
Guy M. Lohman

Manager, Disruptive Information
Management Architectures

IBM Almaden Research Center

lohman@almaden.ibm.com

Blink:

Not Your
Father’s
Database!

Real Time Business Intelligence

This is joint work with:

Ronald Barber, Peter Bendel, Marco Czech,
Oliver Draese, Frederick Ho, Namik Hrle,
Stratos Idreos, Min-Soo Kim, Oliver Koeth,
Jae Gil Lee, Tianchao Tim Lee, Guy
Lohman, Konstantinos Morfonios, Keshava
Murthy, Lin Qiao, Vijayshankar Raman,
Richard Sidle, Knut Stolze, … and many
more!

Blink Research Team

Konstantinos Morfonios Jae Gil Lee Min-Soo Kim

•

Lin Qiao Vijayshankar Raman Richard Sidle

Ron Barber Guy Lohman Stratos Idreos

Blink – Agenda

•Why and What is Blink

• Blink Market – Business Intelligence

• Blink Architecture

• It’s All About Performance!

• What’s the Big Deal?

• Behind the Curtain – The Query Engine Technology

• References and Related Work

• Next Steps

• Conclusions

Motivation

• Today, performance of Business Intelligence (BI) queries
is too unpredictable

–When an analyst submits a query, s/he doesn’t know whether to:

•Wait for the response

•Go out for coffee

•Go out for dinner

•Go home for the night!

–Response time depends upon “performance layer” of indexes &
materializations

–Depends critically on predicting the workload

–But BI is inherently ad hoc!

• Goal of Blink:

Predictably Fast (i.e., Interactive) Ad Hoc Querying

–Any query should run in about the same time

–Permit an Analyst to interact with the data

What Is Blink?

• Accelerator technology developed by IBM Almaden Research since 2007

• Contains a compressed copy of a (portion of a) data warehouse

• Exploits:

– Large main memories

– Commodity multi-core processors

– Proprietary compression

• Speeds up typical Business Intelligence

SQL queries by 10x to 100x

• Without requiring tuning of indexes, materialized views, etc.

• Products offered by IBM based upon Blink:

– IBM Smart Analytics Optimizer for DB2 for z/OS V1.1 – GA’d Nov. 2010

• Appliance: Runs on zEnterprise Blade eXtension (zBX), network-attached to zEnterprise

– Informix Warehouse Accelerator – GA’d March 2011

• Virtual Appliance: Runs in same machine as Informix IDS

Target Market: Business Intelligence (BI)

• Characterized by:

– “Star” or “snowflake” schema:

– Complex, ad hoc queries that typically
• Look for trends, exceptions to make actionable business decisions

• Touch large subset of the database (unlike OLTP)

• Involve aggregation functions (e.g., COUNT, SUM, AVG,…)

• The “Sweet Spot” for Blink!

City

Region

Store

SALES

Product

Time

Brand

Month

Quarter

Category

Dimensions

Fact Table

What Blink is Designed For

• OLAP-style SQL queries:
– Relational star schema (large fact table joined to multiple dimensions)

– Large subset of data warehouse accessed, reduced significantly by...

– Aggregations (SUM, AVG, COUNT) and optional grouping (GROUP BY)

– Looking for trends or exceptions

• EXAMPLE SQL:

SELECT P.Manufacturer, S.Type, SUM(Revenue)

FROM Fact_Sales F

INNER JOIN Dim_Product P ON F.FKP = P.PK

INNER JOIN Dim_Store S ON F.FKS = S.PK

LEFT OUTER JOIN Dim_Time T ON F.FKT = T.PK

WHERE P.Type = ‚JEANS‘ AND S.Size > 50000 AND
T.Year = 2007

GROUP BY P.Manufacturer, S.Type

Blink – Agenda

• Why and What is Blink?

• Blink Market – Business Intelligence

• Blink Architecture

• It’s All About Performance!

• What’s the Big Deal?

• Behind the Curtain – The Query Engine Technology

• References and Related Work

• Next Steps

• Conclusions

T
C

P
/IP

Blink Configuration

Host DBMS (DB2 or IDS):
• Routes SQL queries to accelerator

• User need not change SQL or apps.

• No externalized interfaces!

• Can always run query in Host DBMS,
e.g., if

–too complex SQL, or

–too short an est. execution time

Bulk Loader

SQL Queries (from apps.)

Blink

Compressed
DB partition

Query
Processor

Data Warehouse

Host DBMS
SQL

(via DRDA)

Query Router

Blink:
� Commodity blades

� Connects to Host DBMS via TCP/IP & DRDA

� Analyzes, compresses, and loads

� Copy of (portion of) warehouse

� Partitioned among nodes

� Processes routed SQL query and

returns answer to Host DBMS

Results

Blink – Agenda

• Why and What is Blink?

• Blink Market – Business Intelligence

• Blink Architecture

• It’s All About Performance!

• What’s the Big Deal?

• Behind the Curtain – The Query Engine Technology

• Related Work

• Conclusions

2 2
5 3
515 22 11 20 11 261

6
3

5
4

3
5

1
5
8
3

2
3
1
1

21
11

0

109

2

81

3

211

0

1000

2000

3000

4000

5000

6000

Q1200 Q2100 Q2300 Q3211 Q3224 Q4400 Q5200

Customer Query Number

E
x

e
c

u
ti

o
n

 T
im

e
 (

in
 S

e
c

o
n

d
s

)

0

50

100

150

200

250

S
p

e
e

d
-U

p
 R

a
ti

o
 =

 D
B

2
 /
 I
S

A
O

DB2

ISAO

Speed-Up

Blink Accelerates Most the Longest-Running Queries

Average Speed-up
= 85x

1 hour

0

5

10

15

20

25

30

Q1200 Q2100 Q2300 Q3211 Q3224 Q4400 Q5200

Customer Query Number

E
x
e
c
u

ti
o

n
 T

im
e
 (

in
 S

e
c
o

n
d

s
)

ISAO

Blink Query Execution times (magnified)

A
ll Q

u
e
rie

s
:

1
1
-2

6
 S

e
c

s
.

0

5

10

15

20

25

30

Q1200 Q2100 Q2300 Q3211 Q3224 Q4400 Q5200

Customer Query Number

E
x
e
c
u
ti
o
n
 T

im
e
 (
in

 S
e
c
o
n
d
s
)

ISAO Dec. 2008

ISAO Oct. 2009

Blink Query Execution times (magnified)

A
ll Q

u
e
rie

s
:

1
1
-2

6
 S

e
c

s
.

All Queries:
3-8 Secs.!!!

Beta Test – Blink Elapsed Time & Speedup

1.2x

2.5x

3.6x

11.3x 16.4x
17.4x

129x!!!

378x!!!

Blink – Agenda

• Why and What is Blink?

• Blink Market – Business Intelligence

• Blink Architecture

• It’s All About Performance!

•What’s the Big Deal?

• The Query Engine Technology

• Behind the Curtain – The Query Engine Technology

• References and Related Work

• Next Steps

• Conclusions

What’s the Big Deal? What’s so Disruptive?

• Blink rides the wave of hardware
technology trends:

–Multi-core processors

–Large main memories

–Fast interconnects

–Increasing latency gap between DRAM and disk

• Blink disrupts at least 4 major tenets

that have been held sacrosanct for
over 4 decades!

Disruption 1 of 4

• Tenet #1: General-purpose DBMSs are most cost-
effective
• Consequence of Tenet #1: BI pays for OLTP
overheads
– Locking
– Logging

• Disruption #1: Specialized DBMSs for BI now
commonplace in market!
• Consequences of Disruption #2:
– BI uses snapshot semantics (typically roll-in or roll-out in
batches of rows)

– Can simplify and eliminate OLTP overheads
– Can still embed specialty engines in general-purpose DBMS!
• “Workload-optimized systems”

Disruption 2 of 4

• Tenet #2: Data warehouses are too big for memory

• Consequence of Tenet #2: Disk I/O concerns dominate DBMS…

– Costs

– Performance

– Administration efforts

• Disruption #2: Huge, cheap main memories (RAM) and flash memories

• Consequences of Disruption #2:

– Portions of warehouse can fit, if partitioned among multiple machines

– Compression helps!

– New bottleneck is memory bandwidth (RAM �� L2 cache) and CPU

– No preferred access path

= 800
lbs.

Disruption 3 of 4

• Tenet #3: Need many Indexes & MQTs for scalable OLAP performance
• Consequences of Tenet #3:
– Need an optimizer to choose among access paths
– Need a ¢¢¢¢ wizard to design “performance layer” (expensive!)
– Must anticipate queries
– Large time to update performance layer when new data added

• Disruption #3: Massive parallelism achieves DB scan in seconds!
– Arbitrarily partition database among nodes (32–64 GB RAM / node)
– Exploit multi-core architectures within nodes (1 user or DB cell / core)

• Consequences of Disruption #3:
– Only need to define 1 view in DB2 to satisfy many queries on the accelerator

– Always scan tables!!

– Accelerator automatically does equivalent of partition elimination
• If literal is not in dictionary of that partition

– Accelerator itself doesn’t need
• Performance layer (indexes or materialized views)!
• Optimizer!

– Simpler! (no need for 4-star wizard)

– Lower TCO!

– Consistent response times

Disruption 4 of 4

• Tenet #4: Main-memory DBMSs are the same as a big buffer pool

• Consequence of Tenet #4: Don’t need a special main-memory DBMS

• Disruption #4: Clever engineering can save lots more!

• Examples of Disruption #4:

– Specialized order-preserving & fixed-length compression within partitions
permits:

• Faster access

• Performing most operations on encoded values

– Saves CPU for most processing and decoding

– More efficient use of cache and memory bandwidth

• Simultaneous application of predicate conjuncts (1 compare!)

– Cache-conscious algorithms make max. use of L2 cache and large registers

– Exploit multi-core processors

– Hash-based grouping avoids sorting

Blink’s “Secret Sauce”

Operate on encoded
data

Dictionary compression with
approximate Huffman encoding
(fixed length within each part.)

Most SQL operations on
compressed data!

Enables SIMD operations on
multiple values in a register

Dramatically improves efficiency
in utilization of RAM, cache, and
memory bandwidth

1

Register Store

Pack several column
values into a register

Access only columns
referenced in query

Favors scan-based
processing

L2 / L3 efficiency

2 3

Parallelism

KIWI: Kill It With Iron!

Multiple nodes (blades)

Designed and built for multi-
core, from the ground up

A1 D1 G1 A2 D2 G2 A4 D4 G4A3 D3 G3

32 bits 32 bits32 bits32 bits

128 bits

Blink’s “Secret Sauce”

4 5

Single Instruction,
Multiple Data (SIMD)

Enabled by encoded
data and register store

CPU vector processing

Large gains in CPU
efficiency

3rd level of parallelism!

Instructions Data

Results

6

Selection via Synopses

Skip entire blocks based
upon meta-data

No DBA action to define or
use – truly invisible.

Similar to Netezza’s “zonal
maps”

Architecture-
conscious

Cache-conscious query
evaluation

Operate on groups of
rows

Scan-friendly

Blink – Agenda

• Why and What is Blink?

• Blink Market – Business Intelligence

• Blink Architecture

• It’s All About Performance!

• What’s the Big Deal?

• Behind the Curtain – The Query Engine Technology

• References and Related Work

• Next Steps

• Conclusions

Top 64

traded goods

– 6 bit code

Rest

Prod Origin

Common
Values

Rare
values

N
u

m
b

e
r

o
f

O
c
c
u

rr
e

n
c
e

s Histogram

on Origin

Histogram
on Product

Origin

P
ro

d
u

c
t

China
USA

GER,
FRA,

… Rest

Table partitioned
into Cells

Column Partitions

Vol

Compression: Frequency Partitioning

• Field lengths vary between cells
–Higher Frequencies � Shorter Codes (Approximate Huffman)

• Field lengths fixed within cells

Cell 4Cell
1

Cell
2

Cell
3

Cell
5

Cell 6

Trade Info

Query Processing

Compressed and
Partitioned Data

Query
Executor

core + $ (HT)core + $ (HT)

• Cell is also the unit of processing, each cell…

– Assigned to one core

– Has its own hash table in cache (so no shared object that needs latching!)

• Main operator: SCAN over compressed, main-memory table

– Do selections, GROUP BY, and aggregation as part of this SCAN

– Only need de-compress for arithmetic operations

• Response time ∝∝∝∝ (database size) / (# cores x # nodes)

– Embarrassing Parallelism – little data exchange across nodes

DictionariesDictionaries

core + $ (HT)core + $ (HT)

core + $ (HT)core + $ (HT)

Cell

1

Cell

2

Cell

3

Thread 1Thread 1

Work

Queue

M
e

rg
e

 R
e

s
u

lts
M

e
rg

e
 R

e
s
u

lts

simultaneous =,
range, short

IN-list preds.

Residual
preds, joins

Hash
GROUP BY

Other ThreadsOther Threads

Fine-Grained Data Parallelism

Work Unit = Block of Frequency-Partitioned Cell

Aggre-

gations

= “fast path”

= operate on encoded values

= must decode values (math exprs.)

Blink PAX Data Storage Format – Overview

Header

Vertical Banks Horizontal Bank

Tuplet

Columns

• Frequency Partitioning into Cells

– Column-wise compression

– Each col. dictionary partitioned by value
frequency

– Cross-product of col. partitions �Cells

– Encoded columns are fixed-length (bits)
in a cell

• Cell data are stored in fixed-sized
(1MB) Blocks

• Rows are partitioned vertically
within blocks, into Banks

– Encoded columns are bin-packed into
word-sized (8,16,32,64 bit) banks

– Vertical Banks: contain columns
typically used in predicates and grouping

– Horizontal Bank: contains measure
columns

– Access Pattern:

• Scan V-banks to apply predicates.

• RID access to V-banks for residual
predicates, grouping columns.

• RID access to H-bank for aggregation.

Banks and Tuplets in Blink
• A bank is a vertical partition of a table, containing a subset of its columns
– Assignment of columns to banks is cell-specific, since column’s length

• Varies from cell to cell, but

• Is fixed within a cell

– Banks contain
• Concatenations of the fixed-length column codes

• Padded to the nearest fraction of a word length (8 / 16 / 32 / 64 bits).

• We call these word-sized units tuplets.

• Blink’s bank-major layouts are a hybrid of row-major and column-major

Bank β1 (32 bits) Bank β2 (32 bits)
Bank β3
(16 bits)

C
e

ll B
lo

c
k

A1 D1 G1

A2 D2 G2

A4 D4 G4

B1 E1 F1

B2 E2 F2

B4 E4 F4

C1 H1

C3 H3

C4 H4

A3 D3 G3
B3 E3 F3

C2 H2

Register Stores Facilitate SIMD Parallelism

•Access only the banks referenced in the query (like a
column store):

–SELECT SUM (T.G)

–FROM T

–WHERE T.A > 5

–GROUP BY T.D

Bank β1 (32 bits)

A1 D1 G1

A2 D2 G2

A4 D4 G4

A3 D3 G3

Register Stores Facilitate SIMD Parallelism

• Access only the banks referenced in the query (like a column store):
– SELECT SUM (T.G)
– FROM T
– WHERE T.A > 5
– GROUP BY T.D

• Pack multiple rows from the same bank into the 128-bit register

• Enables yet another layer of parallelism: SIMD (Single-Instruction, Multiple-
Data)!

Bank β1 (32 bits)

A1 D1 G1 A2 D2 G2
A4 D4 G4A3 D3 G3

Result1 Result2 Result3 Result4

Operand Operand Operand Operand

Vector Operation (SIMD)

32 bits 32 bits32 bits32 bits

Simultaneous Evaluation of Equality Predicates

State==‘CA’ && Quarter == ‘2011Q4’

State==01001 && Quarter==1110

Translate Value Query

to Coded Query

Row

Mask

Selection
result

… … … …

11111 0 1111 0

01001 0 1110 0

?
==

&

• CPU operates on 128-bit units

• Lots of fields fit in 128 bits

• These fields are at fixed offsets

• Apply predicates to all columns
simultaneously!

• Also works for range queries!

State Quarter

Joins

No shuffle needed:
• Fact table partitioned among nodes and cores
• Dimension tables replicated

Basic idea: Re-write Join as multiple scans:

1. Over each dimension, to form:
� A list of qualifying primary keys (PKs), decoded
� A hash-map of primary key � auxiliary columns (those used later in query for GROUP BY, etc.)

2. Over fact table:
� First convert PKs to foreign keys (FKs) in fact table column
� Apply as (very big) IN-list predicates (a semi-join), one per dimension
� Look up into hash-maps to pick up other columns
� Complete Grouping and Aggregation

Snowflakes: apply repeatedly, outside in

(1a) Dimension A

scan(A)

σa

IN-list
of A.k1

Hash-map:
A.k1 � A.g

(1b) Dimension B

scan(B)

σb

IN-list of
B.k2, B.k3

Hash-map:
B.k2, B.k3 � B.h

(2) Fact

scan(F)

σf

GROUP BY,

Aggregation

σ: F.fk1

IN …
σ: F.fk2, F.fk3

IN …

Look up
values of g, h

What About Updates?

• Blink uses snapshot semantics (batch updates), common in BI

• System maintains a currentEpoch number (monotone
increasing)

– Think of it as a batch or version number

– Prevents seeing incomplete updates, without needing locking

– Bumped (N++) atomically after each batch of inserts & deletes
completes

• Tables have two new columns

– startEpoch – epoch in which that row inserted

– endEpoch – epoch in which that row deleted (initially Infinity)

• Queries are automatically appended with two predicates:

– startEpoch < currentEpoch AND

– endEpoch > currentEpoch

• Encoding of updated values

– If value is in dictionary, use that encoding

– Otherwise, store unencoded in a special cell, called the “catch-all” cell

Blink – Agenda

• Why and What is Blink?

• Blink Market – Business Intelligence

• Blink Architecture

• It’s All About Performance!

• What’s the Big Deal?

• Behind the Curtain – The Query Engine Technology

• References and Related Work

• Next Steps

• Conclusions

Blink Refereed Publications

• VLDB 2008: “Main-Memory Scan Sharing for Multi-core
CPUs”, Lin Qiao, Vijayshankar Raman, Frederick Reiss, Peter Haas,
Guy Lohman

• VLDB 2008: “Row-Wise Parallel Predicate Evaluation”,
Ryan Johnson, Vijayshankar Raman, Richard Sidle, Garret Swart

• ICDE 2008: “Constant-time Query Processing”,
Vijayshankar Raman, Garret Swart, Lin Qiao, Frederick Reiss, Vijay
Dialani, Donald Kossmann, Inderpal Narang, Richard Sidle

• SIGMOD 2007: “How to barter bits for chronons:
compression and bandwidth trade offs for database
scans”, Allison L. Holloway, Vijayshankar Raman, Garret Swart,
David J. DeWitt

• VLDB 2006: “How to wring a table Dry: Entropy
Compression of Relations and Querying Compressed
Relations”, Vijayshankar Raman, Garret Swart

Related Work

• SAP HANA / HYRISE

– claim OLTP and BI workloads

– single copy

– single node (HYRISE)

• VectorWise

– pure column store, disk-based

– single copy

– single node

• Vertica

– pure column store, disk-based

– projections

– many (specialized) kinds of compression

• ParAccel, Exasol – ??

Next Steps: BLink Ultra (BLU)

•What, you can’t afford to put 100 TB in RAM?
� Relax main-memory-only to disk-based

• You say your dimension table has 2000 columns?
� Allow and exploit pure column store

• You’ve got HOW MANY fact tables?

• Yikes, your dimension table is HOW BIG?
� Allow multiple partitioned tables

� Need traditional MPP optimization for join ordering

• Yeah, synchronizing multiple copies is a pain.
� Have Blink store the only copy

•What, you have point queries, too?
� May need some indexes

• Um, we haven’t implemented that yet…
� Tighter coupling with traditional DBMS

Summary – Not Your Father’s Database!

• Radical changes are happening in hardware

– Large, cheap memories

– Multi-core processors promise cheap, massive CPU parallelism

• Blink exploits these trends:

– Special-purpose accelerator (BI only, snapshot semantics, no transactions)

– Main-memory DBMS

– Massive parallelism of commodity multi-core hardware (blade center format)

– Query processing on compressed values!

– Cache-conscious algorithms

• Blink speeds up your problem queries the most!

• Blink is an appliance product that is transparent to the user

– Minimal set-up

– Applications need not change

– Tuning not needed!

– Lower TCO Questions?

Thank You

Merci
Grazie

Gracias

Obrigado

Danke

Japanese

English

French

Russian

German

Italian

Spanish

Brazilian Portuguese

Arabic

Traditional Chinese

Simplified Chinese

Hindi

Tamil

Thai

Korean

BACKUP SLIDES

IBM Smart Analytics Optimizer Architecture

.

DS 5020 SAN

GPFS GPFS GPFS GPFS GPFS GPFS

8 Core
48 GB

Coord.

8 Core
48GB

Coord.

8 Core
48GB

Worker

8 Core
48GB

Worker

8 Core
48GB

Worker

8 Core
48GB

Worker

Blade Center - H

Flash Flash Flash Flash Flash Flash

FC Module

FC

...

Ethernet
Module

IBM Smart Analytics Optimizer

DB2

Accelerator
Services

DRDA

DB2 Database

SQL Applications

Evaluation of Range Predicates on Encoded Values

B<=‘CA’ and C < 17 and D <= ‘Q4’

A <= 11111 and B<=01000 and C <=0011 and D<=1110

Translate value query to encoded query

(exploits order-preserving code)

upper bounds + borrow trappers

Tuple

11111 01000 0011 11101

General result: (UB – Tuple) xor (Tuple – LB) == UB xor LB

Tuple

((((xor))))

11111 01000 0011 11101

==

Blink vs. a Column Store

Evaluation matches with Hardware

� Scan does sequential memory access

� Almost no branches

� Simultaneous predicate evaluation

� SIMD predicate evaluation

Evaluation doesn’t match w/
Hardware:

� Index navigation involves random accesses

� Index navigation involves branches

� Predicate evaluation has to be done serially

Evaluation
Matches
Hardware?

� Insert requires:

� Single update to each bank, 1 / bank

� One I/O to one cell block

� Insert requires:

� Separate updates to every column

� Multiple random I/Os, 1/column

Updating

� Can skip blocks based upon predicates

� To answer query:
� Do table scan

� Like having an index on every column

� To answer query:

� Determine list(s) of matching records

� Intersect these lists on RID

Query
Processing

Multiple columns / word

� less padding overhead

Every column padded to word boundary

� more padding/column

� worse compression

Compression

BlinkColumn StoreAspect

