
Informix Product Family
Informix
Version 12.10

IBM Informix XML User's Guide

SC27-4539-00

���

Informix Product Family
Informix
Version 12.10

IBM Informix XML User's Guide

SC27-4539-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page B-1.

Edition

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . v
About this publication . v

Types of users . v
Assumptions about your locale . v

Example code conventions . vi
Additional documentation . vi
Compliance with industry standards . vi

Syntax diagrams. ix
How to read a command-line syntax diagram . x
Keywords and punctuation . xi
Identifiers and names . xi

How to provide documentation feedback. xiii

Chapter 1. Publishing SQL result sets in XML 1-1
XML publishing . 1-2
The idsxmlvp virtual processor class . 1-2
Special characters in XML functions . 1-3
The extract() and extractclob() XML functions. 1-3
The existsnode() XML function. 1-4
The extractvalue() and extractvalueclob() XML functions . 1-5
The genxml() and genxmlclob() XML functions . 1-6
The genxmlelem() and genxmlelemclob() XML functions . 1-7
The genxmlqueryhdr() and genxmlqueryhdrclob() XML functions 1-9
The genxmlquery() and genxmlqueryclob() XML functions 1-10
The genxmlschema() and genxmlschemaclob() XML functions 1-10
The idsxmlparse() XML function . 1-11

Chapter 2. Transforming documents with XSLT functions 2-1
The xsltransform function . 2-1
The xsltransformAsClob function . 2-2
The xsltransformAsBlob function . 2-2

Appendix. Accessibility . A-1
Accessibility features for IBM Informix products . A-1

Accessibility features . A-1
Keyboard navigation . A-1
Related accessibility information . A-1
IBM and accessibility. A-1

Dotted decimal syntax diagrams . A-1

Notices . B-1
Trademarks . B-3

Index . X-1

© Copyright IBM Corp. 1996, 2013 iii

iv IBM Informix XML User's Guide

Introduction

About this publication

This publication includes information about using built-in functions for XML
publishing with IBM® Informix®.

You should be familiar with the IBM Informix Guide to SQL: Syntax, which contains
all the syntax descriptions for SQL and stored procedure language (SPL). The IBM
Informix Guide to SQL: Tutorial shows how to use basic and advanced SQL and SPL
routines to access and manipulate the data in your databases. The IBM Informix
Database Design and Implementation Guide shows how to use SQL to implement and
manage your databases.

See the documentation notes files for a list of the publications in the
documentation set of your IBM Informix database server.

Types of users
This publication is written for the following users:
v Database users
v Database administrators
v Database server administrators
v Database-application programmers

This publication assumes that you have the following background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational databases or exposure to database

concepts
v Some experience with computer programming and XML
v Some experience with database server administration, operating-system

administration, or network administration

Assumptions about your locale
IBM Informix products can support many languages, cultures, and code sets. All
the information related to character set, collation, and representation of numeric
data, currency, date, and time is brought together in a single environment, called a
Global Language Support (GLS) locale.

This publication assumes that your database uses the default locale. This default is
en_us.8859-1 (ISO 8859-1) on UNIX platforms or en_us.1252 (Microsoft 1252) in
Windows environments. This locale supports U.S. English format conventions for
displaying and entering date, time, number, and currency values. It also supports
the ISO 8859-1 (on UNIX and Linux) or Microsoft 1252 (on Windows) code set,
which includes the ASCII code set plus many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or in SQL identifiers, or if
you plan to use other collation rules for sorting character data, you need to specify
the appropriate nondefault locale.

© Copyright IBM Corp. 1996, 2013 v

For instructions on how to specify a nondefault locale, and for additional syntax
and other considerations related to GLS locales, see the IBM Informix GLS User's
Guide.

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

You can access Informix technical information such as information centers,
technotes, white papers, and IBM Redbooks® publications online at
http://www.ibm.com/software/data/sw-library/.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade® Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing

vi IBM Informix XML User's Guide

http://www.ibm.com/software/data/sw-library/

Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

Introduction vii

viii IBM Informix XML User's Guide

Syntax diagrams

Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 1. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on next
line.

>----------------------- Statement continues from
previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---
’------LOCAL------’

Optional item.

---+-----ALL-------+---
+--DISTINCT-----+
’---UNIQUE------’

Required item with choice.
Only one item must be
present.

---+------------------+---
+--FOR UPDATE-----+
’--FOR READ ONLY--’

Optional items with choice
are shown below the main
line, one of which you might
specify.

.---NEXT---------.
----+----------------+---

+---PRIOR--------+
’---PREVIOUS-----’

The values below the main
line are optional, one of
which you might specify. If
you do not specify an item,
the value above the line is
used by default.

.-------,-----------.
V |
---+-----------------+---

+---index_name---+
’---table_name---’

Optional items. Several items
are allowed; a comma must
precede each repetition.

>>-| Table Reference |->< Reference to a syntax
segment.

Table Reference

|--+-----view--------+--|
+------table------+
’----synonym------’

Syntax segment.

© Copyright IBM Corp. 1996, 2013 ix

How to read a command-line syntax diagram
Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a no-conversion job

�� onpladm create job job
-p project

-n -d device -D database �

� -t table �

� �
(1)

Setting the Run Mode
-S server -T target

��

Notes:

1 See page Z-1

This diagram has a segment named “Setting the Run Mode,” which according to
the diagram footnote is on page Z-1. If this was an actual cross-reference, you
would find this segment on the first page of Appendix Z. Instead, this segment is
shown in the following segment diagram. Notice that the diagram uses segment
start and end components.

Setting the run mode:

-f
d
p
a

l
c

u n N

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type onpladm create job and then the name of the job.
2. Optionally, type -p and then the name of the project.
3. Type the following required elements:

v -n

v -d and the name of the device
v -D and the name of the database

x IBM Informix XML User's Guide

v -t and the name of the table
4. Optionally, you can choose one or more of the following elements and repeat

them an arbitrary number of times:
v -S and the server name
v -T and the target server name
v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then optionally
type l or u.

5. Follow the diagram to the terminator.

Keywords and punctuation
Keywords are words reserved for statements and all commands except
system-level commands.

When a keyword appears in a syntax diagram, it is shown in uppercase letters.
When you use a keyword in a command, you can write it in uppercase or
lowercase letters, but you must spell the keyword exactly as it appears in the
syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and names
Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in additional syntax diagrams. When a variable appears in a syntax
diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

Syntax diagrams xi

xii IBM Informix XML User's Guide

How to provide documentation feedback

You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v In the Informix information center, which is available online at

http://www.ibm.com/software/data/sw-library/, open the topic that you want
to comment on. Click the feedback link at the bottom of the page, fill out the
form, and submit your feedback.

v Add comments to topics directly in the information center and read comments
that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more!

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support at http://www.ibm.com/planetwide/.

We appreciate your suggestions.

© Copyright IBM Corp. 1996, 2013 xiii

mailto://docinf@us.ibm.com
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/planetwide/

xiv IBM Informix XML User's Guide

Chapter 1. Publishing SQL result sets in XML

Several functions let you publish XML from SQL queries.

There are two of XML functions for each action depending on the size of total
result set after adding all the tags necessary to publish it in XML format:
v One that returns a maximum of LVARCHAR(32739)
v One that returns a CLOB data type

The input XML must include every value inside an element, not as an attribute.
For example:
<employee>

<givenname>Roy</givenname>
<familyname>Connor</familyname>
<address>

<address1>123 First Street</address1>
<city>Denver</city>
<state/>CO</state>
<zipcode>80111</zipcode>

</address>
<phone>303-555-1212</phone>

</employee>

The XML functions are summarized in the following table.

Table 1-1. XML publishing functions

Action Function Comments

Return rows of SQL results as
XML elements.

“The genxml() and
genxmlclob() XML functions”
on page 1-6

Similar to FOR XML RAW in
Microsoft SQL Server

Return each column value as
separate elements.

“The genxmlelem() and
genxmlelemclob() XML
functions” on page 1-7

Similar to FOR XML AUTO,
ELEMENTS in Microsoft SQL
Server

Return an XML schema and
result in XML format.

“The genxmlschema() and
genxmlschemaclob() XML
functions” on page 1-10

Similar to FOR XML AUTO,
XMLSCHEMA in Microsoft
SQL Server

Returns the result set of a
query in XML format.

“The genxmlquery() and
genxmlqueryclob() XML
functions” on page 1-10

These functions accept a SQL
query as a parameter.

Returns the result set of a
query in XML with the XML
header.

“The genxmlqueryhdr() and
genxmlqueryhdrclob() XML
functions” on page 1-9

Every XML document must
have a header. These
functions provide a quick
method of generating a
header.

Evaluates an XPATH
expression on an XML
column, document, or string.

“The extract() and
extractclob() XML functions”
on page 1-3

Similar to the Oracle extract()
function.

Returns the value of the XML
node

“The extractvalue() and
extractvalueclob() XML
functions” on page 1-5

Similar to the Oracle
extractvalue() function.

© Copyright IBM Corp. 1996, 2013 1-1

Table 1-1. XML publishing functions (continued)

Action Function Comments

Verify whether a specific
node exists in an XML
document.

“The existsnode() XML
function” on page 1-4

Similar to the Oracle exists()
function.

Parse an XML document to
determine whether it is well
formed.

“The idsxmlparse() XML
function” on page 1-11

XML publishing
XML publishing provides a way to transform results of SQL queries into XML
structures.

When you publish an XML document using the built-in XML publishing functions,
you transform the result set of an SQL query into an XML structure, optionally
including an XML schema and header. You can store the XML in the database
server for use in XML-based applications.

The input XML must be in nested elements within an XML document, with each
column being an XML element rather than an attribute. This format is sometimes
called the FOR XML AUTO, ELEMENTS format.

The genxmlschema function and other XML publishing functions cannot publish
BYTE or TEXT columns into an XML document. These functions take the input
column as ROW types and then publish them. BYTE and TEXT are not allowed in
ROW types, so cannot be used in these publishing functions.

ROW types are unsupported in distributed queries. These functions use ROW
types. As a result, these publishing functions cannot be used in distributed queries
or use a synonym referring to a non-local object.

Before you run XML functions, run the following statement to allow multiple lines:
EXECUTE PROCEDURE ifx_allow_newline(’t’);

Run the following statements on the database server before running the examples
in this book. The CREATE DATABASE statement uses a dbspace named datadbs.
You must either create a dbspace named datadbs or substitute datadbs with the
name of an existing dbspace.
EXECUTE PROCEDURE ifx_allow_newline(’t’);
CREATE DATABASE demo_xml IN datadbs with log;
CREATE TABLE tab (col2 lvarchar);
INSERT INTO tab VALUES (’
<personnel>
<person id="Jason.Ma">
<name>

<family>Ma</family>
<given>Jason</given>

</name>
</person>
</personnel>’);

The idsxmlvp virtual processor class
The XML functions that IBM Informix provides run in a virtual processor class
named idsxmlvp.

1-2 IBM Informix XML User's Guide

The idsxmlvp virtual processor is created automatically the first time you use an
XML function. If you want to increase the number of idsxmlvp virtual processors,
use one of the following methods:
v Add the following line to your onconfig file, substituting n with the number of

virtual processors you want to start, and restart the database server: VPCLASS
idsxmlvp,num=n

v As user informix, run the following command while the database server is
running, substituting n with the number of virtual processors you want to start:
onmode -p +n idsxmlvp

Special characters in XML functions
The XML functions of the database server automatically handle special characters.

When a SQL result set contains special characters, the XML function will
automatically handle it. These special characters are listed in the following table.

Table 1-2. Special characters handled by XML functions

Character Resolved in XML as

Less than (<) <

Greater than (>) >

Double quote (") "

Apostrophe (`) '

Ampersand (&) &

The extract() and extractclob() XML functions
Evaluates an XPATH expression on an XML column, document, or string. These
functions are identical except that extractclob() returns a CLOB instead of
LVARCHAR.

Purpose

Returns an XML fragment of the evaluated XML column, document, or string. For
details on XPATH, see http://www.w3.org/TR/xpath.

The extract() syntax

�� extract (xml_string , xpath_expression) ��

The extractclob() syntax

�� extractclob (xml_string , xpath_expression) ��

Parameters

xml_string
The XML string or document to evaluate.

xpath_expression
An XPATH expression. For extract(), the string or document size cannot exceed
32739. For larger strings or documents, use extractclob().

Chapter 1. Publishing SQL result sets in XML 1-3

http://www.w3.org/TR/xpath

Specify an absolute XPath_string with an initial slash. Omit the initial slash to
indicate a path relative to the root node. If no match is found, these functions
return an empty string.

Example 1

This example evaluates the XML contained in column col2 of table tab and returns
the given name for Jason Ma.
SELECT extract(col2, ’/personnel/person[@id="Jason.Ma"]/name/given’)
FROM tab;

<given>Jason</given>

Example 2

This example is similar to the first, except the entire name is returned.
SELECT extract(col2, ’/personnel/person[@id="Jason.Ma"]/name’)
FROM tab;

<name>
<family>Ma</family>
<given>Jason</given>
</name>

Example 3

In this example, only the second column contains XML.
SELECT warehouse_name, extract(warehouse_spec, ’/Warehouse/Docks’)::lvarchar(256)
"Number of Docks"
FROM warehouses
WHERE warehouse_spec IS NOT NULL;

WAREHOUSE_NAME Number of Docks
-------------------- --------------------
Liverpool, England <Docks>2</Docks>
Taipei, Taiwan <Docks>1</Docks>
Buenos Aires, Argentina <Docks>4</Docks>
Seattle, USA <Docks>3</Docks>

The existsnode() XML function
Determines whether the XPath evaluation results in at least one XML element.

Purpose

Determines whether traversal of an XML document using a specified path results
in any nodes. Returns 1 if one or more nodes are found; otherwise, returns 0.

The existsnode() syntax

�� existsnode (xml_document , xpath_expression) ��

Parameters

xml_document
The XML document or fragment to evaluate. The document can be of type
LVARCHAR or CLOB.

xpath_expression
The XPATH expression to search for XML nodes.

1-4 IBM Informix XML User's Guide

Specify an absolute XPath_string with an initial slash. Omit the initial slash to
indicate a path relative to the root node. If no match is found, these functions
return an empty string.

Example 1

This example query returns a list of warehouse IDs and names for every
warehouse that has an associated dock.
SELECT warehouse_id, warehouse_name
FROM warehouses
WHERE existsnode(warehouse_spec, ’/Warehouse/Docks’) = 1;

The extractvalue() and extractvalueclob() XML functions
Returns the value of the XML node in contrast to extract(), which returns the XML
node.

Purpose

Returns a value from evaluated XML column, document, or string. For details on
XPATH, see http://www.w3.org/TR/xpath.

The extractvalue() syntax

�� extractvalue (xml_string , xpath_expression) ��

The extractvalueclob() syntax

�� extractvalueclob (xml_string , xpath_expression) ��

Parameters

xml_string
The XML string or document to evaluate.

xpath_expression
An XPATH expression. For extractvalue(), the string or document size cannot
exceed 32739. For larger strings or documents, use extractvalueclob().

Specify an absolute XPath_string with an initial slash. Omit the initial slash to
indicate a path relative to the root node. If no match is found, these functions
return an empty string.

Example 1

This example returns the value given name of the person who is identified in the
XPATH expression. No XML tags are returned.
SELECT extractvalue(col2, ’/personnel/person[3]/name/given’) FROM tab;

The output is the given name: Jason

Example 2

This example returns the number of docks in several cities.

Chapter 1. Publishing SQL result sets in XML 1-5

http://www.w3.org/TR/xpath

SELECT warehouse_name,
extractvalue(e.warehouse_spec, ’/Warehouse/Docks’)
"Docks"
FROM warehouses e
WHERE warehouse_spec IS NOT NULL;

WAREHOUSE_NAME Docks
-------------------- ------------
Liverpool, England 2
Taipei, Taiwan 1
Buenos Aires, Argentina
Seattle, USA 3

The genxml() and genxmlclob() XML functions
Return rows of SQL results as XML elements. Use genxmlclob if the returned row
is greater than LVARCHAR(32739).

Purpose

Use these functions to create an XML row element for each row that is returned
from an SQL query. Each column is an attribute of the row element. Use genxml
for returned row values that are LVARCHAR(32739) or less. For larger values, use
genxmlclob, which returns a CLOB.

These aggregate functions process the rows before an ORDER BY is completed. If
order is important, use the derived table queries to get the result set in the correct
order, and then apply the function on the result set. See “Enforcing order” on page
1-7 for details.

The genxml() syntax

�� genxml (root_element , rows) ��

The genxmlclob() syntax

�� genxmlclob (root_element , rows) ��

Parameters

root_element
The table name or names of columns to return. To return all columns, specify
the table name.

rows
The name given to the XML element of the returned row.

Example 1

This example shows how to retrieve XML rows from an SQL query on the
following table:

Table 1-3. The classes table

classid class subject

1 125 Chemistry

2 250 Physics

1-6 IBM Informix XML User's Guide

Table 1-3. The classes table (continued)

classid class subject

3 375 Mathematics

4 500 Biology

The first parameter, classes, is the name of the table, which indicates to return all
rows. The second parameter, row, is the name of the XML element that contains
each returned row.
SELECT genxml(classes, "row") from classes;

The following lines show the results of the query in XML. The attributes in the
rows are the names of the table columns.
<row classid="1" class="125" subject="Chemistry"/>
<row classid="2" class="250" subject="Physics"/>
<row classid="3" class="375" subject="Mathematics"/>
<row classid="4" class="500" subject="Biology"/>

Example 2

From the same table as Example 1, this example returns only the columns classid
and class.
SELECT genxml(row(classid, class), "row") from classes;

<row classid="1" class="125" />
<row classid="2" class="250"/>
<row classid="3" class="375" />
<row classid="4" class="500" />

Example 3

This example uses genxmlclob() because a large result set is expected.
SELECT genxmlclob(row(Customers.Customid, Orders.Orderid,

Customers.ContactName), "row")
From Customers, Orders
Where Customers.CustomerID = Orders.orderid;

This sample output shows only the first three rows:
<row Customerid="ALFKI" Orderid="10643" ContactName="Maria Anders"/>
<row Customerid="ALFKI" Orderid="10692" ContactName="Maria Anders"/>
<row Customerid="ALFKI" Orderid="10702" ContactName="Maria Anders"/>
.
.
.

Enforcing order

You can enforce the order of elements in XML document
SELECT genxml(row(c1, c2, c3), row)
FROM (SELECT a, b, c from t order by c, d)
AS vt(c1, c2, c3);

The genxmlelem() and genxmlelemclob() XML functions
These functions publish each element in the document separately.

Chapter 1. Publishing SQL result sets in XML 1-7

Purpose

These functions return each column value as separate elements, in contrast to
genxml(), which returns column values as attributes of the row element.

The genxmlelem() syntax

�� genxmlelem (row , element) ��

The genxmlelemclob() syntax

�� genxmlelemclob (row , element) ��

Parameters

row
The rows and columns to return.

element
The name of the element that contains the result set.

Example 1

This example uses the table Table 1-3 on page 1-6. The first parameter specifies the
table name to retrieve all columns from the table. The second parameter specifies
to place the output in an XML tag, classes.
SELECT genxmlelem(classes, “classes”) from classes where classid = 1;

The query returns one row:
<classes>
<row>
<classid>1</classid>
<class>125</class>
<subject>Chemistry</subject>
</row>
</classes>

Example 2

This query returns a list of all employees from the employee table.
SELECT genxmlelemclob(employee, “employee”) FROM employee;

<employee>
<row>
<givenname>Roy</givenname>
<familyname>Connor</familyname>
<address>
<address1>123 First Street</address1>
<city>Denver</city>
<state/>CO</state>
<zipcode>80111</zipcode>
</address>
<phone>303-555-1212</phone>
</row>
.
.
.
</employee>

1-8 IBM Informix XML User's Guide

The genxmlqueryhdr() and genxmlqueryhdrclob() XML functions
Returns the result set of a query in XML with the XML header.

Purpose

These functions are exactly the same as genxmlquery() and genxmlqueryclob(),
except they include an XML header. An XML header specifies document properties
such as the document encoding, the document type definition (DTD), and XML
stylesheet (XSL). The following example shows a typical XML header:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Server SYSTEM "opt/pdos/etc/pdoslrd.dtd">

The encoding that is returned is the same as that of the operating system.

The genxmlqueryhdr() syntax

�� genxmlqueryhdr (row , query) ��

The genxmlqueryhdrclob() syntax

�� genxmlqueryhdrclob (row , query) ��

Parameters

row
The rows and columns to return

query
The SQL query whose result set will be returned as an XML document with a
header.

Example 1
EXECUTE FUNCTION genxmlqueryhdr(’manufact_set’,’SELECT * FROM manufact’);

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE manufact_set SYSTEM "../manufact_set.dtd">
<?xml-stylesheet type="text/xsl" href="../manufact_set.xsl" ?>
<manufact_set>
<row>
<manu_code>SMT</manu_code>
<manu_name>Smith </manu_name>
<lead_time>3</lead_time>
</row>
<row>
<manu_code>ANZ</manu_code>
<manu_name>Anza </manu_name>
<lead_time>5</lead_time>
</row>
<row>
<manu_code>NRG</manu_code>
<manu_name>Norge </manu_name>
<lead_time>7</lead_time>
</row>
<row>
<manu_code>HSK</manu_code>

Chapter 1. Publishing SQL result sets in XML 1-9

<manu_name>Husky </manu_name>
<lead_time>5</lead_time>
</row>
</manufact_set>

The genxmlquery() and genxmlqueryclob() XML functions
These functions take a SQL query as a parameter and return the result set in XML.

Purpose

Use these functions to retrieve results with each column in an element.

The genxmlquery() syntax

�� genxmlquery (row , query) ��

The genxmlclobelemclob() syntax

�� genxmlqueryclob (row , query) ��

Parameters

row
The rows and columns to return.

query
The SQL query whose result set will be returned as XML.

Example 1
EXECUTE FUNCTION genxmlquery(’manufact_set’,’SELECT * FROM manufact’);

<manufact_set>
<row>

<manu_code>SMT</manu_code>
<manu_name>Smith</manu_name>
<lead_time>3</lead_time>

</row>
</manufact_set>

The genxmlschema() and genxmlschemaclob() XML functions
These functions generate an XML schema and result in XML format.

Purpose

These functions are identical to genxml() and genxmlclob(), but they also generate
an XML schema.

The genxmlschema() syntax

�� genxmlschma (row , element) ��

1-10 IBM Informix XML User's Guide

The genxmlschemaclob() syntax

�� genxmlschemaclob (row , element) ��

Parameters

row
The rows and columns to return.

element
The name of the element that contains the result set.

Example 1
SELECT genxmlschema(customer, “customer”) FROM customers;

<?xml version="1.0" encoding="en_US.819" ?>
xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"\
targetNamespace="http://www.ibm.com"\
xmlns="http://www.ibm.com"\
ElementFormDefault="qualified">
<xs:element name="customer">
<xs:complexType>
<xs:sequence>
<xs:element name="customer_num" type="xs:serial"/>
<xs:element name="fname" type="xs:char(15)"/>
<xs:element name="lname" type="xs:char(15)"/>
<xs:element name="company" type="xs:char(20)"/>
<xs:element name="address1" type="xs:char(20)"/>
<xs:element name="city" type="xs:char(15)"/>
<xs:element name="state" type="xs:char(2)"/>
<xs:element name="zipcode" type="xs:char(5)"/>
<xs:element name="phone" type="xs:char(18)"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
<customer>
<row>
<customer_num>101</customer_num>
<fname>Ludwig </fname>
<lname>Pauli </lname>
<company>All Sports Supplies </company>
<address1>213 Erstwild Court </address1>
<city>Sunnyvale </city>
<state>CA</state>
<zipcode>94086</zipcode>
<phone>408-789-8075 </phone>
</row>

The idsxmlparse() XML function
Parse an XML document or fragment to determine whether it is well formed.

Purpose

This function returns an XML document or fragment if the input XML is well
formed.

The idsxmlparse() syntax

Chapter 1. Publishing SQL result sets in XML 1-11

�� idsxmlparse (xml_document) ��

Parameters

xml_document
The XML document or fragment to parse to determine whether it is well
formed.

Example 1
SELECT idsxmlparse(
’<purchaseOrder poNo="124356">
<customerName>ABC Enterprises</customerName>
<itemNo>F123456</itemNo>
</purchaseOrder>’)
AS PO FROM systables where tabid = 1;

<purchaseOrder poNo="124356">
<customerName>ABC Enterprises</customerName>
<itemNo>F123456</itemNo>
</purchaseOrder>

1-12 IBM Informix XML User's Guide

Chapter 2. Transforming documents with XSLT functions

Apply XSL stylesheets and transforms to XML documents.

Extensible Stylesheet Language (XSL) uses XML elements to describe the format of
a document. You can use the XSLT functions that IBM Informix provides to apply
XSL transformations (XSLT) to XML documents, resulting in a document in a
different XML schema, HTML, PDF, or any defined type. XSL and XSLT are
standards defined by the World Wide Web Consortium, which you can find at
http://www.w3.org/TR/xslt.

IBM Informix supports the XSLT version 1.0 standard for style sheets and uses the
Xalan XSLT processor and the Xerces Java™ parser.

The documents take arguments of an XML file and a stylesheet. The output is a
new document whose type is determined by the XSLT transform. The input
arguments can be lvarchar, clob, or blob.

The xsltransform function
Use this function to return a document up to 32,739 bytes.

Purpose

The xsltransform function transforms an XML document with an XSL stylesheet
and XSLT parameter. The returned document is of type LVARCHAR.

The xsltransform syntax

�� xlstransform (xml_document , xsl_document) ��

Parameters

xml_document
The XML document or fragment to transform. The document can be of type
LVARCHAR, CLOB, or BLOB.

xsl_document
The XSL stylesheet document that is applied to the XML document. The XSL
stylesheet can be of type LVARCHAR, CLOB, or BLOB.

Sample

Column info contains an XML document, and column style contains an XSL
stylesheet:

© Copyright IBM Corp. 1996, 2013 2-1

http://www.w3.org/TR/xslt

Table 2-1. A row in table xmldocs

id info style

1 <?xml version='1.0'
encoding='ISO-889–1' ?> <doc>Hello
world!</doc>

<?xml version='1.0'?> <xsl:stylesheet
xmlns:xsl='http://www.w3.org/
1999/XSL/Transform' version='1.0'>
<xsl:output encoding='US-ASCII'/>
<xsl:template match='doc'> <out>
<xsl:value-of select='.'/> </out>
</xsl:template> </xsl:stylesheet>

The XML document is transformed by the XSL stylesheet by calling xsltrasform:
select xsltransform(info, style) from xmldocs where id = 1

The following XML document is returned:
<?xml version=’1.0’ encoding="US-ASCII"?> <out>Hello world!</out>

The xsltransformAsClob function
Use this function to return a CLOB document resulting from an XSL transform.

Purpose

The xsltransformAsClob function transforms an XML document with an XSL
stylesheet and XSLT parameter. The returned document is of type CLOB.

The xsltransformAsClob syntax

�� xlstransformAsClob (xml_document , xsl_document) ��

Parameters

xml_document
The XML document or fragment to transform. The document can be of type
LVARCHAR or CLOB.

xsl_document
The XSL stylesheet document that is applied to the XML document. The XSL
stylesheet can be of type LVARCHAR or CLOB.

The xsltransformAsBlob function
Use this function to return a BLOB document resulting from an XSL transform.

Purpose

The xsltransformAsBlob function transforms an XML document with an XSL
stylesheet and XSLT parameter. The returned document is of type BLOB.

The xsltransformAsBlob syntax

�� xlstransformAsBlob (xml_document , xsl_document) ��

2-2 IBM Informix XML User's Guide

Parameters

xml_document
The XML document or fragment to transform. The document can be of type
LVARCHAR or BLOB.

xsl_document
The XSL stylesheet document that is applied to the XML document. The XSL
stylesheet can be of type LVARCHAR or BLOB.

Chapter 2. Transforming documents with XSLT functions 2-3

2-4 IBM Informix XML User's Guide

Appendix. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the IBM commitment to accessibility.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 1996, 2013 A-1

http://www.ibm.com/able

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 refers to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be

A-2 IBM Informix XML User's Guide

repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Informix XML User's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1996, 2013 B-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

B-2 IBM Informix XML User's Guide

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices B-3

http://www.ibm.com/legal/copytrade.shtml

B-4 IBM Informix XML User's Guide

Index

A
Accessibility A-1

dotted decimal format of syntax diagrams A-1
keyboard A-1
shortcut keys A-1
syntax diagrams, reading in a screen reader A-1

C
compliance with standards vi

D
Disabilities, visual

reading syntax diagrams A-1
Disability A-1
Dotted decimal format of syntax diagrams A-1

I
idsxmlvp 1-3
industry standards vi

S
Screen reader

reading syntax diagrams A-1
Shortcut keys

keyboard A-1
standards vi
Syntax diagrams

reading in a screen reader A-1

V
Visual disabilities

reading syntax diagrams A-1

X
XML function

existsnode 1-4
extract 1-3
extractclob 1-3
extractvalue 1-5
extractvalueclob 1-5
genxml 1-6
genxmlclob 1-6
genxmlelem 1-8
genxmlelemclob 1-8
genxmlquery 1-10
genxmlqueryclob 1-10
genxmlqueryhdr 1-9
genxmlqueryhdrclob 1-9
genxmlschema 1-10
genxmlschemaclob 1-10
idsxmlparse 1-11

xsltransform function 2-1

xsltransformAsBlob function 2-2
xsltransformAsClob function 2-2

© Copyright IBM Corp. 1996, 2013 X-1

X-2 IBM Informix XML User's Guide

����

Printed in USA

SC27-4539-00

	Contents
	Introduction
	About this publication
	Types of users
	Assumptions about your locale

	Example code conventions
	Additional documentation
	Compliance with industry standards

	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback
	Chapter 1. Publishing SQL result sets in XML
	XML publishing
	The idsxmlvp virtual processor class
	Special characters in XML functions
	The extract() and extractclob() XML functions
	The existsnode() XML function
	The extractvalue() and extractvalueclob() XML functions
	The genxml() and genxmlclob() XML functions
	The genxmlelem() and genxmlelemclob() XML functions
	The genxmlqueryhdr() and genxmlqueryhdrclob() XML functions
	The genxmlquery() and genxmlqueryclob() XML functions
	The genxmlschema() and genxmlschemaclob() XML functions
	The idsxmlparse() XML function

	Chapter 2. Transforming documents with XSLT functions
	The xsltransform function
	The xsltransformAsClob function
	The xsltransformAsBlob function

	Appendix. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Trademarks

	Index
	A
	C
	D
	I
	S
	V
	X

