
ibm.com/redbooks

IBM® Information Management Software

Solving Business
Problems with Informix
TimeSeries

Vaibhav S Dantale
Tony Hays
Anup Nair

Jacques Roy

Greatly reduce storage requirements
for time-based data

Simplify processing with
built-in and custom functions

Speed up loading, access, and
retrieval of data functions

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Solving Business Problems with
Informix TimeSeries

September 2012

International Technical Support Organization

SG24-8021-00

© Copyright International Business Machines Corporation 2012. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (September 2012)

This edition applies to Informix Version 11.70, fixpack 5

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team who wrote this book . x

Acknowledgement. xi
Now you can become a published author, too! . xii
Comments welcome. xii
Stay connected to IBM Redbooks publications . xiii

Chapter 1. Overview of IBM Informix. 1
1.1 Building a smarter planet with Informix . 2
1.2 Time series data . 5
1.3 Benefits over relational model of storing data . 5
1.4 The Informix TimeSeries approach . 6
1.5 Informix TimeSeries components . 7

1.5.1 TimeSeries ROW element sub-type . 7
1.5.2 TimeSeries “out of row” storage containers . 8
1.5.3 Types of time series data . 9
1.5.4 TimeSeries calendars and calendar patterns 9
1.5.5 Informix TimeSeries system tables . 11
1.5.6 SQL routines and APIs . 13
1.5.7 Virtual table interface . 13

Chapter 2. A use case for the Informix TimeSeries feature. 15
2.1 Customer overview . 16
2.2 The initial data model . 17
2.3 Applying a time series data type to the relational data model 21
2.4 Final considerations . 23

Chapter 3. Defining your TimeSeries environment 25
3.1 Schema . 26
3.2 Relational and time series data working together 28
3.3 Regular or irregular data . 29
3.4 The TimeSeries element . 31
3.5 Calendars . 33
3.6 Time zone issues . 34
3.7 Loading data . 34
3.8 Data cleansing and corrections . 35
© Copyright IBM Corp. 2012. All rights reserved. iii

3.9 High availability . 35
3.10 Backup . 35
3.11 Purging data . 36
3.12 Spatial requirements . 36

Chapter 4. Implementing Informix TimeSeries . 37
4.1 Schema definitions . 38
4.2 Space calculations . 38

4.2.1 Space calculations for relational storage . 38
4.2.2 Space calculations for indexes . 41
4.2.3 Space calculations for Informix TimeSeries storage 43
4.2.4 Container calculations for Informix TimeSeries storage 45
4.2.5 Time series storage needs versus relational storage needs. 45

4.3 Loading time series data . 46
4.3.1 Small amounts of data . 46
4.3.2 Large amounts of data . 47

Chapter 5. Querying TimeSeries data . 53
5.1 Basic relational views . 54

5.1.1 Expression-based relational views . 55
5.1.2 When to use relational views . 56

5.2 Using the TimeSeries SQL API . 57
5.2.1 TimeSeries SQL API functions . 57
5.2.2 When to use TimeSeries SQL functions . 60

5.3 Custom functions. 60
5.3.1 Creating a custom function . 61
5.3.2 When to use custom functions . 63

5.4 Query examples . 64
5.4.1 Getting a day of data for a customer. 64
5.4.2 Getting a day of aggregated data for a customer 65
5.4.3 Comparing two different days for a customer 65
5.4.4 Get peak usage for a time period, population subset 66
5.4.5 Billing for a subset of customers . 69

Chapter 6. Managing the ecosystem . 75
6.1 System management and monitoring . 76

6.1.1 Monitor TimeSeries containers using API . 76
6.1.2 Querying the TSContainerTable system table 79
6.1.3 Monitoring with IBM Informix OpenAdmin Tool 80
6.1.4 Managing with OAT and APIs . 87

6.2 Performance considerations for TimeSeries data 95
6.2.1 Storage consideration . 96
6.2.2 Data distribution statistics . 96
6.2.3 Memory consideration. 97
iv Solving Business Problems with Informix TimeSeries

6.2.4 Access consideration . 97
6.3 Availability of data . 97
6.4 Interoperability and the complete ecosystem . 98

6.4.1 Virtual table interface . 99
6.4.2 TimeSeries APIs . 99
6.4.3 TimeSeries APIs in Informix stored procedure 100

Appendix A. Reference material . 101
A.1 Online documentation . 102
A.2 The IBM developerWorks wiki . 102
A.3 PDF manuals . 102

Appendix B. Enterprise historian database example. 105
B.1 Wind power generation historian . 106
B.2 Disk space savings . 106

Standard RDBMS approach . 106
Informix TimeSeries data type approach . 107

B.3 Application development and performance. 109
B.4 Interoperability . 115
B.5 Summary. 115

Appendix C. Distribution grid monitoring enabler 117
C.1 Solution overview . 118
C.2 Business benefits . 119
C.3 Challenges . 120
C.4 Solution. 121
C.5 Performance . 121
C.6 Ease of development . 123
C.7 Summary . 126

Related publications . 127
IBM Redbooks publications . 127
Other publications . 127
Online resources . 128
Help from IBM . 128
 Contents v

vi Solving Business Problems with Informix TimeSeries

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2012. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
Cognos®
DataBlade®
developerWorks®

IBM®
Informix®
InfoSphere®
Optim™

Redbooks®
Redbooks (logo) ®
WebSphere®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
viii Solving Business Problems with Informix TimeSeries

http://www.ibm.com/legal/copytrade.shtml

Preface

The world is becoming more and more instrumented, interconnected, and
intelligent in what IBM® terms a smarter planet, with more and more data being
collected for analysis. In trade magazines, this trend is called big data.

As part of this trend, the following types of time-based information are collected:

� Large data centers support a corporation or provide cloud services. These
data centers need to collect temperature, humidity, and other types of
information over time to optimize energy usage.

� Utility meters (referred to as smart meters) allow utility companies to collect
information over a wireless network and to collect more data than ever before.

IBM Informix® TimeSeries is optimized for the processing of time-based data
and can provide the following benefits:

� Storage savings: Storage can be optimized when you know the
characteristics of your time-based data. Informix TimeSeries often uses one
third of the storage space that is required by a standard relational database.

� Query performance: Informix TimeSeries takes into consideration the type of
data to optimize its organization on disk and eliminates the need for some
large indexes and additional sorting. For these reasons and more, some
queries can easily have an order of magnitude performance improvement
compared to standard relational.

� Simpler queries: Informix TimeSeries includes a large set of specialized
functions that allow you to better express the processing that you want to
execute. It even provides a toolkit so that you can add proprietary algoritms to
the library.

This IBM Redbooks® publication is for people who want to implement a solution
that revolves around time-based data. It gives you the information that you need
to get started and be productive with Informix TimeSeries.
© Copyright IBM Corp. 2012. All rights reserved. ix

The team who wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, San Jose Center.

Vaibhav S Dantale is an IT Advisory Engineer in the IBM
Information Management Division, in Pune, India. After joining IBM
Informix in 2004, he worked on several IDS components.

Recently, his primary focus has been on IDS TimeSeries features.
He is a key player in migrating Distribution Grid Monitoring Enabler
on Informix and paving the way for Informix in the distribution
sector. Similarly, he also has a major role in positioning Informix
TimeSeries in space for historian solutions for power generation
and manufacturing industries. Vaibhav holds the Bachelor’s
degree in Computer Technology from Nagpur University, India.

Tony Hays is a Senior IT Architect in the Enterprise Integration
Communications practice in the United States. He has more than
25 years of IT experience. He has worked for IBM for 16 years and
is certified in Integration Architecture. His areas of expertise
include IBM WebSphere® MQ, WebSphere Message Broker, and
Informix TimeSeries.
x Solving Business Problems with Informix TimeSeries

Acknowledgement

Thanks to the following people for their contributions to this project:

Abhay Patra is Lead Architect for DGM asset and working as an Application
Architect in GBSC Energy and Utility Industry team, based out of Pune. He won
an IBM GBS Global Technical Achievement Award in 2010 and has filed a patent
on Smart Grid device commissioning. Abhay is playing a significant role as a
solution architect in most of the Smart Grid opportunities in India.

Inge Halilovic is a technical lead in Informix Information Development, based in
San-Francisco.

Anup Nair is a senior member of the Informix Competitive
Technologies and Enablement team based in the US. He has a
Bachelor’s degree in computer engineering and a Master’s degree
in Computer Science Anup has more than 21 years of industry
experience and he has held positions within management,
marketing, software development, and technical support teams.
He has authored various publications including Redbooks
documents and technical white papers. He teaches classes and
presents at conferences, user group meetings, and seminars
worldwide related to Informix.

Jacques Roy is well-known in the Informix community as an
author, speaker, and active blogger. Jacques is the manager and
architect of the application development services and extensibility
group of the Informix lab. This included the development of the
TimeSeries product. He is the author of IDS.2000: Server-Side
Programming in C and the lead author of Open-Source
Components for IDS 9.x. He is also the author of multiple technical
IBM developerWorks® articles on a variety of subjects, and
co-author of several IBM Redbooks publications. He is a frequent
speakers at data management conferences, the International
Informix Users Group (IIUG) conference, and users group
meetings.
 Preface xi

We would also like to thank the following members of the Informix development
team for their help clarifying technical questions:

� Kevin Brown
� Mark Ashworth
� Simon David (Cosmo)
� Jeff McMahon
� Lance Feagan

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a
published author—all at the same time! Join an ITSO residency project and help
write a book in your area of expertise, while honing your experience using
leading-edge technologies. Your efforts will help to increase product acceptance
and customer satisfaction, as you expand your network of technical contacts and
relationships. Residencies run from two to six weeks in length, and you can
participate either in person or as a remote resident working from your home
base.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xii Solving Business Problems with Informix TimeSeries

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks publications

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the
IBM Redbooks weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xiii

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xiv Solving Business Problems with Informix TimeSeries

Chapter 1. Overview of IBM Informix

IBM Informix combines the robustness, high performance, availability, and
scalability needed by today’s modern business. This chapter provides a brief
overview of Informix and introduces the Informix TimeSeries approach and
components.

1

© Copyright IBM Corp. 2012. All rights reserved. 1

1.1 Building a smarter planet with Informix

Complex, mission-critical database management applications typically require a
combination of online transaction processing (OLTP), batch, and
decision-support operations, including online analytical processing (OLAP).
Meeting these needs is contingent upon a database server that can scale in
performance as well as in functionality. The database server must adjust
dynamically as requirements change from accommodating larger amounts of
data, to changes in query operations, to increasing numbers of concurrent users.
The technology should be designed to efficiently use all the capabilities of the
existing hardware and software configuration, including single and
multiprocessor architectures. Finally, the database server must satisfy user
demands for more complex application support, which often uses nontraditional
or “rich” data types that cannot be stored in simple character or numeric form.

Keeping its strong philosophy of innovation, every newer version of Informix
continues the tradition of constantly evolving and enhancing its industry leading
database technology: powerful, easy to use, easy to manage, high quality, and
high performance for OLTP and mixed OLTP/OLAP environments. Informix
allows businesses of all sizes and purposes to resolve complex business
challenges in a simplified, efficient, and low cost IT environment. As with
previous versions, Informix also continues to enhance and strengthen its
functionality in various areas of the database server, including administration,
embeddability, availability, application development, supportability, and security.

Informix is built on Dynamic Scalable Architecture (DSA). It provides one of the
most effective and efficient solutions available—a next-generation parallel
database architecture that delivers mainframe-caliber scalability, manageability,
and performance; minimal operating system overhead; automatic distribution of
workload; and the capability to extend the server to handle new types of data.
There are numerous articles written about the components and workings of DSA.
2 Solving Business Problems with Informix TimeSeries

For brevity and simplicity, Figure 1-1 illustrates the “big picture” of the Informix
DSA.

Figure 1-1 Informix DSA, the big picture

One of the biggest advantages of having the DSA is the ability of the server to
extend its capability by integrating customized solution extensions based on
complex data types. Informix delivers proven technology that efficiently
integrates new and complex data directly into the database. It handles time
series, spatial, geodetic, Extensible Markup Language (XML), video, image, and
other user-defined data side by side with traditional existing data to meet today’s
most rigorous data and business demands.

Data
Storage

Server Virtual
Processes

Shared Memory

Resident Virtual Message

Client Interface

Informix
 Chapter 1. Overview of IBM Informix 3

Informix has a built-in API extension layer, known as a datablade, which helps
application extensions to seamlessly integrate with the core server functionality.
Figure 1-2 illustrates the integration of the Informix extensibility layer within the
server.

Figure 1-2 Extending Informix Server

To further strengthen support for the IBM smarter planet initiative, Informix
continues its focus on enhancing its usability for building real-life solutions based
on sensors and other instrumentation components that are used extensively in
the Energy and Utilities (E&U) industry for the Meter Data Management (MDM)
solutions for smart meters. MDM is one of the cornerstones of smarter energy
solutions, delivering benefits throughout the entire value chain, from utility
suppliers and operators to consumers. Time stamped data is a key component in
smart metering solutions. The industry leading built-in Informix TimeSeries data
type technology helps manage this time stamped (time series) data with extreme
performance, high storage saving, and simplified usability.

Data
Storage

Server Virtual
Processes

Shared Memory

Resident Virtual Message

Client Interface

Informix

In
-b

ui
lt

D
at

ab
la

de
 In

te
rfa

ceTime Series
Module

Spatial
Module

Other
Modules

...
4 Solving Business Problems with Informix TimeSeries

1.2 Time series data

Time series data is a sequence of data points, measured typically at successive
times spaced at uniform time intervals. Basically, it is a set of data where each
reading element or row is time stamped.

Depending on the frequency of data acquisition through sensors and other data
retrieval mechanisms, the volume of time stamped data can be massive; when
stored in tall-thin relational tables, this data can require extremely large amounts
of storage space. The storage requirement increases further when the table that
stores the data mandates building multiple indexes on the time series and other
data element columns to satisfy application and data retrieval requirements.
Managing and retrieving such a huge volume of data can require complex
querying, resulting in high disk I/O and reduction in performance.

The Informix TimeSeries data type alleviates the classical relational time series
implementation issues of storage, performance, and complex querying. The
Informix TimeSeries data type provides a native Object-Relational data
implementation that requires less storage, while reducing I/O and increasing
performance. Specialized APIs can alleviate the complexity of querying.

Customer case studies and internal benchmarks have revealed that using the
TimeSeries data type yields 50% - 70% storage savings, 20 - 30 times
performance improvement in data loading, and over 70 - 90 times performance
increase in report processing compared to a typical relational implementation.

1.3 Benefits over relational model of storing data

The traditional relational approach stores one row each for every time series
entry, thus storing redundant information like device identifiers multiple times.
For faster retrieval of information, a composite index must be created on this
identifier column and time stamp. If we consider the example of smart meter
solutions, say an historical or Supervisory Control And Data Acquisition (SCADA)
system, where the system needs to collect meter readings with certain fixed
frequency, the single location ID/Meter ID (meter_id) is stored as many times as
the time stamp of the event.

As mentioned previously, you create a composite index on meter_id and time
stamp (Table 1-1), but this eventually yields a massive amount of data, which in
turn brings in administration overhead, performance challenges, and hardware
investment. These challenges often become major roadblocks for further
enhancement in solutions and services.
 Chapter 1. Overview of IBM Informix 5

Table 1-1 Representation of data stored in traditional RDBMS approach

Due to these challenges, the data reading collection frequency has to be kept
low, say every half hour, which for a 24 hours cycle is 48 data points for a single
identifier (2 data points per hour times 24). Increasing the frequency of the data
reads to every 15 minutes causes a massive increase in data (4 data points per
hour times 24). This increase is mainly because the storage requirement
immediately doubles because the reading fetches 96 data points instead of the
earlier 48 data points in a 24 hour period for a single identifier. For this reason, it
is often challenging to implement a near real-time solution in a relational model
that yields both storage saving and performance benefit, without special
tweaking.

Another major challenge is to perform time-based analytical operations on
relational data. Most of the time, the application developer ends up developing
proprietary and complicated program logic to perform time-based analysis.

1.4 The Informix TimeSeries approach

To tackle the issues in the relational model, Informix introduced a different
perspective for looking at time series data, implementing the native TimeSeries
data type. TimeSeries creates a single row for each time-stamped tag or tick
identifier that says meter_id and simply appends subsequent readings from the
same meter to that row, as shown in Table 1-2. The data is physically ordered on
disk. Thus, the number of rows in a TimeSeries table will be the number of
meters that you are monitoring. The index is also usually created only on the key
(meter_id) column and therefore does not require the time stamp to be a part of
the index. Thus, the storage requirement compared to a traditional relational
approach is reduced by 50% - 80%.

Meter_id Timestamp Current Voltage Resistance

1 2010-12-01 01:00:00.0000 4.0 160 40

1 2010-12-01 01:00:10.0000 4.5 155 35

1 2010-12-01 01:00:20.0000 5.0 165 33

..

2 2010-12-01 01:00:00.0000 5.0 175 44

2 2010-12-01 01:00:10.0000 4.5 160 35

..
6 Solving Business Problems with Informix TimeSeries

Additionally, because the index size is small and the data is physically ordered on
the disk, querying data requires much less I/O than for a relational approach.
Performance using the Informix TimeSeries approach is better for both loading
and querying data.

Table 1-2 Representation of data stored in Informix TimeSeries column

1.5 Informix TimeSeries components

Before delving into the details of TimeSeries functions, it is of utmost importance
to understand the terms and components of the TimeSeries solution as
described in the following sections.

1.5.1 TimeSeries ROW element sub-type

A TimeSeries element is a set of data for a particular time stamp. What it
basically means is that for a specific key value and a particular time stamp for
that key value, all the associated information or data for that time stamp is stored
in one object as a column inside that row. There can be multiple pieces of
information with various time stamps for this key value, all stored in the
corresponding column in that row. Internally, the TimeSeries data is stored inside
a table column as a special ROW object. Metaphorically speaking, a TimeSeries
row inside a table can be considered as a table-inside-a-table.

You can have multiple TimeSeries fields and columns inside a table. Each of
these TimeSeries fields and columns can have a different element definition
based on the business needs. The table-inside-a-table concept is implemented
by the use of an Informix extended data type called ROW. While defining this
subtype for TimeSeries, it is mandatory to define the first field or column as a
unique DATETIME YEAR TO FRACTION(5), as shown in Example 1-1.

Example 1-1 Creating a row type to hold TimeSeries data

CREATE ROW TYPE LocReading (
 tstampDATETIME YEAR TO FRACTION(5), -- Mandatory
 highFLOAT,
 lowFLOAT,

Meter_id TimeSeries column

1 [(4,160,40), (4.5,155,35), (5,165,33)….]

2 [(5,175,44), (4.5,160,35). .]

. . . .
 Chapter 1. Overview of IBM Informix 7

 closeFLOAT,
 volFLOAT
);

1.5.2 TimeSeries “out of row” storage containers

As indicated earlier, a time series is a special column in a table. Internally this
column can include a header and a set of elements associated with the time
series. Currently a table row has a size limit of 32 KB. Because the TimeSeries
data for a key is stored in the same row, it is likely that for a large time series, the
incoming data would exceed the 32 KB limit. To address this issue, the Informix
TimeSeries feature has implemented the concept of storing data “out of row” in
external storage space, but within Informix database logical storage objects
(dbspace). These “row external” storage spaces used for holding the Informix
TimeSeries data are known as containers.

Containers are specialized logical storage spaces that are created inside a
dbspace (Figure 1-3). You can store up to 64 GB (for a 4 KB page size) of data in
one TimeSeries container. You can store multiple time series in a single
container. You can have multiple containers in a dbspace.

Figure 1-3 Containers in database storage

Because a container exists inside a dbspace, we need to use specialized
routines to create containers in a dbspace before they can be used for storage.
The TSContainerCreate() function helps you create this storage:

TSContainerCreate(container_nameVARCHAR(18),
dbspace_nameVARCHAR(18),
ts_row_typeVARCHAR(18),
container_size INTEGER,
container_growthINTEGER);

Data Storage/Disk

Database

Data Storage in DBSpace (DBSp1)

Container 1

Container 2 Free
Space

Other Tables

Multiple DBSpace in Database

DBSp1
8 Solving Business Problems with Informix TimeSeries

Example 1-2 illustrates creation of the container named taqtrade_day in the
dbspace dbspace1 with an intial size of 1 MB and a growth size of 1 MB. This
container stores the data for the TimeSeries ROW type taqtradeday_t.

Example 1-2 Sample use of TSContainerCreate

EXECUTE PROCEDURE TSContainerCreate('taqtrade_day', 'dbspace1',
'taqtradeday_t', 1024, 1024);

1.5.3 Types of time series data

Time series data includes both regular and irregular types of data.

Regular
A regular time series stores data for regularly spaced time intervals. In a regular
time series, each interval between elements is the same length, hence they are
predictable.

A regular time series uses the concept of offset, referring to a mapping between
the time point associated with an element and its position relative to the start of
the time series. Individual time stamps are not stored in regular time series;
instead, they are computed from the element’s offset. Not storing time stamps for
millions of records results in storage savings.

A regular time series is appropriate for applications that record entries at
predictable points in time. Smart metering is one of the examples where we store
the information with a certain fixed frequency, such as electricity power usage
data that is recorded by smart meters at regular interval of 15, 30 minutes, and
so on.

Irregular
An irregular time series manages information for arbitrary points in time. An
irregular time series is appropriate when the data arrives unpredictably, such as
when the application records every stock trade or when electricity meters record
random events such as low battery warnings or low voltage indicators.

1.5.4 TimeSeries calendars and calendar patterns

The Informix TimeSeries feature uses calendars to define the context of the time
stamped data. The calendar definition includes the first valid time and when and
how often data is collected. For example, you can specify that data is collected
every hour during business hours on weekdays and is not collected on Saturday
and Sunday. You can define your own calendar or use a predefined calendar.
 Chapter 1. Overview of IBM Informix 9

A calendar includes the following key components:

� Calendar Start Date: The date when the data can be stored.

� Calendar Pattern: This determines the granularity of the data and the time
(interval) when the data is going to arrive. This granularity can be of any
magnitude - year, month, week, day, hour, minute, or second. The
occurrence of data is defined using a repeating pattern of “on” and “off”
intervals. Data is only stored in “on” intervals, for example, every day, every
other month, or work hours.

� Interval: The elapsed time between data points, this value can be qualified in
seconds, minutes, hours, days, weeks, months, or years.

� Pattern Start Date: It is the first point in time at which the calendar pattern is
applied. The pattern start date can be different than the calendar start date,
but if different, it must be later than the calendar start date.

� Offset for regular TimeSeries: Because the occurrence of the next time series
in a regular time series is predictable (calculated from calendar start date and
pattern), the time stamp is not stored. Instead, only the offset to the first
TimeSeries data is stored.

The information from these calendar components is recorded in the TimeSeries
header that is stored in the beginning of the row cell for which the column type is
defined as a time series.

The following information is also stored in the header of the TimeSeries row cell
which sets its context of the TimeSeries to the data:

� Calendar: Time period for which data is found. This also includes the calendar
patterns described previously.

� Origin: Time origin of the time series.

� Threshold: In-row storage threshold that defines whether the data is stored
in-row or in a container.

� Container: Where to store the out-of-row data. It contains information about
where data is stored in a dbspace.

� Metadata: Optional data added by the time series creator.
10 Solving Business Problems with Informix TimeSeries

1.5.5 Informix TimeSeries system tables

Informix stores information about calendars, patterns, containers, time series
instances, and other metadata in system tables.

CalendarPatterns
This system table stores the information about the calendar patterns, as shown
in Table 1-3. The CalendarPattern data type cp_pattern defined inside the
CalendarPattern system table is an opaque data type that defines the interval
duration and the pattern of valid and invalid intervals in a calendar pattern.

Table 1-3 CalendarPattern table

In Example 1-3, the information within the curly brackets is the pattern
specification. The pattern specification has one or more elements that consist of
n, the number of interval units, and either on or off, to signify valid or invalid
intervals. Elements are separated by commas.

Example 1-3 Creating calendar patterns

INSERT INTO CalendarPatterns
VALUES ('workweek','{5 on, 2 off} day');

CalendarTable
This system table stores the information about the calendars used by the
database. Although most of the columns in this table are for internal use, the
columns shown in Table 1-4 can be useful for you.

Table 1-4 System CalendarTable

Example 1-4 shows how the calendar table is defined.

Example 1-4 Creating calendar

INSERT INTO CalendarTable (c_name,c_calendar)
VALUES ('workweek',

Column name Description

cp_name Name of the pattern

cp_pattern User-defined calendar pattern

Column name Description

c_name The name of the calendar

c_calendar The Calendar type for the calendar
 Chapter 1. Overview of IBM Informix 11

'startdate(2012-01-01 00:00:00.00000),
pattstart(2012-01-01 00:00:00.00000),
pattname(workweek)');

TSContainerTable
TSContainer table is a system table that stores the definition of all the containers
of the time series being used in the database. This table is managed by the
database server, and users do not modify it directly, nor should they normally be
required to view it. Rows in this table are automatically inserted or deleted when
containers are created or destroyed. Table 1-5 describes the columns.

Table 1-5 System TSContainerTable

TSInstanceTable
The TSInstanceTable contains one row for each large time series that is stored
“out of row.” Time series smaller than the threshold are stored directly in a
column and do not appear in this table. Table 1-6 describes the columns.

Table 1-6 System TSInstanceTable

Column name Description

name The name of the container of the time series.

subtype The name of the time series subtype.

partitionDesc The description of the partition that is the container.

flags Flags to indicate:
1. Whether the container is empty and always was empty.
2. Whether the time series is regular or irregular.

pool The name of the container pool to which the container belongs.
NULL indicates that the container does not belong to a container
pool. The default container pool is named autopool.

Column name Description

id The serial number of the time series. This is the primary key for the
table.

cal_id The identification of the CalendarTable row for the time series.

flags Stores various flags for the time series, including one that indicates
whether the TimeSeries is regular or irregular.

vers The version of the time series.
12 Solving Business Problems with Informix TimeSeries

1.5.6 SQL routines and APIs

Informix provides over 100 TimeSeries-specific routines to perform SQL and
other operations. It also provides a set of C APIs and Java APIs that enable you
to take advantage of server library functions and develop your own routines.

The TimeSeries SQL routines create instances of a particular TimeSeries type
as well as add data to or change data in it. SQL routines are also provided to
examine, analyze, manipulate, and aggregate the data within a time series,
which saves application development time.

1.5.7 Virtual table interface

The TimeSeries data type is a complex data type that is not easily accessible by
third-party applications. Virtual tables provide interoperability with other
databases and applications by displaying time series data in a relational format.

The virtual table interface (VTI) provides a relational view of the TimeSeries data
and allows you to perform regular SQL operations on it. Virtual tables are useful
for viewing TimeSeries data in a simple format. The virtual table is not a real
table stored in the database, but just a view. The data is not duplicated. At any
given moment, data visible in the virtual table is the same as the contents in the
base table.

Table 1-7 shows sample data for a TimeSeries table. Table 1-8 on page 14
shows a VTI representation of the same data.

Table 1-7 TimeSeries table

container_name The name of the container of the time series. This is a reference to
the primary key of the TSContainerTable table.

ref_count Number of different references to the same TimeSeries instance.

Column name Description

Meter_id TimeSeries column

1 [(4,160,40), (4.5,155,35), (5,165,33)….]

2 [(5,175,44), (4.5,160,35). .]

. . . .
 Chapter 1. Overview of IBM Informix 13

Table 1-8 VTI representation of the TimeSeries table

The most efficient way to work with the TimeSeries data is to carry out the data
manipulation operations (INSERT/UPDATE/DELETE) directly on the base
TimeSeries table using the TimeSeries API routines.

You can use the VTI to carry out some of the data manipulation operations, but
the following restrictions apply:

� You cannot use UPDATE or DELETE statements on TimeSeries VTI.

� You can use SELECT and INSERT statements; however, an INSERT on the
VTI table translates to an UPDATE on the underlying TimeSeries base table.

� You can update a TimeSeries element in the base table by inserting a new
element for the same time point into the VTI.

Now that we have a fair knowledge about the concepts of TimeSeries and its
efficient representation in Informix, we can dive deeper into its working using a
user case. In the next chapter we demonstrate how to create a custom database
application for a municipal electric utility company that uses the Informix
TimeSeries capabilities. We show step-by-step implementation of this solution,
and we also cover the database design, querying, and reporting requirements.

Meter_id Timestamp Current Voltage Resistance

1 2010-12-01 01:00:00.0000 4.0 160 40

1 2010-12-01 01:00:10.0000 4.5 155 35

1 2010-12-01 01:00:20.0000 5.0 165 33

.

2 2010-12-01 01:00:00.0000 5.0 175 44

2 2010-12-01 01:00:10.0000 4.5 160 35

.
14 Solving Business Problems with Informix TimeSeries

Chapter 2. A use case for the Informix
TimeSeries feature

This chapter describes the situation at a fictional company where the Informix
TimeSeries feature can be used to design a database to manage complex data
requirements. This use case is the basis for the examples in the remaining
chapters.

2

© Copyright IBM Corp. 2012. All rights reserved. 15

2.1 Customer overview

To best demonstrate Informix TimeSeries capabilities, this example designs a
database for a municipal electric utility company. The company, HiPerfUtilCo,
serves 1 million addresses. Of the company’s customers, 95% are residential
customers and the remaining 5% are a mix of small and medium commercial
businesses.

HiPerfUtilCo selected new advanced technology meters, enabling the company
to gather meter readings every 15 minutes (that is, at xx:00, xx:15, xx:30, and
xx:45). To best use the limited network bandwidth, data is to be obtained from
each meter only once every 4 hours.

Residential meters gather usage and demand readings; these readings are
measured in KWh and KW, respectively. Commercial meters gather usage and
demand reading also, but commercial usage is measured in KVar, and demand
is still measured in KW.

Usage will be gathered as both an overall total (like an odometer) and as a
15-minute total. Demand is only gathered as a 15-minute total. The advanced
meters are programmable, so future reading types should be allowed for in the
design if possible.

Residential meters do not apply a multiplier to the readings gathered; that is, the
multiplier can be assumed to be 1. However, many commercial meters do require
a multiplier to be applied to a reading to get the actual billable usage amount.
Multipliers can change, but do so infrequently. Fortunately, our intelligent meters
apply the multiplier as the reading is gathered, so we need to treat it as a meter
attribute only.

Usage readings will be used for billing purposes. Demand readings will be used
to find instances where a customer exceeds the rated capacity of their meter.
When this occurs, HiPerfUtilCo will want to work with the customer to upgrade
their meter or electrical service. Both numbers will also be used for Business
Intelligence purposes; HiPerfUtilCo wants to try to create new billing programs
and to identify the customers to target for these new or existing programs. For
example, customers who use the bulk of their power during the evening might be
targeted for the “Time of Use” billing program.

Billing is to be done every Monday through Friday; there are 20 billing cycles per
month, and the addresses are spread fairly evenly over these 20 cycles. Each
location must select a billing program. The most common billing programs are
the flat rate program and the 3-tier Time of Use program. Usage is billed at the
same rate all day in the flat rate program. In the 3-tier Time of Use program,
usage is billed at three different rates, depending on the window of use (8 a.m. to
16 Solving Business Problems with Informix TimeSeries

3:59:59 p.m., 4 p.m. to 11:59:59 p.m., Midnight to 8 a.m.). A customer can
change their billing program at any time; changes are effective at Midnight on the
date requested per regulatory requirements.

Billing programs must be defined to cover a complete 24-hour period, starting at
Midnight local time and ending at 11:59:59 p.m. local time. Therefore, if a
segment covers this time, it must be broken into two separate segments. For
example, if we wanted to create a program with a 6 a.m. to 5:59:59 p.m. window,
and a 6 p.m. to 5:59:59 a.m. window, we would actually need to create three
segments in our database – Midnight to 5:59:59 a.m., 6 a.m. to 5:59:59 p.m. and
6 p.m. to 11:59:59 p.m..

HiPerfUtilCo is also interested in expanding its use of Geographic Information
Systems (GIS) and GPS data; therefore, it would like each meter's actual GPS
location to be stored. This is not the location address GPS but the GPS where
the meter is actually installed on the property. This could be useful, for example,
to find all meters within a certain distance of lightning damage, so that they can
be inspected or queried. This can also be used to find all customers within a
specific area for advanced analytical purposes such as load planning or bill
analysis.

One major issue that HiPerfUtilCo has had to deal with over the years is daylight
saving time. The IT systems within HiPerfUtilCo are typically GMT-based for this
reason. From a metering standpoint, it means that 96 readings are captured on
most days; however, on one day per year, only 92 readings will be captured; and
one day per year 100 readings will be captured. The meter is aware of the
current time because the Public Utility Commission requires that meters display
the current date and time when queried. The 4-hour block of readings is
time-stamped only with the start of the block and the readings within are then just
sequenced, so the Midnight block covering 2 a.m. will have 12, 16, or 20
readings sequenced within it as required.

Normally, utilities use a validate, edit, and estimate (VEE) process against the
raw meter data to validate or correct the data for billing purposes. This process is
a complex subject that is beyond the scope of this document. However, some
aspects of the VEE process can be addressed. For example, one key aspect of
VEE is to locate missing reads and to create estimates for these gaps based on
historical data for the customer or the location or from comparable accounts. For
details, refer to 5.3.1, “Creating a custom function” on page 61.

2.2 The initial data model

Based on the customer requirements, the scenario for this book must include a
hypothetical OLTP data model for the utility. You can design a schema without a
 Chapter 2. A use case for the Informix TimeSeries feature 17

time series data type and then use common patterns to modify it for a time series
data type.

For meters, the data model uses the serial number and manufacturer as the
natural key and stores the meter’s status and multiplier as additional attributes.

For locations, create a surrogate key because there is no natural key. The data
model needs the type of location (for example, residential or commercial as R/C).
The data model can store the address fields as attributes. In addition, it can store
the GPS location of the meter at this location.

For customer, add a surrogate key (for example, the account number) and store
attributes, such as name fields and phone number fields, and a tax identifier,
such as a social security number (SSN).

For the billing program, the data model only needs a surrogate key and the
program name. Create a second table to hold the program details. This table
uses the program's surrogate key plus a segment number as the keys. Each
segment has a particular start and end time of day and the rate to be charged
during this time.

For meter readings, create a separate table that can store all of the readings that
are collected for each location and time stamp. Effectively, the data model
associates the readings only to the location, regardless of the customer or meter,
to facilitate analysis by location.

Finally, create relational tables between these tables to understand which meter
is installed at which location, including when it was installed and the starting read
when installed. You need to know which customer is associated with each
location, along with the type of relationship (for example resident, landlord, and
other information). Finally, you need to know which billing program is in effect at
each location and when it began.

Figure 2-1 on page 19 illustrates the starting schema.
18 Solving Business Problems with Informix TimeSeries

Figure 2-1 Initial schema

MeterLoc

MeterID
Manufacturer
LocID
InstallDate
StartRead

bigint
varchar(20)
bigint
timestamp Y2D
decimal(15,5)

PK
PK
PK
PK

Meter

MeterID
Manufacturer
Status
Multiplier

bigint
varchar(20)
varchar(10)
decimal(15,5)

PK
PK

Customer

CustID
Title
FirstName
MiddleInit
LastName
Suffix
HomePhone
WorkPhone
MobilePhone
TaxID

bigint
varchar(10)
varchar(30)
char(1)
varchar(30)
varchar(10)
varchar(20)
varchar(20)
varchar(20)
varchar(20)

PK

Location

LocID
LocationType
Address
City
State
PostalCode
MeterLatLong

bigint
char(1)
varchar(200)
varchar(30)
varchar(20)
varchar(30)
ST_Point

PK

CustLoc

CustID
LocID

bigint
bigint

PK
PK

MeterReading

LocID
GMT_TimeStamp
UsageTotal
UsageInterval
DemandInterval

bigint
datetime Y2F(5)
decimal(15,5)
decimal(15,5)
decimal(15,5)

PK
PK

BillingType

CustID
LocID
StartDate
EndDate
BillingCodeID

bigint
bigint
datetime Y2D
datetime Y2D
bigint

PK
PK
PK

BillingProgram

BillingCodeID
ProgramName

bigint
varchar(20)

PK
PK

BillingProgramDetails

BillingCodeID
ProgramName

bigint
varchar(20)

PK
PK
 Chapter 2. A use case for the Informix TimeSeries feature 19

Note that this scenario provides a simple model and does not necessarily show
the complexities of the relationships faced by a real-life utility. Relationships
might face the following real-life complexities, among others:

� Many time-of-use billing programs also have a day-of-week component (for
example, Monday through Friday is one rate and weekends are a different
rate) or a time of year component (for example, from June to September has
a different rate during the day than does the remainder of the year).

� The model somewhat allows for one customer to be associated with multiple
locations, which can cover situations where, for example, a customer has a
home and a business and wants the business bill sent to the home address.
However, the model does not allow for multiple customers to be associated
with a single location, which can happen, for example, where a landlord is
supposed to receive a bill when a tenant fails to pay the bill.

� The model also simplifies the relationship between a location and a meter. It
expects that each location has only one meter, although it does allow for that
meter to be replaced if needed. Some real-world locations can have multiple
meters. Most locations, such as apartment buildings, can simply be treated as
separate locations for billing purposes, and unique locations are, therefore,
created in the table. However, some complex situations exist in the real world
that this model simply cannot represent.

Here is one example: In rural areas of Texas, the meter for a farm or ranch is
initially installed nearer to a pole near the road than to the house, making it
easier to read. Sometime later, an oil well is installed midway between that
pole and the home with a separate meter, which someone else pays.
However, the first meter now shows the usage for the home and this oil well.
To correctly compute the bill for the house, the second meter’s reading must
be subtracted from the first. Many utilities are working to eliminate these
situations.
20 Solving Business Problems with Informix TimeSeries

2.3 Applying a time series data type to the relational
data model

To apply a time series data type to the relational data model, begin by identifying
the different time stamps in the model to determine the best candidates for use
with a time series data type:

� The MeterLoc table has a time stamp, but meters do not move around that
time stamp often. Thus, the number of dates produced by this time stamp is
actually small and this table is not a good candidate for use with a time series
data type.

� The BillingProgramDetails table has two time stamps, but these time stamps
represent times of day only (for example, 8:00 a.m. or 12:00 p.m.). Thus, this
table is not a good candidate for use with a time series data type.

� The MeterReading table is going to end up being large, with an average 96
entries per day per location reporting. Because these entries are also at
regular time intervals (every 15 minutes), a regular time series data type
works nicely with this table.

� The BillingType table is another table with time stamps. Although most
customers do not change billing programs often, the pattern of using a
starting and ending time stamp indicates that an irregular time series data
type can be used effectively. The end time of one program selection
corresponds to the start time of the next one.

After you know the candidate time series data type, you can then pull out the
data for the time series data type into a Row Type. The Row Type must start with
a time stamp. For the MeterReading table, add the three reading values that are
captured in each interval. For the BillingType table, you only need the Billing
Program ID.

Figure 2-2 on page 22 shows the modified schema.
 Chapter 2. A use case for the Informix TimeSeries feature 21

Figure 2-2 Time series data type schema

MeterLoc

MeterID
Manufacturer
LocID
InstallDate
StartRead

bigint
varchar(20)
bigint
timestamp Y2D
decimal(15,5)

PK
PK
PK
PK

Meter

MeterID
Manufacturer
Status
Multiplier

bigint
varchar(20)
varchar(10)
decimal(15,5)

PK
PK

Customer

CustID
Title
FirstName
MiddleInit
LastName
Suffix
HomePhone
WorkPhone
MobilePhone
TaxID

bigint
varchar(10)
varchar(30)
char(1)
varchar(30)
varchar(10)
varchar(20)
varchar(20)
varchar(20)
varchar(20)

PK

Location

LocID
LocationType
Address
City
State
PostalCode
MeterLatLong

bigint
char(1)
varchar(200)
varchar(30)
varchar(20)
varchar(30)
ST_Point

PK

BillingProgram

BillingCodeID
ProgramName

bigint
varchar(20)

PK
PK

BillingProgramDetails

BillingCodeID
ProgramName

bigint
varchar(20)

PK
PK

CustLoc

CustID
LocID
BillingType

bigint
bigint
timeseries(BillingRowType)

PK
PK

MeterReadingRowType

GMT_TimeStamp
UsageTotal
UsageInterval
DemandInterval

datetime Y2F(5)
decimal(15,5)
decimal(15,5)
decimal(15,5)

MeterReading

LocID
MeterReading

bigint
timeseries(MeterReadingRowType)

PK

BillingRowType

StartDate
BillingCodeID

datetime Y2F(5)
bigint
22 Solving Business Problems with Informix TimeSeries

2.4 Final considerations

Before finalizing the schema, consider the following additional factors:

� A row type cannot be changed after it is in use.

If you think that more reading types will be needed in the future, consider
adding those fields now and leaving them null until they are needed.

The alternative is to create new row types in the future to hold different
reading values. If you plan to do this, you need a way to know which row type
is in use in any particular time series data type. So, consider adding a row
type indicator to the table now.

� There might be performance implications when using the Informix TimeSeries
feature.

A time series data type can store the row data into the table’s row (for
example, in CustLoc) or into a separate container, which requires additional
I/O operations to access. As a general guideline, in-row storage should not
exceed 1500 bytes.

The BillingType table time series data type is expected to have few entries.
So, store it in-row if possible. Specify a threshold value of 65 to maximize the
number stored in-row. However, if a time series data type exceeds this value,
it moves to a container, causing additional I/O operations.

For the MeterReading table, however, simply specify a threshold of zero (0),
which forces all entries to a container. This value does mean at least 1 I/O is
needed to access any MeterReading table time series data.
 Chapter 2. A use case for the Informix TimeSeries feature 23

24 Solving Business Problems with Informix TimeSeries

Chapter 3. Defining your TimeSeries
environment

There are many things to consider when defining your TimeSeries environment.
This chapter reviews the different technologies and common issues related to
time series data processing.

3

© Copyright IBM Corp. 2012. All rights reserved. 25

3.1 Schema

Time series data does not exist in a vacuum. It exists with a lot of other
information that is likely to be stored in relational format. Thus, you have to
design a schema that is appropriate to optimize your business processes on this
data. Even without considering the time series data, you can do a standard
relational schema.

Figure 3-1 illustrates a high-level table relationship.

Figure 3-1 Simple table relationships

This figure shows that a customer has a location, which might be multiple
locations. A location has a billing program, a meter, and a set of readings. A
meter then has failure events attached to it and events that indicate when the
meter has exceeded its rate capacity.

This illustration is actually a simplification of a schema that was used, and it
clearly demonstrates this schema’s issues. For one, the events that are attached
to the meters should really be attached to the location. For this scenario, it is
more important to see the overall picture at the location level than at the meter
level. A meter can be replaced, but regardless of which meter is there, the events
matter.

The other thing to consider is the way that the system will be used. The Readings
table is by far the largest table in the system. It is also the table that will be at the
center of most of the major queries. You want to make sure that you get to the
readings while involving as few table joins as possible.

Customer BillingProgram

Location

Meter Readings

Failures ExceedRate
26 Solving Business Problems with Informix TimeSeries

Another important point to consider is the multiplier that was mentioned as a
meter attribute in the previous chapter. This multiplier can be used in two ways:

� To multiply the Readings values when operating on the meter readings

� To do the multiplication at insert time and then use it to divide if you ever want
to retrieve the exact meter readings

The second approach is preferred because then the multiplier is not involved in
any analysis and billing queries, which reduces the processing load and
simplifies the queries.

There are further consideration, which we discuss later in this chapter. However,
at this point, our schema is changed as shown in Figure 3-2.

Figure 3-2 Modified table relationships

Some people jump to the conclusion that because there could be a large number
of transactions on the systems, it should be following an ER diagram and go
through the normal forms to optimize the database. It might be the case that
normalizing is an efficient way to represent the data, but do not jump to this
conclusion automatically. Consider other types of models, such as the star
(snowflake) schema or even a hybrid that has portions as a star schema and
other portions that are more of an ER model. It all goes back to modeling and
considering the different use cases that constitute the core of the system.

A majority of the queries will be concerned with manipulating the readings (meter
data). As mentioned earlier, you want to get to the Readings table with a
minimum of I/O operations. You might want to locate a set of meters based on
their geographical location, such as proximity to a specific location, or through
political boundaries, such as city and county. Looking at the queries that you
require will possibly lead to some sort of hybrid model. Whether you need a
hybrid model will be more evident after you see how time series data fits in the
solution.

Customer BillingProgram

Location

Meter ReadingsFailures ExceedRate
 Chapter 3. Defining your TimeSeries environment 27

You are the ultimate judge on how to organize your data. The good news is that
all you know about database design still applies here.

3.2 Relational and time series data working together

The Informix TimeSeries feature includes a data type that is part of the relational
framework, which means that this data type is simply another column type
available to use in table definitions. For example, you can select the meter data
on which you want to operate based on standard relational attributes (columns),
including spatial information, as highlighted in the following query:

SELECT GetFirstElem(TSRollup(AggregateBy('sum($value)', 'ts_1day',
raw_reads, 0, '2010-11-10 00:00:00'::datetime year to second,
'2010-11-10 23:45:00'::datetime year to second),
'avg($value)')::timeseries(meter_data), 0).value
FROM ts_data t1, ts_data_location t2
WHERE t1.loc_esi_id = t2.loc_esi_id
AND ST_Contains('4 POLYGON ((-122.28343657141261 37.43915215530022,
-122.28343657141261 37.54157880984285, -122.08293608313136
37.54157880984285, -122.08293608313136 37.43915215530022,
-122.28343657141261 37.43915215530022))', longlat)

The timeseries of this query comes from the ts_data table (from the stores
demo database that comes with Informix) and has the following definition:

CREATE TABLE ts_data (
loc_esi_id char(20) NOT NULL,
measure_unit varchar(10) NOT NULL,
direction char(1) NOT NULL,
multiplier TimeSeries(meter_data),
raw_reads TimeSeries(meter_data),
PRIMARY KEY(loc_esi_id, measure_unit, direction)

) LOCK MODE ROW;

This definition shows that the raw_reads column is of type TimeSeries and
subtype meter_data.

The TimeSeries subtype, meter_data, defines the elements in each reading of
the time series columns. It has the following definition:

CREATE ROW TYPE meter_data (
tstamp datetime year to fraction(5),
value decimal(14, 3)

);
28 Solving Business Problems with Informix TimeSeries

This query calculates a day average of a set of meters selected based on a
longitude and latitude component. The query joins the customer location
information table with the table that includes the time series data type. It takes
advantage of the spatial capabilities of Informix to locate the customers that are
included in the polygon provided. When selected, it aggregates the day values
for 15-minute intervals to a day value. All the day values are then averaged
together using the TSRollup aggregation function. If needed, you could actually
rewrite this query to use the AVG relational aggregate function.

The main thing to remember is that standard SQL queries identify the subset of
rows containing the time series data type on which you want to operate. Thus, all
you know about relational databases is relevant in this environment.

For example, although meter data is kept in a time series data type, what about
the remaining data? What type of data belongs in a time series data type and
what type of data belongs in standard relational format? In general, if data is not
time-based, it is relational. It becomes tricky when data is time-based but
represents occasional values.

If you expect just a few occasional values, it might be fine to put the data in
relational format. For example, if power failures are rare, you might want to keep
data regarding power failures in relational format because the table will not be
large. If, however, the power grid is not reliable and you want to keep power
failure information for a number of years, it might be worth it to keep the data in a
time series data type.

The threshold of when to use regular relational tables and when to use time
series data types is difficult to pinpoint. Much of the decision has to do with how
the data will be used. Time series data type operations can make it easier to get
to the answer you want.

3.3 Regular or irregular data

As described in Chapter 1, “Overview of IBM Informix” on page 1, the Informix
TimeSeries features supports both regular and irregular interval data. Because
the smart meter readings come at regular intervals, you can use regular time
series data types for storage. Referring back to Figure 3-2 on page 27, the
modified table relationships have the following representation for table readings:

CREATE TABLE readings (
 LocId bigint,
 MeterReading TimeSeries(row_meterReading)
);
 Chapter 3. Defining your TimeSeries environment 29

This is the same definition as provided in Chapter 2, “A use case for the Informix
TimeSeries feature” on page 15. In this use case, the Location and Readings
tables join together using the LocId primary keys. All the readings for a specific
location are found in one row.

Also shown in Figure 3-2 on page 27 is the potential for multiple time series data
types, including Failure, ExceedRate, and BillingProgram. Failure and
ExceedRate can include a begin and an end of event, which is perfect for irregular
time series data types because, usually, there are no events.

The approach for BillingProgram might not be that clear. In chapter 2, we
mentioned a 3-tier program with which you can use regular time series data
types with a calendar that divides the day into three parts.

This approach can also be accomplished using an irregular time series data type.
Consider the billing program that uses a flat rate. Using a time series data type
representation, either regular of irregular, can make it easier to manipulate the
data, but it might make more sense to keep the data in relational format and use
a stored procedure or a custom function when doing the billing. Chapter 5,
“Querying TimeSeries data” on page 53 shows an example of this type of
approach.

The effort is complicated by the fact that the billing program can be changed on a
daily basis. This type of change represents an extreme case, but at a minimum
the model needs to accommodate the possibility of having multiple billing
programs that apply to one billing cycle.

The model also needs to consider corner cases, where a customer starts in the
middle of a billing cycle or ends before the end of a billing cycle. This
circumstance should be fine because the Readings table will not have data for
those days.

One further consideration related to BillingProgram is how to keep track of the
billing program changes over time for each location. The answer comes from how
efficient you can make the billing processing. There are two possibilities
currently, but there might be additional billing programs in the future. What if the
billing programs change over time? You have to keep track of changes for
historical purposes. It might be easier to create a new billing program than to try
to keep track of the changes over time.

After these questions are answered, you still need to be able to do the billing. The
most difficult part is actually determining which rate applies when. In particular,
how do you figure out the rate that applies at the beginning of the billing period?
This rate might have been picked months earlier. To solve that problem, you can
store the billing rate in an irregular time series data type, as is done in the case
30 Solving Business Problems with Informix TimeSeries

described in chapter 2. Then you have to go through each billing day and apply
the appropriate billing schedule.

3.4 The TimeSeries element

A TimeSeries element involves multiple objects. Figure 3-3 summarizes the
relationships involved.

Figure 3-3 TimeSeries objects relationships

A TimeSeries element is built from a row type definition. The Informix
documentation refers to it as the subtype of the TimeSeries data type. A
TimeSeries element is stored in a container that uses the same subtype as the
TimeSeries data type. There is an additional restriction that regular and irregular
TimeSeries elements cannot be created in the same container.

The container uses space from database storage called a dbspace. A dbspace is
created using a specific page size that can be a multiple of the default page size
(2 KB or 4 KB) up to 16 KB.

A TimeSeries element is limited to around 32 KB, the same limit as the maximum
size of a row in a table. There are a few data types that are not supported, such
as bigserial, serial, and opaque types that have an out-of-row representation.
There is also a limit of 255 elements per page. For a regular TimeSeries element,
the time stamp is not stored with the element. Thus, for an element that contains
only one float (8-byte) value, make sure that you use a container that has a 2 KB
page size. In the case study described in chapter 2, the element size is around
42 bytes. It could use up to an 8 KB page size without wasting space.

Calendar TimeSeries

Container

DBSpace
(pagesize)

Row Type
 Chapter 3. Defining your TimeSeries environment 31

Look carefully at what you want to put in a TimeSeries element. Some people
consider putting the billing rate in the element. Looking back at the earlier
discussion on billing programs, you can see that it makes it much easier to do
billing using that approach. The drawback is that the same value is repeated over
and over. The repetition of this double precision value (8 bytes) adds up to a lot
of space. For example, consider that if you have one million meters collecting
data at 15-minute intervals for one year, that additional field in the TimeSeries
element ends up using around 280 GB in disk space.

The first thing to consider when defining the content of a TimeSeries element is
whether you really need this value in each element. Equate this decision to the
standard schema normalization for relational databases. Then, just like in the
case of normalization, look at how the data will be used and whether you want to
trade in space for faster processing.

It is possible to include strings in a TimeSeries element, but keep in mind that, no
matter how small it is, it includes a 4-byte value to keep track of its length. Thus,
a 1-byte flag will use 5 bytes. Consider using a numerical representation of that
flag and storing it in a SMALLINT that uses two bytes.

In general, use mostly numeric types in a TimeSeries element, and perhaps date
and datetime types. Still, you have to decide which types to use, such as
SMALLINT, INT, BIGINT, DECIMAL, REAL (SMALLFLOAT), or DOUBLE PRECISION (FLOAT).

Some of these types are called exact numeric (SMALLINT, INT, BIGINT, and
DECIMAL), and others are approximate (REAL, and FLOAT). Choose the type
carefully because of the operations that you will do on them. The data type
returned in any operation is the same data type coming in by default.

Ask yourself the following questions:

� Is the type big enough?

If you are summing up a bunch of values, make sure the result can fit in the
data type selected.

� Is the type precise enough?

If you use a decimal type with a precision of 2 digits after the decimal point, is
it precise enough for an answer back after operating on a number of values?
For example, if you are doing an average.

The use case described in chapter 2 uses decimal types for the usage and
demand values in the TimeSeries element. It provides a high level of precision
and flexibility and makes for a great choice in this case.
32 Solving Business Problems with Informix TimeSeries

The Readings TimeSeries element is defined as follows:

CREATE ROW TYPE MeterReadingRowType(
 GMT_TimeStamp datetime year to fraction(5),
 UsageTotal decimal(15,5),
 UsageInterval decimal(15,5),
 DemandInterval decimal(15,5)
);

In the course of defining the operations that you will perform on your time series
data, you might have to define new element definitions for the result of some time
series operations. For example, if you are aggregating multiple time series data
to get a usage total, you do not need to return the three numerical values shown
in the previous example but, instead, create a new TimeSeries element type that
contains only the values that you want in the resulting element. Chapter 5,
“Querying TimeSeries data” on page 53 shows further examples.

3.5 Calendars

Calendars are important because they indicate when an interval is valid for
regular time series data. Because readings are expected in all valid intervals,
calendars are useful to indicate which intervals are stored. Calendars are also
used for irregular time series data, but are usually kept simple because there is
no real concept of valid intervals in that case.

Informix comes with a set of useful calendars that includes 1 minute, 15 minutes,
30 minutes, 1 hour, 1 day, 1 week, and 1 month intervals. These intervals might
be all that you need.

Weekly calendar: The weekly calendar that is defined with Informix begins on
a Monday. You might prefer to have a weekly calendar that begins on a
different day, such as a Sunday, or you might want a weekly calendar that is
active only during the weekdays.

For example, if you want a weekly calendar where only the weekdays are
active, you need to use a pattern where you indicate the weekdays being on
and weekends being off. If you start on a Monday, the pattern would be 5 on
and 2 off, as follows:

INSERT INTO CalendarTable(c_name, c_calendar)
VALUES (’weekday’, 'pattstart(2012-01-02 00:00:00.00000), pattern({5
on, 2 off} day)');
 Chapter 3. Defining your TimeSeries environment 33

3.6 Time zone issues

If you need to collect data in different time zones, normalize the data to
Coordinated Universal Time (UTC). The Informix TimeSeries feature does not
support time zones. Many time zones use daylight savings time, which has two
irregular days in the year: one day with 23 hours and another day with 25 hours.
Using UTC keeps all days at 24 hours. You can decide in your application how to
deal with the time changes during the year.

3.7 Loading data

One of the key operations in any system is the loading of data. Informix
TimeSeries systems usually manage a large amount of data. You also need to
consider the timing requirements of updates. You might need to load the data as
it arrives, or you might collect the data in 1-hour, 4-hour, or daily increments
before loading it. Currently, the faster means of loading data favors collecting
data for an amount of time before loading it.

At the time of this writing, the following loading methods are available:

� Insert data through the relational view of the Informix TimeSeries virtual table
interface (VTI)

� Update TimeSeries data using the PutElem() function
� Update TimeSeries data using the BulkLoad() function to load the content of

a file
� Use the Informix TimeSeries plug-in for Data Studio

More options might become available in the future. Make sure to review the
release notice and the documentation for the latest release of Informix for the
most up-to-date information. You can also find information at the IBM
developerWorks Informix smart meter central wiki at:

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#
/wiki/Informix%20smart%20meter%20central/page/Creating%20and%20loading

The faster loading method is using the Informix TimeSeries plug-in for Data
Studio. It is described in the TimeSeries documentation. Data Studio is a product
that is available on the Informix media distribution and for download at no charge
from the IBM website. The plug-in allows you to define the format of the input file
and map it to a specific table. An input file record includes a unique identification
of the target TimeSeries (primary key) and the values for the TimeSeries
elements, including the time stamp. With a definition of an input file format,
TimeSeries table, and the mapping between the two, you can load your data
efficiently.
34 Solving Business Problems with Informix TimeSeries

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Informix%20smart%20meter%20central/page/Creating%20and%20loading

3.8 Data cleansing and corrections

Data cleansing is also referred to as validation, estimation, and editing (VEE). It
involves operations such as checking for missing values and out of range values.
In the E&U industry, the rate of error is in the range of one to two percent.

Depending on the volume of data being loaded and the size of your system, you
might want to do part of your cleansing in the data preparation step. You might
have quite a few systems that collect the data and then feed the data to the
database system for injection. Doing some of the cleansing up front can reduce
the demand on the database system.

Your loading processes can also keep track of the meters that might now include
suspicious data. Then you can use a second step to complete the cleansing
process. If you already corrected the simpler errors, you can cover much less
meter data in the second step.

3.9 High availability

Informix has a feature called high availability data replication (HDR). This
feature allows you to set up one or more secondary servers that can take over in
the case of a failure of the primary system. The data is replicated automatically to
that secondary server. The servers do not need to be co-located. They can even
be on different continents if your network backbone is fast and solid. The
secondary server can also be active at the same time as the primary server,
which is a way to distribute the processing, such as billing, over multiple system if
necessary.

For more information, see the IBM Informix Administrator’s Guide, starting at
Chapter 21. You can find information about where to find this manual in
Appendix A, “Reference material” on page 101.

3.10 Backup

Informix provides the capability to do both full and incremental backups that can
be augmented with the use of other storage management software. You want to
back up the non time series tables because customer and location information
can change. It might also make sense to back up the corrections made to the
data. You might decide to back up the raw data files instead, and have a plan to
reload them if needed. Consider all of these possibilities as you define your
backup strategy.
 Chapter 3. Defining your TimeSeries environment 35

3.11 Purging data

In most cases, your data will grow by adding newer data to your TimeSeries
environment. You will reach a point where you want to remove the older data
from your system. The TimeSeries API currently provides the following functions
to delete a range of data:

� DelClip
� DelRange
� DelTrim

In most cases, the DelRange is sufficient. For more information, see the IBM
Informix TimeSeries Data User’s Guide.

Keep in mind that TimeSeries functions do not allow intra-query parallelism. If
you are planning to remove the older data from the whole TimeSeries
environment, you will have a considerable number of rows containing
TimeSeries data type columns on which to operate. Consider starting multiple
client processes or threads, each with its own database connection, and have
each connection operate on a subset of the data.

The biggest consideration for purging data is the logging capacity of your system.
Make sure that you have enough logging space to handle the operations. One
way to limit the logging space is to increase the frequency of checkpoints. Also
consider how fast the logging subsystem is. For example, if your logging is done
on solid-state drives (SSD), the system can handle a larger number of purging
processes.

3.12 Spatial requirements

Spatial information is included in quite a bit of data. For example, an address is
spatial information but might not provide enough information. It is better to
augment an address with a longitude and latitude.

Informix supports spatial queries as a standard function that comes with the
Informix server. You can add spatial objects, such as point, line, and polygon, to
relational tables. For example, you can use a polygon to define the limits of a
county and retrieve the readings that are at a location within that county. This
function opens the door to many possibilities for grouping and reporting.
36 Solving Business Problems with Informix TimeSeries

Chapter 4. Implementing Informix
TimeSeries

This chapter transforms the schema diagram from Figure 2-2 on page 22 to a
working Informix schema. The examples included in this chapter compute space
requirements for both relational and time series storage, compute the possible
space savings, and discuss techniques for loading the time series data.

4

© Copyright IBM Corp. 2012. All rights reserved. 37

4.1 Schema definitions

The time series schema diagram from Figure 2-2 on page 22 must be converted
to SQL definitions. Although the majority of the conversion is straightforward,
keep in mind the following considerations:

� The row types must be defined before using them to define the time series
columns.

� The time series columns must be defined before the virtual table interface
(VTI) routines are called.

4.2 Space calculations

For space calculations, first compute how much space is required by the
relational tables and relational portions of tables holding time series columns.
Then, add the space that is required by any indexes. Finally, add the space
required by the time series columns.

4.2.1 Space calculations for relational storage

The space calculation for the relational tables and relational portions of tables
holding time series columns is well documented in the IBM Informix Performance
Guide, Version 11.7, SC27-3544.

This section includes tables that list the space calculation values that are used for
the relational tables. Each table is followed by definitions of the calculated
columns in that table. These calculations show that about 7.2 GB of storage are
needed for the data.

Table 4-1 gathers row size and row counts for each relational table as follows:

� The average size for the location table was computed by allowing the
VARCHAR fields to be 60% of their maximum sizes.

� Small row sizes under 100 bytes were not adjusted for average size, even
though they might contain VARCHAR fields.

Temporary space: These calculations do not include temporary space for
queries, nor do they account for growth of the data over time (for example, the
number of customers increasing each year).
38 Solving Business Problems with Informix TimeSeries

Table 4-1 Table size information

Table 4-2 shows the following page size calculations. The assumption is that a
2 KB page size is used for all tables. 2 KB is the default page size for most
systems, but 4 KB is the default for IBM AIX® and Windows operating systems.

� Using sizes higher than 2 KB pages for billingprogram, billingprogramdetails,
meter, meterloc, and customer doubles the space required.

� Using sizes higher than 2 KB pages for billingprogram, billingprogramdetails,
meter, meterloc, and customer on systems with a default 2 KB page size also
doubles I/O needed to read in the data.

� Using 4 KB pages for the meterreading, custloc, and location tables nearly
doubles the space required but could be I/O neutral over a 2 KB page. 4 KB of
data is required in both cases to read a single row.

� Using 8 KB pages for the meterreading, custloc, and location tables increases
the space required by approximately 13% but doubles the I/O to read a single
row over 2 KB or 4 KB pages.

� Using 16 KB pages for the meterreading, custloc, and location tables
decreases the space required by approximately 3%, but quadruples the I/O to
read a single row over 2 KB or 4 KB pages. The space savings are minimal
against the I/O costs.

Table 4-3 shows the calculations for tables whose row size is less than the page
size available. Table 4-4 and Table 4-5 show the calculations for tables whose
row size is greater than the page size available. The calculations reference the
following functions:

� ROUNDUP rounds the value to the nearest integer higher.
� ROUNDDOWN rounds the value the nearest integer lower.
� MIN returns the lower of its arguments.

Table name Max row size Avg row size Number of rows

billingprogram 29 29 100

billingprogramdetails 29 29 300

meter 49 49 1,000,000

meterloc 51 51 1,000,000

customer 177 107 1,000,000

meterreading 2,060 2,060 1,000,000

custloc 2,068 2,068 1,000,000

location 2,344 2,232 1,000,000
 Chapter 4. Implementing Informix TimeSeries 39

Table 4-2 Page size calculations

Table 4-3 Tables with row size less than Page Use size

Page size Page usea

a. Page Use = Page Size - 28

2048 2020

Table name Rows
per
pagea

a. Rows per page = MIN (255, ROUNDUP (Page use/(Avg row size + 4)))

Total pages
neededb

b. Total pages = ROUNDUP (Rows per page/Number of rows)

Total space
needed (bytes)c

c. Total space needed (bytes) = Total pages * Page size

Total space
needed
(MB)d

d. Total space needed (MB) = Total space needed (bytes)/(1024 * 1024)

billingprogram 61 2 4,096 < 0.01

billingprogramdetails 61 5 10,240 0.01

meter 38 26,316 53,895,168 51.4

meterloc 36 27,778 56,889,344 54.3

customer 18 55,556 113,778,688 108.5

TOTAL 214.2
40 Solving Business Problems with Informix TimeSeries

Table 4-4 Tables with row sizes greater than page use

Table 4-5 Tables with row sizes greater than page use (continued)

4.2.2 Space calculations for indexes

Each table has a primary index. The space calculation for indexes is also well
documented in IBM Informix Performance Guide, Version 11.7, SC27-3544.

This section includes tables that list the calculations for these indexes. The
calculations show that an additional 212 MB is needed.

Table 4-6 shows the length of the index and starts the calculations. Table 4-7
computes the leaves and branches needed. Table 4-8 computes the space
needed. To simplify the calculations, it is assumed that the tables are not
fragmented, and a 90% fill factor is used.

Table name Home pagesa

a. Home pages = Number of rows

Remainder
sizeb

b. Remainder size = Avg row size - (Page Use + 8)

Partial
remainder
sizec

c. Partial Remainder Size = MOD(Avg row size, Remainder size - 8)

Partial ratiod

d. Partial ration = Partial remainder size / Page Use

meterreading 1,000,000 32 48 0.02

custloc 1,000,000 40 56 0.03

location 1,000,000 204 220 0.11

Table name Partial
remainder
pages

Total pages
neededa

a. Total pages needed = Home pages + Partial remainder pages

Total space
needed
(bytes)b

b. Total space needed (bytes) = Total pages * Page size

Total space
needed (MB)c

c. Total space needed (MB) = Total space needed (bytes) / (1024 * 1024)

meterreading 142,858d

d. Partial remainder pages [meterreading and custloc] =
ROUNDUP(Number of Rows / (TRUNC((Page Use / 10) / Remainder size) + 1))

 1,142,858 2,340,573,184 2232.1

custloc 166,667d 1,166,667 2,389,334,016 2278.6

location 250,000e

e. Partial remainder pages [location] =
ROUNDUP(Number of Rows / (TRUNC((Page Use / 3) / Remainder size) + 1))

 1,250,000 2,560,000,000 2441.4

TOTAL 6952.1
 Chapter 4. Implementing Informix TimeSeries 41

Table 4-6 Index size information

Table 4-7 Index size calculations for leaves and branches

Table name Index length Entry sizea

a. Entry size = Index length + 4

Page
entriesb

b. Page entries = ROUNDDOWN (Page use/Entry size)

Node
entriesc

c. Node entries = ROUNDDOWN (Page use/(Index length + 4) + 4)

billingprogram 12 21 96 130

billingprogramdetails 20 29 69 88

meter 29 38 53 65

meterloc 50 59 34 31

customer 12 21 96 130

meterreading 12 21 96 130

custloc 24 33 61 76

location 12 21 96 130

Table name Leavesa

a. Leaves = ROUNDUP (Number of rows/Page entries)

Branches0
b

b. Branches0 = ROUNDUP (Leaves/Node entries)

Branches1
c

c. Branches1 = ROUNDUP (Branches0/Node entries)

Branches2
d

d. Branches2 = ROUNDUP (Branches1/Node entries)

billingprogram 2 1 - -

billingprogramdetails 5 1 - -

meter 18,868 291 5 1

meterloc 29,412 718 18 1

customer 10,417 81 1 -

meterreading 10,417 81 1 -

custloc 16,394 216 3 1

location 10,417 81 1 -
42 Solving Business Problems with Informix TimeSeries

Table 4-8 Index size calculations for pages

4.2.3 Space calculations for Informix TimeSeries storage

The space calculation for Informix TimeSeries storage is similar to that for
relational data. However, keep in mind the following key points:

� For regular time series, the datetime field at the beginning of the row type is
not stored, so space calculations can remove this data. For irregular time
series, however, the datetime field at the beginning of the row type is stored
and cannot be removed. In both time series types, all other fields are stored.

� Similar to relational tables, only 254 elements can be stored on one page.

� Unlike relational tables, no two time series instances will ever share a page
from a container at any time.

One final consideration not already discussed is the number of readings to retain,
which is needed to complete the space calculations of the reading data. The
customer has stated that 25 months of data must be retained; that is, the current
partial month plus the past 24 complete months.

This requirement results in 96 * (2 * 365.25 + 31) = 73,104 entries to be retained
for the regular meter reading time series. For the billing program irregular time

Table name Compact
pagesa

a. Compact pages = Leaves + Branches0 + Branches1 + Branches2

Index
pagesb

b. Index pages = ROUNDUP((100 * Compact pages) / 90)

Total space
needed
(bytes)c

c. Total space needed (bytes) = Index pages * Page size

Total space
needed
(MB)d

d. Total space needed (MB) = Total space needed (bytes) / (1024 * 1024)

billingprogram 3 4 8,192 0.01

billingprogramdetails 6 7 14,336 0.01

meter 19,165 21,295 43,612,160 41.6

meterloc 30,149 33,499 68,605,952 65.4

customer 10,499 11,666 23,891,968 22.8

meterreading 10,499 11,666 23,891,968 22.8

custloc 16,614 18,460 37,806,080 36.1

location 10,499 11,666 23,891,968 22.8

TOTAL 211.5
 Chapter 4. Implementing Informix TimeSeries 43

series, a worst case scenario where the customer changes the program every
single day for the same 25 month program results in 762 retained items.

Tables showing the calculations follow. The calculations show that 1.95 TB are
needed. Table 4-9 shows the row type lengths used in the calculations.
Table 4-10 computes the number of pages needed for a single time series
instance. Table 4-11 computes the total number of pages needed.

Table 4-9 Time series size information

Table 4-10 Time series page calculations for a single time series

Table 4-11 Time series space calculations

Table name Time series type Regular? Defined
row
length

Use row
length

meterreading MeterReadingRowType Yesa

a. If Regular: Use row length = Defined row length - 10

37 27

custloc BillingRowType Nob

b. If Irregular: Use row length = Defined row length

19 19

Table name Time series type Items to
retain

Maximum
items per
pagea

a. Maximum items per page = MIN (ROUNDDOWN(Page Use/Use Row Length),
254)

Pages to
hold 25
months
of itemsb

b. Pages to hold 25 months of items = ROUNDUP(Items to retain/Maximum items
per page)

meterreading MeterReadingRowType 73,104 74 988

custloc BillingRowType 762 106 8

Table name Number of
time seriesa

a. Number of time series = Number of rows (from relational calculations)

Total pages
neededb

b. Total pages needed = Number of time series * Pages to hold 25 months of items

Total space
needed (bytes)c

c. Total space needed (bytes) = Total pages needed * Page size

Total space
needed
(MB)d

d. Total space needed (MB) = Total space needed (bytes) / (1024 * 1024)

meterreading 1,000,000 988,000,000 2,023,424,000,000 1,929,688

custloc 1,000,000 8,000,000 16,384,000,000 15,625

TOTAL 1,945,313
44 Solving Business Problems with Informix TimeSeries

4.2.4 Container calculations for Informix TimeSeries storage

Similar to fragmented relational tables, Informix TimeSeries performance is
aided by spreading the data across multiple containers. For 2 KB pages, the
maximum container size is 32 GB (16,384,000 pages).

It is also useful to multithread queries or loading activities across containers.
Ideally, you want to have at least as many containers as CPUs. However, it might
not be practical to manage many small containers. Setting a lower number of
containers might achieve at least some multithreading, which might be useful.

You can now compute the number of containers that are needed for time series
storage. You can use trial and error to determine the best container size to
achieve a given lower limit on the number of containers. Table 4-12 shows these
results.

Table 4-12 Time series container calculations

4.2.5 Time series storage needs versus relational storage needs

1.92 TB sounds like a lot of space until you contrast this amount with what it
would take if you did not use time series. Assume that the first relational schema
shown in Figure 2-1 on page 19 was implemented instead of time series. The
calculations in the tables that follow show that the same 25 months of reading
data would require nearly 3.5 TB of storage.

Table 4-13 shows the row size for relational space computations. Table 4-14
computes the space needed.

Table 4-13 Table size information

Table name Time series type Container size
(pages)

Containers
needed

meterreading MeterReadingRowType 16,384,000 60

custloc BillingRowType 1,024,000 8

Table name Max row size Avg row size Number of rows

meterreadingorig 45 45 73,104,000,000

custlocorig 16 16 1,000,000

billingtypeorig 46 46 761,500,000
 Chapter 4. Implementing Informix TimeSeries 45

Table 4-14 Tables with row size less than page use size

4.3 Loading time series data

Data can be loaded into time series columns using the methods described in this
section.

4.3.1 Small amounts of data

For small amounts of data, you can use the Informix TimeSeries API functions to
update a time series element. In the use case for this book, this method can be
used to correct a piece of data manually:

UPDATE MeterReading
SET MeterReading = PutElem(MeterReading,

row(‘2012-01-01 03:15:00.00000’::datetime year to fraction(5),
12.0, 1.0, 7.5)::MeterReadingRowType, 0)

WHERE LocID = 12345678;

If the location does not exist, then an INSERT must be done first as follows:

INSERT INTO MeterReading (LocID, MeterReading)
VALUES (12345678, TSCreate(‘ts_15min’,

’2012-01-01 00:00:00.00000’,0,0,0,NULL))

The two operations can also be combined into one statement:

INSERT INTO MeterReading (LocID, MeterReading)
VALUES (12345678, PutElem(TSCreate(‘ts_15min’,

’2012-01-01 00:00:00.00000’,0,0,0,NULL)
::timeseries(MeterReadingRowType),

row(‘2012-01-01 03:15:00.00000’::datetime year to fraction(5),
12.0, 1.0, 7.5)::MeterReadingRowType, 0))

Table name Rows
per
page

Total pages
needed

Total space
needed (bytes)

Total space
needed
(MB)

meterreadingorig 41 1,783,024,391 3,651,633,952,768 3,482,470

custlocorig 101 9,901 20,277,248 19.3

billingtypeorig 40 19,037,500 38,988,800,000 37,183.6

TOTAL 3,519,671
46 Solving Business Problems with Informix TimeSeries

For small lists of data, a virtual table interface can be used along with a LOAD
statement. For example, if you have to load data for one location for a single day,
you can format it as follows:

12345678|2012-01-01 00:00:00.00000|11.5|0.2|5.3
12345678|2012-01-01 00:15:00.00000|11.6|0.1|4.2
12345678|2012-01-01 00:30:00.00000|11.9|0.3|1.7
...
12345678|2012-01-01 23:45:00.00000|13.7|0.2|1.2

This data can be imported using the following statement:

LOAD FROM ‘/tmp/meter1day.txt’ DELIMITER ‘|’
INSERT INTO MeterReading_v
(LocID, GMT_TimeStamp, UsageTotal, UsageInterval, DemandInterval);

This LOAD statement against the VTI table is equivalent to executing either the
INSERT or UPDATE statement described previously for each line in the file.

The other problem with these techniques is that the time series is written back to
disk for each UPDATE statement executed, meaning this type of update is too
I/O intensive.

4.3.2 Large amounts of data

For large amounts of data, a more efficient way to write the data must be used.
You can use the following techniques:

� Informix TimeSeries bulkload function
� IBM Informix TimeSeries Plug-in for Data Studio
� Custom code

Informix TimeSeries bulkload function
The Informix TimeSeries bulkload function can load an entire file into a single
time series. This is more efficient because the time series is only written to one
time, at the end of the file being processed. A sample input file looks like this,
with values on the line separated by a tab and ending each line with a new line:

2012-01-01 00:00:00.00000 11.5 0.2 5.3
2012-01-01 00:15:00.00000 11.6 0.1 4.2
2012-01-01 00:30:00.00000 11.9 0.3 1.7
...
2012-01-01 23:45:00.00000 13.7 0.2 1.2
 Chapter 4. Implementing Informix TimeSeries 47

This data can be loaded using the following statement:

UPDATE MeterReading
SET MeterReading =

bulkload(MeterReading,‘/tmp/meter1day_12345678.txt’,0)
WHERE LocID = 12345678;

The bulkload function will efficiently insert all values from the file into the time
series and do the equivalent of a single update at the end of the load.

However, this technique does require organizing the data to be loaded into
separate files by time series. For our utility, this would mean creating 1,000,000
separate input files, one per location, along with 1,000,000 separate SQL
statements to load these files.

For more information about the bulkload function, see the Informix TimeSeries
Data User’s Guide.

IBM Informix TimeSeries Plug-in for Data Studio
Informix 11.70 xC5 includes a tool for loading time series data. It exists as a
plug-in that can be installed into IBM InfoSphere® Data Studio or IBM Optim™
Developer Studio. This solution is a no-coding, efficient method for loading data
into time series columns. There are several pieces to the solution.

A User-Defined Record Format must be created to define the input file structure.
The input file values can be fixed width (for example, columns 1-20) or the values
can be delimited. Delimited values can be separated by a single delimiter or two
delimiters can surround a value. Delimiters in either case can be one or more
characters, and can be different for each field. If the file contains header lines,
they can be skipped.

An Informix Table Definition must be created for the time series table to be
loaded. This definition must include the fields in the row type within the time
series.

A Table Mapping must be created to define how the user-defined record format
fields are mapped to the Informix table definition.

Finally, an Informix TimeSeries Load Job must be created to load a file based on
the table mapping.
48 Solving Business Problems with Informix TimeSeries

For our utility company records, we can use the same file format as the LOAD
example on page 47. In this case, our user-defined record format can be seen in
Figure 4-1. Our Informix table definition is shown in Figure 4-2. The table
mapping is shown in Figure 4-3. Finally, a load job is shown in Figure 4-4.

There are a few points to note:

� The time series to be loaded must already be created. We can ensure this by
simply creating the MeterReading time series when a new location is added
to our database.

� The delimiter value is interpreted as a regular expression as defined by
java.util.regex. Because the vertical bar has special meaning (as a logical
OR indicator), you have to escape it with the backslash.

� If there are extra fields at the end of the input line that are not needed, these
do not have to be defined.

Figure 4-1 User-defined record format example

Figure 4-2 Informix table definition example
 Chapter 4. Implementing Informix TimeSeries 49

Figure 4-3 Table mapping example

Figure 4-4 Informix TimeSeries Load Job example

Custom code
It is always possible to write custom code to load a time series. The API functions
are well documented in the Informix TimeSeries Data User’s Guide. Within that
guide is code for an example custom loader included in Appendix B.
50 Solving Business Problems with Informix TimeSeries

Although this topic is too complex to fully discuss here, keep in mind the following
considerations:

� If multithreading is used, two threads should not try to update the same
container. Some locking can occur at the container level, which can slow
down the writes.

� Although loading from a client connected to the database is possible, it is not
as efficient as running on the same machine. There are also some differences
in the way the Informix TimeSeries API acts when used on a client machine;
these are noted in the API documentation.

� Load all entries for a single time series at the same time if possible. Doing
otherwise increases writes and might increase reads.

� Load all entries for a single time series in ascending time stamp order. This
load order allows the API to append the new data and is more efficient than
inserting the data in some other order, which might cause the existing data to
be moved to make room for the new data.
 Chapter 4. Implementing Informix TimeSeries 51

52 Solving Business Problems with Informix TimeSeries

Chapter 5. Querying TimeSeries data

The scenario for this book stores data in databases so that the data can be
retrieved and analyzed easily. This chapter explores several approaches to
querying that data, including the advantages and disadvantages of each method.
The following approaches are covered:

� Basic relational views

� The TimeSeries SQL API

� Custom functions

This chapter also discusses when to use which approach and gives multiple
practical example queries based on the data in the use case described in
Chapter 2, “A use case for the Informix TimeSeries feature” on page 15.

5

© Copyright IBM Corp. 2012. All rights reserved. 53

5.1 Basic relational views

The Informix TimeSeries feature represents a time series as a data type in the
database, a column in a table. Off-the-shelf tools are used to deal with standard
relational tables with rows and columns. Informix provides an interface called the
virtual table interface (VTI) that allows you to create relational views on tables
that contain TimeSeries columns. The standard relational columns are part of
such a view. If your table includes more than one TimeSeries column, the view
operates on only one of them. You will need to create multiple views to cover all
the TimeSeries columns.

It is important that you use qualifiers that allow the view to eliminate data,
including the selection of TimeSeries and a time interval.

Considering the MeterReading table. You can create a relational view using the
following command:

EXECUTE PROCEDURE TSCreateVirtualTab('MeterReading_v',
'MeterReading', 'origin(2012-01-01
00:00:00.00000),calendar(ts_15min),container(autopool00000000),
threshold(0),regular', 0, 'Reading');

In this command, the following procedure arguments tell Informix what to do if a
new TimeSeries must be created:

'MeterReading_v' Name of the relational view

'MeterReading' Name of the relational table

'origin(...' Definition used for a TimeSeries in a new row

0 Flag indicating how to treat use cases (such as null
values), which defaults to 0

'Reading' Name of the TimeSeries column (optional if there is only
one Timeseries column)

See IBM Informix TimeSeries Data User’s Guide for more details.

As a result, you get a view that has the following definition:

MeterReading_v (
 locid integer,
 gmt_timestamp datetime year to fraction(5),
 usagetotal decimal(15,5),
 usageinterval decimal(15,5),
 demandinterval decimal(15,5)
);
54 Solving Business Problems with Informix TimeSeries

You can use this view to select update and delete values within the TimeSeries
contained in the base table.

This particular view can be useful if you need to retrieve the base data from any
time series for a specific amount of time. For example, you can retrieve the data
for location ID 4727354321171667 for the entire day of 01 Jan 2012 with the
following statement:

SELECT * FROM MeterReading_v
WHERE locid = 4727354321171667
AND gmt_timestamp BETWEEN '2012-01-01 00:00:00'
 AND '2012-01-01 23:45:00';

What you get as a result can be manipulated by any tools because it is plain
relational data.

5.1.1 Expression-based relational views

You might want to take the query a step further. For example, you might not be
interested in getting data in 15-minute intervals, but instead, want to aggregate
the data on a hourly basis. You can define a view that applies the aggregation
internally so that, for you, the view represents data using an hourly interval. This
approach allows you to take advantage of TimeSeries-specific functionality while
keeping the ease of use of relational tables.

For example, the following command provides an hourly view on top of the base
table that contains data at 15-minute interval:

EXECUTE PROCEDURE
TSCreateExpressionVirtualTab('MeterReading_hourly_v',
'MeterReading','AggregateBy("min($usagetotal), sum($usageinterval),
avg($demandinterval)", "ts_1hour", Reading, 0)',
'MeterReadingRowType', 0, "Reading");

This view automatically applies the AggregateBy SQL function to the selected
TimeSeries, making it look like the data was collected at hourly intervals. The
table columns are identical to the previous view (MeterReading_v). You can then
execute the following SQL statement and get one row as a result:

SELECT * FROM MeterReading_hourly_v
WHERE locid = 4727354321171667
AND gmt_timestamp BETWEEN "2012-01-01 01:00:00"
 AND "2012-01-01 01:45:00";

You can create other expression-based relational views based on your needs.
The same concerns apply to this type of views as in the previous case. Make
 Chapter 5. Querying TimeSeries data 55

sure to include a time interval and, if possible, a condition on which meters are
being processed.

5.1.2 When to use relational views

You can use relational views, or virtual tables, when you know that what you are
getting out of the view is exactly what you need to get, without additional
processing. For example, you can get the one day of meter data for a specific
customer:

SELECT * FROM MeterReading_v
WHERE locid = 4727354321171667
AND TSTAMP BETWEEN '2012-01-01 00:00:00'
 AND '2012-01-01 23:45:00';

However, if you want to aggregate values, using relational views is not the most
efficient method. For example, you should question the following statement:

SELECT locid, SUM(usageinterval)
FROM MeterReading_v
WHERE locid = 4727354321171667
AND gmt_timestamp BETWEEN '2012-01-01 00:00:00'
 AND '2012-01-01 23:45:00'
GROUP BY locid;

In this case, you are converting the TimeSeries data to relational format and then
applying the SUM aggregate function. This example is benign because it does not
process a large amount of data. In other cases, it can cause the database engine
to do additional processing, such as sorting, which is not necessary when using
the TimeSeries SQL functions directly.

A quick guideline is that if you are using SQL aggregate functions on a
TimeSeries relational view, question this approach and consider changing it.
Remember that this approach might work well on a system with a few hundreds
of meters and a few days of data, but when it gets to larger volumes,
performance problems can increase exponentially.

Tip: A proper approach to the previous statement is to use an
expression-based relational view that aggregates the data on a daily calendar.
56 Solving Business Problems with Informix TimeSeries

5.2 Using the TimeSeries SQL API

Informix offers an extensive set of TimeSeries functions to use in SQL
statements. When it comes to querying, become familiar with the following
function categories:

� Count the number of elements
� Select individual elements
� Extract and use part of a time series
� Find the intersection or union of time series
� Iterator functions
� Aggregate functions

Refer to the IBM Informix TimeSeries Data User's Guide for details.

5.2.1 TimeSeries SQL API functions

You will likely use the following set of TimeSeries SQL API functions over and
over:

� AggregateBy
� Apply
� Clip
� GetElem
� Transpose
� TSSetToList
� TSRollup

Ensure that you understand the capabilities that these functions provide. The
examples later in this chapter can help you determine how and where to use
several of them.

Relational views are not appropriate for all queries. Some queries require
converting too much time series data into virtual tables before performing the
operation to eliminate the inapplicable data. Some queries performed through
virtual tables first convert large amounts of time series data to relational format
and then filter the data. Using the SQL API avoids the overhead of converting
data that does not meet the filter criteria.

The use of expression-based relational views allows you to bridge these types of
issues because it can execute the TimeSeries SQL functions, which can lead to
the creation of multiple expression-based relational views. You have to decide
when it is more appropriate to use the API directly. Most likely, it is a matter of
flexibility and convenience.
 Chapter 5. Querying TimeSeries data 57

When you use the SQL TimeSeries functions, keep in mind that they operate
only on TimeSeries data. This can lead to situations where you want to generate
relational representation of the result and you have problems putting the
relational data with each TimeSeries element.

For example, say that you want to retrieve one day of data from customers,
aggregated by hour, thus getting 24 elements per customer. With the TimeSeries
SQL function, you get the following TimeSeries data back:

SELECT locid,
 AggregateBy(
"min($usagetotal), sum($usageinterval), avg($demandinterval)",
"ts_1hour", Reading, 0, "2012-01-01 00:00:00",
 "2012-01-01 23:45:00")
FROM MeterReading;

This query returns one row per locid. Each row contains a TimeSeries with 24
elements. What can you do if you want to convert this result to the relational
format?

TimeSeries provides the Transpose function to accomplish this task. In this case,
you need to pass the following SQL statement as a string to the function:

EXECUTE FUNCTION
transpose("SELECT locid, AggregateBy('min($usagetotal),
sum($usageinterval), avg($demandinterval)', 'ts_1hour',
MeterReading, 0, '2012-01-01 00:00:00', '2012-01-01 23:45:00')
FROM MeterReading",
NULL::row(locid bigint, gmt_timestamp datetime year to fraction(5),
usagetotal decimal(15,5), usageinterval decimal(15,5),
demandinterval decimal(15,5))
);

What comes back is a set of rows of row types based on the definition passed as
the second argument (NULL::row(...)):

ROW(1,'2012-01-01 00:00:00.00000', 150.00000, 40.00000, 10.00000)

You can put an SQL wrapper around the transpose execution to get it as multiple
columns:

SELECT mr.locid, mr.gmt_timestamp, mr.usagetotal, mr.usageinterval,
mr.demandinterval
FROM TABLE (

Important: In this example, the line breaks are there for readability. In reality,
the SQL statement is a continuous string.
58 Solving Business Problems with Informix TimeSeries

transpose("SELECT locid, AggregateBy('min($usagetotal),
sum($usageinterval), avg($demandinterval)', 'ts_1hour',
MeterReading, 0, '2012-01-01 00:00:00', '2012-01-01 23:45:00') FROM
MeterReading",
NULL::row(locid bigint, gmt_timestamp datetime year to fraction(5),
usagetotal decimal(15,5), usageinterval decimal(15,5),
demandinterval decimal(15,5))
)
) as tab(mr);

The key to this statement is to define a table with the TABLE keyword and to
identify the column name returned as mr with the “as tab(mr)” statement. This
means that the select statement can reference the row type and extract its
columns as shown. The output would be the five columns with the name used in
the row type definition of the transpose statement:

locid 4727354321000111
gmt_timestamp 2012-01-01 00:00:00.00000
usagetotal 111.09200
usageinterval 0.35100
demandinterval 12.00000

This method is the most efficient way to return the results that you want. You can
also wrap the statement in a stored procedure to hide the complexity.

If you want to retrieve only the content of a time series, you can also use the
TSSetToList() function. For example, If you retrieve the data for a specific meter,
you might only want the meter data itself:

SELECT usagetotal, usageInterval, DemandInterval
FROM TABLE ((
 SELECT TSSetToList(
 ClipCount(MeterReading,
 "2012-01-01 00:00:00", 96, 0
)
)::list(MeterReadingRowType NOT NULL)
 FROM MeterReading
 WHERE locid = 4727354321090954
));

You can find more practical examples of how to use the TimeSeries SQL
functions in 5.4, “Query examples” on page 64.
 Chapter 5. Querying TimeSeries data 59

5.2.2 When to use TimeSeries SQL functions

You use TimeSeries SQL functions when you cannot use relational views. Of
course, you can avoid relational views altogether by always using the base table
and manipulating the TimeSeries column using these functions.

The question then becomes when not to use the TimeSeries SQL functions.
Here are some guidelines for your decision:

� Convenience

If you are satisfied with the performance of relational views, their convenience
might compel you to use them instead of TimeSeries SQL functions.

� Complexity

The use of the TimeSeries SQL functions might make it difficult to write the
SQL statements. You can simplify the functions by using a custom function,
as described in the next section.

� Performance

Complexity can lead to performance concerns. In general, if you see yourself
nesting TimeSeries SQL functions, you can get a noticeable performance
gain by using custom functions. Using the Apply function can also lead you to
use custom functions, as described in the next section.

5.3 Custom functions

A custom function is written in the C language using the C language TimeSeries
API and the server API. It is compiled into a shared library and defined in SQL
using the CREATE FUNCTION statement. After it is compiled and defined, the
custom function is part of the Informix server and is equivalent to the TimeSeries
SQL functions that are provided with the server.

Writing a custom function is not trivial if you are new at it, but after you are
familiar with it, it can be done quite quickly. The best way to start is with
examples. You can find examples specific to TimeSeries processing in the
following locations:

� TimeSeries examples directory

The Informix installation includes a directory of the form
extend/TimeSeries.*/examples, where the asterisk (*) is a wildcard character
that indicates a version number that might change from one Informix release
to another.
60 Solving Business Problems with Informix TimeSeries

� IBM developerWorks Informix smart meter central wiki

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=
en#/wiki/Informix%20smart%20meter%20central/page/Welcome

This public wiki has a Developers’ corner that includes information and
example code. It discusses function implementations and allows you to
download the code and a makefile. The example code that is provided
addresses simple issues that are encountered in real-life situations.

5.3.1 Creating a custom function

After you understand the IBM DataBlade® API and the TimeSeries API, creating
a custom function is not difficult; however, using these APIs involves a significant
learning curve. Using as many examples as possible is always helpful because
examples can get you 90% of the way there. The IBM developerWorks Informix
smart meter central wiki mentioned previously includes example code.
Specifically, the Developers’ corner of that wiki includes example code in a
section called “How to create a custom function” that can be useful. This wiki is
dynamic and examples are added regularly.

Giving a complete tutorial on how to develop custom functions is beyond the
scope of this book. However, the following overview can get you started.

The cntnotnull() function counts the number of elements with a value in a
specific column. At the SQL level, the function has the following definition:

CREATE FUNCTION CntNotNull(TimeSeries, integer,
 datetime year to fraction(5),
 datetime year to fraction(5))
RETURNING integer
WITH(NOT VARIANT, HANDLESNULLS)
EXTERNAL NAME "$INFORMIXDIR/extend/custom/custom.bld(cntnotnull)"
LANGUAGE C;

The function takes the following arguments:

� A TimeSeries
� A column number
� Two datetimes, representing the beginning and ending date

The function returns an integer that represents the number of elements found.

The WITH clause says that the function returns the same result given multiple
executions with the same argument, and it does not have side effects, such as
modifying a database table. It also says whether the function can still execute if
some arguments are NULL. For example if you do not give the dates, it processes
 Chapter 5. Querying TimeSeries data 61

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Informix%20smart%20meter%20central/page/Welcome
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Informix%20smart%20meter%20central/page/Welcome

the entire TimeSeries. You can find more information about this function in the
IBM Informix TimeSeries Data User’s Guide.

We then identify the shared library and function name of the implementation. The
last line simply says that it is a C function.

The C implementation uses the TimeSeries C API and the datablade API. It must
refer to multiple include files:

#include "mi.h"
#include "tseries.h"
#include "sqltypes.h"

These files are found under the $INFORMIXDIR/incl/public directory and in the
TimeSeries directory under the $INFORMIXDIR/extend directory. The tseries.h
include file is found in a subdirectory called lib.

The function declaration is as follows:

mi_integer
cntnotnull(ts_timeseries *ts,

 mi_integer colno,
 mi_datetime *start_dt,
 mi_datetime *end_dt,
 MI_FPARAM *fParam)

The function uses data types defined in the DataBlade API and in the TimeSeries
API. The last argument (fParam) is an opaque structure that allows us to find
information such as whether one of the arguments is a NULL value.

The core of the function opens the TimeSeries, positions at the start time and
loops over the elements to count the not-NULL values. This function is pretty
typical pattern of TimeSeries functions. As mentioned earlier, you can find the
code on the IBM developerWorks Informix smart meter central site.

After you write the function, compile it into a shared library. It must include the
tsbeapi.a library found in the $INFORMIXDIR/extend/TimeSeries*/lib directory.
After you create the library, make sure to make it available at the path mentioned
in the CREATE FUNCTION statement.

This section gave you an idea of what is involved in creating a custom function.
The best way to do it is to study examples, compile and use them on your
development system, and then try writing your own.
62 Solving Business Problems with Informix TimeSeries

5.3.2 When to use custom functions

Why use custom functions? Most of the time, custom functions are chosen for
performance reasons. When talking about smart meter data, you are talking
about big data. In that case, it is more than likely that performance is a major
consideration. You might say: “So what? I'll use a bigger system.” In some cases
a bigger system will help, but at what cost? Is it better to double the size of the
system—and all the related costs, such as hardware, software licences,
installation, power requirements, and so forth? Or is it better to spend a few
weeks putting together a custom function that might provide 10 times the
performance improvement? This situation is not unheard of.

This choice might not always be that clear, but there can be other benefits. A
custom function can simplify queries, making them easier to read, write, and
understand.

You can also have some specific processing that is somewhat convoluted. A
custom function can implement part or all of a proprietary algorithm and
centralize the processing in the database server instead of having to implement
the code in multiple applications. Also, the reduction of data movement between
the server and the application can have a noticeable performance impact.

By writing custom functions, you can make the processing more specific. For
example, in a scenario that has 10 million customers, you are likely to be doing
billing for about 500,000 customers every day, 20 days out of the month. It is
likely that you will want to provide additional services to customers over the web.
If each customer accesses your website and performs on average three queries
after receiving the bill each month, the system must handle approximately
82,191 queries every day of the year. However, the queries will not be equally
distributed throughout the 24 hours of the day. Most queries will occur in a
window that can be as large as 18 hours and as small as 4 hours. Most likely,
queries will not be distributed evenly throughout the week either. All this
processing does not include queries for day-to-day operations. The result is a
high transaction rate on a lot of data.

Custom functions allow you to make the processing more specific. Your code
does not have to retrieve the description of the TimeSeries element and its data
type or types. It already knows. Considering the volume of transactions, that
saving in processing can make a difference and allow you to get the best
performance out of your system. The end result is delayed upgrades and the
related savings that come with it.
 Chapter 5. Querying TimeSeries data 63

5.4 Query examples

The following query examples focus on meter data and illustrate how to get
additional information by joining other tables in the query. These examples
identify the approaches that make sense, whether a relational view, the
TimeSeries SQL API, or a custom function. You can use these examples to
develop a feel for what to use where in your own environment.

5.4.1 Getting a day of data for a customer

This example is quite simple and is an example used previously. All the selection
is provided in the WHERE clause using the location ID (locid) and time
boundaries (gmt_timestamp). No additional processing is done at the SQL level.

This example is the ideal situation for using the relational view. Here is an
example of what the statement looks like:

SELECT * FROM MeterReading_v
WHERE locid = 4727354321171667
AND gmt_timestamp BETWEEN '2010-11-10 00:00:00'
 AND '2010-11-10 00:00:00';

Note that the gmt_timestamp is returned with a precision to five decimals of a
fraction of a second. You might want to cast the result to the desired precision.
For example, to return data up to the second, use the following statement:

SELECT gmt_timestamp::datetime year to second,
UsageTotal, UsageInterval, DemandInterval
FROM MeterReading_v
WHERE . . .

If you do not create a relational view, you have to use the TimeSeries SQL
functions. Here is one way to do it:

SELECT mr.locid, mr.gmt_timestamp::datetime year to second,
 mr.UsageTotal, mr.UsageInterval, mr.DemandInterval
FROM TABLE (
 Transpose("SELECT locid, ClipCount(MeterReading, '2010-11-10
00:00:00', 96,0) FROM MeterReading
WHERE locid = 4727354321171667",
NULL::row(locid int, gmt_timestamp dtetime year to fraction(5),
 UsageTotal decimal(15,5), UsageInterval decimal(15,5),
 DemandInterval decimal(15,5))
);
64 Solving Business Problems with Informix TimeSeries

Note that the string representing the SQL statement in the Transpose function
cannot be split into multiple lines.

5.4.2 Getting a day of aggregated data for a customer

This example uses the same statement used in the previous example. All the
selection is provided in the WHERE clause using the location ID (locid) and time
boundaries (gmt_timestamp). No additional processing is done at the SQL level.
If you have an expression-based relational view that provides the required
aggregation, you can use it.

SELECT * FROM MeterReading_v
WHERE locid = 4727354321171667
AND gmt_timestamp BETWEEN '2010-11-10 00:00:00'
 AND '2010-11-10 00:00:00';

The use of expression-based relational views becomes mostly a decision of how
many relational views you are willing to support over the same data. You will
likely determine that you always use the same two or three aggregations.
Creating a few more relational views will not impact database administration or
the schema understanding of your developers.

Because this example is the same as the previous example and there is an
example of how to create an expression-based relational view, you can create
the appropriate SQL statements as an exercise.

5.4.3 Comparing two different days for a customer

This example explains how to compare one day with another day from seven
days earlier.

The way to write the query depends on what the expected result is. You can
decide to return the data in time order and let the application decide how to
process the rows for comparison (or execute two separate queries and retrieve
the rows in each so they match right away). Another approach is to have one row
that shows the values for a particular time and the one for seven days earlier.
This example uses the second method.

You can solve this problem using a relational view divided into two separate
queries that are then joined together:

SELECT t1.locid, t1.gmt_timestamp tstamp1,
 t1.UsageTotal UsageTotal1,
 t1.UsageInterval UsageInterval1,
 t1.DemandInterval DemandInterval1,
 Chapter 5. Querying TimeSeries data 65

 t2.gmt_timestamp tstamp2,
 t2.UsageTotal UsageTotal2,
 t2.UsageInterval UsageInterval2,
 t2.DemandInterval DemandInterval2
FROM (SELECT * FROM MeterReading_v
 WHERE locid = 4727354321171667
 AND gmt_timestamp BETWEEN '2012-01-17 00:00:00'
 AND '2012-01-17 23:45:00'
) AS t1,
 (SELECT * FROM MeterReading_v
 WHERE locid = 4727354321171667
 AND gmt_timestamp BETWEEN '2012-01-10 00:00:00'
 AND '2012-01-10 23:45:00'
) AS t2
WHERE t1.gmt_timestamp =
 t2.gmt_timestamp + interval(7) day to day;

Use the TimeSeries SQL functions instead of the relational view. The
performance difference should be small, but the statement complexity increases.
Look at the previous examples to see the changes that are required.

5.4.4 Get peak usage for a time period, population subset

The peak usage represents the sum of the kilowatt hours (kWh) over the subset
of the population. You first need to determine the data you are really looking for:

� The peak 15-minute interval over a week
� The peak hour over a week
� The peak 15-minutes each day over a number of days
� The peak hour over a day

There could be many more possibilities. The peak usage represents the sum of
the kWh over the subset of the population but, as shown in the previous
aggregation to hour example, it represents an average over the period within one
time series.

Be careful when working with a subset of the population. Be mindful of the
population size, response-time requirements, and the overall system load.
Today, the Informix TimeSeries feature does not take advantage of intra-query
parallelism, which is more targeted at OLTP-like systems. This limitation is not
usually a problem because the system usually has many users and a large
number of queries being executed. The query concurrency takes care of using
the system resources to the maximum.
66 Solving Business Problems with Informix TimeSeries

Coming back to the example, if you use the expression-based relational view, you
have to do the sum over each time period and then find the highest value. It is
better to use the TimeSeries SQL functions in this case. First look at the peak
hour in a day.

In this query, you need to aggregate the data on a per hour basis and then sum
the population subset. Then, you can find the maximum value. Use the following
TimeSeries SQL functions:

� AggregateBy
� TSRollup
� Transpose

Here is a statement for a solution:

SELECT FIRST 1 mr.gmt_timestamp, mr.demandinterval
FROM TABLE(
 Transpose(
 (SELECT
 TSRollup(
 AggregateBy('min($usagetotal), sum($usageinterval),
 avg($demandinterval)',
 'ts_1hour', MeterReading, 0,
 '2012-01-01 00:00:00',
 '2012-01-01 23:45:00'),
 'sum($demandinterval)')::timeseries(
 row(gmt_timestamp datetime year to fraction(5),
 demandinterval decimal(15,5)))
 FROM MeterReading)
)
) AS tab(mr)
ORDER BY mr.demandinterval DESC

Note the following information about this statement:

� The AggregateBy line is cut in half for formatting but should not be because it
is a string.

� The Transpose function does not have the SQL statement between quotation
marks, which is the form that takes a TimeSeries as argument. Because
TSRollup is an aggregate function, it returns only one row that has one
TimeSeries column.

� This statement does not include a WHERE clause to identify a subset of meters.
This would need to be added after “FROM MeterReading”.

Because you care only about the demandinterval parameter, you can change the
AggregateBy expression so that it does less work on the two other columns. For
 Chapter 5. Querying TimeSeries data 67

example, you can use first instead of min and sum, which would cut the number
of code lines executed over each hour.

The Transpose function returns 24 rows, one for each hour of the day. Use SQL
to sort the values in descending order and to retrieve only the first row, which will
be the highest value.

If you do not need to know the time when the peak occurred, eliminate the
Transpose and use AggregateBy and GetFirstElem to retrieve only the value,
because the gmt_timestamp provides the day:

SELECT
 GetFirstElem(
 AggregateBy('max($demandinterval)', 'ts_1day',
 TSRollup(
 AggregateBy('first($usagetotal), first($usageinterval),
avg($demandinterval)',
 'ts_1hour', MeterReading, 0,
 '2012-01-01 00:00:00',
 '2012-01-01 23:45:00'
),
 'sum($demandinterval)'
)::timeseries(
 row(gmt_timestamp datetime year to fraction(5),
 demandinterval decimal(15,5))
)
)
).DemandInterval
FROM MeterReading

The AggregateBy above TSRollup allows you to take the maximum value from the
24 elements returned by TSRollup. The result is a row from which you extract
demandinterval. The trick with AggregateBy is that you now use a daily calendar
and ask for the maximum value. The gmt_timestamp is for the beginning of the
day. Because you asked for a specific day, you do not need to retrieve it. If you
do, the statement has to have the top part of the previous statement where you
extract both values from the row.

If you need the time stamp of the peak and you feel that you need better
performance than the first statement shown here, you can write your own
function, which provides the exact capability required. Compared to the first
statement, a custom statement provides the following benefits:

� It eliminates the use of the Transpose function to convert 24 elements into
rows.

� It eliminates the sorting of the 24 rows.
68 Solving Business Problems with Informix TimeSeries

The function scans through the elements and returns the element that has the
highest value. This function is a simple loop over the time series. The return
value is not a time series but a row. Assuming that the name of the function is
Peak, the SQL statement looks as follows:

SELECT mr.gmt_timestamp, mr.demandinterval
FROM TABLE(
 SELECT
 Peak(TSRollup(
 AggregateBy('first($usagetotal), first($usageinterval),
 avg($demandinterval)',
 'ts_1hour', MeterReading, 0,
 '2012-01-01 00:00:00',
 '2012-01-01 23:45:00'),
 'sum($demandinterval)'
)::timeseries(
 row(gmt_timestamp datetime year to fraction(5),
 demandinterval decimal(15,5))
)
)
 FROM MeterReading
) AS tab(mr)

5.4.5 Billing for a subset of customers

The first thing to consider for the billing is the number of statements that you have
to generate and the amount of time that you have to do it. With one million
customers, 50,000 statements must be generated each day billing is run, 20
weekdays out of each month. Running one SQL statement to create the 50,000
statements would do them sequentially. If you are running on, say, a 64-CPU
system, only one CPU will be busy running billing.

Instead, you might decide to run 50 separate billing statements at the same time
in separate sessions. This process still leaves 14 CPUs to do any other work, but
now, each session has to process only 1,000 customers. Depending on the
overall system performance, you could run your billing up to 50 times faster using
this method.

For this example, the 50,000 customers are identified by their billing cycles.
Subdivide customers in a billing cycle into multiple parallel jobs to take
advantage of all the processors of the system. This could be done by introducing
an additional value in the customer record, but it might be possible to use
existing values to distribute the load. It could be as simple as using a remainder
function (MOD in SQL) on the location ID or customer ID. A simple distribution
 Chapter 5. Querying TimeSeries data 69

analysis can tell you if it is appropriate. Even if it is not exactly evenly distributed,
it is likely sufficient to take advantage of this approach.

As far as the billing is concerned, the total kilowatt/hour consumption is the sum
of all the UsageInterval for the desired billing cycle. You cannot use an
expression-based relational view for this example because the definition of a
monthly cycle does not correspond to the definition of a month and the cycle
changes for each day. Instead, use the TimeSeries SQL functions.

You already know the billing dates, so you really want the location ID and the total
for the cycle. With that, you can add all the necessary customer information to
generate the proper billing statement. Of course, there can be additional
information provided, such as usage details on a daily granularity or an average
usage over each day at an hourly step. For now, look at getting the location ID
and the total for billing.

The SQL statement can be quite simple:

SELECT locid,
 AggregateRange(
 'first($usagetotal), sum($usageinterval),
 first($demandinterval)',
 MeterReading, 0, '2012-01-12 00:00:00',
 '2012-02-11 23:45:00'
).UsageInterval
FROM MeterReading
WHERE locid IN (4727354321171667, ...);

The AggregateRange function operates on all the elements within a time range
and returns a row type. From there, extract the column that you want and get it in
relational format. The result has only the standard relational types, and you get
three rows that contain the locid and UsageInterval in each.

As with the use case description in Chapter 2, “A use case for the Informix
TimeSeries feature” on page 15, you will likely require support for different billing
programs, such as some flat rates and some tiered rates. These types of
programs can complicate a billing statement because you cannot simply sum the
usage interval. You will need custom code.

The use case uses an irregular time series to keep track of which billing program
occurs when. The rates themselves are kept in a standard relational table. Use
the billing program irregular time series to select the appropriate rates and apply
them to the meter readings.

The best solution involves custom coding using a stored procedure. You can
return one value that is the amount due. You can also return details of the billing.
70 Solving Business Problems with Informix TimeSeries

This example returns a TimeSeries that includes the billing rate and energy
consumption for each 15-minute interval. Other possibilities include returning
energy consumption and cost and changing the interval to hourly or per billing
rate time ranges.

This example also assumes that a billing time range ends at the beginning of the
next rate range and that the last rate range provided covers the remainder of the
day. Instead, you might use the start and end time that applies to the rate, which
provides the option of removing the stop time from the rate range definition.

Our solution requires the definitions of two additional row types:

CREATE ROW TYPE TwoValues (
 tstamp datetime year to fraction(5),
 value1 decimal(15,5);
 value2 decimal(15,5);
);
CREATE ROW TYPE details_t (
 segment integer NOT NULL,
 starttime datetime hour to second,
 rate decimal(15,5)
);

Stored procedures can become an important part of your solution
implementation. The following procedure covers a large part of what you need to
know to manipulate time series data in the Informix Stored Procedure Language
(SPL):

01 CREATE FUNCTION
02 doBilling(rateTS timeseries(BillingRowType),
03 readings timeseries(meterreadingrowtype),
04 start datetime year to day, stop datetime year to day)
05 RETURNS TimeSeries(TwoValues)
06 DEFINE retval TimeSeries(TwoValues);
07 DEFINE progID, count integer;
08 DEFINE curDay datetime year to fraction(5);
09 DEFINE nextDay datetime year to fraction(5);
10 DEFINE intervalStep interval minute to minute;
11 DEFINE cur_t datetime year to fraction(5);
12 DEFINE t1, t2 datetime year to second;
13 DEFINE r1, r2 decimal(15,5);
14 DEFINE nextStep BillingRowType;
15 DEFINE currentDetails MultiSet(details_t NOT NULL);
16 DEFINE currentRow details_t;
17 DEFINE readingRow MeterReadingRowType;
18 LET retval =
 Chapter 5. Querying TimeSeries data 71

19 TSCreate(GetCalendarName(readings),
20 start, 0, 0, 0, NULL)::timeseries(TwoValues);
21 LET intervalStep = interval(15) minute to minute;
22 -- Get the current progID
23 LET progID =
24 GetPreviousValid(rateTS, start +
25 Interval(1) day to day).BillingCodeID;
26 LET curDay = Extend(start, year to fraction(5));
27 -- Get the next program entry
28 LET nextStep = GetNextValid(rateTS, curDay);
29 -- Get the current set of program details
30 LET currentDetails = MultiSet(SELECT segment, starttime, rate
31 FROM BillingProgramDetails
32 WHERE BillingCodeID = progID
33 ORDER BY segment
34);
35 -- Get the active rates that apply to the date range
36 LET readingRow = GetElem(readings, curDay, 0);
37 WHILE (curDay <= stop)
38 IF (nextStep IS NOT NULL) THEN
39 IF (curDay >= nextStep.StartDate_timeStamp) THEN
40 LET progID = nextStep.BillingCodeID;
41 LET currentDetails =
42 MultiSet(SELECT segment, starttime, rate
43 FROM BillingProgramDetails
44 WHERE BillingCodeID = progID
45 ORDER BY segment
46);
47 LET nextStep = GetNextValid(rateTS,
48 curDay + intervalStep);
49 END IF
50 END IF
51 -- Need to do one day at a time
52 LET nextDay = curDay + interval(1) day to day;
53 LET count = 1;
54 WHILE (curDay < nextDay)
55 FOREACH SELECT starttime, rate INTO t2, r2
56 FROM TABLE(currentdetails)
57 IF (count <= 1) THEN
58 LET count = count + 1;
59 LET t1 = t2;
60 LET r1 = r2;
61 continue;
62 END IF
63 WHILE (t1 < t2)
72 Solving Business Problems with Informix TimeSeries

64 LET retval = PutElem(
65 retval, row(curDay, r1,
66 readingRow.usageInterval)::TwoValues);
67 LET curDay = curDay + intervalStep;
68 LET t1 = t1 + intervalStep;
69 LET readingRow = GetElem(readings, curDay, 0);
70 END WHILE;
71 LET t1 = t2;
72 LET r1 = r2;
73 END FOREACH;
74 LET t2 = "23:59:59"::datetime hour to second;
75 WHILE (t1 < t2)
76 LET retval =
77 PutElem(retval, row(curDay, r1,
78 readingRow.usageInterval)::TwoValues);
79 LET curDay = curDay + intervalStep;
80 LET t1 = t1 + intervalStep;
81 LET readingRow = GetElem(readings, curDay, 0);
82 END WHILE;
83 END WHILE
84 LET curDay = nextDay;
85 LET readingRow = GetElem(readings, curDay, 0);
86 END WHILE
87 RETURN(retval);
88 END FUNCTION;

Lines 1-5 are the function declaration. Note that we use the CREATE FUNCTION
syntax. It does not really matter when using SPL but the convention is that a
procedure does not return anything and a function returns something. In our
case, we return a TimeSeries(TwoValues). Also note that SPL does not
differentiate between upper-case and lower-case characters. They are used here
for readability.

Lines 6-17 are the declarations of variables we use later in the function.

Lines 18-20 create the time series that is returned by the function. The time
series starts on the start day of the billing range. This value is received as
argument to the function. Note that you must cast the result of the TSCreate
function to ensure that it returns a time series with the proper sub-type
(TwoValues).

Lines 23-25 provide the billing rate identification that applies on the start day.
Then, line 28 provides the next billing program. Lines 30-34 show the details of
the current billing program, which consists of multiple rows identifying the rate
and starting time of each range.
 Chapter 5. Querying TimeSeries data 73

The core of the processing is done in the WHILE loop in lines 37-86 that operates
on each day between start and stop given as argument to the function. Lines
38-50 show whether you need to get a new billing program.

Another WHILE loop starts on line 54. This is to go over all the time ranges from
the billing program. You have to accommodate for the last time range of each
billing program, which includes the ones that have only one time range. This is
why there is an extra WHILE loop starting at line 75.

The main thrust of the loop is to add each meter reading consumption value
(usageInterval) and the rate that applies at that specific time to the TimeSeries.
This is done with a statement such as the one on lines 76-78. The rest is about
moving to the next reading and looping on the processing.

This function shows you how to create, read, and write time series data and how
to use the MultiSet data type to keep track of the billing ranges. This could have
been done directly with looping on a SELECT statement but the MultiSet allows us
to add some performance optimization because we can re-use the MultiSet
without having to go back to reading a table.
74 Solving Business Problems with Informix TimeSeries

Chapter 6. Managing the ecosystem

This chapter provides information about the methods you can use to administer
Informix TimeSeries components. It goes though APIs and tools that can help
you manage and view the time series components. Some key performance
considerations are also discussed.

This chapter also covers backup, restore, and high availability strategies in the
context of the TimeSeries component, and describes methods of interoperability
with other third-party products.

6

© Copyright IBM Corp. 2012. All rights reserved. 75

6.1 System management and monitoring

You can manage and monitor time series data using many standard Informix
techniques. However, some areas, such as the TimeSeries data type,
containers, and calendars, require special handling. To simplify this issue,
Informix TimeSeries provides more than 100 APIs that can help you manage and
query time series data. Although previous chapters have discussed some of
these APIs, this section presents a few of the APIs that can help in administering
the TimeSeries components.

Apart from the APIs, you can also use the IBM Informix OpenAdmin Tool (OAT)
to administer the time series components using the Informix TimeSeries plug-in
for OAT. This section provides a walkthrough of the components in the plug-in
that are used to administer time series database objects.

6.1.1 Monitor TimeSeries containers using API

Containers are created automatically when they are needed. By default these
containers are stored in the same dbspace in which the base table is stored. To
store your time series data in other dbspaces, you can create additional
containers and move them between container pools. To create additional
containers and associate those containers to a named pool, use the
TSContainerCreate routine and the TSContainerSetPool.

After you create the containers, monitor the container closely so that you do not
run out of storage space. You can monitor the containers for the information
about the size and capacity of the time series data storage and also obtain
information for a specific container or for all containers in the database.

The sections that follow describe a few of these routines.

TSContainerUsage
This routine returns information about the size and capacity of the specified
container or of all containers. This routine is particularly useful for monitoring how
full the specified container is, how quickly the containers are filling, and whether
you need to allocate additional storage space.
76 Solving Business Problems with Informix TimeSeries

In Example 6-1, the “mult_container” container has 26 time series data
elements using 30 pages out of the total 50 pages of space. Passing a NULL
parameter to the routine returns information for all the containers.

Example 6-1 TSContainerUsage usage

$ dbaccess stores_demo -
Database selected.

> EXECUTE FUNCTION TSContainerUsage(NULL);
 pages slots total
 2029 241907 2067
1 row(s) retrieved.

> EXECUTE FUNCTION TSContainerUsage("mult_container");
 pages slots total
 30 26 50
1 row(s) retrieved.

TSContainerTotalPages
This routine (Example 6-2) returns the number of data pages allocated to the
specified container or in all containers. Use this routine to view the size of a
container.

Example 6-2 TSContainerTotalPages usage

> EXECUTE FUNCTION TSContainerTotalPages(NULL);
 total
 2067
1 row(s) retrieved.

> EXECUTE FUNCTION TSContainerTotalPages("mult_container");
 total
 50
1 row(s) retrieved.
 Chapter 6. Managing the ecosystem 77

TSContainerTotalUsed
This routine (Example 6-3) returns the number of pages containing time series
data. You can use this routine to check the amount of data space used and see
how full the container is.

Example 6-3 TSContainerTotalUsed usage

> EXECUTE FUNCTION TSContainerTotalUsed(NULL);
 pages
 2029
1 row(s) retrieved.

> EXECUTE FUNCTION TSContainerTotalUsed("mult_container");
 pages
 30
1 row(s) retrieved.

TSContainerPctUsed
This routine (Example 6-4) is similar to the TSContainerTotalUsed routine except
that it tells you the status in percentage.

Example 6-4 TSContainerPctUsed usage

> EXECUTE FUNCTION TSContainerPctUsed(NULL);
percent
 98.162
1 row(s) retrieved.

> EXECUTE FUNCTION TSContainerPctUsed("mult_container");
percent
 60.000
1 row(s) retrieved.

TSContainerNElems
This routine (Example 6-5) returns the number of time series data elements
stored in the container. A time series data element is described as a tuple as
defined by the CREATE ROW SQL directive and as such, it encapsulates all the
elements within that ROW type.

Example 6-5 TSContainerNElems usage

> EXECUTE FUNCTION TSContainerNElems(NULL);
elements
 241907
78 Solving Business Problems with Informix TimeSeries

> EXECUTE FUNCTION TSContainerNElems("mult_container");
elements
 26

6.1.2 Querying the TSContainerTable system table

The TSContainerTable table is managed by the database server and users do
not modify it directly. However, in some circumstances, for example when
creating a custom maintenance script, you might need to look at the various
container definitions or the association of the script to pools. In such cases, you
can query the system tables to get the relevant information.

This type of query can be useful for situations where you need to look at all the
currently registered containers in the system to create a new one or to look at the
association of containers to the container pools or custom pools, as shown in
Example 6-6.

Example 6-6 Querying TSContainerTable system table

-- Get all the container names, the associated TimeSeries, storage and
the pool names
> SELECT name, subtype, pool partitiondesc FROM TSContainerTable;
name raw_container
subtype meter_data
partitiondesc raw_container rootdbs 100 50 1049096
pool

name mult_container
subtype meter_data
partitiondesc mult_container rootdbs 100 50 1049095
pool

name MyContainer
subtype meter_data
partitiondesc MyContainer dbs03 2048 1024 -1
pool autopool

name MyContainer_2
subtype meter_data
partitiondesc MyContainer_2 dbs03 2048 1024 -1
pool autopool

4 row(s) retrieved.

-- Get all the containers in the default ‘autopool’
> SELECT name FROM TSContainerTable WHERE pool = 'autopool';
name MyContainer
 Chapter 6. Managing the ecosystem 79

name MyContainer_2

2 row(s) retrieved.

6.1.3 Monitoring with IBM Informix OpenAdmin Tool

IBM Informix OpenAdmin Tool (OAT) is a browser administration tool used for
managing Informix database servers. OAT provides the ability to monitor and
administer one or multiple Informix instances from a single location and when
possible provides recommendations for tuning your system through performance
data point gathering and analysis.

Overview of Informix TimeSeries plug-in for OAT
OAT provides the flexibility of easily plugging in your own Hypertext
Preprocessor (PHP) based OAT extensions to create functionality that your
business demands for administration and monitoring. One such extension is the
Informix TimeSeries plug-in for OAT that comes bundled with the base OAT
product itself.

You can use OAT with the Informix TimeSeries plug-in for OAT to review and
administer database objects that are related to a time series. Some of the key
functions of this plug-in are to:

� Review the TimeSeries subtypes, containers, and calendars that are used for
the time series data in a database

� Review the tables and indexes that contain TimeSeries subtypes

� Review the columns and virtual tables for tables that contain TimeSeries
subtypes

� Monitor the percentage of the space that is used in the containers and in the
dbspaces for the containers

� Create and drop containers for data storage

Figure 6-1 on page 81 shows how OAT ties in with the solution architecture for an
application.

Getting OAT: OAT comes bundled with the client SDK product bundle
(Informix version 11.70 onwards).
80 Solving Business Problems with Informix TimeSeries

Figure 6-1 Informix TimeSeries OAT administration architecture

Client
Application

Client
Application

Client
Application

Administration

IBM OpenAdmin Tool for Informix
Informix TimeSeries Plug-in for OAT

Client connectivity and
application development

Informix
database server

TimeSeries data types
TimeSeries SQL routines
TimeSeries API routines
TimeSeries Java classes
 Chapter 6. Managing the ecosystem 81

Using Informix TimeSeries plug-in for OAT
To open the TimeSeries management console, click SQL ToolBox
TimeSeries, as shown in Figure 6-2. All the active databases that are associated
with the connected server instance display.

Figure 6-2 Invoking the TimeSeries management console

The TimeSeries management console has a context-sensitive dynamic Actions
drop-down menu. Among the options included in this menu are functions such as
creating and dropping of containers, calendars, and virtual tables. Each of these
options is activated only when you are in the window that contains the context of
82 Solving Business Problems with Informix TimeSeries

the object. For example, when the initial database is selected in the beginning,
only the Create Container and Create Calendar options are active, as shown in
Figure 6-3.

Figure 6-3 Context sensitive Actions menu

How to create these objects is discussed in the later sections.
 Chapter 6. Managing the ecosystem 83

For now, click the database object name to further review and manage the
contents of the database that are related to the time series data types. This
dashboard, shown in Figure 6-4, contains information such as database
overview, TimeSeries Subtype definitions, Container information, Calendars, and
the tables and indexes that are associated with the database.

Figure 6-4 Database drill down

You can expand the information in each of the informational panes by clicking
the plus sign (+) at the top-right corner of the pane.
84 Solving Business Problems with Informix TimeSeries

The Information pane gives a generic database overview, as shown in
Figure 6-5. Along with various other information, it shows you the logging mode
of the database. To store time series data using the Informix data type, the
database logging mode must be on. The only other restriction is that the
database must not have been created with the 'LOG MODE ANSI' clause selected.

Figure 6-5 Database over view

The TimeSeries Subtypes pane lists the row types that have been created to
hold time series data (Figure 6-6).

Figure 6-6 TimeSeries Subtypes

The TimeSeries Subtypes are created using the CREATE ROW TYPE SQL directive.
The command definition of the two TimeSeries Subtypes shown in Figure 6-6
can be found in the demo directory of your Informix product installation and is
defined as shown in Example 6-7.

Example 6-7 TimeSeries Data Type Definition

CREATE ROW TYPE meter_data (
 tstampDATETIME YEAR TO FRACTION(5),
 valueDECIMAL(14,3)
);

CREATE ROW TYPE meter_data2 (
 tstampDATETIME YEAR TO FRACTION(5),
 Chapter 6. Managing the ecosystem 85

 valueDECIMAL(14,3),
 value2DECIMAL(14,3)
);

The Containers pane (Figure 6-7) displays the details about the storage
container and its association to the TimeSeries data type. A container can hold
either a regular or irregular time series, but not both together in one container.
You can find this information and other details, such as the container space
usage and container to container pool association, in this pane.

Figure 6-7 Container details

The Calendars pane lists all the calendars that are defined in the system
(Figure 6-8). The calendar list contains the calendar names that come bundled
and installed when the TimeSeries data type is initially registered automatically.

Figure 6-8 Container details
86 Solving Business Problems with Informix TimeSeries

Expanding the Tables and Indexes pane (Figure 6-9) provides an overview of the
tables and indexes within the selected database.

Figure 6-9 Tables and Indexes details

Similar information panes are available when you click a table name and the VTI
or Virtual table name in that database.

6.1.4 Managing with OAT and APIs

For ease of use, OAT provides an interface through which you can manage the
Containers, Calendars, and Virtual tables. You can create and delete these
TimeSeries components using the GUI tool the same way you would using the
equivalent APIs. However, if you need to do script management of time series
data, you must use the APIs.

The following sections demonstrate the process through which each of these
components can be managed using either the OAT or the APIs.

Tip: The Actions menu associated with each information pane that is related
to the Containers, Calendars, and VTI gives the flexibility of adding or
dropping those components.
 Chapter 6. Managing the ecosystem 87

Managing containers
To manage containers in OAT:

1. Activate the Create Container option in the Actions menu either by clicking the
database name or by expanding the Container window, as shown in
Figure 6-3 on page 83. Click Actions Create Container to start the Create
Container Wizard, as shown in Figure 6-10.

The wizard prompts are self explanatory.

Figure 6-10 Create Container Wizard, Pane 1

2. Make the appropriate entries and selections in the Step 1 pane (Figure 6-10),
then click Next:

a. Enter the name of the new container that you want to create. This field is
mandatory.

b. Specify the initial container size.

c. Specify the Size increments value, which is the increment by which the
container will grow after the initial allocation becomes full.
88 Solving Business Problems with Informix TimeSeries

d. Choose the TimeSeries data type that is stored in the container. Notice
that the wizard allows only one selection of a TimeSeries data type
because a given container can hold data for only one single time series.

e. Specify whether the newly created container will be a part of the default
container pool. The default container pool is called the autopool. Making
the newly created container a part of the autopool is useful when you want
to store the time series data in a different dbspace from the table it is in
and you do not want to specify the container name when you insert data.

In this case, when you insert data for the time series without specifying a
container name, the database server stores the data in the container
specified in the screen in the dbspace instead of creating a container in the
same dbspace as the table. See Figure 6-11.

Sizing note: The initial default value of 16 KB might be small for
applications that need to store a lot of time series data. Depending on
your application, and the time series row length and data storage size,
enter an appropriate value for your environment. Also, depending on
the system and operating system page size, make sure that while
allocating space, you allocate enough storage to avoid page splitting
between records.
 Chapter 6. Managing the ecosystem 89

Figure 6-11 Create Container Wizard, Pane 2

3. To create multiple containers with the specified initial settings, select the
desired number of containers per dbspace or select more than one dbspace
for the containers, as shown in Figure 6-11.

Click Next.

Important: Notice that the dbspace list contains the names of only those
dbspaces that are already created and registered in the server. If you need
to create additional dbspaces, use the onspaces utility to allocate and
create a new dbspace before running this OAT wizard.

Also notice that the dbspaces are shown according to page size. If you
have created a dbspace in a page size other than the OAT default page
size of 2 KB, select the appropriate page size from the drop-down list.
90 Solving Business Problems with Informix TimeSeries

4. The Step 3 pane displays the command that will create the container, as
shown in Figure 6-12. Review the command. If there are any issues, click
back to the earlier step to make corrections. If everything is correct, click
Finish.

Figure 6-12 Create Container Wizard, Pane 3
 Chapter 6. Managing the ecosystem 91

5. The specified command is executed on the server, and the outcome of this
execution displays in the results window (Figure 6-13). If there are any errors,
go back to the previous steps to make appropriate corrections and rerun the
command.

Figure 6-13 Create Container Wizard, Step 4 of 4

If you are using the APIs instead of the OAT interface, issue the same
commands in dbaccess to create the containers. Example 6-8 shows the
equivalent execution of the command using the API interface.

Example 6-8 Creating containers in dbaccess

-- Create containers
EXECUTE PROCEDURE TSContainerCreate ('MyContainer', 'dbs03',
'meter_data', 2048, 1024);
EXECUTE PROCEDURE TSContainerCreate ('MyContainer_2', 'dbs03',
'meter_data', 2048, 1024);

-- Insert into default container pool
EXECUTE PROCEDURE TSContainerSetPool ('MyContainer', 'autopool');
EXECUTE PROCEDURE TSContainerSetPool ('MyContainer_2', 'autopool');
92 Solving Business Problems with Informix TimeSeries

To drop the container, select the container on the Containers page, and click
Drop Container on the Actions menu.

Managing calendars
The process of creating calendars in OAT is simpler but similar to that described
in “Managing containers” on page 88.

To create a calendar, click Create Calendar on the Actions menu. Enter the
pertinent information to create a calendar. The tool allows you to create multiple
calendars while in the same window. The Show SQL button displays the
command that is executed to create the calendar. If you prefer to use the API
instead of the OAT interface, use the command that is displayed by the Show
SQL button as a reference to create it using any SQL execution interface.

Figure 6-14 shows an example that creates a calendar named MyWeek. This
calendar is defined as three off days followed by four working days. The calendar
starts on 2012-06-01, a Friday, which in the context of this calendar would be off
on Friday to Sunday and working from Monday to Thursday.

Figure 6-14 Create a Calendar

The equivalent procedure using the APIs as shown in Example 6-9 on page 94.
 Chapter 6. Managing the ecosystem 93

Example 6-9 Creating calendars using API

INSERT INTO CalendarTable (c_name, c_calendar)
VALUES ('MyWeek',

'pattstart(2012-06-01 00:00:00.00000),
pattern({3 off, 4 on}, day)');

Managing virtual tables
To create virtual tables using OAT, select the table that contains the TimeSeries
column for which the VTI is to be created and click Create Virtual Table on the
Actions menu.

Figure 6-15 shows the dialog box to create the VTI.

Figure 6-15 Create a Virtual Table

Notice that, even if there are multiple time series columns in a table, only one
time series column can be selected for a single VTI. This is by design; only one
VTI per TimeSeries column is permitted. You can, however, create multiple VTIs,
depending on the number of time series columns that are available in the table.
You can also select the VTI properties to define the VTI. You can verify the
command using Show SQL.

To get a clear understanding of the VTI creation, Example 6-10 shows the
components of the base table and the corresponding time series column.

Example 6-10 Base table components

-- TimeSeries Row
CREATE ROW TYPE IF NOT EXISTS MeterReadingRowType(
94 Solving Business Problems with Informix TimeSeries

 GMT_TimeStamp DATETIME YEAR TO FRACTION(5),
 UsageTotal DECIMAL(15,5),
 UsageInterval DECIMAL(15,5),
 DemandInterval DECIMAL(15,5)
);

-- Base TimeSeries Table
CREATE TABLE MeterReading (
LocID INT,
Reading TimeSeries(MeterReadingRowType)
);

As of Informix TimeSeries plug-In for OAT v2.75, you can create only the basic
VTI using the TSCreateVirtualTab routine. To create a virtual tab, based on the
results of an expression that was performed on a table containing a TimeSeries
column, use the TSCreateExpressionVirtualTab procedure shown in
Example 6-11.

Example 6-11 Creating virtual tables using API

-- Create simple VTI
EXECUTE PROCEDURE TSCreateVirtualTab(

'MyVTI',
'meterreading',
3,
'reading');

-- Create VTI with expression
EXECUTE PROCEDURE TSCreateExpressionVirtualTab(

'MyVTIExpr',
'meterreading',
'AggregateBy("min($UsageTotal),max($UsageTotal)",
"cal1min",
reading)',
'MeterReadingRowType',
3,
'reading');

6.2 Performance considerations for TimeSeries data

Unlike the usual relational data, time series data is stored and accessed in a
proprietary and specialized way. As such, it requires special considerations for
performance tuning purposes. This section covers key points to consider when
 Chapter 6. Managing the ecosystem 95

handling time series data. These points should be discussed and incorporated
beginning with the application design phase. Adhering to and implementing
these considerations might help boost performance.

6.2.1 Storage consideration

How you define containers in your hardware storage infrastructure is of utmost
importance for achieving high performance. Depending on the type of storage,
distribute the dbspaces uniformly across the storage so that one storage location
on a spindle is not accessed continuously. Having some dbspaces that are
accessed much more often than other dpspaces on the same location can create
I/O bottlenecks and thereby degrade performance.

Another factor to keep in mind is to associate one container per dbspace to
address the I/O performance bottleneck and to create an environment where
space maintenance and administration becomes easy and manageable. Also, to
get good I/O across the containers, make sure the key columns, for example
meter IDs, are evenly spread within the containers. More containers with fewer
key columns will tend to give shorter b-trees (storage structure inside a
container) and, thus, faster access.

Furthermore, if you know the total amount of storage required for data retention
for a time series row, then try to allocate that amount of space initially in one
chunk. This can help to avoid fragmentation of containers when additional space
is allocated to extend the container space.

Another design factor that can help boost performance is to create the time
series row with fewer columns so that the columns of an element can be
contained in a single page. If a single time series data element spans across
more than one page, the overhead of fetching the data adds complexity and can
also negatively affect performance.

I/O performance is critical, especially when loading data. To minimize the effect
of logging updates during data loads, ensure that the physical and logical logs
are on different devices and also separate from the container devices. There is
no significant I/O to any other parts of the system during the load. Therefore, you
do not need to be concerned about rootdbs or having the base table or meter
table, for example, on a separate device.

6.2.2 Data distribution statistics

Informix optimizer uses the data distribution statistics stored in the systems table
to choose the optimal scan path to fetch the data. Up-to-date statistics are critical
for high performance. Make sure that statistics are updated frequently. Informix
96 Solving Business Problems with Informix TimeSeries

scheduler provides one of the many ways by which these system tables can be
kept updated automatically. An out-of-date or out-of-sync data distribution
statistics system table can severely degrade performance by choosing the wrong
query plan.

For Informix TimeSeries, these distributions are kept in the TSInstanceTable
system table. To improve performance for any subsequent load, insert, and
delete operations, execute the following directives after doing any initial data
loading:

UPDATE STATISTICS HIGH FOR TABLE tsinstancetable;
UPDATE STATISTICS HIGH FOR TABLE tsinstancetable (id);

6.2.3 Memory consideration

Try to size the buffer cache (BUFFERPOOL) in such a way that you can keep the
end of the previous day’s load and the b-tree pages in cache and have enough
space for the current day’s load. Ideally, at least one day of data should fit in a
single buffer. Use a different page size for all other database objects to separate
the TimeSeries buffer pool from the remainder of the system. Typically, the
TimeSeries storage uses the smallest page size. All other dbspaces should use
the next size larger.

6.2.4 Access consideration

Because Informix TimeSeries stores and maintains row-based data, always
create the time series base table with LOCK MODE set to row. This setting can
help avoid query timeouts compared to when page-level locking is set or during
data loads when an exclusive lock on a record is required. It is a preferred
practice to use optimistic locking protocols. Another factor to consider is to SET
ISOLATION TO DIRTY READ, especially during data insertion to the time series.

6.3 Availability of data

Availability of data, whether it is immediate or archived and backed up for later, is
one of the key consideration when designing an application solution.

Informix TimeSeries data does not require any special handling for doing backup
and restore. Hence, when deciding on an archiving strategy, the planning should
be done in the context of the whole server, not be limited to just the TimeSeries
data. Depending on the storage manager, Informix currently provides multiple
utilities for backing up and restoring database server data. Because TimeSeries
 Chapter 6. Managing the ecosystem 97

data is stored in a logical container inside the Informix dbspaces, these utilities
back up and restore storage spaces and logical logs that are related to time
series just as they do for a non-time series data.

You can also use hardware snapshots provided by the operating system or
third-party tools to create a before and after image for archiving and restoring the
data.

The data backup using this method is usually off line and is not immediately
available for use. To have the data readily and immediately available, either use
database mirroring or use replication in the cluster. Currently, TimeSeries data
can be replicated using the Informix High Availability Data Replication (HDR)
cluster technology.

A high availability cluster consists of two types of database servers:

� The primary database server, which receives updates
� One or more secondary copies of the primary database server

A secondary server is a mirror image of the primary server and is in perpetual
recovery mode, applying logical log records from the primary server. If the
primary server fails, the secondary server is set to standard mode. The target
database connections are redirected to the secondary server and, thus, a
continuous availability of data is maintained.

6.4 Interoperability and the complete ecosystem

To be useful, data must be accessible to other software and application solutions
from the database in which it is stored. The traditional methods of fetching data
between heterogeneous databases and applications are through the ODBC and
JDBC interfaces, sometimes using gateways. These methods provide a standard
interface for communication between the application and the database.

These methods hold true for Informix as well. Any application can connect and
manage the data by connecting to Informix using these industry-standard
interfaces.

Although it is simple and straightforward to use the ODBC or JDBC interfaces to
connect to Informix data that is stored in relational format, it becomes tricky using
the same methodology to fetch the data if it is stored in an Object-Relational
format.

The Informix TimeSeries data type is implemented as an Object-Relational
architecture and, as such, needs special handling within the database itself.
There are many solutions for handling this dilemma and making the
98 Solving Business Problems with Informix TimeSeries

Object-Relational data available to any external application that uses the
JDBC/ODBC standards. The sections that follow discuss some of these
solutions.

6.4.1 Virtual table interface

The virtual table interface (VTI) is by far the most popular and simple to use
strategy for fetching time series data that is stored in an Object-Relational format.
The TimeSeries data that is stored internally as an Object-Relational model is
converted to a relational view that an application can easily interpret. With VTI,
the user does not have to know the underlying proprietary data storage method
to get access to the data. Reporting tools, for example the reporters provided in
IBM Cognos® application suites, can directly query the virtual tables to fetch the
data as needed by the application without having to write custom hooks to
interpret Informix TimeSeries data. Business intelligence analytical tools can also
populate the facts and dimension tables in their data mart similarly.

Although VTI can be used for querying simple to complex data, there are some
restrictions to the way VTI can be used for loading data. You cannot use
UPDATE or DELETE statements on time series VTI. You can use SELECT and
INSERT statements; however, an INSERT on the VTI table translates to an
UPDATE on the underlying time series base table. You can update a time series
element in the base table by inserting a new element for the same time point into
the VTI.

Due to the ease of use, many applications prefer using VTI as the primary
method to load data. One such example is IBM InfoSphere Streams, which
through its adapter toolkit (containing ODBC operators) can fetch TimeSeries
data from Informix and can insert TimeSeries data into Informix through
heterogeneous data sources. This method allows the applications to enhance
their capabilities dynamically and perform the relevant analytics with higher
precision, improved performance, and reduced storage space requirements.

Although customers prefer using the virtual tables to load data, using a native
TimeSeries loading method to directly insert or update data to the time series
can provide better performance. Loading data through virtual tables is not as fast
as loading data with TimeSeries functions or the Informix TimeSeries plug-in for
Data Studio.

6.4.2 TimeSeries APIs

The TimeSeries APIs are specifically designed to work directly with time series
data without the need for a middle layer, such as virtual tables. However, not all
third-party applications can handle the APIs directly. Some third-party
 Chapter 6. Managing the ecosystem 99

applications can require an external layer to interpret and manipulate requests
and send those requests to the database server. Writing the external layer can
be complex, but worth the effort. Using TimeSeries APIs can be an effective
strategy for achieving the performance and storage benefits of using the Informix
TimeSeries solution.

6.4.3 TimeSeries APIs in Informix stored procedure

Creating a metalayer to use just the TimeSeries API might seem cumbersome to
some, especially because it might require an additional maintenance cycle and
can add components to the solution. However, the same logic can be coded into
the server using the Informix stored procedure routines. The external application
or the third-party software then just has to call the stored procedure to manage
the data, thus avoiding the metalayer. Instead of creating an external layer to
handle the TimeSeries API, you can use Informix stored procedures. If you
embed TimeSeries API calls within the stored procedures, the application can
call the stored procedures directly without an external layer.
100 Solving Business Problems with Informix TimeSeries

Appendix A. Reference material

There are multiple sources of reference material that relate to the Informix
TimeSeries environment. They include online documentation, PDF manuals, and
an IBM developerWorks wiki.

The subjects cover system management, SQL syntax, TimeSeries utilization,
Informix extensibility information, and more.

To begin with, you should know how to install and manage the system. Then you
should learn about the general SQL language. When this is covered, you can
start using TimeSeries and then consider extending the capabilities if you so
desire.

A

© Copyright IBM Corp. 2012. All rights reserved. 101

A.1 Online documentation

You can find the online documentation for Informix Version 11.7 at:

http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp

Note that new releases of the product come out regularly. To make sure you are
using the latest release of the Informix documentation, go to:

http://www-01.ibm.com/software/data/informix/library.html

Select the Information centers link and then select the appropriate View page
link for the information center that you want to visit.

A.2 The IBM developerWorks wiki

There is wiki called Informix smart meter central. Although the focus of the wiki
is smart meters, the information here is still valid for any user of Informix
TimeSeries.

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#
/wiki/Informix%20smart%20meter%20central/page/Creating%20and%20loading

The main sections include:

� News
� Informix videos
� Ecosystem
� Collaterals
� Developers’ corner

The Developers’ corner includes basics such as how to create a table with
TimeSeries, how to load data and how to access TimeSeries. It also includes
examples of how to write custom functions.

A.3 PDF manuals

The PDF versions of the Informix manuals are available for free download at:

http://www-304.ibm.com/support/docview.wss?uid=swg27019520

You will find a table listing all the manuals and the languages they are available
in. Note also that manuals change with each version of the product. You can find
links to the PDF manuals in the home page of the info centers.
102 Solving Business Problems with Informix TimeSeries

http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp
http://www-01.ibm.com/software/data/informix/library.html
http://www-304.ibm.com/support/docview.wss?uid=swg27019520
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Informix%20smart%20meter%20central/page/Creating%20and%20loading

It can be overwhelming to see such a long list of manuals. Here is a short list of
the manuals you will want to consult.

� System administration

– Administrator’s Guide
– Administrator’s Reference

� SQL

– Guide to SQL: Reference
– Guide to SQL: Syntax
– Guide to SQL: Tutorial

� TimeSeries

– TimeSeries Data User’s Guide

� Extensibility

– DataBlade API Programmer’s Guide
– DataBlade API Function Reference
 Appendix A. Reference material 103

104 Solving Business Problems with Informix TimeSeries

Appendix B. Enterprise historian
database example

This appendix elaborates on the advantages of the Informix TimeSeries
approach over standard relational storage with the help of popular solutions in
the energy sector. The example concentrates on size of data, application
development, and performance and interoperability with other products.

Achieving operational excellence requires you to collect and optimize vast data
from across operations for true process visualization. Providing business context
to the same operational data by connecting islands of information enhances the
analytical capabilities and facilitates better and faster business decisions at the
enterprise level.

The typical Enterprise Historian collects data from operational historians or
operational real-time databases and creates a common repository with other
business contextual information coming from customer relationship management
(CRM), enterprise resource planning (ERP), and so forth, thereby developing a
comprehensive analytical model for the business.

The major chunk of data in such a system is always operational data, which often
is time series data. Due to the large size, time series data imposes maintenance,
storage, performance, application development, and data integration challenges.
There are quite a lot of technologies that address performance and storage
challenges but that lack in extendability, generality, and interoperability.

B

© Copyright IBM Corp. 2012. All rights reserved. 105

This appendix discusses how the Informix TimeSeries technology addresses these
challenges with the help of use cases in a Wind Power Generation Historian.

B.1 Wind power generation historian

Typically, a wind power generation historian needs to collect the following
operational and incidental data for each turbine and perform analytics:

� Turbine utilization

� Wind versus power generation trends

� Wind rose analysis

� Average wind speed versus power generation trends at different aggregation
level (hourly, daily)

� Turbine downtime and roll up to farm level

B.2 Disk space savings

Typically, for handling 600 tags per turbine, with 30 turbines per site, at 1-minute
intervals for data, and a data retention period of 36 months, the data size of time
series data for one site grows to 1.66 TB in a standard relational database
management system (RDBMS) approach. However, when you store the same
data using Informix TimeSeries technology, the data size is reduced to 15%, or
224 GB, for space savings of almost 85%.

Scaling this to 20 sites makes it unmanageable with a standard RDBMS
approach because the data grows to 32 TB. However, with the Informix
TimeSeries approach, it grows to a maximum of only 5 TB.

Standard RDBMS approach

In a standard relational approach, create the table for storing operational
information as shown here:

create table farm_data (
loc_id integer, -- 4 bytes
plant_id integer, -- 4 bytes)
tag_id integer -- 4 bytes
timestamp datetime year to fraction(5), -- 11 byte
value decimal(7,2) -- 5 bytes
)

106 Solving Business Problems with Informix TimeSeries

Then, create the composite index on the loc_id, plant_id, tag_id, and
timestamp columns as follows:

create index ind_01 on farm_data(loc_id,plant_id,tag_id,timestamp)

To store the data for 18,000 tags per minute for 36 months, the required storage
calculation is as follows:

� Record size = 4 + 4 + 4 + 11 + 5 = 28
� Record/slot overhead = 4
� Total size of a record = 32 bytes
� Page overhead for maintaining page information = 28 bytes per page
� Total free space on 2 KB page size = 2048 - 28 = 2020 byte
� Total records on each page = 2020/32 = 63
� Total number of records = 18000*60*24*30*36 = 28 billion
� Total number of pages used = 28 billion/63 = 444 million
� Total space required for data = 444 million * 2 KB = 847 GB

Thus, the total space that is required for the index is 820 GB.

And, the total space that is required is 847 + 820 = 1667 GB = 1.66 TB.

Informix TimeSeries data type approach

With the Informix TimeSeries approach, create a row type named row1, and
create the table named farm_data_ts, which contains a time series column as
follows:

create row type row1 (
timestamp datetime year to fraction(5),
value decimal(7,2)
);

create table farm_data_ts (
 loc_id integer, (4 bytes)
 plant_id integer, (4 bytes)
 tag_idinteger (4 bytes)
 operational_data timeseries(row1)
)

Then, create the composite index on the loc_id, plant_id, tag_id, and
timestamp columns as follows:

create index indx_1 on farm_data(loc_id,plant_id,tag_id)
 Appendix B. Enterprise historian database example 107

To store the data for 18,000 tags per minute for 36 months, the required storage
calculation is as follows:

� Store the loc_id, plant_id, and tag_id only once. Thus, the space that is
required these columns is 18000*12 = 211 KB.

� Create the index on loc_id, plant_id, and tag_id columns. Thus, the total
space that is required for the index is 18000*36 = 281 KB.

The space that is required for all remaining columns is as follows:

� Record size = 5

� Record/slot overhead = 4 bytes

� Total size of record = 9 bytes

� TimeSeries index = 4+4+4+8+4 = 24 bytes

� Page overhead for maintaining page information = 28 table overhead Total
free space on 2 KB page size = 2048 - 28 = 2020 bytes

� Total records on each page = 2004/9 = 224

� Total Number of records = 18000*60*24*30*36 = 28 billion

� Per day index size = 126000 * 24 = 2.5 MB

� Total pages required for data = 28 K million/224 = 238 GB

Thus, the total space that is required for an index of 36 months is 2.7 GB.

And, the total space that is required is 238 GB + 211 KB + 281 KB + 2.7 GB =
241 GB.
108 Solving Business Problems with Informix TimeSeries

Figure B-1 illustrates the space savings.

Figure B-1 Space savings

B.3 Application development and performance

Turbine utilization for a specific period is the ratio of expected power generated
per hour to actual power generated per hour by the turbine in that period.
Assuming the tag named generated_kwh with tag_id 1001 stores the incremental
value, the turbine utilization query is as shown in Example B-1.

Example B-1 Turbine utilization query

SELECT loc_no,plant_no,
(
 (
 (row2.value - row1.value)/ time_diff_hour(“2011-11-01
 00:00:00”,”2011-11-30 23:59:59”)
)*100
)/800 p_g_per_hour
FROM
 (
 SELECT loc_no,plant_no,
 getnextvalid(operational_data,
 "2011-11-01 00:00:00"::datetime year to second) row1,

1667

241

0

200

400

600

800

1000

1200

1400

1600

1800

Relational TimeSeries

Disk Space Saving

D
is

k
Sp

ac
e

in
 G

B

 Appendix B. Enterprise historian database example 109

 getpreviousvalid(operational_data,
 "2011-11-30 23:59:59"::datetime year to second) row2
 FROM farm_data
 WHERE tag_id=1004 and loc_id=3091 and tag_id=1001
)

In Example B-1:

getnextvalid A built-in routine returns the nearest entry after a specified
time stamp

getpreviousvalid A built-in routine returns the nearest entry before a
specified time stamp

time_diff_hour A simple user-developed function that calculates the time
difference in hours between two time stamps

800 Expected kilowatts per hour

Figure B-2 shows the result.

Figure B-2 Turbine utilization chart

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
3091

Location, Plant

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

%
 F

ar
m

 U
til

iz
at

io
n

Turbine Utilization
Location
___ 3091
110 Solving Business Problems with Informix TimeSeries

Because Informix does offset-based calculations to reach out to the required
record, fetching the first and the last time series element in the specified period,
regardless of the time range in between, is fast. However, a similar operation in a
traditional relational approach is highly resource intensive, where one needs to
read complete data in the particular range and perform an “order by” clause on it.

Another frequently asked requirement of the historian solution is an aggregation
of data at different levels, such as hourly and daily. A report, such as the Average
Wind Speed versus Power Generated report, needs aggregation at a different
level. This aggregation can be done easily with a simple SQL query using the
built-in TimeSeries functions, such as the aggregateby function shown in
Example B-2. This example assumes 1002 is a tag_id for wind speed and 1003 is
a tag_id for the power generated.

Example B-2 The aggregateby function

SELECT * FROM table((
 SELECT
 tssettolist
 (
 (
 aggregateby
 ('avg($value)',
 'ts_1hour',
 operational_data
)::timeseries(one_decimal)
)
)::list(one_decimal not null)
 FROM farm_data
 WHERE loc_no=3091 AND plant_no=1 AND tag_id=1002
));

Figure B-3 shows the result.

Figure B-3 Historian speed versus power

8
7
6
5
4
3
2
1
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Timestamp

Sp
ee

d

60
50
40
30
20
10
0

Speed
Power

Po
w

er

Speed vs. Power Generation Curve for Location: 3091 and Plant: 1
 Appendix B. Enterprise historian database example 111

This query gives the average wind speed per hour. The calendar passed to the
aggregateby function, ts_1hour, follows an hourly pattern. The aggregation can
be changed to any level just by changing calendar pattern as shown in
Example B-3.

Example B-3 Average wind speed per hour query

SELECT * from table((
 SELECT
 tsSetToList
 (
 (
 aggregateby
 ('avg($value)',
 'ts_1hour',
 operational_data
)::timeseries(one_decimal)
)
)::list(one_decimal not null)
 FROM farm_data
 WHERE loc_no=3091 AND plant_no=1 AND tag_id=1003
));

In Example B-3:

ts_1hour Calendar following an hourly pattern

aggregateby A built-in routine that returns aggregate value aggregation
condition at the level defined by the calendar

one_decimal A row type having time stamp and a decimal (7,2) value

tsSetToList The TSSetToList function takes a TimeSeries column and
returns a list

(collection of rows) Containing all the elements in the time series
112 Solving Business Problems with Informix TimeSeries

Similarly, the Wind Rose Analysis can be done easily by looking at data
aggregated to a different level. The three values that you need to pass to the
wind rose chart are average wind speed, time stamp, and wind direction, as
shown in Figure B-4.

Figure B-4 Wind rose analysis

Assume that 1004 is the tag_id that stores the nacelle position details. The
following function brings any value in the range of 0 to 360:

CREATE FUNCTION between_0_360(position decimal(7,2))
RETURNING decimal(7,2);
DEFINE new_pos decimal(7,2);

LET new_pos = position;

IF new_pos < 0
THEN
 WHILE new_pos < 0
 LET new_pos = new_pos + 360;
 END WHILE;
ELSE
 WHILE new_pos > 360

3.6%W

S

E

N

2%
4%

6%
8%

10%
12%

Calm�

Wind Speed
(m/s)

15.50 (1.6%)

10.80 (6.1%)

8.23 (27.6%)

5.14 (35.0%)

3.09 (22.6%)

1.54 (0.0%)

0.00 (3.6%)
 Appendix B. Enterprise historian database example 113

 LET new_pos = new_pos - 360;
 END WHILE;
END IF;
RETURN new_pos;
END FUNCTION;

The following function brings the value of nacelle position in the range of 0 to
360:

CREATE FUNCTION ts_conv_360(a row1)
RETURNS one_decimal;
RETURN row(null::datetime year to fraction(5),
between_0_360(a.value))::one_decimal;
END FUNCTION;

The following SQL query gives the aggregated value of nacelle position at day
level for loc_id 3091 and plant_id 1:

SELECT * from table ((
SELECT tssettolist ((
aggregateby('avg($value)','ts_1day',ts1)
)::timeseries(one_decimal)
)::list(one_decimal not null)
 FROM
 (
 SELECT apply('ts_conv_360',
 "2011-11-01 00:00:00.00000"::datetime year to fraction(5),
 "2011-11-30 23:59:00.00000"::datetime year to fraction(5),
 operational_data
)::timeseries(one_decimal) ts1
FROM farm_data
WHERE loc_id=3091 AND plant_id=1 AND tag_id=1006)));

The following SQL query gives the aggregate value of wind speed at day level for
loc_id 3091 and plant_id 1:

SELECT * from table((
 SELECT
 tsSetToList
 (
 (
 aggregateby
 ('avg($value)',
 'ts_1day',
 operational_data
)::timeseries(one_decimal)
)
114 Solving Business Problems with Informix TimeSeries

)::list(one_decimal not null)
 FROM farm_data
 WHERE loc_no=3091 AND plant_no=1 AND tag_id=1003
));

B.4 Interoperability

One of the major roles that historian plays is to integrate operational information
with other business contextual information. And having easy interoperability with
third-party tools makes it easy to build multiple solution blocks. Most of the
non-RDBMS historian solutions compel the use of specialized client adaptors like
OPC and modbus to fetch data from historian. The result is that the solution
looses interoperability and generality.

Because TimeSeries is a feature of Informix, it allows any third-party tool or
application development tool to access data from historian using standard
database drivers, such as ODBC, JDBC, PDO, and so on. Thus, for developing
monitoring interfaces or reporting layers on top of Informix-based historian, the
solution architect has a vast choice of tools, such as Jviews, simple Java,
Cognos, SAP MII, and PHP to develop monitoring interfaces and reporting
layers.

B.5 Summary

The Informix TimeSeries approach is a breakthrough technology for managing
and analyzing time series data in solutions like historian. This approach offers
the distinct advantages of huge savings on disk storage, extremely high
performance, and ease of application development. The built-in SQL routines
and extensions of C APIs and JAVA APIs allow users to develop and incorporate
their own program logic into the database engine faster. Because it is easy to
learn and use, Informix is widely accepted by the software community as meeting
time series data management requirements, compared with other database and
non-RDBMS solutions.
 Appendix B. Enterprise historian database example 115

116 Solving Business Problems with Informix TimeSeries

Appendix C. Distribution grid monitoring
enabler

This appendix describes a distribution grid monitoring enabler solution used for
complex real-time data acquisition and monitoring.

Utilities today have limited access to load data and fault location information in
the distribution segment of an electric network. The following practices are
typical present day MV and LV network monitoring practices:

� Manually-read earth or line fault indicators are installed as standard practice
on 11kV/415V kiosk (padmount) substations to indicate to field operators
whether a fault current has passed.

� In the medium/low voltage network, maximum demand indicators can be
installed at most kiosk substations and are read manually (on an annual or
more frequent cycle) to record the highest substation load since the last
device reset.

Alternatively, if neither of these practices is in place, the utility relies on estimated
load information. This estimation is based on high-level supervisory control and
data acquisition (SCADA) information, standard load profiles, and online patrols
to find MV faults.

Outage recording is largely manual and requires lengthy and manual data
matching and analysis. Fault identification and fault location information also rely

C

© Copyright IBM Corp. 2012. All rights reserved. 117

on field-based manual assessment and the tacit knowledge of control room and
field-based crews built up over years. Load data required for larger customer
supply connections, network reliability assessment, augmentation and
replacement is typically collected based on manual field-based processes.

C.1 Solution overview

The distribution grid monitoring enabler solution is the joint solution from IBM and
PowerSense. Although PowerSense provides the smart sensors that are
required to monitor the grid, IBM provides the platform that acquires, stores, and
manages this data.

The distribution grid monitoring enabler gives context to the data and makes this
data accessible through a visual interface and a programmatic CIM-based
interface. This offers analytics, such as unbalanced feeders and hot substation
utility operations, without modification and planning insights. It also offers a user
interface to manage devices, such as firmware and settings, remotely.

Figure C-1 on page 119 shows the architecture.
118 Solving Business Problems with Informix TimeSeries

Figure C-1 Distribution grid monitoring enabler architecture

C.2 Business benefits

The distribution grid monitoring enabler solution offers the following business
benefits:

� Improved time to diagnose and rectify outages:

– Proactive reporting of faults instead of waiting for customer to report fault
– Remote diagnosis of fault location on 11kV feeder
– Remote setting of earth fault indicators

� Avoided costs of dealing with manual instrument readings:

– Maximum demand indicators no longer must be read every 6 months.
– Load surveys can be avoided due to the presence of accurate

measurement data.

Information Consumption

Control Room
Engg & Planning

Others...

OMS SCADA/
DMS

Engineering &
Planning Tools

Asset
Management

Demand
Response

New
Analytics...Network

Operations
Center

Distribution Grid Monitoring Platform

Devices

Visualization
Business Intelligence

Power Network Model Data Warehouse
for Analytics

Centralized
Operational Data

Store

Device Gateway

CIM-XML

CIM-XML CIM-XML CIM-XML

CIM-XML

Ratings

Other Systems

Contextual Data

Time Synchronization

DISCOS

Communication

Device Management

Device Configuration

Load ControllerDER
Devices Sending

COMTRADE
Files

Asset
Health

Monitoring

Combining other
operational data

sources

Trans/
ZoneSub Data

Switch State Data

Consumption &
Monitoring Data

Device
Faults

Topology
GIS

Asset Mgmt

Device
Fault Mgr

NT Server

Network
Access
Server

CHAP

HeadEnd/
MDMS

SCADA/
DMS

C
om

m
un

ic
at

io
n

Alarms/Measurements
Control Commands

Operation Service Bus

Device
Management

Socialize
Smart Grid

Data
Alarms

(CIM-XML)

Alarms
Load Drawn

Switch Status
Remote Switching

(CIM-XML)

Operational Data
Contextual Data

(CIM-RDF)
Analytics & Reports

Operational Data
(CIM-XML)
 Appendix C. Distribution grid monitoring enabler 119

� Improved network planning and management of capital expenditures:

– More data is available to support planning and forecasting.
– Network Augmentation Deferrals.
– Power Factor and Phase balance correction.

� Outage data management

� Reduce battery monitoring costs

� Faster decision on new connections (customer > 100 amps)

� Proactive customer voltage investigations

� Inbound outage call management

C.3 Challenges

Generally, in a full blown implementation, the distribution grid monitoring enabler
solution needs to handle over 3.5 million tags that represent the network points
being monitored in a distribution grid. The operational data about all these tags
must be acquired real time, and real-time dashboards are monitored for grid
health checkup. The sensor devices potentially can be configured to transmit
information every 10 minutes. Hence, the required data insertion rate is a
minimum of 10,000 records per second and the database should be able to
perform read operations as well as database administration activities with high
efficiency in parallel.

Considering 3.5 million tags and a data retention period of 18 months, the data
size with traditional RDBMS grows up to 26 TB. To address the performance and
data size challenges, initially the non-RDBMS solutions were preferred. However,
in a system such as the distribution grid monitoring enabler solution, although
operational data is one of the major factors to determine the technology, other
components such as Power Network Model (PNM) also must be considered. The
ultimate output of the system is achieved by establishing relation between PNM
and operational data. The PNM is purely a relational model and cannot be
handled with non-RDBMS solutions. Thus, having operational data in
non-RDBMS system and PNM in RDBMS adds another challenge of integrating
these systems to achieve final output.
120 Solving Business Problems with Informix TimeSeries

C.4 Solution

Informix not only solves all the challenges but also makes it easy to extend the
capabilities of the distribution grid monitoring enabler solution by adding SCADA,
master data management (MDM), and warehouse capabilities. Informix
TimeSeries takes care of performance and keeps data size under control. The
general RDBMS capabilities handle PNM efficiently. Because the modules now
reside in Informix, it is easier to integrate modules and establish relations
between operational data and PNM.

The operational data is stored in simple TimeSeries table name measurements:

CREATE ROW TYPE measurement_row
(
timestamp datetime year to fraction(5),
value decimal(7,3)
);

CREATE TABLE measurements
(
msmt_tag varchar(250),
msmt_type varchar(20),
measurement timeseries(measurement_row)
);

The measurement tag ID is the unique identification number of the device,
derived from the PNM module stored in the msmt_tag column. Each device
transmits 50 different measurements which include phase wise current, voltage,
inductance, and so on, and these types get stored in the msmt_type column. In
addition, the actual operation data for each device and msmt_type are stored in
the measurement column along with the time stamp.

C.5 Performance

The basic performance testing of the distribution grid monitoring enabler solution
is done on a Quad Core 2 CPU Power 7 machine with a single disk with a Linux
SUSE 11 operating system. The data is captured through Message Broker and is
inserted into Informix through multiple threads of a simple WebSphere
Application Server based Java program using the executebatch() function of
JDBC.
 Appendix C. Distribution grid monitoring enabler 121

Example C-1 shows the core piece of the Java program that inserts the data.

Example C-1 The Java function

ArrayList<String> provisionTagList = new
ArrayList<String>(list.size());

try{
connection=getConnection();
hsLogging.info(CLASS_NAME, METHOD_NAME, "***** Database

Connection Received...");
connection.setAutoCommit(false);
//create prepared statement
pst = connection.prepareStatement(sql);
pst_set_lock_mode = connection.createStatement();
Iterator<MeasurementData> iterator = list.iterator();
//executing the batch
pst_set_lock_mode.execute(sql_lock_mode);
while(iterator.hasNext())

 {
 MeasurementData data= iterator.next();
 String piTagName=data.getMeasurementTag();
 boolean provisionTagExist = true;

hsLogging.info(CLASS_NAME,MESSAGE_FLAG_PROVISION_TAG,Boolean.toStrin
g(provisionTagExist));

 if(provisionTagExist)
 {

List<StringMeasurementValue>value=data.getStringMeasurementValues();

 for (Iterator<StringMeasurementValue> iterator1 =
value.iterator(); iterator1.hasNext();)
 {

 StringMeasurementValue val =iterator1.next();
 String timeString = new

HSDateUtil().getFormatedDateOld(val.getTimeStamp().toString());
//setting value to prepare statement
 pst.setString(1,piTagName);

 pst.setTimestamp (2,Timestamp.valueOf(timeString));
 pst.setString(3,val.getValue());
 pst.setTimestamp(4, new java.sql.Timestamp(new

java.util.Date().getTime()));
 hsLogging.info(CLASS_NAME,METHOD_NAME,piTagName);
 hsLogging.info(CLASS_NAME,METHOD_NAME,timeString);
 hsLogging.info(CLASS_NAME,METHOD_NAME,val.getValue());
 //adding to batch
122 Solving Business Problems with Informix TimeSeries

 pst.addBatch();
 }
}

 else
 {

 provisionTagList.add(piTagName);
}

 }
 int[] updateCounts = pst.executeBatch();
 hsLogging.info(CLASS_NAME,METHOD_NAME,"Updated Row After
Batch insert :"+ updateCounts.length);
 connection.commit();

}

With this simple code, the DGME observed 33500 (5x more than expected)
records per second insertion rate, consuming just 4.4 GB RAM and hardly 50%
CPU utilization. The performance was observed consistently, even when the
TimeSeries table had 3 months of data stored in it. The avenue open to further
improve this performance by more than 10x, with even lower resource utilization,
is to have multiple discs and use Informix TimeSeries fast loader functions.

The data retrieval operations like aggregation, consecutive record comparison,
difference between first and last element and finding running average were found
extremely easy and fast. The 6 concurrent sessions retrieving 3 months of tag
data responded in less than 1 second while in parallel the data was uploaded
with high insertion rate. The data maintenance activity, such as updating
statistics for consistent performance, always took less than 1 second.

C.6 Ease of development

The measurement values for each tag are stored in a TimeSeries table with
every 10 min interval and 144 records inserted per day per tag. However, the
dashboard showing a high-level view of substation details needs to aggregate or
sample the data at higher interval levels to draw the chart to show the trend and
to determine if it is needed to drill down to raw data.

This process becomes easy with the Informix TimeSeries aggregateby function.
For example, the following example shows the average value of phase 1 current
for substation S004781:

SELECT * FROM table
((
 SELECT
 Appendix C. Distribution grid monitoring enabler 123

 tssettolist
 ((
 aggregateby
 ('avg($value)','ts_1hour',measurement,0,
 "2012-01-02 00:00:00.00000"::datetime year to fraction(5),
 "2012-01-02 23:50:00.00000"::datetime year to fraction(5)
)::timeseries(measurement_row)
))::list(measurement_row not null)
 FROM measurements
WHERE msmt_tag='S004781' AND msmt_type='IL1'
));

This query gives average current for phase 1. As the calendar passed to
aggregateby function, ts_1hour, follows an hourly pattern. The aggregation can
be changed to any level just by changing the calendar pattern, as shown in
Figure C-2.

Figure C-2 Average current for phase 1

The substation utilization is another critical functionality that helps to determine
overall utilization of the grid and to take action on under- and overutilized
124 Solving Business Problems with Informix TimeSeries

substations. The overall utilization of a substation at any instance is decided on
maximum current drawn on any of the three phases of the lower voltage side of
the distribution transformer.

This value is calculated as a derived tag value during every insertion of
substation operational data. The utilization percentage is calculated as a percent
ratio of max(IL1,IL2,IL3) and fixed rating of corresponding transfer. This basically
means to:

� Fetch the latest element of measurement type IL1,IL2 and IL3 of substation
tag.

� Derive maximum value.
� Find the percent ratio with fixed rating stored in the ratings table.

These things can be achieved by the following simple query:

SELECT max(row1.value)/rating(msmt_tag) * 100 FROM
(
 SELECT getlastelem(measurement) row1
 FROM measurements
WHERE msmt_tag="S004781" AND msmt_type in
 ("IL1","IL2","IL3")
)group by 1;

In the code, rating (msmt_tag) is the user-defined function that brings the rating of
the transformer to which the S004781 tag belongs from PNM.
 Appendix C. Distribution grid monitoring enabler 125

While showing the consolidated view for all substations on a Google map, a
similar query for all substations can run under a chosen zone, as shown in
Figure C-3.

Figure C-3 Substation utilization

The color coding indicates the utilization level of each substation.

C.7 Summary

The distribution grid monitoring enabler solution is a unique solution that enables
the real-time monitoring of distribution grid operations. It can help improve overall
efficiency of utility companies. Although the solution has challenges, it is the best
technology to address this challenge. The TimeSeries feature of Informix
efficiently manages operational data by providing high performance, efficient
real-time data capture, space reduction by over 50%, and ease of development.
Its relational capabilities manage the power network model to provide context to
the operational data. Informix built-in routines in the SQL layer can make
application development easier and more efficient.
126 Solving Business Problems with Informix TimeSeries

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks publications

The following IBM Redbooks publications provide additional information about
the Informix product. Note that some publications referenced in this list might be
available in softcopy only.

� Informix Dynamic Server 11: Advanced Functionality for Modern Business,
SG24-7465

� Customizing the Informix Dynamic Server for Your Environment, SG24-7522

� IBM Informix Developer's Handbook, SG24-7884

� Embedding IBM Informix, SG24-7666

� IBM Informix Flexible Grid: Extending Data Availability, SG24-7937

You can search for, view, download or order these documents and other
Redbooks, Redpapers, Web Docs, draft and additional materials, at the following
website:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources:

� Administering Informix Dynamic Server, Building the Foundation,
ISBN 978-1-58347-076-3
© Copyright IBM Corp. 2012. All rights reserved. 127

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Online resources

These websites are also relevant as further information sources:

� IBM Informix 11.70 Information Center

http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp?topi
c=/com.ibm.po.doc/new_features.htm

� Informix smart meter central (wiki)

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=
en#/wiki/Informix%20smart%20meter%20central/page/Welcome

� Informix product family

http://www-01.ibm.com/software/data/informix/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
128 Solving Business Problems with Informix TimeSeries

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp?topic=/com.ibm.po.doc/new_features.htm
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Informix%20smart%20meter%20central/page/Welcome
http://www-01.ibm.com/software/data/informix/

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Solving Business Problem
s w

ith Inform
ix Tim

eSeries

®

SG24-8021-00 ISBN 0738437239

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Solving Business
Problems with Informix
TimeSeries

Greatly reduce
storage
requirements for
time-based data

Simplify processing
with built-in and
custom functions

Speed up loading,
access, and retrieval
of data functions

The world is becoming more and more instrumented,
interconnected, and intelligent in what IBM® terms a
smarter planet, with more and more data being collected for
analysis. In trade magazines, this trend is called big data.

As part of this trend, the following types of time-based
information are collected:

� Large data centers support a corporation or provide cloud
services. These data centers need to collect temperature,
humidity, and other types of information over time to
optimize energy usage.

� Utility meters (referred to as smart meters) allow utility
companies to collect information over a wireless network
and to collect more data than ever before.

IBM Informix® TimeSeries is optimized for the processing of
time-based data and can provide the following benefits:

� Storage savings
� Query performance
� Simpler queries

This IBM Redbooks® publication is for people who want to
implement a solution that revolves around time-based data. It
gives you the information that you need to get started and be
productive with Informix TimeSeries.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Acknowledgement

	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks publications

	Chapter 1. Overview of IBM Informix
	1.1 Building a smarter planet with Informix
	1.2 Time series data
	1.3 Benefits over relational model of storing data
	1.4 The Informix TimeSeries approach
	1.5 Informix TimeSeries components
	1.5.1 TimeSeries ROW element sub-type
	1.5.2 TimeSeries “out of row” storage containers
	1.5.3 Types of time series data
	1.5.4 TimeSeries calendars and calendar patterns
	1.5.5 Informix TimeSeries system tables
	1.5.6 SQL routines and APIs
	1.5.7 Virtual table interface

	Chapter 2. A use case for the Informix TimeSeries feature
	2.1 Customer overview
	2.2 The initial data model
	2.3 Applying a time series data type to the relational data model
	2.4 Final considerations

	Chapter 3. Defining your TimeSeries environment
	3.1 Schema
	3.2 Relational and time series data working together
	3.3 Regular or irregular data
	3.4 The TimeSeries element
	3.5 Calendars
	3.6 Time zone issues
	3.7 Loading data
	3.8 Data cleansing and corrections
	3.9 High availability
	3.10 Backup
	3.11 Purging data
	3.12 Spatial requirements

	Chapter 4. Implementing Informix TimeSeries
	4.1 Schema definitions
	4.2 Space calculations
	4.2.1 Space calculations for relational storage
	4.2.2 Space calculations for indexes
	4.2.3 Space calculations for Informix TimeSeries storage
	4.2.4 Container calculations for Informix TimeSeries storage
	4.2.5 Time series storage needs versus relational storage needs

	4.3 Loading time series data
	4.3.1 Small amounts of data
	4.3.2 Large amounts of data

	Chapter 5. Querying TimeSeries data
	5.1 Basic relational views
	5.1.1 Expression-based relational views
	5.1.2 When to use relational views

	5.2 Using the TimeSeries SQL API
	5.2.1 TimeSeries SQL API functions
	5.2.2 When to use TimeSeries SQL functions

	5.3 Custom functions
	5.3.1 Creating a custom function
	5.3.2 When to use custom functions

	5.4 Query examples
	5.4.1 Getting a day of data for a customer
	5.4.2 Getting a day of aggregated data for a customer
	5.4.3 Comparing two different days for a customer
	5.4.4 Get peak usage for a time period, population subset
	5.4.5 Billing for a subset of customers

	Chapter 6. Managing the ecosystem
	6.1 System management and monitoring
	6.1.1 Monitor TimeSeries containers using API
	6.1.2 Querying the TSContainerTable system table
	6.1.3 Monitoring with IBM Informix OpenAdmin Tool
	6.1.4 Managing with OAT and APIs

	6.2 Performance considerations for TimeSeries data
	6.2.1 Storage consideration
	6.2.2 Data distribution statistics
	6.2.3 Memory consideration
	6.2.4 Access consideration

	6.3 Availability of data
	6.4 Interoperability and the complete ecosystem
	6.4.1 Virtual table interface
	6.4.2 TimeSeries APIs
	6.4.3 TimeSeries APIs in Informix stored procedure

	Appendix A. Reference material
	A.1 Online documentation
	A.2 The IBM developerWorks wiki
	A.3 PDF manuals

	Appendix B. Enterprise historian database example
	B.1 Wind power generation historian
	B.2 Disk space savings
	Standard RDBMS approach
	Informix TimeSeries data type approach

	B.3 Application development and performance
	B.4 Interoperability
	B.5 Summary

	Appendix C. Distribution grid monitoring enabler
	C.1 Solution overview
	C.2 Business benefits
	C.3 Challenges
	C.4 Solution
	C.5 Performance
	C.6 Ease of development
	C.7 Summary

	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	Help from IBM

	Back cover

