Informix Product Family
Informix
Version 12.10

IBM Informix Spatial Data User's Guide

<||IH

Informix Product Family
Informix
Version 12.10

IBM Informix Spatial Data User's Guide

..lli

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page H-1]

This edition replaces SC27-4534-00.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this publication should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2001, 2014.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction.
About this publication .
Types of users
Assumptions about your locale

What's new in spatial data for IBM Informlx Versmn 12 10.

Example code conventions.
Additional documentation .
Compliance with industry standards .
Syntax diagrams .
How to read a Command lme syntax dlagram
Keywords and punctuation .
Identifiers and names. .
How to provide documentation feedback .

Chapter 1. Getting started with spatial data.
Overview of spatial data.
Geographic coordinate system .
Projected coordinate system.
Informix spatial solution architecture
Spatial data replication .
The IBM Informix Web Feature Serv1ce
Preparing for spatial data .
The spatial_references table
Units of measure .
Spatial tables
Loading spatial data . .
The geometry_columns table .
The spatial index .
Query spatial data
Optimize spatial queries .
Update values in a spatial column .

Chapter 2. Spatial data types .
Properties of spatial data types
ST_Point data type.

ST_LineString data type .
ST_Polygon data type.
ST_MultiPoint data type .
ST_MultiLineString data type .
ST_MultiPolygon data type .
Locale override . .

Spatial data types with SPL

Casts between spatial data types .

Chapter 3. Data exchange formats
Well-known text representation

Well-known binary representation

ESRI shape representation

Geography Markup Language representatlon
Keyhole Markup Language representation .

Chapter 4. R-tree indexes

Syntax for creating an R-tree index .
Bottom-up versus top-down index builds .

© Copyright IBM Corp. 2001, 2014

. ix
. ix
. ix

.xi
. Xi
. Xi
. Xii

. Xiv
. Xiv
. Xiv

. 141
S1-2

.17
. .18
. 1-10
. 1-10
. 1-11
. 1-12
. 1-16
. 1-18
. 1-19
. 121
. 1-22
. 123
. 1-24
. 1-26

. 2-1

. 2-4
. 2-5
. 2-6
. 2-7
.27
. 2-8
. 29

. 29

. 3-1
.31
.31
.32
.33
.34

. 41

.43

iii

Functional R-tree indexes .
Verify that the index is correctly built
The spatial operator class ST_Geometry_Ops .
How spatial operators use R-tree indexes .

Chapter 5. Run parallel queries .
Parallel query execution infrastructure .
Resolve problems with SE_Metadatalnit() .
Execute parallel queries .

Chapter 6. Estimate your spatial data
Estimating the storage space for the table .
Estimate the size of the spatial column .
Estimate the size of non-spatial columns
Estimate dbspace overhead requirements
Estimating the smart large object storage space .
Estimating the size of spatial indexes

Chapter 7. Spatial functions

The Dimensionally Extended 9 Intersection Model .

Summary of spatial functions by task type.
The ST_Area() function .

The ST_AsBinary() function

The SE_AsGML() function .

The ST_AsGML() function .

The SE_AsKML() function .

The ST_AsKML() function .

The SE_AsShape() function

The ST_AsText() function .

The ST_Boundary() function .

The SE_BoundingBox() function .

The ST_Buffer() function

The ST_Centroid() function

The ST_Contains() function

The ST_ConvexHull() function

The ST_CoordDim() function .

The SE_CreateSRID() function

The SE_CreateSrtext() function

The SE_CreateSrtextCount() function
The SE_CreateSrtextList() function .
The ST_Crosses() function .

The ST_Difference() function .

The ST_Dimension() function .

The ST_Disjoint() function .

The SE_Dissolve() function

The ST_Distance() function .
The ST_DistanceToPoint() function .
The ST_EndPoint() function

The ST_Envelope() function .
The ST_EnvelopeAsGML() function.
The SE_EnvelopeAsKML() function.
The ST_EnvelopeFromGML() function .
The SE_EnvelopeFromKML() function .
The SE_EnvelopesIntersect() function .
The ST_Equals() function . .

The ST_ExteriorRing() function .

The SE_Generalize() function .

The ST_GeometryN() function

The ST_GeometryType() function

The ST_GeomFromGML() function .

iv IBM Informix Spatial Data User's Guide

. 4-4
. 4-4
. 4-4
. 45

. 5-1
. 5-1
. 5-1
. 5-1

. 6-1

. 6-1
. 6-2
. 62

. 7-10
. 7-13
. 7-14
. 7-15
. 7-15
. 7-16
. 7-18
. 7-19
. 7-20
. 721
. 722
. 727
. 7-28
. 7-30
. 7-31
. 7-33
. 7-36
. 7-38
. 7-38
. 7-39
. 741
. 7-43
. 7-44
. 747
. 7-48
. 7-50
. 7-51
. 7-52
. 7-54
. 7-54
. 7-55
. 7-55
. 7-56
. 7-57
. 7-59
. 7-60
. 7-62
. 7-62
. 7-63

The ST_GeomFromKML() function .

The SE_GeomFromShape() function.

The ST_GeomFromText() function

The ST_GeomFromWXKB() function .

The SE_InRowsSize() function .

The ST_InteriorRingN() function.

The ST_Intersection() function

The ST_Intersects() function

The ST_Is3D() function .

The ST_IsClosed() function

The ST_IsEmpty() function

The ST_IsMeasured() function

The ST_IsRing() function

The ST_IsSimple() function

The ST_IsValid() function .

The ST_Length() function . .

The ST_LineFromGML() function

The ST_LineFromKML() function

The SE_LineFromShape() function .

The ST_LineFromText() function .

The ST_LineFromWKB() function

The ST_LocateAlong() function .

The ST_LocateBetween() function

The ST_M() function.

The ST_MaxM() and ST MmM() functlons
The ST_MaxX() and ST_MinX() functions .
The ST_MaxY() and ST_MinY() functions.
The ST_MaxZ() and ST_MinZ() functions.
The SE_Metadatalnit() function . .
The SE_Midpoint() function

The ST_MLineFromGML() functlon

The ST_MLineFromKML() function .

The SE_MLineFromShape() function

The ST_MLineFromText() function .

The ST_MLineFromWKB() function.

The ST_MPointFromGML() function

The ST_MPointFromKML() function .
The SE_MPointFromShape() function .
The ST_MPointFromText() function

The ST_MPointFromWKB() function .
The ST_MPolyFromGML() function

The ST_MPolyFromKML() function

The SE_MPolyFromShape() function .
The ST_MPolyFromText() function.

The ST_MPolyFromWKB() function

The SE_Nearest() and SE_NearestBbox() functlons

The ST_NumGeometries() function
The ST_NumlInteriorRing() function .
The ST_NumPoints() function .

The SE_OutOfRowSize() function .
The ST_Overlaps() function .

The SE_ParamGet() function .

The SE_ParamSet() function .

The ST_Perimeter() function .

The SE_PerpendicularPoint() functlon
The ST_Point() function .
The ST_PointAtDistance() funchon
The ST_PointFromGML() function .
The ST_PointFromKML() function .
The SE_PointFromShape() function
The ST_PointFromText() function .

. 7-66
. 7-66
. 7-67
. 7-68
. 7-69
. 7-69
. 7-72
. 7-74
. 777
. 777
. 7-79
. 7-80
. 7-81
. 7-82
. 7-82
. 7-83
. 7-85
. 7-86
. 7-87
. 7-88
. 7-88
. 7-89
. 7-90
. 7-92
. 793
. 793
. 7-93
. 7-93
. 794
. 794
. 7-94
. 796
. 796
. 797
. 7-98
.. 799
. 7-100
. 7-100
. 7-101
. 7-101
. 7-102
. 7-103
. 7-104
. 7-105
. 7-105
. 7-106
. 7-107
. 7-108
. 7-108
. 7-109
. 7-109
. 7-112
. 7-112
. 7-113
. 7-114
. 7-115
. 7-116
. 7-116
. 7-117
. 7-118
. 7-119

Contents V

The ST_PointFromWKB() function. .7119
The ST_PointN() function. .712
The ST_PointOnSurface() function. .7121
The ST_PolyFromGML() function .7121
The ST_PolyFromKML() function .. 7122
The SE_PolyFromShape() function. .7123
The ST_PolyFromText() function .7124
The ST_PolyFromWKB() function .7124
The ST_Polygon() function .7125
The ST_Relate() function .7126
The SE_Release() function L . . Lo oL T27
The SE_ShapeToSQL() function. ... 7127
The SE_SpatialKey() function .7128
The ST_SRID() function . . £ WA
The SE_SRID_Authority() functlon. e (0]
The ST_StartPoint() function. .713
The ST_SymbDifference() function .7131
The SE_TotalSize() function .7133
The ST_Touches() function .7133
The SE_Trace() function .7135
The ST_Transform() function .7136
The ST _Union() function7140
The SE_VertexAppend() function . L ... 7142
The SE_VertexDelete() function. ... 7142
The SE_VertexUpdate() function ... 7142
The ST_Within() function. L ... L7142
The ST_WKBToSQL() function .7144
The ST_WKTToSQL() function .7145
The ST_X() function . . £ € 14)
The ST_Y() function L . L Lo L T47
The ST_Z function 7148

Chapter 8. Spatial Java APl81
Compatibility with the ESRI ArcSDE Java API .81
Overview of the Java APT ... 81
Geometries . . R « 4
Uses for the Java API R - A
The CoordRefManager Class .83
The SpatialManager Class . . . e |
Overview of a Spatial Java API Apphcatlon S e 84
Using Logging . . e
Assigning a Connectlon to CoordRefManager. O« o)
Querying and Displaying Geometries .85
Reading Coordinate Data .85
Preparing to Run a Program .86
Running the Programs . . . R <)
Example 1: Retrieving a Point From a Table O«
Examples 2, 3, and 4: How to Use the Java API .87
GeometryToWKT Lo 8T
GeometryToArray88
CoordRefCreate.88

Appendix A. Load and unload shapeflle data.00 oA
The infoshp utility |
The loadshp utility L s A2
The unloadshp utility A6

Appendix B. OGC well-known text representation of spatial reference systems B-1
The text representation of a spatial system. .Bl
Linear units B8

vi IBM Informix Spatial Data User's Guide

Angular units

Geodetic spheroids . .
Horizontal datums (spheroid only)
Horizontal datums

Prime meridians .

Projection parameters

Map projections .

Appendix C. OGC well-known text representation of geometry .
Well-known text representation in a C program .

Well-known text representation in an SQL editor

Modified well-known text representation .

Appendix D. OGC well-known binary representation of geometry .

Numeric type definitions

XDR (big endian) encoding of numeric types

NDR (little endian) encoding of numeric types .

Conversion between the NDR and XDR representations of WKB geometry
Description of WKBGeometry byte streams . . .o
Assertions for well-known binary representation for geometry

Appendix E. ESRI shape representatlon .

Shape type values .

Shape types in XY space.

Point . . .
MultiPoint
PolyLine .

Polygon . .
Measured shape types in XY space .
PointM . .

MultiPointM.
PolyLineM
PolygonM .

Shape types in XYZ space .

PointZ. o
MultiPointZ .
PolyLineZ

PolygonZ. .

Measured shape types in XYZ space
PointZM. . .
MultiPointZM .

PolyLineZM
PolygonZM.

Appendix F. Error messages .
Error messages and their explanations .

Appendix G. Accessibility .
Accessibility features for IBM Informix products
Accessibility features .
Keyboard navigation . .
Related accessibility mformatlon
IBM and accessibility .
Dotted decimal syntax diagrams .

Notices . .o
Privacy policy considerations .
Trademarks .

. B4
. B5
. B-6
. B-8

. B-16

. B-16
. B-17

. C-1

. C1
. C2
. C4

. D-1

. E2

. E5

. E-7

. E-10

. E-10
. E-10
. E-11
. E-12

. F-1
. F1

. G-1
. G-1
. G-1
. G-1

. G1

. H-1

Contents

. H-3
. H-3

vii

Index .

viii IBM Informix Spatial Data User's Guide

Introduction

This introduction provides an overview of the information in this publication and
describes the conventions it uses.

About this publication

This publication contains information to assist you in using the IBM® Informix®

spatial extension with IBM Informix.

The IBM Informix spatial extension adds custom data types and supporting
routines to the server.

This section discusses the organization of the publication, the intended audience,
and the associated software products that you must have to develop and use the
IBM Informix spatial extension. General information about the Informix spatial

extension is available at |http:/ /www.ibm.com/software/data/informix /blades /|

Types of users

This publication is written for the following audience:

* Developers who design the tables to hold spatial information in IBM Informix
databases

* Developers who write applications to access spatial information stored in IBM
Informix databases

Assumptions about your locale

IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation and representation of numeric
data, currency, date, and time that is used by a language within a given territory
and encoding is brought together in a single environment, called a Global
Language Support (GLS) locale.

The IBM Informix OLE DB Provider follows the ISO string formats for date, time,
and money, as defined by the Microsoft OLE DB standards. You can override that
default by setting an Informix environment variable or registry entry, such as
DBDATE.

If you use Simple Network Management Protocol (SNMP) in your Informix
environment, note that the protocols (SNMPv1 and SNMPv2) recognize only
English code sets. For more information, see the topic about GLS and SNMP in the
IBM Informix SNMP Subagent Guide.

The examples in this publication are written with the assumption that you are
using one of these locales: en_us.8859-1 (ISO 8859-1) on UNIX platforms or
en_us.1252 (Microsoft 1252) in Windows environments. These locales support U.S.
English format conventions for displaying and entering date, time, number, and
currency values. They also support the ISO 8859-1 code set (on UNIX and Linux)
or the Microsoft 1252 code set (on Windows), which includes the ASCII code set
plus many 8-bit characters such as §, ¢, and f.

© Copyright IBM Corp. 2001, 2014 ix

http://www.ibm.com/software/data/informix/blades/spatial/
http://www.ibm.com/software/data/informix/blades/spatial/

You can specify another locale if you plan to use characters from other locales in
your data or your SQL identifiers, or if you want to conform to other collation
rules for character data.

For instructions about how to specify locales, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

What's new in spatial data for IBM Informix, Version 12.10

This publication includes information about new features and changes in existing
functionality.

The following changes and enhancements are relevant to this publication. For a
complete list of what's new in this release, o to |http:/ /pic.dhe.ibm.com/ |
finfocenter /informix /v121/topic/com.ibm.po.doc/new_features_ce. htm|

Table 1. What's new for the IBM Informix Spatial Data User's Guide for 12.10.xC3

Overview Reference

Enhancements for handling spatial data [“The ST Transform() function” on page 7-136|
You can transform spatial data between [“The spatial_references table” on page 1-12|
spatial reference systems that are in different

geographic coordinate systems. Previously, [“Units of measure” on page 1-16|

you could transform data only within the
same geographic coordinate system.

“The SE_Nearest() and SE_NearestBbox()|
functions” on page 7-106|

You can choose from many more predefined
spatial reference systems instead of defining
most of the systems that you need.

You can calculate the distance and area for
data that is based on the round-Earth model.
If your geometries have a spatial reference
system that is based on angular units, you
can calculate distance and area in meaningful
linear units. Specify the appropriate unit of
measure to convert angular units to linear
units in the ST_Area, ST_Buffer,
ST_Distance, ST_Length, and ST_Perimeter
functions. You can specify predefined units
of measure or define your own units of
measure. The SE_Nearest function calculates
distance between geometries that are in
geographic coordinate systems by applying
the linear unit of measure of meters.

Informix spatial data types now conform to
the OpenGIS Simple Features Specification
for SQL Revision 1.1 and the ISO/IEC
13249-3 SQL/MM Part 3: Spatial. The
Informix spatial solution is based on the
ESRI SDE 10.2 Shape and PE libraries.

Example code conventions

X

Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

IBM Informix Spatial Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.po.doc/new_features_ce.htm
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.po.doc/new_features_ce.htm

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB-Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept that is
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation

Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http:/ /www.ibm.com /software /data /sw-library /|

Compliance with industry standards

IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

Syntax diagrams

Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 2. Syntax Diagram Components

Component represented in PDF

Component represented in HTML

Meaning

>
>

Statement begins.

v

Statement continues on next

line.

Introduction X1

http://www.ibm.com/software/data/sw-library/

Table 2. Syntax Diagram Components (continued)

Component represented in PDF

Component represented in HTML

Meaning

»
»

Statement continues from

> S
previous line.
»¢ | S< Statement ends.
SELECT——+ | occoooo- SELECT=mmmmmmmmm Required item.
Optional item.
[Fem
I— LOCAL 4 [LOCAL------ !
ALL e AlL-mmmmmm P Required item with choice.
+--DISTINCT ===~ + Only one item must be
—— DISTINCT—— ' UNIQUE--m~- X present.
—— UNIQUE ——
et e P Optional items with choice
— FOR UPDATE i‘ +--FOR UPDATE----- + are shown below the main
L FOR READ ONLY '--FOR READ ONLY--' line, one of which you might
specify.
NEXT: o NEXTeoomeemee The values below the main
e e line are optional, one of
PRIOR +---PRIOR-=--===--- + which you might specify. If
0 '---PREVIOUS----- ' you do not specify an item,
— PREVIOUS—— the value above the line is
used by default.
, [S —— Optional items. Several items
l | v are allowed; a comma must
o S precede each repetition.
index_name +---index_name---+
table_name '---table_name---'

»—iTabIe Reference H

>>-| Table Reference |-><

Reference to a syntax
segment.

Table Reference

I view |
table

synonym ———

Table Reference

S m— 4o
EEEEEEE table------ +
'----synonym------ '

Syntax segment.

How to read a command-line syntax diagram

Command-line syntax diagrams use similar elements to those of other syntax

diagrams.

Some of the elements are listed in the table in|Syntax Diagrams]

Creating a no-conversion job

»»—onpladm create job—job

xii IBM Informix Spatial Data User's Guide

I— -p—project—l

-n— -d—device— -D—database——>

»— -t—table

>«

(1)

|_ -S—server—l |_ -T—target—l I Setting the Run Mode —

Notes:
1 See page Z-1

This diagram has a segment that is named “Setting the Run Mode,” which
according to the diagram footnote is on page Z-1. If this was an actual

cross-reference, you would find this segment on the first page of Appendix Z.

Instead, this segment is shown in the following segment diagram. Notice that the

diagram uses segment start and end components.

Setting the run mode:

L

I I I I I I AR W

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:

1. Include onpladm create job and then the name of the job.
2. Optionally, include -p and then the name of the project.
3. Include the following required elements:

* -n

* -d and the name of the device

¢ -D and the name of the database

* -t and the name of the table

4. Optionally, you can include one or more of the following elements and repeat

them an arbitrary number of times:
¢ -S and the server name
* -T and the target server name

¢ The run mode. To set the run mode, follow the Setting the Run Mode
segment diagram to include -f, optionally include d, p, or a, and then

optionally include 1 or u.
5. Follow the diagram to the terminator.

Introduction

xiii

Keywords and punctuation

Keywords are words that are reserved for statements and all commands except
system-level commands.

A keyword in a syntax diagram is shown in uppercase letters. When you use a
keyword in a command, you can write it in uppercase or lowercase letters, but you
must spell the keyword exactly as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and names

Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in other syntax diagrams. A variable in a syntax diagram, an
example, or text, is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

»>—SELECT—column_name—FROM—table_name ><

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback

xiv

You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
¢ Send email to|docinf@us.ibm.com|
e In the Informix information center, which is available online at
[http: / /www.ibm.com /software /data/sw-library /], open the topic that you want

to comment on. Click the feedback link at the bottom of the page, complete the
form, and submit your feedback.

* Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at fhttp:/ /www.ibm.com /planetwide /|

We appreciate your suggestions.

IBM Informix Spatial Data User's Guide

mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

Chapter 1. Getting started with spatial data

The IBM Informix spatial solution embeds a geographic information system (GIS)
within the IBM Informix database server. The IBM Informix spatial data types
integrate spatial and non-spatial data, providing a seamless point of access using
SQL (Structured Query Language).

IBM Informix spatial data types implement the OpenGIS Consortium, Inc.
(OpenGiIS, or OGC) SQL3 specification of abstract data types (ADTs). These data
types can store spatial data such as the location of a landmark, a street, or a parcel
of land. IBM Informix spatial data types also conform to the OpenGIS Simple
Features Specification for SQL Revision 1.1 and the ISO/IEC 13249-3 SQL/MM
Part 3: Spatial. The Informix Spatial solution is based on the ESRI SDE 10.2 Shape
and PE libraries.

You use specialized spatial data type functions to compare the values in spatial
columns to determine whether the values intersect, overlap, or are related in
different ways. These functions can answer questions like, “Is this school within 5
miles of a hazardous waste site?” An application programmer can use an SQL
query to join a table that stores sensitive sites such as schools, playgrounds, and
hospitals to another table that contains the locations of hazardous sites and return
a list of sensitive areas at risk. For example, the following figure shows that a
school and hospital lie within the 5-mile radius of two hazardous site locations and
the nursing home lies safely outside both radii.

o _|7A | Hospital
I
AL
i School
| } | -
; Nursing
Home

Figure 1-1. Determining whether sensitive sites are within dangerous areas

You use the ST_Overlaps() function to evaluate whether the polygon that
represents the building footprint of the school overlaps the circular polygon that
represents the 5-mile radius of a hazardous waste site. The building footprints of
the school, hospital, and nursing home are stored in the ST_Polygon data type and
the location of each hazardous waste site is stored in an ST_Point data type.

© Copyright IBM Corp. 2001, 2014 1-1

Overview of spatial data

1-2

The properties of spatial data include the type of spatial object, or geometry, the
geographic area where the object is located, and whether the location of the object
is measured in angular or linear units.

A geometry is a model of a geographic feature. The coordinates of a geographic
feature that a geometry represents are regarded as properties of the geometry.
Several kinds of geometries have other properties as well; for example, area,
length, and boundary. The types of geometries include points, lines, and polygons.
Each geometry is represented by a spatial data type. When you create a table for
spatial data, you choose the spatial data type that corresponds to the structure of
your spatial data.

When you insert spatial data into the database, you specify a spatial reference
system. A spatial reference system is a set of parameters that represents the following
characteristics of the location of a geometry:

* The numeric identifier that uniquely identifies the spatial reference system.

* Coordinates that define the maximum extent of space that is referenced by a
specified range of coordinates.

* Values for a false origin and system units to store coordinate values at an
acceptable scale.

* A text representation of the spatial reference system that describes what type of
units the coordinates have.

Whether the coordinates for a geometry are angular or linear units depends on the
type of coordinate system to which the geometry conforms. A coordinate system is a
framework for defining the relative locations of geometries in a specific area; for
example, an area on the Earth's surface or the Earth's surface as a whole. Informix
supports the following types of coordinate systems: geographic coordinate system
and projected coordinate systems.

You can convert data between coordinate systems and calculate the distance and
area for data that is in either type of system.

Geographic coordinate system

A geographic coordinate system is a system that uses a three-dimensional spherical
surface to determine locations on the Earth. Any location on Earth can be
referenced by a point with longitude and latitude coordinates. The geographic
coordinate system is appropriate for global data sets and applications, such as
satellite imagery repositories.

For example, the following illustration shows a geographic coordinate system
where a location is represented by the coordinates longitude 80 degree east and
latitude 55 degrees north.

IBM Informix Spatial Data User's Guide

Latitude

. 55° |
R5e2 ez
\ /
o

Figure 1-2. A geographic coordinate system

oyl

The lines that run east and west each have a constant latitude value and are called
parallels. They are equidistant and parallel to one another, and form concentric
circles around the Earth. The equator is the largest circle and divides the Earth in
half. It is equal in distance from each of the poles, and the value of this latitude
line is zero. Locations north of the equator have positive latitudes that range from
0 to +90 degrees, while locations south of the equator have negative latitudes that
range from 0 to -90 degrees.

The following illustration shows latitude lines.

Equator

Figure 1-3. Latitude lines

The lines that run north and south each have a constant longitude value and are
called meridians. They form circles of the same size around the Earth, and intersect
at the poles. The prime meridian is the line of longitude that defines the origin (zero
degrees) for longitude coordinates. One of the most commonly used prime

Chapter 1. Getting started with spatial data 1-3

meridian locations is the line that passes through Greenwich, England. However,
other longitude lines, such as those that pass through Bern, Bogota, and Paris,
were also as the prime meridian. Locations east of the prime meridian up to its
antipodal meridian (the continuation of the prime meridian on the other side of the
globe) have positive longitudes that range from 0 to +180 degrees. Locations west
of the prime meridian have negative longitudes that range from 0 to -180 degrees.

The following illustration shows longitude lines.

Prime
meridian

Figure 1-4. Longitude lines

1-4

The latitude and longitude lines can cover the globe to form a grid, called a
graticule. The point of origin of the graticule is (0,0), where the equator and the
prime meridian intersect. The equator is the only place on the graticule where the
linear distance corresponding to one degree latitude is approximately equal the
distance corresponding to one degree longitude. Because the longitude lines
converge at the poles, the distance between two meridians is different at every
parallel. Therefore, as you move closer to the poles, the distance corresponding to
one degree latitude is much greater than the distance corresponding to one degree
longitude.

It is difficult to determine the lengths of the latitude lines using the graticule. The
latitude lines are concentric circles that become smaller near the poles. They form a
single point at the poles where the meridians begin. At the equator, one degree of
longitude is approximately 111.321 kilometers, while at 60 degrees of latitude, one
degree of longitude is only 55.802 km (this approximation is based on the Clarke
1866 spheroid). Therefore, because there is no uniform length of degrees of latitude
and longitude, the distance between points cannot be measured accurately by
using angular units of measure.

The following illustration shows the different dimensions between locations on the
graticule.

IBM Informix Spatial Data User's Guide

(one degree of longitude
at 60° latitude)

(one degree of longitude
at the equator)

Figure 1-5. Different dimensions between locations on the graticule

A coordinate system can be defined by either a sphere or a spheroid approximation
of the Earth's shape. Because the Earth is not perfectly round, a spheroid can help
maintain accuracy for a map, depending on the location on the Earth. A spheroid is
an ellipsoid that is based on an ellipse, whereas a sphere is based on a circle.

The shape of the ellipse is determined by two radii. The longer radius is called the
semimajor axis, and the shorter radius is called the semiminor axis. An ellipsoid is
a three-dimensional shape that is formed by rotating an ellipse around one of its
axes.

The following illustration shows the sphere and spheroid approximations of the
Earth and the major and minor axes of an ellipse.

Chapter 1. Getting started with spatial data 1-5

Spheroid

Sphere N
P (Ellipsoid)
=
=)
S
Major Axis
w||& Semimajor Axis
D 73
>3
> 3.
>
=}

The major and minor axes of an ellipse

Figure 1-6. Sphere and spheroid approximations

A datum is a set of values that defines the position of the spheroid relative to the
center of the Earth. The datum provides a frame of reference for measuring
locations and defines the origin and orientation of latitude and longitude lines.
Some datums are global and intend to provide good average accuracy around the
world. A local datum aligns its spheroid to closely fit the Earth's surface in a
particular area. Therefore, the coordinate system's measurements are not accurate if
they are used with an area other than the one that they were designed.

The following illustration shows how different datums align with the Earth's

surface. The local datum, NAD27, more closely aligns with Earth's surface than the
Earth-centered datum, WGS84, at this particular location.

1-6 IBM Informix Spatial Data User's Guide

Local geographic
coordinate system

Earth's surface
— Earth-centered (WGS84) datum
— — — Local (NAD27) datum

v

Earth-centered geographic
coordinate system

Figure 1-7. Datum alignments

Whenever you change the datum, the geographic coordinate system is altered and
the coordinate values change. For example, the coordinates in DMS of a control
point in Redlands, California using the North American Datum of 1983 (NAD
1983) are: "-117 12 57.75961 34 01 43.77884" The coordinates of the same point on
the North American Datum of 1927 (NAD 1927) are: "-117 12 54.61539 34 01
43.72995".

Projected coordinate system

A projected coordinate system is a flat, two-dimensional representation of the Earth. It
is based on a sphere or spheroid geographic coordinate system, but it uses linear
units of measure for coordinates, so that calculations of distance and area are easily
done in terms of those same units. The projected coordinate system is appropriate
for regional data sets and applications.

The latitude and longitude coordinates are converted to X, y coordinates on the flat
projection. The x coordinate is usually the eastward direction of a point, and the y
coordinate is usually the northward direction of a point. The center line that runs
east and west is referred to as the x axis, and the center line that runs north and
south is referred to as the y axis.

The intersection of the x and y axes is the origin and usually has a coordinate of
(0,0). The values above the x axis are positive, and the values below the x axis are
negative. The lines parallel to the x axis are equidistant from each other. The
values to the right of the y axis are positive, and the values to the left of the y axis
are negative. The lines parallel to the y axis are equidistant.

Mathematical formulas are used to convert a three-dimensional geographic
coordinate system to a two-dimensional flat projected coordinate system. The
transformation is referred to as a map projection. Map projections usually are
classified by the projection surface that is used, such as conic, cylindrical, and
planar surfaces. Depending on the projection that is used, different spatial

Chapter 1. Getting started with spatial data ~ 1-7

properties appear distorted. Projections are designed to minimize the distortion of
one or two of the data's characteristics, yet the distance, area, shape, direction, or a
combination of these properties might not be accurate representations of the data
that is being modeled. There are several types of projections available. While most
map projections attempt to preserve some accuracy of the spatial properties, others
attempt to minimize overall distortion instead, such as the Robinson projection. The
most common types of map projections include:

Equal area projections
These projections preserve the area of specific features. These projections
distort shape, angle, and scale. The Albers Equal Area Conic projection is an
example of an equal area projection.

Conformal projections
These projections preserve local shape for small areas. These projections
preserve individual angles to describe spatial relationships by showing
perpendicular graticule lines that intersect at 90 degree angles on the map.
All of the angles are preserved; however, the area of the map is distorted.
The Mercator and Lambert Conformal Conic projections are examples of
conformal projections.

Equidistant projections
These projections preserve the distances between certain points by
maintaining the scale of a specific data set. Some of the distances are true
distances, which are the same distances at the same scale as the globe. If
you go outside the data set, the scale becomes more distorted. The
Sinusoidal projection and the Equidistant Conic projection are examples of
equidistant projections.

True-direction or azimuthal projections
These projections preserve the direction from one point to all other points
by maintaining some of the great circle arcs. These projections give the
directions or azimuths of all points on the map correctly with respect to
the center. Azimuthal maps can be combined with equal area, conformal,
and equidistant projections. The Lambert Equal Area Azimuthal projection
and the Azimuthal Equidistant projection are examples of azimuthal
projections.

Informix spatial solution architecture

1-8

You can create tables that contain Informix spatial data type columns. You can
insert and store geographic features in the spatial columns.

The following figure shows the architecture for IBM Informix and spatial
applications. The IBM Informix server can communicate to Java ~ applications
through the Informix JDBC Driver, C applications through the IBM Informix ODBC
Driver, directly with ESQL/C applications and DB-Access, and to ESRI application
servers through the IBM Informix ODBC Driver. ESRI application servers
communicate to license managers and ESRI clients.

IBM Informix Spatial Data User's Guide

ESRI client SDE | EsR application | License

applications ESRI client library |« - > server < > manager
Informix
ODBC driver
ESQIT/C plient
applications saL
DB-Access SaL

Informix server
C applications | Informix ODBC driver [¢—»| Spatial data

/ R-tree index

Java applications | Informix JDBC driver

Figure 1-8. Architecture for IBM Informix and spatial applications

For each spatial data type, there is a text file import and a text file export routine.
Whenever you run a load or unload statement in the DB-Access utility, import and
export routines are automatically called (the dbimport and dbexport utilities also
use these routines).

The ESRI ArcSDE service provides immediate access to the spatial data stored in
your IBM Informix database for the ESRI GIS software programs: ArcView GIS,
MapObjects, and ArcInfo software. The ArcSDE service automatically converts
spatial column data into ESRI shape representation, making it available to all
ESRI-supported applications and other applications capable of reading this format.
When you access spatially enabled tables through the ArcSDE service, you can
write applications with the existing tools that are offered by ESRI GIS software or
create applications with the SDE C application programming interface (API). An
experienced open database connectivity (ODBC) programmer can also make calls
to Spatial SQL functions.

You can use DB-Access to run SQL queries against your spatial data. You can also
write applications that access the database:

* ESQL/C applications. Use the IBM Informix Client Software Development Kit
(Client SDK) to connect to the IBM Informix server.

* C applications. Use the IBM Informix ODBC Driver to connect to the IBM
Informix server.

* Java applications. Use the IBM Informix JDBC Driver to connect to the IBM
Informix server.

Querying the spatial columns directly requires converting the data to one of the
three supported external formats. The ST_AsText() function converts a spatial
column value to the OGC Well-Known Text (WKT) representation. The
ST_AsBinary() and SE_AsShape() functions convert the spatial column values to
OGC Well-Known Binary (WKB) and ESRI shape formats, respectively. After the
data is converted, applications can display or manipulate the data.

You use an R-tree index to allow indexing of spatial data. R-tree indexes are
designed to provide fast, efficient access to spatial data.

Chapter 1. Getting started with spatial data 1-9

1-10

The Spatial Data CD contains worldwide location-based data that you can
visualize and manipulate. The Spatial Data CD is included with IBM Informix
software. The CD has the following contents:

* Sample spatial data

* ArcExplorer Java Edition, a lightweight visualization tool for spatial data.
Enables the panning, zooming, and querying of colorful maps that are
automatically generated from the data.

Related tasks:
[“Preparing for spatial data” on page 1-11|

Related reference:

(Chapter 3, “Data exchange formats,” on page 3-1|

Spatial data replication

You can use spatial data types with Enterprise Replication and high-availability
clusters.

The following conditions must be met to replicate spatial data:

* You must ensure that all copies of the spatial_references table are synchronized
at all times.

* Spatial data type columns in tables that you include in your data replication
system must be nullable.

Related concepts:

[[High availability and scalability (Administrator's Guide)|
Related information:

[[About Enterprise Replication (Enterprise Replication Guide)

The IBM Informix Web Feature Service

The IBM Informix Web Feature Service (WFS) is a transaction service that acts as a
presentation layer for spatial data.

WES supports the following operations:
* Creating new feature instances

* Deleting feature instances

* Updating feature instances

* Querying features that are based on spatial and non-spatial constraints

The IBM Informix WEFS includes a CGI client program and an IBM Informix
server-side function for web programs to send requests to IBM Informix for
geographical features. These geographical features are encoded in the
platform-independent, XML-based geography markup language (GML). You can
use WES with the IBM Informix spatial data types to enable IBM Informix database
servers to manage geographical features. WFS is written to the Open Geospatial
Consortium (OGC) standard in document 04-094, Web Feature Service
Implementation Specification Version 1.1.0. For more information, see the OGC
website at |http:/ /www.opengeospatial.org|

Related reference:

[[[nformix web feature service for Geospatial Data (Database Extensions Guide)|

IBM Informix Spatial Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.admin.doc/ids_admin_1386.htm#ids_admin_1386
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.erep.doc/ids_erp_469.htm#ids_erp_469
http://www.opengeospatial.org
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.dbext.doc/ids_dbxt_314.htm#ids_dbxt_314

Preparing for spatial data

Before you load spatial data, you must prepare the database server for spatial data.

The database that contains the spatial data must meet the following requirements
or the message DataBlade registration failed is printed in the online log:

¢ The database must be logged.
¢ The database must not be defined as an ANSI database.

The Scheduler must be running in the database server. If the Scheduler is not
running when you create a spatial data type or run a spatial routine, a message
that the data type is not found or the routine cannot be resolved is returned.

To prepare for spatial data:

1.

Set the STACKSIZE configuration parameter in the onconfig file to at least 64.
Increasing the stack size prevents stack overflow errors.

Optional: Create the system sbspace by setting the SYSSBSPACENAME
configuration parameter in the onconfig file. When the UPDATE STATISTICS
MEDIUM or HIGH statements are run on spatial tables, the database server
stores the statistics in the system sbspace, which is specified by the
SYSSBSPACENAME configuration parameter in the onconfig file. If you do not
set the SYSSBSPACENAME configuration parameter, the database server creates
the system sbspace when you create a spatial table or run a spatial routine. The
system sbspace is created from the storage pool, if the storage pool is set up.
Otherwise, the system sbspace is created in the same directory as the root
dbspace.

Optional: Create an sbspace for spatial metadata and move the metadata into it.
If you do not move the spatial metadata, spatial metadata is stored in the
default sbspace, which is specified by the SBSPACENAME configuration
parameter. If you do not set the SBSPACENAME configuration parameter in
the onconfig file, the database server creates the default sbspace when you
create a spatial table or run a spatial routine. The default sbspace is created
from the storage pool, if the storage pool is set up. Otherwise, the default
sbspace is created in the same directory as the root dbspace.
a. Create an sbspace by running the onspaces -c -S command.
b. Move the spatial metadata into the sbspace by running the following
command:
ALTER TABLE SE_MetadataTable PUT smd IN (mysbspace);
c. Initialize the spatial metadata infrastructure by running the following
command:
EXECUTE FUNCTION SE_MetadatalInit();
Optional: Create an sbspace to store spatial data by running the onspaces -c -S
command. Include the -DF "LOGGING=0ON" option to create the spatial data
sbspace with logging, so that you can back up and restore both the user data
and the metadata. If you do not create an sbspace for spatial data and reference
the sbspace in the PUT clause in the CREATE TABLE statement, spatial data is
stored in the default sbspace. Spatial data is stored in the sbspace when a
geometry exceeds 930 bytes, for example, a line or polygon with more than 50
vertices.
Choose a predefined spatial reference system in the spatial_references table or
create your own spatial reference system and add it to the spatial_references
table. To add a spatial reference system into the spatial_references table:

* Insert a row into the spatial references table with an INSERT statement.

Chapter 1. Getting started with spatial data ~ 1-11

* Run the SE_CreateSRID() function. Specify the limits of the X and Y extents
or specify an existing system on which to base the new system. The database
server calculates the false origin and system units.

6. Optional: Choose or create the unit of measure for the coordinate system. If
you want to calculate the distance or area for geometries that have angular
units, choose a predefined unit of measure in the st_units_of_measure table or
create your own unit of measure and add it to the st_units_of_measure table
with an INSERT statement.

7. Create a table for the spatial data by running the CREATE TABLE statement
with a spatial column in the column clause. If you created an sbspace for
spatial data, include the PUT clause in the CREATE TABLE statement. You can
create the table as part of loading data if you use the loadshp utility to load
ESRI shapefiles.

Related concepts:

[“Informix spatial solution architecture” on page 1-8]

Related reference:

[“Loading spatial data” on page 1-19)|

[[scheduler argument: Stop or start the scheduler (SQL administration API)|
[(Administrator's Reference)|

[+ [SYSSBSPACENAME configuration parameter (Administrator's Reference)

[+ [SBSPACENAME configuration parameter (Administrator's Reference)

[+ [STACKSIZE configuration parameter (Administrator's Reference)|

[+ [Creating an Sbspace with the -Df option (Administrator's Reference)

The spatial_references table

The spatial_references table contains a spatial reference ID (SRID) for each spatial
reference system.

The spatial_references table stores data about each map projection that you use to
store the spherical geometry of the Earth, for example, your data might use the
Mercator projection. The spatial reference ID (SRID) is the unique key for the
record in the spatial_references table that describes a particular spatial reference
system. All spatial reference systems that you use in your database must have a
record in the spatial_references table. All geometries in a spatial column must use
the same spatial reference system.

The IBM Informix spatial functions use the parameters of a spatial reference
system to translate and scale each floating point coordinate of the geometry into
54-bit positive integers before storage. When retrieved, the coordinates are restored
to their external floating point format.

The columns of the spatial_references table are described in the following table.

Table 1-1. The spatial_references table

Column name Type Example value Description
srid INTEGER NOT 12345 Primary key: the unique key for the
NULL record that describes a particular spatial
reference system
description VARCHAR(64) WGS 1984 A text description of the spatial reference
system

1-12 IBM Informix Spatial Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_071.htm#ids_sapi_071
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_sapi_071.htm#ids_sapi_071
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0174.htm#ids_adr_0174
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0147.htm#ids_adr_0147
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0165.htm#ids_adr_0165
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.adref.doc/ids_adr_0472.htm#ids_adr_0472

Table 1-1. The spatial_references table (continued)

Column name

Type

Example value

Description

auth_name

VARCHAR(255)

EPSG

The name of the standard or standards
body cited for the reference system

auth_srid

INTEGER

4326

The ID of the spatial reference system as
defined by the authority cited in
auth_name column.

falsex

FLOAT NOT NULL

-180

The external floating point X coordinates
are converted to integers for storage in
the database by subtracting the falsex
values.

falsey

FLOAT NOT NULL

-90

The external floating point Y coordinates
are converted to integers for storage in
the database by subtracting the falsey
values.

Xyunits

FLOAT NOT NULL

1000000

Before the external floating point X and Y
coordinates are inserted into the
database, the coordinates are scaled by
the value in xyunits. The scaling process
adds a half unit and truncates the
remainder.

falsez

FLOAT NOT NULL

-1000

The external floating point Z coordinates
are converted to integers for storage in
the database by subtracting the falsez
values.

zunits

FLOAT NOT NULL

1000

A factor that is used to scale the
Z-coordinate

falsem

FLOAT NOT NULL

-1000

The external floating point M coordinates
are converted to integers for storage in
the database by subtracting the falsem
values.

munits

FLOAT NOT NULL

1000

A factor that is used to scale the measure
values

srtext

CHAR(2048)

GEOGCS["GCS_WGS_1984",
DATUM["D_WGS_1984",
SPHEROID["WGS_1984" ,
6378137, 298.257223563]11,
PRIMEM["Greenwich",0],
UNIT["Degree",
0.0174532925199433]]

The srtext column contains the well
known text representation of the spatial
reference system.

Example: Create a spatial reference system with an INSERT

statement

The following example shows how to insert a spatial reference system into the

spatial_references table:

INSERT INTO spatial_references
(srid, description, auth_name, auth_srid, falsex, falsey,

xyunits, falsez, zunits, falsem, munits, srtext)
VALUES (1, NULL, NULL, NULL, O, O, 100, O, 1, O, 1, "UNKNOWN');

In this example, the spatial reference system has an SRID value of 1, a false X, Y of
(6,0), and its system units are 100. The Z coordinate and measure offsets are 0,

Chapter 1. Getting started with spatial data 1-13

while the Z coordinate and measure units are 1.

Example: Create a spatial reference system with the
SE_CreateSRID() function

For the hazardous sites and sensitive areas example, the coordinates are in a local
countywide XY coordinate system. The X and Y coordinates range from 0 - 250
000. The SE_CreateSRID() function creates the new spatial reference system with
the SRID of 5:

EXECUTE FUNCTION SE CreateSRID(0, 0, 250000, 250000,
"Springfield county XY coord system");

(expression)

5
Related concepts:
[“The CoordRefManager Class” on page 8-3]
Related reference:
[“The ST _SRID() function” on page 7-128|
Appendix B, “OGC well-known text representation of spatial reference systems,”]
on page B-1]

[“The SE_CreateSRID() function” on page 7-33|

Predefined spatial reference systems
The spatial_references table contains over 1000 predefined spatial reference
systems.

The following table lists the predefined spatial reference systems.

Table 1-2. Predefined spatial reference systems

Authority Authority IDs (SRIDs) Description
EPSG 2000 - 2999 Projection systems defined
by the EPSG
EPSG 46008 GEOGCS NAD 1927
EPSG 4759 GEOGCS NAD
1983_NSRS2007
EPSG 4322 GEOGCS WGS 1972
EPSG 4326 GEOGCS WGS 1984
EPSG 4760 GEOGCS WGS 1966
EPSG 32601 - 23760 WGS 1984 UTM Zones
ESRI 54001 - 54004 Various world projection
systems
54008 - 54019
54021 - 54032
54034
54042 - 54046
54048 - 54053

The false origin and scale values for the system are derived from the Projected
Bounds of the underlying Coordinate System. For example, EPSG 2193

1-14 1BM Informix Spatial Data User's Guide

(NZGD_2000_New_Zealand_Transverse_Mercator) derives the falsex, falsey and
xyunits values based on the extent of the projection system:

* falsex = -6020520.00000
* falsey = -1997720.00000
* Xxyunits = 375371289.4930

The z and m coordinates for all predefined spatial reference systems have the
following values in the following columns:

» falsez = -50000.0
* zunits = 1000.0

* falsem = -1000.0
* munits = 1000.0

False origin and system units

When you add a spatial reference system to the spatial_references table, you
include a false origin and system unit to store all of your coordinate values at an
acceptable scale.

Restriction: Do not change a spatial reference system's false origin and system
units after you inserted spatial data into a table with the corresponding SRID. The
false origin and system units translate and scale your data before storage. If you
change these values, you cannot retrieve your original floating point coordinate
data.

You must know the range of your data and the scale to maintain. Because
coordinates are stored as positive 54-bit integers, the maximum range of values
that are allowed is 0 - 9 007 199 254 740 991, but the actual range is dependent on
the false origin and system units of the spatial reference system.

A negative false origin shifts the range of values in the negative direction. A
positive false origin shifts the range of values in the positive direction. For
example, a false origin of 1000, with a system unit of one, stores a range of values
from —1000 through 2°* ~1000.

The system unit scales the data and cannot be less than one. The larger the system
unit the greater the scale that can be stored, but the smaller the range of values.
For example, given a system unit of 1000 and a false origin of zero, data with 3
digits to the right of the decimal point are supported; the range of possible values
is reduced to 0.001 to 2.

If you want to maintain a scale of 3 digits to the right of the decimal point, set
your system units to 1000. Set the false origin to less than the minimum coordinate
value in your data set. The false origin must be small enough to account for any
buffering of the data. If the minimum coordinate value is =10 000 and your
application includes functions that buffer the data by 5000, the false origin must be
at least —15 000. Finally, make sure that the maximum ordinate value is not greater
than 2 by applying the following formula to the maximum value. This formula
converts floating point coordinates into system units:

stored value = truncate(((ordinate - false origin) * system unit) + 0.5)

The SE_CreateSRID() function computes the false origin and system units for the
specified X and Y extents of a spatial data set.

Related reference:
[“The SE_CreateSRID() function” on page 7-33

Chapter 1. Getting started with spatial data 1-15

1-16

Units of measure

Units of measure define the conversion factor between meters and other units.

You include the unit of measure information when you calculate distance or area
for geometries that have angular units with the following functions:

e ST Areal)

e ST Buffer()

¢ ST_Distance()
* ST_Length()

* ST_Perimeter()

Include the appropriate value from the unit_name column of the
st_units_of_measure table when you run the function.

You can also use units of measure in your applications when you need to convert
between units.

To create a new unit of measure, insert a row into the st_units_of_measure table.
Specify values for the following columns:

* unit_name: The name of the unit of measure. Must be unique and cannot exceed
128 characters.

* unit_type: The measurement type. Can be Tinear or angular.

e conversion_factor: The conversion factor between the unit of measure and 1
meter. A double precision number that is > 0.0.

* description: Optional. The description of the unit of measure. Cannot exceed 255
characters.

Example

The following statement creates a linear unit of measure that is named half_meter
and has a conversion factor of .5:

INSERT INTO sde.st units _of measure
VALUES('half_meter','Tinear',.5, 'test uom');

Compare the results of the following two queries. The following query returns the
length of a linestring in meters:

EXECUTE FUNCTION round(st_length
('32605 1inestring(503208 43653, 503210 43653)'::st_linestring,
'meter'),2);
(expression)
2.00000000000000

1 row(s) retrieved.

The following query returns the length of the same linestring in half-meter units:
EXECUTE FUNCTION round(st_length
('32605 1inestring(503208 43653, 503210 43653)'::st_linestring,
'half_meter'),2);
(expression)

4.00000000000000

1 row(s) retrieved.

IBM Informix Spatial Data User's Guide

The st_units_of_measure table
The st_units_of_measure table stores data about units of measure. The definitions
of units of measure are used to convert measurements to different units of

measure.

Include the appropriate value from the unit_name column when you calculate

distance or area for geometries that have angular units.

Table 1-3. Predefined units of measure in the st_units_of_measure table

unit_name unit_type conversion_factor description
meter linear 1 9001 - International meter
foot linear 0.3048 9002 - International foot
foot_us linear 0.3048006096012192 9003 - US survey foot
foot_clarke linear 0.3047972650 9005 - Clarke's foot
fathom linear 1.8288 9014 - Fathom
nautical_mile linear 1852 9030 - International nautical
mile
meter_german linear 1.000001359650 9031 - German legal meter
chain_us linear 20.11684023368047 9033 - US survey chain
link_us linear 20.11684023368047 9034 - US survey link
mile_us linear 20.11684023368047 9035 - US survey mile
kilometer linear 1000 9036 - Kilometer
yard_clarke linear 0.914391795 9037 - Yard (Clarke)
chain_clarke linear 20.11661949 9038 - Chain (Clarke)
link_clarke linear 0.2011661949 9039 - Link (Clarke's ratio)
yard_sears linear 0.2011661949 9040 - Yard (Sears)
foot_sears linear 0.3047994715386762 9041 - Sear's foot
chain_sears linear 20.11676512155263 9042 - Chain (Sears)
link_sears linear 0.2011676512155263 9043 - Link (Sears)
yard_benoit_1895_a linear 0.9143992 9050 - Yard (Benoit 1895 A)
foot_benoit_1895_a linear 0.3047997333333333 9051 - Foot (Benoit 1895 A)
chain_benoit_1895_a linear 20.1167824 9052 - Chain (Benoit 1895
A)
link_benoit_1895_a linear 0.201167824 9043 - Link (Sears)
yard_benoit_1895_a linear 0.9143992 9050 - Yard (Benoit 1895 A)
foot_benoit_1895_a linear 0.3047997333333333 9051 - Foot (Benoit 1895 A)
chain_benoit_1895_a linear 20.1167824 9052 - Chain (Benoit 1895
A)
link_benoit_1895_a linear 0.201167824 9053 - Link (Benoit 1895 A)
yard_benoit_1895_b linear 0.9143992042898124 9060 - Yard (Benoit 1895 B)
foot_benoit_1895_b linear 0.3047997347632708 9061 - Foot (Benoit 1895 B)
chain_benoit_1895_b linear 20.11678249437587 9062 - Chain (Benoit 1895
B)
link_benoit_1895_b linear 0.2011678249437587 9063 - Link (Benoit 1895 B)
foot_1865 linear 0.3048008333333334 9070 - Foot (1865)

Chapter 1. Getting started with spatial data ~ 1-17

Table 1-3. Predefined units of measure in the st_units_of_measure table (continued)

unit_name unit_type conversion_factor description

foot_indian linear 0.3047995102481469 9080 - Indian geodetic foot

foot_indian_1937 linear 0.30479841 9081 - Indian foot (1937)

foot_indian_1962 linear 0.3047996 9082 - Indian foot (1962)

foot_indian_1975 linear 0.3047995 9083 - Indian foot (1975)

yard_indian linear 0.9143985307444408 9084 - Indian yard

yard_indian_1937 linear 0.91439523 9085 - Indian yard (1937)

yard_indian_1962 linear 0.9143988 9086 - Indian yard (1962)

yard_indian_1975 linear 0.9143985 9087 - Indian yard (1975)

radian angular 1 9101 - Radian

degree angular 0.0174532925199433 9102 - Degree

minute angular 0.0002908882086657216 9103 - Arc-minute

second angular 4.84813681109536E-06 9104 - Arc-second

grad angular 0.01570796326794897 9105 - Grad (angle
subtended by 1/400 circle)

gon angular 0.01570796326794897 9106 - Gon (angle
subtended by 1/400 circle)

microradian angular 1E-06 9109 - Microradian (le-6
radian)

minute_centesimal angular 0.0001570796326794897 9112 - Centesimal minute
(1/100th Gon (Grad))

second_centesimal angular 1.570796326794897E-06 9113 - Centesimal
second(1/10000th Gon
(Grad))

mil_6400 angular 0.0009817477042468104 9114 - Mil (angle subtended
by 1/6400 circle)

Related reference:

[“The ST Length() function” on page 7-83)

[“The ST _Perimeter() function” on page 7-113

[“The ST_Area() function” on page 7-10|

[“The ST Distance() function” on page 7-48|

[“The ST Buffer() function” on page 7-22|

Spatial tables

A spatial table is a table that includes one or more spatial columns.

When you create a spatial table, you specify the following information:

¢ The name of the table.

* The first column must be named se_row_id and have a type of INTEGER. The
se_row_id column is required by the ESRI client software to be the unique key
of the spatial table. The se_row_id column stores the SRID that you want to use

for the spatial data.

* One column must have a spatial data type. A spatial column can accept only
data of the type required by the spatial column. For example, a column of
ST_Polygon type rejects integers, characters, and even other types of geometry.

1-18 IBM Informix Spatial Data User's Guide

* You can have any other columns that you need.

* You can specify an sbspace in which to store spatial data. Use the PUT clause to
specify spatial column and the sbspace.

Examples

The sensitive areas and hazardous waste sites example illustrates two spatial
tables.

Stored in the sensitive_areas table are schools, hospitals, and playgrounds. The
ST_Polygon data type is used to store the sensitive areas:

CREATE TABLE sensitive_areas (se_row_id integer NOT NULL,
area_id integer,

name varchar(128),
size float,

type varchar(10),
zone ST_Polygon);

The hazardous_sites table holds locations of hazardous waste sites. The hazardous
sites are stored as points using the ST_Point type. The ST_Point data is stored in
the sbspace that is named mysbspace:
CREATE TABLE hazardous_sites (se_row_id integer NOT NULL,
site_id integer,
name varchar(40),
Tocation ST_Point)
PUT Tocation in mysbspace;

Related reference:

(Chapter 2, “Spatial data types,” on page 2-1]
[# [CREATE TABLE statement (SQL Syntax)

Loading spatial data

After you prepare for spatial data, you can load data into the spatial table. The
method for loading depends on the type and amount of data. Some loading
methods automatically create an between the spatial table and a spatial reference
system in the geometry_columns table and create a spatial index. Otherwise, you
must create the association and the index manually.

You can use the following data exchange formats for your spatial data:

* OGC well-known text representation (WKT)

* OGC well-known binary representation (WKB)

* ESRI shapefile format

* Geography Markup Language (GML)

* Keyhole Markup Language (KML)

These data exchange formats require input and output conversion functions to
insert spatial data into, and retrieve data from, a database. Each data exchange

format has a set of functions to convert data into its stored data types.

You can also use the IBM Informix load format, which does not require conversion
functions.

The actual amount of data that is loaded into a GIS system usually ranges between
10 000 records for smaller systems and 100 000 000 records for larger systems. You

Chapter 1. Getting started with spatial data 1-19

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0509.htm#ids_sqs_0509

1-20

have several options for loading large amounts of data. If you are loading data in
bulk, you can avoid large numbers of log records by temporarily turning off
logging for the database until the data is loaded.

Loading ESRI shapefiles for ESRI clients

To load ESRI shapefiles that can be accessed by ESRI SDE clients, acquire data
from a vendor and load the data through the ESRI SDE server by running the ESRI
shp2sde command. Accessing spatial tables through SDE software provides
immediate access to SDE client software such as ArcView GIS, MapObjects,
ARC/INFO, and ArcExplorer. MicroStation and AutoCAD are also accessible
through SDE CAD client software.

The shp2sde command automatically updates the geometry_columns table and
creates the spatial index.

Loading ESRI shapefiles for non-ESRI clients

To load ESRI shapefiles for clients other than ESRI clients, run the loadshp utility.
A companion utility, unloadshp, unloads data from a database to shapefiles. Data
that is loaded by the loadshp utility is also accessible to client programs that do
not depend on ESRI system tables other than the OGC-standard
geometry_columns and spatial_references tables. Data that you load with the
loadshp utility is not accessible to ArcSDE and other ESRI client tools. You can
optionally create the spatial table when you run the loadshp utility.

The loadshp utility automatically updates the geometry_columns table and creates
the spatial index.

Loading any type of geometry format

To load any type of geometry format:
1. Load the spatial data with one of the following methods:
* INSERT statements that load rows individually.

* Develop your own loader application. The source code for two sample
programs, load_wkb and load_shapes, is supplied with the IBM Informix
software. These programs illustrate how to convert data into OGC
well-known binary and ESRI shapefile formats. The programs can be
modified and linked into existing applications. They are located under the
$INFORMIXDIR/extend/spatial.version/examples directory. ESQL/C and
ODBC versions of both programs are provided.

2. Create an association between the spatial table and a spatial reference system
by updating the geometry_columns table.

3. Create a spatial index on the spatial table by running the CREATE INDEX
statement with the USING RTREE clause.

Examples: Load individual rows

You can load individual records into the spatial table with an INSERT statement.
You can convert the well-known text representation of a polygon into an
ST_Polygon type by running the ST_PolyFromText() function. You can convert the

well-known text representation of a point into an ST_Point type by running the
ST_PointFromText() function.

IBM Informix Spatial Data User's Guide

For example, in the following SQL statements, records are inserted into the
sensitive_areas and hazardous_sites table:

INSERT INTO sensitive _areas VALUES (

1, 408, 'Summerhill Elementary School', 67920.64, 'school',

ST _PolyFromText('polygon ((52000 28000,58000 28000,58000 23000,
52000 23000,52000 28000))',5)

)s

INSERT INTO hazardous_sites VALUES (
1, 102, 'W. H. Kleenare Chemical Repository',
ST _PointFromText('point (17000 57000)',5)

)s

You can use the IBM Informix load format, which does not require a conversion
function. The following example inserts a row in the sensitive_areas table and the
hazardous_sites table:
INSERT INTO sensitive_areas VALUES (

2, 129, 'Johnson County Hospital', 102281.91, 'hospital',

'5 polygon ((32000 55000,32000 68000,38000 68000,38000 52000,
?5000 52000,35000 55000,32000 55000)) "

INSERT INTO hazardous_sites VALUES (
2, 59, 'Landmark Industrial',
'5 point (58000 49000)'

Related tasks:
[“Preparing for spatial data” on page 1-11|

Related reference:

[[[NSERT statement (SQL Syntax)|
[Appendix A, “Load and unload shapefile data,” on page A-1|

[Chapter 3, “Data exchange formats,” on page 3-1|

The geometry_columns table

When you create a table with a spatial column, or add a spatial column to an
existing table, ESRI client software also requires an entry to the geometry_columns
table. The geometry_columns table is a metadata table that stores the association
between the spatial table and a spatial reference system.

The loadshp utility and the ESRI shp2sde command automatically create the
entries in the geometry_columns table when you load data.

To update the geometry_columns table manually, insert a new row. The row must
contain values for the following columns:

* f table_catalog: The database name

e f table_schema: The database owner name

* f table_name: The table name

* f geometry_column: The name of the spatial column
* geometry_type: The ID of the geometry type

* srid: The ID of the spatial reference system

The following table shows valid entries for the geometry_type column and the
shapes they represent.

Chapter 1. Getting started with spatial data 121

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0861.htm#ids_sqs_0861

Table 1-4. Geometry type ID to spatial data type mapping

Geometry type ID Spatial data type

ST_Geometry
ST_Point
ST_Curve
ST_LineString
ST_Surface

ST_Polygon

ST_GeomCollection
ST MultiPoint
ST_MultiCurve
ST_MultiLineString
ST_MultiSurface
ST_MultiPolygon

O[O [I ||| |[W|IN|~|O

—_
o

—_
—_

Example

For the hazardous sites and sensitive areas example, the INSERT statements for the
zone and location columns are:
INSERT INTO geometry_columns

(f_table_catalog, f_table_schema, f_table_name,
f_geometry column, geometry type, srid)

VALUES ("mydatabase", -- database name
"ralph", -- user name
"sensitive_areas", -- table name
'zone", -- spatial column name
5, -- column type (5 = polygon)
5); -- srid

INSERT INTO geometry columns
(f_table_catalog, f_table_schema, f_table_name,
f_geometry column, geometry type, srid)

VALUES ("mydatabase", -- database name
"ralph", -- user name
"hazardous_sites", -- table name
"Tocation", -- spatial column name
1, -- column type (1 = point)
5); -- srid

The zone column has a spatial data type of ST_Polygon. The location column has
a spatial data type of ST_Point.

Related reference:

[Appendix A, “Load and unload shapefile data,” on page A-1|

The spatial index

Because spatial columns contain multidimensional geographic data, applications
that query spatial columns require an index strategy that quickly identifies all
geometries that satisfy a specified spatial relationship. To index spatial data, you
create a spatial index, called the R-tree index.

1-22 IBM Informix Spatial Data User's Guide

The two-dimensional R-tree index differs from the traditional hierarchical
(one-dimensional) B-tree index. Spatial data is two-dimensional, so you cannot use
the B-tree index for spatial data. Similarly, you cannot use an R-tree index with
non-spatial data.

Tip: The loadshp utility automatically creates an R-tree index after you load the
data. The ESRI shp2sde command can also create an R-tree index.

To create an R-tree index on the location column of the hazardous_sites table, run
the CREATE INDEX statement:
CREATE INDEX Tocation_ix

ON hazardous_sites (location ST_Geometry ops)
USING RTREE;

The query optimizer does not use the R-tree index unless the statistics on the table
are up-to-date. If the R-tree index is created after the data is loaded, the statistics
are current and the optimizer uses the index. However, if the index is created
before the data is loaded, the optimizer does not use the R-tree index because the
statistics are out of date.

If you create the index before you load the data, run the UPDATE STATISTICS
SQL statement:

UPDATE STATISTICS FOR TABLE hazardous_sites;

Restriction: You cannot rename a database if the database contains a table that has
an R-tree index that is defined on it because R-tree indexes are implemented with
secondary access method. Databases that use primary access method (also called
virtual table interface) or secondary access method (also called virtual index
interface) cannot be renamed.

Related reference:

[‘Syntax for creating an R-tree index” on page 4-1]

[Appendix A, “Load and unload shapefile data,” on page A-1|

Query spatial data

A common task in a GIS application is to retrieve the visible subset of spatial data
for display in a window.

You can define a polygon that represents the boundary of the window and then
run the SE_EnvelopesIntersect() function to find all spatial objects that overlap
this window. The following statement returns the objects that overlap the polygon
that is defined by the ST_PolyFromText() function:
SELECT name, type, zone FROM sensitive_areas

WHERE SE_EnvelopesIntersect(zone,

ST_PolyFromText ('polygon((20000 20000,60000 20000,
60000 60000,20000 60000,20000 20000))', 5));

You can include spatial columns in the WHERE clause of queries to qualify the
result set. The spatial column does not need to be in the result set. For example,
the following SQL statement retrieves each sensitive area with its nearby
hazardous waste site if the sensitive area is within five miles of a hazardous site.
The ST_Buffer() function generates a circular polygon that represents the 5-mile
radius around each hazardous location. The ST_Polygon geometry that is returned
by the ST_Buffer() function becomes the argument of the ST_Overlaps() function,

Chapter 1. Getting started with spatial data 1-23

1-24

which returns t (TRUE) if the zone ST_Polygon of the sensitive_areas table
overlaps the ST_Polygon generated by the ST_Buffer() function:

SELECT sa.name sensitive_area, hs.name hazardous site
FROM sensitive_areas sa, hazardous_sites hs
WHERE ST Overlaps(sa.zone, ST Buffer(hs.location, 26400));

sensitive_area Summerhill Elementary School
hazardous_site Landmark Industrial

sensitive_area Johnson County Hospital
hazardous_site Landmark Industrial

Related reference:

[[SELECT statement (SQL Syntax))
(Chapter 5, “Run parallel queries,” on page 5-1|

Optimize spatial queries

You can set environment variables in your database server environment to
optimize your spatial queries.

You can set the following spatial environment variables in your database server
environment before you start the database server.

ST _MAXLEVELS environment variable

Running the UPDATE STATISTICS HIGH statement on a large table might require
large amounts of shared memory (tens of MB). If sufficient shared memory is
unavailable, the UPDATE STATISTICS statement fails. You can set the
ST_MAXLEVELS environment variable to reduce the memory requirements for
updating statistics on spatial tables. Spatial tables have histograms of the spatial
data to determine the cost of retrieving the data. The histogram describes how the
spatial data is distributed.

The range of values for the ST_MAXLEVELS environment variable is 1 - 16. The
default value is 16. A smaller value reduces the amount of memory that is needed
to build a histogram, but might result in a less accurate histogram. The minimum
recommended value is 12.

ST _COSTMULTIPLER environment variable

To adjust the cost for each row that is computed by the database server, set the
ST_COSTMULTIPLER environment variable to a floating point value that is greater
than 0. The default value is 1.0 (no effect). The database server multiplies the cost
estimate by the value of the ST_COSTMULTIPLER environment variable to compute
the cost of spatial predicates that include the following spatial functions:

e ST_Overlaps()

* Equal()

* ST_Contains()

e ST_Within()

* SE_Envelopelntersect()
* SE_Intersects()

¢ ST Touches()

e ST_Crosses()

IBM Informix Spatial Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0981.htm#ids_sqs_0981

e ST_Equals()
* ST_Disjoint()

To increase the cost of a spatial predicate, set the value of the ST_COSTMULTIPLER
environment variable to greater than 1.0. To decrease the cost of a spatial predicate,
set the value of the ST_COSTMULTIPLER environment variable to less than 1.0.

The cost can be used to compute the cost of a full table scan or the cost of the
refinement step in an index scan.

ST _MEMMODE environment variable

To improve performance, the database server uses a pool of temporary memory
buffers for processing spatial data. You can change the behavior of this memory
management system, if necessary, in two ways:

* Set the ST_MEMMODE environment variable.

* Set the value of the MemMode parameter while the database server is running
by running the SE_ParamSet() function.

The ST_MEMMODE environment variable and the MemMode parameter can have the
following values:

0 Disables memory buffer reuse. Temporary buffers, which are used for
processing spatial data, are allocated from the per_routine memory pool
and are not reused between UDR invocations. Several memory buffers are
typically allocated and freed for every row in a table that is being
processed. This setting can result in slower query performance.

1 Default. Enables memory buffer reuse. Temporary buffers are allocated
from the per_command memory pool. As they are freed, they are returned
to a pool and are reused for subsequent memory requests. This pool is
drained when the UDR sequence completes after all rows in a table are
processed. This setting can result in memory fragmentation.

2 Disables memory buffer reuse, but allocates all temporary buffers from the
server per_command memory pool. This mode, with the DONTDRAINPOOLS
server environment variable, is similar to mode 1, but allows the server to
manage the memory.

Buffers that hold UDR return values are allocated from the per_command memory
pool and are reused between UDR invocations.

The value of the MemMode parameter takes precedence over the value of the
ST_MEMMODE environment variable. The MemMode parameter remains set until the
server is shut down. When the server is restarted, the value of the ST_MEMMODE
environment variable takes effect.

To view the value of the MemMode parameter, run the SE_ParamGet() function.
Related concepts:

[[Selectivity and cost functions (Performance Guide)|

Related reference:
[“The SE_ParamGet() function” on page 7-112|
[“The SE_ParamSet() function” on page 7-112]

Chapter 1. Getting started with spatial data 1-25

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.perf.doc/ids_prf_669.htm#ids_prf_669

Update values in a spatial column

1-26

You run the SQL UPDATE statement to alter the values in a spatial column in the
same way that you update any other type of column. Typically, you must retrieve
spatial column data from the table, alter the data in a client application, and then
return the data to the database.

The following pair of SQL statements illustrates how to fetch the spatial data from
one row in the hazardous_sites table and then update the same item:
SELECT ST_AsText(location) FROM hazardous_sites

WHERE site_id = 102;

UPDATE hazardous_sites

SET location = ST_PointFromText('point(18000 57000)', 5)
WHERE site_id = 1023

Related reference:

(Chapter 5, “Run parallel queries,” on page 5-1|
[[UPDATE statement (SQL Syntax)
[[SELECT statement (SQL Syntax)|

IBM Informix Spatial Data User's Guide

http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_1254.htm#ids_sqs_1254
http://pic.dhe.ibm.com/infocenter/informix/v121/topic/com.ibm.sqls.doc/ids_sqs_0981.htm#ids_sqs_0981

Chapter 2. Spatial data types

IBM Informix spatial data types are divided into two categories: the base geometry
subclasses and the homogeneous collection subclasses.

* The base geometries are:
- ST_Point
— ST_LineString
— ST_Polygon
* The homogeneous collections are:
— ST MultiPoint
— ST_MultiLineString
— ST_MultiPolygon

Homogeneous collections are collections of base geometries; in addition to sharing
base geometry properties, homogeneous collections also have some properties of
their own.

The ST_GeometryType() function takes an ST_Geometry and returns the
instantiable subclass in the form of a character string. The ST_NumGeometries()
function takes a homogeneous collection and returns the number of base geometry
elements it contains. The ST_GeometryN() function takes a homogeneous
collection and an index and returns the nth base geometry.

Related reference:

[“Spatial tables” on page 1-18]

Properties of spatial data types

Typically, points represent an object at a single location, linestrings represent a
linear characteristic, and polygons represent a spatial extent.

The OGC, in its publication of OpenGIS Features for ODBC (SQL) Implementation
Specification, selected the term geometry to represent spatial features such as point
locations and polygons. An abstract definition of the OpenGIS noun geometry might
be, “a point or aggregate of points symbolizing a feature on the ground.”

The ST_Geometry data type is an abstract noninstantiable superclass. Its subclasses
provide instantiable data types. As such, you can define table columns to be of
such types. The following figure shows the class hierarchy for the IBM Informix
spatial data types.

© Copyright IBM Corp. 2001, 2014 2-1

ST_Geometry

ST_Curve ST_Surface ST_Point ST_GeomCollection

ST_LineString ST_Polygon ST _MultiSurface ST_MultiCurve ~ ST_MultiPoint

ST_MultiPolygon ST_MultiLineString

italics represent a noninstantiable class

Figure 2-1. Data types class diagram

Throughout the remainder of this publication, the terms geometry or geometries
collectively refer to the superclass ST_Geometry data type and all of its subclass
data types. When it is necessary to specify the geometry superclass directly, it is
referred to as the ST_Geometry superclass or the ST_Geometry data type.

Tip: You can define a column as type ST_Geometry, but ST_Geometry values
cannot be inserted into it since they cannot be instantiated. However, any of the
ST_Geometry subclass data type values can be inserted into this column.

Descriptions of the properties of the spatial data types follow. Each subclass data
type inherits the properties of the ST_Geometry superclass and adds properties of
its own. Functions that operate on the ST_Geometry data type also operate on any
of the subclass data types. However, functions that are defined at the subclass level
operate only on that data type and its subclasses data types.

Interior, boundary, and exterior

All geometries occupy a position in space that is defined by their interior,
boundary, and exterior.

Exterior
All space that is not occupied by the geometry.

Boundary
Serves as the interface between its interior and exterior.

Interior
The space that is occupied by the geometry.

The subclass inherits the interior and exterior properties from
ST_Geometry; the boundary property differs for each data type.

The ST_Boundary() function takes an ST_Geometry type and returns an
ST_Geometry that represents the source ST_Geometry boundary.

Simple or nonsimple

Some subclasses of ST_Geometry (ST_LineStrings, ST_MultiPoints, and
ST_MultiLineStrings) are either simple or nonsimple. They are simple if
they obey all topological rules that are imposed on the subclass and
nonsimple if they bend a few rules.

* ST_LineString is simple if it does not intersect its interior.

¢ ST_MultiPoint is simple if none of its elements occupy the same
coordinate space.

* ST_MultiLineString is simple if none of its element's interiors intersect.

2-2 IBM Informix Spatial Data User's Guide

The ST_IsSimple() function takes an ST_Geometry and returns t (TRUE) if
the ST_Geometry is simple and f (FALSE), otherwise.

Empty or not empty
A geometry is empty if it does not have any points.

An empty geometry has a NULL envelope, boundary, interior, and exterior.
An empty geometry is always simple and can have Z coordinates or
measures. Empty linestrings and multilinestrings have a 0 length. Empty
polygons and multipolygons have 0 area.

The ST_IsEmpty() function takes an ST_Geometry and returns t (TRUE) if
the ST_Geometry is empty and f (FALSE) otherwise.

Number of points
A geometry can have zero or more points.

A geometry is considered empty if it has zero points. The ST_Point
subclass is the only geometry that is restricted to zero or one point; all
other subclasses can have zero or more.

Envelope
The envelope of a geometry is the bounding geometry that is formed by
the minimum and maximum (X,Y) coordinates.

The envelopes of most geometries form a boundary rectangle. However,
the envelope of a point is the point itself, since its minimum and
maximum coordinates are the same. The envelope of a horizontal or
vertical linestring is a linestring that is represented by the endpoints of the
source linestring.

The ST_Envelope() function takes an ST_Geometry and returns a
ST_Geometry that represents the source ST_Geometry envelope.

Dimension
A geometry can have a dimension of 0, 1, or 2.

0 The geometry has neither length or area.
1 The geometry has a length.
2 The geometry contains area.

The point and multipoint subclasses have a dimension of 0. Points
represent zero-dimensional features that can be modeled with a single
coordinate, while multipoints represent data that must be modeled as a
cluster of unconnected coordinates.

The subclasses linestring and multilinestring have a dimension of 1. They
store road segments, branching river systems, and any other features that
are linear in nature.

Polygon and multipolygon subclasses have a dimension of 2. Forest stands,
parcels, water bodies, and other features whose perimeter encloses a
definable area can be rendered by either the polygon or multipolygon data

type.

Dimension is important not only as a property of the subclass, but also
plays a part in determining the spatial relationship of two features. The
dimension of the resulting feature or features determines whether the
operation was successful. The dimension of the features is examined to
determine how they are compared.

Chapter 2. Spatial data types 2-3

The ST_Dimension() function takes an ST_Geometry and returns its
dimension as an integer.

Z coordinates
Some geometries have an associated altitude or depth.

Each of the points that form the geometry of a feature can include an
optional Z coordinate that represents an altitude or depth normal to the
earth's surface.

The SE_Is3D() predicate function takes an ST_Geometry and returns t
(TRUE) if the function has Z coordinates and f (FALSE), otherwise.

Measures
Measures are values that are assigned to each coordinate.

The value represents anything that can be stored as a double-precision
number.

The SE_IsMeasured() function takes an ST_Geometry and returns t
(TRUE) if it contains measures and f (FALSE), otherwise.

Spatial reference system
The spatial reference system identifies the coordinate transformation matrix
for each geometry.

All spatial reference systems that are known to the database are stored in
the spatial_references table.

The ST_SRID() function takes an ST_Geometry and returns its spatial
reference identifier as an integer.

ST_Point data type

The ST_Point data type is a zero-dimensional geometry that occupies a single
location in coordinate space. ST_Point is used to define features such as oil wells,
landmarks, and elevations.

Properties

An ST_Point has a single X,Y coordinate value, is always simple, and has a NULL
boundary. An ST_Point may include a Z coordinate and an M value.

Functions

The following functions operate solely on the ST_Point data type:

ST_X0
The function returns a point data type's X coordinate value as a
double-precision number.

ST_Y(
The function returns a point data type's Y coordinate value as a
double-precision number.

SE_Z()
The function returns a point data type's Z coordinate value as a
double-precision number.

SE_M()
The function returns a point data type's M coordinate value as a
double-precision number.

2-4 IBM Informix Spatial Data User's Guide

ST_LineString data type

The ST_LineString data type is a one-dimensional object stored as a sequence of
points defining a linear interpolated path. ST_LineString types are often used to
define linear features such as roads, rivers, and power lines.

Properties

An ST_LineString is simple if it does not intersect its interior. The endpoints (the
boundary) of a closed ST_LineString occupy the same point in space. An
ST_LineString is a ring if it is both closed and simple. In addition to properties
inherited from the superclass ST_Geometry, ST_LineString values have length.

The endpoints normally form the boundary of a ST_LineString unless the
ST_LineString is closed, in which case the boundary is NULL. The interior of a
ST_LineString is the connected path that lies between the endpoints, unless it is
closed, in which case the interior is continuous. The following figure shows
examples of ST_LineString objects: (1) is a simple nonclosed ST_LineString; (2) is a
nonsimple nonclosed ST_LineString; (3) is a closed simple ST_LineString and
therefore is a ring; (4) is a closed nonsimple ST_LineString—it is not a ring.

G O F

(1) (2 (3) (4)
Figure 2-2. Examples of ST_LineString objects

Functions

The following functions operate on ST_LineString:

ST_StartPoint()
The function returns the linestring's first point.

ST_EndPoint()
The function returns the linestring's last point.

ST_PointN()
The function takes an ST_LineString and an index to nth point and returns
that point.

ST_Length()
The function returns the linestring's length as a double-precision number.

ST_NumPoints()
The function returns the number of points in the linestring's sequence as
an integer.

ST_IsRing()
The function returns t (TRUE) if the ST_LineString is a ring and f (FALSE)
otherwise.

ST IsClosed()
The function returns t (TRUE) if the ST_LineString is closed and f (FALSE)
otherwise.

Chapter 2. Spatial data types 2-5

ST_Polygon()
The function creates a polygon from an ST_LineString that is a ring.

ST_Polygon data type

2-6

The ST_Polygon data type is a two-dimensional surface stored as a sequence of
points defining its exterior bounding ring and 0 or more interior rings. Most often,
ST_Polygon defines parcels of land, water bodies, and other features having spatial
extent.

Properties

The ST_Polygon is always simple. The exterior and any interior rings define the
boundary of an ST_Polygon, and the space enclosed between the rings defines the
interior of ST_Polygon. The rings of an ST_Polygon can intersect at a tangent
point, but never cross. In addition to the other properties inherited from the
superclass, ST_Geometry, ST_Polygon has area.

The following figure shows examples of ST_Polygon objects: (1) is an ST_Polygon
whose boundary is defined by an exterior ring; (2) is an ST_Polygon whose
boundary is defined by an exterior ring and two interior rings. The area inside the
interior rings is part of the ST_Polygon's exterior; (3) is a legal ST_Polygon because
the rings intersect at a single tangent point.

®

(1) @) @)
Figure 2-3. Examples of ST_Polygon objects

Functions

The following functions operate on ST_Polygon:

ST_Area()
The function returns the polygon's area as a double-precision number.

ST_ExteriorRing()
The function returns the polygon's exterior ring as an ST_LineString.

ST_NumlInteriorRing()
The function returns the number of interior rings that the polygon
contains.

ST_InteriorRingN()
The function takes an ST_Polygon and an index and returns the nth
interior ring as an ST_LineString.

ST Centroid()
The function returns an ST_Point that is the center of the ST_Polygon's
envelope.

ST_PointOnSurface()
The function returns an ST_Point that is guaranteed to be on the surface of
the ST_Polygon.

IBM Informix Spatial Data User's Guide

ST Perimeter()

The function returns the perimeter of an ST_Polygon or ST_MultiPolygon.

ST_MultiPoint data type

The ST_MultiPoint data type is a collection of ST_Points. ST_MultiPoint can define
aerial broadcast patterns and incidents of a disease outbreak.

An ST_MultiPoint is simple if none of its elements occupy the same coordinate
space. Just like its elements, it has a dimension of 0. The boundary of a
ST_MultiPoint is NULL.

ST_MultiLineString data type

The ST_MultiLineString data type is a collection of ST_LineStrings.
ST_MultiLineStrings are used to define streams or road networks.

Properties

ST_MultiLineStrings are simple if they only intersect at the endpoints of the
ST_LineString elements. ST_MultiLineStrings are nonsimple if the interiors of the
ST_LineString elements intersect.

The boundary of an ST_MultiLineString is the non-intersected endpoints of the
ST_LineString elements. The ST_MultiLineString is closed if all its ST_LineString
elements are closed. The boundary of a ST_MultiLineString is NULL if all the
endpoints of all the elements are intersected. In addition to the other properties
inherited from the superclass ST_Geometry, ST_MultiLineStrings have length.

The following figure shows examples of ST_MultiLineStrings:

(1) is a simple ST_MultiLineString whose boundary is the four endpoints of its
two ST_LineString elements.

(2) is a simple ST_MultiLineString because only the endpoints of the
ST_LineString elements intersect. The boundary is two non-intersected
endpoints.

(3) is a non-simple ST_MultiLineString because the interior of one of its
ST_LineString elements is intersected. The boundary of this ST_MultiLineString
is the three non-intersected endpoints.

(4) is a simple non-closed ST_MultiLineString. It is not closed because its
element ST_LineStrings are not closed. It is simple because none of the interiors
of any of the element ST_LineStrings intersect.

(5) is a simple closed ST_MultiLineString. It is closed because all its elements are
closed. It is simple because none of its elements intersect at the interiors.

Chapter 2. Spatial data types 2-7

A
L OO

Figure 2-4. Examples of ST_MultiLineString objects

Functions

The following functions operate on ST_MultiLineStrings:

ST_Length()
The function returns the cumulative length of all its ST_LineString
elements as a double-precision number.

ST IsClosed()
The function returns t (TRUE) if the ST_MultiLineString is closed and f
(FALSE), otherwise.

ST_MultiPolygon data type

The ST_MultiPolygon data type defines features such as a forest stratum or a
non-contiguous parcel of land such as an island chain.

Properties

The boundary of an ST_MultiPolygon is the cumulative length of its elements'
exterior and interior rings. The interior of an ST_MultiPolygon is defined as the
cumulative interiors of its element ST_Polygons. The boundary of an
ST_MultiPolygon's elements can only intersect at a tangent point. In addition to the
other properties inherited from the superclass ST_Geometry, ST_MultiPolygons
have area.

The following figure shows examples of ST_MultiPolygon: (1) is ST_MultiPolygon
with two ST_Polygon elements. The boundary is defined by the two exterior rings
and the three interior rings; (2) is an ST_MultiPolygon with two ST_Polygon
elements. The boundary is defined by the two exterior rings and the two interior
rings. The two ST_Polygon elements intersect at a tangent point.

2-8 IBM Informix Spatial Data User's Guide

&

A &l

Figure 2-5. Examples of ST_MultiPolygon objects

Functions

The following functions that operate on ST_MultiPolygons:

ST_Areal()
The function returns the cumulative area of its ST_Polygon elements as a
double-precision number.

ST_Centroid()
The function returns an ST_Point that is the center of an
ST_MultiPolygon's envelope.

ST_PointOnSurface()
The function returns an ST_Point that is guaranteed to be on the surface of
one of its ST_Polygon elements.

Locale override

The external text representation of double-precision numbers in spatial data types
follows the U.S. English locale (en_us.8859-1). In this standard, all text input must
use dots (.) as decimal separators and must be single-byte ASCII, regardless of
the locale. (Internally, the database server overrides the current locale with the U.S.
English locale.)

For example, in many European locales, the decimal separator is a comma. You can
keep using a non-English locale, but you must use dots in all text input, as follows:

ST_PointFromText('point zm (10.01 20.04 3.2 9.5)', 1)

This is true even if in your locale you normally use 3,2 instead of 3.2. External
text always contains dots, regardless of the locale.

Spatial data types with SPL

You can use stored procedure language (SPL) with spatial data types.

SPL has two restrictions that might be relevant to working with spatial data:
¢ LVARCHAR variables in an SPL routine are restricted to 2K.
* SPL does not support a global variable defined on a UDT or complex type.

Casts between spatial data types

You can cast between spatial data types from subtype to supertype.

Chapter 2. Spatial data types 2-9

If you attempt to cast from a supertype to a subtype, or another combination of
types that is not compatible, the function returns NULL.

The following example casts to a ST_LineString and filters out any NULL values:

SELECT ST_StartPoint(my_geometry col::ST_LineString) from mytab
WHERE ST_GeometryType(my_geometry col) = 'st_linestring';

2-10 IBM Informix Spatial Data User's Guide

Chapter 3. Data exchange formats

You can use several different GIS data exchange formats for spatial data.
Related concepts:

|”Informix spatial solution architecture” on page 1—8|

Related reference:

[“Loading spatial data” on page 1-19)|

Well-known text representation

You can generate a geometry from the OGC well-known text (WKT)
representation. The WKT is an ASCII text-formatted string that allows geometry to
be exchanged in ASCII text form.

You can use the following functions in a third- or fourth-generation language (3GL
or 4GL) program because they do not require the definition of any special program
structures.

ST_GeomFromText()
The function creates an ST_Geometry from a text representation of any
geometry type.

ST_PointFromText()
The function creates an ST_Point from a point text representation.

ST_LineFromText()
The function creates an ST_LineString from a linestring text representation.

ST_PolyFromText()
The function creates an ST_Polygon from a polygon text representation.

ST_MPointFromText()
The function creates an ST_MultiPoint from a multipoint representation.

ST_MLineFromText()
The function creates an ST_MultiLineString from a multilinestring
representation.

ST_MPolyFromText()
The function creates an ST_MultiPolygon from a multipolygon
representation.

ST_AsText()
The function converts an existing geometry into a text representation.
Related reference:

[Appendix C, “OGC well-known text representation of geometry,” on page C-1|

Well-known binary representation

You can generate a geometry from the OGC well-known binary (WKB)
representation. The WKB representation is a contiguous stream of bytes. It permits
geometry to be exchanged between a client application and an SQL database in
binary form.

© Copyright IBM Corp. 2001, 2014 3-1

ST _GeomFromWKB()
The function creates an ST_Geometry from a WKB representation of any
geometry type.

ST_PointFromWKB()
The function creates an ST_Point from a point WKB representation.

ST_LineFromWKB()
The function creates an ST_LineString from a linestring WKB
representation.

ST_PolyFromWKB()
The function creates an ST_Polygon from a polygon WKB representation.

ST_MPointFromWKB()
The function creates an ST_MultiPoint from a multipoint WKB
representation.

ST_MLineFromWKB()
The function creates an ST_MultiLineString from a multilinestring WKB
representation.

ST_MPolyFromWKB()
The function creates an ST_MultiPolygon from a multipolygon WKB
representation.

ST_AsBinary()
The function converts an existing geometry value into well-known binary
representation.

Related reference:

[Appendix C, “OGC well-known text representation of geometry,” on page C-1

ESRI shape representation

3-2

You can generate a geometry from an ESRI shape representation. In addition to the
two-dimensional representation supported by the Open GIS well-known binary
representation, the ESRI shape representation also supports optional Z coordinates
and measures.

The following functions generate geometry from an ESRI shape.

SE_GeomFromShape()
The function creates an ST_Geometry from a shape of any geometry type.

SE_PointFromShape()
The function creates an ST_Point from a point shape.

SE_LineFromShape()
The function creates an ST_LineString from a polyline shape.

SE_PolyFromShape()
The function creates an ST_Polygon from a polygon shape.

SE_MPointFromShape()
The function creates an ST_MultiPoint from a multipoint shape.

SE_MLineFromShape()
The function creates an ST_MultiLineString from a multipart polyline
shape.

SE_MPolyFromShape()
The function creates an ST_MultiPolygon from a multipart polygon shape.

IBM Informix Spatial Data User's Guide

For all of these functions, the first argument is the shape representation and the
second argument is the spatial reference identifier to assign to the ST_Geometry.
For example, the SE_GeomFromShape() function has the following syntax:

SE_GeomFromShape (shapegeometry, SRID)

The SE_AsShape() function converts the geometry value into an ESRI shape
representation.

Related reference:

|[Appendix E, “ESRI shape representation,” on page E-1|

Geography Markup Language representation

You can generate a geometry from a Geography Markup Language (GML)
representation. The GML can be represented as either GML2 (OGC GML standard
2.1.2) or GML3 (OGC GML standard 3.1.1). In addition to the two-dimensional
representation supported by the Open GIS well-known binary representation, the
GML representation also supports optional Z coordinates and measures.

The following functions generate a geometry from a GML string.

ST_GeomFromGML()
The function creates an ST_Geometry from a string of any geometry type.

ST _PointFromGML()
The function creates an ST_Point from a point string.

ST_LineFromGML()
The function creates an ST_LineString from a polyline string.

ST_PolyFromShape()
The function creates an ST_Polygon from a polygon string.

ST _MPointFromGML()
The function creates an ST_MultiPoint from a multipoint string.

ST MLineFromGML()
The function creates an ST_MultiLineString from a multipart polyline
string.

ST_MPolyFromGML()
The function creates an ST_MultiPolygon from a multipart polygon string.

For all of these functions, the first argument is the GML representation and the
second optional argument is the spatial reference identifier to assign to the
ST_Geometry. For example, the ST_GeomFromGML() function has the following
syntax:

ST _GeomFromGML (gm1_string, [SRID])

ST_GeomFromGML('<gml:Point srsName="ESPG:1234" srsDimension="2">
<gml :p0s>10.02 20.01</gml:pos></gml:Point>"', 1000)

The SE_AsGML() and ST_AsGML() functions convert the geometry value into a
GML representation.

The ST_EnvelopeAsGML() function converts an ST_Polygon into a GML3
Envelope element.

Chapter 3. Data exchange formats 3-3

Keyhole Markup Language representation

3-4

You can generate a geometry from a Keyhole Markup Language (KML)
representation. KML is an XML-based schema for expressing geographic
annotation and visualization on online maps and earth browsers.

The following functions generate a geometry from a KML string.

SE_EnvelopeFromKML()
The function creates an ST_Polygon from a KML LatLonBox string.

ST_GeomFromKML()
The function creates an ST_Geometry from a KML fragment.

ST_LineFromKML()
The function creates an ST_LineString from a KML LineString string.

ST_MLineFromKML()
The function creates an ST_MultiLineString from a KML MultiGeometry
string.

ST _MPointFromKML()
The function creates an ST_MultiPoint from a KML MultiGeometry and
Point combination string.

ST_MPolyFromKML()
The function creates an ST_MultiPolygon from a KML MultiGeometry and
Polygon combination string.

ST_PointFromKML()
The function creates an ST_Point from a KML Point string.

ST_PolyFromKML()
The function creates an ST_Polygon from a KML Polygon string.

For most of these functions, the first argument is the KML representation and the
second optional argument is the spatial reference identifier to assign to the
ST_Geometry. For example, the ST_LineFromKML() function has the following
syntax:

ST_LineFromKML(kmlstring Tvarchar, SRID integer)

The SE_AsKML() and ST_AsKML() functions convert the geometry value into a
GML representation.

The ST_EnvelopeAsKML() function converts an ST_Envelope bounding box into a
KML LatLonBox string.

IBM Informix Spatial Data User's Guide

Chapter 4. R-tree indexes

An index organizes access to data so that entries can be found quickly, without
searching every row. The R-tree access method enables you to index
multidimensional objects.

Queries that use an index execute more quickly and provide a significant
performance improvement. The R-tree access method speeds access to
multidimensional data. It organizes data in a tree-shaped structure, with bounding
boxes at the nodes. Bounding boxes indicate the farthest extent of the data that is
connected to the subtree below.

A search using an R-tree index can quickly descend the tree to find objects in the
general area of interest and then perform more exact tests on the objects
themselves. An R-tree index can improve performance because it eliminates the
need to examine objects outside the area of interest. Without an R-tree index, a
query would need to evaluate every object to find those that match the query
criteria.

When you create an index, you can specify an access method and an operator class (if
you do not specify an access method, the default B-tree access method is used).
The access method organizes the data in a way that speeds up access. The operator
class is used by the optimizer to determine whether to use an index in a query.

To create an R-tree index, you must specify an operator class that supports an
R-tree index on the data type you want to index. The operator class you use for
IBM Informix spatial data types is ST_Geometry_Ops.

The B-tree access method creates a one dimensional ordering that speeds access to
traditional numeric or character data. You can use B-tree to index a column of
non-spatial data or to create a functional index on the results of a spatial function
that returns numeric or character data. For example, you could create a functional
B-tree index on the results of the ST_NumPoints() function because
ST_NumPoints() returns an integer value.

Restriction: The B-tree access method indexes numeric and character data only.
You cannot use the B-tree access method to index spatial data.

The syntax for creating an index is described in detail in the CREATE INDEX
statement in IBM Informix Guide to SQL: Syntax.

For a detailed description of R-tree indexes, refer to the IBM Informix R-Tree Index
User’s Guide.

Syntax for creating an R-tree index

To use the R-tree access method, you create an index on a column of a spatial type.
Syntax

»>—CREATE INDEX—index_name—ON—table_name

v

© Copyright IBM Corp. 2001, 2014 4-1

»—(—column_name—ST_Geometry Ops—)

»—USING RTREE

v

I—(—parome ters—)—I |—index_opt ions—|

Element

Description

column_name

The name of the spatial column.

index_name

The name to give your index.

index_options

The index options are FRAGMENT BY and
IN.

parameters The parameters available for R-tree indexes
are bottom_up_build,
BOUNDING_BOX_INDEX, NO_SORT,
sort_memory, and fill_factor.

table_name The name of the table that contains the

spatial column to index.

Restriction: You cannot rename databases that contain R-tree indexes.

The BOTTOM_UP_BUILD, BOUNDING_BOX_INDEX, and NO_SORT parameters
affect the size of the index and the speed at which it is built. The following table
shows the valid combinations of these parameters.

Table 4-1. Parameters of the CREATE INDEX statement for spatial data

Parameters clause of CREATE INDEX
statement

Description

BOTTOM_UP_BUILD="no/,
BOUNDING_BOX_INDEX="no',
NO_SORT="no'

Creates an index by inserting spatial objects
into the R-tree one at a time A copy of each
object's in-row data is stored at the leaf level
of the R-tree. This is the default if the
DBSPACETEMP parameter in your onconfig
file is not defined.

BOTTOM_UP_BUILD="no/,
BOUNDING_BOX_INDEX='"yes',
NO_SORT="no'

Creates a more compact index from the top
down Only the bounding boxes of each object
are stored at the leaf level of the R-tree. No
temporary dbspace is required.

BOTTOM_UP_BUILD="yes/,
BOUNDING_BOX_INDEX="no',
NO_SORT='no'

Creates an index by sorting the spatial data
and then building the R-tree from the bottom
up This is generally faster than building an
index from the top down. This is the default if
you have a temporary dbspace and it is
specified by the DBSPACETEMP parameter in
your onconfig file.

BOTTOM_UP_BUILD='yes',
BOUNDING_BOX_INDEX="o',
NO_SORT='yes'

Creates an index in less time
* Does not require a temporary dbspace

 Spatial data must be presorted, either by
loading the data in a predetermined order
or by creating a clustered functional B-tree
index by using the SE_SpatialKey()
function.

4-2 1BM Informix Spatial Data User's Guide

Table 4-1. Parameters of the CREATE INDEX statement for spatial data (continued)
Parameters clause of CREATE INDEX

statement Description

BOTTOM_UP_BUILD='yes', Creates a more compact index from the
BOUNDING_BOX_INDEX="yes', bottom up, which is faster than building from
NO_SORT="no' the top down

* This is the default if you have a temporary
dbspace and it is specified by the
DBSPACETEMP parameter in your
onconfig file.

* Spatial data need not be presorted.

BOTTOM_UP_BUILD="yes', Creates a more compact index in less time
BOUNDING_BOX_INDEX='yes', * Does not require a temporary dbspace
NO_SORT="yes'

* Spatial data must be presorted.

Related reference:

[‘The spatial index” on page 1-22)
[‘The SE_SpatialKey() function” on page 7-128|

Bottom-up versus top-down index builds

R-tree indexes are created using one of two options: top-down build or bottom-up

build. When an index is built from the top down, spatial objects are inserted into
the R-tree one at a time. Objects are grouped together in the R-tree according to
their spatial proximity to one another.

When an index is built from the bottom up, objects are first sorted according to a
numeric value which is generated by the SE_SpatialKey() function. Then the
R-tree is built by inserting all objects into the leaf pages (the bottom level) of the
tree in sorted order and then building a hierarchy of bounding boxes above the
leaf pages.

An R-tree index can be built much more quickly from the bottom up than from the
top down, typically 10 to 20 times faster. This increased speed comes at a price:
you must create a temporary dbspace of sufficient size to sort all the spatial data in
the table. To determine the size, use the following formula:

Size (in bytes) = Number of rows in table * 1000

Refer to your IBM Informix Administrator’s Guide for more information about
dbspaces.

The NO_SORT option eliminates the need for a temporary dbspace, but your
spatial data must be presorted in the table. This means that it must be inserted into
the table in sorted order, or sorted by means of a clustered B-tree index after it is
loaded.

You should also note that the bottom-up build option only makes sense if you load
all of your spatial data into a table before you create an R-tree index. There is no
performance advantage to either build option if you create an index on an empty
table and then insert data.

Depending on certain characteristics of your spatial data, an index built from the

top down may be more effective than one built from the bottom up. Properties that
can adversely affect a bottom-up built index include many objects that overlap

Chapter 4. R-tree indexes 4-3

each other, or many objects that are very close together, such that the sort key
produced by the SE_SpatialKey() function is the same value for a large number of
objects.

Related reference:
[“The SE_SpatialKey() function” on page 7-128|

Functional R-tree indexes

Under certain conditions, you can create a functional R-tree index, using one of the
several spatial data type functions. A functional index is built using the value
returned by a function rather than the value of a column in a table.

For example, you can create an R-tree index on the centroids of the objects in a
table, rather than on the objects themselves:

CREATE TABLE poly tab (poly_col ST_Geometry);

CREATE INDEX centroid_idx ON poly_tab
(ST_Centroid(poly_col) ST_Geometry ops) USING RTREE;

You can use the following spatial data type functions in a functional index:
* ST_Centroid()

* ST_EndPoint()

* ST_Envelope()

* SE_Midpoint()

* ST_Point()

* ST_PointN()

e ST PointOnSurface()

e ST _StartPoint()

Verify that the index is correctly built

To verify whether an index was successfully built, use the oncheck utility.

The output from oncheck for a successfully built index starts as shown:

WARNING: index check requires a s-lock on tables whose Tock level is page.
Information for Partition num: 1049006
Node: Level 0, Pagenum 32, Usage 55.7%, No. of Children 11, right -1

Refer to your IBM Informix Administrator’s Guide for information about using the
oncheck utility.

The spatial operator class ST_Geometry_Ops

4-4

An operator class defines operators, called strategy functions, that can use an index.
The operator class that the IBM Informix spatial data types require
ST_Geometry_Ops.

Restriction: Do not use rtree_ops, the default R-tree operator class for the
secondary access method.

The strategy functions for the ST_Geometry_Ops operator classes are:
* ST Contains()

e ST Crosses()

* ST_Equals()

IBM Informix Spatial Data User's Guide

* SE_EnvelopesIntersect()
e ST_Intersects()

* SE_Nearest()

¢ SE_NearestBbox()

* ST_Overlaps()

¢ ST Touches()

* ST_Within()

How spatial operators use R-tree indexes

After you have created an index, it is considered by the query optimizer for any
supported combination of argument types.

The index can be used regardless of whether the indexed column is the first or
second argument. An operator with two parameters—also known as a binary
operator—can take advantage of an index defined on a column that serves as one of
its arguments.

Chapter 4. R-tree indexes 4-5

4-6 IBM Informix Spatial Data User's Guide

Chapter 5. Run parallel queries

Running queries in parallel distributes the work for one aspect of a query among
several processors and can dramatically improve performance.

You can use any of the spatial data type functions in a parallel query, except the
SE_BoundingBox(), SE_CreateSRID(), SE_Metadatalnit(), and SE_Trace()
functions.

Related reference:

“Update values in a spatial column” on page 1-26|

“Query spatial data” on page 1-23]

Parallel query execution infrastructure

The database server creates and maintains various database objects to manage the
execution of spatial queries in parallel.

Do not alter or delete any of the following items of infrastructure:

¢ The SE_MetadataTable table.

* The SE_Metadata opaque type.

¢ The metadata smart large object, which is stored in the default sbspace.
* The metadata Tohandle file.

* The metadata memory cache.

* Triggers on the spatial_references table

You can use the SE_Metadatalnit() function to re-initialize this infrastructure in
case of difficulty.

Resolve problems with SE_Metadatalnit()

In some rare circumstances, you might need to run the SE_Metadatalnit() function
to resolve problems.

Run the SE_Metadatalnit() function to resolve the following problems:

* The metadata Tohandle file is corrupted or missing, or cannot be created.
* The metadata smart large object is corrupted or missing.

¢ The metadata memory cache is corrupted or locked.

The SE_Metadatalnit() function cannot be run in parallel.
Related reference:
[“The SE_Metadatalnit() function” on page 7-94|

Execute parallel queries

To run queries in parallel, you must use the IBM Informix parallel database query
(PDQ) feature.

© Copyright IBM Corp. 2001, 2014 5-1

To take full advantage of the performance enhancement PDQ provides, you need
to use fragmented tables; table fragmentation allows you to store parts of a table
on different disks.

See the IBM Informix Performance Guide for information about these topics. The IBM
Informix Performance Guide contains topics that describe how the database server
executes queries in parallel and how you can manage running queries in parallel;
it also includes topics that describe how to work with fragmented tables.

5-2 IBM Informix Spatial Data User's Guide

Chapter 6. Estimate your spatial data

The total amount of space you need for spatial data is equal to the size of spatial
tables plus the size of the spatial indexes.

The table size approximations discussed here should be within 100 MB accuracy
for large tables; to make estimates of greater precision, refer to the IBM Informix
Performance Guide.

Further tuning information is available at http:/ /www.ibm.com /software/data /|
linformix /blades /spatial /|

To estimate the amount of space you need for spatial data, add the results of the
following calculations:

Estimating the storage space for the table

The total size of a spatial table is equal to the column sizes plus the dbspace
overhead size multiplied by the number of rows.

To make a rough estimate of the storage space required by the spatial table:
1. Estimate the number of rows in the table.

2. Add the spatial column size, the non-spatial column size, and the dbspace
overhead size together.

3. Multiply the sum by the estimated number of rows.

Estimate the size of the spatial column

The size of a spatial column depends on the points per feature, and coordinate
factor, and the annotation size.

Estimate the size of the spatial column using the formula:

spatial column size = (average points per feature * coordinate factor)
+ annotation size

The average points per feature is the sum of all coordinate points required to render
the features stored in a spatial table divided by the number of rows in the table. If
the sum of all coordinates is difficult to obtain, use the approximations of the
average number of points per feature for each data type in the table.

The collection data types (MultiPoints, MultiLineStrings, and MultiPolygons) are
difficult to estimate. The numbers shown in the table are based on the types of
data sets that these data types are most often applied to: broadcast patterns for
MultiPoints, stream networks for MultiLineStrings, and island topology for

MultiPolygons.

Data type Average points per feature
Point 1

LineString (urban) 5

LineString (rural) 50

Polygon (urban) 7

© Copyright IBM Corp. 2001, 2014 6-1

http://www.ibm.com/software/data/informix/blades/spatial/
http://www.ibm.com/software/data/informix/blades/spatial/

Data type Average points per feature

Polygon (rural) 150
MultiPoint 50
MultiLineString 250
MultiPolygon 1000

The coordinate factor is based on the dimensions of the coordinates stored by the
spatial column. Select the coordinate factor from the table below.

Coordinate type Coordinate factor
XY 4.8
XYZ 7.2
XY and measures 7.2
XYZ and measures 9.6

If your layer includes annotation, set the annotation size to 300 bytes (this is the
average space required to store most annotation). This includes the space required
to store text, placement geometry, lead line geometry, and various attributes
describing the annotation's size and font.

Estimate the size of non-spatial columns

You can estimate the row size of fixed-sized columns by querying the systables
system catalog table. You must estimate the average size of variable length
columns.

To determine the size of the remaining columns of a spatial table, create the table
without the spatial column and query the rowsize column of the systables table.
In this example, a table called lots is created with three columns:

create table lots (lot_id integer,

owner_name varchar(128),
owner_address varchar(128))

Selecting the row size for the lots table from systables returns a value of 262 bytes:
select rowsize from systables where tabname = 'Tots';

262

Tables containing variable length columns of type VARCHAR or NVARCHAR
require the row size to be reduced to reflect the actual length of the data stored. In
this example, the owner_name and owner_address columns are variable length
VARCHAR columns and can occupy up to 129 bytes each (128 bytes for data plus
an extra byte for the null terminator). The average size of the owner name is
actually 68 bytes, and the average size of the address is 102 bytes. Therefore, the
estimated row size should be reduced to 174 bytes.

Estimate dbspace overhead requirements

The amount of dbspace overhead that spatial tables require depends on the
number of rows.

Spatial tables with more than 10,000 rows require about 200 bytes of overhead per
row.

6-2 IBM Informix Spatial Data User's Guide

Spatial tables with fewer than 10,000 rows but more than 1,000 rows require 300
bytes per row.

Spatial tables with fewer than 1,000 rows require 400 bytes per row.

Estimating the smart large object storage space

A spatial data value is stored in row if the value is less than or equal to 930 bytes.
However, if the value is greater than 930 bytes, only a pointer of 64 bytes is stored
in row. This pointer refers to the smart large object in which the actual data is
stored.

Important: Store sbspaces on a disk separate from both the table and the indexes.

To estimate the amount of smart large object storage space:
1. Determine the smart large object ratio using the following formula:
smart large object ratio = (spatial column size / 1920)

The smart large object ratio cannot be greater than 1. So if the smart large
object ratio you calculate is greater than one, set it to 1.

2. Multiply your smart large object ratio by the number of rows in your table to
obtain the amount of smart large object space used by your table:

smart Targe object space = ((smart large object ratio) *
number of rows)

3. Determine the amount of in-line table space required using the following
formula:

in-line space = (size of spatial table) - (smart large object space)

Estimating the size of spatial indexes

You can calculate the size of your spatial indexes based on the size of your spatial
columns and dbspace overhead space size.

The ArcSDE service creates and maintains two indexes whenever you add a spatial
column to one of your tables. The ArcSDE service creates an R-tree index on the
spatial column and a B-tree index on the SE_ROW_ID INTEGER column. The
R-tree index is named an_ix1 and the B-tree index is named a_n_ix2, where n is
the spatial column's layer number assigned by the ArcSDE service.

The indexes are three percent greater than the dbspace overhead space and spatial
column size of the table.

To calculate the index space requirements:

1. Combine the spatial column size and the dbspace overhead space size.
2. Multiply this sum by the number of rows in the table.

3. Multiply the result of step Elby 1.03.

Chapter 6. Estimate your spatial data 6-3

6-4 I1BM Informix Spatial Data User's Guide

Chapter 7. Spatial functions

Use specific spatial data type functions to perform operations on spatial data.

Spatial data type functions can perform the following types of operations on

spatial data:

* Determine spatial relationships: You can determine whether a specific
relationship exists between a pair of geometries.
The distance that separates a hazardous waste disposal site and a school is an
example of a spatial relationship.

* Produce a new geometry: You can compare two existing geometries and return a
new geometry that is based on how the two geometries are related.
For example, the ST_Difference() function returns that portion of the first
geometry that is not intersected or overlapped by the second.

¢ Transform geometries: You can generate a new geometry from an existing
geometry and a formula.

Functions can compare two geometries if the SRIDs of the arguments are the same.
To compare two geometries that have different SRIDs, use the ST_Transform()
function to transform one of the geometries.

The Dimensionally Extended 9 Intersection Model (DE-9IM) is a mathematical
approach that defines the pair-wise spatial relationship between geometries of
different types and dimensions.

Most spatial data functions are compliant with OpenGIS and ISO/SQLMM
standards and have the prefix ST_. Some spatial data functions extend the OpenGIS
and ISO/SQLMM standards and have the prefix SE_.

The following OpenGIS and ISO/SQLMM-compliant functions replace deprecated
functions that extend the standards:

Table 7-1. Compliant functions that replace extension functions

Compliant function Extension function
ST _Is3D() SE_Is3D()
ST_IsMeasured() SE_IsMeasured()
ST_LocateAlong() SE_LocateAlong()
ST_LocateBetween() SE_LocateBetween()
ST_M() SE_M()

ST_Z() SE_Z()

ST_MaxM() SE_MMax()
ST_MinM() SE_MMin()
ST_MaxX() SE_XMax()
ST_MinX() SE_XMin()
ST_MaxY() SE_YMax()
ST_MinY() SE_YMin()
ST_MaxZ() SE_ZMax()

© Copyright IBM Corp. 2001, 2014 7-1

Table 7-1. Compliant functions that replace extension functions (continued)

Compliant function Extension function

ST_MaxZ() SE_ZMin()

The Dimensionally Extended 9 Intersection Model

The Dimensionally Extended 9 Intersection Model (DE-9IM) developed by
Clementini and others, dimensionally extends the 9 Intersection Model of
Egenhofer and Herring. DE-9IM is a mathematical approach that defines the
pair-wise spatial relationship between geometries of different types and
dimensions. This model expresses spatial relationships among all types of
geometry as pair-wise intersections of their interior, boundary, and exterior with
consideration for the dimension of the resulting intersections.

Given geometries a and b, I(a), B(a), and E(a) represent the interior, boundary, and
exterior of a, and I(b), B(b), and E(b) represent the interior, boundary, and exterior
of b. The intersections of I(a), B(a), and E(a) with 1(b), B(b), and E(b) produce a
3-by-3 matrix. Each intersection can result in geometries of different dimensions.
For example, the intersection of the boundaries of two polygons could consist of a
point and a linestring, in which case the dim() function would return the
maximum dimension of 1.

The dim function returns a value of -1, 0, 1, or 2. The -1 corresponds to the null set
that is returned when no intersection was found or dim().

Table 7-2. Results of intersections

Interior Boundary Exterior
Interior dim(I(a)I(b)) dim(I(a)B(b)) dim(I(a)E(b))
Boundary dim(B(a)I(b)) dim(B(a)B(b)) dim(B(a)E(b))
Exterior dim(E(a)I(b)) dim(E(a)B(b)) dim(E(a)E(b))

The results of the spatial relationship for the functions can be understood or
verified by comparing the results with a pattern matrix that represents the
acceptable values for the DE-9IM.

The pattern matrix contains the acceptable values for each of the intersection
matrix cells. The possible pattern values are:

T An intersection must exist; dim = 0, 1, or 2.

F An intersection must not exist; dim = -1.

* It does not matter if an intersection exists or not; dim = -1, 0, 1, or 2.

0 An intersection must exist and its maximum dimension must be 0; dim =
0.

1 An intersection must exist and its maximum dimension must be 1; dim =
1.

2 An intersection must exist and its maximum dimension must be 2; dim =

2. For example, the pattern matrix of the ST_Within() function for
geometry combinations has the following form:

7-2 IBM Informix Spatial Data User's Guide

Table 7-3. Pattern matrix of the ST_Within() function

b
Interior Boundary Exterior
Interior T *
a Boundary * *
* * *

Exterior

Simply put, the ST_Within() function returns TRUE when the interiors of both
geometries intersect, and the interior and boundary of geometry a does not
intersect the exterior of geometry b. All other conditions do not matter.

Related reference:

[“The ST_Equals() function” on page 7-57|

[‘The ST_Disjoint() function” on page 7-44|

[“The ST_Intersects() function” on page 7-74]

[‘The ST_Touches() function” on page 7-133]

[“The ST_Overlaps() function” on page 7-109|

[‘The ST_Crosses() function” on page 7-39

[‘The ST_Within() function” on page 7-142|

[‘The ST_Contains() function” on page 7-28|

Summary of spatial functions by task type

The spatial data type functions do different types of tasks, such as generating
different formats, manipulating or comparing data, and obtaining information
about data.

The following table shows the spatial data type functions arranged by task type.

Table 7-4. Spatial functions by task type

Function task type

Description

Function name

Generate a geometry from a
well-known text representation.

Takes a well-known text representation and
returns an ST_Geometry using SRID 0

‘The ST WKTToSQL() function”|

on page 7—145|

Takes a well-known text representation and
returns an ST_Geometry

‘The ST_GeomFromText()|

function” on page 7-67]

Takes a well-known text representation and
returns an ST_Point

‘The ST _PointFromText()|

function” on page 7-119|

Takes a well-known text representation and
returns an ST_LineString

‘The ST_LineFromText() function”]

on page 7—8§|

Takes a well-known text representation and
returns an ST_Polygon

‘The ST_PolyFromText() function”’]

on page 7—124_L|

Takes a well-known text representation and
returns an ST_MultiLine

"The ST_MLineFromText()|

function” on page 7-97]

Takes a well-known text representation and
returns an ST_MultiPoint

‘The ST_MPointFromText()|

function” on page 7-101|

Takes a well-known text representation and
returns an ST_MultiPolygon

"The ST_MPolyFromText()|

function” on page 7-105|

Chapter 7. Spatial functions 7-3

Table 7-4. Spatial functions by task type (continued)

Function task type

Description

Function name

Generate a geometry from a
well-known binary
representation.

Takes a well-known binary representation and
returns an ST_Geometry using SRID 0

‘The ST_WKBToSQL() function”|

on page 7-144]

Takes a well-known binary representation and
returns an ST_Geometry

"The ST_GeomFromWKB()

function” on page 7-68

Takes a well-known binary representation and
returns an ST_Point

"The ST_PointFromWKB()|

function” on page 7-119

Takes a well-known binary representation and
returns an ST_LineString

‘"The ST_LineFromWKB()|

function” on page 7-88

Takes a well-known binary representation and
returns an ST_Polygon

"The ST_PolyFromWKB()|

function” on page 7-124|

Takes a well-known binary representation and
returns an ST_MultiLine

‘The ST MLineFromWKB()|

function” on page 7-98

Takes a well-known binary representation and
returns an ST_MultiPoint

‘The ST MPointFromWKB()|

function” on page 7-101|

Takes a well-known binary representation and
returns an ST_MultiPolygon

‘The ST_MPolyFromWKB()|

function” on page 7-105|

Generate a geometry from an
ESRI shape representation.

Takes an ESRI shape representation and returns
an ST_Geometry using SRID 0

‘The SE_ShapeToSQL() function”|

on page 7-127]

Takes an ESRI shape representation and returns
an ST_Geometry

‘The SE_GeomFromShape()|

function” on page 7-66

Takes an ESRI shape representation and returns
an ST_Point

‘The SE_PointFromShape()

function” on page 7-118|

Takes an ESRI shape representation and returns
an ST_LineString

"The SE_LineFromShape()|

function” on page 7-87]

Takes an ESRI shape representation and returns
an ST_Polygon

"“The SE_PolyFromShape()|

function” on page 7-123|

Takes an ESRI shape representation and returns
an ST_MultiLine

"The SE_MLineFromShape()

function” on page 7-96

Takes an ESRI shape representation and returns
an ST_MultiPoint

"The SE_MPointFromShape()|

function” on page 7-100|

Takes an ESRI shape representation and returns
an ST_MultiPolygon

‘The SE_MPolyFromShape()|

function” on page 7-104]

7-4

IBM Informix Spatial Data User's Guide

Table 7-4. Spatial functions by task type (continued)

Function task type

Description

Function name

Generate a geometry from a
GML representation.

Takes a GML2 or GMLS3 string representation of

an envelope and returns an ST_Polygon

"The ST_EnvelopeFromGML()|

function” on page 7-55

Takes a GML2 or GMLS3 string representation
and returns an ST_Geometry

‘The ST_GeomFromGML()|

function” on page 7-63|

Takes a GML2 or GMLS3 string representation
and returns an ST_LineString

"The ST_LineFromGML()|

function” on page 7-85

Takes a GML2 or GMLS3 string representation
and returns an ST_MultiLineString

‘The ST_MLineFromGML()|

function” on page 7-94

Takes a GML2 or GMLS3 string representation
and returns an ST_MultiPoint

‘The ST_MPointFromGML()

function” on page 7-99

Takes a GML2 or GMLS3 string representation
and returns an ST_MultiPolygon

‘The ST MPolyFromGML()|

function” on page 7-102|

Takes a GML2 or GMLS3 string representation
and returns an ST_Point

‘The ST PointFromGML()|

function” on page 7-116|

Takes a GML2 or GMLS3 string representation
and returns an ST_Polygon

‘The ST_PolyFromGML()

function” on page 7-121|

Generate a geometry from a
KML representation.

Takes a KML LatLonBox string representation
and returns an ST_Polygon

‘The SE_EnvelopeFromKML()|

function” on page 7-55)

Takes a KML fragment string representation
and returns an ST_Geometry

‘The ST _GeomFromKML()|

function” on page 7-66|

Takes a KML LineString string representation
and returns an ST_LineString

‘The ST_LineFromKML()|

function” on page 7-86

Takes a KML MultiGeometry string
representation and returns an
ST_MultiLineString

"The ST_MLineFromKML()|

function” on page 7-96

Takes a KML MultiGeometry and Point
combination string representation and returns
an ST_MultiPoint

"The ST_MPointFromKML()|

function” on page 7-100|

Takes a KML MultiGeometry and Polygon
combination string representation and returns
an ST_MultiPolygon

‘"The ST_MPolyFromKML()|

function” on page 7-103|

Takes a KML Point string representation and
returns an ST_Point

‘The ST_PointFromKML()|

function” on page 7-117]

Takes a KML Polygon string representation and

returns an ST_Polygon

‘The ST_PolyFromKML()|

function” on page 7-122|

Chapter 7. Spatial functions

7-5

Table 7-4. Spatial functions by task type (continued)

Function task type

Description

Function name

Convert a geometry to an
external format.

Returns the well-known text representation of a
geometry object

"The ST_AsText() function” on|

page 7—12|

Returns the well-known binary representation
of a geometry object

"The ST_AsBinary() function” on|

page 7—1§|

Returns the ESRI shape representation of a
geometry object

"The SE_AsShape() function” on|

page 7—1§

Returns the GML representation of a geometry
object

“The SE_AsGML() function” onl

age 7-14] or ["The ST_AsGML()

function” on page 7-15

Returns the GML3 Envelope element of an
ST_Envelope object

‘The ST _EnvelopeAsGML()|

function” on page 7-54I

Returns the KML representation of a geometry
object

“The ST_AsKML() function” on|

bace 7-16) or |'The SE_AsKML(

function” on page 7-15

Returns the KML LatLonBox of an ST_Envelope
object

‘The SE_Envelope AsKML()|

function” on page 7-54

Manipulate the ST_Point data
type.

Creates an ST_Point data type from an X and Y
coordinate

“The ST Point() function” on|

:

age 7-11

Returns the X coordinate of a point

"The ST_X() function” on page|

Returns the Y coordinate of a point

Returns the Z coordinate of a point

Returns the measure value of a point

"The ST_M)() function” on page|

N

-9

Manipulate the ST_LineString
and ST_MultiLineString data

types.

Returns the first point

"The ST_StartPoint() function” on|

age 7-13

:

Returns the midpoint

"The SE_Midpoint() function” on|

age 7-9

:

Returns the last point

"The ST_EndPoint() function” on|

age 7-51

:

Returns the nth point

"The ST_PointN() function” on|

age 7-12

:

Returns the length

"The ST_Length() function” on|

age 7-8

:

Creates an ST_Polygon from a ring (closed
linestring)

"The ST_Polygon() function” onl|

age 7-12

:

7-6

IBM Informix Spatial Data User's Guide

Table 7-4. Spatial functions by task type (continued)

Function task type

Description

Function name

Manipulate the ST_Polygon and
ST_MultiPolygon data types.

Calculates the area

"The ST_Area() function” on page

/-1

Calculates the geometric center

‘The ST_Centroid() function” on|

page 7-2 ZI

Returns the exterior ring

‘The ST_ExteriorRing() function”|

on page 7-52|

Counts the number of interior rings

‘The ST_NumInteriorRing()|

function” on page 7-108|

Returns the nth interior ring

‘The ST_InteriorRingN()|

function” on page 7-69

Returns a point on the surface

‘The ST_PointOnSurface()|

function” on page 7-121|

Returns the perimeter

‘The ST Perimeter() function” on|

page 7—11}]

Obtain parameters of a
geometry.

Returns the dimensions of the coordinates

‘The ST_CoordDim() function” on|

page 7—31|

Returns the dimension of the geometry

‘The ST Dimension() function’]|

on page 7-43)

Returns the shortest distance to another
geometry

‘“The ST Distance() function” on|

page 7—4§

Returns the distance to a point

‘The ST_DistanceToPoint()|

function” on page 7-5(|

Returns the point at a specific distance

‘The ST_PointAtDistance()|

function” on page 7-116|

Returns the data type

‘The ST_GeometryType()|

function” on page 7-62|

Returns the number of points

"The ST_NumPoints() function”|

on page 7—108|

Returns the spatial reference ID

"The ST_SRID() function” on page|

7-128

Returns the maximum and minimum X
coordinate

‘The ST_MaxX() and ST_MinX()|

functions” on page 7-93|

Returns the maximum and minimum Y
coordinate

"The ST_MaxY() and ST_MinY/()|

functions” on page 7-93|

Returns the maximum and minimum Z
coordinate

‘The ST_MaxZ() and ST_MinZ/()|

functions” on page 7-93|

Returns the maximum and minimum measure
value

‘The ST_MaxM() and ST_MinM()|

functions” on page 7-93|

Chapter 7. Spatial functions 7-7

Table 7-4. Spatial functions by task type (continued)

Function task type

Description

Function name

Determine the properties of a
geometry.

Determines whether a linestring or
multilinestring is closed

"The ST IsClosed() function” on|

age 7-7

:

Determines whether a geometry is empty (it
has no points)

"The ST_IsEmpty() function” on|

age 7-7'

:

Determines whether a geometry has measures

"The ST_IsMeasured() function”

on page 7-8

E

Determines whether a linestring is a ring (it is
closed and simple)

‘The ST_IsRing() function” or|

age 7-8

:

Determines whether a geometry is simple

‘The ST IsSimple() function” on|

age 7-8

:

Determines whether a geometry is topologically
valid

‘The ST IsValid() function” on|

:

age 7-8

Determines whether an object has Z coordinates

‘The ST Is3D() function” on page|

N

-7

Tests whether two geometries meet the
conditions specified by a specified DE-91M
pattern matrix

‘The ST _Relate() function” on|

;

age 7-12

Determine whether a certain
relationship exists between two
geometries.

Determines whether one geometry completely
contains another

‘The ST_Contains() function” on|

;

age 7-2

Determines whether a geometry crosses another

“The ST_Crosses() function” on|

age 7-3

;

Determines whether two geometries are
non-intersecting

“The ST _Disjoint() function” on|

;

age 7-4

Determines whether the envelopes of two
geometries intersect

"The SE_EnvelopesIntersect()|

function” on page 7-56

Determines whether two geometries are
spatially equal

‘“The ST_Equals() function” on|

:

age 7-5

Determines whether two geometries intersect

"The ST _Intersects() function” on|

age 7-7.

:

Determines whether two geometries overlap

"The ST_Overlaps() function” on|

age 7-109

:

Determines whether two geometries touch

‘The ST_Touches() function” on|

age 7-133]

:

Determines whether one object is completely
inside another

‘The ST_Within() function” on|

age 7-142]

:

7-8

IBM Informix Spatial Data User's Guide

Table 7-4. Spatial functions by task type (continued)

Function task type

Description

Function name

Compare geometries and return
a new geometry based on how
the geometries are related.

An aggregate function that computes the union
of geometries of the same dimension

"The SE_Dissolve() function” on|

age 7-4

:

Returns the portion of the primary geometry
that is not intersected by the secondary
geometry

“The ST_Difference() function” on|

age 7-4

:

Computes the intersection of two geometries

‘The ST_Intersection() function”|

on page 7—72]

Returns the perpendicular projection of a point
on the nearest segment of a linestring

"The SE_PerpendicularPoint()|

function” on page 7-114|

Returns an ST_Geometry object that is
composed of the parts of the two source
geometries that are not common to both

‘The ST _SymDifference()|

function” on page 7-131|

Computes the union of two geometries

‘The ST Union() function” on|

page 7—140|

Generate a new geometry from
an existing geometry.

Generates a geometry that is the buffer that
surrounds the source object

‘The ST Buffer() function” on|

page 7—22'

Generates the combined boundary of the
geometry

"“The ST Boundary() function” on|

page 7—2!]

Calculates the spatial extent of all geometries in
a table column

‘The SE_BoundingBox() function”]

on page 7—21|

Generates the convex hull of a geometry

"The ST _ConvexHull() function”|

on page 7-3!]

Generates the bounding box of a geometry

‘The ST_Envelope() function” on|

page 7—52]

Generates a geometry with fewer vertices but of
the same general shape

"The SE_Generalize() function” on|

page 7—6!]

Generates an ST_MultiPoint representing points
that have the specified measure value

"The ST_LocateAlong() function’]

on page 7—82|

Generates an ST_MultiPoint or
ST_MultiLineString representing points or paths
that have measures in the specified range

"The ST_LocateBetween()|

function” on page 7-90|

Appends a vertex to a linestring

‘The SE_VertexAppend ()|

function” on page 7-142|

Deletes a vertex from a geometry

‘The SE_VertexDelete() function”

on page 7-142

Updates a vertex in a geometry

‘The SE_VertexUpdate() function”|

on page 7—142|

Manage collections.

Returns the nth geometry

‘The ST_GeometryN() function”|

on page 7—62]

Returns the number of geometries in the
collection

‘The ST_NumGeometries()|

function” on page 7-107]

Nearest-neighbor queries.

Retrieves nearby geometries in increasing
distance order. SE_NearestBbox() is similar to
SE_Nearest(), but measures distances between
bounding boxes of geometries.

‘The SE_Nearest() and|

SE NearestBbox() functions” on|

page 7—106|

Chapter 7. Spatial functions 7-9

Table 7-4. Spatial functions by task type (continued)

Function task type

Description

Function name

Assist in managing spatial
reference systems.

Computes the false origin and system units for
a data set and creates an entry in the
spatial_references table

"The SE_CreateSRID() function”)

on page 7—3§|

Returns the OGC well-known text
representation of a spatial reference system

‘The SE_CreateSrtext() function”|

on page 7—3§|

Returns the text for all types of spatial reference
systems that use the specified ID

‘The SE_CreateSrtextList()|

function” on page 7-38

Returns the number of spatial reference system
types for a specified ID

"The SE_CreateSrtextCount()|

function” on page 7-3§

Returns the spatial reference ID for a geometry

“The ST _SRID() function” on page|

N

-128

Returns the Authority Name and Authority
SRID of a spatial reference ID

‘The SE_SRID_Authority()|

function” on page 7-130|

Transforms a geometry from one spatial
reference system to another

‘The ST Transform() function” on|

page 7—136|

Administration

Returns the in-row, out-of-row, and total size of
a geometry in bytes

‘The SE_InRowSize() function” on|

page 7—63

‘The SE_OutOfRowSize()

function” on page 7-109|

‘The SE_TotalSize() function” on|

page 7—133|

Reinitializes the spatial reference system
memory cache

"The SE_Metadatalnit() function”|

on page 7—94_Jl

Returns the value of a specified parameter or
all parameters if called with no parameters

"The SE_ParamGet() function” on|

page 7—112]

Sets the specified parameter to a new value

"The SE_ParamSet() function” on|

page 7-112

Returns usage information (if called with no
parameters)

"The SE_ParamSet() function” on|

page 7—112]

Returns the version and release date of the
spatial data extension

"The SE_Release() function” on|

page 7—122|

Generates a sort key for geometries

‘The SE_SpatialKey() function” on|

age 7-128

Controls tracing to assist in debugging

"The SE_Trace() function” on|

page 7—135|

The ST_Area() function

The ST_Area() function returns the area of a polygon or multipolygon.

Syntax

ST Area(p1l ST _Polygon)
ST Area(p1l ST_Polygon, linear_uom varchar(128))

ST Area(mp1l ST MultiPolygon)
ST Area(mp1l ST MultiPolygon, linear_uom varchar(128))

7-10

IBM Informix Spatial Data User's Guide

The linear_uom parameter converts the result to the specified unit of measure. To
calculate the area if the polygon is in a geographic coordinate system where the
coordinates are in an angular unit of measure, you must specify a linear unit of
measure with the linear_uom parameter. Angular units of measure are converted to
linear units of measure by great-circle calculations. If the polygon is in a projected
coordinate system that has a unit of measure that is different from the unit of
measure that is specified by the linear_uom parameter, then the returned value is
converted to the unit of measure that is specified by the linear_uom parameter. The
linear_uom parameter must be the name of a linear unit of measure from the
unit_name column of the st_units_of measure table.

Return type
DOUBLE PRECISION
Example: Find the area of buildings

The city engineer needs a list of building areas. To create the list, a GIS technician
selects the building ID and area of each building footprint.

The building footprints are stored in the buildingfootprints table that is created
with the following CREATE TABLE statement:
CREATE TABLE buildingfootprints (building_id integer,

lot_id integer,

footprint ST MultiPolygon);

To satisfy the city engineer's request, the technician selects the unique key, the
building_id, and the area of each building footprint from the buildingfootprints
table:

SELECT building_id, ST_Area(footprint) area
FROM buildingfootprints;

building_id area
506 78.00000000000
543 68.00000000000

1208 123.0000000000
178 87.00000000000

The following figure shows the four building footprints that are labeled with their
building ID numbers and displayed alongside their adjacent street.

Chapter 7. Spatial functions 7-11

543

I
[—
1208 178
-

Figure 7-1. Building footprints

Examples: Find the areas of polygons

The following statement returns the area of a polygon in square meters:

EXECUTE FUNCTION round(
st_area(
'32608 polygon((576100 15230, 576100 15232, 576102 15232,
576102 15230, 576100 15230))'::st_polygon,
"meter'),
2);

(expression)
4.00000000000000
1 row(s) retrieved.

The following statement returns the area of a multipolygon in square meters:

EXECUTE FUNCTION round(
st_area(
'32608 multipolygon(((576100 15230, 576100 15232, 576102 15232,
576102 15230, 576100 15230)),((576104 4, 576104 6, 576106 6,
576106 4, 576104 4)))'::st_multipolygon,
"meter'),
2);

(expression)
8.00000000000000

1 row(s) retrieved.

Example: Find the area of a polygon that has angular
coordinates

The following statement returns the area in square meters of a 10 kilometer buffer

around the coordinates from the angular coordinate system WGS 84 - 4326 that
represent the latitude and longitude of New York (40.67000 N, 73.94000 W):

7-12 IBM Informix Spatial Data User's Guide

EXECUTE FUNCTION ST_Area(ST_Buffer('4326 point(-73.94000 40.67000)'
::st_point, 10, 'kilometer')::st_polygon, 'meter');

(expression)

313934956.2857
Related reference:

[“The st_units_of_measure table” on page 1-17]

The ST_AsBinary() function

The ST_AsBinary() function takes a geometry object and returns its well-known
binary representation.

The return type of ST_AsBinary() is defined as ST_Geometry to allow spatial
objects greater than 2 kilobytes to be retrieved by a client application. Typically,
you use ST_AsBinary() to retrieve spatial data from the server and send it to a
client, as in:

SELECT ST_AsBinary(geomcol) FROM mytable

IBM Informix automatically casts the output of the ST_AsBinary() function to the
proper data type for transmission to the client.

You can write user-defined routines (UDRs) in C or SPL to extend the functionality
of the existing spatial data type functions. You can use ST_AsBinary() to convert
an ST_Geometry to its well-known binary representation. If you pass the output of
ST_AsBinary() to another UDR whose function signature requires an LVARCHAR
input, you should explicitly cast the return type of ST_AsBinary() to LVARCHAR,
as in:

EXECUTE FUNCTION MySpatialFunc(ST_AsBinary(geomcol)::1varchar);

Syntax
ST _AsBinary(gl ST_Geometry)

Return type
ST_Geometry
Example

The code fragment below converts the footprint multipolygons of the
buildingfootprints table into WKB multipolygons using the ST_AsBinary()
function. The multipolygons are passed to the application's draw_polygon()
function for display:

/* Create the SQL expression. x/
sprintf(sql_stmt,
"SELECT ST_AsBinary(zone) "
"FROM sensitive_areas WHERE "
"SE_EnvelopesIntersect(zone,ST PolyFromWKB(?,%d))", srid);

/* Prepare the SQL statement. =/
SQLPrepare(hstmt, (UCHAR *) sql_stmt, SQL_NTS);

/* Bind the query shape parameter. */

pcbvaluel = query_wkb_len;

SQLBindParameter (hstmt, 1, SQL PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, query_wkb_Ten, 0,
query_wkb_buf, query wkb_len, &pcbvaluel);

Chapter 7. Spatial functions 7-13

/* Execute the query. */
rc = SQLExecute(hstmt);

/* Assign the results of the query (the buildingfootprint polygons)
* to the fetched_binary variable. */
SQLBindCol (hstmt, 1, SQL_C_BINARY,

fetched_wkb_buf, 10000, &fetched wkb_len);

/* Fetch each polygon within the display window and display it. */
while (1)

rc = SQLFetch(hstmt);
if (rc == SQL_NO_DATA_FOUND)
break;
else
returncode_check(NULL, hstmt, rc, "SQLFetch");

draw_polygon(fetched_wkb_buf);
1

/* Close the result set cursor */
SQLCloseCursor(hstmt) ;

The SE_AsGML() function

7-14

The SE_AsGML() function returns the Geography Markup Language (GML)
representation of an ST_Geometry spatial type.

Typically, you use the SE_AsGML() function to retrieve the GML representation of
a spatial primitive from the server and send it to a client, as in:

SELECT SE_AsGML(geomcol) FROM mytable

The return type of the SE_AsGML() function is defined as LVARCHAR. You can
write user-defined routines (UDRs) in C or SPL to extend the functionality of the
existing spatial data type functions. You can use the SE_AsGML() function to
convert an ST_Geometry type to its GML representation.

Syntax
SE_AsGML(p ST_Geometry)

Return type
ST_Geometry
Example

In this example, the SE_AsGML() function converts the location column of the
table mytable into its GML description.

CREATE TABLE mytable (id integer, location ST_Point);

INSERT INTO mytable VALUES(
1,
ST PointFromText('point (10.02 20.01)', 1000)
)s
SELECT SE_AsGML(location) FROM mytable WHERE id = 1;
<gml:Point srsName="UNKNOWN">

<gml :coord><gml :X>10.02</gm1 : X><gm1:Y>20.01</gml:Y></gml:coord>
</gml:Point>

IBM Informix Spatial Data User's Guide

The $INFORMIXDIR/extend/spatial.version/examples/gml directory contains more
information about how to use an XML parser to validate the results of this
function.

The ST_AsGML() function

The ST_AsGML() function returns the Geography Markup Language (GML)
representation of an ST_Geometry spatial type that conforms to either the GML2 or
GML3 standard.

Typically, you use the ST_AsGML() function to retrieve the GML representation of
a spatial primitive from the server and send it to a client, specifying the GML
version to use. For example:

SELECT ST_AsGML(geomcol, 3) FROM mytable

Syntax
ST AsGML(p ST Geometry, int Version)

Version is the GML version that is used to encode the returned geometry. Specify 2
for GML2 and 3 for GML3. The default is 2.

Return type
ST_Geometry
Example

The first example returns a geometry from the mypoints table as a GML2
representation. The second example returns the geometry as a GML3
representation.

SELECT id, ST_AsGML(pt,2) FROM mypoints WHERE id=1
id 1

<gml:Point> <gml:coord><gml:X>-95.7</gml :X>
<gml:Y>38.1</gml:Y></gml:coord></gml:Point>

SELECT id, ST_AsGML(pt,3) AS gml_v32arg, ST _AsGML(pt)
AS gml_v3larg FROM mypoints WHERE id=1

id 1
gml_v32arg <gml:Point><gml:pos>-95.7 38.1</gml:pos></gml:Point>
gml_v3larg <gml:Point><gml:pos>-95.7 38.1</gml:pos></gml:Point>

The $INFORMIXDIR/extend/spatial.version/examples/gml directory contains more
information about how to use an XML parser to validate the results of this
function.

The SE_AsKML() function

The SE_AsKML() function returns the Keyhole Markup Language (KML)
representation of an ST_Geometry spatial type.

Typically, you use the SE_AsKML() function to retrieve the KML representation of
a spatial primitive from the server and send it to a client, as in:

SELECT SE_AsKML(geomcol) FROM mytable

Chapter 7. Spatial functions 7-15

The return type of the SE_AsKML() function is defined as LVARCHAR. You can
write user-defined routines (UDRs) in C or SPL to extend the functionality of the
existing spatial data type functions.

Syntax
SE_AsKML(p ST_Geometry)

Return type
ST_Geometry
Example

In this example, the SE_AsKML() function converts the location column of the
table mytable into its KML description.

CREATE TABLE mytable (id integer, location ST Point);

INSERT INTO mytable VALUES(
1, ST_PointFromText('point (10.02 20.01)', 1000)
)s

SELECT id, SE_AskML(pl) FROM point_t ORDER BY id asc;
id 100_xy
<Point><coordinates>10.02,20.01</coordinates></Point>

CREATE TABLE 1ine_t (id integer, pl ST_LineString);

INSERT INTO line_t VALUES (

1,
ST LineFromText('linestring (0.0 0.0,0.0 1.0,1.0 0.0,1.0 1.0)',1000)
).

1 row(s) inserted.

INSERT INTO line_t VALUES (

2,

ST LineFromText('linestring z (0.0 0.0 0,0.0 1.0 1,1.0 0.0 1,1.0 1.0 1)',1000)
).

1 row(s) inserted.

INSERT INTO line_t VALUES(

3,

ST_LineFromText('linestring m (0.0 0.0 0,0.0 1.0 1,1.0 0.0 1,1.0 1.0 1)',1000)
)s

1 row(s) inserted.

SELECT id, SE_AsKML(pl) FROM line_t ORDER BY id ASC;

id 1
<LineString><coordinates>0,0 0,1 1,0 1,1</coordinates></LineString>
id 2

<LineString>
<coordinates>0,0,0 0,1,1 1,0,1 1,1,1</coordinates>
</LineString>
id 3
<LineString><coordinates>0,0 0,1 1,0 1,1</coordinates></LineString>

The ST_AsKML() function

The ST_AsKML() function returns the Keyhole Markup Language (KML)
representation of an ST_Geometry spatial type.

7-16 IBM Informix Spatial Data User's Guide

ST_AsKML() can also take an optional parameter that describes KML shape
attributes.

Syntax

ST AsKML(p ST_Geometry)
ST_AsKML(p ST_Geometry, attributes lvarchar)

The attributes parameter can contain one or more KML shape attributes, in XML
format. The following table describes common KML shape attributes.

Table 7-5. KML shape attributes

Attribute Description

<extrude> A Boolean value that specifies if the geometry is connected to the ground
(1) or not (0). To extrude a geometry, the value of the <altitudeMode>
attribute must be either relativeToGround or absolute and the Z
coordinate within the <coordinates> element must be greater than zero

0).

If this attribute is not specified, it is false (0).

<tessellate> A Boolean value that specifies if the geometry should follow the terrain
(1) or not (0). To enable tessellation for the geometry, the value for the
<altitudeMode> attribute must be clampToGround.

If this attribute is not specified, it is false (0).

<altitudeMode> | Specifies how Z coordinates in the <coordinates> element are interpreted.
Possible values are:

clampToGround (default)
Indicates to ignore the altitude specification in the geometry and
place it at ground level.

relativeToGround
Interprets the altitude specification in the geometry and places it
at that altitude above the ground.

absolute
Interprets the altitude specification in the geometry and places it
at that altitude above sea level.

The Spatial DataBlade® module does not check whether the attributes are valid. If
any of the attributes are not valid, the resulting KML fragment might not be valid
when it is received by the application.

Return type
LVARCHAR

Example
EXECUTE FUNCTION ST_AsKML(ST_PointFromText('POINT(-83.54354 34.23425)"',4))

Output:

<Point>
<coordinates>-83.5435399663,34.2342500677</coordinates>
</Point>

In this example, ST_AsKML() contains KML shape attributes to specify that the
geometry is connected to the ground:

Chapter 7. Spatial functions 7-17

EXECUTE FUNCTION ST_AsKML(ST_PointFromText('POINT Z
(-83.54523 34.214312 100)',4),
'<extrude>1</extrude><altitudeMode>
clampToGround</altitudeMode>"');

Output:

<Point>
<extrude>l</extrude>
<altitudeMode>clampToGround</altitudeMode>
<coordinates>-83.545522957,34.2143120335,100</coordinates>
</Point>

The SE_AsShape() function

7-18

The SE_AsShape() function takes a geometry object and returns it in ESRI
shapefile format.

The return type of SE_AsShape() is defined as ST_Geometry to allow spatial
objects greater than 2 kilobytes in size to be retrieved by a client application.

Typically, you use ST_AsShape() to retrieve spatial data from the server and send
it to a client, as in:

SELECT SE_AsShape(geomcol) FROM mytable

IBM Informix automatically casts the output of the SE_AsShape() function to the
proper data type for transmission to the client.

You can write user-defined routines (UDRs) in C or SPL to extend the functionality
of the existing spatial data type functions. You can use SE_AsShape() to convert an
ST_Geometry to ESRI shapefile format. If you pass the output of SE_AsShape() to
another UDR whose function signature requires an LVARCHAR input, you should
explicitly cast the return type of SE_AsShape() to LVARCHAR, as in:

EXECUTE FUNCTION MySpatialFunc(SE_AsShape(geomcol)::Tvarchar);

Syntax
SE_AsShape(gl ST _Geometry)

Return type
ST_Geometry
Example

The code fragment below illustrates how the SE_AsShape() function converts the
zone polygons of the sensitive_areas table into shape polygons. These shape
polygons are passed to the application's draw_polygon() function for display:

/* Create the SQL expression. */
sprintf(sql_stmt,
"SELECT SE_AsShape(zone) "
"FROM sensitive_areas WHERE "
"SE_EnvelopesIntersect(zone,SE_PolyFromShape(?,%d))", srid);

/* Prepare the SQL statement. =*/
SQLPrepare(hstmt, (UCHAR *)sql_stmt, SQL_NTS);

/* Bind the query geometry parameter. */
pcbvaluel = query_shape_Ten;
SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,

IBM Informix Spatial Data User's Guide

SQL_INFX_UDT_LVARCHAR, query shape_len, 0,
query_shape_buf, query_shape_len, &pcbvaluel);

/* Execute the query. */
rc = SQLExecute(hstmt);

/* Assign the results of the query (the Zone polygons) to the
fetched_shape_buf variable. */
SQLBindCol (hstmt, 1, SQL_C_BINARY,
fetched shape_buf, 10000, &fetched shape len);

/* Fetch each polygon within the display window and display it. */
while (SQL_SUCCESS == (rc = SQLFetch(hstmt)))
draw_polygon(fetched_shape_buf);

The ST_AsText() function

The ST_AsText() function takes an ST_Geometry object and returns its well-known
text representation.

The return type of ST_AsText() is defined as ST_Geometry to allow spatial objects
greater than 2 kilobytes to be retrieved by a client application.

Typically, you use ST_AsText() to retrieve spatial data from the server and send it
to a client, as in:

SELECT ST_AsText(geomcol) FROM mytable

IBM Informix automatically casts the output of the ST_AsText() function to the
proper data type for transmission to the client.

You can write user-defined routines (UDRs) in C or SPL to extend the functionality
of the existing spatial data type functions. You can use ST_AsText() to convert an
ST_Geometry to its well-known text representation. If you pass the output of
ST_AsText() to another UDR whose function signature requires an LVARCHAR
input, you should explicitly cast the return type of ST_AsText() to LVARCHAR, as
in:

EXECUTE FUNCTION MySpatialFunc(ST_AsText(geomcol)::1varchar)

Syntax
ST _AsText(gl ST_Geometry)

Return type

ST_Geometry

Example

The ST_AsText() function converts the hazardous_sites location point into its text
description:

CREATE TABLE hazardous_sites (site_id integer,

name varchar(40),
Tocation ST_Point);

INSERT INTO hazardous_sites VALUES(

102, 'W. H. Kleenare Chemical Repository',

ST _PointFromText('point (1020.12 324.02)',1000)
)s

Chapter 7. Spatial functions 7-19

SELECT site_id, name, ST AsText(Tocation) Location
FROM hazardous_sites;

site_id 102
name W. H. Kleenare Chemical Repository
Tocation POINT (1020.12 324.02)

The ST_Boundary() function

The ST_Boundary() function takes a geometry object and returns its combined
boundary as a geometry object.

Syntax
ST Boundary(gl ST_Geometry)

Return type
ST_Geometry
Example

In this example the boundary_test table is created with two columns: geotype
defined as a VARCHAR, and g1 defined as the superclass ST_Geometry. The
INSERT statements that follow insert each one of the subclass geometries. The
ST_Boundary() function retrieves the boundary of each subclass stored in the g1
geometry column. Note that the dimension of the resulting geometry is always one
less than the input geometry. Points and multipoints always result in a boundary
that is an empty geometry, dimension -1. Linestrings and multilinestrings return a
multipoint boundary, dimension 0. A polygon or multipolygon always returns a
multilinestring boundary, dimension 1:

CREATE TABLE boundary_test (geotype varchar(20),
gl ST _Geometry);

INSERT INTO boundary test VALUES(
'"Point', ST_PointFromText('point (10.02 20.01)',1000)
)s

INSERT INTO boundary test VALUES(

'Linestring',

ST_LineFromText('linestring (10.02 20.01,10.32 23.98,11.92 25.64)',1000)
)s

INSERT INTO boundary test VALUES(
'"Polygon',
ST_PolyFromText('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,19.15
33.94, 10.02 20.01))',1000)

)s

INSERT INTO boundary test VALUES(

'Multipoint',

ST _MPointFromText('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)',1000)
)s

INSERT INTO boundary_test VALUES(
'Multilinestring',
ST _MLineFromText('multilinestring ((10.02 20.01,10.32 23.98,11.92 25.64),
(9.55 23.75,15.36 30.11))',1000)

)s

INSERT INTO boundary test VALUES(
'Multipolygon',

7-20 IBM Informix Spatial Data User's Guide

ST _MPolyFromText('multipolygon (((10.02 20.01,11.92 35.64,25.02
34.15,19.15 33.94,10.02 20.01)),((51.71 21.73,73.36 27.04,71.52 32.87,52.43
31.90,51.71 21.73)))',1000)

)s

SELECT geotype, ST_Boundary(gl)
FROM boundary_test;

geotype Point
(expression) 1000 POINT EMPTY

geotype Linestring
(expression) 1000 MULTIPOINT (10.02 20.01, 11.92 25.64)

geotype Polygon
(expression) 1000 MULTILINESTRING ((10.02 20.01, 19.15 33.94, 25.02
34.15, 11.92 35.64, 10.02 20.01))

geotype Multipoint

(expression) 1000 POINT EMPTY

geotype Multilinestring

(expression) 1000 MULTIPOINT (9.55 23.75, 10.02 20.01, 11.92 25.64, 15.36 30.1
1)

geotype Multipolygon

(expression) 1000 MULTILINESTRING ((10.02 20.01, 19.15 33.94, 25.02 34.15,
11.92 35.64, 10.02 20.01),(51.71 21.73, 73.36 27.04, 71.52 32.87, 52.43
31.9, 51.71 21.73))

The SE_BoundingBox() function

The SE_BoundingBox() function returns a polygon which represents the spatial
extent (the minimum and maximum X and Y values) of all the geometries in a
spatial column of a table.

Important: You must have an R-tree index on the spatial column.

Syntax

SE_BoundingBox (tablename varchar(128),
columnname varchar(128))

Return type
ST_Polygon
Example

The buildingfootprints table is created with the following statement. The
building_id column uniquely identifies the buildings, the lot_id identifies the
building's lot, and the footprint multipolygon stores the building's geometry:
CREATE TABLE buildingfootprints (building_id integer,

Tot_id integer,

footprint ST MultiPolygon);

After the table is populated, create an R-tree index on the footprint column:

CREATE INDEX footprint_ix
ON buildingfootprints (footprint ST _Geometry ops)
USING RTREE;

Chapter 7. Spatial functions 7-21

Use the SE_BoundingBox() function to obtain a polygon that defines the spatial
extent of all the polygons in the table:

EXECUTE FUNCTION SE BoundingBox ('buildingfootprints', 'footprint');

(expression) 1000 POLYGON ((7 22, 38 22, 38 55, 7 55, 7 22))
Obtaining the Spatial Extent of a Functional Index

You cannot use the SE_BoundingBox() function on a functional R-tree index.
Instead, you must use the rtreeRootBB() function. The rtreeRootBB() function
takes the index name and type name as arguments and returns the well-known
text representation of an ST_Polygon, as shown in the following example:

CREATE TABLE xytab (x float, y float, srid int);

INSERT INTO xytab VALUES (1, 2, 0);
INSERT INTO xytab VALUES (3, 4, 0);

CREATE INDEX point_idx ON xytab
(ST_Point(x,y,srid) ST_Geometry ops) USING RTREE;

EXECUTE FUNCTION rtreeRootBB('point_idx', 'st_point');

(expression) © POLYGON ((1 2, 32,34, 14,12))

See also

[“The ST Envelope() function” on page 7-52|

The ST_Buffer() function

7-22

The ST_Buffer() function encircles a geometry object at a specified distance and
returns a geometry object that is the buffer that surrounds the source object.

Syntax

ST Buffer(gl ST Geometry, distance double precision)

ST Buffer(gl ST_Geometry, distance double_precision, linear_uom varchar(128))
Return type

ST_Geometry

Usage

As shown in the following figure, ST_Buffer() generates a polygon or a
multipolygon that surrounds a geometry at a specified radius.

IBM Informix Spatial Data User's Guide

Buffering a
ST_LineString

Buffering a
ST_Polygon with
one interior ring

Buffering a
ST_Point

Buffering a
ST_MultiPoint

Figure 7-2. Buffers generated by the ST_Buffer() function

A single polygon results when a primary geometry is buffered or when the buffer
polygons of a collection are close enough to overlap. When enough separation
exists between the elements of a buffered collection, individual buffer ST_Polygons
result in an ST_MultiPolygon.

The ST_Buffer() function accepts both positive and negative distances, but only
geometries with a dimension of 2 (ST_Polygon and ST_MultiPolygon) can apply a
negative buffer. The absolute value of the buffer distance is used when the
dimension of the source geometry is less than 2. Generally, positive buffer
distances generate polygon rings away from the center of the source geometry and,
for the exterior ring of a ST_Polygon or ST_MultiPolygon, toward the center when
the distance is negative. For interior rings of an ST_Polygon or ST_MultiPolygon,
the buffer ring is toward the center when the buffer distance is positive and away
when it is negative.

The buffering process merges buffer polygons that overlap. Negative distances
greater than one-half the maximum interior width of a polygon result in an empty
geometry.

The linear_uom parameter converts the result to the specified unit of measure. To
calculate the buffer if the geometries are in a geographic coordinate system where
the coordinates are in an angular unit of measure, you must specify a linear unit of
measure with the linear_uom parameter. Angular units of measure are converted to
linear units of measure by great-circle calculations. If the geometry is in a projected
coordinate system that has a unit of measure that is different from the unit of
measure that is specified by the linear_uom parameter, then the returned value is
converted to the unit of measure that is specified by the linear_uom parameter. The
linear_uom parameter must be the name of a linear unit of measure from the
unit_name column of the st_units_of measure table.

Chapter 7. Spatial functions 7-23

7-24

Example: Find 5-mile radii of hazardous sites

The county supervisor needs a list of hazardous sites whose 5-mile radius overlaps
sensitive areas such as schools, hospitals, and nursing homes. The sensitive areas
are stored in the table sensitive_areas that is created with the following CREATE
TABLE statement. The zone column, which is defined as a ST_Polygon, stores the
outline of each of the sensitive areas:
CREATE TABLE sensitive_areas (id integer,

name varchar(128),

size float,

type varchar(10),
zone ST Polygon);

The hazardous sites are stored in the following hazardous_sites table. The location
column, which is defined as a point, stores the geographic center of each
hazardous site:

CREATE TABLE hazardous_sites (site_id integer,

name varchar(40),
location ST_Point);

The sensitive_areas and hazardous_sites tables are joined by the ST_Overlaps()
function. This function returns t (TRUE) for all sensitive_areas rows whose zone
polygons overlap the buffered 5-mile radius of the hazardous_sites location point.
SELECT sa.name, hs.name

FROM sensitive_areas sa, hazardous_sites hs
WHERE ST _Overlaps(sa.zone, ST Buffer(hs.location,26400));

name Johnson County Hospital
name Landmark Industrial

name Summerhill Elementary School
name Landmark Industrial

The following figure shows that some of the sensitive areas in this administrative
district lie within the 5-mile buffer radius of the hazardous site locations. It is clear
that both buffers intersect the hospital and one intersects the school. The nursing
home lies safely outside both radii.

IBM Informix Spatial Data User's Guide

Hospital

[]
i School
| | | =]
; Nursing
Home

Figure 7-3. Sensitive areas

Example: Find a 3-meter buffer around a multipoint

The following statement returns a polygon that surrounds a multipoint by a buffer

of 3 meters:

EXECUTE FUNCTION st_buffer(
'32608 multipoint (576100 15230, 576100 15232, 576102 15232,

576102 15230, 576100 15230)'::st_multipoint,

3, 'meter');

(expression)

32608 POLYGON ((576097 15230, 576097.006423 15229.8037906, 576097
.025665 15229.6084214, 576097.057644 15229.414729, 576097.102223
15229.2235429, 576097.15921 15229.0356816, 576097.228361 15228.85
19497, 576097.309382 15228.6731339, 576097.401924 15228.5, 576097
.505591 15228.3332893, 576097.61994 15228.1737157, 576097.744481
15228.0219626, 576097.87868 15227.8786797, 576098.021963 15227.74
44806, 576098.173716 15227.61994, 576098.333289 15227.5055912, 57
6098.5 15227.4019238, 576098.673134 15227.3093818, 576098.85195 1
5227.2283614, 576099.035682 15227.1592096, 576099.223543 15227.10
22225, 576099.414729 15227.0576442, 576099.608421 15227.0256654,
576099.803791 15227.0064232, 576100 15227, 576100.196209 15227.00
64232, 576100.391579 15227.0256654, 576100.585271 15227.0576442,
576100.776457 15227.1022225, 576100.964318 15227.1592096, 576101
15227.1726392, 576101.035682 15227.1592096, 576101.223543 15227.1
022225, 576101.414729 15227.0576442, 576101.608421 15227.0256654,
576101.803791 15227.0064232, 576102 15227, 576102.196209 15227.0
064232, 576102.391579 15227.0256654, 576102.585271 15227.0576442,
576102.776457 15227.1022225, 576102.964318 15227.1592096, 576103
.14805 15227.2283614, 576103.326866 15227.3093818, 576103.5 15227
.4019238, 576103.666711 15227.5055912, 576103.826284 15227.61994,
576103.978037 15227.7444806, 576104.12132 15227.8786797, 576104.
255519 15228.0219626, 576104.38006 15228.1737157, 576104.494409 1
5228.3332893, 576104.598076 15228.5, 576104.690618 15228.6731339,
576104.771639 15228.8519497, 576104.84079 15229.0356816, 576104.
897777 15229.2235429, 576104.942356 15229.414729, 576104.974335 1
5229.6084214, 576104.993577 15229.8037906, 576105 15230, 576104.9
93577 15230.1962094, 576104.974335 15230.3915786, 576104.942356 1
5230.585271, 576104.897777 15230.7764571, 576104.84079 15230.9643
184, 576104.827361 15231, 576104.84079 15231.0356816, 576104.8977
77 15231.2235429, 576104.942356 15231.414729, 576104.974335 15231
.6084214, 576104.993577 15231.8037906, 576105 15232, 576104.99357
7 15232.1962094, 576104.974335 15232.3915786, 576104.942356 15232

Chapter 7. Spatial functions

7-25

.585271, 576104.897777 15232.7764571, 576104.84079 15232.9643184,
576104.771639 15233.1480503, 576104.690618 15233.3268661, 576104
.598076 15233.5, 576104.494409 15233.6667107, 576104.38006 15233.
8262843, 576104.255519 15233.9780374, 576104.12132 15234.1213203,
576103.978037 15234.2555194, 576103.826284 15234.38006, 576103.6
66711 15234.4944088, 576103.5 15234.5980762, 576103.326866 15234.
6906182, 576103.14805 15234.7716386, 576102.964318 15234.8407904,
576102.776457 15234.8977775, 576102.585271 15234.9423558, 576102
.391579 15234.9743346, 576102.196209 15234.9935768, 576102 15235,
576101.803791 15234.9935768, 576101.608421 15234.9743346, 576101
.414729 15234.9423558, 576101.223543 15234.8977775, 576101.035682
15234.8407904, 576101 15234.8273608, 576100.964318 15234.8407904
576100.776457 15234.8977775, 576100.585271 15234.9423558, 57610
.391579 15234.9743346, 576100.196209 15234.9935768, 576100 15235
, 576099.803791 15234.9935768, 576099.608421 15234.9743346, 57609
9.414729 15234.9423558, 576099.223543 15234.8977775, 576099.03568
2 15234.8407904, 576098.85195 15234.7716386, 576098.673134 15234.
6906182, 576098.5 15234.5980762, 576098.333289 15234.4944088, 576
098.173716 15234.38006, 576098.021963 15234.2555194, 576097.87868
15234.1213203, 576097.744481 15233.9780374, 576097.61994 15233.8
262843, 576097.505591 15233.6667107, 576097.401924 15233.5, 57609
7.309382 15233.3268661, 576097.228361 15233.1480503, 576097.15921
15232.9643184, 576097.102223 15232.7764571, 576097.057644 15232.
585271, 576097.025665 15232.3915786, 576097.006423 15232.1962094,
576097 15232, 576097.006423 15231.8037906, 576097.025665 15231.6
084214, 576097.057644 15231.414729, 576097.102223 15231.2235429,
576097.15921 15231.0356816, 576097.172639 15231, 576097.15921 152
30.9643184, 576097.102223 15230.7764571, 576097.057644 15230.5852
71, 576097.025665 15230.3915786, 576097.006423 15230.1962094, 576
097 15230))

D

1 row(s) retrieved.

Example: Find a buffer around a point that has angular
coordinates

The following statement returns a 20-mile buffer around the latitude and longitude
of New York (40.67000 N, 73.94000 W). The distance is linear, but the result is a
polygon in the WGS 84 geographic coordinate system:

EXECUTE FUNCTION ST Buffer('4326 point(-73.94000 40.67000)'::st point,
20, 'mile_us');

(expression) 4326 POLYGON ((-73.94 40.9598410446, -73.9650052554 40.9592177873
, -73.9899020331 40.9573507189, -74.0145823443 40.9542479379, -74
.0389391756 40.9499229014, -74.0628669705 40.9443943641, -74.0862
62103 40.9376862943, -74.1090233418 40.9298277658, -74.1310523018

40.9208528277, -74.1522538813 40.9108003512, -74.1725366824 40.8
997138558, -74.191813413 40.8876413147, -74.2100012676 40.8746349
404, -74.2270222864 40.8607509525, -74.2428036898 40.8460493278,
-74.2572781883 40.8305935344, -74.270384265 40.8144502508, -74.28
20664306 40.7976890725, -74.2922754499 40.7803822052, -74.3009685
386 40.762604149, -74.3081095301 40.7444313721, -74.3136690117 40
.725941978, -74.3176244305 40.7072153662, -74.3199601683 40.68833
18884, -74.3206675854 40.6693725018, -74.3197450343 40.6504184208
, -74.3171978431 40.6315507692, -74.3130382692 40.6128502335, -74
.3072854238 40.5943967192, -74.2999651681 40.5762690118, -74.2911
099818 40.558544444, -74.2807588051 40.5412985687, -74.2689568546

40.5246048426, -74.2557554153 40.5085343173, -74.2412116083 40.4
931553434, -74.2253881367 40.4785332853, -74.2083530102 40.464730
2495, -74.1901792499 40.4518048277, -74.170944575 40.4398118544,
-74.1507310716 40.4288021807, -74.1296248465 40.4188224653, -74.1
077156662 40.4099149825, -74.085096583 40.4021174495, -74.0618635
499 40.3954628715, -74.0381150244 40.389979407, -74.0139515651 40
.3856902529, -73.9894754197 40.3826135501, -73.9647901079 40.3807
623093, -73.94 40.3801443581, -73.9152098921 40.3807623093, -73.8

7-26 IBM Informix Spatial Data User's Guide

905245803 40.3826135501, -73.8660484349 40.3856902529, -73.841884
9756 40.389979407, -73.8181364501 40.3954628715, -73.794903417 40
.4021174495, -73.7722843338 40.4099149825, -73.7503751535 40.4188
224653, -73.7292689284 40.4288021807, -73.709055425 40.4398118544
, -73.6898207501 40.4518048277, -73.6716469898 40.4647302495, -73
.6546118633 40.4785332853, -73.6387883917 40.4931553434, -73.6242
445847 40.5085343173, -73.6110431454 40.5246048426, -73.599241194
9 40.5412985687, -73.5888900182 40.558544444, -73.5800348319 40.5
762690118, -73.5727145762 40.5943967192, -73.5669617308 40.612850
2335, -73.5628021569 40.6315507692, -73.5602549657 40.6504184208,
-73.5593324146 40.6693725018, -73.5600398317 40.6883318884, -73.
5623755695 40.7072153662, -73.5663309883 40.725941978, -73.571890
4699 40.7444313721, -73.5790314614 40.762604149, -73.5877245501 4
0.7803822052, -73.5979335694 40.7976890725, -73.609615735 40.8144
502508, -73.6227218117 40.8305935344, -73.6371963102 40.846049327
8, -73.6529777136 40.8607509525, -73.6699987324 40.8746349404, -7
3.688186587 40.8876413147, -73.7074633176 40.8997138558, -73.7277
461187 40.9108003512, -73.7489476982 40.9208528277, -73.770976658
2 40.9298277658, -73.793737897 40.9376862943, -73.8171330295 40.9
443943641, -73.8410608244 40.9499229014, -73.8654176557 40.954247
9379, -73.8900979669 40.9573507189, -73.9149947446 40.9592177873,
-73.94 40.9598410446))

1 row(s) retrieved.

Related reference:

[“The st_units_of measure table” on page 1-17

The ST_Centroid() function

The ST_Centroid() function takes a polygon or multipolygon and returns the
geometric center of the bounding box of the polygon or multipolygon as a point.

Syntax

ST Centroid(p1l ST_Polygon)
ST Centroid(mp1l ST MultiPolygon)

Return type
ST_Point
Example

The city GIS technician wants to display the building footprint multipolygons as
single points in a building density graphic.

The building footprints are stored in the buildingfootprints table that was created
with the following CREATE TABLE statement:
CREATE TABLE buildingfootprints (building_id integer,

lot_id integer,

footprint ST MultiPolygon);

The ST_Centroid() function returns the centroid of each building footprint
multipolygon:

SELECT building_id, ST Centroid(footprint) Centroid
FROM buildingfootprints;

building_id 506
centroid 1000 POINT (12.5 49.5)

Chapter 7. Spatial functions 7-27

building_id 543
centroid 1000 POINT (32 51.5)

building_id 1208
centroid 1000 POINT (12.5 30.5)

building_id 178
centroid 1000 POINT (32 28.5)

The ST_Contains() function

The ST_Contains() function takes two geometry objects and returns t (TRUE) if
the first object completely contains the second; otherwise, it returns f (FALSE).

Syntax
ST Contains(gl geometry, g2 geometry)

Usage
To return TRUE, the boundary and interior of the second geometry cannot intersect

the exterior of the first geometry. ST_Contains() returns the opposite result of
ST_Within().

o © o
e © .OO /\\/

ST_MultiPoint/ST_Point ST_MultiPoint/ST_MultiPoint ST_LineString/ST_Point
AN O O
ST_LineString/ST_MultiPoint ST_Polygon/ST_Point ST_Polygon/ST_MultiPoint
ST_LineString/ST_LineString ST_Polygon/ST_LineString ST_Polygon/ST_Polygon

Figure 7-4. Contained geometries

The results of the spatial relationship of the ST_Contains() function can be
understood or verified by comparing the results with a pattern matrix that
represents the acceptable values for the DE-9IM. The pattern matrix of the
ST_Contains() function states that the interiors of both geometries must intersect.
It also states that the interior and boundary of the secondary (geometry b) must
not intersect the exterior of the primary (geometry a).

Table 7-6. Pattern matrix for the ST_Contains() function.

b

Interior Boundary Exterior

Interior T * *

7-28 IBM Informix Spatial Data User's Guide

Table 7-6. Pattern matrix for the ST_Contains() function (continued).

b
Interior Boundary Exterior
a Boundary * * *
Exterior F F *

Return type
BOOLEAN
Example

In the example below, two tables are created: buildingfootprints contains a city's
building footprints, and lots contains its lots. The city engineer wants to ensure
that all building footprints are completely inside their lots.

In both tables, the ST_MultiPolygon data type stores the geometry of the building
footprints and the lots. The database designer selected multipolygons for both
features because lots can be separated by natural features such as rivers, and
building footprints can comprise several buildings:
CREATE TABLE buildingfootprints (building_id integer,

Tot_id integer,

footprint ST MultiPolygon);

CREATE TABLE Tots (lot_id integer,
lot ST _MultiPolygon);

The city engineer first selects the buildings that are not contained within one lot:

SELECT building_id
FROM buildingfootprints, lots
WHERE NOT ST_Contains(Tot,footprint);

Although the first query provides a list of all building IDs that have footprints
outside a lot polygon, it does not determine whether the rest are assigned the
correct lot_id. The city engineer runs a second query to check the data integrity on
the lot_id column of the buildingfootprints table:
SELECT bf.building id, bf.lot id, Tots.Tot id

FROM buildingfootprints bf, lots

WHERE NOT ST Contains(lot,footprint)
AND Tots.Tot_id <> bf.lot_id;

In the following figure, the building footprints are labeled with their building IDs
and lie inside their lot lines. The lot lines are illustrated with dotted lines.
Although not shown, they extend to the street centerline to completely encompass
the lot lines and the building footprints within them.

Chapter 7. Spatial functions 7-29

Lot lines

1208 178

T

Building

Figure 7-5. Building footprints and lot lines.

Related reference:

[“The Dimensionally Extended 9 Intersection Model” on page 7-2|

The ST_ConvexHull() function

The ST_ConvexHull() function returns the convex hull of any geometry object that
has at least three vertices forming a convex.

Syntax
ST ConvexHull (gl ST_ Geometry)

Usage

Creating a convex hull is often the first step when tessellating a set of points to
create a triangulated irregular network (TIN). If vertices of the geometry do not
form a convex, ST_ConvexHull() returns a null.

ST_ConvexHull() generates an ST_Polygon value from the convex hull of three of

the geometries that are pictured in the following figure. ST_ConvexHull() returns
a null for the two-point ST_LineString because it does not form a convex hull.

dw g

Figure 7-6. The ST_ConvexHull() function.

Return type

ST_Geometry

7-30 IBM Informix Spatial Data User's Guide

Example

The example creates the convexhull_test table that has two columns: geotype and
gl. The geotype column is of VARCHAR(20) type and holds the name of the
geometry subclass that is stored in g1, an ST_Geometry column:

CREATE TABLE convexhull_test (geotype varchar(20),
gl ST_Geometry) ;

The following INSERT statements insert several geometry subclasses into the
convexhull test table:

INSERT INTO convexhull test VALUES(

'Point',

ST_PointFromText('point (10.02 20.01)',1000)
)s

INSERT INTO convexhull test VALUES(

'Linestring’',

ST_LineFromText('linestring (10.02 20.01,10.32 23.98,11.92 25.64)',1000)
)s

INSERT INTO convexhull test VALUES(

'"Polygon',

ST PolyFromText('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01))"',1000)

)s

INSERT INTO convexhull_test VALUES(

'MultiPoint',

ST_MPointFromText('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)',1000)
)s

INSERT INTO convexhull_test VALUES(

'MultiLineString',

ST_MLineFromText('multilinestring ((10.02 20.01,10.32 23.98,11.92
25.64),(9.55 23.75,15.36 30.11))',1000)
)s

INSERT INTO convexhull test VALUES(

'Multipolygon',

ST _MPolyFromText('multipolygon (((10.02 20.01,11.92 35.64,25.02
34.15,19.15 33.94,10.02 20.01)),((51.71 21.73,73.36 27.04,71.52
32.87,52.43 31.90,51.71 21.73)))',1000)

)s

The SELECT statement lists the subclass name that is stored in the geotype column
and the convex hull:

SELECT geotype, ST_ConvexHul1(gl) convexhull
FROM convexhull_test;

The ST_CoordDim() function

The ST_CoordDim() function returns the coordinate dimensions of the
ST_Geometry value.

For example, a point with a Z coordinate has three dimensions and a point with a
Z coordinate and measures has four dimensions.

Syntax
ST_CoordDim(g ST_Geometry)

Chapter 7. Spatial functions 7-31

Return type
INTEGER
Example

The coorddim_test table is created with the columns geotype and g1. The geotype
column stores the name of the geometry subclass stored in the g1 ST_Geometry
column:

CREATE TABLE coorddim_test (geotype varchar(20),
gl ST _Geometry);

The INSERT statements insert a sample subclass into the coorddim_test table:

INSERT INTO coorddim test VALUES(

'Point',

ST PointFromText('point (10.02 20.01)',1000)
)s

INSERT INTO coorddim test VALUES(

'Point',

ST PointFromText('point z (10.02 20.01 3.21)',1000)
)s

INSERT INTO coorddim_test VALUES(

'LineString',

ST _LineFromText('linestring (10.02 20.01, 10.32 23.98, 11.92 25.64)',1000)
)s

INSERT INTO coorddim_test VALUES(

'LineString',

ST _LineFromText('linestring m (10.02 20.01 1.23, 10.32 23.98 4.56, 11.92
25.64 7.89)"',1000)
)s

INSERT INTO coorddim test VALUES(

'Polygon',

ST PolyFromText('polygon ((10.02 20.01,11.92 35.64,25.02
34.15,19.15 33.94, 10.02 20.01))"',1000)
)s

INSERT INTO coorddim_test VALUES(

'"Polygon',

ST _PolyFromText('polygon zm ((10.02 20.01 9.87 1.23, 11.92
35.64 7.65 2.34, 25.02 34.15 6.54 3.45, 19.15 33.94 5.43 4.56,
10.02 20.01 9.87 1.23))',1000)

)s

The SELECT statement lists the subclass name stored in the geotype column with
the dimension of that geometry:

SELECT geotype, ST_CoordDim(gl) coord_dimension
FROM coorddim_test;

geotype coord_dimension

Point
Point
LineString
LineString
Polygon
Polygon

PO wWwMNDwWN

6 row(s) retrieved.

7-32 IBM Informix Spatial Data User's Guide

The SE_CreateSRID() function

The SE_CreateSRID() function is a utility function that, given the X and Y extents
of a spatial data set, computes the false origin and system units and creates a new
entry in the spatial_references table. Appropriate offsets and scale factors for
typical Z values and M values are also provided.

Syntax

Use the following syntax to create a spatial reference system that is based on an
existing spatial reference system that is not listed in the spatial_references table:
SE_CreateSRID (factory_ id integer,

type varchar(64) default NULL,

description varchar(64) default NULL,

SRID integer default NULL)

Table 7-7. Options for the SE_CreateSRID() function

Parameter Description

factory_id The ESRI Projection Engine ID number of an
existing spatial reference system that is not
listed in the spatial_references table on
which to base the new spatial reference
system.

If the factory_id is the same as an SRID in
the spatial_references table, an error is
returned.

type The type of coordinate system:

* projcs: Default. Projected coordinate
system.

* geogcs: Geographic coordinate system.

description Your description of the spatial reference
system.

Default is 'auth_name auth_srid auth_version',
where auth_name is the authority name,
auth_srid is the factory ID, and auth_version
is the version number that is associated with
the factory ID.

SRID The new SRID.

Default is the same value as the factory_id
parameter.

Use the following syntax to create a spatial reference system by specifying X and Y
extents:

SE_CreateSRID (xmin float, ymin float,
xmax float, ymax float,
description varchar(64))

Table 7-8. Options for the SE_CreateSRID() function

Parameter Description

xmin The minimum value of the x-coordinate
ymin The minimum value of the y-coordinate
xmax The maximum value of the x-coordinate

Chapter 7. Spatial functions 7-33

Table 7-8. Options for the SE_CreateSRID() function (continued)

Parameter Description

ymax The maximum value of the y-coordinate

description Your description of the spatial reference
system

Usage

The spatial_references table holds data about spatial reference systems. A spatial
reference system is a description of a coordinate system for a set of geometric
objects; it gives meaning to the X and Y values that are stored in the database.

You need to specify an SRID of a spatial reference system when you load spatial
data into a database because the database server translates and scales each floating
point coordinate of the geometry into a 53-bit positive integer before storage.

The spatial_references table contains many predefined spatial reference systems. If
the predefined spatial reference systems are not suitable for your data, you can run
the SE_CreateSRID() function to create a more appropriate spatial_references
table entry. You can base your system on an existing spatial reference system that
is not already in the spatial_references table or you can specify the X and Y
extents of your data. If you specify the X and Y extent data, the database server
calculates the value for the false origin and system units. Therefore, the
SE_CreateSRID() function might not create sufficiently refined parameters to
describe the spatial reference system that you need. You can use an INSERT
statement to specify false origin and system units.

Return type
Returns the SRID of a newly created spatial_references table entry as an integer.
Example: Create an SRID by specifying X and Y extents

The following example creates an entry in the spatial_references table that is
suitable for spatial data in New Zealand and returns the assigned SRID of 1001:

EXECUTE FUNCTION SE CreateSRID (166, -48, 180, -34,
"New Zealand: Tat/lon coords");

(expression)

1001

The following query shows the resulting spatial_references table entry:
SELECT * FROM spatial_references WHERE srid = 1001;

srid 1001

description New Zealand: lat/lon coords
auth_name

auth_srid

falsex 164.6000000000

falsey -49.4000000000

xyunits 127826407 .5600

falsez -1000.00000000

7-34 IBM Informix Spatial Data User's Guide

zunits 1000.000000000

falsem -1000.00000000
munits 1000.000000000
srtext UNKNOWN

Example: Create a spatial reference system that is a copy of an
existing system

The following statement creates a spatial reference system with an SRID of 1002
that is based on the EPSG coordinate system that has a factory ID of 4326:

EXECUTE FUNCTION SE CreateSrid(4326, 'projcs', 'WGS 1984', 1002);
(expression)
1002

The following statement shows the properties of SRID 1002:
SELECT * FROM spatial_references WHERE srid = 1002;

srid 1002
description WGS 1984
auth_name EPSG
auth_srid 4326

falsex -216.000000000

falsey -126.000000000

xyunits 20849998274900

falsez -1000.00000000

zunits 1000.000000000

falsem -1000.00000000

munits 1000.000000000

srtext GEOGCS["GCS_WGS_1984" ,DATUM["D_WGS_1984",SPHEROID["WGS_1984",63781
37.0,298.257223563]] ,PRIMEM["Greenwich",0.0] ,UNIT["Degree",0.01745
32925199433]]

1 row(s) retrieved.
Example: Add an existing spatial reference system

The following statement shows the OGC well-known text representation of an
existing spatial reference system that has a factory ID of 3000. This factory ID is
not listed in the spatial_reference table by default.

EXECUTE FUNCTION SE_CreateSrtext(3000);

(expression) PROJCS["Gunung_Segara NEIEZ",GEOGCS["GCS_Gunung Segara",DATUM["D _
Gunung_Segara",SPHEROID["Bessel 1841",6377397.155,299.1528128]],P
RIMEM["Greenwich",0.0] ,UNIT["Degree",0.0174532925199433]],PROJECT
ION["Mercator"],PARAMETER["False Easting",3900000.0],PARAMETER["F
alse_Northing",900000.0] ,PARAMETER["Central Meridian",110.0],PARA
METER["Standard_Parallel 1",4.45405154589751] ,UNIT["Meter",1.0]]

1 row(s) retrieved.)

The following statement adds the factory ID 3000 to the spatial_reference table.
Because an SRID is not specified, by default, the SRID is the same as the factory
ID:

EXECUTE FUNCTION SE_CreateSrid(3000);

(expression)

Chapter 7. Spatial functions 7-35

3000

1 row(s) retrieved.

The following statement shows the properties of SRID 3000:
SELECT = FROM spatial_references WHERE srid = 3000;

srid 3000
description EPSG 3000, version 8.1.1
auth_name EPSG
auth_srid 3000

falsex -22096080.0000
falsey -35225280.0000
xyunits 124666151.4420
falsez -1000.00000000
zunits 1000.000000000
falsem -1000.00000000
munits 1000.000000000
srtext PROJCS

1 row(s) retrieved.
Related concepts:

[“False origin and system units” on page 1-15|

Related reference:

[“The spatial_references table” on page 1-12|
[“The SE_CreateSrtext() function”]

The SE_CreateSrtext() function

The SE_CreateSrtext() function returns the OGC well-known text representation of
a spatial reference system, given the ESRI Projection Engine ID number for a
coordinate system.

The ID numbers are in the file pedef.h, in the directory $INFORMIXDIR/extend/
spatial.version/include.

Syntax

SE_CreateSrtext (factory_id integer)
SE_CreateSrtext (factory id integer, type varchar(64) default NULL)

The type parameter indicates the type of spatial reference system when different
types of systems have overlapping IDs. The following table lists the values of the
type parameter. You can use either the long type value or the corresponding short
type value.

Table 7-9. Object types

Spatial reference system
Long type value Short type value name
geogcs gcs Geographic Coordinate
System
projcs pcs Projected Coordinate System
coordsys crs Either the Geographic
Coordinate System or the
Project Coordinate System

7-36 IBM Informix Spatial Data User's Guide

Table 7-9. Object types (continued)

Spatial reference system

Long type value Short type value name

vertcs ves Vertical Coordinate System

geOXYZCS XyZ Geographic Coordinate
System with XYZ coordinates

hvcoordsys hve Horizontal-vertical
Coordinate System

datum dat Datum

vdatum vdt Vertical datum

hvdatum hvd Either datum or vertical
datum

geogtran gtf Geographic Transform

verttran vitf Vertical Transform

linunit lin Linear units

angunit ang Angular units

unit uni Either linear or angular units

areaunit are Area units

primem pri Prime Meridian

spheriod sph Spheroid

method mth Method

htmethod htm Horizontal method

vtmethod vtm Vertical method

projection Prj Projection method

parameter par Parameter

Return type
LVARCHAR

Example

To obtain the spatial reference system text for the 1983 North American Datum:

EXECUTE FUNCTION SE_CreateSrtext(4269);

(expression) GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",SP
HEROID["GRS_1980",6378137,298.257222101]] ,PRIMEM["Greenwich",0] ,U
NIT["Degree",0.0174532925199432955]]

Tip: You can transfer the output of SE_CreateSrtext() directly into the
spatial_references table with the following SQL statement:

UPDATE spatial_references
SET srtext = SE _CreateSrtext(4269) WHERE srid = 1000;

Related reference:
[“The SE_CreateSRID() function” on page 7-33|
[‘The text representation of a spatial system” on page B-1|

Chapter 7. Spatial functions

7-37

The SE_CreateSrtextCount() function

The SE_CreateSrtextCount() function returns the number of spatial reference
systems that use the specified ESRI Projection Engine ID number.

Syntax
SE_CreateSrtextCount (factory_id int)

Return type
INTEGER
Example

To return the number of spatial reference systems that use the ID 5109:
EXECUTE FUNCTION SE_SrtextCount(5109);

(expression)
2

1 row(s) retrieved.

The ID 5109 has two spatial reference system types.

The SE_CreateSrtextList() function

7-38

The SE_CreateSrtextList() function returns the OGC well-known text
representation of every spatial reference system that uses the specified ESRI
Projection Engine ID number. The text for each spatial reference system is
separated by a new line character.

If the specified ID number is used by a single spatial reference system, the
SE_CreateSrtextList() function returns the same text as the SE_CreateSrtext()
function. The ID numbers are in the file pedef.h, in the directory
$INFORMIXDIR/extend/spatial.version/include.

Syntax
SE_CreateSrtextList (factory_id int)

Return type
LVARCHAR
Example

To return the spatial reference system text for the ID 5109:
EXECUTE FUNCTION SE_CreateSrtextList(5109);

(expression) PROJCS["ETRS_1989 NTM Zone 9",GEOGCS["GCS_ETRS_1989",DATUM["D_ETR
S _1989",SPHEROID["GRS_1980",6378137.0,298.257222101]] ,PRIMEM["Gre
enwich",0.0] ,UNIT["Degree",0.0174532925199433]] ,PROJECTION["Trans
verse Mercator"] ,PARAMETER["False_Easting",100000.0],PARAMETER["F
alse_Northing",1000000.0] ,PARAMETER["Central_Meridian",9.5],PARAM
ETER["Scale_Factor",1.0],PARAMETER["Latitude Of Origin",58.0],UNI

IBM Informix Spatial Data User's Guide

T["Meter",1.0]]
VDATUM["Normaal_Amsterdams_Peil"]

1 row(s) retrieved.

The ID 5109 has two spatial reference system types: a Projected Coordinate System
and a vertical datum.

The ST_Crosses() function

The ST_Crosses() function returns t (TRUE) if the intersection of two geometry
objects results in an ST_Geometry object whose dimension is one less than the
maximum dimension of the source objects.

Syntax
ST Crosses(gl ST_Geometry, g2 ST_Geometry)

Usage
The intersection object must contain points that are interior to both source

geometries and it must not be equal to either of the source objects. Otherwise, it
returns f (FALSE).

o o °
[] []
[
[]
ST_MultiPoint/ST_LineString ST_MultiPoint/ST_Polygon

— /\/
ST_LineString/ST_LineString ST_LineString/ST_Polygon

Figure 7-7. Crossing geometries

The results of the spatial relationship of the ST_Crosses() function can be
understood or verified by comparing the results with a pattern matrix that
represents the acceptable values for the DE-9IM. The ST_Crosses() function returns
TRUE if the intersection object contains points that are interior to both source
geometries, but is not equal to either of the source objects.

This ST_Crosses() function pattern matrix applies to ST_MultiPoint and
ST_LineString; ST_MultiPoint and ST_MultiLineString; ST_MultiPoint and
ST_Polygon; ST_MultiPoint and ST_MultiPolygon; ST_LineString and ST_Polygon;
and ST_LineString and ST_MultiPolygon. The matrix states that the interiors must
intersect and at least the interior of the primary (geometry 2) must intersect the
exterior of the secondary (geometry b).

Table 7-10. Pattern matrix for the ST_Crosses() function.

Interior (b) Boundary (b) Exterior (b)
Interior (a) T * T
Boundary (a) * * *

Chapter 7. Spatial functions 7-39

7-40

Table 7-10. Pattern matrix for the ST_Crosses() function (continued).
Interior (b) Boundary (b) Exterior (b)

Exterior (a) * * *

This ST_Crosses() function matrix applies to ST_LineString and ST_LineString;
ST_LineString and ST_MultiLineString; and ST_MultiLineString and
ST_MultiLineString. The matrix states that the dimension of the intersection of the
interiors must be 0 (intersect at a point). If the dimension of this intersection was 1
(intersect at a linestring), the ST_Crosses() function would return FALSE but the
ST_Overlaps() function would return TRUE.

Interior (b) Boundary (b) Exterior (b)
Interior (a) 0 * *
Boundary (a) * * *
Exterior (a) * * *

Return type
BOOLEAN
Example

The county government is considering a new regulation that states all hazardous
waste storage facilities must not be within 5 miles of any waterway. The county
GIS manager has an accurate representation of rivers and streams, which are stored
as multilinestrings in the waterways table. However, the GIS manager has only a
single point location for each of the hazardous waste storage facilities:

CREATE TABLE waterways (id integer,

name varchar(128),
water ST MultiLineString);

CREATE TABLE hazardous_sites (site_id integer,
name varchar(40),
Tocation ST _Point);

The GIS manager needs to alert the county supervisor to any existing facilities that
would violate the proposed regulation. To determine whether such notification is
necessary, the GIS manager must buffer the hazardous_sites locations to see
whether any rivers or streams cross the buffer polygons. The ST_Crosses()
function compares the buffered hazardous_sites with waterways, returning only
those records where the waterway crosses over the county's proposed regulated
radius:

SELECT ww.name waterway, hs.name hazardous_site

FROM waterways ww, hazardous_sites hs
WHERE ST _Crosses (ST _Buffer(hs.location, (5 * 5280)),ww.water);

waterway Fedders creek
hazardous_site Landmark Industrial

The following figure shows that the 5-mile buffered radius of the hazardous waste
sites crosses the stream network that runs through the county's administrative
district. Because the stream network is defined as an ST_MultiLineString, all
linestring segments that are part of the segments that cross the radius are included

IBM Informix Spatial Data User's Guide

in the result set.

UL/
| I/
L/ °
4/
A —
\ / /4/
I ’/) {
/A~
AL T
/
//

/— Waterways

Figure 7-8. Hazardous waste sites and the stream network.

Related reference:

[‘The Dimensionally Extended 9 Intersection Model” on page 7-2|

The ST_Difference() function

The ST_Difference() function takes two geometry objects and returns a geometry
object that is the difference of the source objects. In other words, it returns the
portion of the primary geometry that is not intersected by the secondary geometry,
the logical AND NOT of space.

Syntax
ST Difference(gl ST_Geometry, g2 ST_Geometry)

Usage
The ST_Difference() function operates only on geometries of like dimension and
returns an ST_GeomCollection (ST_MultiPoint, ST_MultiLineString, or

ST_MultiPolygon) that has the same dimension as the source geometries. If the
source geometries are equal, an empty geometry is returned.

Chapter 7. Spatial functions 7-41

Y e z * __, ¢
ST_Point/ST_Point Empty ST_Point/ST_Point ST_MultiPoint

— L — O
° e L

ST_Point/ST_MultiPoint ST_MultiPoint ST_MultiPoint/ST_MultiPoint Empty

® ([] PY A N
> []
[]

ST_MultiPoint/ST_MultiPoint ST_MultiPoint ~ ST_LineString/ST_LineString ST_LineString

NP <J — 4

ST_LineString/ST_LineString Empty ST_Polygon/ST_Polygon Empty

ST_Polygon/ST_Polygon ST_Polygon
Figure 7-9. The ST_Difference() function

Return type
ST_Geometry

Example

The city engineer needs to know the total city lot area that is not covered by
buildings. In fact, the engineer wants the sum of the lot area after the building area

is removed:

CREATE TABLE buildingfootprints (building_id integer,
lot_id integer,
footprint ST MultiPolygon);

CREATE TABLE Tots (lot_id integer,
Tot ST MultiPolygon);

The city engineer equijoins the buildingfootprints and lots tables on the lot_id
column and takes the sum of the area of the difference of the lots less the building

footprints:

SELECT SUM(ST_Area(ST_Difference(lot,footprint)::ST _MultiPolygon))
FROM buildingfootprints bf, Tots
WHERE bf.Tot id = Tots.lot id;

7-42 IBM Informix Spatial Data User's Guide

The ST_Dimension() function

The ST_Dimension() function returns the dimension of a geometry object.

A geometry can have one of three dimensions:

0 The geometry has neither length nor area.
1 The geometry has length.

2 The geometry has area.

Syntax

ST _Dimension(gl ST_Geometry)
Return type

INTEGER

Example

The dimension_test table is created with the columns geotype and gl. The
geotype column stores the name of the subclass stored in the g1 ST_Geometry
column:

CREATE TABLE dimension_test (geotype varchar(20),
gl ST Geometry);

The following INSERT statements insert a sample subclass into the dimension_test
table:

INSERT INTO dimension_test VALUES(

'Point',

ST PointFromText('point (10.02 20.01)',1000)
)3

INSERT INTO dimension_test VALUES(

'Linestring',

ST _LineFromText('linestring (10.02 20.01,10.32 23.98,11.92 25.64)',1000)
)s

INSERT INTO dimension_test VALUES(

'"Polygon',

ST _PolyFromText('polygon ((10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01))',1000)
)s

INSERT INTO dimension_test VALUES(

'Multipoint',

ST MPointFromText('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)',1000)
)s

INSERT INTO dimension_test VALUES(

'Multilinestring',

ST MLineFromText('multilinestring ((10.02 20.01,10.32
23.98,11.92 25.64),(9.55 23.75,15.36 30.11))"',1000)
)s

INSERT INTO dimension_test VALUES(

'Multipolygon',

ST_MPolyFromText ('multipolygon (((10.02 20.01,11.92 35.64,25.02
34.15,19.15 33.94,10.02 20.01)),((51.71 21.73,73.36 27.04,71.52
32.87,52.43 31.90,51.71 21.73)))"',1000)

)s

Chapter 7. Spatial functions 7-43

The SELECT statement lists the subclass name stored in the geotype column with
the dimension of that geotype:

SELECT geotype, ST Dimension(gl) Dimension
FROM dimension_test;

geotype dimension

Point
Linestring
Polygon
Multipoint
Multilinestring
Multipolygon

N—RON RO

The ST_Disjoint() function

The ST_Disjoint() function takes two geometries and returns t (TRUE) if the two
geometries are completely non-intersecting; otherwise, it returns f (FALSE).

Syntax
ST Disjoint(gl ST _Geometry, g2 ST _Geometry)

Usage

The following figure shows various geometric objects that do not touch each other.

7-44 1BM Informix Spatial Data User's Guide

(
ST_Point/ST_Point ST_Point/ST_MultiPoint
o
o
ST_Point/ST_LineString Point/Polygon
[o Y
[
® o
Py ([
ST_MultiPoint/ST_MultiPoint ST_MultiPoint/ST_LineString
o
[
L °
ST_MultiPoint/ST_Polygon ST_LineString/ST_Polygon

-

ST_Polygon/ST_Polygon
Figure 7-10. Disjoint geometries

The results of the spatial relationship of the ST_Disjoint() function can be
understood or verified by comparing the results with a pattern matrix that
represents the acceptable values for the DE-9IM. The ST_Disjoint() function
pattern matrix states that neither the interiors nor the boundaries of either
geometry intersect.

Table 7-11. Pattern matrix for the ST_Disjoint() function.

b
Interior Boundary Exterior
Interior F F *
a Boundary F F *
* * *

Exterior

Return type

BOOLEAN

Chapter 7. Spatial functions 7-45

7-46

Example

An insurance company wants to assess the insurance coverage for the town's
hospital, nursing homes, and schools. Part of this process includes determining the
threat that the hazardous waste sites pose to each institution. Currently, the
insurance company wants to consider only those institutions that are not at risk of
contamination. The insurance company commissions a GIS consultant to locate all
institutions that are outside a 5-mile radius of a hazardous waste storage facility.

The sensitive_areas table contains several columns that describe the threatened
institutions in addition to the zone column, which stores the institutions' polygon
geometries:
CREATE TABLE sensitive areas (id integer,

name varchar(128),

size float,

type varchar(10),

zone ST Polygon);

The hazardous_sites table stores the identity of the sites in the site_id and name
columns, The actual geographic location of each site is stored in the location point
column:

CREATE TABLE hazardous_sites (site_id integer,

name varchar(40),
Tocation ST Point);

The SELECT statement lists the names of all sensitive areas that are outside the
5-mile radius of a hazardous waste site:
SELECT sa.name

FROM sensitive_areas sa, hazardous_sites hs
WHERE ST Disjoint (ST Buffer(hs.location,(5 * 5280)), sa.zone);

You can also use the ST_Intersects() function to perform this query because
ST _Intersects() and ST_Disjoint() return the opposite results:
SELECT sa.name

FROM sensitive_areas sa, hazardous_sites hs
WHERE NOT ST Intersects(ST_Buffer(hs.location,(5 * 5280)), sa.zone);

The following figure shows that the nursing home is the only sensitive area for
which the ST_Disjoint() function returns t (TRUE) when comparing sensitive sites
to the 5-mile radius of the hazardous waste sites. The ST_Disjoint() function
returns t whenever two geometries do not intersect in any way.

IBM Informix Spatial Data User's Guide

(] il Hospital
|—|7A p
)

| | | I School

Nursing
Home

Figure 7-11. Sensitive Sites and Hazardous Waste Sites

Related reference:

[“The Dimensionally Extended 9 Intersection Model” on page 7-2|

The SE_Dissolve() function

The SE_Dissolve() function is an aggregate function that computes the union of
geometries of the same dimension. If just one geometry satisfies your query, it is
returned unaltered.

Syntax
SE_Dissolve (gl ST_Geometry)

Usage

The following figure shows the union of various geometric objects.

Chapter 7. Spatial functions 7-47

° ° o °
—_—
[o
ST_Point ST_MultiPoint
—_—
ST_Polygon ST_MultiPolygon
\o/—b \o/
ST_LineString ST_MultiLineString

Figure 7-12. Geometries resulting from use of SE_Dissolve()

Return type
ST_Geometry
Example

The following example creates a single multipolygon from the individual hexagons
that are inserted into the honeycomb table:

CREATE TABLE honeycomb (cell_id int, hex_cell ST _Polygon);

INSERT INTO honeycomb

VALUES (1, 'O polygon((5 10,7 7,10 7,12 10,10 13,7 13,5 10))');
INSERT INTO honeycomb

VALUES (2, 'O polygon((12 4,15 4,17 7,15 10,12 10,10 7,12 4))');
INSERT INTO honeycomb

VALUES (3, '0 polygon((17 7,20 7,22 10,20 13,17 13,15 10,17 7))');
INSERT INTO honeycomb

VALUES (4, '0 polygon((15 10,17 13,15 16,12 16,10 13,12 10,15 10))');

SELECT SE_Dissolve(hex_cel1) FROM honeycomb;

se_dissolve O MULTIPOLYGON (((5 10, 7 7, 10 7, 12 4, 15 4, 17 7, 20 7, 22
10, 20 13, 17 13, 15 16, 12 16, 10 13, 7 13, 5 10)))

Related reference:

[“The ST_Union() function” on page 7-14()

The ST_Distance() function

The ST_Distance() function returns the shortest distance that separates two
geometries.

7-48 IBM Informix Spatial Data User's Guide

Syntax

ST Distance(gl ST Geometry, g2 ST Geometry)
ST Distance(gl ST_Geometry, g2 ST_Geometry, Tinear_uom varchar(128))

The linear_uom parameter converts the result to the specified unit of measure. To
calculate the distance if the geometries are in a geographic coordinate system
where the coordinates are in an angular unit of measure, you must specify a linear
unit of measure with the linear_uom parameter. Angular units of measure are
converted to linear units of measure by great-circle calculations. If the geometries
are in a projected coordinate system that has a unit of measure that is different
from the unit of measure that is specified by the linear_uom parameter, then the
returned value is converted to the unit of measure that is specified by the
linear_uom parameter. The linear_uom parameter must be the name of a linear unit
of measure from the unit_name column of the st_units_of_measure table.

Return type

DOUBLE PRECISION

Example: List buildings within a foot of a lot line

The city engineer needs a list of all buildings within one foot of any lot line.

The building_id column of the buildingfootprints table uniquely identifies each
building. The lot_id column identifies the lot each building belongs to. The
footprints multipolygon stores the geometry of each building's footprint:
CREATE TABLE buildingfootprints (building_id integer,

Tot_id integer,

footprint ST MultiPolygon);

The lots table stores the lot_id that uniquely identifies each lot and the lot
ST_MultiPolygon that contains the lot geometry:

CREATE TABLE Tots (lot_id integer,
Tot ST MultiPolygon);

The following query returns a list of building IDs that are within one foot of their
lot lines. The ST_Distance() function performs a spatial join on the footprints and
lot ST_MultiPolygon columns. However, the equijoin between bf.lot_id and
lots.lot_id ensures that only the ST_MultiPolygons belonging to the same lot are
compared by the ST_Distance() function:
SELECT bf.building_id

FROM buildingfootprints bf, lots

WHERE bf.Tot_id = Tots.Tot_id
AND ST Distance(footprint,lot) <= 1.0;

Examples: Distance between two points

The following query returns the distance between two points in meters:

EXECUTE FUNCTION round(
ST Distance(
'32608 point (576100 15230)'::st_point,
'32608 point (576102 15230)'::st_point,
'meter'),
2);

(expression)

Chapter 7. Spatial functions 7-49

2.00000000000000

1 row(s) retrieved.

The following query returns the distance between two points in feet:

EXECUTE FUNCTION round(
ST Distance(
'32608 point (576100 15230)'::st_point,
'32608 point (576102 15230)'::st_point,
'foot'),
2);

(expression)
6.56000000000000

1 row(s) retrieved.

Examples: Find the distance between two points that have
angular units

These examples are based on the angular coordinate system WGS 84, which has
SRID 4326. They calculate the distance between the following latitude and
longitude values for New York and Los Angeles:

* Latitude and longitude of New York: 73.94000 W, 40.67000 N
 Latitude and longitude of Los Angles: 118.25000 W, 34.05000 N

The following statement returns the distance between New York and Los Angeles
in US miles:

EXECUTE FUNCTION ST_Distance('4326 point(-73.94000 40.67000)',
'4326 point(-118.25000 34.05000)', 'mile_us');

(expression)
2454.991002988

1 row(s) retrieved.

The following statement returns the distance between New York and Los Angeles
in kilometers:

EXECUTE FUNCTION ST _Distance('4326 point(-73.94000 40.67000)"',
'4326 point(-118.25000 34.05000)', 'kilometer');

(expression)
3950.932942578

1 row(s) retrieved.

Related reference:

[“The st_units_of_measure table” on page 1-17]

The ST_DistanceToPoint() function

The ST _DistanceToPoint() function returns the distance from the start of the line
to the specified point. Z coordinates and measures are ignored.

7-50 IBM Informix Spatial Data User's Guide

Syntax

ST DistanceToPoint (ST _LineString, ST Point)
ST DistanceToPoint (ST _MultiLineString, ST_Point)

Return type
DOUBLE
Example

The following SQL statement creates the sample_geometries table with two
columns. The ID column uniquely identifies each row. The geometry ST_LineString
column stores sample geometries.

CREATE TABLE sample_geometries(id INTEGER, geometry ST LINESTRING);

The following SQL statement inserts two rows into the sample_geometries table:

INSERT INTO sample_geometries(id, geometry)

VALUES

(1,ST_LineString('LINESTRING ZM(0 0 0 0, 10 100 1000 10000)',1)),
(2,ST_LineString('LINESTRING ZM(10 100 1000 10000, 0 0 0 0)',1));

The following SELECT statement and the corresponding result set show how to
use the ST_DistanceToPoint() function to find the distance to the point at the
location (1.5, 15.0):

SELECT ID, DECIMAL(ST DistanceToPoint(geometry,ST Point(1.5,15.0,1)),10,5)
AS DISTANCE FROM sample_geometries;

ID DISTANCE
1 15.07481
2 85.42394

2 record(s) selected.

The ST_EndPoint() function

The ST_EndPoint() function returns the last point of a linestring.

Syntax
ST _EndPoint(1nl ST_LineString)

Return type
ST_Point
Example

The endpoint_test table stores the gid INTEGER column, which uniquely identifies
each row and the In1 ST_LineString column that stores linestrings:

CREATE TABLE endpoint_test (gid integer,
Tnl ST_LineString);

The following INSERT statements insert linestrings into the endpoint_test table.

The first linestring does not have Z coordinates or measures, while the second one
does:

Chapter 7. Spatial functions 7-51

INSERT INTO endpoint_test VALUES(

1,

ST LineFromText('linestring (10.02 20.01,23.73 21.92,30.10 40.23)',1000)
)s

INSERT INTO endpoint_test VALUES(

2,

ST LineFromText('linestring zm (10.02 20.01 5.0 7.0,23.73 21.92
6.57.1,30.10 40.23 6.9 7.2)"',1000)
)3

The following query lists the gid column with the output of the ST_EndPoint()
function. The ST_EndPoint() function generates an ST_Point geometry:

SELECT gid, ST_EndPoint(1nl) Endpoint
FROM endpoint_test;

gid 1
endpoint 1000 POINT (30.1 40.23)

gid 2
endpoint 1000 POINT ZM (30.1 40.23 6.9 7.2)

See also

[“The ST StartPoint() function” on page 7-130|

The ST_Envelope() function

7-52

The ST_Envelope() function returns the bounding box of a geometry object.

This is usually a rectangle, but the envelope of a point is the point itself, and the
envelope of a horizontal or vertical linestring is a linestring represented by the
endpoints of the source geometry.

Syntax
ST_Envelope(gl ST_Geometry)

Return type
ST_Geometry
Example

The geotype column of the envelope_test table stores the name of the geometry
subclass stored in the g1 ST_Geometry column:

CREATE TABLE envelope_test (geotype varchar(20),
gl ST Geometry);

The following INSERT statements insert each geometry subclass into the
envelope_test table:

INSERT INTO envelope_test VALUES(

'Point',

ST_PointFromText('point (10.02 20.01)',1000)
)s

INSERT INTO envelope_test VALUES(

'Linestring',

ST LineFromText('linestring (10.01 20.01, 10.01 30.01, 10.01 40.01)', 1000)
)s

IBM Informix Spatial Data User's Guide

INSERT INTO envelope_test VALUES(

'Linestring',

ST_LineFromText('linestring (10.02 20.01,10.32 23.98,11.92 25.64)', 1000)
)s

INSERT INTO envelope_test VALUES(

'"Polygon',

ST_PolyFromText ('polygon ((10.02 20.01,11.92 35.64,25.02
34.15,19.15 33.94, 10.02 20.01))',1000)
)s

INSERT INTO envelope_test VALUES(

'Multipoint',

ST MPointFromText('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)', 1000)
)3

INSERT INTO envelope_test VALUES(

'Multilinestring',

ST MLineFromText('multilinestring ((10.01 20.01,20.01
20.01,30.01 20.01), (30.01 20.01,40.01 20.01,50.01 20.01))',1000)
)s

INSERT INTO envelope_test VALUES(

'Multilinestring',

ST_MLineFromText('multilinestring ((10.02 20.01,10.32
23.98,11.92 25.64),(9.55 23.75,15.36 30.11))"',1000)

)s

INSERT INTO envelope_test VALUES(

'Multipolygon',

ST_MPolyFromText('multipolygon (((10.02 20.01,11.92 35.64,25.02
34.15,19.15 33.94,10.02 20.01)),((51.71 21.73,73.36 27.04,71.52
32.87,52.43 31.90,51.71 21.73)))"',1000)

)s

The following query lists the subclass name and its envelope. The ST_Envelope()
function returns a point, a linestring, or a polygon:

SELECT geotype, ST _Envelope(gl) Envelope
FROM envelope_test;

geotype
envelope

geotype
envelope

geotype
envelope

geotype
envelope

geotype
envelope

geotype
envelope

geotype
envelope

geotype
envelope

Point
1000 POINT (10.02 20.01)

Linestring
1000 LINESTRING (10.01 20.01, 10.01 40.01)

Linestring
1000 POLYGON ((10.02 20.01, 11.92 20.01, 11.92 25.64, 10.02 25.64, 10.02 20.01))

Polygon
1000 POLYGON ((10.02 20.01, 25.02 20.01, 25.02 35.64, 10.02 35.64, 10.02 20.01))

Multipoint
1000 POLYGON ((10.02 20.01, 11.92 20.01, 11.92 25.64, 10.02 25.64, 10.02 20.01))

Multilinestring
1000 LINESTRING (10.01 20.01, 50.01 20.01)

Multilinestring
1000 POLYGON ((9.55 20.01, 15.36 20.01, 15.36 30.11, 9.55 30.11, 9.55 20.01))

Multipolygon
1000 POLYGON ((10.02 20.01, 73.36 20.01, 73.36 35.64, 10.02 35.64, 10.02 20.01))

Chapter 7. Spatial functions 7-53

See also

[‘The SE_BoundingBox() function” on page 7-21]|

The ST_EnvelopeAsGML() function

The ST_EnvelopeAsGML() function takes a geometry value returned by
ST_Envelope and generates a GML3 Envelope element.

Syntax
ST_EnvelopeAsGML(p ST_Geometry)

Return type
ST_Geometry

Example
ST _EnvelopeFromGML(ST_Envelope(ST_LineFromText ('LINESTRING(1 2, 3 4)', 1003)))

Output:

<gml:Envelope srsName="EPSG:1234">
<gml:TowerCorner> 1 2</gml:lowerCorner>
<gml:upperCorner> 3 4 </gml:upperCorner>
</gml:Envelope>

The SE_EnvelopeAsKML() function

7-54

The SE_EnvelopeAsKML() function takes a geometry value returned by
ST_Envelope and returns it as a KML LatLonBox.

Syntax
SE_EnvelopeAskML(p ST_Geometry)

Return type
ST_Geometry

Example

EXECUTE FUNCTION SE_EnvelopeAsKML(ST_PolyFromText('POLYGON
((-124.21160602 25.8373769872,
-67.1589579416 25.8373769872,
-67.1589579416 49.384359066,
-124.21160602 49.384359066,
-124.21160602 25.8373769872))',3));

Output:

<LatLonBox>
<north>49.384359066</north>
<south>25.8373769872</south>
<east>-67.1589579416</east>
<west>-124.21160602</west>
</LatLonBox>

IBM Informix Spatial Data User's Guide

The ST_EnvelopeFromGML() function

The ST_EnvelopeFromGML() function takes a GML2 or GML3 string
representation of an envelope and an optional spatial reference ID and returns a
geometry object.

If the srsName attribute is specified in the GML string, then a corresponding entry
in the spatial_references table must exist unless it is specified as UNKNOWN or
DEFAULT.

Syntax

ST_EnvelopeFromGML(gml_string Tvarchar)
ST _EnvelopeFromGML(gm1_string Tvarchar, SRID integer)

Return type
A four sided ST_Polygon representing the envelope.

Example

ST_EnvelopeFromGML('<gml:Envelope>
<gml:TowerCorner> -180.0 -90.0</gml:TowerCorner>
<gml :upperCorner> 180.0 90.0 </gml:upperCorner>
</gml:Envelope>', 1003)

The SE_EnvelopeFromKML() function

The SE_EnvelopeFromKML() function takes a KML LatLonBox or LatLonAltBox
and an optional spatial reference ID and returns a polygon.

The LatLonBox and LatLonAltBox contain four coordinates: north, south, east, and
west, that are used to form the traditional pair of SW, NE coordinates usually
found with bounding boxes. LatLonAltBox also contains the elements minAltitude
and maxAltitude, and while those will be accepted as valid tags in the KML
fragment, they are not used to form a Z-polygon. Only 2-D polygons are returned.

Syntax

SE_EnvelopeFromKML (km1_string Tvarchar)
SE_EnvelopeFromKML (km1_string Tvarchar, SRID integer)

Return type
A four sided ST_Polygon representing the envelope.
Example

In this example, the KML LatLonBox includes four coordinates:

EXECUTE FUNCTION SE_EnvelopeFromKML('<LatLonBox><north>34.54356</north>
<south>33.543634</south>
<east>-83.21454</east>
<west>-86.432536</west>"',4);

Output:

4 POLYGON ((-86.3253600195 33.5436340112, -83.2145400212 33.543630112,
-83.2145400212 34.5435600828, -86.3253600195 34.5435600828,
-86.3253600195 33.5436340112))

Chapter 7. Spatial functions 7-55

In this example, the KML LatLonAltBox includes the four coordinates as well as

the minAltitude, maxAltitude, and altitudeMode attributes:

EXECUTE FUNCTION SE_EnvelopeFromKML('<LatLonAltBox><north>45.0</north>
<south>42.0</south><east>-80.0</east><west>-82.0</west>
<minAltitude>0</minAltitude><maxAltitude>0</maxAltitude>
<altitudeMode>clampToGround</altitudeMode>',4);

However, the output only includes the four coordinates:
4 POLYGON((-82.0 42.0, -80.0 42.0, -80.0 45.0, -82.0 45.0, -82.0 42.0))

The SE_Envelopesintersect() function

The SE_EnvelopesIntersect() function returns t (TRUE) if the envelopes of two
geometries intersect; otherwise, it returns f (FALSE).

Syntax
SE_EnvelopesIntersect(gl ST_Geometry, g2 ST _Geometry)

Return type
BOOLEAN
Example

The get_window() function retrieves the display window coordinates from the
application. The window parameter is actually a polygon shape structure
containing a string of coordinates that represents the display polygon. The
SE_PolygonFromShape() function converts the display window shape into a
polygon that the SE_EnvelopesIntersect() function uses as its intersection
envelope. All sensitive_areas zone polygons that intersect the interior or boundary
of the display window are returned. Each polygon is fetched from the result set
and passed to the draw_polygon() function:

/* Get the display window coordinates as a polygon shape. */
get_window(&query_shape_buf, &query_shape_len);

/* Create the SQL expression. The envelopesintersect function limits

* the result set to only those zone polygons that intersect the

* envelope of the display window. */

sprintf(sql_stmt,
"select SE_AsShape(zone) ",
"from sensitive_areas where ",
"SE_EnvelopesIntersect(zone,SE_PolyFromShape(?,1))");

/* Prepare the SQL statement. =*/
SQLPrepare(hstmt, (UCHAR *)sql_stmt, SQL_NTS);

/* Bind the query geometry parameter. */

pcbvaluel = query_shape_len;

SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, query shape_len, 0,
query_shape_buf, query_shape_len, &pcbvaluel);

/* Execute the query. */
rc = SQLExecute(hstmt);

/* Assign the results of the query (the Zone polygons) to the
fetched_shape_buf variable. */

SQLBindCol (hstmt, 1, SQL_C_BINARY, fetched shape_buf, 100000,
&fetched_shape len);

7-56 IBM Informix Spatial Data User's Guide

/* Fetch each polygon within the display window and display it. =/
while (SQL_SUCCESS == (rc = SQLFetch(hstmt)))
draw_polygon(fetched_shape_buf);

The ST_Equals() function

The ST_Equals() function compares two geometries and returns t (TRUE) if the
geometries are spatially equal; otherwise, it returns f (FALSE).

Syntax
ST_Equals(gl ST Geometry, g2 ST Geometry)

Return type

BOOLEAN

Usage

The following figure shows sets of various geometric objects that are spatially
equivalent.

[]
ST_Point/ST_Point ST_LineString/ST_LineString
® (]
([J ([]
ST_MultiPoint/ST_MultiPoint ST_Polygon/ST_Polygon

= Co

ST_MultiLineString/ST_MultiLineString ST_MultiPolygon/ST_MultiPolygon

Figure 7-13. Equal geometries

Using the ST_Equals() function is functionally equivalent to using
ST_IsEmpty(ST_SymDifference(a,b)).

Since the ST_Equals() function is computationally intensive, consider whether you
can use the Equals() function instead, which does a byte-by-byte comparison of
two objects. The Equals() function is a system function. It is called in SQL
statements when you use the = operator, as shown in the second SELECT
statement in the following example.

To illustrate the difference between ST_Equals() and Equals(), consider the
following example:

Chapter 7. Spatial functions 7-57

7-58

CREATE TABLE equal_test (id integer,
Tine ST_LineString);

INSERT INTO equal_test VALUES
(1, ST_LineFromText('Tinestring(10 10, 20 20)"', 1000));

INSERT INTO equal_test VALUES
(2, ST LineFromText('1inestring(20 20, 10 10)', 1000));

The following query returns both rows because ST_Equals() determines that both
linestrings are spatially equivalent:

SELECT id FROM equal_test
WHERE ST Equals (line, ST _LineFromText('Tinestring(10 10, 20 20)', 1000));

id

1
2

The following query returns only the first row because Equals() performs only a
memory comparison of the linestrings:

SELECT id FROM equal_test
WHERE Tine = ST_LineFromText('linestring(10 10, 20 20)', 1000);

id
1
The results of the spatial relationship of the ST_Equals() function can be
understood or verified by comparing the results with a pattern matrix that
represents the acceptable values for the DE-9IM. The DE-9IM pattern matrix for the

ST_Equals() function ensures that the interiors intersect and that no interior or
boundary of either geometry intersects the exterior of the other.

Table 7-12. The DE-9IM pattern matrix for the ST_Equals() function.

b
Interior Boundary Exterior
Interior T *
a Boundary * *
Exterior F F *
Example

The city GIS technician suspects that some of the data in the buildingfootprints
table was somehow duplicated. To alleviate concern, the technician queries the
table to determine whether any of the footprints multipolygons are equal.

The buildingfootprints table is created with the following statement. The
building_id column uniquely identifies the buildings. The lot_id identifies the
building's lot, and the footprint multipolygon stores the building's geometry:
CREATE TABLE buildingfootprints (building_id integer,

lot_id integer,

footprint ST MultiPolygon);

IBM Informix Spatial Data User's Guide

The buildingfootprints table is spatially joined to itself by the ST_Equals()
function, which returns 1 whenever it finds two multipolygons that are equal. The
bfl.building_id <> bf2.building_id condition eliminates the comparison of a
geometry to itself:
SELECT bfl.building_id, bf2.building_id

FROM buildingfootprints bfl, buildingfootprints bf2

WHERE ST Equals(bfl.footprint,bf2.footprint)
AND bfl.building_id <> bf2.building_id;

Related reference:

|”The Dimensionally Extended 9 Intersection Model” on page 7—2|

The ST_ExteriorRing() function

The ST_ExteriorRing() function returns the exterior ring of a polygon as a
linestring.

Syntax
ST ExteriorRing(p1l ST_Polygon)

Return type
ST_LineString
Example

An ornithologist studying the bird population on several South Sea islands knows
that the feeding zone of the bird species of interest is restricted to the shoreline. As
part of the calculation of the island's carrying capacity, the ornithologist requires
the islands' perimeters. Some of the islands are so large, they have several ponds
on them. However, the shorelines of the ponds are inhabited exclusively by
another more aggressive bird species. Therefore, the ornithologist requires the
perimeter of the exterior ring only of the islands.

The ID and name columns of the islands table identifies each island, while the
land polygon column stores the island's geometry:
CREATE TABLE islands (id integer,

name varchar(32),
land ST_Polygon);

The ST_ExteriorRing() function extracts the exterior ring of each island polygon as
a linestring. The length of the linestring is calculated by the ST_Length() function.
The linestring lengths are summarized by the SUM operator:

SELECT SUM(ST_Length(ST_ExteriorRing(land)))
FROM islands;

As shown in the following figure, the exterior rings of the islands represent the

ecological interface each island shares with the sea. Some of the islands have lakes,
which are represented by the interior rings of the polygons.

Chapter 7. Spatial functions 7-59

Island shoreline

O

Figure 7-14. Islands and lakes

The SE_Generalize() function

7-60

The SE_Generalize() function reduces the number of vertices in an ST_LineString,
ST_MultiLineString, ST_Polygon, or ST_MultiPolygon while preserving the general
character of the geometric shape.

Syntax
SE_Generalize (gl ST_Geometry, threshold float)

The value of the threshold argument must be small enough compared to the size of
the object that the function can return a generalized shape.

Usage

This function uses the Douglas-Peucker line-simplification algorithm. The vertex
sequence of the input geometry is recursively subdivided until a run of vertices
can be replaced by a straight-line segment. No vertex in that iteration can deviate

from the straight line by more than the threshold.

Z values, if present, are not considered when a set of vertices are simplified.

IBM Informix Spatial Data User's Guide

N

S
-

S~

ST_Polygon

ST_MultiLineString
Figure 7-15. Geometries resulting from use of SE_Generalize()

Return type

ST_Geometry, unless the input geometry is an ST_Point, ST_MultiPoint, or an
empty geometry of any subtype, in which case this function returns NULL.

If the function returns error USE21, the value of the threshold argument is too large.
Example

The following statements create a table and a linestring that has multiple vertices:
CREATE TABLE jagged Tines(1ine ST_LineString);
INSERT INTO jagged lines VALUES(
"0 Tinestring(10 10, 20 20, 20 18, 30 30, 30 28, 40 40)"
)3

The following example includes a small threshold value and results in no vertices
being removed:

SELECT SE_Generalize(1ine, 0.5) FROM jagged_Tlines;

(expression) © LINESTRING (10 10, 20 20, 20 18, 30 30, 30 28, 40 40)

The following example includes a larger threshold value and results in some
vertices being removed:

SELECT SE_Generalize(1ine, 2) FROM jagged lines;

(expression) © LINESTRING (10 10, 40 40)

Chapter 7. Spatial functions 7-61

The ST_GeometryN() function

The ST_GeometryN() function takes a takes an ST_GeomCollection
(ST_MultiPoint, ST_MultiLineString, or ST_MultiPolygon) and an INTEGER index
and returns the nth ST_Geometry object in the collection.

Syntax

ST _GeometryN(mptl ST _MultiPoint, index integer)
ST_GeometryN(minl ST MultilLineString, index integer)
ST _GeometryN(mp11 ST MultiPolygon, index integer)

Return type
ST_Geometry
Example

The city engineer wants to know which building footprints are all inside the first
polygon of the lots ST_MultiPolygon.

The building_id column uniquely identifies each row of the buildingfootprints
table. The lot_id column identifies the building's lot. The footprint column stores
the building geometries:
CREATE TABLE buildingfootprints (building_id integer,

lot_id integer,

footprint ST MultiPolygon);

CREATE TABLE lots (lot_id integer,
lot ST MultiPolygon);

The query lists the buildingfootprints table values of building_id and lot_id for
all building footprints that are all within the first lot polygon. The
ST_GeometryN() function returns a first lot polygon element in the
ST_MultiPolygon:
SELECT bf.building_id,bf.Tot_id

FROM buildingfootprints bf,lots

WHERE ST _Within(footprint,ST_GeometryN(Tot,1))
AND bf.lot_id = lots.lot_id;

The ST_GeometryType() function

7-62

The ST_GeometryType() function takes an ST_Geometry object and returns its
geometry type as a string.

Syntax
ST_GeometryType (gl ST _Geometry)

Return type

VARCHAR(32) containing one of the following text strings:
* st point

* st linestring

* st polygon

* st_multipoint

* st multilinestring

IBM Informix Spatial Data User's Guide

e st multipolygon
Example

The geometrytype_test table contains the g1 ST_Geometry column:
CREATE TABLE geometrytype test(gl ST_Geometry);

The following INSERT statements insert each geometry subclass into the g1
column:

INSERT INTO geometrytype test VALUES(
ST_GeomFromText ('point (10.02 20.01)',1000)
)s

INSERT INTO geometryType test VALUES(

ST_GeomFromText('linestring (10.01 20.01, 10.01 30.01, 10.01 460.01)', 1000)
)s
INSERT INTO geometrytype test VALUES(

ST_GeomFromText ('polygon ((10.02 20.01,11.92 35.64,25.02
34.15,19.15 33.94, 10.02 20.01))',1000)
)s
INSERT INTO geometrytype test VALUES(

ST_GeomFromText ('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)"', 1000)
)s
INSERT INTO geometrytype test VALUES(

ST _GeomFromText('multilinestring ((10.02 20.01,10.32
23.98,11.92 25.64),(9.55 23.75,15.36 30.11))"',1000)
)s
INSERT INTO geometrytype test VALUES(

ST _GeomFromText ('multipolygon (((10.02 20.01,11.92 35.64,25.02
34.15,19.15 33.94 ,10.02 20.01)),((51.71 21.73,73.36 27.04,71.52
32.87,52.43 31.90,51.71 21.73)))"

,1000)
)s

The following query lists the geometry type of each subclass stored in the g1
geometry column:

SELECT ST_GeometryType(gl) Geometry type
FROM geometrytype test;

geometry type st point

geometry type st _linestring

geometry type st _polygon

geometry type st multipoint

geometry type st multilinestring

geometry type st multipolygon

The ST_GeomFromGML() function

The ST_GeomFromGML() function takes a GML2 or GML version 3 string
representation and an optional spatial reference ID and returns a geometry object.

Chapter 7. Spatial functions 7-63

7-64

If the srsName attribute is specified in the GML string, a corresponding entry must
exist in the spatial_references table, or it must be specified as UNKNOWN or
DEFAULT. The GML representation can include Z and M measures, but must
include the appropriate srsDimension attribute. The following table describes the
corresponding geometry values for each srsDimension value.

Table 7-13. Geometry values for srsDimension values

srsDimension

value Geometry value

2 A geometry value with only X and Y coordinate values.

3 A geometry value with X, Y, and Z coordinate values in GML version 3 or
using the <coordinates> tag in GML 2.
A geometry value with X, Y and measure values if the <X>, <Y>, and
<M> tags are used in the <coord> elements of the GML representation.

4 A geometry value with X, Y, Z, and measure coordinate values.

Syntax

ST_GeomFromGML(gm1_string Tvarchar)
ST_GeomFromGML (gm1_string lvarchar, SRID integer)

For SRID, specify 2 if the GML conforms to GML version 2, or specify 3 for GML3.
The default is 3.

Return type
ST_Geometry
Example

The geometry_test table contains the INTEGER gid column, which uniquely
identifies each row, and the g1 column, which stores the geometry:

CREATE TABLE geometry test (gid smallint, gl ST_Geometry);

The following INSERT statements insert the data into the gid and g1 columns of
the geometry_test table. The ST_GeomFromGML() function converts the GML text
representation of each geometry into its corresponding instantiable subclass:

INSERT INTO geometry test VALUES (

1,

ST_GeomFromGML('<gml:Point srsName="DEFAULT" srsDimension="2">
<gml :p0s>10.02 20.01</gml:pos></gml:Point>',1000)) ;

INSERT INTO geometry test VALUES (

2,

ST_GeomFromGML('<gml:LineString srsName="DEFAULT" srsDimension="2">
<gml:posList dimension="2">10.01 20.01 10.01 30.01 10.01 40.01
</gml:posList>
</gml:LineString>',1000)) ;

INSERT INTO geometry test VALUES (
3,
ST_GeomFromGML ('<gm1:Polygon srsName="DEFAULT" srsDimension="2">
<gml:exterior>
<gml:LinearRing>
<gml:posList dimension="2">
10.02 20.01 19.15 33.94 25.02 34.15 11.92 35.64 10.02 20.01
</gml:posList>
</gml:LinearRing>

IBM Informix Spatial Data User's Guide

</gml:exterior>
</gml:Polygon>',1000)) ;

INSERT INTO geometry test VALUES (
4,
ST_GeomFromGML ('<gm1:MultiPoint srsName="DEFAULT" srsDimension="2">

<gml:PointMember>

<gml:Point srsName="DEFAULT" srsDimension="2">

<gml:p0s>10.02 20.01</gml:pos>

</gml:Point>

</gml:PointMember><gml :PointMember>

<gml:Point srsName="DEFAULT" srsDimension="2">

<gml :pos>10.32 23.98</gml:pos>

</gml:Point>

</gml:PointMember>

<gml:PointMember>

<gml:Point srsName="DEFAULT" srsDimension="2">

<gml :pos>11.92 25.64</gml:pos>

</gml:Point>

</gml:PointMember>

</gml:MultiPoint>',1000)) ;

INSERT INTO geometry test VALUES (

5,

ST_GeomFromGML ('<gml:MultiLineString srsName="DEFAULT" srsDimension="2">
<gml:LineStringMember>
<gml:LineString srsName="DEFAULT" srsDimension="2">
<gml:posList dimension="2">10.02 20.01 10.32 23.98 11.92 25.64
</gml:posList>
</gml:LineString>
</gml:LineStringMember>
<gml:LineStringMember>
<gml:LineString srsName="DEFAULT" srsDimension="2">
<gml:posList dimension="2">9.55 23.75 15.36 30.11</gml:posList>
</gml:LineString>
</gml:LineStringMember>
</gml:MultilLineString>',1000)) ;

INSERT INTO geometry test VALUES(

6,

ST_GeomFromGML ('<gm1:MultiPolygon srsName="DEFAULT" srsDimension="2">
<gml:PolygonMember><gml:Polygon srsName="DEFAULT" srsDimension="2">
<gml:exterior>
<gml:LinearRing>
<gml:posList dimension="2">

10.02 20.01 19.15 33.94 25.02 34.15 11.92 35.64 10.02 20.01
</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</gml:PolygonMember>
<gml:PolygonMember>
<gml:Polygon srsName="DEFAULT" srsDimension="2">
<gml:exterior><gml:LinearRing>
<gml:posList dimension="2">
51.71 21.73 73.36 27.04 71.52 32.87 52.43 31.9 51.71 21.73
</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</gml:PolygonMember>
</gml:MultiPolygon>',1000)) ;

Chapter 7. Spatial functions

7-65

The ST_GeomFromKML() function

The ST_GeomFromKML() function takes a KML fragment and returns an
ST_Geometry corresponding to the fragment.

Syntax
ST_GeomFromKML (km1_string Tvarchar)

Return type

Depends on the KML fragment type, as shown in the following table.
Table 7-14. KML fragment to return type mapping

KML fragment Return type

Point ST_Point
LineString ST_LineString
Polygon ST_Polygon
MultiGeometry plus Point ST_MultiPoint
MultiGeometry plus LineString ST_MultiLineString
MultiGeometry plus Polygon ST_MultiPolygon
Example

The geometry_test table contains the INTEGER gid column, which uniquely
identifies each row, and the geom column, which stores the geometry:

CREATE TABLE geometry test (gid INTEGER, geom ST Geometry);

The following INSERT statements insert the data into the gid and geom columns
of the geometry_test table. The ST_GeomFromKML() function converts the KML
text representation of each geometry into its corresponding instantiable subclass:

INSERT INTO geometry test VALUES(1,ST_GeomFromKML('<Point><coordinates>
10.02,20.01</coordinates></Point>"',4))

INSERT INTO geometry test VALUES(2,ST_GeomFromKML('<LineString><coordinates>
10.01,20.01 20.01,30.01 30.01,40.01
</coordinates></LineString>',4));

The SE_GeomFromShape() function

7-66

The SE_GeomFromShape() function takes a shape and a spatial reference ID and
returns a geometry object.

Syntax
SE_GeomFromShape(sl Tvarchar, SRID integer)

Return type
ST_Geometry
Example

The following C code fragment contains ODBC functions included with the spatial
data type functions that insert data into the lots table.

IBM Informix Spatial Data User's Guide

The lots table was created with two columns: the lot_id, which uniquely identifies
each lot, and the lot polygon column, which contains the geometry of each lot:

CREATE TABLE Tots (lot_id integer,
lot ST MultiPolygon);

The SE_GeomFromShape() function converts shapes into an IBM Informix spatial
geometry. The entire INSERT statement is copied into shp_sql. The INSERT
statement contains parameter markers to accept the lot_id and lot data,
dynamically:

/* Create the SQL insert statement to populate the Tots
* table. The question marks are parameter markers that indicate
* the column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO lots (lot_id, lot) "
"VALUES(?, SE_GeomFromShape(?, %d))", srid);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)sql_stmt, SQL_NTS);

/* Bind the Tot_id to the first parameter. =/

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0, 0,
&lot_id, 0, &pcbvaluel);

/* Bind the Tot geometry to the second parameter. */

pcbvalue2 = Tot_shape_len;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, Tlot_shape_len, 0,
Tot_shape_buf, Tot_shape_len, &pcbvalue?);

/* Execute the insert statement. =*/
rc = SQLExecute (hstmt);

The ST_GeomFromText() function

The ST_GeomFromText() function takes a well-known text representation and a
spatial reference ID and returns a geometry object.

Syntax
ST_GeomFromText (wkt Tvarchar, SRID integer)

Return type
ST_Geometry
Example

The geometry_test table contains the INTEGER gid column, which uniquely
identifies each row, and the g1 column, which stores the geometry:

CREATE TABLE geometry test (gid smallint,
gl ST Geometry);

The following INSERT statements insert the data into the gid and g1 columns of
the geometry_test table. The ST_GeomFromText() function converts the text
representation of each geometry into its corresponding instantiable subclass:
INSERT INTO geometry test VALUES(

1,

ST _GeomFromText('point (10.02 20.01)',1000)
)3

Chapter 7. Spatial functions 7-67

INSERT INTO geometry test VALUES(

2,

ST_GeomFromText('linestring (10.01 20.01, 10.01 30.01, 10.01 40.01)',1000)
)s

INSERT INTO geometry test VALUES(

33

ST_GeomFromText ('polygon ((10.02 20.01, 11.92 35.64, 25.02
34.15, 19.15 33.94, 10.02 20.01))',1000)
)s

INSERT INTO geometry test VALUES(

4,
ST _GeomFromText ('multipoint (10.02 20.01,10.32 23.98,11.92 25.64)',1000)
)s

INSERT INTO geometry test VALUES(

5,
ST _GeomFromText ('multilinestring ((10.02 20.01, 10.32 23.98,
11.92 25.64),(9.55 23.75,15.36 30.11))',1000)

INSERT INTO geometry test VALUES(

6,

ST_GeomFromText ('multipolygon (((10.02 20.01, 11.92 35.64,
25.02 34.15, 19.15 33.94, 10.02 20.01)),((51.71 21.73, 73.36
27.04, 71.52 32.87, 52.43 31.90, 51.71 21.73)))"',1000)

)s

The ST_GeomFromWKB() function

7-68

The ST_GeomFromWKB() function takes a well-known binary representation and
a spatial reference ID to return a geometry object.

The ST_GeomFromWKB() function does not support the ST_GeomCollection.

Syntax
ST_GeomFromWKB (WKB Tvarchar, SRID integer)

Return type
ST_Geometry
Example

The following C code fragment contains ODBC functions included with the IBM
Informix spatial data type functions that insert data into the lots table.

The lots table was created with two columns: the lot_id, which uniquely identifies
each lot, and the lot polygon column, which contains the geometry of each lot:

CREATE TABLE Tots (lot_id integer,
lot ST MultiPolygon);

The ST_GeomFromWKB() function converts WKB representations into Informix
spatial geometry. The entire INSERT statement is copied into a wkb_sql CHAR
string. The INSERT statement contains parameter markers to accept the lot_id and
lot data, dynamically:

/* Create the SQL insert statement to populate the Tots

* table. The question marks are parameter markers that indicate
* the column values that will be inserted at run time. */

IBM Informix Spatial Data User's Guide

sprintf(sql_stmt,
"INSERT INTO lots (lot_id, lot) "
"VALUES(?, ST _GeomFromWKB(?, %d))", srid);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char =*)sql_stmt, SQL_NTS);

/* Bind the Tot_id to the first parameter. */

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM INPUT, SQL C_SLONG,
SQL_INTEGER, 0, 0,
&lot_id, 0, &pcbvaluel);

/* Bind the Tot geometry to the second parameter. */

pcbvalue2 = Tot_wkb_Ten;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, lot_wkb_len, 0,
Tot_wkb_buf, Tot_wkb_Ten, &pcbvalue2);

/* Execute the insert statement. =*/
rc = SQLExecute (hstmt);

The SE_InRowSize() function

The SE_InRowSize() function returns the size of the in-row portion of a geometry.
Geometries which are less than 930 bytes are stored entirely in-row: that is, the
entire value is stored in a table's dbspace.

The SE_InRowSize() function returns the size of the in-row portion of a geometry.
Geometries which are less than 930 bytes are stored entirely in-row: that is, the
entire value is stored in a table's dbspace.

You can use this function to obtain an estimate of the amount of disk space
consumed by one or more geometries. However, this function does not account for

dbspace and sbspace overhead, so cannot be used to obtain an exact total.

Syntax
SE_InRowSize(ST_Geometry)

Return type
INTEGER

See also

[‘The SE_OutOfRowSize() function” on page 7-109

[“The SE_TotalSize() function” on page 7-133]

The ST_InteriorRingN() function

The ST_InteriorRingN() function returns the nth interior ring of a polygon as an
ST_LineString.

The order of the rings cannot be predefined since the rings are organized according

to the rules defined by the internal geometry verification routines and not by
geometric orientation.

Chapter 7. Spatial functions 7-69

7-70

Syntax
ST InteriorRingN(p1l ST Polygon, index integer)

Return type
ST_LineString
Example

An ornithologist studying the bird population on several South Sea islands knows
that the feeding zone of this passive species is restricted to the seashore. Some of
the islands are so large they have several lakes on them. The shorelines of the lakes
are inhabited exclusively by another more aggressive species. The ornithologist
knows that if the perimeter of the ponds on each island exceeds a certain
threshold, the aggressive species will become so numerous that it will threaten the
passive seashore species. Therefore, the ornithologist requires the aggregated
perimeter of the interior rings of the islands.

The following figure shows the exterior rings of the islands that represent the
ecological interface each island shares with the sea. Some of the islands have lakes,
which are represented by the interior rings of the polygons.

Island shoreline

o

Figure 7-16. Islands and lakes.

The ID and name columns of the islands table identifies each island, while the
land ST_Polygon column stores the island geometry:
CREATE TABLE islands (id integer,

name varchar(32),
land ST_Polygon);

This ODBC code fragment uses the ST_InteriorRingN() function to extract the
interior ring (lake) from each island polygon as a linestring. The perimeter of the
linestring returned by the ST_Length() function is totaled and displayed along
with the island ID:
/* Prepare and execute the query to get the island IDs and number
of lakes (interior rings); =/
sprintf(sql_stmt,
"SELECT id, ST_NumInteriorRing(land) FROM islands");

/* Allocate memory for the island cursor */
rc = SQLA1TocHandle (SQL_HANDLE_STMT, hdbc, &island_cursor);

rc = SQLExecDirect (island_cursor, (UCHAR *)sql_stmt, SQL_NTS);
/* Bind the island table's id column to island_id. */

rc = SQLBindCol (island_cursor, 1, SQL_C_SLONG,
&island_id, 0, &id_ind);

IBM Informix Spatial Data User's Guide

/* Bind the result of ST_NumInteriorRing(land) to num_lakes. */
rc = SQLBindCol (island cursor, 2, SQL_C_SLONG,
&num_lakes, 0, &lake_ind);

/* Allocate memory to the SQL statement handle Take cursor. */
rc = SQLATTocHandle (SQL_HANDLE_STMT, hdbc, &lake cursor);

/* Prepare the query to get the length of an interior ring. For
= efficiency, we only prepare this query once. */
sprintf (sql_stmt,
"SELECT ST_Length(ST_InteriorRingN(land, ?))"
"FROM islands WHERE id = ?");
rc = SQLPrepare (lake_cursor, (UCHAR *)sql_stmt, SQL_NTS);

/* Bind the Take_number to the first parameter. x/

pcbvaluel = 0;

rc = SQLBindParameter (lake_cursor, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, 0O, 0,
&lake_number, 0, &pcbvaluel);

/* Bind the island_id to the second parameter. */

pcbvalue2 = 0;

rc = SQLBindParameter (lake_cursor, 2, SQL _PARAM INPUT, SQL C_LONG,
SQL_INTEGER, 0, 0,
&island_id, 0, &pcbvalue2);

/* Bind the result of the ST_Length function to lake_perimeter. x/
rc = SQLBindCol (lake_cursor, 1, SQL_C_SLONG,
&lake_perimeter, 0, &length_ind);

/* Outer loop:
% get the island ids and the number of lakes (interior rings).x/
while (1)
{
/* Fetch an island.*/
rc = SQLFetch (island_cursor);
if (rc == SQL_NO_DATA)
break;
else
returncode_check(NULL, hstmt, rc, "SQLFetch");

/* Inner loop: for this island,
% get the perimeter of all its lakes (interior rings). =/
for (total_perimeter = 0,1ake_number = 1;

lake_number <= num_lakes;

Take_number++)

rc = SQLExecute (lake_cursor);

rc = SQLFetch (Take_cursor);
total_perimeter += lake_perimeter;
SQLFreeStmt (Take_cursor, SQL_CLOSE);

}

/* Display the island ID and the total perimeter of its lakes.x/
printf ("Island ID = %d, Total lake perimeter = %d\n",
island_id,total_perimeter);

}

SQLFreeStmt (lake_cursor, SQL_DROP);
SQLFreeStmt (island_cursor, SQL DROP);

Chapter 7. Spatial functions

7-71

The ST_Intersection() function

The ST_Intersection() function takes two ST_Geometry objects and returns the
intersection set as an ST_Geometry object. If the two objects do not intersect, the
return value is an empty geometry.

Syntax
ST Intersection(gl ST_Geometry, g2 ST_Geometry)

Usage

If an ST_LineString intersects an ST_Polygon, the ST_Intersection() function
returns the portion of the ST_LineString common to the interior and boundary of
the ST_Polygon as an ST_MultiLineString. The ST_MultiLineString contains more
than one ST_LineString if the source ST_LineString intersects the ST_Polygon with
two or more discontinuous segments.

The following figure illustrates examples of the ST_Intersection() function.

[— [} — ®
[J
ST_Point/ST_Point ST_MultiPoint ST_Point/ST_MultiPoint ST_MultiPoint
Y [J
R —
[} ° —_— @
[J
ST_MultiPoint/ST_MultiPoint ST_MultiPoint ST_Point/ST_LineString ST_MultiPoint
® () > @ @ ® — @
ST_MultiPoint/ST_LineString ST_MultiPoint ST_Point/ST_Polygon ST_MultiPoint
® [J > o [J A —

ST_MultiPoint/ST_Polygon ST_MultiPoint ~ ST_LineString/ST_LineString ST_MultiLineString

N2 NGO O_'

ST_LineString/ST_Polygon ST_MultiLineString ST_Polygon/ST_Polygon ~ ST_MultiPolygon

Figure 7-17. Intersection sets of geometries

Return type

ST_Geometry

7-72 IBM Informix Spatial Data User's Guide

Example

The fire marshal must obtain the areas of the hospitals, schools, and nursing homes
that are intersected by the radius of a possible hazardous waste contamination.

The sensitive areas are stored in the sensitive_areas table that is created with the
CREATE TABLE statement that follows. The zone column, which is defined as an
ST_Polygon type, stores the outline of each of the sensitive areas:
CREATE TABLE sensitive areas (id integer,

name varchar(128),

size float,

type varchar(10),

zone ST _Polygon);

The hazardous sites are stored in the hazardous_sites table that is created with the
CREATE TABLE statement that follows. The location column, which is defined as

an ST_Point type, stores a location that is the geographic center of each hazardous
site:

CREATE TABLE hazardous_sites (site_id integer,

name varchar(40),
Tocation ST_Point);

The ST_Buffer() function generates a 5-mile buffer that surrounds the hazardous
waste site locations. The ST_Intersection() function generates polygons from the
intersection of the buffered hazardous waste sites and the sensitive areas. The
ST_Area() function returns the intersection polygons' area, which is summarized
for all hazardous sites by the SUM operator. The GROUP BY clause directs the
query to aggregate the intersection areas by hazardous waste site ID:
SELECT hs.site_id, SUM(ST Area(ST_Intersection(sa.zone,

ST Buffer(hs.location, (5 * 5280)))::ST_MultiPolygon))

FROM sensitive_areas sa, hazardous_sites hs
GROUP BY hs.site_id;

site_id (sum)

102 87000000.00000
59 77158581.63280

In the following figure, the circles represent the 5-mile buffer polygons that
surround the hazardous waste sites. The intersection of these buffer polygons with
the sensitive area polygons produces three polygons: the hospital in the upper left
corner is intersected twice, while the school in the lower right corner is intersected
only once.

Chapter 7. Spatial functions 7-73

Nursing
Home

Figure 7-18. Using theST_Intersection() function

The ST_lIntersects() function

The ST_Intersects() function returns t (TRUE) if the intersection of two geometries
does not result in an empty set; otherwise, returns f (FALSE).

Syntax
ST Intersects (gl ST_Geometry, g2 ST_Geometry)

Usage

The following figure shows various geometric objects that intersect.

7-74 1BM Informix Spatial Data User's Guide

(
ST_Point/ST_Point ST_Point/ST_MultiPoint
[] _—
ST_Point/ST_LineString ST_LineString/ST_LineString
[J
([
ST_Point/ST_Polygon ST_Point/ST_Polygon
([
[
® o
. j
ST_MultiPoint/ST_Polygon ST_LineString/ST_Polygon
ST_Polygon/ST_Polygon ST_Polygon/ST_Polygon

Figure 7-19. A selection of geometries that intersect

The results of the spatial relationship of the ST_Intersects() function can be
understood or verified by comparing the results with a pattern matrix that
represents the acceptable values for the DE-9IM. The ST_Intersects() function
returns TRUE if the conditions of any of the following pattern matrices returns
TRUE.

The ST_Intersects() function returns TRUE if the interiors of both geometries
intersect.

Table 7-15. Pattern matrix for the ST_Intersects() function.

Interior (b) Boundary (b) Exterior (b)
Interior (a) T * *
Boundary (a) * * *

* * *

Exterior (a)

The ST_Intersects() function returns TRUE if the boundary of the first geometry
intersects the boundary of the second geometry.

Chapter 7. Spatial functions 7-75

7-76

Interior (b) Boundary (b) Exterior (b)

Interior (a) * T *
Boundary (a) * * *
* * *

Exterior (a)

The ST_Intersects() function returns TRUE if the boundary of the first geometry
intersects the interior of the second.

Interior (b) Boundary (b) Exterior (b)
Interior (a) * * *
Boundary (a) T * *

Exterior (a)

The ST_Intersects() function returns TRUE if the boundaries of either geometry
intersect.

Interior (b) Boundary (b) Exterior (b)
Interior (a) * * *
Boundary (a) * T *

* * *

Exterior (a)

Return type
BOOLEAN
Example

The fire marshal wants a list of sensitive areas within a 5-mile radius of a
hazardous waste site.

The sensitive areas are stored in the following sensitive_areas table. The zone
column is defined as an ST_Polygon type and stores the outline of the sensitive
areas:
CREATE TABLE sensitive areas (id integer,

name varchar(128),

size float,

type varchar(10),

zone ST Polygon);

The hazardous sites are stored in the hazardous_sites table that is created with the
CREATE TABLE statement that follows. The location column, which is defined as
an ST_Point type, stores the geographic center of each hazardous site:

CREATE TABLE hazardous_sites (site_id integer,

name varchar(40),
Tocation ST _Point);

The query returns a list of sensitive-area and hazardous-site names for sensitive
areas that intersect the 5-mile buffer radius of the hazardous sites:
SELECT sa.name, hs.name

FROM sensitive_areas sa, hazardous_sites hs
WHERE ST Intersects(ST_Buffer(hs.location, (5 * 5280)),sa.zone);

IBM Informix Spatial Data User's Guide

name Johnson County Hospital
name W. H. Kleenare Chemical Repository

name Johnson County Hospital
name Landmark Industrial

name Summerhill Elementary School
name Landmark Industrial

Related reference:

[“The Dimensionally Extended 9 Intersection Model” on page 7-2|

The ST_Is3D() function

The SE_Is3d() function returns t (TRUE) if the ST_Geometry object has
three-dimensional coordinates; otherwise, returns f (FALSE).

ProFerties of geometries are described in [“Properties of spatial data types” on pagel

Syntax
ST Is3D(gl ST_Geometry)

Return type
BOOLEAN
Example

The threed_test table is created with INTEGER gid and g1 ST_Geometry columns:

CREATE TABLE threed test (gid smallint,
gl ST _Geometry);

The following INSERT statements insert two points into the threed_test table. The
first point does not contain Z coordinates, while the second does:

INSERT INTO threed_test VALUES (
1, ST _PointFromText('point (10 10)',1000)
)s

INSERT INTO threed test VALUES(
1, ST_PointFromText('point z(10.92 10.12 5)',1000)
)s

The query lists the contents of the gid column with the results of the SE_Is3d
function. The function returns a 0 for the first row, which does not have a Z
coordinate, and a 1 for the second row, which does:

SELECT gid, ST _Is3D (gl) is_it_3d from threed test;

gid is_it_3d
1 f
1 t

The ST_IsClosed() function

The ST_IsClosed() function takes an ST_LineString or ST_MultiLineString and
returns t (TRUE) if it is closed; otherwise, it returns f (FALSE).

Chapter 7. Spatial functions 7-77

ProFerties of geometries are described in [‘Properties of spatial data types” on page]

Syntax

ST IsClosed(1nl ST_LineString)
ST_IsClosed(minl ST MultilineString)

Return type
BOOLEAN
Example

The closed_linestring table is created with a single ST_LineString column:
CREATE TABLE closed_Tinestring (Inl ST_LineString);

The following INSERT statements insert two records into the closed_linestring
table. The first record is not a closed linestring, while the second is:

INSERT INTO closed_Tlinestring VALUES(
ST _LineFromText('linestring (10.02 20.01,10.32 23.98,11.92 25.64)', 1000)
)s

INSERT INTO closed linestring VALUES(
ST_LineFromText('linestring (10.02 20.01,11.92 35.64,25.02 34.15,
19.15 33.94,10.02 20.01)"',1000)

)s

The query returns the results of the ST_IsClosed() function. The first row returns a
0 because the linestring is not closed, while the second row returns a 1 because the
linestring is closed.

SELECT ST_IsClosed(1nl) Is_it_closed
FROM closed linestring;

is_it_closed

f
t

The closed_mlinestring table is created with a single ST_MultiLineString column:
CREATE TABLE closed_mlinestring (minl ST MultiLineString);

The following INSERT statements insert an ST_MultiLineString record that is not
closed and another that is:
INSERT INTO closed_mlinestring VALUES(

ST _MLineFromText('multilinestring ((10.02 20.01,10.32 23.98,
11.92 25.64),(9.55 23.75,15.36 30.11))"',1000)

)s

INSERT INTO closed mlinestring VALUES(
ST_MLineFromText('multilinestring ((10.02 20.01,11.92 35.64,
25.02 34.15,19.15 33.94,10.02 20.01),(51.71 21.73,73.36 27.04,
71.52 32.87,52.43 31.90,51.71 21.73))',1000)

)s

The query lists the results of the ST_IsClosed() function. The first row returns 0
because the multilinestring is not closed. The second row returns 1 because the
multilinestring stored in the mln1 column is closed. A multilinestring is closed if
all of its linestring elements are closed:

7-78 IBM Informix Spatial Data User's Guide

SELECT ST _IsClosed(minl) Is it closed
FROM closed_mlinestring;

is_it_closed

f
t

The ST_IsEmpty() function

The ST_IsEmpty() function returns t (TRUE) if the geometry is empty; otherwise,
returns f (FALSE).

See a descrii tion of properties of geometries in |“Properties of spatial data types’|

Syntax
ST _IskEmpty(gl ST_Geometry)

Return type
BOOLEAN
Example

The CREATE TABLE statement below creates the empty_test table with geotype,
which stores the data type of the subclasses that are stored in the g1 ST_Geometry
column:

CREATE TABLE empty_test (geotype varchar(20),
gl ST_Geometry);

The following INSERT statements insert two records each for the geometry
subclasses: point, linestring, and polygon; one record is empty and one is not:

INSERT INTO empty test VALUES(
'"Point', ST_PointFromText('point (10.02 20.01)',1000)
)s

INSERT INTO empty test VALUES(
'Point', ST_PointFromText('point empty',1000)
)s

INSERT INTO empty test VALUES(

'Linestring',

ST _LineFromText('linestring (10.02 20.01,10.32 23.98,11.92 25.64)',1000)
)s

INSERT INTO empty test VALUES(
'"Linestring',
ST _LineFromText('linestring empty',1000)
)s

INSERT INTO empty test VALUES(

'"Polygon',

ST _PolyFromText('polygon ((10.02 20.01,11.92 35.64,25.02
34.15,19.15 33.94,10.02 20.01))',1000)
)s

INSERT INTO empty test VALUES(

'"Polygon',

ST PolyFromText('polygon empty',1000)
)s

Chapter 7. Spatial functions 7-79

The query returns the geometry type from the geotype column and the results of
the ST_IsEmpty() function:

SELECT geotype, ST IskEmpty(gl) Is it empty
FROM empty_test

geotype is_it_empty
Point f
Point t
Linestring f
Linestring t
Polygon f
Polygon t

The ST_IsMeasured() function

7-80

The ST_IsMeasured() function returns t (TRUE) if the ST_Geometry object has
measures; otherwise, returns f (FALSE).

ProFertieS of geometries are described in [“Properties of spatial data types” on pagel

Syntax
ST _IsMeasured(gl ST_Geometry)

Return type
BOOLEAN
Example

The measure_test table is created with two columns: a SMALLINT column, gid,
which uniquely identifies rows, and g1, an ST_Geometry column, which stores the
ST_Point geometries:

CREATE TABLE measure_test (gid smallint,
gl ST Geometry);

The following INSERT statements insert two records into the measure_test table.
The first record stores a point that does not have a measure, while the second
record does have a measure value:
INSERT INTO measure_test VALUES(
1 B
ST_PointFromText('point (10 10)',1000)
)s
INSERT INTO measure_test VALUES(
2 B
ST _PointFromText('point m (10.92 10.12 5)',1000)
)s

The query lists the gid column and the results of the ST_IsMeasured() function.
The ST_IsMeasured() function returns a 0 for the first row because the point does
not have a measure; it returns a 1 for the second row because the point does have
measures:

SELECT gid,ST_IsMeasured(gl) Has_measures
FROM measure_test;

IBM Informix Spatial Data User's Guide

gid has_measures

1 f
2 t

The ST_IsRing() function

The ST_IsRing() function takes an ST_LineString and returns t (TRUE) if it is a
ring (that is, the ST_LineString is closed and simple); otherwise, it returns f
(FALSE).

Properties of geometries are described in [“Properties of spatial data types” on page]
-1

Syntax
ST_IsRing(Inl ST_LineString)

Return type
BOOLEAN
Example

The ring_linestring table is created with the SMALLINT column gid and the
ST_LineString column In1:

CREATE TABLE ring Tinestring (gid smallint,
Inl ST_LineString);

The following INSERT statements insert three linestrings into the In1 column. The
first row contains a linestring that is not closed and is not a ring. The second row
contains a closed and simple linestring that is a ring. The third row contains a
linestring that is closed, but not simple, because it intersects its own interior. It is
also not a ring;:
INSERT INTO ring_Tlinestring VALUES(

1 B

ST_LineFromText('linestring (10.02 20.01,10.32 23.98,11.92 25.64)', 1000)
)s
INSERT INTO ring_Tinestring VALUES(

2

ST LineFromText('linestring (10.02 20.01,11.92 35.64,25.02
34.15,19.15 33.94, 10.02 20.01)', 1000)

)s
INSERT INTO ring_Tlinestring VALUES(
3,
ST _LineFromText('linestring (15.47 30.12,20.73 22.12,10.83
14.13,16.45 17.24,21.56 13.37,11.23 22.56,19.11 26.78,15.47 30.12)', 1000)
)s

The query returns the results of the ST_IsRing() function. The first and third rows
return 0 because the linestrings are not rings, while the second row returns 1
because it is a ring:

SELECT gid, ST_IsRing(1nl) Is_it_a_ring
FROM ring_Tlinestring;

gid is_it_a_ring

Chapter 7. Spatial functions 7-81

N
+

The ST_IsSimple() function

The ST_IsSimple() function returns t (TRUE) if the geometry object is simple;
otherwise, it returns f (FALSE). Properties of geometries are described in
[“Properties of spatial data types” on page 2-1)

Syntax
ST IsSimple (gl ST_Geometry)

Return type
BOOLEAN
Example

The table issimple_test is created with two columns. The pid column is a
SMALLINT containing the unique identifier for each row. The g1 ST_Geometry
column stores the simple and nonsimple geometry samples:

CREATE TABLE issimple_test (pid smallint,
gl ST Geometry);

The following INSERT statements insert two records into the issimple_test table.
The first is a simple linestring because it does not intersect its interior. The second
is non-simple because it does intersect its interior:
INSERT INTO issimple_test VALUES(
1,
ST _LineFromText('linestring (10 10, 20 20, 30 30)',1000)
);
INSERT INTO issimple_test VALUES(
2,
ST_LineFromText('linestring (10 10,20 20,20 30,10 30,10 20,20 10)',1000)
)s

The query returns the results of the ST_IsSimple() function. The first record
returns t because the linestring is simple, while the second record returns f
because the linestring is not simple:
SELECT pid, ST IsSimple(gl) Is it simple

FROM issimple_test;

pid is_it_simple

1 t
2 f

The ST_IsValid() function

The ST_IsValid() function takes an ST_Geometry and returns t (TRUE) if it is
topologically correct; otherwise it returns f (FALSE). Properties of geometries are
described in [“Properties of spatial data types” on page 2-1|

7-82 IBM Informix Spatial Data User's Guide

The IBM Informix Spatial DataBlade Module validates spatial data before accepting
it, so ST_IsValid() always returns TRUE. This function may be used to validate
spatial data supplied by other implementations of the OpenGIS spatial data
specification.

Syntax
ST IsValid(g ST_Geometry)

Return type

BOOLEAN

The ST_Length() function

The ST_Length() function returns the length of an ST_LineString or
ST_MultiLineString.

Syntax

ST_Length(Inl ST_LineString)
ST_Length(1nl ST LineString, Tinear_uom varchar(128))

ST_Length(mInl ST _MultiLineString)
ST Length(minl ST MultiLineString, Tinear_uom varchar(128))

The linear_uom parameter converts the result to the specified unit of measure. To
calculate the length if the line is in a geographic coordinate system where the
coordinates are in an angular unit of measure, you must specify a linear unit of
measure with the linear_uom parameter. Angular units of measure are converted to
linear units of measure by great-circle calculations. If the line is in a projected
coordinate system that has a unit of measure that is different from the unit of
measure that is specified by the linear_uom parameter, then the returned value is
converted to the unit of measure that is specified by the linear_uom parameter. The
linear_uom parameter must be the name of a linear unit of measure from the
unit_name column of the st_units_of measure table.

Return type
DOUBLE PRECISION
Example: Find the length of steams and rivers

A local ecologist who is studying the migratory patterns of the salmon population
in the county's waterways wants the length of all stream and river systems within
the county.

The waterways table is created with the ID and name columns that identify each
stream and river system that is stored in the table. The water column is a
multilinestring, because the river and stream systems are often an aggregate of
several linestrings:

CREATE TABLE waterways (id integer,

name varchar(128),
water ST MultiLineString);

The query returns the name of each system along with the length of the system
that is generated by the length function:

Chapter 7. Spatial functions 7-83

SELECT name, ST Length(water) Length
FROM waterways;

name Fedders creek
length 175853.9869703

The following figure shows the river and stream systems that lie within the county
boundary.

’

County Boundary

Figure 7-20. Stream and river systems

Examples: Find the length lines in meters

The following statement returns the length of a linestring in meters:

EXECUTE FUNCTION round(
st_length(
32608 Tinestring(576100 15230, 576102 15230)'::st_linestring,
"meter'),
2)3

(expression)
2.00000000000000
1 row(s) retrieved.

The following statement returns the length of a multilinestring in meters:

EXECUTE FUNCTION round(
st_Tength(
'32608 multilinestring((576100 15230, 576100 15232,
576102 15232, 576102 15230, 576100 15230), (576104 4,
576104 6, 576106 6, 576106 4, 576104 4))'::st_multilinestring,
"meter'),
2);

(expression)
16.0000000000000

1 row(s) retrieved.

7-84 IBM Informix Spatial Data User's Guide

Examples: Find the length of a line that has angular coordinates

These examples are based on the angular coordinate system WGS 84, which has
SRID 4326. They calculate the length of a line between New York and Los Angeles,
which is based on the following coordinates:

 Latitude and longitude of New York: 40.67000 N, 73.94000 W
* Latitude and longitude of Los Angles: 34.05000 N, 118.25000 W

The following statement returns the length between New York and Los Angeles in
US miles:

EXECUTE FUNCTION ST_Length('4326 Tinestring(-73.94000 40.67000,
-118.25000 34.05000) '::st_Tinestring, 'mile_us');

(expression)
2454.991002988

1 row(s) retrieved.

The following statement returns the length between New York and Los Angeles in
kilometers:

EXECUTE FUNCTION ST _Length('4326 Tinestring(-73.94000 40.67000,
-118.25000 34.05000)'::st_Tinestring, 'kilometer');

(expression)
3950.932942578

1 row(s) retrieved.

Related reference:

[“The st_units_of_measure table” on page 1-17]

The ST_LineFromGML() function

The ST_LineFromGML() function takes a GML2 or GML3 string representation of
an ST_LineString and an optional spatial reference ID and returns a polyline object.

Syntax

ST_LineFromGML(gmlstring lvarchar)
ST LineFromGML(gmlstring Tvarchar, SRID integer)

Return type
ST_LineString
Example

The gml_linetest table is created with the SMALLINT column gid and the
ST_LineString column In1:

CREATE TABLE gml_linetest (gid smallint, 1nl ST_LineString);

INSERT INTO gml_Tinetest VALUES (1, ST_LineFromGML('<gml:LineString>
<gml:posList> -110.45 45.256 -109.48 46.46 -109.86 43.84
</gml:posList></gml:LineString>',4));

INSERT INTO gml_Tlinetest VALUES (2, ST _LineFromGML('<gml:LineString
srsName="EPSG:4326" srsDimension="3"><gml:posList
dimension="3">-110.449999933 45.2559999343 10
-109.47999994 46.4600005499 10 -109.86000008

Chapter 7. Spatial functions 7-85

43.8400000201 20</gml:posList></gml:LineString>'));
INSERT INTO gml_Tinetest VALUES(3,ST_LineFromGML('<gml:LineString

srsName="EPSG:4326" srsDimension="4"><gml:posList

dimension="4">-110.449999933 45.2559999343 10 54

-109.47999994 46.4600005499 10 58

-109.86000008 43.8400000201 20 64 </gml:posList>

</gml:LineString>'));

The first record specifies a spatial reference ID of 4 (WGS84) and a default
dimension of 2. The second and third records contain Z and M measures and pass
the spatial reference ID through the srsName attribute.

Output:
SELECT * FROM gml_linetest;

gid 1

Tnl 4 LINESTRING (-110.449999933 45.2559999343,
-109.47999994 46.4600000469,
-109.86000008 43.8400000201)

gid 2

Tnl 4 LINESTRING Z (-110.449999933 45.2559999343 10,
-109.47999994 46.4600005499 10,
-109.86000008 43.8400000201 20)

gid 3

Inl 4 LINESTRING ZM (-110.449999933 45.2559999343 10 54,
-109.47999994 46.4600005499 10 58,
-109.86000008 43.8400000201 20 64)

The ST_LineFromKML() function

7-86

The ST_LineFromKML() function takes a KML LineString string and an optional
spatial reference ID and returns a linestring object. A KML LineString string can
contain the KML shape attributes <extrude>, <tessellate>, and <altitudeMode>, but
they are ignored in the ST_LineString representation.

Syntax

ST _LineFromKML(kmlstring Tvarchar)
ST_LineFromKML(kmlstring lvarchar, SRID integer)

Return type
ST_LineString

Example

EXECUTE FUNCTION ST_LineFromKML('<LineString><coordinates>-130.597293,50.678292,
0 -129.733457,50.190606,0 -130.509877,49.387208,
0 -128.801553,48.669761,0 -129.156745,47.858658,
0 -128.717835,47.739997,0</coordinates></LineString>',4);

Output:

(expression) 4 LINESTRING Z (-130.597292947 50.6782919759 0, -129.733456972
50.1906059982 0, -130.509877068 49.3872080751 0, -128.801553066 48.669761042 0,
-129.156744951 47.8586579701 0, -128.717834948 47.7399970362 0)

IBM Informix Spatial Data User's Guide

The SE_LineFromShape() function

The SE_LineFromShape() function takes a shape of type polyline and a spatial
reference ID to return an ST_LineString. A polyline with only one part is
appropriate as an ST_LineString, and a polyline with multiple parts is appropriate
as an ST_MultiLineString (see [*The SE_MLineFromShape() function” on page 7-96).

Syntax
SE_LineFromShape(sl Tvarchar, SRID integer)

Return type
ST_LineString
Example

The sewerlines table is created with three columns: sewer_id, which uniquely
identifies each sewer line; the INTEGER class column, which identifies the type of
sewer line (generally associated with the line's capacity); and the sewer
ST_LineString column, which stores the sewer line geometry:

CREATE TABLE sewerlines (sewer_id integer,
class integer,
sewer ST _LineString);

This code fragment populates the sewerlines table with the unique ID, class, and
geometry of each sewer line:

/* Create the SQL insert statement to populate the sewerlines
* table. The question marks are parameter markers that indicate
* the column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO sewerlines (sewer_id,class,sewer) "
"VALUES(?, ?, SE_LineFromShape(?, %d))", srid);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)sql_stmt, SQL_NTS);

/* Bind the sewer_id to the first parameter. =/

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0, 0,
&sewer_id, 0, &pcbvaluel);

/* Bind the sewer_class to the second parameter. */

pcbvalue2 = 0;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL C_SLONG,
SQL_INTEGER, 0, 0,
&sewer class, 0, &pcbvalue?);

/* Bind the sewer geometry to the third parameter. =/

pcbvalue3 = sewer_shape_len;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, sewer shape len, 0,
sewer_shape_buf, sewer_shape_len, &pcbvalue3);

/* Execute the insert statement. =%/
rc = SQLExecute (hstmt);

Chapter 7. Spatial functions 7-87

The ST_LineFromText() function

The ST_LineFromText() function takes a well-known text representation of type
ST_LineString and a spatial reference ID and returns an ST_LineString.

Syntax
ST _LineFromText (WKT Tvarchar, SRID integer)

Return type
ST_LineString
Example

The linestring_test table is created with a single In1 ST_LineString column:
CREATE TABLE Tinestring_test (Inl ST_LineString);

The following INSERT statement inserts an ST_LineString into the In1 column
using the ST_LineFromText() function:
INSERT INTO Tlinestring test VALUES(

ST _LineFromText('linestring(10.01 20.03,20.94 21.34,35.93 19.04)',1000)
)s

The ST_LineFromWKB() function

The ST_LineFromWKB() function takes a well-known binary representation of
type ST_LineString and a spatial reference ID, returning an ST_LineString.

Syntax
ST_LineFromWKB(wkb Tvarchar, SRID integer)

Return type
ST_LineString
Example

The sewerlines table is created with three columns. The first column, sewer _id,
uniquely identifies each sewer line. The INTEGER class column identifies the type
of sewer line, generally associated with the line capacity. The sewer ST_LineString
column stores the sewer line geometries:

CREATE TABLE sewerlines (sewer_id integer,

class integer,
sewer ST LineString);

This code fragment populates the sewerlines table with the unique ID, class, and
geometry of each sewer line:

/* Create the SQL insert statement to populate the sewerlines
* table. The question marks are parameter markers that indicate
* the column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO sewerlines (sewer id,class,sewer) "
"VALUES(?, ?, ST_LineFromWKB(?, %d))", srid);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)sql_stmt, SQL_NTS);

7-88 IBM Informix Spatial Data User's Guide

/* Bind the sewer_id to the first parameter. */

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_ INPUT, SQL C_SLONG,
SQL_INTEGER, 0, 0,
&sewer_id, 0, &pchbvaluel);

/* Bind the sewer_class to the second parameter. =/

pcbvalue2 = 0;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0O, 0,
&sewer_class, 0, &pcbvalue?2);

/* Bind the sewer geometry to the third parameter. */

pcbvalue3 = sewer_wkb_len;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, sewer_wkb_Tlen, 0,
sewer_wkb _buf, sewer wkb Ten, &pcbvalue3);

/* Execute the insert statement. =/
rc = SQLExecute (hstmt);

The ST_LocateAlong() function

The ST_LocateAlong() function takes a geometry object and a measure to return as
an ST_MultiPoint the set of points found having that measure.

Syntax
ST LocateAlong(gl ST_Geometry, ml double precision)

Usage
SE_LocateAlong() returns the location as an ST_MultiPoint.

If the source geometry's dimension is 0 (for ST_Point and ST_MultiPoint), only
points with a matching measure value are returned as an ST_MultiPoint. However,
for source geometries whose dimension is greater than 0, the location is
interpolated. For example, if the requested measure value is 5.5 and the
ST_LineString vertices have measures of 3, 4, 5, 6, and 7, an interpolated point that
falls exactly halfway between the vertices with measure values 5 and 6 is returned.

SE_LocateAlong() locates a point on a linestring by interpolating the given
measure value, if necessary. The following figure shows a case where a point with
measure 5.5 is interpolated halfway between the vertices of the ST_LineString with
measures 5 and 6. For ST_MultiPoints, an exact match is required. In the case of
the above ST_MultiPoint, SE_LocateAlong() returns the point that has measure 5.5.

4
°
) g () 8
o’ e ® 6 3
3 45 5.5

Figure 7-21. The SE_LocateAlong function

Chapter 7. Spatial functions 7-89

Return type
ST_Geometry
Example

The locatealong_test table is created with two columns: the gid column uniquely
identifies each row, and the g1 ST_Geometry column stores sample geometry:

CREATE TABLE Tocatealong test (gid integer,
gl ST Geometry);

The following INSERT statements insert two rows. The first is a multilinestring,
while the second is a multipoint:
INSERT INTO Tocatealong test VALUES(

1,
ST MLineFromText('multilinestring m ((10.29 19.23 5,23.82 20.29
6,30.19 18.47 7,45.98 20.74 8),(23.82 20.29 6,30.98 23.98 7,42.92
25.98 8))', 1000)

)s
INSERT INTO Tocatealong test VALUES(

2,

ST MPointFromText('multipoint m (10.29 19.23 5,23.82 20.29
6,30.19 18.47 7,45.98 20.74 8,23.82 20.29 6,30.98 23.98 7,42.92
25.98 8)', 1000)

)s

In this query, the ST_LocateAlong() function finds points whose measure is 6.5.
The first row returns an ST_MultiPoint containing two points. However, the second
row returns an empty point. For linear features (geometry with a dimension
greater than 0), ST_LocateAlong() can interpolate the point, but for multipoints the
target measure must match exactly:

SELECT gid, SE_locatealong(gl,6.5) Geometry
FROM Tocatealong test;

gid 1
geometry 1000 MULTIPOINT M (27.005 19.38 6.5, 27.4 22.135 6.5)

gid 2
geometry 1000 POINT M EMPTY

In this query, the ST_LocateAlong() function returns a multipoint for both rows.
The target measure of 7 matches measures in the multilinestring and multipoint
source data:

SELECT gid, SE_locatealong(gl,7) Geometry
FROM Tocatealong_test;

gid 1
geometry 1000 MULTIPOINT M (30.19 18.47 7, 30.98 23.98 7)

gid 2
geometry 1000 MULTIPOINT M (30.19 18.47 7, 30.98 23.98 7)

The ST_LocateBetween() function

The ST_LocateBetween() function takes an ST_Geometry object and two measure
locations and returns an ST_Geometry that represents the set of disconnected paths
between the two measure locations.

7-90 IBM Informix Spatial Data User's Guide

Syntax

ST LocateBetween(gl ST Geometry, fm double precision, tm double precision)
Usage

If the source geometry dimension is 0, SE_LocateBetween() returns an
ST_MultiPoint consisting of all points whose measures lie between the two source
measures.

For source geometries whose dimension is greater than 0, SE_LocateBetween()
returns an ST_MultiLineString if a path can be interpolated; otherwise,
SE_LocateBetween() returns an ST_MultiPoint containing the point locations.

An empty point is returned whenever SE_LocateBetween() cannot interpolate a
path or find a location between the measures.

SE_LocateBetween() performs an inclusive search of the geometries; therefore, the
geometry measures must be greater than or equal to the from measure and less
than or equal to the fo measure.

In the following figure, SE_LocateBetween() returns an ST_MultiLineString that is
between measures 4.3 and 6.9.

Figure 7-22. The SE_LocateBetween function

Return type
ST_Geometry
Example

The locatebetween_test table is created with two columns: the gid INTEGER
column uniquely identifies each row, while the g1 ST_MultiLineString stores the
sample geometry:

CREATE TABLE Tlocatebetween test (gid integer, gl ST _Geometry);

The following INSERT statements insert two rows into the locatebetween_test
table. The first row is an ST_MultiLineString and the second is an ST_MultiPoint:

INSERT INTO Tocatebetween_test VALUES(

]-’

ST _MLineFromText('multilinestring m ((10.29 19.23 5,23.82 20.29
6, 30.19 18.47 7,45.98 20.74 8),(23.82 20.29 6,30.98 23.98 7,42.92
25.98 8))',1000)

INSERT INTO Tocatebetween_test VALUES(

2’

ST _MPointFromText('multipoint m (10.29 19.23 5,23.82 20.29
6,30.19 18.47 7,45.98 20.74 8,23.82 20.29 6,30.98 23.98 7,42.92
25.98 8)', 1000)

)s

Chapter 7. Spatial functions 7-91

In the query, the ST_LocateBetween function locates measures that lie between 6.5
and 7.5, inclusively. The first row returns an ST_MultiLineString containing several
linestrings. The second row returns an ST_MultiPoint because the source data was
ST_MultiPoint. When the source data has a dimension of 0 (point or multipoint),
an exact match is required:

SELECT gid, ST LocateBetween(gl,6.5,7.5) Geometry
FROM Tocatebetween_test;

gid 1
geometry 1000 MULTILINESTRING M ((27.005 19.38 6.5, 30.19 18.47
7, 38.085 19.6
05 7.5),(27.4 22.135 6.5, 30.98 23.98 7, 36.95 24.98 7.5))

gid 2
geometry 1000 MULTIPOINT M (30.19 18.47 7, 30.98 23.98 7)

The ST_M() function

7-92

The ST_M() function returns the measure value of a point.

Syntax
ST _M(pl ST_Point)

Return type
DOUBLE PRECISION
Example

The m_test table is created with the gid INTEGER column, which uniquely
identifies the row, and the ptl ST_Point column that stores the sample geometry:

CREATE TABLE m_test (gid integer,
ptl ST Point);

The following INSERT statements insert a point with measures and a point
without measures:
INSERT INTO m_test VALUES(

1,
ST PointFromText('point (10.02 20.01)', 1000)
)s
INSERT INTO m_test VALUES(

2,

ST PointFromText('point zm (10.02 20.01 5.0 7.0)', 1000)
)3

In this query, the ST_M() function lists the measure values of the points. Because
the first point does not have measures, the ST_M() function returns NULL:

SELECT gid, ST _M(ptl) The measure
FROM m_test;

gid the_measure

1
2 7.000000000000

IBM Informix Spatial Data User's Guide

The ST_MaxM() and ST_MinM() functions

The ST_MaxM() and ST_MinM() functions return the maximum and minimum
measure values of a geometry.

Syntax
ST MaxM(ST_Geometry)

ST MinM(ST_Geometry)
Return type

DOUBLE PRECISION

The ST_MaxX() and ST_MinX() functions

The ST_MaxX() and ST_MinX() functions return the maximum and minimum X
coordinates of a geometry.

Syntax
ST MaxX(ST_Geometry)

ST_MinX(ST_Geometry)
Return type

DOUBLE PRECISION

The ST_MaxY() and ST_MinY() functions

The ST_MaxY() and ST_MinY() functions return the maximum and minimum Y
coordinates of a geometry.

Syntax
ST_MaxY (ST_Geometry)

ST _MinY(ST_Geometry)
Return type

DOUBLE PRECISION

The ST_MaxZ() and ST_MinZ() functions

The ST _MaxZ() and ST_MinZ() functions return the maximum and minimum Z
coordinates of a geometry.

Syntax
ST MaxZ(ST_Geometry)

ST MinZ(ST_Geometry)
Return type

DOUBLE PRECISION

Chapter 7. Spatial functions 7-93

The SE_Metadatalnit() function

The SE_Metadatalnit() function reinitializes the spatial reference system large
object and memory cache.

For computational efficiency and to allow spatial data type functions to be
executed in parallel, the contents of the spatial_references table are kept in both a
smart large object and a memory cache. If these copies become corrupt or
unreadable, one of the following errors is raised:

» USE48 SE Metadata Tohandle file not found, unreadable, or corrupt.
» USE51 SE Metadata smart blob is corrupt or unreadable.
* USE52 SE_Metadata memory cache is Tlocked.

Execute the SE_Metadatalnit() function to reinitialize the spatial reference system
smart large object and memory cache.

Syntax
SE_Metadatalnit()

Return type
The text string OK, if the function was successfully executed

Example
execute function SE_Metadatalnit();
Related reference:

[“Resolve problems with SE_Metadatalnit()” on page 5-1|

The SE_Midpoint() function

The SE_Midpoint() function determines the midpoint of a linestring. The midpoint
is defined as that point which is equidistant from both endpoints of a linestring,
measuring distance along the linestring.

If the input linestring has Z values or measures, the Z value or measure of the
midpoint are computed by linear interpolation between the adjacent vertices.

Syntax
SE_Midpoint (1nl ST_LineString)

Return type

ST_Point

The ST_MLineFromGML() function

7-94

The ST_MLineFromGML() function takes a GML2 or GML3 string representation
of an ST_MultiLineString and an optional spatial reference ID and returns a
multipart polyline object.

Syntax

ST_MLineFromGML(gmlstring Tvarchar)
ST MLineFromGML(gmlstring Tvarchar, SRID integer)

IBM Informix Spatial Data User's Guide

Return type

ST_MultiLineString

Example

The gml_linetest table is created with the SMALLINT column gid and the
ST_MultiLineString column In1:

CREATE TABLE gml_linetest(gid smallint, 1nl ST MultilLineString);

INSERT INTO gml_Tlinetest VALUES (1, ST _MLineFromGML('<gml:MultilLineString>

<gml:LineStringMember><gml:LineString><gml:posList>-110.45 45.256
-109.48 46.46 -109.86 43.84</gml:posList></gml:LineString>
</gml:LineStringMember><gml:LineStringMember><gml:LineString>
<gml:posList>-99.45 33.256 -99.48 36.46 -99.86 33.84</gml:posList>
</gml:LineString></gml:LineStringMember></gml:MultiLineString>',4));

INSERT INTO gml_linetest VALUES (2, ST _MLineFromGML('<gml:MultiLineString

srsName="EPSG:4326" srsDimension="3"><gml:LineStringMember>
<gml:LineString srsName="EPSG:4326" srsDimension="3"><gml:posList
dimension="3">-110.449999933 45.2559999343 10 -109.47999994
46.4600005499 10 -109.86000008 43.8400000201 20</gml:posList>
</gml:LineString></gml:LineStringMember><gml:LineStringMember>
<gml:LineString srsName="EPSG:4326" srsDimension="3"><gml:posList
dimension="3">-99.45 33.256 10 -99.48 36.46 10 -99.86 33.84 20
</gml:posList></gml:LineString></gml:LineStringMember>
</gml:MultiLineString>"));

INSERT INTO gml_linetest VALUES (3, ST _MLineFromGML('<gml:MultilLineString

srsName="EPSG:4326" srsDimension="4"><gml:LineStringMember>
<gml:LineString srsName="EPSG:4326" srsDimension="4"><gml:posList
dimension="4">-110.449999933 45.2559999343 10 54 -109.47999994
46.4600005499 10 58 -109.86000008 43.8400000201 20 64</gml:posList>
</gml:LineString></gml:LineStringMember><gml:LineStringMember>
<gml:LineString srsName="EPSG:4326" srsDimension="4"><gml:posList
dimension="4">-99.45 33.256 10 54 -99.48 36.46 10 58 -99.86 33.84 20 64
</gml:posList></gml:LineString></gml:LineStringMember>
</gml:MultiLineString>"));

The first record specifies a spatial reference ID of 4 (WGS84) and a default
dimension of 2. The second and third records contain Z and M measures and pass
the spatial reference ID through the srsName attribute.

Output:
SELECT * FROM gml_linetest;

gid
Tnl

gid
Tnl

gid
Inl

1

4 MULTILINESTRING ((-110.449999933 45.2559999343, -109.47999994 46.4600000
469, -109.86000008 43.8400000201),(-99.4499999329 33.2559999343, -99.47999
99397 36.4600000469, -99.8600000805 33.8400000201))

2

4 MULTILINESTRING Z ((-110.449999933 45.2559999343 10, -109.47999994 46.46

00005499 10, -109.86000008 43.8400000201 20),(-99.4499999329 33.2559999343
10, -99.4799999397 36.4600000469 10, -99.8600000805 33.8400000201 20))

3

4 MULTILINESTRING ZM ((-110.449999933 45.2559999343 10 54, -109.47999994 4
6.4600005499 10 58, -109.86000008 43.8400000201 20 64),(-99.4499999329 33.
2559999343 10 54, -99.4799999397 36.4600000469 10 58, -99.8600000805 33.84
00000201 20 64))

3 row(s) retrieved.

Chapter 7. Spatial functions 7-95

The ST_MLineFromKML() function

The ST_MLineFromKML() function takes a KML MultiLineString string and an
optional spatial reference ID and returns a multipart polyline object. A KML
MultiLineString string can contain the KML shape attributes <extrude>,
<tessellate>, and <altitudeMode>, but they are ignored in the ST_MultiLineString
representation.

Syntax

ST_MLineFromKML(kmlstring Tvarchar)
ST MLineFromKML(kmlstring Tvarchar, SRID integer)

Return type
ST_MultiLineString

Example

EXECUTE FUNCTION ST_MLineFromKML(<MultiGeometry>
<LineString>
<coordinates>
-122.4425587930444,37.80666418607323,0
-122.4428379594768,37.80663578323093,0
</coordinates>
</LineString>
<LineString>
<coordinates>
-122.4425509770566,37.80662588061205,0
-122.4428340530617,37.8065999493009,0
</coordinates>
</LineString>
</MultiGeometry>,4);

The SE_MLineFromShape() function

7-96

The SE_MLineFromShape() function creates an ST_MultiLineString from a shape
of type polyline and a spatial reference ID. A polyline with only one part is
appropriate as an ST_LineString (see ["The SE_LineFromShape() function” on page
and a polyline with multiple parts is appropriate as an ST_MultiLineString.

Syntax
SE_MLineFromShape(sl Tvarchar, SRID integer)

Return type
ST_MultiLineString
Example

The waterways table is created with the ID and name columns that identify each
stream and river system stored in the table. The water column is an
ST_MultiLineString because the river and stream systems are often an aggregate of
several linestrings:

CREATE TABLE waterways (id integer,

name varchar(128),
water ST MultiLineString);

This code fragment populates the waterways table with a unique ID, a name, and
a water multilinestring:

IBM Informix Spatial Data User's Guide

/* Create the SQL insert statement to populate the waterways
* table. The question marks are parameter markers that indicate
* the column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO waterways (id,name,water) "
"VALUES(?, ?, ST MlineFromShape(?, %d))", srid);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)sql_stmt, SQL_NTS);

/* Bind the id to the first parameter. */

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0O, 0,
&id, 0, &pchvaluel);

/* Bind the name to the second parameter. */

pcbvalue2 = name_len;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR, name_len, 0,
name, name_len, &pcbvalue?);

/* Bind the water geometry to the third parameter. */

pcbvalue3 = water_shape_len;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, water_shape_len, 0,
water_shape_buf, water_shape_len, &pcbvalue3);

/* Execute the insert statement. =/

rc = SQLExecute (hstmt);

The ST_MLineFromText() function

The ST_MLineFromText() function takes a well-known text representation of type
ST_MultiLineString and a spatial reference ID and returns an ST_MultiLineString.

Syntax
ST _MLineFromText(wkt Tvarchar, SRID integer)

Return type
ST_MultiLineString
Example

The mlinestring_test is created with the gid SMALLINT column that uniquely
identifies the row and the ml1 ST_MultiLineString column:

CREATE TABLE mlinestring_test (gid smallint,
mll ST MultilLineString);

The following INSERT statement inserts the ST_MultiLineString with the
ST _MLineFromText() function:
INSERT INTO mlinestring_test VALUES(
]-,
ST _MLineFromText ('multilinestring((10.01 20.03,10.52
40.11,30.29 41.56,31.78 10.74),(20.93 20.81, 21.52 40.10))', 1000)
)

Chapter 7. Spatial functions 7-97

The ST_MLineFromWKB() function

The ST_MLineFromWKB() function creates an ST_MultiLineString from a
well-known binary representation of type ST_MultiLineString and a spatial
reference ID.

Syntax
ST _MLineFromWKB(WKB Tvarchar, SRID integer)

Return type
ST_MultiLineString
Example

The waterways table is created with the ID and name columns that identify each
stream and river system stored in the table. The water column is an
ST_MultiLineString because the river and stream systems are often an aggregate of
several linestrings:

CREATE TABLE waterways (id integer,
name varchar(128),
water ST MultiLineString);

This code fragment populates the waterways table with a unique ID, a name, and
a water ST_MultiLineString;:

/* Create the SQL insert statement to populate the waterways
* table. The question marks are parameter markers that indicate
* the column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO waterways (id,name,water) "
"VALUES(?, ?, ST _MlineFromWKB(?, %d))", srid);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)sql_stmt, SQL_NTS);

/* Bind the id to the first parameter. */

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0O, O,
&id, 0, &pchvaluel);

/* Bind the name to the second parameter. =/

pcbvalue2 = name_len;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL C_CHAR,
SQL_CHAR, name_len, 0,
name, name_len, &pcbvalue?2);

/* Bind the water geometry to the third parameter. =/

pcbvalue3 = water_wkb_Ten;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, water_wkb_len, 0,
water_wkb_buf, water_wkb_len, &pcbvalue3);

/* Execute the insert statement. =/
rc = SQLExecute (hstmt);

7-98 IBM Informix Spatial Data User's Guide

The ST_MPointFromGML() function

The ST_MPointFromGML() function takes a GML2 or GML3 string representation
of an ST_MultiPoint and an optional spatial reference ID and returns a polygon
object.

Syntax

ST_MPointFromGML(gmlstring Tvarchar)
ST_MPointFromGML (gmlstring Tvarchar, SRID integer)

Return type
ST _MultiPoint
Example

The gml_pointtest table is created with the SMALLINT column gid and the
ST_MultiPoint column mptl:

CREATE TABLE gml_pointtest(gid smallint, mptl ST _MultiPoint);

INSERT INTO gml_pointtest VALUES (1, ST _MPointFromGML('<gml:MultiPoint>
<gml:PointMember><gml:Point><gml:pos>-110.45 45.256</gml:pos>
</gml:Point></gml:PointMember><gml:PointMember><gml:Point>
<gml :pos>-99.45 33.256</gml:pos></gml:Point></gml:PointMember>
</gml:MultiPoint>',4));

INSERT INTO gml_pointtest VALUES (2, ST MPointFromGML('<gml:MultiPoint
srsName="EPSG:4326" srsDimension="3"><gml:PointMember><gml:Point
srsName="EPSG:4326" srsDimension="3"><gml:pos>-110.449999933
45.2559999343 10</gml:pos></gml:Point></gml:PointMember>
<gml:PointMember><gml:Point srsName="EPSG:4326" srsDimension="3">
<gml:p0s>-99.86 33.84 20</gml:pos></gml:Point></gml:PointMember>
</gml:MultiPoint>'));

INSERT INTO gml_pointtest VALUES (3, ST_MPointFromGML('<gml:MultiPoint
srsName="EPSG:4326" srsDimension="4"><gml:PointMember><gml:Point
srsName="EPSG:4326" srsDimension="4"><gml:pos>-109.47999994
46.4600005499 10 58</gml:pos></gml:Point></gml:PointMember>
<gml:PointMember><gml:Point srsName="EPSG:4326" srsDimension="4">
<gml:pos>-99.45 33.256 10 54</gml:pos></gml:Point></gml:PointMember>
</gml:MultiPoint>"'));

The first record specifies a spatial reference ID of 4 (WGS84) and a default
dimension of 2. The second and third records contain Z and M measures and pass
the spatial reference ID through the srsName attribute.

Output:
SELECT * FROM gml_pointtest;

gid 1
mptl 4 MULTIPOINT (-110.449999933 45.2559999343, -99.4499999329 33.2559999343)

gid 2

mptl 4 MULTIPOINT Z (-110.449999933 45.2559999343 10, -99.8600000805 33.840000
0201 20)

gid 3

mptl 4 MULTIPOINT ZM (-109.47999994 46.4600005499 10 58, -99.4499999329 33.255
9999343 10 54)

3 row(s) retrieved.

Chapter 7. Spatial functions 7-99

The ST_MPointFromKML() function

The ST_MPointFromKML() function takes a KML MultiGeometry and Point
combination and an optional spatial reference ID and returns a multipoint object. A
Point string can contain the elements of <coordinates>, <extrude>, <tessellate>,
and <altitudeMode>, but they are ignored.

Syntax

ST_MPointFromKML (kmlstring Tvarchar)
ST_MPointFromKML (kmlstring Tvarchar, SRID integer)

Return type
ST_MultiPoint

Example

EXECUTE FUNCTION ST_MPointFromKML('<MultiGeometry><Point><coordinates>
-122.365662,37.826988, 0</coordinates></Point><Point>
<coordinates>-122.365038,37.82655,0</coordinates>
</Point></MultiGeometry>"',4);

Output:

4 MULTIPOINT Z (-122.365662056 37.8269879529 0, -122.36503794
37.8265500822 0)

The SE_MPointFromShape() function

The SE_MPointFromShape() function takes a shape of type multipoint and a
spatial reference ID to return an ST_MultiPoint.

Syntax
SE_MPointFromShape(sl Tvarchar, SRID integer)

Return type
ST _MultiPoint
Example

The species_sitings table is created with three columns. The species and genus
columns uniquely identify each row, while the sitings ST_MultiPoint stores the
locations of the species sitings:

CREATE TABLE species_sitings (species varchar(32),

genus varchar(32),
sitings ST MultiPoint);

This code fragment populates the species_sitings table:

/* Create the SQL insert statement to populate the species_sitings
* table. The question marks are parameter markers that indicate
* the column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO species_sitings (species,genus,sitings) "
"VALUES(?, ?, SE_MpointFromShape(?, %d))", srid);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)sql_stmt, SQL_NTS);

/* Bind the species to the first parameter. */

7-100 IBM Informix Spatial Data User's Guide

pcbvaluel = species_Ten;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR, species_len, 0,
species, species_len, &pcbvaluel);

/* Bind the genus to the second parameter. =/

pcbvalue2 = genus_len;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL C_CHAR,
SQL_CHAR, genus_len, 0,
genus, genus_len, &pchvalue?);

/* Bind the sitings geometry to the third parameter. */

pcbvalue3 = sitings_shape_len;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, sitings_shape_len, 0,
sitings_shape_buf, sitings_shape_len, &pcbvalue3);

/* Execute the insert statement. =%/
rc = SQLExecute (hstmt);

The ST_MPointFromText() function

The ST _MPointFromText() function creates an ST MultiPoint from a well-known
text representation of type ST_MultiPoint and a spatial reference ID.

Syntax
ST _MPointFromText (WKT Tvarchar, SRID integer)

Return type
ST_MultiPoint
Example

The multipoint_test table is created with the single ST_MultiPoint mpt1 column:

CREATE TABLE multipoint_test (gid smallint,
mptl ST _MultiPoint);

The following INSERT statement inserts a multipoint into the mptl column using
the ST_MPointFromText() function:

INSERT INTO multipoint_test VALUES(

1,

ST _MPointFromText('multipoint(10.01 20.03,10.52 40.11,30.29
41.56,31.78 10.74)',1000)
)s

The ST_MPointFromWKB() function

The ST_MPointFromWKB() function creates an ST_MultiPoint from a well-known
binary representation of type ST_MultiPoint and a spatial reference ID.

Syntax
ST_MPointFromWKB (WKB Tvarchar, SRID integer)

Return type

ST _MultiPoint

Chapter 7. Spatial functions 7-101

Example

The species_sitings table is created with three columns. The species and genus
columns uniquely identify each row, while the sitings ST_MultiPoint stores the
locations of the species sightings:

CREATE TABLE species_sitings (species varchar(32),
genus varchar(32),
sitings ST MultiPoint);

This code fragment populates the species_sitings table:

/* Create the SQL insert statement to populate the species_sitings
* table. The question marks are parameter markers that indicate
* the column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO species_sitings (species,genus,sitings)
"VALUES(?, ?, ST MpointFromWKB(?, %d))", srid);

/* Prepare the SQL statement for execution. =/
rc = SQLPrepare (hstmt, (unsigned char =*)sql_stmt, SQL_NTS);

/* Bind the species to the first parameter. */

pcbvaluel = species_len;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR, species_len, 0,
species, species_len, &pcbvaluel);

/* Bind the genus to the second parameter. */

pcbvalue2 = genus_len;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR, genus_len, 0,
genus, genus_len, &pcbvalue2);

/* Bind the sitings geometry to the third parameter. */

pcbvalue3 = sitings_wkb_Ten;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, sitings_wkb_len, 0,
sitings_wkb buf, sitings_wkb_Tlen, &pcbvalue3);

/* Execute the insert statement. =/
rc = SQLExecute (hstmt);

The ST_MPolyFromGML() function

The ST_MPolyFromGML() function takes a GML2 or GMLS3 string representation
of an ST_MultiPoly and an optional spatial reference ID and returns a multipart
polygon object.

Syntax

ST MPolyFromGML(gmistring Tvarchar)
ST_MPolyFromGML(gmlstring Tvarchar, SRID integer)
Return type

ST_MultiPolygon

Example

The test_multipoly table is created with the INTEGER column id and the
ST_MultiPolygon column geom:

7-102 IBM Informix Spatial Data User's Guide

CREATE TABLE test multipoly (id INTEGER, geom ST MultiPolygon);

INSERT INTO test multipoly VALUES(1,ST MPolyFromGML
('<gml:MultiPolygon srsName="EPSG:4326" srsDimension="2">
<gml:PolygonMember><gml:Polygon srsName="EPSG:4326" srsDimension="2">
<gml:exterior><gml:LinearRing><gml:posList dimension="2">
-94.36 32.49 -92.66 32.69 -92.15 32.46 -93.09 33.08 -93.37 33.19
-94.36 32.49</gml:posList></gml:LinearRing>
</gml:exterior></gml:Polygon></gml:PolygonMember>
<gml:PolygonMember><gml:Polygon srsName="EPSG:4326" srsDimension="2">
<gml:exterior><gml:LinearRing><gml:posList dimension="2">
-84.36 32.49 -82.66 32.69 -82.15 32.46 -83.09 33.08 -83.37 33.19
-84.36 32.49</gml:posList></gml:LinearRing></gml:exterior>
< /gml:Polygon></gml:PolygonMember></gml:MultiPolygon>',4));

This record specifies a spatial reference ID of 4 (WGS84) and both member
polygons have a dimension of 2 and six sides.

Output:
SELECT * FROM test multipoly;

id 1

geom 4 MULTIPOLYGON (((-94.3600000805 32.4900000536, -92.6599999799
32.6899999866, -92.1500000335 32.4600000469,
-93.0900000201 33.0800000738, -93.3700000268
33.1899999866, -94.3600000805 32.4900000536)),
((-84.3600000805 32.4900000536, -82.6599999799
32.6899999866, -82.1500000335 32.4600000469,
-83.0900000201 33.0800000738, -83.3700000268
33.1899999866, -84.3600000805 32.4900000536)))

The ST_MPolyFromKML() function

The ST_MPolyFromKML() function takes a MultiGeometry and Polygon
combination and an optional spatial reference ID and returns a polygon object.

Syntax

ST_MPolyFromKML (kmistring lvarchar)
ST _MPolyFromKML (kmlstring Tvarchar, SRID integer)

Return type
ST_MultiPolygon
Example

The test_multipoly table is created with the INTEGER column id and the
ST_MultiPolygon column geom:

CREATE TABLE test multipoly (id INTEGER, geom ST MultiPolygon);

INSERT INTO test_multipoly VALUES(1,ST_MPolyFromKML('<MultiGeometry>

<Polygon><outerBoundaryIs><LinearRing><coordinates>
-94.36,32.49 -92.65,32.68 -92.15,32.46 -93.09,33.08
-93.37,33.18 -94.36,32.49</coordinates>
</LinearRing></outerBoundaryIs></Polygon><Polygon>
<outerBoundaryIs><LinearRing><coordinates>-84.36,32.49
-82.65,32.68 -82.15,32.46 -83.09,33.08 -83.37,33.18
-84.3600000805,32.4900000536</coordinates>
</LinearRing></outerBoundaryIs></Polygon><
/MultiGeometry>',4));

Chapter 7. Spatial functions 7-103

This record specifies a spatial reference ID of 4 (WGS84) and both member
polygons have two dimensions and six sides.

Output:
SELECT * FROM test multipoly;

id 1

geom 4 MULTIPOLYGON (((-94.3600000805 32.4900000536, -92.6599999799
32.6899999866, -92.1500000335 32.4600000469, -93.0900000201
33.0800000738, -93.3700000268 33.1899999866, -94.3600000805
32.4900000536)) , ((-84.3600000805 32.4900000536, -82.6599999799
32.6899999866, -82.1500000335 32.4600000469, -83.0900000201
33.0800000738, -83.3700000268 33.1899999866, -84.3600000805
32.4900000536)))

The SE_MPolyFromShape() function

The SE_MPolyFromShape() function takes a shape of type polygon and a spatial
reference ID to return an ST_MultiPolygon.

Syntax
SE_MPolyFromShape(sl Tvarchar, SRID integer)

Return type
ST_MultiPolygon
Example

The lots table stores the lot_id, which uniquely identifies each lot, and the lot
multipolygon that contains the lot line geometry:

CREATE TABLE lots (lot_id integer,
ot ST _MultiPolygon);

This code fragment populates the lots table:

/* Create the SQL insert statement to populate the Tlots table.
* The question marks are parameter markers that indicate the
* column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO lots (lot_id,lot)"
"VALUES(?, SE_MpolyFromShape(?, %d))", srid);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)sql_stmt, SQL_NTS);

/* Bind the lot_id to the first parameter. =/

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0, 0,
&lot_id, 0, &pcbvaluel);

/* Bind the lot geometry to the second parameter. */

pcbvalue2 = Tot_shape_len;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, Tot_shape_len, 0,
Tot_shape_buf, Tot_shape_len, &pcbvalue2);

/* Execute the insert statement. =*/
rc = SQLExecute (hstmt);

7-104 IBM Informix Spatial Data User's Guide

The ST_MPolyFromText() function

The ST_MPolyFromText() function takes a well-known text representation of type
ST_MultiPolygon and a spatial reference ID and returns an ST_MultiPolygon.

Syntax
ST _MPolyFromText (WKT Tvarchar, SRID integer)

Return type
ST_MultiPolygon
Example

The multipolygon_test table is created with the single ST_MultiPolygon mpl1
column:

CREATE TABLE multipolygon test (mp1l ST MultiPolygon);

The following INSERT statement inserts an ST_MultiPolygon into the mp11
column using the ST_MPolyFromText() function:

INSERT INTO multipolygon_test VALUES(
ST_MPolyFromText('multipolygon(((10.01 20.03,10.52 460.11,30.29

41.56,31.78 10.74,10.01 20.03),(21.23 15.74,21.34 35.21,28.94

35.35,29.02 16.83,21.23 15.74)),((40.91 10.92,40.56 20.19,50.01

21.12,51.34 9.81,40.91 10.92)))',1000)

)s

The ST_MPolyFromWKB() function

The ST_MPolyFromWKB() function takes a well-known binary representation of
type ST_MultiPolygon and a spatial reference ID to return an ST_MultiPolygon.

Syntax
ST_MPolyFromWKB (WKB Tvarchar, SRID integer)

Return type
ST_MultiPolygon
Example

The lots table stores the lot_id, which uniquely identifies each lot, and the lot
multipolygon that contains the lot line geometry:

CREATE TABLE Tots (lot_id integer,
Tot ST _MultiPolygon);

This code fragment populates the lots table:

/* Create the SQL insert statement to populate the lots table.
* The question marks are parameter markers that indicate the
% column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO lots (lot_id, lot) "
"VALUES(?, ST MpolyFromWKB(?, %d))", srid);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char =*)sql_stmt, SQL_NTS);

Chapter 7. Spatial functions 7-105

/* Bind the Tot_id to the first parameter. */

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL C_SLONG,
SQL_INTEGER, 0, O,
&lot_id, 0, &pcbvaluel);

/* Bind the Tot geometry to the second parameter. */

pcbvalue2 = Tot_wkb_Ten;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, lot_wkb_len, 0,
Tot_wkb_buf, Tot_wkb_Tlen, &pcbvalue2);

/* Execute the insert statement. =*/
rc = SQLExecute (hstmt);

The SE_Nearest() and SE_NearestBbox() functions

The SE_Nearest() function returns the nearest-neighbors to a specified geometry.
The SE_NearestBBox() function returns the nearest-neighbors that are based on the
distance between bounding boxes.

The SE_Nearest() function uses an R-tree index, which you must create if it does
not exist. Query results are returned in order of increasing distance from the query
object. The distance is measured by applying the same algorithm as used by the
ST_Distance() function. For geometry values that are in a geographic coordinate
system, the distance is calculated by applying the linear unit of measure of meters.

The SE_NearestBBox() function runs more quickly than the SE_Nearest() function,
but might return objects in a different order, depending on the shape of the objects.

These functions can be used only in the WHERE clause of a query.

Required: You must create an R-tree index on the geometry column on which you
want to perform nearest-neighbor queries.

Syntax
SE_Nearest (gl ST _Geometry, g2 ST _Geometry)

SE_NearestBbox (gl ST_Geometry, g2 ST_Geometry)
Return type
BOOLEAN
Example
The cities table contains the names and locations of world cities:
CREATE TABLE cities (name varchar(255),
Tocn ST_Point);
Populate this table with data from a DB-Access load file, cities.Toad (this data file

contains the names and locations of approximately 300 world cities), as the
example shows:

LOAD FROM cities.load INSERT INTO cities;

Create an R-tree index on the locn column:

7-106 IBM Informix Spatial Data User's Guide

CREATE INDEX cities_idx ON cities (Tocn ST_Geometry ops) USING RTREE;

UPDATE STATISTICS FOR TABLE cities (Tocn);

Now search for the five cities nearest London:
SELECT FIRST 5 name FROM cities

WHERE SE_Nearest(locn, 'O point(0 51)');
name London
name Birmingham
name Paris
name Nantes

name Amsterdam

Warning: Using a fragmented R-tree index for nearest-neighbor queries raises an
error. Results are not returned in nearest distance order because the query is run
on each separate index fragment, and results from each fragment are combined in
an unspecified order.

The ST_NumGeometries() function

The ST_NumGeometries() function takes a ST_GeomCollection (ST_MultiPoint,
ST_MultiLineString, or ST_MultiPolygon) and returns the number of geometries in
the collection.

Syntax

ST_NumGeometries(mptl ST MultiPoint)
ST_NumGeometries(minl ST_MultiLineString)
ST _NumGeometries(mp11l ST MultiPolygon)

Return type
INTEGER
Example

The city engineer needs to know the number of distinct buildings associated with
each building footprint.

The building footprints are stored in the buildingfootprints table that was created
with the following CREATE TABLE statement:

CREATE TABLE buildingfootprints (building_id integer,
lot_id integer,
footprint ST MultiPolygon);

The query lists the building_id that uniquely identifies each building and the
number of buildings in each footprint with the ST_NumGeometries() function:

SELECT building_id, ST_NumGeometries(footprint) no_of buildings
FROM buildingfootprints;

building_id no_of_buildings

Chapter 7. Spatial functions 7-107

506
543
1208
178

[N

The ST_NuminteriorRing() function

The ST_NumlInteriorRing() function takes an ST_Polygon and returns the number
of its interior rings.

Syntax
ST_NumInteriorRing(p11l ST _Polygon)

Return type
INTEGER
Example

An ornithologist studying a bird population on several South Sea islands wants to
identify which islands contain one or more lakes, because the bird species of
interest feeds only in freshwater lakes.

The ID and name columns of the islands table identifies each island, while the
land ST_Polygon column stores the island geometry:
CREATE TABLE islands (id integer,

name varchar(32),
land ST Polygon);

Because interior rings represent the lakes, the ST_NumlInteriorRing() function lists
only those islands that have at least one interior ring:
SELECT name

FROM islands
WHERE ST NumInteriorRing(land) > 0;

The ST_NumPoints() function

7-108

The ST_NumPoints() function returns the number of points in an ST_Geometry.

Syntax
ST NumPoints(gl ST_Geometry)

Return type

INTEGER

Example

The numpoints_test table has two columns: geotype, a VARCHAR column that

contains a description of the type of geometry; and gl, an ST_Geometry type that
contains the geometry itself:

CREATE TABLE numpoints_test (geotype varchar(12),
gl ST_Geometry);

The following INSERT statements insert a point, a linestring, and a polygon:

IBM Informix Spatial Data User's Guide

INSERT INTO numpoints_test VALUES (

'point',

ST PointFromText('point (10.02 20.01)',1000)
)s

INSERT INTO numpoints_test VALUES(

'Tinestring',

ST LineFromText('linestring (10.02 20.01, 23.73 21.92)',1000)
)s

INSERT INTO numpoints_test VALUES(

'polygon',

ST _PolyFromText('polygon ((10.02 20.01, 23.73 21.92, 24.51
12.98, 11.64 13.42, 10.02 20.01))',1000)
)s

The query lists the geometry type and the number of points in each:

SELECT geotype, ST_NumPoints(gl) Number_of points
FROM numpoints_test;

geotype number_of_points
point 1
linestring 2
polygon 5

The SE_OutOfRowSize() function

The SE_OutOfRowSize() function returns the size of the out-of-row portion of a
geometry. Geometries which are larger than 930 bytes (for example, polygons with
many vertices) have an in-row component and an out-of-row component; the
out-of-row component is stored in an sbspace.

If a geometry has no out-of-row component, SE_OutOfRowSize() returns 0.

You can use this function to obtain an estimate of the amount of diskspace
consumed by one or more geometries. However, this function does not account for

dbspace and sbspace overhead, so cannot be used to obtain an exact total.

Syntax
SE_OutOfRowSize(ST_Geometry)

Return type
INTEGER

See also

[“The SE_InRowSize() function” on page 7-69

[“The SE_TotalSize() function” on page 7-133]

The ST_Overlaps() function

The ST_Overlaps() function returns t (TRUE) if the intersection of two
ST_Geometry objects results in an ST_Geometry object of the same dimension but
not equal to either source object. Otherwise, it returns f (FALSE).

Chapter 7. Spatial functions 7-109

7-110

Syntax
ST Overlaps(gl ST Geometry, g2 ST Geometry)

Usage

The following figure shows various geometric objects that overlap.

T

ST_LineString/ST_LineString ST_Polygon/ST_Polygon

ST_MultiPoint/ST_MultiPoint

Figure 7-23. Overlapping geometries

The results of the spatial relationship of the ST_Operlaps() function can be
understood or verified by comparing the results with a pattern matrix that
represents the acceptable values for the DE-9IM. The ST_Operlaps() function
returns TRUE if the intersection of the objects results in an object of the same
dimension but not equal to either source object.

This pattern matrix applies to ST_Polygon and ST_Polygon; ST_MultiPoint and
ST_MultiPoint; and ST_MultiPolygon and ST_MultiPolygon overlaps. For these
combinations, the ST_Overlaps() function returns TRUE if the interior of both
geometries intersects the other's interior and exterior.

Table 7-16. Pattern matrix for the ST_Overlaps() function.

Interior (b) Boundary (b) Exterior (b)
Interior (a) T * T
Boundary (a) * * *
Exterior (a) T * *

This pattern matrix applies to ST_LineString and ST_LineString; and to
ST_MultiLineString and ST_MultiLineString overlaps. In this case, the intersection
of the geometries must result in a geometry that has a dimension of 1 (another
ST_LineString or ST_MultiLineString). If the dimension of the intersection of the
interiors resulted in 0 (a point), the ST_Overlaps() function would return FALSE;
however, the ST_Crosses() function would return TRUE.

Interior (b) Boundary (b) Exterior (b)
Interior (a) 1 * T
Boundary (a) * * *
Exterior (a) T * *

IBM Informix Spatial Data User's Guide

Return type

BOOLEAN

Example

The county supervisor needs a list of hazardous waste sites whose 5-mile radius
overlaps sensitive areas.

The sensitive_areas table contains several columns that describe the threatened
institutions in addition to the zone column, which stores the institution
ST_Polygon geometries:

CREATE TABLE sensitive areas (id integer,

name varchar(128),
size float,

type varchar(10),
zone ST _Polygon);

The hazardous_sites table stores the identity of the sites in the site_id and name
columns. The actual geographic location of each site is stored in the location point

column:

CREATE TABLE hazardous_sites (site_id integer,

name varchar(40),
Tocation ST Point);

The sensitive_areas and hazardous_sites tables are joined by the ST_Overlaps()
function. It returns t (TRUE) for all sensitive_areas rows whose zone polygons
overlap the buffered 5-mile radius of the hazardous_sites location points:

SELECT hs.name hazardous_site, sa.name sensitive_area
FROM hazardous_sites hs, sensitive_areas sa
WHERE ST Overlaps(ST_Buffer(hs.location, (26400)),sa.zone);

hazardous_site
sensitive_area

hazardous_site
sensitive_area

Landmark Industrial
Johnson County Hospital

Landmark Industrial
Summerhill Elementary School

The following figure shows that the hospital and the school overlap the 5-mile
radius of the county's two hazardous waste sites. The nursing home does not.

Chapter 7. Spatial functions 7-111

(] il Hospital
|—|7A p
i

| | | I School

Nursing
Home

Figure 7-24. Using the ST_Overlaps() function

Related reference:

[“The Dimensionally Extended 9 Intersection Model” on page 7-2|

The SE_ParamGet() function

The SE_ParamGet() function with no arguments returns the values of all
parameters. Calling SE_ParamGet() with a parameter name in quotation marks
returns the current value of the named parameter.

Syntax

SE_ParamSet (name lvarchar) returns Ivarchar
SE_ParamSet() returns lvarchar

Return type
LVARCHAR

Example

execute function SE_ParamGet();
execute function SE_ParamGet ('MemMode');

Related reference:

|”Optimize spatial queries” on page 1—24|

The SE_ParamSet() function

7-112

The SE_ParamSet() function with no arguments returns usage information. Calling

SE_ParamSet() with a parameter name in quotation marks and a value sets the

parameter to the specified value. The new value is returned. Parameter names are

not case-sensitive. Quotation marks are not required for numeric values.

Syntax

SE_ParamSet(name lvarchar, value lvarchar) returns lvarchar
SE_ParamSet() returns lvarchar

IBM Informix Spatial Data User's Guide

Return type
LVARCHAR

Example

execute function SE_ParamSet();
execute function SE_ParamSet('memmode', '0');
execute function SE_ParamSet('MemMode', 1);

Related reference:

[“Optimize spatial queries” on page 1-24|

The ST_Perimeter() function

The ST_Perimeter() function returns the perimeter of a polygon or multipolygon.

Syntax

ST_Perimeter(s ST _Polygon)
ST Perimeter(s ST_Polygon, Tinear_uom varchar(128))

ST Perimeter(ms ST MultiPolygon)
ST Perimeter(ms ST_MultiPolygon, Tinear_uom varchar(128))

The linear_uom parameter converts the result to the specified unit of measure. To
calculate the perimeter if the polygon is in a geographic coordinate system where
the coordinates are in an angular unit of measure, you must specify a linear unit of
measure with the linear_uom parameter. Angular units of measure are converted to
linear units of measure by great-circle calculations. If the polygon is in a projected
coordinate system that has a unit of measure that is different from the unit of
measure that is specified by the linear_uom parameter, then the returned value is
converted to the unit of measure that is specified by the linear_uom parameter. The
linear_uom parameter must be the name of a linear unit of measure from the
unit_name column of the st_units_of measure table.

Return type
DOUBLE PRECISION
Example: Find the perimeter of lakes

An ecologist who studies shoreline birds needs to determine the shoreline for the
lakes within a particular area. The lakes are stored as ST_MultiPolygon type in the
waterbodies table, created with the following CREATE TABLE statement:

CREATE TABLE WATERBODIES (wbid integer, waterbody ST MultiPolygon);

In the following SELECT statement, the ST_Perimeter() function returns the
perimeter that surrounds each body of water, while the SUM operator aggregates
the perimeters to return their total:

SELECT SUM(ST_Perimeter(waterbody)) FROM waterbodies;
Examples: Find the perimeter polygons

The following statement returns the perimeter of a polygon in meters:

execute function round(
st_perimeter(
32608 polygon((576100 15230, 576100 15232, 576102 15232,
576102 15230, 576100 15230))'::st_polygon,

Chapter 7. Spatial functions 7-113

"meter'),
2);

(expression)
8.00000000000000

1 row(s) retrieved.

The following statement returns the perimeter of a multipolygon in meters:

EXECUTE FUNCTION round(
st_perimeter(
'32608 multipolygon(((576100 15230, 576100 15232, 576102 15232,
576102 15230, 576100 15230)),((576104 4, 576104 6, 576106 6,
576106 4, 576104 4)))'::st_multipolygon,
"meter'),
2);

(expression)
16.0000000000000

1 row(s) retrieved.

Example: Find the perimeter of a polygon that is based on
angular coordinates

The following statement returns the perimeter distance in meters of a 10 kilometer
buffer around the coordinates from the angular coordinate system WGS 84, which
has SRID 4326, that represent the latitude and longitude of New York (73.94000 W,
40.67000 N):

EXECUTE FUNCTION ST perimeter(ST Buffer('4326 point(-73.94000 40.67000)'
::st_point, 10, 'kilometer')::st_polygon, 'meter');

(expression)
62820.61328130

1 row(s) retrieved.

Related reference:

[‘The st_units_of_measure table” on page 1-17]

The SE_PerpendicularPoint() function

7-114

The SE_PerpendicularPoint() function finds the perpendicular projection of a point
on to the nearest segment of a linestring or multilinestring. If two or more such
perpendicular projected points are equidistant from the input point, they are all
returned. If no perpendicular point can be constructed, an empty point is returned.

If the input linestring has Z values or measures, the Z value or measure of the
perpendicular point are computed by linear interpolation between the adjacent
vertices.

Syntax
SE_PerpendicularPoint(ST_LineString, ST_Point)

SE_PerpendicularPoint(ST_MultiLineString, ST_Point)

IBM Informix Spatial Data User's Guide

Return type
ST_MultiPoint

Example
CREATE TABLE Tinestring_test (Tine ST_LineString);

-- Create a U-shaped linestring:
INSERT INTO Tlinestring_test VALUES (

ST LineFromText('linestring z (0 10 1, 0 0 3, 10 0 5, 10 10 7)', 0)
)s

-- Perpendicular point is coincident with the input point,

-- on the base of the U:

SELECT SE_PerpendicularPoint(1ine, ST_PointFromText('point(5 0)', 0))
FROM Tinestring test;

(expression) O MULTIPOINT Z (5 0 4)

-- Perpendicular points are Tocated on all three segments of the U:

SELECT SE_PerpendicularPoint(1ine, ST_PointFromText('point(5 5)', 0))
FROM Tinestring test;

(expression) © MULTIPOINT Z (0 52, 50 4, 10 5 6)

-- Perpendicular points are Tocated at the endpoints of the U:

SELECT SE_PerpendicularPoint(1ine, ST_PointFromText('point(5 10)', 0))
FROM linestring_test;

(expression) O MULTIPOINT Z (6 10 1, 10 10 7)

-- Perpendicular point is on the base of the U:

SELECT SE_PerpendicularPoint(1ine, ST_PointFromText('point(5 15)', 0))
FROM linestring_test;

(expression) O MULTIPOINT Z (5 0 4)

-- No perpendicular point can be constructed:

SELECT SE_PerpendicularPoint(1ine, ST_PointFromText('point(15 15)', 0))
FROM linestring_test;

(expression) O POINT EMPTY

The ST_Point() function

The ST_Point() function returns an ST_Point, given an X-coordinate, Y-coordinate,
and spatial reference ID.

Syntax

ST Point(X double precision, Y double precision, SRID integer)
Return type

ST_Point

Chapter 7. Spatial functions 7-115

Example

The following CREATE TABLE statement creates the point_test table, which has a
single point column, ptl:

CREATE TABLE point_test (ptl ST Point);

The ST_Point() function converts the point coordinates into an ST_Point geometry
before the INSERT statement inserts it into the ptl column:

INSERT INTO point_test VALUES(
ST Point(10.01,20.03,1000)
)s

The ST_PointAtDistance() function

The ST_PointAtDistance() function returns the point the specified distance from
the start of the line. Z coordinates and measures are ignored.

Syntax

ST_PointAtDistance (ST_LineString, float)
ST PointAtDistance (ST _MultiLineString, float)

Return type
ST_Point
Example

The following SQL statement creates the sample_geometries table with two
columns. The ID column uniquely identifies each row. The geometry ST_LineString
column stores sample geometries.

CREATE TABLE sample_geometries(id INTEGER, geometry ST_LINESTRING);

The following SQL statement inserts two rows into the sample_geometries table:

INSERT INTO sample_geometries(id, geometry)
VALUES

(1,ST_LineString('LINESTRING ZM(0 0 0 0, 10 100 1000 10000)',1)),
(2,ST_LineString('LINESTRING ZM(10 100 1000 10000, 0 0 0 0)',1));

The following SELECT statement and the corresponding result set show how to
use the ST_PointAtDistance() function to find points at a distance of 15 coordinate
units from the start of the linestring.

SELECT ID, VARCHAR(ST AsText(ST_PointAtDistance(geometry, 15)), 50) AS POINTAT
FROM sample_geometries;

ID POINTAT

1 POINT ZM(1.492556 14.925558 149 1493)
2 POINT ZM(8.507444 85.074442 851 8507)

2 record(s) selected.

The ST_PointFromGML() function

The ST_PointFromGML() function takes a GML2 or GML3 string representation of
an ST_Point and an optional spatial reference ID and returns a point object.

7-116 IBM Informix Spatial Data User's Guide

Syntax

ST_PointFromGML (gmistring lvarchar)
ST _PointFromGML(gmlstring Tvarchar, SRID integer)

Return type
ST_Point
Example

The point_t table contains the gid INTEGER column, which uniquely identifies
each row, the pdesc column which describes the point, and the p1 column which
stores the point. In this example, GML3 is shown.

CREATE TABLE point_t (gid INTEGER, pdesc VARCHAR(30), pl ST Point);

INSERT INTO point_t VALUES(

]-s

'This point is a simple XY point',

ST_PointFromGML('<gml:Point srsName="DEFAULT" srsDimension="2">
<gml :p0s>10.02 20.01</gml:pos></gml:Point>',1000)) ;

INSERT INTO point_t VALUES(

2,

'This point is a XYZ point',

ST_PointFromGML('<gml:Point srsName="DEFAULT" srsDimension="3">
<gml:p0s>10.02 20.01 5</gml:pos></gml:Point>',1000)) ;

INSERT INTO point_t VALUES(

33

'This point is a XYM point',

ST_PointFromGML('<gml:Point srsName="DEFAULT" srsDimension="3">
<gml:p0s>10.02 20.01 7</gml:pos></gml:Point>',1000));

INSERT INTO point_t VALUES (

4,

'This point is a XYZM point',

ST PointFromGML('<gml:Point srsName="DEFAULT" srsDimension="4">
<gml:p0s>10.02 20.01 5 7</gml:pos></gml:Point>',1000)) ;

INSERT INTO point_t VALUES(
5,
'This point is an empty point',

ST_PointFromGML('<gml:Point xsi:nil="true" srsName="UNKNOWN:0"
srsDimension="2"/>',1000));

The ST_PointFromKML() function

The ST_PointFromKML() function takes a KML Point string and an optional
spatial reference ID and returns a point object. A Point string can contain the
elements of <coordinates>, <extrude>, <tessellate>, and <altitudeMode>.

Syntax

ST_PointFromKML(kmlstring Tvarchar)
ST_PointFromKML (kmistring lvarchar, SRID integer)
Return type

ST_Point

Chapter 7. Spatial functions 7-117

Example

EXECUTE FUNCTION ST_PointFromKML('<Point><coordinates>-122.44255879,37.80666418
</coordinates></Point>"',3);

Output:
3 POINT (-122.44255879 37.80666418)

The SE_PointFromShape() function

7-118

The SE_PointFromShape() function creates an ST_Point from a shape of type point
and a spatial reference ID.

Syntax
SE_PointFromShape(sl Tvarchar, SRID integer)

Return type
ST_Point
Example

The hazardous sites are stored in the hazardous_sites table created with the
CREATE TABLE statement that follows. The location column, defined as a point,
stores a location that is the geographic center of each hazardous site:

CREATE TABLE hazardous_sites (site_id integer,
name varchar(40),
Tocation ST_Point);

The program fragment populates the hazardous_sites table:

/* Create the SQL insert statement to populate the hazardous_sites
* table. The question marks are parameter markers that indicate
* the column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO hazardous_sites (site_id, name, location) "
"VALUES(?, ?, SE_PointFromShape(?, %d))", srid);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)sql_stmt, SQL_NTS);

/* Bind the site_id to the first parameter. =/

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0, O,
&site_id, 0, &pcbvaluel);

/* Bind the name to the second parameter. =/

pcbvalue2 = name_len;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR, 0, 0,
name, 0, &pcbvalue?);

/* Bind the Tocation geometry to the third parameter. */

pcbvalue3 = Tocation_shape_len;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, Tlocation_shape Ten, 0,
Tocation_shape_buf, Tocation_shape_len, &pcbvalue3);

/* Execute the insert statement. =%/
rc = SQLExecute (hstmt);

IBM Informix Spatial Data User's Guide

The ST_PointFromText() function

The ST_PointFromText() function takes a well-known text representation of type
point and a spatial reference ID and returns a point.

Syntax
ST _PointFromText (WKT Tvarchar, SRID integer)

Return type
ST_Point
Example

The point_test table is created with the single ST_Point column pt1:

CREATE TABLE point_test (gid smallint,
ptl ST Point);

The ST_PointFromText() function converts the point text coordinates to the
ST_Point format before the INSERT statement inserts the point into the ptl
column:
INSERT INTO point_test VALUES (

1,

ST _PointFromText('point(10.01 20.03)',1000)
)s

The ST_PointFromWKB() function

The ST_PointFromWKB() function takes a well-known binary representation of
type ST_Point and a spatial reference ID to return an ST_Point.

Syntax
ST _PointFromWKB (WKB Tvarchar, SRID integer)

Return type
ST_Point
Example

The hazardous sites are stored in the hazardous_sites table created with the
CREATE TABLE statement that follows. The location column, defined as an
ST_Point, stores a location that is the geographic center of each hazardous site:

CREATE TABLE hazardous_sites (site_id integer,
name varchar(40),
Tocation ST _Point);

The program fragment populates the hazardous_sites table:

/* Create the SQL insert statement to populate the hazardous sites
* table. The question marks are parameter markers that indicate
* the column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO hazardous_sites (site_id, name, location) "
"VALUES(?, ?, ST PointFromWKB(?, %d))", srid);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char =*)sql_stmt, SQL_NTS);

Chapter 7. Spatial functions 7-119

/* Bind the site_id to the first parameter. */

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0O, O,
&site_id, 0, &pcbvaluel);

/* Bind the name to the second parameter. %/

pcbvalue2 = name_len;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL C_CHAR,
SQL_CHAR, 0, 0,
name, 0, &pcbvalue?);

/* Bind the Tocation geometry to the third parameter. */

pcbvalue3 = Tocation_wkb_Ten;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, location _wkb_len, 0,
Tocation_wkb_buf, Tocation_wkb_len, &pcbvalue3);

/* Execute the insert statement. =*/
rc = SQLExecute (hstmt);

The ST_PointN() function

The ST_PointN() function takes an ST_LineString and an INTEGER index and
returns a point that is the nth vertex in the ST_LineString's path. (The numbering
of the vertices in the linestring starts with 1.)

Syntax
ST PointN (1nl ST LineString, index integer)

Return type
ST_Point
Example

The pointn_test table is created with the gid column, which uniquely identifies
each row, and the In1 ST_LineString column:

CREATE TABLE pointn_test (gid integer,
1nl ST_LineString);

The following INSERT statements insert two linestring values. The first linestring
does not have Z coordinates or measures, while the second linestring has both:
INSERT INTO pointn_test VALUES(

1,

ST _LineFromText('linestring (10.02 20.01,23.73 21.92,30.10 40.23)',1000)
)s
INSERT INTO pointn_test VALUES(

2

S%_LineFromText('11‘nestr1‘ng zm (10.02 20.01 5.0 7.0,23.73 21.92
6.5 7.1,30.10 40.23 6.9 7.2)"',1000)
)s
The query lists the gid column and the second vertex of each linestring. The first
row results in an ST_Point without a Z coordinate or measure, while the second
row results in an ST_Point with a Z coordinate and a measure. The ST_PointN()
function will also include a Z coordinate or measure value if they exist in the

source linestring:

7-120 IBM Informix Spatial Data User's Guide

SELECT gid, ST_PointN(1nl,2) the_2nd_vertex
FROM pointn_test;

gid 1
the_2nd_vertex 1000 POINT (23.73 21.92)

gid 2
the_2nd_vertex 1000 POINT ZM (23.73 21.92 6.5 7.1)

The ST_PointOnSurface() function

The ST_PointOnSurface() function takes an ST_Polygon or ST_MultiPolygon and
returns an ST_Point guaranteed to lie on its surface.

Syntax

ST PointOnSurface (p11 ST_Polygon)
ST _PointOnSurface (mp11l ST_MultiPolygon)

Return type

ST _Point

Example

The city engineer wants to create a label point for each building footprint.

The buildingfootprints table that was created with the following CREATE TABLE
statement stores the building footprints:
CREATE TABLE buildingfootprints (building_id integer,

Tot_id integer,

footprint ST MultiPolygon);

The ST_PointOnSurface() function generates a point that is guaranteed to be on
the surface of the building footprints:

SELECT building_id, ST_PointOnSurface(footprint)
FROM buildingfootprints;

building_id 506
(expression) 1000 POINT (12.5 49.5)

building_id 543
(expression) 1000 POINT (32 52.5)

building_id 1208
(expression) 1000 POINT (12.5 27.5)

building_id 178
(expression) 1000 POINT (32 30)

The ST_PolyFromGML() function

The ST_PolyFromGML() function takes a GML2 or GML3 string representation of
an ST_Polygon and an optional spatial reference ID and returns a polygon object.

Syntax

ST_PolyFromGML (gmlstring lvarchar)
ST _PolyFromGML(gmistring Tvarchar, SRID integer)

Chapter 7. Spatial functions 7-121

Return type
ST_Polygon
Example

The test_poly table is created with the INTEGER column id and the ST_Polygon
column geom:

CREATE TABLE test_poly(id INTEGER, geom ST_Polygon);

INSERT INTO test_poly VALUES(1,ST_PolyFromGML('<gml:Polygon
srsName="EPSG:4326" srsDimension="2">
<gml:exterior><gml:LinearRing><gml:posList dimension="2">
-84.36 32.49 -82.66 32.69 -82.15 32.46 -83.09 33.08 -83.37
33.19 -84.36 32.49</gml:posList></gml:LinearRing>
</gml:exterior>< /gml:Polygon>',4));

This record specifies a spatial reference id of 4 (WGS84) and represents a
two-dimensional six-sided polygon.

Output:
SELECT * FROM test poly;

id 1

geom 4 POLYGON ((-84.3600000805 32.4900000536, -82.6599999799
32.6899999866, -82.1500000335 32.4600000469,
-83.0900000201 33.0800000738, -83.3700000268
33.1899999866, -84.3600000805 32.4900000536))

The ST_PolyFromKML() function

7-122

The ST_PolyFromKML() function takes a KML Polygon string representation and
an optional spatial reference ID and returns a polygon object.

Syntax

ST_PolyFromKML (km1string lvarchar)
ST _PolyFromKML(kmlstring Tvarchar, SRID integer)

Return type
ST_Polygon

Example

EXECUTE FUNCTION ST_PolyFromKML('<Polygon><outerBoundaryIs>
<LinearRing>
<coordinates>-122.365662,37.826988,0
-122.365202,37.826302,0 -122.364581,37.82655,0
-122.365038,37.827237,0 -122.365662,37.826988,0
</coordinates></LinearRing></outerBoundaryIs>
</Polygon>',4);

Output:

4 POLYGON Z ((-122.365662056 37.8269879529 0, -122.365202058
37.8263019779 0, -122.364580958 37.8265500822 0,
-122.36503794 37.827237063 0, -122.365662056
37.8269879529 0))

IBM Informix Spatial Data User's Guide

The SE_PolyFromShape() function

The SE_PolyFromShape() function returns an ST_Polygon from a shape of type

polygon and a spatial reference ID.

Syntax
SE_PolyFromShape(sl Tvarchar, SRID integer)

Return type
ST_Polygon

Example

The sensitive_areas table contains several columns that describe the threatened
institutions in addition to the zone column, which stores the institution polygon

geometries:

CREATE TABLE sensitive_areas (id integer,
name varchar(128),
size float,
type varchar(10),
zone ST Polygon);

The program fragment populates the sensitive_areas table. The question marks
represent parameter markers for the ID, name, size, type, and zone values that

will be retrieved at run time:

/* Create the SQL insert statement to populate the sensitive areas
* table. The question marks are parameter markers that indicate
* the column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO sensitive_areas (id, name, size, type, zone) "
"VALUES(?, ?, ?, ?, SE_PolyFromShape(?, %d))", srid);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char =*)sql_stmt, SQL_NTS);

/* Bind the id to the first parameter. x/

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0O, 0,
&id, 0, &pcbvaluel);

/* Bind the name to the second parameter. */

pcbvalue2 = name_len;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR, 0, 0,
name, 0, &pcbvalue2);

/* Bind the size to the third parameter. x/

pcbvalue3 = 0;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL C_FLOAT,
SQL_REAL, 0, 0,
&size, 0, &pcbvalue3);

/* Bind the type to the fourth parameter. =*/

pcbvalued4 = type_len;

rc = SQLBindParameter (hstmt, 4, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_VARCHAR, type len, 0,
type, type_len, &pcbvalued);

/* Bind the zone geometry to the fifth parameter. */
pcbvalue5 = zone_shape len;

Chapter 7. Spatial functions

7-123

rc = SQLBindParameter (hstmt, 5, SQL_PARAM INPUT, SQL C BINARY,
SQL_INFX_UDT_LVARCHAR, zone_shape_len, 0,
zone_shape_buf, zone_shape_len, &pcbvalue5);

/* Execute the insert statement. =*/
rc = SQLExecute (hstmt);

The ST_PolyFromText() function

The ST_PolyFromText() function takes a well-known text representation of type
ST_Polygon and a spatial reference ID and returns an ST_Polygon.

Syntax
ST_PolyFromText (wkt Tvarchar, SRID integer)

Return type
ST_Polygon
Example

The polygon_test table is created with the single polygon column:
CREATE TABLE polygon_test (p11 ST_Polygon);

The following INSERT statement inserts a polygon into the pl1 polygon column
using the ST_PolyFromText() function:
INSERT INTO polygon_test VALUES(
ST PolyFromText('polygon((10.01 20.03,10.52 40.11,30.29
41.56,31.78 10.74,10.01 20.63))"',1000)
);

The ST_PolyFromWKB() function

7-124

The ST_PolyFromWKB() function takes a well-known binary representation of
type ST_Polygon and a spatial reference ID to return an ST_Polygon.

Syntax
ST _PolyFromWKB(wkb Tvarchar, SRID integer)

Return type
ST_Polygon
Example

The sensitive_areas table contains several columns that describe the threatened
institutions in addition to the zone column, which stores the institution
ST_Polygon geometries:
CREATE TABLE sensitive areas (id integer,

name varchar(128),

size float,

type varchar(10),

zone ST _Polygon);

The program fragment populates the sensitive_areas table:

IBM Informix Spatial Data User's Guide

/* Create the SQL insert statement to populate the sensitive_areas
* table. The question marks are parameter markers that indicate
* the column values that will be inserted at run time. =/
sprintf(sql_stmt,
"INSERT INTO sensitive_areas (id, name, size, type, zone) "
"VALUES(?, ?, ?, ?, ST _PolyFromWKB(?, %d))", srid);

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)sql_stmt, SQL_NTS);

/* Bind the id to the first parameter. x/

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL C_SLONG,
SQL_INTEGER, 0O, 0,
&id, 0, &pchvaluel);

/* Bind the name to the second parameter. */

pcbvalue2 = name_len;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR, 0, 0,
name, 0, &pcbvalue2);

/* Bind the size to the third parameter. x/

pcbvalue3 = 0;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_FLOAT,
SQL_REAL, 0, 0,
&size, 0, &pcbvalue3);

/* Bind the type to the fourth parameter. =/

pcbvalued4 = type_len;

rc = SQLBindParameter (hstmt, 4, SQL_PARAM_INPUT, SQL C_CHAR,
SQL_VARCHAR, type_len, 0,
type, type_len, &pcbvalued);

/* Bind the zone geometry to the fifth parameter. */

pcbvalue5 = zone_wkb_Ten;

rc = SQLBindParameter (hstmt, 5, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX _UDT_LVARCHAR, zone wkb len, 0,
zone_wkb_buf, zone_wkb_len, &pcbvalue5);

/* Execute the insert statement. =/
rc = SQLExecute (hstmt);

The ST_Polygon() function

The ST_Polygon() function generates an ST_Polygon from a ring (an ST_LineString
that is both simple and closed).

Syntax
ST Polygon (1n ST_LineString)

Return type
ST_Polygon
Example

The following CREATE TABLE statement creates the polygon_test table, which has
a single column, p1:

CREATE TABLE polygon_test (pl ST polygon);

Chapter 7. Spatial functions 7-125

The INSERT statement converts a ring (an ST_LineString that is both closed and
simple) into an ST_Polygon and inserts it into the p1 column using the
ST_LineFromText() function within the ST_Polygon() function:
INSERT INTO polygon_test VALUES(

ST_Polygon(ST_LineFromText('1inestring (10.01 20.03, 20.94
21.34, 35.93 10.04, 10.01 20.03)',1000))
)s

The ST_Relate() function

The ST_Relate() function compares two geometries and returns 1 (TRUE) if the
geometries meet the conditions specified by the DE-9IM pattern matrix string;
otherwise, 0 (FALSE) is returned.

Syntax
ST Relate(gl ST Geometry, g2 ST _Geometry, patternMatrix lvarchar)

Return type

BOOLEAN

Example

A DE-9IM pattern matrix is a device for comparing geometries. There are several
types of such matrices. For example, the equals pattern matrix will tell you if any

two geometries are equal.

In this example, an equals pattern matrix, shown below, is read left to right, and
top to bottom into the string ("T*F*FFF*"):

Table 7-17. Pattern matrix for equals

Interior (b) Boundary (b) Exterior (b)
Interior (a) T * F
Boundary (a) * * F
Exterior (a) F F *

Next, the table relate_test is created with the following CREATE TABLE statement:

CREATE TABLE relate_test (gl ST_Geometry,
g2 ST _Geometry,
g3 ST_Geometry);

The following INSERT statements insert a sample subclass into the relate_test
table:
INSERT INTO relate_test VALUES(
ST PointFromText('point (10.02 20.01)',1000),
ST _PointFromText('point (10.02 20.01)',1000),
ST_PointFromText('point (30.01 20.01)',1000)
)s

The following SELECT statement and the corresponding result set lists the subclass
name stored in the geotype column with the dimension of that geotype:
SELECT ST Relate(gl,g2,"T+F**FFF+") equals,
ST Relate(gl,g3,"T*F**FFF*") not_equals
FROM relate_test;

7-126 IBM Informix Spatial Data User's Guide

equals not_equals

t f

The SE_Release() function

The SE_Release() function returns a text string containing the installed version and
release date of the IBM Informix spatial extension.

Syntax
SE_Release()

Return type

A text string containing the installed version and release date.

The SE_ShapeToSQL() function

The SE_ShapeToSQL() function constructs an ST_Geometry given its ESRI shape
representation. The SRID of the St_Geometry is 0.

Syntax
SE_ShapeToSQL(ShapeGeometry Tvarchar)

Return type
ST_Geometry
Example

The following C code fragment contains ODBC functions that insert data into the
lots table. The lots table was created with two columns: lot_id, which uniquely
identifies each lot, and the lot polygon column, which contains the geometry of
each lot:

CREATE TABLE Tots (lot_id integer,
lot ST MultiPolygon);

The SE_ShapeToSQL() function converts shapes into ST_Geometry values. The
INSERT statement contains parameter markers to accept the lot_id and the lot
data, dynamically:

/* Create the SQL insert statement to populate the Tlots table.
* The question marks are parameter markers that indicate the
* column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO lots (lot_id, lot) "
"VALUES(?, SE_ShapeToSQL(?))");

/* Prepare the SQL statement for execution. */
rc = SQLPrepare (hstmt, (unsigned char *)sql_stmt, SQL_NTS);

/* Bind the lot_id to the first parameter. =/

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0, 0,
&lot_id, 0, &pcbvaluel);

/* Bind the lot geometry the second parameter. */
pcbvalue2 = Tot_shape_len;

Chapter 7. Spatial functions 7-127

rc = SQLBindParameter (hstmt, 2, SQL_PARAM INPUT, SQL C BINARY,
SQL_INFX_UDT_LVARCHAR, Tot_shape_len, 0,
Tot_shape_buf, Tot shape_len, &pcbvalue2);

/* Execute the insert statement. =*/
rc = SQLExecute (hstmt);

The SE_SpatialKey() function

The SE_SpatialKey() function generates a sort key for an ST_Geometry. A sort key
is a numeric value that can be used to sort spatial objects according to their
proximity to one another.

The sort key is computed by applying the Hilbert space-filling curve algorithm to
the center point of an object's bounding box.

Syntax
SE_SpatialKey(gl ST _Geometry)

Return type
A numeric sort key, as an INT8
Example

Create and populate a cities table containing the names and locations of world
cities:
CREATE TABLE cities (name varchar(255),

Tocn ST_Point);

LOAD FROM cities.load INSERT INTO cities;

Create a clustered functional B-tree index. This rearranges the table data, placing it
in spatial key sort order. [Chapter 4, “R-tree indexes,” on page 4-1) provides
information about using indexes, in particular, R-tree indexes. For example:

CREATE CLUSTER INDEX cbt_idx ON cities (SE_SpatialKey(locn));

Create an R-tree index with the NO_SORT option:

CREATE INDEX locn_idx ON cities (Tocn ST_Geometry_ops)
USING RTREE (BOTTOM_UP_BUILD='yes', NO_SORT='yes');

Drop the B-tree index; it is no longer needed:
DROP INDEX cbt_idx;
Related concepts:

[“Bottom-up versus top-down index builds” on page 4-3]

Related reference:

[“Syntax for creating an R-tree index” on page 4-1|

The ST_SRID() function

7-128

The ST_SRID() function takes an ST_Geometry object and returns its spatial
reference ID.

Syntax
ST_SRID(gl ST_Geometry)

IBM Informix Spatial Data User's Guide

Return type
INTEGER
Example

During the installation of the IBM Informix Spatial DataBlade Module, the
spatial_references table is created by this CREATE TABLE statement:

CREATE TABLE sde.spatial_references

(

srid integer NOT NULL,
description varchar(64),

auth_name varchar(255),

auth_srid integer,

falsex float NOT NULL,
falsey float NOT NULL,
xyunits float NOT NULL,
falsez float NOT NULL,
zunits float NOT NULL,
falsem float NOT NULL,
munits float NOT NULL,
srtext char(2048) NOT NULL,

PRIMARY KEY (srid)
CONSTRAINT sde.sp_ref pk
)s

Before you can create geometry and insert it into a table, you must enter the SRID
of that geometry into the spatial_references table. This is a sample insert of a
spatial reference system. The spatial reference system has an SRID value of 1, a
false X, Y of (6,0), and its system units are 100. The Z coordinate and measure
offsets are 0, while the Z coordinate and measure units are 1.
INSERT INTO spatial_references

(srid, description, auth_name, auth_srid, falsex, falsey,

xyunits, falsez, zunits, falsem, munits, srtext)
VALUES (1, NULL, NULL, NULL, O, 0, 100, O, 1, O, 1, "UNKNOWN');

Important: Choose the parameters of a spatial_references table entry with care.

The following table is created for this example:
CREATE TABLE srid_test(gl ST_Geometry);

In the next statement, an ST_Point geometry located at coordinate (10.01,50.76) is
inserted into the geometry column gl. When the ST_Point geometry is created by
the ST_PointFromText() function, it is assigned the SRID value of 1:

INSERT INTO srid_test VALUES(
ST PointFromText('point(10.01 50.76)"',1000)
)s

The ST_SRID() function returns the spatial reference ID of the geometry just
entered:
SELECT ST_SRID(g1)
FROM srid_test;
(expression)

1000
Related reference:

[“The spatial references table” on page 1-12|

Chapter 7. Spatial functions 7-129

The SE_SRID_Authority() function

The SE_SRID_Authority() function takes a spatial reference ID and returns the
Authority Name and Authority SRID as an LVARCHAR string in the form
AuthName:SRID. If the AuthName is null in the sde.spatial_references table for a
given spatial reference ID, the srtext is returned.

Syntax
SE_SRID Authority(SRID integer)

Return type
LVARCHAR

Example

select SE_SRID Authority(srid) from sde.spatial_references;

(expression) UNKNOWN:0

(expression) EPSG:4135

(expression) EPSG:4267

(expression) EPSG:4269

(expression) EPSG:4326

(expression) UNKNOWN:0

(expression) UNKNOWN:0

(expression) UNKNOWN:0

(expression) AUTH_NAME:1234

(expression) GEOGCS["GCS_01d_Hawaiian",
DATUM["D_OldHawaiian",
SPHEROID["Clarke_1866",6378206.4,294.9786982]],
PRIMEM["Greenwich",0] ,UNIT["Degree",0.01745329 25199433]]

10 row(s) retrieved.

The ST_StartPoint() function

The ST_StartPoint() function returns the first point of a linestring.

Syntax
ST StartPoint(Inl ST_LineString)

Return type
ST_Point
Example

The startpoint_test table is created with the gid INTEGER column, which uniquely
identifies the rows of the table, and the In1 ST_LineString column:

CREATE TABLE startpoint_test (gid integer,
Inl ST_LineString);

The following INSERT statements insert the ST_LineStrings into the In1 column.
The first ST_LineString does not have Z coordinates or measures, while the second
ST_LineString has both:
INSERT INTO startpoint_test VALUES(

1,

ST _LineFromText('linestring (10.02 20.01,23.73 21.92,30.10 40.23)', 1000)
)s

7-130 IBM Informix Spatial Data User's Guide

INSERT INTO startpoint_test VALUES(

2,

ST_LineFromText('linestring zm (10.02 20.01 5.0 7.0,23.73 21.92
.57.1,30.10 40.23 6.9 7.2)', 1000)

6
)

The ST_StartPoint() function extracts the first point of each ST_LineString. The
first point in the list does not have a Z coordinate or a measure, while the second
point has both because the source linestring does:

SELECT gid, ST_StartPoint(Inl) Startpoint
FROM startpoint_test;

gid 1
startpoint 1000 POINT (10.02 20.01)

gid 2
startpoint 1000 POINT ZM (10.02 20.01 5 7)

See also

[“The ST _EndPoint() function” on page 7-51

The ST_SymbDifference() function

The ST_SymDifference() function takes two ST_Geometry objects and returns an
ST_Geometry object that is the logical XOR of space. In other words, it returns an
object that is composed of the portions of the source objects that are not part of the
intersection set.

Syntax
ST SymDifference (gl ST Geometry, g2 ST_Geometry)

Usage
The source geometries must have the same dimension. If the geometries are equal,
the ST_StartPoint() function returns an empty geometry; otherwise, the function

returns the result as an ST_GeomCollection (ST_MultiPoint, ST_MultiLineString, or
ST_MultiPolygon).

Chapter 7. Spatial functions 7-131

) — %] e __, ®
[J
ST_Point/ST_Point Empty ST_Point/ST_Point ST_MultiPoint
[J
[J
[J ® [J

ST_Point/ST_MultiPoint ST_MultiPoint ST_Point/ST_MultiPoint ST_MultiPoint

[] ([J Y [J

o — O —

[[J []

ST_MultiPoint/ST_MultiPoint Empty ST_MultiPoint/ST_MultiPoint ST_MultiPoint

(s W M_.Q,

ST_LineString/ST_LineString ST_MultiLineString ST_LineString/ST_LineString Empty

Q- (&

ST_Polygon/ST_Polygon ST_MultiPolygon ST_Polygon/ST_Polygon ST_MultiPolygon

Figure 7-25. The symmetric difference of geometries

Return type
ST_Geometry

Example

For a special report, the county supervisor must determine the area of sensitive

areas and 5-mile hazardous site radii that do not intersect.

The sensitive_areas table contains several columns that describe the threatened
institutions, in addition to the zone column, which stores the institutions'

ST_Polygon geometries:

CREATE TABLE sensitive_areas (id integer,
name varchar(128),
size float,
type varchar(10),
zone ST Polygon);

The hazardous_sites table stores the identity of the sites in the site_id and name
columns. The actual geographic location of each site is stored in the location point

column:

CREATE TABLE hazardous_sites (site_id integer,
name varchar(40),
location ST_Point);

7-132 IBM Informix Spatial Data User's Guide

The ST_Buffer() function generates a 5-mile buffer that surrounds the hazardous

waste site locations. The ST_StartPoint() function returns the polygons of the

buffered hazardous waste site polygons and the sensitive areas that do not

intersect:

SELECT sa.name sensitive_area, hs.name hazardous_site,
ST_Area(ST_SymDifference(ST_buffer(hs.location, (5 * 5280)),sa.zone)::

ST MultiPolygon) area
FROM hazardous_sites hs, sensitive_areas sa;

The following figure shows that the symmetric difference of the hazardous waste
sites and the sensitive areas results in the subtraction of the intersected areas.

()
0000000

Figure 7-26. Using the ST_SymbDifference function

The SE_TotalSize() function

The SE_TotalSize() function returns the sum of the in-row and out-of-row
components of a geometry.

You can use this function to obtain an estimate of the amount of disk space
consumed by one or more geometries. However, this function does not account for

dbspace and sbspace overhead, so cannot be used to obtain an exact total.

Syntax
SE_TotalSize(ST_Geometry)

Return type
INTEGER

See also

[“The SE_InRowsSize() function” on page 7-69

[“The SE_OutOfRowSize() function” on page 7-109

The ST_Touches() function

The ST_Touches() function returns t (TRUE) if none of the points common to both
geometries intersect the interiors of both geometries; otherwise, it returns f
(FALSE). At least one geometry must be an ST_LineString, ST_Polygon,
ST_MultiLineString, or ST_MultiPolygon.

Syntax
ST Touches(gl ST_Geometry, g2 ST_Geometry)

Chapter 7. Spatial functions 7-133

7-134

Usage

The following figure shows various geometric objects that touch but do not
intersect with each other.

[/S
ST_Point/ST_LineString ST_LineString/ST_LineString
[J
[
([
[
ST_MultiPoint/ST_LineString ST_Point/ST_Polygon

o o N

ST_MultiPoint/ST_Polygon ST_LineString/ST_Polygon

Figure 7-27. Touching geometries

The results of the spatial relationship of the ST_Touches() function can be
understood or verified by comparing the results with a pattern matrix that
represents the acceptable values for the DE-9IM. The pattern matrices state that the
ST_Touches() function returns TRUE when the interiors of the geometry do not
intersect, and the boundary of either geometry intersects the other's interior or
boundary.

The ST_Touches() function returns TRUE if the boundary of one geometry
intersects the interior of the other but the interiors do not intersect.

Table 7-18. Pattern matrix for the ST_Touches() function.

Interior (b) Boundary (b) Exterior (b)
Interior (a) F T *
Boundary (a) * * *
Exterior (a) * * *

The ST_Touches() function returns TRUE if the boundary of one geometry
intersects the interior of the other but the interiors do not intersect.

Interior (b) Boundary (b) Exterior (b)
Interior (a) F * *
Boundary (a) T * *
Exterior (a) * * *

The ST_Touches() function returns TRUE if the boundaries of both geometries
intersect but the interiors do not.

IBM Informix Spatial Data User's Guide

Interior (b) Boundary (b) Exterior (b)

Interior (a) F * *
Boundary (a) * T *
Exterior (a) * * *

Return type
BOOLEAN
Example

The GIS technician is asked to provide a list of all sewer lines whose endpoints
intersect another sewer line.

The sewerlines table is created with three columns. The first column, sewer_id,
uniquely identifies each sewer line. The INTEGER class column identifies the type
of sewer line, generally associated with the line's capacity. The sewer
ST_LineString column stores the sewer line's geometry:

CREATE TABLE sewerlines (sewer_id integer,

class integer,
sewer ST_LineString);

The query returns a list of sewer_ids that touch one another:

SELECT sl.sewer_id, s2.sewer_id
FROM sewerlines sl, sewerlines s2
WHERE ST _Touches(sl.sewer, s2.sewer);

Related reference:

[‘The Dimensionally Extended 9 Intersection Model” on page 7-2|

The SE_Trace() function

The SE_Trace() function provides tracing for spatial data type functions.

The SE_Trace() function provides the following levels of tracing:

Level 1
SQL function entry and exit

Level 2
Secondary function entry and exit

Level 3
Miscellaneous additional tracing

Important: You should turn off tracing during normal use, because it can generate
tremendous amounts of trace output data. It is intended for use byIBM Software

Support in isolating problems.

Syntax

SE_Trace(pathname Tvarchar, level integer)

Where pathname is a file name and full path on the server machine and level is 1, 2
or 3.

Chapter 7. Spatial functions 7-135

Return type

The text string 0K, if the function was successfully executed

Example

This example shows the file separator for UNIX: a forward slash (/). If you are

using a Windows platform, substitute the UNIX file separator with a backslash (\)
in the path name.

execute function SE_Trace ('/tmp/spatial.trc', 1);

The ST_Transform() function

7-136

The ST_Transform() function transforms an ST_Geometry into the specified spatial
reference system.

The following transformations are valid:

* Between two UNKNOWN coordinate systems (that is, the srtext column in the
spatial_references table for both SRIDs contains UNKNOWN)

* Between a projected coordinate system and an unprojected coordinate system
* Between two projected coordinate systems

* Between two coordinate systems that have different false origins or system units

The geographical coordinate systems of the source and target spatial reference
systems do not need to be the same. A spatial reference system in one geographical
coordinate system can be transformed into a spatial reference system in a different
geographical coordinate system if the transform is supported by the ESRI libraries.

Syntax
ST_Transform(g ST_Geometry, SRID integer)

Return type
ST_Geometry
Example: Change the false origin of a spatial reference system

Suppose you create a spatial_references table entry suitable for Australia with the
SE_CreateSrid() function:

EXECUTE FUNCTION SE_CreateSrid (110, -45, 156, -10,
"Australia: lat/lon coords");

(expression)

1002

Now load all of your data for Australia:
CREATE TABLE aus_locns (name varchar(128), Tocn ST_Point);

INSERT INTO aus_locns VALUES ("Adelaide", '1002 point(139.14 -34.87)');
INSERT INTO aus_Tlocns VALUES ("Brisbane", '1002 point(153.36 -27.86)"');
INSERT INTO aus_locns VALUES ("Canberra", '1002 point(148.84 -35.56)"');
INSERT INTO aus_locns VALUES ("Me]bourne", '1002 point(145.01 -37.94)');
INSERT INTO aus_locns VALUES ("Perth", '1002 point(116.04 -32.12)');
INSERT INTO aus_locns VALUES ("Sydney", '1002 point(151.37 -33.77)");

IBM Informix Spatial Data User's Guide

After you load all of your data for the Australian mainland, you realize you must
include data for a few outlying islands, such as Norfolk Island and the Cocos
Islands. However, the false origin and scale factor that you chose for SRID 1002
does not work for these islands as well:

INSERT INTO aus_locns VALUES ("Norfolk Is.", '1002 point(167.83 -29.24)');
(USE19) - Coordinates out of bounds in ST PointIn.

INSERT INTO aus_locns VALUES ("Cocos Is.", '1002 point(96.52 -12.08)');
(USE19) - Coordinates out of bounds in ST _PointIn.

The solution is to create a spatial_references table entry with a false origin and
scale factor that accommodates both the old data and new data, and then update
the old data:

EXECUTE FUNCTION SE CreateSrid (95, -55, 170, -10,
"Australia + outer islands: lat/Ton coords");

(expression)

1003

INSERT INTO aus_locns VALUES ("Norfolk Is.", '1003 point(167.83 -29.24)');
INSERT INTO aus_locns VALUES ("Cocos Is.", '1003 point(96.52 -12.08)');

UPDATE aus_Tlocns
SET locn = ST _Transform(locn, 1003)::ST_Point
WHERE ST Srid(Tocn) = 1002;

Example: Project data dynamically

In a typical application, spatial data is stored in unprojected latitude and longitude
format. Then, when you draw a map, you retrieve the data in a particular
projection.

First, create a spatial_references table entry that is suitable for your unprojected
data. For this example, use the 1983 North American datum. Because this datum is
a well-known, standard datum you can use the SE_CreateSrtext() function to
create the srtext field:
INSERT INTO spatial_references
(srid, description, falsex, falsey, xyunits,
falsez, zunits, falsem, munits, srtext)
VALUES (1004, "Unprojected lat/lon, NAD 83 datum",
-180, -90, 5000000, 0, 1000, O, 1000,
SE_CreateSrtext(4269));

Now create a table and load your data:

CREATE TABLE airports (id char(4),
name varchar(128),
Tocn ST Point);

INSERT INTO airports VALUES(

'BTM', 'Bert Mooney', '1004 point(-112.4975 45.9548)"');
INSERT INTO airports VALUES(
'BZN', 'Gallatin Field', '1004 point(-111.1530 45.7769)"');

INSERT INTO airports VALUES(
'COD', 'Yellowstone Regional', '1004 point(-109.0238 44.5202)');
INSERT INTO airports VALUES(

"JAC', 'Jackson Hole', '1004 point(-110.7377 43.6073)');
INSERT INTO airports VALUES(
"IDA', 'Fanning Field', '1004 point(-112.0702 43.5146)"');

Chapter 7. Spatial functions 7-137

7-138

Create one or more spatial_references table entries for any projections that you
need. Be sure that the underlying geographic coordinate system (in this case, NAD
83) is the same:
INSERT INTO spatial_references
(srid, description, falsex, falsey, xyunits,
falsez, zunits, falsem, munits, srtext)
VALUES (1005, "UTM zone 12N, NAD 83 datum",
336000, 4760000, 1000, 0, 1000, 0, 1000,
SE_CreateSrtext(26912));

Transform the data to a projected coordinate system on an as needed basis:
SELECT id, ST Transform(locn, 1005) as utm FROM airports;

id BTM
utm 1005 POINT (383951.152 5090115.666)

id BZN
utm 1005 POINT (488105.331 5069271.419)

id COD
utm 1005 POINT (657049.762 4931552.365)

id JAC
utm 1005 POINT (521167.881 4828291.447)

id IDA
utm 1005 POINT (413500.979 4818519.081)

Example: Compare geometries that have different SRIDs

You can use the ST_Transform() function to transform a geometry when you
compare two geometries that have different SRIDs:

SELECT * FROM tabl a, tab2 b WHERE
ST Intersects(a.shape, ST Transform(b.shape, ST_SRID(a.shape)));

Example: Transform between geographic spatial reference
systems

The following statements create a table and insert data for the geographic spatial
reference system 4326:

CREATE TABLE geogcs_to_geogs xform (pid smallint, geom ST_Geometry) ;

INSERT INTO geogcs_to_geogs xform
VALUES (5, ST_GeomFromText ('point (10.05 10.28)', 4326)) ;

INSERT INTO geogcs_to_geogs_xform
VALUES (6, ST_GeomFromText ('point z (10.05 10.28 2.51)"', 4326)) ;

INSERT INTO geogcs_to_geogs_xform
VALUES (7, ST _GeomFromText ('point m (10.05 10.28 4.72)', 4326)) ;

INSERT INTO geogcs_to_geogs_xform
VALUES (8, ST_GeomFromText ('point zm (10.05 10.28 2.51 4.72)', 4326)) ;

The following query transforms the rows from the geographic spatial reference
system 4326 to the geographic spatial reference system 4269:

SELECT pid, ST _Transform (geom, 4269) FROM geogcs_to_geogs_xform;

pid 5
(expression) 4269 POINT (10.0499794612 10.2799956451)

IBM Informix Spatial Data User's Guide

pid 6
(expression) 4269 POINT Z (10.0499794612 10.2799956451 2.51)

pid 7
(expression) 4269 POINT M (10.0499794612 10.2799956451 4.72)

pid 8
(expression) 4269 POINT ZM (10.0499794612 10.2799956451 2.51 4.72)

4 row(s) retrieved.

Example: Transform between projected spatial reference
systems

This example transforms data between projected spatial reference systems that are
in different geographic coordinate systems.

The following statements create a table and insert data for the projected spatial
reference system 2153:

CREATE TABLE projcs_to_projcs_xform (pid smallint, geom ST Geometry) ;

INSERT INTO projcs_to _projcs_xform
VALUES (11, ST_GeomFromText ('point(573900 9350)', 2153)) ;

INSERT INTO projcs_to_projcs_xform
VALUES (12, ST _GeomFromText ('multipoint(573900 9350, 573900 9351,
573901 9351, 573901 9350, 573900 9350)', 2153)) ;

INSERT INTO projcs_to _projcs_xform
VALUES (13, ST_GeomFromText ('linestring(573900 9350, 573901 9350)',
2153))

INSERT INTO projcs_to_projcs_xform
VALUES (14, ST_GeomFromText ('linestring(573900 9350, 573900 9351,
573901 9351, 573901 9350, 573900 9350)', 2153)) ;

INSERT INTO projcs_to_projcs_xform
VALUES (15, ST_GeomFromText ('multilinestring((573900 9350, 573900 9351,
573901 9351, 573901 9350, 573900 9350), (573902 2, 573902 3,
573903 3, 573903 2, 573902 2))', 2153)) ;

INSERT INTO projcs_to_projcs_xform
VALUES (16, ST _GeomFromText ('polygon((573900 9350, 573900 9351,
573901 9351, 573901 9350, 573900 9350))', 2153)) ;

INSERT INTO projcs_to_projcs_xform
VALUES (17, ST _GeomFromText ('multipolygon(((573900 9350, 573900 9351,
573901 9351, 573901 9350, 573900 9350)),((573902 2, 573902 3,
573903 3, 573903 2, 573902 2)))', 2153)) ;

The following query transforms the rows from the projected spatial reference
system 2153 to the projected spatial reference system 32611:

SELECT pid, ST Transform (geom, 32611) FROM projcs_to_projcs_xform;

pid 11
(expression) 32611 POINT (573898.627678 9349.9324469)

pid 12

(expression) 32611 MULTIPOINT (573898.627678 9349.9324469, 573898.627678 9350.
9324471, 573899.627679 9350.93244701, 573899.627679 9349.93244681
, 573898.627678 9349.9324469)

pid 13

Chapter 7. Spatial functions 7-139

(expression) 32611 LINESTRING (573898.627678 9349.9324469, 573899.627679 9349.
93244681)

pid 14

(expression) 32611 LINESTRING (573898.627678 9349.9324469, 573898.627678 9350.
9324471, 573899.627679 9350.93244701, 573899.627679 9349.93244681
, 573898.627678 9349.9324469)

pid 15
(expression) 32611 MULTILINESTRING ((573898.627678 9349.9324469, 573898.627678
9350.9324471, 573899.627679 9350.93244701, 573899.627679 9349.93
244681, 573898.627678 9349.9324469), (573900.626767 1.93059742451,
573900.626768 2.93059762195, 573901.626768 2.93059752136, 573901
.626768 1.93059733883, 573900.626767 1.93059742451))

pid 16

(expression) 32611 POLYGON ((573898.627678 9349.9324469, 573899.627679 9349.93
244681, 573899.627679 9350.93244701, 573898.627678 9350.9324471,
573898.627678 9349.9324469))

pid 17
(expression) 32611 MULTIPOLYGON (((573898.627678 9349.9324469, 573899.627679 9
349.93244681, 573899.627679 9350.93244701, 573898.627678 9350.932
4471, 573898.627678 9349.9324469)), ((573900.626767 1.93059742451,
573901.626768 1.93059733883, 573901.626768 2.93059752136, 573900
.626768 2.93059762195, 573900.626767 1.93059742451)))

7 row(s) retrieved.

Related reference:

Appendix B, “OGC well-known text representation of spatial reference systems,”|

on page B-1|

The ST_Union() function

7-140

The ST_Union() function returns an ST_Geometry object that is the union of two
source objects, the Boolean logical OR of space.

Syntax
ST_Union(gl ST_Geometry, g2 ST_Geometry)

Usage

The source geometries must have the same dimension. ST_Union() returns the
result as an ST_GeomCollection (ST_MultiPoint, ST_MultiLineString, or
ST_MultiPolygon).

IBM Informix Spatial Data User's Guide

° — ° ° — o
ST_Point/ST_Point ST_MultiPoint ST_Point/ST_Point ST_MultiPoint
° [] [J
> o ([] e — [] [
o [J
ST_Point/ST_MultiPoint ST_MultiPoint ST_MultiPoint/ST_MultiPoint ST_MultiPoint
® ° ® °

. . RN

ST_MultiPoint/ST_MultiPoint ST_MultiPoint ~ ST_LineString/ST_LineString ST_MultiLineString

G U QﬁQ

ST_LineString/ST_LineString ST_MultiLineString ST_Polygon/ST_Polygon ST_MultiPolygon
< -

ST_Polygon/ST_Polygon ST_MultiPolygon

Figure 7-28. The union set of two geometries

Return type
ST_Geometry
Example

The sensitive_areas table contains several columns that describe the threatened
institutions in addition to the zone column, which stores the institutions'
ST_Polygon geometries:
CREATE TABLE sensitive_areas (id integer,

name varchar(128),

size float,

type varchar(10),

zone ST Polygon);

The hazardous_sites table stores the identity of the sites in the site_id and name
columns. The actual geographic location of each site is stored in the location point
column:

CREATE TABLE hazardous_sites (site_id integer,

name varchar(40),
Tocation ST _Point);

The ST_Buffer() function generates a 5-mile buffer that surrounds the hazardous
waste site locations. The ST_Union() function generates polygons from the union
of the buffered hazardous waste site polygons and the sensitive areas. The
ST_Area() function returns the unioned polygon area:

Chapter 7. Spatial functions 7-141

SELECT sa.name sensitive_area, hs.name hazardous_site,
ST_Area(ST_Union(ST_Buffer(hs.location, (5 * 5280)),sa.zone)::
ST MultiPolygon) area
FROM hazardous_sites hs, sensitive_areas sa;

Related reference:
[“The SE_Dissolve() function” on page 7-47|

The SE_VertexAppend() function
The SE_VertexAppend() function appends a vertex to the end of an ST_LineString.

If the linestring has Z values or measures, the vertex to be appended must also
have Z values or measures.

Syntax
SE_VertexAppend (ST_LineString, ST_Point)

Return type

ST_LineString

The SE_VertexDelete() function

The SE_VertexDelete() function deletes a vertex from a geometry. You must supply
the exact vertex to be deleted, including Z value and measure if applicable. All
vertices in the geometry which match this value will be deleted.

Syntax
SE_VertexDelete (ST_Geometry, ST_Point)

Return type

ST_Geometry

The SE_VertexUpdate() function

The SE_VertexUpdate() function changes the value of a vertex in a geometry. You
must supply both the exact old value and the new value of the vertex to be
altered. If the input geometry has Z values or measures, you must supply them as
well. All vertices in the geometry which match the old value will be updated.

Syntax
SE_VertexUpdate (ST_Geometry, old ST_Point, new ST_Point)

Return type

ST_Geometry

The ST_Within() function

The ST_Within() function returns t (TRUE) if the first object is completely within
the second; otherwise, it returns f (FALSE).

Syntax
ST Within(gl ST Geometry, g2 ST_Geometry)

7-142 IBM Informix Spatial Data User's Guide

Usage

To return TRUE, the boundary and interior of the first geometry cannot intersect
the exterior of the second geometry. ST_Within() tests for the exact opposite result

of ST_Contains().

()
([
ST_Point/ST_MultiPoint ST_Point/ST_LineString
[
L °
[J
([] [
ST_MultiPoint/ST_MultiPoint ST_MultiPoint/ST_LineString
[
[° ([
ST_Point/ST_Polygon ST_MultiPoint/ST_Polygon
ST_LineString/ST_LineString ST_LineString/ST_Polygon

)

ST_LineString/ST_Polygon
Figure 7-29. Geometries within other geometries

The results of the spatial relationship of the ST_Within() function can be
understood or verified by comparing the results with a pattern matrix that
represents the acceptable values for the DE-9IM. The ST_Within() function pattern
matrix states that the interiors of both geometries must intersect and that the
interior and boundary of the primary geometry (geometry a) must not intersect the
exterior of the secondary (geometry b).

Table 7-19. Pattern matrix for the ST_Within() function.

b
Interior Boundary Exterior
Interior T *
a Boundary * *
Exterior * * *

Chapter 7. Spatial functions 7-143

Return type
BOOLEAN
Example

In the example, two tables are created: buildingfootprints contains a city's
building footprints, while the other, lots, contains its lots. The city engineer wants
to make sure that all the building footprints are completely inside their lots.

In both tables, the ST_MultiPolygon data type stores the ST_Geometry of the
building footprints and the lots. The database designer selected multipolygons for
both features because lots can be separated by natural features such as a river, and
building footprints comprise several buildings:
CREATE TABLE buildingfootprints (building_id integer,

lot_id integer,

footprint ST_MultiPolygon);

CREATE TABLE lots (lot_id integer,
Tot ST MultiPolygon);

The city engineer first retrieves the buildings that are not completely within a lot:

SELECT building_id
FROM buildingfootprints, lots
WHERE ST Within(footprint,lot);

building_id

506
543
178

The city engineer realizes that although the first query produces a list of all
building IDs that have footprints outside a lot polygon, it does not ascertain
whether the rest have the correct lot_id assigned to them. This second query
performs a data integrity check on the lot_id column of the buildingfootprints
table:
SELECT bf.building_id, bf.lot_id bldg_lot_id, Tots.Tot_id Tots_lot_id

FROM buildingfootprints bf, lots

WHERE ST_Within(footprint,lot)

AND Tots.Tot id <> bf.lot id;

building_id bldg_Tot_id Tots_lot_id

178 5192 203
Related reference:

[“The Dimensionally Extended 9 Intersection Model” on page 7-2|

The ST_WKBToSQL() function

7-144

The ST_WKBToSQL() function constructs an ST_Geometry given its well-known
binary representation. The SRID of the ST_Geometry is 0.

Syntax
ST_WKBToSQL (WKBGeometry Tvarchar)

IBM Informix Spatial Data User's Guide

Return type
ST_Geometry
Example

The following CREATE TABLE statement creates the lots table, which has two
columns: lot_id, which uniquely identifies each lot, and the lot polygon column,
which contains the geometry of each lot:

CREATE TABLE Tots (lot_id integer,
lot ST MultiPolygon);

The following C code fragment contains ODBC functions included with the spatial
data type functions that insert data into the lots table.

The ST_WKBToSQL() function converts WKB representations intoIlBM Informix
spatial geometry. The entire INSERT statement is copied into the sql_stmt string.
The INSERT statement contains parameter markers to accept the lot_id data and
the lot data, dynamically:

/* Create the SQL insert statement to populate the lots table.
* The question marks are parameter markers that indicate the
* column values that will be inserted at run time. */
sprintf(sql_stmt,
"INSERT INTO lots (lot_id, lot) "
"VALUES (?, ST _WKBToSQL(?))");

/* Prepare the SQL statement for execution */
rc = SQLPrepare (hstmt, (unsigned char =*)sql_stmt, SQL_NTS);

/* Bind the lot_id to the first parameter. */

pcbvaluel = 0;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0, 0,
&lot_id, 0, &pcbvaluel);

/* Bind the Tot geometry to the second parameter. */

pcbvalue2 = Tot_wkb_Ten;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_LVARCHAR, lot_wkb_len, 0,
Tot_wkb_buf, Tot_wkb_Ten, &pcbvalue2);

/* Execute the insert statement. =/
rc = SQLExecute (hstmt);

The ST_WKTToSQL() function

The ST_WKTToSQL() function constructs an ST_Geometry given its well-known
text representation. The SRID of the ST_Geometry is 0.

Syntax
ST WKTToSQL (WKT Tvarchar)

Return type

ST_Geometry

Chapter 7. Spatial functions 7-145

Example

The following CREATE TABLE statement creates the geometry_test table, which
contains two columns: gid, of type INTEGER, which uniquely identifies each row,
and the g1 column, which stores the geometry:

CREATE TABLE geometry test (gid integer,
gl ST _Geometry);

The following INSERT statements insert the data into the gid and g1 columns of
the geometry_test table. The ST_WKTToSQL() function converts the text
representation of each geometry into its corresponding IBM Informix Spatial
DataBlade Module instantiable subclass:

INSERT INTO geometry test VALUES(
]-,
ST_WKTToSQL('point (10.02 20.01)')

INSERT INTO geometry test VALUES(

2,

ST WKTToSQL('1inestring (10.02 20.01,10.01 30.01,10.01 40.01)')
)s

INSERT INTO geometry test VALUES(
3,

ST WKTToSQL('polygon ((10.02 20.01,11.92 35.64,25.02

34.15,19.15 33.94,10.02 20.01))"')

)s

INSERT INTO geometry test VALUES(
4’
ST_WKTToSQL('multipoint (10.02 20.01,10.32 23.98,11.92 35.64)"')

INSERT INTO geometry test VALUES(

5,

ST _WKTToSQL('multilinestring ((10.02 20.01,10.32 23.98,11.92
25.64),(9.55 23.75,15.36 30.11))")

INSERT INTO geometry test VALUES(

6,

ST _WKTToSQL('multipolygon (((10.02 20.01,11.92 35.64,25.02
34.15,19.15 33.94,10.02 20.01)),((51.71 21.73,73.36 27.04,71.52
32.87,52.43 31.90,51.71 21.73)))")

)s

The ST_X() function

7-146

The ST_X() function returns the X coordinate of a point.

Syntax
ST X(ptl ST_Point)

Return type
DOUBLE PRECISION
Example

The x_test table is created with two columns: gid, which uniquely identifies the
row, and the ptl point column:

IBM Informix Spatial Data User's Guide

CREATE TABLE x_test (gid integer,
ptl ST_Point);

The following INSERT statements insert two rows. One is a point without a Z
coordinate or a measure. The other column has both a Z coordinate and a measure:
INSERT INTO x_test VALUES(

]-’

ST_PointFromText('point (10.02 20.01)"', 1000)
)s
INSERT INTO x_test VALUES (

2,

ST_PointFromText('point zm (10.62 20.01 5.0 7.0)', 1000)
)s

The query retrieves the values in the gid column and the DOUBLE PRECISION X
coordinate of the points:

SELECT gid, ST_X(ptl) x_coord
FROM x_test;

gid x_coord

1 10.02000000000
2 10.02000000000

The ST_Y() function

The ST_Y() function returns the Y coordinate of a point.

Syntax
ST Y(pl ST Point)

Return type
DOUBLE PRECISION
Example

The y_test table is created with two columns: gid, which uniquely identifies the
row, and the ptl point column:

CREATE TABLE y test (gid integer,
ptl ST Point);

The following INSERT statements insert two rows. One is a point without a Z
coordinate or a measure. The other has both a Z coordinate and a measure:
INSERT INTO y_test VALUES(

1,

ST _PointFromText('point (10.02 20.01)', 1000)
)s
INSERT INTO y test VALUES(

2,

ST _PointFromText('point zm (10.02 20.01 5.0 7.0)',1000)
)s

The query retrieves the values in the gid column and the DOUBLE PRECISION Y
coordinate of the points:

Chapter 7. Spatial functions 7-147

SELECT gid, ST_Y(ptl) y_coord
FROM y_test;

gid y_coord

1
2

0.01000000000
0.01000000000

NN

The ST_Z function

7-148

The ST_Z() function returns the Z coordinate of a point.

Syntax
ST_Z(pl ST_Point)

Return type
DOUBLE PRECISION
Example

The z_test table is created with two columns: gid, which uniquely identifies the
row, and the ptl point column:

CREATE TABLE z_test (gid integer,
ptl ST Point);

The following INSERT statements insert two rows. One is a point without a Z
coordinate or a measure. The other has both a Z coordinate and a measure:
INSERT INTO z_test VALUES (

1,

ST PointFromText('point (10.02 20.01)', 1000)
)s
INSERT INTO z_test VALUES (

2,

ST _PointFromText('point zm (10.02 20.01 5.0 7.0)', 1000)
)s

The query retrieves the values in the gid column and the DOUBLE PRECISION Z
coordinate of the points. The first row is NULL because the point does not have a
Z coordinate:

SELECT gid, ST _Z(ptl) z_coord
FROM z_test;

gid z_coord

1
2 5.000000000000

IBM Informix Spatial Data User's Guide

Chapter 8. Spatial Java API

The spatial Java API enables Java applications to access geometry features that are
stored in databases that contain spatial data. The spatial Java API provides classes
to work with spatial objects from Java client-side programs. The client-side objects
are called value objects. Spatial value objects can also be created and examined by
Java methods that parallel some of the spatial data functions.

Important: The Java API can read from the database, but cannot write to it.

The accompanying Javadoc provides detailed information about all packages,
classes, and methods. Some methods are not yet implemented; they are noted as
such in the Javadoc. The Javadoc is installed in extend/spatial.8.21.xCn/doc/
java/docs.jar, where x represents the operating system bit size and n represents
the fix pack level. To view it, you must first use the following command:

jar xf docs.jar

Compatibility with the ESRI ArcSDE Java API

The spatial Java API is compatible with the ESRI ArcSDE Java APL. It provides a
partial implementation of the same set of OGC (Open GISConsortium) interfaces.

Depending on the needs of your application, you can develop a program by using
the spatial Java API and later install ArcSDE. You can then use its Java API to take
advantage of its enhanced spatial functionality. The ESRI Java API is integrated
with the ESRI ArcSDE software, whereas the spatial Java API does not implement
that functionality.

Overview of the Java API

The Java API library is implemented in a package called com.ibm.spatial.

Within the main package, SpatialManager is a class that contains static
convenience methods to facilitate error reporting and logging.

Within the srs subpackage, the CoordRefManager class provides methods to create
and handle CoordRef objects, which hold definitions of spatial reference systems. For
more information about the SpatialManager and CoordRefManager classes, see
“The SpatialManager Class” on page 8-4 and [“The CoordRefManager Class” onf

page 8-3.|

The subpackages of com.ibm.spatial are:

geom (geometry objects)
The geometry package implements the OGC Geometry Model.

io (geometry input/output)
The geometry input/output package provides a reader/writer framework
and implements readers and writers for the spatial data.

msg (localizable messages)
The localizable messages package contains localizable error messages in
ListResourceBundle format.

© Copyright IBM Corp. 2001, 2014 8-1

srs (coordinate reference classes)
The coordinate reference package provides classes necessary to manage
coordinate reference objects.

util (utility classes)
The utility package contains utility classes, for error and warning message
generation, logging, and so on. A logging API similar to that specified by
J2SDK 1.4 is implemented, allowing for an easy transition to using the JDK
logging classes.

Geometries

The geometries supported by the IBM Informix spatial extension form a hierarchy;,
which is shown in the following diagram.

IfxGeometry
IfxPoint IfxMultiCoord CoordRef
IfxSurface IfxGeometryCollection
A A
IfxMultiSurface IfxMultiCurve
A
IfxLineString IfxPolygon [fxMultiPolygon IfxMultiLineString [fxMultiPoint

Implementation Helpers

CoordPoint Envelope
italics represent a noninstantiable class

Figure 8-1. Spatial Java APl geometry class hierarchy

To create geometries, you can:

* Use the GeometryFactory class, which generates geometry objects from their
components.

* Read geometries from the database by using spatial functions.

Uses for the Java API

There are many ways you can use the Java API to manipulate your spatial data.

For example, an application might use the IBM Informix JDBC Driver to connect to
a spatial database, extract data from a geometry column, and use that binary
stream to construct a geometry object. That shape could then be rendered on
screen or interrogated for shape subparts.

8-2 IBM Informix Spatial Data User's Guide

As another example, an application could run stored procedures on the database
server to determine spatial relationships or to generate new geometries, then
retrieve the results to render on the client.

For more information about using the Java API, see[’Example 1: Retrieving a Point|
From a Table” on page 8-7|and [“Examples 2, 3, and 4: How to Use the Java API"|

on page 8—7.|
The CoordRefManager Class

The CoordRefManager class provides methods that create and handle CoordRef
objects, which hold definitions of spatial reference systems.

A CoordRef object represents a coordinate reference that defines a spatial reference
system. This includes the coordinate system plus a set of offset and scale values
that convert floating point real-world values into integers for compatibility with
the ESRI SDE layer.

A CoordRefManager object is usually associated with a particular database that
contains spatial data. In this database, the spatial_references table stores data
about each map projection that you use to store the spherical geometry of the
Earth. This data enables the spatial extension to translate the data into a flat, X-Y
coordinate system.

The spatial reference ID (SRID) is the unique key for records in the
spatial_references table. All spatial reference systems that are used in this database
must have a record in the spatial_references table. Also, all geometries in a spatial
column must use the same spatial reference system.

A CoordRefManager object can retrieve a spatial reference system from the
database using the SRID. CoordRefManager can also create and store user-defined
spatial reference systems in the database.

CoordRefManager creates a local cache of objects that are in use, that is, CoordRef
objects that are referenced by existing geometry instances. The following methods
operate with this cache:

* get(int) Reads a coordinate reference with the given SRID into the cache and
returns it to the user

This is the only method that should be used by geometry factories when
associating new geometries to a coordinate reference.

* put(CoordRef) Saves a given CoordRef object in the cache and writes it into the
database

+ getAll(), getAllSrids() Return all the elements that are stored in the cache

* refresh() If other database clients directly modify the spatial_references table,
the database and the cache may get out of synchronization. This method
refreshes elements that are in the inuse cache with data from the underlying
database.

* remove(), removeFromCache() Remove a CoordRef object from both the cache
and database, or only from the cache. CoordRef objects must not be removed
from the cache unless there are no geometries associated with them.

e findXXX() Query the database directly for coordinate references that are not in
use (for example, to list all the coordinate references with a specified
authoritative name and ID).

Chapter 8. Spatial Java API 8-3

The enumerations returned by the findXXX() methods are not failsafe in the
sense iterators are when used by the java.util package. The enumerations contain
a snapshot of the CoordRefManager object and the database at the moment the
findXXX() method is called and do not reflect later changes in the cache or
database.

CoordRefManager is safe for concurrent access by multiple threads.

Important: You must ensure that the local cache stays synchronized with the
underlying database; for example, do not directly delete rows from the
spatial_references table.

Related reference:

[“The spatial_references table” on page 1-12|

The SpatialManager Class

The SpatialManager class provides methods that support error reporting and
logging.

The following classes are used by the SpatialManager class to report errors and
log messages:

* ErrorHandler

* ErrorReporter

* Logger

* LogHandler

* LogRecord

* MessageProvider

* SpatialException

The ErrorHandler class defines an interface for error notification. If you want to
implement customized error handling in your spatial application, you must
implement this interface and register an instance with the SpatialManager. The

Java API will then notify the application through this interface before reporting
different types of errors.

Overview of a Spatial Java API Application

8-4

Most spatial Java API applications need to perform the steps described in this
section.

Using Logging

Using the SpatialManager class, you can turn on logging, for example to a file
/tmp/spatial.log. You can alternatively send formatted log records to an existing
writer object.

To turn logging on

SpatialManager.setLogWriter("/tmp/spatial.log");
SpatialManager.setLoglLevel (Logger.WARNING) ;

To turn logging off
SpatialManager.setlLoglLevel (Logger.OFF);

IBM Informix Spatial Data User's Guide

Assigning a Connection to CoordRefManager

Applications must assign an open database connection to the CoordRef- Manager
object. This enables the CoordRefManager object to query the spatial_references
table and cache its contents locally. If you forget to do this, a SpatialException with
the message Invalid argument: CoordRef=null is usually thrown whenever you
try to instantiate a geometry object.

To assign an open database connection to a CoordRefManager
object

java.sql.Connection conn;
// Open the connection...

// Assign the connection to a CoordRefManager object
CoordRefManager crm = CoordRefManager.getInstance();
crm.setConnection(conn);

Querying and Displaying Geometries

The following code fragment demonstrates how to query geometries and display
geometry data.

Connection conn;
Map typeMap;
// Acquire a database connection

// Set up the typemap

typeMap = IfxSQLData.enableTypes(conn);

// Set the CoordRefManager connection
CoordRefManager.getInstance().setConnection(conn);
// Running the query

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery (

"SELECT id, geom FROM geomtab where id >= 0");
while (rs.next()) {

Integer id = (Integer)rs.getObject(1);

Geometry geo = (Geometry) rs.getObject(2, typeMap);
if (geo == null) {

System.out.printIn("NULL");

continue;

1

// Print out the well-known text representation
System.out.printin(geo.asText());

1

stmt.close();

Reading Coordinate Data

Many applications need to read coordinate data from a geometry object. This
example uses for loops to read the coordinates of an existing geometry object, to
temporarily hold the coordinates in a buffer, and then to pass the coordinates to a
drawing function.

IfxGeometry geo;

double buf[] = new double[1000];

for(int part = 0; part < geo.numParts(); part++) {

for(int subpart = 0; subpart < geo.numSubParts(part); subpart++) {
int position = 0, read = 0;

for (int points = geo.numPoints(part, subpart);

points > 0;

points -= read) {

read = geo.toCoordArray(buf, 0, IfxGeometry.COORD XY,

position, part, subpart);

if (read == 0) break;

Chapter 8. Spatial Java API 8-5

// do something with the coordinate buffer

// update position of the next point to read
position += read;

}

}

}

Preparing to Run a Program

8-6

Before you run a spatial Java API program, set your CLASSPATH environment
variable and compile the program.

Setting your CLASSPATH Environment Variable

When compiling or running the programs in this chapter, set your CLASSPATH
environment variable to include:

e The IBM Informix JDBC Driver, ifxjdbc.jar, in the directory where you installed
the driver.

¢ The Spatial DataBlade Java API, spatial.jar, in the directory where you installed
the DataBlade module, $INFORMIXDIR/extend/spatial.version.

e The examples/java directory (where these example programs are located) in the
directory where you installed the DataBlade module, $INFORMIXDIR/extend/
spatial.version.

Compiling the Programs

Use the javac command to compile the programs in this chapter (be sure that your
CLASSPATH is set correctly, as described above). For example, to compile all the
programs, go to the examples/java directory and enter the following command:

javac *.java

Running the Programs

After you set your CLASSPATH environment variable and compile the program,
you can run a spatial Java API program.

Use the following command to run the programs:

java program "classname
host:portnumber/database:informixserver=servername;user=username;
password=yourpassword;"

Where the following values are:

classname
The name of the class you want to execute.

portnumber
The port number that Informix server is listening on.

servername
The name of the server defined as INFORMIXSERVER.

username
Your user name.

yourpassword
Your password.

IBM Informix Spatial Data User's Guide

Here is an example of a command to run the programs:

java program "jdbc:informixsqli://
host:port/database:informixserver=server;user=user;
password=pass;"

Example 1: Retrieving a Point From a Table

The commented code fragment below shows how to retrieve a Point shape from a
database table using a SELECT statement.

The points_t table was created using the following SQL statement:
CREATE TABLE points_t (id integer, pt st_point);

The database connection URL is passed as an argument to the example.

void example(String url) {

// load the Informix JDBC driver
Class.forName("com.informix.jdbc.IfxDriver");

// get the connection

Connection conn = DriverManager.getConnection(url);

// get the custom type map associated with the spatial data types
Map typeMap = IfxSQLData.enableTypes(conn);

// set the CoordRefManager connection
CoordRefManager.getInstance().setConnection(conn);

// run a query and fetch the spatial data

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery("SELECT id, pt FROM points_t");
while (rs.next()) {

Integer id = (Integer) rs.getObject(1);

IfxPoint pt = (IfxPoint) rs.getObject(2, typeMap);

// print out x and y coordinates

System.out.printIn("X=" + pt.getX() + " Y=" + pt.getY());

1

}

Examples 2, 3,

and 4: How to Use the Java API

These examples are located in the INFORMIXDIR/extend/spatialversion/examples/
Jjava directory in the directory where you installed the DataBlade module. The
examples are fully commented to demonstrate how to use the Java APL

The examples all have a similar structure and contain three routines:
* init()
Performs initialization tasks
* doRun()
Contains the main functioning of the program
* cleanup()
Performs cleanup

GeometryTOWKT

The example program GeometryToWKT reads geometry objects from an IBM
Informix spatial table and converts them into WKT (well-known text format)
strings.

The program first creates a table, inserts geometry data into it, and then queries

the table. The output of the program shows the well-known text representation of
sample geometries.

Chapter 8. Spatial Java API 8-7

GeometryToArray

The GeometryToArray program creates new geometries using a geometry factory,
then reads coordinate data out of these geometry objects.

The program first creates several geometry objects and stores them in a Java vector
object. Then it uses two techniques to read coordinate data out of the geometry
objects, using one of the following methods

* IfxGeometry.toCoordArray()
* IfxGeometry.toPointArray()

CoordRefCreate

The CoordRefCreate program creates new coordinate reference objects and inserts
them into the spatial_references table.

The program first demonstrates how to search the database for a specific
coordinate reference, then creates a new CoordRef object and serializes it as a new
spatial reference system row in the spatial_references table. The output of this
program shows the result of a query for retrieving the new spatial reference system
from the database.

8-8 IBM Informix Spatial Data User's Guide

Appendix A. Load and unload shapefile data

Use the infoshp, loadshp, and unloadshp utilities for working with spatial data
contained in ESRI shapefiles.

The executable files for the utilities are located in the $INFORMIXDIR/extend/
spatial.version/bin directory:

* The infoshp utility is useful for gathering information from ESRI shapefiles
when you are preparing to load the shapefiles into a database.

¢ The loadshp utility loads spatial data from an ESRI shapefile into the database.
* The unloadshp utility copies data from the database to an ESRI shapefile.

You can leave them in this directory, or you can copy them to $INFORMIXDIR/bin. If
you leave them here, you may want to add $INFORMIXDIR/extend/
spatial.version/bin to your $PATH environment variable. If you copy the files to
$INFORMIXDIR/bin, you may not need to change your $PATH environment variable,
if $INFORMIXDIR/bin is already included in the variable definition.

Important: The loadshp utility does not add information to ESRI system tables,
such as the layers table. Therefore, data loaded with the loadshp utility is not
accessible to ArcSDE and other ESRI client tools. Use the ESRI shp2sde command
to load data if you want to access it using ESRI client tools. Data loaded using the
loadshp utility is accessible to client programs that do not depend on ESRI system
tables other than the OGC-standard geometry_columns and spatial_references
tables.

Related reference:

[“The geometry_columns table” on page 1-21]

[‘Loading spatial data” on page 1-19)

[‘The spatial index” on page 1-22|

The infoshp utility

The infoshp utility reports information extracted from headers of the .shp, .shx,
and .dbf files that make up ESRI shapefiles. It also detects the presence of optional
.prj files that may be associated with ESRI shapefiles and reports the coordinate
system information. The infoshp utility can check for spatial_references table
entries that are qualified to load one or more shapefiles. If no spatial reference
exists that can be used to load the specified shapefiles, the infoshp utility can
create a new entry in the spatial_references table for loading the shapefiles.

Syntax

v

-filename | ><

»—1’nfoshp—|: —o—| Info Info |— -f
-V

© Copyright IBM Corp. 2001, 2014 A-1

Info Info::

I info
I—I:check -D—database

create

|— —s—server‘—l |— -u—username— —p—password—l

Operation modes

You use the -o flag to set the operation mode for the infoshp command. Set the -o
flag to one of the following options:

check

create

info

Checks for spatial_references table entries that are qualified to load the
specified shapefiles.

Creates a new entry in the spatial_references table for loading the
specified shapefiles.

Reports information extracted from the headers of the .shp, .shx, .dbf, and
optional .prj files associated with the specified shapefiles.

Command-line switches

You can use the infoshp command flags to specify the following options.

-D
-f
P

The database name
The path and name of one or more ESRI shapefiles to process
(optional) The IBM Informix password

If you specify the -p option, you must also specify the -u option.

-s (optional)

The IBM Informix server

Defaults to the value of the INFORMIXSERVER environment variable

-u (optional)

-V

The IBM Informix user name
If you specify the -u option, you must also specify the -p option.

Prints version information for this utility

The loadshp utility

The loadshp utility loads spatial features and associated attributes from an ESRI
shapefile into a table in an IBM Informix database.

A-2

When loadshp creates a table, it inserts a row into the geometry_columns system
table. When you want to drop a table created by loadshp, you should also delete
the corresponding row from the geometry_columns table.

Tip: The loadshp utility creates a primary key constraint on the se_row_id column
of the table that you are loading.

IBM Informix Spatial Data User's Guide

Syntax

A\
A

»»—1oadshp -0 Append Mode
Init and Create Mode |—

SQL Mode I—

Append mode:

|—append— -1—tablename—,—colname— -f—filename— -D—database |_ _| >
-s—server

> »

I— -u—username— -p—password—| I— -b—begin_row—| I— -e—end_r‘ow—| I— -c—commit_interval—l

g I__1C_| l——]og | |

|—director‘yJ

Init and create mode:

}—[create -1—tablename—,—colname— -f—filename >
ini t——l_

»— -D—database >
l— -s—ser'ver—| l— -u—username— -p—password—l

\

I— —b—begin_row—| I— —e—end_r‘ow—| I— —1'n—dbspace—| I— —put—sbspace_list—|

\
v

I— —ext—initial_extent_size—l I— —next—next'_exteni.‘_size—| I— —c—commit_interval—l

\

I— -1'c—| I— -no1'dx—| I— -srid—srid—l I— -log | !

l—directory—l

SQL mode:

v

|—sq1— -1—tablename—,—colname— -f—filename
I— —1'n—dbspace—| I— —put—sbspace_list—l

> |
>

I— —ext—initial_extent_size—l I— —next—next’_extent_size—| I— -log |
l—directory—l

Operation modes
You use the -o flag to set the operation mode for the loadshp command. Set the -o
flag to one of the following options:

append
Spatial features are added to the table specified by the -1 flag. The structure
of the existing database table must match the structure of a table derived

Appendix A. Load and unload shapefile data A-3

A-4

from information specified by the -1 command-line option and from
metadata stored in the shapefile's associated .dbf file.

create Spatial features are loaded into a newly created database table. An error is
returned if a table with the name specified by the -1 flag already exists. The
structure of the new table is derived from the table name and column
name specified by the -1 command-line option as well as from metadata
stored in the shapefile's associated .dbf file.

init The table specified by the -1 flag is first dropped and then spatial features
are loaded into a newly created table of the same name.

sql The following SQL statements are displayed on the console (and can be
logged to a file):
* DROP TABLE ...
* DELETE FROM geometry_columns ...
* CREATE TABLE ...
¢ INSERT INTO geometry_columns ...
* CREATE UNIQUE INDEX ... USING btree;
* ALTER TABLE ... ADD CONSTRAINT PRIMARY KEY (se_row_id) ...
* CREATE INDEX ... USING rtree;
» UPDATE STATISTICS ...
The structure of the table to be loaded is derived from information

specified by the -1 command-line option and from metadata stored in the
shapefile's associated .dbf file containing feature attributes.

Command-line switches

You can use the loadshp command-line switches to specify the following options.

-b (optional)
The first row in the shapefile to load

-c (optional)
The number of rows to load before committing work and beginning a new
transaction

Defaults to 1000 rows

If you are loading data into a database that does not have transaction
logging enabled, the commit interval determines how frequently
information messages are displayed on the console.

-D The database name

-e (optional)
The last row in the shapefile to load

-ext (optional)
Specifies the initial extent size for the table to be loaded

This option is not valid in the append option of the -o flag.
-f The path and name of the ESRI shapefile to be loaded

-ic (optional)
Specifies use of an INSERT CURSOR

Using an INSERT CURSOR to load data significantly reduces load time,
but limits the client program's ability to handle errors. INSERT CURSORs

IBM Informix Spatial Data User's Guide

buffer rows before writing them to the database to improve performance. If
an error is encountered during the load, all buffered rows following the
last successfully inserted row are discarded.

-in (optional)
Specifies the dbspace in which to create the table to be loaded

This option is not valid in the append option of the -o flag.
-1 The table and geometry column to load data into

-log (optional)
Specifies whether to write information about the status of data loading to a
log file

The log file has the same name as the shapefile you are loading from with
the extension .1og.

If you do not specify a directory, the log file is created in the same
directory as the shapefile you are loading from.

-next Specifies the next extent size for the table to be loaded
This option is not valid in the append option of the -o flag.

-noidx (optional)
Specifies that indexes should not be built and statistics should not be
updated after the shapefile data has been loaded

Unless this option is specified when executing loadshp -o create or
loadshp -o init, a unique B-tree index is built on the se_row_id column, an
R-tree index is built on the geometry column, and statistics are updated for
the table after the shapefile data has been loaded.

-p (optional)
The IBM Informix password

If you specity the -p option, you must also specify the -u option.

-put (optional)
Specifies the sbspaces in which large shapes inserted into the load table's
geometry column will be stored

Multiple sbspace names must be separated by commas and no white space
must appear in the list of sbspace names. This option is not valid with the
append option of the -o flag.

-s (optional)
The IBM Informix server

Defaults to the value of the INFORMIXSERVER environment variable.

-srid (optional)
The spatial reference ID for the data you are loading

The integer you specify must exist as a spatial reference ID in the
spatial_references table. If you do not specify the -srid command-line
option, the spatial reference ID defaults to 0.

-u (optional)
The IBM Informix user name

If you specify the -u option, you must also specify the -p option.

-V Prints version information for this utility

Appendix A. Load and unload shapefile data A-5

The unloadshp utility

The unloadshp utility copies spatial features and associated attributes from a table
in an IBM Informix database into an ESRI shapefile.

Syntax
»»>—unloadshp -0 Init Mode ' ><
El Append Mode ’J

Init mode:

|—1'n1't— -1—tablename—,—colname— -f—filename— -D—database |_ _|
s—server

>

|— -u—username— -p—passwor‘dJ |— -t—shape_typeJ |— -w—where_clauseJ

[

g |
L -10g |

l—directory—l

Append mode:

v

|—append— -1—tablename—,—colname— -f—filename— -D—database |_ _|
-s—server

> |
|— -u—username— -p—passwor‘dJ |— -w—where_clauseJ |— -log _| |
l—dzrectory

Operation modes

You use the -o flag to set the operation mode for the unloadshp command. Set the
-o flag to one of the following options:

append
Spatial features are appended to the existing ESRI shapefile specified by
the -f option.

init Spatial features are unloaded into a newly created ESRI shapefile.
Command-line switches

You can use the unloadshp command flags to specify the following options.

-D The database name
-f The path and name of the shapefile
-1 The table and geometry column from which to extract data

The table and column must exist, and the executing user must either own
the table or have access to it.

A-6 IBM Informix Spatial Data User's Guide

-log (optional)

Specifies whether to write information about the status of data loading to a

log file

The log file has the same name as the shapefile you are loading into with
the extension .log.

If you do not specify a directory, the log file is created in the same
directory as the shapefile you are loading.

-p (optional)

The IBM Informix password

If you specify the -p option, you must also specify the -u option.

-s (optional)

The IBM Informix server

Defaults to the value of the INFORMIXSERVER environment variable.

-t (optional)

An integer indicating the type of shape to extract and write to the ESRI

shapefile

The possible values are:
1 Point

2 PolyLine

5 Polygon

8 Multipoint

9 PointZ

10 PolyLineZ

11 PointZM

13 PolyLineZM
15 PolygonZM
18 MultiPointZM
19 PolygonZ

20 MultiPointZ
21 PointM

23 PolyLineM

25 PolygonM

28 MultiPointM

If you do not specify the -t option, the type defaults to the type of the first
shape retrieved from the database table.

-u (optional)

The IBM Informix user name

If you specify the -u option, you must also specify the -p option.

-V Prints version information for this utility

Appendix A. Load and unload shapefile data

A-7

-w (optional)
(optional) The SQL WHERE clause to qualify the data extracted from the
table

Enclose the WHERE clause in double quotation marks and enclose any
string literals within the clause in single quotation marks. Omit the
keyword WHERE.

A-8 IBM Informix Spatial Data User's Guide

Appendix B. OGC well-known text representation of spatial
reference systems

These topics explain how to represent a spatial reference system using a text string
and provides information about supported units of measure, spheroids, datums,
prime meridians, and projections.

The information provided in these topics is primarily intended for use with the
ST_Transform() function.

Related reference:

[“The spatial_references table” on page 1-12|

[“The ST_Transform() function” on page 7-136

The text representation of a spatial system

The well-known text representation of spatial reference systems provides a
standard textual representation for spatial reference system information.

The definitions of the well-known text representation are modeled after the
POSC/EPSG coordinate system data model.

A spatial reference system, also referred to as a coordinate system, is a geographic
(latitude, longitude), a projected (X,Y), or a geocentric (X, Y, Z) coordinate system.

A coordinate system is composed of several objects. Each object is defined by an
uppercase keyword (for example, DATUM or UNIT) followed by the defining,
comma-delimited parameters of the object in brackets. Some objects are composed
of other objects.

Implementations are free to substitute standard brackets () for square brackets []
and should be prepared to read both forms of brackets.

The Extended Backus Naur Form (EBNF) definition for the string representation of
a coordinate system is as follows, using square brackets:
<coordinate system> = <projected cs> | <geographic cs>
| <geocentric cs>
<projected cs> = PROJCS["<name>", <geographic cs>,
<projection>, {<parameter>,}* <linear unit>]
<projection> = PROJECTION["<name>"]
<parameter> = PARAMETER["<name>", <value>]
<value> = <number>

A coordinate system of a data set is identified by one of the following three
keywords:

PROJCS
if the data is in projected coordinates

GEOGCS
if in geographic coordinates

GEOCCS
if in geocentric coordinates

© Copyright IBM Corp. 2001, 2014 B-1

B-2

The PROJCS keyword is followed by all of the pieces that define the projected
coordinate system. The first piece of any object is always the name. Several objects
follow the name: the geographic coordinate system, the map projection, one or
more parameters, and the linear unit of measure.

As an example, UTM zone 10N on the NAD83 datum is defined as:

PROJCS["NAD_1983_UTM_Zone_ 1ON",
<geographic cs>,
PROJECTION["Transverse_Mercator"],
PARAMETER["False_Easting",500000.0],
PARAMETER["False_Northing",0.0],
PARAMETER["Central_Meridian",-123.0],
PARAMETER["Scale_Factor",0.9996],
PARAMETER["Latitude_of_Origin",0.0],
UNIT["Meter",1.0]]

The name and several objects define the geographic coordinate system object: the
datum, the prime meridian, and the angular unit of measure:

<geographic cs> = GEOGCS["<name>", <datum>, <prime meridian>, <angular unit>]
<datum> = DATUM["<name>", <spheroid>]

<spheroid> = SPHEROID["<name>", <semi-major axis>,
<inverse flattening>]

<semi-major axis> = <number>
NOTE: semi-major axis is measured in meters and must be > 0.

<inverse flattening> = <number>
<prime meridian> = PRIMEM["<name>", <longitude>]

<longitude> = <number>

The geographic coordinate system string for UTM zone 10N on NADS3 is:

GEOGCS["GCS_North_American_1983",
DATUM["D_North_American_1983",
SPHEROID["GRS_1980",6378137,298.257222101]],
PRIMEM["Greenwich",0],
UNIT["Degree",0.0174532925199433]]

The UNIT object can represent angular or linear units of measure:

<angular unit> = <unit>

<linear unit> = <unit>

<unit> = UNIT["<name>", <conversion factor>]
<conversion factor> = <number>

The conversion factor specifies the number of meters (for a linear unit) or the
number of radians (for an angular unit) per unit and must be greater than zero.

Therefore, the full string representation of UTM zone 10N is:

PROJCS["NAD_1983_UTM_Zone_ 1ON",
GEOGCS["GCS_North_American_1983",

DATUM["D_North American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],
PRIMEM["Greenwich",0] ,UNIT["Degree",0.0174532925199433]],
PROJECTION["Transverse Mercator"],PARAMETER["False Easting",500000.0],
PARAMETER["False_Northing",0.0] ,PARAMETER["Central_Meridian",-123.0],
PARAMETER["Scale_Factor",0.9996] ,PARAMETER["Latitude_of Origin",0.0],
UNIT["Meter",1.0]]

IBM Informix Spatial Data User's Guide

A geocentric coordinate system is quite similar to a geographic coordinate system.
It is represented by:

<geocentric cs>

You can use the SE_CreateSrtext() function to assist you in constructing these

= GEOCCS["<name>", <datum>, <prime meridian>, <linear unit>]

spatial reference system text strings.

The remainder of this appendix shows the OGC well-known text “building blocks”

of spatial reference systems that are supported by the IBM Informix spatial data

types.

These text strings can be generated by the SE_CreateSrtext() function; you use the
factory ID number in the first column of the table as the input argument to
SE_CreateSrtext().

Related reference:

[“The SE_CreateSrtext() function” on page 7-36|

Linear units

IBM Informix spatial data types support many linear units.

The following table shows a representative sample of the linear units of measure
supported by the IBM Informix spatial data types. For a complete list of supported
linear units of measure, see the file INFORMIXDIR/extend/spatial.version/include/

pedef.h.

Table B-1. Linear units of measure

Factory ID Description OGC well-known text string

9001 International meter UNIT["Meter",1]

9002 International foot UNIT["Foot",0.3048]

9003 US survey foot UNIT["Foot_US",0.3048006096012192]
9005 Clarke's foot UNIT["Foot_Clarke",0.3047972650]

9014 Fathom UNIT["Fathom",1.8288]

9030 International nautical mile UNIT["Nautical_Mile",1852]

9031 German legal meter UNIT["Meter_German",1.000001359650]
9033 US survey chain UNIT["Chain_US",20.11684023368047]
9034 US survey link UNIT["Link_US",0.2011684023368047]
9035 US survey mile UNIT["Mile_US",1609.347218694438]
9036 Kilometer UNIT["Kilometer",1000]

9037 Yard (Clarke) UNIT["Yard_Clarke",0.914391795]

9038 Chain (Clarke) UNIT["Chain_Clarke",20.11661949]
9039 Link (Clarke's ratio) UNIT["Link_Clarke",0.2011661949]

9040 Yard (Sears) UNIT["Yard_Sears",0.9143984146160287]
9041 Sear's foot UNIT["Foot_Sears",0.3047994715386762]
9042 Chain (Sears) UNIT["Chain_Sears",20.11676512155263]
9043 Link (Sears) UNIT["Link_Sears",0.2011676512155263]
9050 Yard (Benoit 1895 A) UNIT["Yard_Benoit_1895_A",0.9143992]
9051 Foot (Benoit 1895 A) UNIT["Foot_Benoit_1895_A",0.3047997333333333]

Appendix B. OGC well-known text representation of spatial reference systems

B-3

Table B-1. Linear units of measure (continued)

Factory ID Description

OGC well-known text string

9052 Chain (Benoit 1895 A) UNIT["Chain_Benoit_1895_A",20.1167824]

9053 Link (Benoit 1895 A) UNIT["Link_Benoit_1895_A",0.201167824]

9060 Yard (Benoit 1895 B) UNIT["Yard_Benoit_1895_B",0.9143992042898124]
9061 Foot (Benoit 1895 B) UNIT["Foot_Benoit_1895_B",0.3047997347632708]
9062 Chain (Benoit 1895 B) UNIT["Chain_Benoit_1895_B",20.11678249437587]
9063 Link (Benoit 1895 B) UNIT["Link_Benoit_1895_B",0.2011678249437587]
9070 Foot (1865) UNIT["Foot_1865",0.3048008333333334]

9080 Indian geodetic foot UNIT["Foot_Indian",0.3047995102481469]

9081 Indian foot (1937) UNIT["Foot_Indian_1937",0.30479841]

9082 Indian foot (1962) UNIT["Foot_Indian_1962",0.3047996]

9083 Indian foot (1975) UNIT["Foot_Indian_1975",0.3047995]

9084 Indian yard UNIT["Yard_Indian",0.9143985307444408]

9085 Indian yard (1937) UNIT["Yard_Indian_1937",0.91439523]

9086 Indian yard (1962) UNIT["Yard_Indian_1962",0.9143988]

9087 Indian yard (1975) UNIT["Yard_Indian_1975",0.9143985]

Angular units

IBM Informix spatial data types support many angular units.

The following table shows a representative sample of the angular units of measure
supported by the IBM Informix spatial data types. For a complete list of supported
angular units of measure, see the file INFORMIXDIR/extend/spatial.version/

include/pedef.h.

Table B-2. Angular units

Factory ID Description

OGC well-known text string

9101 Radian UNIT["Radian",1]

9102 Degree UNIT["Degree",0.0174532925199433]

9103 Arc-minute UNIT["Minute",0.0002908882086657216]

9104 Arc-second UNIT["Second",4.84813681109536E-06]

9105 Grad (angle subtended by 1/400 UNIT["Grad",0.01570796326794897]
circle)

9106 Gon (angle subtended by 1/400 UNIT["Gon",0.01570796326794897]
circle)

9109 Microradian (le-6 radian) UNIT["Microradian",1E-06]

9112 Centesimal minute (1/100th Gon UNIT["Minute_Centesimal”,0.0001570796326794897]
(Grad))

9113 Centesimal second(1/10000th UNIT["Second_Centesimal",1.570796326794897E-06]
Gon (Grad))

9114 Mil (angle subtended by 1/6400 UNIT["Mil_6400",0.0009817477042468104]
circle)

B-4 1BM Informix Spatial Data User's Guide

Geodetic spheroids

IBM Informix spatial data types support many geodetic spheriods.

The following table lists a representative sample of the geodetic spheroids
supported by the IBM Informix spatial data types. For a complete list of supported
geodetic spheroids, see the file INFORMIXDIR/extend/spatial.version/include/
pedef.h.

Table B-3. Geodetic spheriods

Factory ID Description OGC well-known text string
7001 Airy 1830 SPHEROID["Airy_1830",6377563.396,299.3249646]
7002 Airy modified SPHEROID["Airy_Modified",6377340.189,299.3249646]
7041 Average Terrestrial System SPHEROID["ATS_1977",6378135,298.257]
1977
7003 Australian National SPHEROID["Australian",6378160,298.25]
7004 Bessel 1841 SPHEROID|"Bessel_1841",6377397.155,299.1528128]
7005 Bessel modified SPHEROID["Bessel_Modified",6377492.018,299.1528128]
7006 Bessel Namibia SPHEROID|"Bessel_Namibia",6377483.865,299.1528128]
7007 Clarke 1858 SPHEROID["Clarke_1858",6378293.639,294.260676369]
7008 Clarke 1866 SPHEROID["Clarke_1866",6378206.4,294.9786982]
7009 Clarke 1866 Michigan SPHEROID["Clarke_1866_Michigan",6378450.047,294.978684677]
7034 Clarke 1880 SPHEROID["Clarke_1880",6378249.138,293.466307656]
7013 Clarke 1880 (Arc) SPHEROID["Clarke_1880_Arc",6378249.145,293.466307656]
7010 Clarke 1880 (Benoit) SPHEROID["Clarke_1880_Benoit",6378300.79,293.466234571]
7011 Clarke 1880 (IGN) SPHEROID["Clarke_1880_IGN",6378249.2,293.46602]
7012 Clarke 1880 (RGS) SPHEROID["Clarke_1880_RGS",6378249.145,293.465]
7014 Clarke 1880 (SGA) SPHEROID["Clarke_1880_SGA",6378249.2,293.46598]
7042 Everest 1830 (definition) SPHEROID["Everest_1830",6377299.36,300.8017]
7018 Everest 1830 (modified) SPHEROID["Everest_1830_Modified",6377304.063,300.8017]
7015 Everest (adjustment 1937) SPHEROIDI["Everest_Adjustment_1937",6377276.345,300.8017]
7044 Everest (definition 1962) SPHEROID["Everest_Definition_1962",6377301.243,300.8017255]
7016 Everest (definition 1967) SPHEROID["Everest_Definition_1967",6377298.556,300.8017]
7045 Everest (definition 1975) SPHEROID["Everest_Definition_1975",6377299.151,300.8017255]
7031 GEM gravity potential SPHEROID["GEM_10C",6378137,298.257222101]
model
7036 GRS 1967 = International =~ SPHEROID["GRS_1967",6378160,298.247167427]
1967
7019 GRS 1980 SPHEROID["GRS_1980",6378137,298.257222101]
7020 Helmert 1906 SPHEROID|"Helmert_1906",6378200,298.3]
7021 Indonesian National SPHEROID["Indonesian",6378160,298.247]
7022 International 1924 SPHEROID["International_1924",6378388,297]
7023 International 1967 SPHEROID["International_1967",6378160,298.25]
7024 Krasovsky 1940 SPHEROID["Krasovsky_1940",6378245,298.3]
7025 Transit precise ephemeris =~ SPHEROID["NWL_9D",6378145,298.25]

Appendix B. OGC well-known text representation of spatial reference systems ~ B-5

Table B-3. Geodetic spheriods (continued)

Factory ID Description OGC well-known text string

7032 OSU 1986 geoidal model SPHEROID["OSU_86F",6378136.2,298.25722]

7033 OSU 1991 geoidal model SPHEROID["OSU_91A",6378136.3,298.25722]

7027 Plessis 1817 SPHEROID["Plessis_1817",6376523,308.64]

7035 Authalic sphere SPHEROID["Sphere",6371000,0]

7028 Struve 1860 SPHEROID["Struve_1860",6378298.3,294.73]

7029 War Office SPHEROID["War_Office",6378300.583,296]

7026 NWL-10D == WGS 1972 SPHEROID["NWL_10D",6378135,298.26]

7043 WGS 1972 SPHEROID["WGS_1972",6378135,298.26]

7030 WGS 1984 SPHEROID["WGS_1984",6378137,298.257223563]

107001 WGS 1966 SPHEROID["WGS_1966",6378145,298.25]

107002 Fischer 1960 SPHEROID]"Fischer_1960",6378166,298.3]

107003 Fischer 1968 SPHEROID["Fischer_1968",6378150,298.3]

107004 Fischer modified SPHEROID| "Fischer_Modified",6378155,298.3]

107005 Hough 1960 SPHEROID["Hough_1960",6378270,297]

107006 Everest modified 1969 SPHEROID["Everest_Modified_1969",6377295.664,300.8017]

107007 Walbeck SPHEROID["Walbeck",6376896,302.78]

107008 Authalic sphere SPHEROID["Sphere_ ARC_INFO",6370997,0]
(ARC/INFO)

107036 GRS 1967 Truncated SPHEROID["GRS_1967_Truncated",6378160,298.25]

Horizontal datums (spheroid only)

IBM Informix spatial data types support many spheriod horizontal datums.

The following table lists a representative sample of the horizontal datums
(spheroid only) supported by the IBM Informix spatial data types. For a complete
list of supported horizontal datums (spheroid only), see the file
INFORMIXDIR/extend/spatial.version/include/pedef.h.

Table B-4. Spheroid horizontal datums

Factory ID Description OGC well-known text string

6001 Airy 1830 DATUM["D_Airy_1830",SPHEROID["Airy_1830",6377563.396,299.3249646]]

6002 Airy modified DATUM["D_Airy_Modified", SPHEROIDI["Airy_Modified",6377340.189,
299.3249646]]

6003 Australian DATUM["D_Australian",SPHEROID[" Australian",6378160,298.25]]

National

6004 Bessel 1841 DATUM["D_Bessel_1841",SPHEROID|"Bessel_1841",6377397.155, 299.1528128]]

6005 Bessel modified DATUM["D_Bessel_Modified",SPHEROID]"Bessel_Modified",
6377492.018,299.1528128]]

6006 Bessel Namibia DATUM]["D_Bessel_Namibia",SPHEROID|"Bessel_Namibia",6377483.865,
299.1528128]]

6007 Clarke 1858 DATUM]["D_Clarke_1858",SPHEROID]["Clarke_1858",6378293.639, 294.260676369]]

6008 Clarke 1866 DATUM["D_Clarke_1866",SPHEROID]["Clarke_1866",6378206.4, 294.9786982]]

B-6 1BM Informix Spatial Data User's Guide

Table B-4. Spheroid horizontal datums (continued)

Factory ID Description OGC well-known text string
6009 Clarke 1866 DATUM]["D_Clarke_1866_Michigan",SPHEROID| "Clarke_1866_Michigan",
Michigan 6378450.047,294.978684677]]
6034 Clarke 1880 DATUM["D_Clarke_1880",SPHEROID|"Clarke_1880",6378249.138, 293.466307656]]
6013 Clarke 1880 (Arc) DATUM["D_Clarke_1880_Arc",SPHEROID["Clarke_1880_Arc",
6378249.145,293.466307656]]
6010 Clarke 1880 DATUM["D_Clarke_1880_Benoit",SPHEROID|"Clarke_1880_Benoit",
(Benoit) 6378300.79,293.466234571]]
6011 Clarke 1880 (IGN) DATUM]["D_Clarke_1880_IGN",SPHEROID|"Clarke_1880_IGN",
6378249.2,293.46602]]
6012 Clarke 1880 (RGS) DATUM]["D_Clarke_1880_RGS",SPHEROID["Clarke_1880_RGS",
6378249.145,293.465]]
6014 Clarke 1880 (SGA) DATUM["D_Clarke_1880_SGA",SPHEROID]["Clarke_1880_SGA",
6378249.2,293.46598]]
6042 Everest 1830 DATUM["D_Everest_1830",SPHEROID["Everest_1830",6377299.36, 300.8017]]
6015 Everest DATUM]["D_Everest_Adj_1937",SPHEROID|"Everest_Adjustment_1937",
(adjustment 1937) 6377276.345,300.8017]]
6044 Everest (definition DATUM["D_Everest_Def_1962",SPHEROID["Everest_Definition_1962",
1962) 6377301.243,300.8017255]]
6016 Everest (definition DATUM["D_Everest_Def_1967",SPHEROID["Everest_Definition_1967",
1967) 6377298.556,300.8017]]
6045 Everest (definition DATUM]["D_Everest_Def_1975",SPHEROID["Everest_Definition_1975",
1975) 6377299.151,300.8017255]]
6018 Everest modified DATUM["D_Everest_Modified",SPHEROID["Everest_1830_Modified",
6377304.063,300.8017]]
6031 GEM gravity DATUM["D_GEM_10C",SPHEROID["GEM_10C",6378137,298.257222101]]
potential model
6036 GRS 1967 DATUM["D_GRS_1967",SPHEROID|["GRS_1967",6378160,298.247167427]]
6019 GRS 1980 DATUM["D_GRS_1980",SPHEROID["GRS_1980",6378137,298.257222101]]
6020 Helmert 1906 DATUM["D_Helmert_1906",SPHEROID|["Helmert_1906",6378200,298.3]]
6021 Indonesian DATUM]["D_Indonesian",SPHEROID["Indonesian",6378160,298.247]]
National
6022 International 1927 DATUM["D_International_1924" SPHEROID["International_1924",6378388,2971]
6023 International 1967 DATUM["D_International_1967",SPHEROID["International_1967",6378160,298.25]]
6024 Krasovsky 1940 DATUM]["D_Krasovsky_1940",SPHEROID["Krasovsky_1940",6378245, 298.3]]
6025 Transit precise DATUM["D_NWL_9D",SPHEROID["NWL_9D",6378145,298.25]]
ephemeris
6032 OSU 1986 geoidal DATUM["D_OSU_86F",SPHEROID["OSU_86F",6378136.2,298.25722]]
model
6033 OSU 1991 geoidal DATUM["D_OSU_91A",SPHEROID["OSU_91A",6378136.3,298.25722]]
model
6027 Plessis 1817 DATUM]["D_Plessis_1817",SPHEROID| "Plessis_1817",6376523,308.64]]
6035 Authalic sphere DATUM]["D_Sphere",SPHEROID["Sphere",6371000,0]]
6028 Struve 1860 DATUM["D_Struve_1860",SPHEROID["Struve_1860",6378298.3,294.73]]
6029 War Office DATUM["D_War_Office",SPHEROID|["War_Office",6378300.583,296]]
106001 WGS 1966 DATUM["D_WGS_1966",SPHEROID["WGS_1966",6378145,298.25]]

Appendix B. OGC well-known text representation of spatial reference systems

Table B-4. Spheroid horizontal datums (continued)

Factory ID Description OGC well-known text string
106002 Fischer 1960 DATUM["D_Fischer_1960",SPHEROID]["Fischer_1960",6378166,298.3]]
106003 Fischer 1968 DATUM]["D_Fischer_1968",SPHEROID]["Fischer_1968",6378150,298.3]]
106004 Fischer modified DATUM]["D_Fischer_Modified",SPHEROID]"Fischer_Modified",6378155, 298.3]]
106005 Hough 1960 DATUM["D_Hough_1960",SPHEROID["Hough_1960",6378270,297]]
106006 Everest modified DATUM]["D_Everest_Modified_1969",
1969 SPHEROID["Everest_Modified_1969",6377295.664,300.8017]]
106007 Walbeck DATUM["D_Walbeck",SPHEROID["Walbeck",6376896,302.78]]
106008 Authalic sphere DATUM["D_Sphere_ARC_INFO",SPHEROIDI["Sphere_ ARC_INFO", 6370997,0]]

(ARC/INFO)

Horizontal datums

IBM Informix spatial data types support many horizontal datums.

The following table lists a representative sample of the horizontal datums
supported by the IBM Informix spatial data types. For a complete list of supported
horizontal datums, see the file INFORMIXDIR/extend/spatial.version/include/

pedef.h.

Table B-5. Horizontal datums

Factory ID Description OGC well-known text string
6201 Adindan DATUM["D_Adindan",SPHEROID["Clarke_1880_RGS",6378249.145, 293.465]]
6205 Afgooye DATUM]["D_Afgooye",SPHEROID["Krasovsky_1940",6378245,298.3]]
6206 Agadez DATUM]["D_Agadez",SPHEROID["Clarke_1880_IGN",6378249.2, 293.46602]]
6202 Australian Geodetic ~ DATUM["D_Australian_1966",SPHEROID|"Australian",6378160,298.25]]
Datum 1966
6203 Australian Geodetic ~ DATUM["D_Australian_1984",SPHEROID]["Australian",6378160,298.25]]
Datum 1984
6204 Ain el Abd 1970 DATUM["D_Ain_el_Abd_1970",SPHEROID| "International_1924", 6378388,297]]
6289 Amersfoort DATUM["D_Amersfoort", SPHEROID|"Bessel_1841",6377397.155, 299.1528128]]
6208 Aratu DATUM["D_Aratu",SPHEROID|"International_1924",6378388,297]]
6209 Arc 1950 DATUM["D_Arc_1950",SPHEROIDI["Clarke_1880_Arc",6378249.145,
293.466307656]]
6210 Arc 1960 DATUM["D_Arc_1960",SPHEROID["Clarke_1880_RGS",6378249.145, 293.465]]
6901 Ancienne DATUM["D_ATF",SPHEROID|"Plessis_1817",6376523,308.64]]
Triangulation
Francaise
6122 Average Terrestrial DATUM["D_ATS_1977",SPHEROID["ATS_1977",6378135,298.257]]
System 1977
6212 Barbados 1938 DATUM]["D_Barbados_1938",SPHEROID]["Clarke_1880_RGS",
6378249.145,293.465]]
6211 Batavia DATUM["D_Batavia",SPHEROID|"Bessel_1841",6377397.155, 299.1528128]]
6213 Beduaram DATUM["D_Beduaram",SPHEROID["Clarke_1880_IGN",6378249.2, 293.46602]]
6214 Beijing 1954 DATUM]["D_Beijing_1954",SPHEROID["Krasovsky_1940",6378245,298.3]]

B-8 IBM Informix Spatial Data User's Guide

Table B-5. Horizontal datums (continued)

Factory ID Description OGC well-known text string
6215 Reseau National DATUM]["D_Belge_1950",SPHEROID|"International _1924",6378388,297]]
Belge 1950
6313 Reseau National DATUM]["D_Belge_1972",SPHEROID["International_1924",6378388,297]]
Belge 1972
6216 Bermuda 1957 DATUM["D_Bermuda_1957",SPHEROID["Clarke_1866",6378206.4, 294.9786982]]
6217 Bern 1898 DATUM["D_Bern_1898",SPHEROID|"Bessel_1841",6377397.155, 299.1528128]]
6306 Bern 1938 DATUM["D_Bern_1938",SPHEROID| "Bessel _1841",6377397.155, 299.1528128]]
6218 Bogota DATUM]["D_Bogota",SPHEROID|["International_1924",6378388,297]]
6219 Bukit Rimpah DATUM]["D_Bukit_Rimpah",SPHEROID| "Bessel_1841",6377397.155, 299.1528128]]
6220 Camacupa DATUM]["D_Camacupa",SPHEROID["Clarke_1880_RGS",6378249.145, 293.465]]
6221 Campo Inchauspe DATUM]["D_Campo_Inchauspe", SPHEROID| "International _1924", 6378388,297]]
6222 Cape DATUM]["D_Cape",SPHEROID["Clarke_1880_Arc",6378249.145, 293.466307656]]
6223 Carthage DATUM]["D_Carthage",SPHEROID["Clarke_1880_IGN",6378249.2, 293.46602]]
6224 Chua DATUM["D_Chua",SPHEROID["International_1924",6378388,297]]
6315 Conakry 1905 DATUM]["D_Conakry_1905",SPHEROID["Clarke_1880_IGN",6378249.2,
293.46602]]
6225 Corrego Alegre DATUM]["D_Corrego_Alegre",SPHEROID|"International_1924",6378388,297]]
6226 Cote d'Ivoire DATUM["D_Cote_d_Ivoire" SPHEROID["Clarke_1880_IGN",6378249.2,
293.46602]]
6274 Datum 73 DATUM["D_Datum_73",SPHEROID["International_1924",6378388,2971]
6227 Deir ez Zor DATUM["D_Deir_ez_Zor",SPHEROID|"Clarke_1880_IGN",6378249.2, 293.46602]]
6316 Dealul Piscului 1933 DATUM]["D_Dealul_Piscului_1933",SPHEROID]"International_1924",
6378388,297]]
6317 Dealul Piscului 1970 DATUM]["D_Dealul_Piscului_1970",SPHEROID|"Krasovsky_1940",
6378245,298.3]]
6314 Deutsche DATUM]["D_Deutsche_Hauptdreiecksnetz",SPHEROID["Bessel_1841",
Hauptdreiecksnetz 6377397.155,299.1528128]]
6228 Douala DATUM["D_Douala",SPHEROID|["Clarke_1880_IGN",6378249.2, 293.46602]]
6230 European Datum DATUM]["D_European_1950",SPHEROID["International_1924",6378388, 297]]
1950
6231 European Datum DATUM]["D_European_1987",SPHEROID|"International_1924",6378388, 297]]
1987
6229 Egypt 1907 DATUM["D_Egypt_1907",SPHEROID| "Helmert_1906",6378200,298.3]]
6258 European Terrestrial DATUM["D_ETRF_1989",SPHEROID["WGS_1984",6378137, 298.257223563]]
Reference Frame 1989
6232 Fahud DATUM["D_Fahud",SPHEROID["Clarke_1880_RGS",6378249.145, 293.465]]
6132 Final Datum 1958 DATUM["D_FD_1958",SPHEROID["Clarke_1880_RGS",6378249.145, 293.465]]
6233 Gandajika 1970 DATUM]["D_Gandajika_1970",SPHEROID| "International_1924",6378388, 297]]
6234 Garoua DATUM["D_Garoua",SPHEROID["Clarke_1880_IGN",6378249.2, 293.46602]]
6283 Geocentric Datum of DATUM["'D_GDA_1994",SPHEROID["GRS_1980",6378137, 298.257222101]]
Australia 1994
6121 Greek Geodetic DATUM["D_GGRS_1987",SPHEROID["GRS_1980",6378137, 298.257222101]]

Reference System
1987

B-9

Appendix B. OGC well-known text representation of spatial reference systems

Table B-5. Horizontal datums (continued)

Factory ID Description OGC well-known text string
6120 Greek DATUM["D_Greek",SPHEROID["Bessel_1841",6377397.155,299.1528128]]
6235 Guyane Francaise DATUM]["D_Guyane_Francaise",SPHEROID["International_1924", 6378388,297]]
6255 Herat North DATUM["D_Herat_North",SPHEROID|"International_1924",6378388, 297]]
6254 Hito XVIII 1963 DATUM]["D_Hito_XVIII_1963",SPHEROID["International_1924",6378388,297]]
6236 Hu Tzu Shan DATUM["D_Hu_Tzu_Shan",SPHEROID["International_1924",6378388, 297]]
6237 Hungarian Datum DATUM["D_Hungarian_1972",SPHEROID["GRS_1967",6378160, 298.247167427]]
1972
6239 Indian 1954 DATUM]["D_Indian_1954",SPHEROID|"Everest_Adjustment_1937",
6377276.345,300.8017]]
6240 Indian 1975 DATUM]["D_Indian_1975",SPHEROID|"Everest_Adjustment_1937",
6377276.345,300.8017]]
6238 Indonesian Datum DATUM["D_Indonesian_1974",SPHEROID["Indonesian",6378160, 298.247]]
1974
6241 Jamaica 1875 DATUM]["D_Jamaica_1875",SPHEROID["Clarke_1880",6378249.138,
293.466307656]]
6242 Jamaica 1969 DATUM["D_Jamaica_1969",SPHEROID|"Clarke_1866",6378206.4, 294.9786982]]
6243 Kalianpur 1880 DATUM]["D_Kalianpur_1880",SPHEROID["Everest_1830",6377299.36, 300.8017]]
6244 Kandawala DATUM["D_Kandawala",SPHEROID["Everest_Adjustment_1937",
6377276.345,300.8017]]
6245 Kertau DATUM["D_Kertau",SPHEROID["Everest_1830_Modified",6377304.063,
300.8017]]
6123 Kartastokoordinaatti- DATUM["D_KK]",SPHEROID["International _1924",6378388,297]]
jarjestelma
6246 Kuwait Oil Company DATUM["D_Kuwait_Oil_Company",SPHEROID["Clarke_1880_RGS",
6378249.145,293.465]]
6319 Kuwait Utility DATUM["D_Kuwait_Utility", SPHEROID["GRS_1980",6378137, 298.257222101]]
6247 La Canoa DATUM["D_La_Canoa",SPHEROID["International_1924",6378388,2971]
6249 Lake DATUM]["D_Lake",SPHEROID|"International_1924",6378388,297]]
6250 Leigon DATUM]["D_Leigon",SPHEROID|"Clarke_1880_RGS",6378249.145, 293.465]]
6251 Liberia 1964 DATUM["D_Liberia_1964",SPHEROID["Clarke_1880_RGS",6378249.145, 293.465]]
6207 Lisbon DATUM]["D_Lisbon",SPHEROID["International_1924",6378388,297]]
6126 Lithuania 1994 DATUM["D_Lithuania_1994",SPHEROID["GRS_1980",6378137, 298.257222101]]
6288 Loma Quintana DATUM["D_Loma_Quintana",SPHEROID|["International_1924",6378388,297]]
6252 Lome DATUM["D_Lome",SPHEROID["Clarke_1880_IGN",6378249.2, 293.46602]]
6253 Luzon 1911 DATUM]["D_Luzon_1911",SPHEROID|"Clarke_1866",6378206.4, 294.9786982]]
6903 Madrid 1870 DATUM["D_Madrid_1870",SPHEROIDI"Struve_1860",6378298.3,294.73]]
6128 Madzansua DATUM]["D_Madzansua",SPHEROID["Clarke_1866",6378206.4, 294.9786982]]
—superseded by Tete
6256 Mahe 1971 DATUM]["D_Mahe_1971",SPHEROID["Clarke_1880_RGS",6378249.145, 293.465]]
6257 Makassar DATUM["D_Makassar",SPHEROID|"Bessel_1841",6377397.155, 299.1528128]]
6259 Malongo 1987 DATUM]["D_Malongo_1987",SPHEROID["International_1924",6378388, 297]]
6260 Manoca DATUM["D_Manoca",SPHEROID["Clarke_1880_RGS",6378249.145, 293.465]]
6262 Massawa DATUM["D_Massawa",SPHEROID|["Bessel_1841",6377397.155, 299.1528128]]
B-10 IBM Informix Spatial Data User's Guide

Table B-5. Horizontal datums (continued)

Factory ID Description OGC well-known text string
6261 Merchich DATUM["D_Merchich",SPHEROID]["Clarke_1880_IGN",6378249.2, 293.46602]]
6312 Militar- DATUM["D_MGI",SPHEROID["Bessel_1841",6377397.155,299.1528128]]
Geographische
Institut
6264 Mhast DATUM]["D_Mhast",SPHEROID|["International_1924",6378388,297]]
6263 Minna DATUM["D_Minna",SPHEROID["Clarke_1880_RGS",6378249.145, 293.465]]
6265 Monte Mario DATUM["D_Monte_Mario",SPHEROID["International_1924",6378388, 2971]
6130 Moznet DATUM["D_Moznet",SPHEROID["WGS_1984",6378137,298.257223563]]
6266 M'poraloko DATUM]["D_Mporaloko",SPHEROID|"Clarke_1880_IGN",6378249.2, 293.46602]]
6268 NAD Michigan DATUM]["D_North_American_Michigan",
SPHEROID["Clarke_1866_Michigan",6378450.047,294.978684677]]
6267 North American DATUM]["D_North_American_1927",SPHEROID]"Clarke_1866",
Datum 1927 6378206.4,294.9786982]]
6269 North American DATUM]["D_North_American_1983",SPHEROID["GRS_1980",6378137,
Datum 1983 298.257222101]]
6270 Nahrwan 1967 DATUM["D_Nahrwan_1967" SPHEROID|"Clarke_1880_RGS",
6378249.145,293.465]]
6271 Naparima 1972 DATUM]["D_Naparima_1972",SPHEROID["International_1924", 6378388,297]]
6902 Nord de Guerre DATUM]["D_Nord_de_Guerre",SPHEROID|"Plessis_1817",6376523, 308.64]]
6318 National Geodetic DATUM["D_NGN",SPHEROID["WGS_1984",6378137,298.257223563]]
Network (Kuwait)
6273 NGO 1948 DATUM["D_NGO_1948",SPHEROID|"Bessel_Modified",6377492.018,
299.1528128]]
6307 Nord Sahara 1959 DATUM]["D_Nord_Sahara_1959",SPHEROID]["Clarke_1880_RGS",
6378249.145,293.465]]
6276 NSWC 9Z-2 DATUM["D_NSWC_9Z_2",SPHEROID["NWL_9D",6378145,298.25]]
6275 Nouvelle DATUM["D_NTF",SPHEROID|["Clarke_1880_IGN",6378249.2,293.46602]]
Triangulation
Francaise
6272 New Zealand DATUM["D_New_Zealand_1949",SPHEROID["International_1924", 6378388,297]]
Geodetic Datum 1949
6129 Observatario DATUM]["D_Observatario",SPHEROID["Clarke_1866",6378206.4, 294.9786982]]
—superseded by Tete
6279 OS (SN) 1980 DATUM["D_OS_SN_1980",SPHEROID["Airy_1830",6377563.396, 299.3249646]]
6277 OSGB 1936 DATUM["D_OSGB_1936",SPHEROID["Airy_1830",6377563.396, 299.3249646]]
6278 OSGB 1970 (SN) DATUM["D_OSGB_1970_SN",SPHEROID["Airy_1830",6377563.396, 299.3249646]]
6280 Padang 1884 DATUM]["D_Padang_1884",SPHEROID|"Bessel_1841",6377397.155, 299.1528128]]
6281 Palestine 1923 DATUM]["D_Palestine_1923",SPHEROID]["Clarke_1880_Benoit",
6378300.79,293.466234571]]
6282 Pointe Noire DATUM]["D_Pointe_Noire",SPHEROID["Clarke_1880_IGN",6378249.2, 293.46602]]
6248 Provisional South DATUM]["D_Provisional_S_American_1956",
American Datum SPHEROID["International _1924",6378388,297]]
1956
6284 Pulkovo 1942 DATUM]["D_Pulkovo_1942",SPHEROIDI["Krasovsky_1940",6378245, 298.3]]
6200 Pulkovo 1995 DATUM]["D_Pulkovo_1995",SPHEROID|"Krasovsky_1940",6378245, 298.3]]

B-11

Appendix B. OGC well-known text representation of spatial reference systems

Table B-5. Horizontal datums (continued)

Factory ID Description OGC well-known text string
6285 Qatar DATUM["D_Qatar",SPHEROID["International_1924",6378388,297]]
6286 Qatar 1948 DATUM]["D_Qatar_1948", SPHEROID["Helmert_1906",6378200,298.3]]
6287 Qornoq DATUM["D_Qornoq",SPHEROID["International _1924",6378388,297]]
6124 RT 1990 DATUM["D_RT_1990",SPHEROID|"Bessel_1841",6377397.155, 299.1528128]]
6291 South American DATUM]["D_South_American_1969",
Datum 1969 SPHEROID["GRS_1967_Truncated",6378160,298.25]]
6125 Samboja DATUM]["D_Samboja",SPHEROID|"Bessel_1841",6377397.155, 299.1528128]]
6292 Sapper Hill 1943 DATUM]["D_Sapper_Hill_1943",SPHEROID]["International_1924", 6378388,297]]
6293 Schwarzeck DATUM]["D_Schwarzeck",SPHEROID]"Bessel_Namibia",6377483.865,
299.1528128]]
6294 Segora DATUM]["D_Segora",SPHEROID["Bessel_1841",6377397.155, 299.1528128]]
6295 Serindung DATUM]["D_Serindung",SPHEROID["Bessel_1841",6377397.155, 299.1528128]]
6308 Stockholm 1938 DATUM]["D_Stockholm_1938",SPHEROID["Bessel_1841",6377397.155,
299.1528128]]
6138 Alaska, St. George DATUM["D_St_George_Island",SPHEROID["Clarke_1866",6378206.4,
Island 294.9786982]]
6136 Alaska, St. Lawrence DATUM]["D_St_Lawrence_Island",SPHEROID["Clarke_1866",6378206.4,
Island 294.9786982]]
6137 Alaska, St. Paul DATUM["D_St_Paul_Island",SPHEROID["Clarke_1866",6378206.4, 294.9786982]]
Island
6296 Sudan DATUM]["D_Sudan",SPHEROID["Clarke_1880_IGN",6378249.2, 293.46602]]
6297 Tananarive 1925 DATUM["D_Tananarive_1925",SPHEROID|"International_1924",6378388,297]]
6127 Tete DATUM]["D_Tete",SPHEROID| "Clarke_1866",6378206.4,294.9786982]]
6298 Timbalai 1948 DATUM["D_Timbalai_1948",SPHEROID|["Everest_Definition_1967",
6377298.556,300.8017]]
6299 TM65 DATUM["D_TM65",SPHEROID["Airy_Modified",6377340.189, 299.3249646]]
6300 TM75 DATUM["D_TM75",SPHEROIDI["Airy_Modified",6377340.189, 299.3249646]]
6301 Tokyo DATUM]["D_Tokyo",SPHEROID|"Bessel _1841",6377397.155,299.1528128]]
6302 Trinidad 1903 DATUM["D_Trinidad_1903",SPHEROID["Clarke_1858",6378293.639,
294.260676369]]
6303 Trucial Coast 1948 DATUM]["D_Trucial_Coast_1948",SPHEROID["Helmert_1906",6378200, 298.3]]
6304 Voirol 1875 DATUM]["D_Voirol_1875",SPHEROID["Clarke_1880_IGN",6378249.2, 293.46602]]
6305 Voirol Unifie 1960 DATUM]["D_Voirol_Unifie_1960",SPHEROID["Clarke_1880_RGS",
6378249.145,293.465]]
6322 WGS 1972 DATUM["D_WGS_1972",SPHEROID["WGS_1972",6378135,298.26]]
6324 WGS 1972 Transit DATUM["'D_WGS_1972_BE",SPHEROID["WGS_1972",6378135,298.26]]
Broadcast Ephemeris
6326 WGS 1984 DATUM["'D_WGS_1984",SPHEROID["WGS_1984",6378137, 298.257223563]]
6309 Yacare DATUM["D_Yacare",SPHEROID|["International_1924",6378388,297]]
6310 Yoff DATUM]["D_Yoff",SPHEROID["Clarke_1880_IGN",6378249.2,293.46602]]
6311 Zanderij DATUM]["D_Zanderij", SPHEROID| "International _1924",6378388,297]]
6600 Anguilla 1957 DATUM]["D_Anguilla_1957",SPHEROID|"Clarke_1880_RGS",
6378249.145,293.465]]
B-12 IBM Informix Spatial Data User's Guide

Table B-5. Horizontal datums (continued)

Factory ID Description OGC well-known text string
6133 Estonia 1992 DATUM["D_Estonia_1992",SPHEROID["GRS_1980",6378137, 298.257222101]]
6602 Dominica 1945 DATUM["D_Dominica_1945",SPHEROID|"Clarke_1880_RGS",
6378249.145,293.465]]
6603 Grenada 1953 DATUM]["D_Grenada_1953",SPHEROID]["Clarke_1880_RGS",
6378249.145,293.465]]
6609 NAD_1927 (CGQ77) DATUM["D_NAD_1927_CGQ77",SPHEROID|"Clarke_1866",
6378206.4,294.9786982]]
6608 NAD 1927 (1976) DATUM["D_NAD_1927_Definition_1976",SPHEROID]"Clarke_1866",
6378206.4,294.9786982]]
6134 PDO Survey Datum DATUM]["D_PDO_1993",SPHEROID["Clarke_1880_RGS",6378249.145, 293.465]]
1993
6605 St. Kitts 1955 DATUM["D_St_Kitts_1955",SPHEROID["Clarke_1880_RGS",6378249.145,293.465]]
6606 St. Lucia 1955 DATUM["D_St_Lucia_1955",SPHEROID]["Clarke_1880_RGS",
6378249.145,293.465]]
6607 St. Vincent 1945 DATUM["D_St_Vincent_1945",SPHEROID]["Clarke_1880_RGS",
6378249.145,293.465]]
6140 NAD 1983 (Canadian DATUM]["D_North_American_1983_CSRS98",SPHEROID["GRS_1980",
Spatial Reference 6378137,298.257222101]]
System)
6141 Israel DATUM]["D_Israel", SPHEROID["GRS_1980",6378137,298.257222101]]
6142 Locodjo 1965 DATUM]["D_Locodjo_1965",SPHEROID]["Clarke_1880_RGS",6378249.145,293.465]]
6143 Abidjan 1987 DATUM]["D_Abidjan_1987",SPHEROID|"Clarke_1880_RGS",6378249.145,293.465]]
6144 Kalianpur 1937 DATUM]["D_Kalianpur_1937",SPHEROID["Everest_Adjustment_1937",
6377276.345,300.8017]]
6145 Kalianpur 1962 DATUM]["D_Kalianpur_1962",SPHEROID["Everest_Definition_1962",
6377301.243,300.8017255]]
6146 Kalianpur 1975 DATUM]["D_Kalianpur_1975",SPHEROID["Everest_Definition_1975",
6377299.151,300.8017255]]
6147 Hanoi 1972 DATUM]["D_Hanoi_1972",SPHEROID["Krasovsky_1940",6378245,298.3]]
6148 Hartebeesthoek 1994 DATUM]["D_Hartebeesthoek_1994" SPHEROID["WGS_1984",6378137,
298.257223563]]
6149 CH 1903 DATUM["D_CH1903",SPHEROID|"Bessel_1841",6377397.155, 299.1528128]]
6150 CH 1903+ DATUM["D_CH1903+",SPHEROID|"Bessel_1841",6377397.155, 299.1528128]]
6151 Swiss Terrestrial DATUM["D_Swiss_TRF_1995",SPHEROID["GRS_1980",6378137, 298.257222101]]
Reference Frame 1995
6152 NAD 1983 (HARN) DATUM["D_North_American_1983_HARN",SPHEROID["GRS_1980",
6378137,298.257222101]]
6153 Rassadiran DATUM["D_Rassadiran",SPHEROID]["International_1924",6378388,297]]
6154 ED 1950 (ED77) DATUM]["D_European_1950_ED77",SPHEROID|"International_1924",
6378388,2971]
6135 Old Hawaiian DATUM["D_OIld_Hawaiian",SPHEROID]["Clarke_1866",6378206.4, 294.9786982]]
6601 Antigua Astro 1943 DATUM["D_Antigua_1943",SPHEROIDI"Clarke_1880_RGS",6378249.145,293.465]]
6604 Montserrat Astro DATUM["D_Montserrat_1958",SPHEROID["Clarke_1880_RGS",
1958 6378249.145,293.465]]
6139 Puerto Rico DATUM]["D_Puerto_Rico",SPHEROID["Clarke_1866",6378206.4, 294.9786982]]

B-13

Appendix B. OGC well-known text representation of spatial reference systems

Table B-5. Horizontal datums (continued)

Factory ID Description

OGC well-known text string

6131 Indian 1960 DATUM]["D_Indian_1960",SPHEROID|"Everest_Adjustment_1937",
6377276.345,300.8017]]
6155 Dabola DATUM]["D_Dabola",SPHEROID["Clarke_1880_RGS",6378249.145, 293.465]]
6156 S-JTSK DATUM["D_S_JTSK",SPHEROID| "Bessel_1841",6377397.155, 299.1528128]]
6165 Bissau DATUM["D_Bissau",SPHEROID|"International_1924",6378388,297]]
106101 Estonia 1937 DATUM]["D_Estonia_1937",SPHEROID|"Bessel_1841",6377397.155, 299.1528128]]
106102 Hermannskogel DATUM["D_Hermannskogel",SPHEROID["Bessel _1841",6377397.155,
299.1528128]]
106103 Sierra Leone 1960 DATUM]["D_Sierra_Leone_1960",SPHEROID["Clarke_1880_RGS",
6378249.145,293.465]]
106201 European 1979 DATUM]["D_European_1979",SPHEROID["International_1924",6378388, 297]]
106202 Everest, Bangladesh ~ DATUM]["D_Everest_Bangladesh",
SPHEROID["Everest_Adjustment_1937",6377276.345,300.8017]]
106203 Everest, India and DATUM]["D_Everest_India_Nepal",
Nepal SPHEROID["Everest_Definition_1962",6377301.243,300.8017255]]
106204 Hjorsey 1955 DATUM]["D_Hjorsey_1955",SPHEROID]["International_1924",6378388, 297]]
106205 Hong Kong 1963 DATUM["D_Hong_Kong_1963",SPHEROID["International _1924", 6378388,297]]
106206 Oman DATUM["D_Oman",SPHEROID["Clarke_1880_RGS",6378249.145, 293.465]]
106207 South Asia Singapore DATUM]["D_South_Asia_Singapore", SPHEROID| Fischer_Modified",
6378155,298.3]]
106208 Ayabelle Lighthouse =~ DATUM]["D_Ayabelle", SPHEROID|"Clarke_1880_RGS",6378249.145, 293.465]]
106211 Point 58 DATUM["D_Point_58",SPHEROID]["Clarke_1880_RGS",6378249.145, 293.465]]
106212 Astro Beacon E 1945 DATUM]["D_Beacon_E_1945",SPHEROID]["International_1924",6378388, 297]]
106213 Tern Island Astro DATUM["D_Tern_Island_1961",SPHEROID| "International_1924", 6378388,297]]
1961
106214 Astronomical Station DATUM]["D_Astro_1952",SPHEROID|"International_1924",6378388,297]]
1952
106215 Bellevue IGN DATUM["D_Bellevue_IGN",SPHEROID|"International_1924",6378388, 297]]
106216 Canton Astro 1966 DATUM["D_Canton_1966",SPHEROID|["International_1924",6378388, 297]]
106217 Chatham Island DATUM["D_Chatham_Island_1971",SPHEROID|"International_1924",
Astro 1971 6378388,297]]
106218 DOS 1968 DATUM["D_DOS_1968", SPHEROID|"International_1924",6378388,297]]
106219 Easter Island 1967 DATUM]["D_Easter_Island_1967",SPHEROID|"International_1924", 6378388,297]]
106220 Guam 1963 DATUM["D_Guam_1963",SPHEROID|"Clarke_1866",6378206.4, 294.9786982]]
106221 GUX 1 Astro DATUM["D_GUX_1",SPHEROID]"International_1924",6378388,297]]
106222 Johnston Island 1961 DATUM]["D_Johnston_Island_1961",SPHEROID["International_1924",
6378388,297]]
106259 Kusaie Astro 1951 DATUM["D_Kusaie_1951",SPHEROID["International_1924",6378388, 297]]
106224 Midway Astro 1961 DATUM["D_Midway_1961",SPHEROID| "International_1924",6378388, 297]]
106226 Pitcairn Astro 1967 DATUM]["D_Pitcairn_1967",SPHEROID] "International_1924",6378388, 297]]
106227 Santo DOS 1965 DATUM]["D_Santo_DOS_1965",SPHEROID|"International_1924", 6378388,297]]
106228 Viti Levu 1916 DATUM["D_Viti_Levu_1916",SPHEROID]["Clarke_1880_RGS",
6378249.145,293.465]]
B-14 1BM Informix Spatial Data User's Guide

Table B-5. Horizontal datums (continued)

Factory ID Description OGC well-known text string
106229 Wake-Eniwetok 1960 DATUM]["D_Wake_Eniwetok_1960",SPHEROID["Hough_1960",6378270, 297]]
106230 Wake Island Astro DATUM["D_Wake_Island_1952",SPHEROID]["International_1924", 6378388,297]]
1952
106231 Anna 1 Astro 1965 DATUM["D_Anna_1_1965",SPHEROID]["Australian",6378160,298.25]]
106232 Gan 1970 DATUM["D_Gan_1970",SPHEROID["International_1924",6378388,297]]
106233 ISTS 073 Astro 1969 DATUM["D_ISTS_073_1969",SPHEROID]"International_1924",6378388, 297]]
106234 Kerguelen Island DATUM]["D_Kerguelen_Island_1949",SPHEROID["International_1924",
1949 6378388,297]]
106235 Reunion DATUM]["D_Reunion",SPHEROID]["International_1924",6378388,297]]
106237 Ascension Island DATUM["D_Ascension_Island_1958",SPHEROID| "International_1924",
1958 6378388,297]]
106238 Astro DOS 71/4 DATUM["D_DOS_71_4",SPHEROID|"International_1924",6378388,297]]
106239 Cape Canaveral DATUM]["D_Cape_Canaveral",SPHEROID["Clarke_1866", 6378206.4,
294.9786982]]
106240 Fort Thomas 1955 DATUM["D_Fort_Thomas_1955",SPHEROID|"Clarke_1880_RGS",
6378249.145,293.465]]
106241 Graciosa Base SW DATUM["D_Graciosa_Base_SW_1948",SPHEROID["International_1924",
1948 6378388,297]]
106242 ISTS 061 Astro 1968 DATUM["D_ISTS_061_1968",SPHEROID]["International_1924",6378388, 297]]
106243 L.C. 5 Astro 1961 DATUM["D_LC5_1961",SPHEROID|["Clarke_1866",6378206.4, 294.9786982]]
106245 Observ DATUM]["D_Observ_Meteorologico_1939",
Meteorologico 1939 SPHEROID["International _1924",6378388,297]]
106246 Pico de Las Nieves DATUM]"D_Pico_de_Las_Nieves",SPHEROID|["International_1924",
6378388,297]]
106247 Porto Santo 1936 DATUM]["D_Porto_Santo_1936",SPHEROID| "International_1924", 6378388,297]]
106249 Sao Braz DATUM]["D_Sao_Braz",SPHEROID|"International_1924",6378388,297]]
106250 Selvagem Grande DATUM]["D_Selvagem_Grande_1938",SPHEROID| "International_1924",
1938 6378388,297]]
106251 Tristan Astro 1968 DATUM["D_Tristan_1968",SPHEROID|"International_1924",6378388, 297]]
106252 American Samoa DATUM["D_Samoa_1962",SPHEROID]["Clarke_1866",6378206.4, 294.9786982]]
1962
106253 Camp Area Astro DATUM]["D_Camp_Area",SPHEROID|"International_1924",6378388,297]]
106254 Deception Island DATUM]["D_Deception_Island",SPHEROIDI["Clarke_1880_RGS",
6378249.145,293.465]]
106255 Gunung Segara DATUM["D_Gunung_Segara",SPHEROID|"Bessel_1841",6377397.155,
299.1528128]]
106257 S-42 Hungary DATUM["D_S42_Hungary",SPHEROID["Krasovsky_1940",6378245, 298.3]]
106260 Alaskan Islands DATUM]["D_Alaskan_Islands",SPHEROID]["Clarke_1866",6378206.4, 294.9786982]]
106261 Hong Kong 1980 DATUM["D_Hong_Kong_1980", SPHEROID["International_1924", 6378388,297]
106262 Datum Lisboa Bessel DATUM]["D_Datum_Lisboa_Bessel", SPHEROID]["Bessel_1841",
6377397.155,299.1528128]]
106263 Datum Lisboa DATUM["D_Datum_Lisboa_Hayford", SPHEROID["International_1924",

Hayford

6378388,297]]

B-15

Appendix B. OGC well-known text representation of spatial reference systems

Table B-5. Horizontal datums (continued)

Factory ID Description

OGC well-known text string

106264 Reseau Geodesique =~ DATUM["D_RGF_1993", SPHEROID["GRS_1980", 6378137,298.257222101]]

Francais 1993

106265 New Zealand
Geodetic Datum 2000

DATUM["'D_NZGD_2000", SPHEROID["GRS_1980",6378137, 298.257222101]]

Prime meridians

IBM Informix spatial data types support many prime meridians.

The following table lists a representative sample of the prime meridians supported
by the IBM Informix spatial data types. For a complete list of supported prime
meridians, see the file INFORMIXDIR/extend/spatial.version/include/pedef.h.

Table B-6. Prime meridians

Factory ID Description

OGC well-known text string

8901 Greenwich 0°00'00" PRIMEM]["Greenwich",0]

8912 Athens 23°42'58".815 E PRIMEM]"Athens",23.7163375]

8907 Bern 7°26'22".5 E PRIMEM]["Bern",7.439583333333333]
8904 Bogota 74°04'51".3 W PRIMEM]"Bogota",-74.08091666666667]
8910 Brussels 4°22'04".71 E PRIMEM]["Brussels",4.367975]

8909 Ferro 17°40'00" W PRIMEM]["Ferro",-17.66666666666667]
8908 Jakarta 106°48'27".79 E PRIMEM]["Jakarta",106.8077194444444]
8902 Lisbon 9°07'54".862 W PRIMEM]["Lisbon",-9.131906111111112]
8905 Madrid 3°41'16".58 W PRIMEM["Madrid",-3.687938888888889]
8913 Oslo 10°4322"5 E PRIMEM]"Oslo",10.72291666666667]
8903 Paris 2°20'14".025 E PRIMEM]["Paris",2.337229166666667]
8906 Rome 12°27'08".4 E PRIMEM]["Rome",12.45233333333333]
8911 Stockholm 18°03'29".8 E PRIMEM]"Stockholm",18.05827777777778]

Projection parameters

IBM Informix spatial data types support many projection parameters.

The following table lists a representative sample of the projection parameters
supported by the IBM Informix spatial data types. For a complete list of supported
projection parameters, see the file INFORMIXDIR/extend/spatial.version/include/

pedef.h.

Table B-7. Projection parameters

Factory ID Description

OGC well-known text string

100001 False Easting PARAMETER["False_Easting",0]
100002 False Northing PARAMETER["False_Northing",0]
100003 Scale Factor PARAMETER]"Scale_Factor",1]
100004 Azimuth PARAMETER["Azimuth",45]

100010 Central Meridian PARAMETER]["Central_Meridian",0]

B-16 1BM Informix Spatial Data User's Guide

Table B-7. Projection parameters (continued)

Factory ID Description OGC well-known text string

100011 Longitude Of Origin PARAMETER["Longitude_Of_Origin",0]
100012 Longitude Of Center PARAMETER["Longitude_Of_Center",-75]
100013 Longitude Of 1st Point PARAMETER["Longitude_Of_1st_Point",0]
100014 Longitude Of 2nd Point PARAMETER["Longitude_Of_2nd_Point",60]
100020 Central Parallel PARAMETER]["Central_Parallel",0]

100021 Latitude Of Origin PARAMETER(["Latitude_Of_Origin",0]
100022 Latitude Of Center PARAMETER]["Latitude_Of_Center",40]
100023 Latitude Of 1st Point PARAMETER["Latitude_Of_1st_Point",0]
100024 Latitude Of 2nd Point PARAMETER(["Latitude_Of_2nd_Point",60]
100025 Standard Parallel 1 PARAMETER|"Standard_Parallel_1",60]
100026 Standard Parallel 2 PARAMETER(["Standard_Parallel_2",60]
100027 Pseudo Standard Parallel 1 PARAMETER["Pseudo_Standard_Parallel_1",60]
100037 X Scale PARAMETER["X_Scale",1]

100038 Y Scale PARAMETER["Y_Scale", 1]

100039 XY Plane Rotation PARAMETER["XY_Plane_Rotation",0]
100040 X Axis Translation PARAMETER["X_Axis_Translation",0]
100041 Y Axis Translation PARAMETER["Y_Axis_Translation",0]
100042 Z Axis Translation PARAMETER["Z_Axis_Translation",0]
100043 X Axis Rotation PARAMETER["X_Axis_Rotation",0]

100044 Y Axis Rotation PARAMETER["Y_Axis_Rotation",0]

100045 Z Axis Rotation PARAMETER["Z_Axis_Rotation",0]

100046 Scale Difference PARAMETER]["Scale_Difference",0]

100047 Dataset Name PARAMETER["Dataset_",0]

Map projections

IBM Informix spatial data types support many map projections.

The following table lists a representative sample of the map projections supported

by the IBM Informix spatial data types. For a complete list of supported map

projections, see the file INFORMIXDIR/extend/spatial.version/include/pedef.h.

Table B-8. Map projections

Factory ID Description OGC well-known text string

43001 Plate Carree PROJECTION]["Plate_Carree"]

43002 Equidistant Cylindrical PROJECTION]["Equidistant_Cylindrical"]
43003 Miller Cylindrical PROJECTION["Miller_Cylindrical"]
43004 Mercator PROJECTION["Mercator"]

43005 Gauss-Kruger PROJECTION["Gauss_Kruger"]

43006 Transverse Mercator PROJECTION["Transverse_Mercator"]
43007 Albers PROJECTION]["Albers"]

43008 Sinusoidal PROJECTION]["Sinusoidal"]

Appendix B. OGC well-known text representation of spatial reference systems

B-17

Table B-8. Map projections (continued)

Factory ID Description OGC well-known text string

43009 Mollweide PROJECTION["Mollweide"]

43010 Eckert VI PROJECTION["Eckert_VI"]

43011 Eckert V PROJECTION["Eckert_V"]

43012 Eckert IV PROJECTION]["Eckert_IV"]

43013 Eckert IIT PROJECTION]["Eckert_III"]

43014 Eckert 11 PROJECTION]["Eckert_II"]

43015 Eckert I PROJECTION["Eckert_I"]

43016 Gall Stereographic PROJECTION]["Gall_Stereographic"]

43017 Behrmann PROJECTION]["Behrmann"]

43018 Winkel 1 PROJECTION]["Winkel _I"]

43019 Winkel I PROJECTION["Winkel _II"]

43020 Lambert Conformal Conic PROJECTION["Lambert_Conformal_Conic"]

43021 Polyconic PROJECTIONT["Polyconic"]

43022 Quartic Authalic PROJECTION["Quartic_Authalic"]

43023 Loximuthal PROJECTION["Loximuthal"]

43024 Bonne PROJECTION["Bonne"]

43025 Hotine 2 Pt Natural Origin PROJECTION["Hotine_Oblique_Mercator_Two_
Point_Natural_Origin"]

43026 Stereographic PROJECTION]"Stereographic"]

43027 Equidistant Conic PROJECTION]["Equidistant_Conic"]

43028 Cassini PROJECTION]"Cassini"]

43029 Van der Grinten I PROJECTION["Van_der_Grinten_I"]

43030 Robinson PROJECTION]["Robinson"]

43031 Two-Point Equidistant PROJECTION]["Two_Point_Equidistant"]

43032 Azimuthal Equidistant PROJECTION["Azimuthal_Equidistant"]

43033 Lambert Azimuthal Equal Area PROJECTION["Lambert_Azimuthal Equal_Area"]

43034 Cylindrical Equal Area PROJECTION]["Cylindrical_Equal_Area"]

43035 Hotine 2 Point Center PROJECTION["Hotine_Oblique_Mercator_Two_
Point_Center"]

43036 Hotine Azimuth Natural Origin PROJECTION["Hotine_Oblique_Mercator_Azimuth
_Natural_Origin"]

43037 Hotine Azimuth Center PROJECTION]["Hotine_Oblique_Mercator_Azimuth
_Center"]

43038 Double Stereographic PROJECTION]["Double_Stereographic”]

43039 Krovak Oblique Lambert PROJECTION["Krovak"]

43040 New Zealand Map Grid PROJECTION["New_Zealand_Map_Grid"]

43041 Orthographic PROJECTION["Orthographic"]

43042 Winkel Tripel PROJECTION]["Winkel_Tripel"]

43043 Aitoff PROJECTIONT["Aitoff"]

43044 Hammer Aitoff PROJECTION["Hammer_Aitoff"]

43045 Flat Polar Quartic PROJECTION]["Flat_Polar_Quartic"]

B-18 1BM Informix Spatial Data User's Guide

Table B-8. Map projections (continued)

Factory ID Description

OGC well-known text string

43046 Craster Parabolic PROJECTION]["Craster_Parabolic"]

43047 Gnomonic PROJECTION["Gnomonic"]

43048 Bartholomew Times PROJECTION["Times"]

43049 Vertical Near-Side Perspective PROJECTION]"Vertical_Near_Side_Perspective"]

Appendix B. OGC well-known text representation of spatial reference systems

B-19

B-20 1BM Informix Spatial Data User's Guide

Appendix C. OGC well-known text representation of geometry

Each geometry type has a well-known text representation from which new
instances can be constructed or existing instances can be converted to textual form
for alphanumeric display.

Related reference:

“Well-known text representation” on page 3-1|

“Well-known binary representation” on page 3-1|

Well-known text representation in a C program

The well-known text representation of geometry can be incorporated into a C
program. The structure for such an implementation is defined below. The notation
{}* denotes zero or more repetitions of the tokens within the braces. The braces do
not appear in the output token list.

<Geometry Tagged Text> :=
<Point Tagged Text>
<LineString Tagged Text>
<Polygon Tagged Text>
<MuTtiPoint Tagged Text>
<MultilLineString Tagged Text>
<MuTtiPolygon Tagged Text>

<Point Tagged Text> :=

POINT <Point Text>
<LineString Tagged Text> :=

LINESTRING <LineString Text>
<Polygon Tagged Text> :=

POLYGON <Polygon Text>
<MultiPoint Tagged Text> :=

MULTIPOINT <Multipoint Text>
<MuTtiLineString Tagged Text> :=

MULTILINESTRING <MultilLineString Text>
<MultiPolygon Tagged Text> :=

MULTIPOLYGON <MultiPolygon Text>

<Point Text> := EMPTY
<Point>

Z <PointZ>

M <PointM>

IM <PointzZM>

<Point> := <x> <y>
<x> := double precision Titeral
<y> := double precision Titeral
<PointZ> := <x> <y> <z>
<x> := double precision Titeral
<y> := double precision literal
<z> := double precision literal
<PointM> := <x> <y> <m>

<x> := double precision literal

<y> := double precision literal
<m> := double precision literal
<PointZM> := <x> <y> <z> <m>

© Copyright IBM Corp. 2001, 2014 C-1

<x> := double precision Titeral
<y> := double precision literal
<z> := double precision Titeral
<m> := double precision Titeral

<LineString Text> := EMPTY
(<Point Text >
Z (<PointZ Text >
M (<PointM Text >
IM (<PointZM Text >

<Point Text> }*)
<PointZ Text> }*)
<PointM Text> }*)
<PointZM Text> }x)

_—
v v v u

<Polygon Text> := EMPTY
| (<LineString Text > {,< LineString Text > }*)

<MuTtipoint Text> := EMPTY
| (<Point Text > {, <Point Text > }x)

<MuTtilLineString Text> := EMPTY
| (<LineString Text > {,< LineString Text>}*)

<MuTtiPolygon Text> := EMPTY
| (< Polygon Text > {, < Polygon Text > }*)

Well-known text representation in an SQL editor

C-2

Since the well-known text representation is text, it can be typed into an SQL script
or directly into an SQL editor. The text is converted to and from a geometry by a
function. Functions that convert text to geometry have the following syntax:

function ('text description',SRID)

Example:
ST PointFromText('point zm (10.01 20.04 3.2 9.5)', 1)

The spatial reference identifier, SRID—the primary key to the spatial_references
table—identifies the possible spatial reference systems within an IBM Informix
instance. An SRID is assigned to a spatial column when it is created. Before a
geometry can be inserted into a spatial column, its SRID must match the SRID of
the spatial column.

The text description is made up of three basic components enclosed in single
quotation marks:

'geometry type [coordinate type] [coordinate list]'

The geometry type is defined as one of the following: point, linestring, polygon,
multipoint, multilinestring, or multipolygon.

The coordinate type specifies whether the geometry has Z coordinates or measures.
Leave this argument blank if the geometry has neither; otherwise, set the
coordinate type to Z for geometries containing Z coordinates, M for geometries
with measures, and ZM for geometries that have both.

The coordinate list defines the double-precision vertices of the geometry. Coordinate
lists are comma-delimited and enclosed by parentheses. Geometries having
multiple components require sets of parentheses to enclose each component part. If
the geometry is empty, the EMPTY keyword replaces the coordinates.

IBM Informix Spatial Data User's Guide

The following examples provide a complete list of all possible permutations of the
text description portion of the text representation.

Geometry type Text description Comment
ST _Point ‘point empty’ Empty point
ST_Point ‘point z empty’ Empty point with Z coordinate
ST_Point ‘point m empty’ Empty point with measure
ST_Point ‘point zm empty' Empty point with Z coordinate and
measure
ST_Point ‘point (10.05 10.28)' Point
ST_Point ‘point z (10.05 10.28 2.51)’ Point with Z coordinate
ST_Point ‘point m (10.05 10.28 4.72)’ Point with measure
ST_Point ‘point zm (10.05 10.28 2.51 4.72)’ Point with Z coordinate and
measure
ST_LineString ‘linestring empty’ Empty linestring
ST_LineString ‘linestring z empty' Empty linestring with Z coordinates
ST_LineString ‘linestring m empty' Empty linestring with measures
ST_LineString ‘linestring zm empty' Empty linestring with Z coordinates
and measures
ST_LineString ‘linestring (10.05 10.28 , 20.95 20.89)' Linestring
ST_LineString ‘linestring z (10.05 10.28 3.09, 20.95 31.98 4.72, Linestring with Z coordinates
21.98 29.80 3.51)’
ST_LineString ‘linestring m (10.05 10.28 5.84, 20.95 31.98 9.01, Linestring with measures
21.98 29.80 12.84)'
ST_LineString ‘linestring zm (10.05 10.28 3.09 5.84, 20.95 31.98 4.72 Linestring with Z coordinates and
9.01, 21.98 29.80 3.51 12.84)' measures
ST_Polygon ‘polygon empty' Empty polygon
ST_Polygon ‘polygon z empty' Empty polygon with Z coordinates
ST_Polygon ‘polygon m empty Empty polygon with measures
ST_Polygon ‘polygon zm empty’ Empty polygon with Z coordinates
and measures
ST_Polygon ‘polygon ((10 10, 10 20, 20 20, 20 15, 10 10))' Polygon
ST_Polygon ‘polygon z ((10 10 3, 10 20 3, 20 20 3, 20 15 4, 10 10 Polygon with Z coordinates
3)
ST_Polygon ‘polygon m ((10 10 8,10209,20209,20 159,10 Polygon with measures
10 8))'
ST_Polygon ‘polygon zm ((10103 8,102039,20203 9,20 15 Polygon with Z coordinates and
49,101038)) measures
ST_MultiPoint ‘multipoint empty' Empty multipoint
ST_MultiPoint ‘multipoint z empty’ Empty multipoint with Z
coordinates
ST_MultiPoint ‘multipoint m empty’ Empty multipoint with measures
ST_MultiPoint ‘multipoint zm empty’ Empty multipoint with Z
coordinates and measures
ST_MultiPoint ‘multipoint (10 10, 20 20)' Multipoint with two points
ST_MultiPoint ‘multipoint z (10 10 2, 20 20 3)' Multipoint with Z coordinates
ST_MultiPoint ‘multipoint m (10 10 4, 20 20 5)' Multipoint with measures
ST_MultiPoint ‘multipoint zm (10 10 2 4, 20 20 3 5)' Multipoint with Z coordinates and

measures

Empty multilinestring

Empty multilinestring with Z
coordinates

Empty multilinestring with
measures

Empty multilinestring with Z
coordinates and measures

ST_MultiLineString
ST_MultiLineString

‘multilinestring empty’
‘multilinestring z empty’
ST_MultiLineString ‘multilinestring m empty’

ST_MultiLineString ‘multilinestring zm empty’

Appendix C. OGC well-known text representation of geometry ~ C-3

Geometry type
ST_MultiLineString

ST_MultiLineString
ST_MultiLineString
ST_MultiLineString

ST_MultiPolygon
ST_MultiPolygon

ST_MultiPolygon
ST_MultiPolygon

ST_MultiPolygon

ST_MultiPolygon

ST_MultiPolygon

ST_MultiPolygon

Text description Comment

‘multilinestring ((10.05 10.28 , 20.95 20.89),(20.95 Multilinestring

20.89, 31.92 21.45))'

‘multilinestring z ((10.05 10.28 3.4, 20.95 20.89 4.5),(Multilinestring with Z coordinates
20.95 20.89 4.5, 31.92 21.45 3.6))’

‘multilinestring m ((10.05 10.28 8.4, 20.95 20.89 Multilinestring with measures
9.5),(20.95 20.89 9.5, 31.92 21.45 8.6))'

‘multilinestring zm ((10.05 10.28 3.4 8.4, 20.95 20.89 Multilinestring with Z coordinates
459.5), (20.95 20.89 4.5 9.5, 31.92 21.45 3.6 8.6))' and measures

‘multipolygon empty' Empty multipolygon

‘multipolygon z empty' Empty multipolygon with Z
coordinates

‘multipolygon m empty' Empty multipolygon with measures

‘multipolygon zm empty’ Empty multipolygon with Z

coordinates and measures
‘multipolygon (((10 10, 10 20, 20 20, 20 15, 10 10), = Multipolygon
(50 40, 50 50, 60 50, 60 40, 50 40)))'
‘multipolygon z (((10 10 7, 10 20 8, 20 20 7, 20 15 5, Multipolygon with Z coordinates
10 10 7), (50 40 6, 50 50 6, 60 50 5, 60 40 6, 50 40
7))
‘multipolygon m (((10 10 2, 10 20 3, 20 20 4, 20 15 Multipolygon with measures
5,10 10 2), (50 40 7, 50 50 3, 60 50 4, 60 40 5, 50 40
)
‘multipolygon zm (((10 10 7 2, 10 20 8 3, 20 20 7 4, Multipolygon with Z coordinates
201555,10107 2), (5040 6 7,50 50 6 3, 60 50 5 4, and measures
60 40 6 5, 50 40 7 7)))'

Modified well-known text representation

The IBM Informix software provides an additional modified well-known text
representation for loading text strings directly into geometry columns without
filtering the string through one of the Spatial DataBlade text functions. By placing
the SRID in front of the text description, you can insert the resulting text string
directly into a spatial column. The load statement in the DB-Access utility reads
text files generated with this format and inserts the modified well-known text
representation into the geometry columns.

To create a modified well-known text representation, remove the quotations and
precede the text description with the SRID separated by a space.

For example, the well-known text representation of a point in the
ST _PointFromText() function:

ST_PointFromText('Point zm (10.98 29.91 10.2 9.1)',1)

converts to:
1 ST Point zm(10.98 29.91 10.2 9.1)

You can write the modified text string into a file and separate it from other column
values by the standard delimiter.

C-4 IBM Informix Spatial Data User's Guide

Appendix D. OGC well-known binary representation of
geometry

The well-known binary representation for OGC geometry (WKBGeometry),
provides a portable representation of a geometry value as a contiguous stream of
bytes. It permits geometry values to be exchanged between a client application and
an SQL database in binary form.

The well-known binary representation for geometry is obtained by serializing a
geometry instance as a sequence of numeric types drawn from the set {Unsigned
Integer, Double} and then serializing each numeric type as a sequence of bytes
using one of two well-defined, standard binary representations for numeric types
(NDR, XDR). The specific binary encoding used for a geometry byte stream is
described by a one-byte tag that precedes the serialized bytes. The only difference
between the two encodings of geometry is byte order. The XDR encoding is big
endian, while the NDR encoding is little endian.

Numeric type definitions

An “unsigned integer' is a 32-bit (4 byte) data type that encodes a nonnegative
integer in the range [0, 4294967295].

A ‘double’ is a 64-bit (8 byte) double-precision data type that encodes a
double-precision number using the IEEE 754 double-precision format.

The above definitions are common to both XDR and NDR.

XDR (big endian) encoding of numeric types

The XDR representation of an unsigned integer is big endian (most significant byte
first).

The XDR representation of a double is big endian (sign bit is first byte).

NDR (little endian) encoding of numeric types

The NDR representation of an unsigned integer is little endian (least significant
byte first).

The NDR representation of a double is little endian (sign bit is last byte).

Conversion between the NDR and XDR representations of WKB
geometry

Conversion between the NDR and XDR data types for unsigned integers and
doubles is a simple operation involving reversing the order of bytes within each
unsigned integer or double in the byte stream.

© Copyright IBM Corp. 2001, 2014 D-1

Description of WKBGeometry byte streams

D-2

The well-known binary representation for geometry is described below. The basic
building block is the byte stream for a point that consists of two doubles. The byte
streams for other geometries are built using the byte streams for geometries that
have already been defined.

Important: These structures are only intended to define the stream of bytes that is
transmitted between the client and server. They should not be used as C-language
data structures. See the following figure for an example of such a byte stream.

// Basic Type definitions

// byte : 1 byte

// uint32 : 32 bit unsigned integer (4 bytes)
// double : double precision number (8 bytes)

// Building Blocks : Point, LinearRing
Point {

double x;

double y;

double z;

double m;

}s

LinearRing {
uint32 numPoints;
Point points[numPoints];

}

enum wkbGeometryType {

wkbPoint =1,

wkbLineString =2,

wkbPolygon =3,

wkbMultiPoint =4,

wkbMultiLineString = b,

wkbMultiPolygon =6,

wkbGeometryCollection =7,

wkbPointz = 1001,
wkbLineStringZ = 1002,
wkbPolygonZ = 1003,
wkbMultiPointZ = 1004,
wkbMultiLineStringZ = 1005,
wkbMultiPolygonZ = 1006,
wkbGeometryCollectionZ = 1007,
wkbPointM = 2001,
wkbLineStringM = 2002,
wkbPolygonM = 2003,
wkbMultiPointM = 2004,
wkbMultiLineStringM = 2005,
wkbMultiPolygonM = 2006,
wkbGeometryCollectionM = 2007,
wkbPointzZM = 3001,
wkbLineStringZM = 3002,
wkbPolygonZM = 3003,
wkbMultiPointZM = 3004,
wkbMultiLineStringZM = 3005,
wkbMultiPolygonZM = 3006,
wkbGeometryCollectionZM = 3007

}s

enum wkbByteOrder {
wkbXDR = 0, // Big Endian
wkbNDR 1 // Little Endian

s

WKBPoint {

IBM Informix Spatial Data User's Guide

byte byteOrder;
uint32 wkbType; //1
Point point;

WKBLineString {
byte byteOrder;
uint32 wkbType; /]2
uint32 numPoints;
Point points[numPoints];

1
WKBPoTygon {
byte byteOrder;
uint32 wkbType; // 3
uint32 numRings;
LinearRing rings[numRings];
1
WKBMuTtiPoint {
byte byteOrder;
uint32 wkbType; /] 4

uint32 num_wkbPoints;
WKBPoint WKBPoints[num wkbPoints];

1
WKBMultiLineString {
byte byteOrder;
uint32 wkbType; //'5
uint32 num_wkbLineStrings;
WKBLineString WKBLineStrings[num wkbLineStrings];
1
wkbMultiPolygon {
byte byteOrder;
uint32 wkbType; /] 6
uint32 num_wkbPolygons;
WKBPolygon wkbPolygons[num_wkbPolygons];
1
WKBGeometry {
union {
WKBPoint point;
WKBLineString linestring;
WKBPoTygon polygon;
WKBGeometryCollection collection;
WKBMuTtiPoint mpoint;
WKBMultiLineString mlinestring;
WKBMuTtiPolygon mpolygon;
1

}s

WKBGeometryCollection {

byte byte order;

uint32 wkbType; /7
uint32 num_wkbGeometries;

WKBGeometry wkbGeometries [num_wkbGeometries]
1

Appendix D. OGC well-known binary representation of geometry ~ D-3

WKB
< Polygon >

Ring 1 Ring 2

B=1 [T=3|NR=| NP | X1 | v1 |{x2 | Y2 |x3 | v3 [Np= | X1 | Y1 | X2 | Y2 | X3 | V3
2 =3 3

Figure D-1. Well-known binary representation for a geometry object in NDR format(B=1) of type polygon (T=3) with
two rings (NR = 2) and each ring having three points (NP = 3)

The number of bytes in each box is shown in the following table.

Table D-1. Bytes in boxes

Ring Box Bytes

B=1

T=3

NR=2

NP=3

X1

Y1

X2

Y2

X3

Y3

NP=3

X1

Y1

X2

Y2

X3

[0 [0 | 0| 0[O [H| 0| ®|0 |00 || |H |||

NN INININDININ R [RRR=]R]-=

Y3

Assertions for well-known binary representation for geometry

The well-known binary representation for geometry is designed to represent
instances of the geometry types described in the geometry object model and in the
OpenGIS Abstract Specification.

These assertions imply the following:

Linear rings
Rings are simple and closed, which means that linear rings may not self
intersect.

D-4 1BM Informix Spatial Data User's Guide

Polygons
No two linear rings in the boundary of a polygon may cross each other.
The linear rings in the boundary of a polygon may intersect, at most, at a
single point but only as a tangent.

Multipolygons
The interiors of two polygons that are elements of a multipolygon may not
intersect. The boundaries of any two polygons that are elements of a
multipolygon may touch at only a finite number of points.

Appendix D. OGC well-known binary representation of geometry ~ D-5

D-6 1BM Informix Spatial Data User's Guide

Appendix E. ESRI shape representation

The ESRI shape representation is an industry standard format that is used in ESRI
shape files. You can use the SE_AsShape() function to retrieve geometries from a
table in shape format. You can insert shape format data into database tables by

using the SE_GeomFromShape(), SE_PointFromShape(), SE_PolyFromShape(),
and other similar functions. All functions are described in detail in

[“Spatial functions,” on page 7-1)

These topics provide background information about the ESRI shape representation.

Related reference:

[“ESRI shape representation” on page 3-2|

Shape type values

A shape type of 0 indicates a null shape with no geometric data for the shape.

Value

15
18
19
20
21
23
25
28

Shape type

Null Shape
Point
PolyLine
Polygon
MultiPoint
PointZ
PolyLineZ
PointZM
PolyLineZM

PolygonZM
MultiPointZM
PolygonZ
MultiPointZ
PointM
PolyLineM
PolygonM
MultiPointM

Spatial data type

Empty ST_Geometry

ST_Point

ST_MultiLineString

ST_MultiPolygon

ST_MultiPoint

ST_Point with Z coordinates
ST_MultiLineString with Z coordinates
ST_Point with Z coordinates and measures
ST_MultiLineString with Z coordinates and
measures

ST_MultiPolygon with Z coordinates and measures
ST_MultiPoint with Z coordinates and measures
ST_MultiPolygon with Z coordinates
ST_MultiPoint with Z coordinates

ST_Point with measures

ST_MultiLineString with measures
ST_MultiPolygon with measures

ST_MultiPoint with measures

Shape types not specified above (2, 4, 6, and so on) are reserved for future use.

The ST_LineString and ST_Polygon Spatial data types do not have equivalent
shape type values.

Shape types in XY space

These topics describe shapes with X and Y coordinates.

Point

A Point consists of a pair of double-precision coordinates in the order X, Y. The
following table shows Point byte stream contents.

© Copyright IBM Corp. 2001, 2014

E-1

Position Field Value Type Number Byte order

Byte 0 Shape Type 1 Integer 1 Little endian

Byte 4 X X Double 1 Little endian

Byte 12 Y Y Double 1 Little endian
MultiPoint

A MultiPoint consists of a collection of points. The bounding box is stored in the
order Xmin, Ymin, Xmax, Ymax. The following table shows MultiPoint byte stream

contents.

Position Field Value Type Number Byte order

Byte 0 Shape Type 8 Integer 1 Little endian

Byte 4 Box Box Double 4 Little endian

Byte 36 NumPoints NumPoints Integer 1 Little endian

Byte 40 Points Points Point NumPoints Little endian
PolyLine

A PolyLine is an ordered set of vertices that consists of one or more parts. A part is
a connected sequence of two or more points. Parts may be connected to and may
intersect one another.

Because this specification does not forbid consecutive points with identical
coordinates, shapefile readers must handle such cases. On the other hand, the
degenerate zero length parts that might result are not allowed.

The following fields are for a PolyLine:

Box The bounding box for the PolyLine, stored in the order Xmin, Ymin, Xmax,
Ymax

NumParts
The number of parts in the PolyLine

NumPoints
The total number of points for all parts

Parts An array of length NumParts. Stores, for each PolyLine, the index of its
first point in the points array

Array indexes are numbered with respect to 0.
Points An array of length NumPoints

The points for each part in the PolyLine are stored end to end. The points

for part 2 follow the points for part 1, and so on. The parts array holds the
array index of the starting point for each part. There is no delimiter in the

points array between parts.

The following table shows PolyLine byte stream contents.

Position Field Value Type Number Byte order

Byte 0 Shape Type 3 Integer 1 Little endian
Byte 4 Box Box Double 4 Little endian
Byte 36 NumParts NumParts Integer 1 Little endian
Byte 40 NumPoints NumPoints Integer 1 Little endian

E-2 IBM Informix Spatial Data User's Guide

Position Field Value Type Number Byte order

Byte 44 Parts Parts Integer NumParts Little endian
Byte X Points Points Point NumPoints Little endian

Tip: X = 44 + (4 - NumParts)

Polygon

A polygon consists of one or more rings. A ring is a connected sequence of four or
more points that form a closed, non-self-intersecting loop. A polygon may contain
multiple outer rings. The order of vertices or orientation for a ring indicates which
side of the ring is the interior of the polygon. The neighborhood to the right of an
observer walking along the ring in vertex order is the neighborhood inside the
polygon. Vertices of rings defining holes in polygons are in a counterclockwise
direction. Vertices for a single, ringed polygon are, therefore, always in clockwise
order. The rings of a polygon are referred to as its parts.

Because this specification does not forbid consecutive points with identical
coordinates, shapefile readers must handle such cases. On the other hand, the
degenerate zero length or zero area parts that might result are not allowed.

The following fields are for a polygon:

Box The bounding box for the polygon, stored in the order Xmin, Ymin, Xmax,
Ymax

NumParts
The number of rings in the polygon

NumPoints
The total number of points for all rings

Parts An array of length NumParts.

Stores, for each ring, the index of its first point in the points array. Array
indexes are numbered with respect to 0.

Points An array of length NumPoints

The points for each ring in the polygon are stored end to end. The points
for ring 2 follow the points for ring 1, and so on. The parts array holds the
array index of the starting point for each ring. There is no delimiter in the
points array between rings.

The following are important notes about polygon shapes:

* The rings are closed (the first and last vertex of a ring must be the same).
* The order of rings in the points array is not significant.

* Polygons stored in a shapefile must be clean.

* A clean polygon is one that has no self-intersections. This means that a segment
belonging to one ring may not intersect a segment belonging to another ring.
The rings of a polygon can touch each other at vertices but not along segments.
Colinear segments are considered intersecting.

* A clean polygon is one that has the inside of the polygon on the correct side of
the line that defines it. The neighborhood to the right of an observer walking
along the ring in vertex order is the inside of the polygon. Vertices for a single,
ringed polygon are, therefore, always in clockwise order.

Appendix E. ESRI shape representation E-3

Rings defining holes in these polygons have a counterclockwise orientation.
Dirty polygons occur when the rings that define holes in the polygon also go
clockwise, which causes overlapping interiors.

A sample polygon instance
The following figure shows a polygon with one hole and a total of eight vertices.
vi

v5
v4 v8 v6 v2

v7
v3

Figure E-1. A sample polygon

For this example, NumParts equals 2 and NumPoints equals 10. Note that the
order of the points for the doughnut (hole) polygon is reversed below.

|

|

0 1 2 3 4 a G 7 2 4
Points: w1l w2 | w3 | wd [v vs | wB | w7 | wB | ¥E

The following table shows Polygon byte stream contents

Position Field Value Type Number Byte order

Byte 0 Shape Type 5 Integer 1 Little endian
Byte 4 Box Box Double 4 Little endian
Byte 36 NumParts NumParts Integer 1 Little endian
Byte 40 NumPoints NumPoints Integer 1 Little endian
Byte 44 Parts Parts Integer NumParts Little endian
Byte X Points Points Point NumPoints Little endian

Tip: X = 44 + (4 . NumParts)

Measured shape types in XY space

These topics describe shapes with X and Y coordinates that also have measure
values.

PointM

A PointM consists of a pair of double-precision coordinates in the order X, Y, plus
a measure M. The following table shows PointM byte stream contents.

Position Field Value Type Number Byte order
Byte 0 Shape Type 21 Integer 1 Little endian

E-4 1BM Informix Spatial Data User's Guide

Position Field Value Type Number Byte order

Byte 4 X X Double 1 Little endian

Byte 12 Y Y Double 1 Little endian

Byte 20 M M Double 1 Little endian
MultiPointM

The following fields are for a MultiPointM:

Box The bounding box for the MultiPointM, stored in the order Xmin, Ymin,
Xmax, Ymax

NumParts
The number of Points

NumPoints
An array of Points of length NumPoints

M Range
The minimum and maximum measures for the MultiPointM stored in the
order Mmin, Mmax

M Array
An array of Measures of length NumPoints

The following table shows MultiPointM byte stream contents.

Position Field Value Type Number Byte order

Byte 0 Shape Type 28 Integer 1 Little endian
Byte 4 Box Box Double 4 Little endian
Byte 36 NumPoints NumPoints Integer 1 Little endian
Byte 40 Points Points Point NumPoints Little endian
Byte X Mmin Mmin Double 1 Little endian
Byte X+8 Mmax Mmax Double 1 Little endian
Byte X+16 M Array M Array Double NumPoints Little endian

Tip: X =40 + (16 * NumPoints).

PolyLineM

A shapefile PolyLineM consists of one or more parts. A part is a connected
sequence of two or more points. Parts may or may not be connected to one
another. Parts may or may not intersect one another.

The following fields are for a PolyLineM:

Box The bounding box for the PolyLineM stored in the order Xmin, Ymin,

Xmax, Ymax

NumParts
The number of parts in the PolyLineM

NumPoints
The total number of points for all parts

Parts An array of length NumParts

Stores, for each part, the index of its first point in the points array. Array

indexes are numbered with respect to 0.

Appendix E. ESRI shape representation

E-5

Points An array of length NumPoints

The points for each part in the PolyLineM are stored end to end. The
points for part 2 follow the points for part 1, and so on. The parts array
holds the array index of the starting point for each part. There is no
delimiter in the points array between parts.

M Range
The minimum and maximum measures for the PolyLineM stored in the
order Mmin, Mmax

M Array
An array of length NumPoints

The measures for each part in the PolyLineM are stored end to end. The
measures for part 2 follow the measures for part 1, and so on. The parts
array holds the array index of the starting point for each part. There is no
delimiter in the measure array between parts.

The following table shows PolyLineM byte stream contents.

Position Field Value Type Number Byte order

Byte 0 Shape Type 23 Integer 1 Little endian
Byte 4 Box Box Double 4 Little endian
Byte 36 NumParts NumParts Integer 1 Little endian
Byte 40 NumPoints NumPoints Integer 1 Little endian
Byte 44 Parts Parts Integer NumParts Little endian
Byte X Points Points Point NumPoints Little endian
Byte Y Mmin Mmin Double 1 Little endian
Byte Y+8 Mmax Mmax Double 1 Little endian
Byte Y+16 M Array M Array Double NumPoints Little endian

Tip: X =44 + (4 * NumParts), Y = X + (16 * NumPoints)

PolygonM
A PolygonM consists of a number of rings. A ring is a closed, non-self-intersecting
loop. Note that intersections are calculated in XY space, not in XYM space. A
PolygonM may contain multiple outer rings. The rings of a PolygonM are referred
to as its parts.
The following fields are for a PolygonM:

Box The bounding box for the PolygonM, stored in the order Xmin, Ymin,
Xmax, Yma

NumParts
The number of rings in the PolygonM

NumPoints
The total number of points for all rings

Parts An array of length NumParts

Stores, for each ring, the index of its first point in the points array. Array
indexes are numbered with respect to 0.

Points An array of length NumPoints

E-6 1BM Informix Spatial Data User's Guide

The points for each ring in the PolygonM are stored end to end. The points

for Ring 2 follow the points for Ring 1, and so on. The parts array holds
the array index of the starting point for each ring. There is no delimiter in
the points array between rings.

M Range

The minimum and maximum measures for the PolygonM stored in the

order Mmin, Mmax

M Array

An array of length NumPoints

The measures for each ring in the PolygonM are stored end to end. The

measures for Ring 2 follow the measures for Ring 1, and so on. The parts
array holds the array index of the starting measure for each ring. There is
no delimiter in the measure array between rings.

The following are important notes about PolygonM shapes:

* The rings are closed (the first and last vertex of a ring must be the same).

* The order of rings in the points array is not significant.

The following table shows PolygonM byte stream contents.

Position

Byte 0
Byte 4
Byte 36
Byte 40
Byte 44
Byte X
Byte Y
Byte Y+8
Byte Y+16

Field

Shape Type
Box
NumParts
NumPoints
Parts
Points
Mmin
Mmax

M Array

Value

15

Box
NumParts
NumPoints
Parts
Points
Mmin
Mmax

M Array

Type

Integer
Double
Integer
Integer
Integer
Point

Double
Double
Double

Number

1

4

1

1
NumParts
NumPoints
1

1
NumPoints

Byte order

Little endian
Little endian
Little endian
Little endian
Little endian
Little endian
Little endian
Little endian
Little endian

Tip: X =44 + (4 * NumParts), Y = X + (16 * NumPoints)

Shape types in XYZ space

These topics describe shapes with X, Y, and Z coordinates.

PointZ

A PointZ consists of a triplet of double-precision coordinates in the order X, Y, Z.

The following table shows PointZ byte stream contents.

Position Field Value Type Number Byte order

Byte 0 Shape Type 9 Integer 1 Little endian

Byte 4 X X Double 1 Little endian

Byte 12 Y Y Double 1 Little endian

Byte 20 V4 z Double 1 Little endian
MultiPointZ

A MultiPointZ represents a set of PointZs, as follows:

* The bounding box is stored in the order Xmin, Ymin, Xmax, Ymax.

Appendix E. ESRI shape representation

E-7

* The bounding Z range is stored in the order Zmin, Zmax.

The following table shows MultiPointZ byte stream contents.

Position Field Value Type Number Byte order

Byte 0 Shape Type 20 Integer 1 Little endian
Byte 4 Box Box Double 4 Little endian
Byte 36 NumPoints NumPoints Integer 1 Little endian
Byte 40 Points Points Point NumPoints Little endian
Byte X Zmin Zmin Double 1 Little endian
Byte X+8 Zmax Zmax Double 1 Little endian
Byte X+16 Z Array Z Array Double NumPoints Little endian

Tip: X =40 + (16 * NumPoints)

PolyLineZ
A PolyLineZ consists of one or more parts. A part is a connected sequence of two
or more points. Parts may or may not be connected to one another. Parts may or
may not intersect one another.

The following fields are for a PolyLineZ:

Box The bounding box for the PolyLineZ, stored in the order Xmin, Ymin,
Xmax, Ymax

NumParts
The number of parts in the PolyLineZ

NumPoints
The total number of points for all parts

Parts An array of length NumParts
Stores, for each part, the index of its first point in the points array.
Array indexes are numbered with respect to 0.

Points An array of length NumPoints

The points for each part in the PolyLineZ are stored end to end. The points
for part 2 follow the points for part 1, and so on. The parts array holds the
array index of the starting point for each part. There is no delimiter in the
points array between parts.

Z Range
The minimum and maximum Z values for the PolyLineZ stored in the
order Zmin, Zmax

Z Array
An array of length NumPoints

The Z values for each part in the PolyLineZ are stored end to end. The Z
values for part 2 follow the Z values for part 1, and so on. The parts array
holds the array index of the starting point for each part. There is no
delimiter in the Z Array between parts.

The following table shows PolyLineZ byte stream contents

E-8 I1BM Informix Spatial Data User's Guide

Position Field Value Type Number Byte order

Byte 0 Shape Type 10 Integer 1 Little endian
Byte 4 Box Box Double 4 Little endian
Byte 36 NumParts NumParts Integer 1 Little endian
Byte 40 NumPoints NumPoints Integer 1 Little endian
Byte 44 Parts Parts Integer NumParts Little endian
Byte X Points Points Point NumPoints Little endian
Byte Y Zmin Zmin Double 1 Little endian
Byte Y+8 Zmax Zmax Double 1 Little endian
Byte Y+16 Z Array Z Array Double NumPoints Little endian

Tip: X =44 + (4 * NumParts), Y = X + (16 * NumPoints)

PolygonZ

A PolygonZ consists of a number of rings. A ring is a closed, non-self-intersecting
loop. A PolygonZ may contain multiple outer rings. The rings of a PolygonZ are
referred to as its parts.

The following fields are for a PolygonZ:

Box The bounding box for the PolygonZ stored in the order Xmin, Ymin, Xmax,
Ymax

NumParts
The number of rings in the PolygonZ

NumPoints
The total number of points for all rings

Parts An array of length NumParts

Stores, for each ring, the index of its first point in the points array. Array
indexes are numbered with respect to 0.

Points An array of length NumPoints

The points for each ring in the PolygonZ are stored end to end. The points
for ring 2 follow the points for ring 1, and so on. The parts array holds the
array index of the starting point for each ring. There is no delimiter in the
points array between rings.

Z Range
The minimum and maximum Z values for the PolygonZ stored in the
order Zmin, Zmax

Z Array
An array of length NumPoints

The Z values for each ring in the PolygonZ are stored end to end. The Z
values for ring 2 follow the Z values for ring 1, and so on. The parts array
holds the array index of the starting Z value for each ring. There is no
delimiter in the Z value array between rings.

The following are important notes about PolygonZ shapes:
* The rings are closed (the first and last vertex of a ring must be the same).
¢ The order of rings in the points array is not significant.

The following table shows PolygonZ byte stream contents.

Appendix E. ESRI shape representation E-9

Position Field Value Type Number Byte order

Byte 0 Shape Type 19 Integer 1 Little endian
Byte 4 Box Box Double 4 Little endian
Byte 36 NumParts NumParts Integer 1 Little endian
Byte 40 NumPoints NumPoints Integer 1 Little endian
Byte 44 Parts Parts Integer NumParts Little endian
Byte X Points Points Point NumPoints Little endian
Byte Y Zmin Zmin Double 1 Little endian
Byte Y+8 Zmax Zmax Double 1 Little endian
Byte Y+16 Z Array Z Array Double NumPoints Little endian

Tip: X =44 + (4 * NumParts), Y = X + (16 * NumPoints)

Measured shape types in XYZ space

These topics describe shapes with X, Y, and Z coordinates that also have measure
values.

PointZM

A PointZM consists of a quadruplet of double-precision coordinates in the order X,
Y, Z, M.

The following table shows PointZM byte stream contents.

Position Field Value Type Number Byte order

Byte 0 Shape Type 11 Integer 1 Little endian

Byte 4 X X Double 1 Little endian

Byte 12 Y Y Double 1 Little endian

Byte 20 V4 z Double 1 Little endian

Byte 28 M M Double 1 Little endian
MultiPointZM

A MultiPointZM represents a set of PointZMs, as follows:

* The bounding box is stored in the order Xmin, Ymin, Xmax, Ymax.

¢ The bounding Z range is stored in the order Zmin, Zmax.

* The bounding M range is stored in the order Mmin, Mmax.

The following table shows MultiPointZM byte stream contents.

Position

Byte 0
Byte 4
Byte 36
Byte 40
Byte X
Byte X+8
Byte X+16
Byte Y
Byte Y+8
Byte Y+16

Field

Shape Type
Box
NumPoints
Points
Zmin
Zmax

Z Array
Mmin
Mmax

M Array

Value

18

Box
NumPoints
Points
Zmin
Zmax

Z Array
Mmin
Mmax

M Array

Type

Integer
Double
Integer
Point

Double
Double
Double
Double
Double
Double

Number

1
4
1
NumPoints
1
1
NumPoints
1
1
NumPoints

Byte order

Little endian
Little endian
Little endian
Little endian
Little endian
Little endian
Little endian
Little endian
Little endian
Little endian

E-10

IBM Informix Spatial Data User's Guide

Tip: X =40 + (16 * NumPoints), Y = X + 16 + (8 * NumPoints)

PolyLineZM

A PolyLineZM consists of one or more parts. A part is a connected sequence of
two or more points. Parts may or may not be connected to one another. Parts may
or may not intersect one another.

The following fields are for a PolyLineZM:

Box The bounding box for the PolyLineZM, stored in the order Xmin, Ymin,
Xmax, Ymax

NumParts
The number of parts in the PolyLineZM

NumPoints
The total number of points for all parts

Parts An array of length NumParts
Stores, for each part, the index of its first point in the points array.
Array indexes are numbered with respect to 0

Points An array of length NumPoints

The points for each part in the PolyLineZM are stored end to end. The
points for part 2 follow the points for part 1, and so on. The parts array
holds the array index of the starting point for each part. There is no
delimiter in the points array between parts.

Z Range
The minimum and maximum Z values for the PolyLineZM stored in the
order Zmin, Zmax

Z Array
An array of length NumPoints

The Z values for each part in the PolyLineZM are stored end to end. The Z
values for part 2 follow the Z values for part 1, and so on. There is no
delimiter in the Z Array between parts.

M Range
The minimum and maximum measures for the PolyLineZM stored in the
order Mmin, Mmax

M Array
An array of length NumPoints

The measures for each part in the PolyLineZM are stored end to end. The
measures for part 2 follow the measures for part 1, and so on. There is no
delimiter in the measure array between parts.

The following table shows PolyLineZM byte stream contents.

Position Field Value Type Number Byte order

Byte 0 Shape Type 13 Integer 1 Little endian
Byte 4 Box Box Double 4 Little endian
Byte 36 NumParts NumParts Integer 1 Little endian
Byte 40 NumPoints NumPoints Integer 1 Little endian
Byte 44 Parts Parts Integer NumParts Little endian
Byte X Points Points Point NumPoints Little endian

Appendix E. ESRI shape representation E-11

E-12

Position Field Value Type Number Byte order

Byte Y Zmin Zmin Double 1 Little endian
Byte Y+8 Zmax Zmax Double 1 Little endian
Byte Y+16 Z Array Z Array Double NumPoints Little endian
Byte Z Mmin Mmin Double 1 Little endian
Byte Z+8 Mmax Mmax Double 1 Little endian
Byte Z+16 M Array M Array Double NumPoints Little endian

Tip: X =44 + (4 * NumParts), Y = X + (16 * NumPoints), Z=Y + 16 + (8 *
NumPoints)

PolygonZM

A PolyLineZM consists of a number of rings. A ring is a closed,
non-self-intersecting loop. A PolyLineZM may contain multiple outer rings. The
rings of a PolyLineZM are referred to as its parts.

The following fields are for a PolyLineZM:

Box The bounding box for the PolyLineZM, stored in the order Xmin, Ymin,
Xmax, Ymax

NumParts
The number of rings in the PolyLineZM

NumPoints
The total number of points for all rings

Parts An array of length NumParts
Stores, for each ring, the index of its first point in the points array.
Array indexes are numbered with respect to 0.

Points An array of length NumPoints

The points for each ring in the PolyLineZM are stored end to end. The
points for ring 2 follow the points for ring 1, and so on. The parts array
holds the array index of the starting point for each ring. There is no
delimiter in the points array between rings.

Z Range
The minimum and maximum Z values for the PolyLineZM are stored in
the order Zmin, Zmax

Z Array
An array of length NumPoints

The Z values for each ring in the PolyLineZM are stored end to end. The Z
values for ring 2 follow the Z values for ring 1, and so on. There is no
delimiter in the Z value array between rings.

M Range
The minimum and maximum measures for the PolyLineZM stored in the
order Mmin, Mmax

M Array
An array of length NumPoints

The measures for each ring in the PolyLineZM are stored end to end. The
measures for ring 2 follow the measures for ring 1, and so on. There is no
delimiter in the measure array between rings.

IBM Informix Spatial Data User's Guide

The following are important notes about PolyLineZM shapes:

* The rings are closed (the first and last vertex of a ring must be the same).

* The order of rings in the points array is not significant.

The following table shows PolyLineZM byte stream contents.

Position

Byte 0
Byte 4
Byte 36
Byte 40
Byte 44
Byte X
Byte Y
Byte Y+8
Byte Y+16
Byte Z
Byte Z+8
Byte Z+16

Field

Shape Type
Box
NumParts
NumPoints
Parts
Points
Zmin
Zmax

Z Array
Mmin
Mmax

M Array

Value

15

Box
NumParts
NumPoints
Parts
Points
Zmin
Zmax

Z Array
Mmin
Mmax

M Array

Type

Integer
Double
Integer
Integer
Integer
Point

Double
Double
Double
Double
Double
Double

Number

1

4

1

1
NumParts
NumPoints
1

1
NumPoints
1

1
NumPoints

Byte order

Little endian
Little endian
Little endian
Little endian
Little endian
Little endian
Little endian
Little endian
Little endian
Little endian
Little endian
Little endian

Tip: X = 44 + (4 * NumParts), Y = X + (16 * NumPoints), Z=Y + 16 + (8 *

NumPoints)

Appendix E. ESRI shape representation

E-13

E-14 1BM Informix Spatial Data User's Guide

Appendix F. Error messages

Spatial DataBlade functions that generate any of these errors will abort. Likewise,
if a Spatial DataBlade function is part of a transaction, the transaction also aborts.
Error message parameters marked with percent signs—for example, are replaced

with appropriate values in the actual message text.

Error messages and their explanations

USE01 Unable to establish a connection in
%FUNCTION %.

Explanation: The IBM Informix server unexpectedly
returned a null value instead of a connection handle
when the function attempted to connect to the server.
The function was unable to determine the exact cause
of the error.

User response: If this error continues to occur, contact
IBM Informix Technical Support for assistance.

Function %FUNCTION% is unable to
allocate memory.

7USE02

Explanation: The function could not allocate the
memory that it requires.

User response: Ensure that your hardware meets the
minimum memory requirements specified in the IBM
Informix installation guide. Also make sure that you
have not overallocated memory to the IBM Informix
server or other applications. Consider increasing the
amount of your hardware physical memory.

USE03 Invalid geometry in %FUNCTION %.

Explanation: The parameters entered into the function
have produced an invalid geometry.

User response: Check the parameters and review
[Chapter 2, “Spatial data types,” on page 2-1|for a
description of valid geometry.

USE04 Function %FUNCTION% not applicable

to type %TYPE%.

Explanation: An invalid geometry type was passed to
the function. Valid geometry types are geometry, point,
linestring, polygon, multipoint, multilinestring, and
multipolygon.

User response: Resubmit the function with one of the
valid geometry types.

USEO05 This function is not yet implemented.

Explanation: The function has not been implemented

© Copyright IBM Corp. 2001, 2014

for the current release. However, it may be available in
a future release.

USE06 Unknown ESRI shape library error
(%ERRCODE%) in %FUNCTION %.

Explanation: Contact IBM Informix Technical Support
for assistance. Please include this error number and any
other related error messages and information from the
$INFORMIXDIR/online.Tog file. If you are using the
Spatial DataBlade module in conjunction with ArcSDE
from ESRI, please also include any related information
from the $§SDEHOME/etc/sde.errlog file.

USE07 Internal SAPI error. %SAPIFUNC%
returned %RETVAL%. Failure in

%FUNCNAME%.

Explanation: An error has occurred in the SAPI
subsystem of the IBM Informix server.

User response: Contact IBM Informix Technical
Support.

USE08 Nearest-neighbor queries require an
index scan.

Explanation: An attempt was made to use a
nearest-neighbor function as a filter during a sequential
scan of a table. This is not supported.

USE09 Unknown or unsupported shape file
type (%TYPE%) found in
%FUNCTION %.

Explanation: An unrecognized shapefile type was
encountered.

User response: For more information about shapefile
types, see[“Shape type values” on page E-1)

USE10 Unknown or unsupported OpenGIS
WKB type (%TYPE%) found in
%FUNCTION %.

Explanation: An unrecognized OpenGIS well-known
binary type was encountered. This version of the
Spatial DataBlade only supports point, linestring,

F-1

USE11 USE21

polygon, multipoint, multilinestring, and multipolygon.

USE11 Invalid SRID %SRID% or NULL in

%FUNCTION %.

Explanation: A spatial reference identifier must be an
integer value greater than 0. Negative values, real
numbers, and characters are invalid.

USE12 Unknown or unsupported geometry
type (%TYPE%) found in

%FUNCTION %.

Explanation: An unrecognized geometry type was
encountered. If you are inserting spatial data in a
binary format it may be corrupt or malformed.

USE13 Spatial DataBlade not installed
correctly: the spatial_references table

does not exist.

Explanation: The Spatial DataBlade was not able to
access the spatial_references table because it could not
be found.

User response: Review the installation instructions for
the Spatial DataBlade module and, if necessary, recreate
the spatial_references table.

USE14 Unknown spatial reference identifier

%SRID%.

Explanation: The sde.spatial_references table contains
a list of all valid spatial reference identifiers. The
function attempted to create a geometry with an SRID
that does not exist in this table.

User response: Either use an SRID that is already in
the sde.spatial_references table or add the unknown
SRID to the table.

USE15 Invalid coordinate reference system

object in function %FUNCTION %.

Explanation: A programmatic error has occurred in
the Spatial DataBlade.

User response: Contact IBM Informix Technical
Support.

USE16 Unable to get the geometry data pointer

from the server in %FUNCTION %.

Explanation: A programmatic error has occurred in
the Spatial DataBlade.

User response: Contact IBM Informix Technical
Support.

F-2 IBM Informix Spatial Data User's Guide

USE17 Geometry verification failed.

Explanation: An error has occurred while the Spatial
DataBlade was verifying the topological correctness of
a geometry.

User response: Contact IBM Informix Technical
Support.

USE18 Buffer operation failed.

Explanation: The source geometry and buffer distance
submitted to the buffer function would result in a
buffer with coordinates that fall outside the coordinate
system specified in the source geometry's spatial
reference system.

USE19 Coordinates out of bounds in

%FUNCTION %.

Explanation: The function has created a geometry
with coordinates that fall outside the coordinate
system.

User response: Review [“The spatial references table’|
for information about selecting a
coordinate system. Typically, this error occurs when the
buffer function generates a geometry with coordinates

that are beyond the source geometry's coordinate
system, which the new geometry inherits.

You may need to adjust the false origin and system
units for your data. Please refer to the description of
the ST_Transform() function in|Chapter 7, “Spatiall
[functions,” on page 7-1,|for additional information.

USE20 Invalid parameter in function

%FUNCTION %.

Explanation: One of the parameters passed to the
function is invalid.

User response: Review the syntax of the function
listed in [Chapter 7, “Spatial functions,” on page 7-1|
Correct the invalid parameter and resubmit the
function.

USE21 Geometry integrity error in function

%FUNCTION %.

Explanation: An inconsistency has been detected in a
geometry's internal data structure.

User response: If you ran the SE_Generalize()
function, the value of the threshold argument might be
too large compared to the size of the object. Run the
function again with a smaller threshold value.

If this error continues to occur, contact IBM Informix
Software Support for assistance.

USE22 Too many points in feature.

Explanation: Returned if the buffer function creates a
feature that exceeds the maximum number of points
specified as a parameter to the function.

User response: Increase the size of the maximum
number of points parameter and resubmit the function.

USE22 « USE32

interpret geometries stored using a future version.

If an upgrade mechanism is provided with a new
version of this DataBlade module, use it on your data
as described in the release notes. If an upgrade
mechanism is not provided, you must unload your
data with the old DataBlade module version and reload
it with the new version.

USE23 Spatial reference conflict, %SRID1% vs

%SRID2%.

Explanation: The geometries passed to the function
did not share the same spatial reference system.

User response: Convert one of the geometries to have
the same spatial reference system as the other and
resubmit the function.

USE28 Invalid text in %FUNCTION %.

Explanation: The text string entered with the
well-known text representation function is invalid.

User response: Correct the string and resubmit the
function. Refer to[Appendix C, “OGC well-known text|

[representation of geometry,” on page C-1)for a valid

text string description.

USE24 Incompatible geometries in function

%FUNCTION %.

Explanation: The function expected two geometries of
a certain type and did not receive them.

User response: Review the syntax of the function
described in [Chapter 7, “Spatial functions,” on page|
correct the geometry, and resubmit the function.

USE25 Subscript %SUBSCRIPT% out of range

in function %FUNCTION %.

Explanation: The function has detected that the
subscript entered is outside the allowable range of
values. For instance, the ST_PointN() function returns
the nth point identified by the index parameter. If a
negative value, 0, or a number greater than the number
of points in the source linestring were entered, this
error message would be returned.

User response: Correct the subscript value and
resubmit the function.

USE26 Subtype mismatch: received
subtype=%TYPE1%, expected

subtype=%TYPE2%.

Explanation: This error can occur when you try to
insert a geometry of one subtype into a column of a
different subtype, for example an ST_Point into an
ST_LineString column.

User response: To insert more than one subtype into a
column, make that a column of type ST_Geometry.

USE27 Unknown or unsupported geometry data
structure version (% VERSION%) found

in %FUNCTION %.

Explanation: Future versions of the Spatial DataBlade
may not be able to interpret geometries stored using
this version of the DataBlade module. Similarly, this
version of the Spatial DataBlade may not be able to

USE29 Unexpected system error in

%FUNCTION %.

Explanation: An internal error occurred while creating
a geometry. The system was not able to determine why
this error occurred.

User response: Contact IBM Informix Technical
Support for assistance. Please include this error number
and any other related error messages and information
from the $INFORMIXDIR/online.log file. If you are using
the Spatial DataBlade module in conjunction with
ArcSDE from ESRI, please also include any related
information from the $SDEHOME/etc/sde.errlog file.

USE30 Overlapping polygon rings in

%FUNCTION %.

Explanation: The internal rings of a polygon may not
overlap one another or the bounding external ring.
Polygon rings may only intersect at a single point.

USE31 Too few points for geometry type in

%FUNCTION %.

Explanation: The number of coordinates entered for
the geometry was too few. Points and multipoints
require a minimum of one point; linestrings and
multilinestrings require a minimum of two points; and
polygons and multipolygons require a minimum of
four points.

USE32 Polygon does not close in

%FUNCTION %.

Explanation: The first and last coordinates of a
polygon ring must be the same. An exterior or interior
ring did not close (did not have the same first and last
coordinates).

Appendix E. Error messages E-3

USE33 « USE46

USE33 Interior ring not enclosed by exterior

ring in %FUNCTION %.

Explanation: The interior rings of a polygon must be
inside the exterior rings. The interior ring was detected
to be outside its exterior ring.

USE34 Polygon has no area in %FUNCTION %.

Explanation: The rings of a polygon must enclose an
area. The first and last point of each polygon ring must
be the same. A ring may not cross itself.

USE35 Polygon ring contains a spike in

%FUNCTION %.

Explanation: Polygon rings contain spikes whenever
coordinates other than the endpoints are the same. The
boundary of a polygon must be a continuous ring or
series of rings.

USE40 Unknown or unsupported ESRI entity
type (%TYPE%) found in

%FUNCTION %.

Explanation: The internal type representation is
invalid.

User response: Contact ESRI Technical Support.

USE41 The projection string for your SRID is

invalid in %FUNCTION %.

Explanation: The projection string stored in the
spatial_references table was determined to be invalid.

User response: Compare the projection string with the
valid projection strings listed in|Appendix B, “OG

well-known text representation of spatial referencel

systems,” on page B—1.|

USE36 Multipolygon exterior rings overlap in

%FUNCTION %.

Explanation: The exterior rings of a multipolygon
must enclose independent areas. The exterior rings of
each polygon of a multipolygon may not overlap. They
may, however, intersect at a single point. Polygons
whose intersection results in a linestring will
automatically be merged after the intersecting linestring
has been dissolved.

USE37 The geometry boundary is
self-intersecting in % FUNCTION %.
USE38 The geometry has too many parts in

%FUNCTION %.

Explanation: The string that defines the geometry has
too many parts for its type. Points, linestrings, and
polygons are single-part geometries. The string has
defined more than one part for one of these geometries.
If a multipart geometry is desired, use multipoint,
multilinestring, or multipolygon.

USE39 Mismatched text string parentheses in

%FUNCTION %.

Explanation: The parentheses of the text string
defining the geometry do not match.

User response: For a description of the well-known
text representation, review |[Appendix C, “OG(
well-known text representation of geometry,” on pagd
C-1,

F-4 1BM Informix Spatial Data User's Guide

USE42 Nearest-neighbor queries are not
supported by the current version of the

server.

Explanation: Nearest-neighbor queries are supported
by IBM Informix Version 9.3 and later.

USE43 %PARAM1% value must be less than

%PARAM2% value.

Explanation: When executing the SE_CreateSrid()
function, xmin must be less than xmax and ymin must
be less than ymax.

USE44 Unknown OGIS WKB byte-order byte

encountered in %FUNCTION %.

Explanation: An unrecognized OpenGIS well-known
binary byte-order byte was encountered. This is the
first byte of the geometry data input byte stream. Valid
values are 0x00 (big endian) and 0x01 (little endian).

USE45 OGIS WKB geometry collection type is

not supported.

Explanation: The OpenGIS collection type (7) is not
supported by this version of the Spatial DataBlade
module.

USE46 Incompatible coordinate reference

systems in function %FUNCTION %.

Explanation: This error can occur when you attempt
to transform geometries using the ST_Transform()
function. The only allowable transformations in this
version of the Spatial DataBlade module are:

¢ Between two UNKNOWN coordinate systems (that
is, the srtext column in the spatial_references table
for both SRIDs is “UNKNOWN")

¢ Between a projected coordinate system and an
unprojected coordinate system, in which the
underlying geographic coordinate systems are the
same

* Between two projected coordinate systems, in which
the underlying geographic coordinate systems are the
same

¢ Between two coordinate systems with the same
geographic coordinate system (that is, a difference in
false origin or system unit only)

USE47 Cannot create SE_Metadata lohandle file
%NAME%. Check directory

permissions.

Explanation: The metadata Tohandle file is created at
the time the DataBlade module is registered in your
database. This file is located in the directory
$INFORMIXDIR/extend/spatial.versno/metadata. The
user who registers the DataBlade must have write
permission on this directory.

If this error occurs after you have successfully
registered the Spatial DataBlade module, you should
correct the permissions on the metadata directory and
then recreate the metadata Tohandle file by running the
following SQL statement:

execute function SE_Metadatalnit();

USE48 SE_Metadata lohandle file %FILE% not
found, unreadable, or corrupt. Execute

function SE_Metadatalnit to reinitialize.

Explanation: The purpose of the SE_Metadata
Tohandle file is to allow access to metadata by all
parallelized functions of the Spatial DataBlade module.
It can be restored by running the following SQL
statement:

execute function SE Metadatalnit();

This will reread the spatial_references table, recreate a
smart large object containing metadata, and re-create a
file containing the large object handle for this smart
large object.

USE49 SE_MetadataTable is a read only table.

Explanation: The SE_MetadataTable table is created
and populated when the Spatial DataBlade module is
registered.

User response: Do not attempt to modify this table in
any way.

USE50 Vertex not found in %FUNCTION %.

Explanation: The specified vertex cannot be found in
the original geometry.

User response: Verify that the X, Y, M, and Z values

USE47 « -674

(if any) of the vertex to be updated or deleted exactly
match.

USE51 SE_Metadata smart blob is corrupt or

unreadable.

Explanation: Execute the SE_Metadatalnit() function
to repair the smart large object. To enable parallel data
queries, a copy of the spatial_references table contents
is stored in a smart large object. This smart large object
is created when the Spatial DataBlade is registered and
is synchronized with the spatial_references table by
means of triggers. If the smart large object is corrupted,
it can be re-created by running the following SQL
statement:

EXECUTE FUNCTION SE MetadatalInit();

USE52 SE_Metadata memory cache is locked.

Explanation: Execute the SE_Metadatalnit() function
to reinitialize the memory cache. For computational
efficiency, a copy of the spatial_references table
contents is cached in memory. This cache is shared by
all sessions and access to it is controlled by a spinlock.
If a session failed to release this lock, another session
may not be able to obtain access.

User response: To forcibly reset the lock, run the
following SQL statement:

EXECUTE FUNCTION SE_Metadatalnit();

USES53 Spatial datablade assert failure. File =

o/oFILEo/o, line = %LINE%.

Explanation: A programmatic error has occurred in
the Spatial DataBlade module. Contact IBM Informix
Technical Support.

USE54 You must create a default sbspace before

you can register the Spatial DataBlade.

Explanation: When the Spatial DataBlade is registered,
a small (8 KB) smart large object is created and stored
in the default sbspace. Registration fails if there is no
default sbspace. This smart large object can be moved
to a non-default sbspace after registration is complete;
instructions for moving it are provided in the release
notes.

-674 Routine (%FUNCTION%) cannot be
resolved.

Explanation: This error message is generally returned
by the IBM Informix server whenever you try to apply
the function to a non-supported type.

User response: Check the geometry type entered and
resubmit the function.

Appendix E. Error messages F-5

F-6 IBM Informix Spatial Data User's Guide

Appendix G. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in IBM Informix
products. These features support:

* Keyboard-only operation.
* Interfaces that are commonly used by screen readers.

¢ The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information

IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility

For more information about the IBM commitment to accessibility, see the IBM
Accessibility Center at http:/ /www.ibm.com/able]

Dotted decimal syntax diagrams

The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 2001, 2014 G-1

http://www.ibm.com/able

G-2

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3% * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1%, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string that follows the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %0P1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 57 NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

IBM Informix Spatial Data User's Guide

repeated. For example, if you hear the line 5.1% data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3%, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix G. Accessibility G-3

G-4 IBM Informix Spatial Data User's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan, Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2001, 2014 H-1

H-2

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A /G4

555 Bailey Avenue

San Jose, CA 95141-1003
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

IBM Informix Spatial Data User's Guide

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy policy considerations

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at|http:/ /www.ibm.com/privacy| and
IBM’s Online Privacy Statement at [http: / /www.ibm.com/privacy/details| the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at

lhttp: / /www.ibm.com /software/info/product-privacyl

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at|http://www.ibm.com/legal /copytrade.shtml.

Notices H-3

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, I[tanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

H-4 1BM Informix Spatial Data User's Guide

Index
A

Abstract data types 1-1
Access methods
B-tree 4-1
R-tree
about 4-1
operators for 4-4
Accessibility G-1
dotted decimal format of syntax diagrams G-1
keyboard G-1
shortcut keys G-1
syntax diagrams, reading in a screen reader G-1
ADTs 1-1
APl 1-8
Application programming interface 1-8
ARC/INFO 1-8
ArcSDE 6-3
ArcView 1-8
azimuthal projections 1-7

Big endian D-1

Binary operators 4-5
Bottom-up index build 4-3
Bounding box 4-1

C

Collection data types, sizing 6-1
Collections 2-1

compliance with standards xi
conformal projections 1-7
Coordinate list C-2

Coordinate systems B-1
Coordinate type C-2

Copy data A-1

D

Datums B-6, B-8
dbf files A-1
DE-9IM 7-2
Dimension 7-22
Dimensionally Extended 9 Intersection Model 7-2
Disabilities, visual
reading syntax diagrams G-1
Disability G-1
Dotted decimal format of syntax diagrams G-1

E

Ellipsoids B-5

EMPTY keyword C-2

Endpoints 2-5

equal-area projections 1-7
equidistant projections 1-7

ESRI binary shape representation E-1
ESRI shape representation 3-2

© Copyright IBM Corp. 2001, 2014

Extended Backus Naur Form B-1
Exterior rings 7-22

F

False origin 1-15
Falsem 1-12

Falsex 1-12

Falsey 1-12

Falsez 1-12
Fragmented tables 5-2

G

GEOGCS keyword B-1
Geographic coordinate system 1-2
Geographic coordinate systems 1-2
Geographic Information Systems 1-1
Geography markup language (GML) 3-3
Geography Markup Language (GML) 7-15
geometries 1-2
Geometry

properties 2-1
Geometry type C-2
geometry_columns table 1-21, A-2
geometry_type column 1-21
GIS 1-1
GML representation 3-3

H

Homogeneous collections 2-1

Indexes
access methods for 4-1
operator classes for 4-4
R-tree, using 4-1
syntax for 4-1
using 4-5
industry standards xi
infoshp utility A-1
Instantiated data type 2-1
Interior rings 7-22

J

Java API
Spatial data 8-1

K

Keyhole markup language (KML) 3-4
KML representation 3-4

X-1

L

Linestrings 2-1, 2-5, C-2
closed 2-5

Little endian D-1

Loading data A-1

loadshp utility A-1, A-2

Locale override 2-9

M

MapObjects 1-8

Measures 3-2

Modified well known text representation C-4
Multilinestrings 2-1, C-2

Multipoints 2-1, C-2

Multipolygons 2-1, C-2, D-4

N

NDR D-1
converting to XDR D-1
Nearest-neighbor queries 7-106

o)

ODBC 1-8, D-1

Open GIS Consortium 1-1
OpenGIS Consortium 2-1
Operator classes. 4-4
Origin, false 1-15

P

Parallel database query (PDQ) feature 5-2
Points 2-1, C-2

Polygons 2-1, C-2, D-4

POSC/EPSG B-1

PROJCS keyword B-1

projected coordinate systems 1-7
Projections B-1

Q

Queries
optimize for spatial 1-24

R

R-tree access method

about 4-1

operators for 4-4
R-tree indexes 7-106
Replication, of spatial data 1-10
Rings 2-5, D-4
rowsize column 6-2

S

SBSPACENAME configuration parameter 1-11
sbspaces

for spatial data 1-11
Screen reader

reading syntax diagrams G-1

X-2 IBM Informix Spatial Data User's Guide

SE_AsGML() function 3-3, 7-14
SE_AsKML() function 3-4, 7-15
SE_AsShape() function 3-2, 7-18, E-1
SE_AsText() function 7-19
SE_BoundingBox() function 7-21
SE_CreateSRID() function 7-33
SE_CreateSrtext() function 7-36
SE_CreateSrtextCount() function 7-38
SE_CreateSrtextList() function 7-38
SE_Dissolve() function 7-47
SE_EnvelopeAsKML() function 7-54
SE_EnvelopeFromKML() function 3-4, 7-55
SE_EnvelopesIntersect() function 7-56
SE_Generalize() function 7-60
SE_GeomFromShape() function 3-2, 7-66, E-1
SE_InRowSize() function 7-69
SE_LineFromShape() function 3-2, 7-87
SE_M() function 2-4
SE_Metadata opaque type 5-1
SE_MetaDatalnit() function 7-94
SE_MetadataTable table 5-1
SE_Midpoint() function 7-94
SE_MlineFromShape() function 7-96
SE_MLineFromShape() function 3-2
SE_MPointFromShape() function 3-2, 7-100
SE_MPolyFromShape() function 3-2, 7-104
SE_Nearest() function 7-106
SE_NearestBbox() function 7-106
SE_OutOfRowSize() function 7-109
SE_ParamGet() function 7-112
SE_ParamSet() function 7-112
SE_PerpendicularPoint() function 7-114
SE_PointFromShape() function 3-2, 7-118, E-1
SE_PolyFromShape() function 3-2, 7-123, E-1
SE_Release() function 7-127
SE_ShapeToSQL() function 7-127
SE_SpatialKey() function 7-128
SE_SRID_Authority() function 7-130
SE_TotalSize() function 7-133
SE_Trace() function 7-135
SE_VertexAppend() function 7-142
SE_VertexDelete() function 7-142
SE_VertexUpdate() function 7-142
SE_Z() function 2-4
Shape representation E-1
Shape types

Multipoint E-2

MultiPointM E-5

MultiPointZ E-7

Point E-1

PointM E-4

PointZ E-7

PointZM E-10

Polygon E-3

PolygonM E-6

PolygonZ E-9

PolygonZM E-12

Polyline E-2

PolyLineM E-5

PolyLineZ E-8

PolyLineZM E-11

values E-1
Shapefiles A-1, A-6
Shapes E-1

properties 2-1
Shortcut keys

keyboard G-1

shp files A-1
shx files A-1
Simple, property 2-5
Size, spatial columns 6-1
Smart large objects 6-3
Space requirements 6-1
Spatial columns 1-8
Spatial data 1-1

indexing 1-23

inserting 1-19

Java API 8-1

preparing 1-11

querying 1-23

R-tree index

spatial data 1-23

updating 1-26
Spatial data types

casting 2-10
Spatial indexes, size 6-3
Spatial operator classes 4-4
Spatial queries

optimizing 1-24
Spatial reference identifier C-2, C-4
Spatial reference system 1-14
Spatial reference systems 1-2, B-1
Spatial table

creating 1-18
spatial_reference table 1-14
spatial_references table 1-12

replication 1-10

triggers 5-1
SPL 29
ST_Area() function 2-6, 2-8, 7-10
ST_AsBinary() function 1-8, 3-2, 7-13
ST_AsGML() function 3-3, 7-15
ST_AsKML() function 3-4
ST_AsShape() function 1-8
ST_AsText() function 1-8, 3-1
ST_Boundary() function 7-20
ST_Buffer() function 7-22
ST_Centroid() function 2-6, 2-8, 7-27
ST_Contains() function 7-28
ST_ConvexHull() function 7-30
ST_CoordDim() function 7-31
ST_COSTMULTIPLER environment variable 1-24
ST_Crosses() function 7-39
ST_Difference() function 7-41
ST_Dimension() function 7-43
ST_Disjoint() function 7-44
ST_Distance() function 7-49
ST_DistanceToPoint() function 7-51
ST_EndPoint() function 2-5, 7-51
ST_Envelope() function 7-52
ST_EnvelopeAsGML() function 3-3, 7-54
ST_EnvelopeAsKML() function 3-4
ST_EnvelopeFromGML() function 7-55
ST_Equals() function 7-57
ST_ExteriorRing() function 2-6, 7-59
ST_Geometry_Ops operator class 4-4
ST_GeometryN() function 2-1, 7-62
ST_GeometryType() function 2-1, 7-62
ST_GeomFromGML() function 3-3, 7-64
ST_GeomFromKML() function 3-4, 7-66
ST_GeomFromText() function 3-1, 7-67
ST_GeomFromWKB() function 3-2, 7-68
ST_InteriorRingN() function 2-6, 7-69
ST_Intersection() function 7-72

ST_Intersects() function 7-74

ST_Is3D() function 7-77

ST _IsClosed() function 2-5, 2-7, 7-78
ST_IsEmpty() function 7-79
ST_IsMeasured() function 7-80
ST_IsRing() function 2-5, 7-81
ST_IsSimple() function 7-82

ST_Length() function 2-5, 2-7, 7-83
ST_LineFromGML() function 3-3, 7-85
ST_LineFromKML() function 3-4, 7-86
ST_LineFromText() function 3-1, 7-88
ST_LineFromWKB() function 3-2, 7-88
ST_LineString type 2-5

ST_LocateAlong() function 7-89
ST_LocateBetween() function 7-91
ST_M() function 7-92

ST_MAXLEVELS environment variable 1-24
ST_MaxM() function 7-93

ST_MaxX() function 7-93

ST_MaxY() function 7-93

ST_MaxZ() function 7-93
ST_MEMMODE environment variable 1-24
ST_MinM() function 7-93

ST_MinX() function 7-93

ST_MinY() function 7-93

ST_MinZ() function 7-93
ST_MLineFromGML() function 3-3, 7-94
ST_MLineFromKML() function 3-4, 7-96
ST_MLineFromText() function 3-1, 7-97
ST_MLineFromWKB() function 3-2, 7-98
ST_MPointFromGML() function 3-3, 7-99
ST_MPointFromKML() function 3-4
ST_MPointFromText() 7-101
ST_MPointFromText() function 3-1
ST_MPointFromWKB() function 3-2, 7-101
ST_MPolyFromGML() function 3-3, 7-102
ST_MPolyFromKML() function 3-4, 7-103
ST_MpolyFromText() function 7-105
ST_MPolyFromText() function 3-1
ST_MpolyFromWKB() function 7-105
ST_MPolyFromWKB() function 3-2
ST_MultiLineString type 2-7
ST_MultiPoint type 2-7
ST_MultiPolygon type 2-8, 7-22
ST_NumGeometries() function 2-1, 7-107
ST_NumlinteriorRing() function 2-6, 7-108
ST_NumPoints() function 2-5, 7-108
ST_Overlaps() function 1-1, 7-110
ST_Perimeter() function 7-113

ST_Point type 2-4

ST_Point() function 7-115
ST_PointAtDistance() function 7-116
ST_PointFromGML() function 3-3, 7-116
ST_PointFromKML() function 3-4, 7-117
ST_PointFromText() function 3-1, 7-119, C-4
ST_PointFromWKB() function 3-2, 7-119
ST_PointN() function 2-5, 7-120
ST_PointOnSurface() function 2-6, 2-8, 7-121
ST_PolyFromGML() function 7-121
ST_PolyFromKML() function 3-4, 7-122
ST_PolyFromShape() function 3-3
ST_PolyFromText() function 3-1, 7-124
ST_PolyFromWKB() function 3-2, 7-124
ST_Polygon type 2-6, 7-22

ST_Polygon() function 7-125

ST_Relate() function 7-126

ST_SRID() function 7-128

Index

X-3

ST_Startpoint() function 2-5
ST_StartPoint() function 7-130
ST_Symdifference() function 7-131
ST_Touches() function 7-133
ST_Transform() function 7-136
ST_Union() function 7-140
st_units_of_measure table 1-17
ST_Within() function 7-142
ST_WKBToSQL() function 7-144
ST_WKTToSQL() function 7-145
ST_X() function 2-4, 7-146
ST_Y() function 2-4, 7-147
ST_Z() function 7-148
STACKSIZE configuration parameter 1-11
standards xi
Storage space 6-1
Strategy functions 4-4
Subclass data types 2-1
Syntax diagrams

reading in a screen reader G-1
SYSSBSPACENAME configuration parameter 1-11
System units 1-15

-

Table fragmentation 5-2
Tessellating 7-30
Top-down index build 4-3
true-direction projections 1-7

U

Units of measure 1-16
Unloading data A-1
unloadshp utility A-1, A-6

\'}

Visual disabilities
reading syntax diagrams G-1

W

Well known binary representation 3-2, D-1
Well known text representation 3-1, B-1, C-1
modified C-4

X

XDR D-1
converting to NDR D-1
XYunits 1-12

Y4

Z coordinates 3-2

X-4 IBM Informix Spatial Data User's Guide

Printed in USA

SC27-4534-01

apIny s,1asn ejeq |eneds xiwioju] g

0}°¢} uoisiap

Xiwoju| Ajiwed 1onpod Xiwaoju|

:uoLjewdojul autds

	Contents
	Introduction
	About this publication
	Types of users
	Assumptions about your locale

	What's new in spatial data for IBM Informix, Version 12.10
	Example code conventions
	Additional documentation
	Compliance with industry standards
	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback

	Chapter 1. Getting started with spatial data
	Overview of spatial data
	Geographic coordinate system
	Projected coordinate system

	Informix spatial solution architecture
	Spatial data replication
	The IBM Informix Web Feature Service

	Preparing for spatial data
	The spatial_references table
	Predefined spatial reference systems
	False origin and system units

	Units of measure
	The st_units_of_measure table

	Spatial tables

	Loading spatial data
	The geometry_columns table
	The spatial index

	Query spatial data
	Optimize spatial queries

	Update values in a spatial column

	Chapter 2. Spatial data types
	Properties of spatial data types
	ST_Point data type
	ST_LineString data type
	ST_Polygon data type
	ST_MultiPoint data type
	ST_MultiLineString data type
	ST_MultiPolygon data type
	Locale override
	Spatial data types with SPL
	Casts between spatial data types

	Chapter 3. Data exchange formats
	Well-known text representation
	Well-known binary representation
	ESRI shape representation
	Geography Markup Language representation
	Keyhole Markup Language representation

	Chapter 4. R-tree indexes
	Syntax for creating an R-tree index
	Bottom-up versus top-down index builds
	Functional R-tree indexes
	Verify that the index is correctly built

	The spatial operator class ST_Geometry_Ops
	How spatial operators use R-tree indexes

	Chapter 5. Run parallel queries
	Parallel query execution infrastructure
	Resolve problems with SE_MetadataInit()
	Execute parallel queries

	Chapter 6. Estimate your spatial data
	Estimating the storage space for the table
	Estimate the size of the spatial column
	Estimate the size of non-spatial columns
	Estimate dbspace overhead requirements

	Estimating the smart large object storage space
	Estimating the size of spatial indexes

	Chapter 7. Spatial functions
	The Dimensionally Extended 9 Intersection Model
	Summary of spatial functions by task type
	The ST_Area() function
	The ST_AsBinary() function
	The SE_AsGML() function
	The ST_AsGML() function
	The SE_AsKML() function
	The ST_AsKML() function
	The SE_AsShape() function
	The ST_AsText() function
	The ST_Boundary() function
	The SE_BoundingBox() function
	The ST_Buffer() function
	The ST_Centroid() function
	The ST_Contains() function
	The ST_ConvexHull() function
	The ST_CoordDim() function
	The SE_CreateSRID() function
	The SE_CreateSrtext() function
	The SE_CreateSrtextCount() function
	The SE_CreateSrtextList() function
	The ST_Crosses() function
	The ST_Difference() function
	The ST_Dimension() function
	The ST_Disjoint() function
	The SE_Dissolve() function
	The ST_Distance() function
	The ST_DistanceToPoint() function
	The ST_EndPoint() function
	The ST_Envelope() function
	The ST_EnvelopeAsGML() function
	The SE_EnvelopeAsKML() function
	The ST_EnvelopeFromGML() function
	The SE_EnvelopeFromKML() function
	The SE_EnvelopesIntersect() function
	The ST_Equals() function
	The ST_ExteriorRing() function
	The SE_Generalize() function
	The ST_GeometryN() function
	The ST_GeometryType() function
	The ST_GeomFromGML() function
	The ST_GeomFromKML() function
	The SE_GeomFromShape() function
	The ST_GeomFromText() function
	The ST_GeomFromWKB() function
	The SE_InRowSize() function
	The ST_InteriorRingN() function
	The ST_Intersection() function
	The ST_Intersects() function
	The ST_Is3D() function
	The ST_IsClosed() function
	The ST_IsEmpty() function
	The ST_IsMeasured() function
	The ST_IsRing() function
	The ST_IsSimple() function
	The ST_IsValid() function
	The ST_Length() function
	The ST_LineFromGML() function
	The ST_LineFromKML() function
	The SE_LineFromShape() function
	The ST_LineFromText() function
	The ST_LineFromWKB() function
	The ST_LocateAlong() function
	The ST_LocateBetween() function
	The ST_M() function
	The ST_MaxM() and ST_MinM() functions
	The ST_MaxX() and ST_MinX() functions
	The ST_MaxY() and ST_MinY() functions
	The ST_MaxZ() and ST_MinZ() functions
	The SE_MetadataInit() function
	The SE_Midpoint() function
	The ST_MLineFromGML() function
	The ST_MLineFromKML() function
	The SE_MLineFromShape() function
	The ST_MLineFromText() function
	The ST_MLineFromWKB() function
	The ST_MPointFromGML() function
	The ST_MPointFromKML() function
	The SE_MPointFromShape() function
	The ST_MPointFromText() function
	The ST_MPointFromWKB() function
	The ST_MPolyFromGML() function
	The ST_MPolyFromKML() function
	The SE_MPolyFromShape() function
	The ST_MPolyFromText() function
	The ST_MPolyFromWKB() function
	The SE_Nearest() and SE_NearestBbox() functions
	The ST_NumGeometries() function
	The ST_NumInteriorRing() function
	The ST_NumPoints() function
	The SE_OutOfRowSize() function
	The ST_Overlaps() function
	The SE_ParamGet() function
	The SE_ParamSet() function
	The ST_Perimeter() function
	The SE_PerpendicularPoint() function
	The ST_Point() function
	The ST_PointAtDistance() function
	The ST_PointFromGML() function
	The ST_PointFromKML() function
	The SE_PointFromShape() function
	The ST_PointFromText() function
	The ST_PointFromWKB() function
	The ST_PointN() function
	The ST_PointOnSurface() function
	The ST_PolyFromGML() function
	The ST_PolyFromKML() function
	The SE_PolyFromShape() function
	The ST_PolyFromText() function
	The ST_PolyFromWKB() function
	The ST_Polygon() function
	The ST_Relate() function
	The SE_Release() function
	The SE_ShapeToSQL() function
	The SE_SpatialKey() function
	The ST_SRID() function
	The SE_SRID_Authority() function
	The ST_StartPoint() function
	The ST_SymDifference() function
	The SE_TotalSize() function
	The ST_Touches() function
	The SE_Trace() function
	The ST_Transform() function
	The ST_Union() function
	The SE_VertexAppend() function
	The SE_VertexDelete() function
	The SE_VertexUpdate() function
	The ST_Within() function
	The ST_WKBToSQL() function
	The ST_WKTToSQL() function
	The ST_X() function
	The ST_Y() function
	The ST_Z function

	Chapter 8. Spatial Java API
	Compatibility with the ESRI ArcSDE Java API
	Overview of the Java API
	Geometries
	Uses for the Java API
	The CoordRefManager Class
	The SpatialManager Class

	Overview of a Spatial Java API Application
	Using Logging
	Assigning a Connection to CoordRefManager
	Querying and Displaying Geometries
	Reading Coordinate Data

	Preparing to Run a Program
	Running the Programs

	Example 1: Retrieving a Point From a Table
	Examples 2, 3, and 4: How to Use the Java API
	GeometryToWKT
	GeometryToArray
	CoordRefCreate

	Appendix A. Load and unload shapefile data
	The infoshp utility
	The loadshp utility
	The unloadshp utility

	Appendix B. OGC well-known text representation of spatial reference systems
	The text representation of a spatial system
	Linear units
	Angular units
	Geodetic spheroids
	Horizontal datums (spheroid only)
	Horizontal datums
	Prime meridians
	Projection parameters
	Map projections

	Appendix C. OGC well-known text representation of geometry
	Well-known text representation in a C program
	Well-known text representation in an SQL editor
	Modified well-known text representation

	Appendix D. OGC well-known binary representation of geometry
	Numeric type definitions
	XDR (big endian) encoding of numeric types
	NDR (little endian) encoding of numeric types
	Conversion between the NDR and XDR representations of WKB geometry
	Description of WKBGeometry byte streams
	Assertions for well-known binary representation for geometry

	Appendix E. ESRI shape representation
	Shape type values
	Shape types in XY space
	Point
	MultiPoint
	PolyLine
	Polygon
	A sample polygon instance

	Measured shape types in XY space
	PointM
	MultiPointM
	PolyLineM
	PolygonM

	Shape types in XYZ space
	PointZ
	MultiPointZ
	PolyLineZ
	PolygonZ

	Measured shape types in XYZ space
	PointZM
	MultiPointZM
	PolyLineZM
	PolygonZM

	Appendix F. Error messages
	Error messages and their explanations

	Appendix G. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Privacy policy considerations
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

