID:

66001

Class message:

A replication state change event
has happened.

Specific message:

Change in replicateset
replicateset_name on server
server_name: operation action,
member[s] replicate_name.

3
This event alarm is disabled by default.

The cdr change replicateset command was run to
add or delete one or more replicates.

12-34 IBM Informix Enterprise Replication Guide

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

67

Event ID:

67001

Class message:

A replication state change event
has happened.

Specific message:

Server server_name is deleted.

3
This event alarm is disabled by default.

The cdr delete server command was run.

Class ID:

68

Event ID:

68001

Class message:

A replication state change event
has happened.

Specific message:

Replicate replicate_name is deleted
on server server_name.

3
This event alarm is disabled by default.

The cdr delete replicate command was run.

Class ID:

69

Event ID:

69001

Class message:

A replication state change event
has happened.

Specific message:

Replicate set replicateset_name is
deleted on server server_name.

3
This event alarm is disabled by default.

The cdr delete replicateset command was run.

Class ID:

70

Event ID:

70001

Class message:

A replication state change event
has happened.

Specific message:

Server server_name is modified.

3
This event alarm is disabled by default.

The cdr modify server command was run.

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-35

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

71

Event ID:

71001

Class message:

ER: Network connection
disconnected.

Specific message:

Network connection was dropped
from the server server_name to the
server server_name. Connection
closed due to an Enterprise
Replication administrative activity.

3 The connection was closed as the result of an
Enterprise Replication command, such as cdr stop,
cdr disconnect server, or cdr delete server.

This event alarm appears on the database server on
which the command was run and might or might
not appear on the peer server. The peer server
might receive event alarm 71 with the specific
message that the connection closed for an unknown
reason because the administrative control message
might not reach the peer server before the
connection is closed.

Online Log: A message appears stating: CDR
connection to server lost, with the server ID,
server name, and that an administrative command
was run.

ER State: How replication is affected and how to
reestablish the connection depends on which
command closed the connection.

v If the cdr stop command was run, replicated
transactions are no longer being captured from
this database server.

v If the cdr disconnect server command was run,
replicated transactions continue to be captured
and queued.

v If the cdr delete server command was run, the
database server is no longer a participant in the
replication domain and no replicated data is
captured on or for this database server.

User Action: Solve the issue that prompted the
running of the administrative command and
reestablish the connection between the servers.

12-36 IBM Informix Enterprise Replication Guide

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

71

Event ID:

71002

Class message:

ER: Network connection
disconnected.

Specific message:

Network connection was dropped
from the server server_name to the
server server_name. Connection
closed due to the idle time-out set
for the replication server.

3 An idle timeout occurs when there are no
replication messages sent between the replication
servers for the number of seconds specified as the
idle timeout period. The connection is reestablished
automatically when replication messages are ready
to be sent.

This event alarm appears on both database servers
affected by the dropped connection.

Online Log: A message appears stating: CDR
connection to server lost, with the server ID,
server name, and the reason of idle timeout.

ER State: Replication continues normally.

User Action: None. Replication resumes
automatically.

You can increase or eliminate the idle timeout
period by using the cdr modify server command.

Class ID:

71

Event ID:

71003

Class message:

ER: Network connection
disconnected.

Specific message:

Network connection was dropped
from the server server_name to the
server server_name. Connection
unexpectedly closed for an
unknown reason.

3 This event alarm occurs when there is a connection
problem not related to Enterprise Replication, such
as a network outage or one of the database servers
shutting down.

This event alarm might appear on both database
servers affected by the dropped connection. This
alarm does not appear on a database server that
shut down. This alarm might appear when a peer
server closed the connection with an administrative
activity, in which case that server receives event
alarm 71 with the specific message that an
administrative activity closed the connection.

Online Log: A message appears stating: CDR
connection to server lost, with the server ID,
server name.

ER State: Replicated transactions continue to be
captured and queued, except on database servers
that are shut down. Replicated transactions to and
from the affected servers are not transmitted.

User Action: Examine both servers to determine the
cause of the dropped connection.

v If there was a network problem, solve it and
restart any database servers that might be shut
down. The Enterprise Replication connection
reconnects automatically.

v If there was an administrative action, solve the
issue that prompted the running of the
administrative command and reestablish the
connection between the servers.

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-37

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

73

Event ID:

73001

Class message:

Enterprise replication NIF
connection terminated.

Specific message:

Enterprise Replication: Connection
to server_name closed. Reason: CDR
server server_name not found.

3 The remote server initiated a connection request that
was not completed by the local server.

This alarm appears when the remote server has an
sqlhosts entry for the local server, but the local
server does not have a corresponding sqlhosts
entry for the remote server.

This situation can occur when a new server is
added to the domain but the local server does not
have an entry for that server in its sqlhosts file.

Online Log: The specific message also appears in
the online log.

ER State: The new server cannot participate in
replication until the sqlhosts entries are correct.
Replication between the established replication
servers continues normally.

User Action: To solve this issue, update the
sqlhosts entry on the local server with the
appropriate entry for the remote server. Make sure
that all the sqlhosts files are consistent on all
replication servers in domain.

Class ID:

74

Event ID:

74001

Class message:

Enterprise replication recovery
failed

Specific message:

Server name/id mismatch in
sqlhosts file while recovery,
recovered name = server_name, id =
ID, current name = server_name, id
= ID

3 The server information in the sqlhosts file was
updated after the server was defined for replication.

This alarm can appear after the following sequence
of events:

1. Replication is stopped on a server because the
cdr stop command was run or the server was
shut down.

2. The sqlhosts file was updated.

3. Replication was attempted to be restarted by
running the cdr start command or by starting
the server.

Online Log: The specific message also appears in
the online log.

ER State: Replication is stopped on this server.

User Action: Update the sqlhosts file to restore the
original server information and then restart
replication by running the cdr start command or
restarting the database server.

12-38 IBM Informix Enterprise Replication Guide

Table 12-5. Enterprise Replication Event Alarms (continued)

Class ID

and Event
ID Class and Specific Messages Severity Explanation

Class ID:

75

Event ID:

75001

Class message:

ER: the logical log replay position
is not valid. Restart ER with the
cdr cleanstart command, and then
synchronize the data with the cdr
check --repair command.

Specific message:

The replay position (logical log ID
log_number and log position
log_position) has been overwritten.

4 This event alarm occurs if a database server was
shut down or replication was stopped for long
enough to fill a logical log. When the database
server was restarted or the cdr start command was
run, replication failed.

Online Log: The specific message also appears in
the online log.

ER State: Replication is stopped on this server.

User Action: Clear the receive queue and restart
replication by running the cdr cleanstart command
and then synchronize the data by running the cdr
check replicateset command with the --repair
option.

Class ID:

75

Event ID:

75002

Class message:

ER: the logical log replay position
is not valid. Restart ER with the
cdr cleanstart command, and then
synchronize the data with the cdr
check --repair command.

Specific message:

The replay position (logical log ID
log_number and log position
log_position) is later than the
current position.

4
This event alarm can occur after a point in time
restore was performed on the database server. The
point in time restore applied log records beyond the
current replay position.

Online Log: The specific message also appears in
the online log.

ER State: Replication is stopped on this server.

User Action: Clear the receive queue and restart
replication by running the cdr cleanstart command
and then synchronize the data by running the cdr
check replicateset command with the --repair
option.

Class ID:

76

Event ID:

76001

Class message:

A replication state change event
has happened.

Specific message:

Server server_name is disabled.

3 This event alarm is disabled by default.

The cdr disable server command was run.

Class ID:

77

Event ID:

77001

Class message:

A replication state change event
has happened.

Specific message:

Server server_name is enabled.

3 This event alarm is disabled by default.

The cdr enable server command or the cdr check
replicateset command with the --enable option was
run.

Related concepts:
Chapter 12, “Monitor and troubleshooting Enterprise Replication,” on page 12-1
Related reference:
“cdr delete replicate” on page A-105
“cdr delete replicateset” on page A-106

Chapter 12. Monitor and troubleshooting Enterprise Replication 12-39

“cdr delete server” on page A-108
“cdr change replicate” on page A-39
“cdr change replicateset” on page A-42
“cdr connect server” on page A-72
“cdr start” on page A-168
“cdr stop” on page A-189
“cdr suspend server” on page A-197
“cdr resume server” on page A-167
“cdr delete template” on page A-112
“cdr suspend replicate” on page A-194
“cdr suspend replicateset” on page A-195
“cdr resume replicate” on page A-164
“cdr resume replicateset” on page A-165
“cdr start replicate” on page A-170
“cdr start replicateset” on page A-173
“cdr stop replicate” on page A-191
“cdr stop replicateset” on page A-193
“cdr modify replicate” on page A-140
“cdr modify replicateset” on page A-145
“cdr modify server” on page A-146

Enabling or Disabling Enterprise Replication Event Alarms
You can control which Enterprise Replication event alarms can be raised.

By default, Enterprise Replication event alarms are enabled, except most of the
state change event alarms that are raised by specific cdr commands. You might
want to enable state change event alarms to track which cdr commands are being
run, but if you are setting up your replication system and running many cdr
commands, the resulting large number of event alarms might affect system
performance.

To change which Enterprise Replication event alarms are enabled, reset the values
of the CDR_ENV configuration parameter for the CDR_ALARMS environment
variable:
1. Add a new line or update the existing line for CDR_ENV CDR_ALARMS in

the onconfig file. List all the Enterprise Replication event alarms that you want
to be enabled.

2. Restart the database server.

Example

The following example shows the CDR_ENV value in the onconfig file for the
CDR_ALARMS environment variable with event alarm 49 enabled in addition to
the default event alarms:
CDR_ENV CDR_ALARMS=30-39,47-50,71,73-75

Related reference:
“CDR_ALARMS Environment Variable” on page B-20
“CDR_ENV Configuration Parameter” on page B-4

12-40 IBM Informix Enterprise Replication Guide

Part 4. Appendixes

© Copyright IBM Corp. 1996, 2015

IBM Informix Enterprise Replication Guide

Appendix A. The cdr utility

You use the cdr utility to configure and control Enterprise Replication from the
command line on your UNIX or Windows operating system.

You must be the Enterprise Replication server administrator to run any of the cdr
commands except the cdr list commands, unless otherwise noted.

The cdr utility requires a certain amount of memory resources. If you encounter
out-of-memory errors for cdr commands, your operating system limits on memory
use might be set too low. For example, you can run the ulimit command in a
UNIX environment to configure limits on memory resources. Increase the values
for memory resources to avoid out-of-memory errors.

You can run cdr commands from within SQL statements by using the SQL
administration API. Most cdr commands that perform actions are supported by the
SQL administration API; cdr commands that show information are not supported.
Related tasks:
“Repairing Failed Transactions with ATS and RIS Files” on page 11-22
Related information:
cdr argument: Administer Enterprise Replication (SQL administration API)

Interpret the cdr utility syntax
The cdr utility uses specific terminology and conventions.

Each cdr command follows the same approximate format, with the following
components:
v Command and its variation

The command specifies the action that is taken.
v Options

The options modify the action of the command. Each option starts with a minus
(-) or a double-minus (--).

v Target
The target specifies the Enterprise Replication object that is acted upon.

v Other objects
Other objects specify objects that are affected by the change to the target.

If you enter an incorrect cdr command at the command-line prompt, the database
server returns a usage message that summarizes the cdr commands. For a more
detailed usage message, enter cdr variation -h. For example, cdr list server -h.
Related concepts:
“Enterprise Replication Server administrator” on page 3-1

Command Abbreviations
For most commands, each of the words that make up a cdr command variation can
be abbreviated to three or more characters.

For example, the following commands are all equivalent:

© Copyright IBM Corp. 1996, 2015 A-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_014.htm

cdr define replicate
cdr define repl
cdr def rep

The exceptions to this rule are the replicateset commands, which can be
abbreviated to replset. For example, the following commands are equivalent:
cdr define replicateset
cdr def replset

Command abbreviations are not allowed when you run cdr commands within SQL
statements using the SQL administration API. For more information, see the IBM
Informix Administrator's Reference.

Option Abbreviations
Each option for a cdr command has a long form and a short form. You can use
either form, and you can mix long and short forms within a single command.

On UNIX, a long form example might look like:
cdr define server --connect=ohio --idle=500 \

--ats=/cdr/ats --initial utah

On WINDOWS, the same long form example would look like:
cdr define server --connect=ohio --idle=500 \

--ats=D:\cdr\ats --initial utah

Using short forms, you can write the previous examples as follows:

UNIX:
cdr def ser -c ohio -i 500 -A /cdr/ats -I utah

WINDOWS:
cdr def ser -c ohio -i 500 -A D:\cdr\ats -I utah

The long form is always preceded by a double minus (--). Most (but not all) long
forms require an equal sign (=) between the option and its argument. The short
form is preceded by a single minus (-) and is usually the first letter of the long
form. The short form never requires an equal sign. However, sometimes the short
form is capitalized and sometimes it is not. To find the correct syntax for the short
form, check the table that accompanies each command variation.

Tip: Use the long forms of options to increase readability.

With the exception of the keyword transaction, all keywords (or letter
combinations) that modify the command options must be written as shown in the
syntax diagrams. For example, in the “Conflict Options” on page A-80, the option
conflict can be abbreviated, but the keyword ignore cannot be abbreviated. Both of
the following forms are correct:
--conflict=ignore
-C ignore

Option Order
You can specify the options of the cdr commands in any order. Some of the syntax
diagrams show the options in a specific order because it makes the diagram easier
to read.

A-2 IBM Informix Enterprise Replication Guide

Do not repeat any options. The following fragment is incorrect because -c appears
twice. In most cases, if you duplicate an option you will receive an error. However,
if no error is given, the database server uses the last instance of the option. In the
following example, the database server uses the value -c utah:
-c ohio -i 500 -c utah

Tip: For ease of maintenance, always use the same order for your options.

Long Command-Line Examples
The examples in this guide use the convention of a backslash (\) to indicate that a
long command line continues on the next line.

The following two commands are equivalent. The first command is too long to fit
on a single line, so it is continued on the next line. The second example, which
uses short forms for the options, fits on one line.

On UNIX, the command line might look like:
cdr define server --connect=katmandu --idle=500 \

--ats=/cdrfiles/ats

cdr def ser -c katmandu -i 500 -A /cdrfiles/ats

On Windows, these command lines might look like:
cdr define server --connect=honolulu --idle=500 \

--ats=D:\cdrfiles\ats

cdr def ser -c honolulu -i 500 -A D:\cdr\ats

For information on how to manage long lines at your command prompt, check
your operating system documentation.

Long Identifiers
Identifier names used in cdr commands follow the guidelines of SQL syntax.

Identifiers are the names of objects, such as database servers, databases, columns,
replicates, replicate sets, and so on, that Informix and Enterprise Replication use.

An identifier is a character string that must start with a letter or an underscore.
The remaining characters can be letters, numbers, or underscores. On IBM
Informix, all identifiers, including replicates and replicate sets, can be 128 bytes
long. However, if you have any database servers in your replication environment
that are an earlier version, you must follow the length restrictions for that version.

For more information about identifiers, see the IBM Informix Guide to SQL: Syntax.

The length of a path and file name, such as the names of ATS files, can be 256
bytes.

User login IDs can be a maximum of 32 bytes. The owner of a table is derived
from a user ID and is thus limited to 32 bytes.

Connect Option
Most cdr commands allow a connect option to specify the database server to
connect to for performing the command.

Appendix A. The cdr utility A-3

The --connect option causes the command to use the global catalog that is on the
specified server. If you do not specify this option, the connection defaults to the
database server specified by the INFORMIXSERVER environment variable.

Connect Option:

-c server
--connect=server
-c server_group
--connect=server_group

Element Purpose Restrictions Syntax

server Name of the database
server to connect to

The name must be the
name of a database server
or server connection.

“Long
Identifiers” on
page A-3

server_group Name of the database
server group that includes
the database server to
connect to

The name must be the
name of an existing
database server group.

“Long
Identifiers” on
page A-3

You must use the --connect option when you add a database server to your
replication environment with the cdr define server command.

You might use the --connect option if the database server to which you would
normally attach is unavailable.

If your replication domain contains database servers that are running different
server versions, cdr commands must connect to the server running the latest
version of IBM Informix. If you are connected to a database server running an
older version of IBM Informix, you cannot run a cdr command on a database
server running a later version of IBM Informix.

If the database server uses trusted connections between replication servers by
including the s=6 option in the sqlhosts entries, you configure a regular
connection to an alias of the server for the cdr utility to use. In a trusted
connection environment, the cdr utility can only connect to the local replication
server.
Related concepts:
“Enterprise Replication Terminology” on page 1-1
“Creating sqlhost group entries for replication servers” on page 6-3
Related tasks:
“Connect to another replication server” on page 11-3
“Configuring secure ports for connections between replication servers” on page 6-4

Related information:
The onpassword utility

Participant and participant modifier
A participant defines the data (database, table, and columns) to be replicated on a
specific database server. You can choose whether to allow the participant to both
send and receive replicated data, or to only receive or only send replicated data.
You can choose to check for table owner permissions when applying operations. By

A-4 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0620.htm

default, permissions are not checked. The participant modifier is a restricted
SELECT statement that specifies the rows and columns that are replicated.

Syntax

Participant:

P I
" database@server_group:owner.table "

R O
S

Participant Modifier:

▼

,

"SELECT column FROM table WHERE_Clause"
*

Element Purpose Restrictions Syntax

column Name of a column in the
table that is specified by
the participant.

The replication key
columns must be
included.

The column must exist. “Long
Identifiers” on
page A-3

database Name of the database that
includes the table to be
replicated.

The database server must
be registered with
Enterprise Replication.

“Long
Identifiers” on
page A-3

owner User ID of the owner of
the table to be replicated.

“Long
Identifiers” on
page A-3

server_group Name of the database
server group that includes
the server to connect to.

The database server group
name must be the name of
an existing Enterprise
Replication server group in
the sqlhosts information
and must be used only
once in the same replicate.

“Long
Identifiers” on
page A-3

table Name of the table to be
replicated. Must be the
same table name in the
participant and
participant modifier.

The table must be an
actual table. It cannot be a
synonym or a view.

“Long
Identifiers” on
page A-3

WHERE_Clause Clause that specifies a
subset of table rows to be
replicated.

Can include opaque
user-defined types that are
always stored in row.

Cannot contain a column
of a TimeSeries data type.

WHERE Clause
of SELECT

The following table describes the participant options.

Appendix A. The cdr utility A-5

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_0164.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_0164.htm

Option Meaning

I Default. Disables the table-owner option (O).

O
Enables permission checks for table owner that is specified in the
participant to be applied to the operation (such as INSERT or
UPDATE) that is to be replicated and to all actions fired by any
triggers. When the O option is omitted, all operations are run with
the privileges of user informix or the server owner.

On UNIX, if a trigger requires any system-level commands (as
specified by the system() command in an SPL statement), the
system-level commands are run as the table owner, if the participant
includes the O option.

On Windows, if a trigger requires any system-level commands, the
system-level commands are run as a less privileged user because you
cannot impersonate another user without having the password,
whether the participant includes the O option.

P For primary-target replicates, specifies that the participant is a
primary participant, which both sends and receives replicated data.

Do not use for an update-anywhere replicate. Enterprise Replication
defines all the participant as primary in an update-anywhere
replication system.

R For primary-target replicates, specifies that the participant is a
receive-only target participant, which only receives data from primary
participants.

S For primary-target replicates, specifies that the participant is a
send-only primary participant, which only sends data to target
participants.

You cannot use this option for replicates that include TimeSeries
columns.

Usage

Each participant in a replicate must specify a different database server. The
participant definition includes the following information:
v Database in which the table is located
v Table name
v Table owner
v Participant type
v Participant modifier with a SELECT statement

You must include the server group, database, table owner, and table name when
you define a participant, and enclose the entire participant definition in quotation
marks.

If you use a SELECT * FROM table_name statement, the tables must be identical on
all database servers that are defined for the replicate, unless you implement a data
consolidation system by defining one server to receive data and several other
servers that only send data.

A-6 IBM Informix Enterprise Replication Guide

Restriction: Do not create more than one replicate definition for each row and
column combination to replicate. If the participant overlaps, Enterprise Replication
attempts to insert duplicate values during replication.

You can define participants with the following commands:
v cdr define replicate

v cdr modify replicate

v cdr change replicate

v cdr define template

The following restrictions apply to a SELECT statement that is used as a
participant modifier:
v The statement cannot include a join or a subquery.
v The statement cannot run operations on the selected columns.
v The statement cannot exceed 15 000 ASCII characters in length.
v For tables that have TimeSeries columns, all columns must be included.

Replicate only between like data types. For example, do not replicate between the
following combinations of data types:
v CHAR(40) to CHAR(20)
v INT to FLOAT

You can replicate between the following types with caution:
v SERIAL and INT
v BYTE and TEXT
v BLOB and CLOB

Note: The ERKEY shadow columns are not included in the participant definition if
you use SELECT * in your participant modifier. To include the ERKEY shadow
columns in the participant definition, use the --erkey option with the cdr define
replicate, cdr change replicate, or cdr remaster commands.

Example 1: Defining update-anywhere participants

If you do not specify the participant type, Enterprise Replication defines the
participant as update-anywhere by default. For example:
“db1@g_hawaii:informix.mfct” “select * from mfct” \
“db2@g_maui:informix.mfct” “select * from mfct”

Example 2: Defining a primary server

For example, in the following participant definition, the P indicates that in this
replicate, hawaii is a primary server:
“P db1@g_hawaii:informix.mfct” “select * from mfct”

If any data in the selected columns changes, that changed data is sent to the
secondary servers.

Example 3: Defining a server that only receives data

In the following example, the R indicates that in this replicate, maui is a server
that only receives data:

Appendix A. The cdr utility A-7

“R db2@g_maui:informix.mfct” “select * from mfct”

The specified table and columns receive information that is sent from the primary
server. Changes to those columns on maui are not replicated.

Example 4: Defining a data consolidation system with servers
that only send data

To implement a data consolidation system, you can define one server to receive
and consolidate the data and configure several other servers that only send data.
In the following example, the S options indicate that the rome, tokyo, perth, and
ny servers can only send data:
"db0@london:user.world_sales" "select * from world_sales"\
"S db1@rome:user1.sales_rome" "select * from sales_rome"\
"S db2@tokyo:user2.sales_tokyo" "select * from sales_tokyo"\
"S db3@perth:user3.sales_perth" "select * from sales_perth"\
"S db4@ny:user4.sales_ny" "select * from sales_ny"\

The central server, london, is a standard replication server without restrictions on
sending or receiving data.
Related concepts:
“Primary-Target Replication System” on page 5-1
“Participant definitions” on page 8-7
“Data consolidation” on page 5-2
“Primary-Target Data Dissemination” on page 5-1
Related reference:
“cdr define replicate” on page A-77
“cdr modify replicate” on page A-140
“cdr change replicate” on page A-39
“cdr define template” on page A-98
“cdr swap shadow” on page A-198

Return Codes for the cdr Utility
If a cdr command encounters an error, the database server returns an error
message and a return code value.

The message briefly describes the error. For information about interpreting the
return code, use the cdr finderr command.

The following table lists the return codes.

Table A-1. Return codes for the cdr utility

Return
code Error text Explanation

0 Command successful.

1 A connection does not yet
exist for the given server.

A replication server involved in the command is not connected to the
server that is running the command.

This error code can be returned when a cdr sync or cdr check task cannot
switch connections between task participants.

User action: Establish connections between all necessary replication servers
and rerun the command.

A-8 IBM Informix Enterprise Replication Guide

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

3 Table column undefined. A column name listed in the SELECT statement of the replicate participant
definition is not found in the table dictionary.

This error code can be returned if a shadow column name is included in
the SELECT statement of the replicate definition.

User action: Correct the SELECT statement of the participant definition.

4 Incompatible server version. A cdr command originating on a database server running an older version
of Informix attempted to run on a database server running a later version
of Informix.

User action: Run the command from the replication server running the
most recent version of Informix.

5 Unable to connect to server
specified.

A replication server involved in the command is not available for one of the
following reasons:

v The server disconnected from the domain.

v Replication is no longer active on the server.

v The server is offline.

v The --connect option was not used and the INFORMIXDIR environment
variable for the current server is not set.

This error code can be returned if one of the cdr sync or cdr check task
participants cannot be accessed or if a task participant became inactive or
went offline while a sync or check task is in progress.

This error code can be returned if the user running the cdr define replicate
or cdr change replicate command does not have Connect privilege on the
database specified for the replicated table.

User action: Check the status of all participating servers and rerun the
command when all servers are active.

6 Database does not exist. The database name specified for the replicate in the command does not
exist.

User action: Verify the spelling of the database names and that they exist
on each participant and rerun the command.

This error code can be returned if the cdr view command is run and the
sysadmin database does not exist.

7 Database not logged. The database specified for the replicate in the command is a non-logging
database. Replicated databases must be logged.

User action: Change the database logging mode to buffered logging and
rerun the command.

8 Invalid or mismatched
frequency attributes.

The value for the --at or --every option is not within the range of valid
values or is formatted incorrectly.

User action: Rerun the command with valid and correctly formatted
frequency values.

9 A connection already exists
for the given server.

This error code can be returned if the cdr connect server command is run
for a server that already has an active connection.

Appendix A. The cdr utility A-9

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

10 Invalid replicate set state
change.

The replicate set specified in the command is not in the appropriate state
for the command. This error code is returned in the following situations:

v The cdr stop replicateset command is run but all replicates in the
replicate set are not active.

v The cdr start replicateset command is run but all replicates in the
replicate set are already active.

v The cdr suspend replicateset command is run but all replicates in the
replicate set are not active.

v The cdr resume replicateset command is run but all replicates in the
replicate set are already active.

User action: Run the cdr list replicateset and cdr list replicate commands
to see the status of each replicate.

11 Undefined replicate set. The specified replicate set does not exist or the replicate set is empty. The
replicate set name might be incorrectly specified in the command.

User action: Rerun the command with the correct replicate set name, or
add replicates to the replicate set and then rerun the command.

12 Replicate set name already in
use.

The replicate set name specified in the command is already being used.
Replicate set names must be unique in the domain.

User action: Run the cdr list replicateset command to view a list of
replicate set names and then rerun the original command with a different
replicate set name.

13 Invalid idle time
specification.

The value for the --idle option is not within the range of valid values or is
formatted incorrectly.

User action: Rerun the command with a valid and correctly formatted
value.

14 Invalid operator or specifier. Both the --ignoredel y and the deletewins options were used in the same
command. These options cannot be used together.

User action: Rerun the command with only one of these options.

15 Invalid length. The ATS or RIS directory path specified in the command exceeds 256
characters.

This error can be returned if the server group name exceeds 127 characters.

User action: Rerun the command with a shorter directory path or server
group name.

16 Replicate is not a member of
the replicate set.

The replicate specified to be deleted from the replicate set is not a member
of the replicate set.

User action: Run the cdr list replicateset command for the replicate set to
view a list of replicates in the replicate set and then rerun the original
command with the correct replicate name.

17 Participants required for
operation specified.

One or more of the participants necessary for this command were not
specified.

This error code is returned if the sync source server or the target server is
not defined as a participant for the cdr sync or cdr check task. This error
code is also returned if the target participant list is empty.

User action: Rerun the command with the required participants.

A-10 IBM Informix Enterprise Replication Guide

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

18 Table does not contain
primary key.

The table specified in the command does not have a replication key.

This error is returned if the cdr sync or cdr check task cannot find the
replication key for the table being repaired.

User action: Add a primary key constraint or the ERKEY shadow columns
to the table and rerun the command. If you have another unique index on
the replicated table, you can specify to use the columns in that index as the
replication key when you define the replicate.

19 Table does not exist. The table owner name specified in the command is not correct.

This error is also returned if the table owner name is not specified for a
table in an ANSI database.

User action: Rerun the command with the correct table owner name.

20 Server already participating
in replicate.

The participant specified in the command is already a participant in the
replicate.

21 Command timed out The command timed out while waiting for queue monitoring to complete.

User action: Check the server and connection status using the cdr list
server command and, if needed, rerun the command and specify a longer
timeout period.

22 Primary key not contained in
select clause.

The replicate participant SELECT statement did not include the replication
key columns.

User action: Rerun the command including the replication key columns in
the participant SELECT statement.

25 Replicate already
participating in a replicate
set.

The replicate specified to be added to the replicate set is already a member
of the replicate set.

User action: Run the cdr list replicateset command to view a list of
replicates in the replicate set.

26 Replicate set operation not
permitted on replicate.

The replicate specified to be deleted from the replicate set does not have a
valid name.

User action: Run the cdr list replicateset command to view a list of
replicates in the replicate set and then rerun the original command with the
correct replicate name.

28 Replicate name already in
use.

The replicate name specified in the command is already being used.
Replicate names must be unique in the domain.

User action: Run the cdr list replicate command to view a list of replicate
names and then rerun the original command with a different replicate
name.

29 Table does not exist . The table name specified in the command does not exist.

User action: Rerun the command with an existing table name.

Appendix A. The cdr utility A-11

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

30 Invalid replicate state
change.

The replicate specified in the command is not in the appropriate state for
the command. This error code is returned in the following situations:

v The cdr stop replicate command is run but the replicate is not active.

v The cdr start replicate command is run but the replicate is already active.

v The cdr suspend replicate command is run but the replicate is not active.

v The cdr resume replicate command is run but the replicate is already
active.

User action: Run the cdr list replicate command to see the status of the
replicate.

31 Undefined replicate. The replicate name cannot be found in Enterprise Replication catalog tables.
The name of the replicate might be incorrectly specified in the command.

User action: Rerun the command with the correct replicate name.

32 sbspace specified for the
send/receive queue does not
exist

The CDR_QDATA_SBSPACE configuration parameter is not set to a valid
sbspace name.

User action: Set the CDR_QDATA_SBSPACE configuration parameter to a
valid sbspace name in the onconfig file.

33 Server not participant in
replicate/replicate set.

The server name specified in the command is not a participant in the
replicate or replicate set.

This error is returned if a server name is not valid.

User action: To see a list of all participants for each replicate, query the
syscdrpart view in the sysmaster database.

35 Server not defined in
sqlhosts.

The server group name specified in the command is not defined in the
sqlhosts file specified by the INFORMIXSQLHOSTS environment
variable.

User action: Check the sqlhosts file for the correct spelling of the server
group name, or, if necessary, update the sqlhosts file to add the server
group, and then rerun the original command.

37 Undefined server. The target participant cannot be found in the Enterprise Replication catalog
tables. The name of the server might be incorrectly specified in the
command.

User action: Rerun the command with the correct server name.

38 SPL routine does not exist. The SPL routine specified with the --conflict option does not exist on one
or more participants.

User action: Make sure that the SPL routine exists on all participants and
rerun the command.

39 Invalid select syntax. The SELECT statement included in the command is not valid or is missing
from the command.

User action: Rerun the command with the correct SELECT statement.

40 Unsupported SQL syntax
(join, etc.).

The SELECT statement contains syntax that is not supported for replicate
participants. Syntax such as subqueries in the WHERE clause or selecting
from multiple tables with a JOIN clause is not supported.

User action: Rerun the command with the correct SELECT statement.

A-12 IBM Informix Enterprise Replication Guide

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

41 GLS files required for data
conversion are not installed.

The GLS files required for data conversion to or from UTF-8 are not
installed.

Code set conversion files are installed with the Client SDK and are in the
$INFORMIXDIR/gls/cv9 directory.

42 Invalid time range. The time range does not have valid values or is formatted incorrectly.

User action: Rerun the command with a valid and correctly formatted time
range.

43 Participants required for
specified operation.

The command did not include the required participant information.

User action: Rerun the command with participant information.

44 Invalid name syntax. The name of a replicate or server in the command is not valid, for example,
the name might be too long.

User action: Rerun the command with a valid name.

45 Invalid participant. The participant syntax is not valid.

User action: Rerun the command with a valid participant syntax.

47 Invalid server. A connection between the current server and the specified server is not
allowed. This error code is returned if a server attempts to connect to a leaf
server that has a different parent server.

This error code is also returned if the server specified in the cdr repair
command does not exist in the Enterprise Replication catalog.

48 Out of memory. Enterprise Replication cannot allocate enough memory for this command.

49 Maximum number of
replicates exceeded.

The maximum number of replicates that can be defined from a particular
server is exceeded.

User action: Rerun the command while connected to a peer replication
server.

52 Server name already in use. A replication server with this group ID exists.

User action: Run the cdr list server command to see a list of all replication
server names and group IDs

53 Duplicate server or replicate. A replication server or replicate name is listed more than once in the
command.

This error code is returned if the sync source server is also specified as a
sync target server or if the same server is listed multiple times as a sync
target participant.

This error code is returned if the same group name is defined more than
once in the sqlhosts file.

User action: Rerun the command specifying each server and replicate one
time.

Appendix A. The cdr utility A-13

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

54 Invalid conflict rule
specified.

The conflict resolution rule is not correctly specified.

This error code is returned for the cdr define replicate or cdr modify
replicate command under the following circumstances:

v A stored procedure is specified as the conflict resolution rule but the
table has user-defined data types or collection data types.

v A secondary conflict resolution rule is specified that is not a stored
procedure conflict resolution rule.

v A secondary conflict resolution rule is specified but the primary conflict
resolution rule is not time stamp or delete wins.

This error code is returned if the --timestamp option is used in a cdr check
command and the replicate specified in the command does not use the time
stamp or the delete wins conflict resolution rule. This error code is also
returned when the cdr check command includes the --deletewins option
but the specified replicate does not use the delete wins conflict resolution
rule.

User action: Correct the conflict resolution rule issue and rerun the
command.

55 Resolution scope not
specified.

The conflict resolution scope (row or transaction) is required for ER to
resolve conflicts between replicated transactions. Scope is not required if the
conflict resolution rule is ignore, in which case ER does not attempt to
resolve conflicts.

User action: Rerun the command with a conflict resolution scope.

56 Shadow columns do not
exist for table.

A conflict resolution rule requires the cdrtime and cdrserver shadow
columns but those columns do not exist in the replicated table.

User action: Alter the replicated table to add the shadow columns by using
the ADD CRCOLS clause and rerun the original command.

57 Error creating delete table. The delete table corresponding to the replicated table was not created.

User action: Check the server message log file for additional error
messages.

58 No conflict resolution rule
specified.

A conflict resolution rule was not specified in the command.

User action: Rerun the command with the --conflict option to specify a
conflict resolution rule.

61 User does not have
permission to issue
command.

The user running this command does not have the DBSA privilege at one
of the participants in the command.

User action: Acquire the DBSA privilege on all participants and rerun the
command, or rerun the command as a user that has the DBSA privilege at
all participants.

62 Enterprise Replication not
active.

The command cannot run because Enterprise Replication is not active on
the server.

User action: Run the cdr list server command to see the status of the
server.

A-14 IBM Informix Enterprise Replication Guide

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

63 Enterprise Replication
already active.

The command cannot make Enterprise Replication active because ER is
already active on the server.

User action: Run the cdr list server command to see the status of the
server.

64 Remote/cyclic
synchronization not allowed.

The command to define a replication server was attempted on a remote
server.

User action: Rerun the command on the server that is being defined.

65 Server identifier already in
use.

The server group ID is not unique.

User action: Rerun the command with a unique server group ID.

66 No upper time for prune
error.

The ending date value for the error pruning range was not specified.

User action: Rerun the command with a valid ending date.

67 Error not found for delete or
update.

The error sequence number does not exist in the errors table.

User action: Run the cdr error command to see a list of error sequence
numbers and then rerun the command with an existing number.

68 Invalid participant mode. The participant type value is not valid.

User action: Rerun the command with a valid participant type.

69 Conflict mode for replicate
not ignore or always apply.

One or more replicate participants specified in the command is defined as
receive-only and must use a conflict resolution rule of ignore or always.

User action: Rerun the command with the --conflict option set to ignore or
always.

70 Connect/disconnect to/from
same server.

The command attempted to connect the local server to itself.

User action: Rerun the command with a different server name.

72 Cannot delete server with
children.

The command did not delete the hub server because the hub server still has
child servers.

User action: Delete the child servers and then delete the hub server.

75 Request denied on limited
server.

The command is not allowed on leaf servers. It is also not allowed on
replication servers that are disabled.

User action: If the server is in disabled mode, wait until the server is active
and rerun the command.

77 Could not drop the
Enterprise Replication
database.

The syscdr database was not deleted because a client is accessing it.

User action: Wait for the client to unlock the syscdr database and then
rerun the command. If necessary, use the --force option to drop the syscdr
database if Enterprise Replication was partially deleted.

78 Invalid ATS directory. The ATS directory path specified in the command was not valid for one of
the following reasons:

v The path does not exist.

v The path is not a directory.

v The path is /dev/null (UNIX) or NUL (Windows).

User action: Rerun the command with a valid ATS directory path.

Appendix A. The cdr utility A-15

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

79 Invalid RIS directory. The RIS directory path specified in the command was not valid for one of
the following reasons:

v The path does not exist.

v The path is not a directory.

v The path is /dev/null (UNIX) or NUL (Windows).

User action: Rerun the command with a valid RIS directory path.

80 Invalid conflict resolution
change.

The conflict resolution rule of a replicate cannot be changed to ignore or
from ignore.

84 No sync server. A synchronization server must be specified if the replication server being
defined is a non-root or leaf server. The first server in a replication domain
must be a root server.

User action: Rerun the command with the --sync option.

85 Incorrect participant flags. The participant type or owner option included in the command was not
valid.

User action: Rerun the command with valid participant options.

86 Conflicting leaf server flags. The --nonroot and --leaf options cannot be used together.

User action: Rerun the command with only one of the options.

90 CDR connection to server
lost, id group_id, name
groupname. Reason: System
clocks off by %d seconds.

The system clock times on the servers differ by more than 900 seconds.

91 Invalid server state change. The server is already in the state indicated by the command.

This error code can be returned if the cdr suspend server command is run
on a server that is suspended or if the cdr resume server command is run
on a server that is active.

User action: Run the cdr list server command to see the status of the
server.

92 CDR is already defined. Enterprise Replication is already defined on this server.

93 Enterprise Replication is
currently initializing.

Enterprise Replication cannot be stopped on the server because replication
is in the process of being initialized.

User action: Run the cdr list server command to see the status of the
server. Rerun the command when replication is active.

94 Enterprise Replication is
currently shutting down.

Enterprise Replication cannot be stopped on the server because replication
is already in the process of being stopped.

User action: Run the cdr list server command to see the status of the
server. If necessary, rerun the command.

99 Invalid options or arguments
passed to command.

One or more of the options included with this command are not valid
options.

User action: Rerun the command with valid options.

100 Fatal server error. The command was not completed because of an unrecoverable error
condition.

A-16 IBM Informix Enterprise Replication Guide

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

101 This feature of Enterprise
Replication is not yet
supported.

One of the participants included with this command is running a version of
Informix that does not support this command.

User action: Rerun the command with valid options.

102 Root server cannot sync with
non root or leaf servers.

The synchronization server must be a root server. The --sync option cannot
specify a non-root or leaf server.

User action: Rerun the command specifying a root server with the --sync
option.

103 Invalid server to connect. A non-root server can connect only to its parent or children servers.

User action: Rerun the command specifying to connect to the parent or a
child server.

105 UDR needed for replication
was not found.

A user-defined type listed in the SELECT statement of the participant
definition does not have one or more of the streamread(), streamwrite(), or
compare() support routines.

User action: Create the required routines for the user-defined type and
rerun the command.

106 Setup necessary for UDR
invocation could not be
completed.

The set-up process necessary to run the streamread(), streamwrite(), or
compare() routine for a user-defined type included in the participant
definition failed.

User action: Check to be sure that the required routines for the
user-defined type exist. Create them if necessary and rerun the command.

107 Sbspace specified for the
send/receive queue does not
exist.

The sbspace specified for the CDR_QDATA_SBSPACE configuration
parameter is not a valid name or does not exist.

User action: Correct the value of the CDR_QDATA_SBSPACE configuration
parameter or create the sbspace and rerun the command.

110 Data types with out of row
or multi-representational
data are not allowed in a
replicate where clause.

A replicate participant WHERE clause cannot include a data type that has
out-of-row data, such as, a collection data type, a user-defined type, or a
large object type.

User action: Remove the column with out-of-row data from the participant
WHERE clause and rerun the command.

111 Cannot have Full Rows off
and use stored procedure
conflict resolution.

The stored procedure conflict resolution rule requires full row replication.

User action: Rerun the command without the --fullrow=n option.

112 The replicate set command
could only be partially
executed. Please run cdr list
replset ReplSetName to
check results.

The command was successful on some, but not all, of the replicates in the
replicate set.

User action: Run the cdr list replicate command to see the status of each
replicate and run the appropriate command on each of the remaining
replicates.

113 Exclusive Replset violation. The specified replicate is a member of an exclusive replicate set, which
requires this operation to be performed for the replicate set instead of for
individual replicates.

User action: Run the equivalent command for the replicate set.

Appendix A. The cdr utility A-17

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

115 The syscdr database is
missing.

The syscdr database cannot be opened.

User action: Check server message log file for any additional error
messages.

If you received this error code after running the cdr delete server --force
command, no action is required on the server being deleted. Run the cdr
delete server command to delete that server on all peer replication servers
in the domain.

If you receive this error after running the cdr start command, make sure
that Enterprise Replication is defined on the local server, and if necessary,
define it by running the cdr define server command.

116 Dbspace indicated by
CDR_DBSPACE is invalid.

The dbspace specified as the value of the CDR_DBSPACE configuration
parameter does not exist.

User action: Correct the value of the CDR_DBSPACE configuration
parameter or create the dbspace and rerun the command.

117 Enterprise Replication
operation attempted on HDR
secondary server.

Enterprise Replication commands are not valid on high-availability
secondary servers.

User action: Rerun the command on a high-availability primary server.

118 SQLHOSTS file has multiple
entries either at group ID or
group name.

There are multiple group definitions for the same group name in the
sqlhosts file.

User action: Update the sqlhosts file to make all group entries unique.

119 SQLHOSTS file has a
problem with (g=) or (i=)
option.

The group name specified in the command is not found in the sqlhosts
file.

User action: Rerun the command with a valid group name or update the
sqlhosts file and then rerun the command.

120 Cannot execute this
command while ER is active.

Enterprise Replication cannot be deleted on this server because replication
is still active.

User action: Run the cdr stop command and then rerun the cdr delete
server --force command.

121 Master participant not
found.

The replication server that is specified as the master server in the command
does not exist or is not a participant in the specified replicate.

User action: Rerun the command with the correct master server name.

122 Attempt to perform invalid
operation including shadow
replicates.

The replicate specified in the command has shadow replicates, which
prevent the command from completing.

User action: Run the cdr list replicate command to see shadow replicate
information. Wait for the shadow replicate to be deleted and then rerun the
original command. If you are deleting the replicate, delete the shadow
replicate and then rerun the original command.

123 Attempt to include an
invalid participant in a
shadow replicate.

The command attempted to add a participant to a shadow replicate that
does not exist in the primary replicate.

User action: Rerun the command with a valid participant.

124 Invalid command passed to
cdrcmd function.

An argument that is not valid was passed to an internal routine.

User action: Contact IBM Software Support.

A-18 IBM Informix Enterprise Replication Guide

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

125 An error occurred
concerning a mastered
replicate.

The server specified as the master server in the command is not included
as a participant in the replicate.

This error code is returned if the mastered dictionary verification fails when
adding a participant to a mastered replicate.

This error code is returned if Enterprise Replication encounters an internal
error during master replicate definition.

User action: Rerun the command with the master server included in the
participant list or check the table dictionary.

126 Invalid template participant. The same table name was specified more than once in the cdr define
template command, or a participant name in the cdr realize template
command is not valid.

User action: Rerun the command with unique table names or with valid
participant names.

127 Template name already in
use.

A replication template with this name exists.

User action: Rerun the command with a unique template name.

128 Undefined template. The template name specified in the command does not exist.

User action: Rerun the command with an existing template name.

129 Cannot delete specified
replset as it is a template.

The replicate set specified in the command is a part of a template and
cannot be deleted with this command.

User action: Run the cdr delete template command to delete a template.

131 Sync server not specified. The synchronization server specified in the command must be the same
server that was specified in the cdr define repair command.

User action: Rerun the command with the correct synchronization server.

132 Invalid sync server specified.
Server is not yet defined in
ER topology.

The synchronization server specified in the command is not a replication
server.

User action: Rerun the command with an existing replication server as the
synchronization server.

134 Cannot lock the replicated
table in exclusive mode. For
more information see
message log file.

The command cannot obtain an exclusive lock on the table to set alter
mode.

User action: See the online message log file for other errors.

135 Replicate/table is not in alter
mode.

The table specified in the command is not in alter mode and therefore alter
mode cannot be turned off.

136 Snoopy sub-component is
down.

Alter mode cannot be set because the log capture thread was not active.

137 Mismatch between local
table dictionary and master
dictionary.

The master dictionary does not match the local participant dictionary.

User action: Check the replicated table definitions on all participants.

138 Replicates not found for
table. For more information
see message log file.

Alter mode was not turned off because the replicate definitions for the
specified table cannot be found.

User action: Check the spelling of the table name and rerun the command.

Appendix A. The cdr utility A-19

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

139 Mismatch in replicate names
or states. Primary and
shadow replicate states must
match. See the message log
file for more information.

The primary and shadow replicates are not in the same state.

User action: Run the cdr list replicate command to see the replicate state.
When the primary and shadow replicates have the same state, rerun the
original command.

140 Primary and shadow
replicate participant
verification failure.

The primary and shadow replicate information does not match.

141 Table is already in alter
mode. For more information
see message log file.

Alter mode cannot be turned on because the table is already in alter mode.

142 Classic replicates (no
mastered dictionary) defined
on the table. See message log
file for more information.

One or more non-mastered replicates are defined on the specified table.
Alter mode requires mastered replicates.

146 Resynchronize error, job
name is already in use.

The job name must be unique.

User action: Rerun the command with a unique job name.

147 Resynchronize error,
specified replicate is a
shadow repl.

The replicate specified in the command is a shadow replicate. The
operation cannot be performed on a shadow replicate.

User action: Run the cdr list replicate command to see a list of replicate
names and rerun the original command with a primary replicate.

148 Only either participant list or
target server can be given for
a define repair command.

Both the target server name and a participant list were included in the
command.

User action: Rerun the command with either a target server name or a
participant list.

151 Resynch job can be started or
stopped only at the source
server.

This command must be run from the server specified as the
synchronization data source.

User action: Rerun the command while connected to the synchronization
data source server.

154 The replicate being repaired
must be in active state.

The replicate specified in the command cannot be repaired because it is not
active.

User action: Run the cdr list replicate command to see the states of
replicates.

156 Cannot perform auto
remastering process.
Replicate is not defined with
column name verification
option (–name=y). Perform
manual remastering process.

Automatic remastering is not possible for the specified replicate.

User action: Manually remaster the replicate. For instructions, see
“Remastering replicates without name verification” on page 11-29.

157 CDR: Cannot verify/block
grouper evaluation blocking
condition.

The specified table cannot be set in alter mode because the grouper
component is not active.

User action: Run the onstat -g grp and onstat -g ddr commands to check
the status of the grouper and log capture.

A-20 IBM Informix Enterprise Replication Guide

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

158 CDR: Cannot unblock
grouper evaluation.

Alter mode cannot be turned off for the table because the grouper
component is not active.

User action: Run the onstat -g grp and onstat -g ddr commands to check
the status of the grouper and log capture.

159 CDR: Grouper evaluation
was already blocked in the
same transaction. Commit
the previous alter statement
then re-execute the current
alter statement.

More than one alter statement for replicated tables was included in a single
transaction.

User action: Rerun each alter statement in its own transaction.

160 The specified table was not
found in the database. The
table specified is either a
view or an internally created
cdr system table and
replicate cannot be defined
on views and internally
created cdr system tables.

A table name specified in the command was not found or is not a type of
table that can be replicated.

User action: Rerun the command with valid table names.

161 Specified file to read table
participants filename could
not be opened. Please check.
Template could not be
defined.

The file name specified in the command does not exist.

User action: If necessary, create the file. Rerun the command with the
correct file path and name for the table list.

162 CDR: Local group name not
defined in ATS/RIS file.

The ATS or RIS file content is not in the correct format. The file might be
corrupted.

163 Error detected while
checking replicate attributes
on the given table.

The specified table cannot be set to alter mode because the table does not
have any master replicates defined. Alter mode requires master replicates.

User action: Run the cdr list replicate command to see the replicates that
are defined for the table.

164 Cannot repair - ATS/RIS
repair failed.

The ATS or RIS file content is not in the correct format. The file might be
corrupted.

165 Cannot suspend
replicate/replset because of
dependent repair jobs.

The replicate or replicate set cannot be suspended until the active repair
jobs are complete.

User action: Wait for the repair jobs to complete. Run the cdr list replicate
command to see if the shadow replicates associated with the repair jobs still
exist. After the shadow replicates are automatically deleted, rerun the
original command.

166 Replicate set does not have
any replicates.

The replicate set specified in the commands does not contain replicates.

This error code is also returned when no replicates are found for a cdr
check repair task when the --allrepl option is used.

User action: Run the cdr list replicateset command for the replicate set to
see its replicates.

167 Enterprise Replication is not
supported in Express Edition
server.

Enterprise Replication commands cannot be run on servers running Express
Edition.

Appendix A. The cdr utility A-21

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

168 The specified table is
actually a view, replicate
definition on view is not
supported.

Replicates cannot be defined on views.

User action: Rerun the command specifying standard table names.

169 Cannot realize an empty
template/

The template cannot be instantiated because it does not contain any
replicates.

User action: Run the cdr list template command to see if the template
contains replicates.

170 Template is not yet defined
that does not have any
replicates.

The template cannot be instantiated because it is not defined.

User action: Run the cdr list template command to see the names of
defined templates.

171 Classic replicates do not
support --verify (-v) and/or
--autocreate (-u) options.

The --verify and --autocreate options are valid only for master replicates.

User action: Verify the replicate definition by running the cdr list replicate
command.

172 Checksum libraries not
installed.

Enterprise Replication cannot find the checksum function for the cdr check
replicate or cdr check replicateset command. This error can occur if a
replication server is running a version of Informix that does not support the
cdr check replicate or cdr check replicateset command.

This error can also occur if the custom checksum function that is specified
by the --checksum option is not installed and registered on all replication
servers.

User action: If the replication server is running Informix version 10.00,
make sure that the checksum routines are registered. On Informix version
10.00, checksum routines must be registered manually.

If you specified a custom checksum function, make sure that it is installed
and registered on all replication servers.

173 External Sync shutdown
requested.

The synchronization task is not active.

This error code is returned when Enterprise Replication is being shut down
on a replication server participating in a synchronization task started by the
cdr sync or cdr checkcommand.

User action: Run the cdr list server or cdr view servers command to see
the status of the participating server and when all servers are active, rerun
the original command.

A-22 IBM Informix Enterprise Replication Guide

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

174 External Sync abort required. The synchronization or repair task did not complete in the timeout period.
This error can occur if the replicate being synchronized or the shadow
replicate that was created to resynchronize the data is not active at all the
participants specified in the command.

This error code is also returned when the cdr check replicate or cdr check
replicateset command is run with the --enable option and the target server
cannot be enabled and repaired in the timeout period. The timeout period
is 128 seconds or the value you set with the --timeout option.

User action: Run the cdr list replicate command to check the replicate
status. If all participants are active, try running the command again.

If the server was being enabled, run the cdr list server command to check
the server status. If all participants are active, try running the command
again with an increased timeout value.

175 Sync has received a request
to stop.

The synchronization or check command was stopped.

176 Sync attempted on replicate
which is not active.

The synchronization or check command was stopped because one of the
replicates specified is not active.

178 WARNING: Replicate is not
in sync.

The replicate is not in sync.

This error can be returned after running cdr check replicate or cdr check
replicateset.

This error can be returned after running cdr check replicate or cdr check
replicateset with the --repair option if there are pending transactions that
are not yet applied or if transactions were aborted.

User action: If you receive this error after running a consistency check,
repair the data. For more information, see Resynchronizing data among
replication servers.

If you receive this error code after repairing data, look for ATS or RIS files
at target participants. If you see ATS or RIS files, look at the SQL and ISAM
error code for the failures and if necessary repair the transactions by using
the cdr repair command. If there are no ATS or RIS files at the target
participants, rerun the original command with the --inprogress option to
control how long check task rechecks inconsistent rows that might be in
process of being applied at target servers.

181 Value specified cannot be set
in-memory, for more
information see message log
file.

The specified configuration parameter was not modified for the current
session.

User action: For more information, see the server online message log file.

182 Warning: Value specified was
adjusted before setting it
in-memory, for more
information see message log
file.

The value of the configuration parameter specified in the command was
adjusted and then the configuration parameter was reset for the current
session.

User action: For more information, see the server online message log file.

183 Operation not supported for
the specified onconfig
variable.

The specified configuration parameter cannot be dynamically updated
while the server is running.

User action: Edit the onconfig file and then shut down and restart the
server.

Appendix A. The cdr utility A-23

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

184 onconfig text is specified in
wrong format.

The value specified for the configuration parameter is not valid.

User action: For more information, see the server online message log file.

185 Specified variable is an
unsupported or unknown ER
onconfig or CDR_ENV
variable.

The specified configuration parameter or environment variable is not valid
in this command.

User action: Check the spelling of the configuration parameter or
environment variable.

186 Value of onconfig variable
cannot be changed when ER
is defined.

The specified configuration parameter cannot be changed after Enterprise
Replication is initialized.

User action: For more information, see the server online message log file.

187 Value of onconfig variable
cannot be changed when
HDR is defined.

The specified configuration parameter cannot be changed while the server
is participating in a high-availability cluster.

188 WARNING: The onconfig
variable is not modified as
the specified value is same
as stored in the memory.

The value specified for the configuration parameter is the same as its
current value for the session.

189 Replicate cannot be defined
or modified since the
participant table is protected
using Label Based Access
Control.

The table specified in the command is using label-based access control
(LBAC), which is not supported with Enterprise Replication.

User action: Rerun the command with a different table name, or remove
LBAC from the table and then rerun the command.

190 Code sets specified by
CLIENT_LOCALE and
DB_LOCALE must be
identical.

The ATS or RIS file repair operation requires that the CLIENT_LOCALE
and DB_LOCALE environment variables be set to the same value.

User action: Reset the value of one of the environment variables to that it
matches the other and then rerun the original command.

191 Cannot determine connection
server ID for server.

The command cannot obtain the group ID for the server being connected
to.

192 Unable to find or connect to
a syscdr database at a
non-leaf server.

The repair command canot find a root server from which to obtain the
Enterprise Replication catalog information.

193 SQL failure due to server
resource limitations.

An SQL statement failed with memory or lock resource-related error codes.

194 SQL failure due to loss of
network connection to
server.

An SQL query failed with a network error.

195 SQL failure. This error code is returned when a command fails due to an SQL error
code other than SQL resource limitations-related error codes.

196 Encountered an SQL error. The command was stopped because an SQL statement failed.

200 Unexpected Internal Error
with cdr check or cdr sync.

An internal UDR routine execution might have returned an unexpected
error.

User action: Look at the additional error messages printed on the screen to
get more details about this error.

201 Sync/Check encountered an
unexpected column type.

The data type of one of the columns being synchronized or checked cannot
be resolved for data comparison.

202 Source and Target do not
have the same data type.

Corresponding columns on the source server and the target server have
different data types.

A-24 IBM Informix Enterprise Replication Guide

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

203 Data for row or column not
found.

Enterprise Replication cannot display the column value of a mismatched
column on the screen.

204 Table could not be found. The table that is being synchronized or repaired is not found on one of the
participants. This error code is also returned if the participant being deleted
cannot be found in the Enterprise Replication catalog tables.

205 Undefined server group. The server group specified in the command was not found in the
Enterprise Replication catalog tables.

User action: Rerun the command with an existing server group name.

206 Template not realized at sync
data source.

The template cannot be realized on the specified servers because it is not
yet realized on the synchronization server.

User action: Rerun the cdr realize template command specifying the
synchronization source server as a participant.

207 Template already realized at
one or more of requested
servers.

One or more of the participants specified in the command already has the
template instantiated on it.

User action: Run the cdr list replicate command to check the status of the
participants and then rerun the original command with the correct list of
participants.

208 Server unknown at remote
server.

Information about the local server is not available at the remote server.

209 A byte sequence that is not a
valid character in the
specified locale was
encountered

One or more characters in a name specified in the command is not valid.

210 Parameter passed to
command (or internally,
routine) is invalid.

An argument specified in the command does not have a valid value.

211 Command is too large to be
executed as a background
task.

The command specified as a background task exceeded 2048 bytes.

User action: Rerun the command without the --background option.

212 Sync/Check subtask aborted. One of the tasks that was being performed in parallel was stopped.

User action: Check the command output to determine which task was
stopped.

Appendix A. The cdr utility A-25

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

213 WARNING: set is not in
sync.

At least one of the replicates in the specified replicate set is not in sync.

This error can be returned after running cdr check replicateset.

This error can be returned after running cdr check replicateset with the
--repair option if there are pending transactions that are not yet applied or
if transactions were aborted.

User action: If you receive this error after running a consistency check,
repair the data. For more information, see Resynchronizing data among
replication servers.

If you receive this error code after repairing data, look for ATS or RIS files
at target participants. If you see ATS or RIS files, look at the SQL and ISAM
error code for the failures and if necessary repair the transactions by using
the cdr repair command. If there are no ATS or RIS files at the target
participants, rerun the original command with the --inprogress option to
control how long the check task rechecks inconsistent rows that might be in
process of being applied at target servers.

214 ER: The logical log replay
position is not valid. Restart
ER with the cdr cleanstart
command, and then
synchronize the data with
the cdr check --repair
command.

Enterprise Replication cannot start because the logical log replay position is
not valid.

User action: Run the cdr cleanstart command and then the cdr check
replicateset command with the --repair option.

215 Command failed -- The
specified table is an external
table. You cannot include an
external table in a replicate.

Tables created with the CREATE EXTERNAL TABLE statement cannot be
included in a replicate.

217 Error with Quality of Data
command.

This error can be returned after running the cdr define qod command if
the quality of data master server is already defined.

This error can be returned after running the cdr start qod command or the
cdr stop qod command if the quality of data master server is not defined
or the command was run from a different server.

User action: If the quality of data master does not exist, run the cdr define
qod command and then rerun the original command. If the command was
run on a different server, rerun the command from the quality of data
master server, as indicated in the error message.

220 A node included in the list is
not valid.

The server group specified in the grid command was not found in the
Enterprise Replication catalog tables.

User action: Rerun the command with an existing server group name.

221 The grid name is not unique. Grid names must be unique among grids and among replicate sets.

User action: Run the cdr list grid command to see existing grid names and
run the cdr list replicateset command to see existing replicate set names.
Rerun the original command with a unique grid name.

222 The grid does not exist. The grid name specified in the command is not the name of an existing
grid.

User action: Run the cdr list grid command to see existing grid names.
Rerun the original command with an existing grid name.

A-26 IBM Informix Enterprise Replication Guide

Table A-1. Return codes for the cdr utility (continued)

Return
code Error text Explanation

223 grid enable user failed The user name specified in the command does not exist.

User action: Rerun the command with an existing user name.

224 grid enable node failed The server name specified in the command is not the name of an existing
replication server.

User action: Rerun the command with an existing replication server name.

225 sec2er failure The cdr start sec2er command failed.

User action: Following the instructions in the command output to perform
all necessary prerequisites.

227 Region Command Failed The cdr define region or cdr delete region command failed.

User action: Review the specific error message and make the appropriate
corrections to the command.

228 Grid Table Command Failed. The cdr change gridtable command failed.

User action: Review the specific error message and make the appropriate
corrections to the command.

Related reference:
“cdr finderr” on page A-121
“cdr check queue” on page A-47

Frequency Options
You can specify the interval between replications or the time of day when
replication occurs for a replicate.

Frequency Options:

--immed

--every=interval
--at=time

Element Purpose Restrictions

interval Time interval for replication The smallest interval in minutes, in
one of the following formats:

v The number of minutes, as an
integer value 1 - 1966020,
inclusive.

v The number of hours and
minutes separated by a colon.
The minimum value is 0:01. The
maximum value is 32767:59

time Specific time for replication Time is given as a 24-hour clock.

The following table describes the frequency options.

Appendix A. The cdr utility A-27

Long Form Short Form Meaning

--immed -i Default. Replication occurs immediately.

--every= -e Replication occurs immediately and repeats at the
frequency that is specified by interval.

--at= -a Replication occurs at the specified day and time.

Usage

The frequency of replication is a property of a replicate. You can set the frequency
of replication for a replicate when you define it or modify it. You can reset the
frequency of all replicates in a replicate set when you define or modify a replicate
set or define a template. For non-exclusive replicate sets, you can update the
frequency of individual replicates separately.

If you do not specify a time, replication occurs immediately.

Important: When you use time-based replication by including the --every or the
--at option, replicated transactions are split into multiple transactions and
referential integrity is not supported. If you want to replicate data intermittently,
you can specify the --immed and then disconnect the servers until you want to
replicate the data.

Intervals

The --every=interval option specifies the interval between actions. The interval of
time between replications can be either of the following formats:
v The number of minutes

To specify the number of minutes, specify an integer value greater than 0. For
example, -e 60 indicates 60 minutes between replications.
If you specify the interval of time between replications in minutes, the longest
interval is 1966020.

v The number of hours and minutes
To specify hours and minutes, give the number of hours, followed by a colon,
and then the number of minutes. For example, -e 5:45 indicates 5 hours and 45
minutes between replications.

If you specify the length of time in hours and minutes, the longest interval is
32767:59.

Time of Day

Enterprise Replication always gives the time of day in 24-hour time. For example,
19:30 is 7:30 P.M. Enterprise Replication always gives time as the local time, unless
the TZ environment variable is set. However, Enterprise Replication stores times in
the global catalog in Greenwich Mean Time (GMT).

The --at=time option specifies the day on which replication occurs. The string time
can have the following formats:
v Day of week

To specify a specific day of the week, give either the long or short form of the
day, followed by a period and then the time. For example, --at=Sunday.18:40 or
-a Sun.18:40 specifies that replication occurs every Sunday at 6:40 P.M.

A-28 IBM Informix Enterprise Replication Guide

The day of the week is given in the locale of the client. For example, with a
French locale, you might have --at=Lundi.3:30 or -a Lun.3:30. The time and
day are in the time zone of the server.

v Day of month
To specify a specific day in the month, give the date, followed by a period, and
then the time. For example, 1.3:00 specifies that replication occurs at 3:00 A.M.
on the first day of every month.
The special character L represents the last day of the month. For example,
L.17:00 is 5:00 P.M. on the last day of the month.

v Daily
To specify that replication occurs each day, give only the time. For example, 4:40
specifies that replication occurs every day at 4:40 A.M.

Related reference:
“cdr change replicateset” on page A-42
“cdr define replicate” on page A-77
“cdr define replicateset” on page A-87
“cdr define template” on page A-98
“cdr modify replicate” on page A-140
“cdr modify replicateset” on page A-145

cdr add onconfig
The cdr add onconfig command adds one or more values to a configuration
parameter in the ONCONFIG file.

Syntax

►► cdr add onconfig
(1)

Connect Option

“ parameter name value “ ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

parameter
name

The name of the
configuration
parameter to set.

You can add values to the
following Enterprise Replication
configuration parameters:

v CDR_LOG_LAG_ACTION

v CDR_LOG_STAGING_MAXSIZE

v CDR_QDATA_SBSPACE

v CDR_SUPPRESS_ATSRISWARN

v ENCRYPT_MAC

v ENCRYPT_MACFILE

v CDR_ENV:

– CDRSITES_731

– CDRSITES_92X

– CDRSITES_10X

Appendix A. The cdr utility A-29

Element Purpose Restrictions Syntax

value The value of the
configuration
parameter.

Must be a valid value for the
configuration parameter.

Follows the syntax
rules for the specific
configuration
parameter.

Usage

Use the cdr add onconfig command to add one or more values to an Enterprise
Replication configuration parameter while replication is active. The ONCONFIG
file is updated. You can set environment variables by using the CDR_ENV
configuration parameter.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example adds an sbspace to the existing list of sbspaces for holding
spooled transaction row data:
cdr add onconfig "CDR_QDATA_SBSPACE sbspace_11"

The following example adds the cdrIDs for two version 7.x servers to the existing
list of servers:
cdr add onconfig "CDR_ENV CDRSITES_731=1,3"

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Dynamically Modifying Configuration Parameters for a Replication Server” on
page 11-1
Related reference:
“cdr change onconfig” on page A-38
“cdr remove onconfig” on page A-159

cdr alter
The cdr alter command puts the specified tables in alter mode.

Syntax

►► cdr alter
(1)

Connect Option

--on
--off

►

► ▼ database:owner.table ►◄

Notes:

1 See “Connect Option” on page A-3.

A-30 IBM Informix Enterprise Replication Guide

Element Purpose Restrictions Syntax

database The name of the database
that contains the table

The database server must
be registered with
Enterprise Replications.

“Long
Identifiers” on
page A-3

owner User ID of the owner of the
table

“Long
Identifiers” on
page A-3

table Specifies the name of the
table to put in alter mode

The table must be an actual
table. It cannot be a
synonym or a view.

“Long
Identifiers” on
page A-3

The following table describes the options to cdr alter.

Long Form Short Form Meaning

--on -o Sets alter mode on.

--off -f Unsets alter mode.

Usage

Use this command to place a table in or out of alter mode. Use alter mode when
you need to alter an attached fragment to the table or you want to perform other
alter operations manually.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example puts table1 and table2 in alter mode:
cdr alter --on db1:owner1.table1 db2:owner2.table2

Related concepts:
“Alter, rename, or truncate operations during replication” on page 11-23
“SQL statements and replication” on page 3-3
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr swap shadow” on page A-198
“cdr remaster” on page A-153

cdr autoconfig serv
The cdr autoconfig serv command can autoconfigure connectivity for servers in a
high-availability cluster or Enterprise Replication domain, and can autoconfigure
replication.

Syntax

►► cdr autoconfig serv
(1)

Connect Option

►

Appendix A. The cdr utility A-31

►
Source options
Target options
Source options Target options

►◄

Source options:

--sourcehost host --sourceport port

Target options:

--targethost host --targetport port

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions

host The name of a database server
host.

port The port number that is used for
communication

The following table describes the options to cdr autoconfig serv.

Long Form Short Form Meaning

--sourcehost -H The host of the database server that is sending
autoconfiguration information. If --sourcehost
and --sourceport are not specified, the database
server where the command is run is considered
the source database server.

--sourceport -P The port that is used by the database server
that is sending autoconfiguration information.

--targethost -h The host of the database server that is
receiving autoconfiguration information.

--targetport -p The port that is used by the database server
that is receiving autoconfiguration information.

Usage

Run the cdr autoconfig serv command to autoconfigure connectivity for servers in
a high-availability cluster or Enterprise Replication domain, and to autoconfigure
replication if you are adding database servers to an Enterprise Replication domain.
The CDR_AUTO_DISCOVER configuration parameter must be set to 1 on all
database servers that are participating in an Enterprise Replication domain or
high-availability cluster, before you can run the cdr autoconfig serv command. A
newly installed database severs that is added to an Enterprise Replication domain
through the cdr autoconfig serv command must have a configured storage pool.

If the source server is already configured for Enterprise Replication, the command
performs the following actions:
1. The source server propagates its trusted-host file to target server.

A-32 IBM Informix Enterprise Replication Guide

2. The target server adds entries for itself and all other replication servers to its
sqlhosts file.

3. The source server updates its sqlhost file with entries for the target server.
4. Each replication server updates its sqlhost file and trusted-host file with entries

for the target server.
5. The target server sets its CDR_DBSPACE configuration parameter and creates

the dbspace that is required for Enterprise Replication.
6. The target server sets its CDR_QDATA_SBSPACE configuration parameter and

creates the sbspace that is required for Enterprise Replication.
7. The aborted transactions spooling (ATS) file directory $INFORMIXDIR/tmp/

ats_dbservername is created on the target server.
8. The row information spooling (RIS) file directory $INFORMIXDIR/tmp/

ris_dbservername is created on the target server.
9. Replication to the target server starts.

If the source server is not configured for Enterprise Replication, the command
performs the additional actions:
1. The source server adds entries for itself to its sqlhosts file.
2. The source server sets its CDR_DBSPACE configuration parameter and creates

the dbspace that is required for Enterprise Replication.
3. The source server sets its CDR_QDATA_SBSPACE configuration parameter and

creates the sbspace that is required for Enterprise Replication.
4. The aborted transactions spooling (ATS) file directory $INFORMIXDIR/tmp/

ats_dbservername is created on the source server.
5. The row information spooling (RIS) file directory $INFORMIXDIR/tmp/

ris_dbservername is created on the source server.
6. Replication on the source server begins before replication on the target server

begins.

The following restrictions apply to the cdr autoconfig serv command:
v All replication servers must be active, or the cdr autoconfig serv command fails.
v Do not run the cdr autoconfig serv command if you have configured

trusted-host information, manually, rather than through running the admin() or
task() function with the cdr add trustedhost argument.

v Do not run the cdr autoconfig serv command if your replication servers have
secure ports configured.

v The cdr autoconfig serv command does not copy hosts.equiv information to the
trusted-host file that is set by the REMOTE_SERVER_CFG configuration
parameter. Run the admin() or task() function with the cdr add trustedhost
argument if you must add information from the hosts.equiv file to the
trusted-host file that is set by the REMOTE_SERVER_CFG configuration
parameter.

Database servers are configured serially. Parallel configuration is not supported.

You can run this command from within an SQL statement by using the SQL
administration API.

Example 1: Define Enterprise Replication on a database server

For this example, you have one database server that is not configured for
Enterprise Replication:

Appendix A. The cdr utility A-33

v server_1 on host_1

The following command is run on server_1.
cdr autoconfig serv

The command defines Enterprise Replication on server_1.

Example 2: Configure connectivity and ER between two
stand-alone servers by using source syntax

For this example, you have two stand-alone database servers:
v server_1 on host_1

v server_2 on host_2

The following command is run on server_1:
cdr autoconfig serv -c server_2 --sourcehost host_1 --sourceport 9000

The command performs the following actions:
1. The command connects to server_2.
2. Enterprise Replication is defined on server_1.
3. Enterprise Replication is defined on server_2.
4. server_1 replicates its data to server_2

Example 3: Configure connectivity and ER between two
stand-alone servers using target syntax

For this example, you have two stand-alone database servers:
v server_1 on host_1

v server_2 on host_2

The following command is run on server_2:
cdr autoconfig serv -c server_1 --targethost host_2 –targetport 9002

The command performs the following actions:
1. The command connects to server_1.
2. Enterprise Replication is defined on server_1.
3. Enterprise Replication is defined on server_2.
4. server_1 replicates its data to server_2

Example 4: Configure connectivity and ER between two
stand-alone servers

For this example, you have three stand-alone database servers:
v server_1 on host_1

v server_2 on host_2

v server_3 on host_3

The following commands are run on server_1:
cdr autoconfig serv --targethost hos_t2 –targetport 9002
cdr autoconfig serv --targethost host_3 –targetport 9003

The commands perform the following actions:

A-34 IBM Informix Enterprise Replication Guide

1. The first command connects to server_1.
2. Enterprise Replication is defined on server_1.
3. Enterprise Replication is defined on server_2.
4. server_1 replicates its data to server_2.
5. The second command connects to server_1.
6. Enterprise Replication is defined on server_3.
7. server_1 replicates its data to server_3.
Related concepts:
“Creating sqlhost group entries for replication servers” on page 6-3
Related tasks:
“Preparing the Network Environment” on page 6-1
Related reference:
“cdr autoconfig serv” on page A-31
“CDR_AUTO_DISCOVER configuration parameter” on page B-1
Related information:
cdr autoconfig serv argument: Autoconfigure connectivity and replication (SQL
administration API)
cdr add trustedhost argument: Add trusted hosts (SQL administration API)
Trusted-host information
Client/server communication

cdr change grid
The cdr change grid command adds or deletes replication servers to or from a
grid.

Syntax

►► cdr change grid
(1)

Connect Option

grid_name --add
--delete

►

► ▼ server_group ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be the name of an
existing grid.

“Long
Identifiers” on
page A-3

server_group Name of a database server
group to add to, or remove
from, the grid.

Must be the name of an
existing database server
group in SQLHOSTS.

“Long
Identifiers” on
page A-3

The following table describes the cdr change grid options.

Appendix A. The cdr utility A-35

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_162.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_162.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_155.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1407.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0123.htm

Long Form Short Form Meaning

--add -a Add the specified replication servers to the grid.

--delete -d Delete the specified replication servers from the grid.

Usage

Use the cdr change grid command to add a new replication server to an existing
grid or to remove a replication server from an existing grid.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5,
220, 222.

For information on these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Examples

The following example adds two servers to a grid named grid_1:
cdr change grid grid_1 --add gserv3 gserv4

The following example removes a server from a grid named grid_1:
cdr change grid grid_1 --delete gserv1

Related concepts:
“Grid maintenance” on page 9-6
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Adding a replication server to a grid by cloning” on page 9-8
“Adding a replication server to a grid by running cdr change grid” on page 9-8
Related reference:
“cdr define grid” on page A-73
“cdr list grid” on page A-121

cdr change gridtable
The cdr change gridtable command has multiple uses. It can verify that specific
tables can be used in gird queries and then add the tables to a list of verified
tables, and it can delete tables from the list of verified tables.

Syntax

►► cdr change gridtable
(1)

Connect Option

--grid = grid_name ►

A-36 IBM Informix Enterprise Replication Guide

► --database = database --add
--delete

▼

--all

table

►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

database The name of the database. Must be in a server that is
in the specified grid.

“Long
Identifiers” on
page A-3

grid_name Name of the grid. Must be the name of an
existing grid.

“Long
Identifiers” on
page A-3

table The name of the table. The table cannot be a
synonym or a view.

“Long
Identifiers” on
page A-3

The following table describes the cdr change gridtable options.

Long Form Short Form Meaning

--add -a Add the specified tables to the grid.

--all -A Specifies to add or delete all the tables in the database.

--database= -D Specifies the database in which the tables are located.

--delete -d Delete the specified tables from the grid.

--grid= -g Specifies the grid to which to add or delete tables.

Usage

Use the cdr change gridtable command with the --add option to add one or more
tables to an existing grid. You add a table to a grid when you want to include the
table in grid queries. System tables are automatically included in the grid. When
you add a table to a grid, the cdr change gridtable command ensures that every
table with that name has the same schema on every grid server. Every table must
have the same columns, column names, and data types. The specified database
must use the same locale on every grid server.

Use the cdr change gridtable command with the --delete option to remove one or
more tables from an existing grid. The specified tables cannot be included in grid
queries.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5,
228.

For information about these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Appendix A. The cdr utility A-37

Examples

The following example adds all tables in the stores database to the grid named
grid1:
cdr change gridtable -–grid=grid1 -–database=stores -–add -–all

The following example removes the table named customer in the stores database
from the grid named grid1:
cdr change gridtable -–grid=grid1 -–database=stores -–delete=customer

Related concepts:
“Grid queries” on page 9-19
Related tasks:
“Defining tables for grid queries” on page 9-20
Related reference:
“cdr remaster gridtable” on page A-156
Related information:
GRID clause

cdr change onconfig
The cdr change onconfig command replaces the existing value of a configuration
parameter with a new value in the ONCONFIG file.

Syntax

►► cdr change onconfig
(1)

Connect Option

►

► “ parameter name value “ ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

parameter
name

The name of the
configuration parameter to
change.

None. All Enterprise
Replication configuration
parameters and
environment variables can
be changed with this
command.

value The value of the
configuration parameter.

Must be a valid value for
the configuration
parameter.

Follows syntax
rules for the
specific
configuration
parameter.

Usage

Use the cdr change onconfig command to replace the existing value of an
Enterprise Replication configuration parameter with a new value in the

A-38 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

ONCONFIG file. You can set Enterprise Replication environment variables by
using the CDR_ENV configuration parameter.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

Suppose the CDR_SUPPRESS_ATSRISWARN configuration parameter is set to
suppress the generation of error and warning messages 1, 2, and 10, so that it
appears in the ONCONFIG file as: CDR_SUPPRESS_ATSRISWARN 1,2,10. The
following command changes the suppressed error and warning messages to 2, 3, 4,
5, and 7:
cdr change onconfig "CDR_SUPPRESS_ATSRISWARN 2-5,7"

Suppose the CDR_RMSCALEFACT environment variable is set to the value of 4.
The following example sets the number of data sync threads started for each CPU
VP to 3:
cdr change onconfig "CDR_ENV CDR_RMSCALEFACT=3"

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Dynamically Modifying Configuration Parameters for a Replication Server” on
page 11-1
Related reference:
“cdr add onconfig” on page A-29
“cdr remove onconfig” on page A-159

cdr change replicate
The cdr change replicate command modifies an existing replicate by adding or
deleting one or more participants.

Syntax

►► cdr change replicate
(1)

Connect Option

►

► ▼

▼

--add replicate participant modifier

--delete replicate participant

--verify
--autocreate

►

►
--erkey

►◄

Appendix A. The cdr utility A-39

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

modifier Specifies the rows and
columns to replicate.

“Participant and
participant
modifier” on
page A-4

participant Specifies the database
server and table for
replication.

The participant must exist. “Participant and
participant
modifier” on
page A-4

replicate Name of the replicate to
change.

The replicate must exist. “Long
Identifiers” on
page A-3

The following table describes the options to cdr change replicate.

Long Form Short Form Meaning

--add -a Adds participants to a replicate.

--autocreate -u For use with master replicates only. Specifies that if the
tables in the master replicate definition do not exist in
the databases on the target servers, then they are
created automatically. However, the table cannot contain
columns with user-defined data types. The tables are
created in the same dbspace as the database.
Note: Tables that are created with the --autocreate
option do not automatically include non-replication key
indexes, defaults, constraints (including foreign
constraints), triggers, or permissions. If the tables you
create with the --autocreate option require the use of
these objects you must explicitly create the objects by
hand.

--delete -d Removes participants from a replicate.

--erkey -K Includes the ERKEY shadow columns, ifx_erkey_1,
ifx_erkey_2, and ifx_erkey_3, in the replicate definition,
if the table being replicated has the ERKEY shadow
columns. The ERKEY shadow columns are used as the
replication key.

--verify -v For use with master replicates only. Specifies that the
cdr change template command verifies the database,
tables, and column data types against the master
replicate definition on all listed servers

Usage

Use this command to add or delete a participant from a replicate. You can define a
replicate that has zero or one participants, but to be useful, a replicate must have
at least two participants. You cannot start and stop replicates that have no
participants. All participants for the replicate must be online and the cdr utility
must be able to connect to each participant.

A-40 IBM Informix Enterprise Replication Guide

Important: Enterprise Replication adds the participant to the replicate in an
inactive state, regardless of the state of the replicate. To activate the new
participant, run cdr start replicate with the name of the server group. See “cdr
start replicate” on page A-170.

When you run the cdr change replicate command, an event alarm with a class ID
of 65 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Example 1: Add two participants

The following example adds two participants to the replicate named repl_1:
db1@server1:antonio.table with the modifier select * from table1, and
db2@server2:carlo.table2 with the modifier select * from table2:
cdr change repl -a repl_1 \

"db1@server1:antonio.table1" "select * from table1" \
"db2@server2:carlo.table2" "select * from table2"

Example 2: Remove two participants

The following example removes the same two participants from replicate repl_1:
cdr change repl -d repl_1 \

"db1@server1:antonio.table1" \
"db2@server2:carlo.table2"

Example 3: Add a participant that includes ERKEY shadow
columns

The following example adds a participant and includes the ERKEY shadow
columns from the table table1:
cdr change repl -a repl_1 --erkey\

"db1@server1:antonio.table1" "select * from table1"

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Preparing tables without primary keys” on page 6-20
Related reference:
“cdr define replicate” on page A-77
“cdr delete replicate” on page A-105
“cdr list replicate” on page A-125
“cdr modify replicate” on page A-140
“cdr resume replicate” on page A-164
“cdr start replicate” on page A-170
“cdr stop replicate” on page A-191
“cdr suspend replicate” on page A-194
“Enterprise Replication Event Alarms” on page 12-21
“Participant and participant modifier” on page A-4

Appendix A. The cdr utility A-41

cdr change replicateset
The cdr change replicateset command changes a replicate set by adding or
deleting replicates.

Syntax

►► cdr change replicateset
(1)

Connect Option

--add
--delete

►

► repl_set ▼ replicate ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

repl_set Name of the replicate set to
change.

The replicate set must exist. “Long
Identifiers” on
page A-3

replicate Name of the replicates to
add to or delete from the
set.

The replicates must exist. “Long
Identifiers” on
page A-3

The following table describes the options to cdr change replicateset

Long Form Short Form Meaning

--add -a Add replicates to a replicate set.

--delete -d Remove replicates from a replicate set.

Usage

Use this command to add replicates to a replicate set or to remove replicates from
an exclusive or non-exclusive replicate set:
v If you add a replicate to an exclusive replicate set, Enterprise Replication

changes the existing state and replication frequency settings of the replicate to
the current properties of the exclusive replicate set.
If you remove a replicate from an exclusive replicate set, the replicate retains the
properties of the replicate set at the time of removal (not the state the replicate
was in when it joined the exclusive replicate set).
When you add or remove a replicate from an exclusive replicate set that is
suspended or that is defined with a frequency interval, Enterprise Replication
transmits all the data in the queue for the replicates in the replicate set up to the
point when you added or removed the replicate.

v If you add or remove a replicate to a non-exclusive replicate set, the replicate
retains its individual state and replication frequency settings.

A-42 IBM Informix Enterprise Replication Guide

Use this command to add or remove replicates from a grid replicate set. You can
only add replicates that were created outside of a grid environment to a grid
replicate set if the following conditions are met:
v The participant servers must be the same as the servers in the grid.
v The replicated table schema must be the same among all participants.
v The entire replicated table is replicated. Using a SELECT statement in the

participant definition that does not include all the columns in the table or
includes a WHERE clause is not allowed.

v The replicate must not belong to an exclusive replicate set.
v The replicate must not include TimeSeries columns.

When you run the cdr change replicateset command, an event alarm with a class
ID of 66 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example adds the replicates house and barn to replicate set
building_set:
cdr change replicateset --add building_set house barn

The following example removes the replicates teepee and wigwam from replicate
set favorite_set:
cdr change replset --delete favorite_set teepee wigwam

Related concepts:
“Frequency Options” on page A-27
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Suspending a Replicate Set” on page 11-12
“Adding an existing replicate to a grid replicate set by using cdr change
replicateset” on page 9-10
Related reference:
“cdr define replicate” on page A-77
“cdr delete replicateset” on page A-106
“cdr list replicateset” on page A-130
“cdr modify replicateset” on page A-145
“cdr resume replicateset” on page A-165
“cdr start replicateset” on page A-173
“cdr stop replicateset” on page A-193
“cdr suspend replicateset” on page A-195
“cdr define replicateset” on page A-87
“Enterprise Replication Event Alarms” on page 12-21

cdr change shardCollection
The cdr change shardCollection command changes the sharding definition that
determines which database servers are part of the shard cluster.

Appendix A. The cdr utility A-43

Syntax

►► cdr change shardCollection definition_name
(1)

Connect Option

►

► ▼

▼

▼

▼

▼

--add ER_group

ER_group " expression "

--drop ER_group

ER_group
--replace

ER_group " expression " ER_group REMAINDER

►◄

Notes:

1 See “Connect Option” on page A-3.

Element Description Restrictions

ER_group The ER-group name of a database server
that receives sharded data.

Must be the ER-group name of an
existing database server.

definition_name The name of the sharding definition that
is modified.

Must be the name of an existing
definition.

expression The WHERE-clause expression that is
used to select rows or documents by
shard key or shard column value.

REMAINDER Specifies the database server that
receives rows or documents with shard
key values that are not selected by other
expressions.

Use only if the sharding definition uses
an expression for distributing data.

The following table describes the cdr change shardCollection options.

Long Form Short Form Description

--add -a Adds a database server to a sharding definition.

--drop -d Removes a database server from a sharding definition.

If the database server that is removed uses an expression for
sharding, the expression is not included in the cdr change
shardCollection command.

--replace -r Replaces a sharding definition with a different sharding definition.

A-44 IBM Informix Enterprise Replication Guide

Usage

The cdr change shardCollection command can change the database servers that
are part of a shard cluster. You can add and remove database servers from a shard
cluster, or replace the sharding definition.

The cdr change shardCollection command creates a new sharding definition,
moves existing data to appropriate shard servers, and then removes the original
sharding definition.

To delete a shard server from Enterprise Replication by using the cdr delete server
command, you must first remove the database server from its shard cluster.

Note: You cannot use the cdr change shardCollection command to change the
strategy parameter that is specified in the cdr define shardCollection command.
For sharding definitions that use --strategy=expression, you can change the
expression that is used for distributing data, and the database servers that data is
distributed to. For sharding definitions that use --strategy=hash, you can change
the database servers that data is distributed to.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 39,
99, 196, 229.

For information about these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Example 1: Adding a database server to a sharding definition
that uses a hash algorithm

For this example, you have a sharding definition that was created by the following
command:
cdr define shardCollection collection_1 db_1:john.customers_1

--type=delete --key=state --strategy=hash --versionCol=version
g_shard_server_A
g_shard_server_B
g_shard_server_C

If you run the following command, g_shard_server_D is added to collection_1:
cdr change shardCollection collection_1 --add g_shard_server_D

A new sharding definition is created for collection_1, and then the old sharding
definition is deleted.

Example 2: Adding multiple database servers to a sharding
definition that uses an expression

For this example, you have a sharding definition that was created by the following
command:

Appendix A. The cdr utility A-45

cdr define shardCollection collection_2 db_2:joe.clients
--type=delete --key=state --strategy=expression –-versionCol=version
g_shard_server_A "IN (’TX’,’OK’)"
g_shard_server_B "IN (’NY’,’NJ’)"
g_shard_server_C "IN (’AL’,’GA’)"
g_shard_server_D REMAINDER

If you run the following command, g_shard_server_E and g_shard_server_F are
added to collection_2:
cdr change shardCollection collection_2 --add

g_shard_server_E "IN (’CA’,’AZ’)"
g_shard_server_F "IN (’WA’,’ID’)"

A new sharding definition is created for collection_2, and then the old sharding
definition is deleted.

Example 3: Removing a database server from a sharding
definition

For this example, you have a sharding definition that was created by the following
command:
cdr define shardCollection collection_3 db_3:john.customers

--type=delete --key=state --strategy=hash --versionCol=version
g_shard_server_A
g_shard_server_B
g_shard_server_C
g_shard_server_D

If you run the following command, g_shard_server_B is removed from
collection_3:
cdr change shardCollection collection_3 --drop g_shard_server_B

A new sharding definition is created for collection_3, data is moved from
g_shard_server_B to the database servers in the new sharding definition, and then
the old sharding definition is deleted.

Example 4: Replacing a sharding definition that uses a hash
algorithm

For this example, you have a sharding definition that was created by the following
command:
cdr define shardCollection collection_4 db_4:john.customers

--type=delete --key=state --strategy=hash --versionCol=version
g_shard_server_A
g_shard_server_B
g_shard_server_C
g_shard_server_D

If you run the following command, collection_4 changes composition to
g_shard_server_A, g_shard_server_C, g_shard_server_E, and g_shard_server_F:
cdr change shardCollection collection_4 --replace

g_shard_server_A
g_shard_server_C
g_shard_server_E
g_shard_server_F

A new sharding definition is created for collection_4, data is moved from
g_shard_server_B and g_shard_server_D to the database servers in the new
sharding definition, and then the old sharding definition is deleted.

A-46 IBM Informix Enterprise Replication Guide

Example 5: Replacing a sharding definition that uses an
expression

For this example, you have a sharding definition that was created by the following
command:
cdr define shardCollection collection_5 db_5:joe.clients

-t delete -k unit_number -s expression –v version
g_shard_server_A "BETWEEN 0 and 100"
g_shard_server_B "BETWEEN 101 and 200"
g_shard_server_C "BETWEEN 201 and 300"
g_shard_server_D REMAINDER

If you run the following command, collection_5 changes composition to
g_shard_server_C, g_shard_server_D, g_shard_server_E, g_shard_server_F, and
g_shard_server_G:
cdr change shardCollection collection_5 -r

g_shard_server_E "BETWEEN 0 and 100"
g_shard_server_F "BETWEEN 101 and 200"
g_shard_server_G "BETWEEN 201 and 200"
g_shard_server_C "BETWEEN 301 and 400"
g_shard_server_D REMAINDER

A new sharding definition is created for collection_5, data is moved from
g_shard_server_A and g_shard_server_B to the database servers in the new
sharding definition, and then the old sharding definition is deleted.
Related concepts:
“Shard cluster management and monitoring” on page 10-5
Related reference:
“cdr define shardCollection” on page A-93
“cdr delete shardCollection” on page A-110
“cdr list shardCollection” on page A-135
Related information:
Enabling sharding for JSON or relational data
Changing the definition for a shard cluster
onstat -g shard command: Print information about the shard cache

cdr check queue
Use the cdr check queue command to check the consistency of Enterprise
Replication metadata, and to check the consistency of user data before running
critical tasks in the Enterprise Replication domain. The command returns
successfully when all of the commands that were queued when cdr check queue
was run are complete.

Syntax

►► cdr check queue
(1)

Connect Option

►

Appendix A. The cdr utility A-47

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_028.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_030.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1177.htm

► --qname= cntrlq queue_name
sendq
recvq

0 M
--wait= -1

time H
S

►

► ▼ target_server
--all
--grid = grid_name

►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

grid_name Name of the grid Must be the name of an
existing grid.

“Long
Identifiers” on
page A-3

target_server Name of a database
server group on which
to check the queue

The following table describes the cdr check queue options.

Long Form Short Form Meaning

--all -a Specifies that all servers defined for the Enterprise
Replication are checked

--grid -g Specifies the grid name

--qname -q Specifies the name of the queue to monitor:

v cntrlq = Control queue

v sendq = Send queue

v recvq = Receive queue

--wait -w Specifies the amount of time to wait for queues to
complete before returning.

Minutes are used if the time unit is not specified.

-1 = Wait until all queued elements are complete

0 (default) = Do not wait for queued elements to
complete; return immediately

Positive integer = Number of hours, minutes, or seconds
to wait, depending on the time unit specified:

v H or h = Hours

v M or m = Minutes (default)

v S or s = Seconds

A-48 IBM Informix Enterprise Replication Guide

Usage

The cdr check queue command is used to monitor control, send, and receive
queues on one or more Enterprise Replication servers and can optionally wait for
queues to empty before returning.

The Enterprise Replication queues are checked at the time that the cdr check
queue command runs. The time is displayed in the command output. For control
and receive queues, any messages queued after the command runs are not
included in the output. For the send queue, any transactions committed after the
cdr check queue command runs are not included in the output.

If a leaf server name is specified with the --connect option, the system connects to
the parent server to read information from the syscdr database.

Only a DBSA can run the cdr check queue command. With a non-root installation,
the user who installs the server is the equivalent of the DBSA, unless the user
delegates DBSA privileges to a different user.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5,
17, 21, 48, 62, 94, 99, 100, 196, 222.

Example 1: Control queue report for all servers

The following command waits up to 10 seconds for the control queues on all
replication servers to complete before generating a report.
cdr check queue -q cntrlq -w 10s -a

The queue report for the previous command might be:
Checking cntrlq queue status for server g_madras ...
cntrlq queue status for g_madras as of Mon Dec 5 12:03:19 2011: COMPLETE
Checking cntrlq queue status for server g_delhi ...
cntrlq queue status for g_delhi as of Mon Dec 5 12:03:19 2011: COMPLETE
Checking cntrlq queue status for server g_bombay ...
cntrlq queue status for g_bombay as of Mon Dec 5 12:03:19 2011: COMPLETE

This report indicates that all of the queue items in the control queue at the time the
cdr check queue command was issued are complete.

Example 2: Send queue report for all servers

The following command waits up to 10 seconds for the send queues on all
replication servers to complete before generating a report.
cdr check queue -q sendq -w 10s -a

The queue report for the previous command might be:
Checking sendq queue status for server g_madras ...
Checking sendq queue status for server g_delhi ...
sendq queue status for g_delhi as of Mon Dec 5 12:04:00 2011: COMPLETE
sendq queue status for g_madras as of Mon Dec 5 12:04:00 2011: COMPLETE
Checking sendq queue status for server g_bombay ...
sendq queue status for g_bombay as of Mon Dec 5 12:04:01 2011: COMPLETE

Appendix A. The cdr utility A-49

This report indicates that all of the queue items in the send queue at the time the
cdr check queue command was issued are complete.

Example 3: Send queue report that shows timeout

The following command waits up to 10 seconds for the send queues on all
replication servers to complete before generating a report.
cdr check queue -q sendq -w 10s -a

The queue report for the previous command might be:
Checking sendq queue status for server g_madras ...
sendq queue status for g_madras as of Mon Dec 5 12:04:54 2011: COMPLETE
Checking sendq queue status for server g_delhi ...
sendq queue status for g_delhi as of Mon Dec 5 12:04:54 2011: INCOMPLETE

Operation timed out.
command failed -- Command timed out. (21)

This report indicates that the send queue for server g_delhi had commands that
did not complete before the timeout period of 10 seconds elapsed.
Related concepts:
Chapter 12, “Monitor and troubleshooting Enterprise Replication,” on page 12-1
“Return Codes for the cdr Utility” on page A-8
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Deleting a Replication Server” on page 11-5
“Deleting a Replicate” on page 11-9
“Deleting a Replicate Set” on page 11-12
Related reference:
“cdr delete replicate” on page A-105
“cdr delete replicateset” on page A-106
“cdr delete server” on page A-108
“cdr delete grid” on page A-103

cdr check replicate
The cdr check replicate command compares the data on replication servers to
create a report that lists data inconsistencies and can optionally repair the
inconsistent data within a replicate.

Syntax

►► cdr check replicate
(1)

Connect Option

►

►
(2)

--master=data_server
--nomaster

--repl=repl_name ▼ target_server
--all

►

A-50 IBM Informix Enterprise Replication Guide

►
--name=task_name --verbose

►

►
--repair

delete
--extratargetrows= keep

merge
--timestamp

--deletewins

►

►
off

--firetrigger= on
follow

--inprogress=recheck_time
►

►
--background --skipLOB --since=start_time

►

►
--where=WHERE_Clause --excludeTimeSeries

►

►
--ignoreHiddenTSElements --checksum=checksum_function

►◄

Notes:

1 See “Connect Option” on page A-3.

2 Omit if you include the --timestamp option.

Element Purpose Restrictions Syntax

checksum_function Name of the checksum function
to use during consistency
checking.

The function must be installed and
registered on all replication servers.

“Long Identifiers” on
page A-3

data_server Name of the database server to
use as the reference copy of the
data.

Must be the name of an existing
database server group in
SQLHOSTS.

“Long Identifiers” on
page A-3

recheck_time The number of seconds to
spend rechecking transactions
that might be listed as
inconsistent because they are
not yet applied on the target
server.

Must be a positive integer.

repl_name Name of the replicate to check. Must be an existing replicate. “Long Identifiers” on
page A-3

Appendix A. The cdr utility A-51

Element Purpose Restrictions Syntax

start_time The time from which to check
updated rows.

Can have one the following
formats:

v numberM = Include rows
updated in the last specified
number of minutes.

v numberH = Include rows updated
in the last specified number of
hours.

v numberD = Include rows updated
in the last specified number of
days.

v numberW = Include rows
updated in the last specified
number of weeks.

v "YYYY-MM-DD hh:mm:ss" =
Include rows updated since this
time stamp.

The time stamp
format follows the
convention of the
DBTIME environment
variable.

target_server Name of a database server
group to check.

Must be the name of an existing
database server group in the
sqlhosts file.

“Long Identifiers” on
page A-3

task_name The name of the progress report
task.

If you use an existing task name,
the information for that task is
overwritten.

Maximum name length is 127
bytes.

“Long Identifiers” on
page A-3

WHERE_Clause Clause that specifies a subset of
table rows to be checked.

You cannot include a TimeSeries
column in the WHERE clause.

WHERE clause syntax

The following table describes the options for the cdr check replicate command.

Long Form Short Form Meaning

--all -a Specifies that all servers defined for the replicate are checked.

--background -B Specifies that the operation is run in the background as an SQL
administration API command.

The command and its result are stored in the command_history table
in the sysadmin database, under the name that is specified by the
--name= option, or the time stamp for the command if --name= is not
specified.

--checksum= Specifies the name of an existing checksum function to use during
consistency checking. By default, the checksum function that is
provided with the database server is run.

--deletewins -d Specifies that the replicate uses the delete wins conflict resolution rule.

You cannot use this option for replicates that include TimeSeries
columns.

--excludeTimeSeries Specifies to prevent the checking of time series data.

A-52 IBM Informix Enterprise Replication Guide

Long Form Short Form Meaning

--extratargetrows= -e Specifies how to handle rows that are found on the target servers that
are not present on the server from which the data is being copied
(data_server):

v delete: (default) remove rows and dependent rows, based on
referential integrity constraints, from the target servers

v keep: retain rows on the target servers

v merge: retain rows on the target servers and replicate them to the
data source server. You cannot use this option for replicates that
include TimeSeries columns.

--firetrigger= -T Specifies how to handle triggers at the target servers while data is
synchronizing:

v off: (default) do not fire triggers at target servers during
synchronization

v on: always fire triggers at the target servers even if the replicate
definition does not have the --firetrigger option

v follow: fire triggers at target servers only if the replicate definition
has the --firetrigger option

--ignoreHiddenTSElements Specifies to avoid checking time series elements that are marked as
hidden.

--inprogress= -i Specifies to spend more than the default time to recheck inconsistent
rows that might be in the process of being applied on target servers. If
the --inprogress= option is not set, inconsistent rows are rechecked for
up to five seconds.

--master= -m Specifies the database server to use as the reference copy of the data.

You cannot use the --master option with the --timestamp option.

--name= -n Specifies that the progress of this command can be monitored.
Information about the operation is stored under the specified progress
report task name on the server on which the command was run.

--nomaster -N Specifies that the replicate is configured as a data consolidation
system in which the multiple primary servers only send data and the
single target server only receives data.

--repair -R Specifies that rows that are found to be inconsistent are repaired.

--repl= -r Specifies the name of the replicate to check.

--since= -S Specifies the time from which to check updated rows. The replicate
must be using the time stamp or delete wins conflict resolution rule.

You cannot use this option for replicates that include TimeSeries
columns.

--skipLOB -L Specifies that large objects are not checked.

--timestamp -t Specifies to repair inconsistent rows based on the latest time stamp
among all the participants. The replicate must use the time stamp or
delete wins conflict resolution rule.

You cannot use the --master option with the --timestamp option.

You cannot use this option for replicates that include TimeSeries
columns.

--verbose -v Specifies that the consistency report shows specific inconsistent values.

--where= -w Specifies what data to check with a WHERE clause.

You cannot include a TimeSeries column in the WHERE clause.

Appendix A. The cdr utility A-53

Usage

Use the cdr check replicate command to check the consistency of data between
multiple database servers for a specific replicate. The cdr check replicate command
compares all rows on all specified database servers against the data in the
reference server and produces a consistency report. If you include the --verbose
option, the report lists every inconsistent row value; otherwise, the report
summarizes inconsistent rows.

If you run this command as a DBSA instead of as user informix, you must have
INSERT, UPDATE, and DELETE permission on the replicated tables on all the
replication servers in the domain.

If you want to monitor the progress of the check operation, include the --name
option and specify a name for the progress report task. Then, run the cdr stats
check command and specify the progress report task name.

Depending on the state of the data in your database when you run the cdr check
command, the system might also run an UPDATE STATISTICS command.

If replicated transactions are active when the cdr check replicate command is
running, the consistency report might include rows that are temporarily
inconsistent until those transactions are applied at the target server. By default, the
cdr check replicate command rechecks inconsistent rows for up to five seconds
after the initial check is completed. If you find your transaction latency is longer
than five seconds, you can extend the recheck time period by using the
--inprogress option to specify a longer interval. After the initial recheck,
inconsistent transactions are rechecked until there are no inconsistent transactions
or the number of seconds specified by the --inprogress option elapses. In general,
set the recheck time to a little longer than your average transaction latency because
if repairing inconsistencies causes spooling in the send queue, transaction latency
might increase during a repair. View your transaction latency with the cdr view
apply command, or in the IBM OpenAdmin Tool (OAT) for Informix.

You can improve the performance of consistency checks by limiting the amount of
data that is checked by using one or more of the following options:
v Check from a specific time with the --since option. If the replicate uses the time

stamp or delete wins conflict resolution rule and you regularly check
consistency, you can limit the data that is checked to the data that was updated
since the last consistency check.

v Check a subset of the data with the --where option. For example, if you have a
corrupted table fragment on a server, you can specify to check only the data in
that fragment.

v Skip the checking of large objects with the --skipLOB option. If you find that
your large objects do not change as much as other types of data, then skipping
them can make a consistency check quicker.

You can run a consistency check as a background operation as an SQL
administration API command if you include the --background option. This option
is useful if you want to schedule regular consistency checks with the Scheduler. If
you run a consistency check in the background, provide a name for the progress
report task by using the --name option so that you can monitor the check with the
cdr stats check command. You can also view the command and its results in the
command_history table in the sysadmin database. If you use the --background

A-54 IBM Informix Enterprise Replication Guide

option as a DBSA, you must have CONNECT privilege on the sysadmin database
and INSERT privilege on the ph_task table.

If you have large tables, you can speed consistency checking by indexing the
ifx_replcheck shadow column.

If your replication system is configured for data consolidation and the primary
servers include the S option in their participant definitions, you must include the
--nomaster option.

If you include the --repair option, the cdr check replicate command repairs
inconsistent rows so that they match the rows on the reference server. The cdr
check replicate command uses direct synchronization as a foreground process
when repairing inconsistent rows. The cdr check replicate command with
the--repair option does the following tasks:
1. Creates a shadow replicate with the source server and target server as

participants. The conflict resolution rule for the shadow replicate is always
apply.

2. Performs an index scan on the replication key index at both the source server
and the target server to create a checksum and identify inconsistent rows.

3. Replicates inconsistent rows from the source server to the target server by
doing a dummy update of the source server, which might result in increased
logging activity. Rows are not replicated to participants that include the S
option in the participant definition because those participants only send data.

4. Runs a check to determine whether any rows remain inconsistent. Rows can be
temporarily inconsistent if not all transactions are complete on the target server.

5. If any rows are inconsistent, reruns the check for up to five seconds, or for up
to the number of seconds specified by the --inprogress option.

6. Deletes the shadow replicate.
7. Displays the consistency report.

To repair replicate sets based on the latest time stamps among the participants
instead of based on a master server, use the --repair option with the --timestamp
option. If your replicates use the delete wins conflict resolution rule, also include
the --deletewins option. A time stamp repair evaluates extra and mismatched rows
according to the rules of the time stamp or delete wins conflict resolution rules.
The reference server in a time stamp repair is the server with the lowest replication
key.

The following table describes the columns of the consistency report.

Table A-2. Consistency Report Description

Column name Description

Node The name of the replication server.

Rows The number of rows that are checked in the participant.

If you included the --since or --where options, this number indicates the
number of rows that fit the filter conditions. The number of rows that
are checked with the --since option might be different on different
servers, because of replication latency. Some rows might be checked on a
source server to verify target server rows even if those rows on the
source server did not originally fit the filter conditions.

Appendix A. The cdr utility A-55

Table A-2. Consistency Report Description (continued)

Column name Description

Elements For replicates that include TimeSeries columns the Elements column is
shown instead of the Rows column. The Elements column shows the
number of time series elements that are checked in the participant.

Extra The number of rows on the target server that do not exist on the
reference server.

For the reference server, this number is always 0.

Missing The number of rows on the reference server that do not exist on the
target server.

For the reference server, this number is always 0.

Mismatch The number of rows on the target server that are not consistent with the
corresponding rows on the reference server.

For the reference server, this number is always 0.

Total Mismatch For replicates that include TimeSeries columns the Total Mismatch
column is shown instead of the Mismatch column. The Total Mismatch
column shows the number of rows on the target server that are not
consistent with the corresponding rows on the reference server. If the
number in this column is greater than the number in the TmSr Rltd
Mismatch column, the additional rows are inconsistent in a way that
does not involve a TimeSeries column.

For the reference server, this number is always 0.

TmSr Rltd
Mismatch

For replicates that include TimeSeries columns the TmSr Rltd Mismatch
column shows the number rows on the target server that do not have
the same time series properties as the corresponding rows on the
reference server because of time series properties. The following time
series properties are checked:

v Whether the TimeSeries column is NULL

v The origin of the time series

v The calendar definition

v Whether the time series is regular or irregular

v The time series instance ID

v The time series threshold

For the reference server, this number is always 0.

Other Mismatch For replicates that include TimeSeries columns the Other Mismatch
column shows the number of elements that are in mismatched rows on
the target server.

For the reference server, this number is always 0.

A-56 IBM Informix Enterprise Replication Guide

Table A-2. Consistency Report Description (continued)

Column name Description

Processed The number of rows that are processed to correct inconsistent rows.

The number of processed rows on the reference server is equal to the
number of mismatched rows plus missing rows on the target servers.

The number of processed rows for a target server is usually equal to the
number of extra rows it has. If a row has child rows, then the number of
processed rows can be greater than the number of extra rows because
the child rows must be deleted as well.

If the --extratargetrows option is set to keep, then extra rows are not
deleted from the target and those rows are not added to the Processed
column. If the --extratargetrows option is set to merge, then those rows
are replicated to the reference server and are listed in the Processed
column for the target server.

For a time stamp repair, the time stamp or delete wins conflict
resolution rule is used to determine how to process the row.

You can run this command from within an SQL statement by using the SQL
administration API.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 1, 5,
17, 18, 31, 37, 48, 53, 54, 61, 75, 99, 101, 121, 172, 174, 178, 193, 194, 195, 200, 203,
204.

For information about these error codes, see “Return Codes for the cdr Utility” on
page A-8

Example 1: Summary consistency report

The following command generates a consistency report for a replicate named repl1,
comparing the data on the server serv2 with the data on the server serv1:
cdr check replicate --master=g_serv1 --repl=repl1 g_serv2

The summary consistency report shows that the servers are consistent:
------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 52 0 0 0 0
g_serv2 52 0 0 0 0

------ Table scan for repl1 end ---------

This report indicates that the replicate is consistent on these servers.

Appendix A. The cdr utility A-57

Example 2: Summary consistency report with repair

The following command generates a consistency report and repairs inconsistent
rows on all servers for a replicate named repl1:
cdr check replicate --master g_serv1 --repl=repl1 --all --repair

The consistency report shows that the target server has extra rows:
------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 67 0 0 0 2
g_serv2 67 2 2 0 2
g_serv3 67 0 0 0 0

Validation of repaired rows failed.
WARNING: replicate is not in sync

------ Table scan for repl1 end ---------

This report indicates that g_serv2 has two extra rows and is missing two rows.
Two rows were processed on g_serv1 to replicate the missing rows to g_serv2.
Also, two rows were processed on g_serv2 to delete the extra rows. Because the
--extratargetrows option was not specified, the default behavior of deleting rows
on the target servers that are not on the reference server occurred.

In this example, not all repaired rows were validated. Some rows might be still in
the process of being applied on the target servers. Using the --inprogress option to
extend the time of the validation check after the repair might prevent validation
failures.

Example 3: Verbose consistency report with repair

The following command generates a verbose consistency report, creates a progress
report task, and repairs inconsistent rows on all servers for a replicate named
repl1:
cdr check replicate --master=g_srv1 --replicate=repl1 --all --name=task1 \
--verbose --repair

The verbose consistency report shows details of the repaired rows:
------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Creating Shadow Repl sync_20104_1310721_1219952381
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_srv1 424 0 0 0 11
g_srv2 416 3 11 0 3

The repair operation completed. Validating the repaired rows ...
Validation failed for the following rows:

row missing on <g_srv2>
key:c1:424
--
row missing on <g_srv2>
key:c1:425
--
row missing on <g_srv2>
key:c1:426

A-58 IBM Informix Enterprise Replication Guide

--
marking completed on g_srv1 status 0

------ Table scan for repl1 end ---------

This report indicates that the first check found three extra rows and 11 missing
rows on the server g_srv2. After the repair operation and subsequent recheck, three
rows were still missing on g_srv2. The progress report information can be accessed
with the cdr stats check task1 command.

Example 4: Repeating verbose consistency report without repair

The following command generates a verbose consistency report for a replicate
named repl1, comparing the data on the server serv2 with the data on the server
serv1, and rechecks inconsistent rows for up to 20 seconds:
cdr check replicate --master g_serv1 --repl=repl_1 g_serv2 --all \
--verbose --inprogress=20

The verbose consistency report shows details for the inconsistent rows:
------ Table scan for repl1 start --------

------ Statistics for repl1 ------
data mismatch between g_serv1 and g_serv2
item_num:1
order_num:1011

lname
g_serv1 Pauly
g_serv2 Pauli
--
row missing on g_serv2
item_num:1
order_num:1014
--
row missing on g_serv2
item_num:2
order_num:1014
--
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 67 0 0 0 0
g_serv2 65 0 2 1 0

WARNING: replicate is not in sync

------ Table scan for repl1 end ---------

This report indicates that there is one inconsistent row on g_serv2. The replication
key for that row is the combination of the item_num column and the order_num
column. The row that is inconsistent is the one that has the item number 1 and the
order number 1011. There are two rows that are missing on g_serv2, each
identified by its replication key value.

Example 5: Summary consistency report with time filter

The following command generates a summary consistency report for the data that
was updated in the last five minutes:
cdr check replicate --master=g_serv1 --repl=repl1 g_serv2 --since=5M

The consistency report shows that the servers are consistent:

Appendix A. The cdr utility A-59

------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 2 0 0 0 0
g_serv2 2 0 0 0 0

------ Table scan for repl1 end ---------

Only two rows were checked on each server (the Rows column) because only two
rows were updated in the last five minutes.

Example 6: Consistency check and repair with time filter

The following command generates a summary consistency report for the data that
was updated since July 4, 2008 at 12:30:00 local time:
cdr check replicate --master=g_serv1 --repl=repl1 g_serv2 \
--since="2008-07-04 12:30:00"

Example 7: Summary consistency report and repair with data
filters

The following command generates a consistency report and repairs the data where
the region column equals East:
cdr check replicate --master=g_serv1 --repl=repl1 --repair g_serv2 \
--where="region = ’East’"

Example 8: Repair inconsistencies based on time stamp

The following command repairs inconsistencies based on the most recent time
stamps for the repl1 replicate on all replication servers:
cdr check replicate --repl=repl1 --all --repair --timestamp

The master server is not specified because the --timestamp option is used.

The consistency report shows that the three servers are not consistent:
------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 67 0 0 4 10
g_serv2 67 0 2 3 0
g_serv3 67 0 5 0 4

WARNING: replicate is not in sync

------ Table scan for repl1 end ---------

The value in the Extra column is always 0. In this example, seven rows are
replicated from the g_serv1 server to fix missing rows. The g_serv1 server also
replicated three rows to fix mismatched rows on the g_serv2 server. The g_serv3
server replicated four rows to resolve mismatched rows on the g_serv1 server.

Example 9: Check a replicate that includes a TimeSeries column

The following command checks the replicate named repl2, which includes a
TimeSeries column:

A-60 IBM Informix Enterprise Replication Guide

cdr check replicate --repl=repl2 --master=g_3 --all

The following consistency report shows that the source server, g_3, has more
elements than the target server, g_4:

------ Table scan for repl2 start --------

Total TmSr Rltd
Node Rows Extra Missing Mismatch Mismatch Processed
---------------- --------- --------- --------- --------- --------- ---------
g_3 1 0 0 0 0 0
g_4 1 0 0 0 0 0

TimeSeries Column: raw_reads
Other

Node Elements Extra Missing Mismatch Mismatch Processed
---------------- --------- --------- --------- --------- --------- ---------
g_3 2 0 0 0 0 0
g_4 1 0 1 0 0 0

WARNING: replicate is not in sync
------ Table scan for repl2 end ---------

Related concepts:
“Interpreting the Consistency Report” on page 11-17
“Preparing for Role Separation (UNIX)” on page 6-22
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Checking Consistency and Repairing Inconsistent Rows” on page 11-16
“Indexing the ifx_replcheck Column” on page 11-19
“Increase the speed of consistency checking” on page 11-18
Related reference:
“cdr sync replicate” on page A-200
“cdr check replicateset”
“cdr stats check” on page A-182

cdr check replicateset
The cdr check replicateset command compares the data on replication servers to
create a report listing data inconsistencies. Optionally you can use the command to
repair the inconsistent data within a replicate.

Syntax

►► cdr check replicateset
(1)

Connect Option

►

►
(2)

--master=data_server
--nomaster

(3)
--replset=repl_set ►

Appendix A. The cdr utility A-61

► ▼ target_server
--all --name=task_name --verbose

►

►
off

--firetrigger= on
follow

--inprogress=recheck_time
►

►
--background --skipLOB --since=start_time

►

►
--process=number_processes --excludeTimeSeries

►

►
--ignoreHiddenTSElements --checksum=checksum_function

►

►
Repair Options

►◄

Repair Options:

--repair
delete

--extratargetrows= keep
merge

--timestamp
--deletewins

►

►
--enable

--timeout =seconds
--allrepl

Notes:

1 See “Connect Option” on page A-3.

2 Omit if you include the --timestamp option.

3 Omit if you include the --allrepl option.

Element Purpose Restrictions Syntax

checksum_function Name of the checksum function
to use during consistency
checking.

The function must be installed and
registered on all replication servers.

“Long Identifiers” on
page A-3

A-62 IBM Informix Enterprise Replication Guide

Element Purpose Restrictions Syntax

data_server Name of the database server to
use as the reference copy of the
data.

Must be the name of an existing
database server group in
SQLHOSTS.

“Long Identifiers” on
page A-3

number_processes The number of parallel
processes to use for the
command.

The maximum number of processes
Enterprise Replication can use is
equal to the number of replicates in
the replicate set.

recheck_time The number of seconds to
spend rechecking transactions
that might be listed as
inconsistent because they are
not yet applied on the target
server.

Must be a positive integer.

repl_set Name of the replicate set. Can
be the name of a derived
replicate set.

“Long Identifiers” on
page A-3

seconds The number of seconds to wait
for a disabled replication server
to be recognized as active by
other replication servers in the
domain and how long to wait
for control messages queued at
peer servers to be applied at
newly-enabled server.

Must be an integer value from 0 to
60.

start_time The time from which to check
updated rows.

Can have one the following
formats:

v numberM = Include rows
updated in the last specified
number of minutes.

v numberH = Include rows updated
in the last specified number of
hours.

v numberD = Include rows updated
in the last specified number of
days.

v numberW = Include rows
updated in the last specified
number of weeks.

v "YYYY-MM-DD hh:mm:ss" =
Include rows updated since this
time stamp.

The time stamp
format follows the
convention of the
DBTIME environment
variable.

target_server Name of a database server
group to check.

Must be the name of an existing
database server group in
SQLHOSTS.

“Long Identifiers” on
page A-3

task_name The name of the progress report
task.

If you use an existing task name,
the information for that task is
overwritten.

Maximum name length is 127
bytes.

“Long Identifiers” on
page A-3

The following table describes the cdr check replicateset options.

Appendix A. The cdr utility A-63

Long Form Short Form Meaning

--all -a Specifies that all servers defined for the replicate are checked.

--allrepl -A Specifies that all replicates, whether they are in a replicate set or not,
are repaired.

You cannot use the --replset option with the --allrepl option.

--background -B Specifies that the operation is run in the background as an SQL
administration API command.

The command and its result are stored in the command_history table
in the sysadmin database, under the name that is specified by the
--name= option, or the time stamp for the command if --name= is not
specified.

--checksum= Specifies the name of an existing checksum function to use during
consistency checking. By default, the checksum function that is
provided with the database server is run.

--enable -E Enables replication on the target server if it was disabled by the cdr
disable server command.

--deletewins -d Specifies that the replicate uses the delete wins conflict resolution rule.

You cannot use this option for replicates that include TimeSeries
columns.

--excludeTimeSeries Specifies to prevent the checking of time series data.

--extratargetrows= -e Specifies how to handle rows that are found on the target servers that
are not present on the server from which the data is being copied
(data_server):

v delete: (default) remove rows and dependent rows, based on
referential integrity constraints, from the target servers

v keep: retain rows on the target servers

v merge: retain rows on the target servers and replicate them to the
data source server. You cannot use this option for replicates that
include TimeSeries columns.

--firetrigger= -T Specifies how to handle triggers at the target servers while data is
synchronizing:

v off: (default) do not fire triggers at target servers during
synchronization

v on: always fire triggers at the target servers even if the replicate
definition does not have the --firetrigger option

v follow: fire triggers at target servers only if the replicate definition
has the --firetrigger option

--ignoreHiddenTSElements Specifies to avoid checking time series elements that are marked as
hidden.

--inprogress= -i Specifies to spend more than the default time to recheck inconsistent
rows that might be in the process of being applied on target servers. If
the --inprogress= option is not set, inconsistent rows are rechecked for
up to five seconds.

--master= -m Specifies the database server to use as the reference copy of the data.

You cannot use the --master option with the --timestamp option.

--name= -n Specifies that the progress of this command can be monitored.
Information about the operation is stored under the specified progress
report task name on the server on which the command was run.

A-64 IBM Informix Enterprise Replication Guide

Long Form Short Form Meaning

--nomaster -N Specifies that the replicate is configured as a data consolidation
system in which the multiple primary servers only send data and the
single target server only receives data.

--process= -p Specifies to run the command in parallel, using the specified number
of processes. At most, Enterprise Replication can use one process for
each replicate in the replicate set. If you specify more processes than
replicates, the extra processes are not used.

Not all replicates can be processed in parallel. For example, if
replicates have referential integrity rules, the replicates with the parent
tables must be processed before the replicates with the child tables.

--repair -R Specifies that rows that are found to be inconsistent are repaired.

--replset -s Specifies the name of the replicate set to check.

You cannot use the --replset option with the --allrepl option.

--skipLOB -L Specifies that large objects are not checked.

--since= -S Specifies the time from which to check updated rows. The replicate
must be using the time stamp or delete wins conflict resolution rule.

You cannot use this option for replicates that include TimeSeries
columns.

--timeout= -w Specifies the time to wait for a disabled server to be enabled.

--timestamp -t Specifies to repair inconsistent rows based on the latest time stamp
among all the participants. The replicate must use the time stamp or
delete wins conflict resolution rule.

You cannot use the --master option with the --timestamp option.

You cannot use this option for replicates that include TimeSeries
columns.

--verbose -v Specifies that the consistency report shows specific values that are
inconsistent instead of a summary of inconsistent rows.

Usage

Use the cdr check replicateset command to check the consistency of data between
multiple database servers for a replicate set. The cdr check replicateset command
compares all rows on all specified database servers against the data in the
reference server and produces a consistency report. If you include the --verbose
option, the report lists every inconsistent value; otherwise, the report summarizes
inconsistent rows.

If you run this command as a DBSA instead of as user informix, you must have
INSERT, UPDATE, and DELETE permission on the replicated tables on all the
replication servers in the domain.

If you want to monitor the progress of the check operation, include the --name
option and specify a name for the progress report task. Then, run the cdr stats
check command and specify the progress report task name.

Depending on the state of the data in your database when you run the cdr check
command, the system might also run an UPDATE STATISTICS command.

Appendix A. The cdr utility A-65

If replicated transactions are active when the cdr check replicateset command is
running, the consistency report might include rows that are temporarily
inconsistent until those transactions are applied at the target server. By default, the
cdr check replicateset command rechecks inconsistent rows for up to five seconds
after the initial check is completed. If you find your transaction latency is longer
than five seconds, you can extend the recheck time period by using the
--inprogress option to specify a longer interval. After the initial recheck,
inconsistent transactions are rechecked until there are no inconsistent transactions
or the number of seconds specified by the --inprogress option elapses. In general,
set the recheck time to a little longer than your average transaction latency because
if repairing inconsistencies causes spooling in the send queue, transaction latency
might increase during a repair. View your transaction latency with the cdr view
apply command, or in the IBM OpenAdmin Tool (OAT) for Informix.

You can improve the performance of consistency checks by limiting the amount of
data that is checked by using one or more of the following options:
v Skip the checking of large objects with the --skipLOB option. If you find that

your large objects do not change as much as other types of data, then skipping
them can make a consistency check quicker.

v Check from a specific time with the --since option. If the replicate uses the time
stamp or delete wins conflict resolution rule and you regularly check
consistency, you can limit the data that is checked to the data that was updated
since the last consistency check.

You can significantly improve the performance of checking a replicate set by
checking the member replicates in parallel. You specify the number of parallel
processes with the --process option. For best performance, specify the same
number of processes as the number of replicates in the replicate set. However,
replicates with referential integrity constraints cannot be processed in parallel.

You can run a consistency check as a background operation as an SQL
administration API command if you include the --background option. This option
is useful if you want to schedule regular consistency checks with the Scheduler. If
you run a consistency check in the background, provide a name for the progress
report task by using the --name option so that you can monitor the check with the
cdr stats check command. You can also view the command and its results in the
command_history table in the sysadmin database. If you use the --background
option as a DBSA, you must have CONNECT privilege on the sysadmin database
and INSERT privilege on the ph_task table.

If you have large tables, you can speed consistency checking by indexing the
ifx_replcheck shadow column.

If your replication system is configured for data consolidation and the primary
servers include the S option in their participant definitions, you must include the
--nomaster option.

The cdr check replicateset command repairs inconsistent rows so that they match
the rows on the reference server. During a repair of inconsistent rows, the cdr
check replicateset command uses direct synchronization as a foreground process
when repairing inconsistent rows. The cdr check replicateset command with the
--repair option performs the following tasks:
1. Determines the order in which to repair tables if they have referential

relationships.

A-66 IBM Informix Enterprise Replication Guide

2. Creates a shadow replicate with the source server and target server as
participants. The conflict resolution rule for the shadow replicate is always
apply.

3. Performs an index scan on the replication key index at both the source server
and the target server to create a checksum and identify inconsistent rows.

4. Replicates inconsistent rows from the source server to the target server by
doing a dummy update of the source server, which might result in increased
logging activity. Rows are not replicated to participants that include the S
option in the participant definition because those participants only send data.

5. Runs a check to determine whether any rows remain inconsistent. Rows can be
temporarily inconsistent if not all transactions are complete on the target server.

6. If any rows are inconsistent, reruns the check for up to five seconds, or for up
to the number of seconds specified by the --inprogress option.

7. Deletes the shadow replicate.
8. Repeats steps 2 through 7 for each replicate in the replicate set.
9. Displays the consistency report.

If you have disabled a server with the cdr disable server command, you can
enable it and synchronize it by using the --enable option with the --repair option.
You can optionally specify a timeout period with the --timeout option.

To repair all replicates, use the --allrepl option with the --repair option.

To repair replicate sets based on the latest time stamps among the participants
instead of based on a master server, use the --repair option with the --timestamp
option. If your replicates use the delete wins conflict resolution rule, also include
the --deletewins option. A time stamp repair evaluates extra and mismatched rows
according to the rules of the time stamp or delete wins conflict resolution rules.

You can run this command from within an SQL statement by using the SQL
administration API.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 1, 5,
11, 17, 18, 31, 37, 48, 53, 54, 61, 75, 99, 101, 121, 166, 172, 174, 193, 194, 195, 200,
203, 204, 213.

For information about these error codes, see “Return Codes for the cdr Utility” on
page A-8

Example 1: Generate a consistency report

The following command uses two processes to generate a consistency report for
each of the two replicates in the set in parallel for a replicate set named replset1,
comparing the data on the server serv2 with the data on the server serv1:
cdr check replicateset --master=g_serv1 --replset=replset_1 g_serv2 \
--process=2

The summary consistency report for the previous command might be:

Appendix A. The cdr utility A-67

Jan 17 2010 15:46:45 ------ Table scan for repl1 start --------

------ Statistics for repl1 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 52 0 0 0 0
g_serv2 52 0 0 0 0

Jan 17 2010 15:46:55 ------ Table scan for repl1 end ---------

Jan 17 2010 15:46:46 ------ Table scan for repl2 start --------

------ Statistics for repl2 ------
Node Rows Extra Missing Mismatch Processed
---------------- --------- --------- --------- --------- ---------
g_serv1 48 0 0 0 0
g_serv2 48 0 0 0 0

Jan 17 2010 15:47:05 ------ Table scan for repl2 end ---------

This report indicates that the replicate set is consistent on these servers.

The consistency report for replicate sets shows a series of consistency reports for
individual replicates that has the same format as the reports run with the cdr
check replicate command.

Example 2: Enable and synchronize a replication server

The following command enables a replication server named g_serv2 and repairs
inconsistencies by time stamp on all of its replicate sets:
cdr check replicateset --repair --enable\
--timestamp --allrepl g_serv2

The master server is not specified because the --timestamp option is used. The
replicate set name is not specified because the --allrepl option is used.

Example 3: Repair inconsistencies based on time stamp

The following command repairs inconsistencies based on the most recent time
stamps for all replicate on all replication servers:
cdr check replicateset --all --repair --timestamp --allrepl

Related concepts:
“Preparing for Role Separation (UNIX)” on page 6-22
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Altering multiple tables in a replicate set” on page 11-25
“Checking Consistency and Repairing Inconsistent Rows” on page 11-16
“Indexing the ifx_replcheck Column” on page 11-19
“Increase the speed of consistency checking” on page 11-18
“Repairing inconsistencies while enabling a replication server” on page 11-20
Related reference:
“cdr sync replicateset” on page A-204
“cdr check replicate” on page A-50
“cdr stats check” on page A-182
“cdr disable server” on page A-114

A-68 IBM Informix Enterprise Replication Guide

cdr check sec2er
The cdr check sec2er command determines whether a high availability cluster can
be converted to replication servers.

Syntax

►► cdr check sec2er
(1)

Connect Option

secondary --print ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

secondary Name of the secondary
server in the cluster.

“Long
Identifiers” on
page A-3

The following table describes the cdr check sec2er option.

Long Form Short Form Meaning

--print -p Shows the commands that would be run by the cdr
start sec2er command during a conversion.

Usage

You must run the cdr check sec2er command from a primary server in a cluster
with a high-availability data replication secondary or a remote stand-alone
secondary server. The output of the cdr check sec2er command can show warning
messages and error messages:
v Warning messages indicate possible problems for replication after the

conversion. You can solve these problems after converting the cluster to
replication servers.

v Error messages indicate problems preventing the conversion to replication
server. You must solve all error conditions before you run the cdr start sec2er
command to convert a cluster to replication servers.

Use the --print option to display the commands that are run during a conversion.

Depending on the state of the data in your database when you run the cdr check
command, the system might also run an UPDATE STATISTICS command.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, the following error code is returned: 225.

For information about these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Appendix A. The cdr utility A-69

Examples

The following example checks if a cluster consisting of a primary server named
priserv and a secondary server named secserv can be converted to replication
servers:
cdr check sec2er -c priserv secserv

The following output of the cdr check sec2er command indicates that conversion
would be successful, but that several issues should be addressed either before or
after conversion:
WARNING:CDR_SERIAL value on priserv can cause collisions.
WARNING:Dbspace is becoming full.
WARNING:Using the same values for CDR_SERIAL can cause collisions.

Secondary conversion to ER is possible.
Errors:0000 Warnings:0003

The following output of the cdr check sec2er command indicates that conversion
will not be successful until the CDR_QDATA_SBSPACE configuration parameter is
set in the onconfig file on both the primary and the secondary servers:
WARNING:CDR_SERIAL value on priserv can cause collisions.
WARNING:Dbspace is becoming full.
WARNING:Using the same values for CDR_SERIAL can cause collisions.
ERROR:ER sbspace not correctly set up (CDR_QDATA_SBSPACE).

Secondary conversion to ER is not possible.
Errors:0001 Warnings:0003

The following output of the cdr check sec2er command indicates that conversion
will not be successful until the sqlhosts files on both the primary and the
secondary servers are correctly configured for Enterprise Replication:
WARNING:CDR_SERIAL value on serv1 can cause collisions.
ERROR:Server priserv and server secserv belong to the same group.
WARNING:Dbspace is becoming full.
ERROR:Server priserv and server secserv belong to the same group.
WARNING:Using the same values for CDR_SERIAL can cause collisions.
FATAL:SQLHOSTS is not set up correctly for ER.
ERROR:SQLHOSTS is not set up correctly for ER.
ERROR:ER sbspace not correctly set up (CDR_QDATA_SBSPACE).

Secondary conversion to ER is not possible.
Errors:0004 Warnings:0003

The following example shows the output of the --print option, which describes the
commands that will be run when the cdr start sec2er command is run on the
priserv server. The servers are defined as replication servers. Any tables that do
not have a primary key are altered to add ERKEY shadow columns. A replicate is
created and started for each user table on the priserv server.
$cdr check sec2er --print serv2
Secondary conversion to ER is possible.

Errors:0000 Warnings:0000
--
-- Define ER for the first time
--
cdr define serv -c cdr1 -I cdr1

--
-- Creating Replication Key
--
dbaccess - - <<EOF

A-70 IBM Informix Enterprise Replication Guide

database stores_demo;
alter table ’mpruet’.classes add ERKEY;
EOF

--
-- Define the replicates
--
--
-- Defining Replicates for Database stores_demo
--
cdr define repl --connect=cdr1 sec2er_1_1282611664_call_type --master=cdr1 \

--conflict=always --scope=row \
"stores_demo@cdr1:’mpruet’.call_type" \

"select * from ’mpruet’.call_type"
cdr start repl --connect=cdr1 sec2er_1_1282611664_call_type

cdr define repl --connect=cdr1 sec2er_4_1282611664_cust_calls --master=cdr1 \
--conflict=always --scope=row \
"stores_demo@cdr1:’mpruet’.cust_calls" \

"select * from ’mpruet’.cust_calls"
cdr start repl --connect=cdr1 sec2er_4_1282611664_cust_calls

cdr define repl --connect=cdr1 sec2er_5_1282611664_customer --master=cdr1 \
--conflict=always --scope=row \
"stores_demo@cdr1:’mpruet’.customer" \

"select * from ’mpruet’.customer"
cdr start repl --connect=cdr1 sec2er_5_1282611664_customer

cdr define repl --connect=cdr1 sec2er_3_1282611664_classes --master=cdr1 \
--conflict=always --scope=row \
"stores_demo@cdr1:’mpruet’.classes" \

"select * from ’mpruet’.classes"
cdr start repl --connect=cdr1 sec2er_3_1282611664_classes
--
-- Starting RSS to ER conversion
--
--
-- WARNING:
--
-- DDL statements will not be automatically propagated to the ER server
-- after converting the secondary server into an ER server. If you
-- create or alter any objects, such as databases, tables, indexes, and
-- so on, you must manually propagate those changes to the ER node and
-- change any replication rules affecting those objects.
--

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr start sec2er” on page A-176
“Example of creating a new replication domain by cloning” on page 8-3

cdr cleanstart
The cdr cleanstart command starts an Enterprise Replication server with empty
queues.

Syntax

►► cdr cleanstart
(1)

Connect Option

►◄

Appendix A. The cdr utility A-71

Notes:

1 See “Connect Option” on page A-3.

Usage

The cdr cleanstart command starts an Enterprise Replication server, but first
empties replication queues of pending transactions. Use this command if
synchronizing the server using the cdr sync command would be quicker than
letting the queues process normally.

If an Enterprise Replication server was restored from a backup, but the restore did
not include all log files from the replay position, or the system was not restored to
the current log file, advance the log file unique ID past the latest log file unique ID
prior to the restore, and then run the cdr cleanstart command followed by the cdr
sync command to synchronize the server.

You can run this command from within an SQL statement by using the SQL
administration API.
Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr start” on page A-168

cdr connect server
The cdr connect server command reestablishes a connection to a database server
that has been disconnected with a cdr disconnect server command.

Syntax

►► cdr connect server
(1)

Connect Option

server_group ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

server_group Name of database server
group to resume.

The database server group
must be defined for
replication and be
disconnected.

“Long
Identifiers” on
page A-3

Usage

When you run the cdr connect server command, an event alarm with a class ID of
53 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.
Related concepts:
“Enterprise Replication Server administrator” on page 3-1

A-72 IBM Informix Enterprise Replication Guide

Related reference:
“cdr define server” on page A-90
“cdr delete server” on page A-108
“cdr disconnect server” on page A-115
“cdr list server” on page A-131
“cdr modify server” on page A-146
“cdr resume server” on page A-167
“cdr suspend server” on page A-197
“Enterprise Replication Event Alarms” on page 12-21

cdr define grid
The cdr define grid command creates a named grid of replication servers to
simply administration.

Syntax

►► cdr define grid
(1)

Connect Option

grid_name ►

►

▼

--all
,

server_group

►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be unique among grid
names and replicate set
names.

“Long
Identifiers” on
page A-3

server_group Name of a database server
group to add to the grid.

Must be the name of an
existing database server
group in SQLHOSTS.

“Long
Identifiers” on
page A-3

The following table describes the cdr define grid option.

Long Form Short Form Meaning

--all -a Include all replication servers in the domain.

Usage

You must run the cdr define grid command from a replication server that is a
member of an Enterprise Replication domain.

Use the --all to include all replication servers in the domain in the grid.

Appendix A. The cdr utility A-73

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5,
220, 221.

For information on these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Examples

The following example defines a grid named grid1 and adds two replication
servers to it:
cdr define grid grid1 gserv1, gserv2

The following example defines a grid named grid1 and adds all replication servers
in the current domain to it:
cdr define grid grid1 --all

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Creating a grid” on page 9-6
Related reference:
“cdr change grid” on page A-35
“cdr list grid” on page A-121
“cdr delete grid” on page A-103

cdr define qod
The cdr define qod command defines a master server for monitoring the quality of
data (QOD) for replication servers.

Syntax

►► cdr define qod
(1)

Connect Option
--start

►◄

Notes:

1 See “Connect Option” on page A-3.

The following table describes the cdr define qod option.

Long Form Short Form Meaning

--start -s Specifies to start quality of data monitoring.

Usage

If Connection Manager service-level agreements (SLAs) use a apply-failure or
transaction-latency policy, the Connection Manager uses QOD information to
decide where to route client connection requests.

A-74 IBM Informix Enterprise Replication Guide

Quality of data information is used for the following SLA policies:
v FAILURE: Connection requests are directed to the replication server that has the

fewest apply failures.
v LATENCY: Connection requests are directed to the replication server that has the

lowest transaction latency.

You can start monitoring by including the --start option or by running the cdr start
qod command after the cdr define qod command.

If the monitoring of data quality is already enabled, running the cdr define qod
command changes the master server.

You must run the cdr define qod command from a root server.

You can run this command from within an SQL statement by using the SQL
administration API.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5,
217.

For information on error codes, see “Return Codes for the cdr Utility” on page A-8.

Example 1: Defining a master server

The following command defines server_1 as the master server for quality of data
monitoring:
cdr define qod server_1

After you have defined server_1 as the master server, you must run cdr define
qod on server_1 to begin quality of data monitoring.

Example 2: Defining a master server and starting quality of data
monitoring

The following command connects to server_2, defines server_2 as the master
server, and then starts quality of data monitoring:
cdr define qod -c server_2 --start

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr start qod” on page A-169
“cdr stop qod” on page A-190
“cdr reset qod” on page A-162
Related information:
SLA Connection Manager configuration parameter

Appendix A. The cdr utility A-75

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1457.htm

cdr define region
The cdr define region command creates a region that contains a subset of the
servers in a grid.

Syntax

►► cdr define region
(1)

Connect Option

--grid = grid_name ►

► region_name ▼ server_group ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be the name of a
defined grid.

“Long
Identifiers” on
page A-3

region_name Name of the region. Must be unique among
region names, grid names,
and replicate set names.

“Long
Identifiers” on
page A-3

server_group Name of a database server
group to add to the region.

Must be the name of a
defined grid server.

“Long
Identifiers” on
page A-3

The following table describes the cdr define region option.

Long Form Short Form Meaning

--grid -g Specifies the grid that contains the servers to include
in the region.

Usage

Use the cdr define region command to define a region of a grid. You can use a
region name in a grid query to limit the servers on which the query is run.
Regions contain servers from a single grid. You can define multiple regions for the
same grid. Regions can overlap or be contained by another region. You can create
an unlimited number of regions in a grid.

You cannot change a region. If you want to add or remove a grid server from a
region, delete and re-create the region. Delete the region by running the cdr delete
region command. Re-create the region with a different set of grid servers by
running the cdr define region command.

Return codes

A return code of 0 indicates that the command was successful.

A-76 IBM Informix Enterprise Replication Guide

If the command is not successful, one of the following error codes is returned: 5,
227.

For information about these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Examples

The following command creates a region that contains two servers and is named
northwest. The region is created in the grid named mygrid1.
cdr define region --grid=mygrid1 northwest server_or server_wa

Related concepts:
“Grid queries” on page 9-19
Related tasks:
“Defining tables for grid queries” on page 9-20
Related reference:
“ifx_grid_connect() procedure” on page C-1
“cdr define region” on page A-76
“cdr change gridtable” on page A-36
“cdr remaster gridtable” on page A-156
“ifx_node_id() function” on page C-16
“ifx_node_name() function” on page C-17
Related information:
SELECT_GRID session environment option
SELECT_GRID_ALL session environment option
GRID clause

cdr define replicate
The cdr define replicate command defines a replicate on the specified replication
servers.

Syntax

►► cdr define replicate
(1)

Connect Option

►

►
(2)

Replicate Types

(3)
Conflict Options ►

►
(4)

Scope Options
(5)

Frequency Options

►

Appendix A. The cdr utility A-77

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2599.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2600.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

►
(6)

Special Options

replicate
(7)

Shadow Replicate Options

►

► ▼

participant modifier
►◄

Notes:

1 See “Connect Option” on page A-3.

2 See Replicate Types.

3 See “Conflict Options” on page A-80.

4 See “Scope Options” on page A-81.

5 See “Frequency Options” on page A-27.

6 See “Special Options” on page A-82.

7 See “Shadow Replicate Options” on page A-84.

Element Purpose Restrictions Syntax

modifier Specifies the rows and
columns to replicate.

“Participant and
participant
modifier” on
page A-4

participant Name of a participant in
the replication.

The participant must exist. “Participant and
participant
modifier” on
page A-4

replicate Name of the new replicate. The replicate name must be
unique.

“Long
Identifiers” on
page A-3

Usage

All servers that are specified as participants for the replicate must be online and
the cdr utility must be able to connect to each participant.

To be useful, a replicate must include at least two participants. You can define a
replicate that has one or no participant, but before you can use that replicate, you
must use the cdr change replicate command to add more participants. You cannot
start and stop replicates that have no participants.

If you run this command as a DBSA instead of as user informix, you must have
INSERT, UPDATE, and DELETE permission on the replicated tables on all the
replication servers in the domain.

When you define a replicate, the replicate does not begin until you explicitly
change its state to active by running the cdr start replicate command.

A-78 IBM Informix Enterprise Replication Guide

Important: Do not create more than one replicate definition for each row and
column combination to replicate. If the participant is the same, Enterprise
Replication attempts to insert duplicate values during replication.

You can run this command from within an SQL statement by using the SQL
administration API.

Replicate Types

By default, replicates are master replicates. If you do not specify a master server,
the master replicate is based on the first participant. A master replicate uses saved
dictionary information about the attributes of replicated columns to verify that
participants conform to the specified schema. You must specify at least one
participant when you create a master replicate. All participants that are specified
are verified when the cdr define replicate or cdr change replicate command is
run. If any participant does not conform to the master definition, the command
fails and that local participant is disabled. If a participant you specify does not
contain the master replicate table, Enterprise Replication automatically creates the
table on the participant, based on the master replicate dictionary information. All
database servers that have master replicates must be able to establish a direct
connection with the master replicate database server.

When you create a master replicate and do not include a participant modifier, the
database server internally generates a participant modifier with SELECT statement
that lists each column name in the table. The database server requires the
individual column names to verify the schema. If the length of the SELECT
statement exceeds 15 000 ASCII characters, replicate creation fails. If your column
names are too long, you can create a classic replicate, which has a generated
participant modifier of SELECT *.

If you do not want to verify the schema, create a classic replicate. For example, if
you want to create a data consolidation system in which one server only receives
data from other servers that only send data, create a classic replicate by including
the --classic option.

Replicate Types:

--classic
Master Replicate Options

Master Replicate Options:

--master=server
--empty y

--name= n
--verify
--autocreate

Element Purpose Restrictions Syntax

server Name of the database
server group from which to
base the master replicate
definition.

The name must be the
name of a database server
group.

“Long
Identifiers” on
page A-3

The following table describes the replicate type options.

Appendix A. The cdr utility A-79

Long Form Short Form Meaning

--autocreate -u Specifies that if the tables in the master replicate
definition do not exist in the databases on the target
servers, they are created automatically. However, the
tables cannot contain columns with user-defined data
types. The tables are created in the same dbspace as the
database.
Note: Tables that are created with the --autocreate option
do not automatically include indexes that are not based
on the replication key, defaults, constraints (including
foreign constraints), triggers, or permissions. If the tables
you create with the --autocreate option require the use of
these objects you must manually create those objects.

You cannot use this option for replicates that include
TimeSeries columns.

--classic Specifies that the replicate being created is a classic
replicate.

--empty -t Specifies that the participant on the server that is
specified with the --master option is used as the basis of
the master replicate, but is not added to the replicate.

--master= -M Specifies that the replicate being created is a master
replicate.

If you omit this option, the master replicate is based on
the first participant.

--name= -n Specifies whether the master replicate has column name
verification in addition to column data type verification.
Valid values are:

v --name=y = Default. Column names are verified to be
the same on all participants.

v --name=n = Column names are not verified and
discrepancies can exist.

--verify -v Specifies that the cdr define replicate command verifies
the database, tables, and column data types against the
master replicate definition on all listed servers.

Conflict Options

The --conflict options specify how Enterprise Replication resolves data conflicts at
the database server.

Conflict Options:

--conflict= always
ignore
SPL_routine

--optimize
timestamp

, SPL_routine
--optimize

deletewins

A-80 IBM Informix Enterprise Replication Guide

Element Purpose Restrictions Syntax

SPL_routine SPL routine for conflict
resolution

The SPL routine must exist. “Long
Identifiers” on
page A-3

The following table describes the --conflict options.

Long Form Short Form Meaning

--conflict= -C Specifies the rule that is used for conflict resolution.

v Use the always option if you do not want Enterprise
Replication to resolve conflicts, but you do want
replicated changes to be applied even if the operations
are not the same on the source and target servers. Use
the always-apply conflict resolution rule only with a
primary-target replication system. If you use
always-apply with an update-anywhere replication
system, your data might become inconsistent. You
must use the always-apply rule if your replicate
includes TimeSeries data types.

v Use the ignore option if you do not want Enterprise
Replication to resolve conflicts.

v Use the timestamp option to have the row or
transaction with the most recent time stamp take
precedence in a conflict.

v Use the deletewins option to have the row or
transaction with a DELETE operation, or otherwise
with the most recent time stamp, take precedence in a
conflict. The delete wins conflict resolution rule
prevents upserts.

The action that Enterprise Replication takes depends on
the scope.

--optimize -O Specifies that the SPL routine is optimized. An optimized
SPL routine is called only when a collision is detected
and the row to be replicated fails to meet one of the
following two conditions:

v It is from the same database server that last updated
the local row on the target table.

v It has a time stamp greater than or equal to that of the
local row.

When this option is not present, Enterprise Replication
always calls the SPL routine that is defined for the
replicate when a conflict is detected.

Scope Options

The --scope options specify the scope of Enterprise Replication conflict resolution.

Scope Options:

--scope=
transaction
row

Appendix A. The cdr utility A-81

The following table describes the --scope option.

Long Form Short Form Meaning

--scope= -S Specifies the scope that is used when Enterprise
Replication encounters a problem with data or a conflict
occurs.

v --scope=row = Evaluate one row at a time and apply
the replicated rows that win the conflict resolution
with the target rows.

v --scope=transaction = Default. Apply the entire
transaction if the replicated transaction wins the
conflict resolution.

When you specify the scope, you can abbreviate
transaction to tra.

Special Options

Special Options:

▼

▼

--ats
--ris
--floatieee
--floatcanon
--firetrigger

y
--fullrow= n

n
--ignoredel= y

--erkey ,

--key column_name
--anyUniqueKey

n
--UTF8= y
--serial

n
--alwaysRepLOBs= y

Element Purpose Restrictions Syntax

column_name The name of a column
that is included in a
unique index or constraint

The column must exist. “Long
Identifiers” on
page A-3

The following table describes the special options to the cdr define replicate
command.

A-82 IBM Informix Enterprise Replication Guide

Long Form Short Form Meaning

--alwaysRepLOBS= Specifies whether columns that contain unchanged
large objects are included in replicated rows:

v --alwaysRepLOBS=n: Default. Columns that
contain unchanged large objects are not
replicated.

v --alwaysRepLOBS=y: Columns that contain large
objects are always included in replicated rows.

--anyUniqueKey -U Specifies that the replication key is detected
automatically from the following sources in the
follow order:

v A primary key that is defined on the table

v ERKEY shadow columns that are included in the
table

v Any unique key or unique constraint that is
defined on the table

The replicate must be a strictly mastered replicate.

If the table includes ERKEY shadow columns, those
columns are included in the participant definition
only if the table does not have a primary key.

--ats -A Activates aborted transaction spooling for replicate
transactions that fail to be applied to the target
database.

--erkey -K Adds the ERKEY shadow columns, ifx_erkey_1,
ifx_erkey_2, and ifx_erkey_3, to the participant
definition, if the table includes the ERKEY shadow
columns. An index that is created on the ERKEY
shadow columns is used as the replication key,
unless the --key option is included.

--firetrigger -T Specifies that the rows that the replicate inserts fire
triggers at the destination.

--floatieee -I Transfers replicated floating-point numbers in either
32-bit (for SMALLFLOAT) or 64-bit (for FLOAT)
IEEE floating-point format. Use this option for all
new replicate definitions.

--floatcanon -F Transfers replicated floating-point numbers in
machine-independent decimal representation. This
format is portable, but can lose accuracy. This
format is provided for compatibility with earlier
versions only; use --floatieee for all new replicate
definitions.

--fullrow= -f Specifies whether to replicate full rows or only the
changed columns:

v --fullrow=y = Default. Indicates to replicate the
full row and to enable upserts. If you also specify
deletewins as the conflict resolution rule, upserts
are disabled.

v --fullrow=n = Indicates to replicate only changed
columns and disable upserts.

Appendix A. The cdr utility A-83

Long Form Short Form Meaning

--ignoredel= -D Specifies whether to retain deleted rows on other
nodes:

v --ignoredel=y = Indicates that rows are retained if
they are deleted on other nodes in the Enterprise
Replication domain. You cannot use this option if
you specify deletewins as the conflict resolution
rule.

v --ignoredel=n = Default. Indicates that deleted
rows are deleted on all nodes in the Enterprise
Replication domain.

--key= -k Specifies the columns that are included in an
existing unique index or unique constraint to use as
the replication key. All the columns that are
included in the unique index or constraint must be
listed, in the same order as the columns are listed in
the index or constraint definition. The replicate must
be a strictly mastered replicate.

The unique index or constraint that the --key option
specifies is used as the replication key even if the
table has an existing primary key or ERKEY
columns.

--ris -R Activates row-information spooling for replicate row
data that fails conflict resolution or encounters
replication order problems.

--serial -s Specifies that replicated transactions for the replicate
are applied serially instead of in parallel.

--UTF8= None Specifies whether to enable conversion to and from
UTF-8 (Unicode) when you replicate data between
servers that use different code sets.

v --UTF8=y Default. Indicates that character
columns are converted to UTF-8 when the row is
copied into the transmission queue. When the
replicated row is applied on the target server, the
data is converted from UTF-8 to the code set used
on the target server. No attempt is made to
convert character data that is contained within
opaque data types. You cannot use --UTF8=y for
replicates that contain TimeSeries data types,
user-defined data types, or DataBlade module
data types.

v –UTF8=n Indicates that code set conversion is
ignored.

Shadow Replicate Options

A shadow replicate is a copy of an existing, or primary, replicate. You must create
a shadow replicate to manually remaster of a replicate that is defined with the -n
option. After you create the shadow replicate, the next step in manual remastering
is to switch the primary replicate and the shadow replicate by running the cdr
swap shadow command.

A-84 IBM Informix Enterprise Replication Guide

Shadow Replicate Options:

--mirrors primary_replicate shadow_replicate

Element Purpose Restrictions Syntax

primary_replicate Name of the replicate on
which to base the
shadow replicate.

The replicate must exist.
The replicate name
must be unique.

“Long
Identifiers” on
page A-3

shadow_replicate Name of the shadow
replicate to create.

The replicate name
must be unique.

“Long
Identifiers” on
page A-3

The following table describes the shadow replicate option to cdr define replicate.

Long Form Short Form Meaning

--mirrors -m Specifies that the replicate created is a shadow
replicate based on an existing primary replicate.

Example 1: Define a replicate with two participants

The following example defines a replicate with two participants:
cdr define repl --conflict=timestamp,sp1 \
--scope=tran --ats --fullrow=n --floatieee newrepl \
“db1@iowa:antonio.table1” “select * from table1” \
“db2@utah:carlo.table2” “select * from table2”

Line 1 of the example specifies a primary conflict resolution rule of timestamp. If
the primary rule fails, the SPL routine sp1 is run to resolve the conflict. Because no
database server is specified here (or on any later line), the command connects to
the database server named in the INFORMIXSERVER environment variable.

Line 2 specifies that the replicate has a transaction scope for conflict resolution
scope and enables aborted transaction spooling. Enterprise Replication replicates
only the rows that changed and uses the IEEE floating point format to send
floating-point numbers across dissimilar platforms. The final item specifies the
name of the replicate, newrepl.

Line 3 defines the first participant, "db1@iowa:antonio.table1", with the SELECT
statement "select * from table1".

Line 4 defines a second participant, "db2@utah:carlo.table2", with the SELECT
statement "select * from table2".

Example 2: Define a replicate with a frequency of every five
hours

This example is the same as the preceding example with the following exceptions:
v Line 1 instructs Enterprise Replication to use the global catalog on database

server ohio.
v Line 2 specifies that the data is replicated every five hours.

Appendix A. The cdr utility A-85

cdr def repl -c ohio -C timestamp,sp1 \
-S tran -A -e 5:00 -I newrepl \
"db1@iowa:antonio.table1" "select * from table1" \
"db2@utah:carlo.table2" "select * from table2"

Example 3: Define a master replicate

The following example defines a master replicate:
cdr def repl -c iowa -M iowa \
-C deletewins -S tran newrepl \
"db1@iowa:antonio.table1" "select * from table1"

Line 1 instructs Enterprise Replication to create a master replicate based on the
replicate information from the database server iowa. Line 2 specifies the delete
wins conflict resolution rule, a transaction scope, and that the name of the replicate
is newrepl. Line 3 specifies the table and columns included in the master replicate.

Example 4: Define a master replicate and create a table on a
participant

This example is the same as the previous example except that it specifies a second
participant in Line 4. The second participant (utah) does not have the table table1
specified in its participant and modifier syntax. The -u option specifies to create
the table table1 on the utah server.
cdr def repl -c iowa -M iowa \
-C deletewins -S tran newrepl -u\
"db1@iowa:antonio.table1" "select * from table1 \
"db2@utah:carlo.table1" "select * from table1"

Example 5: Define a replicate with the ERKEY shadow columns

This example defines a master replicate similar to the one in example 3, and
includes the ERKEY shadow columns for the replication key.
cdr def repl -c iowa -M iowa \
-C deletewins -S tran newrepl --erkey\
"db1@iowa:antonio.table1" "select * from table1"

Example 6: Define a data consolidation system

This example defines a replicate for a data consolidation system in which one
target server receives replicated data from four primary servers.
cdr def repl -c london \
sales -C always\
"db0@london:user.world_sales" "select * from world_sales"\
"S db1@rome:user1.sales_rome" "select * from sales_rome"\
"S db2@tokyo:user2.sales_tokyo" "select * from sales_tokyo"\
"S db3@perth:user3.sales_perth" "select * from sales_perth"\
"S db4@ny:user4.sales_ny" "select * from sales_ny"\

The S options in the participant definitions indicate that the rome, tokyo, perth,
and ny servers can only send replicated data to the london server.
Related concepts:
“Replicate types” on page 8-8
“Conflict Resolution” on page 5-6
“Conflict Resolution Scope” on page 5-15
“Failed Transaction (ATS and RIS) Files” on page 12-3
“Frequency Options” on page A-27

A-86 IBM Informix Enterprise Replication Guide

“Preparing for Role Separation (UNIX)” on page 6-22
“Replication of TimeSeries data types” on page 4-7
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Enabling ATS and RIS File Generation” on page 12-4
“Specifying Conflict Resolution Rules and Scope” on page 8-10
“Enabling Triggers” on page 8-13
“Using the IEEE Floating Point or Canonical Format” on page 8-12
“Defining Replication Servers” on page 8-1
“Setting Up Failed Transaction Logging” on page 8-11
“Preparing tables without primary keys” on page 6-20
Related reference:
“cdr change replicate” on page A-39
“cdr change replicateset” on page A-42
“cdr delete replicate” on page A-105
“cdr list replicate” on page A-125
“cdr modify replicate” on page A-140
“cdr resume replicate” on page A-164
“cdr start replicate” on page A-170
“cdr stop replicate” on page A-191
“cdr suspend replicate” on page A-194
“cdr swap shadow” on page A-198
“cdr define template” on page A-98
“cdr delete replicateset” on page A-106
“cdr list replicateset” on page A-130
“cdr modify replicateset” on page A-145
“cdr resume replicateset” on page A-165
“cdr start replicateset” on page A-173
“cdr stop replicateset” on page A-193
“cdr suspend replicateset” on page A-195
“Replicate only changed columns” on page 8-11
“Participant and participant modifier” on page A-4

cdr define replicateset
The cdr define replicateset command defines a replicate set on all the servers that
are included as participants in the replicates. A replicate set is a collection of
several replicates to be managed together.

Syntax

►► cdr define replicateset
(1)

Connect Option

►

Appendix A. The cdr utility A-87

►
(2)

Frequency Options
--exclusive

►

► ▼repl_set
replicate

--needRemaster= original_set derived_set

►◄

Notes:

1 See “Connect Option” on page A-3.

2 See “Frequency Options” on page A-27.

Element Purpose Restrictions Syntax

derived_set Name of a temporary
replicate set to create that
contains only replicates that
must be remastered.

The name must be unique
and cannot be the same as
a replicate name.

“Long
Identifiers” on
page A-3

original_set Name of an existing
replicate set that contains
replicates that must be
remastered.

The replicate set must exist. “Long
Identifiers” on
page A-3

repl_set Name of replicate set to
create.

The name must be unique
and cannot be the same as
a replicate name.

“Long
Identifiers” on
page A-3

replicate Name of a replicate to be
included in the replicate
set.

The replicate must exist. “Long
Identifiers” on
page A-3

The following table describes the options to the cdr define replicateset command.

Long Form Short Form Meaning

--exclusive -X Creates an exclusive replicate set. Replicates
that belong to this replicate set cannot
belong to any other replicate sets.

--needRemaster= -n Creates a derived replicate set that contains
replicates that have schema changes and
must be remastered, and any classic
replicates. All classic replicates are converted
to master replicates regardless of whether
they have schema changes.

Usage

All servers that are specified as participants for all the specified replicates must be
online and the cdr utility must be able to connect to each participant.

If you run this command as a DBSA instead of as user informix, you must have
INSERT, UPDATE, and DELETE permission on the replicated tables on all the
replication servers in the domain.

A-88 IBM Informix Enterprise Replication Guide

Any valid replicate can be defined as part of a replicate set. A replicate can belong
to more than one non-exclusive replicate set, but to only one exclusive replicate set.

When you create an exclusive replicate set, the state is initially set to active.

To create an exclusive replicate set and make it active
1. Create an empty replicate set.
2. Stop the replicate set.
3. Add replicates to the replicate set.
4. Set the state of the replicate set to active by running cdr start replicateset.

Because individual replicates in a non-exclusive replicate set can have different
states, the non-exclusive replicate set itself has no state. You cannot change
whether a replicate set is exclusive or not.

If you change the schema of multiple replicated tables for replicates that belong to
the same replicate set, you can create a derived replicate set so that you can
remaster all the replicates with one command. Use the --needRemaster option to
specify the existing replicate set and the name of the derived replicate set. Then
run the cdr remaster replicateset command.

You can run this command from within an SQL statement by using the SQL
administration API.

Example: Define a non-exclusive replicate set

The following command connects to the default server and defines the
non-exclusive replicate set accounts_set with replicates repl1, repl2, and repl3:
cdr def replset accounts_set repl1 repl2 repl3

Example: Define an exclusive replicate set

The following command connects to the server olive and defines the exclusive
replicate set market_set with replicates basil and thyme:
cdr def replset --connect=olive --exclusive market_set basil thyme

Example: Define a derived replicate set

The following command defines a derived replicate set named derived_accounts
that is based on the replicate set accounts_set:
cdr define replicateset --needRemaster=accounts_set derived_accounts

Related concepts:
“Define replicate sets” on page 8-18
“Frequency Options” on page A-27
“Preparing for Role Separation (UNIX)” on page 6-22
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Altering multiple tables in a replicate set” on page 11-25
“Exclusive Replicate Sets” on page 8-18
Related reference:
“cdr change replicateset” on page A-42
“cdr delete replicateset” on page A-106

Appendix A. The cdr utility A-89

“cdr list replicateset” on page A-130
“cdr modify replicateset” on page A-145
“cdr resume replicateset” on page A-165
“cdr start replicateset” on page A-173
“cdr stop replicateset” on page A-193
“cdr suspend replicateset” on page A-195

cdr define server
The cdr define server command defines a replication server in an Enterprise
Replication domain. You can add a replication server to an existing domain or
create a new domain.

Syntax

►► cdr define server
(1)

Connect Option
Dynamic Options

►

►
--sync=sync_server

--nonroot
--leaf

--init server_group ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

server_group Name of a database server
group to add to an
Enterprise Replication
domain.

Must be the name of an
existing database server
group in the sqlhosts
information.

sync_server Name of a replication
server that is a member of
the domain into which you
are adding a server.

Must be an existing
replication server. The
server must be online.

“Long
Identifiers” on
page A-3

The following table describes the options to cdr define server.

Long Form Short Form Meaning

--init -I Adds server_group to the replication domain.

--leaf -L Defines the server as a leaf server in an
existing domain. The server that is specified by
the --sync option becomes the parent of the
leaf server.

--nonroot -N Defines the server as a nonroot server in an
existing domain. The server that is specified by
the --sync option becomes the parent of the
nonroot server.

A-90 IBM Informix Enterprise Replication Guide

Long Form Short Form Meaning

--sync= -S Adds a server to the existing domain of which
the sync_server is a member. Uses the global
catalog on sync_server as the template for the
global catalog on the new replication server,
server_group. For Hierarchical Routing
topologies, Enterprise Replication also uses the
sync_server as the parent of the new server in
the current topology.

Dynamic Options

Use the dynamic options to modify the default behavior of cdr define server. You
can change these options with the cdr modify server command while replication is
active.

Options:

--ats=ats_dir --ris=ris_dir text --idle=timeout
--atsrisformat= xml

both

Element Purpose Restrictions Syntax

ats_dir Name of the directory for
Aborted Transaction
Spooling files. The default
is /tmp.

Must be a full path name.
The path for the directory
can be no longer than 256
bytes.

A value of /dev/null
(UNIX) or NUL (Windows)
prevents ATS file
generation.

Follows naming
conventions on
your operating
system

ris_dir Name of the directory for
Row Information Spooling
files. The default is /tmp.

Must be a full path name.
The path for the directory
can be no longer than 256
characters.

A value of /dev/null
(UNIX) or NUL (Windows)
prevents RIS file
generation.

Follows naming
conventions on
your operating
system

timeout Idle timeout for this
replication server.

Default value of 0 indicates
no timeout. Must be an
integer number of minutes.
The maximum value is
32767.

Integer

The following table describes the options to cdr define server that you can change
with the cdr modify server command while replication is active.

Long Form Short Form Meaning

--ats= -A Specifies the directory to store aborted
transaction spooling files for replicate
transactions that fail to be applied.

Appendix A. The cdr utility A-91

Long Form Short Form Meaning

--atsrisformat= -X Specifies the format of ATS and RIS files:

v text indicates that ATS and RIS files are
generated in standard text format.

v xml indicates that ATS and RIS files are
generated in XML format.

v both indicates that ATS and RIS files are
generated in both standard text format
and XML format.

If you omit the --atsrisformat= option, ATS
and RIS files are created in text format.

--ris= -R Specifies the directory to store row
information spooling files for replicate row
data that fails conflict resolution or
encounters replication-order problems.

--idle= -i The default value is 0. Set the number of
minutes after which an inactive connection
is closed after timeout minutes. If timeout is
0, the connection does not time out.

Usage

Run the cdr define server command on the database server that you want to
define as a replication server. To create the replication server in an existing domain,
specify a synchronization server that belongs to that domain with the --sync=
option. To create a replication server in a new domain, omit the --sync= option.
The cdr define server command creates the Enterprise Replication global catalog
on the specified server.

If the CDR_QDATA_SBSPACE and CDR_DBSPACE configuration parameters are
not set and the database server has a storage pool with sufficient space, the cdr
define server command automatically performs the following tasks:
v Creates an sbspace and a dbspace from chunks from the storage pool. The

spaces have the same characteristics and storage-pool behavior as other spaces
created from the storage pool. The storage pool must have at least 500 MB of
free space for the sbspace and 200 MB of free space for the dbspace. These
spaces must be composed of chunks of size 100 MB or greater.

v Sets the values of the CDR_QDATA_SBSPACE and CDR_DBSPACE
configuration parameters to the space names both in memory and in the
onconfig file.

v Shows the names of the spaces that are created.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example defines the first database server in a replication domain.
The command specifies the following actions:
v Connect to the database server stan.
v Initialize Enterprise Replication.
v Set the /cdr/ats directory for generated ATS files.

A-92 IBM Informix Enterprise Replication Guide

v Set the /cdr/ris directory for generated RIS files.
v Set the format of ATS and RIS files to text.
cdr define server --connect=stan \
--ats=/cdr/ats --ris=/cdr/ris \
--atsrisformat=text --init g_stan

The following example adds a database server to the replication domain that was
created in the previous example. The command specifies the following actions:
v Connect to the database server oliver.
v Initialize Enterprise Replication.
v Synchronize the catalogs on database server oliver with the catalogs on database

server stan.
v Set the /cdr/ats directory for generated ATS files.
v Specify that RIS files are not generated.
v Set the file format of ATS files to XML.
cdr define server -c oliver \
-A /cdr/ats -R /dev/null -X xml \
-S g_stan -I g_oliver

Related concepts:
Chapter 12, “Monitor and troubleshooting Enterprise Replication,” on page 12-1
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Enabling ATS and RIS File Generation” on page 12-4
“Disabling ATS and RIS File Generation” on page 12-13
“Defining Replication Servers” on page 8-1
“Customizing the Replication Server Definition” on page 8-6
Related reference:
“cdr connect server” on page A-72
“cdr delete server” on page A-108
“cdr disconnect server” on page A-115
“cdr list server” on page A-131
“cdr modify server” on page A-146
“cdr resume server” on page A-167
“cdr suspend server” on page A-197
“cdr realize template” on page A-148

cdr define shardCollection
The cdr define shardCollection command creates a sharding definition for
distributing a table or collection across multiple shard servers.

Syntax

►► cdr define shardCollection definition_name database : user . collection
table

►

Appendix A. The cdr utility A-93

►
(1)

Connect Option

delete
--type = keep

informational
--key = column

" expression "
►

►
--versionCol = field

column

►

► ▼

▼

--strategy = expression ER_group " WHERE_expression " ER_group REMAINDER

hash ER_group

►◄

Notes:

1 See “Connect Option” on page A-3.

Element Description Restrictions

collection The name of the collection that is
distributed across database servers.

Must be the name of an existing
collection.

column The name of a table column. Must be the name of an existing column.

database The name of the database that contains
the table or collection that is distributed
across database servers.

Must be the name of an existing database.

definition_name The name of the sharding definition that
is created.

ER_group The ER-group name of a database server
that receives sharded data.

Must be the ER-group name of an
existing database server.

expression The WHERE-clause expression that is
used to select rows or documents by
shard key value.

field The name of a collection field. Must be the name of an existing field.

REMAINDER Specifies the database server that
receives rows or documents with shard
key value that is not selected by the
other expressions.

table The name of the table that is distributed
across database servers.

Must be the name of an existing table.

user The owner of the table or collection that
is distributed across database servers.

Must be the name of an existing user.

The following table describes the cdr define shardCollection parameters.

A-94 IBM Informix Enterprise Replication Guide

Long Form Short Form Description

--key= -k Defines the shard key on all database servers.

Possible values are:

v A column name

v An expression

All database servers in a shard cluster must use the same column or
expression as the shard key.

--strategy= -s Specifies the method for determining which database server an
inserted row or document is distributed to.

Possible values are:

v expression: The expression that is defined in the server statement
is used.

v hash: A hash algorithm is used.

--type= -t Specifies action on the shard server where a row or document was
inserted:

v delete (default): The row or document is deleted from the source
shard server after it is replicated to the target shard server. If you
do not set --versionCol=column, changes made to rows and
documents can be lost during the replication process.

v keep: The row or document is not deleted on the source shard
server after the row or document is replicated to the source shard
server, so that two copies of the data exist in the shard cluster.

v informational: Data is not replicated. You can run sharded queries
but the data is not sharded during loading. You must load the data
on the appropriate shard server according to the sharding
definition.

--versionCol= -v When --type=delete is specified in the sharding definition,
Enterprise Replication must verify that a source row or document has
not been updated before it can delete the row or document on the
shard server.

Possible values are:

v A table column name

v A field name

If --type=delete is set in the sharding definition, but
--versionCol=column is not, changes made to rows and documents
can be lost during the replication process.

This parameter is required if any rows have out-of-row data, such as
data stored in smart large object, or if collections have BSON
documents that have sizes larger than 4 KB.

Usage

Use the cdr define shardCollection command to create a sharding definition for
distributing a table or document across multiple shard servers. The replicates that
are created as part of the cdr define shard command are mastered and use always
apply and row scope. You cannot specify that triggers fire.

Multiple sharding definitions are not allowed on the same table or collection.

Appendix A. The cdr utility A-95

You cannot manually define an Enterprise Replication replicate for a table that is
sharded.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 3,
18, 39, 52, 83, 99, 125, 196, 215, 229.

For information about these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Example 1: Creating a sharding definition that uses a hash
algorithm

The following example creates a sharding definition that is named collection_1.
Rows that are inserted on any of the shard servers are distributed, based on a hash
algorithm, to the appropriate shard server. Enterprise Replication must verify that
a replicated row or document was not updated before the row or document can be
deleted on the source server. The state column in the customers table that is
owned by user john is the shard key.
cdr define shardCollection collection_1 db_1:john.customers

--type=delete --key=state --strategy=hash --versionCol=version
g_shard_server_A g_shard_server_B g_shard_server_C g_shard_server_D

Example 2: Creating a sharding definition that uses an IN
expression

The following example creates a sharding definition that is named collection_2.
The state column in the clients table that is owned by user joe is the shard key.
Rows that are inserted on any of the shard servers are distributed, based on the
defined expression, to the appropriate shard server. Replication acknowledgement
must verify that a replicated row or document has not been updated before the
row or document can be deleted on the source shard server.
cdr define shardCollection collection_2 db_2:joe.clients
--type=delete --key=state --strategy=expression –-versionCol=version

g_shard_server_A "IN (’TX’,’OK’)"
g_shard_server_B "IN (’NY’,’NJ’)"
g_shard_server_C "IN (’AL’,’GA’)"
g_shard_server_D REMAINDER

In the previous example:
v Inserted rows that have a value of AL in the state column are sent to

g_shard_server_C.
v Inserted rows that have a value of NJ in the state column are sent to

g_shard_server_B.
v Inserted rows that have a value of CA in the state column are sent to

g_shard_server_D.

Example 3: Creating a sharding definition that uses a BETWEEN
expression

The following example creates a definition that is named collection_3. The age
column in the users table that is owned by user charles is the shard key. Rows that
are inserted on any of the shard servers are distributed, based on the defined

A-96 IBM Informix Enterprise Replication Guide

expression, to the appropriate shard server. Replication acknowledgement must
verify that a replicated row or document has not been updated before the row or
document can be deleted on the source shard server.
cdr define shardCollection collection_3 db_3:charles.users
--type=delete --key=age --strategy=expression –-versionCol=version

g_shard_server_A "BETWEEN 0 and 20"
g_shard_server_B "BETWEEN 21 and 62"
g_shard_server_C "BETWEEN 63 and 100"
g_shard_server_D REMAINDER

In the previous example:
v Inserted rows that have a value of 35 in the age column are sent to

g_shard_server_B.
v Inserted rows that have a value of 102 in the age column are sent to

g_shard_server_D.
v Inserted rows that have a value of 15 in the age column are sent to

g_shard_server_A.

Example 4: Creating a sharding definition that defines a shard
key by function

The following example creates a sharding definition that is named collection_4.
The COLOR shard key in the cars collection that was owned by user mike is the
shard key. Documents that are inserted on any of the shard servers are distributed,
based on the defined expression, to the appropriate shard server.
cdr define shardCollection collection_4 db_4:mike.cars

–t delete -k "bson_value_lvarchar(data,’COLOR’)" -s expression –v version
g_shard_server_E "IN (’blue’,’green’)"
g_shard_server_F "IN (’black’,’white’)"
g_shard_server_G "IN (’brown’,’gray’)"
g_shard_server_H "IN (’red’,’yellow’)"
g_shard_server_I REMAINDER

In the previous example:
v Inserted documents that have a value of yellow in the COLOR key are sent to

g_shard_server_H.
v Inserted documents that have a value of blue in the COLOR key are sent to

g_shard_server_E.
v Inserted documents that have a value of pink in the COLOR key are sent to

g_shard_server_I.
Related tasks:
“Creating a shard cluster” on page 10-1
Related reference:
“cdr change shardCollection” on page A-43
“cdr delete shardCollection” on page A-110
“cdr list shardCollection” on page A-135
Related information:
Enabling sharding for JSON or relational data
Creating a shard cluster by running the addShard command in the shell
Creating a shard cluster by running the addShard command through
db.runCommand in the shell
Creating a shard-cluster definition that uses a hash algorithm for distributing data
across database servers

Appendix A. The cdr utility A-97

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_028.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_033.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_034.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_034.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_035.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_035.htm

onstat -g shard command: Print information about the shard cache

cdr define template
The cdr define template command creates a template for replicates and a replicate
set.

Because templates define replicates, many of the syntax options for the cdr define
template command are the same as for the cdr define replicate command.

Syntax

►► cdr define template template
(1)

Connect Option

(2)
Conflict Options ►

►
(3)

Scope Options
(4)

Frequency Options
(5)

Special Options

►

► ▼--master=server_group --database=database table
--exclusive --all

--file=filename

►◄

Notes:

1 See “Connect Option” on page A-3.

2 See “Conflict Options” on page A-80.

3 See “Scope Options” on page A-81.

4 See “Frequency Options” on page A-27.

5 See “Special Options” on page A-100.

Element Purpose Restrictions Syntax

template Name of the template to
create.

The template name must be
unique and cannot be the
same as a replicate or
replicate set name.

“Long
Identifiers” on
page A-3

database Name of the database that
is used to define the
template attributes.

The database server must
be registered with
Enterprise Replication.

“Long
Identifiers” on
page A-3

table Name of the table to be
included in the template.

The table must be an actual
table. It cannot be a
synonym or a view. For
ANSI databases, you must
specify owner.tablename.

“Long
Identifiers” on
page A-3

A-98 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1177.htm

Element Purpose Restrictions Syntax

filename The directory and file
name of the file that
contains a list of tables to
be included in the
template.

Must be a full path name
and file name. The path
and file name can be no
longer than 256 bytes.
Within the file, the table
names can be separated by
a space or placed on
different lines.

Follows naming
conventions on
your operating
system.

server_group Name of a database server
group to declare for
Enterprise Replication.

Must be the name of an
existing database server
group in SQLHOSTS.

“Long
Identifiers” on
page A-3

The following table describes the options to cdr define template.

Long Form Short Form Meaning

--all -a Specifies that all tables in the database are included in
the template.

--database= -d Specifies which database the template is based on. If no
tables or table list file name are listed after this option,
then all tables in the database are included in the
template.

--exclusive -X Creates an exclusive replicate set. The state of the
replicate set is inactive until you apply the template. This
option is required if you have referential integrity
constraints on a table.

--file= -f Specifies the path and file name of a file that lists the
tables to be included in the template. The file must
contain only table names, either separated by spaces or
each on its own line.

--master= -M Specifies the server that contains the database to be used
as the basis of the template. If this option is not
specified, then the server that is specified in the connect
option is used.

Appendix A. The cdr utility A-99

Special Options

Special Options:

▼

--ats
--ris
--floatieee
--floatcanon
--firetrigger

y
--fullrow= n

n
--ignoredel= y

--anyUniqueKey
n

--UTF8= y
n

--alwaysRepLOBs= y

The following table describes the special options to the cdr define template
command.

Long Form Short Form Meaning

--alwaysRepLOBS= Specifies whether columns that contain unchanged
large objects are included in replicated rows:

v --alwaysRepLOBS=n: Default. Columns that
contain unchanged large objects are not
replicated.

v --alwaysRepLOBS=y: Columns that contain large
objects are always included in replicated rows.

--anyUniqueKey -U Specifies that the replication key is detected
automatically from the following sources in the
follow order:

v A primary key that is defined on the table

v ERKEY shadow columns that are included in the
table

v Any unique key or unique constraint that is
defined on the table

The replicate must be a strictly mastered replicate.

If the table includes ERKEY shadow columns, those
columns are included in the participant definition
only if the table does not have a primary key.

--ats -A Activates aborted transaction spooling for replicate
transactions that fail to be applied to the target
database.

--firetrigger -T Specifies that the rows that the replicate inserts fire
triggers at the destination.

--floatieee -I Transfers replicated floating-point numbers in either
32-bit (for SMALLFLOAT) or 64-bit (for FLOAT)
IEEE floating-point format. Use this option for all
new replicate definitions.

A-100 IBM Informix Enterprise Replication Guide

Long Form Short Form Meaning

--floatcanon -F Transfers replicated floating-point numbers in
machine-independent decimal representation. This
format is portable, but can lose accuracy. This
format is provided for compatibility with earlier
versions only; use --floatieee for all new replicate
definitions.

--fullrow= -f Specifies whether to replicate full rows or only the
changed columns:

v --fullrow=y = Default. Indicates to replicate the
full row and to enable upserts. If you also specify
deletewins as the conflict resolution rule, upserts
are disabled.

v --fullrow=n = Indicates to replicate only changed
columns and disable upserts.

--ignoredel= -D Specifies whether to retain deleted rows on other
nodes:

v --ignoredel=y = Indicates that rows are retained if
they are deleted on other nodes in the Enterprise
Replication domain. You cannot use this option if
you specify deletewins as the conflict resolution
rule.

v --ignoredel=n = Default. Indicates that deleted
rows are deleted on all nodes in the Enterprise
Replication domain.

--ris -R Activates row-information spooling for replicate row
data that fails conflict resolution or encounters
replication order problems.

--UTF8= None Specifies whether to enable conversion to and from
UTF-8 (Unicode) when you replicate data between
servers that use different code sets.

v --UTF8=y Default. Indicates that character
columns are converted to UTF-8 when the row is
copied into the transmission queue. When the
replicated row is applied on the target server, the
data is converted from UTF-8 to the code set used
on the target server. No attempt is made to
convert character data that is contained within
opaque data types. You cannot use --UTF8=y for
replicates that contain TimeSeries data types,
user-defined data types, or DataBlade module
data types.

v –UTF8=n Indicates that code set conversion is
ignored.

Usage

A template consists of schema information about a database, a group of tables,
column attributes, and the replication keys that identify rows. A template defines a
group of master replicates and a replicate set. Templates are an alternative to using
the cdr define replicate and cdr start replicate commands for each table and
manually combining the replicates into a replicate set by using the cdr define
replicateset command.

Appendix A. The cdr utility A-101

The replicate set can be exclusive or non-exclusive. Specify that the replicate set is
exclusive if you have referential constraints that are placed on the replicated
columns. If you create an exclusive replicate set using a template, you do not stop
the replicate set to add replicates. The cdr define template command performs this
task automatically.

If your tables include the ERKEY shadow columns, they are automatically added
to replicate definition when you define a template. The --erkey option is not
needed with the cdr define template command.

You cannot specify an SPL routine for conflict resolution when you define a
template.

After you define a template by running the cdr define template command, use the
cdr realize template command to apply the template to your Enterprise
Replication database servers.

You cannot update a template. To modify a template, you must delete it and then
re-create it with the cdr define template command.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example illustrates the cdr define template command:
cdr define template tem1 -c detroit\
-C timestamp -S tran \
--master=chicago\
--database=new_cars table1 table2 table3

Line 1 of the example specifies a template name of tem1 and that the connection is
made to the server detroit. Line 2 specifies a conflict-resolution rule of timestamp
and a transaction scope for conflict resolution. Line 3 specifies that the master
replicate information is obtained from the server chicago. Line 4 specifies to use
the new_cars database on the chicago server and to include only the tables table1,
table2, and table3.

The next example is the same as the first except that it has additional options and
uses a file instead of a list of tables:
cdr define template tem1 -c detroit\
-C timestamp -S tran --master=chicago\
--ignoredel=y\
--database=new_cars --file=tabfile.txt

Line 3 indicates that delete operations are not replicated. Retaining deleted rows
on target servers is useful for consolidation models.

Line 4 specifies a file name for a file that contains a list of tables to include in the
template. The tabfile.txt file has the following contents:
table1
table2
table3
table4

Related concepts:
“Replicate types” on page 8-8

A-102 IBM Informix Enterprise Replication Guide

“Frequency Options” on page A-27
“Preparing for Role Separation (UNIX)” on page 6-22
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Exclusive Replicate Sets” on page 8-18
“Preparing tables without primary keys” on page 6-20
“Creating replicated tables through a grid” on page 9-11
Related reference:
“cdr list template” on page A-137
“cdr realize template” on page A-148
“cdr delete template” on page A-112
“cdr define replicate” on page A-77
“Participant and participant modifier” on page A-4

cdr delete grid
The cdr delete grid command deletes the specified grid.

Syntax

►► cdr delete grid
(1)

Connect Option

grid_name ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be the name of an
existing grid.

“Long
Identifiers” on
page A-3

Usage

Use the cdr enable grid command to delete an existing grid.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5,
222.

For information about these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Examples

The following example deletes the grid named grid1:
cdr delete grid grid1

Related concepts:

Appendix A. The cdr utility A-103

“Enterprise Replication Server administrator” on page 3-1
Related reference:
“ifx_grid_connect() procedure” on page C-1
“cdr define grid” on page A-73
“cdr check queue” on page A-47

cdr delete region
The cdr delete region command deletes a region from a grid.

Syntax

►► cdr delete region
(1)

Connect Option

--region = region_name ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

region_name Name of the region. Must be the name of a
defined region.

“Long
Identifiers” on
page A-3

The following table describes the cdr delete region option.

Long Form Short Form Meaning

--region -r Specifies the region to delete.

Usage

Use the cdr delete region command to remove a region from a grid. Delete a
region that is no longer valid, for example, if you remove a grid server that is
included in the region from the grid. If you need to change the list of grid servers
in a region, you delete the region and then re-create it with the new server list.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5,
227.

For information about these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Examples

The following command deletes the region that is named northwest:
cdr delete region --region=northwest

Related concepts:

A-104 IBM Informix Enterprise Replication Guide

“Grid queries” on page 9-19
Related tasks:
“Defining tables for grid queries” on page 9-20
Related reference:
“ifx_grid_connect() procedure” on page C-1
“cdr delete region” on page A-104
“cdr change gridtable” on page A-36
“cdr remaster gridtable” on page A-156
“ifx_node_id() function” on page C-16
“ifx_node_name() function” on page C-17
Related information:
SELECT_GRID session environment option
SELECT_GRID_ALL session environment option
GRID clause

cdr delete replicate
The cdr delete replicate command deletes a replicate.

Syntax

►► cdr delete replicate
(1)

Connect Option

▼ replicate_name ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

replicate_name Name of the replicate to delete. “Long Identifiers”
on page A-3

Usage

The cdr delete replicate command deletes the replicate repl_name from the global
catalog. All replication data for the replicate is purged from the send queue at all
participating database servers. You can run this command from within an SQL
statement by using the SQL administration API.

Important: If you are creating a replication server to replace the one you deleted,
use the cdr check queue --qname=ctrlq command to make sure that the delete
operation propagated to all the servers.

When you run the cdr delete replicate command, an event alarm with a class ID
of 68 is generated, if that event alarm is enabled.

Appendix A. The cdr utility A-105

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2599.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2600.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

Example 1: Deleting a single replicate

The following command connects to the default database server specified by the
INFORMIXSERVER environment variable and deletes the replicate reynolds:
cdr delete replicate reynolds

Example 2: Deleting multiple replicates

The following command connects to database server hoek and deletes the
replicates reynolds and stimpson:
cdr del rep -c hoek reynolds stimpson

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Deleting a Replicate” on page 11-9
Related reference:
“cdr change replicate” on page A-39
“cdr define replicate” on page A-77
“cdr list replicate” on page A-125
“cdr modify replicate” on page A-140
“cdr resume replicate” on page A-164
“cdr start replicate” on page A-170
“cdr stop replicate” on page A-191
“cdr suspend replicate” on page A-194
“cdr check queue” on page A-47
“Enterprise Replication Event Alarms” on page 12-21

cdr delete replicateset
The cdr delete replicateset command deletes an exclusive or non-exclusive
replicate set from the global catalog.

Syntax

►► cdr delete replicateset
(1)

Connect Option

▼ repl_set ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Description Restrictions Syntax

repl_set Name of replicate set to
delete. Can be the name of
a derived replicate set.

“Long
Identifiers” on
page A-3

A-106 IBM Informix Enterprise Replication Guide

Usage

The cdr delete replicateset command deletes the exclusive or non-exclusive
replicate set repl_set from the global catalog.

The cdr delete replicateset command does not affect the replicates or associated
data. When a replicate set is deleted, the individual replicates within the replicate
set are unchanged.

Attention: Do not delete time-based exclusive replicate sets. Doing so might
result in inconsistent data.

Important: If you are creating a replicate set to replace the one you deleted, use
the cdr check queue -qname=ctrlq command to make sure that the delete
operation propagated to all the servers.

When you run the cdr delete replicateset command, an event alarm with a class
ID of 69 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Example 1: Deleting a single replicate set

The following example connects to the database server specified by the
INFORMIXSERVER environment variable and deletes the replicate set accounts_set:
cdr delete replset accounts_set

Example 2: Deleting multiple replicate sets

The following example connects to database server hoek and deletes the replicate
sets accounts1_set and accounts2_set:
cdr del replset -c hoek accounts1_set accounts2_set

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Altering multiple tables in a replicate set” on page 11-25
“Deleting a Replicate Set” on page 11-12
Related reference:
“cdr change replicateset” on page A-42
“cdr define replicateset” on page A-87
“cdr define replicate” on page A-77
“cdr list replicateset” on page A-130
“cdr modify replicateset” on page A-145
“cdr resume replicateset” on page A-165
“cdr start replicateset” on page A-173
“cdr stop replicateset” on page A-193
“cdr suspend replicateset” on page A-195
“cdr check queue” on page A-47
“Enterprise Replication Event Alarms” on page 12-21

Appendix A. The cdr utility A-107

cdr delete server
The cdr delete server disables a database server from participating in Enterprise
Replication.

Syntax

►► cdr delete server
(1)

Connect Option
--force

server_group ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

server_group A database server's group
entry in its
INFORMIXSQLHOSTS file and
the global catalog.

“Long
Identifiers” on
page A-3

The following table describes the option to the cdr delete server command.

Long Form Short Form Purpose

--force -f Remove an inactive Enterprise Replication server
from the global catalog. You must use this option
for standard servers that were converted from
high-availability cluster servers.

Usage

The cdr delete server command disables a database server from to participating in
Enterprise Replication. Use the --force option to disable an inactive replication
server or to remove Enterprise Replication from a standard server that has been
converted from a high-availability cluster server by the oninit -d standard
command. You cannot delete a server that has non-root or leaf children under it.
You must delete the children of a server before deleting the parent server.

The cdr delete server command generates event alarms with class IDs of 67 and
71, if the alarms are enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

To remove a server from an Enterprise Replication domain, run the cdr delete
server command two times:
1. Run the command on the database server being removed, to disable it. This

command does not propagate to other database servers in the domain.
2. Run the same command on a different server within the Enterprise Replication

domain. This removes the disabled database server from the domain.

To remove an entire Enterprise Replication domain, run the cdr delete server
command once on each replication server. The cdr delete server command
performs the following tasks on each server:

A-108 IBM Informix Enterprise Replication Guide

1. Drops the Enterprise Replication connection to other hosts in the domain. A
25582 error and an operating system error might be printed to the online log.

2. Removes Enterprise Replication information, including delete tables and
shadow columns.

3. Shuts down Enterprise Replication, if it is running.
4. Drops the local copy of the global catalog.

When you run the cdr delete server command on a different root server within an
Enterprise Replication domain, the command performs the following tasks:
1. Deletes the command-specified database server from the global catalogs of all

other servers in the domain.
2. Removes the command-specified database server from all participating

replicates.
3. Purges all replication data destined for the command-specified database server

from the send queues of all other servers in the domain.

Important: If you are creating a replication server to replace the one you deleted,
use the cdr check queue --qname=ctrlq command to make sure that the delete
operation propagated to all the servers.

Example 1: Removing a single database server from the domain

This example removes the database server g_italy from the Enterprise Replication
environment. The commands are issued from g_usa:
cdr delete server -c italy g_italy
cdr delete server -c usa g_italy

The first command connects to database server g_italy and disables Enterprise
Replication by removing the syscdr database and removing or stopping other
Enterprise Replication components.

The second command performs the following actions:
v Removes g_italy from the g_usa global catalog
v Drops the connection between g_usa andg_italy

v Removes g_italy from all participating replicates
v Purges the replication data destined for g_italy from send queues
v Broadcasts the delete command to all the other database servers in the

Enterprise Replication domain so that the other servers can perform the same
actions

Example 2: Removing the whole domain

The following illustration shows a replication environment with three replication
servers, g_usa, g_italy, and g_japan.

Appendix A. The cdr utility A-109

To remove Enterprise Replication from every server in the domain, issue the cdr
delete server command while connecting to each server. For example, from the
computer containing the g_usa replication server, run these commands to remove
Enterprise Replication and eliminate the domain:
cdr delete server -c italy g_italy
cdr delete server -c japan g_japan
cdr delete server g_usa

Example 3: Removing Enterprise Replication from a
high-availability server

In this example, the replication server group g_usa contains two servers that
participate in a high-availability cluster: a primary (usa_p) and a secondary
(usa_s). After usa_s is converted to a stand-alone server, the following command
removes Enterprise Replication from it:
cdr delete server -c usa_s -f g_usa

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Failover for High-availability clusters in an Enterprise Replication environment”
on page 7-4
“Deleting a Replication Server” on page 11-5
Related reference:
“cdr connect server” on page A-72
“cdr define server” on page A-90
“cdr disconnect server” on page A-115
“cdr list server” on page A-131
“cdr modify server” on page A-146
“cdr resume server” on page A-167
“cdr suspend server” on page A-197
“cdr check queue” on page A-47
“Enterprise Replication Event Alarms” on page 12-21

cdr delete shardCollection
The cdr delete shardCollection command deletes a sharding definition, and then
stops data sharding.

g_italy

g_japan

g_usa

Figure A-1. Three Replication Servers

A-110 IBM Informix Enterprise Replication Guide

Syntax

►► cdr delete shardCollection definition_name
(1)

Connect Option

►◄

Notes:

1 See “Connect Option” on page A-3.

Element Description Restrictions

definition_name The name of the sharding definition that
is used for distributing data across
multiple database servers.

Must be the name of an existing
definition.

Usage

Use the cdr delete shardCollection command to delete a sharding definition, and
then stop data sharding.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 99,
196, 229.

For information about these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Example

For this example, you have a sharding definition that was created by the following
command:
cdr define shardCollection collection_1 db_1:john.customers_1

--type=delete --key=col2 --strategy=hash --versionCol=version
shard_server_A
shard_server_B
shard_server_C

The following example deletes collection_1, and stops the sharding of table
customers_1:
cdr delete shardCollection collection_1

Related concepts:
“Shard cluster management and monitoring” on page 10-5
Related reference:
“cdr define shardCollection” on page A-93
“cdr change shardCollection” on page A-43
“cdr list shardCollection” on page A-135
Related information:
onstat -g shard command: Print information about the shard cache
Enabling sharding for JSON or relational data

Appendix A. The cdr utility A-111

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1177.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_028.htm

cdr delete template
The cdr delete template command deletes a template from the replication domain.
It also deletes any underlying replicate sets associated with the template (these will
exist if the template has been realized). No replicates are deleted.

Syntax

►► cdr delete template template
(1)

Connect Option

►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

template Name of the template to
delete.

The template must exist. “Long
Identifiers” on
page A-3

Usage

Use the cdr delete template command to delete the template definition and the
replicate set realized from the template. Any replicates created by realizing the
template to a database server are unaffected by this command.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following command deletes the template and replicate set tem1:
cdr delete template tem1

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr define template” on page A-98
“cdr realize template” on page A-148
“Enterprise Replication Event Alarms” on page 12-21

cdr disable grid
The cdr disable grid command removes the authorization to run grid routines
from users or servers.

Syntax

►► cdr disable grid
(1)

Connect Option

--grid = grid_name ►

A-112 IBM Informix Enterprise Replication Guide

► ▼

--user = user_name

▼

--node = server_group
►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be the name of an
existing grid.

“Long
Identifiers” on
page A-3

server_group Name of a database server
group in the grid.

Must be the name of an
existing database server
group in SQLHOSTS.

“Long
Identifiers” on
page A-3

user_name Name of the user. Must be a user with
authorization to run grid
routines.

“Long
Identifiers” on
page A-3

The following table describes the cdr disable grid options.

Long Form Short Form Meaning

--grid= -g Specifies the grid for which to revoke privileges.

--node= -n Specifies the servers on which to revoke privileges.

--user= -u Specifies the users to revoke privileges.

Usage

Use the cdr disable grid command to revoke the permission to run routines on the
specified grid from the specified user or server that were granted by the cdr
enable grid command.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5,
220, 222.

For information on these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Examples

The following example revokes privileges from user bill on the grid1 grid:
cdr disable grid --grid=grid1 --user=bill

The following example shows how to change the authorized server on the grid1
grid from gserv1 to gserv2:
cdr disable grid --grid=grid1 --node=gserv1
cdr enable grid --grid=grid1 --node=gserv2

Related concepts:

Appendix A. The cdr utility A-113

“Grid maintenance” on page 9-6
“Enterprise Replication Server administrator” on page 3-1

cdr disable server
The cdr disable server command disables replication on a server.

Syntax

►► cdr disable server
(1)

Connect Option
--local

►

► server_group ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

server_group Name of the database
server on which to
disable replication.

Must be the name of an
existing database server
group in sqlhosts.

“Long
Identifiers” on
page A-3

The following table describes the cdr disable server option.

Long Form Short Form Meaning

--local -l Disables the specified replication server. Must be run
on both the replication server to disable and another
replication server in the domain. Use this option if the
connection is down between the replication server to
disable and other replication servers.

Usage

Use the cdr disable server command when you need to temporarily stop
replication and your replicates use the time stamp or delete wins conflict resolution
rule.

When you run the cdr disable server command, the replication server is disabled
and the rest of the replication domain is notified that the server is disabled.

If the replication server that you want to disable is not connected to the replication
domain, you must run the cdr disable server command with the --local option on
both the replication server to disable and another replication server in the domain.
If the server on which you need to disable replication is currently offline, then run
the cdr disable server command with the --local option on it after you restart it.

Disabling replication has the following effects:
v There is no connection between the disabled replication server and active

replication servers.
v Transactions on the disabled replication server are not queued for replication
v Transactions on active replication servers are not queued for the disabled

replication server.

A-114 IBM Informix Enterprise Replication Guide

v Control messages on active replication server are queued for the disabled
replication server.

v Information about deleted rows on the disabled replication server is saved in
delete tables.

v You can run only the following Enterprise Replication commands on the
disabled replication server:
– cdr enable server

– cdr stop server

– cdr delete server

– cdr check replicateset with the --repair and the --enable options

You must synchronize the server after you enable replication on it. Shutting down
and restarting the disabled replication server does not enable replication. You can
both enable and synchronize a disabled replication server by running the cdr check
replicateset command with the --repair and the --enable options. Alternatively,
you can run the cdr enable server command and then synchronize the server.

Example 1: Stopping replication on a connected server

The following command disables the server, g_cdr1, which is connected to the
replication domain:
cdr disable server -c g_cdr1 g_cdr1

Example 2: Stopping replication on a disconnected server

The following commands disable the replication server, g_cdr1, which is not
connected to the replication domain:
cdr disable server -c g_cdr1 --local g_cdr1
cdr disable server -c g_cdr2 --local g_cdr1

The first command runs on the server g_cdr1 and disables replication on it. The
second command runs on the server g_cdr2 and stops the other servers in the
replication domain from queuing transactions for the server g_cdr1.
Related concepts:
“Time stamp conflict resolution rule” on page 5-7
“Delete wins conflict resolution rule” on page 5-12
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Temporarily stopping replication on a server” on page 11-3
Related reference:
“cdr enable server” on page A-118
“cdr check replicateset” on page A-61

cdr disconnect server
The cdr disconnect server command stops a server connection.

Appendix A. The cdr utility A-115

Syntax

►► cdr disconnect server
(1)

Connect Option

server_group ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

server_group Name of the database
server group to
disconnect.

The database server group
must be currently active in
Enterprise Replication.

“Long
Identifiers” on
page A-3

Usage

The cdr disconnect server command drops the connection (for example, for a
dialup line) between server_group and the server specified in the --connect option.
If the --connect option is omitted, the command drops the connection between
server_group and the default database server (the one specified by the
INFORMIXSERVER environment variable).

When you run the cdr disconnect server command, event alarms with class IDs of
54 and 71 are generated, if those event alarms are enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example drops the connection between the default database server
(the one specified by the INFORMIXSERVER environment variable) and the
server group g_store1:
cdr disconnect server g_store1

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr connect server” on page A-72
“cdr define server” on page A-90
“cdr delete server” on page A-108
“cdr list server” on page A-131
“cdr modify server” on page A-146
“cdr resume server” on page A-167
“cdr suspend server” on page A-197

cdr enable grid
The cdr enable grid command authorizes users to run commands on the grid and
designates servers from which grid commands can be run.

A-116 IBM Informix Enterprise Replication Guide

Syntax

►► cdr enable grid
(1)

Connect Option

--grid = grid_name ►

► ▼

--user = user_name

▼

--node = server_group
►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be the name of an
existing grid.

“Long
Identifiers” on
page A-3

server_group Name of a database server
group in the grid.

Must be the name of an
existing database server
group in SQLHOSTS.

“Long
Identifiers” on
page A-3

user_name Name of the user. Must have Connect
privilege for databases on
all the replication servers in
the grid.

“Long
Identifiers” on
page A-3

The following table describes the cdr enable grid options.

Long Form Short Form Meaning

--grid= -g Specifies the grid for which to provide privileges.

--node= -n Specifies the servers on which to provide privileges.

--user= -u Specifies the users to provide privileges.

Usage

Use the cdr enable grid command to control who can perform grid operations
from which server in the grid. All the authorized users can run grid commands on
all the authorized servers. The users must have Connect privilege for all databases
on which they run grid routines on all the servers in the grid. You must authorize
at least one user and one server to be able to run commands from the grid. User
informix does not have permission to perform grid operations unless you include
it in the user list.

Authorizing more than one server from which to run grid commands can lead to
conflicts between grid commands.

After you initially enable a grid, you can add authorized users and servers by
running the cdr enable grid command with the appropriate options.

Appendix A. The cdr utility A-117

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5,
220, 222.

For information on these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Examples

The following example authorizes the users bill and tom and the server gserv1 to
run grid routines on the grid named grid1:
cdr enable grid --grid=grid1 --user=bill --user=tom --node=gserv1

The following example adds the user srini to the list of authorized users for the
grid1 grid:
cdr enable grid --grid=grid1 --user=srini

The following example adds the server gserv2 to the list of authorized servers for
the grid1 grid:
cdr enable grid --grid=grid1 --node=gserv2

Related concepts:
“Grid maintenance” on page 9-6
“Example of setting up a replication system with a grid” on page 9-2
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Creating a grid” on page 9-6
Related reference:
“ifx_grid_connect() procedure” on page C-1

cdr enable server
The cdr enable server command enables replication on a replication server that
was disabled by the cdr disable server command.

Syntax

►► cdr enable server
(1)

Connect Option
--hub

server_group ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

server_group Name of the database
server to enable.

Must be the name of an
existing database server
group in SQLHOSTS.

“Long
Identifiers” on
page A-3

The following table describes the cdr enable server option.

A-118 IBM Informix Enterprise Replication Guide

Long Form Short Form Meaning

--hub -h Specifies that when replication on a hub server is
enabled, replication on all its child servers is also
enabled.

Usage

Use the cdr enable server command when you are ready to restart replication on a
disabled replication server. After you enable replication, you must synchronize the
server with the rest of the replication domain. Before synchronization is complete,
the replicates on the newly enabled replication server have the Pending Sync
attribute. For replicates with the Pending Sync attribute, ATS and RIS files are not
created if transactions are aborted on this server. You can see the Pending Sync
attribute of a replicate in the OPTIONS field of the output of the cdr list replicate
command.

Examples

The following command enables the disabled replication server, g_cdr1:
cdr enable server -c g_cdr1 g_cdr1

The following command enables the disabled replication server, g_cdr1, and its
child servers:
cdr enable server -c g_cdr1 --hub g_cdr1

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Restarting Replication on a Server” on page 11-4
Related reference:
“cdr disable server” on page A-114

cdr error
The cdr error command manages the syscdrerror table and provides convenient
displays of errors.

Syntax

►► cdr error
(1)

Connect Option

►

►

▼

--seq=err_server:seqno
--prune " last "

first ,
--zap

--follow
--all
--nomark

►◄

Appendix A. The cdr utility A-119

Notes:

1 See “Connect Option” on page A-3.

Table A-3. Elements for the cdr error command

Element Purpose Restrictions Syntax

err_server Name of database server
group that holds the error
table.

The server must be
registered for Enterprise
Replication.

“Long Identifiers”
on page A-3

first Start date for a range. You must provide a valid
date and time.

“Frequency
Options” on page
A-27

last Ending date for range. You must provide a later
date and time than first.

“Frequency
Options” on page
A-27

seqno Sequence number of a
specific error.

You must provide the
number of an error in the
error table.

Integer

Table A-4. Options for the cdr error command

Long Form Short Form Meaning

(no options
specified)

Print the current list of errors and then mark them as
reviewed. Enterprise Replication does not display errors
marked as reviewed.

--all -a Print all errors, including those already reviewed.

--follow -f Continuously monitor the error table.

--nomark -n Do not mark errors as reviewed.

--prune -p Prune the error table to those times in the range from
first to last. If first is omitted, then all errors earlier than
last are removed.

--seq -s Remove the (single) error specified by server:seqno from
the error table.

--zap -z Remove all errors from the error table.

Usage

Run the cdr error command to examine replication errors. Sometimes a command
succeeds on the server on which it is run but fails on one of the remote servers.
For example, if you run the cdr define replicate command on server1, but the
table name is misspelled on server2, the command succeeds on server1 and seems
to complete successfully. You can use cdr error -c server2 to see why replication is
failing.

The cdr error command also allows you to administer the syscdrerror table
remotely. The syscdrerror table on each replication server contains errors for all
replication servers, unless the replication server is a leaf node. The syscdrerror
tables on leaf nodes do not contain errors for other replication servers. The
reviewed flag indicates which errors are new errors while keeping the old errors in
the table. For example, you can run cdr error periodically and append the output
to a file.

A-120 IBM Informix Enterprise Replication Guide

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following command shows the current list of errors on database server hill:
cdr error --connect=hill

After the errors are shown, Enterprise Replication marks the errors as reviewed.

The following command connects to the database server lake and removes from
the error table all errors that occurred before the time when the command was
issued:
cdr error -c lake --zap

The following command deletes all errors from the error table that occurred at or
before 2:56 in the afternoon on May 1, 2008:
cdr error -p “2008-05-01 14:56:00”

The following command deletes all errors from the error table that occurred at or
after noon on May 1, 2008 and before or at 2:56 in the afternoon on May 1, 2008:
cdr error -p “2008-05-01 14:56:00,2008-05-01 12:00:00”

Related concepts:
“Enterprise Replication Server administrator” on page 3-1

cdr finderr
The cdr finderr command looks up a specific Enterprise Replication return code
and displays the corresponding error text.

Syntax

►► cdr finderr ER_return_code ►◄

Element Purpose Restrictions

ER_return_code Enterprise Replication return
code to look up.

Must be a positive integer.

You can also view the Enterprise Replication return codes in the file
$INFORMIXDIR/incl/esql/cdrerr.h.

You can run this command from within an SQL statement by using the SQL
administration API.
Related concepts:
“Return Codes for the cdr Utility” on page A-8
“Enterprise Replication Server administrator” on page 3-1

cdr list grid
The cdr list grid command shows information about a grid.

Appendix A. The cdr utility A-121

Syntax

►► cdr list grid
(1)

Connect Option

►

►

▼ grid_name
--command=command_ID --verbose
--source=server_group --verbose
--summary
--verbose
--nacks
--acks
--pending

►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

command_ID The ID of a specific
command that was run
from the grid.

An integer.

grid_name Name of the grid. Must be the name of an
existing grid.

“Long
Identifiers” on
page A-3

server_group Name of a database server
group from which the
command was run.

Must be the name of an
existing database server
group in SQLHOSTS.

“Long
Identifiers” on
page A-3

The following table describes the cdr list grid options.

Long Form Short Form Meaning

--acks -a Displays the servers in the grid and the commands
that succeeded on one or more servers.

--command= -C Displays the servers in the grid and the specified
command.

--nacks -n Displays the servers in the grid and the commands
that failed on one or more servers.

--pending -p Displays the servers in the grid and the commands
that are in progress. A command can be pending
because the transaction has not completed processing
on the target server, the target server is down, or the
target server was added to the grid after the command
was run.

--source= -S Displays the servers in the grid and the commands
that were run from the specified server.

--summary -s Displays the servers in the grid and the commands
that were run on the grid.

A-122 IBM Informix Enterprise Replication Guide

Long Form Short Form Meaning

--verbose -v Displays the servers in the grid, the commands that
were run on the grid, and the results of the commands
on each server in the grid.

Usage

Use the cdr list grid command to view information about servers in the grid, and
about the commands that were run on servers in the grid.

If you run the cdr list grid command without any options or without a grid name,
the output shows the list of grids.

Servers in the grid on which users are authorized to run grid commands are
marked with an asterisk (*).

When you add a server to the grid, any commands that were previously run
through the grid have a status of PENDING for that server. If you want to run
previous grid commands on a new grid server, use the ifx_grid_redo() procedure.
If you do not want to run previous grid commands on a new server, you can
purge the commands by running the ifx_grid_purge() procedure.

When you run an SQL administration API command, the status of the grid
command does not necessarily reflect whether the SQL administration API
command succeeded. The grid command can have a status of ACK even if the SQL
administration API command failed. The cdr list grid command shows the return
codes of the SQL administration API commands. The task() function returns a
message indicating whether the command succeeded. The admin() function returns
an integer which if it is a positive number indicates that the command succeeded.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5,
220, 222.

For information on these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Examples

The examples in this section show the output of the cdr list grid command on a
grid grid1 that contains three servers: cdr1, cdr2, and cdr3.

Example 1: Display grid members

The following command displays the members of the grid1 grid:
cdr list grid grid1

The output of the previous command is:

Appendix A. The cdr utility A-123

Grid Node User
------------------ ------------------ ----------------
grid1 cdr1* bill

cdr2
cdr3

This output shows that the grid contains three member servers and that the
authorized user bill can run grid routines from the server cdr1.

Example 2: Display verbose information about commands

The following command displays verbose information about a series of commands
and their results on each server in the grid:
cdr list grid --verbose grid1

The output of the previous command is:
Grid Node User
------------------ ------------------ ----------------
grid1 cdr1* bill

cdr2
cdr3

Details for grid grid1

Node:cdr1 Stmtid:1 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
create database tstdb with log
ACK cdr1 2010-05-27 15:21:57
ACK cdr2 2010-05-27 15:21:58
PENDING cdr3

Node:cdr1 Stmtid:2 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
create table tab1 (col1 int, col2 int)
ACK cdr1 2010-05-27 15:21:57
ACK cdr2 2010-05-27 15:21:58
PENDING cdr3

Node:cdr1 Stmtid:3 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
create procedure load(maxnum int)
define tnum int;
for tnum = 1 to maxnum

insert into tab1 values (tnum, 1);
end for;
end procedure;
ACK cdr1 2010-05-27 15:21:57
ACK cdr2 2010-05-27 15:21:58
PENDING cdr3

This output shows each command and that all commands succeeded on servers
cdr1 and cdr2 but are pending on the cdr3 server because it is offline.

Example 3: Display errors

In this example, the cdr3 server already has a database with the same name as the
database in the CREATE DATABASE statement: therefore, the CREATE
DATABASE and CREATE TABLE statements fail. The following command displays
information about commands run within the grid that resulted in an error:
cdr list grid --nacks grid1

The output of the previous command is:

A-124 IBM Informix Enterprise Replication Guide

Grid Node User
------------------ ------------------ ----------------
grid1 cdr1* bill

cdr2
cdr3

Details for grid grid1

Node:cdr1 Stmtid:1 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
create database tstdb with log
NACK cdr3 2010-05-27 15:39:21 SQLERR:-330 ISAMERR:-100

Node:cdr1 Stmtid:2 User:dba1 Database:tstdb 2010-05-27 15:21:57
Tag:test
create table tab1 (col1 int, col2 int)
NACK cdr3 2010-05-27 15:39:21 SQLERR:-310 ISAMERR:0

Grid Apply Transaction Failure

This output shows the SQL and ISAM error codes associated with the failed
statements.
Related concepts:
“Grid maintenance” on page 9-6
“Example of setting up a replication system with a grid” on page 9-2
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Rerunning failed grid routines” on page 9-17
Related reference:
“cdr define grid” on page A-73
“cdr change grid” on page A-35

cdr list replicate
The cdr list replicate command displays information about the replicates on the
current server.

Syntax

►► cdr list replicate
(1)

Connect Option

full

brief
►

► ▼

replicate
►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

replicate Name of the replicates. The replicates must exist. “Long
Identifiers” on
page A-3

Appendix A. The cdr utility A-125

Usage

The cdr list replicate command displays information about replicates (the full
option). If no replicates are named, the command lists all replicates on the current
server. If one or more replicates are named, the command displays detailed
information about those replicates.

To display only replicate names and participant information, use the brief option.

You do not need to be user informix to use this command; any user can run it.

In hierarchical topology, leaf servers obtain limited information about other
database servers in the Enterprise Replication domain. Therefore, when cdr list
replicate is run on a leaf server, it displays incomplete information about the other
database servers.

The cdr list replicate command can be used while the replication server is in
DDRBLOCK mode. Before you use the cdr list replicate command, you must set
the DBSPACETEMP configuration parameter and create a temporary dbspace with
the onspaces utility.

Output Description

The STATE field can include the following values.

Table A-5. Values of the STATE field

Value Description

Active Specifies that Enterprise Replication captures
data from the logical log and transmits it to
participants

Definition Failed Indicates that the replication definition failed
on a peer server

Inactive Specifies that no database changes are
captured, transmitted, or processed

Pending Indicates that a cdr delete replicate
command ran and the replicate is waiting
for acknowledgment from the participants

Quiescent Specifies that no database changes are
captured for the replicate or participant

Suspended Specifies that the replicate captures and
accumulates database changes but does not
transmit any of the captured data

The CONFLICT field can include the following values.

Table A-6. Values of the CONFLICT field

Value Description

Deletewins Specifies that the replicate uses the delete
wins conflict-resolution rule

Ignore Specifies that the replicate uses the ignore
conflict-resolution rule

Timestamp Specifies that the replicate uses the time
stamp conflict-resolution rule

A-126 IBM Informix Enterprise Replication Guide

Table A-6. Values of the CONFLICT field (continued)

Value Description

Procedure Specifies that the replicate uses an SPL
routine as the conflict-resolution rule

The FREQUENCY field can include the following values.

Table A-7. Values of the FREQUENCY field

Value Description

immediate Specifies that replication occurs immediately

every hh:mm Specifies that replications occur at intervals
(for example, 13:20 specifies every thirteen
hours and 20 minutes)

at day.hh:mm Specifies that replications occur at a
particular time on a particular day (for
example, 15.18:30 specifies on the 15th day
of the month at 6:30 P.M.)

The OPTIONS field can include the following values.

Table A-8. Values of the OPTIONS field

Value Description

ats Indicates that ATS files are generated if
transactions fail to be applied at the target
server.

firetrigger Indicates that the rows that this replicate
inserts fire triggers at the destination.

floatcanon Indicates that floating-point numbers are
replicated in machine-independent decimal
representation.

floatieee Indicates that floating-point numbers are
replicated in either 32-bit (for
SMALLFLOAT) or 64-bit (for FLOAT) IEEE
floating-point format.

fullrow Indicates to replicate only changed columns
and disable upserts.

ignoredel Indicates that rows are retained if they are
deleted on other nodes in the domain.

pendingsync Indicates that the replication server was
enabled with the cdr enable server
command but that the participant is not yet
synchronized with the rest of the domain.
ATS and RIS files for this participant are not
created if transactions are aborted.

ris Indicates that RIS files are generated if
transactions fail to be applied at the target
server.

row Indicates that the replicate uses row scope.

transaction Indicates that the replicate uses transaction
scope.

Appendix A. The cdr utility A-127

Table A-8. Values of the OPTIONS field (continued)

Value Description

UTF8 Indicates that code set conversion between
replicates is enabled.

TimeSeries Indicates that the replicate includes a
TimeSeries column.

alwaysRepLOBs Indicates that large object columns are
always included in replicated rows
regardless of whether the large objects
changed.

The REPLTYPE field can include the following values. If the REPLTYPE field does not
show, the replicate is a classic replicate.

Table A-9. Values of the REPLTYPE field

Value Description

Master Indicates that the replicate is defined as a
master replicate.

Shadow Indicates that the replicate is a shadow
replicate. A shadow replicate can also be a
master replicate.

Grid Indicates that the replicate belongs to a grid
replicate set.

Sendonly Indicates that the participant only sends
data.

The PARENT REPLICATE field shows only for shadow replicates. It shows the name
of the replicate on which the shadow replicate is based.

Examples

The following example displays a list of the replicates on the current server with
full details:
cdr list replicate

The output from the command shows two replicates:
CURRENTLY DEFINED REPLICATES

REPLICATE: Repl1
STATE: Inactive
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: bank:joe.teller
OPTIONS: row,ris,ats
REPLTYPE: Master

REPLICATE: Repl2
STATE: Inactive
CONFLICT: Deletewins
FREQUENCY: immediate
QUEUE SIZE: 0

A-128 IBM Informix Enterprise Replication Guide

PARTICIPANT: bank:joe.account
OPTIONS: row,ris,ats
REPLTYPE: Master,Shadow
PARENT REPLICATE: Repl1

If the replicate belongs to a grid replicate set, the REPLTYPE field includes the value
Grid.
CURRENTLY DEFINED REPLICATES

REPLICATE: grid_6553604_100_3
STATE: Active ON:g_delhi
CONFLICT: Always Apply
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: tdb:nagaraju.t1
OPTIONS: row,ris,fullrow
REPLID: 6553605 / 0x640005
REPLMODE: PRIMARY ON:g_delhi
APPLY-AS: INFORMIX ON:g_delhi
REPLTYPE: Master,Grid

The PARENT REPLICATE field only shows if the replicate is a shadow replicate.

The following example displays a list of the replicates on the current server with
brief details:
cdr list replicate brief

The output from the command shows the replicates:
REPLICATE TABLE SELECT
--
Repl1 bank@g_newyork:joe.teller select * from joe.teller
Repl1 bank@g_sanfrancisco:joe.teller select * from joe.teller
Repl2 bank@g_portland:joe.teller select * from joe.teller
Repl2 bank@g_atlanta:joe.teller select * from joe.teller

The following example specifies the names of replicate:
cdr list repl brief Repl1

The output from the command shows information for the replicate:
REPLICATE TABLE SELECT
--
Repl1 bank@g_newyork:joe.teller select * from joe.teller
Repl1 bank@g_sanfrancisco:joe.teller select * from joe.teller

Related tasks:
“Adding an existing replicate to a grid replicate set by using cdr change
replicateset” on page 9-10
“Viewing grid information” on page 9-7
“Preventing Memory Queues from Overflowing” on page 12-14
Related reference:
“cdr change replicate” on page A-39
“cdr define replicate” on page A-77
“cdr delete replicate” on page A-105
“cdr modify replicate” on page A-140
“cdr resume replicate” on page A-164
“cdr start replicate” on page A-170
“cdr stop replicate” on page A-191

Appendix A. The cdr utility A-129

“cdr suspend replicate” on page A-194
“cdr swap shadow” on page A-198
“cdr list replicateset”

cdr list replicateset
The cdr list replicateset command displays information about the replication sets
defined on the current server.

Syntax

►► cdr list replicateset
(1)

Connect Option

▼

repl_set
►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

repl_set Name of the replicate set. The replicate set must exist. “Long
Identifiers” on
page A-3

Usage

The cdr list replicateset command displays a list of the replicate sets that are
currently defined. To list the information about each of the replicates within the
replicate set, use cdr list replicateset repl_set.

You do not need to be user informix to use this command; any user can run it.

In hierarchical topology, leaf servers have limited information about other database
servers in the Enterprise Replication domain. Therefore, when cdr list replicateset
is executed against a leaf server, it displays incomplete information about the other
database servers.

If you specify the name of a grid replicate set, the command displays the names of
the replicates that were automatically created through the grid and any replicates
manually added to the grid replicate set. The name of the grid replicate set is the
same as the name of the grid.

The cdr list replicateset command can be used while the replication server is in
DDRBLOCK mode. Before using the cdr list replicateset command you must set
the DBSPACETEMP configuration parameter and create a temporary dbspace with
the onspaces utility.

Examples

The following example displays a list of the replicate sets on the current server:
cdr list replicateset

The following output might result from the previous command:

A-130 IBM Informix Enterprise Replication Guide

Ex T REPLSET PARTICIPANTS

N Y g1 Repl1, Repl4
N Y g2 Repl2, Repl3, Repl5

The Ex field shows whether the replicate set is exclusive. The T field shows
whether the replicate set was created from a template.

This example displays information for all the replicates in the replicate set g1:
cdr list replset g1

The following output might result from the previous command:
REPLICATE SET:g1 [Exclusive]
CURRENTLY DEFINED REPLICATES
--
REPLICATE: Repl1
STATE: Inactive
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: bank:arthur.account
OPTIONS: row,ris,ats
REPLTYPE: Master

REPLICATE: Repl4
STATE: Inactive
CONFLICT: Deletewins
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: bank:arthur.teller
OPTIONS: row,ris,ats
REPLTYPE: Master

The information supplied for each replicate is the same as the information
provided by the cdr list replicate command.
Related concepts:
“Example of setting up a replication system with a grid” on page 9-2
Related tasks:
“Viewing grid information” on page 9-7
Related reference:
“cdr change replicateset” on page A-42
“cdr define replicateset” on page A-87
“cdr delete replicateset” on page A-106
“cdr define replicate” on page A-77
“cdr modify replicateset” on page A-145
“cdr resume replicateset” on page A-165
“cdr start replicateset” on page A-173
“cdr stop replicateset” on page A-193
“cdr suspend replicateset” on page A-195
“cdr list replicate” on page A-125

cdr list server
The cdr list server command displays a list of the Enterprise Replication servers
that are visible to the server on which the command is run.

Appendix A. The cdr utility A-131

Syntax

►► cdr list server
(1)

Connect Option

▼

server_group
►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

server_group Name of the server group. The database server groups
must be defined for
Enterprise Replication.

Usage

The cdr list server command displays information about servers. You do not need
to be user informix to use this command; any user can run it.

The cdr list server command can be used while the replication server is in
DDRBLOCK mode. Before using the cdr list server command you must set the
DBSPACETEMP configuration parameter and create a temporary dbspace with the
onspaces utility.

When no server-group name is given, the cdr list server command lists all
database server groups that are visible to the current replication server.

In hierarchical topology, leaf servers only have information about their parent
database servers in the Enterprise Replication domain. Therefore, when cdr list
server is executed against a leaf server, it displays incomplete information about
the other database servers.

Output Description

The SERVER and ID columns display the name and unique identifier of the
Enterprise Replication server group.

The STATE column can have the following values.

Value Description

Active The server is active and replicating data.

Deleted The server has been deleted; it is not capturing or delivering data and the
queues are being drained.

Disabled The server is disabled. It is not capturing or delivering data, but its delete
tables are being maintained.

Quiescent The server is in the process of being defined.

Suspended Delivery of replication data to the server is suspended.

The STATUS column can have the following values.

A-132 IBM Informix Enterprise Replication Guide

Value Description

Connected The connection is active.

Connecting The connection is being established.

Disconnect The connection was explicitly disconnected.

Disconnected
will attempt
reconnect

The connection was disconnected but is being reattempted.

Dropped The connection was disconnected due to a network error because the
server is unavailable.

Error The connection was disconnected due to an error (check the log and
contact customer support, if necessary).

Failed The connection attempt failed.

Local Identifies that this server is the local server as opposed to a remote
server.

Timeout The connection attempt has timed out, but will be reattempted.

The QUEUE column displays the size of the queue for the server group.

The CONNECTION CHANGED column displays the most recent time that the
status of the server connection was changed.

Examples

In the following examples, usa, italy, and france are root servers, denver is a
nonroot server, and miami is a leaf server. The usa server is the parent of denver,
and denver is the parent of miami.

When the cdr list server command includes the name of a database server group,
the output displays the attributes of that database server. The following commands
and example output illustrate how the cdr list server command displays server
information.

In this example, the server g_usa generates ATS and RIS files in XML format, has
an idle time out of 15 seconds, and is a hub server.

francedenver

miami

usa italy

Figure A-2. cdr list server example

Appendix A. The cdr utility A-133

cdr list server g_usa

NAME ID ATTRIBUTES

g_usa 1 atsrisformat=xml timeout=15 hub

In this example, the g_denver server shows the g_usa server as its root server.
cdr list server -c denver g_denver
NAME ID ATTRIBUTES

g_denver 27 root=g_usa

In this example, the attributes of the g_denver server are shown from the
perspective of the italy server. The g_denver server has the g_usa server as its root
server and uses the g_usa server to forward replicated transactions between it and
the italy server.
cdr list server -c italy g_denver

NAME ID ATTRIBUTES

g_denver 27 root=g_usa forward=g_usa

In this example, the g_miami server shows the g_denver server as its root server
and that it is a leaf server.
cdr list server g_miami

NAME ID ATTRIBUTES

g_miami 4 root=g_denver leaf

The following example shows possible output for the cdr list server command if
no server groups are specified:
cdr list server
SERVER ID STATE STATUS QUEUE CONNECTION CHANGED
--
g_denver 1 Active Local 0
g_miami 2 Active Connected 0 Mar 19 13:48:44
g_usa 3 Active Connected 0 Mar 19 13:48:40
g_france 4 Active Connected 0 Mar 19 13:48:41
g_italy 5 Active Connected 0 Mar 19 13:48:45

Related tasks:
“Preventing Memory Queues from Overflowing” on page 12-14
Related reference:
“cdr connect server” on page A-72
“cdr define server” on page A-90
“cdr delete server” on page A-108
“cdr disconnect server” on page A-115
“cdr modify server” on page A-146
“cdr resume server” on page A-167
“cdr start” on page A-168
“cdr suspend server” on page A-197
“cdr view” on page A-209
“cdr resume replicate” on page A-164
“cdr resume replicateset” on page A-165

A-134 IBM Informix Enterprise Replication Guide

cdr list shardCollection
The cdr list shardCollection command displays the sharding definition for all
database servers in a shard cluster.

Syntax

►► cdr list shardCollection definition_name
(1)

Connect Option

►◄

Notes:

1 See “Connect Option” on page A-3.

Element Description Restrictions

definition_name The name of the sharding definition that is
used for distributing data across multiple
database servers.

Must be the name of an existing definition.

Usage

The cdr list shardCollection command displays the sharding definition for
database servers in a shard cluster.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 99,
196, 229.

For information on these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Example 1: Output for a sharding definition that uses
hash-based sharding

For this example, you have a sharding definition that was created by the following
command:
cdr define shardCollection collection_1 database_1:john.customers_1

--type=delete --key=col2 --strategy=hash --versionCol=column_3
g_shard_server_A
g_shard_server_B
g_shard_server_C
g_shard_server_D

The following example shows output when the cdr list shardCollection command
is run on a database server in the shard cluster.

Appendix A. The cdr utility A-135

Example 2: Output for a sharding definition that uses an
expression

For this example, you have a sharding definition that was created by the following
command:
cdr define shardCollection collection_2 database_2:joe.customers_2

-t delete -k state -s expression -v column_3
g_shard_server_F "IN (’AL’,’MS’,’GA’)"
g_shard_server_G "IN (’TX’,’OK’,’NM’)"
g_shard_server_H "IN (’NY’,’NJ’)"
g_shard_server_I remainder

The following example shows output when the cdr list shardCollection command
is run on a database server in the shard cluster.

Example 3: Output for a sharding definition that was modified

For this example, you have a sharding definition that was created by the following
command:
cdr define shardCollection collection_3 database_3:tony.customers_3

-t keep -k bson_value_lvarchar(data,’year’) -s expression -v column_3
g_shard_server_J "BETWEEN 1970 and 1979"
g_shard_server_K "BETWEEN 1980 and 1989"
g_shard_server_L "BETWEEN 1990 and 1999"
g_shard_server_M remainder

The sharding definition is then modified by the following command:
cdr change shardCollection collection_3 -a

g_shard_server_N "BETWEEN 2000 and 2009"

The sharding definition is then modified a second time:
cdr change shardCollection collection_3 -d g_shard_server_J

The following example shows output when the cdr list shardCollection command
is run on a database server in the shard cluster. The Version value increments with
each cdr change shardCollection command that successfully runs on collection_3.

Shard Collection:collection_1 Version:0 type:hash key:col2
Version Column:column_3
Table:database_1:john.customers_1
g_shard_server_A mod(ifx_checksum(col2::LVARCHAR, 0), 4) = 0
g_shard_server_B mod(ifx_checksum(col2::LVARCHAR, 0), 4) in (1, -1)
g_shard_server_C mod(ifx_checksum(col2::LVARCHAR, 0), 4) in (2, -2)
g_shard_server_D mod(ifx_checksum(col2::LVARCHAR, 0), 4) in (3, -3)

Figure A-3. Output when the cdr list shardCollection is run on a shard server that uses hash-based sharding.

Shard Collection:collection_2 Version:0 type:expression key:state
Version Column:column_3
Table:database_2:joe.customers_2
g_shard_server_F state IN (’AL’,’MS’,’GA’)
g_shard_server_G state IN (’TX’,’OK’,’NM’)
g_shard_server_H state IN (’NY’,’NJ’)
g_shard_server_I not ((state IN (’AL’,’MS’,’GA’)) or (state
IN (’TX’,’OK’,’NM’)) or (state IN (’NY’,’NJ’)))

Figure A-4. Output when the cdr list shardCollection is run on a shard server that uses expression-based sharding.

A-136 IBM Informix Enterprise Replication Guide

Related concepts:
“Shard cluster management and monitoring” on page 10-5
Related reference:
“cdr define shardCollection” on page A-93
“cdr change shardCollection” on page A-43
“cdr delete shardCollection” on page A-110
Related information:
onstat -g shard command: Print information about the shard cache
Enabling sharding for JSON or relational data
Viewing shard-cluster participants

cdr list template
The cdr list template command displays information about the templates on the
server on which the command is run.

Syntax

►► cdr list template
(1)

Connect Option

▼

template
►

►
BRIEF

FULL
►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

template Name of the template. The template must exist. “Long
Identifiers” on
page A-3

Usage

The cdr list template command displays information about templates. If no
templates are named, the command lists all templates in the Enterprise Replication

Shard Collection:collection_3 Version:2 type:expression
key:bson_value_lvarchar(data,’year’) Version Column:column_3
Table:database_3:tony.customers_3
g_shard_server_K bson_value_lvarchar(data,’year’) BETWEEN 1980 and 1989
g_shard_server_L bson_value_lvarchar(data,’year’) BETWEEN 1990 and 1999
g_shard_server_N bson_value_lvarchar(data,’year’) BETWEEN 2000 and 2009
g_shard_server_M not((bson_value_lvarchar(data,’year’) BETWEEN 1980 and 1989)
or (bson_value_lvarchar(data,’year’) BETWEEN 1990 and 1999) or (bson_value_lvarchar
(data,’year’) BETWEEN 2000 and 2009))

Figure A-5. Output when the cdr list shardCollection is run on a shard server that has a modified sharding definition.

Appendix A. The cdr utility A-137

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1177.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_028.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_032.htm

domain. If one or more templates are named, the command displays the names,
database names, and table names for those templates.

To display detailed information for your templates, use the FULL option.

You do not need to be user informix to use this command; any user can run it.

In hierarchical topology, leaf servers have limited information about other database
servers in the Enterprise Replication domain. Therefore, when cdr list template is
executed against a leaf server, it displays incomplete information about the other
database servers.

The cdr list template command can be used while the replication server is in
DDRBLOCK mode. Before using the cdr list template command you must set the
DBSPACETEMP configuration parameter and create a temporary dbspace with the
onspaces utility.

Examples

The following example displays detailed information about the templates on the
current server:
cdr list template

The output from the previous command might be the following:
TEMPLATE DATABASE TABLES
==
tem1 newcars table1

newcars table2
newcars table3

tem2 carparts table1
carparts table3

The following example displays detailed information about the template tem1:
cdr list template tem1

The output from the previous command might be the following:
CURRENTLY DEFINED TEMPLATES
===========================
TEMPLATE: tem1
TEMPLATE ID: 6553605
SERVER: utah
DATABASE: newcars
REPLICATE: tem1_utah_2_1_table1
OWNER: pravin
TABLE: table1

TEMPLATE: tem1
TEMPLATE ID: 6553605
SERVER: utah
DATABASE: newcars
REPLICATE: tem1_utah_2_2_table2
OWNER: pravin
TABLE: table2

TEMPLATE: tem1
TEMPLATE ID: 6553605
SERVER: utah

A-138 IBM Informix Enterprise Replication Guide

DATABASE: newcars
REPLICATE: tem1_utah_2_3_table3
OWNER: pravin
TABLE: table3

Related reference:
“cdr define template” on page A-98
“cdr realize template” on page A-148

cdr modify grid
The cdr modify grid command modifies grid attributes.

Syntax

►► cdr modify grid
(1)

Connect Option

►

► ▼grid_name --enablegridcopy
--disablegridcopy Server

►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

grid_name Name of a grid to
modify

Server Name of a server to
modify

The following table describes the options to cdr modify grid.

Long Form Short Form Meaning

--enablegridcopy -E Enables the specified server to perform
grid copy functions.

--disablegridcopy -D Disables the specified server from
performing grid copy functions.

Usage

The cdr modify grid command modifies the attributes of one or more servers in a
grid. If the command does not specify a server, the changes apply to all servers in
the grid.

The --enablegridcopy option is used only if a grid was created using Informix
version 11.70 and then upgraded to Informix version 12.10 or later.

Grids created using Informix version 11.70 and earlier cannot copy external files to
a grid. If you upgrade servers in a grid from 11.70 to 12.10, and you want to copy

Appendix A. The cdr utility A-139

external files to servers in the grid, you must enable the ability to copy external
files by running the cdr modify grid command with the --enablegridcopy option.
Similarly, before reverting from Informix version 12.10 to an earlier version of
Informix, you must disable the ability to copy external files by running the cdr
modify grid command with the --disablegridcopy option.

It is not necessary to run the cdr modify grid command if your grid was created
using Informix version 12.10 or later.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example enables copying external files on all servers in the grid
named grid1:
cdr modify grid grid1 --enablegridcopy

The following example enables copying external files on the server g_serv1 in the
grid named grid1:
cdr modify grid grid1 --enablegridcopy g_serv1

The following example disables copying external files on all servers in the grad
named grid1:
cdr modify grid grid1 --disablegridcopy

The following example disables copying external files for the server g_serv1 in the
grid named grid1:
cdr modify grid grid1 --disablegridcopy g_serv1

Related concepts:
“Enterprise Replication Server administrator” on page 3-1

cdr modify replicate
The cdr modify replicate command modifies replicate attributes.

Syntax

►► cdr modify replicate
(1)

Connect Option
--name=n

►

A-140 IBM Informix Enterprise Replication Guide

► ▼

(2)
Conflict Options

(3)
Scope Options

(4)
Frequency Options

(5)
Special Options

replicate ▼

participant
►◄

Notes:

1 See “Connect Option” on page A-3.

2 See “Conflict Options” on page A-80.

3 See “Scope Options” on page A-81.

4 See “Frequency Options” on page A-27.

5 See “Special Options.”

Element Purpose Restrictions Syntax

participant Name of a participant in
the replication.

The participant must be a
member of the replicate.

“Participant and
participant
modifier” on
page A-4

replicate Name of the replicate to
modify.

The replicate name must
exist.

“Long
Identifiers” on
page A-3

The following table describes the option to cdr modify replicate.

Long Form Short Form Meaning

--name=n -n n Removes the name verification attribute from a master
replicate.

Special Options

Special Options:

Appendix A. The cdr utility A-141

▼

--ats y
n

--ris y
n

--firetrigger y
n

--fullrow y
n
n

--ignoredel= y
--serial

n
--UTF8= y

n
--alwaysRepLOBs= y

Table A-10. Special options for cdr modify replicate.

Long Form Short Form Meaning

--alwaysRepLOBS= Specifies whether columns
that contain unchanged large
objects are included in
replicated rows:

v --alwaysRepLOBS=n:
Default. Columns that
contain unchanged large
objects are not replicated.

v --alwaysRepLOBS=y:
Columns that contain large
objects are always
included in replicated
rows.

--ats y or --ats n -A y or -A n Activates (y) or deactivates
(n) aborted-transaction
spooling for replicate
transactions that fail to be
applied to the target
database.

--firetrigger y or --firetrigger
n

-T y or -T n Causes the rows that are
inserted by the replicate to
fire (y) or not fire (n) triggers
at the destination.

--fullrow y or --fullrow n -f y or -f n Specifies to (y) replicate the
full row and enable upserts
or (n) replicate only changed
columns and disable upserts.

A-142 IBM Informix Enterprise Replication Guide

Table A-10. Special options for cdr modify replicate. (continued)

Long Form Short Form Meaning

--ignoredel= -D Specifies whether to retain
deleted rows on other nodes:

v --ignoredel=y = Indicates
that rows are retained if
they are deleted on other
nodes in the Enterprise
Replication domain. You
cannot use this option if
you specify deletewins as
the conflict resolution rule.

v --ignoredel=n = Default.
Indicates that deleted rows
are deleted on all nodes in
the Enterprise Replication
domain.

--ris y or --ris n -R y or -R n Activates (y) or deactivates
(n) row-information spooling
for replicate row data that
fails conflict resolution or
encounters replication-order
problems.

--serial -s Specifies that replicated
transactions for the replicate
are applied serially instead
of in parallel.

--UTF8= Specifies whether to enable
conversion to and from
UTF-8 (Unicode) when you
replicate data between
servers that use different
code sets.

v --UTF8=y Default.
Indicates that character
columns are converted to
UTF-8 when the row is
copied into the
transmission queue. When
the replicated row is
applied on the target
server, the data is
converted from UTF-8 to
the code set used on the
target server. No attempt
is made to convert
character data that is
contained within opaque
data types. You cannot use
--UTF8=y for replicates
that contain TimeSeries
data types, user-defined
data types, or DataBlade
module data types.

v –UTF8=n Indicates that
code set conversion is
ignored.

Appendix A. The cdr utility A-143

Usage

The cdr modify replicate command modifies the attributes of a replicate or of one
or more participants in the replicate. You can also change the mode of a
participant. If the command does not specify participants, the changes apply to all
participants in the replicate.

To add or delete a participant, use the cdr change replicate command.

If you change the conflict resolution rule with cdr modify replicate, you must also
specify the scope with the --scope option, even if you are not changing the scope.

The attributes for cdr modify replicate are the same as the attributes for cdr define
replicate, with the following exceptions:
v You cannot change the machine-independent decimal representation

(--floatcanon) or IEEE floating point (--floatieee) formats.
v You cannot change the conflict resolution from ignore to a non-ignore option

(time stamp, SPL routine, or time stamp and SPL routine). You cannot change a
non-ignore conflict resolution option to ignore.
However, you can change from time stamp resolution to SPL routine resolution
or from SPL routine resolution to time stamp.

v The --ats, --ris, --firetrigger, and --fullrow options require a yes (y) or no (n)
argument.

When you run the cdr modify replicate command, an event alarm with a class ID
of 63 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example modifies the frequency attributes of replicate smile to
replicate every five hours:
cdr modify repl --every=300 smile

The following example modifies the frequency attributes of replicate smile to
replicate daily at 1:00 A.M.:
cdr modify repl -a 01:00 smile

The following example modifies the frequency attributes of replicate smile to
replicate on the last day of every month at 5:00 A.M., to generate ATS files, and
not to fire triggers:
cdr modify repl -a L.5:00 -A y -T n smile

The following example changes the mode of the first participant that is listed to
receive-only and the mode of the second to primary:
cdr mod repl smile “R db1@server1:antonio.table1” \

“P db2@server2:carlo.table2”

Related concepts:
“Frequency Options” on page A-27
“Enterprise Replication Server administrator” on page 3-1
“Change replicate attributes” on page 11-6

A-144 IBM Informix Enterprise Replication Guide

Related tasks:
“Enabling ATS and RIS File Generation” on page 12-4
“Creating Strict Master Replicates” on page 8-9
Related reference:
“cdr change replicate” on page A-39
“cdr define replicate” on page A-77
“cdr delete replicate” on page A-105
“cdr list replicate” on page A-125
“cdr resume replicate” on page A-164
“cdr start replicate” on page A-170
“cdr stop replicate” on page A-191
“cdr suspend replicate” on page A-194
“Enterprise Replication Event Alarms” on page 12-21
“Participant and participant modifier” on page A-4

cdr modify replicateset
The cdr modify replicateset command modifies all the replicates in a replicate set.

Syntax

►► cdr modify replicateset ▼

(1)
Connect Option

(2)
Frequency Options

repl_set ►◄

Notes:

1 See “Connect Option” on page A-3.

2 See “Frequency Options” on page A-27.

Element Purpose Restrictions Syntax

repl_set Name of replicate set to
modify.

The replicate set must exist. “Long
Identifiers” on
page A-3

Usage

The cdr modify replicateset command modifies the attributes of all the replicates
in the replicate set repl_set. To add or delete replicates from a replicate set, use the
cdr change replicateset command.

You cannot change whether a replicate set is exclusive or not.

When you run the cdr modify replicateset command, an event alarm with a class
ID of 64 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Appendix A. The cdr utility A-145

Examples

The following example connects to the default server (the server specified by the
INFORMIXSERVER environment variable) and modifies the replicate set sales_set
to process replication data every hour:
cdr mod replset --every=60 sales_set

Related concepts:
“Frequency Options” on page A-27
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr change replicateset” on page A-42
“cdr define replicateset” on page A-87
“cdr delete replicateset” on page A-106
“cdr list replicateset” on page A-130
“cdr define replicate” on page A-77
“cdr resume replicateset” on page A-165
“cdr start replicateset” on page A-173
“cdr stop replicateset” on page A-193
“cdr suspend replicateset” on page A-195
“Enterprise Replication Event Alarms” on page 12-21

cdr modify server
The cdr modify server command modifies the Enterprise Replication attributes of a
database server.

Syntax

►► cdr modify server
(1)

Connect Option
--idle=timeout

►

►
--mode primary

readonly
sendonly

--ats=ats_dir --ris=ris_dir
►

►
text

--atsrisformat = xml
both

server_group ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

server_group Name of a database server
group to modify.

The database server group
must be defined in
Enterprise Replication.

A-146 IBM Informix Enterprise Replication Guide

Element Purpose Restrictions Syntax

timeout Idle timeout for this
server.

Must be an integer number
of minutes. 0 indicates no
timeout. The maximum
value is 32,767.

Integer.

ats_dir Name of Aborted
Transaction Spooling
directory.

Must be a full path name.
The path for the directory
can be no longer than 256
bytes.

A value of /dev/null
(UNIX) or NUL (Windows)
prevents ATS file
generation.

Follows naming
conventions on
your operating
system.

ris_dir Name of the Row
Information Spooling
directory.

Must be a full path name.
The path for the directory
can be no longer than 256
bytes.

A value of /dev/null
(UNIX) or NUL (Windows)
prevents RIS file
generation.

Follows naming
conventions on
your operating
system.

The following table describes the options to cdr modify server.

Long Form Short Form Meaning

--ats= -A Activates aborted-transaction spooling for replicate
transactions that fail to be applied to the target database.

–atsrisformat= -X Specifies the format of ATS and RIS files:

v text: ATS and RIS files are generated in standard text
format.

v xml: ATS and RIS files are generated in XML format.

v both: ATS and RIS files are generated in both standard
text format and XML format.

--idle= -i Causes an inactive connection to be terminated after
timeout minutes. If time-out is 0, the connection does not
time out. The default value is 0.

--mode -m Changes the mode of all replicates using this server:

v primary: The participant both receives and sends
replicated data.

v readonly: The participant only receives replicated data
and does not send replicated data.

v sendonly: The participant only sends replicated data
and does not receive replicated data.

Note: The -m option only affects replicates whose
conflict resolution is ignore.

--ris= -R Activates row-information spooling for replicate-row
data that fails conflict resolution or encounters
replication-order problems.

Appendix A. The cdr utility A-147

Usage

The cdr modify server command modifies the replication server server_group.

When you run the cdr modify server command, an event alarm with a class ID of
70 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example connects to the database server paris and modifies the idle
time-out of server group g_rome to 10 minutes. ATS files are generated into the
directory /cdr/atsdir in both text and XML format.
cdr modify server -c paris -i 10 -A /cdr/atsdir \
-X both g_rome

The following example connects to the default database server and sets the modes
of all participants on g_geometrix to primary:
cdr mod ser -m p g_geometrix

Related concepts:
Chapter 12, “Monitor and troubleshooting Enterprise Replication,” on page 12-1
“Enterprise Replication Server administrator” on page 3-1
“Data consolidation” on page 5-2
“Primary-Target Data Dissemination” on page 5-1
“Modify server attributes” on page 11-1
Related tasks:
“Enabling ATS and RIS File Generation” on page 12-4
“Disabling ATS and RIS File Generation” on page 12-13
“Customizing the Replication Server Definition” on page 8-6
Related reference:
“cdr connect server” on page A-72
“cdr define server” on page A-90
“cdr delete server” on page A-108
“cdr disconnect server” on page A-115
“cdr list server” on page A-131
“cdr resume server” on page A-167
“cdr suspend server” on page A-197
“Enterprise Replication Event Alarms” on page 12-21

cdr realize template
The cdr realize template command creates the replicates, replicate set, and
participant tables as specified in a template, and then synchronizes data on all or a
subset of the database servers within the replication domain.

Syntax

A-148 IBM Informix Enterprise Replication Guide

►► cdr realize template
(1)

Connect Option

template ►

►
--syncdatasource=data_server

Synchronization Options

►

►
--verify
--autocreate

--dbspace=dbspace

--mode = send_only
receive_only

►

► ▼ server_group
database@ --applyasowner

►◄

Synchronization Options:

--extratargetrows= delete
keep
merge

►

►
--foreground

--memadjust=size K
M

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

database Name of the database that
includes the table to be
replicated.

The database server must
be in an Enterprise
Replication domain.

“Long Identifiers”
on page A-3

data_server The database server from
which the data is copied to
all other database servers
listed.

The database server must
be in an Enterprise
Replication domain.

dbspace The name of the dbspace
for tables.

The dbspace must exist on
all the database servers
listed. If you do not specify
a dbspace name and new
tables are created, they are
created in the default
dbspace.

Appendix A. The cdr utility A-149

Element Purpose Restrictions Syntax

server_group Name of the database
server group that includes
the server to connect to.

The database server group
name must be the name of
an existing Enterprise
Replication server group in
sqlhosts.

“Long Identifiers”
on page A-3

sizeK or size
M

Size, in either kilobytes (K)
or megabytes (M), of the
send queue during
synchronization.

Must be a positive integer
and must not be greater
than the amount of
available memory.

template The name of the template. The template must exist.
Use the cdr define
template command to
create the template.

“Long Identifiers”
on page A-3

The following table describes the special options to cdr realize template.

Long Form Short Form Meaning

--applyasowner -o Specifies that any tables created when you realize
the template are owned by the owner of the source
tables. By default, the tables are owned by the user
informix.

--autocreate -u Specifies that if the tables in the template definition
do not exist in the databases on the target servers,
they are created automatically. However, the tables
cannot contain columns with user-defined data
types.
Note: Tables that are created with autocreate do
not automatically include non-replicate key indexes,
defaults, constraints (including foreign constraints),
triggers, or permissions. You must manually create
these objects.

--dbspace= -D Specifies the dbspace in which the automatically
created objects are placed. If not specified, then the
default dbspace is used.

--extratargetrows= -e Specifies how to handle rows that are found on the
target servers that are not present on the data
source server from which the data is being copied
(data_server):

v delete: (default) remove rows and dependent
rows, based on referential integrity constraints,
from the target servers

v keep: retain rows on the target servers

v merge: retain rows on the target servers and
replicate them to the data source server

This option applies to the initial data
synchronization operation only; it does not affect
the behavior of the replicate.

--foreground -F Specifies that the synchronization operation is
performed as a foreground process.

--memadjust= -J Increases the size of the send queue during
synchronization to the number of kilobytes or
megabytes specified by the size element.

A-150 IBM Informix Enterprise Replication Guide

Long Form Short Form Meaning

--mode= -m Specifies whether the participant either only sends
or only receives replicated data:

v send_only (S): The participant only sends
replicated data and does not receive replicated
data.

v receive_only (R): The participant only receives
replicated data and does not send replicated
data.

--syncdatasource= -S Specifies which server is the source of the data that
is used to synchronize all the other servers that are
listed in the cdr realize template command.

The server that is listed with this option must
either be listed as one of the servers on which to
realize the template, or it must already have the
template.

--target -t
Specifies that all of the servers that are listed in the
command become receive-only servers, including
the source server, unless the template is already
realized on the source server.

If you use this option, you must run the cdr realize
template command twice: once to realize the
template on the source server and other primary
servers, and again to realize the template on
receive-only servers.

--verify -v Specifies that the cdr realize template command
verifies that the database, tables, column data types
are correct on all listed servers, but does not realize
the template.

Usage

Before you can use the cdr realize template command, you must define Enterprise
Replication servers by running the cdr define server command and define the
template by running the cdr define template command. Create the database to be
replicated on all database servers in the replication domain. However, only the
database on the synchronization data source server must be populated with data.

All specified servers must be online and the cdr utility must be able to connect to
each server.

If you run this command as a DBSA instead of as user informix, you must have
INSERT, UPDATE, and DELETE permission on the replicated tables on all the
replication servers in the domain.

The cdr realize template command performs the following tasks:
v If you specify the --autocreate option, creates database tables on the target

servers.

Recommendation: If you use --autocreate, specify a dbspace name. If you do
not specify a dbspace name, tables are created in the root dbspace, which is not
recommended.

Appendix A. The cdr utility A-151

v If you specify the --verify option, verifies the database, tables, column data
types, and replication keys on all participating servers; however, the template is
not realized.

v If you specify the --syncdatasource option, synchronizes the data from the
source database with the databases specified by this command. If you specify
the --foreground option, runs synchronization as a foreground process. If you
specify the --memadjust option, increases the size of the send queue from the
value of the CDR_QUEUEMEM configuration parameter.
If you are running this command with the --syncdatasource option as a DBSA,
you must have certain permissions granted to you on several system tables in
the syscdr database. For more information, see “Preparing for Role Separation
(UNIX)” on page 6-22.

v Verifies the database and table attributes to ensure that replication can be
performed on each database.

v Creates replicates as master replicates on all servers.
v Creates a replicate set for the new replicates.
v Starts the replicates on all servers.

The replicates and replicate set created from a template have generated names. Use
the cdr list template command to see the names of the replicates and replicate set
associated with a particular template.

You can run this command from within an SQL statement by using the SQL
administration API.

You can run the cdr check queue --qname=cntrlq command to wait for the cdr
realize template command to be applied at all Enterprise Replication servers
before you run the data synchronization task.

Examples

The following example illustrates the cdr realize template command:
cdr realize template tem1 -c detroit\
new_cars@detroit new_cars0@chicago new_cars1@newark\
new_cars2@columbus

Line 1 specifies that the template name is tem1 and the server to which to connect
is the detroit server. Lines 2 and 3 list the names of the databases and database
servers on which to realize the template.

The following example illustrates realizing the template on the source server, and
then, creating the databases and tables, and loading data on the target database
servers:
cdr realize template tem1 -c detroit\
--syncdatasource=detroit --extratargetrows=keep\
--foreground --memadjust=50M\
--mode=receive_only chicago newark columbus

Line 1 realizes the template on the detroit server, as a primary server by default.

Line 2 specifies to use the detroit server as the source of the data to replicate to all
other participating servers. If Enterprise Replication encounters any rows on the
chicago, newark, or columbus servers that do not exist on the detroit server, those
rows are kept.

A-152 IBM Informix Enterprise Replication Guide

Line 3 specifies that the synchronization operation is done in the foreground, and
the size of the send queue is set to 50 MB.

Line 4 specifies the participant type for each server. The --mode=receive_only
option makes each server a receive-only participant.

The following example verifies the database and table attributes on the chicago,
newark, and columbus servers; the template is not realized on these servers:
cdr realize template tem1 -c detroit\
--verify chicago newark columbus

Related concepts:
“Preparing for Role Separation (UNIX)” on page 6-22
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr define template” on page A-98
“cdr delete template” on page A-112
“cdr list template” on page A-137
“cdr define server” on page A-90

cdr remaster
The cdr remaster command changes the SELECT clause or the server from which
to base the master replicate definition of an existing master replicate. This
command can also convert a classic (non-master) replicate to a master replicate.

Syntax

►► cdr remaster
(1)

Connect Option

►

► --master=server replicate
modifier --erkey

Removing columns

►◄

Removing columns:

--remove ▼ ▼ ▼--database=database --table=table column ►

►
--wait = seconds

-1

Notes:

1 See “Connect Option” on page A-3.

Appendix A. The cdr utility A-153

Element Purpose Restrictions Syntax

column Name of the column to
remove from replication.

The column must exist and
be a replicated column.

database Name of the database from
which to remove one or
more columns from
replication.

The database must exist
and contain replicated
tables.

modifier Specifies the rows and
columns to replicate.

“Participant and
participant
modifier” on
page A-4

replicate Name of the replicate to be
mastered.

The replicate must exist. “Long
Identifiers” on
page A-3

server Name of the database
server group from which to
base the master replicate
definition.

The name must be the
database server group
name.

“Long
Identifiers” on
page A-3

table Name of the table from
which to remove one or
more columns from
replication.

The table must exist and
belong to a replicate.

The following table describes the options to the cdr remaster command.

Long Form Short Form Meaning

--database= -d Specifies the database name from which to delete
replicated columns.

--erkey -K Includes the ERKEY shadow columns, ifx_erkey_1,
ifx_erkey_2, and ifx_erkey_3, in the participant
definition, if the table that is being replicated has
the ERKEY shadow columns.

The ERKEY shadow columns are used as the
replication key.

--master= -M Specifies that the replicate being created is a master
replicate.

--remove -r Removes the specified columns from replicate
definitions.

--table= -t Specifies the table name from which to remove one
or more replicated columns.

--wait= -w Specifies how long to wait for remastering to
complete. Default is -1: wait indefinitely until all
replicates are finished being remastered.

If the remaster operation is not complete at the end
of the waiting time, the operation is rolled back and
the columns are not removed.

A-154 IBM Informix Enterprise Replication Guide

Usage

Remastering updates the replicate definition in the global catalogs of the
replication servers. Use the cdr remaster command to perform one of the following
tasks:
v Convert a classic replicate to a master replicate. Master replicates ensure schema

consistency among the participants in the replicates.
v Update the definition of a master replicate whose participant was changed in an

alter operation. You can change the SELECT clause or the server from which to
base the master replicate definition.

v Remove one or more replicated columns from one or more replicates. The
columns can belong to different replicates. You do not need to know the names
of the replicates.

To use the cdr remaster command, the master replicate definition must be created
with name verification turned on, by using the cdr define replicate command with
the --name=y option.

Use the --erkey option if you are adding ERKEY columns to the participant
definition, or if you are changing a participant definition that contains the ERKEY
shadow columns.

You can run this command from within an SQL statement by using the SQL
administration API.

The remastering operation creates temporary shadow replicates that are deleted
when the remastering operation is complete. If shadow replicates exist, the
remastering operation is in progress. You can run the cdr list replicate command
to determine if the shadow replicate exists. An example of a shadow replicate
name is:
Shadow_4_Repl1_GMT1090373046_GID10_PID28836

Shadow replicate names have the following format:
Shadow_4_basereplicatename_GMTtime_GIDgroupID_PIDpid

basereplicatename
The name of the replicate that is being remastered. If the replicate name is
longer than 64 characters, only the first 64 characters are included.

time The time stamp of when the shadow replicate was created, in GMT.

groupID
The group ID of the server. The group ID is the number that is specified
by the -i option in the group definition in the sqlhosts file.

pid The process ID of the client computer.

Example: Add columns to a replicate definition

The following command shows the original definition of the master replicate
before the alter operation:
cdr define repl --master=delhi -C timestamp\
newrepl "test@delhi.tab" "select col1, col2 from tab"\

The following command shows the cdr remaster command adding a column, col3,
in the newrepl participant:

Appendix A. The cdr utility A-155

cdr remaster --master=delhi newrepl\
"select col1, col2, col3 from tab"

The following command shows adding the ERKEY shadow columns after the table
was altered to include them:
cdr remaster --master=delhi newrepl --erkey\
"select col1, col2, col3 from tab"

The following command shows changing the participant in the previous example
to add another column and to continue to include the ERKEY shadow columns:
cdr remaster --master=delhi newrepl --erkey\
"select col1, col2, col3, col4 from tab"

Example: Remove columns from replicate definitions

The following command removes three columns from the database mydb: the
column prefix from the table customer and the columns discount and season from
the table sales:
cdr remaster --remove --database=mydb --table=customer prefix \
--table=sales discount season

The following command removes one column each from the databases mydb1,
mydb2, and mydb3:
cdr remaster --remove --database=mydb1 --table=customer prefix \
--database=mydb2 --table=cars brand \
--database=mydb3 --table=regions northwest

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Remastering a Replicate” on page 11-29
“Removing replicated columns” on page 11-26
“Preparing tables without primary keys” on page 6-20
Related reference:
“cdr alter” on page A-30

cdr remaster gridtable
The cdr remaster gridtable command validates tables in a grid after an alter
operation.

Syntax

►► cdr remaster gridtable ►◄

Usage

You can run the cdr remaster gridtable command to check whether tables in a grid
have consistent metadata. The cdr remaster gridtable command checks every table
in a grid on every grid server. The cdr remaster gridtable command is run
automatically after a grid table is altered.

A-156 IBM Informix Enterprise Replication Guide

Return codes

A return code of 0 indicates that the command was successful.

Examples

The following command checks all grid tables for consistency:
cdr remaster gridtable

Related concepts:
“Grid queries” on page 9-19
Related tasks:
“Defining tables for grid queries” on page 9-20
Related reference:
“cdr change gridtable” on page A-36
Related information:
GRID clause

cdr remaster replicateset
The cdr remaster replicateset command updates the definitions of the set of
replicates whose participants were changed by ALTER operations.

Syntax

►► cdr remaster replicateset
(1)

Connect Option

--master=server ►

► derived_set
--wait = seconds

-1

►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

derived_set Name of the derived
replicate set to be mastered.

The derived replicate set
must exist.

“Long
Identifiers” on
page A-3

seconds Number of seconds to wait
for remastering to complete.

The number must be -1 or a
positive integer.

server Name of the database
server group from which to
base the replicate
definitions.

The name must be the
database server group
name.

“Long
Identifiers” on
page A-3

The following table describes the options to the cdr remaster replicateset
command.

Long Form Short Form Meaning

--master= -M Specifies the server from which to base the
definitions of the replicates.

Appendix A. The cdr utility A-157

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

Long Form Short Form Meaning

--wait= -w Specifies how long to wait for remastering to
complete. Default is -1: wait indefinitely until all
replicates are finished being remastered.

If you specify a waiting time, but the remaster
operation is not complete at the end of the waiting
time, the operation is rolled back and the replicate
definitions are not updated.

Usage

All participant servers in the derived replicate set must be online and the cdr
utility must be able to connect to each participant.

If you run this command as a DBSA instead of as user informix, you must have
INSERT, UPDATE, and DELETE permission on the replicated tables on all the
replication servers in the domain.

When you change replicate participants by running ALTER operations, you must
remaster the replicate. Remastering updates the replicate definition in the global
catalogs of the replication servers. Before you can run the cdr remaster replicateset
command, you must run the cdr define replicateset command with the
--needRemaster option to create a derived replicate set.

You can run this command from within an SQL statement by using the SQL
administration API.

The remastering operation creates temporary shadow replicates that are deleted
when the remastering operation is complete. If shadow replicates exist, the
remastering operation is in progress. You can run the cdr list replicate command
to determine if the shadow replicate exists. An example of a shadow replicate
name is:
Shadow_4_Repl1_GMT1090373046_GID10_PID28836

Shadow replicate names have the following format:
Shadow_4_basereplicatename_GMTtime_GIDgroupID_PIDpid

basereplicatename
The name of the replicate that is being remastered. If the replicate name is
longer than 64 characters, only the first 64 characters are included.

time The time stamp of when the shadow replicate was created, in GMT.

groupID
The group ID of the server. The group ID is the number that is specified
by the -i option in the group definition in the sqlhosts file.

pid The process ID of the client computer.

Example

The following command remasters a derived replicate set named derived_accounts
and sets the replication server named server1 as the master server:
cdr remaster replicateset --master=server1 derived_accounts

Related tasks:

A-158 IBM Informix Enterprise Replication Guide

“Altering multiple tables in a replicate set” on page 11-25

cdr remove onconfig
The cdr remove onconfig command removes the specified value from a
configuration parameter in the ONCONFIG file.

Syntax

►► cdr remove onconfig “ parameter name value “ ►◄

Element Purpose Restrictions Syntax

parameter
name

The name of
the
configuration
parameter
from which to
remove the
value.

Not all configuration parameters can
be changed with this command. Only
the following parameters can be
changed:

v CDR_LOG_LAG_ACTION

v CDR_LOG_STAGING_MAXSIZE

v CDR_QDATA_SBSPACE

v CDR_SUPRESS_ATSRISWARN

v ENCRYPT_CIPHERS

v ENCRYPT_MAC

v ENCRYPT_MACFILE

v CDR_ENV:

– CDRSITES_731

– CDRSITES_92X

– CDRSITES_10X

value The value of
the
configuration
parameter to
remove.

Must be an existing value of the
configuration parameter.

Follows the syntax
rules for the specific
configuration
parameter.

Usage

Use the cdr remove onconfig command to replace the existing value of an
Enterprise Replication configuration parameter with a new value in the
ONCONFIG file. You can set environment variables by using the CDR_ENV
configuration parameter.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

Suppose the ENCRYPT_MAC configuration parameter is set to allow medium and
high encryption levels, so that it appears in the ONCONFIG file as: ENCRYPT_MAC
medium,high. The following command removes the medium encryption level and
retains only the high encryption level:
cdr remove onconfig "ENCRYPT_MAC medium"

Appendix A. The cdr utility A-159

Suppose the CDR_SITES_92X environment variable specifies the cdrIDs of 3, 4, and
5, so that it appears in the ONCONFIG file as: CDR_ENV CDR_SITES_92X=3,4,5.
The following command removes the cdrID of 3 from the list of supported version
9.2x servers:
cdr remove onconfig "CDR_ENV CDR_SITES_92X=3"

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Dynamically Modifying Configuration Parameters for a Replication Server” on
page 11-1
Related reference:
“cdr add onconfig” on page A-29
“cdr change onconfig” on page A-38

cdr repair
The cdr repair command synchronizes data based on ATS or RIS files.

Syntax

►► cdr repair
--check

--verbose
--quiet

ats ats_file
ris ris_file

►◄

Element Purpose Restrictions Syntax

ats_file Name of the file for
Aborted Transaction
Spooling.

Must be a full path name
and file name. The path for
the directory can be no
longer than 256 bytes.

The file must be in text
format; it cannot be in XML
format.

Follows naming
conventions on
your operating
system.

ris_file Name of the file for Row
Information Spooling.

Must be a full path name
and file name. The path for
the directory can be no
longer than 256 characters.

The file must be in text
format; it cannot be in XML
format.

Follows naming
conventions on
your operating
system.

The following table describes the option to cdr repair.

Long Form Short Form Meaning

--check -C Check the consistency between the database server
and the ATS or RIS file. Display repair operations
to stderr, but do not perform the repair operations.

In an active system, operations displayed with this
option will not necessarily match those performed
later during an actual repair.

A-160 IBM Informix Enterprise Replication Guide

Long Form Short Form Meaning

--quiet -q Quiet mode. Repair operations are not displayed to
stderr.

--verbose -v Verbose mode (default). All repair operations are
displayed to stderr.

Usage

The cdr repair command reconciles rows that failed to be applied based on the
information in the specified ATS or RIS file. If a row exists on the source database
server, it is replicated again. If a row does not exist on the source database server,
but does exist on the target server, then it is deleted from the target database
server. By default, each of the repair operations is displayed to stderr.

If you are running this command as a DBSA, you must have read permission on
the ATS and RIS files. Permissions on ATS and RIS files can be set with the chown
operating system command.

The ATS or RIS file you specify in the cdr repair command must be in text format,
which is the default format. You cannot specify the XML format of an ATS or RIS
in the cdr repair command.

Before you run a repair, preview the repair to make sure the operations that would
be performed are correct. To preview the repair operations, use the –check option.
All repair operations are displayed to stderr, but not performed. In an active
system, however, the operations displayed by the –check option might not be the
same as the operations performed when you later run the repair.

The server on which you run the cdr repair command must have a copy of the
ATS or RIS file and be able to connect to the source and target database servers
involved in the failed transaction. In a hierarchical routing environment where the
source and target database servers are not directly connected you might need to
run the cdr repair command from an intermediate server. If necessary, copy the
ATS or RIS file to the intermediate server.

ATS and RIS files do not include code set information, therefore, the code sets
associated with the locales specified by the DB_LOCALE and CLIENT_LOCALE
environment variables must be the same.

You can run this command from within an SQL statement by using the SQL
administration API.

Note: The cdr repair command is not supported for replicates that are defined
with the --UTF8=y option. For replicates that are defined with the --UTF8=y option,
use the cdr check replicate --repair or cdr check replicateset --repair command to
repair data.

Examples

The following example repairs inconsistencies between the g_beijing and
g_amsterdam servers resulting from an aborted transaction:
% cdr repair ats ats.g_beijing.g_amsterdam.D_2.070827_12:58:55.1
Attempting connection to syscdr@amsterdam...
Using syscdr@amsterdam.
Source ID:10 / Name:g_amsterdam

Appendix A. The cdr utility A-161

Target ID:20 / Name:g_beijing
(1) [s = "1"]: Row will be updated on the source for replicate <655361>
(2) [s = "2"]: Row not found on the source for replicate <655361>
(2) [s = "2"]: Row not found on the target for replicate <655361>
(2) [s = "2"]: No operation will be performed.
(3) [s = "3"]: Row will be updated on the source for replicate <655361>
(4) [s = "4"]: Row will be updated on the source for replicate <655361>
(5) [s = "5"]: Row will be updated on the source for replicate <655361>
(6) [s8 = "1911"]: Row will be updated on the source for replicate <655362>
(7) [s8 = "1912"]: Row will be updated on the source for replicate <655362>
(8) [s8 = "1913"]: Row will be updated on the source for replicate <655362>
(9) [s8 = "1914"]: Row will be updated on the source for replicate <655362>
(10) [s8 = "1915"]: Row will be updated on the source for replicate <655362>

Related concepts:
“Preparing for Role Separation (UNIX)” on page 6-22
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr view” on page A-209

cdr reset qod
The cdr reset qod command resets failed-transaction counts for replicates on
replicate servers. Connection Manager service-level agreements (SLA) that contains
a FAILURE or LATENCY redirection policy use failed-transaction counts to
determine where to route client requests.

Syntax

►► cdr reset qod
(1)

Connect Option

►

► ▼

▼

--repl = replicate_name

--replset = repl_set_name
--allrepl

▼

server_name --verbose
►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

replicate_name The name of the replicate. The replicate must exist. “Long Identifiers”
on page A-3

repl_set_name The name of the replicate set. The replicate set must exist. “Long Identifiers”
on page A-3

server_name The name of the server. Must be the name of an existing
database server group in
SQLHOSTS. Cannot be a leaf
server.

“Long Identifiers”
on page A-3

A-162 IBM Informix Enterprise Replication Guide

The following table describes the options to the cdr reset qod command.

Long Form Short Form Meaning

--allrepl -A Resets the failed-transaction count on all replicates.

--repl= -r Specifies the replicate for which to reset the
failed-transaction count.

--replset= -s Specifies the replicate set for which to reset the
failed-transaction count.

--verbose -v Displays details of the operations the command is
performing

Usage

Use the cdr reset qod command to reset the failed-transaction count to zero for
replicates or replicate sets on specified replication servers. Run the cdr reset qod
command before you repair inconsistent data, so that you can count failures that
occur after the repair.

You must run the cdr reset qod command from a non-leaf server. If you do not
specify any servers to reset, the current server to which you are connected is reset.
If you specify one or more servers to reset, you must explicitly include the server
to which you are connected if you want to reset it.

You can run this command from within an SQL statement by using the SQL
administration API.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 5,
44, 217.

For information on error codes, see “Return Codes for the cdr Utility” on page A-8.

Example 1: Resetting failed-transaction counts for a specific
replicate on a specific replication server

The following example resets the failed-transaction count for replicate_1 on
server_1:
cdr reset qod --repl=replicate_1 server_1

Example 2: Resetting failed-transaction counts for all replicates
on specific replication servers

The following example resets the failed-transaction count for all replicates on
server_2 and server_3:
cdr reset qod --allrepl server_2 server_3

Example 3: Resetting failed-transaction counts for all replicates
in a specific replicate set on a specific replication server

The following example resets the failed-transaction count for all replicates in
replicate_set_1 on server_4.

Appendix A. The cdr utility A-163

cdr reset qod --replset=replicate_set_1 server_4

Example 4: Resetting failed-transaction counts for all replicates
in specific replicate sets on a specific replication server

The following example resets the failed-transaction count for all replicates in
replicate_set_2 and replicate_set_4 on server_5.
cdr reset qod -s replicate_set_2 -s replicate_set_4 server_5

Example 5: Resetting failed-transaction counts for all replicates
on a specific replication server, and displaying operation details

The following example connects to server_6, and then resets the failed-transaction
count for all of replicates on server_6. The command displays details of the
operations that are performed:
cdr reset qod -c -A server_6 -v

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr define qod” on page A-74
“cdr start qod” on page A-169
“cdr stop qod” on page A-190
Related information:
SLA Connection Manager configuration parameter

cdr resume replicate
The cdr resume replicate command resumes delivery of replication data.

Syntax

►► cdr resume replicate
(1)

Connect Option

▼ repl_name ►◄

Notes:

1 See “Connect Option” on page A-3.

Resetting Quality of Data on server_6
Resetting replicate replicate_1
Resetting replicate replicate_2
Resetting replicate replicate_3
Resetting replicate replicate_4
Resetting replicate replicate_5
Resetting replicate replicate_6

Figure A-6. Output of cdr reset qod with verbose details.

A-164 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1457.htm

Element Purpose Restrictions Syntax

repl_name Name of the replicate to
change to active state.

The replicate must be
suspended.

“Long
Identifiers” on
page A-3

Usage

The cdr resume replicate command causes all participants in the replicate
repl_name to enter the active state.

If a replicate belongs to an exclusive replicate set, you cannot run cdr resume
replicate to resume that individual replicate. You must use cdr resume replicateset
to resume all replicates in the exclusive replicate set. If a replicate belongs to a
non-exclusive replicate set, you can resume the individual replicates in the set.

When you run the cdr resume replicate command, an event alarm with a class ID
of 57 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example connects to the default database server (the one specified
by the INFORMIXSERVER environment variable) and resumes the replicate smile:
cdr res repl smile

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Exclusive Replicate Sets” on page 8-18
Related reference:
“cdr change replicate” on page A-39
“cdr define replicate” on page A-77
“cdr delete replicate” on page A-105
“cdr list replicate” on page A-125
“cdr modify replicate” on page A-140
“cdr start replicate” on page A-170
“cdr stop replicate” on page A-191
“cdr suspend replicate” on page A-194
“Enterprise Replication Event Alarms” on page 12-21
“cdr list server” on page A-131
“cdr resume replicateset”

cdr resume replicateset
The cdr resume replicateset command resumes delivery of replication data for all
the replicates in a replicate set.

Appendix A. The cdr utility A-165

Syntax

►► cdr resume replicateset
(1)

Connect Option

▼ repl_set ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

repl_set Name of replicate set to
resume.

None. “Long
Identifiers” on
page A-3

Usage

The cdr resume replicateset command causes all replicates contained in the
replicate set repl_set to enter the active state for all participants.

If not all the replicates in a non-exclusive replicate set are suspended, the cdr
resume replicateset command displays a warning and only resumes the replicates
that are currently suspended.

When you run the cdr resume replicateset command, an event alarm with a class
ID of 58 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example connects to the default database server (the one specified
by the INFORMIXSERVER environment variable) and resumes the replicate set
accounts_set:
cdr res replset accounts_set

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr change replicateset” on page A-42
“cdr define replicateset” on page A-87
“cdr delete replicateset” on page A-106
“cdr list replicateset” on page A-130
“cdr modify replicateset” on page A-145
“cdr define replicate” on page A-77
“cdr start replicateset” on page A-173
“cdr stop replicateset” on page A-193
“cdr suspend replicateset” on page A-195
“Enterprise Replication Event Alarms” on page 12-21
“cdr resume replicate” on page A-164

A-166 IBM Informix Enterprise Replication Guide

“cdr list server” on page A-131

cdr resume server
The cdr resume server command resumes delivery of replication data to a
suspended database server.

Syntax

►► cdr resume server
(1)

Connect Option

to_server_group ►

► ▼

from_server_group
►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions

to_server_group Name of the database server group
to which to resume delivery of
replication data.

The database server group
must be currently active in
Enterprise Replication.

from_server_group Name of the database server group
from which to resume sending
data to to_server_group.

The database server group
must be currently active in
Enterprise Replication.

Usage

The cdr resume server command resumes delivery of replication data to the
to_server_group database server from the database servers included in the
from_server_group list. If the from_server_group list is omitted, the command resumes
replication of data from all database servers participating in the Enterprise
Replication system to the to_server_group. Replication data must have previously
been suspended to the server with the cdr suspend server command.

When you run the cdr resume server command, an event alarm with a class ID of
52 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example connects to the default server (the one specified by the
INFORMIXSERVER environment variable) and resumes replication of data to the
server g_iowa from the servers g_ohio and g_utah:
cdr res serv g_iowa g_ohio g_utah

Related concepts:
“Enterprise Replication Server administrator” on page 3-1

Appendix A. The cdr utility A-167

Related reference:
“cdr connect server” on page A-72
“cdr define server” on page A-90
“cdr delete server” on page A-108
“cdr disconnect server” on page A-115
“cdr list server” on page A-131
“cdr modify server” on page A-146
“cdr suspend server” on page A-197
“Enterprise Replication Event Alarms” on page 12-21

cdr start
The cdr start command starts Enterprise Replication processing.

Syntax

►► cdr start
(1)

Connect Option

►◄

Notes:

1 See “Connect Option” on page A-3.

Usage

Use cdr start to restart Enterprise Replication after you stop it with the cdr stop
command or replication stops for another reason, such as memory allocation
problems. When you issue cdr start, Enterprise Replication activates all connections
to other connected replication servers. Replication servers, replicates, and replicate
sets that were suspended before the cdr stop command was issued remain
suspended; no data is sent for the suspended servers, replicates, or sets.

Enterprise Replication resumes evaluation of the logical log (if required for the
instance of Enterprise Replication) at the replay position. The replay position is the
position where Enterprise Replication stops evaluating the logical log when
replication is stopped. When replication resumes, all appropriate database
transactions that occurred while replication was stopped are replicated. If
replication is stopped for a prolonged period of time, the replay position in the
logical log might be overwritten. If the replay position is not available, the cdr start
command fails with return code 214 and event alarm 75 is raised. In this situation,
you must empty the send queues and reset the replay position by running the cdr
cleanstart command, and then synchronize the data.

When you run the cdr start command, event alarm 49 is generated, if that event
alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Important: Whenever replication is stopped, data can become inconsistent.
Therefore, issue cdr start and cdr stop with extreme caution.

A-168 IBM Informix Enterprise Replication Guide

Examples

The following example restarts Enterprise Replication processing on database
server utah:
cdr start -c utah

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Restarting Replication on a Server” on page 11-4
Related reference:
“cdr cleanstart” on page A-71
“cdr list server” on page A-131
“cdr stop” on page A-189
“Enterprise Replication Event Alarms” on page 12-21

cdr start qod
The cdr start qod command starts quality of data (QOD) monitoring for replication
servers.

Syntax

►► cdr start qod
(1)

Connect Option

►◄

Notes:

1 See “Connect Option” on page A-3.

Usage

Use the cdr start qod command to start monitoring the quality of data for
replications servers. If Connection Manager service-level agreements (SLAs) use a
apply-failure or transaction-latency redirection policy, the Connection Manager
uses quality of data information to decide where to route client connections.

Quality of data information is used for the following SLA redirection policies:
v FAILURE: Connection requests are directed to the replication server that has the

fewest apply failures.
v LATENCY: Connection requests are directed to the replication server that has the

lowest transaction latency.

You must run the cdr define qod command to define a master server before you
can run the cdr start qod command. The cdr start qod command must be run on
the master server.

You can run this command from within an SQL statement by using the SQL
administration API.

Return codes

A return code of 0 indicates that the command was successful.

Appendix A. The cdr utility A-169

If the command is not successful, one of the following error codes is returned: 5,
217.

For information on error codes, see “Return Codes for the cdr Utility” on page A-8.

Example

The following command starts quality of data monitoring when it is run on the
master server:
cdr start qod

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr define qod” on page A-74
“cdr stop qod” on page A-190
“cdr reset qod” on page A-162
Related information:
SLA Connection Manager configuration parameter

cdr start replicate
The cdr start replicate command starts the capture and transmittal of replication
transactions.

Syntax

►► cdr start replicate
(1)

Connect Option

repl_name ►

► ▼

server_group
►

►
--syncdatasource=data_server

Synchronization Options

►◄

Synchronization Options:

--extratargetrows= delete
keep
merge

►

A-170 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1457.htm

►
--foreground

--memadjust=size K
M

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

data_server The database server from
which the data is copied
to all other database
servers listed.

The database server must
be in an Enterprise
Replication domain.

repl_name Name of the replicate to
start.

The replicate must exist. “Long
Identifiers” on
page A-3

server_group Name of database server
groups on which to start
the replicate.

The database server must
be in an Enterprise
Replication domain.

sizeK or sizeM Size, in either kilobytes
(K) or megabytes (M), of
the send queue during
synchronization.

Must be a positive integer
and must not be greater
than the amount of
available memory.

The following table describes the cdr start replicate options.

Long Form Short Form Meaning

--extratargetrows= -e Specifies how to handle rows found on the target servers that are not
present on the data source server from which the data is being copied
(data_server):

v delete: (default) remove rows and dependent rows, based on
referential integrity constraints, from the target servers

v keep: retain rows on the target servers

v merge: retain rows on the target servers and replicate them to the
data source server

This option applies to the initial data synchronization operation only;
it does not affect the behavior of the replicate.

--foreground -F Specifies that the synchronization operation is performed as a
foreground process.

--memadjust= -J Increases the size of the send queue during synchronization to the
number of kilobytes or megabytes specified by the size element.

--syncdatasource= -S Specifies the name of the database server to use as the reference copy
of the data. This server is started even if it is not listed as one of the
servers to start.

Usage

The cdr start replicate command causes the replicate to enter the active state
(capture-send) on the specified database servers and the source database server
specified by the --syncdatasource option.

Appendix A. The cdr utility A-171

If you are running this command with the --syncdatasource option as a DBSA, you
must have certain permissions granted to you on several system tables in the
syscdr database. For more information, see “Preparing for Role Separation (UNIX)”
on page 6-22.

If you would like the synchronization operation to be run in the foreground, use
the --foreground option.

The size of the send queue is specified by the value of the CDR_QUEUEMEM
configuration parameter. You can increase the amount of memory that the send
queue can use during this synchronization operation by using the --memadjust
option to specify the size of the send queue.

If no server is specified, the repl_name starts on all servers that are included in the
replicate. A replicate can have both active and inactive participants. When at least
one participant is active, the replicate is active, however, replication does not start
until at least two participants are active. You cannot start replicates that have no
participants.

If a replicate belongs to an exclusive replicate set, you cannot run cdr start
replicate to start that individual replicate. You must use cdr start replicateset to
start all replicates in the exclusive replicate set.

Because Enterprise Replication does not process log records that were produced
before the cdr start replicate command was run, transactions that occur during this
period might be partially replicated. To avoid problems, either issue the cdr start
replicate command on an idle system (no transactions are occurring) or use the
BEGIN WORK WITHOUT REPLICATION statement until after you successfully
start the replicate.

You can run the cdr check queue --qname=cntrlq command to wait for the cdr
start replicate command to be applied at all Enterprise Replication servers before
running the data synchronization task.

When you run the cdr start replicate command, an event alarm with a class ID of
59 is generated, if that event alarm is enabled.

Examples

The following command starts the replicate accounts on the server groups g_svr1
and g_svr2:
cdr sta rep accounts g_svr1 g_svr2

The following example starts the replicate named accounts on the server g_svr1
with g_svr2 as the source server:
cdr start replicate accounts g_svr1 --syncdatasource=g_svr2\
--foreground --memadjust=50M

The second line indicates that the synchronization happens in the foreground and
the size of the send queue is 50 MB.
Related concepts:
“Preparing for Role Separation (UNIX)” on page 6-22
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr change replicate” on page A-39

A-172 IBM Informix Enterprise Replication Guide

“cdr define replicate” on page A-77
“cdr delete replicate” on page A-105
“cdr list replicate” on page A-125
“cdr modify replicate” on page A-140
“cdr resume replicate” on page A-164
“cdr stop replicate” on page A-191
“cdr suspend replicate” on page A-194
“Enterprise Replication Event Alarms” on page 12-21

cdr start replicateset
The cdr start replicateset command starts the capture and transmittal of replication
transactions for all the replicates in a replicate set.

Syntax

►► cdr start replicateset
(1)

Connect Option

repl_set ►

► ▼

server_group
►

►
--syncdatasource=data_server

Synchronization Options

►◄

Synchronization Options:

--extratargetrows= delete
keep
merge

►

►
--foreground

--memadjust=size K
M

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

data_server The database server from
which the data is copied
to all other database
servers listed.

The database server must
be defined in Enterprise
Replication.

Appendix A. The cdr utility A-173

Element Purpose Restrictions Syntax

repl_set Name of replicate set to
start.

The replicate set must exist. “Long
Identifiers” on
page A-3

server_group Names of database server
groups on which to start
the replicate set.

The database server groups
must be defined for
Enterprise Replication.

sizeK or sizeM Size, in either kilobytes
(K) or megabytes (M), of
the send queue during
synchronization.

Must be a positive integer
and must not be greater
than the amount of
available memory.

The following table describes the cdr start replicateset options.

Long Form Short Form Meaning

--extratargetrows= -e Specifies how to handle rows found on the target servers that are not
present on the data source server from which the data is being copied
(data_server):

v delete: (default) remove rows and dependent rows, based on
referential integrity constraints, from the target servers

v keep: retain rows on the target servers

v merge: retain rows on the target servers and replicate them to the
data source server

This option applies to the initial data synchronization operation only;
it does not affect the behavior of the replicate.

--foreground -F Specifies that the synchronization operation is performed as a
foreground process

--memadjust= -J Increases the size of the send queue during synchronization to the
number of kilobytes or megabytes specified by the size element

--syncdatasource= -S Specifies the name of the database server to use as the reference copy
of the data. This server is started even if it is not listed as one of the
servers to start.

Usage

The cdr start replicateset command causes the replicates defined in the specified
replicate set to enter the active state (capture-send) on the specified database
servers and the source database server specified by the --syncdatasource option.

If you are running this command with the --syncdatasource option as a DBSA, you
must have certain permissions granted to you on several system tables in the
syscdr database. For more information, see “Preparing for Role Separation (UNIX)”
on page 6-22.

If you would like the synchronization operation to be run as in the foreground, use
the --foreground option.

The size of the send queue is specified by the value of the CDR_QUEUEMEM
configuration parameter. You can increase the amount of memory that the send
queue can use during this synchronization operation by using the --memadjust
option to specify the size of the send queue.

A-174 IBM Informix Enterprise Replication Guide

If the server_group list is omitted, the replicate set repl_set enters the active state for
all database servers participating in the replicate set.

Because Enterprise Replication does not process log records that were produced
before the cdr start replicateset command took place, transactions that occur
during this period might be partially replicated. To avoid problems, either issue the
cdr start replicateset command on an idle system (no transactions are occurring) or
use the BEGIN WORK WITHOUT REPLICATION statement until after you
successfully start the replicates in the replicate set.

If not all the replicates in a non-exclusive replicate set are inactive, the cdr start
replicateset command displays a warning and only starts the replicates that are
currently inactive.

When you run the cdr start replicateset command, an event alarm with a class ID
of 60 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example connects to the default database server specified by the
INFORMIXSERVER environment variable and starts the replicate set accounts_set
on the server groups g_hill and g_lake:
cdr sta replset accounts_set g_hill g_lake

The following example starts the replicate set accounts_set on the server g_hill
with g_lake as the source server:
cdr start replicateset accounts_set g_hill --syncdatasource=g_lake\
--foreground --memadjust=50M

The second line indicates that the synchronization happens in the foreground and
the size of the send queue is 50 MB.
Related concepts:
“Preparing for Role Separation (UNIX)” on page 6-22
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr change replicateset” on page A-42
“cdr define replicateset” on page A-87
“cdr delete replicateset” on page A-106
“cdr list replicateset” on page A-130
“cdr modify replicateset” on page A-145
“cdr resume replicateset” on page A-165
“cdr define replicate” on page A-77
“cdr stop replicateset” on page A-193
“cdr suspend replicateset” on page A-195
“Enterprise Replication Event Alarms” on page 12-21

Appendix A. The cdr utility A-175

cdr start sec2er
The cdr start sec2er command converts a high availability cluster to replication
servers.

Syntax

►► cdr start sec2er
(1)

Connect Option

secondary ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

secondary Name of the secondary
server in the cluster.

“Long
Identifiers” on
page A-3

Usage

You must run the cdr start sec2er command from a primary server in a cluster
with a high-availability data replication secondary or a remote stand-alone
secondary server. The cdr start sec2er command converts the two cluster servers
into replication servers.

The following conditions must be met on both the primary and secondary cluster
servers before running the cdr start sec2er command:
v The sqlhosts files must be configured for Enterprise Replication:

– Each server must belong to a different group.
– The group identifier for each server must be different.
– The sqlhosts files on each server must contain a server and a group entry for

the other server.
v All databases and tables must be logged.
v No tables can be defined with label-based access control.
v Typed tables must have primary keys.
v User-defined types must support Enterprise Replication.
v The CDR_QDATA_SBSPACE configuration parameter must be set.
v Both server must be running Informix version 11.10 or later.
v If the servers are running Informix database software prior to 11.70, Enterprise

Replication cannot be defined.
v Enterprise Replication must be active if it is already defined on either of the

servers.

The cdr start sec2er command performs the following tasks:
v The servers are defined as replication servers.
v Any tables on the primary server that do not have a primary key are altered to

add ERKEY shadow columns.
v A replicate is created and started for each user table on the primary server.

A-176 IBM Informix Enterprise Replication Guide

If the cdr start sec2er command fails or is interrupted, you might see the following
error message:
ERROR: Command cannot be run on pre-11.70 instance if ER is already running.

If you receive this error, remove replication by running the cdr delete server
command for both servers and then run the cdr start sec2er command again.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, the following error codes is returned: 225.

For information on these error codes, see “Return Codes for the cdr Utility” on
page A-8.

Example

The following example converts a cluster consisting of a primary server named
priserv and a secondary server named secserv into replication servers. The output
of the cdr start sec2er command shows the commands that are run.
$cdr start sec2er secserv
--
-- Define ER for the first time
--
cdr define serv -c priserv -I priserv

--
-- Creating Replication Key
--
dbaccess - - <<EOF
database stores_demo;
alter table ’bill’.classes add ERKEY;
EOF

--
-- Define the replicates
--
--
-- Defining Replicates for Database stores_demo
--
cdr define repl --connect=priserv sec2er_1_1282611664_call_type --master=priserv \

--conflict=always --scope=row \
"stores_demo@priserv:’bill’.call_type" \

"select * from ’bill’.call_type"
cdr start repl --connect=priserv sec2er_1_1282611664_call_type

cdr define repl --connect=priserv sec2er_2_1282611664_cust_calls --master=priserv \
--conflict=always --scope=row \
"stores_demo@priserv:’bill’.cust_calls" \

"select * from ’bill’.cust_calls"
cdr start repl --connect=priserv sec2er_2_1282611664_cust_calls

. . .

cdr define repl --connect=priserv sec2er_5_1282611664_customer --master=priserv \
--conflict=always --scope=row \
"stores_demo@priserv:’bill’.customer" \

"select * from ’bill’.customer"
cdr start repl --connect=priserv sec2er_5_1282611664_customer

cdr define repl --connect=priserv sec2er_6_1282611664_classes --master=priserv \

Appendix A. The cdr utility A-177

--conflict=always --scope=row \
"stores_demo@priserv:’bill’.classes" \

"select * from ’bill’.classes"
cdr start repl --connect=priserv sec2er_6_1282611664_classes
--
-- Starting RSS to ER conversion
--
--
-- WARNING:
--
-- DDL statements will not be automatically propagated to the ER server
-- after converting the secondary server into an ER server. If you
-- create or alter any objects, such as databases, tables, indexes, and
-- so on, you must manually propagate those changes to the ER node and
-- change any replication rules affecting those objects.
--

Related concepts:
“Preparing Logging Databases” on page 6-22
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Configuring ports and service names for replication servers” on page 6-2
Related reference:
“CDR_QDATA_SBSPACE Configuration Parameter” on page B-13
“cdr check sec2er” on page A-69
“Example of creating a new replication domain by cloning” on page 8-3

cdr stats rqm
The cdr stats rqm command displays information about the reliable queue
manager (RQM) queues used for Enterprise Replication.

Syntax

►► cdr stats rqm
(1)

Connect Option
--ackq
--cntrlq
--recvq
--syncq
--sendq

►◄

Notes:

1 See “Connect Option” on page A-3.

The following table describes the cdr stats rqm options.

Long Form Short Form Meaning

--ackq -A Prints the statistics for the acknowledgment send queue.

--cntrlq -C Prints the statistics for the control send queue.

--recvq -R Prints the statistics for the receive queue.

--syncq -S Prints the statistics for the sync send queue.

--sendq -T Prints the statistics for the send queue.

A-178 IBM Informix Enterprise Replication Guide

Usage

The cdr stats rqm command displays the RQM (reliable queue manager) statistics
for the queues used by Enterprise Replication. These queues are the ack send,
control send, send, sync send, and the receive queue. If no queue is specified, the
cdr stats rqm command displays statistics for all Enterprise Replication queues.

The cdr stats rqm command shows, among other things, how many transactions
are currently queued in memory and spooled, the size of the data in the queue,
how much real memory is being used, pending transaction buffers and data, the
maximum memory used for data and headers (overhead), and totals for the
number of transactions queued, the number of transactions, the number of deleted
transactions, and the number of transaction lookups that have occurred.

If the Connect option is specified, Enterprise Replication connects to the specified
remote server and retrieves the statistics for its Enterprise Replication queues.

Examples

The following example shows the output for cdr stats rqm --ackq:
RQM Statistics for Queue number: 1 name: ack_send
Flags: ACKSEND_Q, SENDQ_MASK
Txns in queue: 0
Txns in memory: 0
Txns in spool only: 0
Txns spooled: 0
Unspooled bytes: 0
Size of Data in queue: 0 Bytes
Real memory in use: 0 Bytes
Pending Txn Buffers: 0
Pending Txn Data: 0 Bytes
Max Real memory data used: 44 Bytes
Max Real memory hdrs used: 320 Bytes
Total data queued: 120 Bytes
Total Txns queued: 0
Total Txns 3
Total Txns spooled: 0
Total Txns restored: 0
Total Txns recovered: 0
Spool Rows read: 0
Total Txns deleted: 3
Total Txns duplicated: 0
Total Txn Lookups: 8

The following example shows the output for cdr stats rqm --cntrlq:
RQM Statistics for Queue number: 2 name: control_send
Transaction Spool Name: control_send_stxn
Flags: CTRL_SEND_Q, STABLE, USERTXN, PROGRESS_TABLE,

NEED_ACK, SENDQ_MASK
Txns in queue: 0
Txns in memory: 0
Txns in spool only: 0
Txns spooled: 0
Unspooled bytes: 0
Size of Data in queue: 0 Bytes
Real memory in use: 0 Bytes
Pending Txn Buffers: 0
Pending Txn Data: 0 Bytes
Max Real memory data used: 185 Bytes
Max Real memory hdrs used: 320 Bytes
Total data queued: 185 Bytes
Total Txns queued: 0

Appendix A. The cdr utility A-179

Total Txns 1
Total Txns spooled: 1
Total Txns restored: 0
Total Txns recovered: 0
Spool Rows read: 0
Total Txns deleted: 1
Total Txns duplicated: 0
Total Txn Lookups: 4

The following example shows the output for cdr stats rqm --recvq:
RQM Statistics for Queue number: 4 name: trg_receive
Transaction Spool Name: trg_receive_stxn
Flags: RECV_Q, SPOOLED, PROGRESS_TABLE
Txns in queue: 0
Txns in memory: 0
Txns in spool only: 0
Txns spooled: 0
Unspooled bytes: 0
Size of Data in queue: 0 Bytes
Real memory in use: 0 Bytes
Pending Txn Buffers: 0
Pending Txn Data: 0 Bytes
Max Real memory data used: 0 Bytes
Max Real memory hdrs used: 0 Bytes
Total data queued: 0 Bytes
Total Txns queued: 0
Total Txns 0
Total Txns spooled: 0
Total Txns restored: 0
Total Txns recovered: 0
Spool Rows read: 0
Total Txns deleted: 0
Total Txns duplicated: 0
Total Txn Lookups: 0

The following example shows the output for cdr stats rqm --syncq:
RQM Statistics for Queue number: 3 name: sync_send
Flags: SYNC_Q, NEED_ACK, SENDQ_MASK
Txns in queue: 0
Txns in memory: 0
Txns in spool only: 0
Txns spooled: 0
Unspooled bytes: 0
Size of Data in queue: 0 Bytes
Real memory in use: 0 Bytes
Pending Txn Buffers: 0
Pending Txn Data: 0 Bytes
Max Real memory data used: 0 Bytes
Max Real memory hdrs used: 0 Bytes
Total data queued: 0 Bytes
Total Txns queued: 0
Total Txns 0
Total Txns spooled: 0
Total Txns restored: 0
Total Txns recovered: 0
Spool Rows read: 0
Total Txns deleted: 0
Total Txns duplicated: 0
Total Txn Lookups: 1131

The following example shows the output for cdr stats rqm --sendq:
RQM Statistics for Queue number: 0 name: trg_send
Transaction Spool Name: trg_send_stxn
Flags: SEND_Q, SPOOLED, PROGRESS_TABLE, NEED_ACK,

SENDQ_MASK, SREP_TABLE

A-180 IBM Informix Enterprise Replication Guide

Txns in queue: 12
Txns in memory: 12
Txns in spool only: 0
Txns spooled: 0
Unspooled bytes: 24960
Size of Data in queue: 24960 Bytes
Real memory in use: 24960 Bytes
Pending Txn Buffers: 0
Pending Txn Data: 0 Bytes
Max Real memory data used: 24960 Bytes
Max Real memory hdrs used: 22080 Bytes
Total data queued: 27560 Bytes
Total Txns queued: 0
Total Txns 14
Total Txns spooled: 0
Total Txns restored: 0
Total Txns recovered: 0
Spool Rows read: 0
Total Txns deleted: 2
Total Txns duplicated: 0
Total Txn Lookups: 28

Related concepts:
“Enterprise Replication Server administrator” on page 3-1

cdr stats recv
The cdr stats recv command displays receiver parallelism statistics and latency
statistics by source node.

Syntax

►► cdr stats recv
(1)

Connect Option

►◄

Notes:

1 See “Connect Option” on page A-3.

Usage

The cdr stats recv command displays the parallelism statistics for the receiver,
including transaction count, number of pending and active transactions, the
maximum that have been pending and active, the average number of pending and
active transactions, and the commit rate. Totals and averages are calculated for
pending and active transactions for the servers listed.

The Statistics by Source report shows the breakdown of transactions (number of
inserts, updates, and deletes) and the latest source commit time and target apply
time per server. The replication latency is the difference between the time when the
transaction was committed on the source server and the time when the same
transaction is applied on the target.

If the Connect option is specified, Enterprise Replication connects to the specified
remote server and retrieved the statistics from it.

Examples

The following output is an example of the cdr stats recv command:

Appendix A. The cdr utility A-181

cdr stats recv

Receive Parallelism Statistics
Server Tot.Txn. Pending Active MaxPnd MaxAct AvgPnd AvgAct CommitRt

144 11 0 0 3 2 1.27 1.36 0.01

Tot Pending:0 Tot Active:0 Avg Pending:0.00 Avg Active:0.00

Avg Commit Rate:0.01

Statistics by Source

Server Repl Txn Ins Del Upd Last Target Apply Last Source Commit
144 9371650 11 0 0 220 2005/03/30 09:36:25 2005/03/30 09:36:25

Related concepts:
“Enterprise Replication Server administrator” on page 3-1

cdr stats check
The cdr stats check command displays the progress of a consistency check that
specified a progress report task name.

►► cdr stats check
(1)

Connect Option
--repeat=time

►

►
--verbose --delete=task_name

▼ task_name ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

task_name The name of the
progress report task to
display.

Must be an existing named
task.

“Long
Identifiers” on
page A-3

time The number of seconds
between progress
reports.

Must be a positive integer.

The following table describes the options to the cdr stats check command.

Long Form Short Form Meaning

--delete= -d Specifies to delete the specified named task
information from the replcheck_stat and
replcheck_stat_node tables.

--repeat= -r Specifies to repeat the progress report every specified
interval of seconds.

--verbose -v Specifies that the consistency report shows specific
values that are inconsistent instead of a summary of
inconsistent rows.

A-182 IBM Informix Enterprise Replication Guide

Usage

Use the cdr stats check command to display the progress of a consistency check
operation while the cdr check replicate or cdr check replicateset command is
running. You must have specified a task name in the cdr check replicate or cdr
check replicateset command. You must be connected to the same server on which
the cdr check replicate or cdr check replicateset command was run when you run
the cdr stats check command.

The cdr stats check command displays a snapshot of the consistency report and an
estimate of the time remaining to complete the consistency check. If you use the
--repeat option, the consistency report is displayed every specified time interval.

You can view the progress of previously run consistency checks that have named
tasks, if those progress report tasks have not been overwritten or deleted.

If you want to see the detailed progress report, include the --verbose option. The
format of the verbose progress report is the same as the verbose consistency report
generated by the cdr check replicate and cdr check replicateset commands.

If you want to delete a named task, use the --delete option.

Examples

The following example checks a replicate named repl1, creates a task named tst,
and then displays a progress report every two seconds.
cdr check repl –r repl1 –m cdr1 –a --name=tst
cdr stats check –-repeat=2 tst

The progress report from the previous command might look like this:
Job tst
repl1 Started Jan 17 16:10:59
*********+----+----+----+----+----+----+----+----+ Remaining 0:00:08

Job tst
repl1 Started Jan 17 16:10:59
**********************--+----+----+----+----+----+ Remaining 0:00:04

Job tst
repl1 Started Jan 17 16:10:59
***********************************----+----+----+ Remaining 0:00:02

Job tst
repl1 Started Jan 17 16:10:59
***+ Remaining 0:00:01

Job tst
repl1 Completed

Started Jan 17 16:10:59, Elapsed Time 0:00:07

The following example checks and repairs the replicate, creates a task named tst,
and displays a verbose progress report every four seconds.
cdr check repl –r repl1 –m cdr1 –a --name=tst --repair
cdr stats check –-repeat=4 –-verbose tst

Appendix A. The cdr utility A-183

The progress report from the previous command might look like this:
Job tst
repl1 Started Jan 17 16:34:42
*******--+----+----+----+----+----+----+----+----+ Remaining 0:00:12

Node Total Extra Missing Mismatch Child Processed
---------------- --------- --------- --------- --------- --------- ---------
cdr1 9000 0 0 0 0 0
cdr2 9000 0 0 99 0 99
cdr3 9000 0 0 0 0 0

Job tst
repl1 Started Jan 17 16:34:42
*********************************-+----+----+----+ Remaining 0:00:02

Node Total Extra Missing Mismatch Child Processed
---------------- --------- --------- --------- --------- --------- ---------
cdr1 43000 0 0 0 0 0
cdr2 43000 0 0 99 0 99
cdr3 43000 0 0 0 0 0

Job tst
repl1 Started Jan 17 16:34:42
***+ Remaining 0:00:01

Node Total Extra Missing Mismatch Child Processed
---------------- --------- --------- --------- --------- --------- ---------
cdr1 39000 0 0 0 0 99
cdr2 38901 0 99 99 0 99
cdr3 39000 0 0 0 0 0

Job tst
repl1 Completed

Started Jan 17 16:34:42, Elapsed Time 0:00:11

Node Total Extra Missing Mismatch Child Processed
---------------- --------- --------- --------- --------- --------- ---------
cdr1 64099 0 0 0 0 99
cdr2 64000 0 99 99 0 99
cdr3 64099 0 0 0 0 0

The following example checks a replicate set named set, creates a task named tst,
and displays a progress report every five seconds:
cdr check replset –s set –m cdr1 –a –n tst
cdr stats check –r 5 tst

The progress report from the previous command might look like this:
Job tst
repl3 Started Jan 17 16:41:19
*****----+----+----+----+----+----+----+----+----+ Remaining 0:00:16
repl2 Pending
repl1 Pending
Estimated time remaining for job tst 0:00:52

Job tst
repl3 Started Jan 17 16:41:19
***************************************+----+----+ Remaining 0:00:01
repl2 Pending
repl1 Pending
Estimated time remaining for job tst 0:00:19

A-184 IBM Informix Enterprise Replication Guide

Job tst
repl3 Completed

Started Jan 17 16:41:19, Elapsed Time 0:00:08
repl2 Started Jan 17 16:41:27
*******************+----+----+----+----+----+----+ Remaining 0:00:06
repl1 Pending
Estimated time remaining for job tst 0:00:13

Job tst
repl3 Completed

Started Jan 17 16:41:19, Elapsed Time 0:00:08
repl2 Completed

Started Jan 17 16:41:27, Elapsed Time 0:00:08
repl1 Started Jan 17 16:41:35
----+----+----+----+----+----+----+----+----+----+ Remaining 0:01:08
Estimated time remaining for job tst 0:01:08

Job tst
repl3 Completed

Started Jan 17 16:41:19, Elapsed Time 0:00:08
repl2 Completed

Started Jan 17 16:41:27, Elapsed Time 0:00:08
repl1 Started Jan 17 16:41:35
*********************************-+----+----+----+ Remaining 0:00:02
Estimated time remaining for job tst 0:00:02

Job tst
repl3 Completed

Started Jan 17 16:41:19, Elapsed Time 0:00:08
repl2 Completed

Started Jan 17 16:41:27, Elapsed Time 0:00:08
repl1 Completed

Started Jan 17 16:41:35, Elapsed Time 0:00:11
Run time for job tst 0:00:27

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Checking Consistency and Repairing Inconsistent Rows” on page 11-16
Related reference:
“The replcheck_stat Table” on page F-1
“The replcheck_stat_node Table” on page F-2
“cdr check replicate” on page A-50
“cdr check replicateset” on page A-61

cdr stats sync
The cdr stats sync command displays the progress of a synchronization operation
that specified a progress report task name.

►► cdr stats sync
(1)

Connect Option
--repeat=time

►

Appendix A. The cdr utility A-185

►
--verbose --delete=task_name

▼ task_name ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

task_name The name of the
progress report task to
display.

Must be an existing named
task.

“Long
Identifiers” on
page A-3

time The number of seconds
between progress
reports.

Must be a positive integer.

The following table describes the options to the cdr stats sync command.

Long Form Short Form Meaning

--delete= -d Specifies to delete the specified named task
information from the replcheck_stat and
replcheck_stat_node tables.

--repeat= -r Specifies to repeat the progress report every specified
interval of seconds.

--verbose -v Specifies that the consistency report shows specific
values that are inconsistent instead of a summary of
inconsistent rows.

Usage

Use the cdr stats sync command to display the progress of a synchronization
operation (cdr sync replicate or cdr sync replicateset). You must be connected to
the same server on which the cdr sync replicate or cdr sync replicateset command
was run when you run the cdr stats sync command. The cdr stats sync command
displays a snapshot of the progress report and an estimate of the time remaining to
complete the synchronization operation. If you use the --repeat option, the
progress report is displayed every specified time interval.

You can view the progress of previously run synchronization operations that have
named tasks, if those progress report tasks have not been overwritten or deleted.

If you want to see the detailed progress report, include the --verbose option. The
format of the verbose progress report is the same as the verbose consistency report
generated by the cdr check replicate and cdr check replicateset commands.

If you want to delete a named task, use the --delete option.

Examples

The following example synchronizes a replicate named repl1, creates a task named
tst, and then displays a progress report every two seconds.
cdr sync repl –r repl1 –m cdr1 –a --name=tst
cdr stats sync –-repeat=2 tst

A-186 IBM Informix Enterprise Replication Guide

The progress report from the previous command might look like this:
Job tst
repl1 Started Jan 17 16:10:59
*********+----+----+----+----+----+----+----+----+ Remaining 0:00:08

Job tst
repl1 Started Jan 17 16:10:59
**********************--+----+----+----+----+----+ Remaining 0:00:04

Job tst
repl1 Started Jan 17 16:10:59
***********************************----+----+----+ Remaining 0:00:02

Job tst
repl1 Started Jan 17 16:10:59
***+ Remaining 0:00:01

Job tst
repl1 Completed

Started Jan 17 16:10:59, Elapsed Time 0:00:07

The following example synchronizes the replicate, creates a task named tst, and
displays a verbose progress report every four seconds.
cdr sync repl –r repl1 –m cdr1 –a --name=tst
cdr stats sync –-repeat=4 –-verbose tst

The progress report from the previous command might look like this:
Job tst
repl1 Started Jan 17 16:34:42
*******--+----+----+----+----+----+----+----+----+ Remaining 0:00:12

Node Total Extra Missing Mismatch Child Processed
---------------- --------- --------- --------- --------- --------- ---------
cdr1 9000 0 0 0 0 0
cdr2 9000 0 0 99 0 99
cdr3 9000 0 0 0 0 0

Job tst
repl1 Started Jan 17 16:34:42
*********************************-+----+----+----+ Remaining 0:00:02

Node Total Extra Missing Mismatch Child Processed
---------------- --------- --------- --------- --------- --------- ---------
cdr1 43000 0 0 0 0 0
cdr2 43000 0 0 99 0 99
cdr3 43000 0 0 0 0 0

Job tst
repl1 Started Jan 17 16:34:42
***+ Remaining 0:00:01

Node Total Extra Missing Mismatch Child Processed
---------------- --------- --------- --------- --------- --------- ---------
cdr1 39000 0 0 0 0 99
cdr2 38901 0 99 99 0 99
cdr3 39000 0 0 0 0 0

Job tst

Appendix A. The cdr utility A-187

repl1 Completed
Started Jan 17 16:34:42, Elapsed Time 0:00:11

Node Total Extra Missing Mismatch Child Processed
---------------- --------- --------- --------- --------- --------- ---------
cdr1 64099 0 0 0 0 99
cdr2 64000 0 99 99 0 99
cdr3 64099 0 0 0 0 0

The following example synchronizes a replicate set named set, creates a task
named tst, and displays a progress report every five seconds:
cdr sync replset –s set –m cdr1 –a –n tst
cdr stats sync –r 5 tst

The progress report from the previous command might look like this:
Job tst
repl3 Started Jan 17 16:41:19
*****----+----+----+----+----+----+----+----+----+ Remaining 0:00:16
repl2 Pending
repl1 Pending
Estimated time remaining for job tst 0:00:52

Job tst
repl3 Started Jan 17 16:41:19
***************************************+----+----+ Remaining 0:00:01
repl2 Pending
repl1 Pending
Estimated time remaining for job tst 0:00:19

Job tst
repl3 Completed

Started Jan 17 16:41:19, Elapsed Time 0:00:08
repl2 Started Jan 17 16:41:27
*******************+----+----+----+----+----+----+ Remaining 0:00:06
repl1 Pending
Estimated time remaining for job tst 0:00:13

Job tst
repl3 Completed

Started Jan 17 16:41:19, Elapsed Time 0:00:08
repl2 Completed

Started Jan 17 16:41:27, Elapsed Time 0:00:08
repl1 Started Jan 17 16:41:35
----+----+----+----+----+----+----+----+----+----+ Remaining 0:01:08
Estimated time remaining for job tst 0:01:08

Job tst
repl3 Completed

Started Jan 17 16:41:19, Elapsed Time 0:00:08
repl2 Completed

Started Jan 17 16:41:27, Elapsed Time 0:00:08
repl1 Started Jan 17 16:41:35
*********************************-+----+----+----+ Remaining 0:00:02
Estimated time remaining for job tst 0:00:02

Job tst
repl3 Completed

Started Jan 17 16:41:19, Elapsed Time 0:00:08
repl2 Completed

A-188 IBM Informix Enterprise Replication Guide

Started Jan 17 16:41:27, Elapsed Time 0:00:08
repl1 Completed

Started Jan 17 16:41:35, Elapsed Time 0:00:11
Run time for job tst 0:00:27

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Performing Direct Synchronization” on page 11-15
Related reference:
“The replcheck_stat Table” on page F-1
“The replcheck_stat_node Table” on page F-2
“cdr sync replicate” on page A-200
“cdr sync replicateset” on page A-204

cdr stop
The cdr stop command stops replication on the server to which you are connected
without shutting down the database server.

Syntax

►►
(1)

cdr stop Connect Option ►◄

Notes:

1 See “Connect Option” on page A-3.

Usage

Generally, to stop replication on a server, you should shut down the database
server. Under rare conditions, you might want to temporarily stop the Enterprise
Replication processing without shutting down the database server.

The cdr stop command shuts down replication in an orderly manner; however no
data to be replicated is captured. When the shutdown of Enterprise Replication is
complete, the message CDR shutdown complete appears in the database server log
file.

Stopping replication has the following effects:
v There is no connection between the stopped server and active replication

servers.
v Transactions on the stopped server are not captured for replication. However,

after restarting replication, transaction capture restarts at the replay position. If
replication is stopped for long enough that the replay position is overwritten,
you must restart replication with the cdr cleanstart command. If the
CDR_LOG_LAG_ACTION configuration parameter is set to logstage, logs are
staged to protect the replay position.

v Transactions on active replication servers are queued for the stopped server, but
there is the possibility of filling up the send queues.

v Control messages on active replication servers are queued for the stopped server.
v The only Enterprise Replication commands you can run on the stopped server

are cdr start, cdr cleanstart, and cdr delete server with the --force option.

Appendix A. The cdr utility A-189

To ensure consistency, prevent database update activity while Enterprise
Replication is stopped. Replication threads remain stopped until you issue a cdr
start command. Shutting down and restarting the stopped database server does not
restart replication.

If you plan to stop replication for a long period of time and your replicates use
time stamp or delete wins conflict resolution rules, consider using the cdr disable
server command instead of the cdr stop command.

When you run the cdr stop command, event alarms with class IDs of 50 and 71 are
generated, if those event alarms are enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Return Codes

0 The command was successful.

5 Enterprise Replication cannot connect to the specified server.

48 There is not enough memory to perform the operation.

62 Enterprise Replication is not active.

93 Enterprise Replication is in the process of starting.

94 Enterprise Replication is already in the process of stopping.

Examples

The following example stops Enterprise Replication processing on database server
paris. Processing does not resume until a cdr start command restarts it:
cdr stop -c paris

Related concepts:
“Resynchronizing Data among Replication Servers” on page 11-14
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Temporarily stopping replication on a server” on page 11-3
Related reference:
“cdr start” on page A-168
“Enterprise Replication Event Alarms” on page 12-21

cdr stop qod
The cdr stop qod command stops quality of data (QOD) monitoring for replication
servers.

Syntax

►► cdr stop qod
(1)

Connect Option

►◄

Notes:

1 See “Connect Option” on page A-3.

A-190 IBM Informix Enterprise Replication Guide

Usage

Use the cdr stop qod command to stop monitoring quality of data for the
replication servers.

The cdr stop qod command must be run on the master server defined by the cdr
define qod command.

You can run this command from within an SQL statement by using the SQL
administration API.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, the following error code is returned: 217.

For information on this error code, see “Return Codes for the cdr Utility” on page
A-8.

Example 1: Stopping quality of data monitoring from a master
server

The following example stops quality of data monitoring:
cdr stop qod

This command must be run on the master server that was defined by the cdr
define qod command.

Example 2: Connecting to a master server, and then stopping
quality of data monitoring

For the following example, server_1 was defined as the master server by the cdr
define qod command. The following example connects to server_1, and then stops
quality of data monitoring:
cdr stop qod -c server_1

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr define qod” on page A-74
“cdr start qod” on page A-169
“cdr reset qod” on page A-162
Related information:
SLA Connection Manager configuration parameter

cdr stop replicate
The cdr stop replicate command stops the capture, transmittal, and reception of
transactions for replication.

Syntax

Appendix A. The cdr utility A-191

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1457.htm

►► cdr stop replicate
(1)

Connect Option

repl_name ►

► ▼

at_server_group
►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

repl_name Name of the new
replicate.

The replicate must be
active and not in an
exclusive replicate set.

“Long
Identifiers” on
page A-3

at_server_group List of database server
groups on which to stop
the replicate.

The database server
groups must be defined
for Enterprise Replication.

Usage

The cdr stop replicate command changes the state of the replicate repl_name to
inactive (no replicated data is captured, sent or received) on the replication servers
in the specified at_server_group list. In addition, this command deletes any data in
the send queue for the stopped replicate. You cannot stop replicates that have no
participants.

If you omit the at_server_group list, the replicate enters the inactive state on all
database servers participating in the replicate and all send queues for the replicate
are deleted.

If a replicate belongs to an exclusive replicate set, you cannot run cdr stop
replicate to stop that individual replicate. You must use cdr stop replicateset to
stop all replicates in the exclusive replicate set.

If you run this command while direct synchronization or consistency checking
with repair is in progress, that repair process will stop. (Consistency checking
continues; only the repair stops.) Direct synchronization and consistency checking
repair cannot be resumed; you must rerun cdr sync replicate or cdr check
replicate command with the --repair option.

When you run the cdr stop replicate command, an event alarm with a class ID of
61 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following command connects to the database server lake and stops the
replicate aRepl on server groups g_server1 and g_server2:
cdr sto rep -c lake aRepl g_server1 g_server2

A-192 IBM Informix Enterprise Replication Guide

Related concepts:
“Resynchronizing Data among Replication Servers” on page 11-14
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr change replicate” on page A-39
“cdr define replicate” on page A-77
“cdr delete replicate” on page A-105
“cdr list replicate” on page A-125
“cdr modify replicate” on page A-140
“cdr resume replicate” on page A-164
“cdr start replicate” on page A-170
“cdr suspend replicate” on page A-194
“Enterprise Replication Event Alarms” on page 12-21

cdr stop replicateset
The cdr stop replicateset command stops capture and transmittal transactions for
all the replicates in a replicate set.

Syntax

►► cdr stop replicateset
(1)

Connect Option

repl_set ►

► ▼

server_group
►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

repl_set Name of replicate set to
stop.

The replicate set must exist “Long
Identifiers” on
page A-3

server_group Name of database server
group on which to stop the
replicate group.

The database server groups
must be defined for
Enterprise Replication.

Usage

The cdr stop replicateset command causes all replicates in the replicate set repl_set
to enter the inactive state (no capture, no send) on the database servers in the
server_group list.

If the server_group list is omitted, the replicate set repl_set enters the inactive state
for all database servers participating in the replicate set.

Appendix A. The cdr utility A-193

If not all the replicates in the non-exclusive replicate set are active, the cdr stop
replicateset command displays a warning and only stops the replicates that are
currently active.

If you run this command while direct synchronization or consistency checking
with repair is in progress, that repair process will stop. (Consistency checking
continues; only the repair stops.) Direct synchronization and consistency checking
repair cannot be resumed; you must rerun cdr sync replicate or cdr check
replicate command.

When you run the cdr stop replicateset command, an event alarm with a class ID
of 62 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example connects to the database server paris and stops the
replicate set accounts_set on server groups g_utah and g_iowa:
cdr sto replset --connect=paris accounts_set g_utah g_iowa

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr change replicateset” on page A-42
“cdr define replicateset” on page A-87
“cdr delete replicateset” on page A-106
“cdr list replicateset” on page A-130
“cdr modify replicateset” on page A-145
“cdr resume replicateset” on page A-165
“cdr start replicateset” on page A-173
“cdr define replicate” on page A-77
“cdr suspend replicateset” on page A-195
“Enterprise Replication Event Alarms” on page 12-21

cdr suspend replicate
The cdr suspend replicate command suspends delivery of replication data.

Syntax

►► cdr suspend replicate
(1)

Connect Option

▼ repl_name ►◄

Notes:

1 See “Connect Option” on page A-3.

A-194 IBM Informix Enterprise Replication Guide

Element Purpose Restrictions Syntax

repl_name Name of the replicate. The replicate must be
active.

“Long
Identifiers” on
page A-3

Usage

The cdr suspend replicate command causes the replicate repl_name to enter the
suspend state (capture, no send) for all participants.

Attention: When a replicate is suspended, Enterprise Replication holds the
replication data in the send queue until the replicate is resumed. If a large amount
of data is generated for the replicate while it is suspended, the send queue space
can fill, causing data to be lost. Enterprise Replication does not synchronize
transactions if a replicate is suspended. For example, a transaction that updates
tables X and Y will be split if replication for table X is suspended.

If a replicate belongs to an exclusive replicate set, you cannot run cdr suspend
replicate to suspend that individual replicate. You must use cdr suspend
replicateset to suspend all replicates in the exclusive replicate set.

When you run the cdr suspend replicate command, an event alarm with a class ID
of 55 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example connects to the database server stan and suspends the
replicate house:
cdr sus repl --connect=stan house

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr change replicate” on page A-39
“cdr define replicate” on page A-77
“cdr delete replicate” on page A-105
“cdr list replicate” on page A-125
“cdr modify replicate” on page A-140
“cdr resume replicate” on page A-164
“cdr start replicate” on page A-170
“cdr stop replicate” on page A-191
“Enterprise Replication Event Alarms” on page 12-21
“cdr suspend replicateset”

cdr suspend replicateset
The cdr suspend replicateset command suspends delivery of replication data for
all the replicates in a replicate set.

Appendix A. The cdr utility A-195

Syntax

►► cdr suspend replicateset
(1)

Connect Option

▼ repl_set ►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

repl_set Name of replicate set to
suspend.

The replicate set must exist. “Long
Identifiers” on
page A-3

Usage

The cdr suspend replicateset command causes all the replicates in the replicate set
repl_set to enter the suspend state. Information is captured, but no data is sent for
any replicate in the set. The data is queued to be sent when the set is resumed.

Attention: When a replicate set is suspended, Enterprise Replication holds the
replication data in the send queue until the set is resumed. If a large amount of
data is generated for the replicates in the set while it is suspended, the send queue
space can fill, causing data to be lost. Enterprise Replication does not synchronize
transactions if a replicate in a replicate set is suspended. For example, a transaction
that updates tables X and Y will be split if replication for table X is suspended.

If not all the replicates in the non-exclusive replicate set are active, the cdr suspend
replicateset command displays a warning and only suspends the replicates that are
currently active.

When you run the cdr suspend replicateset command, an event alarm with a class
ID of 56 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example connects to the default database server specified by
$INFORMIXSERVER and suspends the replicate set accounts_set:
cdr sus replset account_set

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr change replicateset” on page A-42
“cdr define replicateset” on page A-87
“cdr delete replicateset” on page A-106
“cdr list replicateset” on page A-130
“cdr modify replicateset” on page A-145

A-196 IBM Informix Enterprise Replication Guide

“cdr resume replicateset” on page A-165
“cdr start replicateset” on page A-173
“cdr stop replicateset” on page A-193
“cdr define replicate” on page A-77
“Enterprise Replication Event Alarms” on page 12-21
“cdr suspend replicate” on page A-194

cdr suspend server
The cdr suspend server command suspends the delivery of replication data to a
database server from either a specified list of database servers or from all database
servers in the domain.

Syntax

►► cdr suspend server
(1)

Connect Option

to_server_group ►

► ▼

from_server_group
►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions

to_server_group Name of database server
group to which to suspend
delivery of replication data.

The database server group must
be currently active in Enterprise
Replication.

from_server_group Name of the database server
group from which to stop
sending data to
to_server_group.

The database server group must
be currently active in Enterprise
Replication.

Usage

The cdr suspend server command suspends delivery of replication data to the
to_server_group database server from the database servers included in the
from_server_group list. If the from_server_group list is omitted, the command
suspends replication of data from all database servers participating in the
replication domain to the to_server_group.

Suspending replication has the following effects:
v The connections between the suspended server and active replication servers

remain active.
v Transactions on the suspended replication server are sent to the active

replication servers.
v Transactions on active replication servers are queued for the suspended

replication server.

Appendix A. The cdr utility A-197

v Control messages on active replication servers are sent to the suspended
replication server.

v Control messages on the suspended replication server are sent to the active
replication servers.

To restart replication on a suspended replication server, run the cdr resume server
command. Shutting down and restarting the suspended database server does not
resume replication.

When you run the cdr suspend server command, an event alarm with a class ID of
51 is generated, if that event alarm is enabled.

You can run this command from within an SQL statement by using the SQL
administration API.

Examples

The following example connects to the default server (the one specified by the
INFORMIXSERVER environment variable) and suspends replication of data to the
server g_iowa from the servers g_ohio and g_utah:
cdr sus serv g_iowa g_ohio g_utah

Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr connect server” on page A-72
“cdr define server” on page A-90
“cdr delete server” on page A-108
“cdr disconnect server” on page A-115
“cdr list server” on page A-131
“cdr modify server” on page A-146
“cdr resume server” on page A-167
“Enterprise Replication Event Alarms” on page 12-21

cdr swap shadow
The cdr swap shadow command switches a replicate with its shadow replicate
during manual remastering.

Syntax

►► cdr swap shadow
(1)

Connect Option

--primaryname=repl_name ►

► --primaryid=repl_ID --shadowname=shadow_name --shadowid=shadow_ID ►◄

Notes:

1 See “Connect Option” on page A-3.

A-198 IBM Informix Enterprise Replication Guide

Element Purpose Restrictions Syntax

repl_name Name of the primary
replicate.

The primary replicate
participant attributes state,
type (P or R), and table
owner (O or I) must match
the shadow replicate
participant attributes.

“Long
Identifiers” on
page A-3

repl_ID Internal Enterprise
Replication identification
code for the primary
replicate.

shadow_name Name of the shadow
replicate.

The shadow replicate state
must match the primary
replicate state. Shadow
replicate participants must
match the primary replicate
participants.

“Long
Identifiers” on
page A-3

shadow_ID Internal Enterprise
Replication identification
code for the shadow
replicate.

The following table describes the cdr swap shadow options.

Long Form Short Form Meaning

--primaryname= -p Specifies the name of the primary replicate.

--primaryid= -P Specifies the ID of the primary replicate.

--shadowname= -s Specifies the name of the shadow replicate.

--shadowid= -S Specifies the ID of the shadow replicate.

Usage

Use the cdr swap shadow command to switch a replicate with its shadow replicate
as the last step in manually remastering a replicate that was created with the
--name=n option. You create a shadow replicate using the cdr define replicate
command with the --mirrors option.

Use the onstat -g cat repls command to obtain the repl_ID and shadow_ID.
Alternatively, you can query the syscdrrepl view in the sysmaster database.

You can run this command from within an SQL statement by using the SQL
administration API.
Related concepts:
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Remastering replicates without name verification” on page 11-29
“Enabling code set conversion between replicates” on page 8-13
Related reference:
“cdr alter” on page A-30
“cdr define replicate” on page A-77
“cdr list replicate” on page A-125

Appendix A. The cdr utility A-199

“Participant and participant modifier” on page A-4
“onstat -g rep: Prints the schedule manager queue” on page E-17

cdr sync replicate
The cdr sync replicate command synchronizes data among replication servers to
repair inconsistent data within a replicate.

Syntax

►► cdr sync replicate
(1)

Connect Option

--master=data_server ►

► --repl=repl_name ▼ target_server
--all --name=task_name

►

►
delete

--extratargetrows= keep
merge

off
--firetrigger= on

follow

►

►
--memadjust=size K

M
--background --excludeTimeSeries

►

►
--ignoreHiddenTSElements

►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

data_server Name of the database
server to use as the
reference copy of the
data.

Must be the name of an
existing database server
group in SQLHOSTS.

“Long
Identifiers” on
page A-3

repl_name Name of the replicate to
synchronize.

“Long
Identifiers” on
page A-3

sizeK or sizeM Size, in either kilobytes
(K) or megabytes (M), of
the send queue during
synchronization.

Must be a positive integer
and must not be greater
than the amount of
available memory.

A-200 IBM Informix Enterprise Replication Guide

Element Purpose Restrictions Syntax

target_server Name of a database
server group on which
to perform
synchronization.

Must be the name of an
existing database server
group in SQLHOSTS.

“Long
Identifiers” on
page A-3

task_name The name of the
progress report task.

If you use an existing task
name, the information for
that task is overwritten.

Maximum name length is
127 bytes.

“Long
Identifiers” on
page A-3

The following table describes the cdr sync replicate options.

Long Form
Short
Form Meaning

--all -a Specifies that all servers defined for the
replicate are checked.

--background -B Specifies that the operation is run in the
background as an SQL administration API
command.

The command and its result are stored in the
command_history table in the sysadmin
database, under the name that is specified by
the --name= option, or the time stamp for the
command if --name= is not specified.

--excludeTimeSeries Specifies to prevent the checking of time
series data.

--extratargetrows= -e Specifies how to handle rows that are found
on the target servers that are not present on
the server from which the data is being
copied (data_server):

v delete: (default) remove rows and
dependent rows, based on referential
integrity constraints, from the target servers

v keep: retain rows on the target servers

v merge: retain rows on the target servers
and replicate them to the data source
server. You cannot use this option for
replicates that include TimeSeries columns.

--firetrigger= -T Specifies how to handle triggers at the target
servers while data is synchronizing:

v off: (default) do not fire triggers at target
servers during synchronization

v on: always fire triggers at the target servers
even if the replicate definition does not
have the --firetrigger option

v follow: fire triggers at target servers only if
the replicate definition has the --firetrigger
option

--ignoreHiddenTSElements Specifies to avoid checking time series
elements that are marked as hidden.

Appendix A. The cdr utility A-201

Long Form
Short
Form Meaning

--master= -m Specifies the database server to use as the
reference copy of the data.

--memadjust= -J Increases the size of the send queue during
synchronization to the number of kilobytes or
megabytes specified by the size element.

--name= -n Specifies that the progress of this command
can be monitored. Information about the
operation is stored under the specified
progress report task name on the server on
which the command was run.

--repl= -r Specifies the name of the replicate to
synchronize.

Usage

Use the cdr sync replicate command to synchronize data between multiple
database servers for a specific replicate. This command performs direct
synchronization as a foreground process.

If you run this command as a DBSA instead of as user informix, you must have
INSERT, UPDATE, and DELETE permission on the replicated tables on all the
replication servers in the domain.

The size of the send queue is specified by the value of the CDR_QUEUEMEM
configuration parameter. You can increase the amount of memory that the send
queue can use during this synchronization operation by using the --memadjust
option to specify the size of the send queue.

If you want to monitor the progress of the synchronization operation, include the
--name option and specify a name for the progress report task. Then run the cdr
stats sync command and specify the progress report task name.

You can run a synchronization operation as a background operation as an SQL
administration API command if you include the --background option. This option
is useful if you want to schedule regular synchronization operations with the
Scheduler. If you run a synchronization operation in the background, you should
provide a name for the progress report task by using the --name option so that you
can monitor the operation with the cdr stats sync command. You can also view the
command and its results in the command_history table in the sysadmin database.

The cdr sync replicate command performs the following tasks:
1. Creates a shadow replicate with the source server and target server as

participants. The conflict resolution rule for the shadow replicate is always
apply.

2. Performs a sequential scan of the replicated table on the source server.
3. Replicates the all rows in the table from the source server to the target server

by copying the data directly into the send queue, bypassing the logical logs.
Rows are not replicated to participants that include the S option in the
participant definition because those participants only send data.

4. Deletes the shadow replicate.

A-202 IBM Informix Enterprise Replication Guide

You can run this command from within an SQL statement by using the SQL
administration API.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 1, 5,
17, 18, 31, 37, 48, 53, 61, 75, 99, 101, 121, 172, 174, 178, 193, 194, 195, 200, 203, 204.

For information on these error codes, see “Return Codes for the cdr Utility” on
page A-8

Example 1: Synchronize all servers

The following example illustrates synchronizing all replication servers for the
replicate named repl_1:
cdr sync replicate --master=g_serv1 --repl=repl_1\
--all --extratargetrows=keep\
--firetrigger=on

The data on the server group g_serv1 is used as the reference for correcting the
data on the other servers. Line 2 indicates that all servers associated with the
replicate are synchronized and that if the synchronization operation detects rows
on the target servers that do not exist on the reference server (g_serv1), that those
rows should remain on the other servers. Line 3 indicates that triggers should be
fired on the target servers even if the replicate definition does not include the
--firetrigger option.

Example 2: Synchronize three servers

The following example illustrates synchronizing three servers for the replicate
named repl_2:
cdr sync replicate -m g_serv1 -r repl_2\
g_serv2 g_serv3

The reference server is g_serv1 and the target servers are g_serv2 and g_serv3.
Because the --extratargetrows option is not specified, the default behavior occurs:
rows, and any dependent rows that are based on referential integrity constraints,
that are on the target servers but not on the reference server, are deleted.

Example 3: Synchronize in the background and set the send
queue size

The following example illustrates synchronizing in the background and setting the
size of the send queue to 50 MB:
cdr sync replicate --master=g_serv1 --repl=repl_1\
--memadjust=50M --background

Related concepts:
“Preparing for Role Separation (UNIX)” on page 6-22
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Performing Direct Synchronization” on page 11-15
Related reference:

Appendix A. The cdr utility A-203

“cdr check replicate” on page A-50
“cdr stats sync” on page A-185

cdr sync replicateset
ASDF The cdr sync replicateset command synchronizes data among replication
servers to repair inconsistent data within a replicate set.

Syntax

►► cdr sync replicateset
(1)

Connect Option

--master=data_server ►

► --replset=repl_set
--allrepl

▼ target_server
--all --name=task_name

►

►
delete

--extratargetrows= keep
merge

off
--firetrigger= on

follow

►

►
--memadjust=size K

M
--background

►

►
--process=number_processes --excludeTimeSeries

►

►
--ignoreHiddenTSElements

►◄

Notes:

1 See “Connect Option” on page A-3.

Element Purpose Restrictions Syntax

data_server Name of the database server to
use as the reference copy of the
data.

Must be the name of an existing
database server group in
SQLHOSTS.

“Long Identifiers” on
page A-3

number_processes The number of parallel
processes to use for the
command.

The maximum number of processes
Enterprise Replication can use is
equal to the number of replicates in
the replicate set.

A-204 IBM Informix Enterprise Replication Guide

Element Purpose Restrictions Syntax

repl_set Name of the replicate set. Can
be the name of a derived
replicate set.

“Long Identifiers” on
page A-3

seconds The number of seconds to wait
for a disabled replication server
to be recognized as active by
other replication servers in the
domain and how long to wait
for control messages queued at
peer servers to be applied at
newly-enabled server.

Must be an integer value from 0 to
60.

target_server Name of a database server
group to check.

Must be the name of an existing
database server group in
SQLHOSTS.

“Long Identifiers” on
page A-3

task_name The name of the progress report
task.

If you use an existing task name,
the information for that task is
overwritten.

Maximum name length is 127
bytes.

“Long Identifiers” on
page A-3

The following table describes the cdr sync replicateset options.

Long Form Short Form Meaning

--all -a Specifies that all servers defined for the
replicate are checked.

--allrepl -A Specifies that all replicates are
synchronized.

--excludeTimeSeries Specifies to prevent the checking of time
series data.

--extratargetrows= -e Specifies how to handle rows that are
found on the target servers that are not
present on the server from which the data
is being copied (data_server):

v delete: (default) remove rows and
dependent rows, based on referential
integrity constraints, from the target
servers

v keep: retain rows on the target servers

v merge: retain rows on the target servers
and replicate them to the data source
server. You cannot use this option for
replicates that include TimeSeries
columns.

Appendix A. The cdr utility A-205

Long Form Short Form Meaning

--firetrigger= -T Specifies how to handle triggers at the
target servers while data is synchronizing:

v off: (default) do not fire triggers at
target servers during synchronization

v on: always fire triggers at the target
servers even if the replicate definition
does not have the --firetrigger option

v follow: fire triggers at target servers
only if the replicate definition has the
--firetrigger option

--ignoreHiddenTSElements Specifies to avoid checking time series
elements that are marked as hidden.

--master= -m Specifies the database server to use as the
reference copy of the data.

--memadjust= -J Increases the size of the send queue during
synchronization to the number of kilobytes
or megabytes specified by the size element.

--name= -n Specifies that the progress of this
command can be monitored. Information
about the operation is stored under the
specified progress report task name on the
server on which the command was run.

--process= -p Specifies to run the command in parallel,
using the specified number of processes.
At most, Enterprise Replication can use
one process for each replicate in the
replicate set. If you specify more processes
than replicates, the extra processes are not
used.

Not all replicates can be processed in
parallel. For example, if replicates have
referential integrity rules, the replicates
with the parent tables must be processed
before the replicates with the child tables.

--replset -s Specifies the name of the replicate set to
synchronize.

Usage

Use the cdr sync replicateset command to synchronize data between multiple
database servers for a replicate set. This command performs direct synchronization
as a foreground process.

If you run this command as a DBSA instead of as user informix, you must have
INSERT, UPDATE, and DELETE permission on the replicated tables on all the
replication servers in the domain.

The size of the send queue is specified by the value of the CDR_QUEUEMEM
configuration parameter. You can increase the amount of memory that the send
queue can use during this synchronization operation by using the --memadjust
option to specify the size of the send queue.

A-206 IBM Informix Enterprise Replication Guide

You can significantly improve the performance of synchronizing a replicate set by
synchronizing the member replicates in parallel. You specify the number of parallel
processes with the --process option. For best performance, specify the same
number of processes as the number of replicates in the replicate set. However,
replicates with referential integrity constraints cannot be processed in parallel.

If you want to monitor the progress of the synchronization operation, include the
--name option and specify a name for the progress report task. Then run the cdr
stats sync command and specify the progress report task name.

You can run a synchronization operation as a background operation as an SQL
administration API command if you include the --background option. This option
is useful if you want to schedule regular synchronization operations with the
Scheduler. If you run a synchronization operation in the background, you should
provide a name for the progress report task by using the --name option so that you
can monitor the operation with the cdr stats sync command. You can also view the
command and its results in the command_history table in the sysadmin database.

To synchronize all replicates at once, use the --allrepl option.

The cdr sync replicateset command performs the following tasks:
1. Determines the order in which to repair tables if they have referential

relationships.
2. Creates a shadow replicate with the source server and target server as

participants. The conflict resolution rule for the shadow replicate is always
apply.

3. Performs a sequential scan of the replicated table on the source server.
4. Replicates the all rows in the table from the source server to the target server

by copying the data directly into the send queue, bypassing the logical logs.
Rows are not replicated to participants that include the S option in the
participant definition because those participants only send data.

5. Deletes the shadow replicate.
6. Repeats steps 2 through 5 for each replicate in the replicate set.

You can run this command from within an SQL statement by using the SQL
administration API.

Return codes

A return code of 0 indicates that the command was successful.

If the command is not successful, one of the following error codes is returned: 1, 5,
11, 17, 18, 31, 37, 48, 53, 61, 75, 99, 101, 121, 166, 172, 174, 193, 194, 195, 200, 203,
204, 213.

For information on these error codes, see “Return Codes for the cdr Utility” on
page A-8

Example 1: Synchronize all servers

The following example illustrates synchronizing all replication servers for the
replicate set replset_1 using g_serv1 as the reference server:
cdr sync replicateset --master=g_serv1 --replset=replset_1\
--all --extratargetrows=keep

Appendix A. The cdr utility A-207

Line 2 indicates that all servers associated with the replicate set are synchronized
and that if the synchronization process detects rows on the target servers that do
not exist on the reference server (g_serv1), that those rows should remain on the
other servers.

Example 2: Synchronize three servers in parallel

The following example illustrates synchronizing three servers for the replicate set
named replset_2 and using two processes to synchronize each of the two replicates
in the set in parallel:
cdr sync replicateset -m g_serv1 -s replset_2\
g_serv2 g_serv3 --process=2

The reference server is g_serv1 and the target servers are g_serv2 and g_serv3.
Because the --extratargetrows option is not specified, the default behavior occurs:
rows, and any dependent rows that are based on referential integrity constraints,
that are on the target servers but not on the reference server, are deleted.

Example 3: Synchronize in the background and set the send
queue size

The following example illustrates synchronizing in the background and setting the
size of the send queue to 50 MB:
cdr sync replicateset --master=g_serv1 --replset=replset_1\
--memadjust=50M --background

Example 4: Synchronize all replicate sets on a replication server

The following command synchronizes all replicate sets on a replication server
named g_serv2:
cdr sync replicateset --allrepl g_serv2

The replicate set name is not specified because the --allrepl option is used.
Related concepts:
“Preparing for Role Separation (UNIX)” on page 6-22
“Enterprise Replication Server administrator” on page 3-1
Related tasks:
“Altering multiple tables in a replicate set” on page 11-25
“Performing Direct Synchronization” on page 11-15
Related reference:
“cdr check replicateset” on page A-61
“cdr stats sync” on page A-185

cdr -V
The cdr -V command displays the version of Informix that is currently running.

Syntax

►► cdr -V ►◄

A-208 IBM Informix Enterprise Replication Guide

Usage

Use the cdr -V command if you need to obtain the version of the database server,
usually at the request of IBM Software Support.

Examples

The following example shows an example output of the cdr -V command:
IBM Informix Version 11.70.UC1 Software Serial Number RDS#N000000

Related concepts:
“Enterprise Replication Server administrator” on page 3-1

cdr view
The cdr view command shows information about every Enterprise Replication
server in the domain.

Syntax

►► cdr view
(1)

Connect Option

►

► ▼ state
profile --repeat=time
ddr

--logstage
servers
sendq
rcv
apply
nif
ats
ris

ATS and RIS Directory Options

--help

►◄

ATS and RIS Directory Options:

▼ --atsdir
--risdir --verbose

--repair
--quiet --delete

--check

Notes:

1 See “Connect Option” on page A-3.

Appendix A. The cdr utility A-209

Element Purpose Restrictions

time The number of seconds before
the cdr view command is
repeated.

Must be a positive integer.

The following table describes the cdr view subcommands.

Long Form Meaning

apply Show a summary of how data is being applied on each of the
target servers, including the latency of each target server.

ats Show a portion of each ATS file that is in text format.

atsdir Show the names of the files in the ATS directory that are in text
format and optionally run repair operations that are based on
those files.

If you are running this command as a DBSA, you must have
read permission on the ATS files. Permissions on ATS files can be
set with the chown operating system command.

ddr Show the state, key log positions, and the proximity to
transaction blocking for each server in the replication domain.

nif Show information about the network connections between
Enterprise Replication servers, including the number of
transactions that are waiting to be transmitted to target servers.

profile Show a summary of the state, data capture, data apply, errors,
connectivity, queues, and the size of spooling files for every
Enterprise Replication server.

rcv Show information about the receive statistics for each target
server, including the number of transaction failures and the rate
at which transactions are applied.

ris Show a portion of each RIS file that is in text format.

risdir Show the names of the files in the RIS directory that are in text
format and optionally run repair operations that are based on
those files.

If you are running this command as a DBSA, you must have
read permission on the RIS files. Permissions on RIS files can be
set with the chown operating system command.

sendq Show information about the send queues for each Enterprise
Replication server.

servers Show information about the state, connection status to each peer
server, and queue size for each Enterprise Replication server.

state Show the Enterprise Replication state and the state of data
capture, network connections, and data apply for each Enterprise
Replication server.

The following table describes the cdr view options.

Long Form Short Form Meaning

--check -C Check the consistency between the database server and
the ATS or RIS file. Send repair operations to stderr,
but do not perform the repair operations.

A-210 IBM Informix Enterprise Replication Guide

Long Form Short Form Meaning

--delete -d Delete ATS or RIS files after processing them with the
repair operation.

--help -h Show the cdr view command usage.

–logstage -l Show log staging statistics.

--quiet -q Quiet mode. Repair operations are not sent to stderr.

--repair -R Synchronize data based on ATS or RIS files in text
format.

--repeat= -r Repeat the cdr view command after the number of
seconds specified by the time element.

--verbose -v Verbose mode (default). All repair operations are sent
to stderr.

Usage

Use the cdr view command to monitor the Enterprise Replication domain. Each
subcommand results in different output information.

You can choose to show the output of multiple subcommands sequentially by
including them in the same cdr view command. You can choose to automatically
repeat the command by using the --repeat option to specify the seconds in between
commands.

You can repair inconsistencies that are listed in ATS or RIS files on every server by
using the --repair option. Use the --delete option to delete the ATS or RIS files
after the repair is complete.

Tip: Using the --repair option is equivalent to running the cdr repair command.
The --check option is equivalent to the cdr repair --check command.

The cdr view state Command Output

The following example of the output of the cdr view state command shows the
state of Enterprise Replication and each of its main components for every server in
the Enterprise Replication domain.
STATE
Source ER Capture Network Apply

State State State State

cdr1 Active Running Running Running
cdr2 Active Running Running Running
cdr3 Active Running Running Running
cdr4 Active Running Running Running

In this example, Enterprise Replication is active and running normally on all
servers.

Possible values in the ER State column include:

Abort Enterprise Replication is aborting on this server.

Active Enterprise Replication is running normally.

Down Enterprise Replication is stopped.

Appendix A. The cdr utility A-211

Dropped
The attempt to drop the syscdr database failed.

Init Failed
The initial start of Enterprise Replication on this server failed, most likely
because of a problem on the specified global catalog synchronization
server.

Initializing
Enterprise Replication is being defined.

Initial Startup
Enterprise Replication is starting for the first time on this server.

Shutting Down
Enterprise Replication is stopping on this server.

Startup Blocked
Enterprise Replication cannot start because the server was started with the
oninit -D command.

Synchronizing Catalogs
The server is receiving a copy of the syscdr database.

Uninitialized
The server does not have Enterprise Replication defined on it.

Possible values in the Capture State, Network State, and Apply State columns
include:

Running
The Enterprise Replication component is running normally.

Down The Enterprise Replication component is not running.

Uninitialized
The server is not a source server for replication.

The cdr view profile Command Output

The following example of the output of the cdr view profile command shows a
summary of the other cdr view commands and information about the sbspaces
that are designated for spooled transaction data.
ER PROFILE for Node cdr2 ER State Active

DDR - Running SPOOL DISK USAGE
Current 4:16879616 Total 100000
Snoopy 4:16877344 Metadata Free 5025
Replay 4:24 Userdata Free 93193
Pages from Log Lag State 43879

RECVQ
SENDQ Txn In Queue 0

Txn In Queue 0 Txn In Pending List 0
Txn Spooled 0
Acks Pending 0 APPLY - Running

Txn Processed 1838
NETWORK - Running Commit Rate 76.58

Currently connected to 3 out of 3 Avg. Active Apply 1.16
Msg Sent 1841 Fail Rate 0.00
Msg Received 5710 Total Failures 0
Throughput 1436.94 Avg Latency 0.00
Pending Messages 0 Max Latency 0

ATS File Count 0
RIS File Count 0

A-212 IBM Informix Enterprise Replication Guide

In this example, only the output for a single server, cdr2, is shown. The actual
output of the cdr view profile command includes a similar profile for every server.

The DDR section is a summary of the cdr view ddr command.

The SPOOL DISK USAGE section shows the total amount of memory, in bytes, in
the sbspaces that Enterprise Replication uses to store spooled transaction row data,
and the amount of available metadata and user data space.

The SENDQ section is a summary of the cdr view sendq command.

The RECVQ section is a summary of the cdr view rcv command.

The NETWORK section is a summary of the cdr view nif command.

The APPLY section is a summary of the cdr view apply command.

The cdr view ddr Command Output

The following example of the output of the cdr view ddr command shows the
status of log capture.

Server Snoopy Replay Current total log pages to LogLag Cur LogLag
log page log page log page log pages LogLag State State Action

g_bombay 16:133 16:0 16:134 30000 17866 Off dlog
g_delhi 30:490 30:0 30:491 5000 3508 Off logstage

The following example of the output of the cdr view ddr -l command shows the
status of log capture.

Server Disk Space Max allowed Max disk Cur Staged
Usage(%) Space(KB) ever used(KB) log file cnt

g_bombay 0.00 0 0.00 0
g_delhi 0.00 1048576 0.00 0

The columns in the output of the cdr view ddr command provide the following
information:

Server The name of the Enterprise Replication server.

Snoopy log page
The current log ID and position at which transactions are being captured
for replication.

Replay log page
The current log ID and position at which transactions have been applied.
This is the position from which the log would must be replayed to recover
Enterprise Replication if Enterprise Replication or the database server shut
down.

Current® log page
The log page on which replicated transactions are being captured.

total log pages
The total number of log pages on the server.

log pages to LogLag State
The number of log pages that must be used before transaction blocking
occurs.

Appendix A. The cdr utility A-213

LogLag State
The state of DDR log lag: on or off.

Cur LogLag Action
The action being taken to catch up logs.

For more information on interpreting this output, see “onstat -g ddr: Print status of
ER log reader” on page E-6.

The cdr view servers Command Output

The following example of the output of the cdr view servers command shows the
state of the Enterprise Replication servers and their connections to each other.
SERVERS
Server Peer ID State Status Queue Connection Changed

cdr1 cdr1 1 Active Local 0

cdr2 2 Active Connected 0 Apr 15 10:46:16
cdr3 3 Active Connected 0 Apr 15 10:46:16
cdr4 4 Active Connected 0 Apr 15 10:46:15

cdr2 cdr1 1 Active Connected 0 Apr 15 10:46:16
cdr2 2 Active Local 0
cdr3 3 Active Connected 0 Apr 15 10:46:16
cdr4 4 Active Connected 0 Apr 15 10:46:16

cdr3 cdr1 1 Active Connected 0 Apr 15 10:46:16
cdr2 2 Active Connected 0 Apr 15 10:46:16
cdr3 3 Active Local 0
cdr4 4 Active Connected 0 Apr 15 10:46:16

cdr4 cdr1 1 Active Connected 0 Apr 15 10:46:16
cdr2 2 Active Connected 0 Apr 15 10:46:16
cdr3 3 Active Connected 0 Apr 15 10:46:16
cdr4 4 Active Local 0

In this example, each of the four servers is connected to each other.

The output of this command is similar to the output of the cdr list server
command, except that the cdr view server command shows all servers in the
Enterprise Replication domain, not just the servers connected to the one from
which the command is run. For information about the columns in this output, see
“cdr list server” on page A-131.

The cdr view sendq Command Output

The following example of the output of the cdr view sendq command shows
information about the send queue for each server.
RQM SENDQ
Server Trans. Trans. Trans. Data Memory ACKS

in que in mem spooled in queue in use pending

cdr1 594 594 0 49896 49896 0
cdr2 0 0 0 0 0 0
cdr3 0 0 0 0 0 0
cdr4 0 0 0 0 0 0

In this example, only the server cdr1 has transactions in the send queue, all of
which are in memory.

The columns of the cdr view sendq command provide the following information
in addition to the server name:

A-214 IBM Informix Enterprise Replication Guide

Trans. in que
The number of transactions in the send queue.

Trans. in mem
The number of transactions in the send queue that are currently in
memory.

Trans. spooled
The number of transactions in the send queue that have been spooled to
disk.

Data in queue
The number of bytes of data in the send queue, including both in-memory
and spooled transactions.

Memory in use
The number of bytes of data in the send queue that resides in memory.

ACKS pending
The number of acknowledgments that have been received but have not yet
been processed.

The cdr view rcv Command Output

The following example of the output of the cdr view rcv command shows
information about the receive queue for each server.
RCV
Server Received Spooled Memory Pending Waiting

Txn. Txn. In Use Txn. Txn.

cdr1 0 0 0 0 0
cdr2 372 0 871164 372 0
cdr3 220 0 18480 220 0
cdr4 0 0 0 0 0

In this example, the servers cdr2 and cdr3 have transactions in the receive queue,
all of which have been preprocessed and are in the pending state waiting to be
applied.

The columns of the cdr view rcv command provide the following information in
addition to the server name:

Received Txn.
The number of transactions in the receive queue.

Spooled Txn.
The number of transactions in the receive queue that have been spooled to
disk.

Memory In Use
The size, in bytes, of the receive queue.

Pending Txn.
The number of transactions that have been preprocessed but not yet
applied.

Waiting Txn.
The number of acknowledgments waiting to be sent back to the source
server.

Appendix A. The cdr utility A-215

The cdr view apply Command Output

The following example of the output of the cdr view apply command shows how
replicated data is being applied.
APPLY
Server Pl Failure Num Num Apply --Latency-- ATS RIS

Rate Ratio Run Failed Rate Max Avg. # #

cdr1 0 0.000 0 0 0.000 0 0.000 0 0
cdr2 0 0.000 10001 0 0.112 0 0.000 0 0
cdr3 0 0.000 10001 0 0.112 0 0.000 0 0
cdr4 0 0.000 10001 0 0.112 0 0.000 0 0

In this example, the servers cdr2, cdr3, and cdr4 each applied 10 001 transactions.

The columns of the cdr view apply command provide the following information in
addition to the server name:

Pl Rate
Indicates the degree of parallelism used when data is being applied. Zero
indicates the highest possible rate of parallelism.

Failure Ratio
The ratio of the number of times data could not be applied in parallel
because of deadlocks or lock time outs.

Num Run
The number of transactions processed.

Num Failed
The number of failed transactions because of deadlocks or lock time outs.

Apply Rate
The number of transactions that have been applied divided by the amount
of time that replication has been active. The Apply Rate is equal to the
Commit Rate in the cdr view profile command.

Max. Latency
The maximum number of seconds for processing any transaction.

Avg. Latency
The average number of seconds of the lifecycle of a replicated transaction.

ATS # The number of ATS files.

RIS # The number of RIS files.

The cdr view nif Command Output

The following example of the output of the cdr view nif command shows the
status and statistics of connections between servers.
NIF
Source Peer State Messages Messages Messages Transmit

Sent Received Pending Rate

cdr1 cdr2 Connected 24014 372 6 21371.648

cdr3 Connected 24020 17 0 20527.105
cdr4 Connected 24014 23 6 21925.727

cdr2 cdr1 Connected 392 24015 0 21380.879
cdr3 Connected 14 14 0 10.857
cdr4 Connected 14 14 0 11.227

cdr3 cdr1 Connected 17 24021 0 20310.611
cdr2 Connected 14 14 0 10.739

A-216 IBM Informix Enterprise Replication Guide

cdr4 Connected 14 14 0 11.227
cdr4 cdr1 Connected 236 24015 0 21784.225

cdr2 Connected 14 14 0 11.101
cdr3 Connected 14 14 0 11.101

In this example, all servers are connected to each other. The server cdr1 has six
messages that have not yet been sent to server cdr2 and server cdr4.

The columns of the cdr view nif command provide the following information in
addition to the source server name:

Peer The name of the server to which the source server is connected.

State The connection state. Values include:

Connected
The connection is active.

Disconnected
The connection was explicitly disconnected.

Timeout
The connection attempt has timed out, but will be reattempted.

Logic error
The connection disconnected due to an error during message
transmission.

Start error
The connection disconnected due to an error while starting a
thread to receive remote messages.

Admin close
Enterprise Replication was stopped by a user issuing the cdr stop
command.

Connecting
The connection is being established.

Never Connected
The servers have never had an active connection.

Messages Sent
The number of messages sent from the source server to the target server.

Messages Received
The number of messages received by the source server from the target
server.

Messages Pending
The number of messages that the source server must send to the target
server.

Transmit Rate
The total bytes of messages sent and received by the server divided by the
amount of time that Enterprise Replication has been running. Same as the
Throughput field in the cdr view profile command.

The cdr view ats and cdr view ris Command Output

The following example of the output of the cdr view ats command shows that
there are no ATS files in text format.

Appendix A. The cdr utility A-217

ATS for cdr1 - no files

ATS for cdr2 - no files

ATS for cdr3 - no files

ATS for cdr4 - no files

The following example of the cdr view ris command shows two RIS files in text
format.
RIS for cdr1 - no files

RIS for cdr2 - 1 files
Source Txn. Commit Receive

Time Time

cdr1 08-04-15 11:56:13 | 08-04-15 11:56:14
File:ris.cdr2.cdr1.D_4.080415_11:56:14.1

Row:2 / Replicate Id: 262146 / Table: stores_demo@user.customer / DbOp:Update
CDR:6 (Error: Update aborted, row does not exist in target table) / SQL:0 / ISAM:0

RIS for cdr3 - no files

RIS for cdr4 - 1 files
Source Txn. Commit Receive

Time Time

cdr1 08-04-15 11:56:13 | 08-04-15 11:56:14
File:ris.cdr4.cdr1.D_1.080415_11:56:14.1

Row:3 / Replicate Id: 262146 / Table: stores_demo@user.customer / DbOp:Update
CDR:6 (Error: Update aborted, row does not exist in target table) / SQL:0 / ISAM:0

In this example, the servers cdr2 and cdr4 each have one RIS file.

The cdr view atsdir and cdr view risdir Command Output

The cdr view atsdir command and cdr view risdir command outputs have the
same format. The following example of the output of the cdr view risdir command
shows the names of two RIS files.
RISDIR
Server File Size Create

Name Time

cdr2 ris.cdr2.cdr1.D_4.080415_11:56:14.1 465 2008-04-15 11:56:15
cdr4 ris.cdr4.cdr1.D_1.080415_11:56:14.1 475 2008-04-15 11:56:15

In this example, both server cdr2 and server cdr4 have a single RIS file. The Size
column shows the size of the file, in bytes.

Examples

The following command would show information about the send queue and the
network every 10 seconds:
cdr view sendq nif --repeat=10

A-218 IBM Informix Enterprise Replication Guide

The following command can be used in a daemon or script that runs every five
minutes to check all servers for ATS and RIS files, repair inconsistencies, and delete
the processed ATS and RIS files:
cdr view atsdir risdir --repair --delete --repeat=300

Related concepts:
“Failed Transaction (ATS and RIS) Files” on page 12-3
Chapter 12, “Monitor and troubleshooting Enterprise Replication,” on page 12-1
“Preparing for Role Separation (UNIX)” on page 6-22
“Enterprise Replication Server administrator” on page 3-1
Related reference:
“cdr list server” on page A-131
“cdr repair” on page A-160
“onstat -g ddr: Print status of ER log reader” on page E-6

Appendix A. The cdr utility A-219

A-220 IBM Informix Enterprise Replication Guide

Appendix B. Enterprise Replication configuration parameter
and environment variable reference

You can use configuration parameters and environment variables to configure the
behavior of Enterprise Replication.

The database server onconfig configuration file includes the configuration
parameters that affect the behavior of Enterprise Replication. If you use both the
DBSERVERNAME and DBSERVERALIASES configuration parameters, the
DBSERVERNAME configuration parameter must specify the network connection
and not to a shared-memory connection. For information about database server
aliases, see the IBM Informix Administrator's Guide.

Use the CDR_ENV configuration parameter to set the environment variables that
affect the behavior of Enterprise Replication.

You can view the setting of Enterprise Replication configuration parameters and
environment variables with the onstat -g cdr config command. See “onstat -g cdr
config: Print ER settings” on page E-4.
Related concepts:
“Configuring network encryption for replication servers” on page 6-6
Related tasks:
“Dynamically Modifying Configuration Parameters for a Replication Server” on
page 11-1
Related reference:
“Set configuration parameters for replication” on page 6-15

CDR_APPLY Configuration Parameter
Specifies the minimum and maximum number of data sync threads. The value is
updated dynamically as needed.

onconfig.std value
Not in the onconfig.std file.

range of values
Two positive integers that are separated by a comma and that represent the
minimum and maximum number of threads per CPU virtual processor.

Do not reset the CDR_APPLY configuration parameter. Enterprise Replication
automatically allocates data sync threads for each CPU VP based on need.

CDR_AUTO_DISCOVER configuration parameter
Use the CDR_AUTO_DISCOVER configuration parameter to enable connectivity
autoconfiguration for a high-availability cluster or Enterprise Replication domain,
or to autoconfigure replication.

onconfig.std value
CDR_AUTO_DISCOVER 0

default value if you created a server during installation
CDR_AUTO_DISCOVER 1

© Copyright IBM Corp. 1996, 2015 B-1

values

0 = Disable connectivity and Enterprise Replication autoconfiguration.

1 = Enable connectivity and Enterprise Replication autoconfiguration.

takes effect
After you edit your onconfig file and restart the database server.

When you reset the value dynamically in your onconfig file by running the
onmode -wf command.

When you reset the value in memory by running the onmode -wm
command.

After you run the SQL administration API task() or admin() function with
the -wf CDR_AUTO_DISCOVER=value or -wm
CDR_AUTO_DISCOVER=value arguments.

Usage

When the CDR_AUTO_DISCOVER configuration parameter is set to 1, the
following commands are enabled:
v cdr autoconfig serv, which autoconfigures connectivity for servers in a

high-availability cluster or Enterprise Replication domain, and can autoconfigure
replication.

v ifxclone with the --autoconf option, which autoconfigures connectivity
information between a newly added server and the other servers of a
high-availability cluster or Enterprise Replication domain. If you use the
ifxclone utility to create an Enterprise Replication server, the --autoconf option
can autoconfigure replication.

Related tasks:
“Preparing the Network Environment” on page 6-1
Related reference:
“cdr autoconfig serv” on page A-31
Related information:
cdr autoconfig serv argument: Autoconfigure connectivity and replication (SQL
administration API)
The ifxclone utility

CDR_DBSPACE Configuration Parameter
Specifies the dbspace where the syscdr database is created.

onconfig.std value
none

units any valid dbspace

takes effect
When the database server is shut down and restarted or immediately after
the cdr change onconfig command is used

The CDR_DBSPACE configuration parameter specifies the dbspace where the
syscdr database is created.

You can have Enterprise Replication automatically configure disk space from the
storage pool and set the CDR_DBSPACE configuration parameter when defining a

B-2 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_162.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_162.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1093.htm

replication server. If the CDR_DBSPACE configuration parameter is not set and the
database server has a storage pool with sufficient space, the cdr define command
performs the following tasks:
v Creates a new dbspace using one or more new chunks from the storage pool
v Sets the CDR_DBSPACE configuration parameter both in memory and in the

onconfig file to the newly defined dbspace.

For clusters, the cdr define command creates new dbspaces and sets the
CDR_DBSPACE configuration parameters in all secondary database servers, as
well.

Note: A database server's storage pool must have 200 MB of free space for the
dbspace, and chunk sizes of 100 MB or greater for the database server to use
automatic storage provisioning.

CDR_DELAY_PURGE_DTC configuration parameter
Specifies how long to retain rows in delete tables to support the delete wins
conflict resolution rule.

onconfig.std value
0

default value if not present in the onconfig
0

syntax CDR_DELAY_PURGE_DTC timeunit

range of values
The range of values for time are 0 and positive integers.

The range of values for unit are:
v S = seconds (Default)
v M = minutes
v H = hours
v D = days

takes effect
After you edit your onconfig file and restart the database server.

When you reset the value dynamically in your onconfig file by running the
onmode -wf command.

When you reset the value in memory by running the onmode -wm
command.

By default, rows in delete tables are deleted when those rows are no longer
required by the timestamp conflict resolution rule. If you want to perform time
stamp repair and your replicates use the delete wins conflict resolution rule, set the
CDR_DELAY_PURGE_DTC configuration parameter to the maximum age of
modifications to rows that are being actively updated. The longer you retain rows
in delete tables, the more accurate time stamp repairs are, but the more disk space
the delete tables consume.

Tip: Right before you enable a disabled server, dynamically update the
CDR_DELAY_PURGE_DTC configuration parameter to set it to a value slightly
greater than the time that the server was disabled plus the amount of time a repair
takes.
Related concepts:

Appendix B. Enterprise Replication configuration parameter and environment variable reference B-3

“Repair inconsistencies by time stamp” on page 11-20
“Delete wins conflict resolution rule” on page 5-12
Related information:
onmode -wf, -wm: Dynamically change certain configuration parameters

CDR_DSLOCKWAIT Configuration Parameter
Specifies the number of seconds the data sync component waits for the database
locks to be released.

onconfig.std value
5

units seconds

takes effect
When the database server is shut down and restarted or immediately after
the cdr change onconfig command is used

The CDR_DSLOCKWAIT configuration parameter specifies the number of seconds
the data sync component waits for database locks to be released. The
CDR_DSLOCKWAIT parameter behaves similarly to the SET LOCK MODE
statement. Although the SET LOCK MODE is set by the end user application,
CDR_DSLOCKWAIT is used by Enterprise Replication while applying data at the
target database. This parameter is useful in conditions where different sources
require locks on the replicated table. These sources could be a replicated
transaction from another server or a local application operating on that table.

Transactions that receive updates and deletes from another server in the replicate
can abort because of locking problems. If you experience transaction aborts in the
data sync due to lock timeouts like this, you might want to increase the value of
this parameter.

CDR_ENV Configuration Parameter
Sets the Enterprise Replication environment variables CDR_ALARMS,
CDR_LOGDELTA, CDR_PERFLOG, CDR_ROUTER, or CDR_RMSCALEFACT.

Important: Use the CDR_LOGDELTA, CDR_PERFLOG, CDR_ROUTER, and
CDR_RMSCALEFACT environment variables only if instructed to do so by IBM
Support.

units Enterprise Replication environment variable name and value, separated by
an equal sign

takes effect
When the database server is shut down and restarted or immediately for
the following actions:
v Adding a value using the cdr add onconfig command
v Removing a value using the cdr remove onconfig command

The onconfig file can contain multiple entries for the CDR_ENV environment
variable. You can specify only one environment variable per CDR_ENV entry.

The following line in the onconfig file sets the CDR_ALARMS environment
variable to add event alarm 51 to the event alarms that are enabled by default:
CDR_ENV CDR_ALARMS=30-39,47,48,50,51,71,73-75

B-4 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0439.htm

When you update the CDR_ALARMS environment variable in the onconfig file,
you must list all the Enterprise Replication event alarms that you want to be
enabled.

The following lines in the onconfig file set the CDR_LOGDELTA environment
variable to 30 and the CDR_ROUTER environment variable to 1:
CDR_ENV CDR_LOGDELTA=30
CDR_ENV CDR_ROUTER=1

Related tasks:
“Enabling or Disabling Enterprise Replication Event Alarms” on page 12-40

CDR_EVALTHREADS Configuration Parameter
Specifies the number of group evaluator threads to create when Enterprise
Replication starts, and enables parallelism.

onconfig.std value
1,2

units evaluator thread instances

range of values
first value: 0 or a positive integer representing the number of evaluator
threads per CPU VP

second value: 0 or a positive integer representing the additional number of
evaluator threads.

Do not set both CDR_EVALTHREADS values to 0.

takes effect
When the database server is shut down and restarted, or immediately after
the cdr change onconfig command is used

Enterprise Replication evaluates the images of a row in parallel to assure high
performance. Figure B-1 on page B-6 illustrates how Enterprise Replication uses
parallel processing to evaluate transactions for replication.

Appendix B. Enterprise Replication configuration parameter and environment variable reference B-5

The CDR_EVALTHREADS configuration parameter specifies the number of
grouper evaluator threads to create when Enterprise Replication starts and enables
parallelism. The format is:
(per-cpu-vp,additional)

The following table provides four examples of CDR_EVALTHREADS.

Number of
Threads Explanation Example

1,2 1 evaluator thread per CPU VP,
plus 2

For a 3 CPU VP server: (3 * 1) + 2 = 5

2 2 evaluator threads per CPU VP For a 3 CPU VP server: (3 * 2) = 6

2,0 2 evaluator threads per CPU VP For a 3 CPU VP server: (3* 2) +0 = 6

0,4 4 evaluator threads for any
database server

For a 3 CPU VP server: (3 * 0) +4 = 4

Attention: Do not configure the total number of evaluator threads to be smaller
than the number of CPU VPs in the system. As noted above, do not set both
CDR_EVALTHREADS values to 0.

CDR_LOG_LAG_ACTION configuration parameter
Specifies how Enterprise Replication responds to a potential log wrap situation.

onconfig.std value
CDR_LOG_LAG_ACTION ddrblock

separators
+

Logical log

Fan out

Enterprise
Replication

message queue

Evaluating transactions

for replication

Transaction list

INV# Product

1234 chandelier

1235 candlestick

Thread

Thread

Thread

Thread

INV# Product

3421 clock

3427 china

INV# Product

4325 crystal

4367 silverware

INV# Product

6798 pottery

6520 ceramic_tile

Figure B-1. Processing in Parallel for High Performance

B-6 IBM Informix Enterprise Replication Guide

range of values
See the Usage section.

takes effect
After you edit your onconfig file and restart the database server.

When you reset the value dynamically in your onconfig file by running the
onmode -wf command.

When you reset the value in memory by running the onmode -wm
command.

Usage

Use the CDR_LOG_LAG_ACTION configuration parameter to specify one or more
actions, in priority order, that Enterprise Replication takes during a potential log
wrap situation.

Syntax for the CDR_LOG_LAG_ACTION configuration parameter

►► CDR_LOG_LAG_ACTION logstage
+ dlog + ignore

dlog + ddrblock
+ logstage + shutdown

ignore
ddrblock
shutdown

►◄

Table B-1. Options for the CDR_LOG_LAG_ACTION configuration parameter value

Option Description

logstage Enables compressed logical log staging.

The following configuration parameters must also be set:

v The LOG_STAGING_DIR configuration parameter must be set to a
directory. The directory specified by the LOG_STAGING_DIR
configuration parameter must be secure. The directory must be owned
by user informix, must belong to group informix, and must not have
public read, write, or execute permission.

v The CDR_LOG_STAGING_MAXSIZE configuration parameter must be
set to a positive number.

Log files are staged in the directory specified by the
LOG_STAGING_DIR configuration parameter, until the maximum size
specified by the CDR_LOG_STAGING_MAXSIZE configuration
parameter is reached. The staged log files are deleted after advancing the
log replay position.

If the amount of disk space specified by the
CDR_LOG_STAGING_MAXSIZE configuration parameter is exceeded,
event alarm 30005 is raised.

If log staging is configured, Enterprise Replication monitors the log lag
state and stages log files even when Enterprise Replication is inactive.

dlog Enables the dynamic addition of logical logs. The following configuration
parameters must be set:

v The CDR_MAX_DYNAMIC_LOGS configuration parameter must be
set to -1 or a positive number.

v The DYNAMIC_LOGS configuration parameter must be set to 2.

Appendix B. Enterprise Replication configuration parameter and environment variable reference B-7

Table B-1. Options for the CDR_LOG_LAG_ACTION configuration parameter
value (continued)

Option Description

ignore Ignore the potential for log wrapping. The Enterprise Replication replay
position might be overrun. If the replay position is overrun, event alarm
30 is raised. Restart Enterprise Replication using the cdr cleanstart
command and synchronize the data.

The ignore option must be the only or the last option.

If the snoopy log position overrun is detected, Enterprise Replication
shuts down with event alarm 47005.

ddrblock Default. Block client applications update activity.

The ddrblock option must be the only or the last option.

shutdown Shut down Enterprise Replication on the affected server. If replay
position overrun is detected, restart Enterprise Replication using the cdr
cleanstart command and synchronize the data. If the replay position was
not overrun, restart Enterprise Replication using the cdr start command;
there is no need to synchronize the data. If replay position overrun is
detected and the cdr start command fails with error code 214 and raises
event alarm class 75, restart Enterprise Replication using the cdr
cleanstart command and synchronize the data.

The shutdown option must be the only or the last option.

If a log lag state is detected, Enterprise Replication is shut down and
event alarm ID 47006 is raised.

Staged log file format

Enterprise Replication creates a directory named: ifmxddrlog_SERVERNUM in the
directory specified by the LOG_STAGING_DIR configuration parameter. Log file
names are in the following format:
ifmxERDDRBLOCKUniqueLog_lf_used_loguniqueid.dat

Enterprise Replication also creates an empty token file for each staged log file. The
token file is used to detect log files that are only partially written. If a token file is
not found then Enterprise Replication treats the staged log file as partially written
log file and deletes it. The token log file format is:
ifmxERDDRBLOCKUniqueLog_lf_used_loguniqueid

Transferring log files to a high-availability cluster secondary
server when using ER

If your configuration consists of an HDR, RSS, or SDS secondary server configured
as an Enterprise Replication node, transfer staged log files to the secondary server
using the alarm program script. The staged log files are required by Enterprise
Replication in case the primary server in a high-availability cluster fails and a
secondary server takes over the role of the primary server.

Enterprise Replication raises alarm class ID 30 and unique ID 30006 when a log is
staged to the log staging directory. Enterprise Replication raises alarm class ID 30
and unique ID 30007 after deleting a staged log file. Using these alarms, you can
automate the transfer of staged log files to the high-availability cluster secondary
server using the alarm program script.

B-8 IBM Informix Enterprise Replication Guide

Ensure that the directory under the directory specified the LOG_STAGING_DIR
configuration parameter exists and is named using the format
ifmxddrlog_SERVERNUM. The script copies the staged log files to
ifmxddrlog_SERVERNUM and creates a token log file after copying the staged log file.

Example

Suppose that you want Enterprise Replication to handle potential log wrap
situations by first staging compressed logs until they reach 1 MB in size, then
dynamically add up to two logical logs, and then block user transactions. Set the
following configuration parameters:
CDR_LOG_LAG_ACTION logstage+dlog+ddrblock
LOG_STAGING_DIR $INFORMIXDIR/tmp
CDR_LOG_STAGING_MAXSIZE 1MB
CDR_MAX_DYNAMIC_LOGS 2
DYNAMIC_LOGS 2

Related concepts:
“Handle potential log wrapping” on page 12-15
Related information:
LOG_STAGING_DIR configuration parameter
onmode -wf, -wm: Dynamically change certain configuration parameters

CDR_LOG_STAGING_MAXSIZE Configuration Parameter
Specifies the maximum amount of space that Enterprise Replication uses to stage
compressed log files in the directory specified by the LOG_STAGING_DIR
configuration parameter.

default value
0

onconfig.std value
CDR_LOG_STAGING_MAXSIZE 0

syntax CDR_LOG_STAGING_MAXSIZE sizeunit

range of values
The range of values for size is:
v 0 = Default. Log staging is disabled.
v Positive integers = The maximum size of the stage log files.

The range of value for unit is:
v KB (default)
v MB
v GB
v TB

takes effect
After you edit your onconfig file and restart the database server.

When you reset the value dynamically in your onconfig file by running the
onmode -wf command.

When you reset the value in memory by running the onmode -wm
command.

Appendix B. Enterprise Replication configuration parameter and environment variable reference B-9

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1071.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0439.htm

Use the CDR_LOG_STAGING_MAXSIZE configuration parameter to limit the size
of the log staging directory. Logs are staged if all of the following conditions are
true:
v Enterprise Replication detects a potential for log wrapping.
v The CDR_LOG_LAG_ACTION configuration parameter setting includes the

logstage option.
v The LOG_STAGING_DIR configuration parameter is set.

The directory specified by the LOG_STAGING_DIR configuration parameter
must be secure. The directory must be owned by user informix, must belong to
group informix, and must not have public read, write, or execute permission.

When the contents of the staging directory reaches the maximum allowed size,
Enterprise Replication stops staging log files. Enterprise Replication stops staging
files only at a log file boundary; that is, a file is not staged in the middle of a log
file.

Example

Suppose that you want Enterprise Replication to handle potential log wrap
situations by staging compressed logs until the staging directory reached 100 KB,
you would set the following configuration parameters:
CDR_LOG_STAGING_MAXSIZE 100
CDR_LOG_LAG_ACTION logstage
LOG_STAGING_DIR $INFORMIXDIR/tmp

Related concepts:
“Handle potential log wrapping” on page 12-15
Related information:
LOG_STAGING_DIR configuration parameter
onmode -wf, -wm: Dynamically change certain configuration parameters

CDR_MAX_DYNAMIC_LOGS Configuration Parameter
Specifies the number of dynamic log file requests that Enterprise Replication can
make in one server session.

onconfig.std value
0

range of values

v -1 add dynamic log files indefinitely
v 0 disable dynamic log addition
v >0 number of dynamic logs that can be added

takes effect
when the database server is shut down and restarted, and the
DYNAMIC_LOGS configuration parameter is set to 2 or when the cdr
change onconfig command is used. For more information on the
DYNAMIC_LOGS configuration parameter, see the IBM Informix
Administrator's Reference.

The CDR_MAX_DYNAMIC_LOGS configuration parameter specifies the number
of dynamic log file requests that Enterprise Replication can make in one server
session. The DYNAMIC_LOGS configuration parameter must be set to 2.
Related concepts:

B-10 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1071.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0439.htm

“Handle potential log wrapping” on page 12-15
Related information:
DYNAMIC_LOGS configuration parameter

CDR_MAX_FLUSH_SIZE configuration parameter
Specifies the maximum number of replicated transactions that are applied before
the logs are flushed.

onconfig.std value
CDR_MAX_FLUSH_SIZE 50

default value if not present in the onconfig file
50

range of values
A positive integer that represents the maximum number of transactions to
apply before the logs are flushed.

takes effect
After you edit your onconfig file and restart the database server.

When you reset the value dynamically in your onconfig file by running the
onmode -wf command.

By default, replication servers flush logs after 50 replicated transactions are
applied, or after 5 seconds, whichever happens first.

If a replication server is a primary server for shared-disk secondary servers, you
might want to reduce the replication latency. Set the CDR_MAX_FLUSH_SIZE
configuration parameter to 1 to flush the logs after each replicated transaction.
Related concepts:
“Replication latency for secondary servers” on page 7-6
Related information:
onmode -wf, -wm: Dynamically change certain configuration parameters

CDR_MEM configuration parameter
The CDR_MEM configuration parameter is used to specify Enterprise Replication's
method for memory-pool allocation.

onconfig.std value
CDR_MEM 0

values 0: Memory allocation from the generic pool is taken from the CDR pool.
Memory allocation from the RQM pool is taken from the queue's memory
pool.

1: Memory allocation pools are associated with specific CPU virtual
processors. Enterprise Replication allocates memory to the CPU virtual
processors based on which CPU virtual processor the cdr thread is
executing on.

2: Memory allocation pools are associated with specific block sizes, so that
all allocations from a pool are the same size, and the first free block that is
found can be used.

takes effect
After you edit your onconfig file and restart the database server.

Appendix B. Enterprise Replication configuration parameter and environment variable reference B-11

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0073.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0439.htm

When you reset the value dynamically in your onconfig file by running the
onmode -wf command.

When you reset the value in memory by running the onmode -wm
command.

After you run the SQL administration API task() or admin() function with
the "onmode","-wf CDR_MEM=value" or "onmode","-wm CDR_MEM=value"
argument.

Usage

CDR_MEM 0 is the traditional method of memory-allocation. Use this setting when
resource allocation is more important than performance.

CDR_MEM 1 prevents multiple threads from simultaneously accessing a memory
pool. The performance of large-scale Enterprise Replication environments can
improve, because memory allocation is done by multiple threads that are working
in parallel.

CDR_MEM 2 improves performance at the cost of increased memory usage. Memory
allocation requests are increased to the closest fixed-block size, so that free memory
blocks can be found faster. Memory pools are not associated with specific CPU
virtual processors, so memory can be freed directly to the memory pool.

CDR_NIFCOMPRESS Configuration Parameter
Specifies the level of compression the database server uses before sending data
from the source database server to the target database server.

onconfig.std value
0

range of values

v -1 specifies no compression
v 0 specifies to compress only if the target server expects compression
v 1 - 9 specifies increasing levels of compression

takes effect
When the database server is shut down and restarted or immediately after
the cdr change onconfig command is used

The CDR_NIFCOMPRESS (network interface compression) configuration parameter
specifies the level of compression that the database server uses before sending data
from the source database server to the target database server. Network
compression saves network bandwidth over slow links but uses more CPU to
compress and decompress the data.

The values have the following meanings.

Value Meaning

-1 The source database server never compresses the data, regardless of
whether or not the target site uses compression.

0 The source database server compresses the data only if the target database
server expects compressed data.

1 The database server performs a minimum amount of compression.

B-12 IBM Informix Enterprise Replication Guide

Value Meaning

9 The database server performs the maximum possible compression.

When Enterprise Replication is defined between two database servers, the
CDR_NIFCOMPRESS values of the two servers are compared and changed to the
higher compression values.

The compression values determine how much memory can be used to store
information while compressing, as follows:
0 = no additional memory
1 = 128k + 1k = 129k
2 = 128k + 2k = 130k
...
6 = 128k + 32k = 160k
...
8 = 128k + 128k = 256k
9 = 128k + 256k = 384k

Higher levels of CDR_NIFCOMPRESS cause greater compression.

Different sites can have different levels. For example, Figure B-2 shows a set of
three root servers connected with LAN and a nonroot server connected over a
modem. The CDR_NIFCOMPRESS configuration parameter is set so that
connections between A, B, and C use no compression. The connection from C to D
uses level 6.

Important: Do not disable NIF compression if the network link performs
compression in hardware.

CDR_QDATA_SBSPACE Configuration Parameter
Specifies the list of up to 32 names of sbspaces that Enterprise Replication uses to
store spooled transaction row data.

onconfig.std value
none

separators
comma

range of values
up to 128 characters for each sbspace name; up to 32 sbspace names. Use a
comma to separate each name in the list. At least one sbspace name must
be specified.

B

D

C

A

Figure B-2. Database Servers with Different Compression Levels

Appendix B. Enterprise Replication configuration parameter and environment variable reference B-13

takes effect
when the database server is shut down and restarted or immediately for
the following actions:
v Adding a value using the cdr add onconfig command
v Removing a value using the cdr remove onconfig command
v Changing a value using the cdr change onconfig command

The CDR_QDATA_SBSPACE configuration parameter specifies the list of up to 32
names of sbspaces that Enterprise Replication uses to store spooled transaction row
data. Enterprise Replication creates one smart large object per transaction. The
sbspaces must be used only for Enterprise Replication. If CDR_QDATA_SBSPACE
is configured for multiple sbspaces, then Enterprise Replication uses all appropriate
sbspaces in round-robin order.

You can have Enterprise Replication automatically configure disk space from the
storage pool and set the CDR_QDATA_SBSPACE configuration parameter when
defining a replication server. If the CDR_QDATA_SBSPACE configuration
parameter is not set and the database server has a storage pool with sufficient
space, the cdr define server command automatically creates the necessary disk
space and sets the configuration parameter to the appropriate value in memory
and the onconfig file. For clusters, the cdr define command creates new sbspaces
and sets the CDR_QDATA_SBSPACE configuration parameters in all secondary
database servers, as well.

Note: A database server's storage pool must have 500 MB of free space for the
sbspace. The sbspace must be comprised of chunks of size 100 MB or greater for
the database server to use automatic storage provisioning.

Warning: Do not change the value of CDR_QDATA_SBSPACE while Enterprise
Replication is running.
Related concepts:
“Row Data sbspaces” on page 6-10
Related tasks:
“Monitoring Disk Usage for Send and Receive Queue Spool” on page 12-16
Related reference:
“cdr start sec2er” on page A-176

CDR_QUEUEMEM Configuration Parameter
Specifies the maximum amount of memory that is used for the send and receive
queues.

onconfig.std value
4096

units kilobytes

range of values
From 500 through 4194304

takes effect
When the database server is shut down and restarted or immediately after
the cdr change onconfig command is used

The CDR_QUEUEMEM configuration parameter specifies the maximum amount of
memory that the send and receive queues use for transaction headers and for

B-14 IBM Informix Enterprise Replication Guide

transaction data. The total size of the transaction headers and transaction data in a
send or receive queue could be up to twice the size of that value of
CDR_QUEUEMEM. If your logical logs are large, the Enterprise Replication reads
a large amount of data into queues in memory. You can use CDR_QUEUEMEM to
limit the amount of memory devoted to the queues.

When you increase the value of CDR_QUEUEMEM, you reduce the number of
elements that must be written to disk, which can eliminate I/O overhead.
Therefore, if elements are frequently stored on disk, increase the value of
CDR_QUEUEMEM. Conversely, if you set the value of CDR_QUEUEMEM too
high, you might adversely impact the performance of your system. High values for
CDR_QUEUEMEM also increase the time necessary for recovery. Tune the value of
CDR_QUEUEMEM for the amount of memory available on your computer.

CDR_SERIAL Configuration Parameter
Enables control over generating values for serial columns in tables that are defined
for replication.

onconfig.std value
CDR_SERIAL 0

range of values
0 = Default. Disable control of serial column value generation.

delta,offset = Enable control of serial column value generation:

delta A positive integer that sets the incremental size of the serial
column values. This value must be the same on all replication
servers and must be at least the number of expected servers in the
Enterprise Replication domain.

offset A positive integer that sets the offset of the serial value to be
generated. This value must be different on all replication servers
and must be between 0 and one less than the value of delta,
inclusive.

takes effect
After you edit your onconfig file and restart the database server.

After you run the cdr change onconfig command.

The CDR_SERIAL configuration parameter controls generating values for SERIAL,
SERIAL8, and BIGSERIAL columns in replicated tables so that no conflicting
values are generated across multiple Enterprise Replication servers. You must set
the CDR_SERIAL configuration parameter if the serial column is the replication
key column and no other replication key column, such as a server ID, guarantees
the uniqueness of the replication key. If the serial column is not the replication key,
you can set the CDR_SERIAL configuration parameter to ensure that the serial
values are unique across all servers. Only tables that are marked as the source of a
replicate are controlled by the CDR_SERIAL configuration parameter settings.

For example, suppose that you have two primary servers, g_usa and g_japan, and
one read-only target server, g_italy. You plan to add three more servers in the
future. You might set CDR_SERIAL to the values shown in the following table.

Appendix B. Enterprise Replication configuration parameter and environment variable reference B-15

Table B-2. CDR_SERIAL Example Settings and Results

Server
Example CDR_SERIAL
Value

Resulting Values for the Serial
Column

g_usa 5,0 5, 10, 15, 20, 25, and so on

g_japan 5,1 1, 6, 11, 16, 21, 26, and so on

g_italy 0 no local inserts into the serial column

The following CDR_SERIAL settings are reserved for future servers:
v 5,2

v 5,3

v 5,4

If you must add more servers than the delta value of CDR_SERIAL, you must reset
CDR_SERIAL on all servers simultaneously and ensure that the serial values on
the new servers are unique.
Related concepts:
“Serial data types and replication keys” on page 4-6

CDR_SUPPRESS_ATSRISWARN Configuration Parameter
Specifies the data sync error and warning code numbers to be suppressed in ATS
and RIS files.

onconfig.std value
none

units numbers or hyphen-separated ranges of numbers

separator
commas

takes effect
when the database server is shut down and restarted or immediately for
the following actions:
v Adding a value using the cdr add onconfig command
v Removing a value using the cdr remove onconfig command
v Changing a value using the cdr change onconfig command

The CDR_SUPPRESS_ATSRISWARN configuration parameter specifies the data
sync error and warning code numbers to be suppressed in ATS and RIS files. For
example, you can set CDR_SUPPRESS_ATSRISWARN to 2-5, 7 to suppress the
generation of error and warning messages 2, 3, 4, 5, and 7. For a list of error and
message numbers see Appendix I, “Data sync warning and error messages,” on
page I-1.

CDR_TSINSTANCEID configuration parameter
Specifies how to generate unique identifiers for time series instances across
replication servers. If a replicate includes a column with a TimeSeries column, the
CDR_TSINSTANCEID configuration parameter must be set to a different value on
every participating replication server before you create any time series instances.

onconfig.std value
CDR_TSINSTANCEID 0

B-16 IBM Informix Enterprise Replication Guide

range of values
0 = Default. Disable the replication of TimeSeries columns.

1 - 32768 = The number that is added to the time series instance identifiers.

takes effect
After you edit your onconfig file and restart the database server.

When you reset the value dynamically in your onconfig file by running the
onmode -wf command.

When you reset the value in memory by running the onmode -wm
command.

You set the value of CDR_TSINSTANCEID to a different value on each replication
server that replicates a TimeSeries column. A time series instance identifier is
automatically generated when you create a time series instance. The unique values
of CDR_TSINSTANCEID configuration parameter on each replication server
ensures that no time series instance identifiers overlap in the replication domain.
Related information:
onmode -wf, -wm: Dynamically change certain configuration parameters

ENCRYPT_CDR Configuration Parameter
Use the ENCRYPT_CDR configuration parameter to set the level of encryption for
Enterprise Replication.

onconfig.std value
ENCRYPT_CDR 0

values 0 = Default. Do not encrypt.

1 = Encrypt when possible. Encryption is used for Enterprise Replication
transactions only when the database server being connected to also
supports encryption.

2 = Always encrypt. Only connections to encrypted database servers are
allowed.

takes effect
After you edit your onconfig file and restart the database server.

After you run the cdr change onconfig command.

Usage

If you enable encryption with the ENCRYPT_CDR configuration parameter, you
must also set the ENCRYPT_MAC, ENCRYPT_MACFILE, ENCRYPT_SWITCH,
and ENCRYPT_CIPHERS configuration parameter to configure encryption.

If you use both encryption and compression (by setting the CDR_NIFCOMPRESS
configuration parameter), then compression occurs before encryption.
Related information:
ENCRYPT_CIPHERS configuration parameter
ENCRYPT_MACFILE configuration parameter
ENCRYPT_SWITCH configuration parameter
ENCRYPT_MAC configuration parameter

Appendix B. Enterprise Replication configuration parameter and environment variable reference B-17

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0439.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0074.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0077.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0079.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0076.htm

GRIDCOPY_DIR Configuration Parameter
Specifies the default directory used by the ifx_grid_copy procedure.

onconfig.std value
$INFORMIXDIR

default value if not present in the onconfig file
$INFORMIXDIR

values pathname = $INFORMIXDIR or a valid file path that is relative to
$INFORMIXDIR.

takes effect
After you edit your onconfig file and restart the database server.

When you reset the value dynamically in your onconfig file by running the
onmode -wf command.

When you reset the value in memory by running the onmode -wm
command.

The ifx_grid_copy() procedure copies files from a grid database server to the other
nodes of the same grid. The GRIDCOPY_DIR value is the default directory of file
paths in the ifx_grid_copy() command:
v On a database server running the ifx_grid_copy() procedure, the

GRIDCOPY_DIR value and the ifx_grid_copy() command
source_path_and_filename is the location from which files are copied.

v On a database server sharing the same grid with a node running the
ifx_grid_copy() procedure, the GRIDCOPY_DIR value and the ifx_grid_copy()
command's target_path_and_filename is the location to which files are copied. If
target_path_and_filename is not specified as part of the ifx_grid_copy() command,
the GRIDCOPY_DIR value and the ifx_grid_copy() command's
source_path_and_filename is the location to which files are copied.

If a node directory specified by a GRIDCOPY_DIR value does not exist, the node
directory is created by the ifx_grid_copy() procedure.

Example

To specify $INFORMIXDIR/usr/informix/copydir as a node's default directory for
ifx_grid_copy() procedure actions, set the following value in the onconfig file:
GRIDCOPY_DIR usr/informix/copydir

Related tasks:
“Propagating external files through a grid” on page 9-16
Related reference:
“ifx_grid_copy() procedure” on page C-5

SHARD_ID configuration parameter
Sets the unique ID for a shard server in a shard cluster.

onconfig.std value
SHARD_ID 0

range of values
0 = Default. The database server cannot run parallel sharded queries.

1 - 65535 = The unique ID of the shard server.

B-18 IBM Informix Enterprise Replication Guide

takes effect
After you edit your onconfig file and restart the database server.

If the value is 0 or not set, you can set the value dynamically in your
onconfig file by running the onmode -wf command.

You set the value of the SHARD_ID configuration parameter to a different number
on each shard server in a shard cluster. If the value of the SHARD_ID
configuration parameter is unset or set to 0 on all shard servers in the shard
cluster, the shard cluster performs poorly. If the values of the SHARD_ID
configuration parameter are not unique on all shard servers in a shard cluster,
shard queries fail.

To reset the value if the SHARD_ID configuration parameter is set to a positive
integer, edit the onconfig file and then restart the database server.
Related tasks:
“Creating a shard cluster” on page 10-1
Related information:
onmode -wf, -wm: Dynamically change certain configuration parameters

SHARD_MEM configuration parameter
Specifies how to allocate shared memory for sharded queries on a shard server.

onconfig.std value
SHARD_MEM 0

range of values
0: Memory allocation for sharded queries comes from a single memory
pool.

1: Memory allocation pools are associated with specific CPU virtual
processors. Enterprise Replication allocates memory to the CPU virtual
processors based on which CPU virtual processor the parallel shard query
thread is running on.

2: Memory allocation pools are associated with specific block sizes, so that
all allocations from a pool are the same size, and the first free block that is
found can be used.

takes effect
After you edit your onconfig file and restart the database server.

When you reset the value dynamically in your onconfig file by running the
onmode -wf command.

When you reset the value in memory by running the onmode -wm
command.

Usage

CDR_MEM 0 is the traditional method of memory-allocation. Use this setting when
resource allocation is more important than performance.

CDR_MEM 1 prevents multiple threads from simultaneously accessing a memory
pool. The performance of large-scale sharding environments can improve because
memory allocation is done by multiple threads that are working in parallel.

Appendix B. Enterprise Replication configuration parameter and environment variable reference B-19

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0439.htm

CDR_MEM 2 improves performance at the cost of increased memory usage. Memory
allocation requests are increased to the closest fixed-block size, so that free memory
blocks can be found faster. Memory pools are not associated with specific CPU
virtual processors, so memory can be freed directly to the memory pool.
Related concepts:
“Sharded queries” on page 10-3
Related information:
onmode -wf, -wm: Dynamically change certain configuration parameters

CDR_ALARMS Environment Variable
Enables Enterprise Replication event alarms.

default value
30-39,47,48,50,71,73-75

range of values
integers in these ranges: 30-39, 47-71, 73-75

separator
comma (,) to separate individual numbers or hyphen (-) to separate a
range of numbers

takes effect
When the database server is shut down and restarted.

Set the CDR_ALARMS environment variable to the Enterprise Replication event
alarms that you want to receive. Enterprise Replication event alarms that are not
set by CDR_ALARMS are disabled.

Use the CDR_ENV configuration parameter to set this environment variable in the
onconfig file.
Related tasks:
“Enabling or Disabling Enterprise Replication Event Alarms” on page 12-40

CDR_ATSRISNAME_DELIM Environment Variable
Specifies the delimiter to use to separate the parts of the time portion of ATS and
RIS file names that are in text format.

default value
On UNIX: a colon (:)

On Windows: a period (.)

range of values
a single character

takes effect
when Enterprise Replication is initialized

ATS and RIS files in XML format always use a period (.) as the delimiter.

For example, the default file name for an ATS file in text format on UNIX might
look like this: ats.g_beijing.g_amsterdam.D_2.000529_23:27:16.6. If
CDR_ATSRISNAME_DELIM is set to a period (.), then the same file name would
look like this: ats.g_beijing.g_amsterdam.D_2.000529_23.27.16.6.
Related concepts:

B-20 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0439.htm

“ATS and RIS File Names” on page 12-5

CDR_DISABLE_SPOOL Environment Variable
Controls the generation of ATS and RIS files.

default value
0

range of values
0 Allow ATS and RIS file generation

1 Prevent ATS and RIS file generation

takes effect
when Enterprise Replication is initialized

The CDR_DISABLE_SPOOL environment variable controls whether ATS and RIS
files are generated. Set CDR_DISABLE_SPOOL to 1 if you do not want ATS or RIS
files to be generated under any circumstances.
Related concepts:
“Failed Transaction (ATS and RIS) Files” on page 12-3
Related tasks:
“Disabling ATS and RIS File Generation” on page 12-13

CDR_LOGDELTA Environment Variable
Determines when the send and receive queues are spooled to disk as a percentage
of the logical log size.

default value
30

range of values
positive numbers

takes effect
when Enterprise Replication is initialized or immediately after the cdr
change onconfig command is used

The CDR_LOGDELTA environment variable determines when the send and receive
queues are spooled to disk as a percentage of the logical log size. Use the
CDR_ENV configuration parameter to set this environment variable. For more
information, see “CDR_ENV Configuration Parameter” on page B-4.

Important: Do not use the CDR_LOGDELTA environment variable unless
instructed to do so by Technical Support.

CDR_PERFLOG Environment Variable
Enables queue tracing.

default value
0

range of values
positive number

Appendix B. Enterprise Replication configuration parameter and environment variable reference B-21

takes effect
when Enterprise Replication is initialized or immediately after the cdr
change onconfig command is used

The CDR_PERFLOG environment variable enables queue tracing. Use the
CDR_ENV configuration parameter to set this environment variable. For more
information, see “CDR_ENV Configuration Parameter” on page B-4.

Important: Do not use the CDR_PERFLOG environment variable unless instructed
to do so by Technical Support.

CDR_RMSCALEFACT Environment Variable
Sets the number of data sync threads started for each CPU VP.

default value
4

range of values
positive number

takes effect
when Enterprise Replication is initialized or immediately after the cdr
change onconfig command is used

The CDR_RMSCALEFACT environment variable sets the number of data sync
threads started for each CPU VP. Specifying a large number of threads can result in
wasted resources. Use the CDR_ENV configuration parameter to set this
environment variable. For more information, see “CDR_ENV Configuration
Parameter” on page B-4.

Important: Do not use the CDR_RMSCALEFACT environment variable unless
instructed to do so by Support.

CDR_ROUTER Environment Variable
Disables intermediate acknowledgments of transactions in the hierarchical
topologies.

default value
0

range of values
any number

takes effect
when Enterprise Replication is initialized or immediately after the cdr
change onconfig command is used

When set to 1, the CDR_ROUTER environment variable disables intermediate
acknowledgments of transactions in hierarchical topologies. The normal behavior
for intermediate servers is to send acknowledgments if they receive an
acknowledgment from the next server in the replication tree (can be a leaf server)
or if the transaction is stored in the local queue. Use the CDR_ENV configuration
parameter to set this environment variable. For more information, see “CDR_ENV
Configuration Parameter” on page B-4.

B-22 IBM Informix Enterprise Replication Guide

If CDR_ROUTER is set at the hub server, an acknowledgment will be sent only if
the hub server receives acknowledgment from all of its leaf servers. Transactions
will not be acknowledged even if they are stored in the local queue of the hub
server.

If CDR_ROUTER is not set at hub server, the hub server will send an
acknowledgment if the transaction is stored in the local queue at the hub server or
if the hub server received acknowledgment from all of its leaf servers.

Important: Do not use the CDR_ROUTER environment variable unless instructed
to do so by Technical Support.

CDRSITES_10X Environment Variable
Works around a malfunction in version reporting for fix pack versions of 10.00
servers.

units cdrIDs, which are the unique identifiers for the database server in the
Options field of the SQLHOSTS file (i =unique_ID)

range of values
positive numbers

takes effect
when Enterprise Replication is initialized and the CDR_ENV configuration
parameter has a value for CDRSITES_10X in the ONCONFIG file, or
immediately for the following actions:
v Adding a value using the cdr add onconfig command
v Removing a value using the cdr remove onconfig command
v Changing a value using the cdr change onconfig command

In mixed-version Enterprise Replication environments that involve Versions
10.00.xC1 or 10.00.xC3 servers, the NIF does not properly report its version when it
responds to a new server with a fix pack version of 10.00.xC4 or later. When a new
server sends an initial protocol message to a sync server, the sync server, instead of
properly giving its version, gives back the version of the new server.

To prevent this malfunction, if you have Version 10.00.xC1 or 10.00.xC3 servers in
your Enterprise Replication environment, set the CDRSITES_10X environment
variable with the CDR_ENV configuration parameter for these servers.

Note: You can only set the CDRSITES_10X environment variable by using the
CDR_ENV configuration parameter. You cannot set CDRSITES_10X as a standard
environment variable.

The cdrID is the unique identifier for the database server in the Options field of
the SQLHOSTS file (i = unique_ID).

For example, suppose that you have 5 database servers, Version 10.00.xC1, whose
cdrID values range from 2 through 10 (cdrID = 2, 3, 8, 9, and 10).

If you upgrade database server cdrID 8 to Version 10.00.xC4, you must set the
CDRSITES_10X environment variable for the other server cdrIDs by setting the
CDR_ENV configuration parameter in the ONCONFIG file before bringing the
Version 10.00.xC4 database server online:
CDR_ENV CDRSITES_10x=2,3,9,10

Appendix B. Enterprise Replication configuration parameter and environment variable reference B-23

CDRSITES_731 Environment Variable
Works around a malfunction in version reporting for post-7.3x, 7.20x, or 7.24x
version servers.

units cdrIDs, which are the unique identifiers for the database server in the
Options field of the SQLHOSTS file (i =unique_ID)

range of values
positive numbers

takes effect
when Enterprise Replication is initialized and the CDR_ENV configuration
parameter has a value for CDRSITES_731 in the ONCONFIG file, or
immediately for the following actions:
v Adding a value using the cdr add onconfig command
v Removing a value using the cdr remove onconfig command
v Changing a value using the cdr change onconfig command

In mixed-version Enterprise Replication environments that involve post 7.3x, 7.20x,
or 7.24x servers, the NIF does not properly report its version when it responds to a
new server. When a new server sends an initial protocol message to a sync server,
the sync server, instead of properly giving its version, gives back the version of the
new server. If a 10.0, 9.40, or 9.30 server tries to synchronize with a 7.3x, 7.20x, or
7.24x server, the older server responds to the 10.0, 9.40, or 9.30 server that it is a
10.0, 9.40, or 9.30 server and will subsequently fail.

To prevent this malfunction, if you have Version 7.3x, 7.20x, or 7.24x servers in
your Enterprise Replication environment, set the CDRSITES_731 environment
variable with the CDR_ENV configuration parameter for these servers.

Note: You can only set the CDRSITES_731 environment variable by using the
CDR_ENV configuration parameter. You cannot set CDRSITES_731 as a standard
environment variable.

For example, suppose that you have 5 database servers, Version 7x servers whose
cdrID values range from 1 through 7 (cdrID = 1, 4, 5, 6, and 7).

If you upgrade database server cdrID 6 to Version 10.0, 9.40, or 9.30, you must set
the CDRSITES_731 environment variable for the other server cdrIDs by setting the
CDR_ENV configuration parameter in the ONCONFIG file before bringing the
Version 10.0, 9.40, or 9.30 database server online:
CDR_ENV CDRSITES_731=1,4,5,7

CDRSITES_92X Environment Variable
Works around a malfunction in version reporting for 9.21 or 9.20 servers.

units cdrIDs, which are the unique identifiers for the database server in the
Options field of the SQLHOSTS file (i =unique_ID)

range of values
positive numbers

takes effect
when Enterprise Replication is initialized and the CDR_ENV configuration
parameter has a value for CDRSITES_92X in the ONCONFIG file, or
immediately for the following actions:

B-24 IBM Informix Enterprise Replication Guide

v Adding a value using the cdr add onconfig command
v Removing a value using the cdr remove onconfig command
v Changing a value using the cdr change onconfig command

In mixed-version Enterprise Replication environments that involve 9.21 or 9.20
servers, the NIF does not properly report its version when it responds to a new
server. When a new server sends an initial protocol message to a sync server, the
sync server, instead of properly giving its version, gives back the version of the
new server. If a 10.0/9.40/9.30 server tries to synchronize with a 9.21 or 9.20
server, the older server responds to the 10.0, 9.40, or 9.30 server that it is a 10.0,
9.40, or 9.30 server and will subsequently fail.

To prevent this malfunction, if you have Version 9.21 or 9.20 servers in your
Enterprise Replication environment, set the CDRSITES_92X environment variable

Note: You can only set the CDRSITES_92X environment variable by using the
CDR_ENV configuration parameter. You cannot set CDRSITES_92X as a standard
environment variable.

For example, suppose that you have 5 database servers, Version 9.21 or 9.20 whose
cdrID values range from 2 through 10 (cdrIDs = 2, 3, 8, 9, and 10).

If you upgrade database server cdrID 8 to Version 10.0, 9.40, or 9.30, you must set
the CDRSITES_92X environment variable for the other server cdrIDs by setting
the CDR_ENV configuration parameter in the ONCONFIG file before bringing the
Version 10.0, 9.40, or 9.30 database server online:
CDR_ENV CDRSITES_92x=2,3,9,10

Appendix B. Enterprise Replication configuration parameter and environment variable reference B-25

B-26 IBM Informix Enterprise Replication Guide

Appendix C. Grid routines

Grid routines are used to create and maintain the grid and to administer servers in
the grid by propagating commands from a source server to all other servers in the
grid.

ifx_get_erstate() function
The ifx_get_erstate() function indicates whether replication is enabled for the
transaction in which it is run.

Syntax

►► EXECUTE FUNCTION ifx_get_erstate () INTO data_var ; ►◄

Element Purpose Restriction

data_var Variable to receive the value that
the function returns

Usage

Use the ifx_get_erstate() function to obtain the state of replication within a
transaction. You can use the state information saved in the variable as input to the
ifx_set_erstate() procedure.

Return value

A return value of 1 indicates that the current transaction is replicating data.

A return value of 0 indicates that the current transaction is not replicating data.

Example

The following example obtains the replication state and stores it in the curstate
variable:
EXECUTE FUNCTION ifx_get_erstate() INTO curstate;

Related concepts:
“Recapture replicated transactions” on page 11-29
Related tasks:
“Enabling replication within a grid transaction” on page 9-12
Related reference:
“ifx_set_erstate() procedure” on page D-1

ifx_grid_connect() procedure
The ifx_grid_connect() procedure opens a connection to the grid. Through an
ifx_grid_connect() procedure, you can run routines and data definition language
(DDL) commands on a source server, and then propagate the routines or
commands to the other grid servers.

© Copyright IBM Corp. 1996, 2015 C-1

Syntax

►► EXECUTE PROCEDURE ifx_grid_connect (' grid_name ' ►

►
, ' tag ' , ER_enable

, ' tag ' , defer

) ; ►◄

Element Purpose Restrictions

grid_name Name of the grid. Must be the name of an existing
grid.

ER_enable Enable or disable the creation of a
replicate and replicate set and
starting replication for any tables
that are created while the
connection to the grid is open.
Optionally suppress any errors
that might be raised when the
procedure is run.

Valid values are:

v 0 = Default. Enterprise
Replication is disabled.

v 1 = Enterprise Replication is
enabled.

v 2 = Enterprise Replication is
disabled and errors are
suppressed.

v 3 = Enterprise Replication is
enabled and errors are
suppressed.

defer Run DDL statements on the local
server but delay the propagation
of the statements to other servers
in the grid. Optionally enable the
creation of a replicate and
replicate set and starting
replication.

Valid values are:

v 4 = Defer the propagation of
DDL statements.

v 5 = Defer the propagation of
DDL statements and enable
Enterprise Replication. Use this
value when you run DDL
statements on existing replicated
tables.

tag A character string to identify grid
operations.

Must be unique among grid
sessions with deferred DDL
statements that are outstanding.

Usage

Use the ifx_grid_connect() procedure start a grid connection. All DDL SQL
statements and routines that you run in the grid connect are propagated to all the
servers in the grid. Use the ifx_grid_disconnect() procedure to close the grid
connect and disable grid propagation. If the databases on your replication servers
have different schemas or data, a DDL statement that is run through a grid might
have different results on each server. In a replication system, when you run a
statement locally, the results are replicated to the other replication servers. When
you run a statement through a grid, that statement is simultaneously run on each
server.

You must run this routine as an authorized user on an authorized server, as
specified by the cdr enable grid command.

You must connect to a database before you run the ifx_grid_connect() procedure. If
you are planning to create a database, you can connect to the sysmaster database.

C-2 IBM Informix Enterprise Replication Guide

If you enable Enterprise Replication, when you create a table through the grid, a
replicate is created that contains the newly created table with all the servers in the
grid as participants. The replicate belongs to a replicate set that has the same name
as the grid. When you create a replicated table through the grid, the ERKEY
shadow columns are added automatically.

If you run the ifx_grid_connect() procedure automatically as part of the
sysdbopen() procedure, set the ER_enable argument to 2 or 3 to suppresses errors
that might prevent the session from accessing the database.

You can defer the propagation of DDL statements to other servers in the grid by
setting the defer argument. The DDL statements are queued for propagation but not
sent to other grid servers until you run the ifx_grid_release() function.

You cannot perform the following actions in the context a grid connection:
v Propagate data manipulation language statements through a grid.
v Replicate a database object that exists on a server in the grid.
v Use the @servername syntax while connected to the grid.
v Drop a replicated column through a grid. To drop a replicated column, you must

manually remaster the replicate and then drop the column.
v Renaming a replicated database. You must manually rename the database on

each participant server.

Example 1: Create a table

In the following example, a grid connection is opened that enables the propagation
of only DDL statements, a table is created on all servers in the grid, and then the
grid connection is closed:
database sales;

EXECUTE PROCEDURE ifx_grid_connect(’grid1’);

CREATE TABLE special_offers(
offer_description varchar(255),
offer_startdate date,
offer_enddate date,
offer_rules lvarchar);

EXECUTE PROCEDURE ifx_grid_disconnect();

In this example, the data in the special_offers table is not replicated.

Example 2: Create a replicated table

In the following example, a grid connection is opened that enables the propagation
of DDL statements and the replication of data, a table is created on all servers in
the grid, and then the grid connection is closed:
database sales;

EXECUTE PROCEDURE ifx_grid_connect(’grid1’, 1);

CREATE TABLE special_offers(
offer_description varchar(255),
offer_startdate date,
offer_enddate date,

Appendix C. Grid routines C-3

offer_rules lvarchar)
WITH CRCOLS;

EXECUTE PROCEDURE ifx_grid_disconnect();

A replicate for the special_offers table is created with timestamp conflict resolution
and replication of the data in the table is started.

Example 3: Alter a replicated table to add a column

The following example alters the special_offers table to add a column and
remasters the replicate on all participants that are members of the grid:
database sales;

EXECUTE PROCEDURE ifx_grid_connect(’grid1’, 1);

ALTER TABLE special_offers ADD (
offer_exceptions varchar(255));

EXECUTE PROCEDURE ifx_grid_disconnect();

Example 4: Alter a replicated table to add a column that is not
replicated

The following example alters the special_offers table to add a column whose data
is not replicated:
database sales;

EXECUTE PROCEDURE ifx_grid_connect(’grid1’, 0);

ALTER TABLE special_offers ADD (
local_promotions varchar(255));

EXECUTE PROCEDURE ifx_grid_disconnect();

The column local_promotions is added to the special_offers table on all grid
servers, but the data in the local_promotions column is not replicated.

Example 5: Defer propagation of a DDL statement

The following example defers propagation of the ALTER operation across grid1:
database sales;

EXECUTE PROCEDURE ifx_grid_connect(’grid1’,’tag1’,4);

ALTER TABLE special_offers ADD (
local_restrictions varchar(255));

The column local_restrictions is added to the special_offers table on the local
server only. The ALTER operation is queued for propagation to the other grid
servers.
Related concepts:
“Grid queries” on page 9-19
Related tasks:
“Propagating database object changes” on page 9-15
“Creating replicated tables through a grid” on page 9-11
“Adding an existing replicate to a grid replicate set by altering a table” on page
9-10

C-4 IBM Informix Enterprise Replication Guide

Related reference:
“ifx_grid_disconnect() procedure” on page C-6
“cdr enable grid” on page A-116
“ifx_grid_release() function” on page C-11
“ifx_grid_remove() function” on page C-12
“cdr delete grid” on page A-103

ifx_grid_copy() procedure
The ifx_grid_copy() procedure copies non-database, external files from a grid
database server to other nodes in the same grid.

Syntax

►► EXECUTE PROCEDURE ifx_grid_copy (' grid_name ' , ' source_path_and_filename ' ►

►
, ' target_path_and_filename '

) ; ►◄

Element Purpose Restriction

grid_name The name of the database server's grid.

source_path_and_filename The file path, relative to the value of
the GRIDCOPY_DIR configuration
parameter on the source database
server, and name of the file you want
to send to the other nodes of the grid.

The file must be located relative to the
directory specified by the
GRIDCOPY_DIR configuration
parameter on the source server. By
default, the GRIDCOPY_DIR
configuration parameter is set to
$INFORMIXDIR.

target_path_and_filename The file path, relative to values of the
GRIDCOPY_DIR configuration
parameter on each other node of a
grid, and the name each file will have
on the other nodes of the grid.

If you do not specify
target_path_and_filename, the file is
copied to source_path_and_filename on
each node, relative to the
GRIDCOPY_DIR configuration
parameter value on that node.

Usage

The ifx_grid_copy() procedure copies a file, along with the file's permissions,
group, and owner values, from a directory on a grid server to specified
destinations on each other node that is currently part of the grid. Group and
owner values, rather than group ID and user ID values, are copied because group
IDs and user IDs can have different values on different servers. If the file's group
or owner values have not been defined on a node receiving a copied file, the copy
fails on that node.

You can run this procedure only on an authorized database server and as an
authorized user, as specified by the cdr grid enable command.

Only nodes that are members of a grid at the time the ifx_grid_copy() is run
receive the copied file. Grid nodes added after ifx_grid_copy() procedures
complete are not updated with files previously copied to other nodes.

Appendix C. Grid routines C-5

Nonexistent directories that are specified by the source_path_and_filename or
target_path_and_filename values of the ifx_grid_copy() command are created during
the ifx_grid_copy() procedure.

Wildcard characters in file names are not supported.

Example 1: Copying a file to the same location on database
servers of a grid

The GRIDCOPY_DIR configuration parameter is set to $INFORMIXDIR/tmp on all
database servers of a grid named grid1. The following command copies the file
script1.exe from $INFORMIXDIR/tmp/bin on the source database server to
$INFORMIXDIR/tmp/bin on all other nodes of grid1.
EXECUTE PROCEDURE ifx_grid_copy ("grid1", "bin/script1.exe");

Example 2: Copying a file to the same relative locations on other
database servers of a grid

The GRIDCOPY_DIR configuration parameter is set to $INFORMIXDIR/tmp on the
source database server and $INFORMIXDIR/copies on each other node of a grid
named grid2. The following command copies the file script2.exe from
$INFORMIXDIR/tmp/bin on the source database server to $INFORMIXDIR/copies/bin
on all other nodes of grid2.
EXECUTE PROCEDURE ifx_grid_copy ("grid2", "bin/script2.exe");

Example 3: Copying a file to different relative locations on the
other database servers of a grid

The GRIDCOPY_DIR configuration parameter is set to $INFORMIXDIR/tmp on all
database servers of a grid named grid3. The following command copies the file
script3.exe from $INFORMIXDIR/tmp/bin on the source server to
$INFORMIXDIR/tmp/copies on all other nodes of grid3.
EXECUTE PROCEDURE ifx_grid_copy ("grid3", "bin/script3.exe", "copies/script3.exe");

Example 4: Changing the name of file copied throughout a grid

The GRIDCOPY_DIR configuration parameter is set to $INFORMIXDIR/tmp on all
database servers of a grid named grid4. The following command copies the file
script4.exe in $INFORMIXDIR/tmp on the source server to $INFORMIXDIR/tmp on all
other nodes of grid4. The copied file is named script4_copy.exe on the other
nodes of grid4.
EXECUTE PROCEDURE ifx_grid_copy ("grid4", "script4.exe", "script4_copy.exe");

Related tasks:
“Propagating external files through a grid” on page 9-16
Related reference:
“GRIDCOPY_DIR Configuration Parameter” on page B-18

ifx_grid_disconnect() procedure
The ifx_grid_disconnect() procedure closes a connection to the grid.

C-6 IBM Informix Enterprise Replication Guide

Syntax

►► EXECUTE PROCEDURE ifx_grid_disconnect () ; ►◄

Usage

Use the ifx_grid_disconnect() procedure to disable the propagation of DDL
statements and commands to servers in the grid, which was enabled by the
ifx_grid_connect() procedure. If you do not use the ifx_grid_disconnect()
procedure, propagation through the grid is stopped when the database is closed or
the connection is closed.

You must run this routine as an authorized user on an authorized grid server, as
specified by the cdr grid enable command.

Example

The following example shows how to close a connection to the grid after opening a
connection:
EXECUTE PROCEDURE ifx_grid_connect(’grid1’);
EXECUTE PROCEDURE ifx_grid_disconnect();

Related tasks:
“Propagating database object changes” on page 9-15
Related reference:
“ifx_grid_connect() procedure” on page C-1

ifx_grid_execute() procedure
The ifx_grid_execute() procedure propagates the execution of a routine or data
manipulation language (DML) SQL statement to all servers in the grid.

Syntax

►► EXECUTE PROCEDURE ifx_grid_execute (' grid_name ' ►

► , ' statement_text '
, ' tag '

) ; ►◄

Element Purpose Restrictions

grid_name Name of the grid. Must be the name of an existing
grid.

statement_text The text format of the routine or
SQL statement to be run.

Bound data items cannot be
included in procedure text.

tag A character string to identify grid
operations.

Usage

Use the ifx_grid_execute() procedure to run a routine or DML SQL statement on a
source server and propagate it so that it is also run on the other servers in the grid.
The output of the routine, if any, is not returned to the client application. The
results of routines or statements that are performed within the context of the

Appendix C. Grid routines C-7

ifx_grid_execute() procedure are not replicated. The ifx_grid_execute() procedure
effectively runs routines and statements with a BEGIN WORK WITHOUT
REPLICATION statement. Do not use the ifx_grid_execute() procedure to populate
tables that are already involved in replication. Although you can use the
ifx_grid_execute() procedure to run a DML statement, for example, to delete many
rows from a table, in general use Enterprise Replication to replicate changes to
replicated data. You can run DML statements on any type of table, including raw
tables, virtual tables, and external tables.

You cannot run the ifx_grid_execute() procedure from within a transaction. When
you run SQL administration API commands from the ifx_grid_execute() procedure,
you must use double quotation marks around the SQL administration API function
arguments and single quotation marks around the ifx_grid_execute() procedure
arguments.

You must run this routine as an authorized user on an authorized server, as
specified by the cdr grid enable command.

Example

The following example, run from the sysadmin database, uses an SQL
administration API command to create a dbspace on every server in the grid:
EXECUTE PROCEDURE ifx_grid_execute(’grid1’,

’admin("create dbspace", "dbspace3",
"$INFORMIXDIR/WORK/dbspace3", "500 M")’);

The following example drops the logical logs from the chunk number 3 from all
the servers in the grid:
EXECUTE PROCEDURE ifx_grid_execute(’grid1’, ’SELECT task("drop log", number) FROM

sysmaster:syslogfil where chunk = 3;’);

Related tasks:
“Administering servers in the grid with the SQL administration API” on page 9-14

“Propagating updates to data” on page 9-13
Related reference:
“ifx_grid_procedure() procedure” on page C-9
“ifx_grid_function() function”

ifx_grid_function() function
The ifx_grid_function() function propagates the execution of a function to all
servers in the grid.

Syntax

►► EXECUTE FUNCTION ifx_grid_function (' grid_name ' ►

► , ' function_text '
, ' tag '

) ; ►◄

Element Purpose Restrictions

grid_name Name of the grid. Must be the name of an existing
grid.

C-8 IBM Informix Enterprise Replication Guide

Element Purpose Restrictions

function_text The text format of the function to
be run.

tag A character string to identify grid
operations.

Usage

Use the ifx_grid_function() function to run a function or SQL statement on a
source server and propagate it so that it is also run on the other servers in the grid.
The output of the function is returned to the client application as an LVARCHAR
data type with comma-delimited text. You can also view the output with the cdr
list grid command with the --verbose option. You cannot run the
ifx_grid_function() function from within a transaction.

You must run this routine as an authorized user on an authorized server, as
specified by the cdr grid enable command.

Example

The following example runs a function named load_function():
EXECUTE FUNCTION ifx_grid_function(’grid1’, ’load_function(2000)’);

Related tasks:
“Administering servers in the grid with the SQL administration API” on page 9-14

Related reference:
“ifx_grid_execute() procedure” on page C-7

ifx_grid_procedure() procedure
The ifx_grid_procedure() procedure propagates the execution of a procedure to all
servers in the grid.

Syntax

►► EXECUTE PROCEDURE ifx_grid_procedure (' grid_name ' ►

► , ' procedure_text '
, ' tag '

) ; ►◄

Element Purpose Restrictions Syntax

grid_name Name of the grid. Must be the name of an
existing grid.

procedure_text The text format of the
procedure to be run.

Bound data items cannot be
included.

tag A character string to
identify grid operations.

Appendix C. Grid routines C-9

Usage

Use the ifx_grid_procedure() procedure to run a procedure or SQL statement on a
source server and propagate it so that it is also run on the other servers in the grid.
You cannot run the ifx_grid_procedure() procedure from within a transaction.

You must run this routine as an authorized user on an authorized server, as
specified by the cdr grid enable command.

Example

The following example runs a procedure named myloadprocedure():
EXECUTE PROCEDURE ifx_grid_procedure(’grid1’,
’myloadprocedure(2000)’, ’mytag’);

Related reference:
“ifx_grid_execute() procedure” on page C-7

ifx_grid_redo() procedure
The ifx_grid_redo() procedure reruns commands that were run through the grid
and failed on one or more servers in the grid.

Syntax

►► EXECUTE PROCEDURE ifx_grid_redo ('grid_name' ►

►
,'source_server'

,'target_server'
,'tag'

,'command_ID'
,'force'

) ; ►◄

Element Purpose Restrictions

grid_name Name of the grid. Must be the name of an existing
grid.

command_ID One or more ID numbers of the
command to rerun on the grid.

Separate multiple ID numbers with
a comma or specify a range with a
hyphen (-).

Can be NULL.

source_server The replication server from which
the routine was run.

Can be NULL.

tag A character string identifying the
grid operations to rerun.

Must be an existing tag.

Can be NULL.

target_server The replication server on which to
rerun the routine.

Can be NULL.

Usage

Commands that you run through the grid might fail on one or more servers in the
grid. Use the ifx_grid_redo() procedure to rerun commands that failed. For
example, if you create a fragmented table through the grid and one of the grid
servers does not have one of the dbspaces into which the table is fragmented, the

C-10 IBM Informix Enterprise Replication Guide

command fails on that server. After you add the required dbspace to the server,
run the ifx_grid_redo() procedure to create the fragmented table on that server.

You can specify from which source server the commands were run, the command
ID, the target server on which the commands failed, or the identifying tag for
commands that failed.

Use the force argument to rerun commands that succeeded.

You must run this routine as an authorized user on an authorized server, as
specified by the cdr grid enable command.

Example

The following example reruns failed commands on every server in the grid on
which those commands failed:
EXECUTE PROCEDURE ifx_grid_redo(’grid1’);

The following example reruns the command with the ID of 21 that originated
server cdr1 on server cdr4:
EXECUTE PROCEDURE ifx_grid_redo(’grid1’, ’cdr1’, ’cdr4’, NULL, ’21’);

The following example reruns all commands that failed on server cdr4:
EXECUTE PROCEDURE ifx_grid_redo(’grid1’, NULL, ’cdr4’);

Related tasks:
“Rerunning failed grid routines” on page 9-17

ifx_grid_release() function
The ifx_grid_release() function propagates deferred DDL statements that were run
on the local grid server, but deferred from running on the other grid servers.

Syntax

►► EXECUTE FUNCTION ifx_grid_release (' grid_name ' , ' tag ') ; ►◄

Element Purpose Restrictions

grid_name The name of the grid that a DDL
statement is queued to propagates
across

Must be the name of an existing
grid.

tag A character string to identify grid
operations.

Must be the same value as the tag
argument that was included in the
ifx_grid_connect() procedure with
the defer argument.

Usage

If you deferred the propagation of DDL statements by running the
ifx_grid_connect() procedure with the defer argument, DDL statements are run on
the local server but deferred from propagating across the grid. Run the
ifx_grid_release() function to propagate the DDL statements to the other grid
servers. You can run the ifx_grid_release() command at any time after the grid
session in which the statements were deferred.

Appendix C. Grid routines C-11

You must run this routine as an authorized user on an authorized server, as
specified by the cdr enable grid command.

Returns

The number of DDL statements that are released.

Example

The following example defers propagation of the ALTER operation across grid1:
database sales;

EXECUTE PROCEDURE ifx_grid_connect(’grid1’,’tag1’,4);

ALTER TABLE special_offers ADD (
local_restrictions varchar(255));

The following statement releases the queued ALTER operation:
EXECUTE FUNCTION ifx_grid_release(’grid1’,’tag1’);

The local_restrictions column is added to the special_offers table on the other grid
servers.
Related concepts:
“Grid queries” on page 9-19
Related reference:
“ifx_grid_connect() procedure” on page C-1
“ifx_grid_remove() function”
Related information:
SELECT_GRID session environment option
SELECT_GRID_ALL session environment option
GRID clause

ifx_grid_remove() function
The ifx_grid_remove() function removes any DDL statements that are deferred
from propagation to grid servers.

Syntax

►► EXECUTE FUNCTION ifx_grid_remove (' grid_name ' , ' tag ') ; ►◄

Element Purpose Restrictions

grid_name The name of the grid that has a
deferred DDL statement.

Must be the name of an existing
grid.

tag A character string to identify grid
operations.

Must be the same value as the tag
argument that was included in the
ifx_grid_connect() procedure with
the defer argument.

C-12 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2599.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2600.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

Usage

If you deferred the propagation of DDL statements by running the
ifx_grid_connect() procedure with the defer argument, DDL statements are run on
the local server but deferred from propagating across the grid. If you decide to not
propagate the deferred DDL statements, run the ifx_grid_remove() function to
remove the deferred DDL statement. You can run the ifx_grid_remove() command
at any time after the grid session in which the statements were deferred. The
ifx_grid_remove() command does not roll back the DDL statements on the local
server.

You must run this routine as an authorized user on an authorized server, as
specified by the cdr enable grid command.

Returns

The number of DDL statements that are removed.

Example

The following example defers propagation of the ALTER operation across grid1:
database sales;

EXECUTE PROCEDURE ifx_grid_connect(’grid1’,’tag1’,4);

ALTER TABLE special_offers ADD (
local_restrictions varchar(255));

The following statement removes the queued ALTER operation:
EXECUTE FUNCTION ifx_grid_remove(’grid1’,’tag1’);

The local_restrictions column remains in the special_offers table on the local
server but is not added to the special_offers tables on the other grid servers.
Related concepts:
“Grid queries” on page 9-19
Related reference:
“ifx_grid_connect() procedure” on page C-1
“ifx_grid_release() function” on page C-11
Related information:
SELECT_GRID session environment option
SELECT_GRID_ALL session environment option
GRID clause

ifx_grid_purge() procedure
The ifx_grid_purge() procedure deletes metadata about commands that have been
run through the grid.

Syntax

►► EXECUTE PROCEDURE ifx_grid_purge ('grid_name' ►

Appendix C. Grid routines C-13

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2599.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2600.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

►
,'source_server'

,'target_server'
,'tag'

,'command_ID'
,'force'

) ; ►◄

Element Purpose Restrictions

grid_name Name of the grid. Must be the name of an existing
grid.

command_ID One or more ID numbers of the
command to purge.

Separate multiple ID numbers with
a comma or specify a range with a
hyphen (-).

Can be NULL.

source_server The replication server on which
the routine originated.

Can be NULL.

tag A character string identifying the
grid operations to purge.

Must be an existing tag.

Can be NULL.

target_server The replication server on which
the routine was run.

Can be NULL.

Usage

Use the ifx_grid_purge() procedure to delete the history of commands successfully
run from the grid. Accumulated command history can significantly increase the
size of the syscdr database.

Use the force argument to delete the history of all commands, including those that
failed.

You must run this routine as an authorized user on an authorized server, as
specified by the cdr grid enable command.

Example

The following example deletes the history for commands that ran successfully:
EXECUTE PROCEDURE ifx_grid_purge(’grid1’);

The following example deletes the history for commands, including those that
failed:
EXECUTE PROCEDURE ifx_grid_purge(’grid1’, NULL, NULL, NULL, NULL, ’force’);

The following example deletes the command history with the ID of 21 that
originated server cdr1 and ran on server cdr4:
EXECUTE PROCEDURE ifx_grid_purge(’grid1’, ’cdr1’, ’cdr4’, NULL, ’21’);

The following example deletes all commands that ran successfully on server cdr4:
EXECUTE PROCEDURE ifx_grid_purge(’grid1’, NULL, ’cdr4’);

Related concepts:
“Grid maintenance” on page 9-6

C-14 IBM Informix Enterprise Replication Guide

ifx_gridquery_skipped_nodes() function
The ifx_gridquery_skipped_nodes() function returns the name of a server that was
unavailable during a grid query.

Syntax

►► EXECUTE FUNCTION ifx_gridquery_skipped_nodes () ; ►◄

Usage

If you set the GRID_NODE_SKIP option of the SET ENVIRONMENT statement to
'on', any servers that are unavailable when a grid query is run are skipped. Run
the ifx_gridquery_skipped_nodes() function to return the name of a skipped
server.

Use the ifx_gridquery_skipped_nodes() function with the
ifx_gridquery_skipped_node_count() function. Run the
ifx_gridquery_skipped_node_count() function to determine how many servers
were skipped, and then run the ifx_gridquery_skipped_nodes() function the same
number of times as the number of skipped servers.

Return value

An LVARCHAR string that supplies the name of a skipped server.

A return value of 0 indicates no skipped servers.

Example

The following statement returns the number of skipped nodes in the grid query:
EXECUTE FUNCTION ifx_gridquery_skipped_node_count();

2

The following statements return the names of the two skipped nodes:
EXECUTE FUNCTION ifx_gridquery_skipped_nodes();

server1

EXECUTE FUNCTION ifx_gridquery_skipped_nodes();

server2

Related concepts:
“Examples of grid queries” on page 9-22
“Grid queries” on page 9-19
Related reference:
“ifx_gridquery_skipped_node_count() function” on page C-16
Related information:
GRID_NODE_SKIP session environment option
GRID clause

Appendix C. Grid routines C-15

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2601.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

ifx_gridquery_skipped_node_count() function
The ifx_gridquery_skipped_node_count() function returns the number of servers
that were unavailable during a grid query.

Syntax

►► EXECUTE FUNCTION ifx_gridquery_skipped_node_count () ; ►◄

Usage

If you set the GRID_NODE_SKIP option of the SET ENVIRONMENT statement to
’on’, any servers that are unavailable when a grid query is run are skipped. Run
the ifx_gridquery_skipped_node_count() function to return the number of a
skipped servers.

Use the ifx_gridquery_skipped_node_count() function with the
ifx_gridquery_skipped_nodes() function. Run the
ifx_gridquery_skipped_node_count() function to determine how many servers
were skipped, and then run the ifx_gridquery_skipped_nodes() function the same
number of times as the number of skipped servers.

After a grid query is run, the next SELECT statement that is run resets skipped
node count, so ifx_gridquery_skipped_node_count() must be used in an
EXECUTE FUNCTION statement.

Return value

An integer that indicates the number of skipped servers.

0 indicates that no grid servers were skipped.

Example

The following statement returns the number of skipped nodes in the grid query:
EXECUTE FUNCTION ifx_gridquery_skipped_node_count();

2

Related concepts:
“Examples of grid queries” on page 9-22
“Grid queries” on page 9-19
Related reference:
“ifx_gridquery_skipped_nodes() function” on page C-15
Related information:
GRID_NODE_SKIP session environment option
GRID clause

ifx_node_id() function
The ifx_node_id() function returns the ID of the grid server on which the function
is run.

C-16 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2601.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

Syntax

►► EXECUTE FUNCTION ifx_node_id () ; ►◄

Usage

Use the ifx_node_id() function in the context of a grid query to return the ID of
each server on which the grid query is run. Include the ifx_node_id() function in
the SELECT statement of a grid query. The server ID is returned as a result column
to identify the origin of the other results of the query.

If you run the ifx_node_id() function outside of the context of a grid query, the
function returns the ID of the local server, unless you prefix the remote database
and server name, for example: db@serv4:ifx_node_id().

Example

The following grid query selects the server ID and the total sales from a grid
named SE_USA and groups the results by the server ID:
SELECT ifx_node_id() AS ifx_node_id, sum(amt) AS total_sales
FROM sales GRID ALL ’SE_USA’
GROUP BY ifx_node_id;

ifx_node_id total_sales

1 $2100.00
2 $2160.00
3 $2000.00
4 $2040.00

Related concepts:
“Examples of grid queries” on page 9-22
“Grid queries” on page 9-19
Related reference:
“cdr define region” on page A-76
“cdr delete region” on page A-104
“ifx_node_name() function”
Related information:
GRID clause

ifx_node_name() function
The ifx_node_name() function returns the name of the grid server on which the
function is run.

Syntax

►► EXECUTE FUNCTION ifx_node_name () ; ►◄

Usage

Use the ifx_node_name() function in the context of a grid query to return the
name of each server on which the grid query is run. Include the ifx_node_name()

Appendix C. Grid routines C-17

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

function in the SELECT statement of a grid query. The server name is returned as a
result column to identify the origin of the other results of the query.

If you run the ifx_node_name() function outside of the context of a grid query, the
function returns the name of the local server, unless you prefix the remote database
and server name, for example: db@serv4:ifx_node_name().

Example

The following grid query selects the server name and the total sales from a grid
named SE_USA and groups the results by the server name:
SELECT ifx_node_name() AS node, sum(amt) AS total_sales
FROM sales GRID ALL ’SE_USA’
GROUP BY node;

node Atlanta
total_sales $2100.00

node Birmingham
total_sales $2160.00

node Nashville
total_sales $2000.00

node Jacksonville
total_sales $2040.00

Related concepts:
“Examples of grid queries” on page 9-22
“Grid queries” on page 9-19
Related reference:
“cdr define region” on page A-76
“cdr delete region” on page A-104
“ifx_node_id() function” on page C-16
Related information:
GRID clause

C-18 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

Appendix D. Enterprise Replication routines

Enterprise Replication routines used to control if a replicated transaction is
recaptured.

ifx_get_erstate() function
The ifx_get_erstate() function indicates whether replication is enabled for the
transaction in which it is run.

Syntax

►► EXECUTE FUNCTION ifx_get_erstate () INTO data_var ; ►◄

Element Purpose Restriction

data_var Variable to receive the value that
the function returns

Usage

Use the ifx_get_erstate() function to obtain the state of replication within a
transaction. You can use the state information saved in the variable as input to the
ifx_set_erstate() procedure.

Return value

A return value of 1 indicates that the current transaction is replicating data.

A return value of 0 indicates that the current transaction is not replicating data.

Example

The following example obtains the replication state and stores it in the curstate
variable:
EXECUTE FUNCTION ifx_get_erstate() INTO curstate;

Related concepts:
“Recapture replicated transactions” on page 11-29
Related tasks:
“Enabling replication within a grid transaction” on page 9-12
Related reference:
“ifx_set_erstate() procedure”

ifx_set_erstate() procedure
The ifx_set_erstate() procedure controls whether database operations are
replicated.

© Copyright IBM Corp. 1996, 2015 D-1

Syntax

►► EXECUTE PROCEDURE ifx_set_erstate (1
0
' on '
' off '
data_var

) ; ►◄

Element Purpose Restriction

data_var Variable holding the value that a
function returned

Usage

Use the ifx_set_erstate() procedure to enable or disable replication during a
transaction. During normally replicated transactions, use the ifx_set_erstate()
procedure to enable the recapture of a transaction after it has been replicated. You
must reset the replication state back to the default at the end of the transaction or
replication loops indefinitely.

Replication can only be enabled on tables that are participants in an existing
replicate. To enable replication, set the ifx_set_erstate() procedure to 1 or ’on’. To
disable replication, set the ifx_set_erstate() procedure to 0 or ’off’. To set
replication to a previous state that was saved by the ifx_get_erstate() function, set
the ifx_set_erstate() procedure to the name of the variable returned by the
ifx_get_erstate() function.

Example

The following example enables replication in the transaction:
EXECUTE PROCEDURE ifx_set_erstate(1);

The following example resets the replication state to a previous state that was
saved by the ifx_get_erstate() function in the curstate variable:
EXECUTE PROCEDURE ifx_set_erstate(curstate);

Related concepts:
“Recapture replicated transactions” on page 11-29
Related tasks:
“Enabling replication within a grid transaction” on page 9-12
Related reference:
“ifx_get_erstate() function” on page C-1

D-2 IBM Informix Enterprise Replication Guide

Appendix E. onstat -g commands for Enterprise Replication

You can monitor and debug Enterprise Replication activity using onstat -g
commands.

The onstat utility reads shared-memory structures and provides statistics about the
database server that are accurate at the instant that the command executes. The
system-monitoring interface (SMI) also provides information about the database
server. For general information about onstat and SMI, refer to the IBM Informix
Administrator's Reference. For information on SMI tables specific to Enterprise
Replication, see Appendix G, “SMI Tables for Enterprise Replication Reference,” on
page G-1.
Related concepts:
Chapter 12, “Monitor and troubleshooting Enterprise Replication,” on page 12-1
Related information:
onstat -k command: Print active lock information
onstat -g ath command: Print information about all threads

Threads shown by the onstat -g ath command
The threads that Enterprise Replication uses are shown by the onstat -g ath
command.

The following table summarizes the threads that Enterprise Replication uses. You
can use this information about threads when you evaluate memory use.

Table E-1. Enterprise Replication threads

Number of
Threads Thread Name Thread Description

1 ddr_snoopy Performs physical I/O from logical log, verifies potential replication,
and sends applicable log-record entries to Enterprise Replication.

1 preDDR Runs during queue recovery to monitor the log and blocks user
transactions if the log position advances too far before replication
resumes.

1 CDRGfan Receives log entries and passes entries to evaluator thread

n CDRGevaln Evaluates log entry to determine whether to replicated it. The value of
n is the number of evaluator threads specified by the
CDR_EVALTHREADS configuration parameter. This thread also
compresses committed transactions and queues completed replication
messages.

1 per large
transaction

CDRPager Performs the physical I/O for the temporary smart large object that
holds paged transaction records. Grouper paging is activated for a
transaction when its size is 10 percent of the value of the
SHMVIRTSIZE or CDR_QUEUEMEM configuration parameters or
when it includes more than 100,000 records.

1 CDRCparse Parses all SQL statements for replicate definitions.

1 per
connection

CDRNsTnCDRNsAn Sending thread for site.

1 per
connection

CDRNrn Receiving thread for site.

© Copyright IBM Corp. 1996, 2015 E-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0597.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0514.htm

Table E-1. Enterprise Replication threads (continued)

Number of
Threads Thread Name Thread Description

2...n CDRACK_n Accepts acknowledgments from site. At least 2, up to a maximum of the
number of active connections.

CPUs... CDRD_n Replays transaction on the target system (data sync thread). At least one
thread is created for each CPU virtual processor (VP). The maximum
number of threads is 4*(number of CPU VPs).

1 CDRSchedMgr Schedules internal Enterprise Replication events.

0 or 1 CDRM_Monitor Monitors and adjusts data sync performance for optimum performance
(on the target).

0 or 1 CDRDTCleaner Deletes rows from the deleted rows shadow table when they are no
longer needed.

Related information:
onstat -g ath command: Print information about all threads

onstat -g cat: Print ER global catalog information
Prints information from the Enterprise Replication global catalog.

►►
full

onstat -g cat
replname
repls
servers

►◄

Modifier Description

replname The name of a replicate

Usage

The global catalog contains a summary of information about the defined servers,
replicates, and replicate sets on each of the servers within the domain. If a
replicated table is undergoing an alter operation, the onstat -g cat command shows
that it is in alter mode. For example, use this command to determine:
v How many servers and how many replicates are configured
v Which table matches a given replicate
v Whether a server is a root or leaf server
v The current bitmap mask for the specified server. You can use the bitmap mask

with the output from the onstat -g rqm command to determine which server
Enterprise Replication is waiting on for an acknowledgment.

You can set the scope of the output by specifying one of the following options to
onstat -g cat:
v full: (Default) Prints expanded information for both replicate servers and

replicates.
v replname: Prints information about the specified replicate only.
v repls: Prints information about replicates only.
v servers: Prints information about servers only.

E-2 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0514.htm

This sample output from the onstat -g cat repls command shows that the table tab
is in alter mode. The replicate rep1 is defined on this table, its replicate ID is
6553601.
GLOBAL-CATALOG CACHE STATISTICS
REPLICATES

Parsed statements:

Id 6553601 table tab
Id 6553602 table tab12

Inuse databases: test(2)
Name: rep1, Id: 6553601 State: ACTIVE Flags: 0x800000 ALTERMODE

use 0 lastexec Wed Dec 31 18:00:00 1969
Local Participant: test:nagaraju.tab
Attributes: TXN scope, Enable ATS, Enable RIS, all columns

sent in updates
Conflict resolution: [TIMESTAMP]
Column Mapping: ON, columns INORDER, offset 8, uncomp_len 12
Column Name Verifcation: ON
No Replicated UDT Columns

Name: rep12, Id: 6553602 State: ACTIVE Flags: 0x800000 use 0
lastexec Wed Dec 31 18:00:00 1969

Local Participant: test:nagaraju.tab12
Attributes: TXN scope, Enable ATS, Enable RIS, all columns

sent in updates
Conflict resolution: [TIMESTAMP]
Column Mapping: ON, columns INORDER, offset 8, uncomp_len 2064
Column Name Verifcation: ON
No Replicated UDT Columns

The following replicate information shows that the replicate belongs to a grid
replicate set. UTF8 indicates that code set conversion between replicates is enabled.
Name: grid_6553604_100_3, Id: 6553605 State: ACTIVE Flags: 0x900000 UTF8 GRID

use 0 lastexec Wed Dec 31 18:00:00 1969

Local Participant: tdb:nagaraju.t1
Attributes: ROW scope, Enable RIS, all columns sent in updates
Conflict resolution[Prim::Sec]: [ALWAYSAPPLY]
Column Mapping: OFF
Column Name Verifcation: ON
No Replicated UDT Columns

This sample output from the onstat -g cat servers command shows that the server
g_bombay and g_delhi are active; neither one is a hub or a leaf server, and both
have ATS and RIS files that are generated in XML format.
GLOBAL-CATALOG CACHE STATISTICS

SERVERS

Current server : Id 200, Nm g_bombay
Last server slot: (0, 2)
free slots : 0
Broadcast map : <[0005]>
Leaf server map : <[0000]>
Root server map : <[0006]>
Adjacent server map: <[0004]>
Id: 200, Nm: g_bombay, Or: 0x0002, off: 0, idle: 0, state Active

root Id: 00, forward Id: 00, ishub: FALSE, isleaf: FALSE
subtree map: <empty>
atsrisformat=xml

Id: 100, Nm: g_delhi, Or: 0x0004, off: 0, idle: 0, state Active
root Id: 00, forward Id: 100, ishub: FALSE, isleaf: FALSE
subtree map: <empty>
atsrisformat=xml

Appendix E. onstat -g commands for Enterprise Replication E-3

Related tasks:
“Viewing grid information” on page 9-7
Related reference:
“onstat -g cdr: Print ER statistics”

onstat -g cdr: Print ER statistics
Prints the output for all of the Enterprise Replication statistics commands.

►► onstat -g cdr ►◄

Usage

The output of the onstat -g cdr command is a combination of the following
Enterprise Replication onstat command outputs:
v onstat -g cat

v onstat -g grp

v onstat -g que

v onstat -g rqm

v onstat -g nif all

v onstat -g rcv

v onstat -g dss

v onstat -g dtc

v onstat -g rep

Related reference:
“onstat -g cat: Print ER global catalog information” on page E-2
“onstat -g grp: Print grouper statistics” on page E-8
“onstat -g que: Print statistics for all ER queues” on page E-14
“onstat -g rqm: Prints statistics for RQM queues” on page E-18
“onstat -g nif: Print statistics about the network interface” on page E-13
“onstat -g rcv: Print statistics about the receive manager” on page E-15
“onstat -g dss: Print statistics for data sync threads” on page E-7
“onstat -g dtc: Print statistics about delete table cleaner” on page E-8
“onstat -g rep: Prints the schedule manager queue” on page E-17

onstat -g cdr config: Print ER settings
Prints the settings of Enterprise Replication configuration parameters and
environment variables that can be set with the CDR_ENV configuration parameter.

This command has the following formats:
onstat -g cdr config
onstat -g cdr config long
onstat -g cdr config parameter_name
onstat -g cdr config parameter_name long
onstat -g cdr config CDR_ENV
onstat -g cdr config CDR_ENV long
onstat -g cdr config CDR_ENV variable_name
onstat -g cdr config CDR_ENV variable_name long

E-4 IBM Informix Enterprise Replication Guide

The long option prints additional information about settings that can be useful for
IBM Support.

The following table describes parameter_name and variable_name.

Modifier Description

parameter_name The name of an Enterprise Replication configuration parameter

variable_name The name of an Enterprise Replication environment variable

If you use onstat -g cdr config without any options, the settings of all Enterprise
Replication configuration parameters and environment variables are included in
the output. If you specify the CDR_ENV configuration parameter without an
environment variable name, all Enterprise Replication environment variables are
included in the output.

The following sample output of the onstat -g cdr config ENCRYPT_CDR
command shows the setting of the ENCRYPT_CDR configuration parameter:
onstat -g cdr config ENCRYPT_CDR

ENCRYPT_CDR configuration setting: 0

The following sample output of the onstat -g cdr config CDR_ENV command
shows the settings of all Enterprise Replication environment variables:
onstat -g cdr config CDR_ENV

CDR_ENV environment variable settings:
CDR_LOGDELTA:

CDR_LOGDELTA configuration setting: 0
CDR_PERFLOG:

CDR_PERFLOG configuration setting: 0
CDR_ROUTER:

CDR_ROUTER configuration setting: 0
CDR_RMSCALEFACT:

CDR_RMSCALEFACT configuration setting: 0
CDRSITES_731:

CDRSITES_731 configuration setting: [None configured]
CDRSITES_92X:

CDRSITES_92X configuration setting: [None configured]
CDRSITES_10X:

CDRSITES_10X configuration setting: [None configured]

The following sample output of the onstat -g cdr config command shows the
settings of all Enterprise Replication configuration parameters and CDR_ENV
environment variables:
onstat -g cdr config

CDR_DBSPACE:
CDR_DBSPACE configuration setting: rootdbs

CDR_DSLOCKWAIT:
CDR_DSLOCKWAIT configuration setting: 5

CDR_EVALTHREADS:
CDR_EVALTHREADS configuration setting: 1, 2

CDR_MAX_DYNAMIC_LOGS:
CDR_MAX_DYNAMIC_LOGS configuration setting: 0

CDR_NIFCOMPRESS:
CDR_NIFCOMPRESS configuration setting: 0

CDR_QDATA_SBSPACE:
CDR_QDATA_SBSPACE configuration setting: cdrsbsp

CDR_QHDR_DBSPACE:
CDR_QHDR_DBSPACE configuration setting: rootdbs

CDR_QUEUEMEM:
CDR_QUEUEMEM configuration setting: 4096

CDR_SERIAL:
CDR_SERIAL configuration setting: 0, 0

CDR_SUPPRESS_ATSRISWARN:

Appendix E. onstat -g commands for Enterprise Replication E-5

CDR_SUPPRESS_ATSRISWARN configuration setting: [None suppressed]
ENCRYPT_CDR:

ENCRYPT_CDR configuration setting: 0
ENCRYPT_CIPHERS:

ENCRYPT_CIPHERS configuration setting: [None configured]
ENCRYPT_MAC:

ENCRYPT_MAC configuration setting: [None configured]
ENCRYPT_MACFILE:

ENCRYPT_MACFILE configuration setting: [None configured]
ENCRYPT_SWITCH:

ENCRYPT_SWITCH configuration setting: 0,0
CDR_ENV environment variable settings:

CDR_LOGDELTA:
CDR_LOGDELTA configuration setting: 0

CDR_PERFLOG:
CDR_PERFLOG configuration setting: 0

CDR_ROUTER:
CDR_ROUTER configuration setting: 0

CDR_RMSCALEFACT:
CDR_RMSCALEFACT configuration setting: 0

CDRSITES_731:
CDRSITES_731 configuration setting: [None configured]

CDRSITES_92X:
CDRSITES_92X configuration setting: [None configured]

CDRSITES_10X:
CDRSITES_10X configuration setting: [None configured]

Related tasks:
“Dynamically Modifying Configuration Parameters for a Replication Server” on
page 11-1

onstat -g ddr: Print status of ER log reader
Prints the status of the Enterprise Replication database log reader.

The ddr, or ddr_snoopy, is an internal component of Enterprise Replication that
reads the log buffers and passes information to the grouper.

You can use the information from the onstat -g ddr command to monitor replay
position in the log file and ensure replay position is never overwritten (which can
cause loss of data). The replay position is the point from where, if a system failure
occurs, Enterprise Replication starts re-reading the log information into the log
update buffers. All the transactions generated before this position at all the target
servers have been applied by Enterprise Replication or safely stored in stable
queue space. As messages are acknowledged or stored in the stable queue, the
replay position should advance. If you notice that replay position is not advancing,
this can mean that the stable queue is full or a remote server is down.

The onstat -g ddr output shows you a snapshot of the replay position, the snoopy
position, and the current position. The snoopy position identifies the position of the
ddr_snoopy thread in the logical logs. The ddr_snoopy has read the log records up
until this point. The current position is the position where the server has written
its last logical log record.

If log reading is blocked, data might not be replicated until the problem is
resolved. If the block is not resolved, the database server might overwrite the read
(ddr_snoopy) position, which means that data will not be replicated. If this occurs,
you must manually resynchronize the source and target databases.

To avoid these problems, follow these guidelines:
v Have 24 hours of online log space available.
v Keep the log file size consistent. Instead of having a single large log file,

implement several smaller ones.

E-6 IBM Informix Enterprise Replication Guide

v Avoid switching logical logs more than once per hour.
v Keep some distance between LTXHWM (long-transaction high-watermark) and

LTXEHWM (long-transaction, exclusive-access, high-watermark).

You can configure one or more actions to occur if the current position reaches the
log needs position by setting the CDR_LOG_LAG_ACTION configuration
parameter.

The following sample output from the onstat ddr command shows the replay
position, snoopy position, and current position highlighted.
DDR -- Running --

Event Snoopy Snoopy Replay Replay Current Current
Buffers ID Position ID Position ID Position
2064 35 2ae050 34 121018 55 290000

Log Pages Snooped:
From From From Staging Tossed

Cache Disk File (LBC full)
0 0 19704 0

CDR log records ignored : 0
DDR log lag state : On
Current DDR log lag action : logstage
DDR log staging disk space usage :0.26%
Maximum disk space allowed for log staging :1048576 KB
Maximum disk space ever used for log staging :2746.98 KB
Current staged log file count :21
Total dynamic log requests: 0

DDR events queue

Type TX id Partnum Row id

Related reference:
“cdr view” on page A-209

onstat -g dss: Print statistics for data sync threads
Prints detailed statistical information about the activity of individual data sync
threads.

The data sync thread applies the transaction on the target server. Statistics include
the number of applied transactions and failures and when the last transaction from
a source was applied.

The onstat -g dss command has the following formats:
onstat -g dss
onstat -g dss modifier

The following table describes the values for modifier.

Modifier Action

UDR Prints summary information about any UDR invocations by the data sync
threads.

UDRx Prints expanded information (including a summary of error information)
about any UDR invocations by the data sync threads. The Procid column
lists the UDR procedure ID.

Appendix E. onstat -g commands for Enterprise Replication E-7

In the following example, only one data sync thread is currently processing the
replicated data. It has applied a total of one replicated transaction and the
transaction was applied at 2004/09/13 18:13:10. The Processed Time field shows
the time when the last transaction was processed by this data sync thread.
-- Up 00:00:28 -- 28672 Kbytes
DS thread statistic
cmtTime Tx Tx Tx Last Tx
Name < local Committed Aborted Processed Processed Time
---------- ------- --------- ------- --------- -----------------
CDRD_1 0 1 0 1 (1095117190) 2004/09/13
18:13:10

Tables (0.0%):
Databases: test

CDR_DSLOCKWAIT = 1
CDR_DSCLOSEINTERVAL = 60

Related reference:
“onstat -g cdr: Print ER statistics” on page E-4

onstat -g dtc: Print statistics about delete table cleaner
Prints statistics about the delete table cleaner.

The delete table cleaner removes rows from the delete table when they are no
longer needed.

The onstat -g dtc command is used primarily as a debugging tool and by IBM
Software Support.

In the following example, the thread name of the delete table cleaner is
CDRDTCleaner. The total number of rows deleted is 1. The last activity on this
thread occurred at 2010/08/13 18:47:19. The delete table for replicate rep1 was last
cleaned at 2010/08/13 18:28:25.
-- Up 00:59:15 -- 28672 Kbytes
-- Delete Table Cleanup Status as of (1095119368) 2010/08/13 18:49:28
thread = 49 <CDRDTCleaner>

rows deleted = 1
lock timeouts = 0
cleanup interval = 300
list size = 3
last activity = (1095119239) 2010/08/13 18:47:19

Id Database Last Cleanup Time
Replicate Server Last Log Change

===
000001 test (1095118105) 2010/09/13

18:28:25
rep1 g_bombay (1095118105) 2010
/08/13 18:28:25
rep1 g_delhi (1095118105) 2010
/08/13 18:28:25

000002 test <never cleaned>

Related reference:
“onstat -g cdr: Print ER statistics” on page E-4

onstat -g grp: Print grouper statistics
Prints statistics about the grouper.

E-8 IBM Informix Enterprise Replication Guide

The grouper evaluates the log records, rebuilds the individual log records into the
original transaction, packages the transaction, and queues the transaction for
transmission.

Theonstat -g grp command is used primarily as a debugging tool and by IBM
Software Support.

The onstat -g grp command can take an optional modifier. The following table
describes the values for the modifier.

Table E-2. Modifiers for the onstat -g grp command

Modifier Action

A Prints all the information printed by the G, T, P, E, R, and S modifiers

E Prints grouper evaluator statistics

Ex Prints grouper evaluator statistics, expands user-defined routine (UDR)
environments

G Prints grouper general statistics

L Prints grouper global list

Lx Prints grouper global list, expands open transactions

M Prints grouper compression statistics

Mz Clears grouper compression statistics

P Prints grouper table partition statistics

pager Prints grouper paging statistics

R Prints grouper replicate statistics

S Prints grouper serial list head (The serial list head is the first transaction in
the list, that is, the next transaction that will be placed in the send queue.)

Sl Prints grouper serial list (The serial list is the list of transactions, in
chronological order.)

Sx Prints grouper serial list, expands open transactions

T Prints grouper transaction statistics

UDR Prints summary information about any UDR invocations by the grouper
threads

UDRx Prints expanded information (including a summary of error information)
about any UDR invocations by the grouper threads The Procid column lists
the UDR procedure ID.

The following sample shows output for the onstat -g grp command:
Grouper at 0xb014018:
Last Idle Time: (1095122236) 2010/09/13 19:37:16
RSAM interface ring buffer size: 528
RSAM interface ring buffer pending entries: 0
Eval thread interface ring buffer size: 48
Eval thread interface ring buffer pending entries: 0
Log update buffers in use: 0
Max log update buffers used at once: 5
Log update buffer memory in use: 0
Max log update buffer memory used at once: 320
Updates from Log: 16
Log update links allocated: 512
Blob links allocated: 0
Conflict Resolution Blocks Allocated: 0
Memory pool cache: Empty
Last Tx to Queuer began : (1095118105) 2010/09/13 18:28:25

Appendix E. onstat -g commands for Enterprise Replication E-9

Last Tx to Queuer ended : (1095118105) 2010/09/13 18:28:25
Last Tx to Queuer log ID, position: 12,23
Open Tx: 0
Serial Tx: 0
Tx not sent: 0
Tx sent to Queuer: 2
Tx returned from Queuer: 2
Events sent to Queuer: 7
Events returned from Queuer: 7
Total rows sent to Queuer: 2
Open Tx array size: 1024
Table ’tab’ at 0xae8ebb0 [CDRShadow]
Table ’tab12’ at 0xae445e0 [CDRShadow]

Grouper Table Partitions:
Slot 312...
’tab’ 1048888

Slot 770...
’tab12’ 3145730

Slot 1026...
’tab12’ 4194306

Repl links on global free list: 2
Evaluators: 3
Evaluator at 0xb03d030 ID 0 [Idle:Idle] Protection:unused
Eval iteration: 1264
Updates evaluated: 0
Repl links on local free list: 256
UDR environment table at 0xb03d080

Number of environments: 0
Table memory limit : 25165
Table memory used : 0
SAPI memory limit : 131072
SAPI memory used : 0
Count failed UDR calls: 0

Evaluator at 0xb03d0d8 ID 1 [Idle:Idle] Protection:unused
Eval iteration: 1265
Updates evaluated: 2
Repl links on local free list: 254
UDR environment table at 0xb03d128

Number of environments: 0
Table memory limit : 25165
Table memory used : 0
SAPI memory limit : 131072
SAPI memory used : 0
Count failed UDR calls: 0

Evaluator at 0xb03d180 ID 2 [Idle:Idle] Protection:unused
Eval iteration: 1266
Updates evaluated: 4
Repl links on local free list: 256
UDR environment table at 0xb03d1d0

Number of environments: 0
Table memory limit : 25165
Table memory used : 0
SAPI memory limit : 131072
SAPI memory used : 0
Count failed UDR calls: 0
Total Free Repl links 768

Replication Group 6553601 at 0xb0a8360
Replication at 0xb0a82b0 6553601:6553601 (tab) [NotifyDS FullRowOn]
Column Information [CDRShadow VarUDTs InOrder Same]
CDR Shadow: offset 0, size 8
In Order: offset 8, size 10

Replication Group 6553602 at 0xb0a8480
Replication at 0xb0a83d0 6553602:6553602 (tab12)[Ignore Stopped NotifyDS FullRowOn]
Column Information [CDRShadow VarUDTs InOrder Same]
CDR Shadow: offset 0, size 8
In Order: offset 8, size 16

E-10 IBM Informix Enterprise Replication Guide

The following example shows output for the onstat -g grp E command. The field
Evaluators: 4 indicates that there are four evaluation threads configured for the
system.
Repl links on global free list: 0 Evaluators: 4
Evaluator at 0xba71840 ID 0 [Idle:Idle] Protection: unused
Eval iteration: 1007
Updates evaluated: 0
Repl links on local free list: 256
UDR environment table at 0xba71890

Number of environments: 0
Table memory limit : 16777
Table memory used : 0
SAPI memory limit : 131072
SAPI memory used : 0
Count failed UDR calls: 0

Evaluator at 0xba718f0 ID 1 [Idle:Idle] Protection: unused
Eval iteration: 1007
Updates evaluated: 0
Repl links on local free list: 256
UDR environment table at 0xba71940

Number of environments: 0
Table memory limit : 16777
Table memory used : 0
SAPI memory limit : 131072
SAPI memory used : 0
Count failed UDR calls: 0

Evaluator at 0xba8c260 ID 2 [Idle:Idle] Protection: unused
Eval iteration: 1007
Updates evaluated: 0
Repl links on local free list: 256
UDR environment table at 0xba8c2b0

Number of environments: 0
Table memory limit : 16777
Table memory used : 0
SAPI memory limit : 131072
SAPI memory used : 0
Count failed UDR calls: 0

Evaluator at 0xbaac2a0 ID 3 [Idle:Idle] Protection: unused
Eval iteration: 1007
Updates evaluated: 0
Repl links on local free list: 256
UDR environment table at 0xbaac2f0

Number of environments: 0
Table memory limit : 16777
Table memory used : 0
SAPI memory limit : 131072
SAPI memory used : 0
Count failed UDR calls: 0

Total Free Repl links 1024

The following example shows output for the onstat -g grp G command.
Grouper at 0xb8ab020:
Last Idle Time: (1095115397) 2010/09/13 17:43:17
RSAM interface ring buffer size: 1040
RSAM interface ring buffer pending entries: 0
Eval thread interface ring buffer size: 64
Eval thread interface ring buffer pending entries: 0
Log update buffers in use: 0
Max log update buffers used at once: 1
Log update buffer memory in use: 0
Max log update buffer memory used at once: 64
Updates from Log: 1
Log update links allocated: 512
Blob links allocated: 0
Conflict Resolution Blocks Allocated: 0
Memory pool cache: Empty

Appendix E. onstat -g commands for Enterprise Replication E-11

The following example shows output for the onstat -g grp P command. In the
following example, the grouper is evaluating rows for the account, teller, and
customer tables.
Table ’teller’ at 0xb851480 [CDRShadow VarChars]
Table ’account’ at 0xb7faad8 [CDRShadow VarChars VarUDTs Floats

Blobs]
Table ’customer’ at 0xbbe67a8 [CDRShadow VarChars VarUDTs]
Grouper Table Partitions:
Slot 387...
’account’ 1048707

Slot 389...
’teller’ 1048709

Slot 394...
’customer’ 1048714

The following example shows output for the onstat -g grp pager command. The
sample output shows the grouper large transaction evaluation statistics.
Grouper Pager statistics:
Number of active big transactions: 0
Total number of big transactions processed: 0
Spool size of the biggest transaction processed: 0 Bytes

The following example shows output for the onstat -g grp R command. In this
example, the grouper is configured to evaluate rows for replicates with IDs
6553601 and 6553602 (you can use the onstat -g cat repls command to obtain the
replicate names). The Ignore attribute of replicate ID 6553602 shows that the
grouper is currently not evaluating rows for this replicate. This can happen if the
replicate state is not ACTIVE. You can obtain the replicate state using the onstat -g
cat repls command.
Replication Group 6553601 at 0xb0a8360
Replication at 0xb0a82b0 6553601:6553601 (tab) [NotifyDS FullRowOn]
Column Information [CDRShadow VarUDTs InOrder Same]
CDR Shadow: offset 0, size 8
In Order: offset 8, size 10

Replication Group 6553602 at 0xb0a8480
Replication at 0xb0a83d0 6553602:6553602 (tab12)[Ignore Stopped NotifyDS FullRowOn]
Column Information [CDRShadow VarUDTs InOrder Same]
CDR Shadow: offset 0, size 8
In Order: offset 8, size 16

The following example shows output for the onstat -g grp T command. In this
example, the grouper evaluated and queued 1 transaction to the send queue. The
Tx sent to Queuer field shows the total number of transactions evaluated and
queued to the send queue for propagating to all the replicate participants. The
Total rows sent to Queuer field shows the total number of rows queued to the
send queue for propagating to all the replicate participants.
Last Tx to Queuer began : (1095116676) 2010/09/13 18:04:36
Last Tx to Queuer ended : (1095116676) 2010/09/13 18:04:36
Last Tx to Queuer log ID, position: 5,3236032
Open Tx: 0
Serial Tx: 0
Tx not sent: 0
Tx sent to Queuer: 1
Tx returned from Queuer: 0
Events sent to Queuer: 0
Events returned from Queuer: 0
Total rows sent to Queuer: 1
Open Tx array size: 1024

Related reference:
“onstat -g cdr: Print ER statistics” on page E-4

E-12 IBM Informix Enterprise Replication Guide

onstat -g nif: Print statistics about the network interface
Prints statistics about the network interface.

►► onstat -g nif
all
sites
server_ID
sum

►◄

The output shows which sites are connected and provides a summary of the
number of bytes sent and received by each site. This can help you determine if a
site is not sending or receiving bytes.

The onstat -g nif option is used primarily as a debugging tool and by IBM
Software Support.

The following table describes the options for onstat -g nif command:

Table E-3. Options for the onstat -g nif command

Option Action

all Prints the sum and the sites.

sites Prints the NIF site context blocks.

server_ID Prints information about the replication server with that server ID.

sum Prints the sum of the number of buffers sent and received for each site.

Example Output

The following example shows output for the onstat -g nif command. In this
example, the local server is connected to the server group g_bombay and its CDR
ID is 200. The connection status is running. The connection between the two
servers is running, but the replication state on the g_bombay server is suspended.
The server group g_bombay internal NIF version is 9. The local server has sent
three messages to the server g_bombay and it has received two messages from
g_bombay.
$ onstat -g nif

NIF anchor Block: af01610
nifGState RUN

RetryTimeout 300

CDR connections:
Id Name State Version Sent Received

200 g_bombay RUN,SUSPEND 9 3 2

Output Description

NIF anchor Block
The address of the network storage block.

nifGState
The connection state.

Appendix E. onstat -g commands for Enterprise Replication E-13

RetryTimeout
The number of seconds before Enterprise Replication attempts to retry a
dropped connection.

Id The Enterprise Replication ID number for the server.

Name The name of the server group.

State The connection state between the local server and the listed server. If
multiple states are shown the second state designates the replication state.

Version
The internal version number of the NIF component on the listed server.

Sent The number of messages the local server has sent to the listed server.

Received
The number of messages received by the local server from the listed server.

Related reference:
“onstat -g cdr: Print ER statistics” on page E-4

onstat -g que: Print statistics for all ER queues
Prints statistics that are common to all queues.

The queuer manages the logical aspects of the queue. The RQM (reliable queue
manager) manages the physical queue.

The onstat -g que command is used primarily as a debugging tool and by IBM
Software Support.

In the following example, Element high water mark shows the maximum size of
the transaction buffer header data (metadata) allowed in memory, shown in
kilobytes. Data high water mark shows the maximum size of transactions for user
data allowed in memory, shown in kilobytes.
CDR Queuer Statistics:

Queuer state : 2
Local server : 100
Element high water mark : 131072
Data high water mark : 131072
of times txns split : 0
Total # of split txns : 0
allowed log delta : 30
maximum delta detected : 4
Control Key : 0/00000007
Synchronization Key : 0/00000003

Replay Table:
Replay Posn (Disk value): 12/00000018 (12/00000018)
Replay save interval : 10
Replay updates : 10
Replay # saves : 17
Replay last save time : (1095118157) 2010/09/13 18:29:17

Send Handles
Server ID : 200
Send state,count : 0,0
RQM hdl for trg_send: Traverse handle (0xaf8e018) for thread CDRACK_0 at Head_of_Q,

Flags: None
RQM hdl for control_send: Traverse handle (0xaf74018)
for thread CDRACK_0 at Head_of_Q, Flags: None

RQM hdl for sync_send: Traverse handle (0xadc6018) for thread CDRACK_0 at Head_of_Q,
Flags: None

Server ID : 200
Send state,count : 0,0
RQM hdl for trg_send: Traverse handle (0xac8b018) for thread CDRACK_1 at Head_of_Q,

Flags: None
RQM hdl for control_send: Traverse handle (0xb1ce018) for thread CDRACK_1 at Head_of_Q,

Flags: None
RQM hdl for sync_send: Traverse handle (0xadc5018) for thread CDRACK_1 at Head_of_Q,

E-14 IBM Informix Enterprise Replication Guide

Flags: None
Server ID : 200
Send state,count : 0,0
RQM hdl for trg_send: Traverse handle (0xaea71d8) for thread CDRNsA200 at Head_of_Q,

Flags: None
RQM hdl for ack_send: Traverse handle (0xae8c1d8) for thread CDRNsA200 at Head_of_Q,

Flags: None
RQM hdl for control_send: Traverse handle (0xae9e1d8) for thread CDRNsA200 at Head_of_Q,

Flags: None

Related reference:
“onstat -g cdr: Print ER statistics” on page E-4

onstat -g rcv: Print statistics about the receive manager
Prints statistics about the Enterprise Replication receive manager. The receive
manager is a set of service routines between the receive queues and data sync. The
onstat -g rcv command is used primarily as a debugging tool and by IBM Software
Support. If you suspect that acknowledgment messages are not being applied, you
can run this command.

Syntax

►► onstat -g rcv
serverid
full

►◄

The serverID option specifies a replication server.

The full option prints all statistics.

The following table describes the fields in the Receive Manager global section of
the onstat -g rcv command output.

Table E-4. Receive Manager section of the onstat -g rcv output

Field Description

cdrRM_DSParallelPL Shows the current level of Apply Parallelism, 0 (zero) being the highest

cdrRM_DSNumLockTimeout
cdrRM_DSNumLockRB
cdrRM_DSNumDeadLocks

Indicate the number of collisions between various apply threads

cdrRM_acksinList Shows acknowledgments that are received but not yet processed

The Receive Parallelism Statistics section of the onstat -g rcv command output
shows a summary of the data sync threads by source server.

Table E-5. Receive Parallelism Statistics section of the onstat -g rcv output

Field Description

Server Source server ID

Concur Number of transactions currently being applied in parallel

Tot.Txn. Total number of transactions that are applied from this source server

Pending Number of current transactions in the pending list for this source server

Active Number of current transactions currently being applied from this source
server

MaxPnd Maximum number of transactions in the pending list queue

Appendix E. onstat -g commands for Enterprise Replication E-15

Table E-5. Receive Parallelism Statistics section of the onstat -g rcv output (continued)

Field Description

MaxAct Maximum number of transactions in the active list queue

AvgPnd Average depth of the pending list queue

AvgAct Average depth of the active list queue

CommitRt Commit rate of transaction from this source server, based on transactions
per second

The Statistics by Source section of the onstat -g rcv command output shows the
following information for each source server. For each replicate ID:
v The number of transactions that are applied from the source servers
v The number of inserts, deletes, and updates within the applied transactions
v The timestamp of the most recently applied transaction on the target server
v The timestamp of the commit on the source server for the most recently applied

transaction

The following example shows output for the onstat -g rcv full command.
Receive Manager global block 0D452018

cdrRM_inst_ct: 5
cdrRM_State: 00000000
cdrRM_numSleepers: 3
cdrRM_DsCreated: 3
cdrRM_MinDSThreads: 1
cdrRM_MaxDSThreads: 4
cdrRM_DSBlock 0
cdrRM_DSParallelPL 0
cdrRM_DSFailRate 0.000000
cdrRM_DSNumRun: 35
cdrRM_DSNumLockTimeout 0
cdrRM_DSNumLockRB 0
cdrRM_DSNumDeadLocks 0
cdrRM_DSNumPCommits 0
cdrRM_ACKwaiting 0
cdrRM_totSleep: 77
cdrRM_Sleeptime: 153
cdrRM_Workload: 0
cdrRM_optscale: 4
cdrRM_MinFloatThreads: 2
cdrRM_MaxFloatThreads: 7
cdrRM_AckThreadCount: 2
cdrRM_AckWaiters: 2
cdrRM_AckCreateStamp:Wed Sep 08 11:47:49 2010
cdrRM_DSCreateStamp: Wed Sep 08 14:16:35 2010
cdrRM_acksInList: 0
cdrRM_BlobErrorBufs: 0

Receive Parallelism Statistics
Server Concur Tot.Txn. Pending Active MaxPnd MaxAct AvgPnd AvgAct CommitRt

1 8 1 0 0 1 1 1.00 1.00 0.06

Tot Pending:0 Tot Active:0 Avg Pending:1.00 Avg Active:1.00
Commit Rate:0.06

Time Spent In RM Parallel Pipeline Levels
Lev. TimeInSec Pcnt.

0 40 100.00%
1 0 0.00%
2 0 0.00%

E-16 IBM Informix Enterprise Replication Guide

Statistics by Source

Server 1
Repl Txn Ins Del Upd Last Target Apply Last Source Commit
65551 1 0 0 2 2012/10/29 09:52:23 2012/10/29 09:52:22

No Replicates Currently Being Throttled

If a replicate encounters a deadlock situation or otherwise reduces the degree of
parallelism by which transactions are applied, the Statistics by Source section
shows the replicate and the maximum number of concurrent transactions that are
possible.
Statistics by Source

Server 1
Repl Txn Ins Del Upd Last Target Apply Last Source Commit
65551 1 0 0 2 2012/10/29 09:52:23 2012/10/29 09:52:22

Replicates Being Throttled
Repid Max

Concurrent
65551 3

If the replicate includes a TimeSeries column, a TimeSeries Statistics by Source
section shows statistics about the time series elements that are applied on target
servers:
TimeSeries Statistics by Source

Server 100
Repl Txn TSIns TSDel TSCmd Last Target Apply Last Source Commit
65536 672 672 0 0 2012/08/27 15:04:33 2012/08/27 15:04:32

Related reference:
“onstat -g cdr: Print ER statistics” on page E-4

onstat -g rep: Prints the schedule manager queue
Prints events that are in the queue for the schedule manager.

The onstat -g rep command is used primarily as a debugging tool and by IBM
Software Support.

Theonstat -g rep command takes an optional replicate name to limit the output to
those events originated by the specified replicate.

The following example shows sample output for the onstat -g rep command:
Schedule manager Cb: add7e18 State: 0x8100 <CDRINIT,CDRRUNNING>

Event Thread When
==
CDRDS CDREvent 00:00:20

Related reference:
“cdr swap shadow” on page A-198
“onstat -g cdr: Print ER statistics” on page E-4

Appendix E. onstat -g commands for Enterprise Replication E-17

onstat -g rqm: Prints statistics for RQM queues
Prints statistics and contents of the low-level queues (send queue, receive queue,
ack send queue, sync send queue, and control send queue) managed by the
Reliable Queue Manager (RQM).

The RQM manages the insertion and removal of items to and from the various
queues. The RQM also manages spooling of the in-memory portions of the queue
to and from disk. The onstat -g rqm command displays the contents of the queue,
size of the transactions in the queue, how much of the queue is in memory and on
disk, the location of various handles to the queue, and the contents of the various
progress tables. You can choose to print information for all queues or for just one
queue by using one of the modifiers described below.

If a queue is empty, no information is printed for that queue.

The onstat -g rqm can take an optional modifier. The following table describes the
values for the modifier.

Table E-6. Values for the modifier to the onstat -g rqm command

Modifier Action

ACKQ Prints the ack send queue

CNTRLQ Prints the control send queue

RECVQ Prints the receive queue

SBSPACES Prints detailed statistical information about the sbspaces configured for
CDR_QDATA_SBSPACE.

SENDQ Prints the send queue

SYNCQ Prints the sync send queue

FULL Prints full information about every in-memory transaction for every queue

BRIEF Prints a brief summary of the number of transactions in each of the
queues and the replication servers for which the data is queued Use this
modifier to quickly identify sites where a problem exists. If large amounts
of data are queued for a single server, then that server is probably down
or off the network.

VERBOSE Prints all the buffer headers in memory

When you specify a modifier to select a specific queue, the command prints all the
statistics for that queue and information about the first and last in-memory
transactions for that queue. When you select the SBSPACES modifier, the command
prints information about the sbspaces being used for replication, including how
full those sbspaces are.

The other modifiers of the onstat -g rqm command are used primarily as a
debugging tool and by Technical Support.

The output for the SENDQ modifier contains the following sections:
v The current statistics section (Transaction spool name through Pending Txn

Data): Contains information about the current contents of the queue, such as
how many bytes are contained in the queue, how many transactions are in the
queue, how many transactions are currently in memory, how many have been
spooled to disk, how many exist only on disk, and so on. The Insert Stamp field
value is used to maintain the order of the transactions within the queue. The

E-18 IBM Informix Enterprise Replication Guide

Size of Data in queue field shows the size of the queue when combining the
in-memory transactions with the spool-only transactions. The Pending Txn
Buffers field contains information about transactions that are in the process of
being queued into the send queue.

v The historical statistics section (Max Real memory data used through Total Txn
Lookups): contains a summary of what has been placed in the queue in the past.
The Max Real memory data used field contains the largest in memory size of the
queue. The Total Txn Recovered field shows the transactions that existed only
in the spool when the server was started. The Total Txns deleted field shows
the number of transactions that have been removed from the queue. The Total
Txns duplicated field contains the number of times attempted to queue a
transaction that had already been processed. The Total Txn Lookups field is a
counter of the number of times that an Enterprise Replication thread attempted
to read a transaction.

v The Progress Table section: contains information on what is currently queued,
to which server it is queued for, and what has been acknowledged from each of
the participants of the replicate. The first part of the progress table section is a
summary. Below the summary section is a list of the servers and group entries
that contain what is currently queued for each server, what has been sent to the
remote server, and what has been acknowledged from the remote server. The
contents of the ACKed and Sent columns contains the key of the last transaction
that was acknowledged from the remote server or sent to that server. The key is
a multi-part number consisting of source_node/unique_log_id/logpos/incremental
number. The transaction section contains the first and last transaction in the
queue that are currently in memory. The NeedAck field shows from which server
the transaction is waiting for an acknowledgment. You can use this bitmap mask
with the output from the onstat -g cat command to determine the name of the
server which server Enterprise Replication is waiting on for an acknowledgment.

v The Transverse handle section: contains the position within the queue that any
thread is currently processing. Each thread that attempts to read a transaction
from the queue, or to place a transaction into the queue must first allocate a
handle. This handle is used to maintain the positioning within the queue.

The following example shows output for the onstat -g rqm SENDQ command.
> onstat -g rqm SENDQ

CDR Reliable Queue Manager (RQM) Statistics:

RQM Statistics for Queue (0xb956020) trg_send
Transaction Spool Name: trg_send_stxn
Insert Stamp: 9/0
Flags: SEND_Q, SPOOLED, PROGRESS_TABLE, NEED_ACK
Txns in queue: 0
Log Events in queue: 0
Txns in memory: 0
Txns in spool only: 0
Txns spooled: 0
Unspooled bytes: 0
Size of Data in queue: 0 Bytes
Real memory in use: 0 Bytes
Pending Txn Buffers: 0
Pending Txn Data: 0 Bytes
Max Real memory data used: 385830 (4194304) Bytes
Max Real memory hdrs used 23324 (4194304) Bytes
Total data queued: 531416 Bytes
Total Txns queued: 9
Total Txns spooled: 0
Total Txns restored: 0

Appendix E. onstat -g commands for Enterprise Replication E-19

Total Txns recovered: 0
Spool Rows read: 0
Total Txns deleted: 9
Total Txns duplicated: 0
Total Txn Lookups: 54

Progress Table:
Progress Table is Stable

On-disk table name............: spttrg_send
Flush interval (time).........: 30
Time of last flush............: 1207866706
Flush interval (serial number): 1000
Serial number of last flush...: 1
Current serial number.........: 5

Server Group Bytes Queued Acked Sent
--

20 0xa0002 12 efffffff/efffffff/efffffff/efffffff - a/e/1510a1/0
20 0xa0003 0 a/e/4ca1b8/0 - a/e/4ca1b8/0
30 0xa0004 0 a/e/4ca1b8/0 - a/e/4ca1b8/0
20 0xa0004 0 a/e/4ca1b8/0 - a/e/4ca1b8/0
20 0xa0001 0 a/d/6e81f8/0 - a/d/6e81f8/0

First Txn (0x0D60C018) Key: 1/9/0x000d4bb0/0x00000000
Txn Stamp: 1/0, Reference Count: 0.
Txn Flags: Notify
Txn Commit Time: (1094670993) 2004/09/08 14:16:33
Txn Size in Queue: 5908
First Buf’s (0x0D31C9E8) Queue Flags: Resident
First Buf’s Buffer Flags: TRG, Stream
NeedAck: Waiting for Acks from <[0004]>
No open handles on txn.

Last Txn (0x0D93A098) Key: 1/9/0x00138ad8/0x00000000
Txn Stamp: 35/0, Reference Count: 0.
Txn Flags: Notify
Txn Commit Time: (1094671237) 2004/09/08 14:20:37
Txn Size in Queue: 6298
First Buf’s (0x0D92FFA0) Queue Flags: Resident
First Buf’s Buffer Flags: TRG, Stream
NeedAck: Waiting for Acks from <[0004]>
Traverse handle (0xbca1a18) for thread CDRGeval0 at Head_of_Q, Flags: None
Traverse handle (0xb867020) for thread CDRACK_1 at Head_of_Q, Flags: None
Traverse handle (0xbcbd020) for thread CDRGeval1 at Head_of_Q, Flags: None
Traverse handle (0xbd08020) for thread CDRGeval3 at Head_of_Q, Flags: None
Traverse handle (0xbe511c8) for thread CDRGeval2 at Head_of_Q, Flags: None
Traverse handle (0xbe58158) for thread CDRACK_0 at Head_of_Q, Flags: None

The following output is an example of the onstat -g rqm SBSPACES command.
onstat -g rqm sbspaces

Blocked:DDR

RQM Space Statistics for CDR_QDATA_SBSPACE:

name/addr number used free total %full pathname
0x46581c58 5 311 1 312 100 /tmp/amsterdam_sbsp_base
amsterdam_sbsp_base5 311 1 312 100

0x46e54528 6 295 17 312 95 /tmp/amsterdam_sbsp_2
amsterdam_sbsp_26 295 17 312 95

0x46e54cf8 7 310 2 312 99 /tmp/amsterdam_sbsp_3
amsterdam_sbsp_37 310 2 312 99

E-20 IBM Informix Enterprise Replication Guide

0x47bceca8 8 312 0 312 100 /tmp/amsterdam_sbsp_4
amsterdam_sbsp_48 312 0 312 100

In this example, the sbspaces are all either full or nearly full.
Related tasks:
“Monitoring Disk Usage for Send and Receive Queue Spool” on page 12-16
Related reference:
“onstat -g cdr: Print ER statistics” on page E-4

onstat -g sync: Print statistics about synchronization
Prints statistics about the active synchronization process.

The following example shows output for the onstat -g sync command.
Prim Sync St. Shadow Flag Stat Block EndBlk
Repl Source Repl Num Num

655361 20 0 1310729 2 0 592 600

Output Description

Prim Repl
Replicate number of the replicate being synchronized

Sync Source
Source server of the sync

St Sync replicate state

Shadow Repl
The shadow replicate used to perform the sync

Flag Internal flags:
v 0x02 = external sync
v 0x04 = shutdown request has been issued
v 0x08 = abort has occurred
v 0x010 = a replicate stop has been requested
v 0X020 = shadow or primary replicate has been deleted

Stat Resync job state

Block num
Last block applied on targets (on source always 0)

EndBlock Num
Last block in resync process. Marks the end of the sync scan on the target.
A value of' -2 indicates that the scan is still in progress, and the highest
block number is not yet known.

Additional fields for forwarded rows:

ServID
Server where forwarded row originated

fwdLog ID
Originator's log ID of the forwarded row

fwdLog POS
Originator's log position of the forwarded row

Appendix E. onstat -g commands for Enterprise Replication E-21

endLog ID
Operation switches back to normal at this point

endLog POS
Operation switches back to normal at this log position

complete flag
Set to 1 after normal processing resumes for the originating source

E-22 IBM Informix Enterprise Replication Guide

Appendix F. syscdr Tables

These tables in the syscdr database contain progress information about consistency
checking and synchronization operations.

The replcheck_stat Table
The replcheck_stat table contains the progress information for consistency check
and synchronization operations that specified a progress report task name.

Column Type Purpose

replcheck_id serial Unique key for the task and
replicate combination.

replcheck_name varchar(32) The task name.

replcheck_replname varchar(128) The replicate name.

replcheck_type char(1) The task type:

v C = consistency check

v S = synchronization

replcheck_numrows integer The total number of rows in
the table.

replcheck_rows_processed integer The number of rows that
were processed to correct
inconsistent rows.

replcheck_status char(1) The status of this task:

v A = Aborted

v D = Defined

v R = Running

v C = Completed

v F = Completed, but
inconsistent

v W = Pending complete

replcheck_start_time datetime year to second The time that the sync or
check task for the replicate
started running.

replcheck_end_time datetime year to second The time that sync or check
task for the replicate
completed.

Related reference:
“cdr stats check” on page A-182
“cdr stats sync” on page A-185

© Copyright IBM Corp. 1996, 2015 F-1

The replcheck_stat_node Table
The replcheck_stat_node table contains the progress information for the
consistency check and synchronization operations with progress report task names
on a particular replication server.

Column Type Purpose

replnode_replcheck_id integer Server group ID (CDR ID).

replcheck_node_id integer Unique key for the task,
replicate, and server
combination.

replcheck_order integer A number to provide
consistent ordering for
display purposes.

replcheck_node_name varchar(128) The name of the replication
server.

replnode_table_owner varchar(128) The owner of table being
synchronized or checked.

replnode_table_name varchar(128) The name of the table being
synchronized or checked.

replnode_row_count integer The number of rows in the
participant.

replnode_processed_rows integer The number of rows
processed to correct
inconsistent rows.

replnode_missing_rows integer The number of rows on the
reference server that do not
exist on the target server.

replnode_extra_rows integer The number of rows on the
target server that do not exist
on the reference server.

replnode_mismatched_rows integer The number of rows on the
target server that are not
consistent with the
corresponding rows on the
reference server.

replnode_extra_child_rows integer The number of child rows
that required processing on
the target nodes.

Related reference:
“cdr stats check” on page A-182
“cdr stats sync” on page A-185

F-2 IBM Informix Enterprise Replication Guide

Appendix G. SMI Tables for Enterprise Replication Reference

The system-monitoring interface (SMI) tables in the sysmaster database provide
information about the state of the database server. Enterprise Replication uses the
following SMI tables.
Related concepts:
Chapter 12, “Monitor and troubleshooting Enterprise Replication,” on page 12-1

The syscdr_ats Table
The syscdr_ats table contains the first ten lines of the transaction header for each
ATS file.

Column Type Description

ats_ris integer Pseudo row ID.

ats_file char(128) ATS file name.

ats_sourceid integer CDRID of source server.

ats_source char(128) Source server name.

ats_committime char(20) Time when the transaction was committed on the source server.

ats_targetid integer CDRID of the target server.

ats_target char(128) Target server name.

ats_receivetime char(20) Time when the transaction was received on the target server .

ats_risfile char(128) Corresponding RIS file name.

ats_line1 char(200) The first line of the transaction header information.

ats_line2 char(200) The second line of the transaction header information.

ats_line3 char(200) The third line of the transaction header information.

ats_line4 char(200) The fourth line of the transaction header information.

ats_line5 char(200) The fifth line of the transaction header information.

ats_line6 char(200) The sixth line of the transaction header information.

ats_line7 char(200) The seventh line of the transaction header information.

ats_line8 char(200) The eighth line of the transaction header information.

ats_line9 char(200) The ninth line of the transaction header information.

ats_line10 char(200) The tenth line of the transaction header information.

The syscdr_atsdir Table
The syscdr_atsdir table contains information about the contents of the ATS
directory.

Column Type Description

atsd_rid integer Pseudo row ID

atsd_file char(128) ATS file name

atsd_mode integer File mode

atsd_size integer File size in bytes

© Copyright IBM Corp. 1996, 2015 G-1

Column Type Description

atsd_atime datetime Last access time

atsd_mtime datetime Last modified time

atsd_ctime datetime Create time

The syscdr_ddr Table
The syscdr_ddr table contains information about the status of log capture and the
proximity or status of transaction blocking (DDRBLOCK) or transaction spooling.

Column Type Description

ddr_state char(24)
The current state of log capture:

v Running = Log capture is running normally

v Down = Log capture is not running

v Uninitialized = The server is not a source server for replication

ddr_snoopy_loguniq integer The current log ID at which transactions are being captured for
replication

ddr_snoopy_logpos integer The current log position at which transactions are being captured for
replication

ddr_replay_loguniq integer The current log ID at which transactions have been applied

ddr_replay_logpos integer The current log position at which transactions have been applied. This is
the position from which the log would need to be replayed to recover
Enterprise Replication if Enterprise Replication or the database server
shut down.

ddr_curr_loguniq integer The current log ID

ddr_curr_logpos integer The current log position

ddr_logsnoop_cached integer The number of log pages that log capture read from its cache

ddr_logsnoop_disk integer The number of times that log capture had to read log pages from disk

ddr_log_tossed integer The number of log pages that could not be stored in the cache because
the log capture buffer cache was full

ddr_logs_ignored integer The number of log records that were ignored because they were
extensible log records unknown to Enterprise Replication

ddr_dlog_requests integer The number of times that a dynamic log was requested to be created to
prevent DDRBLOCK state

ddr_total_logspace integer The total number of log pages in the replication system

ddr_logspace2wrap integer The number of log spaces until log capture runs into a log wrap

ddr_logpage2block integer The number of log pages until log capture runs into a DDRBLOCK state

ddr_logneeds integer The number of log pages necessary to prevent a log wrap to avoid a
DDRBLOCK state

ddr_logcatchup integer The number of log pages necessary to process before going out of a
DDRBLOCK state

ddr_loglag_state char(10) The state of DDR log lag: on or off

ddr_cur_loglag_act char(24) The action being taken to prevent log wrapping

ddr_logstage_diskusage float The amount of used log staging disk space as a percentage of the total
space

ddr_logstage_hwm4disk integer The maximum allowable disk space for log staging in KB

G-2 IBM Informix Enterprise Replication Guide

Column Type Description

ddr_logstage_maxused float The maximum disk space ever used for log staging in KB

ddr_logstage_lfile_cnt integer The number of staged log files

The syscdr_nif Table
The syscdr_nif table contains information about network connections and the flow
of data between Enterprise Replication servers.

Column Type Description

nif_connid integer The CDRID of the peer node

nif_connname char(24) The name (group name) of the peer node

nif_state char(24) The status of the Enterprise Replication network:

v Admin Close = Enterprise Replication was stopped by user by issuing
the cdr stop command

v Connected = The connection is active

v Connecting = The connection is being established

v Disconnected = The connection was explicitly disconnected

v Local server = The connection is to the local server.

v Logic Error = The connection disconnected due to an error during
message transmission

v Never Connected = The servers have never had an active connection

v Start Error = The connection disconnected due to an error while
starting a thread to receive remote messages

v Timeout = The connection attempt has timed out, but will be
reattempted

nif_connstate char(24) The connection state:

v ABORT = The connection is being aborted.

v BLOCK = The connection has been blocked from transmitting data by
the other server.

v INIT = The connection is being initialized.

v INTR = The connection has been interrupted.

v RUN = The connection is active.

v SHUT = The connection is shutting down in an orderly way.

v SLEEP = The connection is waiting to receive data.

v STOP = The connection is stopped.

v SUSPEND = The connection has been suspended.

v TIMEOUT = The connection has timed out.

nif_version integer The network protocol of this connection used to convert the message
formats between dissimilar releases of the server, for example, IBM
Informix 7 and IBM Informix 9

nif_msgsent integer Number of messages sent to the peer server

nif_bytessent integer Number of bytes sent to the peer server

nif_msgrcv integer Number of messages received from the peer server

nif_bytesrcv integer Number of bytes received from the peer server

Appendix G. SMI Table Reference G-3

Column Type Description

nif_compress integer Compression level for communications

v -1 = no compression

v 0 = compress only if the target server expects compression

v 1 - 9 = increasing levels of compression

nif_sentblockcnt integer Number of times a flow block request was sent to the peer server to
delay sending any further replicated transactions for a short time because
the receive queue on the target server is full

nif_rcvblockcnt integer Number of times a flow block request was received from the peer server

nif_trgsend_stamp1 integer Stamp 1 of the last transaction sent to the peer server

nif_trgsend_stamp2 integer Stamp 2 of the last transaction sent to the peer server

nif_acksend_stamp1 integer Stamp 1 of the last acknowledgment sent to the peer server

nif_acksend_stamp2 integer Stamp 2 of last acknowledgment sent to the peer server

nif_ctrlsend_stamp1 integer Stamp 1 of the last control message sent to the peer server

nif_ctrlsend_stamp2 integer Stamp 2 of the last control message sent to the peer server

nif_syncsend_stamp1 integer Stamp 1 of the last sync message sent to the peer server

nif_syncsend_stamp2 integer Stamp 2 of the last sync message sent to the peer server

nif_starttime datetime Time that the connection was established

nif_lastsend datetime Time of the last message sent to the peer server

The syscdr_rcv Table
The syscdr_rcv table contains information about transactions being applied on
target servers and acknowledgments being sent from target servers.

Column Type Description

rm_state char(100) The status of the receive manager and apply threads:

v Running = Transaction apply is running normally

v Down = Transaction apply is not running

v Uninitialized = The server is not a source server for replication

rm_num_sleepers integer Number of data sync threads currently suspended

rm__num_dsthreads integer The current number of data sync threads

rm_min_dsthreads integer Minimum number of data sync threads

rm_max_dsthreads integer Maximum number of data sync threads

rm_ds_block integer If 1, the data sync is currently blocked to try to avoid causing a
DDRBLOCK state

rm_ds_parallel integer The degree to which transactions are applied in parallel (0
through 3, inclusive):

v 0 = the highest degree of parallelism

v 3 = serial apply (no parallelism)

rm_ds_failrate float A computed weighted ratio that is used to determine when to
change the degree of apply parallelism based on the rate of
transactions that could not be applied

rm_ds_numrun integer Number of transactions run

rm_ds_lockout integer Number of lock timeouts encountered

G-4 IBM Informix Enterprise Replication Guide

Column Type Description

rm_ds_lockrb integer Number of forced rollbacks due to having to switch to serial
apply

rm_ds_num_deadlocks integer Number of deadlocks encountered

rm_ds_num_pcommits integer Number of out-of-order commits that have occurred

rm_ack_waiting integer Number of acknowledgments that are waiting for a log flush to
return to the source server

rm_tosleep integer Total times that the data sync threads have become suspended

rm_sleeptime integer Total time that the data sync threads have been suspended

rm_workload integer The current workload

rm_optscale integer Factor determining how many data sync threads will be allowed
per CPU VP

rm_min_fthreads integer Minimum acknowledgment threads

rm_max_fthreads integer Maximum acknowledgment threads

rm_ack_start char(64) Time when the acknowledgment threads started

rm_ds_start char(64) Time when the data sync threads started

rm_pending_acks integer Number of acknowledgments on the source that have not yet been
processed

rm_blob_error_bufs integer Number of smart large objects that could not be successfully
applied

The syscdr_ris Table
The syscdr_ris table contains the first ten lines of the transaction header for each
RIS file.

Column Type Description

ris_rid integer Pseudo row ID.

ris_file char(128) RIS file name.

ris_sourceid integer CDRID of source server.

ris_source char(128) Source server name.

ris_committime char(20) Time when the transaction was committed on the source server.

ris_targetid char(128) CDRID of the target server.

ris_target integer Target server name.

ris_receivetime char(20) Time when the transaction was received on the target server.

ris_atsfile char(128) Corresponding ATS file.

ris_line1 char(200) The first line of the transaction header information.

ats_line2 char(200) The second line of the transaction header information.

ats_line3 char(200) The third line of the transaction header information.

ats_line4 char(200) The fourth line of the transaction header information.

ris_line5 char(200) The fifth line of the transaction header information.

ris_line6 char(200) The sixth line of the transaction header information.

ris_line7 char(200) The seventh line of the transaction header information.

ris_line8 char(200) The eighth line of the transaction header information.

Appendix G. SMI Table Reference G-5

Column Type Description

ris_line9 char(200) The ninth line of the transaction header information.

ris_line10 char(200) The tenth line of the transaction header information.

The syscdr_risdir Table
The syscdr_risdir table contains information about the contents of the RIS
directory.

Column Type Description

risd_rid integer Pseudo row ID

risd_file char(128) RIS file name

risd_mode integer File mode

risd_size integer File size in bytes

risd_atime datetime Last access time

risd_mtime datetime Last modified time

risd_ctime datetime Create time

The syscdr_rqm Table
The syscdr_rqm table contains statistics and contents of the low-level queues (send
queue, receive queue, ack send queue, sync send queue, and control send queue)
managed by the Reliable Queue Manager (RQM).

The RQM manages the insertion and removal of items to and from the various
queues. The RQM also manages spooling of the in-memory portions of the queue
to and from disk.

Column Type Description

rqm_idx integer Index number

rqm_name char(128) Queue name

rqm_flags integer Flags

rqm_txn integer Transactions in queue

rqm_event integer Events in queue

rqm_txn_in_memory integer Transaction in memory

rqm_txn_in_spool_only integer Spool-only transactions

rqm_txn_spooled integer Spooled transactions

rqm_unspooled_bytes int8 Unspooled bytes

rqm_data_in_queue int8 Data in queue

rqm_inuse_mem int8 Real memory in use

rqm_pending_buffer integer Pending buffers

rqm_pending_data int8 Pending buffers

rqm_maxmemdata int8 Maximum memory in use by data

rqm_maxmemhdr int8 Maximum memory in use by headers

rqm_totqueued int8 Total data queued

G-6 IBM Informix Enterprise Replication Guide

Column Type Description

rqm_tottxn integer Total transactions queued

rqm_totspooled integer Total transactions spooled

rqm_totrestored integer Total transactions stored

rqm_totrecovered integer Total transactions recovered

rqm_totspoolread integer Total rows read from spool

rqm_totdeleted integer Total transactions deleted

rqm_totduplicated integer Total transactions duplicates

rqm_totlookup integer Total transaction lookups

The syscdr_rqmhandle Table
The syscdr_rqmhandle table contains information about which transaction is being
processed in each queue. The handle marks the position of the thread in the queue.

Column Type Description

rqmh_qidx integer The queue associated with this handle

rqmh_thread char(18) Thread owning the handle

rqmh_stamp1 integer Stamp 1 of the last transaction this handle accessed

rqmh_stamp2 integer Stamp 2 of the last transaction this handle accessed

rqmh_servid integer Part 1 of the transaction key

rqmh_logid integer Part 2 of the transaction key

rqmh_logpos integer Part 3 of the transaction key

rqmh_seq integer Part 4 of the transaction key

The syscdr_rqmstamp Table
The syscdr_rqmstamp table contains information about which transaction is being
added to each queue.

Column Type Description

rqms_qidx integer Queue index corresponding to the queues:

v 0 = Transaction Send Queue

v 1 = Acknowledgment Send Queue

v 2 = Control Send Queue

v 3 = CDR Metadata Sync Send Queue

v 4 = Transaction Receive Queue

rqms_stamp1 integer Stamp 1 of the next transaction being put into the queue

rqms_stamp2 integer Stamp 2 of the next transaction being put into the queue

rqms_cstamp1 integer Communal stamp 1 used to identify the next transaction read from the receive
queue

rqms_cstamp2 integer Communal stamp 2 used to identify the next transaction read from the receive
queue

Appendix G. SMI Table Reference G-7

The syscdr_state Table
The syscdr_state table contains status on Enterprise Replication, data capture, data
apply, and the network between the servers.

Column Type Description

er_state char(24) The status of Enterprise Replication:

v Abort = Enterprise Replication is aborting on this server.

v Active = Enterprise Replication is running normally.

v Down = Enterprise Replication is stopped on this server.

v Dropped = The attempt to drop the syscdr database failed.

v Init Failed = The initial start-up of Enterprise Replication on this server
failed, most likely because of a problem on the specified global catalog
synchronization server.

v Initializing = Enterprise Replication is being defined.

v Initial Startup = Enterprise Replication is starting for the first time on this
server.

v Shutting Down = Enterprise Replication is shutting down on this server.

v Startup Blocked = Enterprise Replication cannot start because the server was
started with the oninit -D command.

v Synchronizing Catalogs = The server is receiving a copy of the syscdr
database.

v Uninitialized = The server does not have Enterprise Replication defined on it.

er_capture_state char(24) The current state of log capture:

v Running = Log capture is running normally

v Down = Log capture is not running

v Uninitialized = The server is not a source server for replication

er_network_state char(64) The status of the Enterprise Replication network:

v Running = Communication is running normally

v Down = Communication is not running

v Uninitialized = The server is not a source server for replication

er_apply_state char(24) The status of the receive manager and apply threads:

v Running = Transaction apply is running normally

v Down = Transaction apply is not running

v Uninitialized = The server is not a source server for replication

The syscdrack_buf Table
The syscdrack_buf table contains information about the buffers that form the
acknowledgment queue.

When the target database server applies transactions, it sends an acknowledgment
to the source database server. When the source database server receives the
acknowledgment, it can then delete those transactions from its send queue.

For information on the columns of the syscdrack_buf table, refer to “Columns of
the Buffer Tables” on page G-18.

The syscdrack_txn Table
The syscdrack_txn table contains information about the acknowledgment queue.

G-8 IBM Informix Enterprise Replication Guide

When the target database server applies transactions, it sends an acknowledgment
to the source database server. When the source database server receives the
acknowledgment, it can then delete those transactions from its send queue. The
acknowledgment queue is an in-memory only queue. That is, it is a volatile queue
that is lost if the database server is stopped.

For information on the columns of the syscdrack_txn table, refer to “Columns of
the Transaction Tables” on page G-18.

The syscdrctrl_buf Table
The syscdrctrl_buf table contains buffers that provide information about the
control queue. The control queue is a stable queue that contains control messages
for the replication system.

For information on the columns of the syscdrctrl_buf table, refer to “Columns of
the Buffer Tables” on page G-18.

The syscdrctrl_txn Table
The syscdrctrl_txn table contains information about the control queue. The control
queue is a stable queue that contains control messages for the replication system.

For information on the columns of the syscdrctrl_txn table, refer to “Columns of
the Transaction Tables” on page G-18.

The syscdrerror Table
The syscdrerror table contains information about errors that Enterprise Replication
has encountered.

Column Type Description

errornum integer Error number

errorserv char(128) Database server name where error occurred

errorseqnum integer Sequence number that can be used to prune single-error table

errortime datetime year
to second

Time error occurred

sendserv char(128) Database server name, if applicable, that initiated error behavior

reviewed char(1) v Y if reviewed and set by DBA

v N if not reviewed

errorstmnt text Error description

The syscdrlatency Table
The syscdrlatency table contains statistics about Enterprise Replication latency (the
time it takes to replicate transactions).

Column Type Description

source integer Source of transaction (cdrid)

replid integer Replicate ID

txncnt integer The number of transactions on this source replicate

Appendix G. SMI Table Reference G-9

Column Type Description

inserts integer Number of INSERT statements

deletes integer Number of DELETE statements

updates integer Number of UPDATE statements

last_tgt_apply integer The time of the last transaction to be applied to the target (cdrtime)

last_src_apply integer The time of the last transaction to be applied on the source (cdrtime)

The syscdrpart Table
The syscdrpart table contains participant information.

Column Type Description

replname lvarchar Replicate name

servername char(128) Database server name

partstate char(50) Participant state: ACTIVE, INACTIVE

partmode char(1) v P = primary database server (read/write)

v R = target database server (receive only)

dbsname lvarchar Database name

owner lvarchar Owner name

tabname lvarchar Table name

pendingsync integer v 0 = the Pending Sync attribute is not set

v 1 = the Pending Sync attribute is set, indicating that the participant is
waiting to be synchronized after the replication server was enabled

The syscdrprog Table
The syscdrprog table lists the contents of the Enterprise Replication progress
tables.

The progress tables keep track of what data has been sent to which servers and
which servers have acknowledged receipt of what data. Enterprise Replication uses
the transaction keys and stamps to keep track of this information.

The progress table is two dimensional. For each server to which Enterprise
Replication sends data, the progress tables keep progress information on a
per-replicate basis.

Column Type Description

dest_id integer Server ID of the destination server

repl_id integer The ID that Enterprise Replication uses to identify the replicate for
which this information is valid

source_id integer Server ID of the server from which the data originated

key_acked_srv integer Last key for this replicate that was acknowledged by this destination

key_acked_lgid integer Logical log ID

key_acked_lgpos integer Logical log position

key_acked_seq integer Logical log sequence

G-10 IBM Informix Enterprise Replication Guide

Column Type Description

tx_stamp_1 integer Together with tx_stamp2, forms the stamp of the last transaction
acknowledged for this replicate by this destination

tx_stamp_2 integer Together with tx_stamp1, forms the stamp of the last transaction
acknowledged for this replicate by this destination

The syscdrq Table
The syscdrq table contains information about Enterprise Replication queues.

Column Type Description

srvid integer The identifier number of the database server

repid integer The identifier number of the replicate

srcid integer The server ID of the source database server In cases where a particular
server is forwarding data to another server, srvid is the target and srcid is
the source that originated the transaction.

srvname char(128) The name of the database server

replname char(128) Replicate name

srcname char(128) The name of the source database server

bytesqueued integer Number of bytes queued

The syscdrqueued Table
The syscdrqueued table contains data-queued information.

Column Type Description

servername char(128) Sending to database server name

name char(128) Replicate name

bytesqueued decimal(32,0) Number of bytes queued for the server servername

The syscdrrecv_buf Table
The syscdrrecv_buf table contains buffers that provide information about the
data-receive queue.

When a replication server receives replicated data from a source database server, it
puts this data on the receive queue for processing. On the target side, Enterprise
Replication picks up transactions from this queue and applies them on the target.

For information on the columns of the syscdrrecv_buf table, refer to “Columns of
the Buffer Tables” on page G-18.

Appendix G. SMI Table Reference G-11

The syscdrrecv_stats Table
The syscdrrecv_stats table contains statistics about the receive manager. The
receive manager is a set of service routines between the receive queues and data
sync.

Column Type Description

source integer The source server (cdrid)

txncnt integer Number of transactions from this source

pending integer The transaction currently pending on this source

active integer The transaction currently active on this source

maxpending integer Maximum pending transactions on this source

maxactive integer Maximum active transactions on this source

avg_pending float Average pending transactions on this source

avg_active float Average active transactions on this source

cmtrate float Average commit rate from this source

The syscdrrecv_txn Table
The syscdrrecv_txn table contains information about the data receive queue. The
receive queue resides in memory.

When a replication server receives replicated data from a source database server, it
puts the data in the receive queue and then applies the transactions on the target.

For information on the columns of the syscdrrecv_txn table, refer to “Columns of
the Transaction Tables” on page G-18.

The syscdrrepl Table
The syscdrrepl table contains replicate information.

Column Type Description

replname lvarchar Replicate name.

replstate char(50) Replicate state.

For possible values, refer to “cdr list server” on page A-131.

freqtype char(1) Type of replication frequency:

v C = continuous

v I = interval

v T = time based

v M = day of month

v W = day of week

freqmin smallint The time for replication by minute:

v Minutes after the hour that replication should occur.

v Null if continuous.

freqhour smallint The time for replication by hour:

v Hour that replication should occur.

v Null if continuous.

G-12 IBM Informix Enterprise Replication Guide

Column Type Description

freqday smallint Day of week or month replication should occur.

scope char(1) Replication scope:

v T = transaction

v R = row-by-row

invokerowspool char(1) Whether Row Information Spooling is enabled:

v Y = row spooling is enabled.

v N = row spooling is disabled.

invoke transpool char(1) Whether Aborted Transaction Spooling is enabled:

v Y = transaction spooling is enabled.

v N = transaction spooling is disabled.

primresolution char(1) Type of primary conflict resolution:

v A = always apply

v D = delete wins

v I = ignore

v T = timestamp.

v S = SPL routine

secresolution char(1) Type of secondary conflict resolution:

v S = SPL routine

v Null = not configured

storedprocname lvarchar SPL routine:

v Name of SPL routine for secondary conflict resolution.

v Null if not defined.

floattype char(1) Type of floating point number conversion:

v C= converts floating point numbers to canonical format.

v I= converts floating point numbers to IEEE format.

v N = does not convert floating point numbers (sends in native format).

istriggerfire char(1) Whether triggers are enabled:

v Y = triggers are enabled.

v N = triggers are disabled.

isfullrow char(1) Whether to replicate full rows or only the changed columns:

v Y = sends the full row and enables upserts.

v N = sends only changed columns and disables upserts.

isgrid char(1) Whether the replicate belongs to a grid replicate set:

v Y = the replicate belongs to a grid replicate set.

v N = the replicate does not belong to a grid replicate set.

Related tasks:
“Viewing grid information” on page 9-7

The syscdrreplset Table
The syscdrreplset table contains replicate set information.

Column Type Description

replname lvarchar Replicate name

replsetname lvarchar Replicate set name

Appendix G. SMI Table Reference G-13

Column Type Description

replsetattr integer Replicate set attributes:

v 0x00200000U = The replicate set was created with a template.

v 0x00000080U = The replicate set is exclusive.

The syscdrs Table
The syscdrs table contains information about database servers in an Enterprise
Replication domain.

Column Type Description

servid integer Server identifier.

servname char(128) Database server name.

cnnstate char(1) Status of connection to this database server:

v C = Connected

v D = Connection disconnected (will be retried)

v E = Error during connection

v F = Connection failed

v K = In the process of connecting

v L = The connection is to the local server

v R = Disconnected but will attempt to reconnect

v T = Idle time-out caused connection to terminate

v X = Connection closed by user command and unavailable until reset
by user

cnnstatechg integer Time that connection state was last changed.

servstate char(1) Status of database server:

v A = Active. The server is active and replicating data.

v D = Deleted. The server has been deleted; it is not capturing or
delivering data and the queues are being drained.

v S = Suspended. Delivery of replication data to the server is suspended.

v Q = Quiescent. The server is in the process of being defined.

v U = Disabled. Only delete shadow tables are populated in this state.

ishub char(1) Whether the server is a hub server that forwards information to another
replication server:

v Y = Server is a hub

v N = Server is not a hub

isleaf char(1) Whether the server is a leaf or a nonleaf server:

v Y = Server is a leaf server

v N = Server is not a leaf server

rootserverid integer The identifier of the root server.

forwardnodeid integer The identifier of the parent server.

timeout integer The number of minutes of idle time between replication servers before
the connection is timed out.

Although not directly connected, a nonroot server is similar to a root server except
it forwards all replicated messages through its parent (root) server. All nonroot
servers are known to all root servers and other nonroot servers. A nonroot server

G-14 IBM Informix Enterprise Replication Guide

can be a terminal point in a tree or it can be the parent for another nonroot server
or a leaf server. Nonroot and root servers are aware of all replication servers in the
replication environment, including all the leaf servers.

A leaf server is a nonroot server that has a partial catalog. A leaf server has
knowledge only of itself and its parent server. It does not contain information
about replicates of which it is not a participant. The leaf server must be a terminal
point in a replication hierarchy.
Related concepts:
“Hierarchical Routing Topology Terminology” on page 5-16

The syscdrsend_buf Table
The syscdrsend_buf table contains buffers that give information about the send
queue.

When a user performs transactions on the source database server, Enterprise
Replication queues the data on the send queue for delivery to the target servers.

For information on the columns of the syscdrsend_buf table, refer to “Columns of
the Buffer Tables” on page G-18.

The syscdrsend_txn Table
The syscdrsend_txn table contains information about the send queue.

When a user performs transactions on the source database server, Enterprise
Replication queues the data on the send queue for delivery to the target servers.

For information on the columns of the syscdrsync_txn table, refer to “Columns of
the Transaction Tables” on page G-18.

The syscdrserver Table
The syscdrserver table contains information about database servers declared to
Enterprise Replication.

Column Type Description

servid integer Replication server ID

servername char(128) Database server group name

connstate char(1) Status of connection to this database server:

v C = Connected

v D = Connection disconnected (will be retried)

v T = Idle time-out caused connection to terminate

v X = Connection closed by user command and unavailable until reset
by user

connstatechange integer Time that connection state was last changed

servstate char(50) Status of this database server:

v A = Active

v D = Disabled

v S = Suspended

v Q = Quiescent (initial sync state only)

Appendix G. SMI Table Reference G-15

Column Type Description

ishub char(1) v Y = Server is a hub

v N = Server is not a hub

isleaf char(1) v Y = Server is a leaf server

v N = Server connection is not a leaf server

rootserverid integer The identifier of the root server

forwardnodeid integer The identifier of the parent server

idletimeout integer Idle time-out

atsdir lvarchar ATS directory spooling name

risdir lvarchar RIS directory spooling name

The syscdrsync_buf Table
The syscdrsync_buf table contains buffers that give information about the
synchronization queue. Enterprise Replication uses this queue only when defining
a replication server and synchronizing its global catalog with another replication
server.

For information on the columns of the syscdrsync_buf table, refer to “Columns of
the Buffer Tables” on page G-18.

The syscdrsync_txn Table
The syscdrsync_txn table contains information about the synchronization queue.
This queue is currently used only when defining a replication server and
synchronizing its global catalog with another replication server. The
synchronization queue is an in-memory-only queue.

For information on the columns of the syscdrsync_txn table, refer to “Columns of
the Transaction Tables” on page G-18.

The syscdrtsapply table
The syscdrtsapply table lists statistics about the time series elements that are
applied on target servers.

Table G-1. The syscdrtsapply table

Column Type Description

source integer CDRID of source server.

replid integer Replicate ID.

txncnt integer The number of transactions from this source server and
replicate.

tsinserts integer The number of time series elements that were inserted.

tsdeletes integer The number of time series elements that were deleted.

tscmd integer The number of TimeSeries routines that inserted or
deleted elements that are replicated.

last_tgt_apply integer The time when the most recent transaction was applied
on a target server.

G-16 IBM Informix Enterprise Replication Guide

Table G-1. The syscdrtsapply table (continued)

Column Type Description

last_src_apply integer The time when the most recent transaction was applied
on the source server.

The syscdrtx Table
The syscdrtx table contains information about Enterprise Replication transactions.

Column Type Description

srvid integer Server ID

srvname char(128) Name of database server from which data is received

txprocssd integer Transaction processed from database server srvname

txcmmtd integer Transaction committed from database server srvname

txabrtd integer Transaction aborted from database server srvname

rowscmmtd integer Rows committed from database server srvname

rowsabrtd integer Rows aborted from database server srvname

txbadcnt integer Number of transactions with source commit time (on database server
srvname) greater than target commit time

Enterprise Replication Queues
One group of sysmaster tables shows information about Enterprise Replication
queues. The sysmaster database reports the status of these queues in the tables
that have the suffixes _buf and _txn.

The name of each table that describes an Enterprise Replication queue is composed
of the following three pieces:
v syscdr, which indicates that the table describes Enterprise Replication
v An abbreviation that indicates which queue the table describes
v A suffix, either _buf or _txn, which specifies whether the table includes buffers

or transactions

Selecting from these tables provides information about the contents of each queue.
For example, the following SELECT statement returns a list of all transactions
queued on the send queue:
SELECT * FROM syscdrsend_txn

The following example returns a list of all transactions queued on the in-memory
send queue and returns the number of buffers and the size of each buffer for each
transaction on the send queue:
SELECT cbkeyserverid,cbkeyid,cbkeypos,count(*),sum(cbsize)

from syscdrsend_buf
group by cbkeyserverid, cbkeyid, cbkeypos
order by cbkeyserverid, cbkeyid, cbkeypos

All queues are present on all the replication servers, regardless of whether the
replication server is a source or a target for a particular transaction. Some of the
queues are always empty. For instance, the send queue on a target-only server is
always empty.

Appendix G. SMI Table Reference G-17

Each queue is two-dimensional. Every queue has a list of transaction headers. Each
transaction header in turn has a list of buffers that belong to that transaction.

Columns of the Transaction Tables
The transaction tables contain information about transactions that are in memory.
They do not contain information about transactions that are spooled to disk.

The names of transaction tables end with _txn. All transaction tables have the same
columns and the same column definitions.

The ctstamp1 and ctstamp2 columns combine to form the primary key for these
tables.

Column Type Description

ctkeyserverid integer Server ID of the database server where this data
originated. This server ID is the group ID from the
sqlhosts file.

ctkeyid integer Logical log ID.

ctkeypos integer Position in the logical log on the source server for the
transaction that is represented by the buffer.

ctkeysequence integer Sequence number for the buffer within the transaction.

ctstamp1 integer Together with ctstamp2, forms an insertion stamp that
specifies the order of the transaction in the queue.

ctstamp2 integer Together with ctstamp1, forms an insertion stamp that
specifies the order of the transaction in the queue.

ctcommittime integer Time when the transaction represented by this buffer
was committed.

ctuserid integer Login ID of the user who committed this transaction.

ctfromid integer Server ID of the server that sent this transaction. Used
only in hierarchical replication.

Columns of the Buffer Tables
The buffer tables contain information about the buffers that form the transactions
that are listed in the transaction tables.

The names of buffer tables end with _buf. All buffer tables contain the same
columns and the same column definitions.

Column Type Description

cbflags integer Internal flags for this buffer.

cbsize integer Size of this buffer in bytes.

cbkeyserverid integer Server ID of the database server where this data
originated. This server ID is the group ID from the
sqlhosts file.

cbkeyid integer Login ID of the user who originated the transaction that
is represented by this buffer.

cbkeypos integer Log position on the source server for the transaction that
is represented by this buffer.

cbkeysequence integer Sequence number for this buffer within the transaction.

cbreplid integer Replicate identifier for the data in this buffer.

G-18 IBM Informix Enterprise Replication Guide

Column Type Description

cbcommittime integer Time when the transaction represented by this buffer
was committed.

The following columns combine to form the primary key for this table:
cbkeyserverid, cbkeyid, cbkeypos, cbkeysequence.

The columns cbkeyserverid, cbkeyid, and cbkeypos form a foreign key that points
to the transaction in the _txn table that the buffer represents.

Appendix G. SMI Table Reference G-19

G-20 IBM Informix Enterprise Replication Guide

Appendix H. Replication Examples

This appendix contains simple examples of replication using the command-line
utility (CLU).

Appendix A, “The cdr utility,” on page A-1 documents the CLU.
Related tasks:
“Preparing the Network Environment” on page 6-1

Replication Example Environment
To run the replication examples in this publication, you must set up IBM Informix
database servers. Each database server must be in a database server group.

The replication environment for the examples consists of:
v Three computers (s1, s2, and s3) that host the database servers usa, italy, and

japan. Each computer has active network connections to the other two
computers.

v The database servers usa, italy, and japan are members of the database server
groups g_usa, g_italy, and g_japan.

The sqlhosts file for each database server must contain the following connectivity
information.
g_usa group - - i=1
usa ontlitcp s1 techpubs1 g=g_usa
g_italy group - - i=8
italy ontlitcp s2 techpubs2 g=g_ital
g_japan group - - i=6
japan ontlitcp s3 techpubs6 g=g_japan

You must create an sbspace for the row data and set the CDR_QDATA_SBSPACE
parameter to the location of that sbspace. For more information, see “Setting Up
Send and Receive Queue Spool Areas” on page 6-10 and “CDR_QDATA_SBSPACE
Configuration Parameter” on page B-13.

All commands in this example, except for creation of the sample databases on italy
and japan, are issued from the computer s1.

The databases for the examples are identical to stores_demo databases with
logging, as follows:
v Create a database named stores on the usa database server:

s1> dbaccessdemo -log stores

v Create a database named stores on the italy database server:
s1> rlogin s2
s2> dbaccessdemo -log stores

v Create a database named stores on the japan database server:
s1> rlogin s3
s3> dbaccessdemo -log stores

For information about preparing data for replication, see “Data Preparation
Example” on page 6-26.

© Copyright IBM Corp. 1996, 2015 H-1

Primary-Target Example
This is a simple example of primary-target replication.

In primary-target replication, only changes to the primary table are replicated to
the other tables in the replicate. Changes to the secondary tables are not replicated.

In this example, define the g_usa and g_italy database server groups as Enterprise
Replication servers and create a replicate, repl1.

To define the database server groups and create the replicate
1. Create and populate the database that defines the usa database server as a

replication server:
cdr define server --init g_usa

Before replicating data, you must define the database servers as replication
servers. A replication server is a database server that has an extra database that
holds replication information.
The --init option specifies that this server is a new replication server. When you
define a replication server, you must use the name of the database server group
(g_usa) rather than the database server name.

2. Display the replication server that you defined to verify that the definition
succeeded:
cdr list server

The command returns the following information:
SERVER ID STATE STATUS QUEUE CONNECTION CHANGED
--
g_usa 1 Active Local 0

3. Define the second database server, italy, as a replication server:
cdr define server --connect=italy --init \
--sync=g_usa g_italy

The --connect option allows you to define italy (on the s2 computer) while
working at the s1 (usa) computer. The --sync option instructs the command to
use the already-defined replication server (g_usa) as a pattern for the new
definition. The --sync option also links the two replication servers into a
replication environment.

Tip: In all options except the --connect option, Enterprise Replication uses the
name of the database server group to which a database server belongs, instead
of the name of the database server itself.

4. Verify that the second definition succeeded:
cdr list server

The command returns the following information:
SERVER ID STATE STATUS QUEUE CONNECTION CHANGED
--
g_italy 8 Active Connected 0 JUN 14 14:38:44 2000
g_usa 1 Active Local 0

5. Define the replicate repl1:
cdr define replicate --conflict=ignore repl1 \
"P stores@g_usa:informix.manufact" \
"select * from manufact" \
"R stores@g_italy:informix.manufact" \
"select * from manufact"

These lines are all one command. The backslashes (\) at the end of the lines
indicate that the command continues on the next line.

H-2 IBM Informix Enterprise Replication Guide

This step specifies that conflicts should be ignored and describes two
participants, usa and italy, in the replicate:
v The P indicates that in this replicate usa is a primary server. That is, if any

data in the selected columns changes, that changed data should be sent to
the secondary servers.

v The R indicates that in this replicate italy is a secondary server (receive-only).
The specified table and columns receive information that is sent from the
primary server. Changes to those columns on italy are not replicated.

6. Display the replicate that you defined, so that you can verify that the definition
succeeded:
cdr list replicate

The command returns the following information:
CURRENTLY DEFINED REPLICATES
--
REPLICATE: repl1
STATE: Inactive
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: g_usa:informix.manufact

g_italy:informix.manufact

Step 5 defines a replicate but does not make the replicate active. The output of
step 6 shows that the STATE of the replicate is INACTIVE.

7. Make the replicate active:
cdr start repl1

8. Display the replicate so that you can verify that the STATE has changed to
ACTIVE:
cdr list replicate

The command returns the following information:
CURRENTLY DEFINED REPLICATES
--
REPLICATE: repl1
STATE: Active
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: g_usa:informix.manufact

g_italy:informix.manufact

If any changes are made to the manufact table, the changes will be replicated
to the other participants in the replicate.

Now you can modify the manufact table on the usa database server and see the
change reflected in the manufact table on the italy database server.

To cause a replication

1. Use DB-Access to insert a value into the manufact table on usa:
INSERT INTO stores@usa:manufact \
VALUES (’AWN’,’Allwyn’,’8’);

2. Observe the changes on usa and on italy:
SELECT * from stores@usa:manufact
SELECT * from stores@italy:manufact

In repl1, usa is the primary database server and italy is the target. Changes made
to the manufact table on italy do not replicate to usa.

Appendix H. Replication Examples H-3

To not cause a replication

1. Use DB-Access to insert a value into the manufact table on italy:
INSERT INTO stores@italy:manufact \
VALUES (’ZZZ’,’Zip’,’9’);

2. Verify that the change occurred on italy but did not replicate to the manufact
table on usa:
SELECT * from stores@usa:manufact
SELECT * from stores@italy:manufact

Update-Anywhere Example
This example builds on the primary-target example and creates a simple
update-anywhere replication.

In update-anywhere replication, changes to any table in the replicate are replicated
to all other tables in the replicate. In this example, any change to the stock table of
the stores database on any database server in the replicate will be replicated to the
stock table on the other database servers.

In this example, define the repl2 replicate.

To prepare for update-anywhere replication
1. Define the replicate, repl2:

cdr define replicate --conflict=ignore repl2 \
"stores@g_usa:informix.stock" "select * from stock" \
"stores@g_italy:informix.stock" "select * from stock"

These lines are all one command. The backslashes (\) at the end of the lines
indicate that the command continues on the next line.
This step specifies that conflicts should be ignored and describes two
participants, usa and italy (including the table and the columns to replicate) in
the replicate.
Because neither P (primary) nor R (receive-only) is specified, the replicate is
defined as update-anywhere. If any data in the selected columns changes, on
either participant, that changed data should be sent to the other participants in
the replicate.

2. Display all the replicates so that you can verify that your definition of repl2
succeeded:
cdr list replicate

The command returns the following information:
CURRENTLY DEFINED REPLICATES

REPLICATE: repl1
STATE: Active
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: g_usa:informix.manufact

g_italy:informix.manufact

REPLICATE: repl2
STATE: Inactive
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: g_usa:informix.stock

g_italy:informix.manufact

H-4 IBM Informix Enterprise Replication Guide

Although this output shows that repl2 exists, it does not show the participant
modifiers (the SELECT statements) for repl2.

3. Display the participant modifiers for repl2:
cdr list replicate repl2

This command returns the following information:
REPLICATE TABLE SELECT
--
repl2 stores@g_usa:informix.stock select * from stock
repl2 stores@g_italy:informix.stock select * from stock

4. Add the japan database server to the replication system already defined in the
previous example:
cdr define server --connect=japan --init \
--sync=g_usa g_japan

You can use either g_usa or g_italy in the --sync option.
Enterprise Replication maintains identical information on all servers that
participate in the replication system. Therefore, when you add the japan
database server, information about that server is propagated to all
previously-defined replication servers (usa and italy).

5. Display the replication servers so that you can verify that the definition
succeeded:
cdr list server

The command returns the following information:
SERVER ID STATE STATUS QUEUE CONNECTION CHANGED
--
g_italy 8 Active Connected 0 JUN 14 14:38:44 2000
g_japan 6 Active Connected 0 JUN 14 14:38:44 2000
g_usa 1 Active Local 0

6. Add the participant and participant modifier to repl2:
cdr change replicate --add repl2 \
"stores@g_japan:informix.stock" "select * from stock"

7. Display detailed information about repl2 after adding the participant in step 6:
cdr list replicate repl2

The command returns the following information:
REPLICATE TABLE SELECT
--
repl2 stores@g_usa:informix.stock select * from stock
repl2 stores@g_italy:informix.stock select * from stock
repl2 stores@g_japan:informix.stock select * from stock

8. Make the replicate active:
cdr start repl2

9. Display a list of replicates so that you can verify that the STATE of repl2 has
changed to ACTIVE:
cdr list replicate

The command returns the following information:
CURRENTLY DEFINED REPLICATES
--
REPLICATE: repl1
STATE: Active
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: g_usa:informix.manufact

g_italy:informix.manufact

REPLICATE: repl2

Appendix H. Replication Examples H-5

STATE: Active
CONFLICT: Ignore
FREQUENCY: immediate
QUEUE SIZE: 0
PARTICIPANT: g_usa:informix.stock

g_italy:informix.manufact
g_japan:informix.manufact

Now you can modify the stock table on one database server and see the change
reflected on the other database servers.

To cause a replication

1. Use DB-Access to insert a line into the stock table on usa:
INSERT INTO stores@usa:stock VALUES (401, “PRC”, “ski boots”, 200.00,

“pair”, “pair”);

2. Observe the change on the italy and japan database servers:
SELECT * from stores@italy:stock;
SELECT * from stores@japan:stock;

To update the stock table on the japan database server

1. Use DB-Access to change a value in the stock table on japan:
UPDATE stores@japan:stock SET unit_price = 190.00
WHERE stock_num = 401;

2. Verify that the change has replicated to the stock table on usa and on italy:
SELECT * from stores@usa:stock WHERE stock_num = 401;
SELECT * from stores@italy:stock WHERE stock_num = 401;

Hierarchy Example
This example adds a replication tree to the fully-connected environment of the usa,
italy, and japan replication servers.

The nonroot servers boston and denver are children of usa. (The leaf server miami
is a child of boston.) Figure H-1 shows the replication hierarchy.

To try this example, you need to prepare three additional database servers: boston,
denver, and miami. To prepare the database servers, use the techniques described
in “Replication Example Environment” on page H-1.

usa

boston

miami

denver

japan

italy

nonroot

leaf

root

root

root

nonroot

Figure H-1. Hierarchical Tree Example

H-6 IBM Informix Enterprise Replication Guide

The following example defines a replication hierarchy that includes denver,
boston, and miami and, whose root is usa.

To define a hierarchy
1. Add boston to the replication hierarchy as a nonroot server attached to the root

server usa:
cdr define server --connect=boston --nonroot --init \
--sync g_usa g_boston

The backslash (\) indicates that the command continues on the next line.
2. Add denver to the replication hierarchy as a nonroot server attached to the

root server usa:
cdr define server -c denver -I -N --ats=/ix/myats \
-S g_usa g_denver

This command uses short forms for the connect, init, and sync options. (For
information about the short forms, refer to “Option Abbreviations” on page
A-2.) The command also specifies a directory for collecting information about
failed replication transactions, /ix/myats.

3. List the replication servers as seen by the usa replication server:
cdr list server

The root server usa is fully connected to all the other root servers. Therefore
usa knows the connection status of all other root servers and of its two child
servers, denver and boston. The command returns the following information:
SERVER ID STATE STATUS QUEUE CONNECTION CHANGED

g_boston 3 Active Connected 0 Aug 19 14:20:03 2000
g_denver 27 Active Connected 0 Aug 19 14:20:03 2000
g_italy 8 Active Connected 0 Aug 19 14:20:03 2000
g_japan 6 Active Connected 0 Aug 19 14:20:03 2000
g_usa 1 Active Local 0

4. List the replication servers as seen by the denver replication server:
cdr list server --connect=denver

The nonroot server denver has a complete global catalog of replication
information, so it knows all the other servers in its replication system.
However, denver knows the connection status only of itself and its parent, usa.
The command returns the following information:
SERVER ID STATE STATUS QUEUE CONNECTION CHANGED

g_boston 3 Active 0
g_denver 27 Active Local 0
g_italy 8 Active 0
g_japan 6 Active 0
g_usa 1 Active Connected 0 Aug 19 14:20:03 2000

5. Define miami as a leaf server whose parent is boston:
cdr define server -c miami -I --leaf -S g_boston g_miami

6. List the replication servers as seen by miami:
cdr list server -c miami

As a leaf replication server, miami has a limited catalog of replication
information. It knows only about itself and its parent.
The command returns the following information:
SERVER ID STATE STATUS QUEUE CONNECTION CHANGED

g_boston 3 Active Connected 0 Aug19 14:35:17 2000
g_miami 4 Active Local 0

7. List details about the usa replication server:

Appendix H. Replication Examples H-7

cdr list server g_usa

The server is a hub; that is, it forwards replication information to and from
other servers. It uses the default values for idle timeout, send queue, receive
queue, and ATS directory.
The command returns the following information:
NAME ID ATTRIBUTES
--
g_usa 1 timeout=15 hub sendq=rootdbs recvq=rootdbs atsdir=/tmp

H-8 IBM Informix Enterprise Replication Guide

Appendix I. Data sync warning and error messages

Data sync warning and error messages describe problems with replicated
transactions.

You can suppress these messages from being written to the ATS and RIS files. You
cannot suppress code 0, DSROWCOMMITTED, which indicates that the row was
committed, or code 1, DSEROW, which indicates that an error occurred.

To specify which warnings and errors to suppress, use the
CDR_SUPPRESS_ATSRISWARN configuration parameter. For more information,
see “CDR_SUPPRESS_ATSRISWARN Configuration Parameter” on page B-16.

Table I-1. Data sync warning and error messages

Warning or Error Code Number Description

DSEReplInsertOrder 2 Warning: Insert exception, row already exists in target table,
converted to update

DSEReplUpdateOrder 3 Warning: Update exception, row does not exist in target table,
converted to insert

DSEReplDeleteOrder 4 Warning: Delete exception, row does not exist in target table,
saved in delete table

DSEReplInsert 5 Error: Insert aborted, row already exists in target table

DSEReplUpdate 6 Error: Update aborted, row does not exist in target table

DSEReplDelete 7 Error: Delete aborted, row does not exist in target table

DSERowLength 8 Error: Length of replicated row is greater than row size in target
table

DSEDbopType 9 Error: Unknown db operation

DSENoServerTimeCol 10 Error: Missing cdrserver and/or cdrtime columns in target table

DSEConflictRule 13 Error: Unknown conflict resolution rule defined

DSELostConflictRes 14 Error: Failed conflict resolution rule

DSENoServerName 15 Error: Global catalog cannot translate replicate server id to name

DSEColMap 16 Error: Unable to remap columns selected for replication

DSEColUncomp 17 Error: Invalid char/length in VARCHAR column

DSESPRetTypeOp 18 Error: Invalid data type or unknown operation returned by stored
procedure

DSESPAbortRow 19 Error: Row aborted by stored procedure

DSESPSelCols 20 Error: Number of columns returned by stored procedure not equal
to the number of columns in select statement

DSESPColTypeLen 21 Error: Invalid data type or length for selected columns returned
by stored procedure

DSESPError 22 Error: Error returned by user's stored procedure

DSESPInternal 23 Error: Internal error (buffer too small for stored procedure
arguments

DSENoMatchKeyInsert 24 Error: No matching key delete row for key insert

DSESql 25 Error: SQL error encountered

© Copyright IBM Corp. 1996, 2015 I-1

Table I-1. Data sync warning and error messages (continued)

Warning or Error Code Number Description

DSEIsam 26 Error: ISAM error encountered

DSELocalDReExist 27 Warning: Local delete row has been reinserted on local server

DSELocalDOddState 28 Warning: Unable to determine if the local delete row should be
updated to the delete table

DSELocalDInDelTab 29 Warning: Row already exists in delete table for the given local
delete row

DSEBlobOrder 30 Warning: Row failed conflict resolution rule but one or more blob
columns were accepted

DSEBlobSetToNull 31 Warning: One or more blob columns were set to NULL because
data could not be sent

DSEBlobKeepLocal 32 Warning: One or more blob columns were not changed because
data could not be sent

DSEBlobInvalidFlag 33 Error: Invalid user action defined for blob columns

DSEBlobAbortRow 34 Error: Row aborted by user's stored procedure due to unsent
blobs

DSESPBlobRetOp 35 Error: Invalid action returned by user's stored procedure on blob
columns

DSEReplDel 36

DSENoUDTHeader 37

DSENoUDTTrailer 38

DSEStreamHandle 39

DSEAttachUDREnv 40

DSECdrreceiveSetup 41

DSECdrreceiveCall 42

DSECdrreceiveRetCode 43 cdrreceive returned error

DSECdrreceiveRetGarbage 44 cdrreceive returned garbage

DSEStream 45 Error reading from stream

DSEStreamAborted 46 Stream aborted by sender

DSEValStore 47

DSECdrreceiveRetType 48 cdrreceive returned wrong type

DSEStreamOptType 49 Unrecognized stream option

DSEStreamOptLen 50 Stream option has bad length

DSEStreamOptBitmap 51 Error in changed col bitmap

DSEUnStreamColl 52 Error while unstreaming collection

DSEUnStreamRowType 53 Error while unstreaming rowtype

DSEStreamFormat 54 Unexpected or invalid data in stream

DSEStack 55 Out of stack space

DSEInternal 56 Generic internal problem

DSESmartBlobCreate 57 Error creating sblob

DSESmartBlobWrite 58 Error writing sblob

DSEStreamColConv 59 Error converting column data from the master dictionary formats
to the local dictionary format

I-2 IBM Informix Enterprise Replication Guide

Table I-1. Data sync warning and error messages (continued)

Warning or Error Code Number Description

DSE2UTF8CodeSetConvErr 63 Error converting data from local database code set to UTF-8

DSEFromUTF8CodeSetConvErr 64 Error converting data from UTF-8 to local database code set.

DSE2UTF8CodeSetConvWarn 65 One or more characters were substituted during conversion from
the local database code set to UTF-8.

DSEFromUTF8CodeSetConvWarn 66 One or more characters were substituted during conversion from
UTF-8 to the local database code set.

DSETSSetup 67 Failed to setup environment for processing time series elements.

DSETSDelOp 68 Failed to apply time series delete statement. Statements include
DelClip(), DelRange(), and DelTrim() operations.

DSETSElem 69 Failed to apply time series element.

DSEOpenTSCon 133 Failed to open time series container.

Appendix I. Data sync warning and error messages I-3

I-4 IBM Informix Enterprise Replication Guide

Appendix J. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility
For more information about the IBM commitment to accessibility, see the IBM
Accessibility Center at http://www.ibm.com/able.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 1996, 2015 J-1

http://www.ibm.com/able

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string that follows the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

J-2 IBM Informix Enterprise Replication Guide

repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix J. Accessibility J-3

J-4 IBM Informix Enterprise Replication Guide

Notices

This information was developed for products and services offered in the U.S.A.
This material may be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1996, 2015 K-1

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

K-2 IBM Informix Enterprise Replication Guide

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies”, and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Notices K-3

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

K-4 IBM Informix Enterprise Replication Guide

Index

Special characters
--ackq option

cdr stats rqm A-178
--add option

cdr change replicate 11-6, A-39
cdr change replicateset 11-11, A-42

--add parameter
cdr change shardCollection A-44

--all option
cdr define template A-98
cdr error A-119

--applyasowner option 8-22
cdr realize template A-148

--at option 8-11, A-27
time formats A-27

--ats option 8-6, 8-11, 12-4
cdr define server A-90
cdr modify replicate A-140
cdr modify server A-146

--autocreate option
cdr change replicate A-39
cdr realize template 8-22, A-148

--check option
cdr repair A-160

--classic option 8-8
--cntrlq option

cdr stats rqm A-178
--conflict option 8-10
--connect option

and database server name 8-1
connecting to another replication server 11-3

--database option
cdr define template A-98

--dbspace option 8-22
cdr realize template A-148

--delete option 11-6, 11-11
cdr change replicate A-39
cdr change replicateset A-42

--drop parameter
cdr change shardCollection A-44

--empty option 8-8
--every option 8-11, A-27
--exclusive option 8-18

cdr define replicateset A-87
cdr define template A-98

--extratargetrows option 8-20
cdr check replicate A-50
cdr check replicateset A-61
cdr realize template A-148
cdr start replicate A-170
cdr start replicateset A-173
cdr sync replicate A-200
cdr sync replicateset A-204

--file option 8-21
cdr define template A-98

--firetrigger option 8-13
cdr modify replicate A-140
cdr sync replicateset A-50, A-61, A-200, A-204

--floatcanon option 8-12
--follow option

cdr error A-119

--force option
cdr delete server A-108

--foreground option
cdr realize template A-148

--fullrow option 8-11
cdr modify replicate A-140

--idle option
cdr define server 8-6, A-90
cdr modify server A-146

--ignoredel option A-140
--immed option 8-11, A-27
--init option 8-1

cdr define server A-90
--key parameter

cdr define shardCollection A-93
--leaf option 8-6

cdr define server A-90
--master option 8-8

cdr define template A-98
--memadjust option

cdr realize template A-148
cdr sync replicate A-200, A-204

--mirrors option 8-9
--mode option 8-22, A-148
--name option 8-8

cdr modify replicate A-140
--nonroot option 8-6

cdr define server A-90
--off option

cdr alter A-30
--on option

cdr alter A-30
--optimize option 8-10
--primaryid option A-198

cdr swap shadow A-198
--primaryname option A-198

cdr swap shadow A-198
--prune option

cdr error A-119
--quiet option

cdr repair A-160
--recvq option

cdr stats rqm A-178
--replace parameter

cdr change shardCollection A-44
--ris option 8-11, 12-4

cdr define server A-90
cdr modify replicate A-140
cdr modify server A-146

--sendq option
cdr stats rqm A-178

--seq option
cdr error A-119

--shadowid option A-198
cdr swap shadow A-198

--shadowname option A-198
cdr swap shadow A-198

--strategy parameter
cdr define shardCollection A-93

--sync option 8-6
cdr define server A-90

© Copyright IBM Corp. 1996, 2015 X-1

--syncdatasource option 8-20, 8-22
cdr realize template A-148
cdr start replicate A-170
cdr start replicateset A-173

--syncq option
cdr stats rqm A-178

--type parameter
cdr define shardCollection A-93

--UTF8 option 8-13
cdr define replicate A-77
cdr modify replicate A-140

--verbose option
cdr repair A-160

--verify option
cdr change replicate A-39
cdr realize template 8-22, A-148

--versionCol parameter
cdr define shardCollection A-93

--zap option
cdr error A-119

-e option 6-26
-S option 6-26
/etc/hosts file 6-2
/etc/hosts.equiv file 6-4
/etc/services file 6-2
$INFORMIXDIR/gls/cv9 directory 3-5
$INFORMIXDIR/incl/esql/cdrerr.h file A-121
\etc\hosts file 6-2
\etc\hosts.equiv file 6-4
\etc\services file 6-2
—foreground option

cdr start replicate A-170, A-173
—master option

cdr check replicate A-50
cdr check replicateset A-61
cdr sync replicate A-200
cdr sync replicateset A-204

—memadjust option
cdr start replicate A-170, A-173

—nomark option
cdr error A-119

—repair option
cdr check replicate A-50
cdr check replicateset A-61

—repl option
cdr check replicate A-50
cdr sync replicate A-200

—replset option
cdr check replicateset A-61
cdr sync replicateset A-204

—verbose option
cdr check replicate A-50
cdr check replicateset A-61

A
Abbreviations

cdr define replicateset A-1
commands A-1
options A-2

Aborted rows, and ATS files 12-3
Aborted Transaction Spooling. 12-3
Accessibility J-1

dotted decimal format of syntax diagrams J-1
keyboard J-1
shortcut keys J-1
syntax diagrams, reading in a screen reader J-1

Activating
ATS A-77
RIS A-77

Active state A-125
defined 11-8
server A-132

ADD CRCOLS
defining shadow columns 6-19

ADD REPLCHECK
defining shadow columns 6-20

Adding
chunks to storage spaces 12-17
participants to replicates 6-26

ALARMPROGRAM
monitoring replication 12-1

Alarms
event 12-21

Alter mode 11-25
Alter operations

performing on replicated tables 11-24
troubleshooting 12-19

ALTER TABLE statement 6-19, 6-20
ADD and DROP CRCOLS 6-19
ADD and DROP REPLCHECK 6-20
in-place alters 6-19, 6-20

Altering replicated tables 11-25
Always-apply conflict resolution rule 5-6, 8-10
Always-apply conflict-resolution rule 5-14
Application

specific routines 5-9
Apply parallelism E-15
Apply queue

setting CDR_MAX_FLUSH_SIZE B-11
Applying data, process 2-7
Arguments

SPL routines 5-9
Asynchronous

data replication 1-3
propagation, considerations 3-1

ATS
activating A-77, A-90
capacity planning 6-14
file names, description 12-5
files

BLOB and CLOB information 12-11
BYTE and TEXT data 12-11
changed column information 12-11
configuring 8-11
defined 12-3
naming conventions 12-5
preparing to use 12-4
smart large objects 12-11
UDT information 12-11
UDTs 12-11

modifying directory 11-1
specifying directory 8-6, A-90, A-146, A-160

ATS files
disabling generation 12-13
repair using 11-22

Attaching fragments 11-28
Attribute

replicate, changing 11-6
viewing 11-3

Automatic table creation 8-8, 8-22
Average large object size. 6-11
AVG_LO_SIZE configuration parameter 6-11

X-2 IBM Informix Enterprise Replication Guide

B
Backups

databases 3-2
Batch jobs 3-2
BEGIN WORK WITHOUT REPLICATION

behavior 6-18
DB-Access 6-18
ESQL/C 6-18
example 6-26
running batch jobs 3-2

BIGSERIAL data type 4-7
Bitmap

information in logical log files 8-11
BLOB data type

information
ATS files 12-11

spooled row data 6-11
Blobspaces

inconsistent replicated data 4-10
replicating 4-10
storing simple large objects 4-8

Blocking
replication 6-18

Buffers
tables, columns G-18
transaction, spooling to disk 6-10, 12-14

BYTE data
ATS files 12-11
distributing 4-8
loading with deluxe mode 6-25
storing in tblspaces 4-9

C
Canonical format 8-12, A-77
Capacity planning

for delete tables 6-9
primary-target 5-4
spooling directories 6-14
update-anywhere 5-5

Capture mechanisms
log-based data capture 1-4
trigger-based data capture 1-4
trigger-based transaction capture 1-4

Cascading deletes
considerations 4-3

Case insensitive databases 4-5
cdr

command-line utility A-1
cdr -V A-208
cdr add onconfig 11-2, A-29
cdr alter 11-28, A-30
cdr autoconfig serv

examples A-31
syntax A-31

cdr change grid A-35
cdr change gridtable 9-21, A-36
cdr change onconfig 11-2, A-38
cdr change replicate

adding and deleting participants 11-6
examples A-39
syntax A-39

cdr change replicateset
adding 11-11
adding or deleting replicates A-42
examples A-42

cdr change replicateset. A-42
cdr change shardCollection A-44
cdr check queue A-47
cdr check replicate 11-17, A-50
cdr check replicateset 11-17, A-61
cdr check sec2er A-69
cdr cleanstart A-71
cdr connect server 11-14, A-72
cdr define grid A-73
cdr define qod A-74
cdr define region A-76
cdr define replicate 8-8, 11-29

defining participants 8-7
examples A-77
syntax A-77

cdr define replicateset
abbreviation A-1
creating replicate sets 8-18
examples A-87
syntax A-87

cdr define replicateset. A-87
cdr define server

defining replication servers 8-1
examples A-90
options A-90
syntax A-90

cdr define shardCollection A-93
cdr define template 1-7, 8-21

syntax A-98
cdr delete grid A-103
cdr delete region 9-19, A-76, A-104
cdr delete replicate

deleting a replicate from the global catalog 11-10
examples A-105
syntax A-105

cdr delete replicateset
deleting a replicate set 11-13
examples A-106

cdr delete server
deleting a replication server 11-5
examples A-108
syntax A-108

cdr delete shardCollection A-111
cdr delete template 1-7, 8-21, 8-23, 11-13

syntax A-112
cdr disable grid A-112
cdr disable server A-114
cdr disconnect server

dropping Enterprise Replication network connection 11-14
examples A-116
syntax A-116

cdr enable grid A-117
cdr enable server A-118
cdr error

examples A-119
options A-119
syntax A-119

cdr finderr A-8, A-121
cdr list grid A-122
cdr list replicate

syntax A-125
viewing properties of replicate 11-7

cdr list replicateset
examples A-130
syntax A-130
viewing properties of replicate set 11-11

Index X-3

cdr list server
CONNECTION CHANGED column A-132
description of output A-132
determining current state of server 11-1
examples A-132
ID column A-132
QUEUE column A-132
SERVER column A-132
STATE column A-132
STATUS column A-132
syntax A-132
viewing network connection status 11-13

cdr list shardCollection A-135
cdr list template 1-7, 8-21, 11-13

syntax A-137
cdr modify grid

examples A-139
options A-139
restrictions A-139
syntax A-139

cdr modify replicate
changing attributes of a replicate 11-6
examples A-140
options A-140
restrictions A-140
syntax A-140

cdr modify replicateset
changing replication frequency 11-11
examples A-145
syntax A-145

cdr modify server
--mode option A-146
changing attributes of server 11-1
examples A-146
options A-146
syntax A-146

cdr realize template 1-7, 8-21
options A-148
syntax A-148

CDR record type 8-11
cdr remaster 11-29

option A-153
syntax A-153

cdr remaster gridtable A-156
cdr remaster replicateset

syntax A-157
cdr remove onconfig 11-2, A-159
cdr repair 11-22, A-160

options A-160
cdr reset qod A-162
cdr resume replicate

examples A-164
resuming a suspended replicate to active 11-9
syntax A-164

cdr resume replicateset 11-12, A-166
cdr resume server 11-5, A-167
cdr start

examples A-168
restarting on a stopped server 11-4
syntax A-168

cdr start qod A-169
cdr start replicate 6-26, 8-20

changing replicate state to active 11-8
options A-170
syntax A-170

cdr start replicateset 8-20

cdr start replicateset (continued)
changing state of all replicates in a replicate set to

active 11-11
options A-173
syntax A-173

cdr start sec2er A-176
cdr stats check A-182
cdr stats recv

syntax A-181
cdr stats rqm A-178

options A-178
cdr stats sync A-185
cdr stop

examples A-189
stopping capture of data 11-3
syntax A-189

cdr stop qod A-190
cdr stop replicate

examples A-191
stopping a replicate 11-8
syntax A-191

cdr stop replicateset
examples A-193
stopping replicates in a replicate set 11-12
syntax A-193

cdr suspend replicate
examples A-194
halting processing for a replicate 11-9
syntax A-194

cdr suspend replicateset
examples A-196
suspending replicates in a replicate set 11-12
syntax A-196

cdr suspend server
examples A-167, A-197
suspending replication of data to the server 11-4
syntax A-197

cdr swap shadow 8-9, 11-29, A-198
cdr sync replicate 11-15, A-200
cdr sync replicateset 11-15, A-204
cdr view A-209

monitoring 12-1
CDR_ALARMS environment variable B-20
CDR_APPLY configuration parameter B-1
CDR_ATSRISNAME_DELIM environment variable B-20
CDR_AUTO_DISCOVER configuration parameter B-1
CDR_DBSPACE configuration parameter 6-15, B-2
CDR_DELAY_PURGE_DTC configuration parameter B-3
CDR_DISABLE_SPOOL environment variable B-21
CDR_DSLOCKWAIT configuration parameter B-4
CDR_ENV configuration parameter B-4
CDR_EVALTHREADS configuration parameter B-5
CDR_LOG_LAG_ACTION configuration parameter 6-15, B-6
CDR_LOG_STAGING_MAXSIZE configuration

parameter 6-15, B-9
CDR_LOGDELTA environment variable B-21
CDR_MAX_DYNAMIC_LOGS configuration parameter 6-15,

B-10
CDR_MAX_FLUSH_SIZE configuration parameter 6-15, B-11
CDR_MEM configuration parameter B-11
CDR_NIFCOMPRESS configuration parameter B-12
CDR_PERFLOG environment variable B-21
CDR_QDATA_SBSPACE configuration parameter 6-11, 6-15,

8-1, B-13
CDR_QUEUEMEM configuration parameter 6-10, 6-15, B-14
CDR_RMSCALEFACT environment variable B-22
CDR_ROUTER environment variable B-22

X-4 IBM Informix Enterprise Replication Guide

CDR_SERIAL configuration parameter 6-15, B-15
CDR_SUPPRESS_ATSRISWARN configuration

parameter B-16
CDR_TSINSTANCEID configuration parameter 6-15, B-16
cdrerr.h file A-121
cdrserver shadow column 4-2, 6-9, 6-18

behavior with BEGIN WORK WITHOUT
REPLICATION 6-18

cdrserver 4-9
CDRSITES_10X environment variable B-23
CDRSITES_731 environment variable B-24
CDRSITES_92X environment variable B-24
cdrtime shadow column 4-2, 6-9, 6-18

behavior with BEGIN WORK WITHOUT
REPLICATION 6-18

Enterprise Replication recording value of 4-9
Changing

column information
in ATS files 12-11

columns, replicating 8-11
checksum function 11-21

rules for writing 11-21
Child database server 5-16
Choosing a replication network topology 5-16
Chunks

adding to
storage spaces 12-17

Classic replicates 8-8
CLOB type

ATS files 12-11
spooled row data 6-11

Clock synchronization 6-17
Cloning a replication server 9-8
CLU 1-6
Codeset conversion files 3-5
Cold restores 3-2
Collision

defined 2-7
example 2-7

Columns
dropping 11-26
in transaction tables G-18
replicating changed only 8-11
replication key 8-11
shadow 4-2, 6-9
virtual 4-10

Command-line utility 1-6, A-1
--connect option 8-1
administering Enterprise Replication 1-6
cdr A-1
commands 1-6
syntax, interpreting A-1
terminology A-1

Commands
net time 6-17
onspaces 6-11, 12-17
onstat -g ath E-1
onstat -g cat E-2
onstat -g cdr E-4
onstat -g cdr config E-4
onstat -g ddr E-6
onstat -g dss E-7
onstat -g dtc E-8
onstat -g grp E-9
onstat -g nif E-13
onstat -g que E-14
onstat -g rcv E-15

Commands (continued)
onstat -g rep E-17
onstat -g rqm E-18
onstat utility 12-16, E-1, E-18
rdate 6-17
synchronizing clocks 6-17

Commands for Enterprise Replication A-29
abbreviations A-1
cdr -V A-208
cdr add onconfig 11-2
cdr alter A-30
cdr autoconfig serv A-31
cdr change config 11-2
cdr change grid A-35
cdr change gridtable 9-21, A-36
cdr change onconfig A-38
cdr change replicate 11-6, A-39
cdr change replicateset 11-11, A-42
cdr change shardCollection A-44
cdr check queue A-47
cdr check replicate A-50
cdr check replicateset A-61
cdr check sec2er A-69
cdr cleanstart A-71
cdr connect server 11-14, A-72
cdr define grid A-73
cdr define qod A-74
cdr define region A-76
cdr define replicate 8-7, A-77
cdr define replicateset 8-18, A-87
cdr define replicateset. A-87
cdr define server 8-1, A-90
cdr define shardCollection A-93
cdr define template A-98
cdr delete grid A-103
cdr delete region 9-19, A-76, A-104
cdr delete replicate 11-10, A-105
cdr delete replicateset 11-13, A-106
cdr delete server 11-5, A-108
cdr delete shardCollection A-111
cdr delete template A-112
cdr disable grid A-112
cdr disable server A-114
cdr disconnect server 11-14, A-116
cdr enable grid A-117
cdr enable server A-118
cdr error A-119
cdr finderr A-8, A-121
cdr list grid A-122
cdr list replicate 11-7, A-125
cdr list replicateset 11-11, A-130
cdr list server 11-1, 11-13, A-132
cdr list shardCollection A-135
cdr list template A-137
cdr modify grid A-139
cdr modify replicate 11-6, A-140
cdr modify replicateset 11-11, A-145
cdr modify server 11-1, A-146
cdr realize template A-148
cdr remaster A-153
cdr remaster gridtable A-156
cdr remaster replicateset A-157
cdr remove onconfig 11-2, A-159
cdr repair A-160
cdr reset qod A-162
cdr resume replicate 11-9, A-164
cdr resume replicateset 11-12, A-166

Index X-5

Commands for Enterprise Replication (continued)
cdr resume server 11-5, A-167
cdr start 11-4, A-168
cdr start qod A-169
cdr start replicate 11-8, A-170
cdr start replicateset 11-11, A-173
cdr start sec2er A-176
cdr stats check A-182
cdr stats recv A-181
cdr stats rqm A-178
cdr stats sync A-185
cdr stop 11-3, A-189
cdr stop qod A-190
cdr stop replicate 11-8, A-191
cdr stop replicateset 11-12, A-193
cdr suspend replicate 11-9, A-194
cdr suspend replicateset 11-12, A-196
cdr suspend server 11-4, A-197
cdr swap shadow A-198
cdr sync replicate A-200
cdr sync replicateset A-204
cdr view A-209
error return codes A-8
oninit 8-1
onmode 8-1
onstat utility 12-1
starts 8-1

Communications support module
not allowed with ER 6-6

compare support function 4-10
compliance with standards xxi
Compression and replication 3-2
Configuration

problems, solving 12-17
Configuration parameters

CDR_AUTO_DISCOVER B-1
CDR_MEM B-11
viewing Enterprise Replication settings E-4

Configuring
ATS and RIS files 8-11
logical logs files, for Enterprise Replication 6-8

Conflict resolution
and table hierarchies 4-6
cdrserver 4-9
cdrtime 4-9
considerations for SPL routine 5-9
defined 5-6
delete tables 5-8, 5-13, 6-9
delete wins 4-9
large objects 5-11
preparing tables for 6-19
rules 5-6, 5-15

always apply 5-14
always-apply 8-10
changing 11-6
delete wins 5-13, 8-10
ignore 5-7, 8-10
replicating only changed columns 8-11
specifying 8-10
SPL routines 5-9, 8-10
time stamp 5-8, 8-10
time synchronization 5-8, 5-13
valid combinations 5-6

scope 5-15
changing 11-6
options A-77
row 8-10

Conflict resolution (continued)
scope (continued)

specifying 8-10
transaction 8-10

shadow columns 4-9
simple large objects 4-9
specifying options A-77
support for UDRs 5-9
time stamp 4-9
timestamp 6-17
triggers 4-4
update-anywhere 5-5

Conflicts, and asynchronous propagation 3-1
Connecting to a database server A-72
CONNECTION CHANGED column, cdr list server

output A-132
Connection Manager

Enterprise Replication 9-19, 11-10
Connection status, replication servers A-132
Considerations

distributed transactions 3-2
large transactions 3-2
memory use E-1
primary-target replication systems 5-4
replicating

changed columns only 8-11
extensible data types 4-10

replication
volume 3-2

SPL routines for conflict resolution 5-9
transaction processing 3-2

Consistency
ensuring 6-17

Consistency checking 11-17
custom checksum function 11-21
improving performance 11-19
preparing tables for 6-20

Consistency report 11-17
Consolidation replication. 5-1
Constraints 4-4, 8-11, 8-20
Conventions

ATS files 12-5
command-line utility A-1

CRCOLS shadow columns 4-2, 6-9
CREATE TABLE statement 6-19, 6-20
Creating

databases with unbuffered logging 4-1
replicate sets 8-18
row data sbspace 6-11

Creating templates 1-7, 8-21
Cross-replication, between simple large objects and smart large

objects 4-10
Customizing

replicate sets 8-19
replicates 8-7
replication server definition 8-6

D
Data

applying 2-7
capture types 1-4
distributing 2-7
inconsistent 4-10
integrity 8-8
loading 6-24
maintaining consistency 1-5

X-6 IBM Informix Enterprise Replication Guide

Data (continued)
preparing 6-17, 6-18
repair 11-14
synchronization 11-14
unloading 6-24

Data delivery
suspending

for replicate sets A-196
for replicates A-194
for replication servers A-197

Data dissemination model, defined 5-1
Data propagation, considerations for asynchronous 3-1
Data replication

asynchronous, defined 1-3
capture mechanisms

log-based data capture 1-4
trigger-based data capture 1-4
trigger-based transaction capture 1-4

synchronous, defined 1-3
Data sync row-specific errors I-1
Data sync threads

setting CDR_APPLY B-1
Data types

BIGSERIAL 4-7
built-in 1-6
extensible 4-10
FLOAT 8-12
floating-point 4-6
SERIAL 4-7
SERIAL and SERIAL8 4-6
SERIAL8 4-7
SMALLFLOAT 8-12
supported 4-6
user-defined 1-6
user-defined. 4-10

Data-consolidation model, defined 5-2
Database server groups 6-3

HDR, defining for 7-3
SQLHOSTS file 6-3
usage 8-1
Windows 6-3

Database servers
aliases 6-3
connecting to A-72
declaring for Enterprise Replication 8-1
disconnecting from A-116
listing A-132
preparing environment 6-15
removing from Enterprise Replication A-108
specifying type 8-6
starting 8-1

Databases
creating

with unbuffered logging 4-1
designing, considerations 4-1
locking 3-3
logging 6-22
triggers, changing 11-6
unbuffered logging 4-1

DB-Access
dbaccess command 6-18
utility

BEGIN WORK WITHOUT REPLICATION 6-18
dbexport utility 6-25
dbimport utility 6-25
DBSERVERALIASES configuration parameter 6-15, B-1
DBSERVERNAME configuration parameter 6-15, B-1

dbspaces
delete table storage 6-9
increasing size 12-17
monitoring disk usage 12-16
spooled transaction records 6-10

Deadlock situation, defined 5-7
Decision support systems

data consolidation business model 5-2
Declaring database server for Enterprise Replication 8-1
Defaults

behavior of Enterprise Replication 8-11
spooling directories 6-14

Deferred DDL propagation across a grid C-11, C-12
Defining

participants 8-7
replicates 8-7, 8-13
replication servers 8-1
shadow columns 6-19, 6-20

Defining a grid table 9-21
Definition Failed state A-125
Delete tables

capacity planning 6-9
defined 2-7, 6-9
delete wins conflict resolution rule 6-9
disk space 6-9
in conflict resolution 5-8, 5-9, 5-13
retaining with CDR_DELAY_PURGE_DTC B-3
storage 6-9
time stamp conflict resolution rule 6-9

Delete wins conflict resolution rule 5-6, 8-10
defined 5-13
delete table 6-9
large objects 4-9

Deleted state, server A-132
Deletes, cascading. 4-3
Deleting

Enterprise Replication objects 3-1
replicates from global catalog 11-10
replication servers 11-5
templates 1-7, 8-21

Deluxe mode
without replication 6-25

Deployment 1-7, 8-21
Derived replicate set 11-25
Derived replicate sets A-87

remastering A-157
Designing databases and tables 4-1
Determining size

logical log files 6-8
spooled row data sbspace 6-11

Dictionary information 8-8
direct 11-15
Direct synchronization 11-15
Directories

INFORMIXDIR/gls/cv9 3-5
specifying

ATS location 8-6
spooling, planning for capacity 6-14

Disabilities, visual
reading syntax diagrams J-1

Disability J-1
Disconnect status, replication servers A-132
Discrepancies, between constraints 4-4, 8-20
Disk

preparing for Enterprise Replication 6-8
Disk space

delete table 6-9

Index X-7

Disk space (continued)
message queue spooling 6-10
shadow columns 6-9

Disk usage, monitoring 12-16
Distributed transactions

defined 3-2
two-phase commit 3-2

Distributing
data, process for 2-7

Distribution replication. 5-1
DNS. 6-2
Domain Name Service 6-2
Dotted decimal format of syntax diagrams J-1
DRINTERVAL configuration parameter 7-6
DROP CRCOLS statement 6-19
DROP REPLCHECK statement 6-20
DROP TABLE statement 3-3
Dropped status, replication servers A-132
Dropping

shadow columns 6-19, 6-20
DSS. 5-2
Dynamic log

setting CDR_MAX_DYNAMIC_LOGS B-10

E
Easy set up 1-7, 8-21
Empty master replicate 8-8
Enabling code set conversion 8-13
Enabling triggers 8-13
ENCRYPT_CDR configuration parameter 6-6, 6-15, B-17
ENCRYPT_CIPHERS configuration parameter 6-15
ENCRYPT_MAC configuration parameter 6-15
ENCRYPT_MACFILE configuration parameter 6-15
ENCRYPT_SWITCH configuration parameter 6-15
Encryption

configuration parameters for 6-15
enabling with ENCRYPT_CDR B-17
overview 1-7

English locale 3-5
Enterprise Replication

administering 1-6
alter operations 11-24
and cascading deletes 4-3
and triggers 4-4
batch jobs 3-2
consistency 1-5
data types 4-6
database server groups for HDR 7-3
default behavior 8-11
defined 1-1
deleting and recreating objects 3-1
displaying statistics A-178, A-181
encryption, configuring 6-15
event alarms 12-21
flexible architecture 1-6
grid 9-1, 9-6, 9-8, 9-10, 9-13, 9-14, 9-16
high availability 1-4, 1-5
mixed-version environments 3-5
performance 1-4
process for replicating data 2-1
queues G-17
role of logical log files 4-1
server

administrator 3-1
defined 1-1
definitions in global catalog 1-1

Enterprise Replication (continued)
starting A-168
stopping A-189
supported database servers 3-1
synonyms 3-1
terminology 1-1
threads

list of E-1
restarting 11-4
stopping 11-3

using Global Language Support 3-5
UTF-8 conversion examples 8-14
views 3-1

Environment
database server, preparing 6-15
network

password file testing 6-7
preparing 6-1
testing 6-6

Environment variables
CDR_ALARMS B-20
CDR_ATSRISNAME_DELIM B-20
CDR_DISABLE_SPOOL B-21
CDR_LOGDELTA B-21
CDR_PERFLOG B-21
CDR_RMSCALEFACT B-22
CDR_ROUTER B-22
CDRSITES_10X B-23
CDRSITES_731 B-24
CDRSITES_92X B-24
Event alarms

enabling B-20
INFORMIXDIR 6-15
INFORMIXSERVER 6-15, 8-1, 11-3
INFORMIXSQLHOSTS 6-15
setting 6-15
TZ A-27
viewing Enterprise Replication settings E-4

equal support function 4-10
ERKEY shadow columns 4-2, 4-3, 6-9, 6-21, A-39, A-77, A-153
Errors

data sync row-specific I-1
interpreting return codes A-121
logging

changing 11-6
setting up 8-11

message files
cdrerr.h A-121

replication server status A-132
return codes A-8
table

managing A-119
ESQL/C, BEGIN WORK WITHOUT REPLICATION 6-18
Evaluating

data
for replication 2-2

data, examples of 2-5
rows 2-2, 2-3

Evaluator threads B-5
Event alarm 12-21
Event alarms

enabling 12-40
Examples

adding replicates to replicate sets 11-11
ATS file names 12-5
BEGIN WORK WITHOUT REPLICATION 6-18

X-8 IBM Informix Enterprise Replication Guide

Examples (continued)
BYTE and TEXT data

in ATS and RIS files 12-11
cdr delete replicateset A-106
collision 2-7
DB-Access 6-18
defining replicate sets 8-19
deleting

replicates 11-10
replicates from replicate sets 11-11
replication servers 11-5

evaluating data 2-5
hierarchy H-6
participant definition 8-7
preparing data for replication 6-26
primary-target H-2
replication H-1, H-8
replication environment H-1
resuming

replicates 11-9
replication servers 11-5

RIS file names 12-5
services file 6-2
set A-173
stopping

replicates 11-8
suspending

replicates 11-9
replication 11-4

unloading shadow columns 6-24
update-anywhere H-4
updating shadow columns 6-18
using ESQL/C 6-18

Exclusive lock 3-3
Exclusive replicate sets

--exclusive option 8-18, A-87, A-98
adding replicates to 11-11
characteristics of 8-18
defined 8-18
referential constraints 8-11
resuming replicates 11-9
starting replicates 11-8
stopping replicates 11-8
suspending replicates 11-9

External files
copying to grid 9-16

F
Fail-safe replication system 5-5
Failed rows, repair jobs 4-4, 8-20
Failed transactions

and RIS files 8-11, 12-4
recorded in ATS files 8-11, 12-3

Failure of replication 1-5
Files

/etc/hosts 6-2
/etc/hosts.equiv 6-4
/etc/services 6-2
\etc\hosts 6-2
\etc\hosts.equiv 6-4
\etc\services 6-2
cdrerr.h A-121
hosts 6-2
hosts.equiv 6-4
logical-log 6-8
onconfig 4-7, 6-15

Files (continued)
services 6-2
SQLHOSTS 6-3, 6-15

firetrigger 8-13
FLOAT data type 8-12
Floating-point

data types 4-6
values, and canonical message format 8-12

Floating-point numbers
canonical format A-77
IEEE format A-77

Forbidden SQL statements 3-3
Forest of trees

combining with high-availability clusters 7-2
defined 5-18
illustrated 5-18
network topology 1-6

Fragments
attaching 11-28

Frequency
attributes

description of 8-11
defined A-27
replication, specifying 8-11

Full row replication, changing 11-6
Fully connected topology

defined 5-16
support for 1-6
using HDR with 5-16

Functions, writing for UDT replication 4-10

G
Global catalog

contents of 1-1
defined 1-1
leaf servers 1-1
synchronizing 8-6

Global Language Support (GLS)
locale of date A-27
support of 1-6
using with Enterprise Replication 3-5

GLS. 1-6
greaterthan support function 4-10
Grid 9-1

altering replicated tables 9-10
Connection Manager 9-19
copy external files 9-16
creating 9-6
DDL statements 9-13, 9-16
deleting A-103
maintaining 9-6, 9-8, 9-10
modifying A-139
roll out schema changes 9-5
setting up replication 9-11
SQL administration API commands 9-14

Grid query 9-19, 9-21, 9-22, A-36, A-76, A-104, A-156, C-2,
C-11, C-12, C-15, C-16, C-17

examples 9-22
grid tables 9-21
region A-76, A-104
remaster tables A-156
server ID C-17
server name C-17
skipped nodes C-15, C-16
tables A-36

Index X-9

Grid region 9-19, 9-21, 9-22, A-36, A-76, A-104, A-156, C-15,
C-16, C-17

Grid table 9-19, 9-21, 9-22, A-36, A-76, A-104, A-156, C-2,
C-11, C-12, C-15, C-16, C-17

Grid tables A-36
grid_execute() C-7
GRID_NODE_SKIP environment option C-15, C-16
grid.servers file 9-21
GRIDCOPY_DIR configuration parameter B-18
Grouper 11-29
Grouper evaluator threads B-5
Grouper paging file, setting up 6-14
Groups 6-3
Guidelines for configuring logical log files 6-8

H
Hardware platforms

dissimilar 8-12
heterogeneous 4-6

HDR_TXN_SCOPE configuration parameter 7-6
Heterogeneous hardware, replicating on 4-6
Hierarchical routing topologies

combing with HDR 7-2
SQLHOSTS 6-3
synchronization server 5-16, 8-6
terminology 5-16

Hierarchical tree
defined 5-17
network topology 1-6
using HDR with 5-17

Hierarchies
replicating table hierarchies 4-6
replication examples H-6

High availability
planning

primary-target 5-4
using Enterprise Replication for 1-5

High-Availability Cluster
forest of trees topology 7-2

High-availability clusters
DRINTERVAL setting 7-6
managing 7-6
performance 7-6
replication system 7-1

High-Availability Clusters
hierarchical routing topologies 7-2
oninit -D command 7-4
onmode -d standard command 7-4
primary server failure 7-4
secondary server, switching to 7-4
starting primary without ER or high availability 7-4

High-Availability Data Replication
database server groups, defining 7-3
logging sbspaces for spooled row data 6-12
managing 7-4
primary-target replication systems 7-1
replication system 7-1
update-anywhere replication 7-1
with fully connected topology 5-16
with hierarchical tree topology 5-17

High-availability data replication system 7-1
High-Performance Loader 6-25
Horizontal partitioning 10-1, 10-2, 10-5
Hosts file, preparing 6-2
hosts.equiv file 6-4
HPL. 6-25

I
ID column, cdr list server output A-132
Identifier A-3
Idle timeout

modifying 11-1
setting 8-6
specifying A-90

IEEE floating point format 8-12, A-77
ifx_erkey1 shadow column 4-2, 6-9
ifx_erkey2 shadow column 4-2, 6-9
ifx_erkey3 shadow column 4-2, 6-9
ifx_get_erstate() C-1, D-1
ifx_grid_connect() C-2, C-11, C-12
ifx_grid_copy procedure

specifying the source or destination directory B-18
ifx_grid_copy() C-5
ifx_grid_disconnect() C-7
ifx_grid_function() C-8
ifx_grid_procedure() C-9
ifx_grid_purge() C-13
ifx_grid_redo() C-10
ifx_grid_release() C-11
ifx_grid_remove() C-11, C-12
ifx_gridquery_skipped_node_count() 9-19, 9-22, C-16
ifx_gridquery_skipped_nodes() 9-19, 9-22, C-15
ifx_node_id() 9-19, C-17
ifx_node_name() 9-19, C-17
ifx_replcheck shadow column 4-2, 6-9, 11-19
ifx_set_erstate() D-2
Ignore conflict resolution rule 5-6
Ignore conflict-resolution rule 5-7, 8-10

database action 5-7
In-place alters

ADD and DROP CRCOLS 6-19
ADD and DROP REPLCHECK 6-20

Inactive state A-125
defined 11-8

Inconsistent data with blobspaces or sbspaces 4-10
Increasing storage space size 12-17
industry standards xxi
Information consistency, update-anywhere 5-5
informix user 3-1
Informix-Admin group, Windows 3-1
INFORMIXDIR environment variable 6-15
INFORMIXSERVER environment variable 6-15, 8-1, 11-3
INFORMIXSQLHOSTS environment variable 6-15
Initial synchronization 1-5, 4-4, 8-20
Installing

UDTs 4-10
Instantiating templates 1-7, 8-21
Integrity, data 8-8
Interval formats A-27
Invalid sbspace 8-1
IP address

specifying in hosts file 6-2

K
Keys

primary
and SERIAL data types 4-7

replication 4-3
and UDT columns 4-10

X-10 IBM Informix Enterprise Replication Guide

L
large objects

SPL conflict resolution 5-11
Large objects

controlling replication 8-17
Large transactions

grouper paging file 6-14
Large transactions, considerations for Enterprise

Replication 3-2
Leaf servers

defined 5-16
global catalog 1-1
limited catalog 1-1
specifying 8-6

lessthan support function 4-10
Limitations, SPL conflict resolution 5-9
LOAD statement 6-24, 6-25, 6-26
Loading data

ER servers 6-24
Local status, replication servers A-132
Locales

different 3-5
Enterprise Replication 3-5
specifying nondefault 3-5

Locking databases 3-3
Locks, exclusive. 3-3
Log wrap

CDR_LOG_LAG_ACTION configuration parameter B-6
Log-based data capture 1-4
Logging

aborted transactions 12-3
databases, preparing 6-22
errors 8-11
unbuffered 4-1, 6-22

LOGGING configuration parameter 6-11
Logging mode, for spooled row data sbspaces 6-12
Logical log

files 6-8
and maximum transaction size 6-8
bitmap information about updated columns 8-11
capacity planning 6-8
configuration guidelines 6-8
determining size 6-8
disk space, error 12-17
increasing size 12-14
reading of 2-2
role in Enterprise Replication 4-1
size 6-8
switching 6-8

Logical Log Record reduction option, and Enterprise
Replication 6-8

Long identifiers A-3
LTXEHWM configuration parameter 6-8, E-6
LTXHWM configuration parameter 6-8, E-6

M
Machine-independent format 8-12, A-77
Maintaining consistency 1-5
Managing

replicate sets 11-10
replicates 11-6, 11-10

Manual remastering 8-9, 11-29
Manual repair 11-23
Many-to-one replication 5-1
Master replicates 8-8, 11-29

Master replicates (continued)
defined 1-1
strict 8-9

Maximum transaction size, and logical log files 6-8
Memory queues

preventing overflows 12-14
Memory use considerations E-1
Message formats

canonical 8-12
IEEE 8-12

Message queues
CDR_QUEUEMEM configuration parameter 6-10
defined 6-10
planning disk space 6-10

Mixed version environments 3-5
mode option, cdr modify server A-146
Modifying

replicate sets 11-10
templates 8-23

Monitoring
dbspaces, onstat command 12-16
disk usage 12-16
sbspaces 12-16

oncheck command 12-16
onstat command 12-16

Monitoring replication 12-1
Multiple references to a smart large object 4-10
Multiple updates to the same row 2-3

N
net time command, synchronizing clocks 6-17
Network connections

dropping 11-14
encryption, setting up for 6-6
managing 11-13, 11-14
reestablishing 11-14
troubleshooting 12-14
viewing status 11-13

Network environment
password file testing 6-7
testing 6-6

Network topologies
choosing 5-16
forest of trees 1-6
fully connected 1-6
hierarchical tree 1-6

New table, bringing up-to-date 1-5
NLSCASE database property 4-5
Non-exclusive replicate sets

adding replicates 11-11
characteristics 8-19
defined 8-19
Examples

non-exclusive replicate sets 8-19
Non-exclusive replicate sets

example 8-19
Nonoptimized SPL routine 5-9
Nonroot servers

defined 5-16
global catalog 1-1
specifying type 8-6

Index X-11

O
OAT

DBINFO
monitoring replication 12-1

monitoring replication 12-1
OLTP

data dissemination business model 5-1
oncheck command, monitoring sbspaces 12-16
onconfig configuration file

configuring encryption 6-15
setting

parameters 4-7, 6-15
ONCONFIG configuration file

configuration parameters B-1
One-to-many replication 5-1
oninit -D command 7-4
oninit command

starting database servers 8-1
Online transaction processing. 5-1
onload utility 6-25
onmode -d standard command 7-4
onmode command 8-1
onspaces command

adding chunks 12-17
creating

row data sbspace 6-11
onstat command E-1, E-18

Enterprise Replication options 12-1
onstat utility

-g ath command E-1
-g cat command E-2
-g cdr command E-4
-g cdr config command E-4
-g ddr command E-6
-g dss command E-7
-g dtc command E-8
-g grp command E-9
-g nif command E-13
-g que command E-14
-g rcv command E-15
-g rep command E-17
-g rqm command E-18
-g sync command E-21
monitoring

dbspaces 12-16
sbspaces 12-16

onunload utility 6-24, 6-25
Operating system

synchronizing time 6-17
Optimized SPL routine, defined 5-9
Options for Enterprise Replication 8-13

--ackq A-178
--add 11-6, 11-11, A-39, A-42
--all A-98, A-119
--applyasowner 8-22, A-148
--at 8-11, A-27
--ats 8-6, 8-11, 12-4, A-90, A-140, A-146
--autocreate 8-22, A-39, A-148
--check A-160
--cntrlq A-178
--conflict 8-10
--connect 8-1, A-4
--database A-98
--dbspace 8-22, A-148
--delete 11-11, A-39, A-42
--empty 8-8
--every 8-11, A-27

Options for Enterprise Replication (continued)
--exclusive 8-18, A-87, A-98
--extratargetrows 8-20, A-50, A-61, A-148, A-170, A-173,

A-200, A-204
--file 8-21, A-98
--firetrigger

using with cdr check replicate A-50
using with cdr check replicateset A-61
using with cdr modify replicate A-140
using with cdr sync replicate A-200
using with cdr sync replicateset A-204

--floatcanon 8-12
--follow A-119
--force A-108
--fullrow 8-11, A-140
--idle 8-6, A-90, A-146
--ignoredel A-140
--immed 8-11, A-27
--init 8-1, A-90
--leaf 8-6, A-90
--master 8-8, A-98
--mirrors 8-9
--mode 8-22, A-146, A-148
--name 8-8, A-140
--nomark A-119
--nonroot 8-6, A-90
--off A-30
--on A-30
--optimize 8-10
--primaryid A-198
--primaryname A-198
--prune A-119
--quiet A-160
--recvq A-178
--ris 8-11, 12-4, A-90, A-140, A-146
--scope 8-10
--sendq A-178
--seq A-119
--shadowid A-198
--shadowname A-198
--sync 8-6, A-31, A-90
--syncdatasource 8-20, 8-22, A-148, A-170, A-173
--UTF8 A-77, A-140

enabling 8-13
--verbose A-160
--verify 8-22, A-39, A-148
--zap A-119
-–repair A-50, A-61
-–repl A-50
-–replset A-61
-–verbose A-50, A-61
—all A-50, A-61, A-200
—check A-209
—delete A-209
—help A-209
—master A-50, A-61, A-200
—quiet A-209
—repair A-209
—repeast A-209
—repl A-200
—verbose A-209
abbreviations A-2
conflict resolution A-77
frequency A-27
order A-3
primary A-5
receive-only A-5

X-12 IBM Informix Enterprise Replication Guide

Options for Enterprise Replication (continued)
scope A-77
send-only A-5

Out-of-row data, sharing during replication 4-10
Overflowing memory queues, preventing 12-14
Owner, table 8-22

P
Parameters, configuration

AVG_LO_SIZE 6-11
CDR_APPLY B-1
CDR_DBSPACE 6-15, B-2
CDR_DELAY_PURGE_DTC B-3
CDR_DSLOCKWAIT B-4
CDR_ENV B-4
CDR_EVALTHREADS B-5
CDR_LOG_LAG_ACTION 6-15, B-6
CDR_LOG_STAGING_MAXSIZE 6-15, B-9
CDR_MAX_DYNAMIC_LOGS 6-15, B-10
CDR_MAX_FLUSH_SIZE 6-15, B-11
CDR_NIFCOMPRESS B-12
CDR_QDATA_SBSPACE 6-11, 6-15, 8-1, B-13
CDR_QUEUEMEM 6-10, 6-15, B-14
CDR_SERIAL 6-15, B-15
CDR_SUPPRESS_ATSRISWARN B-16
CDR_TSINSTANCEID 6-15, B-16
configuration B-1
DBSERVERALIASES 6-15, B-1
DBSERVERNAME 6-15, B-1
ENCRYPT_CDR B-17
Enterprise Replication, dynamically changing 11-2
GRIDCOPY_DIR B-18
LOGGING 6-11
LTXEHWM 6-8, E-6
LTXHWM 6-8, E-6
Parameters, configuration

CDR_SUPPRESS_ATSRISWARN B-16
setting in onconfig file 4-7, 6-15
SHARD_ID B-18
SHARD_MEM B-19

Parent database server 5-16
Parent-child

defined 5-16
Participant definition

contents 8-7
example 8-7

Participant modifiers
defined A-5
restrictions 4-10

Participant type
changing 11-6
Primary 8-7
receive-only 8-7
send-only 8-7
Target 8-7

Participants
adding to replicates 6-26, 11-6
changing mode A-140
data consolidation 8-7
defined 1-1, 8-1, A-5
defining 8-7, A-5
deleting from replicates 11-6
new 1-5, 8-20
primary option A-5
receive-only option A-5
removing from replicates A-39

Participants (continued)
send-only option A-5
specifying type A-5
update-anywhere 8-7

Pathname
ATS and RIS directories 6-14
sbspaces 6-11

Pending state, defined A-125
Performance

Enterprise Replication 1-4
Permitted SQL statements 3-3
Port numbers

services file 6-2
Preparing

consistent data 6-18
data for replication

defined 6-17
example 6-26

database server environment 6-15
disk

Enterprise Replication 6-8
hosts file 6-2
logging databases 6-22
network environment 6-1
Network environment

preparing 6-1
services file 6-2
tables for conflict resolution 6-19
UDR replication 6-19
UDT replication 6-19

Preventing
memory queues from overflowing 12-14

Primary
option A-5
participant type 8-7

Primary conflict resolution rule 5-6
Primary conflict-resolution rule 5-7
Primary key 4-3

SERIAL data types 4-7
Primary-target

example H-2
replication systems 5-4

combining with HDR 7-1
considerations 5-4
defined 5-1

Problems
solving configuration 12-17

Properties
replicate sets 11-11

Q
QUEUE column

cdr list server output A-132
Queues. 12-14
Quiescent state A-125, A-132

R
RAW table

unsupported 4-1
rdate command, synchronizing clocks 6-17
Realizing templates 1-7, 8-21
Receive queues 12-14

defined 2-4, 6-10

Index X-13

Receive-only
option A-5
participant type. 8-7

Receive-only servers 8-22, A-148
Recording failed transactions, in ATS files 12-4
Recreating

Enterprise Replication objects 3-1
replicates 11-10

Referential constraint 8-18
time-based replication 8-11

Referential integrity 4-4, 8-20
replicate sets 8-18

Registering
UDTs 4-10

Reliable Queue Manager 6-10
Remastering replicates 11-29
Remastering, manual 8-9
Repair jobs 1-5, 8-20
Repairing data 11-14

ATS, RIS files 11-22
manually 11-23
using consistency checking 11-17

Repairing inconsistencies
time stamp 11-20

replace me option
cdr autoconfig serv A-31

REPLCHECK shadow column 4-2, 6-9
replcheck_stat table F-1
replcheck_stat_node table F-2
Replicate

creating through a grid 9-11
Replicate definitions 8-8
Replicate information

storage 6-10
Replicate set

altering multiple tables 11-25
Connection Manager 11-10

Replicate sets
adding and deleting replicates 11-11
changing replication frequency 11-11
changing state A-166
creating 8-18
customizing 8-19
defined 1-1
defining A-87
deleting 11-13, A-106
examples A-173
exclusive 8-18
frequency 8-19
listing A-130
managing 11-10, 11-13
modifying 11-10, 11-11, A-145
non-exclusive 8-19
recreating 11-13
referential constraints 8-11
resuming 11-12, A-166
starting 11-11, A-173
stopping 11-12, A-193
supported versions A-87
suspending 11-12, A-196
viewing properties 11-11

Replicated table
dropping columns 11-26

Replicates
activating

ATS A-77
RIS A-77

Replicates (continued)
active state 11-8
adding

participants A-39
replicate sets 11-11

adding to replicate sets A-42
cdr list replicate

brief A-125
examples A-125

CONFLICT field
cdr list replicate output A-125

conflict options A-77
customizing 8-7
defined 1-1, 8-1
defining 8-7, 8-13, A-77
deleting

global catalog 11-10
participants A-39
replicate sets 11-11

deleting from replicate sets A-42
deleting from the global catalog A-105
displaying information about A-125
FREQUENCY field, cdr list replicate output A-125
Ignore conflict-resolution rule A-125
Immediate frequency A-125
inactive state 11-8
listing A-125
managing 11-6, 11-10
modifying 11-6, A-140
Procedure conflict-resolution rule A-125
recreating 11-10
Replicates

CONFLICT field A-125
FREQUENCY field A-125

resuming 11-9, A-164
exclusive replicate sets 11-9

starting 11-8, A-170
exclusive replicate sets 11-8

STATE field A-125
stopping 11-8, A-191

exclusive replicate sets 11-8
suspending 11-9, A-194

exclusive replicate sets 11-9
Timestamp conflict resolution rule A-125
viewing properties 11-7

Replicating
changed columns only 8-11
extensible data types

considerations 4-10
floating-point values 8-12
multiple references to a smart large object 4-10
simple large objects 4-8, 4-10
smart large objects 4-8, 4-10
table hierarchies 4-6
UDTs 4-10

Replicating data
capturing transactions 2-2
evaluating

row images 2-2
process 2-1

Replicating only changed columns, advantages 8-11
Replicating time series data 4-7
Replication

altering tables 9-10
blocking 6-18
choosing network topology 5-16
examples H-1, H-8

X-14 IBM Informix Enterprise Replication Guide

Replication (continued)
frequency

changing 11-6, 11-11
replicate sets 8-19
specifying 8-11

models
primary-target 1-3
update-anywhere 1-3

order error, defined 2-7
restarting 11-4
setting up through a grid 9-11
stopping 11-3
suspending 11-4
tree, illustrated 5-17
volume 3-2

Replication failure 1-5
Replication key 4-3, 6-21

changing 11-7
defined 1-1
replicating changed columns 8-11
UDT columns 4-10
updates 2-3

REPLICATION privilege group 3-1
Replication servers

connecting 11-3
customizing 8-6
defined 1-1
defining 8-1, A-31, A-90
deleting 11-5, A-108
listing A-132
managing 11-1
modifying 11-1, 11-2, 11-6, A-146
resuming 11-5
resynchronizing 11-23
state, defined 11-1
suspending A-197
synchronizing 8-6
troubleshooting 12-14
viewing attributes 11-3

Replication systems
high-availability 7-1
primary-target 5-1, 5-4
supported by Enterprise Replication 5-1
update-anywhere 5-5

Replication topologies
forest of trees 5-18
fully-connected 5-16
hierarchical tree 5-17
terminology 5-16

Requirements
disk space

delete tables 6-9
message queue spooling 6-10

shadow column storage 6-9
Restores

cold 3-2
warm 3-2

Restoring databases 3-2
Resuming

replicate sets 11-12
suspended

replicates 11-9
replication servers 11-5

Resynchronizing replication servers 11-23
Return codes

defined A-8

RIS files
activating A-77, A-90
capacity planning 6-14
configuring 8-11
defined 12-3
disabling generation 12-13
file names, defined 12-5
modifying directory 11-1
preparing to use 12-4
repair using 11-22
specifying directory A-90, A-146, A-160

role separation
preparing for replication 6-22

Root servers
defined 5-16
global catalog 1-1

Routines
application-specific 5-9

Routines for Enterprise Replication
grid_execute() C-7
ifx_get_erstate() C-1, D-1
ifx_grid_connect() C-2, C-11, C-12
ifx_grid_copy() C-5
ifx_grid_disconnect() C-7
ifx_grid_function() C-8
ifx_grid_procedure() C-9
ifx_grid_purge() C-13
ifx_grid_redo() C-10
ifx_grid_release() C-2, C-11
ifx_grid_remove() C-2, C-11, C-12
ifx_gridquery_skipped_node_count() 9-19, 9-22, C-16
ifx_gridquery_skipped_nodes() 9-19, 9-22, C-15
ifx_node_id() 9-19, C-17
ifx_node_name() 9-19, C-17
ifx_set_erstate() D-2

Row conflict resolution scope 5-8, 5-13, 5-15, 8-10, 12-3
Row data

creating sbspace 6-11
storage 6-10

Row Information Spooling. 5-7, 12-3
Rows

replicating entire 8-11
RQM. 6-10
RRD label, ATS files 12-11
RRH label, ATS files 12-11
RRS label, ATS files 12-11
Rules 8-10

conflict resolution 5-6
extensible data types 4-10
large objects 5-11

delete wins 5-13
time stamp 5-8

S
s=6 SQLHOSTS option 9-21
sbspaces 4-8

grouper paging file 6-14
guidelines for spooled data 6-11
inconsistent replicated data 4-10
increasing sizes 12-17
invalid 8-1
monitoring disk usage 12-16
pathname limitations 6-11
row data 6-11, 6-13
spooled row data 6-10, 6-11

SBSPACETEMP configuration parameter 6-14

Index X-15

Scope 5-15, 8-10
--scope option 8-10
defined 5-15
options A-77
row 5-8, 5-13
transaction 5-8, 5-13

Screen reader
reading syntax diagrams J-1

Secondary conflict resolution rule 5-6
Secure connection 9-21
Security 1-7
SELECT statements

shadow columns 6-24
SELECT_GRID environment option 9-19
SELECT_GRID_ALL environment option 9-19, 9-22
Send queues 12-14

defined 2-4, 6-10
Send-only

option A-5
Send-only servers 8-22, A-148
Sequence objects 4-5
SERIAL data type 4-6, 4-7
SERIAL8 data type 4-6, 4-7
Server 6-15
Server administrator, Enterprise Replication 3-1
SERVER column, cdr list server output A-132
Server connections, stopping A-116
Server definitions, global catalog 1-1
Server groups 6-3
Server state, global catalog 1-1
services file

example 6-2
preparing 6-2

set
examples A-173

Setting
AVG_LO_SIZE configuration parameter 6-11
CDR_QDATA_SBSPACE configuration parameter 6-11
environment variables 6-15
idle timeout 8-6
LOGGING parameter 6-11

Setting up
easy 1-7, 8-21
error logging 8-11

Shadow columns
ADD CRCOLS 6-19
ADD REPLCHECK 6-20
ATS files 12-11
behavior with BEGIN WORK WITHOUT

REPLICATION 6-18
cdrserver 4-2, 4-9, 6-9
cdrtime 4-2, 4-9, 6-9
creating 12-17
defined 6-19
dropping 6-19, 6-20
High-Performance Loader 6-25
ifx_erkey1 4-2, 6-9
ifx_erkey2 4-2, 6-9
ifx_erkey3 4-2, 6-9
ifx_replcheck 4-2, 6-9, 11-19
loading and unloading data 6-24
storage requirements 6-9
UNLOAD statement 6-25
updating with DB-Access 6-18
WITH CRCOLS statement 6-19
WITH REPLCHECK statement 6-20

Shadow replicates 8-9, 11-24, A-77, A-153

Shadow replicates (continued)
defined 1-1

shard clusters 10-1
defining 10-1
definition 10-2

Shard clusters 10-1, 10-5
Shard servers 10-1, 10-5
SHARD_ID configuration parameter 10-1, B-18
SHARD_MEM configuration parameter B-19
Sharded queries 10-3
sharding

definitions 10-2
JSON 10-1
setting up 10-1

Sharding 10-5, A-135
Shortcut keys

keyboard J-1
Simple large objects

conflict resolution 4-9
cross-replication 4-10
delete wins conflict resolution 4-9
replicating 4-8, 4-10

from blobspaces 4-10
from tblspaces 4-9

storing
blobspaces 4-8
tblspaces 4-8

time stamp conflict resolution 4-9
Size

storage spaces 12-17
SMALLFLOAT data type 8-12
Smart blobs. 4-8
Smart large objects

ATS files 12-11
cross replication 4-10
delete wins conflict resolution 4-9
multiple references 4-10
replicating 4-8, 4-10
specifying default behavior 6-11
spooled row data 6-11
storing in sbspaces 4-8
time stamp conflict resolution 4-9

SMI tables
syscdr_atsdir G-1
syscdr_ddr table G-2
syscdr_nif G-3
syscdr_rcv G-4
syscdr_ris G-5
syscdr_risdir G-6
syscdr_rqm G-6
syscdr_rqmhandle G-7
syscdr_rqmstamp G-7
syscdr_state G-8
syscdrack_buf G-8
syscdrack_txn G-9
syscdrc_ats G-1
syscdrctrl_buf G-9
syscdrctrl_txn G-9
syscdrerror G-9, G-16
syscdrpart G-10
syscdrprog G-10
syscdrq G-11
syscdrqueued G-11
syscdrrecv_buf G-11
syscdrrecv_stats G-12
syscdrrecv_txn G-12
syscdrrepl G-12

X-16 IBM Informix Enterprise Replication Guide

SMI tables (continued)
syscdrreplset G-13
syscdrs G-14
syscdrsend_buf G-15
syscdrsend_txn G-15
syscdrserver G-15
syscdrtsapply G-16
syscdrtx G-17

Solving configuration problems 12-17
Source server, synchronization 8-20
Specifying

ATS directory A-160
conflict resolution

rules 8-10
scope 8-10

database server type 8-6
default behavior for smart large objects 6-11
location

ATS directory 8-6
replication frequency 8-11
RIS directory A-160

SPL conflict resolution
limitations 5-9
rule 5-6, 5-9, 8-10

SPL Conflict resolution
large objects 5-11

SPL routines
arguments 5-9
considerations 5-9
delete table 5-9
information passed by Enterprise Replication 5-9
limitations for conflict resolution 4-10
nonoptimized 5-9
optimized 5-9

Spooled row data sbspace
changing logging mode 6-12
dropping 6-13
guidelines for creating 6-11
logging mode 6-12

Spooled transactions
defined 6-10
storage 6-10
troubleshooting 12-14

Spooling
directories

ATS and RIS 5-7
capacity planning 6-14
default 6-14

planning for disk space 6-10
SQL administration API commands 3-1
SQL statements

forbidden 3-3
permitted 3-3
supported 3-3

SQLHOSTS H-1
specifying registry host machine 6-15

SQLHOSTS file
database server groups for HDR 7-3
format 12-17
specifying location 6-15
UNIX 6-3

Staging log files
setting CDR_LOG_LAG_ACTION B-6
setting CDR_LOG_STAGING_MAXSIZE B-9

standards xxi
Starting

replicates 11-8

starts command 8-1
STATE column, cdr list server output A-132
STATE field, cdr list replicate output A-125
Statements

ALTER TABLE 6-19, 6-20
BEGIN WORK WITHOUT REPLICATION 6-18
CREATE TABLE 6-19, 6-20
DROP CRCOLS 6-19
DROP REPLCHECK 6-20
LOAD 6-24, 6-25
RENAME COLUMN 11-28
RENAME TABLE 11-28
SELECT 6-24
SQL, supported 3-3
TRUNCATE 11-16
UNLOAD 6-25
WITH CRCOLS 6-19
WITH REPLCHECK 6-20

States
active 11-8
inactive 11-8

STATUS column, cdr list server output A-132
Stopping

replicates 11-8
Storage

delete tables 6-9
increasing size of spaces 12-17
spooled transactions 6-10

Storing
data in tblspaces 4-9

streamread support function 4-10, 6-19
streamwrite support function 4-10, 6-19
Strict master replicates 8-9
Support functions

compare 4-10
equal 4-10
greaterthan 4-10
lessthan 4-10
replicating UDTs 4-10, 6-19
streamread 4-10, 6-19
streamwrite 4-10, 6-19
writing 4-10, 6-19

Supported
data types 4-6
database servers 3-1
SQL statements 3-3
table types 4-1

Suspended state A-125, A-132
Suspending

replicate sets 11-12
replicates 11-9
replication 11-4

Swap log position 11-29
Switching logical log files 6-8
Synchronization 1-5, 8-20, 11-15

servers 5-16, 8-6
times 5-8, 5-13

Synchronizing
clocks

net time command 6-17
rdate command 6-17

data
inconsistent tables 11-14
onload and onunload utilities 6-25
using DB-Access 6-18
using ESQL/C 6-18

global catalog 8-6

Index X-17

Synchronizing (continued)
operating system times 6-17

Synchronizing data
time stamp repair 11-20

Synchronous data replication
defined 1-3
two-phase commit technology 1-3

Synonyms, and Enterprise Replication 3-1
Syntax

command-line utility A-1
participant definition A-5

Syntax diagrams
reading xxi
reading in a screen reader J-1

syscdr database 1-1
syscdr tables

replcheck_stat F-1
replcheck_stat_node F-2

syscdr_ats table G-1
syscdr_atsdir table G-1
syscdr_ddr table G-2
syscdr_nif table G-3
syscdr_rcv table G-4
syscdr_ris table G-5
syscdr_risdir table G-6
syscdr_rqm table G-6
syscdr_rqmhandle table G-7
syscdr_rqmstamp table G-7
syscdr_state table G-8
syscdrack_buf table G-8
syscdrack_txn table G-9
syscdrctrl_buf table G-9
syscdrctrl_txn table G-9
syscdrerror table G-9, G-16
syscdrlatency table G-9
syscdrpart table G-10
syscdrprog table G-10
syscdrq table G-11
syscdrqueued table G-11
syscdrrecv_buf table G-11
syscdrrecv_stats table G-12
syscdrrecv_txn table G-12
syscdrrepl table G-12
syscdrreplset table G-13
syscdrs table G-14
syscdrsend_buf table G-15
syscdrsend_txn table G-15
syscdrserver table G-15
syscdrtsapply table G-16
syscdrtx table G-17
sysmaster database

SMI tables G-1
System Monitoring Interface G-1
System name

hosts file 6-2

T
Table

buffer G-18
designing, considerations 4-1
locking 3-3
preparing for conflict resolution 6-19
preparing for consistency checking 6-20
RAW 4-1
SMI G-1, G-18
synchronizing tables 11-14

Table (continued)
temporary 4-1
transaction G-18
unsupported 4-1

Table creation
automatic 8-8, 8-22
templates 1-7, 8-21

Table hierarchy
replicating 4-6

Table types
unsupported 4-1

Target participant type 8-7
Tblspace

storing BYTE and TEXT data 4-9
Templates 1-7, 8-21, A-98

defined 1-1
deleting A-112
example 8-23
managing 11-13
modifying 8-23, 11-13
realizing A-148
verification option 8-22
viewing A-137

Temporary tables 4-1
Terminology

command-line utility A-1
Enterprise Replication 1-1
Enterprise Replication servers 1-1
global catalog 1-1
hierarchical topology 5-16
master replicate 1-1
participant 1-1
replicate 1-1
replicate set 1-1
replication key 1-1
replication servers 1-1
shadow replicate 1-1
templates 1-1

Testing
password file 6-7
trusted environment 6-6

TEXT data
ATS files 12-11
distributing 4-8
storing in tblspaces 4-9
types, loading 6-25

Threads used by Enterprise Replication E-1
Time formats A-27
Time stamp conflict resolution rule 5-6, 5-8, 8-10

database action 5-8
defined 5-8
delete table 6-9
large objects 4-9

Time stamp repair 11-20
Time synchronization 5-8, 5-13, 6-17
Timeout

idle, setting 8-6
status, replication servers A-132

TimeSeries data types
replicate definition rules 4-7

Tools for loading and unloading data 6-24
Topology, choosing network 5-16
Transaction conflict resolution scope 5-8, 5-13, 5-15, 8-10
Transaction records

storage 6-10
Transactional integrity 5-15

X-18 IBM Informix Enterprise Replication Guide

Transactions
buffers, spooling to disk 6-10, 12-14
constraint checking 5-15
distributed 3-2
evaluation examples 2-5
evaluation logic 2-2
failed, ATS and RIS files 8-11, 12-3
large 3-2
processing 3-2
tables G-18

Tree
defined 5-16
topology, illustrated 5-17

triggers
–firetrigger option A-61, A-140, A-200, A-204

Triggers
–firetrigger option 8-13, A-50
activating with replication A-77
changing 11-6
data capture 1-4
defined 1-4
enabling 8-13
errors with Enterprise Replication 4-4
firing A-140
replication key updates 2-3
transaction capture 1-4

Troubleshooting
configuration problems 12-17
spooled transactions 12-14

Troubleshooting Enterprise Replication
alter operations 12-19
UTF-8 conversion operations 8-16

Trusted environment
configuring 6-4
testing 6-6

Trusted-host file 6-4
Two-phase commit protocol

defined 1-3
distributed transactions 3-2

TXH label, ATS files 12-11
TZ environment variable A-27

U
UDRs

installing 6-19
preparing to replicate 6-19
registering 6-19
SPL conflict resolution 5-9

UDTs 6-19
Unbuffered logging 4-1, 6-22
Unicode

–UTF8 option 8-13
conversion between replicates 8-13

Unique index 4-3, 6-21
UNIX

database server groups 6-3
onmode command 8-1
SQLHOSTS file 6-3, 6-15

UNLOAD statement 6-25, 6-26
unload utility 6-25
Unloading data 6-24
Unsupported table types 4-1
Up-to-date, with replication 1-5
Update-anywhere

examples H-4
participants 8-7

Update-anywhere (continued)
replication system

combining with HDR 7-1
Updates

multiple-row images 2-3
replication key 2-3
WHERE clause column 2-3

Updating shadow columns 6-18
UPSERTs

defined 8-11
replicating only changed columns 8-11

User-defined data types
ATS files 12-11
columns, replication key 4-10
Data types

support for 4-10
Extended data types

support for 4-10
information in ATS files 12-11
installing 6-19
installing and registering 4-10
loading with deluxe mode 6-25
preparing to replicate 6-19
registering 6-19
replicating

preparation 4-10
spooled row data 6-11
support functions 4-10
User-defined data types

support 4-10
Users, informix 3-1
UTF-8 conversion examples 8-14
UTF-8 conversion operations

troubleshooting 8-16
UTF8 8-13
Utilities

dbexport 6-25
dbimport 6-25
onunload 6-24
unload 6-25

V
Values, sending floating-point 8-12
Variables. 6-15
Verification, master replicate 8-9
Viewing

Enterprise Replication 3-1
replicate attributes 11-7
replication server attributes 11-3
templates 1-7, 8-21

Virtual column
support 4-10

Visual disabilities
reading syntax diagrams J-1

W
Warm restores 3-2
WHERE clause

column updates 2-3
Windows

database server groups 6-3
Informix-Admin group 3-1
onmode command 8-1
SQLHOSTS registry host 6-15

Index X-19

WITH CRCOLS statement
defining shadow columns 6-19

WITH REPLCHECK statement
defining shadow columns 6-20

Workflow replication business model 5-4
Workload partitioning 5-3
Writing

support functions 4-10
transaction buffers to disk 12-14

X-20 IBM Informix Enterprise Replication Guide

IBM®

Printed in USA

SC27-4520-05

Sp
in

e
in

fo
rm
at
io
n:

In
fo

rm
ix

 P
ro

du
ct

 F
am

ily
 In

fo
rm

ix

Ve
rs

io
n

12
.1

0
IB

M
 In

fo
rm

ix
 E

nt
er

pr
is

e
Re

pl
ic

at
io

n
Gu

id
e

I
B

M

	Contents
	Introduction
	About this publication
	Types of Users
	Assumptions about your locale
	Demonstration Databases

	What's New in Enterprise Replication for Informix, Version 12.10
	Example code conventions
	Additional documentation
	Compliance with industry standards
	How to read the syntax diagrams
	How to provide documentation feedback

	Part 1. About Enterprise Replication
	Chapter 1. IBM Informix Enterprise Replication technical overview
	Enterprise Replication Terminology
	Asynchronous Data Replication
	Log-Based Data Capture
	High Performance
	High Availability
	Consistent Information Delivery
	Repair and Initial Data Synchronization
	Flexible Architecture
	Centralized Administration
	Ease of Implementation
	Network Encryption

	Chapter 2. How Enterprise Replication Replicates Data
	Data Capture
	Row Images
	Evaluate rows for updates
	Send queues and receive queues
	Data Evaluation Examples

	Data Transport
	Applying replicated data

	Part 2. Planning and designing for Enterprise Replication
	Chapter 3. Plan for Enterprise Replication
	Enterprise Replication Server administrator
	Asynchronous propagation conflicts
	Back up and restore of replication servers
	Compression of replicated data
	Transaction processing impact
	SQL statements and replication
	Global language support for replication
	Replication between multiple server versions

	Chapter 4. Schema design for Enterprise Replication
	Unbuffered Logging
	Table Types
	Label-based access control
	Out-of-Row Data
	Shadow columns
	Unique key for replication
	Cascading Deletes
	Triggers
	Constraint and replication
	Sequence Objects
	The NLSCASE database property
	Replicating Table Hierarchies
	Replication and data types
	Replicating on Heterogeneous Hardware
	Serial data types and replication keys
	Replication of TimeSeries data types
	Replication of large objects
	Replicating Simple Large Objects from Tblspaces
	Replication of large objects from blobspaces or sbspaces

	Replication of opaque user-defined data types

	Chapter 5. Replication system design
	Primary-Target Replication System
	Primary-Target Data Dissemination
	Data consolidation
	Workload Partitioning
	Workflow Replication
	Primary-Target Considerations

	Update-Anywhere Replication System
	Conflict Resolution
	Conflict resolution rule
	Ignore Conflict-Resolution Rule
	Time stamp conflict resolution rule
	SPL Conflict Resolution Rule
	Delete wins conflict resolution rule
	Always-Apply Conflict-Resolution Rule

	Conflict Resolution Scope

	Choosing a Replication Network Topology
	Fully Connected Topology
	Hierarchical Routing Topology Terminology
	Hierarchical Tree Topology
	Forest of trees topology

	Part 3. Setting up and managing Enterprise Replication
	Chapter 6. Preparing the Replication Environment
	Preparing the Network Environment
	Configuring hosts information for replication servers
	Configuring ports and service names for replication servers
	Creating sqlhost group entries for replication servers
	Configuring secure ports for connections between replication servers
	Configuring network encryption for replication servers
	Testing the replication network
	Testing the password file

	Preparing the Disk
	Logical Log Configuration Disk Space
	Logical Log Configuration Guidelines
	Disk Space for Delete Tables
	Shadow column disk space
	Setting Up Send and Receive Queue Spool Areas
	Row Data sbspaces

	Setting Up the Grouper Paging File
	Creating ATS and RIS directories

	Preparing the Database Server Environment
	Setting Database Server Environment Variables
	Set configuration parameters for replication
	Time synchronization

	Preparing Data for Replication
	Preparing Consistent Data
	Blocking Replication
	Using DB-Access to Begin Work Without Replication
	Using ESQL/C to Begin Work Without Replication

	Preparing to Replicate User-Defined Types
	Preparing to Replicate User-Defined Routines
	Preparing Tables for Conflict Resolution
	Preparing Tables for a Consistency Check Index
	Preparing tables without primary keys
	Preparing Logging Databases
	Preparing for Role Separation (UNIX)

	Load and unload data
	High-Performance Loader
	onunload and onload Utilities
	dbexport and dbimport Utilities
	UNLOAD and LOAD Statements

	Data Preparation Example
	Using the cdr start replicate Command
	Using LOAD, UNLOAD, and BEGIN WORK WITHOUT REPLICATION

	Chapter 7. Using High-Availability Clusters with Enterprise Replication
	High-availability replication systems
	High-Availability Clusters in a Hierarchical Tree Topology
	Using high-availability clusters in a forest of trees topology
	Setting Up Database Server Groups for High-Availability Cluster Servers

	Managing Enterprise Replication with High-Availability Clusters
	Failover for High-availability clusters in an Enterprise Replication environment
	Replication latency for secondary servers

	Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets
	Starting Database Servers
	Defining Replication Servers
	Creating a new domain by cloning a server
	Example of creating a new replication domain by cloning

	Adding a server to the domain by cloning a server
	Customizing the Replication Server Definition

	Define a replicate
	Participant definitions
	Defining Replicates on Table Hierarchies

	Replicate types
	Master Replicate Verification
	Creating Strict Master Replicates
	Creating Empty Master Replicates

	Defining Shadow Replicates
	Specifying Conflict Resolution Rules and Scope
	Specifying Replication Frequency
	Setting Up Failed Transaction Logging
	Replicate only changed columns
	Using the IEEE Floating Point or Canonical Format
	Enabling Triggers
	Enabling code set conversion between replicates
	Configuring code set conversion between replicates
	Code set conversion errors
	Controlling the replication of large objects

	Define replicate sets
	Exclusive Replicate Sets
	Non-Exclusive Replicate Sets
	Customizing the Replicate Set Definition

	Initially Synchronizing Data Among Database Servers
	Set up replication through templates
	Defining Templates
	Realizing Templates
	Verifying Participants without Applying the Template
	Synchronizing Data Among Database Servers
	Create tables automatically
	Other synchronization options
	Changing Templates
	Template Example

	Chapter 9. Grid setup and management
	Example of setting up a replication system with a grid
	Example of rolling out schema changes in a grid
	Creating a grid
	Grid maintenance
	Viewing grid information

	Adding replication servers to a grid
	Adding a replication server to a grid by running cdr change grid
	Adding a replication server to a grid by cloning

	Adding an externally created replicate into a grid replicate set
	Adding an existing replicate to a grid replicate set by using cdr change replicateset
	Adding an existing replicate to a grid replicate set by altering a table

	Creating replicated tables through a grid
	Enabling replication within a grid transaction
	Propagating updates to data
	Administering servers in the grid with the SQL administration API
	Propagating database object changes
	Propagating external files through a grid
	Rerunning failed grid routines
	Connection management for client connections to participants in a grid
	Grid queries
	Defining tables for grid queries
	Configuring secure connections for grid queries
	Examples of grid queries

	Chapter 10. Shard cluster setup
	Creating a shard cluster
	Shard cluster definitions

	Sharded queries
	Shard cluster management and monitoring

	Chapter 11. Managing Replication Servers and Replicates
	Managing Replication Servers
	Modify server attributes
	Dynamically Modifying Configuration Parameters for a Replication Server
	Viewing Replication Server Attributes
	Connect to another replication server
	Temporarily stopping replication on a server
	Restarting Replication on a Server
	Suspending Replication for a Server
	Resuming a Suspended Replication Server
	Deleting a Replication Server

	Managing Replicates
	Modify replicates
	Adding or Deleting Participants
	Change replicate attributes
	Changing the replication key of a replicate

	Viewing Replicate Properties
	Starting a Replicate
	Stopping a Replicate
	Suspending a Replicate
	Resuming a Suspended Replicate
	Deleting a Replicate

	Managing Replicate Sets
	Connection management for client connections to participants in a replicate set
	Modifying Replicate Sets
	Adding or Deleting Replicates From a Replicate Set
	Changing Replication Frequency For the Replicate Set

	Viewing Replicate Sets
	Starting a Replicate Set
	Stopping a Replicate Set
	Suspending a Replicate Set
	Resuming a Replicate Set
	Deleting a Replicate Set

	Managing Templates
	Viewing Template Definitions
	Deleting Templates

	Managing Replication Server Network Connections
	Viewing Network Connection Status
	Dropping the Network Connection
	Reestablishing the Network Connection

	Resynchronizing Data among Replication Servers
	Performing Direct Synchronization
	Synchronizing Significantly Inconsistent Tables

	Checking Consistency and Repairing Inconsistent Rows
	Interpreting the Consistency Report
	Increase the speed of consistency checking
	Repair inconsistencies by time stamp
	Repairing inconsistencies while enabling a replication server
	Implementing a custom checksum function

	Repairing Failed Transactions with ATS and RIS Files
	Resynchronize data manually

	Alter, rename, or truncate operations during replication
	Altering multiple tables in a replicate set
	Adding a Replicated Column
	Removing replicated columns
	Modifying the data type or size of a replicated column
	Changing the Name of a Replicated Column, Table, or Database
	Changing or re-creating primary key columns
	Attaching a New Fragment to a Replicated Table
	Remastering a Replicate
	Remastering replicates without name verification

	Recapture replicated transactions

	Chapter 12. Monitor and troubleshooting Enterprise Replication
	Solve Replication Processing Problems
	Failed Transaction (ATS and RIS) Files
	Enabling ATS and RIS File Generation
	ATS and RIS File Names
	ATS and RIS File Formats
	XML File Format
	ATS and RIS Text File Contents

	Disabling ATS and RIS File Generation
	Suppressing Data Sync Errors and Warnings

	Preventing Memory Queues from Overflowing
	Handle potential log wrapping
	Monitoring Disk Usage for Send and Receive Queue Spool
	Increasing the Sizes or Numbers of Storage Spaces
	Recovering when Storage Spaces Fill

	Common configuration problems
	Troubleshooting Tips for Alter Operations
	Enterprise Replication Event Alarms
	Enabling or Disabling Enterprise Replication Event Alarms

	Part 4. Appendixes
	Appendix A. The cdr utility
	Interpret the cdr utility syntax
	Command Abbreviations
	Option Abbreviations
	Option Order
	Long Command-Line Examples
	Long Identifiers
	Connect Option
	Participant and participant modifier
	Return Codes for the cdr Utility
	Frequency Options

	cdr add onconfig
	cdr alter
	cdr autoconfig serv
	cdr change grid
	cdr change gridtable
	cdr change onconfig
	cdr change replicate
	cdr change replicateset
	cdr change shardCollection
	cdr check queue
	cdr check replicate
	cdr check replicateset
	cdr check sec2er
	cdr cleanstart
	cdr connect server
	cdr define grid
	cdr define qod
	cdr define region
	cdr define replicate
	cdr define replicateset
	cdr define server
	cdr define shardCollection
	cdr define template
	cdr delete grid
	cdr delete region
	cdr delete replicate
	cdr delete replicateset
	cdr delete server
	cdr delete shardCollection
	cdr delete template
	cdr disable grid
	cdr disable server
	cdr disconnect server
	cdr enable grid
	cdr enable server
	cdr error
	cdr finderr
	cdr list grid
	cdr list replicate
	cdr list replicateset
	cdr list server
	cdr list shardCollection
	cdr list template
	cdr modify grid
	cdr modify replicate
	cdr modify replicateset
	cdr modify server
	cdr realize template
	cdr remaster
	cdr remaster gridtable
	cdr remaster replicateset
	cdr remove onconfig
	cdr repair
	cdr reset qod
	cdr resume replicate
	cdr resume replicateset
	cdr resume server
	cdr start
	cdr start qod
	cdr start replicate
	cdr start replicateset
	cdr start sec2er
	cdr stats rqm
	cdr stats recv
	cdr stats check
	cdr stats sync
	cdr stop
	cdr stop qod
	cdr stop replicate
	cdr stop replicateset
	cdr suspend replicate
	cdr suspend replicateset
	cdr suspend server
	cdr swap shadow
	cdr sync replicate
	cdr sync replicateset
	cdr -V
	cdr view

	Appendix B. Enterprise Replication configuration parameter and environment variable reference
	CDR_APPLY Configuration Parameter
	CDR_AUTO_DISCOVER configuration parameter
	CDR_DBSPACE Configuration Parameter
	CDR_DELAY_PURGE_DTC configuration parameter
	CDR_DSLOCKWAIT Configuration Parameter
	CDR_ENV Configuration Parameter
	CDR_EVALTHREADS Configuration Parameter
	CDR_LOG_LAG_ACTION configuration parameter
	CDR_LOG_STAGING_MAXSIZE Configuration Parameter
	CDR_MAX_DYNAMIC_LOGS Configuration Parameter
	CDR_MAX_FLUSH_SIZE configuration parameter
	CDR_MEM configuration parameter
	CDR_NIFCOMPRESS Configuration Parameter
	CDR_QDATA_SBSPACE Configuration Parameter
	CDR_QUEUEMEM Configuration Parameter
	CDR_SERIAL Configuration Parameter
	CDR_SUPPRESS_ATSRISWARN Configuration Parameter
	CDR_TSINSTANCEID configuration parameter
	ENCRYPT_CDR Configuration Parameter
	GRIDCOPY_DIR Configuration Parameter
	SHARD_ID configuration parameter
	SHARD_MEM configuration parameter
	CDR_ALARMS Environment Variable
	CDR_ATSRISNAME_DELIM Environment Variable
	CDR_DISABLE_SPOOL Environment Variable
	CDR_LOGDELTA Environment Variable
	CDR_PERFLOG Environment Variable
	CDR_RMSCALEFACT Environment Variable
	CDR_ROUTER Environment Variable
	CDRSITES_10X Environment Variable
	CDRSITES_731 Environment Variable
	CDRSITES_92X Environment Variable

	Appendix C. Grid routines
	ifx_get_erstate() function
	ifx_grid_connect() procedure
	ifx_grid_copy() procedure
	ifx_grid_disconnect() procedure
	ifx_grid_execute() procedure
	ifx_grid_function() function
	ifx_grid_procedure() procedure
	ifx_grid_redo() procedure
	ifx_grid_release() function
	ifx_grid_remove() function
	ifx_grid_purge() procedure
	ifx_gridquery_skipped_nodes() function
	ifx_gridquery_skipped_node_count() function
	ifx_node_id() function
	ifx_node_name() function

	Appendix D. Enterprise Replication routines
	ifx_get_erstate() function
	ifx_set_erstate() procedure

	Appendix E. onstat -g commands for Enterprise Replication
	Threads shown by the onstat -g ath command
	onstat -g cat: Print ER global catalog information
	onstat -g cdr: Print ER statistics
	onstat -g cdr config: Print ER settings
	onstat -g ddr: Print status of ER log reader
	onstat -g dss: Print statistics for data sync threads
	onstat -g dtc: Print statistics about delete table cleaner
	onstat -g grp: Print grouper statistics
	onstat -g nif: Print statistics about the network interface
	onstat -g que: Print statistics for all ER queues
	onstat -g rcv: Print statistics about the receive manager
	onstat -g rep: Prints the schedule manager queue
	onstat -g rqm: Prints statistics for RQM queues
	onstat -g sync: Print statistics about synchronization

	Appendix F. syscdr Tables
	The replcheck_stat Table
	The replcheck_stat_node Table

	Appendix G. SMI Tables for Enterprise Replication Reference
	The syscdr_ats Table
	The syscdr_atsdir Table
	The syscdr_ddr Table
	The syscdr_nif Table
	The syscdr_rcv Table
	The syscdr_ris Table
	The syscdr_risdir Table
	The syscdr_rqm Table
	The syscdr_rqmhandle Table
	The syscdr_rqmstamp Table
	The syscdr_state Table
	The syscdrack_buf Table
	The syscdrack_txn Table
	The syscdrctrl_buf Table
	The syscdrctrl_txn Table
	The syscdrerror Table
	The syscdrlatency Table
	The syscdrpart Table
	The syscdrprog Table
	The syscdrq Table
	The syscdrqueued Table
	The syscdrrecv_buf Table
	The syscdrrecv_stats Table
	The syscdrrecv_txn Table
	The syscdrrepl Table
	The syscdrreplset Table
	The syscdrs Table
	The syscdrsend_buf Table
	The syscdrsend_txn Table
	The syscdrserver Table
	The syscdrsync_buf Table
	The syscdrsync_txn Table
	The syscdrtsapply table
	The syscdrtx Table
	Enterprise Replication Queues
	Columns of the Transaction Tables
	Columns of the Buffer Tables

	Appendix H. Replication Examples
	Replication Example Environment
	Primary-Target Example
	Update-Anywhere Example
	Hierarchy Example

	Appendix I. Data sync warning and error messages
	Appendix J. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

