Informix Product Family
Informix
Version 12.10

IBM Informix Enterprise Replication
Guide

<||I

Informix Product Family
Informix
Version 12.10

IBM Informix Enterprise Replication
Guide

<||I

Note
FBefore using this information and the product it supports, read the information in ['Notices” on page K-1]

Edition
This edition replaces SC27-4520-03.
This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2015.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction L . e X

About this publication L L L L L Lo il
Types of Users . . . e e b
Assumptions about your locale e
Demonstration Databases . . . D A

What's New in Enterprise Replication for Informlx Verswn 12 10 D A

Example code conventions L L Lxx

Additional documentation . . . D et

Compliance with industry standards Ce e e s xd

How to read the syntax diagrams. o.oxd

How to provide documentation feedback. xxil

Part 1. About Enterprise Replication

Chapter 1. IBM Informix Enterprise Replication technical overview 1-1

Enterprise Replication Terminology . 11
Asynchronous Data Replication . 13
Log-Based Data Capture. 14
High Performance 14
High Availability . . . O)
Consistent Information Dehvery .. O L)
Repair and Initial Data Synchroruzatlon B £
Flexible Architecture 1
Centralized Administration. .. . 1
Ease of Implementation .17
Network Encryption . LT

Chapter 2. How Enterprise Repllcatlon Replicates Data 2-1

Data Capture e e s 22
Row Images . . . C e o e e s 22
Evaluate rows for updates C e e s s 28
Send queues and receive queues 24
Data Evaluation Examples . 25

Data Transport . . . 4

Applying replicated data C e e e 27

Part 2. Planning and designing for Enterprise Replication

Chapter 3. Plan for Enterprise Replication 31

Enterprise Replication Server administrator . 31
Asynchronous propagation conflicts ... L 3
Back up and restore of replication servers .. o. 32
Compression of replicated data .. 32
Transaction processing impact . 32
SQL statements and replication . . <)
Global language support for rephcatlon N)
Replication between multiple server versions. 35

Chapter 4. Schema design for Enterprise Replication 41

Unbuffered Logging .. 4
Table Types . . . e |
Label-based access Control O)
Out-of-Row Data42

© Copyright IBM Corp. 1996, 2015 iii

Shadow columns . 4-2
Unique key for replication . 43
Cascading Deletes . 4-3
Triggers 4-4
Constraint and rephcatlon 4-4
Sequence Objects 4-5
The NLSCASE database property 4-5
Replicating Table Hierarchies . 4-6
Replication and data types . 4-6
Replicating on Heterogeneous Hardware 4-6
Serial data types and replication keys 4-6
Replication of TimeSeries data types . 4-7
Replication of large objects . . 4-8
Replication of opaque user-defined data types . 4-10
Chapter 5. Replication system design . 5-1
Primary-Target Replication System 5-1
Primary-Target Data Dissemination . 5-1
Data consolidation . 5-2
Workload Partitioning 5-3
Workflow Replication . . 5-4
Primary-Target Considerations. 5-4
Update-Anywhere Replication System . 5-5
Conflict Resolution . . 5-6
Contflict resolution rule 5-6
Conlflict Resolution Scope . . 5-15
Choosing a Replication Network Topology 5-16
Fully Connected Topology . . 5-16
Hierarchical Routing Topology Termmology 5-16
Hierarchical Tree Topology . 5-17
Forest of trees topology. 5-18
Part 3. Setting up and managing Enterprise Replication
Chapter 6. Preparing the Replication Environment. 6-1
Preparing the Network Environment. . .o 6-1
Configuring hosts information for rephcatlon servers . 6-2
Configuring ports and service names for replication servers . 6-2
Creating sqlhost group entries for replication servers 6-3
Configuring secure ports for connections between replication servers . 6-4
Configuring network encryption for replication servers 6-6
Testing the replication network 6-6
Testing the password file 6-7
Preparing the Disk. . . 6-7
Logical Log Configuration D1sk Space . 6-8
Logical Log Configuration Guidelines 6-8
Disk Space for Delete Tables 6-9
Shadow column disk space . . . 6-9
Setting Up Send and Receive Queue Spool Areas . 6-10
Setting Up the Grouper Paging File. . 6-14
Creating ATS and RIS directories . 6-14
Preparing the Database Server Environment . 6-15
Setting Database Server Environment Variables . 6-15
Set configuration parameters for replication . 6-15
Time synchronization 6-17
Preparing Data for Replication 6-17
Preparing Consistent Data . 6-18
Blocking Replication . 6-18
Preparing to Replicate User- Defmed Types 6-19
Preparing to Replicate User-Defined Routines 6-19

iV IBM Informix Enterprise Replication Guide

Preparing Tables for Conflict Resolution . .
Preparing Tables for a Consistency Check Index
Preparing tables without primary keys
Preparing Logging Databases .
Preparing for Role Separation (UNIX)
Load and unload data . . .
High-Performance Loader .
onunload and onload Utilities
dbexport and dbimport Utilities .
UNLOAD and LOAD Statements
Data Preparation Example . .
Using the cdr start replicate Command .
Using LOAD, UNLOAD, and BEGIN WORK WITHOUT REPLICATION .

Chapter 7. Using High-Availability Clusters with Enterprlse Repllcatlon
High-availability replication systems.
High-Availability Clusters in a H1erarch1cal Tree Topology
Using high-availability clusters in a forest of trees topology .
Setting Up Database Server Groups for High-Availability Cluster Servers
Managing Enterprise Replication with High-Availability Clusters . .
Failover for High-availability clusters in an Enterprise Replication env1ronment
Replication latency for secondary servers .

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets
Starting Database Servers
Defining Replication Servers .
Creating a new domain by clomng a server
Adding a server to the domain by cloning a server .
Customizing the Replication Server Definition
Define a replicate .
Participant definitions
Replicate types .
Defining Shadow Rephcates
Specifying Conflict Resolution Rules and Scope
Specifying Replication Frequency
Setting Up Failed Transaction Logging.
Replicate only changed columns .
Using the IEEE Floating Point or Canorucal Format
Enabling Triggers. .
Enabling code set conversion between rephcates
Define replicate sets .
Exclusive Replicate Sets.
Non-Exclusive Replicate Sets . .
Customizing the Replicate Set Definition .
Initially Synchronizing Data Among Database Servers
Set up replication through templates
Defining Templates . .
Realizing Templates .

Chapter 9. Grid setup and management

Example of setting up a replication system with a grid

Example of rolling out schema changes in a grid

Creating a grid .

Grid maintenance .

Viewing grid mformatlon .

Adding replication servers to a grid . . .
Adding a replication server to a grid by runnmg cdr Change grld
Adding a replication server to a grid by cloning . .

Adding an externally created replicate into a grid replicate set .
Adding an existing replicate to a grid replicate set by using cdr change rephcateset

Contents

6-19
6-20
6-20
6-22
6-22
6-23
6-24
6-25
6-25
6-25
6-26
6-26
6-26

7-1

7-4

8-2

8-7

8-10
8-11
8-11
8-11
8-12
8-13
8-13
8-18
8-18
8-19
8-19
8-20
8-21
8-21
8-21

9-1
9-2
9-5
9-6
9-6
9-7
9-8
9-8
9-8

9-10

9-10

v

Adding an existing replicate to a grid replicate set by altering a table
Creating replicated tables through a grid . e
Enabling replication within a grid transaction
Propagating updates to data .
Administering servers in the grid w1th the SQL admlmstratlon API
Propagating database object changes
Propagating external files through a grid .
Rerunning failed grid routines
Connection management for client Connectlons to partlcrpants ina grld
Grid queries . .

Defining tables for grld querles .

Configuring secure connections for grid querles

Examples of grid queries

Chapter 10. Shard cluster setup
Creating a shard cluster

Shard cluster definitions
Sharded queries .
Shard cluster management and momtormg .

Chapter 11. Managing Replication Servers and Replicates .
Managing Replication Servers.
Modify server attributes
Dynamically Modifying Confrguratlon Parameters for a Rephcatlon Server
Viewing Replication Server Attributes .
Connect to another replication server .
Temporarily stopping replication on a server.
Restarting Replication on a Server .
Suspending Replication for a Server
Resuming a Suspended Replication Server
Deleting a Replication Server .
Managing Replicates.
Modify replicates . .
Viewing Replicate Propert1es .
Starting a Replicate .
Stopping a Replicate .
Suspending a Replicate . .
Resuming a Suspended Replicate
Deleting a Replicate .
Managing Replicate Sets .

Connection management for chent connectlons to partrcrpants in a rephcate set

Modifying Replicate Sets .

Viewing Replicate Sets.

Starting a Replicate Set

Stopping a Replicate Set .

Suspending a Replicate Set .

Resuming a Replicate Set .

Deleting a Replicate Set
Managing Templates

Viewing Template Defmltlons

Deleting Templates . .
Managing Replication Server Network Cormectlons .

Viewing Network Connection Status .

Dropping the Network Connection

Reestablishing the Network Connection .
Resynchronizing Data among Replication Servers.

Performing Direct Synchronization

Checking Consistency and Repairing Incon51stent Rows

Repairing Failed Transactions with ATS and RIS Files

Resynchronize data manually e

vi IBM Informix Enterprise Replication Guide

9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-19
9-19
9-20
9-21
9-22

10-1
10-1
10-2
10-3
10-5

11-1
11-1
11-1
11-1
11-3
11-3
11-3
11-4
11-4
11-5
11-5
11-6
11-6
11-7
11-8
11-8
11-9
11-9
11-9

11-10

11-10

11-10

11-11

11-11

11-12

11-12

11-12

11-12

11-13

11-13

11-13

11-13

11-13

11-14

11-14

11-14

11-15

11-16

11-22

11-23

Alter, rename, or truncate operations during replication 11-23
Altering multiple tables in a replicate set 11-25
Adding a Replicated Column 11-26
Removing replicated columns 11-26
Modifying the data type or size of a rephcated Column 11-26
Changing the Name of a Replicated Column, Table, or Database 11-28
Changing or re-creating primary key columns . . 11-28
Attaching a New Fragment to a Repllcated Table . 11-28
Remastering a Replicate 11-29

Recapture replicated transactions . 11-29

Chapter 12. Monitor and troubleshooting Enterprise Replication . 12-1

Solve Replication Processing Problems. 12-1

Failed Transaction (ATS and RIS) Files. 12-3
Enabling ATS and RIS File Generation . 12-4
ATS and RIS File Names . 12-5
ATS and RIS File Formats . . . 12-6
Disabling ATS and RIS File Generatlon . 12-13
Suppressing Data Sync Errors and Warnings 12-14

Preventing Memory Queues from Overflowing 12-14
Handle potential log wrapping . . . 12-15
Monitoring Disk Usage for Send and Recelve Queue Spool 12-16
Increasing the Sizes or Numbers of Storage Spaces . 12-17
Recovering when Storage Spaces Fill . 12-17

Common configuration problems . . 12-17

Troubleshooting Tips for Alter Operations . 12-18

Enterprise Replication Event Alarms . 12-21
Enabling or Disabling Enterprise Repl1cat10n Event Alarms 12-40

Part 4. Appendixes

Appendix A. The cdr utility A-1

Interpret the cdr utility syntax A-1
Command Abbreviations A-1
Option Abbreviations A-2
Option Order . . A-2
Long Command-Line Examples . A-3
Long Identifiers A-3
Connect Option . A-3
Participant and part1c1pant modlﬁer. A-4
Return Codes for the cdr Ut1hty A-8
Frequency Options . . A-27

cdr add onconfig. A-29

cdr alter. . A-30

cdr autoconfig serv . A-31

cdr change grid . A-35

cdr change gridtable A-36

cdr change onconfig. A-38

cdr change replicate. A-39

cdr change replicateset . A-42

cdr change shardCollection A-43

cdr check queue . A-47

cdr check replicate . A-50

cdr check replicateset A-61

cdr check sec2er . A-69

cdr cleanstart . A-71

cdr connect server A-72

cdr define grid A-73

cdr define qod A-74

cdr define region. A-76

Contents Vil

cdr define replicate .
cdr define replicateset .
cdr define server.

cdr define shardCollection

cdr define template .
cdr delete grid .

cdr delete region

cdr delete replicate.
cdr delete replicateset .
cdr delete server

cdr delete shardCollection

cdr delete template.
cdr disable grid .

cdr disable server .
cdr disconnect server .
cdr enable grid .

cdr enable server

cdr error .

cdr finderr

cdr list grid .

cdr list replicate.

cdr list replicateset .
cdr list server .
cdr list shardCollection
cdr list template

cdr modify grid.

cdr modify replicate
cdr modify replicateset
cdr modify server .
cdr realize template
cdr remaster . .
cdr remaster gridtable

cdr remaster replicateset .

cdr remove onconfig .
cdr repair .

cdr reset qod.

cdr resume replicate
cdr resume replicateset
cdr resume server .
cdr start

cdr start qod .

cdr start replicate .
cdr start replicateset
cdr start sec2er .

cdr stats rqm.

cdr stats recv

cdr stats check .

cdr stats sync

cdr stop

cdr stop qod .

cdr stop replicate

cdr stop replicateset
cdr suspend replicate .

cdr suspend replicateset .

cdr suspend server.
cdr swap shadow .
cdr sync replicate .
cdr sync replicateset
cdr -V .

cdr view .

viili IBM Informix Enterprise Replication Guide

A-77

A-87

A-90

A-93

A-98
A-103
A-104
A-105
A-106
A-108
A-110
A-112
A-112
A-114
A-115
A-116
A-118
A-119
A-121
A-121
A-125
A-130
A-131
A-135
A-137
A-139
A-140
A-145
A-146
A-148
A-153
A-156
A-157
A-159
A-160
A-162
A-164
A-165
A-167
A-168
A-169
A-170
A-173
A-176
A-178
A-181
A-182
A-185
A-189
A-190
A-191
A-193
A-194
A-195
A-197
A-198
A-200
A-204
A-208
A-209

Appendix B. Enterprise Replication configuration parameter and environment variable

reference e - O
CDR_APPLY Conﬁguratlon Parameter .o e |
CDR_AUTO_DISCOVER configuration parameter R - 3 |
CDR_DBSPACE Configuration Parameter . . . R - 222
CDR_DELAY_PURGE_DTC configuration parameter B3
CDR_DSLOCKWAIT Configuration Parameter . B4
CDR_ENV Configuration Parameter. . . oAU o 2 |
CDR_EVALTHREADS Configuration Parameter T, - 2]
CDR_LOG_LAG_ACTION configuration parameter . B&6
CDR_LOG_STAGING_MAXSIZE Configuration Parameter B9
CDR_MAX_DYNAMIC_LOGS Configuration Parameter. B0
CDR_MAX_FLUSH_SIZE configuration parameter e s v
CDR_MEM configuration parameter . . . e s Y
CDR_NIFCOMPRESS Configuration Parameter e e B 12
CDR_QDATA_SBSPACE Conflguratlon Parameter. L. B-13
CDR_QUEUEMEM Configuration Parameter . Bl4
CDR_SERIAL Configuration Parameter . . . e - 5)
CDR_SUPPRESS_ATSRISWARN Configuration Parameter e s 5)
CDR_TSINSTANCEID configuration parameter. B-le6
ENCRYPT_CDR Configuration Parameter . B17
GRIDCOPY_DIR Configuration Parameter . B8
SHARD_ID configuration parameter . B8
SHARD_MEM configuration parameter . BI19
CDR_ALARMS Environment Variable. . . . oAU o 201
CDR_ATSRISNAME_DELIM Environment Varlable B2
CDR_DISABLE_SPOOL Environment Variable . B2
CDR_LOGDELTA Environment Variable . B2
CDR_PERFLOG Environment Variable . B2
CDR_RMSCALEFACT Environment Variable . B2
CDR_ROUTER Environment Variable . B2
CDRSITES_10X Environment Variable. B2
CDRSITES_731 Environment Variable . B2
CDRSITES_92X Environment Variable. B24

AppendGCGrldroutlnes e o |

ifx_get_erstate() function . . O G4 |
ifx_grid_connect() procedure C1
ifx_grid_copy() procedure C5
ifx_grid_disconnect() procedure . Ceo
ifx_grid_execute() procedure L L L L L L. L T
ifx_grid_function() function . C8
ifx_grid_procedure() procedure . CO
ifx_grid_redo() procedure .. . CI0
ifx_grid_release() function. CIn
ifx_grid_remove() function L 00000 . G2
ifx_grid_purge() procedure . . N €)
ifx_gridquery_skipped_nodes() functlon e S)
ifx_gridquery_skipped_node_count() function . Cle6
ifx_node_id() function . C6
ifx_node_name() function. C17

Appendix D. Enterprise Replicationroutines D-1
ifx_get_erstate() function .. . D1
ifx_set_erstate() procedure D1

Appendix E. onstat -g commands for Enterprise Replication E-1

Threads shown by the onstat -g ath command . E1
onstat -g cat: Print ER global catalog information . E2
onstat -g cdr: Print ER statisties . E4

Contents 1X

onstat -g cdr config: Print ER settings

onstat -g ddr: Print status of ER log reader .
onstat -g dss: Print statistics for data sync threads .
onstat -g dtc: Print statistics about delete table cleaner.
onstat -g grp: Print grouper statistics .
onstat -g nif: Print statistics about the network mterface
onstat -g que: Print statistics for all ER queues . .
onstat -g rcv: Print statistics about the receive manager .
onstat -g rep: Prints the schedule manager queue .
onstat -g rqm: Prints statistics for ROM queues.

onstat -g sync: Print statistics about synchronization .

Appendix F. syscdr Tables .
The replcheck_stat Table .
The replcheck_stat_node Table.

Appendix G. SMI Tables for Enterprise Replication Reference

The syscdr_ats Table .

The syscdr_atsdir Table .

The syscdr_ddr Table.

The syscdr_nif Table .

The syscdr_rcv Table .

The syscdr_ris Table .

The syscdr_risdir Table .

The syscdr_rqm Table .

The syscdr_rgmhandle Table .

The syscdr_rqmstamp Table

The syscdr_state Table

The syscdrack_buf Table

The syscdrack_txn Table.

The syscdretrl_buf Table.

The syscdretrl_txn Table.

The syscdrerror Table

The syscdrlatency Table .

The syscdrpart Table

The syscdrprog Table

The syscdrq Table

The syscdrqueued Table

The syscdrrecv_buf Table .

The syscdrrecv_stats Table

The syscdrrecv_txn Table .

The syscdrrepl Table

The syscdrreplset Table

The syscdrs Table .

The syscdrsend_buf Table.

The syscdrsend_txn Table .

The syscdrserver Table .

The syscdrsync_buf Table .

The syscdrsync_txn Table .

The syscdrtsapply table

The syscdrtx Table .

Enterprise Replication Queues
Columns of the Transaction Tables .
Columns of the Buffer Tables.

Appendix H. Replication Examples .
Replication Example Environment
Primary-Target Example

Update-Anywhere Example

Hierarchy Example

X IBM Informix Enterprise Replication Guide

E-4

E-7
E-8
E-8
E-13
E-14
E-15
E-17
E-18
E-21

F-1
F-2

G-1
G-1
G-1

G-3
G-4
G-5
G-6
G-6

G-7
G-8

G-8
G-9

G-9

G-9
G-10
G-10
G-11
G-11
G-11
G-12
G-12
G-12
G-13
G-14
G-15
G-15
G-15
G-16
G-16
G-16
G-17
G-17
G-18
G-18

H-1
H-2

H-4
H-6

Appendix |. Data sync warning and error messages

Appendix J. Accessibility ..
Accessibility features for IBM Informix products .
Accessibility features .
Keyboard navigation
Related accessibility information
IBM and accessibility .
Dotted decimal syntax diagrams

Notices .

Privacy policy considerations .
Trademarks .

Index .

Contents

K-3
K-3

X-1

xi

xii IBM Informix Enterprise Replication Guide

Introduction

About this publication

This publication describes IBM® Informix® Enterprise Replication and the concepts
of data replication. This publication explains how to design your replication
system, as well as administer and manage data replication throughout your
enterprise.

This section discusses the intended audience and the associated software products
that you must have to use Enterprise Replication.

Types of Users

This publication is for database server administrators and assumes that you have
the following background:

* A working knowledge of your computer, your operating system, and the utilities
that your operating system provides

* Some experience working with relational databases or exposure to database
concepts

* Some experience with database server administration, operating- system
administration, and network administration

Assumptions about your locale

IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
GL_DATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as é and .

You can specify another locale if you plan to use characters from other locales in

your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

© Copyright IBM Corp. 1996, 2015 xiii

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

Demonstration Databases

The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:

* The stores_demo database illustrates a relational schema with information about
a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

* The superstores_demo database illustrates an object-relational schema. The
superstores_demo database contains examples of extended data types, type and
table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB—Access User’s Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX platforms and in the
%INFORMIXDIR%\bin directory in Windows environments.

What's New in

Enterprise Replication for Informix, Version 12.10

This publication includes information about new features and changes in existing
functionality.

For a complete list of what's new in this release, go to |http://www.ibm.com /|
|support/ knowledgecenter /SSGU8G_12.1.0/com.ibm.po.doc/ new_features_ce.html

xiv IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.po.doc/new_features_ce.htm

Table 1. What's New in IBM Informix Enterprise Replication

Guide for 12.10.xC6

Overview

Reference

Parallel sharded queries

You can now run SELECT statements in sharded queries
in parallel instead of serially on each shard. Parallel
sharded queries return results faster, but also have the
following benefits:

Reduced memory consumption: Table consistency is
enforced on the shard servers, which eliminates the
processing of data dictionary information among the
shard servers.

Reduced network traffic: Client connections are
multiplexed over a common pipe instead of being
created individual connections between each client and
every shard server. Client connections are authenticated
on only one shard server instead of on every shard
server. Network traffic to check table consistency is
eliminated.

To enable parallel sharded queries, set the new
SHARD_ID configuration parameter in the onconfig file
to a unique value on each shard server in the shard
cluster. Also set the new
sharding.parallel.query.enable=true and
sharding.enable=true parameters in the wire listener
configuration file for each shard server. You can
customize how shared memory is allocated for parallel
sharded queries on each shard server by setting the new
SHARD_MEM configuration parameter. You can reduce
latency between shard servers by increasing the number
of pipes for SMX connections with the new
SMX_NUMPIPES configuration parameter.

If you plan to upgrade your existing shard cluster from a
previous version of Informix 12.10, upgrade and set the
SHARD_ID configuration parameter on all the shard
servers to enable parallel sharded queries.

|Chapter 10, “Shard cluster setup,” on page 10-1

[“SHARD_ID configuration parameter” on page B-18§|

[“SHARD_MEM configuration parameter” on page B-19|

Table 2. What's New in IBM Informix Enterprise Replication

Guide for 12.10.xC4

Overview

Reference

Replicate hertz and compressed time series data

You can now replicate hertz and compressed time series
data with Enterprise Replication.

[“Replication of TimeSeries data types” on page 4-7|

Enhancements to the Enterprise Replication apply process
and memory pool allocation

You can now specify two new methods of memory pool
allocation for Enterprise Replication. Set the new
CDR_MEM configuration parameter to specify that
Enterprise Replication allocates memory pools for CPU
virtual processors or to use a fixed-block memory pool
allocation strategy.

Transaction apply performance for large-scale grid
environments is faster.

[“CDR_MEM configuration parameter” on page B-11|

Introduction

XV

Table 2. What's New in IBM Informix Enterprise Replication

Guide for 12.10.xC4 (continued)

Overview

Reference

New event alarm for blocked replication transactions

The new event alarm 33003 appears if Enterprise
Replication transactions are being blocked because a table
is in alter mode.

[“Enterprise Replication Event Alarms” on page 12-21]|

Table 3. What's New in IBM Informix Enterprise Replication

Guide for 12.10.xC3

Overview

Reference

Shard data across Enterprise Replication servers

Using Enterprise Replication, Informix can now
horizontally partition (shard) a table or collection across
multiple database servers. When you create a sharding
definition through the cdr utility, rows from a table or
documents from a collection can be distributed across the
nodes of an Enterprise Replication system, reducing the
number of rows or documents and the size of the index
on each node. When you distribute data across database
servers, you also distribute performance across hardware.
As your database grows in size, you can scale up by
adding more database servers.

[Chapter 10, “Shard cluster setup,” on page 10-1|

Easier configuration and cloning of a server for
replication

If you create a server during installation, you can easily
create an Enterprise Replication domain or a
high-availability cluster. Previously, you had to configure
connectivity manually on each server.

Run the cdr autoconfig serv command to configure
connectivity and start Enterprise Replication.

[“cdr autoconfig serv” on page A-31|

Table 4. What's New in IBM Informix Enterprise Replication

Guide for 12.10.xC2

Overview

Reference

Set up and query time series data through a grid

If you plan to replicate time series data, you can set up
time series through a grid. You can run the commands to
set up time series on one grid server and propagate the
commands to the other grid servers.

You can query time series data in the context of a grid.
However, you can run a grid query only on a virtual
table that is based on a table that has a TimeSeries
column.

[“Replication of TimeSeries data types” on page 4-7|

Xvi IBM Informix Enterprise Replication Guide

Table 4. What's New in IBM Informix Enterprise Replication Guide for 12.10.xC2 (continued)

Overview

Reference

Simplified schema changes for replicated tables

If you make many changes to the schema of replicated
tables that belong to a replicate set, you can easily update
the replicate definitions to reflect the schema changes.
After you alter replicated tables, run the cdr define
replicateset command with the --needRemaster option to
derive a replicate set that consists of only the replicates
that are affected by the alter operations. You remaster the
derived replicate set by running the cdr remaster
replicateset command. You do not need to update or
remaster every replicate individually.

If you want to only drop multiple columns from multiple
replicated tables, you can run the cdr remaster command
with the --remove option.

[“ Altering multiple tables in a replicate set” on page 11-25f

[“Removing replicated columns” on page 11-26|

“Example of rolling out schema changes in a grid” onl|

page 9-5|

Control the replication of large objects

By default, when any column in a replicate row is
changed, Enterprise Replication replicates the entire row.
However, to improve performance, columns that contain
a large object are replicated only when the content of the
large object changes. You can force the replication of large
objects by including the --alwaysRepLOBs=y option with
the cdr define replicate, cdr modify replicate, or cdr
define template command. Always including large object
columns in replicated rows can be useful if you have a
workflow replication system.

[“Controlling the replication of large objects” on page 8-17]

Custom checksum function for consistency checking

When you check the consistency of replicated rows, a
checksum is generated for each row on each server and
then the corresponding checksums are compared. You can
write your own checksum function instead of using the
checksum function that is supplied with the database
server.

“Implementing a custom checksum function” on pagel
11-21

Shard tables across database servers

You can now shard, or horizontally partition, a table
across multiple database servers. Rows from a table can
be distributed across a cluster of database servers, which
reduces the number of rows and the size of the index for
the database of each server. When you distribute data
across database servers, you also distribute performance
across hardware, which can result in significant
performance improvements. As your database grows in
size, you can scale up by adding more database servers.

[“cdr define shardCollection” on page A-93)|

Introduction XVii

Table 5. What's New in IBM Informix Enterprise Replication Guide for 12.10.xC1

Overview

Reference

Automatic space management for Enterprise Replication

If you have a storage pool, storage spaces are created
automatically if needed when you define a replication
server. Also, the CDR_DBSPACE and
CDR_QDATA_SBSPACE configuration parameters are set
automatically in the onconfig file. In earlier versions of
Informix, you had to create the required spaces and set
the configuration parameters before you could define a
replication server.

[“cdr define server” on page A-90|

“CDR_QDATA_SBSPACE Configuration Parameter” on|

[page B—13|

[“CDR_DBSPACE Configuration Parameter” on page B-2|

Managing server connections on Windows operating
systems

On Windows operating systems, you now configure
connectivity information for Informix servers by using the
sqlhosts file, not the Windows registry. The file is
installed in INFORMIXDIR%\etc\sqlhosts.
%INFORMIXSERVER%, and it uses the same format as the
sqlhosts file on UNIX operating systems. The
sync_registry Scheduler task automatically converts the
connection information between the sqlhosts file format
and the Windows registry format. The task runs every 15
minutes. You can manually convert the connection
information between the sqlhosts file format and the
Windows registry format by running the syncsqlhosts
utility.

[“Preparing the Network Environment” on page 6-1

Reduce replication latency between Enterprise Replication
and shared-disk secondary servers

If an Enterprise Replication server is a primary server for
shared-disk secondary servers, you can reduce replication
latency by reducing the number of transactions that are
applied before the logs are flushed to disk. By default, the
logs are flushed after 50 transactions are applied, or 5
seconds elapse. You can set the CDR_MAX_FLUSH_SIZE
configuration parameter to 1 to flush the logs after every
transaction and reduce replication latency.

“CDR_MAX_FLUSH_SIZE configuration parameter” on|

page B-11|

Apply transactions for a replicate serially

You can specify to apply replicated transactions for a
specific replicate serially. By default, replicated
transactions are applied in parallel. If Enterprise
Replication detects deadlock conditions, it automatically
reduces the parallelism for the replication system until
the problem is resolved. If you have a replicate that
consistently reduces parallelism or your application
requires serial processing, include the --serial option
when you define or modify a replicate. By isolating a
problematic replicate, you can improve the performance
of the rest of the replication system. The onstat -g rcv full
command displays the number of concurrent transactions
and whether any replicate is preventing parallel
processing.

[“cdr define replicate” on page A-77]

xviil IBM Informix Enterprise Replication Guide

Table 5. What's New in IBM Informix Enterprise Replication Guide for 12.10.xC1 (continued)

Overview

Reference

Replicate tables without primary keys or ERKEY columns

Enterprise Replication requires a unique key to replicate
data. Previously, Enterprise Replication required that the
replicated table definition included a primary key or the
ERKEY shadow columns. ERKEY columns require extra
storage space. You can now specify the columns in a
unique index as the replication key with the --key option,
or allow Enterprise Replication to assign a primary key,
ERKEY columns, or a unique index as the replication key
with the --anyUniqueKey option.

[“Unique key for replication” on page 4-3|

[“cdr define replicate” on page A-77]

[“cdr define template” on page A-98]

Replicate time-series data

You can replicate time-series data with Enterprise
Replication. For example, if you collect time-series data in
multiple locations, you can consolidate the data to a
central server.

[“Replication of TimeSeries data types” on page 4-7|

Grid queries for consolidating data from multiple grid
servers

You can write a grid query to select data from multiple
servers in a grid. Use the new GRID clause in the
SELECT statement to specify the servers on which to run
the query. After the query is run, the results that are
returned from each of the servers are consolidated.

[“Grid queries” on page 9-19|

Defer the propagation of DDL statements in a grid

You can run DDL statements in a grid context on a local
server but defer the propagation of the DDL statements to
the other grid servers. After you test the effects of the
DDL statement, you can propagate the deferred DDL
statements or remove them. You specify whether to defer
the propagation of DDL statements in the
ifx_grid_connect() procedure, and whether to enable
Enterprise Replication for the deferred DDL statements.

[“ifx_grid_connect() procedure” on page C-1|

Replicates are mastered by default

By default, Enterprise Replication replicates are master
replicates. If you do not specify a master server with the
--master option, the master replicate is based on the first
participant. A master replicate uses saved dictionary
information about the attributes of replicated columns to
verify that participants conform to the specified schema.
To create a classic replicate, which does not verify the
schemas of participants, include the --classic option in the
cdr define replicate command.

[“cdr define replicate” on page A-77

Introduction

Xix

Table 5. What's New in IBM Informix Enterprise Replication Guide for 12.10.xC1 (continued)

Overview

Reference

Simplified setup of a data consolidation system

In a data consolidation system, multiple primary servers
that contain different data replicate to one target server.
The target server does not replicate any data. You can
easily set up a data consolidation replication system by
defining a replicate and specifying that the primary
servers are participants that send only data. Previously,
you would configure this type of data consolidation
system by defining a different replicate for each primary
server.

[“Data consolidation” on page 5-2|

[“Participant and participant modifier” on page A-4|

Enterprise Replication supported among non-root servers

You can replicate data among database servers that have
non-root installations and that do not have a user
informix account. The servers must have the same owner.
Previously, Enterprise Replication required servers to
connect as user informix.

[“Enterprise Replication Server administrator” on page 3-1|

Easily propagate external files through a grid

You can propagate external files that are in a specific
directory to other servers in the grid by running the
ifx_grid_copy() procedure. For example, if a grid has 50
servers, you can copy an executable file from one server
to the other 49 servers by running one procedure.

[“Propagating external files through a grid” on page 9-16|

Monitor the status of Enterprise Replication queues

You can check the status of Enterprise Replication queues
by using the cdr check queue command. Check the
queue status before you run a command that might have
a dependency on a previously run command.

[“cdr check queue” on page A-47|

Replicate light-append operations

Unlogged changes to a table, such as when data is added
by a light append, can be replicated through Enterprise
Replication. For example, you can use the express-load
operation of the Informix High-Performance Loader
(HPL).

[“Load and unload data” on page 6-23|

Example code conventions

Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

DELETE FROM customer

WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

XX IBM Informix Enterprise Replication Guide

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB-Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation

Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
[http:/ /www.ibm.com /software/data/sw-library /|

Compliance with industry standards

IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

How to read the syntax diagrams

Syntax diagrams use special components to describe the syntax for SQL statements
and commands.

Read the syntax diagrams from left to right and top to bottom, following the path
of the line.

The double right arrowhead and line symbol »»— indicates the beginning of a
syntax diagram.

The line and single right arrowhead symbol — indicates that the syntax is
continued on the next line.

The right arrowhead and line symbol »— indicates that the syntax is continued
from the previous line.

The line, right arrowhead, and left arrowhead symbol —»« symbol indicates the
end of a syntax diagram.

Syntax fragments start with the pipe and line symbol |— and end with the —|
line and pipe symbol.

Required items appear on the horizontal line (the main path).

Introduction XXi

http://www.ibm.com/software/data/sw-library/

xxii

»>—required_item

Optional items appear below the main path.

v
A

»>—required_item

If you can choose from two or more items, they appear in a stack.

I—optional_z’ tem—|

If you must choose one of the items, one item of the stack appears on the main

path.

»>—required i tem—E

required_choicel
required _choice2:

If choosing one of the items is optional, the entire stack appears below the main

path.

»>—required_item

If one of the items is the default, it will appear above the main path,
remaining choices will be shown below.

>

|—de faul t_choice—|

ptional_choicel
ptional choice2

Y
A

and the

»>—required_item izo
0

ptional_choice

ptional_choice:‘

An arrow returning to the left, above the main line, indicates an item that can be
repeated. In this case, repeated items must be separated by one or more blanks.

»»—required item—

—repeatable_item

v
A

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

»>—required_item

v

H)

repeatable_item

v
A

A repeat arrow above a stack indicates that you can make more than one choice

from the stacked items or repeat a single choice.

IBM Informix Enterprise Replication Guide

SQL keywords appear in uppercase (for example, FROM). They must be spelled
exactly as shown. Variables appear in lowercase (for example, column-name). They
represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Sometimes a single variable represents a syntax segment. For example, in the
following diagram, the variable parameter-block represents the syntax segment
that is labeled parameter-block:

A\
A

»—required_item—-l parameter-block i
parameter-block:

parameterl I
parameter?2 par‘ameter3:|J

|:parame ter4

How to provide documentation feedback

You are encouraged to send your comments about IBM Informix product
documentation.

Add comments about documentation to topics directly in IBM Knowledge Center
and read comments that were added by other users. Share information about the
product documentation, participate in discussions with other users, rate topics, and
more!

Feedback is monitored by the team that maintains the user documentation. The
comments are reserved for reporting errors and omissions in the documentation.
For immediate help with a technical problem, contact IBM Software Support at
[http:/ /www.ibm.com/planetwide /|

We appreciate your suggestions.

Introduction XXxiii

http://www.ibm.com/planetwide/

xxiv IBM Informix Enterprise Replication Guide

Part 1. About Enterprise Replication

IBM Informix Enterprise Replication generates and manages multiple copies of
data at one or more sites, which allows an enterprise to share corporate data
throughout its organization.

These topics provide an overview of IBM Informix Enterprise Replication and how
to administer it.

© Copyright IBM Corp. 1996, 2015

IBM Informix Enterprise Replication Guide

Chapter 1. IBM Informix Enterprise Replication technical
overview

IBM Informix Enterprise Replication is an asynchronous, log-based tool for
replicating data between IBM Informix database servers. Enterprise Replication on
the source server captures transactions to be replicated by reading the logical log,
storing the transactions, and reliably transmitting each transaction as replication
data to the target servers.

At each target server, Enterprise Replication receives and applies each transaction
contained in the replication data to the appropriate databases and tables as a
normal, logged transaction.

Enterprise Replication Terminology

You must understand Enterprise Replication terminology.

The following terms define the data in an Enterprise Replication system and how it
is treated:

* Enterprise Replication server
* Shard server

* Replication key
* Replicate

* Master Replicate
* Shadow Replicate
* Participant

* Replicate Set

* Template

* Global Catalog

* Grid

Enterprise Replication server

An Enterprise Replication server, or replication server, is the IBM Informix database
server that participates in data replication.

The replication server maintains information about the replication environment,
which columns are replicated, and the conditions under which the data is
replicated. This information is stored in a database, syscdr, that the database server
creates when it is initialized. Multiple database servers can be on the same physical
computer, and each database server can participate in Enterprise Replication.

Shard server
A shard server is a database server that participates in data replication and receives

horizontally partitioned (sharded) data. A shard cluster is the group of database
servers over which a table or collection is partitioned.

© Copyright IBM Corp. 1996, 2015 1-1

Replication key

A replication key consists of one or more columns that uniquely identifies each
replicated row. The replication key must be the same on all servers that participate
in the replicate. Typically, the replication key is a primary key constraint.
Otherwise, you can specify ERKEY shadow columns or another unique index as
the replication key.

The replication key for a shard cluster consists of a single column, and is called a
shard key.

Replicate
A replicate defines the replication participants and various attributes of how to

replicate the data, such as frequency and how to handle any conflicts during
replication.

For more information, see [“Define a replicate” on page 8-7|and |“cdr define]
[replicate” on page A-77

Master replicate

A master replicate is a replicate that guarantees data integrity by verifying that
replicated tables on different servers have consistent column attributes. Master
replicates also support alter operations on replicated tables.

Shadow replicate

A shadow replicate is a copy of an existing (primary) replicate. Shadow replicates
allow Enterprise Replication to manage alter and repair operations on replicated
tables.

Participant

A participant specifies the data (database, table, and columns) to replicate and the
database servers to which the data replicates.

Replicate set

A replicate set combines several replicates to form a set that can be administered
together as a unit.

Template

A template provides a mechanism to set up and deploy replication for a group of
tables on one or more servers. A template is especially useful if you have many
tables to replicate between many servers. A template defines a group of master
replicates and a replicate set for a specified group of tables that are based on
attributes such as database, tables, columns, and primary keys from the master
node.

You create a template by running the cdr define template command and then
instantiate, or realize, it on servers with the cdr realize template command.

1-2 IBM Informix Enterprise Replication Guide

Global catalog

Each database server that participates in Enterprise Replication maintains tables in
the syscdr database to track Enterprise Replication configuration information and
state. For all root and nonroot replication servers, this catalog is a global catalog that
maintains a global inventory of Enterprise Replication configuration information.
The global catalog is created when you define the server for replication.

The global catalog includes the following information:

* Enterprise Replication server definitions and state

* Routing and connectivity information

* Replicate definitions and state

* Participant definitions and state

* Replicate set definitions and state

* Conflict detection and resolution rules and any associated SPL routines

Grid

A grid is a set of replication servers that you can administer as a unit. When you
run SQL data definition statements from within a grid context on one server in the
grid, they are propagated to all other servers in the grid. You can run SQL data
manipulation statements and routines through grid routines. You can propagate
external files to other servers in the grid. You can run grid queries to consolidate
data from multiple grid servers.

Related concepts:

[“Connect Option” on page A-3|
Related tasks:
[“Customizing the Replication Server Definition” on page 8-6|

[“Connect to another replication server” on page 11-3|

Asynchronous Data Replication

Enterprise Replication uses asynchronous data replication to update the databases
that reside at a replicated site after the primary database has committed a change.

With asynchronous replication, the delay to update the replicated-site databases
can vary depending on the business application and user requirements. However,
the data eventually synchronizes to the same value at all sites. The major benefit of
this type of data replication is that if a particular database server fails, the
replication process can continue and all transactions in the replication system will
be committed.

In contrast to this, synchronous data replication replicates data immediately when
the source data is updated. Synchronous data replication uses the two-phase commit
technology to protect data integrity. In a two-phase commit, a transaction is
applied only if all interconnected distributed sites agree to accept the transaction.
Synchronous data replication is appropriate for applications that require immediate
data synchronization. However, synchronous data replication requires that all
hardware components and networks in the replication system be available at all
times. For more information about synchronous replication, refer to the discussion
of two-phase commit in your IBM Informix Administrator’'s Guide.

Chapter 1. IBM Informix Enterprise Replication technical overview 1-3

Asynchronous replication is often preferred because it allows for system and
network failures.

Asynchronous replication allows the following replication models:

* Primary-target (“Primary-Target Replication System” on page 5-1)

All database changes originate at the primary database and are replicated to the
target databases. Changes at the target databases are not replicated to the
primary.

* Update-anywhere (“Update-Anywhere Replication System” on page 5-5)

All databases have read and write capabilities. Updates are applied at all
databases.

The update-anywhere model provides the greater challenge in asynchronous
replication. For example, if a replication system contains three replication sites that
all have read and write capabilities, conflicts occur when the sites try to update the
same data at the same time. Conflicts must be detected and resolved so that the
data elements eventually have the same value at every site. For more information,
see [“Conflict Resolution” on page 5-6.

Log-Based Data Capture

Enterprise Replication uses log-based data capture to gather data for replication.
Enterprise Replication reads the logical log to obtain the row images for tables that
participate in replication and then evaluates the row images.

Log-based data capture takes changes from the logical log and does not compete
with transactions for access to production tables. Log-based data-capture systems
operate as part of the normal database-logging process and thus add minimal
overhead to the system.

Two other methods of data capture, which Enterprise Replication does not support,
include:

* Trigger-based data capture
A trigger is code in the database that is associated with a piece of data. When
the data changes, the trigger activates the replication process.

* Trigger-based transaction capture
A trigger is associated with a table. Data changes are grouped into transactions
and a single transaction might trigger several replications if it modifies several
tables. The trigger receives the whole transaction, but the procedure that

captures the data runs as a part of the original transaction, thus slowing down
the original transaction.

High Performance

1-4

Enterprise Replication provides high performance by not overly burdening the
data source and by using networks and all other resources efficiently.

Because Enterprise Replication captures changes from the logical log instead of
competing with transactions that access production tables, Enterprise Replication
minimizes the effect on transaction performance. Because the capture mechanism is
internal to the database, the database server implements this capture mechanism
efficiently. For more information, see [‘Log-Based Data Capture.”|

IBM Informix Enterprise Replication Guide

All Enterprise Replication operations are performed in parallel, which further
extends the performance of Enterprise Replication.

High Availability

Because Enterprise Replication implements asynchronous data replication, network
and target database server outages are tolerated. In the event of a database server
or network failure, the local database server continues to service local users. The
local database server stores replicated transactions in persistent storage until the
remote server becomes available.

If high availability is critical, you can use high-availability clusters in conjunction
with Enterprise Replication. High-availability clusters support synchronous data
replication between database servers: a primary server, which can participate in
Enterprise Replication, and one or more secondary servers, which do not
participate in Enterprise Replication. If a primary server in a high-availability
cluster fails, a secondary server can take over the role of the primary server,
allowing it to participate in Enterprise Replication. Client connections to the
original primary server can be automatically switched to the new standard server.

For more information on using high-availability clusters with Enterprise
Replication, see |[Chapter 7, “Using High-Availability Clusters with Enterprise|
[Replication,” on page 7-1]

Consistent Information Delivery

IBM Informix Enterprise Replication protects data integrity. All IBM Informix
Enterprise Replication transactions are stored in a reliable queue to maintain the
consistency of transactions.

IBM Informix Enterprise Replication uses a data-synchronization process to ensure
that transactions are applied at the target database servers in any order equivalent
to the order that they were committed on the source database server. If Enterprise
Replication can preserve the consistency of the database, Enterprise Replication
might commit transactions in a slightly different order on the target database.

If update conflicts occur, IBM Informix Enterprise Replication provides built-in
automatic conflict detection and resolution. You can configure the way conflict
resolution behaves to meet the needs of your enterprise. For more information, see
[“Conflict Resolution” on page 5-6

Repair and Initial Data Synchronization

Enterprise Replication provides initial data synchronization and multiple methods
to repair replicated data.

You can easily bring a new table up-to-date with replication when you start a new
replicate, or when you add a new participant to an existing replicate, by specifying
an initial synchronization. Initial synchronization can be run online while
replication is active.

If replication has failed for some reason, you can repair replicated data by running
the cdr sync replicate or cdr sync replicateset command to resynchronize data and
correct data mismatches between replicated tables. You can repair data while
replication is active.

Chapter 1. IBM Informix Enterprise Replication technical overview 1-5

You can also repair data after replication has failed by using ATS and RIS
files.Enterprise Replication examines the specified ATS or RIS file and attempts to
reconcile the rows that failed to be applied.

Related concepts:

[‘Resynchronizing Data among Replication Servers” on page 11-14|
Related tasks:

[“Initially Synchronizing Data Among Database Servers” on page 8-20|
[‘Repairing Failed Transactions with ATS and RIS Files” on page 11-22|

Flexible Architecture

Enterprise Replication allows replications based on specific business and
application requirements and does not impose model or methodology restrictions
on the enterprise.

Enterprise Replication supports both primary-target and update-anywhere
replication models.

Enterprise Replication supports the following network topologies:
* Fully connected

Continuous connectivity between all participating database servers.
* Hierarchical tree

A parent-child configuration that supports continuous and intermittent
connectivity.

* Forest of trees
Multiple hierarchical trees that connect at the root database servers.

You can add High-Availability Data Replication to any of these topologies.

Enterprise Replication supports all built-in IBM Informix data types, as well as
extended and user-defined data types.

Enterprise Replication operates in LAN, WAN, and combined LAN/WAN
configurations across a range of network transport protocols.

Enterprise Replication supports the Global Language Support (GLS) feature, which
allows IBM Informix products to handle different languages, regional conventions,
and code sets.

Related concepts:

[“Primary-Target Replication System” on page 5-1
[“Update-Anywhere Replication System” on page 5-5|
[“Choosing a Replication Network Topology” on page 5-16|

[‘Replication and data types” on page 4-6|
[Global language support for replication” on page 3-5|

Centralized Administration

Enterprise Replication allows administrators to easily manage all the distributed
components of the replication system from a single point of control.

1-6 IBM Informix Enterprise Replication Guide

You can use the command-line utility (CLU) to administer the replication system
from your system command prompt and connect to other servers involved in

replication, as necessary. For information, see [Appendix A, “The cdr utility,” on|
—ae A-1.

Ease of Implementation

Enterprise Replication provides templates to allow easy set up and deployment of
replication for clients with large numbers of tables to replicate. Administrators of
Enterprise Replication can use templates to develop scripts and with only a few
commands can set up replication over a large number of server nodes. Without
using templates, many individual commands must be run. Using templates, you
can also easily add a new server into your replication environment and optionally
create and populate new database tables.

First, you create a template using the cdr define template command. This defines
the database, tables, and columns and the characteristics of the replicates that will
be created. You can view information about a template by using the cdr list
template command from a non-leaf node.

Second, you instantiate the template on the servers where you want to replicate
this data by running the cdr realize template command. If the table already exists
on a node, Enterprise Replication verifies it matches the template definition. If the
table does not exist on a node, Enterprise Replication can optionally create the
table. Enterprise Replication can also optionally perform an initial data
synchronization on all servers where you realize the template.

You can delete templates that you no longer need using the cdr delete template
command.

See [“Set up replication through templates” on page 8-21| for more information. All
replication commands mentioned in this section are described in detail in
[Appendix A, “The cdr utility,” on page A-1]

Network Encryption

Enterprise Replication supports the same network encryption options that you can
use with communications between server and clients to provide complete data
encryption.

You can use the Secure Sockets Layer (SSL) protocol, a communication protocol
that ensures privacy and integrity of data transmitted over the network, for
connections between Enterprise Replication servers. For information on using the
SSL protocol, see [Secure sockets layer protocoll

You can use encryption configuration parameters to provide data encryption with
a standard cryptography library. A message authentication code (MAC) is
transmitted as part of the encrypted data transmission to ensure data integrity.
This is the same type of encryption provided by the ENCCSM communications
support module for non-replication communication. Enterprise Replication shares
the same ENCRYPT_CIPHERS, ENCRYPT_MAC, ENCRYPT_MACFILE, and
ENCRYPT_SWITCH configuration parameters with high availability clusters.
Enterprise Replication encryption configuration parameters are documented in
Appendix B, “Enterprise Replication configuration parameter and environment]
variable reference,” on page B-1.|

Chapter 1. IBM Informix Enterprise Replication technical overview 1-7

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sec.doc/ids_ssl_001.htm

Enterprise Replication cannot accept a connection that is configured with a
communications support module. To combine client/server network encryption
with Enterprise Replication encryption, configure two network connections for
each database server, one with CSM and one without. For more information, see
[‘Configuring network encryption for replication servers” on page 6-6.

1-8 IBM Informix Enterprise Replication Guide

Chapter 2. How Enterprise Replication Replicates Data

Before you can replicate data, you must declare a database server for replication
and define the replicates (the data to replicate and the database servers that
participate in replication). To declare a database server for replication, see
“Defining Replication Servers” on page 8-1]To define replicates, see |[Define
replicate” on page 8-7J|Appendix H, “Replication Examples,” on page H-1)has
simple examples of declaring replication servers and defining replicates.

After you define the servers and replicates, Enterprise Replication replicates data in
three phases:

1. [“Data Capture” on page 2-2|

2. |“Data Transport” on page 2-7|

3. [“Applying replicated data” on page 2-7|

The following diagram shows these three phases of replication and the Enterprise
Replication components that perform each task.

Capture Transport Apply

: ,

1. Client

applilcation

D Database
G |

Database
| L—1 4—‘ 8. Data Sync ‘
4. Grouper e
e] / \ 9. Ack Queue
10

2. Logical Log 3 Network \
D /

Spool 5. Send Queue 7. Receive Queue

ﬁ) Source Server Target Server

Figure 2-1. The Life Cycle of a Replicated Transaction

As shown in the diagram, the following process describes how Enterprise
Replication replicates a transaction:

1. A client application performs a transaction in a database that is defined as a
replicate.

2. The transaction is put into the logical log.

3. The log capture component, also known as the snoopy component, reads the
logical log and passes the log records onto the grouper component.

4. The grouper component evaluates the log records for replication and groups
them into a message that describe the operations that were in the original
transaction.

© Copyright IBM Corp. 1996, 2015 2-1

5. The grouper component places the message in the send queue. Under certain
situations, the send queue spools messages to disk for temporary storage.

6. The send queue transports the replication message across the Enterprise
Replication network to the target server.

7. The replication message is placed in the receive queue at the target server.

8. The data sync component applies the transaction in the target database. If
necessary, the data sync component performs conflict resolution.

9. An acknowledgment that the message was successfully applied is placed in
the acknowledgment queue.

10. The acknowledgment message is sent back to the source server.

Data Capture

As the database server writes rows to the logical log, it marks rows that should be
replicated. Later, Enterprise Replication reads the logical log to obtain the row
images for tables that participate in replication.

IBM Informix database servers manage the logical log in a circular fashion; the
most recent logical-log entries write over the oldest entries. Enterprise Replication
must read the logical log quickly enough to prevent new logical-log entries from
overwriting the logs Enterprise Replication has not yet processed.

If the database server comes close to overwriting a logical log that Enterprise
Replication has not yet processed, by default, user transactions are blocked until
Enterprise Replication advances. You can specify other responses to the potential
for overwriting the Enterprise Replication replay position.

The row images that participate in replication are passed to Enterprise Replication
for further evaluation.

Row Images

Enterprise Replication evaluates the initial and final images of a row and any
changes that occur between the two row images to determine which rows to
replicate. Each row image contains the data in the row and the action that is
performed on that row.

A row might change more than once in a particular transaction. For example, a
transaction might insert and then update a row before committing. Enterprise
Replication evaluates the net effect (final state) of a transaction based on the row
buffers in the log. Enterprise Replication then determines what must be replicated,
based on the net effect, the initial state of the row, and whether the replicate
definition (in particular, the WHERE clause) applies to the initial and final state.
Enterprise Replication evaluates the row-image type (INSERT, UPDATE, DELETE),
the results of evaluating the replicate WHERE clause for both the initial and final
image, and whether the replication key changes as a result of the transaction.

The following table shows the logic that determines which rows are candidates for
replication. The source and destination tables are assumed to be initially
synchronized (identical before replication begins). If the tables were not
synchronized, anomalous behavior might result.

2-2 IBM Informix Enterprise Replication Guide

Table 2-1. Enterprise Replication Evaluation Logic

Replication- | Send to
Initial Replicate Replicate Key Destination
Image Evaluates Final Image |Evaluates Changed? Database Server | Comments
INSERT TorF DELETE TorF Yes or no Nothing Net change of
transaction results in no
replication
INSERT TorF UPDATE T Yes or no INSERT with final |Inserts final data of
row image transaction
INSERT TorF UPDATE F Yes or no Nothing Final evaluation
determines no
replication
UPDATE T DELETE T or F Yes or no DELETE with Net result of transaction
initial row image |is delete
UPDATE F DELETE TorF Yes or no Nothing Net change of
transaction results in no
replication
UPDATE T UPDATE T Yes DELETE with Ensures old replication
initial row image |key does not replicate
and INSERT with
final row image
UPDATE T UPDATE T No UPDATE with Simple update
final row image
UPDATE T UPDATE F Yes or no DELETE with Row no longer matches
initial row image |replicate definition
UPDATE F UPDATE T Yes or no INSERT with final | Row now matches
row image replicate definition
UPDATE F UPDATE F Yes or no Nothing No match exists, and
therefore, no replication

Evaluate rows for updates

The following rules apply to the information in the table:

* The initial image is the before image of the transaction in the logical log.

* The replicate evaluates to T (true) or F (false).

* The final image is the image of the transaction that is replicated.

After Enterprise Replication identifies transactions that qualify for replication,
Enterprise Replication transfers the transaction data to a queue.

Enterprise Replication evaluates rows for replication-key updates, for
WHERE-clause column updates, and for multiple updates to the same row.

The following list describes an occurrence in a transaction and the Enterprise
Replication action:

* Replication-key updates

Enterprise Replication translates an update of the replication key into a delete of
the original rows and an insert of the row images with the new replication key.
If triggers are enabled on the target system, insert triggers are run.

* WHERE-clause column updates

Chapter 2. How Enterprise Replication Replicates Data

2-3

2-4

If a replicate includes a WHERE clause in its data selection, the WHERE clause
imposes selection criteria for rows in the replicated table.

— If an update changes a row so that it no longer passes the selection criteria on
the source, it is deleted from the target table. Enterprise Replication translates
the update into a delete and sends it to the target.

— If an update changes a row so that it passes the selection criteria on the
source, it is inserted into the target table. Enterprise Replication translates the
update into an insert and sends it to the target.

* Multiple-row images in a transaction

Enterprise Replication compresses multiple-row images and only sends the net
change to the target. Because of this, triggers might not execute on the target
database. For more information, see [“Triggers” on page 4-4|

Enterprise Replication supports the replication of BYTE and TEXT data types
(simple large objects) and BLOB and CLOB data types (smart large objects), and
opaque user-defined data types, as well as all built-in IBM Informix data types.
However, Enterprise Replication implements the replication of these types of data
somewhat differently from the replication of other data types. For more
information, see [“Replication of large objects” on page 4-8)and [“Replication of]
[opaque user-defined data types” on page 4-10)

Send queues and receive queues

Enterprise Replication uses send and receive queues to receive and deliver
replication data to and from database servers that participate in a replicate.

Send queue
Enterprise Replication stores replication data in memory to be delivered to
target database servers that participate in a replicate. If the send queue
fills, Enterprise Replication spools the send-queue transaction records to a
dbspace and the send-queue row data to an sbspace.

Receive queue
Enterprise Replication stores replication data in memory at the target
database server until the target database server acknowledges receipt of the
data. If the receive queue fills as a result of a large transaction, Enterprise
Replication spools the receive queue transaction header and replicate
records to a dbspace and the receive queue row data to an sbspace.

The data contains the filtered log records for a single transaction. Enterprise
Replication stores the replication data in a stable (recoverable) send queue on the
source database server. Target sites acknowledge receipt of data when it is applied
to or rejected from the target database.

If a target database server is unreachable, the replication data remains in a stable
queue at the source database server. Temporary failures are common, and no
immediate action is taken by the source database server; it continues to queue
transactions. When the target database server becomes available again, queued
transactions are transmitted and applied.

If the target database server is unavailable for an extended period, the send queue
on the source database server might use excessive resources. In this situation, you
might not want to save all transactions for the target database server. To prevent
unlimited transaction accumulation, you can remove the unavailable target

IBM Informix Enterprise Replication Guide

database server from the replicate. Before the database server that is removed
rejoins any replicate, however, you must synchronize (bring tables to consistency)
with the other database servers.

Related concepts:
[“Transaction processing impact” on page 3-2|
[“Setting Up Send and Receive Queue Spool Areas” on page 6-10|

[“Applying replicated data” on page 2-7|
Related tasks:
[“Preventing Memory Queues from Overflowing” on page 12-14|

Data Evaluation Examples

[Figure 2-2| [Figure 2-3 on page 2-6, and [Figure 2-4 on page 2-6| show three examples
of how Enterprise Replication uses logic to evaluate transactions for potential
replication.

Replicate SQL=SELECT emp_id, salary FROM employee WHERE exempt = "N

dallas_office phoenix_office

BEGIN WORK;

INSERT INTO employee
VALUES (927, "Smith"...

N
DELETE FROM employee
WHERE emp_id=927

COMMIT WORK;

Figure 2-2. Insert Followed by a Delete

shows a transaction that takes place at the Dallas office. Enterprise
Replication uses the logic in [Table 2-2| to evaluate whether any information is sent
to the destination database server at the Phoenix office.

Table 2-2. Insert Followed by a Delete Evaluation Logic

Send to
Replicate |Final Replicate | Primary-Key Destination
Initial Image |Evaluates |Image Evaluates |Changed? Database Server
INSERT TorF DELETE |TorF Yes or no Nothing

Enterprise Replication determines that the insert followed by a delete results in no
replication operation; therefore, no replication data is sent.

In [Figure 2-3 on page 2-6, Enterprise Replication uses the logic in [Table 2-3 on page]
R2-6| to evaluate whether any information is sent to the destination database server.

Chapter 2. How Enterprise Replication Replicates Data 2-5

2-6

dallas_office

BEGIN WORK;

INSERT INTO employee
VALUES (927, "Smith", "N" .|.

Replicate SQL=SELECT emp_id, salary FROM employee WHERE exempt = "N";

phoenix_office

BEGIN WORK;

UPDATE employee
SET Iname = "Jones"
WHERE emp_id = 927

N

COMMIT WORK;

INSERT INTO employee
VALUES (927, "Jones" ...

COMMIT WORK;

Figure 2-3. Insert Followed by an Update

Table 2-3. Insert Followed by An Update Evaluation Logic

Initial Replicate |Final Replicate | Primary-Key |Send to Destination

Image Evaluates |Image Evaluates |Changed? Database Server

INSERT TorF UPDATE |T Yes or no INSERT with final row
image

The replicate WHERE clause imposes the restriction that only rows are replicated
where the exempt column contains a value of "N." Enterprise Replication evaluates
the transaction (an insert followed by an update) and converts it to an insert to
propagate the updated (final) image.

In Enterprise Replication uses the logic in [Table 2-4 on page 2-7| to
evaluate whether any information is sent to the destination database server.

dallas_office

phoenix_office

BEGIN WORK;

Replicate SQL=SELECT emp_id, salary FROM employee WHERE exempt = "N";

BEGIN WORK;

UPDATE employee
SET EXEMPT ="N"
WHERE emp_id = 927

COMMIT WORK;

INSERT INTO employee
VALU

ES (927, "Jones', ...

COMMIT WORK;

IBM Informix Enterprise Replication Guide

Figure 2-4. Update; Not Selected to Selected

Table 2-4. Update; Not Selected to Selected Evaluation Logic

Replicate Replicate Primary-Key Send to Destination Database
Initial Image |Evaluates Final Image |Evaluates Changed? Server
UPDATE F UPDATE T Yes or no INSERT with final row image

The example shows a replicate WHERE clause column update. A row that does not
meet the WHERE clause selection criteria is updated to meet the criteria.
Enterprise Replication replicates the updated row image and converts the update
to an insert.

Data Transport

Enterprise Replication ensures that all data reaches the appropriate server,
regardless of a network or system failure. In the event of a failure, Enterprise
Replication stores data until the network or system is operational. Enterprise
Replication replicates data efficiently with a minimum of data copying and
sending.

Applying replicated data

IBM Informix Enterprise Replication uses a data-synchronization process to apply
the replicated data to target database servers.

The target database servers acknowledge receipt of data when the data is applied
to the target database. Data modifications that results from synchronization,
including modifications that result from trigger invocation, are not replicated. The
data-synchronization process ensures that transactions are applied at the target
database servers in an order equivalent to the order that they were committed on
the source database server. If consistency can be preserved, Enterprise Replication
might commit transactions out of order on the target database.

When Enterprise Replication applies replication data, it checks to make sure that
no collisions exist. A collision occurs when two database servers update the same
data simultaneously. Enterprise Replication reviews the data one row at a time to
detect a collision.

If Enterprise Replication finds a collision, it must resolve the conflict before
applying the replication data to the target database server.

Chapter 2. How Enterprise Replication Replicates Data 2-7

2-8

Pakistan

Time= 12:29:25 2
Products (in inventory) v

India Pakistan Column Column ,""
field value field value ™
field value w®
Bangkok field value .

». Bangkok

4
Time= 12:29:27

Figure 2-5. Collision Example

The previous illustration shows a situation that yields a conflict. Pakistan updates
the row two seconds before Bangkok updates the same row. The Bangkok update
arrives at the India site first, and the Pakistan update follows. The Pakistan time is
earlier than the Bangkok time. Because both updates involve the same data and a
time discrepancy exists, Enterprise Replication detects a collision.

For more information, see [‘Conflict Resolution” on page 5-6

Enterprise Replication scans to see if the same replication key exists in the target
table or in the associated delete table, or if a replication order error is detected. A
delete table stores the row images of deleted rows. A replication order error is the
result of replication data that arrives from different database servers with one of
the following illogical results:

* A replicated DELETE that finds no row to DELETE on the target
* An UPDATE that finds no row to UPDATE on the target

* An INSERT that finds a row that exists on the target

Related concepts:

[‘Send queues and receive queues” on page 2-4|

IBM Informix Enterprise Replication Guide

Part 2. Planning and designing for Enterprise Replication

Before you set up your replication system, plan how to include Enterprise
Replication into your database server environment, design your database schema
by following Enterprise Replication requirements, and then design your replication
system between database servers.

© Copyright IBM Corp. 1996, 2015

IBM Informix Enterprise Replication Guide

Chapter 3. Plan for Enterprise Replication

Before you design a replication system, you must understand how Enterprise
Replication interacts with the database server and the other requirements of
Enterprise Replication. Many aspects of the Informix database server can affect
how you deploy Enterprise Replication.

Enterprise Replication Server administrator

You need special privileges to run most Enterprise Replication commands.

To configure and manage Enterprise Replication, you must have one of the
following roles or privileges:

* Be the owner of a non-root server
* Have the Database Server Administrator (DBSA) privilege

* Be user informix (UNIX) or a be a member of the Informix-Admin group
(Windows)

All servers in the replication domain must have the same owner.

Related concepts:

[“Interpret the cdr utility syntax” on page A-1|
Related tasks:
[“Defining Replication Servers” on page 8-1|

Related information:

[crant admin argument: Grant privileges to run SQL administration API commands|

Asynchronous propagation conflicts

Enterprise Replication asynchronously propagates many control operations through
the Enterprise Replication network. Avoid operations that might conflict during
propagation.

When you perform administrative functions using Enterprise Replication, the
status that returns from those operations indicates the success or failure of the
operation at the database server to which you are directly connected. The
operation might still be propagating through the other Enterprise Replication
database servers in the network at that time. It might take a significant amount of
time before the operation is propagated to database servers that are not connected
to the Enterprise Replication network at all times.

Due to this asynchronous propagation, avoid performing control operations in
quick succession that might directly conflict with one another without verifying
that the first operation was successfully propagated through the entire enterprise
network. Specifically, avoid deleting Enterprise Replication objects such as
replicates, replicate sets, and Enterprise Replication servers, and immediately
recreating those objects with the same name. Doing so can cause failures in the
Enterprise Replication system at the time of the operation or later. These failures
might manifest themselves in ways that do not directly indicate the source of the
problem.

© Copyright IBM Corp. 1996, 2015 3-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_145.htm

If you must recreate a deleted definition with the same name, run the cdr check
queue command to make sure that the command is complete on all servers before
recreating the definition.

You can also use a different name for the new object (for example, delete replicate
a.001 and recreate it as a.002) or wait until the delete action was successfully
propagated through the entire Enterprise Replication system before you recreate
the object.

Back up and restore of replication servers

You can back up and restore database servers that participate in Enterprise
Replication.

Do not stop Enterprise Replication before performing a backup on database servers
that participate in replication.

Warm restores are not permitted. You must perform a cold restore up to the
current log of all relevant dbspaces on Enterprise Replication servers before
resuming replication.

If the restore did not include all the log files from the replay position, or the
system was not restored to the current log file, you must advance the log file
unique ID past the latest log file unique ID prior to the restore, and then run the
cdr cleanstart command followed by the cdr sync replicate command to
synchronize the server.

Compression of replicated data

You can compress and uncompress data in replicated tables to reduce the amount
of needed disk space.

You can also consolidate free space in a table or fragment and you can return this
free space to the dbspace. Performing these operations on one Enterprise
Replication server does not affect the data on any other Enterprise Replication
server.

Attention: After you uncompress data on one server, do not remove any
compression dictionaries that another Enterprise Replication server needs.

Related information:

ompressio

Transaction processing impact

3-2

Many variables affect the impact that replicating data has on your transaction
processing.

Replication volume
To determine replication volume, you must estimate how many data rows
change per day. For example, an application issues a simple INSERT
statement that inserts 100 rows. If this table is replicated, Enterprise
Replication must propagate and analyze these 100 rows before applying
them to the targets.

IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1230.htm

Distributed transactions

A distributed transaction is a transaction that commits data in a single
transaction over two or more database servers.

Outside of the replication environment, Informix uses a two-phase commit
protocol to ensure that the transaction is either committed completely
across all servers involved or is not committed on any server. For more
information about the two-phase commit protocol, see the IBM Informix
Administrator’s Guide.

In a replication environment, when a distributed transaction is committed
across the source servers, each part of the transaction that applies to the
local server is written to the local logical logs. When Enterprise Replication
retrieves the transaction from the logical logs and forms its transaction
data, it is unable to identify the separate transaction data as the original
single transaction.

This situation might result in Enterprise Replication applying one
transaction successfully while aborting another. Another result might be a
time lapse between the application of one transaction and another
(depending on how much transaction data is in each server's send queue
and the state of the server).

Large transactions

While Enterprise Replication is able to handle large transactions, it is
optimized for small transactions. For best performance, avoid replicating
large transactions.

Large transactions are handled with a grouper paging file in temporary
smart large objects. Enterprise Replication can process transactions up to 4
TB in size. For more information, see [“Setting Up the Grouper Paging File”|
You can view Enterprise Replication grouper paging statistics
with the onstat -g grp pager command (see [“onstat -g grp: Print grouper]
Istatistics” on page E-8).

Instead of using Enterprise Replication to perform a batch job, use BEGIN
WORK WITHOUT REPLICATION to run the batch job locally on each
database server. For more information, see [“Blocking Replication” on page|
6-18.

Related concepts:

[‘Send queues and receive queues” on page 2-4|

Related tasks:

[“Preventing Memory Queues from Overflowing” on page 12-14|

SQL statements and replication

You can run most SQL statements while replication is active. For some statements,
however, you must set alter mode or stop replication.

You can run the following SQL statements with no limitations while Enterprise
Replication is active:

ADD INDEX

ALTER INDEX . .. TO CLUSTER

ALTER FRAGMENT

ALTER INDEX

ALTER TABLE (except for the replication key)

Chapter 3. Plan for Enterprise Replication 3-3

3-4

* CREATE CLUSTER INDEX

* CREATE SYNONYM

* CREATE TRIGGER

* CREATE VIEW

* DROP INDEX

* DROP SYNONYM

* DROP TRIGGER

» DROP VIEW

* RENAME COLUMN

*+ RENAME DATABASE

* RENAME TABLE

* SET object mode (no disabling of replication key constraint)
* START VIOLATIONS TABLE
» STOP VIOLATIONS TABLE
* TRUNCATE TABLE

After you define Enterprise Replication on a table by including that table as a
participant in a replicate, you cannot exclusively lock a database that is involved in
replication (or perform operations that require an exclusive lock). However, you
can exclusively lock a table in a database.

You can rename both dbspaces and sbspaces while IBM Informix Enterprise
Replication is active.

You cannot use the DROP TABLE SQL statement against a table that is included in
a replicate.

You must first set alter mode with the cdr alter command before you can make
these changes:

* Add shadow columns:
— ALTER TABLE ... ADD CRCOLS;
— ALTER TABLE ... ADD REPLCHECK;
— ALTER TABLE ... ADD ERKEY
* Remove or disable the replication key constraint.

* Modify the replication key columns. For example, alter a column to add default
values or other integrity constraints.

* Change the replication key from one or more columns to others. For example, if
a replication key is defined on coll, you can change the replication key to col2.

You must stop replication before you make these changes:

* Drop conflict resolution shadow columns with ALTER TABLE ... DROP
CRCOLS.

* Add or drop rowids.

SQL statements are limited to a maximum of 15000 bytes.

Related concepts:

[“Preparing Tables for a Consistency Check Index” on page 6-20|

[‘Preparing Tables for Conflict Resolution” on page 6-19)|

[“Alter, rename, or truncate operations during replication” on page 11-23

IBM Informix Enterprise Replication Guide

Related tasks:
[‘Changing or re-creating primary key columns” on page 11-28|

[“Preparing tables without primary keys” on page 6-20|

Related reference:

[“cdr alter” on page A-30|

Related information:

[Enterprise Replication shadow columns|

Global language support for replication

You can replicate data in non-default locales.

An Enterprise Replication system can include databases in different locales, with
the following restrictions:

* When you define a database server for Enterprise Replication, that server must
be running in the U. S. English locale.

The syscdr database on every Enterprise Replication server must be in the
English locale.

* Replicate names can be in the locale of the database.

Code-set conversion with the GLS library requires only those code-set conversion
files found in the $INFORMIXDIR/g1s/cv9 directory.

* For U.S. English, locales are handled automatically by the IBM Informix Client
Software Development Kit (Client SDK) installation and setup.

* For non-U.S. English locales, you might need to explicitly provide the locale and
conversion files.

For information about how to specify a nondefault locale and other considerations
related to GLS locales, see the IBM Informix GLS User’s Guide.

Related concepts:

[“Flexible Architecture” on page 1-6|
Related tasks:

[“Enabling code set conversion between replicates” on page 8-13|

Replication between multiple server versions

You can set up Enterprise Replication across servers of different version levels.

Enterprise Replication stores an internal version number that it communicates to
other servers on initiating a connection with them. Each Enterprise Replication
server instance can only use the features supported by its version level. Attempts
to use features from later releases with previous versions of Enterprise Replication
raise errors.

Chapter 3. Plan for Enterprise Replication 3-5

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2069.htm

3-6 IBM Informix Enterprise Replication Guide

Chapter 4. Schema design for Enterprise Replication

When you design the database and tables for replication, you must follow the
requirements and restrictions for Enterprise Replication.

Unbuffered Logging

Databases on all server instances involved in replication must be created with

logging.

Enterprise Replication evaluates the logical log for transactions that modify tables
defined for replication. If a table defined for replication resides in a database that
uses buffered logging, the transactions are not immediately written to the logical
log, but are instead buffered and then written to the logical log in a block of logical
records. When this occurs, IBM Informix Enterprise Replication evaluates the
buffer of logical-log records all at once. Buffered logging can require more time to
flush the logs to disk. When you define a table for replication in a database created
with unbuffered logging, Enterprise Replication can evaluate the transactions as
they are produced.

Unlogged changes to a table, such as when data is added by a light append, can
be replicated to other tables.

To create a database with unbuffered logging, use:
CREATE DATABASE db_name WITH LOG

To minimize impact on the system, IBM Informix Enterprise Replication uses
buffered logging whenever possible, even if the database is defined as unbuffered.
For more information, see the section on CREATE DATABASE in the IBM Informix
Database Design and Implementation Guide.

Table Types

Enterprise Replication has restrictions on the types of tables that can participate in
replication.

The following table types are not supported by Enterprise Replication:
* RAW tables
* Temporary tables
Because the database server deletes temporary tables when an application

terminates or closes the database, do not include these tables in your replication
environment.

Enterprise Replication imposes the following operational limitations:

* Replication is restricted to base tables. That is, you cannot define a replicate on a
view or synonym. A view is a synthetic table, a synthesis of data that exists in
real tables and other views. A synonym is an alternative name for a table or a
view. For more information about views and synonyms, see the IBM Informix
Database Design and Implementation Guide.

* Replication is not inherited by any child tables in a typed hierarchy.

© Copyright IBM Corp. 1996, 2015 4-1

For more information about table types, see IBM Informix Database Design and
Implementation Guide.

Label-based access control

You cannot apply label-based access control (LBAC) to a table participating in
Enterprise Replication. Nor can you define an Enterprise Replication replicate on a
table that is protected by LBAC.

Out-of-Row Data

Enterprise Replication collects out-of-row data for transmission after the user
transaction has committed. Due to activity on the replicated row, the data might
not exist at the time Enterprise Replication collects it for replication. In such cases,
Enterprise Replication normally applies a NULL on the target system, unless the
data is a smart large object. Therefore, you should avoid placing a NOT NULL
constraint on any replicated column that includes out-of-row data.

If a column has smart large objects and the smart large object data does not exist
when Enterprise Replication collects it for replication, then Enterprise Replication
creates smart large objects with no data and zero size.

Shadow columns

4-2

Shadow columns are hidden columns on replicated tables that contain values that
are supplied by the database server. The database server uses shadow columns to
perform internal operations.

You can add shadow columns to your replicated tables with the CREATE TABLE
or ALTER TABLE statement. To view the contents of shadow columns, you must
explicitly specify the columns in the projection list of a SELECT statement; shadow
columns are not included in the results of SELECT * statements.

The CRCOLS shadow columns, cdrserver and cdrtime, support conflict resolution.
These two columns are hidden shadow columns because they cannot be indexed
and cannot be viewed in the system catalog tables. In an update-anywhere
replication environment, you must provide for conflict resolution using a conflict
resolution rule. When you create a table that uses the time stamp, time stamp plus
SPL, or delete wins conflict resolution rule, you must define the shadow columns,
cdrserver and cdrtime on both the source and target replication servers. If you
plan to use only the ignore or always-apply conflict resolution rule, you do not
need to define the cdrserver and cdrtime shadow columns for conflict resolution.

The REPLCHECK shadow column, ifx_replcheck, supports faster consistency
checking. This column is a visible shadow column because it can be indexed and
can be viewed in the system catalog table. If you want to improve the performance
of the cdr check replicate or cdr check replicateset commands, you can add the
ifx_replcheck shadow column to the replicate table, and then create an index that
includes the ifx_replcheck shadow column and your replication key columns.

The ERKEY shadow columns, ifx_erkeyl, ifx_erkey2, and ifx_erkey3, are used as
the replication key on replicated tables. If you create replicated tables through a
grid, these ERKEY columns are automatically added.

Related concepts:

[“Conflict Resolution” on page 5-6

IBM Informix Enterprise Replication Guide

[“Preparing Tables for Conflict Resolution” on page 6-19|

[‘Shadow column disk space” on page 6-9

[“Preparing Tables for a Consistency Check Index” on page 6-20|

[‘Load and unload data” on page 6-23|

Unique key for replication

All tables that are replicated must have a replication key that is composed of one
or more columns that uniquely identifies each row. The replication key must be the
same on all servers that participate in the replicate. Typically, the replication key is
a primary key constraint.

Replicated tables must use a primary key constraint, a unique index or constraint,
or the ERKEY shadow columns as the replication key. If your table does not have a
primary key or you want to change primary key values while replication is active,
you can specify a different key as the replication key. Specify an existing unique
index or constraint, or the ERKEY shadow columns as the replication key when
you create a replicate. A unique index and a unique constraint are equivalent as
replication keys.

If you specify ERKEY columns as the replication key, Enterprise Replication creates
a unique index and a unique constraint on the ERKEY columns. The ERKEY
columns require storage space.

Important: Because primary key updates are sent as DELETE and INSERT
statement pairs, avoid changing the primary key and updating data in the same
transaction.

Related tasks:
[“Preparing tables without primary keys” on page 6-20]

[‘Changing the replication key of a replicate” on page 11-7]

Cascading Deletes

If a table includes a cascading delete, when a parent row is deleted, the children
are also deleted. If both the parent and child tables participate in replication, the
deletes for both the parent and child are replicated to the target servers.

If the same table definition exists on the target database, Enterprise Replication
attempts to delete the child rows twice. Enterprise Replication usually processes
deletions on the parent tables first and then the children tables. When Enterprise
Replication processes deletions on the children, an error might result, because the
rows were already deleted when the parent was deleted. The table in
indicates how IBM Informix Enterprise Replication resolves cascading deletes with
conflict resolution scopes and rules.

For more information on cascading deletes, see the ON DELETE CASCADE section
in the IBM Informix Guide to SQL: Syntax.

Table 4-1. Resolving Cascade Deletes

Conflict-Resolution Rule | Conflict-Resolution Scope Actions on Delete Errors
Time stamp Row-by-row or transaction Continue processing rest of
the transaction

Chapter 4. Schema design for Enterprise Replication 4-3

Table 4-1. Resolving Cascade Deletes (continued)

Conflict-Resolution Rule

Conflict-Resolution Scope

Actions on Delete Errors

Delete wins

Row-by-row or transaction

Continue processing rest of
the transaction

Ignore

Transaction

Abort entire transaction

Ignore

Row-by-row

Continue processing rest of

the transaction

Triggers

A trigger is a database object that automatically sets off a specified set of SQL
statements when a specified event occurs.

If the --firetrigger option is enabled on a replicate, any triggers defined on a table
that participates in replication are invoked when transactions are processed on the
target server. However, because Enterprise Replication only replicates the final
result of a transaction, triggers execute only once on the target regardless of how
many triggers execute on the source. In cases where the final evaluation of the
transaction results in no replication (for example, an INSERT where the final row
image is a DELETE, as shown in [Table 2-2 on page 2-5), no triggers execute on the
target database.

If the same triggers are defined on both the source and target tables, any insert,
update, or delete operation that the triggers generate are also sent to the target
database server. For example, the target table might receive replicate data caused
by a trigger that also executes locally. Depending on the conflict-resolution rule
and scope, these operations can result in errors. To avoid this problem, define the
replicate to not fire triggers on the target table.

You might want to design your triggers to take different actions depending on
whether a transaction is being performed as part of Enterprise Replication. Use the
'cdrsession’ option of the DBINFO() function to determine if the transaction is a
replicated transaction. The DBINFO('cdrsession') function returns 1 if the thread
performing the database operation is an Enterprise Replication apply or sync
thread; otherwise, the function returns 0.

For more information on triggers, see [“Enabling Triggers” on page 8-13{and the
CREATE TRIGGER section in IBM Informix Guide to SQL: Syntax.

Related information:
[DBINFO Function|

Constraint and replication

When you use constraints, ensure that the constraints you add at the target server
are not more restrictive than the constraints at the source server. Discrepancies
between constraints at the source and target servers can cause some rows to fail to
be replicated.

If your replicated tables that have referential integrity constraints between them,
synchronization the data through the replicate set. For replicate sets, Enterprise
Replication synchronizes tables in an order that preserves referential integrity
constraints (for example, child tables are synchronized after parent tables).

4-4 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1484.htm

When you synchronize data, rows that fail to be repaired due to discrepancies
between constraints are recorded in the ATS and RIS files.

Sequence Objects

In bi-directional Enterprise Replication, if you replicate tables using sequence
objects for update, insert, or delete operations, the same sequence values might be
generated on different servers at the same time, leading to conflicts.

To avoid this problem, define sequence objects on each server so that the ranges of
generated sequence values are distinct. For more information about the CREATE
SEQUENCE and ALTER SEQUENCE statements of SQL, see the IBM Informix
Guide to SQL: Syntax.

The NLSCASE database property

Enterprise Replication supports both case-sensitive databases and NLSCASE
INSENSITIVE databases. (Databases created with the NLSCASE INSENSITIVE
option ignore letter case in operations on NCHAR and NVARCHAR strings, and
on strings of other character data types that are cast explicitly or implicitly to
NCHAR or NVARCHAR data types.)

The database server does not prevent a case-sensitive database from being
replicated by a database that has the NLSCASE INSENSITIVE property, nor the
replication of an NLSCASE INSENSITIVE database by a case-sensitive database.
No warning or exception is issued by the database server in either of these cases
when you define replication participants.

These two types of database behave differently, however, in operations that classify
NCHAR and NVARCHAR strings as duplicates or as distinct values, if the
character strings that are being compared differ only in letter case. It is the user's
responsibility to make sure that replication participants with different NLSCASE
attributes will not cause exceptions or unexpected behavior when replicating the
results of operations like the following on NCHAR or NVARCHAR data:

* sorting and collation

* foreign key and primary key dependencies

* enforcing unique constraints

* clustered indexes

* access-method optimizer directives

* queries with WHERE predicates

* queries with UNIQUE or DISTINCT specifications in the projection clause
* queries with ORDER BY clauses

* queries with GROUP BY clauses

* cascading DELETE operations

* table or index storage fragmentation BY EXPRESSION

* table or index storage fragmentation BY LIST

* data distributions from UPDATE STATISTICS operations

To avoid the risk of consistency problems that can result from differences in
case-sensitivity, the following policy might be useful when you define replication
pairs:

* Replicate case-sensitive databases only with case-sensitive databases.

Chapter 4. Schema design for Enterprise Replication 4-5

* Replicate NLSCASE INSENSITIVE databases only with NLSCASE INSENSITIVE
databases.

Related information:
[Duplicate rows in NLSCASE INSENSITIVE databases|

Replicating Table Hierarchies

To replicate tables that form a hierarchy, you must define a separate replicate for
each table.

If you define a replicate on a super table, Enterprise Replication does not
automatically create implicit replicate definitions on the subordinate tables.

Tip: Enterprise Replication does not require that the table hierarchies be identical
on the source and target servers.

You must use conflict resolution uniformly for all tables in the hierarchy. In other
words, either no conflict resolution for all tables or conflict resolution for all tables.

Replication and data types

4-6

Enterprise Replication supports built-in data types and user-defined data types,
including row types and collection types.

If you use SERIAL, SERIALS, or BIGSERIAL data types, you must be careful when
defining serial columns.

For non-master replicates, Enterprise Replication does not verify the data types of
columns in tables that participate in replication. The replicated column in a table
on the source database server must have the same data type as the corresponding
column on the target server. The exception to this rule is cross-replication between
simple large objects and smart large objects. By using master replicates, you can
verify that all participants in a replicate have columns with matching data types.
Master replicates also allow verification that each participant contains all replicated
columns, and optionally that column names are the same on each participant.

Related concepts:

[“Flexible Architecture” on page 1-6

[“Serial data types and replication keys”|

Replicating on Heterogeneous Hardware

Enterprise Replication supports all primitive data types across heterogeneous
hardware. If you define a replicate that includes non-primitive data types (for
example, BYTE and TEXT data), the application must resolve data-representation
issues that are architecture dependent.

If you use floating-point data types with heterogeneous hardware, you might need
to use IEEE floating point or canonical format for the data transfers. For more
information, see [“Using the IEEE Floating Point or Canonical Format” on page|

Serial data types and replication keys

You can use a serial data type as a replication key, but you must ensure that the
values are unique across all replication servers.

IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_1826.htm

If you plan to use serial data types (SERIAL, SERIALS, or BIGSERIAL) as the
replication key for a table, the same serial value might be generated on two servers
at the same time. Use the CDR_SERIAL configuration parameter to generate
non-overlapping values for serial columns across all database servers in your
replication environment. Set CDR_SERIAL in the onconfig file for each primary
source database server in the replication system.

You do not need to set the CDR_SERIAL configuration parameter if your
replication key has multiple columns and the other columns identify the server on
which each row is created.

Related concepts:

[“Replication and data types” on page 4-6|

Related reference:

[‘Set configuration parameters for replication” on page 6-15|
[‘CDR_SERIAL Configuration Parameter” on page B-15|

Replication of TimeSeries data types

You can replicate tables that have columns with TimeSeries data types. You must
prepare all replication servers and create time series instances before you create
replicates that include TimeSeries columns.

Server preparation
All database servers must run Informix version 12.10 or later.

Before you create a replicate, do the following tasks on all replication servers that
will participate in replicating time series data:

1. Set the CDR_TSINSTANCEID configuration parameter to a different value on
every replication server to ensure that time series instance IDs do not overlap.

You cannot replicate time series instances that were created before you set the
CDR_TSINSTANCEID configuration parameter.

2. Create containers that have the same names on all replication servers. You
cannot use containers that are created automatically or rolling window
containers. If you add containers after replication is set up, add containers with
the same names on all replication servers at the same time. The containers can
be in different locations on each server.

3. Create the same time series calendars that have the same names on all
replication servers.

4. Create time series tables on all replication servers. You cannot use the option to
automatically create replicated tables when you define a replicate or template.
You cannot nest a TimeSeries data type within a TimeSeries data type.

5. Create time series instances. You must specify the container name.

Tip: You can quickly set up your replication servers by doing all but the first of
these steps through a grid, however, all grid servers must be running Informix
version 12.10 or later.

Rules for defining a replicate

You must follow these rules when you define a replicate for a table that contains a
TimeSeries column:

* The replicate must be a mastered replicate.

Chapter 4. Schema design for Enterprise Replication 4-7

* The Projection list in the participant definition must include all columns in the
table.

* The WHERE clause in the participant definition cannot include a TimeSeries
column.

* You cannot define a participant as send-only.
* The conflict resolution rule must be always-apply.
* The replication key cannot include an opaque data type.

* You cannot enable conversion to and from UTF-8 (Unicode) when you replicate
data between servers that use different code sets.

* You cannot use the --autocreate option to create tables that have TimeSeries
columns. You must create time series tables on all servers before you define
replicates.

* You cannot generate ATS or RIS files in XML format. ATS and RIS files must be
in text format.

Restrictions

You cannot run a shared query on a table that includes a TimeSeries column. You
can, however, run grid queries on a virtual table that is based on a table that has a
TimeSeries column.

You cannot use the following commands on replicates that include TimeSeries
columns:

* ¢dr alter

* cdr remaster

* cdr start sec2er

* cdr swap shadow

You cannot use the following options when you check or repair inconsistencies on
a replicate that includes a TimeSeries column:

* The --deletewins option in the cdr check replicate or cdr check replicateset
command

* The --extratargetrows=merge option in the cdr sync replicate, cdr sync
replicateset, cdr check replicate, or cdr check replicateset command

* The --since option in the cdr check replicate or cdr check replicateset command

* The --timestamp option in the cdr check replicate or cdr check replicateset
command

* The --where option with a TimeSeries column in the WHERE clause in the cdr
check replicate command

Although you can add and index an ifx_replcheck column on a replicated table
that includes a TimeSeries column, the speed of consistency checking is not
affected.

Related reference:

[“cdr define replicate” on page A-77|

Replication of large objects

How Enterprise Replication handles simple and smart large objects depends on
how the objects are stored.

Enterprise Replication replicates the following types of large objects:

4-8 IBM Informix Enterprise Replication Guide

* Simple large object data types (TEXT and BYTE)

You can store simple large objects either in the tblspace with the rest of the table
columns (in a dbspace) or in a blobspace. Simple large objects in tblspaces are
logged in the logical log and therefore, Enterprise Replication can evaluate the
data for replication directly.

* Smart large object data types (BLOB and CLOB)

You must store smart large objects in sbspaces. Enterprise Replication cannot
evaluate large object data that is stored in a blobspace or sbspace; instead,
Enterprise Replication uses information about the large object that is stored in
the row to evaluate whether the objects need to be replicated.

By default, Enterprise Replication does not include columns that contain
unchanged large objects in replicated rows.

Enterprise Replication allows cross-replication between simple large objects and
smart large objects. For example, you can replicate a simple large object on the
source database server to a smart large object on the target server or vice versa.

If Enterprise Replication processes a row and discovers undeliverable large object
columns, the following actions can occur:

* Any undeliverable columns are set to NULL if the replication operation is an
INSERT and the row does not already exist at the target.

* The old value of the local row is retained if the replication operation is an
UPDATE or if the row already exists on the target.

Replicating Simple Large Objects from Tblspaces
Enterprise Replication evaluates simple large object data that is stored in a tblspace
independently from the rest of its row.

Simple large object data that is stored in tblspaces (rather than in blobspaces) is
placed in the logical log. Enterprise Replication reads the logical log to capture and
evaluate the data for potential replication.

By default, Enterprise Replication performs time stamp and delete wins conflict
detection and resolution at the row level. However, in some cases, simple large
object data that is stored in a tblspace (rather than in a blobspace) is accepted by
the target server even if the row is rejected.

For simple large objects, if the column on the target database server is also stored
in a tblspace, Enterprise Replication evaluates the values of the shadow columns,
cdrserver and cdrtime, in the source and target columns and uses the following
logic to determine if the data is to be applied:

* If the column of the replicated data has a time stamp that is greater than the
time stamp of the column on the local row, the data for the column is accepted
for replication.

* If the server ID and time stamp of the replicated column are equal to the server
ID and time stamp on the column on the local row, the data for the column is
accepted for replication.

* If there is no SPL conflict-resolution rule and the time stamps are equal, then
Enterprise Replication applies the data to the row with the lowest CDR server
ID.

If you use the SPL conflict resolution, simple large objects that are stored in
tblspaces are handled differently than large objects in blobspaces.

Chapter 4. Schema design for Enterprise Replication 4-9

4-10

Related concepts:

[‘Delete wins conflict resolution rule” on page 5-12|

[“Time stamp conflict resolution rule” on page 5-7|

[‘SPL Conflict Resolution for Large Objects” on page 5-11|

Replication of large objects from blobspaces or sbhspaces
Enterprise Replication retrieves the large object data directly from the blobspace or
sbspace and then sends the data to the target database server.

It is possible that a transaction subsequent to the transaction that is being
replicated can modify or delete a simple or smart large object that Enterprise
Replication is trying to retrieve. If Enterprise Replication encounters a row whose
large object (simple or smart) was modified or deleted by a subsequent transaction,
Enterprise Replication does not send the data in the large object. In most cases, the
subsequent transaction that modified or deleted the large object is also replicated,
so the data again becomes consistent when that transaction is replicated. The data
in the large object is inconsistent for only a short time.

The following conditions apply to replicating large objects that are stored in
blobspaces or sbspaces:

* Enterprise Replication does not support replication of large object updates
performed outside of a row update.

* After you update a large object that is referenced explicitly in the table schema,
you must update the referencing row before Enterprise Replication can replicate
the updated smart large object. For example:

UPDATE table_name SET large_object column = x

* Enterprise Replication replicates updates to in-place smart large objects by
sending a new copy of the entire smart large object. Enterprise Replication does
not send only the logged changes to update smart large objects.

* Enterprise Replication does not support sharing out-of-row data (multiple
references to a large object) during replication. If you try to replicate multiple
references to the same large object on the source database server, Enterprise
Replication does not re-create those references on the target database server.
Instead, Enterprise Replication creates multiple large objects on the target
database server.

Related concepts:

[‘SPL Conflict Resolution for Large Objects” on page 5-11]

Replication of opaque user-defined data types

Opaque data types can be replicated, but have certain restrictions.

You must install and register UDTs and their associated support routines on all
database servers that participate in Enterprise Replication before starting
replication. If you combine Enterprise Replication with high-availability clusters,
you must install UDTs on both the primary and secondary database servers, but
only register them on the primary database server.

UDT support functions

If you plan to replicate opaque UDTs, the UDT designer must provide the
following types of support functions:

¢ The streamwrite() and streamread() functions

IBM Informix Enterprise Replication Guide

The purpose of these functions is similar to the existing send() and receive()
functions provided for client/server transmissions. For information about
writing these support functions, see the section on Enterprise Replication stream
support functions in the IBM Informix DataBlade API Programmer’s Guide.

When a row that includes any UDT columns to queue to the target system is
prepared for replication, Enterprise Replication calls the streamwrite() function
on each UDT column. The function converts the UDT column data from the
in-server representation to a representation that can be sent over the network.
Enterprise Replication replicates the column without understanding the internal
representation of the UDT.

On the target server, Enterprise Replication calls the streamread() function for
each UDT column that it transmitted by the streamwrite() function.

The compare() function and its supporting greaterthan(), lessthan(), and equal()
functions

Enterprise Replication uses comparison functions to determine whether a
replicated column is altered. For example, the comparison functions are used
when the replicate definition specifies to replicate only changed columns instead
of full rows.

When you define a compare() function, you must also define the greaterthand(),
lessthan(), equal(), or other functions that use the compare() function.

For more information about writing these support functions, see the IBM
Informix User-Defined Routines and Data Types Developer’s Guide.

Requirements during replication

The following requirements apply to replicating opaque data types:

The WHERE clause of the SELECT statement of the participant modifier can
reference an opaque UDT if the UDT is always stored in row.

Any UDRs in a WHERE clause can use only parameters whose values can be
extracted fully from the logged row images, plus any optional constants.

All of the columns in the SELECT statement of each participant definition must
be actual columns in that table. Enterprise Replication does not support virtual
columns (results of UDRs on table columns).

You cannot use SPL routines for conflict resolution if the replicate includes any
UDTs in the SELECT statement or if the replicate is defined to replicate only
changed columns.

You can define replicates on tables that contain one or more UDT columns as the
replication key.

Chapter 4. Schema design for Enterprise Replication 4-11

4-12 I1BM Informix Enterprise Replication Guide

Chapter 5. Replication system design

When you design a replication system, you make three main decisions: how the
information flows between servers, how to resolve conflicts between replicated
data, and the topology of the network of servers.

Primary-Target Replication System

In the primary-target replication system, the flow of information is in one
direction.

In primary-target replication, all database changes originate at the primary
database and are replicated to the target databases. Changes at the target databases
are not replicated to the primary.

A primary-target replication system can provide one-to-many or many-to-one

replication:

* One-to-many replication
In one-to-many (distribution) replication, all changes to a primary database server
are replicated to many target database servers. Use this replication model when
information gathered at a central site must be disseminated to many scattered
sites.

* Many-to-one replication

In many-to-one (consolidation) replication, many primary servers send
information to a single target server. Use this replication model when many sites
are gathering information (for example, local field studies for an environmental
study) that needs to be centralized for final processing.

Related concepts:

[“Flexible Architecture” on page 1-6|

[“Participant definitions” on page 8-7|

Related reference:

[“Participant and participant modifier” on page A-4|

Primary-Target Data Dissemination

Data dissemination supports business needs where data is updated in a central
location and then replicated to servers that only receive data and do not update
data.

This method of distribution can be useful for online transaction processing (OLTP)
systems where data is required at several sites, but because of the large amounts of
data, read/write capabilities at all sites would slow the performance of the
application. The following figure illustrates data dissemination.

© Copyright IBM Corp. 1996, 2015 5-1

5-2

Target Target

Database Database
server server

(Receive-only) (Receive-only)

Primary

Database
server
Target Target
Database) / \ Database 2
server server

(Receive-only) (Receive-only)

Figure 5-1. Data Dissemination in a Primary-Target Replication System

You specify that a server only receives information when you define the participant
for the server as part of the replicate definition. You can specify that all replicates
on a server only receive information when you modify the server definition.
Related reference:

[“cdr modify server” on page A-146|

[“Participant and participant modifier” on page A-4|

Data consolidation

Businesses can choose to consolidate data into one or more central database
servers.

Data consolidation allows the migration of data from several database servers to a
central database server. For example, several retail stores can replicate inventory
and sales information to headquarters. The retail stores do not need information
from other stores but headquarters needs the total inventory and sales of all stores.

In the following figure, the remote locations only send data while a single central
database server only receives data.

Primary Primary
Database Database
server server

(Send-only) (Send-only)
\ Target /
Database
server)
Primary Primary
Database /ZRecelve-onl;\ Database)
server

server

(Send-only) (Send-only)

Figure 5-2. Data Consolidation in a Primary-Target Replication System

You can also use data consolidation to replicate data from many database servers
to more than one central database server. For example, a retail chain has two
central database servers, one for the eastern half of the United States, and one for

IBM Informix Enterprise Replication Guide

the western half of the United States. The retail stores replicate data to their
designated central server and the two central servers replicate data to each other.
In this configuration, the replication servers in the retail stores only send data to
the central servers, but the central servers both send and receive data.

Businesses can use data consolidation to replicate OLTP data to a dedicated
computer for decision support (DSS) analysis. For example, data from several
OLTP systems can be replicated to a DSS system for read-only analysis.

The replication key for every replicated row must be unique among the multiple
primary database servers.

You specify that a server only sends information when you define the participant
for the server as part of the replicate definition. You can specify that all replicates
on a server only send information when you modify the server definition.

Related reference:

[“cdr modify server” on page A-146|

[“Participant and participant modifier” on page A-4|

Workload Partitioning

Workload partitioning gives businesses the flexibility of assigning data ownership
at the table-partition level, rather than within an application.

The following figure illustrates workload partitioning.

Asia-Pacific U.S.A. Europe
Database Database Database
server server server

v
A-P Partition A-P Partition A-P Partition
emp# empname emp# empname emp# empname
2994 N. Night 5783 A. Alder 5761 B. Barry
4402 R. River 1235 M. Markar 6642 7. Zachar
U.S.A. Partition U.S.A. Partition U.S.A. Partition
emp# empname emp# empname emp# empname
6398 D. Davis < 9631 J. Jones p»| 3622 C. Cowpar
9456 E. Eldridge 4951 H. Height 7333 K. Kristen

Europe Partition

Europe Partition

Europe Partition

emp# empname emp# empname emp# empname
6520 P. Peters 8002 F. Fire 3711 L. Lane
3798 G. Gladys 9966 S. Smith 5540 T. Thomas

A

[_] Owner of partition (Read-write) [_] Read-only privileges

Figure 5-3. Workload Partitioning in a Primary-Target Replication System

The replication model matches the partition model for the employee tables. The
Asia-Pacific database server owns the partition and can therefore update, insert,
and delete employee records for personnel in its region. The changes are then
propagated to the US and European regions. The Asia-Pacific database server can

Chapter 5. Replication system design ~ 5-3

5-4

query or read the other partitions locally, but cannot update those partitions
locally. This strategy applies to other regions as well.

Workflow Replication

Unlike the data dissemination model, in a workflow-replication system, the data
moves from site to site. Each site processes or approves the data before sending it
on to the next site.

Inventory
Order entry Accounting management Ship
custno custname custno custname custno custname custno custname
1234 XYZLTD <> 1234 XYZLTD <> 1234 XYZLTD <+—P»| 1234 XYZLTD
1235 XSPORTS 1235 XSPORTS 1235 XSPORTS 1235 XSPORTS
Order Order Order Order
processing processing processing processing

Figure 5-4. A Workflow-Replication System Where Update Authority Moves From Site to Site

illustrates an order-processing system. Order processing typically
follows a well-ordered series of steps: orders are entered, approved by accounting,

inventory is reconciled, and the order is finally shipped.

In a workflow-replication system, application modules can be distributed across
multiple sites and databases. Data can also be replicated to sites that need
read-only access to the data (for example, if order-entry sites want to monitor the
progress of an order).

A workflow-replication system, like the primary-target replication system, allows
only unidirectional updates. Many facts that you need to consider for a
primary-target replication system should also be considered for the
workflow-replication system.

However, unlike the primary-target replication system, availability can become an
issue if a database server goes down. The database servers in the
workflow-replication system rely on the data updated at a previous site. Consider
this fact when you select a workflow-replication system.

Related concepts:

[“Controlling the replication of large objects” on page 8-17|

Primary-Target Considerations

Consider the following factors when you select a primary-target replication system:
* Administration
Primary-target replication systems are the easiest to administer because all
updates are unidirectional and therefore, no data update conflicts occur.

Primary-target replication systems use the ignore conflict-resolution rule. See
[“Conflict resolution rule” on page 5-6

* Capacity planning
All replication systems require you to plan for capacity changes. For more
information, see [“Preparing Data for Replication” on page 6-17 |

* High-availability planning

IBM Informix Enterprise Replication Guide

In the primary-target replication system, if a target database server or network
connection goes down, Enterprise Replication continues to log information for
the database server until it becomes available again. If a database server is
unavailable for some time, you might want to remove the database server from
the replication system. If the unavailable database server is the read-write
database server, you must plan a course of action to change read-write
capabilities on another database server.

If you require a fail-safe replication system, you should select a high-availability
replication system. For more information, see [“High-availability replication|
lsystems” on page 7-1]

Update-Anywhere Replication System

In update-anywhere replication, changes made on any participating database
server are replicated to all other participating database servers. This capability
allows users to function autonomously even when other systems or networks in
the replication system are not available.

The following figure illustrates an update-anywhere replication system where the
service centers in Washington, New York, and Los Angeles each replicate changes
to the other two servers.

Washington

service center
New York

service center

Database
server

Database
I Update server

Update T
Los Angeles

service center

Database
server

Figure 5-5. Update-Anywhere Replication System

Because each service center can update a copy of the data, conflicts can occur
when the data is replicated to the other sites. To resolve update conflicts,
Enterprise Replication uses conflict resolution.

Review the following information before you select your update-anywhere
replication system:

¢ Administration

Update-anywhere replication systems allow peer-to-peer updates, and therefore
require conflict-resolution. Update-anywhere replication systems require more
administration than primary-target replication systems.

* Information consistency

Some risk is associated with delivering consistent information in an
update-anywhere replication system. You determine the amount of risk based on
the type of conflict-resolution rules and routines you choose for resolving
conflicts. You can configure an update-anywhere replication system where no

Chapter 5. Replication system design ~ 5-5

data is ever lost; however, you might find that other factors (for example,
performance) outweigh your need for a fail-safe mechanism to deliver consistent
information.
* Capacity Planning
All replication systems require you to plan for capacity changes and prepare the
data for replication. If you choose a time-based conflict resolution rule, you need
to provide space for delete tables and add shadow columns to replicated tables.
* High Availability
If any of your database servers are critical, consider using high-availability
clusters to provide backup servers.

Related concepts:

[“Disk Space for Delete Tables” on page 6-9|

[‘Shadow column disk space” on page 6-9|

[“Preparing Data for Replication” on page 6-17

[“High-availability replication systems” on page 7-1|

[“Flexible Architecture” on page 1-6|
Related tasks:
[“Specifying Conflict Resolution Rules and Scope” on page 8-10)|

Conflict Resolution

5-6

When multiple database servers try to update the same row simultaneously (the
time stamp for both updates is the same GMT time), a collision occurs. For more
information, see [“Applying replicated data” on page 2-7| Enterprise Replication
must determine which new data to replicate. To solve conflict resolution, you must
specify the following for each replicate:

¢ A conflict-resolution rule
* The scope of the rule

Related concepts:

[“Shadow columns” on page 4-2|

[“Time synchronization” on page 6-17]

Related reference:

[‘Replicate only changed columns” on page 8-11|

[“cdr define replicate” on page A-77|

Conflict resolution rule

The conflict resolution rule determines how conflicts between replicated
transactions are resolved.

Enterprise Replication supports the following conflict resolution rules.

Conflict Resolution Rule Effect

Ignore Enterprise Replication does not attempt to resolve
conflicts.

Time stamp The row or transaction with the most recent time

stamp is applied.

SPL routine Enterprise Replication uses a routine written in SPL
(Stored Procedure Language) that you provide to
determine which data is applied.

IBM Informix Enterprise Replication Guide

Conflict Resolution Rule Effect

Time stamp with SPL routine If the time stamps are identical, Enterprise
Replication uses an SPL routine that you provide to
resolve the conflict.

Delete wins DELETE and INSERT operations win over UPDATE
operations; otherwise the row or transaction with
the most recent time stamp is applied.

Always-apply Enterprise Replication does not attempt to resolve
conflicts. You must use the always-apply rule when
you replicate TimeSeries data types.

Related tasks:
[“Specifying Conflict Resolution Rules and Scope” on page 8-10)|

[Creating replicated tables through a grid” on page 9-11|

Ignore Conflict-Resolution Rule
The ignore conflict-resolution rule does not attempt to detect or resolve conflicts.

A row or transaction either applies successfully or it fails. A row might fail to
replicate because of standard database reasons, such as a deadlock situation, when
an application locks rows. Use the ignore conflict-resolution rule only with a
primary-target replication system. If you use ignore with an update-anywhere
replication system, your data might become inconsistent.

The ignore conflict-resolution rule can be used only as a primary conflict-
resolution rule and can have either a transaction or a row scope (as described in
[“Conflict Resolution Scope” on page 5-15).

The following table describes how the ignore conflict resolution rule handles
INSERT, UPDATE, and DELETE operations.

Table 5-1. Ignore Conflict-Resolution Rule

Row Exists in Target? INSERT UPDATE DELETE
No Apply row Discard row Discard row
Yes Discard row Apply row Apply row

When a replication message fails to apply to a target, you can spool the
information to one or both of the following directories:

* Aborted-transaction spooling (ATS)

If selected, all buffers in a failed replication message that compose a transaction
are written to this directory.

* Row-information spooling (RIS)

If selected, the replication message for a row that cannot be applied to a target is
written to this directory.

For more information, see [“Failed Transaction (ATS and RIS) Files” on page 12-3

Time stamp conflict resolution rule
The time stamp rule evaluates the latest time stamp of the replication against the
target and determines how to resolve any conflict.

Chapter 5. Replication system design ~ 5-7

All time stamps and internal computations are performed in Greenwich mean time
(GMT). The time stamp conflict resolution rule assumes time synchronization
between cooperating Enterprise Replication servers.

The time stamp resolution rule behaves differently depending on which scope is in
effect:

* Row scope

Enterprise Replication evaluates one row at a time. The row with the most
recent time stamp wins the conflict and is applied to the target database servers.
If an SPL routine is defined as a secondary conflict-resolution rule, the routine
resolves the conflict when the row times are equal.

* Transaction scope

Enterprise Replication evaluates the most recent row-update time among all the
rows in the replicated transaction. This time is compared to the time stamp of
the appropriate target row. If the time stamp of the replicated row is more recent
than the target, the entire replicated transaction is applied. If a routine is defined
as a secondary conflict resolution rule, it is used to resolve the conflict when the
time stamps are equal.

A secondary routine is run only if Enterprise Replication evaluates rows and
discovers equal time stamps.

If no secondary conflict-resolution rule is defined and the time stamps are equal,
the transaction from the database server with the lower value in the cdrserver
shadow column wins the conflict.

The following table shows how a conflict is resolved based on the latest time
stamp with row scope. The time stamp Ty, ypdaee (the time of the last update)
represents the row on the target database server with the last (most recent) update.
The time stamp T, (the time when replication occurs) represents the time stamp
on the incoming row.

Enterprise Replication first checks to see whether a row with the same replication
key exists in either the target table or its corresponding delete table.

If the row exists, Enterprise Replication uses the latest time stamp to resolve the
conflict.

The following table describes how the time stamp conflict resolution rule handles
INSERT, UPDATE, and DELETE operations.

Table 5-2. Conflict Resolution Based on the Time Stamp

Row Exists on

Target? Time Stamp INSERT UPDATE DELETE
No Apply row Apply row (Convert | Apply row (INSERT into
UPDATE to INSERT) |Enterprise Replication
delete table)
Yes Thast_update < Trept Apply row (Convert | Apply row Apply row
INSERT to UPDATE)
Yes Thast update > T Discard row Discard row Discard row

repl

5-8 IBM Informix Enterprise Replication Guide

Table 5-2. Conflict Resolution Based on the Time Stamp (continued)

Row Exists on
Target?

Yes

Time Stamp

Tlast,update = Trepl

INSERT

Apply row if no
routine is defined as

UPDATE

Apply row if no
routine is defined as a

DELETE

Apply row if no routine
is defined as a secondary

a secondary conflict |secondary conflict conflict resolution rule.
resolution rule. resolution rule. Otherwise, run the
Otherwise, run the Otherwise, run the routine.

routine. routine.

Important: Do not remove the delete tables that are created by Enterprise
Replication. The delete table is automatically removed when the last replicate
defined with conflict resolution is deleted.

To use time stamp conflict resolution for repairing inconsistencies with the cdr
check replicate or cdr check replicateset command, include the --timestamp
option with the --repair option. If you temporarily stop replication on a server
whose replicates use the time stamp conflict resolution rule, disable the replication
server with the cdr disable server command. When you disable a server,
information about deleted rows is kept in the delete tables to be used during the
time stamp repair after the server is enabled.

Related concepts:

[“Conflict Resolution Scope” on page 5-15|

[“Time synchronization” on page 6-17]

[‘Delete wins conflict resolution rule” on page 5-12|

[‘Replicating Simple Large Objects from Tblspaces” on page 4-9|

[“Repair inconsistencies by time stamp” on page 11-20|

Related reference:

[“cdr disable server” on page A-114|
SPL Conflict Resolution Rule

You can write an SPL routine as a primary conflict resolution rule or as secondary
conflict resolution rule to the time stamp conflict resolution rule.

You have complete flexibility to determine which row prevails in the database
when you create an SPL routine for conflict resolution. However, for most users,
the time stamp conflict resolution rule provides sufficient conflict resolution. You
can also use SPL routine to save information about the transactions that were
discarded during conflict resolution.

SPL routines must follow the following guidelines:

* The owner of an SPL routine that is used for conflict resolution must be the
same as the owner of the replicated table.

* Routines for conflict resolution must be in SPL. Enterprise Replication does not
allow user-defined routines in C or in Java .

* You cannot use an SPL routine or a time stamp with an SPL routine if the

replicate is defined to replicate only changed columns or the replicated table
contains any extensible data types. See |“Replicate only changed columns” on|

Enterprise Replication passes the following information to an SPL routine as
arguments.

Chapter 5. Replication system design ~ 5-9

5-10

Argument

Description

Server name [CHAR(18)]

From the local target row NULL if local target
row does not exist

Time stamp (DATETIME YEAR TO

SECOND)

From the local target row NULL if local target
row does not exist

Local delete-table indicator [CHAR(1)]

or Local key delete-row indicator
[CHAR(1)]

Y indicates that the origin of the row is the delete
table. K indicates that the origin of the row is the
replicate-key delete row.

If a conflict occurs while a replication key row is
being deleted, because the local row with the old
key no longer exists, the received key delete row
is passed as the local row (using the seventh
argument, local row data). The received key insert
row is passed to the stored procedure as the
replicated row using the eighth argument.

Server name [CHAR(18)]

Of the replicate source

Time stamp (DATETIME YEAR TO

SECOND)

From the replicated row

Replicate action type [CHAR(1)]

I - insert
D - delete
U - update

Local row data that is returned in
regular SQL format

Where the regular SQL format is taken from the
SELECT clause of the participant list

Replicate row data after-image that is

returned in regular SQL format

Where the regular SQL format is taken from the
SELECT clause of the participant list

The routine must set the following arguments before the routine can be applied to

the replication message.

Argument

An indicator of the database operation

to be performed [CHAR(1)]

Description

Same as the replicate action codes with the
following additional codes

* A - Accept the replicated row and apply the
column values returned by the SPL routine.

For example, if Enterprise Replication receives an
insert and the row exists locally, the insert is
converted to an update

* S - Accept the replicated row and apply the
column values as received from the other site.

For example, if Enterprise Replication receives an
insert and the row exists locally, the insert fails at
the time Enterprise Replication tries to apply the
transaction to the database, and the transaction
aborts with an SQL error.

* 0 - Discard the replicated row.

* X - Abort the transaction.

A non-zero integer value to request
logging of the conflict resolution and the

integer value in the spooling files
(INTEGER)

Logging value takes effect only if logging is
configured for this replicate.

IBM Informix Enterprise Replication Guide

Argument Description

The columns of the row to be applied to | This list of column values is not parsed if the
the target table replicate action type in | routine returns one of the following replicate
regular SQL format action types: S, 0, or X.

You can use the arguments to develop application-specific routines. For example,
you can create a routine in which a database server always wins a conflict
regardless of the time stamp.

The following list includes some items to consider when you use an SPL routine
for conflict resolution:

* Any action that a routine takes as a result of replication does not replicate.
* You cannot use an SPL routine to start another transaction.

* Frequent use of routines might affect performance.

In addition, you must determine when the SPL routine runs:

* An optimized SPL routine is called only when a collision is detected and the
row to be replicated fails to meet one of the following two conditions:

— It is from the same database server that last updated the local row on the
target table.

— It has a time stamp greater than or equal to that of the local row.

* A nonoptimized SPL routine runs every time Enterprise Replication detects a
collision. By default, SPL routines are nonoptimized.

For information on specifying that the SPL routine is optimized, see
[Options” on page A-80)

Tip: Do not assign a routine that is not optimized as a primary conflict resolution
rule for applications that usually insert rows successfully.

SPL Conflict Resolution for Large Objects:

If the replicate is defined with an SPL conflict-resolution rule, the SPL routine must
return the desired action for each smart large object (BLOB or CLOB) and simple
large object (BYTE or TEXT) column.

When the routine is invoked, information about each large object column is passed
to the routine as five separate fields. The following table describes the fields.

Argument Description

Column size (INTEGER) The size of the column (if data exists for this column).
NULL if the column is NULL.

BLOB flag [CHAR(1)] For the local row, the field is always NULL.

For the replicated row:

* D indicates that the large object data is sent from the
source database server.

* U indicates that the large object data is unchanged on
the source database server.

Chapter 5. Replication system design ~ 5-11

Argument Description

Column type [CHAR(1)] * P indicates tblspace data.

* B indicates blobspace data.

* S indicates sbspace data.

ID of last update server The ID of the database server that last updated this
[CHAR(18)] column for tblspace data.

For blobspace data: NULL

For sbspace data: NULL

Last update time (DATETIME For tblspace data: The date and time when the data
YEAR TO SECOND) was last updated.

For blobspace data: NULL

For sbspace data: NULL

If the routine returns an action code of A, D, I, or U, the routine parses the return
values of the replicated columns. Each large object column can return a
two-character field.

The first character defines the desired option for the large object column, as the
following table shows.

Value Function

C Performs a time-stamp check for this column as used by the time-stamp
rule.

N Sets the replicate column to NULL.

R Accepts the replicated data as it is received.

L Retains the local data.

The second character defines the desired option for blobspace or sbspace data if
the data is found to be undeliverable, as the following table shows.

Value Function

N Sets the replicated column to NULL.
L Retains the local data (default).

0 Aborts the row.

X Aborts the transaction.

Related concepts:

[‘Replicating Simple Large Objects from Tblspaces” on page 4-9|

[“Replication of large objects from blobspaces or sbspaces” on page 4-10)|

Delete wins conflict resolution rule

The delete wins rule ensures that DELETE and INSERT operations win over
UPDATE operations and that all other conflicts are resolved by comparing time
stamps.

5-12 IBM Informix Enterprise Replication Guide

All time stamps and internal computations are performed in Greenwich mean time
(GMT). The delete wins conflict-resolution rule assumes time synchronization
between cooperating Enterprise Replication servers.

The delete wins rule is similar to the time stamp rule except that it prevents upsert
operations and does not use a secondary conflict resolution rule. The delete wins
rule prevents upsert operations that results from an UPDATE operation that is
converted to an INSERT operation because the row to update was not found on
the target server. An upsert operation can occur if a row is deleted from a target
server before an UPDATE operation is processed on that target server or if an
UPDATE operation was processed by the target server before the INSERT
operation for that row. Depending on your business logic, upsert operations might
violate referential integrity.

The delete wins rule prevents upsert operations in the following ways:

* If a row is deleted on a replication server, that row is deleted on all other
replication servers, regardless of whether an UPDATE operation to that row
occurred after the delete.

 If an UPDATE operation to a row is received before its INSERT operation, the
UPDATE operation fails and generates and ATS or RIS file. The INSERT
operation succeeds, but results in data inconsistency. To repair the inconsistency,
run the cdr check replicate command with the --repair option.

The delete wins rule handles time stamp conflicts differently depending on which
scope is in effect:

* Row scope

Enterprise Replication evaluates one row at a time. The row with the most
recent time stamp wins the conflict and is applied to the target database servers.

* Transaction scope

Enterprise Replication evaluates the most recent row-update time among all the
rows in the replicated transaction. This time is compared to the time stamp of
the appropriate target row. If the time stamp of the replicated row is more recent
than the target, the entire replicated transaction is applied.

If the time stamps are equal, the transaction from the database server with the
lower value in the cdrserver shadow column wins the conflict.

The following table shows how a conflict is resolved with the delete wins rule with
row scope. The time stamp Ty, ypdaee (the time of the last update) represents the
row on the target database server with the last (most recent) update. The time
stamp T, (the time when replication occurs) represents the time stamp on the
incoming row.

Enterprise Replication first checks to see if a row with the same replication key
exists in either the target table or its corresponding delete table. If the row exists,
Enterprise Replication uses the latest time stamp to resolve the conflict.

The following table describes how the delete wins conflict resolution rule handles

INSERT, UPDATE, and DELETE operations that are performed on the source
server.

Chapter 5. Replication system design ~ 5-13

Table 5-3. Conflict Resolution Based on the Time Stamp

Row Exists on
Target?

Time Stamp INSERT UPDATE DELETE

No Apply row Discard row and Apply row (INSERT into
generate and ATS or | Enterprise Replication
RIS file delete table)
Yes Thast update < Trepl Apply row (Convert |Apply row Apply row
INSERT to UPDATE)
Yes Thast_update > Trept Discard row Discard row Apply row
Yes Thast update = Trepl The server with the |The server with the The server with the

lower value in the
cdrserver shadow
column wins the conflict.

lower value in the lower value in the
cdrserver shadow cdrserver shadow
column wins the column wins the
conflict. conflict.

Important: Do not remove the delete tables that are created by Enterprise
Replication. The delete table is automatically removed when the last replicate
defined with conflict resolution is deleted.

To use delete wins conflict resolution for repairing inconsistencies with the cdr
check replicate or cdr check replicateset command, include the --timestamp and
--deletewins options with the --repair option. Also set the
CDR_DELAY_PURGE_DTC configuration parameter to the maximum age of
modifications to rows that are being actively updated. If you temporarily stop
replication on a server whose replicates use the delete wins conflict resolution rule,
disable the replication server with the cdr disable server command. When you
disable a server, information about deleted rows is kept in the delete tables to be
used during the time stamp repair after the server is enabled.

Related concepts:

[‘Replicating Simple Large Objects from Tblspaces” on page 4-9|

[“Time synchronization” on page 6-17|

[Time stamp conflict resolution rule” on page 5-7|

[‘Repair inconsistencies by time stamp” on page 11-20|

Related reference:

[“cdr disable server” on page A-114|
[‘CDR_DELAY _PURGE_DTC configuration parameter” on page B-3|

Always-Apply Conflict-Resolution Rule
The always-apply conflict-resolution rule does not attempt to detect or resolve
conflicts.

Unlike with the ignore conflict-resolution rule, replicated changes are applied even
if the operations are not the same on the source and target servers. If a conflict
occurs, the current row on the target is deleted and replaced with the replicated
row from the source. Use the always-apply conflict-resolution rule only with a
primary-target replication system. If you use always-apply with an
update-anywhere replication system, your data might become inconsistent.

The following table describes how the always-apply conflict-resolution rule
handles INSERT, UPDATE, and DELETE operations.

5-14 IBM Informix Enterprise Replication Guide

Table 5-4. Always-Apply Conflict-Resolution Rule

Row exists in target? INSERT UPDATE DELETE
No Apply row Apply row Apply row (no
(convert UPDATE | error returned)
to INSERT)
Yes Apply as an Apply row Deletes the row
UPDATE
(overwrite the
existing row)

Conflict Resolution Scope

Each conflict-resolution rule behaves differently depending on the scope.

Enterprise Replication uses the following scopes:
* Row scope

When you choose a row scope, Enterprise Replication evaluates one row at a
time. Only replicated rows that win the conflict resolution with the target rows
are applied. If an entire replicated transaction receives row-by-row evaluation,
some replicated rows are applied while other replicated rows might not be
applied. Row scope can result in fewer failures than transaction scope.

* Transaction scope
When you choose a transaction scope, Enterprise Replication applies the entire
transaction if the replicated transaction wins the conflict resolution. If the target
wins the conflict (or other database errors are present), the entire replicated
transaction is not applied.

A transaction scope for conflict resolution guarantees transactional integrity.

Enterprise Replication defers some constraint checking on the target tables until the
transaction commits. If a unique constraint or foreign-key constraint violation is
found on any row of the transaction at commit time, the entire transaction is
rejected (regardless of the scope) and, if you have ATS set up, written to the ATS
directory.

Transaction and row scopes are only applicable for apply failure related to conflict
resolution, such as missing rows or newer local rows. For other errors, such as lock
timeouts, constraint problems, lack of disk space, and so on, the whole incoming
transaction is aborted, rolled back, and spooled to ATS or RIS files if so configured,
regardless of whether row scope is defined.

Related concepts:

[“Failed Transaction (ATS and RIS) Files” on page 12-3|

[Time stamp conflict resolution rule” on page 5-7|

Related tasks:

[“Specifying Conflict Resolution Rules and Scope” on page 8-10)|

Related reference:

[“cdr define replicate” on page A-77|

Chapter 5. Replication system design ~ 5-15

Choosing a Replication Network Topology

5-16

Enterprise replication fopology describes connections that replication servers make
to interact with each other. This topology is the route of replication data (message)
transfer from server to server over the network. The replication topology is not
synonymous with the physical network topology. Replication server definitions
create the replication topology, whereas replicate definitions determine data to be
replicated and the sources and destinations within the topology.

The topology that you choose influences the types of replication that you can use.
These topics describe the topologies that Enterprise Replication supports.

Related concepts:

[“Flexible Architecture” on page 1-6
Related tasks:
[‘Defining Replication Servers” on page 8-1|

[‘Customizing the Replication Server Definition” on page 8-6|

Fully Connected Topology

Fully connected replication topology indicates that all database servers connect to
each other and that Enterprise Replication establishes and manages the
connections. Replication messages are sent directly from one database server to
another. No additional routing is necessary to deliver replication messages.
shows a fully connected replication topology. Each database server

connects directly to every other database server in the replication environment.

Europe

-
|

Italy

=
.

Germany

)

NS

France

Figure 5-6. Fully Connected Topology

If necessary, you can also add high-availability clusters and a backup server to any
server to provide high availability. For more information, see [“High-availability]|
[replication systems” on page 7-1]

Hierarchical Routing Topology Terminology

Enterprise Replication uses the terms in the [Table 5-5 on page 5-17| to describe
Hierarchical Routing topology.

IBM Informix Enterprise Replication Guide

Table 5-5. Replication Topology Terms

Term Definition

Root server An Enterprise Replication server that is the uppermost level in
a hierarchically organized set of information

The root is the point from which database servers branch into a
logical sequence. All root database servers within Enterprise
Replication must be fully interconnected.

Nonroot server An Enterprise Replication server that is not a root database
server but has a complete global catalog and is connected to its
parent and to its children

Tree A data structure that contains database servers that are linked
in a hierarchical manner

The topmost node is called the root. The root can have zero or
more child database servers; the root is the parent database
server to its children.

Parent-child A relationship between database servers in a tree data structure
in which the parent is one step closer to the root than the child.

Leaf server A database server that has a limited catalog and no children.

A root server is fully connected to all other root servers. It has information about
all other replication servers in its replication environment. [Figure 5-6 on page 5-16|
shows an environment with four root servers.

A nonroot server is similar to a root server except that it forwards all replicated
messages for other root servers (and their children) through its parent. All nonroot
servers are known to all root and other nonroot servers. A nonroot server might or
might not have children. All root and nonroot servers are aware of all other servers
in the replication environment.

Important: In Hierarchical Routing topologies, Enterprise Replication specifies the
synchronization server as the new server's parent in the current topology. For more
information, see [‘Customizing the Replication Server Definition” on page 8-6 and
[“cdr define server” on page A-90

Related concepts:

[“Creating sqlhost group entries for replication servers” on page 6-3|

Related reference:
[“The syscdrs Table” on page G-14|

Hierarchical Tree Topology

A hierarchical tree consists of a root database server and one or more database
servers organized into a tree topology.

The tree contains only one root, which has no parent. Each database server within
the tree references its parent. A database server that is not a parent is a leaf.
[Figure 5-7 on page 5-18| illustrates a replication tree.

Chapter 5. Replication system design ~ 5-17

5-18

o =, o
)

vy)
Q2
>
«
-->M
()
c
QO
=}
«Q
N
>0
[e]
c

|b*""
(@)
>
@
>
Q
o
c

Shanghai

Figure 5-7. Hierarchical Tree Topology

In the parent-child relationship within the tree is as follows:

* Asia is the parent of China and Japan.

* China is the child of Asia and the parent of Beijing, Shanghai, and Guangzhou.
* Guangzhou is the child of China and the parent of Chengdu.

Asia is the root database server. Japan, China, and Guangzhou are nonroot
database servers. You can define Beijing, Shanghai, and Chengdu as either
nonroot database servers or leaf database servers, depending on how you plan to
use them. The dashed connection from China to Shanghai indicates that Shanghai
is a leaf server.

You can define a replicate that replicates data exclusively between Shanghai and
Japan. However, the transaction data would must go through China and Asia. If
either China or Asia is offline replication is suspended. Similarly, a replicate
defined between Japan and China would require Asia to be functioning, even
though both Japan and China, as nonroot servers, have entries in their sqlhosts
files for each other.

Parent servers are good candidates for using high-availability clusters to provide
backup servers.

Forest of trees topology

A forest of trees consists of several hierarchical trees whose root database servers are
fully connected. Each hierarchical tree starts with a root database server. The root
database servers transfer replication messages to the other root servers for delivery
to its child database servers. [Figure 5-8 on page 5-19| shows a forest of trees.

IBM Informix Enterprise Replication Guide

North America France

W

L

))

Shanghai

Figure 5-8. Forest-of-Trees Topology

In North America, Asia, and Europe are root database servers. That is,
they are fully connected with each other. France and Germany are in a tree whose
root is Europe. Asia is the root for the six database servers in its tree.

In a forest of trees, all replication messages from one tree to another must pass
through their roots. For example, a replication message from Beijing to France
must pass through China, Asia, and Europe.

Organizing the database servers in a hierarchical tree or a forest of trees greatly
reduces the number of physical connections that are required to make a replication
system. If all the database servers in were fully connected, instead of
being organized in trees, 55 connections would be required.

To ensure that all servers retain access to the replication system, use
high-availability clusters on parent servers. For more information, see |”Usin§|
[high-availability clusters in a forest of trees topology” on page 7-2.

Chapter 5. Replication system design ~ 5-19

5-20 IBM Informix Enterprise Replication Guide

Part 3. Setting up and managing Enterprise Replication

After you design your replication system, you define it and start replication.

To set up replication:

1. Select the Enterprise Replication system and network topology to use for your
replication environment.

2. Prepare the replication environment.
3. Define database servers for replication.
4. Define a grid and create replicated tables.

After you define and start your replication system, you can monitor and maintain
it.

Instead of creating a grid, you can create a replicate set by defining and realizing a
template, or you can define replicates and participants and then create a replicate
set and start replication.

© Copyright IBM Corp. 1996, 2015

IBM Informix Enterprise Replication Guide

Chapter 6. Preparing the Replication Environment

The following topics explain the steps that are required for setting up Enterprise
Replication.

The cdr autoconfig serve command can auto-configure Enterprise Replication for a

database server that has a configured storage pool, and propagate connectivity

information between the database servers in an Enterprise Replication domain.

Complete the following steps to auto-configure Enterprise Replication:

1. Verify that the CDR_AUTO_DISCOVER configuration parameter is set to 1 on
all database servers.

2. Verify that the storage pool is configured on any database server that you are
adding to the Enterprise Replication Domain.

3. Choose a database server to be your source server for propagating
configuration changes to other servers, and for replicating date to a newly
added replication server.

4. On the source server, set trusted-host information for all database servers by
running the admin() or task() function with the cdr add trustedhost argument.

5. Verify that all replication servers are active.

6. On the source server, run the cdr autoconfig serve command. Alternatively,
you can run the cdr autoconfig serve command on a different database server,
but you must specify the source server's information in the command.

Related tasks:
[‘Creating a new domain by cloning a server” on page 8-2|

Related information:
[Trusted-host information|

cdr autoconfig serv argument: Autoconfigure connectivity and replication (SQLJ
administration API)|

Preparing the Network Environment

You must prepare the network environment for each database server in an
Enterprise Replication domain.

The following files are involved in configuring the replication network:

* sqlhosts: Specifies replication connectivity, including server groups, connection
security, and network security.

* hosts: Specifies hosts names if you are not using Domain Name Service (DNS).
* services: Specifies the service name that is associated with a port number.

* The trusted-hosts file. You specify this file by setting the
REMOTE_SERVER_CFG configuration parameter. This file specifies the host
names for trusted replication servers.

* If you use Connection Managers for managing connectivity, you must create a
Connection Manager configuration file.

You can manually specify sqlhost and trusted-host file information to each

database server, or you can run the admin() or task() function with the cdr add
trustedhost argument to add entries to the trusted host files, and then run the cdr

© Copyright IBM Corp. 1996, 2015 6-1

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1407.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_162.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_162.htm

autoconfig serv command to propagate sqlhost and trusted-host file entries to
other database servers in an Enterprise Replication domain.

To prepare your network environment, configure the following for each replication
server:

1. If you are not using DNS, configure replication-server host information in the
hosts file.

Configure port information in the services files and the sqlhosts files.
Create group entries for each replication servers in the sqThosts file.

If necessary, configure secure ports for replication servers in the sqThosts file.

Al A

If necessary, configure network security for client/server communications in the
sqlhosts files.

6. Create a trusted-host file and add entries for each trusted hosts.
Related concepts:

[Appendix H, “Replication Examples,” on page H-1|

Related reference:

[“cdr autoconfig serv” on page A-31|

[“CDR_AUTO_DISCOVER configuration parameter” on page B-1|
Related information:

[The syncsqlhosts utilityl]

[Client/server communication|

[Trusted-host information|

cdr autoconfig serv argument: Autoconfigure connectivity and replication (SQL}
administration APT)|

Configuring hosts information for replication servers

If you are not using Domain Name Service (DNS) to identify IP addresses and
system names, you do need to configure the hosts file on each replication server to
add the IP addresses and system names for all other replication servers in the
domain.

The hosts file is in the following location.

Operating System File
UNIX /etc/hosts
Windows SWINDIR%\system32\drivers\etc\hosts

Important: Leave a blank line at the end of the hosts file on Windows.

For example, your hosts file might look like the following:

192.168.0.1 ny.usa.com
192.168.0.2 tokyo.japan.com
192.168.0.3 rome.italy.com
192.168.0.4 perth.australia.com

Configuring ports and service names for replication servers

Replication servers must know the port numbers for each of the other replication
servers in the domain.

Configure port numbers for replication servers in one of the following ways:

6-2 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.embed.doc/ids_emb_072.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0123.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1407.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_162.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_162.htm

* Specify the port numbers in the sqlhosts file. This method risks conflicting with
port numbers being used by other applications.

* Specify the service names in the sqlhosts file and specify the port numbers for
each service name in the services file.

The services file is in the following location.

Operating System File
UNIX /etc/services
Windows %WINDIR%\system32\drivers\etc\services

Important: Leave a blank line at the end of the services file on Windows.

For example, your services file might look like the following;:

sydney 5327/tcp
melbourne 5327/tcp

If the database servers reside on the same system, you must provide unique port
numbers for each.

Related reference:

[“cdr start sec2er” on page A-176|

Creating sqlhost group entries for replication servers

The sqlhosts file on the host of each replication server must specify a group entry
for each replication server in an Enterprise Replication domain. You can manually
specify sqlhost file information, or run the cdr autoconfig serv command to add
entries to a database server's sqlhost file, and then propagate the entries to other
database servers in an Enterprise Replication domain. However, if you are
configuring secure ports, you cannot use the cdr autoconfig serv command.

Typically, a server group includes only one database server. However, if the
computer has multiple network protocols or network interface cards, the server
group includes all aliases for the database server. Enterprise Replication treats the
server group as one object, whether it includes one or several database server
names.

The following example shows sqlhosts file entries for four Enterprise Replication

servers:
* servl

* serv2

* serv3

* serv4d

#dbservername nettype hostname servicename options
g_servl group - - i=143
servl ontlitcp ny.usa.com 1230 g=g_servl
g_serv2 group - - i=144
serv2 ontlitcp tokyo.japan.com 1231 g=g_serv2
g_serv3 group - - i=145
serv3 ontlitcp rome.italy.com 1232 g=g_serv3
g_serv4 group - - i=146
serv4 ontlitcp perth.australia.com 1233 g=g_servd

Chapter 6. Preparing the Replication Environment 6-3

Each server has two entries of information:

* A group definition, which specifies a group name and unique ID for the
replication server

* Connectivity information for the database server

All Enterprise Replication commands and options use the name of the database
server group or the more familiar database server name (that is, the name that is
specified by the INFORMIXSERVER environment variable) for all references to
database servers. The exception is the --connect option, which can use either a
server name or a group name.

Leaf servers in hierarchical routing topologies do not require connectivity
information for all replication servers. A leaf server requires connectivity
information for only itself and its parent.

Related concepts:

[‘Connect Option” on page A-3|

[“Hierarchical Routing Topology Terminology” on page 5-16|

“Setting Up Database Server Groups for High-Availability Cluster Servers” on page
7-3

Related reference:

[“cdr autoconfig serv” on page A-31|

Related information:

[The sqlhosts information|
[sglhosts connectivity information|
[The syncsqlhosts utility]

Configuring secure ports for connections between replication
servers

If database servers in your Enterprise Replication environment are on a network
that is not trusted, you can configure secure ports and an encrypted password file
to enable secure connections.

The secure ports that are listed in the sqlhosts files can be used only for
communication between database servers. You must configure a separate port for
local client/server communications.

To configure a secure port for replication:
1. In the sqlhosts file on each server, create a group entry with two connections
for the local server:

a. Create one connection entry without the s=6 option to configure local
communication with utilities, such as the cdr utility and Connection
Managers.

b. Create one connection entry with the s=6 option to configure
communication between servers.

In the following example, the value of the DBSERVERNAME configuration
parameter is servl:

#dbservername nettype hostname servicename options

servl ontlitcp ny.usa.com ertestl

g_servl group - - i=143
servl_s6 ontlitcp ny.usa.com ertestl0 g=g_servl,s=6

6-4 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0158.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0161.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.embed.doc/ids_emb_072.htm

Note: Do not use the cdr autoconfig serv command if you configure secure
ports. sqlhosts file entries must be manually added if any entries include the
s=6 option.

2. In the sqlhosts file on each server's host, add entries for each of the other
servers in the domain. Use the server names that are associated with the s=6
options.

3. Create a trusted-host file that includes the host names of the other replication
servers in the domain, each on a separate line. You can manually create the
trusted-host file in $INFORMIXDIR/etc, and then set the REMOTE_SERVER_CFG
configuration parameter to the name of the trusted-host file. Alternatively, you
can run the admin() or task() function with the cdr add trustedhost argument
to set a replication server's REMOTE_SERVER_CFG configuration parameter
and add entries to the server's trusted-host file. If the replication server is part
of a high-availability cluster, running the admin() or task() function with the
cdr add trustedhost argument propagates trusted-host entries to other database
servers in a high-availability cluster.

Note: You cannot use the hosts.equiv trusted-host file when you configure
secure ports.

The following example trusted-host file has entries for three hosts, and specifies
both host names and domain names:

#hostname

tokyo.japan.com
tokyo

rome.italy.com
rome

perth.australia.com
perth

A database server on a listed host connects to the local database server instance
through the sqlhosts file entry with the s=6 option.

4. Set the S6_USE_REMOTE_SERVER_CFG configuration parameter to 1 in the
onconfig file.

5. Using a text editor, create and save a password file. The password file includes
the host name, alternative server name, user 1D, and password for each server
and the server group. For example, if the user ID for server servl is informix,
the alias for the database server that uses a secure port is servl_s6, and the
password was informix_pw, use the following password file entries:
servl_s6 servl informix informix_pw
g_servl servl informix informix_pw

6. Encrypt the password file by running the onpassword utility. For example, if
you named the text file in step 5 $INFORMIXDIR/etc/server_passwords, and you
wanted the file encrypted with a key called access_key, use the following
command:
onpassword -k access_key -e $INFORMIXDIR/etc/server_passwords

The encrypted file is saved as: $INFORMIXDIR/etc/passwd_file.
Important: To prevent unauthorized access to the server passwords, remove
the unencrypted password file, $INFORMIXDIR/etc/server_passwords after you

create the encrypted file.

If you do not configure a password file, you must run the cdr utility on the local
computer, for example:

Chapter 6. Preparing the Replication Environment 6-5

cdr list server --connect=servl

Because secure ports can be used only for replication communication, you cannot
test the connections until you start replication.

Related tasks:
[“Testing the replication network”]

[“Configuring secure connections for grid queries” on page 9-21|

Related information:

[S6_USE_REMOTE_SERVER_CFG configuration parameter|
[The onpassword utility]

[The sqlhosts file and the SQLHOSTS registry key|
[DBSERVERALIASES configuration parameter|
[REMOTE_SERVER_CFG configuration parameter]

Configuring network encryption for replication servers

You encrypt client/server network communication by specifying the ENCCSM
module with the communications support module (CSM) option in the sqlhosts
file. You encrypt Enterprise Replication communication by setting encryption
configuration parameters. The ENCRYPT_CDR configuration parameter must be
set to 1 or 2 to allow encryption.

You cannot configure an Enterprise Replication connection with a CSM.

To combine client/server network encryption with Enterprise Replication
encryption, configure two network connections for each database server. The
configuration in the SQLHOSTS file would look like the following example.

#dbservername nettype hostname servicename options

gservl group - - i=143
servl ontlitcp ny.usa.com ertestl g=gservl
c_servl ontlitcp ny.usa.com ertestl0 csm=(ENCCSM)

In this example, servl and c_servl are two connection ports on the same database
server. Encrypted client/server communication uses the c_servl port, while
encrypted Enterprise Replication uses the servl port.

For more information on encrypting client/server network communications, see
the IBM Informix Administrator’s Guide.

Related reference:

[“Set configuration parameters for replication” on page 6-15

Appendix B, “Enterprise Replication configuration parameter and environment]
variable reference,” on page B-1|

Testing the replication network

After you set up the network environment, test the connections between the
replication servers. You cannot test a connection that uses the s=6 option in the
sqlhosts file.

To test the network environment:

1. Verify the network connection. Use the ping command to test the connection
between two systems. For example, from ny.usa.com, test the connection to
tokyo.japan.com:

ping tokyo.japan.com

6-6 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1141.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0620.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0152.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0044.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1123.htm

2. Test the trusted environment:
a. Run dbaccess as user informix or as the owner if it is a non-root server.
b. Select the Connection menu option.
c. Select the Connect menu option.
d. Connect to the server group name and the server name of the other hosts.

For example, if you are running dbaccess on ny.usa.com, and you are
testing the connection to a database server on tokyo.japan.com, select serv2
and g_serv2.

e. When prompted for the USER NAME, press Enter.

If you can connect to the host database server, the host server trusts the
connection from the remote host as user informix or as the owner if the remote
host is a non-root server.

For more information, see the IBM Informix DB-Access User’s Guide.
Related tasks:

[‘Configuring secure ports for connections between replication servers” on page 6-4|

Testing the password file

You create and encrypt a password file to allow the CDR utility to access to a
secure network environment. Use these steps to test that the encrypted password
file is correctly configured.

To test the password file configuration:

Use the cdr view state -c remote_server_group_name command to verify that the
password file supplies the correct password to the CDR command. For example, if
your remote server group was named g_serv2, specify the following command:

cdr view state -c g_serv2

The state of all configured enterprise replication servers is returned. If enterprise
replication is not defined, but the password file is set up correctly, the following
message is returned:

ERROR:ER not defined on g_serv2

If the CDR utility is unable to connect to the server or if the following error is
returned then verify that $INFORMIXDIR/etc/passwd_file is correctly configured.

25539: Invalid connection-type

The following is an example of command output returned when Enterprise
Replication and the password file are correctly configured:

$ cdr view state -c g_serv2

STATE

Source ER Capture Network Apply
State State State State

g_serv2 Active Running Running Running

g_servl Active Running Running Running

Preparing the Disk

These topics describe how to prepare your disk for Enterprise Replication.

Chapter 6. Preparing the Replication Environment 6-7

6-8

Logical Log Configuration Disk Space

The database server uses the logical log to store a record of changes to the data
since the last archive. Enterprise Replication requires the logical log to contain
entire row images for updated rows, including deleted rows.

The database server normally logs only columns that have changed. This behavior
is called the logical-log record reduction option. Enterprise Replication deactivates
this option for tables that participate in replication. (The logical-log record
reduction option remains enabled for tables that do not participate in Enterprise
Replication.) Enterprise Replication logs all columns, not only the columns that
have changed, which increases the size of your logical log.

To determine the size of your logical log, examine your data activity for normal
operations and for the replication system you defined. Keep in mind that defining
replication on a table causes Enterprise Replication to deactivate log reduction for
that table, and that your transactions might log more data.

Important: Enterprise Replication performs internal cleanup tasks based on how
often the log files switch. If the log files switch too frequently, Enterprise
Replication might perform excessive cleanup work.

Logical Log Configuration Guidelines

Logical logs must be configured correctly for Enterprise Replication.

Use the following guidelines when configuring your logical log files:
* Make sure that all logical log files are approximately the same size.

* Make the size of the logical log files large enough so that the database server
switches log files no more than once every 15 minutes during normal
processing.

* Plan to have sufficient logical-log space to hold at least four times the maximum
transaction size.

* Set LTXEHWM (long-transaction, exclusive-access, high-watermark) 30 percent
larger than LTXHWM (long-transaction high-watermark).

Important: If you specify that the database server allocate logical log files
dynamically (DYNAMIC_LOGS), it is recommended that you set LTXEHWM to no
higher than 70 when using Enterprise Replication.

For more information about logical logs and these configuration parameters, see
IBM Informix Administrator’s Reference and IBM Informix Administrator’s Guide.

The database server can add logs dynamically when Enterprise Replication
approaches a potential log wrap situation if the CDR_MAX_DYNAMIC_LOGS
configuration parameter is set to a non-zero integer.

Related concepts:

[“Handle potential log wrapping” on page 12-15|
Related tasks:
[“Preventing Memory Queues from Overflowing” on page 12-14|

IBM Informix Enterprise Replication Guide

Disk Space for Delete Tables

If you use the time stamp, time stamp and SPL routine, or delete wins conflict
resolution rules, you must provide enough disk space for the delete tables that
Enterprise Replication creates to keep track of modified rows for conflict
resolution.

Delete tables handle conflicts such as when a DELETE or UPDATE operation finds
no corresponding row on the target. The DTCleaner thread removes a row from
the delete tables after all the servers have progressed beyond that row. Enterprise
Replication does not create delete tables for tables that have replicates defined with
a conflict resolution rule of ignore or always-apply.

Delete tables are created on the database server where the data originates and on
all the database servers to which data gets replicated. Delete tables are stored in
the same dbspaces, using the same fragmentation strategy, as their base tables.

To determine the disk space requirements to accommodate delete tables, estimate
how many rows will be deleted or modified. For example, if the base table has 100
megabytes of data, but only half the rows might be deleted or modified, then 50
megabytes is a reasonable estimate for the size of the delete table.

Important: Do not remove the delete tables created by Enterprise Replication. The
delete table is automatically removed when the last replicate defined with conflict
resolution is deleted.

Related concepts:

[“Update-Anywhere Replication System” on page 5-5|

Related reference:

[“Replicate only changed columns” on page 8-11|

Shadow column disk space

If you plan to use shadow columns, make sure to allow additional disk space for
their values.

If you plan to use any conflict-resolution rule except ignore or always-apply, you
must allow for an additional 8 bytes for the CRCOLS shadow columns, cdrserver
and cdrtime, which store the server and time stamp information that Enterprise
Replication uses for conflict resolution.

If you want to speed consistency checking by indexing the REPLCHECK shadow
column, you must allow for an additional 8 bytes for the ifx_replcheck shadow
column.

If you want to use ERKEY shadow columns as the replication key, or you create
your replicated tables through a grid, you must allow of an additional 10 bytes for
the ERKEY shadow columns, ifx_erkey_1, ifx_erkey_2, and ifx_erkey_3. When you
create replicated tables through a grid, these ERKEY columns are automatically
added.ERKEY columns also require disk space for the index that is created on
them. In addition to the standard partition and page overhead, for each row in the
table the ERKEY index uses 14 bytes for non-fragmented tables and 18 bytes for
fragmented tables for each row in the table.

The following table shows the amount of space used by each shadow column.

Chapter 6. Preparing the Replication Environment 6-9

6-10

Table 6-1. Shadow column size

Shadow column name Data type Size

cdrserver INTEGER 4 bytes
cdrtime INTEGER 4 bytes
ifx_replcheck BIGINT 8 bytes
ifx_erkey_1 INTEGER 4 bytes
ifx_erkey_2 INTEGER 4 bytes
ifx_erkey_3 SMALLINT 2 bytes

The shadow columns claim disk space immediately, except when CRCOLS and
ERKEY columns are added to an existing table.

Related concepts:

[“Update-Anywhere Replication System” on page 5-5|

[‘Shadow columns” on page 4-2|

[“Preparing Tables for Conflict Resolution” on page 6-19|

[“Preparing Tables for a Consistency Check Index” on page 6-20|

Setting Up Send and Receive Queue Spool Areas

The term data queue refers to both the send queue and the receive queue. Enterprise
Replication collects information from the logical logs and places the data to be
transferred in the send queue. Then Enterprise Replication transfers the contents of
the send queue to the receive queue on the target server. Enterprise Replication on
the target reads the data from the receive queue and applies the changes to the
tables on the target server.

The send and receive queues reside in memory and are managed by the Reliable
Queue Manager (RQM). The CDR_QUEUEMEM configuration parameter
(“CDR_QUEUEMEM Configuration Parameter” on page B-14) specifies the amount
of memory space that is available for the data queues.

When a queue in memory fills (for the receive queue, this only occurs with large
transactions), the transaction buffers are written (spooled) to disk. Spooled
transactions consist of transaction records (headers that contain internal information
for Enterprise Replication), replicate information (summaries of the replication
information for each transaction), and row data (the actual replicated data). Spooled
transaction records and replication records are stored in transaction tables and
replication tables in a single dbspace. Spooled row data is stored in one or more
sbspaces.

Important: To prevent the send and receive queues from spooling to disk, see
[‘Preventing Memory Queues from Overflowing” on page 12-14)

Related concepts:

[‘Send queues and receive queues” on page 2-4|
Related tasks:
[“Preventing Memory Queues from Overflowing” on page 12-14|

Row Data sbspaces
Replicated data might include UDT and CLOB or BLOB data types. Therefore, the
spooled row data is stored as smart large objects in one or more sbspaces.

IBM Informix Enterprise Replication Guide

The CDR_QDATA_SBSPACE configuration parameter accepts multiple sbspaces,
up to a maximum of 32 sbspaces. Enterprise Replication can support a combination
of logging and non-logging sbspaces for storing spooled row data. If
CDR_QDATA_SBSPACE is configured for multiple sbspaces, then Enterprise
Replication uses all appropriate sbspaces in round-robin order.

You can have Enterprise Replication automatically configure disk space from the
storage pool and set the CDR_QDATA_SBSPACE configuration parameter when
defining a replication server. If the CDR_QDATA_SBSPACE configuration
parameter is not set and the database server has a storage pool with sufficient
space, the cdr define command performs the following tasks:

* Creates a new sbspace using one or more new chunks from the storage pool

* Sets the CDR_QDATA_SBSPACE configuration parameter both in memory and
in the onconfig file to the newly defined sbspace.

For clusters, the cdr define command creates new sbspaces and sets the
CDR_QDATA_SBSPACE configuration parameters in all secondary database
servers, as well.

Note: A database server's storage pool must have 500 MB of free space for
sbspaces, and chunk sizes of 100 MB or greater for the database server to use
automatic storage provisioning.

Related tasks:
[‘Defining Replication Servers” on page 8-1|

Related reference:

[“Set configuration parameters for replication” on page 6-15|

Creating sbspaces for Spooled Row Data:
You must create dedicated sbspaces for spooled row data.

Follow these guidelines when creating sbspaces for spooled row data:
* Create all the sbspaces of same default log mode type with the same size.

* Do not use Enterprise Replication row data sbspaces for non-Enterprise
Replication activity.
* Ensure that the sbspaces are sufficiently large.

To determine the size of your spooled row data sbspaces, determine your log
usage and then consider how much data you can collect if your network goes
down. For example, assume that you usually log 40 megabytes of data each day,
but only 10 percent of that is replicated data. If your network is down for 24
hours and you estimate that 4 MB of replicated data are logged each day, the
size of the sbspaces you identify for the spooled row data must be a total of at
least 4 MB.

Windows Only
On Windows, increase the resulting size of the sbspace by approximately
a factor of two. (The default page size, the way that data maps onto a
page, and the number of pages written to disk differs on Windows.)

Important: When the row data sbspaces fill, Enterprise Replication hangs until you
either resolve the problem that is causing Enterprise Replication to spool or
allocate additional disk space to the sbspaces. For more information, see
[“Preventing Memory Queues from Overflowing” on page 12-14

Chapter 6. Preparing the Replication Environment 6-11

6-12

To create row data sbspaces, use the onspaces -c utility. For example, to create a
4-megabyte sbspace, called er_sbspace, using raw disk space on UNIX with an
offset of 0, enter:

onspaces -c -S er_shspace -p /dev/rdsk/cOt1dOs4 -o 0 -s 4000\

-m /dev/rdsk2/c0t1d0s4 0 \
-Df "AVG_LO_SIZE=2,LOGGING=OFF"

The path name for an sbspace cannot be longer than 256 bytes.

The -m option specifies the location and offset of the sbspace mirror. The -Df
option specifies default behavior of the smart large objects stored in the sbspace:

* AVG_LO_SIZE (average large object size)

Set this parameter to the expected average transaction size (in KB). The database
server uses this value to calculate the metadata size. The minimum value for
AVG_LO_SIZE is 2 KB, which is appropriate for Enterprise Replication in most
cases. (The default value of AVG_LO_SIZE is 32 KB.) If you set AVG_LO_SIZE
to larger than the expected transaction size, you might run out of metadata
space. If you set AVG_LO_SIZE too small, you might waste space on metadata.

* LOGGING

Set this parameter to OFF to create an sbspace without logging. Set this
parameter to ON to create an sbspace with logging. Use a combination of
logging and non-logging sbspaces for Enterprise Replication. For more
information, see [“Logging Mode for sbspaces.”|

Set the CDR_QDATA_SBSPACE configuration parameter in the ONCONFIG file to
the location of the row data sbspace (er_sbspace, in this example). For more
information, see ["CDR_QDATA_SBSPACE Configuration Parameter” on page B-13

Logging Mode for sbspaces:
Enterprise Replication uses the default log mode that the sbspace was created with
for spooling row data.

Create sbspaces with a default logging mode of ON or OFF according to the types
of transactions Enterprise Replication replicates:

* LOGGING=ON
Create sbspaces with LOGGING set to ON to support these situations:
— Replicated systems with high-availability clusters

Enterprise Replication must use logging sbspaces for transactions involved in
high-availability clusters.

— Small transactions
Enterprise Replication uses logging sbspaces for transactions that are less than
a page size (2K or 4K) of replicated data.

For logging sbspaces, performance might be enhanced because logging mode
enables asynchronous 10. However, a logging sbspace consumes additional
logical-log space.

* LOGGING=OFF

Create sbspaces with LOGGING set to OFF to support replication of large
transactions (greater than a page size of replicated data).

It is recommended that you mirror non-logging sbspaces. For more information,
see the chapter on managing disk space in the IBM Informix Administrator’s Guide
and the IBM Informix Administrator’s Reference.

IBM Informix Enterprise Replication Guide

For non-logging sbspaces, performance is enhanced on the database server when
Enterprise Replication spools to disk because Enterprise Replication writes less
data to disk.

Important: Do not change the Enterprise Replication sbspace default log mode
while Enterprise Replication is running. To change the default log mode, follow the
procedure below.

You can change the default logging mode of the row data sbspace if you have
more than one sbspace specified by the CDR_QDATA_SBSPACE configuration
parameter.

To change the default logging mode of a row data sbspace:
1. Shut down the database server.

2. Remove the sbspace from the CDR_QDATA_SBSPACE configuration parameter
value list.

3. Start the database server in recovery mode.

4. Wait for all the smart large objects to get deleted from the sbspace. Use the
onstat -g smb lod command to check for smart large objects stored in an
sbspace.

5. Change the default logging mode for the sbspace.

6. Add the sbspace name to the CDR_QDATA_SBSPACE configuration parameter
value list.

7. Shut down and restart the database server using the onmode -ky and oninit
commands.

Dropping a Spooled Row Data sbspace:

Important: Do not drop an Enterprise Replication row data sbspace using the
onspaces -d -f (force) command.

You can drop a row data sbspace if you have more than one sbspace specified by
the CDR_QDATA_SBSPACE configuration parameter.

To drop a row data sbspace
1. Shutdown the database server.

2. Remove the sbspace from the CDR_QDATA_SBSPACE configuration parameter
value list.

3. Start the database server in recovery mode.

4. Wait for all the smart large objects to get deleted from the sbspace. Use the
onstat -g smb lod command to check for smart large objects stored in a
sbspace.

5. If the sbspace was added from the storage pool, use the drop sbspace to
storagepool argument with the admin() or task() function to return the empty
sbspace to the storage pool.

Related information:

drop sbspace to storagepool argument: Return space from an empty sbspace to the]
storage pool (SQL administration APT)|

Chapter 6. Preparing the Replication Environment 6-13

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_119.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_sapi_119.htm

6-14

Setting Up the Grouper Paging File

Enterprise Replication uses a grouper paging mechanism for evaluating large
transactions. A transaction is large if the portion to be replicated meets at least one
of the following conditions:

* It has greater than 5,000 log records.

* It exceeds one fifth the size of the value of the CDR_QUEUEMEM ONCONFIG
variable.

* It exceeds one tenth the size of the value of the SHMVIRTSIZE configuration
variable.

The location of the sbspace used for the paging file is determined by the first of
the following ONCONFIG configuration parameters that is set:

* SBSPACETEMP
* SBSPACENAME
* CDR_QDATA_SBSPACE

The best solution is to set up an unlogged sbspace, as specified by the
SBSPACETEMP configuration parameter. All updates to the paging files are
unlogged.

The size of the paging sbspace should be at least three times the size of the largest
transaction to be processed. This sbspace is also used by the database server for
other tasks; consider its overall usage when determining size requirements.

Important: If the paging sbspace fills, Enterprise Replication hangs until you
allocate additional disk space to the sbspace. If additional space is unavailable, use
the cdr stop command to stop replication.

Creating ATS and RIS directories

You can create directories for Aborted Transactions Spooling (ATS) and Row
Information Spooling (RIS) files instead of using the default directories.

ATS and RIS files contain information about failed transactions and aborted rows.
You can repair data after a replicated transaction fails by applying ATS and RIS
files. Enterprise Replication examines the specified ATS or RIS file and attempts to
reconcile the rows that failed to be applied. ATS and RIS files are relevant only if
you specify a conflict resolution role other than ignore or always-apply.

The default location for ATS and RIS directories is /tmp (UNIX) or \tmp (Windows).

If you want to use non-default directories, create the ATS or RIS directories before
you define the server for replication. The path names for the ATS and RIS
directories cannot be longer than 256 characters.

* Create RIS directories on all replication servers in the domain.

* Create ATS directories on all replication servers in the domain, if you are using
update-anywhere replication.

* Create the ATS directory on the target system, if you are using primary-target
replication.

Related concepts:

[“Failed Transaction (ATS and RIS) Files” on page 12-3|
Related tasks:

[“Enabling ATS and RIS File Generation” on page 12-4|

IBM Informix Enterprise Replication Guide

[‘Customizing the Replication Server Definition” on page 8-6|

[‘Setting Up Failed Transaction Logging” on page 8-11|

Preparing the Database Server Environment

To prepare the database server environment, set database server environment
variables and configuration parameters, and synchronize the operating system time
on all participating database servers.

If you are using high-availability clusters with Enterprise Replication, set up your
servers according to the instructions in [“Setting Up Database Server Groups for]
[High-Availability Cluster Servers” on page 7-3.|

Setting Database Server Environment Variables

Certain environment variables must be set in a replication environment.

To configure the database server environment, verify that the following
environment variables are set correctly:

* INFORMIXDIR is set to the full path of the IBM Informix directory.
* INFORMIXSERVER is set to the name of the default database server.
* INFORMIXSQLHOSTS is set to the full path to the SQLHOSTS file.

* DELIMIDENT is not set or set to n. Enterprise Replication does not allow
delimited identifiers.

Set configuration parameters for replication

You must set certain configuration parameters before you start Enterprise
Replication. You can set other configuration parameters to customize the behavior
of Enterprise Replication.

Parameters to set before you start replication

Set the following configuration parameters in the onconfig file on each database
server that you want to include in the replication domain before you start
replication:

* DBSERVERNAME specifies the name of the database server. If you use both the
DBSERVERNAME and DBSERVERALIASES configuration parameters, set the
DBSERVERNAME configuration parameter to the TCP connection and not to a
shared-memory connection.

* CDR_QUEUEMEM specifies the maximum amount of memory to be used for
the send and receive queues.

* CDR_SERIAL specifies how to generate non-overlapping (unique) values for
serial columns across all database servers in the replication domain.

* CDR_TSINSTANCEID specifies how to generate unique identifiers for time
series instances across all database servers in the replication domain.

Logging parameters

By default, if Enterprise Replication detects the potential for a log wrap situation
when replication log processing lags behind the current log position, user
transactions are blocked. You can configure Enterprise Replication to prevent the
blocking of user transactions. Depending on the solutions you need, you might set
the following configuration parameters in the onconfig file for each database
server:

Chapter 6. Preparing the Replication Environment 6-15

* CDR_LOG_LAG_ACTION specifies the actions that Enterprise Replication
during a potential log wrap situation.

* LOG_STAGING_DIR specifies a directory in which compressed log files are
staged.

* CDR_LOG_STAGING_MAXSIZE specifies the maximum size that Enterprise
Replication can use to stage log files.

* CDR_MAX_DYNAMIC_LOGS specifies the number of dynamic log file requests
that Enterprise Replication can make in one server session.

* DYNAMIC_LOGS specifies that logical logs can be added dynamically.
Encryption parameters

If you want to encrypt network communications, set the following configuration

parameters in the onconfig file for each database server:

* ENCRYPT_CDR specifies whether to enable encryption. The default value is 0,
which prevents encryption.

* ENCRYPT_CIPHERS specifies which ciphers and cipher modes are used for
encryption.

* ENCRYPT_MAC controls the level of Message Authentication Code (MAC) used
to ensure message integrity.

* ENCRYPT_MACEFILE specifies the full path and file names of the MAC files.

* ENCRYPT_SWITCH specifies the number of minutes between automatic
renegotiations of ciphers and keys. (The cipher is the encryption methodology.
The secret key is the key that is used to build the encrypted data using the
cipher.)

Other parameters

Set the following optional configuration parameters to customize your replication

environment:

* CDR_DSLOCKWAIT specifies the number of seconds the data sync component
waits for the database locks to be released. When replication is active on an
instance, you can increase the amount of time to wait for lock resources to
accommodate transactions on replicated tables.

* CDR_SUPPRESS_ATSRISWARN suppresses certain data sync error and warning
codes from appearing in ATS and RIS files.

* CDR_DELAY_PURGE_DTC specifies how long to retain rows in delete tables to
support the delete wins conflict resolution rule.

* GRIDCOPY_DIR specifies the default directory that is used by the ifx_grid_copy
procedure.

* CDR_MAX_FLUSH_SIZE specifies the number of replicated transactions that are
applied before the logs are flushed to disk.

Related concepts:

“Row Data sbspaces” on page 6-10
1% pag

[‘Serial data types and replication keys” on page 4-6|

[‘Configuring network encryption for replication servers” on page 6-6|
Related tasks:
[“Managing Replication Servers” on page 11-1|

[“Adding a server to the domain by cloning a server” on page 8-5|

Related reference:

6-16 IBM Informix Enterprise Replication Guide

Appendix B, “Enterprise Replication configuration parameter and environment]
variable reference,” on page B-1

Related information:
[DBSERVERNAME configuration parameter]
[DBSERVERALIASES configuration parameter]

Time synchronization

Whenever you use replication that requires time stamp, time stamp with a stored
procedure, or delete wins conflict resolution, you must synchronize the operating
system times of the database servers that participate in the replicate.

All timestamps and internal computations are performed in Greenwich Mean Time
(GMT) and have an accuracy of plus or minus one second.

Important: Enterprise Replication does not manage clock synchronization between
database servers that participate in a replicate. You should use a product that
supplies a network time protocol to ensure that times remain synchronized. For
information on tools for synchronizing the times, refer to your operating system
documentation.

To synchronize the time on one database server with the time on another database
server, use one of the following commands, where hostname or servername is the
name of the remote database server computer.

UNIX rdate hostname

Windows
net time \\servername /set

net time /domain:servername /set

Important: These commands do not guarantee the times will remain synchronized.
If the operating system times of the database servers do become out of sync or if
their times move backward, time stamp or stored procedure conflict resolution
might produce failures caused by incorrect time stamps.

Related concepts:

[“Conflict Resolution” on page 5-6|

[‘Delete wins conflict resolution rule” on page 5-12|

[Time stamp conflict resolution rule” on page 5-7|
Related tasks:
[“Adding a server to the domain by cloning a server” on page 8-5|

Preparing Data for Replication

The goal of data replication is to provide identical, or at least consistent, data on
multiple database servers. This section describes how to prepare the information in
your databases for replication.

When you define a new replicate on tables with existing data on different database
servers, the data might not be consistent. Similarly, if you add a participant to an
existing replicate, you must ensure that all the databases in the replicate have
consistent values.

For more information, see [“Data Preparation Example” on page 6-26

Chapter 6. Preparing the Replication Environment 6-17

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0045.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0044.htm

6-18

Related concepts:

[“Update-Anywhere Replication System” on page 5-5|

Preparing Consistent Data

In most cases, preparing consistent data simply requires that you decide which of
your databases has the most accurate data and then that you copy that data onto
the target database. If the target database already has data, for data consistency,
you must remove that data before adding the copied data. For information on
loading the data, see[“Load and unload data” on page 6-23

Blocking Replication

You might need to block replication so that you can put data into a database that
you do not want replicated, perhaps for a new server or because you had to drop
and re-create a table.

To block replication while you prepare a table, use the BEGIN WORK WITHOUT
REPLICATION statement. This starts a transaction that does not replicate to other
database servers.

The following code fragment shows how you might use this statement:

BEGIN WORK WITHOUT REPLICATION

LOCK TABLE office

DELETE FROM office WHERE description = 'portlandR_D'
COMMIT WORK

Related concepts:

[‘Load and unload data” on page 6-23|

Using DB-Access to Begin Work Without Replication

The following example shows how to use DB-Access to begin work without
replication:

DATABASE adatabase;

BEGIN WORK WITHOUT REPLICATION

insert into mytable (coll, col2,)

values (valuel, value2,);
COMMIT WORK

Using ESQL/C to Begin Work Without Replication

The following example shows how to use Informix ESQL/C to begin work without
replication as well as update the Enterprise Replication shadow columns cdrserver
and cdrtime:

MAIN (argc, argv)

INT argc;
CHAR xargv[];
{
EXEC SQL CHAR stmt[256] ;

EXEC SQL database mydatabase;

sprintf(stmt, "BEGIN WORK WITHOUT REPLICATION");
EXEC SQL execute immediate :stmt;

EXEC SQL insert into mytable (coll, col2, ...)
values (valuel, value2, ...);
EXEC SQL commit work;

IBM Informix Enterprise Replication Guide

Important: You must use the following syntax when you issue the BEGIN WORK
WITHOUT REPLICATION statement from Informix ESQL/C programs. Do not use
the ‘$' syntax.

sprintf(stmt, "BEGIN WORK WITHOUT REPLICATION");
EXEC SQL execute immediate :stmt;

Preparing to Replicate User-Defined Types

You must install and register user-defined types on all database servers prior to
starting replication.

For Enterprise Replication to be able to replicate opaque user-defined types

(UDTs), the UDT designer must provide two support functions, streamwrite() and
streamread(). For more information, see [“Replication of opaque user-defined data|
[types” on page 4-10/

Preparing to Replicate User-Defined Routines

You must install and register user-defined routines on all database servers prior to
starting replication.

Preparing Tables for Conflict Resolution

To use any conflict-resolution rule other than ignore or always-apply, you must
define the shadow columns, cdrserver and cdrtime in the tables on both the source
and target servers involved in replication.

To define the cdrserver and cdrtime shadow columns when you create a new
table, use the WITH CRCOLS clause. For example, the following statement creates
a new table named customer with a data column named id and the two shadow
columns:

CREATE TABLE customer(id int) WITH CRCOLS;

To add the cdrserver and cdrtime shadow columns to an existing replicated table:
1. Set alter mode on the table by running the cdr alter --on command.

2. Alter the table using the ADD CRCOLS clause.

3. Unset alter mode on the table by running the cdr alter --off command.

Adding CRCOLS columns to an existing table can result in a slow alter operation
if any of the table columns have data types that require a slow alter. If a slow alter
operation is necessary, make sure you have disk space at least twice the size of the
original table, plus extra log space.

For example, the following statement adds the shadow columns to an existing
table named customer:

ALTER TABLE customer ADD CRCOLS;

You cannot drop conflict resolution shadow columns while replication is active. To
drop the cdrserver and cdrtime shadow columns, stop replication and then use the
DROP CRCOLS clause with the ALTER TABLE statement. For example, the
following statement drops the two shadow columns from a table named customer:
ALTER TABLE customer DROP CRCOLS;

Related concepts:

[“Shadow columns” on page 4-2|

[‘Shadow column disk space” on page 6-9

Chapter 6. Preparing the Replication Environment 6-19

[“SQL statements and replication” on page 3-3|

Related information:

[Enterprise Replication shadow columns|
[Using the WITH CRCOLS Option|

Preparing Tables for a Consistency Check Index

To improve the speed of consistency checking with an index, you must define the
ifx_replcheck shadow column in the tables on both the source and target servers
involved in replication.

To define the ifx_replcheck shadow column when you create a new table, use the
WITH REPLCHECK clause. For example, the following statement creates a new
table named customer with a data column named id and the ifx_replcheck
shadow column:

CREATE TABLE customer(id int) WITH REPLCHECK;

To add the ifx_replcheck shadow column to an existing replicated table:
1. Set alter mode on the table by running the cdr alter --on command.

2. Alter the table using the ADD REPLCHECK clause.

3. Unset alter mode on the table by running the cdr alter --off command.

Because altering a table to add the ifx_replcheck shadow column is a slow alter
operation, make sure you have disk space at least twice the size of the original
table plus log space.

For example, the following statements add the ifx_replcheck shadow column to an
existing table named customer:

ALTER TABLE customer ADD REPLCHECK;

To drop the ifx_replcheck shadow column, use the DROP REPLCHECK clause
with the ALTER TABLE statement. For example, the following statements drop the
ifx_replcheck shadow column from a table named customer:

ALTER TABLE customer DROP REPLCHECK;

For more information on the CREATE TABLE and ALTER TABLE statements, see
the sections in the IBM Informix Guide to SQL: Syntax.

Related concepts:

[“Shadow column disk space” on page 6-9|

[“Shadow columns” on page 4-2|

[“SQL statements and replication” on page 3-3|
Related tasks:
[‘Indexing the ifx_replcheck Column” on page 11-19|

Related information:

[Enterprise Replication shadow columns|
[Using the WITH REPLCHECK Keywords|

Preparing tables without primary keys

The data columns in your table might not need a primary key. To replicate tables
that do not have primary keys, you can specify a unique index or add the ERKEY
shadow columns.

6-20 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2069.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_0537.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2069.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2070.htm

You can specify an existing unique index or unique constraint as the replication
key when you define the replicate. Use the --key or --anyUniqueKey option with
the cdr define replicate or cdr define template commands.

If you create a replicated table through a grid, the ERKEY shadow columns are
automatically created and included in the replicate definition.

To add ERKEY shadow columns:

1. Add the ERKEY shadow columns when you create at table by using the WITH
ERKEY keywords with the CREATE TABLE statement. For example, the
following statement adds the ERKEY shadow columns to a table named
customer:

CREATE TABLE customer (id int) WITH ERKEY;

The ERKEY shadow columns are named ifx_erkey_1, ifx_erkey_2, and
ifx_erkey_3.

2. Define the replicate. If you define a replicate by using the cdr define replicate
command, include the --erkey option. If you define a template by using the cdr
define template command, the ERKEY columns are included in the replicate
definition automatically.

To add the ERKEY shadow columns to an existing table that you want to start

replicating:

1. Run the ALTER TABLE statement with the ADD ERKEY clause. For example,
the following statement adds the ERKEY shadow columns to an existing table
named customer:

ALTER TABLE customer ADD ERKEY;

Occasionally, you might need to drop the ERKEY shadow columns; for example, if
you are reverting to an earlier version of the database server.

To drop the ERKEY shadow columns from a replicated table:
1. Run the cdr remaster command without the --erkey option.
2. Run the DROP ERKEY clause with the ALTER TABLE statement.

For example, the following statement drops the ERKEY shadow columns from a
table named customer:

ALTER TABLE customer DROP ERKEY;
Related concepts:

[“Unique key for replication” on page 4-3|

[‘SQL statements and replication” on page 3-3|
Related tasks:
[Creating replicated tables through a grid” on page 9-11|

[“Attaching a New Fragment to a Replicated Table” on page 11-28§|

Related reference:

[“cdr define replicate” on page A-77

[“cdr remaster” on page A-153|

[“cdr change replicate” on page A-39|

[“cdr define template” on page A-98|

Related information:
[Using the WITH ERKEY Keywords|

Chapter 6. Preparing the Replication Environment 6-21

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2102.htm

[Enterprise Replication shadow columns|

Preparing Logging Databases

Databases on all server instances involved in replication must be created with
logging. For best results, use unbuffered logging. For more information, see

[“Unbuffered Logging” on page 4-1|

Related reference:

[“cdr start sec2er” on page A-176|

Preparing for Role Separation (UNIX)

You can use role separation to allow members of the DBSA group to run Enterprise
Replication commands, in addition to the user informix. For some Enterprise
Replication commands, you must grant the DBSA user additional permissions on
tables or files. For non-root servers, role separation is not supported. Only the
owner of a non-root server is allowed to run the Enterprise Replication commands
that require additional permissions for a DBSA.

The DBSA user who runs Enterprise Replication commands must be a member of
the DBSA group on all of the replication servers in the domain.

The following table describes the permissions that are needed for each command.

Table 6-2. Permissions for the DBSA user

Command

Type of Permission

Tables, Files, or Database

cdr check replicate
cdr check replicateset
cdr define replicate
cdr define replicateset
cdr define template
cdr realize template
cdr sync replicate

cdr sync replicateset

INSERT
UPDATE

DELETE

The tables that participate in
replication. Must be granted
on all replication servers in
the domain.

The following commands
with the --background
option:

* cdr check replicate

* cdr check replicateset
e cdr sync replicate

* cdr sync replicateset

CONNECT or INSERT,
depending on the object

sysadmin database:
CONNECT

ph_task table in the
sysadmin database: INSERT

Must be granted on the
database server from which
the command is run.

IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2069.htm

Table 6-2. Permissions for the DBSA user (continued)

Command Type of Permission Tables, Files, or Database
cdr define repair INSERT, UPDATE, or The following syscdr tables:
dr start . DELETE, depending on the |, rsncjobdef_tab: INSERT,

cdr start repair table UPDATE, DELETE

cdr stop repair * rsncjobdef: UPDATE
) * rsncprocnames_tab:

cdr delete repair INSERT

The following commands * rsncjobdeps: INSERT

with the --syncdatasource

Must be granted on all

option: e .
replication servers in the

* cdr realize template domain

* cdr start replicate

* cdr start replicateset

cdr repair read ATS and RIS files

cdr view atsdir Must be granted on the
database server on which the

cdr view risdir files are located.

To update the permissions on a table or database, use the GRANT statement. For
example, the following statement grants INSERT and UPDATE permissions on the
rsncjobdef_tab table to the DBSA member with the user name of carlo:

GRANT INSERT, UPDATE ON rsncjobdef_tab TO carlo;

For more information about the GRANT statement, see the IBM Informix Guide to
SQL: Syntax.

To update the permissions on ATS and RIS files, use an operating system
command, such as the chown UNIX command.

Related reference:

[“cdr check replicate” on page A-50)|

[“cdr check replicateset” on page A-61|

[“cdr sync replicate” on page A-200|

[“cdr sync replicateset” on page A-204

[“cdr repair” on page A-160|

[“cdr view” on page A-209|

[“cdr realize template” on page A-148|

[“cdr define replicate” on page A-77|

[“cdr define replicateset” on page A-87|

[“cdr start replicate” on page A-170]

[“cdr start replicateset” on page A-173|

[‘cdr define template” on page A-98|

Load and unload data

You can load data into or unload data out of tables in your replication
environment in various ways, depending on your circumstances.

Chapter 6. Preparing the Replication Environment 6-23

6-24

If you have not yet set up your replication environment, for loading data, you can
use the following tools:

* High-Performance Loader

* onunload and onload Utilities

* dbexport and dbimport utilities

* UNLOAD and LOAD statements
* External tables

When you unload and load data, you must use the same type of utility for both
the unload and load operations. For example, you cannot unload data with the
onunload utility and then load the data with a LOAD statement.

Existing replication environment

If you are adding a table to your already existing replication environment,
Enterprise Replication provides an initial synchronization feature that allows you
to easily bring a new table up-to-date with replication. You can synchronize the
new table with data on the source server you specify when you start the new
replicate, or when you add a new participant to an existing replicate. You do not
need to suspend any servers that are replicating data while you add the new
replicate and synchronize it.

If you want to use load and unload tools on tables that are already being
replicated, you should block replication while you prepare the table. Unlogged
changes to a table, such as data added by a light append, can be replicated to
other tables.

If a table that you plan to replicate includes the CRCOLS or REPLCHECK shadow
columns, the statements that you use for unloading the data must explicitly name
the shadow columns. If you use the SELECT statement with * FROM table_name to
the data to unload, the data from the shadow columns is not unloaded. To include
the shadow columns in the unloaded data, explicitly name them. For example, use
a statement like the following;:

SELECT cdrserver, cdrtime, ifx_replcheck, * FROM table name

If a table that you plan to replicate includes ERKEY shadow columns, you cannot
unload and then load the data from these columns and preserve the original
values. If you need to preserve the values of the ERKEY shadow columns, use
synchronization to propagate the values.

Related concepts:

[“Blocking Replication” on page 6-18|

“Setting Up Database Server Groups for High-Availability Cluster Servers” on page]|
7-3

[“Shadow columns” on page 4-2|

Related tasks:

[“Initially Synchronizing Data Among Database Servers” on page 8-20|

Related information:

[Moving data with external tables|

High-Performance Loader

The High-Performance Loader (HPL) provides a high-speed tool for moving data
between databases.

IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1332.dita#ids_admin_1332.htm

How you use the HPL depends on how you defined the tables to replicate.

If the table contains shadow columns, you must:
* Include all the shadow column names in your map when you load the data.

* Use express mode to load data that contains shadow columns. You must
perform a level-0 archive after completion.

You can also use deluxe mode without replication to load data. After a deluxe
mode load, you do not need to perform a level-0 archive. Deluxe mode also allows
you to load TEXT and BYTE data and opaque user-defined types.

For information about HPL, refer to the IBM Informix High-Performance Loader
User’s Guide.

onunload and onload Utilities

You can use the onunload and onload utilities to unload and load an entire table.

If you want to unload selected columns of a table, you must use either the
UNLOAD statement or the HPL.

Restriction: You can only use the onunload and onload utilities in identical
(homogeneous) environments.

If you use the onload utility while replication is active, you must synchronize the
data after you finish loading the data.

Related information:

[The onunload and onload utilities|

dbexport and dbimport Utilities

If you need to copy an entire database for replication, you can use the dbexport
and dbimport utilities. These utilities unload an entire database, including its
schema, and then re-create the database. If you want to move selected tables or
selected columns of a table, you must use some other utility.

Related information:
[The dbexport and dbimport utilities|

UNLOAD and LOAD Statements

The UNLOAD and LOAD statements allow you to move data within the context of
an SQL program.

If the table contains shadow columns, you must:
* Include all shadow columns in your map when you unload the data.

* List the columns that you want to load in the INSERT statement and explicitly
include the shadow columns in the list when you load your data.

For more information about the UNLOAD and LOAD statements, see the IBM
Informix Guide to SQL: Syntax.

Chapter 6. Preparing the Replication Environment 6-25

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.mig.doc/ids_mig_191.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.mig.doc/ids_mig_113.htm

Data Preparation Example

6-26

The following examples show how to add a new participant (delta) to an existing
replicate by two different methods:

* Using the cdr start replicate command
This method is simple and can be done while replication is online.

* Using the LOAD, UNLOAD, and BEGIN WORK WITHOUT REPLICATION
statements.

If you use HPL, this method can be faster for a large table.

Replicate zebra replicates data from table tablel for the following database servers:
alpha, beta, and gamma.

The servers alpha, beta, and gamma belong to the server groups g_alpha, g_beta,
and g gamma, respectively. Assume that alpha is the database server from which
you want to get the initial copy of the data.

Using the cdr start replicate Command

To add a new participant to an existing replicate
1. Declare server delta to Enterprise Replication. For example:
cdr def ser -c delta -I -S g_alpha g_delta

At the end of this step, all servers in the replication environment include
information in the syscdr database about delta, and delta has information
about all other servers.

2. Add delta as a participant to replicate zebra. For example:
cdr cha rep -a zebra "dbname@g_delta:owner.tablel"

This step updates the replication catalog. The servers alpha, beta, and gamma
do not queue any qualifying replication data for delta because the replicate on
delta, although defined, has not been started.

3. Start replication for replicate zebra on delta.
cdr sta rep zebra g _delta -S g_alpha -e delete
The -S g_alpha option specifies that the server alpha be used as the source for
data synchronization.
The -e delete option indicates that if there are rows on the target server, delta,
that are not present on the synchronization data server (alpha) then those rows
are deleted

Do not run any transactions on delta that affect table tablel until you finish the
synchronization process.

Using LOAD, UNLOAD, and BEGIN WORK WITHOUT
REPLICATION

When you add a new participant to an existing replicate, you can unload and load
data without replication.

To add a new participant to an existing replicate
1. Add the server delta to the Enterprise Replication domain. For example:
cdr def ser -c delta -I -S g_alpha g _delta

At the end of this step, all servers in the replication environment include
information in the syscdr database about delta, and delta has information
about all other servers.

IBM Informix Enterprise Replication Guide

2. Add delta as a participant to replicate zebra. For example:

cdr cha rep -a zebra "P dbname@g_delta:owner.tablel" \

"select * from tablel"

This step updates the replication catalog. The servers alpha, beta, and gamma
do not queue any qualifying replication data for delta because the replicate on
delta, although defined, has not been started.

3. Suspend server delta on alpha, beta, and gamma.
cdr sus ser g_delta g_alpha g_beta g_gamma
As a result of this step, replication data is queued for delta, but no data is
delivered.
4. Start replication for replicate zebra on delta.
cdr sta rep zebra g_delta

This step causes servers alpha, beta, and gamma to start queuing data for
delta. No data is delivered to delta because delta is suspended. Then, delta
queues and delivers qualifying data (if any) to the other servers.

Do not run any transactions on delta that affect table tablel until you finish the
synchronization process.

5. Unload data from table tablel using the UNLOAD statement or the unload
utility on HPL.

6. Copy the unloaded data to delta.

7. Start transactions with BEGIN WORK WITHOUT REPLICATION, load the data
using the LOAD statement, and commit the transactions. If you used the HPL
to unload the data in step El then use the HPL Deluxe load without replication
to load the data into tablel on delta.

8. Resume server delta on alpha, beta, and gamma.
cdr res ser g _delta g_alpha g_beta g_gamma

This step starts the flow of data from alpha, beta, and gamma to delta.

At this point, you might see some transactions aborted because of conflict.
Transactions can abort because alpha, beta, and gamma started queuing data
from delta in step 4. However, those same transactions might have been moved
in steps 5 and 7.

You must declare replication on server delta and then immediately suspend
replication because, while you are preparing the replicates and unloading and
loading files, the other servers in the replicate (alpha, beta, and gamma) might be
collecting information that needs to be replicated. After you finish loading the
initial data to delta and resume replication, the information that was generated
during the loading process can be replicated.

Chapter 6. Preparing the Replication Environment 6-27

6-28 IBM Informix Enterprise Replication Guide

Chapter 7. Using High-Availability Clusters with Enterprise
Replication

In This Chapter

This chapter covers how to include other data replication solutions, such as
high-availability data replication, in your Enterprise Replication system. The
following topics are covered:

* The design of a high-availability cluster replication system
* Preparing a high-availability cluster database server
* Managing Enterprise Replication with a high-availability cluster

For a complete description of data replication, see the IBM Informix Administrator’s
Guide.

High-availability replication systems

You can combine IBM Informix Enterprise Replication and high-availability clusters
to create a high-availability replication system.

A high-availability cluster consists of two types of database servers:

* A primary database server, which receives updates, and can participate in
Enterprise Replication.

* Secondary servers, which mirror the primary server and are perpetually
applying logical-log records from the primary server, and cannot participate in
Enterprise Replication.

A minimal high-availability cluster consists of a primary server and a HDR
secondary server that are tightly coupled. Transactions on the primary server are
not committed until the log records containing the transactions are sent to the
HDR secondary server.

High-availability clusters can also contain shared-disk (SD) secondary servers and
remote standalone (RS) secondary servers. A SD secondary server does not
maintain a copy of the physical database on its own disk space; it shares disks
with the primary server. An RS secondary servers maintains a copy of the physical
database on its own disk space.

If the primary server in a high-availability cluster becomes unavailable, one of the
secondary servers takes over the role of the primary server. In a high-availability
replication system, if the primary server fails, a secondary database is promoted to
primary server, and Enterprise Replication can continue with the new primary
server.

You can configure Connection Managers to direct client requests to replication
servers, and to control which secondary server takes over if the primary server
becomes unavailable.

A high-availability replication system is effective when you use a hierarchical or a
forest of trees topology.

Related concepts:

© Copyright IBM Corp. 1996, 2015 7-1

7-2

[“Update-Anywhere Replication System” on page 5-5|

Related information:
[The sqlhosts information|

High-Availability Clusters in a Hierarchical Tree Topology

Using

With a hierarchical tree topology, parent servers are good candidates for using
high-availability clusters to provide backup servers.

The following example is based on the example in [Figure 5-7 on page 5-18}

If China fails, then Beijing and Shanghai can no longer replicate with other
servers in the replication system; Guangzhou and Chengdu can replicate only with
each other. However, if China was part of a high-availability cluster, when it failed,
the secondary server would replace it and replication would continue, as

illustrated in

Asia China

Japan / China (offline)
=y B

" Guangzhou

¥ \ Chengdu

Shanghai

‘A

Beijing

Figure 7-1. Hierarchical Tree Topology with HDR

In this example, Asia and Guangzhou, which are also parent servers, might also
benefit from using a high-availability cluster to ensure high availability.

high-availability clusters in a forest of trees topology

Use a high-availability cluster to ensure that all servers retain access to the
replication system in a forest of trees topology.

For example, in [Figure 5-8 on page 5-19, Asia, Europe, China, and Guangzhou
should use high-availability clusters to provide backup servers, as illustrated in
[Figure 7-2 on page 7-3

IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0158.htm

High-Availability
Cluster

Europe

=2
\ Europe /;/'Q
N

North America

primary
High-Availability |
Cluster f _________ ;
[5
Asia Asia X

China China

4 N High-Availability Cluster
NCCTCICoCoooo T ,

Guangzhou Guangzhou !

Beijing
) : i
'," i primary) ¢—p secondary) i
Q A = e i
Chengdu
Shanghai 2

Figure 7-2. High-Availability Clusters in a Forest-of-Trees Topology

Setting Up Database Server Groups for High-Availability
Cluster Servers

When defining a high-availability cluster within Enterprise Replication, the cluster
must appear to be a single logical entity within the replication domain. Define the
servers within the same database server group in the sqlhosts file.

For example, [Figure 7-3 on page 7-4| illustrates two Enterprise Replication nodes,
one of which is an HDR pair.

Chapter 7. Using High-Availability Clusters with Enterprise Replication 7-3

servi —— serv2
ER

HDR

servi_sec)

g_servi g_serv2

Figure 7-3. Database Server Groups for Enterprise Replication with HDR

In this example, the HDR pair consists of the primary server, servl, and the
secondary server, servl_sec. These two servers belong to the same database server
group, g_servl. The non-HDR server, serv2, belongs to the database server group
g_serv2. The following example displays the sqlhosts file for this configuration:

#dbservername nettype hostname servicename options
g_servl group - - i=1
servl ontlitcp machinelpri portl g=g_servl
servl sec ontlitcp machinelsec portl g=g_servl
g_serv2 group - - i=2
serv2 ontTitcp machine2 portl g=g_serv2

Important: If you use the g=server option in the group member definition, you
can put the definition anywhere in the sqlhosts file.

Either HDR or Enterprise Replication can be set up first on the HDR pair servl
and servl_sec, but Enterprise Replication cdr commands must be run only on the
primary server. If any cdr commands are attempted on the secondary server, a —117
error is returned: Attempting to process a cdr command on an HDR secondary
server.

Related concepts:

[‘Load and unload data” on page 6-23|

[“Creating sqlhost group entries for replication servers” on page 6-3|

Related information:

[sglhosts connectivity information|

Managing Enterprise Replication with High-Availability Clusters
This section describes how to manage Enterprise Replication with HDR in the
following areas:
* Failure of the primary server in a high-availability cluster

¢ Performance considerations

Failover for High-availability clusters in an Enterprise
Replication environment

If you configure connection management for failover, Connection Managers can
promote a secondary server to the primary-server if the primary server fails. If

7-4 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0161.htm

connection management is not configured to control failover, the onmode -d make
primary command can promote a secondary server to the primary-server role. In
either of these cases, Enterprise Replication automatically connects to the new
primary server.

If the primary server fails, and you manually change a secondary server to a
standard server, you must complete the following steps to prevent Enterprise
Replication from starting on all servers in cluster.

Run the following commands on the secondary server:
1. onmode -s

2. onmode -d standard

3. cdr start

If Enterprise Replication is running on the secondary server, and you want to
restart the server that was the primary server, but without Enterprise Replication
and high-availability cluster replication, run the oninit -D command. You can then
stop Enterprise Replication on the standard server and reestablish the primary
server.

First, run the following commands on the standard server:
1. cdr stop
2. onmode -d secondary primary_ha_alias

Second, run the following commands on the primary server:
1. oninit
2. cdr start

To split an active cluster into two standalone servers, you must restart the database
servers with the oninit -D command to prevent Enterprise Replication from
starting on either server after they are split.

To remove a server from a cluster, run the cdr delete server —force ha_alias
command, where ha_alias is an Enterprise Replication group name, to remove
Enterprise Replication from that server. For example, the two HDR servers are
being split and the secondary server is to be used for reporting purposes. After the
report processing is complete, HDR can be reestablished. [“cdr delete server” on|
shows how to remove a secondary server from a high-availability
cluster and Enterprise Replication.

Table 7-1. Removing the Secondary Server from a cluster and ER

Step On the Primary On the Secondary

1. onmode -d standard secondary_ha_alias

2. Run onmode -d standard

3. Run cdr delete server -f ha_alias

If the HDR primary server has problems communicating to its secondary server,
Enterprise Replication is in a suspended state until one of the following actions is
taken:

* Resolve the connection problem between HDR pairs.
* Convert the primary server to standard mode.
Related reference:

Chapter 7. Using High-Availability Clusters with Enterprise Replication 7-5

7-6

[“cdr delete server” on page A-108|

Related information:

[Connection management through the Connection Manager|

Replication latency for secondary servers

When you combine Enterprise Replication with high-availability clusters,
replication latency can increase.

When Enterprise Replication is running on a high-availability cluster, some
operations cannot be performed until the logs are shipped to the secondary server.
By default, the logs are shipped to secondary servers after 50 replicated
transactions are applied, or 5 seconds elapse. This delay prevents possible
inconsistency within the Enterprise Replication domain during a failover to a
secondary server.

You can control replication latency for high-availability data replication (HDR)
servers in one of the following ways

* Set HDR replication to fully synchronous, nearly synchronous, or asynchronous
mode.

* Set HDR replication to HDR SYNC.

* Adjust the DRINTERVAL configuration parameter to specify a different interval
between flushing the high-availability data-replication buffer.

If you combine Enterprise Replication with shared-disk secondary servers, you can
reduce replication latency by setting the CDR_MAX_FLUSH_SIZE configuration
parameter to 1 to flush the logs after each replicated transaction.

Related reference:

[‘CDR_MAX_FLUSH_SIZE configuration parameter” on page B-11|
Related information:

[DRINTERVAL configuration parameter|

[HDR_TXN_SCOPE configuration parameter|

[Replication of primary-server data to secondary servers|

[Fully synchronous mode for HDR replication|
[Nearly synchronous mode for HDR replication|

IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1176.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_0058.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1175.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0863.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0868.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1417.htm

Chapter 8. Defining Replication Servers, Replicates,
Participants, and Replicate Sets

These topics describe the steps defining and starting Enterprise Replication.

To define and start replication:
1. Initialize the database server.
2. Create a replication domain by defining replication servers.

3. Configure replication by defining replicates, and optionally grouping replicates
into a replicate set. The replicate definition includes information about the
participants, replication options, frequency, and conflict-resolution rules and
scope.

4. Specify the data to replicate by defining participants. A participant definition
specifies the data (database, table, and columns) that should be replicated.

5. Synchronize the data among the replicates.

Starting Database Servers

The database server must be online before you can define it as a replication server.

To bring the server from offline to online, issue the following command for your
operating system.

Operating System Command
UNIX oninit
Windows start dbservername

To bring the server from quiescent mode to online on either UNIX or Windows,
enter onmode -m.

For more information on initializing the database server, see the chapter on
database server operating modes in the IBM Informix Administrator’s Guide.

Defining Replication Servers

You must define a replication server to create a replication domain or to add a
server to an existing domain.

The database server must be online.

You must be the Enterprise Replication server administrator to define the
replication server.

You can define replication servers using two different methods:
* The cdr utility
* Cloning

To define the replication server in a new domain by using the cdr utility, use the
cdr define server command to connect to the database server and specify the

© Copyright IBM Corp. 1996, 2015 8-1

8-2

database server group name. For example, the following command connects to a
server called stan and creates a domain containing the database server group
g_stan:

cdr define server --connect=stan --init g_stan

The --init option specifies the database server group to add to the replication
domain. If the INFORMIXSERVER environment variable is not set to the server
that you are defining, specify the --connect=server_name option. You can also
configure replication attributes for the server.

To define a replication server in an existing domain by using the cdr utility,
include the --sync=sync_server option with the cdr define server command to
synchronize the global catalog with an existing server. For example, the following
command adds a server group named g_oliver to the domain created in the
previous command, using g stan as the synchronization server:

cdr define server --connect=oliver --init g oliver --sync=g_stan

You can specify any existing server in the domain, however, if you define a server
as a nonroot or a leaf server, then the synchronization server becomes the parent of
the new server. For example, if you add a server kauai as a leaf server and want
its parent to be hawaii, then specify hawaii with the --sync option.

You can have Enterprise Replication automatically configure disk space from the
storage pool and set the appropriate configuration parameters when defining a
replication server. If the CDR_QDATA_SBSPACE or the CDR_DBSPACE
configuration parameter is not set and the server has a storage pool with sufficient
space, the cdr define server command automatically creates the necessary disk
space and sets the configuration parameters to appropriate values.

Related concepts:

[“Row Data sbspaces” on page 6-10|

[“Choosing a Replication Network Topology” on page 5-16|

[“Enterprise Replication Server administrator” on page 3-1

[“Modify server attributes” on page 11-1|
Related tasks:
[‘Setting Up Failed Transaction Logging” on page 8-11|

Related reference:

[“cdr define server” on page A-90|

[“cdr define replicate” on page A-77|

Creating a new domain by cloning a server

You can create a new replication domain by cloning a server and then converting
the two Informix database servers to replication servers. Use cloning and
conversion if you want to set up replication based on the data on a source server
that is not yet running Enterprise Replication.

Because the source server does not have Enterprise Replication defined, you use
the ifxclone utility to create a cluster containing a primary server and remote
stand-alone (RS) secondary server. The conversion process converts the cluster to a
pair of replication servers in a new domain.

To create a new domain with two replication servers:

IBM Informix Enterprise Replication Guide

1. On the source server, prepare the server environment for Enterprise
Replication, such as configuring sqlhosts information and setting the necessary
configuration parameters.

2. On both servers, complete the ifxclone prerequisites for all servers, such as
setting the required configuration parameters and environment variables.

3. On the target server, complete the ifxclone prerequisites for an RS secondary
server, such as creating all of the chunks that exist on the source server. You
can use the --createchunkfile option (-k) of the ifxclone utility to automatically
create cooked chunks on the target server.

4. On the target server, run the ifxclone command with the --disposition=RSS
option to clone the data and the configuration of the source server onto the
target server. Do not include the --useLocal option.

5. On the source server, run the cdr check sec2er command to determine if
conversion to replication servers is possible.

6. Solve any error conditions identified by the cdr check sec2er command and
rerun it until its output indicates that conversion will be successful. You can
also solve warning conditions.

7. On the source server, run the cdr start sec2er command to convert both servers
to replication servers and create a new replication domain.

To add other servers to the domain, you can clone a replication server.
Related concepts:

[Chapter 6, “Preparing the Replication Environment,” on page 6-1
Related tasks:

[“Adding a server to the domain by cloning a server” on page 8-5|

Related information:
[The ifxclone utility|

Example of creating a new replication domain by cloning

This is an example of creating a new replication domain based on the data and
configuration on a source database server that does not have replication defined.
The three additional replication servers in the domain are added by cloning the
source server.

This example creates a replication domain and grid that contain four replication
servers: servl, serv2, serv3, serv4. Each server computer has the Informix database
server installed. The source server contains the stores_demo database.

1. On the servl server, set the CDR_QDATA_SBSPACE configuration parameter.

2. On the servl server, set the value of the ENABLE_SNAPSHOT_CLONE
configuration parameter to 1 in the onconfig file.

3. On the serv1 server, add the following sqThosts information about servl and

serv2:

gservl group - - i=143
servl ontlitcp ny.usa.com 1230 g=gservl
gserv2 group - - i=144
serv2 ontlitcp tokyo.japan.com 1231 g=gserv2

4. On both the servl and serv2 servers, complete the ifxclone prerequisites for
all servers, such as setting the required configuration parameters and
environment variables.

Set these environment variables:
* INFORMIXDIR
e INFORMIXSERVER

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-3

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1093.htm

8-4

10.

11.

* INFORMIXSQLHOSTS
* ONCONFIG

Set these configuration parameters to the same values on both servers:
* DRAUTO

* DRINTERVAL

* DRTIMEOUT

* LOGBUFF

» LOGFILES

* LOGSIZE

* LTAPEBLK

» LTAPESIZE

*+ ROOTNAME

* ROOTSIZE

* PHYSBUFF

* PHYSFILE

* STACKSIZE

* TAPEBLK

* TAPESIZE

On the serv2 server, create all of the chunks that exist on the servl server. You
can use the --createchunkfile option (-k) of the ifxclone utility to
automatically create cooked chunks on the target server.

On the serv2 server, run the ifxclone command with the --disposition=RSS
option to clone the data and the configuration of the servl server onto the
serv2 server:

ifxclone --trusted --source=servl --sourcelP=192.168.0.1

--sourcePort=1230 --target=serv2 --targetIP=192.168.0.2

--targetPort=1231 --disposition=RSS --createchunkfile

On the servl server, run the cdr check sec2er command to determine if
conversion to replication servers is possible:

$cdr check sec2er -c gservl gserv2

Secondary conversion to ER is possible.

On the servl server, run the cdr start sec2er command to convert both servers
to replication servers, create a new replication domain, create and start
replicates based on all the tables on the servl server:

cdr start sec2er -c gservl gserv2

On the serv3 and serv4 servers, provision chunk paths and other storage to
the same paths and at least the same sizes as on the servl server.

On the serv3 server, run the ifxclone command with the --disposition=ER
option to clone the data and the configuration of the servl server onto the
serv3 server:

ifxclone --trusted --source=servl --sourceIP=192.168.0.1

--sourcePort=1230 --target=serv3 --targetIP=192.168.0.3

--targetPort=1232 --disposition=ER

On the serv4 server, run the ifxclone command with the --disposition=ER
option to clone the data and the configuration of the servl server onto the
serv4 server:

ifxclone --trusted --source=servl --sourceIP=192.168.0.1

--sourcePort=1230 --target=serv4 --targetIP=192.168.0.4
--targetPort=1233 --disposition=ER

IBM Informix Enterprise Replication Guide

12. Edit the sqlhosts files on all four servers so that they each have the following

information:

gservl group - - i=143
servl ontlitcp ny.usa.com 1230 g=gservl
gserv2 group - - i=144
serv2 ontlitcp tokyo.japan.com 1231 g=gserv2
gserv3 group - - i=145
serv3 ontlitcp rome.italy.com 1232 g=gserv3
gservid group - - i=146
servé ontlitcp perth.australia.com 1233 g=gservé4

Related reference:

[“cdr start sec2er” on page A-176|

[“cdr check sec2er” on page A-69|

Related information:
[The ifxclone utility|

Adding a server to the domain by cloning a server

You can add a replication server to an existing replication domain by using the
ifxclone utility to clone an existing replication server onto a target database server.

Enterprise Replication must be active on the source server. The source server

should not have any stopped or suspended replicates or any shadow replicates
defined.

You must be user informix or member of the informix group to run the ifxclone

utility.
IBM Informix database software must be installed on the target server.

Cloning a server defines replication on the target server, copies the data, and adds
the target server to all replicates in which the source server participates. The
onconfig file and the sqlhosts file are copied from the source server to the target
server and updated with the target server information.

To clone a replication server by using the ifxclone utility:

1. On the source server, set the value of the ENABLE_SNAPSHOT_COPY
configuration parameter to 1 in the onconfig file.

2. On the target server, create the following directories, if they exist on the source
server. The directories must be the same on both servers:

* ATS and RIS directories
* Log staging directory
3. On the target server, synchronize the system clock with the source server.

4. On the target server, provision chunk paths and other storage to the same paths
and at least the same sizes as on the source server. Ensure that the target server
has at least as much memory and disk space resources as the source server. You
can use the --createchunkfile option (-k) of the ifxclone utility to automatically
create cooked chunks on the target server.

5. On the target server, run the ifxclone command. You must provide the
following information to the ifxclone utility:

e Source server name
e Source IP address
* Source port

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-5

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1093.htm

8-6

* Target server name

* Target IP address

 Target port

Include the --disposition=ER option.
Optional: Include the --createchunkfile option.

If the source server replicates serial columns, use the --configParam option to
set the value of the CDR_SERIAL configuration parameter to ensure that serial
values do not conflict between replication servers. The ifxclone utility has the
following format for cloning a replication server:
ifxclone --source=source_name --sourcelP=source_IP
--sourcePort=source_port --target=target_name
--targetIP=target_IP --targetPort=target_port

--disposition=ER --createchunkfile

6. On all other replication servers in the domain, edit the sqlhosts file to add
entries for the new replication server.

Related concepts:

[Time synchronization” on page 6-17|
Related tasks:
[‘Creating a new domain by cloning a server” on page 8-2|

[“Adding a replication server to a grid by cloning” on page 9-§|

Related reference:

[‘Set configuration parameters for replication” on page 6-15|

Related information:
[The ifxclone utility|

Customizing the Replication Server Definition

You can specify replication attributes of a server when you define it.

When you define a replication server, you can specify the following attributes in
the cdr define server command:

¢ Set the idle timeout.

To specify the time (in minutes) that you want to allow the connection between
two Enterprise Replication servers to remain idle before disconnecting, use the
--idle=timeout option.

You can later change the values of this attribute with the cdr modify server
command.

* Specify the location of the ATS and RIS directories.

To use ATS, specify the directory for the Aborted Transaction Spooling (ATS)
files for the server using --ats=dir or--ris=dir . To prevent either ATS or RIS file
generation, set the directory to /dev/null (UNIX) or NUL (Windows).

You can later change the values of these attributes with the cdr modify server
command.

* Specify the format of the ATS and RIS files.

Use the —atsrisformat=type option to specify whether the ATS and RIS files are
generated in text format, XML format, or both formats.

You can later change the values of this attribute with the cdr modify server
command.

* Specify the type of server if you are using hierarchical replication:

— To specify the server as a nonroot server, use the --nonroot option.

IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1093.htm

— To specify the server as a leaf server, use the --leaf option.

If neither --leaf nor --nonroot is specified, the server is defined as a root server.

The parent server is the server specified by the --sync=sync_server option.

Related concepts:

“Choosing a Replication Network Topology” on page 5-16
g

[“Enterprise Replication Terminology” on page 1-1|

Related tasks:

[‘Creating ATS and RIS directories” on page 6-14]

Related reference:

“cdr define server” on page A-90|

[“cdr modify server” on page A-146|

Define a replicate

To define a replicate, use the cdr define replicate command.

You can provide the following information in the replicate definition:

After you define the replicate and participants, you must manually start the

Participants

Create as a master replicate

Conflict resolution rules and scope
Replication frequency

Error logging

Replicate full rows or only changed columns
IEEE or canonical message formats
Database triggers

Code set conversion between replicates
Replication key

Serial or parallel processing

replicate by running the cdr start replicate command.

Participant definitions

You must define a participant for each server that is involved in the replicate
definition by running the cdr define replicate command. Each participant in a

replicate must specify a different database server.

Each participant definition includes the following information:

Database server group name

Database in which the table to be replicated resides
Table name

Table owner

Participant type

For a primary-target replication system, you can specify the participant type as

primary, receive-only, or send-only. If you do not specify the participant type,
Enterprise Replication defines the participant as update-anywhere, by default.

SELECT statement and optional WHERE clause

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets

8-7

8-8

Restriction: Do not create more than one participant definition for each row and
column to replicate. If the participant is the same, Enterprise Replication attempts
to insert or update duplicate values during replication. For example, if one
participant modifier includes WHERE x < 50 and another includes WHERE x <
100, Enterprise Replication sends the data for when x is between 50 and 100 twice.

Related concepts:

[“Primary-Target Replication System” on page 5-1

Related reference:

[“Participant and participant modifier” on page A-4|

Defining Replicates on Table Hierarchies
When you define replicates on inherited table hierarchies, use the following
guidelines to replicate operations:

* For both the parent and child tables, define a replicate on each table.

* For only the parent table (not the child table), define a replicate on the parent
table only.

* For only the child table (not the parent table), define a replicate on the child
table only.

Replicate types

You can choose a replicate type depending on whether you want the schema
definitions on all participants to be the same. A master replicate enforces
consistency between the schema definitions of the participants and the schema
definition on a designated server. A classic replicate does not check the schema
definitions of the participants.

By default, replicates are master replicates. If you do not specify a master server,
the master replicate is based on the first participant. Dictionary information is then
stored about replicated column attributes for the participant you specify. Enterprise
Replication checks for consistency between the master definition and local
participant definitions. Checks are run when the replicate is defined and each time
a new participant is added to the replicate, thus avoiding runtime errors.
Verification also occurs each time that the master replicate is started on a server.

If you do not want to verify the schema, create a classic replicate. For example, if
you want to create a data consolidation system in which one server only receives
data from other servers that only send data, create a classic replicate.

Defining a replicate as a master replicate provides several advantages:

* Ensures data integrity by verifying that all participants in the replicate have
table and replicated column attributes that match the master replicate definition.

* Provides automatic table generation on participants that do not already contain
the table that is specified in the master replicate. However, Enterprise
Replication cannot create tables with user-defined data types.

* Allows alter operations on the replicated tables.

When you define a master replicate, you can specify a participant that is on the
server for which you are running the command. By default, the first participant
that you list in the cdr define replicate command is the used to create the
dictionary information for the master replicate. The additional participants in the
cdr define replicate command are verified against the master definition and added
to the replicate if they pass validation. If any participant fails validation, the cdr
define replicate command fails and that participant is disabled.

IBM Informix Enterprise Replication Guide

Related reference:

[“cdr define template” on page A-98|

[“cdr define replicate” on page A-77|

Master Replicate Verification
Enterprise Replication verifies the following information about a participant when
the participant is added to the master replicate:

* The participant contains all replicated columns.

* The replicated columns in the participant have the correct data types. For
columns that are user-defined data types, only the names of the data types are
verified.

* Optionally, the replicated columns in the participant have the same column
names as the master replicate.

Creating Strict Master Replicates

You can create a strict master replicate in which all participants have the same
replicated column names by using the --name=y option. This option specifies that
when the master replicate verification is done for a new participant, that the
column names on the participant must be identical to the column names of the
master replicate. Strict master replicates allow you to perform the following tasks:

» Alter operations on replicated tables. For more information, see |”A1ter, rename]
for truncate operations during replication” on page 11-23)

* Remastering by using the cdr remaster command. For more information, see
[‘Remastering a Replicate” on page 11-29)

You can modify an existing master replicate to remove name verification by using
the --name=n option of the cdr modify replicate command.

Related reference:

“cdr modify replicate” on page A-140|

Creating Empty Master Replicates

You can create an empty master replicate by using the --empty option. This option
allows you to specify a participant as the basis of the master replicate but not
include that participant in the replicate. Creating an empty replicate can be
convenient in large environments in which you later add all participants using
scripts.

When you define an empty master replicate, you must specify only one participant
in the cdr define replicate command. This participant is used to create the master
dictionary information but is not added to the replicate.

The --empty option is only supported for master replicates, you cannot use it
without the --master option.

Defining Shadow Replicates

A shadow replicate is a copy of an existing, or primary, replicate. Enterprise
Replication uses shadow replicates to manage alter and repair operations on
replicated tables. You must create a shadow replicate to perform a manual
remastering of a replicate that was defined with the -n option. See [“Resynchronize|
[data manually” on page 11-23| for information about how you can repair, or
remaster, your replicated data. After creating the shadow replicate, the next step in
manual remastering is to switch the primary replicate and the shadow replicate
using the cdr swap shadow command.

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-9

8-10

You create a shadow replicate using the cdr define replicate command with the
--mirrors option, as described in|“cdr define replicate” on page A-77|

When you define a shadow replicate, its state is always set to the same state as the
primary replicate. If you change the state of the primary replicate, all its shadow
replicates’ states are also changed to the same state.

You cannot delete a primary replicate if it has any shadow replicates defined. You
must first delete the shadow replicates, and then the primary replicate.

You cannot modify a primary replicate (using the cdr modify replicate command)
if it has any shadow replicates defined. Also, you cannot modify shadow replicates
directly.

You cannot suspend or resume a primary replicate (using the cdr suspend
replicate or cdr resume replicate command) if it has any shadow replicates
defined. Also, you cannot suspend or resume shadow replicates directly. If the
primary replicate and its shadow replicates are part of an exclusive replicate set,
you can suspend or resume the entire replicate set using the cdr suspend replicate
or cdr resume replicate command.

You cannot add a participant to a shadow replicate:
* If the participant is not part of the primary replicate’s definition
* After remastering the replicate

If the primary replicate is part of an exclusive replicate set, any shadow replicates
you define are automatically added to that replicate set.

If you add a primary replicate to an exclusive replicate set, all its shadow
replicates are also automatically added. If you delete a primary replicate from an
exclusive replicate set, all its shadow replicates are also automatically deleted.

Specifying Conflict Resolution Rules and Scope

You specify the conflict resolution rule in the replicate definition.

For update-anywhere replication systems, you must specify the conflict-resolution
rules in the replicate definition using the --conflict=rule option to the cdr define
replicate command. The conflict resolution rule option names are:

* always

* deletewins
* ignore

* timestamp

* routine_name

If you use an SPL routine for your conflict-resolution rule, you can also use the
--optimize option to specify that the routine is optimized.

You can also specify the scope using the --scope=scope option:
* transaction (default)
* row

Related concepts:

[“Update-Anywhere Replication System” on page 5-5|

[“Conflict resolution rule” on page 5-6|

IBM Informix Enterprise Replication Guide

[“Conflict Resolution Scope” on page 5-15|

Related reference:

[“cdr define replicate” on page A-77|

Specifying Replication Frequency
The replication frequency options allow you to specify the interval between
replications, or the time of day when an action should occur. If you do not specify
the frequency, the default action is that replication always occurs immediately
when data arrives.

The frequency options are:
e --immed

» --every=interval

e --at=time

For more information, see [“Frequency Options” on page A-27.

Important: If you use time-based replication and two tables have referential
constraints, the replicates must belong to the same exclusive replicate set. For more
information, see |“Exclusive Replicate Sets” on page 8-18.

Setting Up Failed Transaction Logging

The Aborted Transaction Spooling (ATS) files and Row Information Spooling (RIS)
files contain information about failed transactions and aborted rows. You can use
this information to help you diagnose problems that arise during replication.

To configure your replicate to use ATS and RIS
1. Set up the ATS and RIS directories.

2. Specify the location of the ATS and RIS directories when you define your
server.

3. Specify that the replicate use ATS and RIS when you define the replicate by
including the --ats and --ris options in the replicate definition.

Tip: Until you become thoroughly familiar with the behavior of the replication
system, select both ATS and RIS options.

Related concepts:

[Chapter 12, “Monitor and troubleshooting Enterprise Replication,” on page 12-1|
Related tasks:

[‘Creating ATS and RIS directories” on page 6-14|

[“Defining Replication Servers” on page 8-1|

Related reference:

[‘Replicate only changed columns”|

[“cdr define replicate” on page A-77]

Replicate only changed columns

You can choose to replicate only those columns that have changes instead of entire
rows.

By default, even if only one column changes, Enterprise Replication replicates the
entire row, except columns that contain unchanged large objects.

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-11

8-12

You can change the default behavior to replicate only the columns that changed. To
replicate only changed columns, include the --fullrow=n option in the replicate
definition. Enterprise Replication always sends the replication key columns, even if
you specify to replicate only changed columns.

Replicating only the columns that changed has the following advantages:
* Sends less data, because only the modified data is sent

* Uses less Enterprise Replication resources, such as memory

If Enterprise Replication replicates an entire row from the source, and the
corresponding row does not exist on the target, Enterprise Replication applies the
update as an insert, also known as an upsert, on the target (unless you are using
the delete wins conflict resolution rule). By replicating the entire row, Enterprise
Replication corrects any errors during replication. If any errors occur in an update
of the target database server (for example, a large object is deleted before
Enterprise Replication can send the data), the next update from the source
database server (a complete row image) corrects the data on the target server.

Replicating only the columns that changed has the following disadvantages:
* Enterprise Replication does not apply upserts.

If the row to replicate does not exist on the target, Enterprise Replication does
not apply it. If you set up error logging, Enterprise Replication logs this
information as a failed operation.

* You cannot use the SPL routine or time stamp with SPL routine
conflict-resolution rules.

* You cannot use update-anywhere replication; doing so can result in inconsistent
conflict resolution.

Enterprise Replication logs bitmap information about the updated columns in the
logical-log file. For more information, see the CDR record type in the logical-logs
chapter in the IBM Informix Administrator’s Reference.

Related concepts:

[‘Controlling the replication of large objects” on page 8-17

[“Conflict Resolution” on page 5-6|

[“Disk Space for Delete Tables” on page 6-9
Related tasks:
[“Setting Up Failed Transaction Logging” on page 8-11]

Related reference:

[“cdr define replicate” on page A-77|

Using the IEEE Floating Point or Canonical Format

You can specify how the FLOAT and SMALLFLOAT data types are handled,
depending on your platform.

You can specify sending this data in either IEEE floating point format or
machine-independent decimal representation:

* Enable IEEE floating point format to send all floating point values in either
32-bit (for SMALLFLOAT) or 64-bit (for FLOAT) IEEE floating point format.

To use IEEE floating point format, include the --floatieee option in your replicate
definition.

It is recommended that you define all new replicates with the --floatieee option.

IBM Informix Enterprise Replication Guide

* Enable canonical format to send floating-point values in a machine-independent
decimal representation when you replicate data between dissimilar hardware
platforms.

To use canonical format, include the --floatcanon option in your replicate
definition. The --floatcanon option is provided for backward compatibility only;
it is recommended that you use the --floatieee option when defining new
replicates.

* If you specify neither IEEE or canonical formats, Enterprise Replication sends
FLOAT and SMALLFLOAT data types as a straight copy of machine
representation. If you are replicating across different platforms, replicated
floating-point numbers will be incorrect.

For more information, see [“Special Options” on page A-82)

Important: You cannot modify the replicate to change the --floatieee or
--floatcanon options.

Related reference:

[“cdr define replicate” on page A-77|

Enabling Triggers

By default, when a replicate causes an insert, update, or delete on a target table,
triggers associated with the table are not executed. However, you can specify that
triggers are executed when the replicate data is applied by enabling triggers in the
replicate definition.

To enable triggers, include the --firetrigger option in your replicate definition.

When you design your triggers, you can use the 'cdrsession' option of the
DBINFO() function to determine if the transaction is a replicated transaction.

For information, refer to [“Triggers” on page 4-4| and [“Special Options” on page|
[A-82]

Related reference:

[“cdr define replicate” on page A-77

Enabling code set conversion between replicates

You can enable code set conversion to allow replication of data between servers
that use different code sets.

Prerequisites:

The table and column names must contain ASCII characters to convert a
non-master replicate to a master replicate.

The servers must have UTF-8 code set transaction support enabled to replicate
between server versions.

The target schema must allow for expansion due to code set conversion. For

example, a CHAR(10) column in one code set might require 40 bytes in the
converted code set.

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-13

8-14

When code set conversion is enabled, character columns of the following data
types are converted to UTF-8 (Unicode) when the row is copied into the
transmission queue.

« CHAR

* VARCHAR
* NCHAR

* NVARCHAR
* LVARCHAR
* TEXT

+ CLOB

When the replicated row is applied on the target server, the data is converted from
UTF-8 to the code set that is used on the target server. No attempt is made to
convert character data contained within opaque data types, such as TimeSeries
data types, user-defined data types, or DataBlade® module data types.

To enable code set conversion between replicates, include the --UTF8=y option in
your replicate definition.

To use the latest version of the Unicode library, set the GL_USEGLU environment
variable in your server environment. The GL_USEGLU environment variable must
be set to a value of 1 (one) in the database server environment before the server is
started, and before the database is created.

If your table names or column names contain non-ASCII characters, you must
manually create a shadow replicate and then swap the shadow replicate with the
primary replicate using the cdr swap shadow command.

The autocreate option is not supported for replicates defined with --UTF8=y option
when using the cdr realize template or cdr change replicate commands.

Code set conversion with the GLS library requires only those code set conversion
files found in the INFORMIXDIR/g1s/cv9 directory.

» For US English, locales are handled automatically by the IBM Informix Client
Software Development Kit installation and setup.

* For other locales, you might need to explicitly provide the locale and conversion
files.

Related concepts:

[“Global language support for replication” on page 3-5|

Related reference:

[“cdr swap shadow” on page A-198|

Related information:
|GL_USEGLU environment Variable|

Configuring code set conversion between replicates
The examples in this topic show how to create replicate and template definitions
while replicating data between databases that use different code sets.

When non-English characters are used for database, table, column, or owner
names, each server must be added to the UTF-8 realize template definition by
connecting to the server locally. Only one server at a time should be added to the
replicate definition using the change replicate command. You cannot add multiple

IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.glsug.doc/ids_gug_090.htm

servers to a replication definition using the define repl command unless the
database code set number is the same for all servers. The CLIENT _LOCALE
environment variable must be set unless the database locale is en_us.819. Replicate
and template names must be in English.

This example shows how to create and realize a template on two servers, named
node_1 and node_2. For this example, assume that node_1 uses de_de.819 locale and
node_2 uses de_de.utf8 locale:

1. On node_1, run the following commands:

export DB_LOCALE=de_de.819

export CLIENT_LOCALE=de_de.819

cdr define template setl -C always -M g_nodel -S row -d testdb -a -A -R --UTF8=y
cdr realize template setl g_nodel

2. On node_1 run the following command and wait for the Txns in queue count
to go to zero.
onstat -g rgm cntriq

3. On node_2, run the following commands:

export DB_LOCALE=de_de.utf8
export CLIENT_LOCALE=de_de.utf8
cdr realize template setl g _node2

The following steps show how to define a replicate when non-ASCII characters are

used for table, column, owner, or database names. Before starting, ensure that the

replicate name uses English ASCII characters and that the DB_LOCALE

environment variable on the server is set to the same value as the locale of the

participant being added.

1. Define the replicate with the first participant and then connect to the
participant.

2. Add and connect to each additional participant, one participant at a time.

3. When all of the participants have been added, ensure that the control queue is
empty and start the replicate definition.

You can check the control queue message count using the onstat -g rqm cntrlq.
Wait for the Txns in queue count to go zero.

The following example shows how to create a replicate definition between two
servers to replicate data between de_de.819 and de_de.utf8 databases:

1. On server node_1, run the following commands:

export DB_LOCALE=de_de.819
export CLIENT_LOCALE=de_de.819
cdr define repl german_repl -M g_nodel -C always -S transaction
-A -R -I --UTF8=y "testdb@g nodel:userl.tablel" "select * from tablel"

2. On node_1 run the following command and wait for the Txns in queue count
to go to zero.

onstat -g rgm cntriq
3. On node_2, run the following commands:

export DB_LOCALE=de_de.utf8

export CLIENT_LOCALE=de_de.utf8

cdr change repl -c node2 -a german_repl
"testdb@g_node2:userl.tablel" "select * from tablel"

4. On node_2 run the following command and wait for the Txns in queue count
to go to zero.

onstat -g rgm cntriq
5. Run the following command on either server:
cdr start repl german_repl

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-15

8-16

Code set conversion errors

You can use the ATS and RIS files to identify problems that occur during code set
conversion.

To specify which warnings and errors to suppress, use the
CDR_SUPPRESS_ATSRISWARN configuration parameter. For more information,
see [“CDR_SUPPRESS_ATSRISWARN Configuration Parameter” on page B-16|

Each column in the RIS file begins with (W) if substitute characters were added to
the column data or (E) if data was rejected because of a UTF-8 conversion failure.

Examples of conversion errors:

On the source server, a row of data fails conversion to UTF-8 code set.
Data sync error 63 is stored in an RIS file on the source server. The RIS file
contains the row that failed to convert; the failed row is not converted and
is not replicated on the target server. A list of column names that failed to
convert is also stored in the RIS file. Example RIS file:

TXH Source ID:0 / Name:*UNKNOWN* / CommitTime:
TXH Target ID:1 / Name:utm group_1 / ReceiveTime:11-05-10 13:35:22
RRH Row:1 / Replicate Id: 65540 / Table: testdb@usrl.utf8tab / DbOp:Update
RRH CDR:63 (Error while converting data from local database codeset to
UTF8.) / SQL:0 / ISAM:0
LRH Failed column 1ist: charcol (W), ncharcol (E)
LRD 3|Lkqy|jvdHj@ifcjuWg|bils|uk|RwvCZOpfpqruLAA|JloY|<27, TEXT,
PB 1 (utm_group_1) 1305051204 (11/05/10 13:13:24)>|<4, TEXT, BB>|
<18, CLOB, SB 1305051204 (11/05/10 13:13:24)>
RRO [111

TXH Transaction committed
TXH Total number of rows in transaction:1

On the source server, conversion from the local code set to UTF-8 resulted in the
substitution of one or more characters in the row.
Data sync error 65 is stored in an RIS file on the source server, and the row
is replicated. A list of column names that failed to convert is also stored in
the RIS file. Example RIS file:

TXH Source ID:0 / Name:*UNKNOWN* / CommitTime:

TXH Target ID:1 / Name:utm group_l / ReceiveTime:11-05-10 13:32:14

RRH Row:1 / Replicate Id: 65540 / Table: testdb@usrl.utf8tab / DbOp:Update

RRH CDR:65 (Substitute characters added while converting data from local
database codeset to UTF8.) / SQL:0 / ISAM:0

LRH Failed column list: charcol (W), ncharcol (W), vchar (W), nvchar (W),
Tvchar (W)

LRD 2|iU\VoJMZ|axhGRxKmDW|e@Xv |bils|pyqasjUpAc{wCu|efM@}Vd|<22, TEXT,
PB 1 (utm_group_1) 1305051204 (11/05/10 13:13:24)>|<36, TEXT, BB>
TllTil(llll_OB, SB 1305051204 (11/05/10 13:13:24)>

RRD

TXH Transaction committed
TXH Total number of rows in transaction:1

On the target server, a row of data failed to convert from UTF-8 format to the
local database code set.
Data sync error 64 is stored in an ATS/RIS file on the target server, and the
row or transaction is aborted depending on the replicate scope. A list of
column names that failed to convert is also stored in the RIS file. Example
RIS file:

IBM Informix Enterprise Replication Guide

TXH Source ID:1 / Name:utm_group 1 / CommitTime:11-05-10 13:40:19

TXH Target ID:3 / Name:utm_group_3 / ReceiveTime:11-05-10 13:40:19

RRH Row:1 / Replicate Id: 65540 / Table: testdb@usrl.utf8tab / DbOp:Update

RRH CDR:64 (Error while converting data from UTF8 to local database
codeset.) / SQL:0 / ISAM:0

RRH Failed column 1ist: vchar (E)

RRD 3| |jdicW|?|?|?|?|?]?

TXH Transaction aborted
TXH ATS file:/usrd/nagaraju/utm/tmp/ats.utm group 3.utm_group_1.D 3
.110510_13:40:19.2 has also been created for this transaction

On the target server, conversion from UTF-8 to the local server code set resulted
in the substitution of one or more characters in the row.
Data sync error 66 is stored in a warning RIS file on the target server, and
the row is applied. A list of column names that failed to convert is also
stored in the RIS file. Example RIS file:

TXH Source ID:3 / Name:utm_group_3 / CommitTime:11-05-10 13:13:58
TXH Target ID:1 / Name:utm_group_l / ReceiveTime:11-05-10 13:13:58
RRH Row:1 / Replicate Id: 65540 / Table: testdb@usrl.utf8tab / DbOp:Insert
RRH CDR:66 (Substitute characters added while converting data
from UTF8 to local database codeset.) / SQL:0 / ISAM:0
RRH Failed column Tist: charcol (W), ncharcol (W), vchar (W),
nvchar (W), Tvchar (W), textcol (W), textbcol (W), clobcol (W)
RRD 99| |kel||m||<46, TEXT, PB 3 (utm_group_3) 1305051238
(11/05/10 13:13:58)>|<68, TEXT, BB>|<13, CLOB, SB>

TXH Transaction committed
TXH Total number of rows in transaction:1

Text and CLOB data conversion failures
If the conversion of text or CLOB data to UTF-8 fails on the source server
then the blob buffer is marked with the appropriate error and the target
servers create ATS/RIS files for these blob data conversion failures.
Example text column conversion error:

TXH Source ID:1 / Name:utm group_1 / CommitTime:11-05-10 12:26:30
TXH Target ID:3 / Name:utm_group_3 / ReceiveTime:11-05-10 12:28:15

RRH Row:1 / Replicate Id: 65540 / Table: testdb@usrl.utf8tab / DbOp:Update

RRH CDR:65 (Substitute characters added while converting data from local
database codeset to UTF8.) / SQL:0 / ISAM:0

RRH Failed column Tist: textcol (W)

LRD 2|<46, TEXT, PB 1 (utm_group_l) 1305048215 (11/05/10 12:23:35)
>[<40, CLOB, SB 1305048215 (11/05/10 12:23:35)>

RRD 2|<44, TEXT, PB 1 (utm group_1) 1305048390 (11/05/10
12:26:30)>|<0(NoChange), CLOB, SB>

TXH Transaction committed
TXH Total number of rows in transaction:1

Controlling the replication of large objects

You can control whether columns that contain unchanged large objects are always
included in replicated rows.

By default, columns that contain unchanged large objects are not included in
replicated rows. Large object columns are transmitted only when the data is

changed.

You can specify to replicate columns that contain unchanged large objects by
including the --alwaysRepLOBS=y option in the replicate definition. For example,

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-17

if your replication system is designed for as a workflow, you must replicate all
columns when you move data to the next site in the workflow.

If you want to change how large objects are replicated for an existing replicate, you
must delete the replicate and then re-create the replicate.

Related concepts:

[“Workflow Replication” on page 5-4|

Related reference:

[“Replicate only changed columns” on page 8-11|

Define replicate sets

8-18

When you define a replicate set, you specify the type of replicate set, the replicates
that belong to the replicate set, and the frequency of replication for the member
replicates.

To create a replicate set, use the cdr define replicateset command.

Enterprise Replication supports these types of replicate sets:

exclusive
Replicates can belong to only one replicate set. Include the --exclusive
option in the cdr define replicateset command.

non-exclusive
Default. Replicates can belong to one or more non-exclusive replicate sets.

derived
A replicate set that is derived from an existing replicate set. For example,
you can create a derived replicate set that contains replicates that must be
remastered.

Related reference:

[“cdr define replicateset” on page A-87|

Exclusive Replicate Sets

If your replicated tables use referential integrity and are defined with time-based
replication, you must create an exclusive replicate set. If your replicates use
referential integrity and you plan to stop and start the replicate set, use an
exclusive replicate set.

An exclusive replicate set has the following characteristics:

» All replicates in an exclusive replicate set have the same state and frequency
settings. For more information, see [“cdr list replicateset” on page A-130

* When you create the replicate set, Enterprise Replication sets the initial state of
the replicate set to active.
* You can manage the replicates in an exclusive replicate set only as part of the

set. Enterprise Replication does not support the following actions for the
individual replicates in an exclusive replicate set:

— [“Starting a Replicate” on page 11-8|

- [“Stopping a Replicate” on page 11-§|

— [“Suspending a Replicate” on page 11-9|

— [“Resuming a Suspended Replicate” on page 11-9|

IBM Informix Enterprise Replication Guide

* Replicates that belong to an exclusive replicate set cannot belong to any other
replicate sets.

To create an exclusive replicate set, use the --exclusive option with cdr define
replicateset.

Important: You cannot change an exclusive replicate set to non-exclusive.

Related reference:

[“cdr define replicateset” on page A-87|

[“cdr define template” on page A-98|

[“cdr resume replicate” on page A-164|

Non-Exclusive Replicate Sets
By default, the cdr define replicateset command creates non-exclusive replicate sets.

A non-exclusive replicate set has the following characteristics:

* You can manage replicates that belong to a non-exclusive replicate set both
individually and as part of the set.

* Because individual replicates in a non-exclusive replicate set can have different
states, the non-exclusive replicate set itself has no state.

* You should not use non-exclusive replicate sets for replicates that include tables
that have referential constraints placed on columns.

* A replicate can belong to more than one non-exclusive replicate set.
Important: You cannot change a non-exclusive replicate set to exclusive.

Use non-exclusive replicate sets if you want to add a replicate to more than one
replicate set. For example, you might want to create replicate sets to manage
replicates on the target server, table, or entire database. To do this, create three
non-exclusive replicate sets:

* A set that contains the replicates that replicate to the target server
* A set that contains the replicates on a particular table
* A set that contains all the replicates

In this scenario, each replicate belongs to three non-exclusive replicate sets.

Customizing the Replicate Set Definition
You can specify the replication frequency (“Specifying Replication Frequency” on|

age 8-11) for all the replicates when you define the replicate set. For example, to
define the non-exclusive replicate set sales_set with the replicates sales_fiji and
sales_tahiti and specify that the members of sales_set replicate at 4:00 a.m. every
day, enter:

cdr define replicateset --at 4:00 sales_set sales_fiji \
sales_tahiti

To define the exclusive replicate set dev_set with the replicates dev_pdx and
dev_lenexa and specify that the members of dev_set replicate at 5:00 p.m. every
day, enter:

cdr define replicateset -X --at 17:00 dev_set dev_pdx\
dev_lenexa

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-19

Important: For replicates that belong to an exclusive replicate set, you cannot
specify the frequency individually for replicates in the set.

For more information, see [“cdr define replicateset” on page A-87|

Initially Synchronizing Data Among Database Servers

8-20

Enterprise Replication provides an initial synchronization feature that allows you
to easily bring a new table up-to-date with replication when you start a new
replicate, or when you add a new participant to an existing replicate.

You do not need to suspend any servers that are replicating data while you add
the new replicate and synchronize it.

The cdr start replicate and cdr start replicateset commands provide options to
perform an initial synchronization for the replicates you are starting. All of the
rows that match the replication criteria will be transferred from the source server
to the target servers. If you are starting a replicate set, Enterprise Replication
synchronizes tables in an order that preserves referential integrity constraints (for
example, child tables are synchronized after parent tables).

Use the --syncdatasource (-S) option of the cdr start replicate or cdr start
replicateset command to specify the source server for synchronization. Any
existing rows in the specified replicates are deleted from the remote tables and
replaced by the data from the node you specify using -S.

The --extratargetrows option of the cdr start replicate or cdr start replicateset
commands specifies how to handle rows found on the target servers that are not
present on the source server. You can specify to remove rows from the target, keep
extra rows on the target, or replicate extra rows from the target to other
participants.

If you use the cdr start replicate or cdr start replicateset command to specify a
subset of servers on which to start the replicate (or replicate set), that replicate (or
replicate set) must already be active on the source server. The source server is the
server you specify with the -S option. For example, for the following command,
repll must already be active on servl:

cdr start repl repll ... -S servl serv2 serv3

When you start a replicate (or replicate set) for participants on all servers, the
replicate does not need to be active on the source server. So, for the following
command, repll does not need to be active:

cdr start repll ... -S servl

When Enterprise Replication performs initial data synchronization, it keeps track of
discrepancies between the constraints set up on source and target server tables.
Rows that fail to be repaired due to these discrepancies are recorded in the ATS
and RIS files.

If replication fails for some reason and data becomes inconsistent, there are
different ways to correct data mismatches between replicated tables while
replication is active. The recommended method is direct synchronization. You can
also repair data based on an ATS or RIS file. Both of these methods are described
in [“Resynchronizing Data among Replication Servers” on page 11-14)

Related concepts:

IBM Informix Enterprise Replication Guide

[“Repair and Initial Data Synchronization” on page 1-5|

[‘Load and unload data” on page 6-23|

Set up replication through templates

Enterprise Replication provides templates to allow easy setup and deployment of
replication for clients with large numbers of tables to replicate. A template uses
schema information about a database, a group of tables, columns, and replication
keys to define a group of master replicates and a replicate set.

Do not use a template if you want to use time-based replication.

You create a template by running the cdr define template command and then you
instantiate the template on the servers where you want to replicate data by
running the cdr realize template command.

Templates set up replication for all the columns in the table. Templates are useful
for setting up large-scale replication environments. If you want a participant to
contain a partial row (just some columns in the table), you can either set up
replication manually, or, after you realize a template you can run the cdr remaster
command to restrict the query.

Defining Templates

You define a template using the cdr define template command, with which you
can specify which tables to use, the database and server they are located in, and
whether to create an exclusive or non-exclusive replicate set. Table names can be
listed on the command line or accessed from a file using the --file option, or all
tables in a database can be selected.

Important: A template cannot define tables from more than one database.

Specify that the replicate set is exclusive if you have referential constraints on the
replicated columns. Also, if you create an exclusive replicate set using a template,
you do not need to stop the replicate set to add replicates. For more information
about exclusive replicate sets, see [“Define replicate sets” on page 8-18

A template defines a group of master replicates and a replicate set.

You can use the cdr list template command from a non-leaf node to view details
about the template, including the internally generated names of the master
replicates. These are unique names based on the template, the server, and table
names.

Realizing Templates

After you define a template using the cdr define template command, use the cdr
realize template command to instantiate the template on your Enterprise
Replication database servers. The cdr realize template command first verifies that
the tables on each node match the master definition used to create the template.
Then, on each node, it adds the tables defined in the template as participants to
master replicates created by the template.

If a table on a server has additional columns to those defined in the template,
those columns are not considered part of the replicate.

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-21

8-22

If a table does not already exist on a server where you realize the template, you
can choose to create it, and it is also added to the replicate.

Also, at realization time, you can also choose to synchronize data among all
servers.

Verifying Participants without Applying the Template
The --verify option allows you to check that a template’s schema information is
correct on all servers before actually instantiating the template.

Synchronizing Data Among Database Servers

Use the --syncdatasource option to specify a server to act as the source for data
synchronization on all servers where you are realizing the template. The server
listed with this option must either be listed as one of the servers on which to
realize the template, or it must already have the template.

Improve Performance During Synchronization:

You can speed up a synchronization operation by temporarily increasing the size of
the send queue.

Enterprise Replication uses the value of the CDR_QUEUEMEM configuration
parameter as the size of the send queue during a synchronization operation. To
increase the size of the send queue during a particular synchronization operation,
use the --memadjust option.

In addition to controlling memory during initial synchronization, you can also
control memory consumption when you realize a template and perform a direct
synchronization.

Create tables automatically
You automatically create tables in the template definition if they do not exist on a
server.

Include the --autocreate option in the cdr realize template command to
automatically create tables. You cannot use the --autocreate option for tables that
contain user-defined data types.

Use the --dbspace option to specify a dbspace for table creation.

Note: Tables that are created by --autocreate option do not automatically include
non-replicate key indexes, defaults, constraints (including foreign constraints),
triggers, or permissions. You must manually create these objects.

Other synchronization options
Several other options to the cdr realize template command can affect how
synchronization occurs.

You can use the --applyasowner option to realize a table by its owner rather than
the user informix.

The --extratargetrows option specifies whether to delete, keep, or merge rows
found on target servers that are not present on the source server during the

synchronization operation.

The --mode option defines whether servers only receive or only send data.

IBM Informix Enterprise Replication Guide

Changing Templates

You cannot update a template. To adjust a template, you must delete it with the
cdr delete template command and then re-create it with the cdr define template
command.

Template Example

This example illustrates a scenario in which one template is created, and then a
second template is added and realized on the same servers. The replicates in both
templates are consolidated into the first template for ease of maintenance, and the
second template is then deleted.

The first template Replicatesetl is defined on three tables in the college database:
staff, students, and schedule. The template is realized on the servers g_cdr_ol_1
and g_cdr_ol_2.

The second template Replicateset2 is defined on three tables in the bank database:
account, teller, and transaction. This template is realized on the same servers as
the first template: g_cdr_ol_1 and g _cdr_ol_2.

The replicates in both templates exist on the same servers, and would be
administered (for example, stopped and started) at the same time. Thus, the
replicates defined as part of Replicateset2 can be moved into Replicatesetl, after
which the Replicateset2 template can then be deleted.

This procedure is performed as follows:

1. Define the template Replicatesetl on the staff, students, and schedule tables of
the college database:

cdr define template -c g_cdr ol 1 Replicatesetl -M g_cdr ol 1\
-C "timestamp" -A -R -d college testadm.staff testadm.students\
testadm.schedule

This command also creates the replicate set Replicatesetl.
2. Realize the template on the server g_cdr_ol_1:
cdr realize template -c g_cdr_ol 1 Replicatesetl "college@g cdr ol 1"

3. Realize the template on server g cdr_ol_2 and synchronize the data with server
g cdr_ol_1:

cdr realize template -c g_cdr_ol 2 -u -S g_cdr_ol_ 1\
Replicatesetl "university@g cdr ol 2"

4. Define the template Replicateset2 on the account, teller, transaction, and
customer tables of the bank database:

cdr define template -c g_cdr_ga_l Replicateset2 -M g_cdr_ol_I\
-C "timestamp" -A -R -d bank testadm.account testadm.teller\

testadm.transactions testadm.customer

Obtaining dictionary for bank@g_cdr ol _1:'testadm'.account

Obtaining dictionary for bank@g cdr ol _1:'testadm'.teller

Obtaining dictionary for bank@g_cdr_ol_l:'testadm'.transactions

Obtaining dictionary for bank@g cdr ol 1:'testadm'.customer

Creating mastered replicate Replicateset2_g_cdr_ol_1_1_1 account
for table 'testadm'.account

Creating mastered replicate Replicateset2_g cdr o1_1_1 2 teller
for table 'testadm'.teller

Creating mastered replicate Replicateset?2_g cdr_ol_1 1 3 transactions
for table 'testadm'.transactions

Creating mastered replicate Replicateset?2 g cdr ol 1 1 4 customer
for table 'testadm'.customer

This command also creates the replicate set Replicateset2.
5. Realize the template Replicateset2 on g_cdr_ol_1:

Chapter 8. Defining Replication Servers, Replicates, Participants, and Replicate Sets 8-23

8-24

cdr realize template -c g_cdr_ol_1 Replicateset2 "bank@g_cdr ol 1"

Realize the template on server g_cdr_ol_2 and synchronize the data with server
g cdr_ol_1:

cdr realize template -c g_cdr_ol_1 -u -S g_cdr_ol_1 \

Replicateset2 "bank@g cdr_ol 2"

Add the replicates created as part of Replicateset2 to Replicatesetl. (Use the
cdr list replset Replicateset2 command to list the replicates in Replicateset2.):

cdr change replset -c g _cdr_ol_1 -a Replicatesetl\
Replicateset2 g cdr ol 1 1 1 account \

Replicateset2_g cdr ol 1 1 2 teller \
Replicateset2 g cdr ol 1 1 3 transactions \

Replicateset2_g cdr_ol_1 1 4 customer
Delete the replicate set Replicateset2:
cdr delete template Replicateset2

Realize all the replicates on a new server g_cdr_ol_3. Then realize the template
Replicatesetl on the server g_cdr_ol_3:
cdr realize template -c g_cdr_ol_1 -u -S g_cdr_ol_1\

Replicatesetl "bank@g_cdr_ol_3"
This command adds g_cdr_ol_3 as a participant to all the replicates in
Replicatesetl, including the replicates that were created as part of the template
Replicateset2: Replicateset2_g cdr_ol_1_1_1_account,
Replicateset2_g_cdr_ol_1_1_2_teller,
Replicateset2_g_cdr_ol_1_1_3_transactions, and
Replicateset2_g_cdr_ol_1_1_4_customer.

IBM Informix Enterprise Replication Guide

Chapter 9. Grid setup and management

A grid is a set of replication servers that are configured to simplify administration.
When you run SQL data definition statements from within a grid context on a grid
server, the statements propagate to all servers in the grid. You can run SQL data
manipulation statements and routines through grid routines. You can choose to set
up replication automatically when you create a table through a grid. You can
propagate external files to other servers in the grid.

SQL statements are not replicated by Enterprise Replication. Enterprise Replication
replicates the row images that are the results from SQL statements. The grid
propagates SQL statements, but does not, by default, propagate the results of
propagated SQL statements. The following illustration shows three replication
servers, named Cdrl, Cdr2, and Cdr3, that replicate row images between each
other, while the grid propagates SQL statements and administration commands.

SQL statements
Cdr2)

Administration External files
Row images

b
o
=
-y
A
v
M
o
=
w»

Figure 9-1. Replication of rows as a grid propagates SQL statements to each server.

A grid can be useful if you have multiple replication servers and you often
perform the same tasks on every replication server. The following types of tasks
can be run through the grid:

* Creating replicated tables. When you create a replicated table through a grid, the
other tasks for setting up replication are completed automatically: a replicate is
created for the table, participants are defined for each replication server, and the
replicate is added to the grid replicate set.

* Administering servers, for example, adding chunks, removing logical logs, or
changing configuration parameter settings

* Updating the database schema, for example, altering, adding, or removing tables
* Running or creating stored procedures or user-defined routines

* Updating data, for example, purging old data or updating values that are based
on conditions

 Altering a replicate definition when you alter a replicated table
* Copying external files to grid servers

© Copyright IBM Corp. 1996, 2015 9-1

For example, suppose that you have 100 replication servers and must create a
table. You must fragment the table into two new dbspaces. You also must create a
new stored procedure to run on the table. With a grid, you would run four
commands to perform these tasks on all 100 replication servers, instead of running
400 commands. The command to create the table can also specify that the data in
that table is replicated.

You can control the security of the grid by authorizing which users can run grid
routines on which servers. You can monitor the results of grid routines and rerun
any failed routines on the appropriate servers.

You can configure Connection Managers to route client connection requests to the
replication servers of a grid, based on one of the following redirection policies:

* FAILURE: Connection requests are directed to the replication server that has the
fewest apply failures.

* LATENCY: Connection requests are directed to the replication server that has the
lowest transaction latency.

* ROUNDROBIN: Connection requests are directed in a repeating, ordered fashion
(round-robin) to a group of replication servers.

* WORKLOAD: Connection requests are directed to the replication server that has
the lowest workload.

Related information:

[Connection management through the Connection Manager]

Example of setting up a replication system with a grid

9-2

This comprehensive example sets up a replication domain, creating a grid, creating
a database, creating a replicated table, and loading data.

This example creates a replication domain and grid that contain four replication
servers: servl, serv2, serv3, serv4. Each server computer has the Informix database
server installed, but no databases defined.

1. On all servers, set the CDR_QDATA_SBSPACE configuration parameter.
2. Edit the sqlhosts files on all four servers so that they each have the following

information:

#dbservername nettype hostname servicename options
gservl group - - i=143
servl ontlitcp ny.usa.com 1230 g=gservl
gserv2 group - - i=144
serv2 ontlitcp tokyo.japan.com 1231 g=gserv?2
gserv3 group - - i=145
serv3 ontlitcp rome.italy.com 1232 g=gserv3
gservd group - - i=146
servé ontlitcp perth.australia.com 1233 g=gservi

3. Define each server as a replication server by running the cdr define server
command:
cdr define server -c gservl -I gservl
cdr define server -c gserv2 -S gservl -1 gserv2
cdr define server -c gserv3 -S gservl -1 gserv3
cdr define server -c gserv4 -S gservl -1 gservd
4. Create a grid that includes all replication servers in the domain as members of
the grid:
cdr define grid gridl --all

IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1176.htm

10.

Authorize the user bill to run commands on the grid and designate the server
gservl as the source server from which grid commands can be run:

cdr enable grid --grid=gridl --user=bill --node=gservl

Tip: User informix does not have permission to run grid operations unless
you include it in the user list.

Run cdr list grid to see the grid configuration:

Grid Node User
gridl gservls bill
gserv2
gserv3
gservé

The asterisk indicates that gservl is the source server for the grid.

Run the cdr list replicateset command to see the grid replicate set
information:

Ex T REPLSET PARTICIPANTS

The replicate set has the same name as the grid. It does not yet contain any
participants.

Create two dbspaces named dbsp2 and dbsp3 in which to fragment a table:
database sysmaster;
EXECUTE FUNCTION ifx_grid_function('gridl',

'"task("create dbspace","dbsp2",
"/db/chunks/dbsp2","2G","0")"');

EXECUTE FUNCTION ifx_grid_function('gridl',
"task("create dbspace","dbsp3",
"/db/chunks/dbsp3","8G","0")"');

The dbspaces are created on all four servers.

Create database named retail and a table named special_offers with
replication enabled:

database sysmaster;

EXECUTE PROCEDURE ifx_grid_connect('gridl', 1);
CREATE DATABASE retail WITH LOG;

CREATE TABLE special_offers(

offer_description varchar(255),
offer_startdate date,

offer_enddate date,
offer_rules lvarchar,
offer_type char(16))

WITH CRCOLS

FRAGMENT BY EXPRESSION
offer_type = "GOLD" IN dbsp2,
REMAINDER IN dbsp3;

EXECUTE PROCEDURE ifx_grid_disconnect();

Run the cdr list grid --verbose gridl command to see information about the
statements on each server:

Chapter 9. Grid setup and management 9-3

gservé
Details for grid gridl

Node:gservl Stmtid:1 User:bill Database:retail 2010-05-27 15:21:57
CREATE DATABASE retail WITH LOG;

ACK gservl 2010-05-27 15:21:57

ACK gserv2 2010-05-27 15:21:58

ACK gserv3 2010-05-27 15:21:59

ACK gservd 2010-05-27 15:21:59

Node:gservl Stmtid:1 User:bill Database:retail 2010-05-27 15:21:57

CREATE TABLE special _offers(
offer_description varchar(255),
offer_startdate date,
offer_enddate date,
offer_rules Tvarchar
offer_type char(16))
WITH CRCOLS

FRAGMENT BY EXPRESSION
offer_type = "GOLD" IN dbsp2
REMAINDER IN dbsp3;

ACK gservl 2010-05-27 15:21:57

ACK gserv2 2010-05-27 15:21:58

ACK gserv3 2010-05-27 15:21:59

ACK gservd 2010-05-27 15:21:59

Both statements succeeded on all four servers.
11. Run cdr list replicate to see the replicate information:
CURRENTLY DEFINED REPLICATES

REPLICATE: gservl 1

STATE: Active

CONFLICT: Timestamp

FREQUENCY : immediate

QUEUE SIZE: 0

PARTICIPANT: retail:bill.special_offers
OPTIONS:

REPLTYPE: Master,Grid

The replicate was created and is active.
12. Run the cdr list replicate brief gservl_1 command to see the participants:
REPLICATE TABLE SELECT

gservl 1 retail@gservl:bill.special_offers select * from
bill.special_offers
gservl 1 retail@gserv2:bill.special_offers select * from
bill.special_offers
gservl 1 retail@gserv2:bill.special_offers select * from
bill.special_offers
gservl 1 retail@gserv2:bill.special_offers select * from
bill.special_offers

13. Load data onto one of the replication servers and Enterprise Replication

replicates the data to the other servers. For more information, see
[unload data” on page 6-23]

Related concepts:

“Connection management for client connections to participants in a grid” on page|
9-19

9-4 IBM Informix Enterprise Replication Guide

Related tasks:
[“Adding a replication server to a grid by cloning” on page 9-§

Related reference:

[“cdr enable grid” on page A-116]

[“cdr list grid” on page A-121]

[“cdr list replicateset” on page A-130)|

Related information:

[sglhosts connectivity information|

Example of rolling out schema changes in a grid

You can roll out schema changes to replicated tables through a grid without
shutting down your applications.

Suppose that you have a grid replicate set named gridset that contains 12
replicates, each of which represents a different table. You want to alter the data
types of columns in five tables. The grid contains four servers.

To roll out schema changes without application downtime:
1. Change any connections from the original application to the replication server
named cdrl to connect to the replication server named cdr2.

2. On the cdrl server, connect to the stores_demo database, connect to the grid,
and alter the five tables:

dbaccess stores_demo -

EXECUTE PROCEDURE ifx_grid_connect('gridl', 'gridset', 4);
SET LOCK MODE TO WAIT 120;

ALTER TABLE customer ADD prefix (charl5);

ALTER TABLE items MODIFY order_num (bigint);

ALTER TABLE stock MODIFY description (Tvarchar);

ALTER TABLE cust_calls ADD call_descr2 (1lvarchar);

ALTER TABLE manufact MODIFY manu_name (char32);

The ifx_grid_connect() procedure changes the tables on cdrl but delays the
propagation of the changes to the other replication servers.

3. Update the application to reflect the new schema for the five tables and connect
to the server cdrl.

4. Close the connections from the original application.

5. On the server cdrl, propagate schema changes to the other replication servers
by running the following statement:

EXECUTE FUNCTION ifx_grid_release('gridl', 'gridset');

6. On the server cdrl, create a derived replicate set named alterSet that contains
the altered tables by running the following command:

cdr define replicateset --needRemaster=gridset alterSet

7. From the server cdrl, remaster the altered tables on all replication servers by
running the following command:

cdr remaster replicateset --master=cdrl alterSet

8. From the server cdrl, synchronize the data on all replication servers by running
the following command:

cdr check replicateset --replset=alterSet --repair --master=cdrl --all

9. On the server cdrl, drop the derived replicate set by running the following
command:

cdr delete replicateset alterSet
Related tasks:

Chapter 9. Grid setup and management 9-5

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0161.htm

[“Altering multiple tables in a replicate set” on page 11-25|

[“Propagating database object changes” on page 9-15|

Creating a grid

You can create a grid based on an existing replication domain. You must authorize
users who can run grid routines, and designate a server from which to run grid
routines.

You must be connected to a replication server in the domain that contains the
servers that you want to include in the grid.

To create a grid:

1. Specify a name for the grid and the servers to include in the grid by running
the cdr define grid command. For example, the following command creates a
grid named grid1 and adds all replication servers in the domain as members of
the grid:
cdr define grid gridl --all

2. Authorize users to run commands on the grid and designate a server from
which grid commands can be run by running the cdr enable grid command.
For example, the following command authorizes the user bill to run commands
on the server gservl:

cdr enable grid --grid=gridl --user=bill --node=gservl

Only authorized users can run grid routines on authorized servers. User
informix does not have permission to perform grid operations unless you
include it in the user list.

Related reference:

[“cdr define grid” on page A-73|

[“cdr enable grid” on page A-116|

Grid maintenance

You can adjust grid membership, change user or server authorization to run grid
routines, and delete grid-routine history from the syscdr database.

To see information about the grid, such as, which servers can run grid routines and
the status of routines that are run on the grid servers, run the cdr list grid
command.

If you remove a server from your replication domain, remove the server from your
grid. The following example removes a replication server named gservl from the
grid grid_1:

cdr change grid grid_1 --delete gservl

You cannot drop a replicated column through a grid. To drop a replicated column,
you must manually remaster the replicate and then drop the column.

You cannot rename a replicated database. You must manually rename the database
on each participant server by using the cdr remaster command.

To change which users can run routines on the grid or which servers are
authorized to run grid routines, run the cdr enable grid and cdr disable grid

9-6 IBM Informix Enterprise Replication Guide

commands. For example, to change the authorized server from gservl to gserv2
and authorize the user srini, run the following commands:

cdr disable grid --grid=gridl --node=gservl
cdr enable grid --grid=gridl --node=gserv2 --user=srini

To delete the history of grid routines, run the ifx_grid_purge() procedure. You
must occasionally purge information about completed grid routines to prevent the
syscdr database from growing too large.

Related reference:

[“cdr change grid” on page A-35|
[‘cdr disable grid” on page A-112|
[“cdr enable grid” on page A-116|

[“cdr list grid” on page A-121]

[“ifx_grid_purge() procedure” on page C-13|

Viewing grid information

You can view information about a grid and whether a replicate or replicate set
belongs to a grid.

To view information about a grid:

Run the cdr list grid command. For example, the following command shows the
servers and authorized users for a grid named grid1:

cdr Tist grid gridl

The output for this command might be:

Grid Node User
gridl gservls bill
gserv2
gserv3
gservéd

The user bill is authorized to run grid commands on the server gservl.

You can see whether a replicate is a member of a grid replicate set by running the
cdr list replicate command or the onstat -g cat repls command. You can also query
the syscdrrepl SMI table. The following example output of the cdr list replicate
command shows that the replicate is a master replicate and a member of a grid
replicate set:

CURRENTLY DEFINED REPLICATES

REPLICATE: grid_6553604 100 3
STATE: Active ON:g_delhi
CONFLICT: Always Apply
FREQUENCY : immediate

QUEUE SIZE: 0

PARTICIPANT: tdb:nagaraju.tl
OPTIONS: row,ris,fullrow
REPLID: 6553605 / 0x640005
REPLMODE: PRIMARY ON:gservl
APPLY-AS: INFORMIX ON:gservl
REPLTYPE: Master,Grid

Related reference:

[“cdr list replicateset” on page A-130)|

[“cdr list replicate” on page A-125]|

Chapter 9. Grid setup and management ~ 9-7

[“onstat -g cat: Print ER global catalog information” on page E-2|

[“The syscdrrepl Table” on page G-12|

Adding replication servers to a grid

9-8

There are multiple ways to add a replication server to a grid.

You can add a replication server to a grid in the following ways:
* Run the cdr change grid command.

* Clone an existing replication server in the grid.

Adding a replication server to a grid by running cdr change

grid

You can add a replication server to a grid by running the cdr change grid
command.

To add a replication server to a grid:

Run the cdr change grid command. For example, to add a replication server
named gserv3 to the grid gridl, run the following command:

cdr change grid gridl --add=gserv3

To see information about the grid, such as, which servers can run grid routines and
the status of routines that are run on the grid servers, run the cdr list grid
command.

Related reference:

[“cdr change grid” on page A-35|

Adding a replication server to a grid by cloning

You can add a new server to a grid by cloning an existing replication server in the
grid.

The server you are adding to the grid must have the same hardware and operating
system as the source server that you are cloning.

To add a server to a grid:
Clone an existing replication server in the grid by using the ifxclone utility with

the --disposition=ER option. This process is described in [“Adding a server to the|
[domain by cloning a server” on page 8-5.|

The following example adds a fifth server, named serv5, to an existing replication
domain and to a grid named grid1l. The server servl is used as the source server.

1. On the servl server, set the value of the ENABLE_SNAPSHOT_COPY
configuration parameter to 1 in the onconfig file.

2. On the serv5 servers, complete the ifxclone prerequisites for all servers, such as
setting the required configuration parameters and environment variables.

Set these environment variables:
e INFORMIXDIR

* INFORMIXSERVER

e INFORMIXSQLHOSTS

IBM Informix Enterprise Replication Guide

ONCONFIG

Set these configuration parameters to the same values on the serv5 server as on
the servl server:

On the serv5 server, run the ifxclone command with the --disposition=ER
option to clone the data and the configuration of the servl server onto the
serv5 server and the --createchunkfile command to create the necessary

DRAUTO

DRINTERVAL

DRTIMEOUT
LOGBUFF
LOGFILES
LOGSIZE
LTAPEBLK
LTAPESIZE
ROOTNAME
ROOTSIZE
PHYSBUFF
PHYSFILE
STACKSIZE
TAPEBLK
TAPESIZE

chunks:

ifxclone --trusted --source=servl --sourcelP=111.222.333.444
--sourcePort=1230 --target=serv5 --targetIP=111.222.333.777

--targetPort=1234 --disposition=ER --createchunkfile

Edit the sqlhosts files on all five servers in the domain so that they each have
the following information:

#dbservername
gservl
servl
gserv2
serv2
gserv3
serv3
gservd
serv4
gservb
servh

Related concepts:

nettype
group
ontlitcp
group
ontlitcp
group
ontlitcp
group
ontlitcp
group
ontTitcp

hostname

ny.usa.com

tokyo.japan.com

rome.italy.com

servicename

1230
1231

1232

perth.australia.com 1233

helsinki.finland.com 1234

The server serv5 is automatically added to the grid grid1.

options
i=143
g=gservl
i=144
g=gserv2
i=145
g=gserv3
i=146
g=gserv4
i=147
g=gservb

[“Example of setting up a replication system with a grid” on page 9-2|

Related tasks:

[“Adding a server to the domain by cloning a server” on page 8-5|

Related reference:

[“cdr change grid” on page A-35|

Related information:

fonconfig Portal: Configuration parameters by functional categoryl

[ENABLE_SNAPSHOT_COPY configuration parameter|

[The ifxclone utility|

Chapter 9. Grid setup and management

9-9

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1072.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1114.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.adref.doc/ids_adr_1093.htm

Adding an externally created replicate into a grid replicate set

9-10

If a replicate is created external to a grid, it can still be added to a grid replicate
set.

You can add an existing replicate to a grid replicate set in the following ways:
* Run the cdr change replicateset command.
* Alter a replicate through a grid.

Adding an existing replicate to a grid replicate set by using
cdr change replicateset

You can use the cdr change replicateset command to add replicates created outside
of a grid environment to a grid replicate set.

Before you begin, you must verify the following items:

* All the replicate participants are members of the grid. Replicate participants
must include every member node of the grid, and no additional participants.

* Each replicate participant's information refers to the same database, owner, table
name and SELECT statement.

* The replicated table schema is the same among all participants.
* The replicate does not belong to an exclusive replicate set.

To add a replicate to a grid replicate set by using the cdr remaster command:
1. Use the cdr remaster command to convert the replicate to a mastered replicate.

2. Run the cdr change replicateset command with the --add option and specifying
the grid replicate set. For example, the following command adds a replicate
named vendors to the grid1 grid replicate set:

cdr change replicateset --add gridl vendors

When you run the cdr list replicate command, the REPLTYPE field shows Grid.
Related tasks:
[“Adding an existing replicate to a grid replicate set by altering a table”|

Related reference:

[“cdr change replicateset” on page A-42|

[“cdr list replicate” on page A-125|

Related information:

[sglhosts connectivity information|

Adding an existing replicate to a grid replicate set by altering
a table

You can alter replicated tables through a grid even if the replicate was not created
through a grid. Altering a replicated table through a grid adds the replicate to the
grid replicate set.

Before you begin, you must verify the following items:

* All the replicate participants are members of the grid. Replicate participants
must include every member node of the grid, and no additional participants.

* Each replicate participant's information refers to the same database, owner, table
name and SELECT statement.

* The replicated table schema is the same among all participants.

IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_0161.htm

* The replicate does not belong to an exclusive replicate set.

To alter a replicated table through a grid:

1. Connect to the grid by running the ifx_grid_connect() procedure with the
ER_enable argument set to 1.

2. Run an ALTER TABLE statement.
3. Disconnect from the grid by running the ifx_grid_disconnect() procedure.

The replicate is automatically remastered.

The following example adds a new column to the special_offers table and
remasters the replicate on all participants that are members of the grid:

EXECUTE PROCEDURE ifx_grid_connect('gridl', 1);

ALTER TABLE special_offers ADD (
offer_exceptions varchar(255));

EXECUTE PROCEDURE ifx_grid_disconnect();
Related tasks:
[“Removing replicated columns” on page 11-26|

“Adding an existing replicate to a grid replicate set by using cdr change]
replicateset” on page 9-10)|

Related reference:

[“ifx_grid_connect() procedure” on page C-1

Creating replicated tables through a grid

You can automatically create a replicate and start replication when you create a
table through the grid.

If the table you are creating is a typed table, you must define a primary key.

If you plan to create a table with a TimeSeries column, all grid servers must be
running Informix version 12.10 or later.

When you enable replication while creating a table through a grid, replication is
set up in the following way:

* A replicate is created for the table. The replicate name is based on the name of
the source server. Use the cdr list replicate command to see the name.

* All servers that are members of the grid are included as participants in the
replicate.

* The replicate is included in a replicate set that has the same name as the grid.

* The conflict resolution rule for the replicate is time stamp if you include the
WITH CRCOLS clause. Otherwise, the conflict resolution rule is always apply.

* The ERKEY shadow columns are automatically added to the table.

* All other replicate properties are the same as the default properties of a replicate
created through a template.

To set up replication:

1. Connect to the grid by running the ifx_grid_connect() procedure with the
ER_enable argument set to 1.

2. Run a CREATE TABLE statement. Include the WITH CRCOLS clause if you
want time stamp conflict resolution.

Chapter 9. Grid setup and management ~ 9-11

3. Disconnect from the grid by running the ifx_grid_disconnect() procedure.

The following example creates a table with replication enabled that uses the time
stamp conflict resolution rule:

EXECUTE PROCEDURE ifx_grid_connect('gridl', 1);

CREATE TABLE special_offers(
offer_description varchar(255),
offer_startdate date,
offer_enddate date,
offer_rules Tvarchar)
WITH CRCOLS;

EXECUTE PROCEDURE ifx_grid_disconnect();

If you need to alter or delete a database object that you created through a grid,
perform those operation from within a grid context. For example, do not create a
table from within a grid and then delete the table on one of the replication servers
outside of a grid context. Instead, delete the table through the grid.

Related concepts:

[“Conflict resolution rule” on page 5-6|
Related tasks:
[“Preparing tables without primary keys” on page 6-20|

Related reference:

[“ifx_grid_connect() procedure” on page C-1|

[“cdr define template” on page A-9§

Enabling replication within a grid transaction

9-12

You can enable replication within a transaction that is run in the context of the
grid.

By default, the results of transactions run in the context of the grid are not also
replicated by Enterprise Replication. In certain situations you might want to both
propagate a transaction to the servers in the grid and replicate the results of the
transaction.

To enable replication within a transaction:
1. Connect to the grid with the ifx_grid_connect() procedure.
2. Create a procedure that performs the following tasks:
a. Defines a data variable for the Enterprise Replication state information.
b. Runs the ifx_get_erstate() function and save its result in the data variable.

c. Enables replication by running the ifx_set_erstate() procedure with an
argument of 1.

d. Runs the statements that you want to replicate.

Resets the replication state to the previous value by running the
ifx_set_erstate() procedure with the name of the data variable.

3. Disconnect from the grid with the ifx_grid_disconnect() procedure.
4. Run the newly-defined procedure by using the ifx_grid_procedure() procedure.

IBM Informix Enterprise Replication Guide

Example

Suppose that a retail chain wants to run a procedure to create a report that
populates a summary table of each store's current inventory and then replicates
that summary information to a central server. A stored procedure named
low_inventory() that creates a low inventory report exists on all the servers in the
grid named grid1. The following example creates a new procedure named
xqt_low_inventory() that enables replication for the low_inventory() procedure,
and then runs the low_inventory() procedure:
EXECUTE PROCEDURE ifx_grid_connect('gridl');
CREATE PROCEDURE xqt_Tow_inventory()

DEFINE curstate integer;

EXECUTE FUNCTION ifx_get erstate() INTO curstate;

EXECUTE PROCEDURE ifx_set_erstate(1);

EXECUTE PROCEDURE Tow_inventory();

EXECUTE PROCEDURE ifx_set_erstate(curstate);
END PROCEDURE;
EXECUTE PROCEDURE ifx_grid_disconnect();
EXECUTE PROCEDURE ifx_grid_procedure('gridl', 'xqt_low_inventory()');

The following events occur in this example:

1. The ifx_grid_connect() procedure connects to the grid1 grid so that the
xqt_low_inventory() procedure is propagated to all the servers in the grid1
grid.

2. The xqt_low_inventory() procedure defines a data variable called curstate to
hold the Enterprise Replication state information.

3. The ifx_get_erstate() function obtains the Enterprise Replication state and stores
it in the curstate variable. The ifx_set_state() procedure enables replication.

The low_inventory() procedure is run.
The replication state is reset back to its original value.

The connection to the grid is closed by the ifx_grid_disconnect() procedure.

No o~

The ifx_grid_procedure() procedure runs the xqt_low_inventory() procedure on
all the servers in the grid and the result of the low_inventory() procedure is
replicated like any normal updating activity.

Related reference:

[“ifx_set_erstate() procedure” on page D-1|

[“ifx_get_erstate() function” on page C-1|

Propagating updates to data

You can change your data through a grid routine and propagate the changes to all
the servers in the grid.

You can propagate updates to data on servers in the grid. By default, changes to
data that are propagated through the grid are treated the same as changes to data
that are made by Enterprise Replication apply threads: they are not replicated
again. For example, if you propagate a DELETE statement through the grid to
remove old data, you would not want the resulting deleted rows to be replicated
as well. Although you can use the grid to run a DML statement, in general, use
Enterprise Replication to replicate changes to replicated data.

The grid must exist and you must run the grid routines as an authorized user from
an authorized server.

Chapter 9. Grid setup and management 9-13

To propagate an SQL statement or a stored procedure that updates data, run the
ifx_grid_execute() procedure with the DML statements or the stored procedure as
the second argument.

Examples
Example 1: Reduce the price of products with low sales

In the following example, the ifx_grid_execute() procedure runs SQL statements
that reduce the price of wool overcoats in stores that did not sell an overcoat in the
last week:
EXECUTE PROCEDURE ifx_grid_execute('gridl',
'"UPDATE price_table SET price = price * 0.75
WHERE item =
(SELECT item FROM inventory i, sales s
WHERE i.description = "Wool Overcoat"
AND i.item = s.item
AND s.recent_sale_date <
extend (current — Interval(7) DAY))');

Example 2: Purge old data

The following example purges all sales records before 2010:

Database retail_db;
EXECUTE PROCEDURE ifx_grid_execute('gridl’,
'DELETE FROM sales WHERE sales_year < 2010');

Example 3: Run a low inventory report

The following example runs an existing stored procedure named low_inventory():
EXECUTE PROCEDURE ifx_grid_procedure('gridl', 'low_inventory()');
Related reference:

[“ifx_grid_execute() procedure” on page C-7]

Administering servers in the grid with the SQL administration API

9-14

You can run SQL administration API commands in grid routines to perform
administrative tasks on all servers in the grid.

The grid must exist and you must run the grid routines as an authorized user from
an authorized server and while connected to the sysadmin database.

To propagate an SQL administration APl command:

1. Run the ifx_grid_function() function with the SQL administration API
command as the second argument.

2. Check the return code of the SQL administration API command to determine if
it succeeded by running the cdr list grid command. The cdr list grid command
shows the return code. The status of the ifx_grid_function() function can be
ACK, which indicates success, even if the SQL administration API command
failed.

Examples
The following examples must be run in the sysadmin database.

Example 1: Change a configuration parameter setting

IBM Informix Enterprise Replication Guide

The following example sets the maximum size of the log staging directory to 100
KB on all the servers in the grid:
EXECUTE FUNCTION ifx_grid_function('gridl',

"admin("set onconfig permanent",
"CDR_LOG_STAGING_MAXSIZE","100")');

The output of the cdr list grid command shows that the admin() function
succeeded because the return codes are positive numbers:

Grid Node User
gridl cdrl* bill
cdr2
cdr3

Details for grid gridl

Node:cdrl Stmtid:1 User:dbal Database:tstdb 2010-05-27 15:21:57
Tag:test
admin("set onconfig permanent",
"CDR_LOG_STAGING_MAXSIZE","100")
ACK cdrl 2010-05-27 15:21:57
'110"
ACK cdr2 2010-05-27 15:21:58
111!
ACK cdr3 2010-05-27 15:21:58
112"

Example 2: Create a new dbspace
The following example creates a new dbspace on all the servers in the gridl grid:
EXECUTE FUNCTION ifx_grid_function('gridl',

"task("create dbspace","dbsp2",
"/db/chunks/dbsp2","2G","0") ') ;

The output of the cdr list grid command shows that the task() function failed:

Grid Node User
gridl cdrlx bill
cdr2
cdr3

Details for grid gridl

Node:cdrl Stmtid:1 User:dbal Database:tstdb 2010-05-27 15:21:57
Tag:test
task("create dbspace","dbsp2",
"/db/chunks/dbsp2","2G","0"

ACK cdrl 2010-05-27 15:21:57

'Unable to create file /db/chunks/dbsp2'
ACK cdr2 2010-05-27 15:21:58

'Unable to create file /db/chunks/dbsp2'
ACK cdr3 2010-05-27 15:21:58

'Unable to create file /db/chunks/dbsp2'

Related reference:

[“ifx_grid_function() function” on page C-§

[“ifx_grid_execute() procedure” on page C-7|

Propagating database object changes

You can create or alter database objects by running DDL statements while
connected to the grid and propagate the changes to all the servers in the grid.

Chapter 9. Grid setup and management 9-15

You can propagate creating, altering, and dropping database objects to servers in
the grid. For example, you can create a database or table or alter an existing
database or table. You can also create stored procedures and user-defined routines.

You can choose to run the DDL statements on the local server and defer the
propagation of the DDL statements to the other grid servers. Deferred propagation
of DDL statements can be useful when you are rolling out schema changes or
performing a rolling upgrade.

The grid must exist and you must run the grid routines as an authorized user from
an authorized server.

To propagate DDL statements:

1. Connect to the grid by running the ifx_grid_connect() procedure.

2. Run one or more SQL DDL statements.

3. Disconnect from the grid by running the ifx_grid_disconnect() procedure.

If you deferred the propagation of DDL statements, you can propagate them by
running the ifx_grid_release() function, or remove them by running the
ifx_grid_remove() function.

Example

Suppose that you have a retail shop with a website. You replicate your data to
several other locations for web applications. You want to be able to quickly and
easily create, drop, and update tables. You create a grid named grid1, from which
you can update the database schema for all servers in one step. The following
example creates a table for special offers in the prod_db database:

Database prod_db;
EXECUTE PROCEDURE ifx_grid_connect('gridl');

CREATE TABLE special_offers(
offer_description varchar(255),
offer_startdate date,
offer_enddate date,
offer_rules Tvarchar);

EXECUTE PROCEDURE ifx_grid_disconnect();

Related reference:

[“Example of rolling out schema changes in a grid” on page 9-5|

[“ifx_grid_connect() procedure” on page C-1|

[“ifx_grid_disconnect() procedure” on page C-6|

Propagating external files through a grid

9-16

You can copy non-database, external files to the servers within a grid.

The ifx_grid_copy() procedure copies files from a directory on the source server to
a specified destination on all servers in a grid. You specify the source directory on
the source server by setting the GRIDCOPY_DIR configuration parameter to the
location of the file to copy. You also set the GRIDCOPY_DIR configuration
parameters on each of the destination servers to specify the directory to which the
file is copied. The source directory can be different than the destination directory.

IBM Informix Enterprise Replication Guide

The file is copied to all of the servers within the grid with the same permissions,
owner, and group. The names of the group and owner are transmitted along with
the file rather than the group ID and User ID because user and group names might
have different group ID and User ID values on different servers.

The grid must exist and you must run the grid routines as an authorized user from
an authorized server. Wildcard characters in file names are not supported.

1. On the source server, set the GRIDCOPY_DIR configuration parameter to the
location of the file to copy.

2. On the destination servers, set the GRIDCOPY_DIR configuration parameter to
the location of the destination of the file to copy.

3. Run the ifx_grid_copy() procedure specifying the grid name, the name of the
file to send, and, optionally, the file destination.

Examples
Example 1: Copy a file to servers in a grid

The following example copies the file $INFORMIXDIR/tmp/myfile to the other nodes
within grid gridl.
EXECUTE PROCEDURE ifx_grid_copy("gridl", "tmp/myfile")

Example 2: Copy a file to servers in a grid and change the name on the
destination servers

In the following example, assume that the GRIDCOPY_DIR configuration
parameter is set to SINFORMIXDIR/tmp on the source server and on the
destination server. The following example copies the file $INFORMIXDIR/tmp/
bin/sales-010512.exe on the source server to $SINFORMIXDIR/tmp/bin/sales.exe
on all servers within the grid mygrid.

EXECUTE PROCEDURE ifx_grid_copy ("mygrid", "bin/sales-010512.exe", "bin/sales.exe");

Related reference:

[“ifx_grid_copy() procedure” on page C-5|
[‘'GRIDCOPY_DIR Configuration Parameter” on page B-18|

Rerunning failed grid routines

You can rerun a grid routine that failed on one or more servers in the grid.

If a grid routine failed on one or more servers in the grid, you can run the cdr list
grid command with the --nacks option to see the details of why it failed. If a
server in the grid is offline or is not connected to the network, then a grid routine
will be pending on that server and will be run when the server is reconnected to
the grid.

In some cases, you should not rerun a failed routine, because the failure is
expected. For example, if a server already has the database object that a grid
routine is creating, then that routine fails on that server. If a command failed on all
grid servers, you can run the original command again instead of running the
ifx_grid_redo() procedure.

The grid must exist and you must run the grid routine as an authorized user from
an authorized server.

Chapter 9. Grid setup and management 9-17

9-18

To rerun a grid routine, run the ifx_grid_redo() procedure.

If you run the ifx_grid_redo() procedure without additional arguments besides the
grid name, all routines that failed are re-attempted on all the servers on which they
failed. You can specify on which server to rerun routines and which routines to
rerun.

Example

Suppose you have a grid, named grid1, that contains the servers gserv_1 and
gserv_2, which have a database named db1.

You create a dbspace named dbsp2 on the server gserv_1 and then create a table in
that dbspace in a grid context with the following commands:

$ dbaccess dbl -

execute procedure ifx_grid_connect('gridl');

create table t100 (cl int primary key) in dbsp2;
execute procedure ifx_grid_disconnect();

The cdr list grid command shows that the command failed on the server gserv_2:
$ cdr list grid gridl --nack

Grid Node User
gridl gserv_1x userl
gserv_2

Details for grid gridl

Node:gserv_1 Stmtid:4 User:userl Database:dbl 2011-02-24 09:27:44
create table t100 (cl int primary key) in dbsp2
NACK gserv_2 2011-02-24 09:27:45 SQLERR:-261 ISAMERR:-130

Grid Apply Transaction Failure

The error indicates that the table could not be created because the specified
dbspace does not exist.

You create a dbspace named dbsp2 on the server gserv_2 and run the
ifx_grid_redo() procedure to rerun the original command on gserv_2:

$ dbaccess dbl -
execute procedure ifx_grid _redo('gridl');

The output of the cdr list grid command shows that the command succeeded on
both servers:

$ cdr Tist grid gridl -v

Grid Node User
gridl gserv_1* userl
gserv_2

Details for grid gridl

Node:gserv_1l Stmtid:4 User:userl Database:dbl 2011-02-24 09:27:44
create table t100 (cl int primary key) in dbsp2

ACK gserv_1 2011-02-24 09:27:44

ACK gserv_2 2011-02-24 09:31:09

Related reference:

[“ifx_grid_redo() procedure” on page C-10|

[“cdr list grid” on page A-121]

IBM Informix Enterprise Replication Guide

Connection management for client connections to participants in a

grid

You can configure Connection Managers to route connection requests from clients
to the replication servers of a grid.

Connection requests can be directed to replication servers based on Connection
Manager service-level agreements (SLAs). You can configure Connection Manager
SLAs to redirect connection requests based on various redirection policies.
Connection Managers support the following redirection policies:

* FAILURE: Connection requests are directed to the replication server that has the
fewest apply failures.

* LATENCY: Connection requests are directed to the replication server that has the
lowest transaction latency.

* ROUNDROBIN: Connection requests are directed in a repeating, ordered fashion
(round-robin) to a group of replication servers.

*+ WORKLOAD: Connection requests are directed to the replication server that has
the lowest workload.

Related concepts:

[“Example of setting up a replication system with a grid” on page 9-2|

Related information:

[Connection management through the Connection Manager|

[Example of configuring connection management for a grid or replicate seff

Grid queries

If you have a table that is the same on multiple servers in a grid, but whose data is
not replicated, you can run a grid query to return the consolidated data from the
multiple servers.

For example, suppose that you have a chain of retail stores. Each store has a
database with the same schema. The database contains tables for inventory,
customer data, and sales transactions. You set up a grid because you want to
replicate the inventory tables to a central server. You want the tables for sales
transactions to be the same on every server, but you do not want to replicate all
the sales transactions to the central server. You do, however, want a monthly report
that shows the total sales per store. You run a grid query on the central server that
aggregates the sales data for the last month for each store and returns results that
are grouped by store.

To run a grid query, you include the GRID clause in the SELECT statement. The
GRID clause specifies the grid, or subset of the grid, on which to run the query.
The GRID clause has requirements and restrictions for the tables and other SQL
constructs that you can include in the query.

Before you can run a grid query, you must define the table that you want to query
as a grid table. If you use secure connections between your grid servers, you must
configure secure connections on the grid server from which you want to run grid
queries.

Planning for grid queries

Consider the following options when you plan grid queries.

Chapter 9. Grid setup and management 9-19

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1176.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.admin.doc/ids_admin_1434.htm

Before you run a grid query, you can configure the following options for the
queries:

* Whether to run the grid query on all the servers in the grid or a subset of grid
servers. To define subsets of grid servers, create regions by running the cdr
define region command. You can create as many grid regions as you need. Grid
regions can overlap or be divided into smaller grid regions. A grid server can be
a member of multiple grid regions.

* Whether to make all SELECT statements that are run in the current session run
as grid queries by default. Run the SET ENVIRONMENT SELECT_GRID or the
SET ENVIRONMENT SELECT_GRID_ALL statements to specify the grid or
region name for every query. Leave the GRID clause out of SELECT statements.

* Whether to skip grid servers that are not available when you run the grid query.
By default, the grid query runs only if all servers are available. Run the SET
ENVIRONMENT GRID_NODE_SKIP ON statement to run the query on the
available servers and skip the unavailable servers.

While you run a grid query, besides choosing the tables and the grid or region to
include in the query, you can include the following options:

* Whether to return all qualifying rows, including duplicate rows. By default, grid
queries return only unique rows. Include the ALL keyword in the GRID clause
to return all rows.

* Whether to return information about which server the results are from. Include
the ifx_node_id() or ifx_node_name() function to return a column that identifies
the grid server from which each row originates. You can use the server ID or
name to group the results.

After you run a grid query, you can find out which servers were skipped for a grid
query, if the GRID_NODE_SKIP option was set to ON. Run the
ifx_gridquery_skipped_node_count() and ifx_gridquery_skipped_nodes()
functions to return the grid servers that were unavailable during the grid query.

Related reference:

[“ifx_grid_connect() procedure” on page C-1

[“cdr define region” on page A-76|

[“cdr delete region” on page A-104|

[“cdr change gridtable” on page A-36|

[“cdr remaster gridtable” on page A-156|

[“ifx_node_id() function” on page C-16|

[“ifx_node_name() function” on page C-17|

[“ifx_gridquery_skipped_nodes() function” on page C-15|

[“ifx_gridquery_skipped_node_count() function” on page C-16|

[“ifx_grid_release() function” on page C-11]

[“ifx_grid_remove() function” on page C-12|

Related information:

[SELECT_GRID session environment option|
[SELECT_GRID_ALL session environment option|
[GRID_NODE_SKIP session environment option|

Defining tables for grid queries

Define the tables that you want to include in grid queries as grid tables.

9-20 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2599.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2600.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2601.htm
http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

The only prerequisite for defining a table as a grid table is that the table must have
the same name, column names, and data types on multiple grid servers. However,
the GRID clause has other restrictions and requirements for running grid queries.

You can include system catalog and sysmaster databases tables in grid queries
without defining them as grid tables.

To define a table as a grid table, run the cdr change gridtable command. The cdr
change gridtable command verifies that the tables have matching column names
and data types across the grid.

For example, the following command defines the items, orders, and customer
tables in the stores_demo database for the grid named grid1:

cdr change gridtable -—grid=gridl -—database=stores_demo -—add items orders customer

If you want to alter a grid table, you must run the alter operation through the grid.
You cannot run a grid query on the table during an alter operation. After the alter
operation is complete, the database server verifies that the table is consistent across
grid servers.

Related reference:

[“cdr change gridtable” on page A-36|

[“cdr remaster gridtable” on page A-156|

Related information:

RID clause

Configuring secure connections for grid queries

If the sqThosts files on the grid servers include the s=6 option, you must define
alternate connections for grid queries. On the grid server from which you want to
run grid queries, create a grid.servers file that lists the server group names and
aliases for the other grid servers.

You do not need to encrypt the file. Authentication is done through normal
authentication methods.

To configure secure connections for grid queries:
On the grid server from which you want to run grid queries, create a text file
named grid.servers in the INFORMIXDIR/etc directory. List each grid server group

name and alias on a separate line.

For example, the following sqlhosts file for a grid uses the s=6 option for secure

connections:

#dbservers nettype hostname servicename options
g_ca_sf group - - i=100
san_francisco ontlitcp computerl sf alt g=g _ca_sf,s=6
g_ca_sj group - - 1=200

san_jose ontlitcp computer2 sj_alt g=g_ca_sj,s=6
g_ca_okl group - - =300

oakland ontlitcp computer3 okl_alt g=g_ca_okl,s=6
g_ca_yk group - - =400

yreka ontlitcp computerd yk_ alt g=g_ca_yk,s=6

Chapter 9. Grid setup and management ~ 9-21

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

g_ca_sac group - - =500

sacramento ontlitcp computer5 sac_alt g=g_ca_sac,s=6
g_ca_stk group - - =600
stockton ontlitcp computer6 stk alt g=g_ca_stk,s=6

The corresponding grid.servers file has the following contents:

#group alias

g_ca_sf sf_alt
g_ca_sj sj_alt
g_ca_okl okl _alt
g_ca_yk yk_alt
g_ca_sac sac_alt
g_ca_stk stk _alt

Related tasks:
[‘Configuring secure ports for connections between replication servers” on page 6-4|

Related reference:

[“ifx_grid_connect() procedure” on page C-1|

[“ifx_grid_release() function” on page C-11]

[“ifx_grid_remove() function” on page C-12|

Related information:

RID clause

Examples of grid queries

These examples show some of the options that you have when you run grid
queries.

The following examples are based on the stores_demo database. A grid named
grid1 has eight servers, named storel through store8. The examples assume that
you defined the items, orders, and customer tables as grid tables.

Example 1: Return chunk information about grid servers

Suppose you want to know about the chunks on all your grid servers. You want to
know the number of chunks, which dbspaces each chunk is in, the total size of
each chunk, and the amount of free space in each chunk.

You run the following grid query to return chunk information for each grid server.
The tables in the sysmaster database are grid tables by default.

database sysmaster;

SELECT ifx_node_name()::char(12) AS node, chknum, dbsnum, nfree, chksize
FROM syschunks GRID ALL 'gridl';

The grid query returns the following results:

node chknum dbsnum nfree chksize
storel 1 1 1777275 2000000
storel 2 2 5025 100000
storel 3 3 24974 100000
store2 1 1 1775579 2000000
store2 2 2 5025 100000
store2 3 3 24974 100000
store3 1 1 1769260 2000000

9-22 IBM Informix Enterprise Replication Guide

http://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.sqls.doc/ids_sqs_2602.htm

store3 2 2 5025 100000
store3 3 3 24974 100000

Example 2: Aggregate results by server and find skipped servers

Suppose you want a list of the orders by customer for each store in the grid named
gridl. A store is represented by its grid server name. You want to return all results,
including duplicate rows. You do not want the query to fail if any of the grid
servers are unavailable, but you want to know which servers were skipped.

Before you run the grid query, you run the following statement to run the query
on available grid servers and skip any unavailable grid servers:

SET ENVIRONMENT GRID_NODE_SKIP ON;

You run the following grid query to return the outstanding orders by customer for
each store:
SELECT c.fname, c.lname, ifx_node_name() AS node

SUM(i.total_price) AS tot_amt, SUM(i.quantity) AS tot_cnt

FROM items i, orders o, customer c GRID ALL 'gridl'

WHERE i.order_num = o.order_num

AND o.customer_num = c.customer_num

GROUP BY 1,2

ORDER BY 2,1,3;

The grid query returns the following results:

fname Alfred
Tname Grant
node storel
tot_amt $84.00
tot_cnt 2

fname Alfred
Tname Grant
node store2

tot_amt $84.00
tot_cnt 4

You run the following statement to find how many grid servers were skipped:
EXECUTE FUNCTION ifx_gridquery_skipped_node count();

2

Two servers were skipped. You run the ifx_gridquery_skipped_nodes() statement
for each of the skipped servers:

EXECUTE FUNCTION ifx_gridquery skipped _nodes();
storeb
EXECUTE FUNCTION ifx_gridquery skipped_nodes();

store8

Chapter 9. Grid setup and management ~ 9-23

Example 3: Query a region of the grid

Suppose you want to know the total sales and number of sales per person for each
store in Kansas. Kansas has two stores whose grid servers are named store3 and
store4. You want all queries during your database session to be run as grid queries
for the Kansas stores.

You run the following command to define a grid region named region1 that
contains the servers store3 and store4:

cdr define region --grid=gridl regionl store3 store4

You run the following statement to set all SELECT statements during the session as
grid queries for the region regionl:

SET ENVIRONMENT SELECT_GRID_ALL regionl

You run the following statement to return the total sales and number of sales per
person for each store. The GRID clause is not necessary because you set the
SELECT_GRID_ALL option.

SELECT fname[1,10], Tname[1,10], ifx_node_id() AS storenum,
SUM(quantity) AS tot_cnt, SUM(total_price) AS tot_amt
FROM items i, orders o, customer c
WHERE i.order_num = o.order_num
AND o.customer_num = c.customer_num
GROUP BY 2,1
ORDER BY 2,1,3;

The query returns the following results:

fname Tname storenum tot_cnt tot_amt
Alfred Grant 3 8 $84.00
Alfred Grant 4 6 $84.00
Marvin Hanlon 3 12 $438.00
Marvin Hanlon 4 10 $438.00
Anthony Higgins 3 45 $1451.80
Anthony Higgins 4 36 $1451.80
Roy Jaeger 3 16 $1390.00
Roy Jaeger 4 13 $1390.00
Fred Jewell 3 16 $584.00
Fred Jewell 4 13 $584.00
Frances Keyes 3 4 $450.00
Frances Keyes 4 3 $450.00

Example 4: Use a grid query as a subquery

Suppose you want the total sales and number of sales for each customer across all
stores. You use the same query that you use in example 2 as the subquery to
return information by grid server. The main query aggregates the results of the
subquery.

You run the foll